
Heurikon MLZ-91/92 Microcomputer

User's Manual

HElRIK9N
Microcomputers For· btdustry

MLZ-91 User Manual

HEURIKON CORPORATION

Contents

Introduction

General Information

Component ViE;W
Block Diagram & Description
Getting Going (A MUST READ!)
ZRAID Initial State

Features Discussion

2
3
6
8

CPU Description 11
Instruction Set Map 14
Introduction to Mapping RAMs 18
Memory Management

MLZ-91 Memory Mapping RAM 24
On-Card ROM 27
On-Card RAM 30
Off-Card Memory 32
Summ~ry Data (Memory Map) 34
parity and Write Protect Logic 36

Power-On-Jump 37
Bus Mapping RAM 38
I/O Mapping RAM 42
Bus Control 44
Summary Information (Maps & Bus Logic) 47
Memory and I/O Timing 48
Memory & Bus Logic Flowchart 50
Interrupt Struqture 52
System PIO 57
DIP Switches and LEOs 62
Board Status 64
GPIB (IEEE-488) 65
Winchester Interface 70
Streamer Tape 73
APU 75

Software Examples

Board Initialization & Slave Mode 80
Multi-User example 95
Macros 98
Off-Card I/O 102

I/O Devic.es U-1LZ-9l Specific)

. I/O Device Addresses 110
SIO & Dual Baud Rate Generator 112.
CTC 122
Floppy Disk Controller & User LED 124
DMA 131

Appendix

User Checklist 140
Hardware Jumpers 142
P1 Signal Definitions 145
Winchester I/O Connector (P2) 150
Streamer Tape I/O Connector (P3) 156
Serial I/O Connector- (P4) 158
GPIB IEEE-488 Connector (P5) 160
Floppy Disk I/O Connector (P6) 162
Power & Environment 166
Accessories 167

91-Rev B

INTRODUCTION

The purpose of this manual is to document the features and present

implementation examples of the MLZ-9l microcomputer board.

The MLZ-9l contains a number of special features not commonly avail­

able on single board microcomputers. This manual covers these unique

features in detail. General information, such as FDIO, CTC, and SIO

commands are discussed, however, the following documents and manuals

should be consulted to obtain complete information on the chip set

arid external peripherals:

MLZ-9l Schematic Diagrams (Heurikon)
Z-80 Chip Set Product Specification booklet· (Zi10g,Mostek)
Z80 chip set Technical Manuals (Zilog, Mostek)
APU/FPU Technical Manuals "(Advanced Micro Devices)
FD1793 (FDIO) Controller Manual (Western Digital)
TMS 9914 GPIB Controller (Texas Instruments)
ZRAID Monitor Manual (Heurikon)
ZRAID Monitor source code listing (Heurikon)
Floppy disk drive specifications (Shugart)
Streamer Tape drive specification (Archive)
Winchester Controller Manuals (Priam, Shugart, Micropolis)
CP/M Operating System Manuals (Digital Research)

Heurikon; Madison; WI (608) 271-8700
AMD; Sunnyvale, CA (408)' 7~2-2400
zi10g; Cupertino,· CA (408) 446-4666.
western Digital; -Newport Beach,- CA -(714) -557-3550
Texas Instruments; Dallas, TX (214) 238-6531
Archive Corporation; Costa Mesa, CA (714) 641-0279
Priam Corporation; San Jose, CA (408) 946-4600
Micropolis Corporation; Chatsworth, CA (213) 709-3300
Shugart; Sunnyvale, CA (408) 733-0100 -
Digital Research Corporation; Pacific Grove, CA (408) 375-6262

Z-80 is a trademark of ZILOG Corp.
MULTIBUS is a trademark of INTEL Corp.
CPtM is a trademark of DIGITAL RESEARCH

Some portions of theZ-80 chip literature are reprinted herein

courtesy of Zilog Corporation.

The information furnished by Heurikon is believed to be accurate and

reliable. However, no responsibility is assumed-by Heurikon for

its use. Specifications are subject to change without notice.

Heurikon Corporation I 3201 latham Drive I ~"'adlson. W!scons,p 5371.) / 608-271-8700 I Telex 469532 1

HEURIKON MLZ-91A MICROCOMPUTER

4l;HZ
CLOCK

APU ~
(AM 9511) I
~-

Z-80A"" CPU

-

PARITY AND
WRITE

PROTECT
LOGIC

I/O DEVICE
MAPPING

RAM

BI-DtRECTlONAL MULnBUS I/F AND BUS MAPPING RAM

INTERRUPT

~

8UNES
,

(

CONTROL

5UNES

DATA

~ ~

8 BITS

,f

INTE~MULnBUS'"

ADDRESS

,
20 BITS
,

-- RAM
16K132K/64K BYTES

FACILITIES DESCRIPTION

CPU

APU

DMA

MEMORY

BUS I/F

MEMORY MANAGEMENT

4

Z-80A or equivalent.
Standard Z-80 instruction set - 158 instruc­

tions.
16 bit address bus, 8 bit data bus.
8, 16, 24, and 32 bit instruction lengths.

AMD 9511 arithmetic processing unit
(APU) •

Stack oriented data transfers.
43 microprogrammed "macro commands" includ­

ing cos, sin, tan, mult, div, sqrt,
log, In, exp, asin, etc.

Results computed to 32 bit precision.

Z-80 compatible I/O and memory data
transfers.

Multi-mode operation (byte-at-time, burst,
and continuous).

Transfers data from I/O or memory td I/O
or memory. Also has data search mode.

Vectored interrupt generated on completion.

Two memory sockets for ROM (types·27l6, 2732,
or 2764with maximum capacity of 8K bytes
per socket).

16K/32K/or64K on-card RAM with optional
parity bit.

Software controlled write-protection for
each 4K block of on-card RAM.

Any (or all) on-card memory blocks may .
be disabled to increase off-card address
space.

Intel Multibus compatible
20 bit memory address space, fully

addressable by CPU or DMA.
I megabyte addressing capability.

Bi-directional I/F (Master/Slave)
Software programmable master mode operation:

Mode 0 Release bus after each transac­
tion

Mode 1 - Release bus for any other card
(uses CBREQ-)

Mode 2 Release bus only for higher
priority cards (uses BAI-)

Mode 3 Never release bus (override)

Software programmable slave mode operation:
Board location on bus
Inhibited bus operations (Mem RO,

Mem WR, all I/O)
Eight bus interrupts. (Bi-directional)

Programmable address mapping RAM.
Memory map completely under software

control.
Allows full use of 20 bit address space on bus

Any 8K block of bus address space may be mapped
into any 8K block of CPUjDMA address space.

Any 4K block of on-card address space may be mapped
into any 4K block of CPUjDMA address space.

FDIO Double density floppy-disk interface (uses WDI793).
On-card data separation (PLL) and write pre-composition

logic.
Four drive select lines plus side select for dual

sided drives. (4 megabyte capacity).
Also supports single density and 5~" formats.
Software controllable status LED.

OTHER I/O On-card:
I/O device base addresses mappable under software

control.
Winchester controller I/F (Priam, Micropolis or

Shugart)
GPIB (IEEE-488) controller, talker and listener
S bit parallel port for Streamer tape I/F
16 position user DIP switches
8 bit user LED display
Two SIO ports.

RS232/423j422 interface.
Asynchronous or sychronous modes (including

SCLC).
Software controlled dual baud rate generator.
Two utility S-bit PIO ports for on-card control

and bus interrupt functions.
Four counter/timer channels.

Off-card:
Entire I/O device address spac~-,~available for off­

card use.'

POWER-ON Provided via memory mapping RAM, above.
JUMP

BOARD Multilayer, 6.75 inch by 12 inch

OPTIONS Hardware jumpers:
System clock (2 or 4 MHZ)
APU clock (2 or 4 MHz)
Highest priority board designation
Memory configuration (ROM type, RAM size)
Memory wait state select (all cycles, MI only, ROM only)
Drive type (S" or 5~")
SIO clock control (1 port)
SIO I/F select (RS232/423/422)
Winchester type select (Priam, Micropolis or

Shugart)

Software controlled:
Bus mode (control release)
Memory map contents
Bus map contents and inhibit states
I/O map contents
DMA "oata ready" source selection
Bus interruots
Baud rates
FDIO sinqle/double density select
Drive select and side select
User status LED

5

6

GETTING GOING

This section is an outline of the minimum work necessary to

get the MLZ-9l "on the air":

Items required: (S~e diagram)

MLZ-9l Microcomputer Board

ZRAIO-9l Software Monitor program (ROM)

RS232 Interactive Terminal and cable with male "0" connector

MLZ-P4N Serial Interface cable and connectors

Power supply (+5, +12, -12, volts)

Card Rack

1. Insert ZRAID ROM in socket M~ (See diagram for position
detail.)

2. Install Jumpers as follows:

JI-A (2MHz clock)

J3,J4 (S10 I/F)

J5-B, J6-B

J7

J8

(SIO Port A Receive clock)

(Upper address enable)

(Processor priority)

J9-A, JlO-A

JI2-A, J14-A

J13-A,C

(Wait states for ROM)

(ROM type 2732)·

(RAM type) (Assumes 4164 or 4532-2)

3. Connect console terminal to SIO port B via MLZ-P4N cable
and P4 connector. Use the female D connector on the cable.

"0" Pin #

2 Data from terminal

3 Data to terminal

4-5

,i>. 6-20

7

Jumper (RTS-CTS)

Jumper (DSR-DTR)

Ground

4. Turn all DIP switches on MLZ-9l, if installed, to "OFF".

5. Set baud rate on terminal for 9600 ·baud. Set terminal options,
if available, to eight bits, no parity, two stop bits.

6. Apply power to MLZ-9l and terminal.

7. Activate RESET (momentarily ground Pl-l4).

8. ZRAIO sign-on message should appear on terminal.

9. Consult ZRAID manual for further details. ZRAID automat­
ically sets up the MLZ-9l mapping RAMs and allows access
to all memory and I/O devices from the terminal.

TERMINAL

A~
Bo

JI

~
J7

~
J8

J5 Jb

~~~~ 
FDIO 

PG 

P\ 
MULTIBUS 

'1-----1 POWER SU PP L Y ____ t----~ 

J q J 10 

~O ~O 
A B A B 

JI9 

(FOR PR1NTER) 

" II 2;; PIN 0 
MALE 

SIO PORT A 

MLZ.- P4N 
CABLE ASSEMBLY 

-rAPE: 

P'3 

P2 

JI4-
~O 

A B 

::JIS 

Jl3 
B 

A~~C 
D 

ZRAID-91 
ROM 

MLZ. - 91A WITH ZRAI D - SETUP DJAGRAM 
7 



8 

To load the CP/M operating system, follow the above steps 

but also connect a floppy disk drive to P6. Set the floppy 

disk configuration jumpers for "8" or "5" as appropriate. 

(See page 128). After turning on power and resetting the system, 

insert the CP/M system diskette in drive "A" and enter apostrophe­

space on the terminal. Refer to the ZRAID manual for details. 

ZRAID-9l Initialization State 

The ZRAID-9l monitor initializes the mapping RAMs and on­

card I/O derives as follows: 

A. Memory Mapping RAM (See diagram, next page) 

ROM socket M9 at CPU address F~9~ (hex) 

On-card RAM allocated from address 99~~ 
through address EFFF. 

B. I/O Mapping RAM 

C. 

I/O Addresses Assignment 

Off-card 

Off-card 

~J;J thru 

49 thru 

89 tbru 

C9 thru 

3F 

7F 

BF 

FF 

On-card I/O Group A (e.g. Baud Gen) 

On-card I/O Group'~;B (e.g. CTC) 

Bus Mapping: RAM 

If DIP switches installed: 

Board is assigned to the bus block (~ - F) 

as specified by switches 5, 6, 7 and 8 of DIP switch 

group~. Otherwise, the board is assigned .to block 

9 (default). In either case, all board operations 

are enabled (i.e., Memory RO, WR and I/O operations 

Clre valid.) 

D. 510 Baud rates: 

If DIP switches installed, the baud rates are set according 

to DIP switch group I as shown on page·93. 

(See also the ZRAID manual.) Otherwise, both 5IO port 

baud rates are set at 9600 baud (default). 

Note: These valnesmay be modified by special ZRAID commands 

or the initial values may be changed in the ZRAID 

ROM. 



CPU ADRS SPAcE 
0000 

(4-K EAc.H) 
VAR\ABLF 

)000 

'2.000 RAM 

3000 BLKo 7£ 
Bl-K I 7D 

q.OOO 
W BL K '2. 7C 

5000 U 8LK 3 7'8 

-« Bl-K q. 7A 
~OOO n.. eLK 5 7q 
7000 lJ) BLK 6 ,g 

gooo 
~ 

BLK I 77 
BLK g ,6 

'1000 <:( BI-K q 75 

AOOO ~ BLK A 74-
BLK B 73 

BOOO [( Bl-K C 72-

W 6LK D 7t coco 
U) BLK E 7F 

pooo J BLK F 00 

·EOOO 

"-MAP 'Z.RAIO RAM 
Fooo 

Z.RAJD PRoGRAM DATA 

EACH 4K BLOCK of CPU ADDR~S$ SPAcE 
)SC01'l,ROLlED BY AN ENTRY \N THE MAPP)N~ 
RAM. THE DATA IN THE MAPPJN~ RAM 
\\POINTS'I TO AN ON-CARD ROM SocKET vR 
RAM ADDRESS OR TO AN OFF- CARD 

)I 

MEMoRY APt)RESS 

4K) 

ON-cARD 

RAM 
(bl}X) 

(AVAIL) 

M¢ oN-CARD 
RoM 

Ml SoCKETS 

OFF cARD ADRs SPAcE" 
(I MEGABYTE) 

00000 

NOT 

A5S1~NED 

FFFFF 



10 

Command 

Hnn 

Lnn 

A 

Snnnn 

.nn 

W 

I 

D 

* 
C 

J 

Pnn 

X 

Rn 

U 

Fnn 
y 

E 

= 
@ 

B 

" 
/ 

· . 
ZRAID Command Summary (Partial listing) 

Function Example 

Set upper eight bits of POINTER· H4S 

Set lower eight bits of POINTER LAS 

Print POINTER value in H, L, format A 

Set POINTER using 4 character hex value (or 
16-bit octal value) SC709 

Set addressed location .SA 

Print contents of addressed location W 

Increment POINTER, print location 

Decrement POINTER, print location 

Transfer control to POINTER address 

Transfer control to POINTER address 

Indirect CALL 

Print-nn lines (nn in hex or octal) 

Set/Reset octal/hex I/O mode 

Insert a RST instruction 

Remove the last RST instruction 

(Apostrophe) CP/M Bootstrap 

Output to I/O device L 

Input from I/O device L 

Blink USER LED 

Set contents of memory mapping RAM 

Set contents of I/O mapping RAM 

Set contents of bus mapping RAM 

Set system bus mode 

Cancel previous input 

via JUMP 

via CALL 

I 

D 

* 
C 

J 

P2 

X 

R2 

U 

Fl2 

Y 

E 

=JJJJ 
@7 

BFJJ 
"3 

Hl52/ 

All commands except "/" must be followed by a space 

or carriage re"turn to cause execution to begin. 

The above list shows only the most used commands. Additional 

commands are provided to allow disk I/O and other functions. 

Since all commands must be used in the proper sequence, refer to 

the ZRAID Manual for details before attempting to use ZRAID. 



13 
Cl'UANO 
SYSTEM 
CONTROL 
SIGNALS 

CPU DESCRIPTION 

The Zilog Z-80 CPU is a powerful single-chip 8-bit microprocessor. 

All of the original Intel 8080 instructions are executable 

by the Z-80 while adding numerous other instructions and internal 

registers, which give added versatility. A block diagram of 

the CPU and the internal register detail are shown below. 

The registers include two sets of six general purpose registers 

that may be used individually as 8-bit registers or as.16-bit 

register pairs. There are also two sets of accumulator and 

flag registers. The programmer has access to either 

set of main or alternate registers through a groupof.exchange 

instructions. This alternate set allows foreground/background 

mode of operation or may be reserved for very fast Interrupt 

response. The CPU also contains a l6-bit stack pointer which 

permits simple implementation of multiple level interrupts, 

unl~ited subroutine nesting and simplification of many types 

of data handling. 

The two 16-bit index registers allow tabular data manipulation 

and easy implementation of relocatable code. The I register 

is used in a powerful interrupt response mode to form the upper 

8 bits of a pointer to a interrupt service address table, while, 

the interrupting device supplies the lower 8 bits of the 

pointer. An indirect call is then made to this service address • 

li1 
'5V GNO -I-

.... T 
OATAaus 

1~81T 

AOOA£SS8US 

zao, Z80A CPU BLOCK DIAGRAM 

MAIN REG SET ALTERNATEREGSl:T 

"" FLAGS ACCUMULATOR FLAGS 
F A' r I AC~LA1OR 

C .. C' 

o· E" 

W L" 

IfllTERRurl MEMORY 
.t VECTOR REFRESH 

1t----...:....L---.:.;.."-f 
~.::t--IN_OE_II-'U_GIST-E_-R---'II-f ~ 

IHOEII "EGISTER IY REGISTERS 

t-:-Sl-AC~K=I'O-IN'-:-ER----sr--i 
i-o'I-----------f 

l'AOGRAM COUftTt R PC 

/ 

zao, zaOA CPU REGISTERS 

, , 



12 

~ z-8CfcPu Z-80A CPU 
Zilog Instruction Set 

CI) 
Q 
< g 
.... e:; 
:C 

The following is a summary of the ZSO, Z80A instruction 
set showing the assembly language mnemonic and the sym­
bolic operation performed by the instruction. A more de-
tailed listing appears in the ZSO-CPU technical manual, and 
assembly language programming manual. The instructions 
are divided into the following categories: 

8-bit loads 
16-bit loads 
Exchanges 
Memory Block Moves 
Memory Block Searches 
8-bit arithmetic and logic 

. Miscellaneous Group 
Rotates and Shifts 
Bit Set. Reset and Test 
Input and Output 
Jumps 
Calls 

l6-bit arithmetic Restarts 
General purpose Accumulator Returns 

& Flag Operations 

In the table the following tenninology is used. 

b == a bit number in any 8-bit register or memory 
location 

cc == flag condition code 
NZ == non zero 
Z == zero 
NC == non carry 
C == carry 
PO == Parity odd or no over flow 
PE == Parity even or over flow 
P - Positive 
M == Negative (minus) 

Mnemonic Symbolic Operatio~ -. 

lOr.s r-s 

lOd.r d-r 

lOd.n d-n 

lOA.s A-s 

lOd.A d-A 

lOdd,nn dd-nn 

to dd.(nn) dd -(nn) 
.~ 

tD(nn). ss (nn) -ss 

tOSP.ss SP-ss 

PUSH ss (SP-I) -SSU;(SP-2) -ssL 

POPdd ddL - (SP); ddH - (SP+ I) 

EX DE.Ht DE-Hl 

EX AF.AF' AF -AF' 

EXX 

(~)-(~) 
HL HL' 

EX (SP).ss (SP) - SSt. (SP+ I) - ssH 

Comments 

s ~r. n, (Hl). 
(IX+e). (IV+e) 

d==(Hl).r 
(IX+e). (IV+e) 

d==(Hl). 
(IX+e). (IV+e) 

s == (BC). (OE). 
(nn).I. R 

d == (BC). (DE). 
(nn).I. R 

dd ==BC, OE. 
Hl. SP.IX.IV 

dd==BC.OE. 
Ht. SP,IX.IV 

ss== Be, OE. 
Hl. SP .IX. IV 

ss = Ht. IX. IV 

ss= Be, OE. 
HL. AF. IX. IV 

dd = BC. DE. 
Ht. AF. IX. IV 

ss == HL.IX.IV 

d == any 8-bit destination register or memory location 
dd == any 16-bit destination register or memory location 
e == 8-bit signed 2's complement displacement used in 

relative jumps and indexed addressing 
L == 8 special call locations in page zero. In decimal 

notation these are O. 8. 16. 24.32.40, 48 and 56 
n == any 8-bit binary number 
nn == any 16-bit binary number 
r == any 8-bit general purpose register (A. B. C. D. E. 

H. or L) 
s == any 8-bit source register or memory location 
Sf> == a bit in a specific 8-bit register or memory location 
ss == any 16-bit source register or memory location 
subscript ttL" == the low order 8 bits of a 16-bit register 
subscript .tH" == the high order 8 bits of a 16-bit register 

( ) == the contents within the ( ) are to be used as a 
pointer to a memory location or I/O port number 

8-bit registers are A. B. C, D. E. H. L.I and R 
16-bit register pairs are AF, BC. DE and HL 
l6-bit registers are SP. PC. IX and IV 

Addressing Modes implemented include combinations of 
the following: Immediate Indexed 

Immediate extended Register 
Modified Page Zero Implied 
Relative Register Indirect 
Extended Bit 

Mnemonic Symbolic Operation Comments 

lDI (DE) - (HL). DE ..- DE+ I 
HL - HL+l. BC - BC-I 

LDIR (DE) - (HL), DE - DE+ 1 
HL..- HL+I. BC..- Be-I 
Repeat until DC = 0 

LDO (DE)"- (HL). DE..- DE-l 
HL..- HL-l. Be..- Be-I 

LDDR (DE) -(HL). DE..- DE-I 
HL..- HL-I. BC"- BC-I 
Repeat until Be = 0 

CPI A-(HL). HL..- HL+I 

Be - Be-I 

CPIR A-(Ht). HL ..- HL+l A-(HL) sets 
Be - Be-I. Repeat the flags only. 
until Be = 0 or A = (HL) A is not affected 

CPD A-(HL). HL ..- HL-l 
Be..- Be-I 

CPDR A-(HL). HL..- HL-I 
Be - Be-I. Repeat 
until Be= 0 or A = (HL) 

ADDs A-A+s 

ADCs A-A+s+CY CV is the 

SUBs A"-A-s carry flag 

SBCs A -A -s-CY s == r. n,(HL) 
ANDs A-AAs (lX+e).(IV+e) 

ORs A-AVs 

XORs A"- A $S 



,... Z-80®CPU Z-80A CPU 
Zilog 

. 

en 
~ :: 
::t 
en 
o 
Z 
< 
en 
~ 
~ « 
~ 
o 
:c 

Mnemonic 

CPs 

INC d 

DECd 

ADD HL9SS 

ADC HL,ss 

SBC HL,ss 

ADD IX,ss 

ADDIV,ss 

INC dd 

DECdd 

DAA 

CPl 

NEG 

CCF 

SCF 

NOP 

HALT 

DI 

EI 

IMO 

1M I 

1M 2 

RLCs 

.-
RLs 

RRCs 

RRs 

SLAs 

SRAs 

SRLs 

RLD 

RRD 

Symbolic Operation Comments 

A-s s= r. n (HL) 

d+-d+l 
(IX+e), (IY+e) 

d=r.(HL) 

d+-d-l 
(IX+e). (IV+e) 

HL+-HL+ ss 

HL +- HL + ss + CV }SS=OC,DE 
HL +- HL - ss - CV 

HL.SP 

IX +-IX + ss ss=BC,DE. 
IX. SP-

IY +-IV + ss ss= BC. DE. 
IV.SP 

dd +-dd + 1 dd = BC. DE. 
HL. SP. IX. IV 

dd +-dd - I dd = BC. DE, 
HL. SP, IX. IV 

Converts A contents into Operands must 
packed BCD following add be in packed 
or subtract. BCD format 

A+-A 
A+-OO-A 

o· 
CY +-CV 

CY+-l 

No operation 

Halt CPU 

Disable Interrupts 

Enable Interrul'ts 

Set interrupt mode 0 8080Amode 
Set interrupt mode 1 Call to 0038H 
Set interrupt mode 2 Indirect Call 

~ 
s 

/'LEi=E3J 
s 

~ 
s 

~ 
s 

~u s=r.(Hl) 
s (IX +e). (lV+e) 

~ 
II~ 

s 

I, A'" 2Jj ~ ".,," 
I' A"'~ ~ ~+." 

Mnemonic Symbolic Operation Comments 

BIT b.s Z+-ib Z is zero flag 
SET b,s st, +- I s=r.(HL) 

RES b.s st, +- 0 (lX+e),(lV+e) 

IN A. (n) A +-(n) 

IN r, (C) r +- (C) Set flags 

INI (HL) +-(C).HL +- HL + I 
B+-8-1 

INIR (HL) +-(C).HL +- HL + I 
8+-8-1 
Repeat until B = 0 

IND (HL) +- (C), HL +- HL - 1 
B+-8-1 

INDR (HL) +-(C).HL +- HL- I 
B+-8-1 
Repeat until 8 = 0 

OUTen). A (n) +- A 

OUT(C), r (C)+- r ADRSH of- B 
OUTI (C)+- (HL). HL +- HL + I 

8+-8-1 

OTIR (C) +- (HL). HL +- HL + I 
8+-B-1 
Repeat until B = 0 

- OUTD (C)+-(HL), HL +-.tJL - I 
B+-B-I 

OTDR (C) +- (HL), HL +- HL - 1 
B+-8-1 
Repeat until B = 0 

JPnn PC +-nn {m PO 
JPcc. nn If condition cc is true 

cc ~ 
PE 

PC +- nn, else continue P 

JRe PC+-PC+e M 

JRkk.e If condition kk is true kk{~Z NC 
PC +- PC + e. else continue C 

JP (ss) PC +-ss ss = HL. IX, IY 

DJNZe B +- B-1. if 8 = 0 
continue, else PC +- PC + e 

CALLnn (SP-l) +- PCH rz PO 
,- (SP-2) +- PCL• PC +- nn 

cc ~ 
PE 

CALLec.nn If condition cc is false P 
continue, else same as M 
CALLnn 

RSTl (SP-I) +- PCH 
(SP-2) +- PCL• PCH +- 0 
PCL +- l 

RET PCl +-(SP). 
PCH +- (SP+ I) 

RETcc ) f condition cc is false rz PO 
continue. else same as RET 

~c ~c PI: 

RET) Return from interrupt. 
p 

same as RET C M 

RETN Return from non-
maskabJe interrupt 

13 



Instruction Set Map 

0 2 3 4 5 6 7 

NOP LOBC.nn LO(BC).A INCBC INCB OECB LOB.n ALCA 
00 NOP lXIB.nn STAXS INXS /NAB OCAB MYIS.n AlC 

()()().()() 001-01 002-02 003-03 004-04 005-05 006·06 007-07 
4A 100 7A. SA 4A--SZV 4A-SZV 7S 4A--C 

EXAF,AF ADO .... BC LOA.(BC) OECBC INCC OECC LOC.n 
01 DADS LOAXB OCXB INAC OCAC MYIC.n ARC 

O.o-oa 011..()9" 012-oA 013-08 014-OC 015-00 016-0E 017-oF 
4A-SZVC 7A 6A 4A--SZV 4A-SZV 78 4A--C 

OJNZ,e LOOE.nn LO(OE).A fNCOE INC 0 DECO LOO.n 
02 LX/D.nn STAXD INXD INA 0 OCR 0 MVIO.n RAt 

020-10 02'-11 022-12 023-13 024-14 025-15 026,'6 027-17 
100 7A SA 4A-SZV 4A-SZV 7B 4A--C 

JRe OECOE INCE E LOE.n 
03 OCXO INRE OCRE MV/E.n RAA 

030-18 033-1B 034-1C 035-10 036-1E 037-1F 
12C SA 4A.-SZV 4A.-SZV 7B 4A.-C 

JP NZ,e INCH OECH 
04 INRH OCAH 

040-20 044-24 045-25 
7Cl12C 4A.--SZV 4A.-SZV 

JRZ.e 
05 

050-28 
7C112C 

JRNC.e 
06 

060-30 
7CI12C 

JRC.e OECA 
07 OCAA. 

075-30 
4A-8ZV 

LOB.B LOB,C LOB.O LOB.E LOB,L 
10 MOYS.S MOVB.C MOYB.D MOYB.E MOYS.l 

100-40 101-41 102-42 103-43 105-45 
4A. 4A. 4A. 4A. 4A. 

lOC,B LOC.C LOC,O LOC.E LOC,H LOC.L 
11 MOVC.B MOVC.C MOVC.D MOVC.E MOVC.H MOVC.l 

110-48 111-49 112-4A. 113-48 .,4-4C 115-40 
4A 4A 4A. 4A 4A 4A 

LOO,B lOO,C LOO.O LOO.E LOO,H 
12 MOYD.S MOVO.C MOVO.O MOVO.E MOVO.H 

120-SO 121-5' '22-52 123-53 124-54 
4A 4A 4A. 4A. 4A 

LDE,B lDEtC LOE.O LOE,E LDE,H 
13 MOVE.S ·MOVE.C MOVE.D MOVE.E MOVE.H 

130-58 140-61 132-5A. 133-58 134-SC 
4A. 4A 4A. 4A. 4A. 

LOH,B LD LDH,D 
14 MOVH.B MOVH,C MOVH.D 

140-60 140-61 142-62 
4A 4A. 4A. 

LDl.B LOl.C LDl.O 
15 MOVl.B MOVLC MOVLO 

150-68 151-69 152-&.\ 

16 

17 

COPYRIGHT 1980, HEURIKON CORPORATION. MADISON. wl 

14 



o 2 3 4 5 6 7 

ADDB ADDC ADD 0 ADoE ADDH ADDL ADD(*) ADD A 
20 ADOB ADOC AODO ADOE ADOH ADoL ADOM ADD A 

2OO-aO 201-81 202-82 203-83 204-84 205-85 206-86 207·87 
4A-SZVC 4A-SZVC 4A-SZVC 4A-SZVC 4A··SZVC 4A-SZVC 7AJ19G-SZVC 4A··SZVC 

ADC B ADC C ADC 0 ADC E ADC H ADC L ADC (.) AOC A 
21 ~B ~c ~O ~E ~H ~L ~M ~A 

210-88 211-89 212-8A 213-88 214-8C 215-80_ 2~!-8~ ... _ 217-8F 
4A-SZVC 4A··SZVC 4A SZVC 4A-SZVC 4A-SZVC 4A-SZVC .,., 4A-SZVC 

22 
~B ~C ~o ~E ~H ~L ~n ~A 
SUSB SUBC SUS 0 SUBE SUBH SUBL l. sUsM SUB A 
220-90 221·91 222·92 223-93 224·94 22S-9S:-'~ 2Z7·97 

4A-SZVC 4A-SZVC 4A-SZVC 4A-SZVC 4A-SZVC 4A-SZVC' ii;:::J.- -~~- 4A-SZVC 

23 
sec e sac C sac 0 sac E SBC H sac L --.. sac (-) sec A 

SBB B SBB C SBB 0 SBB E SBB H SBB L ~:'_ : ,,' SBB M SBB A 
230-98 231·99 232·9A 233-98 234-9C -23S-9D,~ ~S:__ 237·gF 

4A-SZVC 4A-SZVC 4'" SZVC 4'" SZVC 4A-SZVC 4A-SZVC 4A-SZVC 

24 
AND e AND C AND D AND E AND H AND L ,~_,A~~ r) AND A 
~B ~c ~o ~E ~H ~l ~M ~A 

24Q.AO 241·Al 242·A2 243-A3 244·A4 245-AS .~ •. ~~__ 247·A7 
4A··SZPC 4A··SZPC 4A-SZPC 4A-SZPC 4A-SZPC 4A-SZPC 4A··SZPC 

25 
XOR e XOR C XOR D XOR E XOR H XOR L~:;.')(;~~(-) XOR A 

XRAB XRAC XRAD XRAE XRAH XRAL .~FtAM _ _ XRAA 
250-AS 251·A9 2S2·M 2S3-AB 254·AC 255-AD , ... ~ 257·AF 

4A··SZPC 4A··SZPC ~4~gPC!A-SZPC 4A··SZPC 4A-SZPC 4A-SZPC 

26 
OR e OR C OR 0 OR E OR H OR L "n''''fl ORA = :'~B~ ~~ = ~s'! ~~ <~~M - ~~ 

4A-SZPC _~-~ ~4~SZPC 4A-SZPC 4A-SZPC 4A-SZPC ~', .;~ 4A-SZPC 

27 C~B ~c ~o ~E ~H ~l ~" ~A 
CPB CPC CPD CPE CPH CPL lit: "'l . CPA 

270-88 271·89,,. 272-BA .~!B_, 274-SC 275-80 ~ 277-BF 
______ ~--4~A~-SZV~~C--r_4~A~-~SZVC~~··~-~~~~~--~~-~~~~~-~~~SZVC~~-~4A-~SZV~C,~ ~~~~~~~4A~-~SZVC~~ 

RET NZ pop Be JP NZ.nn JP nn CALL NZ,nn PUSH ac ADD n RST 0 
30 RNZ POP B JNZ JMP CNZ __ ~PUSH B ADI RST. 

3OO-CO 3Ot-Cl 302-C2 303-C3 304-C4 3OS-CS 306-C6 307-C7 
SAll,_A lOA 100 100 1001170 11A 7B-SZVC 111. 

RET Z RET JP Z,nn (SPECIAL) CALL Z,nn CALL nn ADC n RST 1 
31 RZ RET JZ (PREAX) CZ CAll ACI RST 1 

310-C8 311·C9 312-CA 313-CB 314-CC 315-CO 3t6-CE 317-CF 
SAlt1A lOA tOO 1001170 170 . 7B-SZVC 111. 

RET NC pop DE JP NC,nn OUT (n),A CALL NC,nn PUSH DE SUB n RST 2 
32 RNC pop 0 JNC OUT CNC PUSH 0 SUI RST2 

~oo 321-01 322·02 323-D3 324-04 325-05 326-06 327·07 
;);'\I tt}. lOA 100 11B 1001170 11A 7B-SZVC 11A 

33 
RET C EXX JP C,nn IN A,(n) CALL C,nn ·-IX·· sec n RST 3 

RC - JC IN CC (PREFIX) SBI RST 3 
330-08 331·09 332-OA 333-DB 334-OC 335-00 336-0E 337.[)f 
SAl11A 4A 100 108 1001170 7B-SZVC 11A 

R~~'- JP~,nn "r-.' , ',',. CAI{~.nn -d!.~t'"'!'~ A~n ~44 
~EO 342-E2 :, - , 344-E4 ,~'~:.o"': ~~::i' 346-E6 347·E7 
!AtnA 100:;:, 1001170 ~:'1A115E-";, 7B-SZPC 11A 

34 

RET PE JP , JP PE,nn EX oE,HL CALL PE.nn •••• XOR n RST 5 
35 RPE -..,., JPE XCHG CPE (PREFIX) XRI RST 5 

350-ES 352-EA 3S3-EB 354-EC 355-Eo 356-EE ' 3S7-EF 
5~l1A ~1()[) 4A 1()()1--.!70 7B-.szpc llA 

RET P pop AF JP P,nn 01 CALL P,nn PUSH AF OR n RST 6 
36 RP POP PSW JP - CP PUSH PSW ORI RST 6 

360--FO 361·Fl 362.f2 363-F3 364·F4 365-FS 366-F6 367.f7 
5A111A ". .._.,. 100 4A 1001170 l1A 7B_·SZPC 11A 

37 RM JM - CM (PREFIX) CPI RST 7 
37().fS 372.fA 373.fB 374-FC 375-Fo 376-FE 377·FF 

RET M __ :-~.~OL, ,Y ~' , JP M,nn EI CALL M.nn ··IY·· CP n RST 7 

______ ~ __ ~SAI~l~lA __ ~ __ '~= ~~~1=00~~~ __ 4~A __ _L~1~OO~/~170~~~ ______ ~_~7B-.~SZV~C~ __ ~1,~A~~ 

A OPCODE 
B OPCODE Operand 
C OPCODE Displacement 
D OPCODE Operand L Operand H 
E OPCODEl OPCODE 
F OPCODEl OPCODE Operand 
G OPCODEl OPCODE Displacement 
H OPCODEl OPCODE Displacement Operand 
J OPCODEl OPcaDE Operand L Operand H 

OPCODEl = 335-00 For IX Operand 
= 375-ED For IY Operand 

;.;. > MEANS Hl,'IX~ or tV ,~:- -. :'/'_ 
(*) MEANS (HqH')(+ d), or (IY'~cd1~ 

COPYRIGHT 1900. HEURtKON CORPORATION, MADISON, WI. 

15 



16 

0 1 2 3 4 5 6 7 

IN B,(C) OUT (C),B SBCHL,BC LO(NN),BC NEG RETN IMO LOttA 
10 1~ 101-41 102-42 103-43 104-44 105-45 106-46 107-47 

11K-SZP 12K 15K-SZVC 20l SK-CZVS 14K 8K 9K 

INC,(C) OUT (C),C ADCHL,BC LDBC,(nn) RETI LDR.A 
11 110-48 111-49 112-4.\ 113-48 115-40 117-4F 

11K-SZP 12K 15K-SZVC 20l 14K 9K 

IN D,(C) OUT (C),D SBCHL,DE LD(nn),DE IM1 LOA.I 
12 120-SO 121-51 122-52 I 123-53 126-56 127-57 

11K-SZP 12K 15K-SZVC 20l SK' 9K--SZV .-
IN E,(C) OUT (C),E ADCHL,DE LDDE,(nn) 1M2 LOA.R 

13 130-58 131-59 132-SA 133-58 136-SE 137-SF 
l1K-SZP 12K 15K-SZVC 20l SK 9K-SZV 

INH,(C) OUT (C),H SBCHL,HL LO(nn),Hl RRD 
14 1-40-60 141-61 1-42-62 143-63 147-67 

11K-SZP 12K 15K-5ZVC 20L 18K-SZP 

INL,(C) OUT (C),l ADCHL,Hl LDHL,(M) RLD 
15 150-68 151-69 152-61. 153-68 157-6F 

l1K-SZP 12K 15K-~ 20L 18K--SZP 

IN F,(C) OUT (C),F SBCHL,SP LD(nn),SP 
16 160-70 161-71 162-72 163-73 313 PREFIX GROUP 11K-SZP 12K 15K-SZVC 20l 

IN A.(C) OUT (C),A ADCHL,SP LDSP,(nn) RLCr RRCr RLr RRr 
17 170-78 171-79 172-7A 173-78 313/OOr 313101r 313102r 313103r 

11K-SZP 12K 15K-SZVC 20l 8Bl23H-SZPC 8Bl23H-SZPC 8BI23H-SZPC SZPC 8BI23H-

LOI CPI INI OUTl SLAr SAAr - SRLr 
24 240-AO 241-Al 242--'2 243-A3 313104r 313/OSr 3131Ox6 313107r 

16K-P(SZ) 16K-SZP 15K-Z(SP) 15K-Z(SP) 8Bl23H-SZPC 8BI23H-SZPC 158 8 

LOD CPO IND OUTD BlTIRESISET BlTb,r RESb.r SETb,r 
25 250-AS 251-A9 252-M 253-AB 3131xb6 31311br 313/2bf 31313br 

16K-P(SZ) 16K-SZP 15K-Z(SP) 15K-Z(SP) 128 8BI2OH-Z(SP) 88I2OH 8BI2OH 

LOIR CPIR INIR .OnR 
SLASH INDICATES TWO WORD OPCODE 26 26O-BO 261-81 262-82 263-B3 

21M116K-PISl) 2tM116K-SZP 2OMI15K-Z(SP) 2OMI15K-Z(SP) "b" = "bit'!' 7 = MSB. 0 = LSB 
LODR CPDR lNDR OTDR "r" = "register" SEE REGISTER liST 

27 27O-B8 271-99 272-BA 273-88 
21M116K-P(SZ) 21M116K-SZP 2OMI15K-Z(SP) 2OMI15K-Z(SP) 

(HL) == SOURCE (HL) = ADDRESS r REGISTER 
(DE) -= DESTINATION (C) = DEVICE 
BC = LENGTH B = LENGTH 0 B 

1 C 
2 0 

355 PREFIX GROUP 3 E 
K 3SS-ED OPCODE 4 H 
L 35S-ED OPCODE Operand L Operand H S L 
M 3SS-ED OPCODE Tming when BC=I=O 6 (Hl) 

7 A 

..--___ -....------------- Z80 MNEMONIC 

ADD*.HL 
ZOO MACHINE CYCLES AND ~ DADH 1---8080 EQUIVALENT MNEMONIC 
INSTRUCTION FORMAT. 
IF TWO SETS OF VALUES: 051-29 ________ 

FIRST ("11Att) IS FALSE CONDITION ,,-1_1A1_1_5_E-C_~ OCTAL-HEX OPCODE 
TIMING FOR JUMP/CAlURETURN ~ . 
INSTRUCTIONS, OR FOR OPERAND ~ . 
..... = HL CONDITION CODE FLAGS AFFECTED 

SECOND ("1SEtt) IS TRUE CONDITION S = SIGN FLAG 
TIMING FOR JUMPICAllIAETURN Z = ZERO FLAG 
INSTRUCTIONS, OR FOR OPERAND P = PARITY FLAG 
, .... = IX or IY. FLAG REGISTER V = OVERFLOW FLAG 

SEE INSTRUCTION FORMAT USTING I ~I; Is ~ 131p ~I ~ W I ~GSC:~~;IN PARENTHESIS 
- - - - . ARE AFFECTED BUT NOT 

DETERMINATE 

COPYRIGHT 1980, HEURIKON CORPORATION. MADISON. WI. 



(This page left blank intentionally) 

17 



18 

INTRODUCTION TO THE MLZ-9l MAPPING RAMS 

The MLZ-9l has three mapping RAMs which are used to dynamically 

allocate the resources of the MLZ-9l. 

The mapping RAMs and their functions are: 

1. Memory Mapping RAM 

Controls the allocation of all memory and allows the 

CPU/DMA (which has a 16 bit address bus) to access a 

full megabyte 0f memory (which requires a 20 bit 

address). In addition, the memory mapping RAM controls 

the memory write protect feature for on-card RAM. 

2. I/O Device Mapping RAM 

Specifies the base addresses for the on-card I/O devices. 

Also specifies the regions of the I/O device address space 

(8 bits) which are to be used for on-card devices and 

which are for off-card devices. This feature allows 

a system to be configured with more than 256 device 

addresses from being masked by on-card devices. On-card 

devices may be "shadowed" or moved to different base 

addresses. 

3. Bus Mapping RAM 

This RAM is used to assign the MLZ-91 to a spot on the 

Multibus. The 20-bit Multibus is divided into 16 regions, 

specified by the upper four bits. Each MLZ-9l on the 

Multibus can be assigned to any region or regions. In 

addition, the mapping RAM speci~~es what type of 

operation from the bus is allowed. Memory read, Memory 

write and I/O device access may each be enabled or 
'" d1sabled in each block. 

Since the contents of the mapping RAMs are controllable by software, 

the program may allocate resources as necessary for the particular 

application. 

Detailed descriptions of each of these mapping RAMs and software 

examples of their use are presented in the following sections of 

this manual. Summary information appears on page 47 and 

software examples start on page 80. 



MEMORY 
ADDRESS 

CPU/DMA 

I/O 
D~VJCE -~ 

ADDRESS 

MEMORY 
MAPPING 

RAM 

I/O 
MAPPJ NGt 

RAM 

BUS MAPPING 

RAM 

MULTIBUS ADDRESS 
~-

AND coNTROL SIGNALS 

ON-CARD 

MEMORY 
-DE"CODE: 

I/O 
DEVlCE 
DECODE 

I---.... ROM ENABLE 
I---~RAM ENABLE 

OFF-C.ARD ENABLE 

I/O DEV1CE 

ENABLES 

SIMPLIFIED DIAGRAM OF MAPP1NG RAMS 

19 



20 

MEMORY MANAGEMENT 

Introduction 

The MLZ-91 has the capacity to address over one megabyte of 

memory. This is accomplished by using a system address bus 

which is 20 bits wide. The CPU and DMA chips, however, are 

designed using 16 bit internal registers and a 16 bit address 

bus. The memory mapping logic is the link between these two 

address buses. 

The MLZ-9l memory mapping RAM allows the full 20 bit address bus 

to be utiliz~d. The mapping RAM output provides the upper four 

bits plus three of the remaining 16 bits (seven total). The 

four upper address lines from the CPU, instead of going directly 

to the address bus, are used to select a location within the 

mapping RAM. The ~apping RAM can be preloaded with various 

combinations of the upper seven bits. Then, the CPU address 

specifies the mapping RAM address plus the lower address bus 

bits. The RAM provides the other upper seven address bits. To 

switch from one preset block to another all that is required 

is a variation in the upper' CPU address'; lines, a relatively 

easy task for the program. The mapping RAM contents may be. 

changed from time to time to keep the most frequently used upper 

address line combinations always available. (The eighth bit 

from the mapping RAM is used to designate an on-card or an 
off-card address.) 

Think of the mapping RAM as two, unequal sized funnels attached 

together at the small ends. The 16 bit CPU address bus feeds 

into the small funnel. After passing through the mapping RAM 
j>, 

(represented by the junction of the funnels) the address bus 

is expanded into the full 20-bit space. 



CPU ADRS SPAcE 
0000 r---C-Ll--K-E-A-C-H-)-- F) XED VA R \ A BL c 

~::: ~ MAPPING RAM '>~ : ~ 
3000 ~~ BLOCK 00 V 
L}OOo ~ ~ BLOcK' 0 

~ ~ BLOCK 2.0 
5000 ~ BL.oCK 30 ~q.KBLOCK 
bOoo ~~ ~ Bl-OCK q. 0 ~ 

I ~ BLOCK 5'0 
7000 ~ BLocI' 60 t-q.-K-S-Loc--K-f 

- ... 

BOOOt---------I BLock co 

coo 0 t---------I B LOCK Do 
BLOCK EO 

ON-CARD 
RoM 

SoCK~T5 

ON-CARD 

RAM 
(6'1-K) 

pooo P SLOCK 1=0 

£000 . 

FooOt-------------~ 

OFF CARD AORS SPAcF 
(I°M£GABVTE') 

EACH LJ.K BLOCK of CPU ADDRE'S> SPAcE 
J 5 CONTROl.LED BY AN E N,.RY \ N THE MAPPJN ~ 
RAM. THE 'DATA IN T~E MAPPJN~ RAM 
\\POINTS'I TO AN ON-CARD ROM socKET oR 
RAM ADDRESS OR TO AN OFF-CARD 

MEMORY ADDRESS 

MEMORY MAPPING LOGiC 

00000 

~ ~K MEMORY BLOCK 

fl=FFF 

21 



22 

As a direct result of using this method, the MLZ-9l allows easy 

implementation of multi-tasking systems because each task, or 

user, can be assigned a section of memory which would only be 

allocated by the mapping RAM when that task was active. Memory 

for the inactive tasks would therefore not be wasting any of the CPU's 

address space. 

DMA data transfers could always be made to only one or two blocks 

as assigned by the mapping RAM. Only potentially active blocks 

would need to be assigned (inactive memory would be de-allocated) 

thus leaving more blocks free for use by the cpu. 

The user has the option of specifying any combination or mix of 

on-card and off-card memory. Memory blocks may be turned "on" 

or "off", overlayed or moved around simply by changing the mapping 

RAM contents. Program segments can even be "cloned" without 

physically moving bytes from one location to another. 



NM'I 

CPU 
¢ 

DMA 

PARJTY ERROR AND 
WRITE PROTECT TRAP 

ROM MEMORY ON-CARD 

SocKETS .... ~ C~~T;72LO<->- RAM~ 

A ,2.. ~ 

,V 

lNT/EXT 
CONTROL 

2.0 BIT 
MULTIBUS 

____________________ ~I~~~--~~ 

SIMPLIFIED BLocK DIAGRAM OF ADDRESS MEMoRY LOGlC 

(DATA AND coNTROL BUSES NOT SHOWN) 

?1 



24 

Use of the MLZ-9l Memory Mapping RAM 

The following pages describe the mapping RAM in more detail and show 

the CPU instructions for loading the mapping RAM data. There 

are also a number of examples showing specific instruction sequences 

which could be used to setup the mapping logic. 

Later sections of this manual describe the Bus mapping RAM (used 

to designate the position that the MLZ-9l occupies on the Multibus) 

and the I/O mapping RAM (used to specify the base address of the on-card 

I/O devices) • 

Since the mapping RAM in~tially contains a random bit pattern, some 

scheme must be employed to load the RAM before any data from it is 

used. This is automatically accomplished by disabling the mapping 

RAM and forcing the map logic to address only ROM on the MLZ-9l. 

The mapping RAM is enabled as the first attempt is made to load data 

into it. The RAMifications (1) of this are explained in the.following 

text. 

The basic sequence of instructions which is used to set the memory 

mapping RAM involves the following: 

1. Load register C with the I/O port address assigned to .the . 

memory mapping RAM. 

LD C,YAPRAM 

2. Load register B with the high half of the 4K memory address which 

·is to be assigned. Only the upper four bits of the 

address (i.e. AlS, A14, A13 & A12) are significant. This 

value determines which cell within the mapping RAM will be 

loaded. The 64K CPU address space is thus divided into 

16 4K blocks. 

LD B,BLOCK 

3. Load register A with the data which is to be stored in the 

mapping RAM. This value is determined from one of the 

accompanying charts showing the (HEX) data corresponding 

to each ROM socket (e.g. "~~"), on-card RAM block (e.g. "7F") 

or off-card memory block (e.g. "FB"). 

LD A,DATA 



4. Execute an OUTPUT instruction to laod the DATA into the 

specified BLOCK address of the mapping RAM. (The special 

z-80 OUTPUT·instruction must be used. If your assembler cannot 

handle anything but pure 8080 mnemonics, use the following 

sequence of defined bytes (DB): e.g. DB ~EDH, S59H.) 

For example, the following sequence of instructions will map ROM 

socket MIfJ at memory block "5" which starts at CPU address 5JiJJiJJiJ 

(HEX) 

LD C,MAPRAM iLOAD PORT ADDRESS 

LD B,5/ifH iLOAD BLOCK ADDRESS 

LD A,jiJjiJH iLOAD MAP DATA 

OUT(C),A iSEND TO MAPPING RAM 

During execution of the OUT instruction, the content of register 

B appears on the upper 8 CPU address lines, the most significant 

4 bits of which specify the memory mapping RAM block address (see 

diagram). Register C contains the I/O port address which is used 

when writing to the mapping RAM. The DATA loaded into the mapping 

RAM specifies the physical location of the memory which is to be 

assigned to the specified CPU memory BLOCK. In addition, on-card 

RAM may be write protected by proper specification of a bit ·in the 

map DATA. 

Summary informations on the memory mapping RAM data format appears 

at the end of this section, pages 34 and 35. However, if the 

mapping concept is unfamiliar to you it would be wise to read the 

text between here and there. 

Z-80 c.PU 

H 

L 

D 

.""-

I./o rio DEVlCE 
t--.:.....;..-~~ 

~E~UE:ST DECODE- L061C 

DEVICe 
ADO~e~~ 

SEL.EGT L.IN86 
--- - ---SP TO OTH~ O'VICE.$ 

DeVIc.e"'Fo" 'PIO, ~IO, eTG.,,) 
LOAD 
e.AN\ 
l>ATA 

E 
r--- - ------------- ---1 

4(t>PPE1l.4BIT5) r-_~I MAPPJN~ ~AM 5LOCK I 
ADDeE55 DECODe I 

Is I 
I~I 

t----:-

' 

""'6:------.:M:..;...:.:...A:..:..P--=l:)::.:A~~~A:.....;..,--~rW-R-,-r-E""------E-N---A ..... B---IL .... e--&s---:lL~-O----If.C!..L..-A----M--C---S-LL.""";L.--S I 
(IN pur) 0 I , I '2. ' ~ '4-' 5 J l.D I., IS' 9 I A'S I C I DIE I F- I 

: I J I I 1'1 I I I 1'1 " I 
L _____________________ ~ 

B 

c 

A 

RE6.STE£S 

CPU gE~IST~~ USA6E DURIN'=' ~OUT(C))AI/(WIT .... B=.50H) 

25 



26 

The contents of the memory mapping RAM may be changed as often as 

desired to reallocate the memory space or to enable or disable 

the write protection logic on a particular RAM block. After 

power is applied, after a hardware RESET or following a memory error 

(parity or write protect) the mapping RAM output is disabled and 

ROM socket M~ is selected until the first attempt is made to load 

data into the mapping RAM. Thus, socket M~ must contain a ROM 

and the initial instructions fetched from the ROM will start at 

address ~~~~H. Also, the f"irst" memory mapping RAM data loaded 

must be for socket M~, otherwise execution will continue at an in­

determinate address. Once socket Mg has been officially mapped, 

other memory maybe assigned. More on this later. 

This discussion has ignored the other MLZ-91 mapping RAMs (the 

BUS MAP and the I/O MAP) in order not to complicate matters. Be 

aware, however, that"these other mapping RAMs must be properly 

initialized prior to loading the memory map. Luckily, the BUS 

and I/O mapping procedures are not difficult, so details on 

these have been deferred to a later section. 

The next pages detail the procedure for mapping: 

A) On-card ROM 

B) On-card RAM 

C) Off-card memory 

There are mapping examples (with program listings) of typical 

map configurations later in this manual. (See page 80). 



A. ON-CARD ROM 

There are two memory sockets on the MLZ-91, both of which 

may contain up to 8K bytes of ROM. To setup the memory mapping 

RAM for the on-card ROM sockets, follow these steps: 

1. Select the desired memory socket configuration from the 

"ROM MAPPING CHART". (See page 28). 

2. Locate the two digit hexidecimal number shown under the 

desired configuation (i.e ....... , "I''', "2," or "3,". 

Note: The 8K socket configuration for a 2764 type ROM 

requires two map entries, one for each 4K half. (See 

below.) 

3. Store the value found above in the memory mapping RAM 

using the instruction sequence explained earlier. 

LD C,MEMMAP iLOAD PORT ADDRESS 

LD B,BLOCK iL01\D 4K BLOCK ADDRESS 

LD A,DATA jMAP DATA (found in step 2, 

above) 

OUT (C),A iSET MAP DATA 

If a 2764 is being mapped, the second 4K half may be 

assigned by using these additional instructions: 

LD B,BLOCK+I,H . iNEXT BLOCK 

LD A,DATA iDATA FOR 2ND HALF 

OUT (C) ,A iSET MAP DATA 

Normally, the two halves would be mapped into adjacent 

blocks, although this is not required. 

4. Locate the hardware jumper specification in the chart for 

the chosen memory type and configuration. Set the 

jumpers on the MLZ-91 as indicated. (e.g. JI2-A, JI4-A) 

Recall that the memory mapping RAM is disabled following a power­

up or manual system RESET and socket M' is automatically assigned 

to all 4K memory blocks. When an output is done to load the 

mapping RAM it is re-enabled. In order to prevent the uninitalized 

contents of the mapping RAM from turning off the ROM from which 

we are executing, the first output to the map must be to assign 

socket M' to the current memory block being executed. If the CPU 

is not executing in the proper block (prior to loading the map) 

simply execute a JUMP instruction to the desired block. The upper 

4 CPU address bits have no significance until the mapping RAM is 

27 



28 

1--
lJ.K 

i_-

I 

SocKET 
2K M¢ 

socKET 
2.K MI 

00 

f:."ACH SOCKET OCCUPJ£'S HALF 
OF A 4-K BLocK. ADDRESS 
·LINE All S£LECTS socK£T 

SOCKET M¢ SOcKET MJ 

RoM TYPE:2716 

JUMPERS: JJ2-B, Jlq.-B 

4-K LtK 
ROM TYPE: 2732 

JUMPERS: J J2-A JJLI--A 

L 00 
'----------' 

8K 

I 
I 
i 

t 

EAcH SOCKET OCCUPIES A FULL 

4K . BLOCK. MEMORY MAP RAM 

SELECTS SOCKET 

SOCKET M¢ SOCKE'T MI 

00 '20 

10 30 

J 

ROM TYPE: 2.7~* 

J UM PERs: JJ2-AJ JI4-,6 

(NUMBERS INDICATE 

DATA FOR MEMoRY 

MAPPING RAM) 

ROM MAPPJNG CHART 



activated. Socket M~ will always be selected <.and will thus 

"mirror" itself every 4K addresses. ( I.e., 'locations ~~~~H, 

l~9~H, etc, will be identical.) This procedure (of jumping to 

the desired 4K block prior to setting the memory map) is equivalent 

to doing a power-on-jump. This procedure is illustrated in 

the memory mapping program examples. (See page 85.) 

After socket M~ is mapped the next step should be to allocate 

some RAM. Up to this point no user RAM exists! 

It is possible to deallocate the ROM and replace it with RAM. 

The technique for doing this is illustrated in the "SLAVE" software 

example on page 94 • (Note: If ROM is turned off, the I/O 

mapping RAM and bus mapping RAM cannot be altered until ROM is 

reallocated. ) 

29 



30 

B. ON-CARD RAM 

On-card RAM is allocated in a manner similar to assigning the 

ROM sockets. The only difference is the DATA value used. 

The data for on-card RAM specifies the physical 4K block of 

RAM (instead of a physical ROM socket) which is to be assigned 

to one of the 16 ~PU 4K address blocks. Also, on-card RAM may be 

write protected by specifying the proper data. 

Here is the sequence to use to map on-card RAM: 

1. Select the desired 4K physical block of RAM to be 

allocated from the "~iEMORY MAP DATA CHART". (Page 35) 

2. Locate the two digit hexidecimal number shown for the 

desired physical block (e.g. "SF"). 

3. To disable the memory write protect logic for the memory 

block, add 2~H to the value found above. If write 

protection is desired, skip this step and simply use 

the original value. See page 36 for a description of the 

write protect logic. 

4. Store the result of step 3 in the memory mapping RAM as 

follows: 

Only the 

LD. 

LD 

LD 

(This is 

BLOCK and 

C,MEMMAP 

B,BLOCK 

A, DATA 

the same as for the ROM sockets. 

DATA values are different.) 

iLOAD PORT ADDRESS 

iLOAD 4K BLOCK ADDRESS 

iMAP DATA (from step 3, 
above) 

iSET MAP DATA 

Since the instruction sequence above is similar for both ROM 

OUT (C) ,A 

and RAM allocation and since the allocation of numerous blocks of 

RAM would be repetitive operation with changes only in registers 

B and A,.~~an instruction loop may be used to simplify the procedure 

for loading the entire memory map. This technique is illustrated 

in the software example on page 86. 

Note: Jumper J13 must be set according to the type of RAM 

chip being used (See page 142). 

Refer to page 36 for a discussion of the RAM parity and write 

protect error logic. 



M£MORY socKEI JUMPER LOCATIONS 

28' PIN 

SDc}<ETS 

P6 

PI 

~OR RAt"'- coNFI~URATloN SELEC.T" 
SEE PA~E 14-2-

( .A-. ___ \ 

AA~c. SET FOR ~I~~ 
Jl3 l-J H oR 4-53'2...-2-

p 

n 
PARITY n E'R~oR 

LED NMI 05' 

LED D4 

MLZ-9IA 03 

c::=l 02-

+ 01 

J9 JIO JI7- JILl-
• t!:3 • E::!l 
AS AB AB AS 

WAlT oN WAtT ON SKT SELECT A .. PIN 
ALL ON-CARD oPCODE:S SET FOR ·,73*2./2.76'1-

\ , 

ON.-CARD 

RAM 

\ MEMoR'( ONLY / y 
y FOR RoM CONFIGURATiON S.ELECT, 

WAI,.. STATES,SE.E PAGE L4-g S£E: MA.PPING cHART PAt;£, '2.g 

Ic PJJoJ l 
\t. 

2.~ PIN ROM 2 
('2.7bf.l.) I 

Ie PIN I 

27 '2.~ 

18" PIN 
SOCKETS 

31 



32 

C. OFF-CARD MEMORY 

The main difference between on-card and off-card memory 

is that CPU address line Al2 controls both bus address 

line Al2 and the least significant mapping RAM block 

address. This means that bus address A12 is not inde­

pendent of the block address. All even numbered 4K groups 

of physical off-card memory addresses must be mapped by 

even numbered map blocks (and odd 4K physical off-card 

memory groups must be mapped by odd numbered map blocks.) 

Therefore, the mapping RAM has total control of off-card 

address space only in 8K blocks if mapping RAM blocks 

are paired (i.e., same map data loaded into an even-odd 

pair of map .blocks.) 

1 I A19 I Ala A17· I A16 I A1S I Al~- Al3 

\ ~--­

\ 
Indicates an 
Off-card location 

y 

Upper 7 bits of 
OFF-CARD MEMORY 
(Stored Inverted) 

____ .1 

To load the-mapping RAM for a particular off-card memory 

block (8K in length) proceed as follows: 

1. Right justify the upper 7 bits of the desired 20 bit 

address block (shift right one bit) and convert to 

hexidecimal. These upper 7 bits (A13 through A19) 

Specify one of the 128 8K memory blocks. 



2. Invert all 8 bits (MSB should be ON to indicate an 

3. 

off card address). (See "Memory Map Data Chart", page 35.) 

Store the result in a 

LD C,MEMMAP 

LD B,HADRS 

LD A, DATA 

OUT (C) ,A 

LD B,HADRS+I.'lH 

OUT (C) ,A 

pair of map locations as follows: 

iLOAD REG C WITH MAP PORT ADRS 

iLOAD THE UPPER 3 BITS OF REG B 
WITH A MAP BLOCK NUMBER. -(EVEN) 
(Bit 4 should be zero.) 

iLOAD REG A WITH MAP DATA 
(Found in previous step) 

jSET MAP DATA - FIRST PART 

jSET BIT 4 ON (ODD BLOCK) 

iSET MAP- SECOND PART 

Two OUTPUT instructions are required, each to a different 

mapping RAM location, in order to prevent address line A12 

from affecting the output of the mapping RAM. This is 

accomplished by setting the data in the two map locations 

(selected by A12) to the ~ value. Off-card memory can 

be allocated in 4K blocks of physical memory must be mapped 

(controlled) by even numbered map blocks. 

The write protect feature is not available for off-card memory. 

Note on use of the "Memory Map D-at'a Chart-It (page 35) 

The data values to use to map on-card or off-card memory are 

shown on the Memory Map Data Chart, page 35. At anyone time, 

at most 16 of these values may be loaded into the memory mapping 

RAM in order to specify the physical location of each 4K block 

of the 64K CPU memory space. 

The top line represents the CPU address space from 0000 through 

FFFP (hex address values). The second line represents the 

memory mapping blocks associated with each 4K of the CPU 

address space. The following lines show the appropriate data 

value to load into the mapping RAM in order to assign that 

particular memory segment. For example, to assign an on-card 2732 

ROM in socket M~ to CPU address F~~JJ, the data value "$J/tJ" 

must be loaded into the 16th (last) cell of the mapping RAM 

(second line). To assign the off-card physical address 48000 

to CPU address ~~~.'l, data value "DB" must be loaded into the 

first cell of the mapping RAM. 

33 



34 

D7 

Specifies 
On-Card ROM 

xl x x 

Controls A12 for 2764 Type ROMS 
~ = First Half of 2764 
1 = Second Half of 2764 

Selects ROM Socket (Via J12-A) 
~ = M~ 
1 = Ml 

x 

I 11 ~ 1 .1 Protect 

Specifies 
On-Card RAM 

\. 

Controls' Upper RAM Address Lines 
(A16 used for l28K Memories only) 

Memory Protect 
~ = Enable Protect 
1· = Disable Protect 

__________ . ___ . __ . ______ . ____ -y _________ J 

Specifies 
Off-Card Memory 

Controls Upper 7 Multibus Address 
Lines. 

Use OUT (e), A to load the memory mapping RAM. Register B, upper 

4 bits is memory block address during loading of the mapping RAM. 

Register C is the device address assigned to the Mapping Ram, 

"MEMMAP" • 

Summary of Memory Mapping RAM 

Data Format 



CPUjPMA 0000 1000 2000 q.ooo 6000 3000 Aooo Booo ErOOO Fooo FFFF 

ADDRESS I I I I I I I I I I I =r-l I I 16LfK 

SPACE I I 

MEMoRY : 00 '0 '2.0 30 L!o 50 60 70 go 90. AD ~o Co DO Eo FO : 

MA:~·~ I I 1 1 1 I I I I T I. I I I 1 I 16~K 

>-
OC 
() 

~ 
tu 
~ 
a. 
n:: 
< 
u , 
u.. 
~ 
c 

ROM 
SOCKET 

CONFIGUR­
ATIONS 

D EAcH BOX REPRE'SENrS 
4-K of MEMORY SPACE 

M¢ = ROM 50CK~T Mf/J 
MI = ROM SOCK~T M\ 

"" 
120 130 1276 4-

RAM: +2.000 +,*000 .... 6000 +Sooo +Aooo +cooo +£000 

0000 ISF I Sf: '5D 15C 158 ISA 15Cf IS! 1571561551 ;-£1 I f)S 15215 I IS(j) I ~ij.x 
ADD 2 ¢> To DISABLE RAM WRITE PROTEC-r (ON cARD RAM ONLY) 

00000 

10000 

'20000 

30000 

llOOOO 

;0000 

60000 

70000 

gOOOO 

qOOOO 

Aoooo 
80000 

COOOO 

DOOOO 

£0000 

FOOOO 

FFFJ:F 

+2000 + L}Ooo +6000 -l- 8'000 +AooO +COOO +EOOO 

FF FF FE FE FD FD Fe Fe Fa FB FA FA Fq FCf F8' F~ 

f7.- F7 F~ F~ F;- F5 FL} FLI- F3 F3 .F2. ':2- FI FI Fa FO 

EF EF EE £E £D ED EC £c E'B E8 EA EA £'q ECf E'ir E:g' 

£7 ~7 £~ £6 £5 £5 1:4- E"'i- E:'~ £""3 E2.. E2. El £1 £0 EO 

DF DF DE D£ DD DD DC DC DB DB DA DA pq D~ D3' pg 

07 D7 06 D6 OS 05 o~ D4 03 D3 D2- D2 DI DI DO po 

CF CF CE" C£" CD CD cc CC CB CB cA CA C9 cq C9 ~cr 

G7 C7 c.~ c., C5' C5 eLf. C~ C3 C3 C2. C'2 c, Cl CO co 

SF SF BE BE: BD BD Be Be BE BB SA SA Sq Sq 5&' B8" 

e>7 87 86 B6 135" 85 8L1 BLI- 83 83 B2 8"2- BI 81 ao 80 

AF AF At: AE" AD AD Ac Ac AS AS AA 4A Aq Art Ag A8" 

A7 A7 A6 Al> AS AS At+ ALI- A3 A3 A2 ,42- AI Al Ao Ao 

9F qF 'IE' 9E: CJD 9D qe etc 98 qs qA qA 99 crq Cf8' qg 

97 97 96 <iG CiS- Cf5 qLl- CfJ./. 93 Cf3 <=t2 CJ2 ql ql <:fO "TO 

~F SF P>E. gE 8'D gD B'c Be 8'B ~B 'SA 8'A gq ~q 8'8' ~1 

87 g-, g6 gb 851g5 84 8"4 83 8"3 152 82 8'1 8") go 8'0 

EACH Bo)( REPRE.5ENTS 4oQ6 BY1E~. NUMBERS 'NSIPE 
aoXES ARE THE MAP DATA (IN H£X) FOR THAT al.-ocK OF 
MEMORY. SEE PAGE 33 FoR NOTE ON USE OF THIS C.HART. 

MEMORY MAP DATA CHART 
35 



36 

PARITY AND WRITE P~OTECT LOGIC 

A standard feature of the MLZ-9l is the ability to selectively 

write protect any block or group of blocks of on-card RAM. 

Bit 05 of the memory mapping RAM data is used to control the 

write protect logic. If on-card RAM is allocated with this 

bit in the JJ state CDS LOW), then any attempt to write to an 

address in the 4K block so allocated will result in an NMI 
(Non-maskable Interrupt) to the Z-80 cpu. Generally, this feature 

is used as follows: 

1. Allocate on-card RAM with memory protect disabled. 
(E.G., map data 7F) 

2. Write data to the on~card RAM as desired. 

3. Re-allocate the same RAM but with memory protect 
enabled. (E.G., map data SF) 

4. An NMI will occur if any attempt is made to write 
to that block of memory. The write operation 
will not be performed. 

See below for a description of the NMI response. On-card 

RAM may also be protected by de-allocating the block, however 

this method will prevent any accesses of the memory block. 

When the write protect logic is enabled any attempt to write to 

on-card RAM, whether from the CPU, OMA or from the system bus, 

will be "trapped". It is also possible to write (or read) 

protect on-card memory from the system DUs only, without inhib­

iting use of the memory by the CPU·or DMA, by properly loading 

the bus mapping RAM. See page 38. 

The parity feature (an MLZ-9l option) is useful to guarantee 

the integrity of the data stored in the on-card RAM. Whenever 

data is written to the memory, odd parity is computed and the 

result~is stored as a ninth memory bit. When the data is 

subsequently read back, the parity computed across all nine 

bits is checked and, if not odd, an NMI is generated. 

Either of ~~e above errors (write protect or parity) produces an 

NMI. The MLZ-91 responds as follows: 

1. The address of the next instruction is pushed into the 
software stack if a write protect error occurs. The 
address of the second next instruction is saved in the 
case of a parity error. 

2. The CPU program counter is set to ~~66 (hex). 

3. The memory mapping RM~ is disabled which puts 
ROM at every 4K boundary (mirrors). 

A program at address ~~66 can then service the NMI, generally 



by printing an error message and re-initializing the program. 

It is possible for the service routine to determine the cause 

of the error and the approximate location where it occurred. 

See page 92 for a software example. 

There are two error LED's which indicate the status of the NMI 

logic. One indicates a parity error, the other indicates a 

parity error or a write protect error. Thus, 

(See page 31 for LED 
locations) 

Both off 
One ON 
BotnON 

= error logic is reset 
= write protect error 
= parity error 

If a HALT instruction is placed at.location ~~66 (in ROM socket 

M~), the error indicators will show the. error type and the MLZ-91 

will halt following an error. However, if the NMI service routine 

at ~~66 performs any other task, it must clear the NMI error logic 

before RAM can be reallocated, and the error indicators will be 

turned off. 
The status of the NMI error logic may be determined by doing an 

input from I/O port IOSTAT. See page 64 for details'.;· The parity 

logic may be disabled by shunting jumper J19. 
pOWER-ON JUMP 

Since the entire memory space is controlled by a mapping RAM, 

any memory socket or external address block may be dynamically 

allocated by the software. A power-on-jump is easily implemented 

by properly initializing the mapping RAM. 

When program execution begins after a power up or RESET the output 

of the mapping RAM is forced to select memory socket M~ regardless 

of the upper four CPU address lines. Execution begins at CPU 

address 9~1~ from address ~~~ in the ROM. If a jump instruction 

is executed to a different 4K block without changing the 

relative location from the base of the block, execution will 

merely continue at the next sequential ROM address (although 

the program counter in the CPU will be pointing to the desired 

4K block). Then, the mapping RAM can be set so that socket 

MR is relocated to the desired block. 

For an illustration of this method, refer to the MLZ-9l 

initialization example on page 85. 

37 



38 

BUS MAPPING RAM 

The conventional method of board assignment in the Multibus 

address' space is to utilize a group of DIP switches or jumpers 

to specify the base address of the board. The MLZ-9l uses a 

special mapping RAM instead which is loaded under software 

control. Bits in the RAM perform the same functions as DIP 

switches but allow the operating program to modify the board's 

position and and status on the bus. 

The one megabyte (20 bit) address space on the Multibus is 

split into 16 blocks. The upper four address lines (i.e. Al9, 

Al8, Al7 and A16) are used to select an entry in the bus mapping 
--

RAM which corresponds to the block being addressed on the bus. 

The RAM's output specifies: 

1. Whether or not the board is assigned to that block. 

2. If it is assigned, then other bits determine: 

a. if the board's r/o devices may be accessed, 

b. if the on-card memory may be read from, or 

c. if the on-card memory may be altered. 

Thus,'--"a board may be set up to allow memory reads, memory 
. 

writes, I/O device accesses or any combination of these 

functions. 

Access to the bus mapping RAM by the CPU is done by executing 

a memory write op~ration to either on-card ROM socket with AS 

set on and A3, A2, Al and A9 specifying the inverse of the 

logical bus block number. Note that-it would normally be 

inappropriate to do' a write to ROM. This type of operation 

is intercepted by hardware and the CPU data is stored in the 

bus~apping RAM. (This technique is also used to load the I/O 
, -

mapping RAM.) 

If on-card ROM has been deallocated (via the memory mapping 

RAM), one of the ROM sockets must be reassigned, at least 

temporarily. This is a function of the m'erno'ry mapping RAM. 

(See page 24. ) 



BOARD i-ACTING. AS MASTER 

~: iii I I 
Ds MEMORY 
p~ G 

MULi­
BUS 

All 

D3... _ ... MAPPI N ._._. 
Da -. . . RAM -f-'-I-- ~-.- - t>-_____ -M-~A:.:.st._ 

~; .. .... I II·· . c-. ~: 

'\0 I '2.."3~5""'~A8CI)EF 
BL.OCK ,SEl.iCT 

Ittt~ 
A'I A, .. At) All AlllA .. A, IA,IA.,IA. As\A ... ~'S A~ At A .... ORS 

\ l • ~ t ~ + ! t t + ++ J 

A.2. 

s'Gs 
BLOCK 

APRS 

BOARD 2. ... ACTING AS SLAV~ 

~: I I I I I 
Ds MEMORY. 
D~ MAP?I NG. 
p,) 
D, RAM 

~~~-,--,--.. ~ II I~...J,.....J.-J 

oa OFF-CARp
,. ON-C.~RD

ON c:ARD
MEMORY
LOGUe,

\r-'.;L...,-J.;..,.....L,..·t .-J::...r-*"T"'D--,-'""T'" _7..,...~-r-9-rA--r-6-'-C-r-D r-t-,--,F 0'" _ G.ARD

A,s AJAIJA.a.All Alo A,IA,IA., ~(, As A .. A") A~A, ~ APRS

"'-1-____ ---...1' r t ,I t t t t t t t t t , 'J
',I~

~o ~

PATA ~--t--~":',,~-t-~ DATA

MUl-1"I-PROCESsoR MEMORY ACCESS-·SIMP1..)F1ED DIAGRAM

40

The following sequence of instructions may be used to load
the bus mapping RAM:

LO A,OATA

LD (ROMBASE+2FH-BLOCK),A

Where: ROMBASE is the base address of either ROM socket (e. g.

FlHJgH)

BLOCK is the desired address within the bus mapping

RAM. BLOCK may take on the values of ~~H through ~FH

corresponding to the values allowable for the upper

4 address bits on the 20 bit Multibus. Note that the

expression ROMBASE+2F-BLOCK forms a value which is the

compliment of the actual bus block number (plus AS high.)

DATA is determined as follows:
D7 Set to I to allow···memory read operations

in the specified BLOCK

06 Set to 1 to allow memory write operations

in the specified BLOCK

D5 Set to I to allow use of on-card I/O devices

in the specified BLOCK

04 Set to ~ to disable all operations. If

04 = ~ the board will not even respond

with BACK (Bus Acknowledge) on the

Multibus., thus ignoring all bus requests.

If 04 is set to I and 07, 06 or 05 are

all zero, BACK will still be issued in

response to a bus request even though

all operations are inhibited.

The bus·mapping RAM output is enabled and disabled along with

the memory mapping RAM. Thus, the bus mapping RAM output is

disabled following power-on, a system reset or an NMI. The

bus mapping RAM may still be loaded, however, prior to being

enabled. In fact, it should be comple.tely loaded prior to

any access of the memory mapping RAM so that the contents are

defined when both mapping RAMs are enabled.

We suggest that the bus mapping RAM be loaded with all zeros

prior to setting the memory map. The following loop will

accomplish this:

LD

LD

Loop: LD

HL,ROMBASE+2j6H

B,lG

(HL),11JiJH

INC HL

DJNZ LOOP

;BUS MAPPING RAM

; LENGTH

;WRITE TO MAPPING RAM

Then, after the memory map has been initialized, selected

entries of the bus map may be changed. For more details,

refer to the example MLZ-9l initialization program on page 80.

If the MLZ-9l is used in a system with other master boards

which do not ~upport the upper 4 address lines, then the bus

mapping RAM must be connected to AlS, Al4, ~l3 and Al2 on the

Multibus. To do this,remove jUmper J7 (which will disable

the ability of the MLZ-9l to drive the upper 4 lines) and

conncect A19 to A1S, Al8to Al4, Al7 toAl3 and A16 to A12 on the

Multibus. This will allow A12 through AlS to specify the bus

block.

D.1 Dj6

[ENBL ENBL ENBL ENBL !

I
X t X X . X

MEM MEM I/O BLOCK I ~

READ WRITE -----'---~__:L..,.,-~-
! -- I

JJ JJ g g Disable all functions

16- f' 1 1 Enable I/O only
j.. 1 f' ~ 1 Enable Memory Read only

1 1 1 1 Enable all functions

(other combinations are also valid)

BUS MAPPING RAM DATA FORMAT

41

42

I/O MAP

The on-card I/O devices are divided into two groups. The

base address of each group is specified by the I/O Mapping

RAM. This allows the I/O devices on the MLZ-91 to be allocated

so that off-card I/O addresses are not shadowed by the on-card

devices.

The base addresses of each group may be specified to be one

of the following:

JJg (hex) for device addresses $J~ through 3F

4JJ n n n 4~ •• 7F

SJJ n " n S$J n SF

cg " n n C$J n FF

Typically one of the on-card device groups would be assigned

base sg and the other would be located at cg. Then all

addresses from gg through 7F would be usable as off-card

devices. If an off-card device occupied address 9$J, for

example, then it would be possible to put the on-card devices

at bases gg and C~ to allow access off-card at base a$J.

Since the I/O Map is controlled by a RAM, it is possible to

alter the map contents at any t~e and as often as necessary

for the particular application.

The I/O mapping RAM contains four locations, one for each of

the base addresses listed aboove. The data loaded into the

map specifies how the corresponding block of I/O addresses
(e.g. 4$J through ·7F) is allocated. Each block may be set to

one of the following states:

Assigned to on-card device group A

,"Assigned to on-card device group B

Assigned to off-card devices

Not assigned.

The following instruction sequence is typical of the method

used to load one of the four locations in the mqpping RAM.

LD A, DATA

LD (ROMBASE + I~H + BASE/4),A

Where ROMBASE is the base address of either ROM socket (e.g. F~~~)

BASE is one of the four I/O base addresses (I.e., $J~H,
4~H, 8~H or C~H.

DATA is one of four values determined from the data
format chart, below.

To loaq the entire I/O mapping RAM, four data bytes must be

stored, similar to the above sequence, at ROMBASE + I$JH,

ROMBASE + llH, ROMBASE + 12H and ROMBASE + 13H.

The first operation performed by the software following power

on (ora reset) should be to load the I/O Map. Once assigned,

the I/O devices may be accessed.

For an example of using the I/O mapping RAM, see page 80.

There a~e a number of special considerations which must be

taken into account when performing interboard I/O. There

is a discussion and programming examples starting on page 102.

I xl X X I X I lOA roB xTiff ~
I/O not assigned I

Block assigned to
I/O Device
Group A 9

Blo~k assigned to
I/O Device
~roup B I

Block assigned to
Off-Card 1

I

1

1

x I

x 1

x 1

x

I/O Mapping RAM Data Format

~F

~7

~B

~E

43

44

BUS CONTROL

The control logic for the Intel Multibus allows the MLZ-9l to

share the bus with other processor cards.

The following signals are used by the bus arbitration and

control logic:

BAI- Bus Available In. Low level indicates that no

(PI-IS) higher priority processor needs the bus.

BAO­

(PI-16)

Bus Available Out. Low level indicates that neither

this board nor a higher level board needs the bus.

BAI- and BAO- for.m a daisy chain for priority resolution

when BAO- of each board is connected to BAI- of the next

lower priority processor. ' The BAI- of the highest

priority processor is forced low by installing jumper J8

on that particular card.

BRQST­

(PI-18)

CBREQ­

(PI-29)

BBUSY­

(PI-17)

BCLK­

(PI-13)

Bus Request. Low level indicates that this bOard

has need of the bus. Used to implement a parallel

priority structure instead of a daisy chain.

BROST- for each slot in the multibus is independent

of the other BROST- signals (i.e., not bused).

Common Bus Request. This signal is common for all

cards in the system. A low level indicates that

there is a bus request from any card not already

using the bus, regardless 0; priority. This signal

allows a board to maintain control of the bus,

whether actively using the bus facilities or not,

until such time as any other board has a request.

Bus Busy. A low level on this line indicates that

bus is in use.

Bus clock. An 8 MHz clock generated by the highest

priority board. Used to synchronize all bus

requests and arbitration.

When a processor makes a request for use of the bus, the arbi­

tration logic automatically takes over. If necessary, the

requesting board will enter a wait state until the bus is

available. When the requested bus operation is completed,

the bus will be released according to the state of two control

signals which are under soft-ware control as follows:

BCl BC~ Bus release status

Jl ~ Release bus after every operation.

JJ 1 Release bus if any other board has a

request for the bus (Uses CBREQ-) .

1 Release bus only if a higher priority

board has a request for the bus. (Uses

BAI-)

1 1 Never release. bus, once acquired. This

state can be used to capture the bus.

The actual status of the bus control logic can be determined

by reading the MLZ-9l bOard status port. (See p~ge 64.)

The two bus contrql signals are· generated by PIO port A. Since

there are six other lines on p~rt A, some consideration must

be given to properly initializing that port. The table below

shows the function of all eight bits:

Bit Number Name Type Function

7 (MSB) FDIO-INTRQ Input Interrupt request from floppy
disk

6 WINC-INTRQ Input Interrupt request from
Winchester

5 APU/GPIB Input Interrupt request from
." APU or GPIB

4 BCl Output Bus control bit 1

3 BCJl Output Bus control bit Jl
2 S2 Output DMA ready select 2

1 Sl Output DMA ready select 1

JJ (LSB) S~ Output DMA ready select ~

PIO A may be initialized as follows: (This example assumes we

want to release the bus if any other board has a request, Bel

LOW.)

46

LD A,~CFH ; PIO "BUT" MODE CONTROL

OUT (IOPAC) ,A ; SEND TO PORT A CONTROL

LD A,E~H ; IN/OUT MASK (3 INS, 5 OUTS)

OUT (IOPAC) ,A ; SEND TO PORT A

LD A,jf4H ; BCl LOW, Bg HIGH

OUT (IOPAD},A . SEND TO PORT A AS DATA ,

Later, the state of the control signals may be changed by doing

another output to port IOPAD. However, since that port is also

used to select the DMA Ready signal (S2,Sl,S~) it would be

advisable to use the following scheme:

IN

AND

OR

OUT

A, (IOPAD)

~7H .

DATA

(IOPAD),A

; READ CURRENT DMA SELECT BITS

; TURN OTHERS OFF

; TURN BC BITS ON AS DESIRED

; SET NEW BUS CONTROL BITS

Further details describing the functions of PIO port A can be

found in a later se~tion, "PIO (System PIO) " page 57.

MAPPING RAM AND BUS CONTROL SUMMARY INFORMATION

The table below summarizes the data and addresses for the MLZ-91

mapping RAMs and the Sequence in which.the mapping RAMs should be

loaded. See page 80 for an actual program example.

sequence I Description I Data (hex) Address pages ~
Ref.

---- ___ .. _ _ __ 1. _____ . ____ ._._ _ .. -. -.-~- -- ~ -' .. - .' .. __ _-- -. _ - -

1. . Load I/O gg=not assigned ROMBASE +l~H=base ~~

Mapping RAM ~7=I/0 Device Group A ROMBASE +llH=base 4~ 42

~8=I/O Device Group B ROMBASE +12H=base 8~

~E=Off-card devices ROMBASE +13H=base C~

--------l ~---.. - .. ._ .. _ ..

i • I ASSl.gn
i Socket

3.

i M~ (ROM)

tROMBASE +2~H through

ROMBASE +2FH

Reg. B=HIGH ROMBASE
Reg C=MEMMAP (port)
OUT (C),A

-----~i------------~--------------------r-------------
4.

5.

6.

iAssign , See pages 34 & 35
other memoryJ

Reg B=HIGH blockadrs
Reg c=MEMMAP

i
lOUT (C),A

Assign
to bus

I board~
!~9=disable all oprns ,fROMBASE +2FH-BLOCK I 39=enable I/O. only

Bus Control
logic (part
of System
PIO port A)

.'"

1 9~=enable Memory RD I

F9=enable all oprns i
'(others, see page 41) t

BCl BC~ Release mode
r T every oprn
~ 1 CBREQ-
1 ~ BAl-
1 1 never

release

IOPAD (I/O port)

38-41

27

30-35

38

44

48

MEMORY AND I/O TIMING

A. On-Card Memory of I/O Devices

There are option jumpers on the MLZ-9l that may be set to

insert a WAIT state in specific memory access cycles.

The followi~g chart details the various jumper configurations:
r- ... -_ ... --... -1" - .' --_._--,

~ Wait State Opcode All memory : I con~i t~on _~ Fe_tc_h_?~ly cyc~es _._ ---!
j ROM only J9-A J9-A
I JIO-B i JlO-A
I. . .. o. _ " •••.•• " ••.•• _ • _. ___ •••.••• , •• __ ._. ____ .••• ___ ; ___ • __ ••• ___ •• _. ___ ••. j

ROM and RAM J9-B : J9-B i

JIO-B JIO-A
---+-__________ ._ - -- .-----l . _ .. --- .. -. - .-.- ... - . -- -;

No Wait States Remove ! Remove i
both jumpers I both jumpers!

J...--_______ --L _______ . ___ . ___ 0 ••••• ___ •••••• ,._ •• __ •••••••• ______ ----J

After accounting for the gate delays inserted by the memory

mapping RAM and chip select logic, the access times for ROM

memories should be no longer that specified below:

(Assumes NO WAIT states) (worst case timings)

CPU/DMA clock
seiected by JI

2MHz

4MHz

Max CE to DATA valid
ROM'

580 nsec

205 nsec

Max ADRS to DATA
valid

785 nsec

320 nsec

If the WAIT state logic has been enabled, add the following

times to the worst case values, above:

JlO

JIO-A

JIO-B

2 MHz clock

500 nsec

250 nsec

4 MHz clock

250 nsec

125 nsec

On-card I/O devices operate at full CPU speed regardless

of the WAIT state jumpers.

B. Off-card Memory or I/O Devices

When off-card memory or I/O is addressed, the bus interface

logic puts the CPU (or D~) into a wait state until the bus

is acquired and the addressed memory or device issues bus

acknowledge (BACK-).

External devices of any access time may be used for off-card

memory or I/O. The BACK-del~y circuit (part of the external

control board) must not issue BACK- until the access delay of

the addressed memory or device has expired.

On card RAM will be automatically refreshed to prevent loss

of data due to a lengthy wait state. This function is completely

automatic and transparent to the user.

The min~um delay inserted in an off-card access by the bus

arbitration logic is 375 nanoseconds (unless the bus has been

"captured"). Additional delay time will occur if the bus is

unavailable (BBUSY- true).

The delay inserted by·the bus arbitration logic when an off-card

access is attempted depends upon the state of the bus, as

follows:

Condition

Bus Idle

Bus Busy

Bus not re­
leased fol-

- lowing previous
operation

Minimum Delay inserted
by ·arbi"tr"ation" log"i"c*

375 nanoseconds
Total access time will be a combination
of above delay plus BACK- delay from
external device.

375 nanoseconds
Total access time will be combination
of above delay plus time until bus no
longer busy (BBUSY-fa1se) plus BACK­
delay from external device.

No delay inserted
Total access time will be determined
only by BACK- delay

*The meximum delay inserted will be the values computed above

plus the time for the CPU/DMA to recognize the BAC- signal.

This timing depends on the BACK- edge relative to the CPU clock.

For a 2 MHz board, add 500 nanoseconds, for 4 MHz boards,

add 250 Nanoseconds, maximum.

Refer to the flowchart on page 50 for a graphic description

of the memory timing.

49

50

RELEAS~ BUS

~~---~B

oN-CA~D

MEMORY
RESPONSE
(PAf4E 51)

~~---t AeTIVATIr DATA BVS

SEE
SECTION

®
FoR

RESPONSE:
(PAGE SI)

MVLTlaus IDLE"

ISSUE

("'EMORY

WAIT FOR

DMA
DONE

WAtT FO~
BUS

STILI.OH IDLE

RE"'OV~ OH-CARO GoHTROL S,GoHAL

RrL£AS~ BUSRQ,BACK,ADRS,DATA

MEMORY
JW\APPING

R"'"'

W~ITE

READ

DO RAM READ

LOAD ",E/t\OR'f IMP RA/I\
>-=-:;.:;..------1 ENABLE MEMOR'f MAP

(PAG.£ so)

A

'--_________ -+-iACTlVATE. ON-CARD DEVICE ~ ____ -----.....

(VIA I/O MAP)

~~-"""'WRIT£ D7 - D .. TO BUS MAP ~------+f

SET PARITY ERROR FFI---:---------~-----------------I~

pus.., PC INTO STACK (NMI RESPOHSE)

r:-;=----ITURN OFF ~E~ORY MAP RAM(DISABLE:'aI-------------l

GO "0 ~(/)66H (NMI RESpo"'SE)

"F F" MEANS FLIP-FLOP

MEMORY AND BUS CONTROL LOGIC FLOWCHART

51.

52

INTERRUPT STRUCTURE

Internally, the MLZ-9l uses either the mode I or mode 2

interrupt state of the processor. The mode is selected by

the software and has the following characteristics:
Mode I: Any interrupt from a device causes a CALL to be

executed to address 0038 ,hex (or 070 octal). The

interrupt service routine located at that address

must then poll each device which was enabled to

determine which requ:ires ~ervic.e.
Mode 2: Each device is provided with a vector pointing to

the address of an interrupt service routine. The
vector is used at the time of the interrupt to

cause a CALL to be automatically executed to the

specified service routine. If each device is

given a different yector, a very efficient means

of interrupt service will result since it will

not be necessary to poll the devices to determine

which generated the interrupt. For some I/O devices

(e.g. the SIO) different vectors may be specified

for certain conditions (such as transmit buffer

empty or receive buffer full).

Externally, the MLZ-91 can support the standard eight interrupts
available on the system bus. However, these eight lines do not

produce a direct priority interrupt as with a conventional

8080 system. Instead, lines INTO- thru INT7- are connected to
a special 8-bit pOrt on PI03. This port may be configured

to monitor the eight interrupt lines for any specified combination

of 'states and to produce a vectored interrupt when that state
;1>.

occurs. Using this scheme the conventional priority interrupt

system or a more complex structure can be achieved.

Since the bus interrupts described above are connected to a PIO

chip, some or all lines may be configured as outputs. This

will allow the MLZ-91 to' act'iva'te an interrupt line for multi­

processor communications or for peripheral control. For more

discussion on use of this feature, refer to page 57.

In addition to all interrupt modes and signals described above,

the processor also has a non-maskable interrupt (NMI) which

is always enabled. This interrupt has the highest absolute

priority and is internally connected to the memory write

protection and parity logic.

When an NMI occurs, the program counter is pushed and control

transferred to location ~~66H in memory socket M~. Since the

NMI cannot be disabled by the CPU, there must be a service

routine at location ~JJ66H for write protec.t and parity error

recovery_

Each I/O device on the MLZ-9l is connected in a daisy chain

which de~ines the relative device priority for interrupt

processing. The table below shows the mode 2 priority structure.

Other priorities may be created under software control by

selectively enabling or ~isabling devices during interrupt

processlng. (See page 56 for daisy chain diagram.)

A higher priority device may cause an interrupt during the

servicing of a lower priority device, as long as interrupts

have been re-enabled by the lower priority device's service

routine. Interrupts from any devices of lower priority than

the one currently being serviced will remain pending until

the service routine has been completed. This priority

structure is implemented via hardware. in the microprocessor

and the various periphe~al chips •

. ~ Priority' (Mode 2) Dev'ice

1 . (highest) CTC
2 System PIa (FDIO/Winchester/

APU/GPIB/BUS)
3 SIO
4 (lowest) DMA

54

VECTORED INTERRUPT OPERATION

At some area in memory, usually ROM, there should be a table of
interrupt service routine addresses. All table entries must begin

on an even byte address (A~ = zero) and the table must not cross
a page boundary (H address constant.) The table might, look like

this:

ORG even address

ITABLE: DW CTCg service routine address
Dli CTCl service routine address
DW SIOA service routine address
etc. etc.

During system initialization, the upper half of the table base

address must be loaded into the CPU "I" register via a command
sequence similar to the following: .

IM 2 ; SET VECTORED INTERRUPT MODE

LD A,HADRS; H HALF OF TABLE ADRS (UPPER 8-BI'rS)
LD I,A ; LOAD I REGISTER

Then the individual I/O devices should be initialized and the low
half of the particular table entry (for that device's service
routine address) loaded into the device's interrupt vector register.

This value is the lo~ half of the table entry address, not the ~w
half of the actual service routine address.

When the CPU's I register is coupled with the device's vector
register, aa is done during an interrupt acknowledge cycle, the

CPU can locate the appropriate service routine address from the
list of addresses in the table and use that address to transfer

control to the service routin~. This method allows an a-bit vector

register in each device to point (indirectly) to a 16-bit memory
address.

During the execution of the service routine, CPU interrupts may

be re-enabled (EI instruction) and any higher priority devices (as

defined by the daisy chain) will be allowed to interrupt. The
device being serviced, as well' as lower priority devices, will

be inhibited. When the RETI instruction is executed at the

completion of a service routine, the device being serviced will

automatically be reset and its interrupts enabled. (The Z-80

I/O devices monitor the data bus during instruction execution

looking for RETI instructions and can determine which service

routine is executing by the state of the daisy chain signals.)

See page 91 for an example of an interrupt service routine.

Mode 2 Interrupt Diagram

I/O DEVICE

Vector Register

1. Processor loads
vector during
system initialization.

PROCESSOR

INT ~--------~I INT
L--__ -.-______ ed "--------......

2. Interrupt is generat

Veet or ,

L

by device.

3. Current Program
Counter (PC) value is r
pushed into stack. L

4. Vector from device is
used to fetch service
routine address.

...

5. Control is r-transferred to
service routine. ADL

6. Service routine com ..
pletes and executes a / retum from interrupt RETI

"" instruction.

7. Old PC value is re- /
stored. Interrupted pro-
gram resumes execu-
tion.

MEMORY
Program

Stack Area

Service Routine
Addresses

Interrupt
Service Routine

In order to guarantee proper device initialization, we recommend

that the following code be inserted prior to enabling interrupts:

LD B,13 iLOOP COUNT, 13 DEVICES*

LD HL, RETADRS ; ADRS FOR RETI

LOOP: PUSH HL iSTACK ADRS FOR RETI

RET I

RETADRS: DJNZ LOOP

;RESET DAISY CHAIN

; CONTINUE, LOOP

* includes the internal devices within each chip; e.g., the CTC
is really 4 devices.

56

eTc PIO sro DMA

UNDER
+ SERVICE
HI~H HIG H'~H ..----

'-----1)£1 lEO lEI lEO lEI lEO

'___---'Low LOW

2.IHE sro CHIP INTERRuPTS AND lTS SERVIcE RouTINE STARTS.

UNDER SERVICE'
+ SERVIcE SUSPENDED

,J.UGHIH'&H I I
IIEI 1I:0 R,£1 1E"°r::I'El IE0t::{IEl IEOe

3. pro IN,E''RRUPTS SUSPENDING SERVICE OFTHE' S'IO.

SERViCE SERVicE
+ COMPI-ETEr> R£5UMED

I HI4H IIE'I Jif6t1tuGH ___ 'E_o-,R'EI .EoRIEI IE0i::-tIEI IEOe
q.. pro SERVICE Rou-rIN£ C.OMPLETE. RET' ISSUED) SIO SERViCE RESUMED.

SERVICE
+ COMPLETED I HlqH r HJC.lIr"IGH")qUHH~H

-,1£1 IEORIE") 'EORIE' 1£0 R'£.I IEoF
5. SIO SERVICE, ROUTINE COMPLETE) S£C01JP RETI ISSlJ~b.

THE DAISY CHAII\l AaOV£ IS SUOWN ON THE CHIP LEVE 1.... EACH
CHJP HAS-AN INTERNAL DAISY CHAI~) SIMILAR 10 THE ABOV~)
TO PRJOR,T/7-£ INPlV,PUAL PORTS .. FOR E:XAMPLE') T E srO
INTERNAL DAISY CI-IA1W IS SHoWN 13ELOW. THIS IS AN E"XPANSIOIJ
OF THE SIO SOX)~ THE AaoVE DRAWING!

IEI
I SroA 5IOA SO]: A SroB sro 6 510 B t ~ - - EXTEAA41 - - ~ EXTERNAL
I R.tCEIVER TRANS. STATUS RECE1VER TRANS. STATUS

,....

r

IEO

"'I £ IN == INTE RRUPT ENABL£ IN
\" II
rEO ::: INTERRUPT ENABLE OUT

INTERRUPT DAISY CHAIN CONF1GURATION

SYSTEM PIO

In-addition to the device I/O ports, there are two additional

ports which control certain on~card functions and the eight

System Bus interrupt lines.

The functions provided by port A are: (Refer to PIO Block

Diagram, Page 59)

1. Interrupt service request from floppy Disk, Winchester,

APU or GPIB logic

2. System Bus Release control

3. Interrupt from certain on-card I/O devices.

Port A

Bit it Name Type Function (True State)

7 FDIO-INTRQ Input Interrupt request
from FDIO(HIGH)

6 WINC-INTRQ Input- Interrupt request
from WINCHESTER(LOW)

5 APU/GPIB-INT Input Interrupt request
from APU or GPIB(LOW)

4 BCl Output Bus Control bit 1

3 BCJJ Output Bus Control bit ~

2 52 Output DMA Ready Select 2

1 Sl Output DMA Ready Select 1

~ (LSB) SjJ Output DMA Ready Select ~

The two ~us control 1ines(BCl, BC~)deter.mine what condit~ons

will cause the system bus to be released following a bus

operation. This feature is described in detail in another

section of this manual (see "Bus Control" page 44). The

default value should be Bel and BC~ LOW .which will release the

bus between every operation.

57

58

The two DMA Ready select lines determine which I/O port READY

signal will be used by the DMA to synchronize DMA data

transfers. These two bits control the selector as follows:

Select Bit
S2 Sl S$J DMA Ready Signal (True state)·

~ J' $J Not used
~ J' 1 Not used
JJ 1 J' Not used
JJ 1 1 SIO Ready (HIGH)
1 J' JJ Streamer TAPE Ready (LOW)
1 J' 1 GPIB Ready (LOW)
1 1 JJ WINCHESTER Ready (LOW)
1 1 1 FDIO Ready (HIGH}

The select bits shou14 be initialized to whichever I/O port

will be used with the DMA. It is allowable to change the

select bits between DMA operations.

At system initialization, port A should be setup in the BIT

control mode and the eight I/O lines should be properly

specified as inputs or outputs. This sequence of instructions

could be used:

LD
OUT
LD
OUT

A,,0CFH
(IOPAC) ,A

A,JJE$JH
(IOPAC) ,A

; PIO "BIT" MODE CONTROL
; SEND TO PORT A3 CONTROL
; IN/IN/IN/OUT/OUT/OUT/OUT/OUT
; SET I/O MASK

Next, the state of the Bus Control and DMA Ready select lines

should be specified:

LD A,l7H
OUT (IOPAD),A

; BCL LOW, FDIO ROY SELECT
; SET OUTPUT BITS

Later, the state of the Bus Control or Ready select bits may

be changed by using an instruction sequence similar to the
.*-

following:

IN
AND
OR
OUT

A, (IOPAD)
mask
data
(IOPAD) ,A

; READ CURRENT STATE
; TURN OFF DESIRED BITS
; SET DESIRED BITS
; RESTORE

For a description of the use of port A to generate an

interrupt, refer to the section on the APU (page 76).

PIC pORT

BIT 7 t-_cc-_-Lr---'N-T-E-R-R-U-PT------t FDro

L.r
BIT 6~-'*--_-A-T_T_~-N_T_'-O-N---_t WINCHES-;£R

A
APUEND APU

-u-
B'T5.....e:--____ -+-~R..;;;E~Q..:_U_E_S.;.-.T~ _ _t GPIB

BITS ,2- coNTRoL _ BUS CONTRoL
4-.,"3 "

~

LOGIC

BITS ,3 S£LE"CT
2., 1,,0 "'

r--- --

"
DMA

ON - CARD
DEVIC£"S

B READY oU"~--~"',-tRD'(
BUS

aNT£RRUPTS

SL

SELE:CTO~

7 b 5" '+ 3

r----fA

'----...----4 B

DMA

SIO

STREAMER
W'NCHESTt~I------~ '---------1

-rAPE

GPIB

SYSTEM PIQ BLOcK DIAGRAM

60

PIO port B is used to monitor or control the eight System Bus

interrupts •. This port should be initialized in the "BIT"

mode and, normally, all lines will be inputs, as follows:

LD
OUT
LD
OUT

LD

OUT

LD

OUT

LD
OUT

LD
LD
1M
EI

A,~CFH
(IOPBC) ,A
A,~FFH
(IOPBC),A

A, vector

(IOPBC),A

A,97H

(IOPBC) ,A

A,mask
(IOPBC) ,A

A, vector
I,A
2

; PIO "BIT" MODE CONTROL
; SEND TO PORT B CONTROL
; I/O MASK (ALL INPUTS)
; SETUP ALL LINES AS INPUTS

; INTERRUPT MODE 2 VECTOR
(LOW HALF)

; SET VECTOR

; INTERRUPT ENBL, "OR",
"LOW" STATE

; SEND TO B CONTROL

; ENBL/DSBL MASK (~=ENABLE)
; SELECT LINES TO BE MONITORED

; HIGH HALF OF INTERRUPT VECTORS
; SET INTERRUPT REGISTER
; SELECT INTERRUPT MODE 2
; ENABLE INTERRUPTS

A mode 2 Z8~ interrupt will be generated by port B when any

selected bus interrupt .lines go LOW. By using specific masks

. while processing an interrupt, a bus interrupt priority

structure can be implemented.

The states of the bus interrupt lines are still available

even if Z8JJ or port A interrupts are disabled. Executing an

INPUT instruction "from port A (address IOPBD) will return the

current state of the eight interrupt lines.

A bus interrupt can be generated (for another processor board)

by port B if the "I/O MASK", above, specifies an interrupt

bit as an output line instead of an input. Then, by sending

data to port address IOPBD (Port B DATA) these lines may be

selectively turned on or off.

Note: The actual values assigned to the port addresses

(e.g., IOPAD, IOPBC, etc.) will depend on the data stored in

the I/O mapping RAM. 'See pages 42 and 110.

Z Z-80@PIO Z-80A PIO
Zilog PIO Progrnmming

LOAD INTERRUPT VECTOR

The Z80-CPU requires an 8-bit in terrupt vector be su pplied
by the interrupting device. The CPU forms the address for
the interrupt service routine of the port using this vector.
During an interrupt acknowledge cycle the vector is placed
on the Z-80 data bus by the highest priority device request­
ing service at that time. The desired interrupt vector is
loaded into the PIO by writing a control word to the
desired port of the PIO with the following format.

U7 Ub l>5 J).l l>.\ l>~ 01 DO

V7 Vb VS V~ VJ I V'" VI CO I
signifies this CItl\l"JI wurd i.; all interrupt

7

SELECTING AN OPERATING MODE

When selecting an operating mode, the 2-bit mode con­
trol register is set to one of four values. These two bits are
the most significant bits of the register, bits 7 and 6; bits 5
and 4 are not used while bi ts 3 through 0 are all set to 1111
to indicate Uset mode."

07 D6 05 D4 DJ D1 01 DO

Ml I MO I x x I I I 1 I I I I I
~

, ,
v

mode word signilles mode word
to be set

X=unused bit

Mode M} Mo ..

Output 0 0

Input 0 I

Bidirectional I 0

Bit 1 1
.to.

MODE 0 active indicates that data is to be written from
the CPU to the peripheral.

MODE 1 active indicates that data is to be read from the
peripheral to the CPU.

MODE 2 allows data to be written to or read from the
peripheral device.

MODE 3 is intended for status and control applications.
When selected, the next control word must set the 1/0
Register to indicate which lines are to be input and
which lines are to be output.

I/O = 1 sets bit to input.
I/O = 0 sets bit to output.

01 Db 05 04 03 D~ 01 DO

1,/071'/06/,/05 I ~o·I'/O~ 1'/0,1,/0, I'/oe

INTERRUPT CONTROL

Bit 7 = I

Bit 7 = 0

Bits 6,5,4

Bits 3,2,1 ,0

interrupt enable is set-allowing
interrupt to be generated.

indicates the enable flag is reset and
interrupts may not be generated.

are used in the bit mode interrupt
operations; otherwise they are
disregarded.

signify that this command word is an
i. terrupt control word.

07 Ob 05 01 00

"'----v v
used in Mude.' lmly signifies illt.:rrupt contmfword

If the ""mask follows" bit is high (D4.= 1), the next
control word written to the port must be the mask.

07 Db OS D4 O.l Ol DI 00

I MBJ I MB61 MBS I MB41 MBJ I Ma21 MB t "[-MBo I
Only those port lines whose mask bit is a 0 wilt be monitored for
generating an interrupt. .

The interrupt enable flip-flop of a port may be set or
reset without modifying the rest of the interrupt control
word by the following command.

D7 Db OS D4 D3 Ol 01

x I x I 0 I 0 I 1

Use Mode 3 for both ports
i.e., use CF hex

DO

61

62

DIP SWITCHES AND LEOs

The DIP Switch/LED feature of the MLZ-9l allows software

controlled options to be selected and status valves to be

displayed.

DIPs

There are 16 dip switches, located near the I/O edge of the

board, which are accessible without removing the MLZ-9l board

from the Multibus card rack. The functions of each switch

are defined by the software (except that four switches are

used by the streamer tape inter'face, if the tape option is

used). Examples of switch use are:

1. SIO baud rate selection

2. Software option selection

3. Board position on bus or board priority

In each case, the program is responsible for reading the switch

position and taking the action necessary to implement the

function (e.g. loading the baud rate generator with the data

read from the switches.) See example, page 93.

The 16 switches are arranged' as two 8-bit groups with each

group accessible as an input device.

Switch Group SW1tch Numbers I/O Port Address

IODIPJ' ~ 1-8 (D7-D~)
1 9-16 (D7-DJ'1

Data bit

~
1

Switch state

ON (down)
OFF (up)

See diagram, next page for switch locations.

rODIPl

LED ARRAY

There are eight LEDs arranged as one 8-bit output port. The functions

of each LED is specified by the software. (Two of the LEDs are re­

quired by the streamer tape interface, if the tape option is used.)

LED PORT ADDRESS: IOLED (Write only)

Data bit

~

1

LED State

ON

OFF

The LEDs are not initialized to any particular state at power-on

and are not changed by RESET.

LED ARRAY

P6 PI}
L::::1 'r.-' --4

DIP t>7 !---:---'
(LS8) (MsB){Lsa) DIP SWITCH

GRoUP 9S

MLZ-9IA

PI P2

DIP SWITCH
GRoUP I

For restrictions on use of the switches and LEDs with the streamer

tape interface, refer to page 73.

63

64

BOARD STATUS

It is sometimes useful to know the state of a few on-card signals for

memory error processing and bus control functions. There is an input

port assigned to allow four signals to be read as follows:

STATUS PORT ADDRESS: IOSTAT

Data bit

D7
D6
05
04

Function (Negative true, $:l="on")

N~11 flip flop (See page 36)
PARITY ERROR flip flop (See page 36)
(for Winchester I/F, see page 70)

BUS AORS ENABLE state

The state of 07 & 06 can be used following an NMI to determine the

reason for the interrupt. There are also two status LEOs on the

MLz-9l which visually indicate an error condition.

07 --,
JJ
1
1

06
?

1
JJ
1

Reason for NMI
On-card RAM parity error
(invalid)
On-card RAM write protect error
(No error, reset state)

Status LEOs
Both on

One on
Both off

07 and 06 may be reset (to one) by executing any I/O in­
struction to I/O PORT ADORESS: IOCLRN
NOTE: If 06 is not reset back to one by either a system
RESET or an access to IOCLRN an<?.t;her NMI cannot occui:'.

Bit 04 allows the bus control status to be determined. If 04 is low

(~) then the MLZ-9l·has control of the Multibus. This bit, in con­

junction with the bus control lines can be used as indicated below:

Bus Control lines (BCI & BC~)

Both ON ·+11)

Either OFF (10, 01, 00)

AORS-ENBL (04)

04=~

04=1

04=.'1

D4=1

Meaning

MLZ-9l has control of
the MULTIBUS and will
never release control
(bus lockout state)

MLZ-91 does not have
control of the MULTIBUS
but will capture control,
on the next attempt to
use the bus

MLZ-91 has control of
the bus. No other board
has used the bus since
the last bus access by
the MLZ-91

MLZ-91 does not have
control of the bus.
The bus has been used
since the last bus access
by the MLZ-91

GPIB (IEEE-488) IIF

The General Purpose Interface Bus was originally designed by

Hewlett-Packard to provide a universal method of device intercon­

nection. The basic bus definition gained acceptance by the IEEE
and has since become known as IEEE standard 488.

The MLZ-9l utilizes a Texas Instruments GPIB controller chip (the
TMS-99l4) which handles .the bus protocol and allows the Z-80 to

operate the bus with a minimum amount of concern for the actual bus

control signals. For example, the data valid (DAV), not data accepted

(NDAC) and not ready for data (NRFD) handshaking during data transfer

operations is transparent to the CPU side of the TMS-9914. The CPU

tests bits in a status register in order to synchronize data

transfers.

The GPIB devices are defined as controllers, talkers or listeners.

In any system there is one active controller, one talker and any

number of listeners. The controller specifies which devices are

talkers and listeners. A device can be both controller and talker

or controller and listener. For example, the MLZ-9l could designate

itself as controller and listener and receive data from a data

acquisition device (talker).

For more details on the TMS-99l4, refer to the TI TMS-99l4 GPIB

ADAPTER DATA MANUAL. For information concerning licensing of the GPIB

by Hewlett-Packard, contact Hewlett-Packard, Legal Department.
~

See page 160 for MLZ-9l connection information.

The program on the following pages illustrates one method of using

the GPIB feature of the MLZ-9l. (This example has been adapted from

the example in the TI Data Manual.)

65

ASEG
.Z80

. .,
TITLE GPIB (IEEE-488) I/F EXAMPLE
HEURIKON CORPORATION

RAM
ROM

EQU OEOOOH ; RAM BASE
EQU OFOOOH ; ROM BASE (PGM) .

;
lOA
lOB . .,
IODIPI
IOPAD
IOGPIB

EQU
EQlI

EQU
EQlI
EQU

080H
OCOH

IOA+39H
IOB+38H
IOB+30H

;IOA (DEVICE GROUP A) BASE ADRS
;IOB (DEVICE GROUP B) BASE ADRS

;DIP SWITCH GROUP 1
;1/0 PIO PORT A DATA ADRS
;BASE OF GPIB CHIP REGISTERS

;**
;THIS EXAMPLE HAS BEEN ADAPTED FROM THE SOFTWARE EXAMPLE SHOWN IN THE
;TI MANUAL FOR THE TMS-9914 GPIB CONTROLLER CHIP. THE PORT ADDRESSES
;AND INSTRUCTIONS HAVE BEEN CHANGED TO CONFORM WITH THE MLZ-91.
;**
;A TYPICAL SYSTEM USING THE GPIB/IEEE-48B BUS CONSISTS OF THREE ITEMS:
; DEVICE 1: SYSTEM CONTROLLER (CPU, MEMORY, ETC.)
; DEVICE 2: INSTRUMENT PRODUCING DATA (TALKER)
; DEVICE 3: INSTRUMENT ACCEPTING DATA (LISTENER - E.G., PRINTER)
;
;THIS PROGRAM EXAMPLE RUNS THE CONTROLLER IN ORDER TO SET UP DEVICE 2.
;THE ASCII CONTROL CHARACTERS REQUIRED TO PROGRAM DEVICE 2 FOR RANGE,
; FUNCTION, ETC • ., ARE ASSUMED TO HAVE BEEN PREVIOUSLY LOADED INTO MEMORY
;AT LOCATION ~DEVDAT~. DEVICE 2 IS FIRST ADDRESSED TO LISTEN AND THE CONTROL
;CHARACTERS ARE SENT TO DEVICE 2. THEN DEVICE 2 IS ADDRESSED TO T~LK AND
;DEVICE 3 IS ADDRESSED TO LISTEN. WHEN THE CONTROLLER PUTS ITSELF IN THE
;STANDBY MODE, THE MEASUREMENT DATA FROM DEVICE 2 IS SENT TO DEVICE 3 OVER
;THE GPIB. IN PRACTICE, THE FORMAT OF THE DATA SENT BETWEEN DEVICES
;WOULD PROBABLY HAVE TO BE CHANGED BUT THIS STEP IS OMITTED HERE FOR
; CLARITY.
;**
;GPIB REGISTER ADDRESSES:
;READ REGISTERS:
INTSTO EQU IOGPIB+O
INTST1. EQU IOGPIB+l
ADDSTS EQU IOGPIB+2
BUSSTS EQU IOGPIB+3
CMDPAS EQU IOGPIB+6
DATIN EQU IOGPIB+7
;WRITE REGISTERS:
INTMKO EQU' IOGPIB+O
INTMKl EQU IOGPIB+1
AUXCMD EQU IOGPIB+3
ADDRSS EQU IOGPIB+4
SERPOL EQlI IOGPIB+5
PAR POL EQU IOGPIB+6
DATOllT EQU IOGPIB+7

;INTERNAL STATUS REGISTER 0
; INTERNAL STATUS REGISTER 1
;ADDRESS STATUS
;BUS STATUS
;COMMAND PASS THROUGH
; DATA' IN

;INTERRUPT MASK 1
; INTERRUPT MASK 2
;AUXILIARY COMMAND REG
;ADDRESS REG
;SERIAL POLL
;PARALLEL POLL
;DATA OUT

;**

66

;**
;TMS-9914 AUXILIARY COMMANDS:
TCA EQU ODH
TON EQU SAH
TONCLR EQU OAH
CLRRST EQU OOH
OTS EQU OBH
SDWH EQU 96H
SRE EQU 90H
SRECLR EQU 10H
SIC EQU SFH
SICCLR EQU OFH

;TAKE CONTROL ASYNCHRONOUSLY
;TALK ONLY
;CLEAR TALK ONLY
;CLEAR CHIP RESET
;GO TO STANDBY
;SHADOW HANDSHAKE
;SEND REMOTE ENABLE
;CLEAR REMOTE ENABLE
;SEND INTERFACE CLEAR
;CLEAR INTERFACE CLEAR CMD

;**
; INTERFACE CONTROL COMMANDS:-
UNL EQU 3FH
UNT EQU 5FH

;UNLISTEN ALL DEVICES
;UNTALK ALL DEVICES

;**
; DATA:

ORG
COUNT EQU
DEVDAT: DS

RAM
7
COUNT

;7 BYTES FOR THIS EXAMPLE
;RESERVE SPACE FOR TALKER CONTROL

;**
;DEVICE ADD~ESSES ON OPIB:
LISADl EQU ~.~ ;(33) LISTEN ADRS 1
TAKADl EQU ~A~ - ;(65) TALK ADRS 1
LISAD2 EQU ~ •• ~ ; (34) LISTEN ADRS 2
TAKAD2 EQU ~B~ ;(66) TALK ADRS 2
LISAD3 EQU ~#~ ;(35) LISTEN-ADRS 3
TAKAD3 EQU ~C~ ;(67) TALK ADRS 3
;**

f)7

68

;**
ORG ROM

;THIS IS THE MAIN PROGRAM:
;PIO A AND STACK POINTER ARE ASSUMED TO BE INITIALIZED.
;**
;STEP 1: INITIALIZE THE GPIB CHIP.
; LOAD THE DEVICE ADRS FROM THE DIP SWITCHES
; SEND INTERFACE CLEAR
; CLEAR AUXILIARY RESET
GPIB: IN A, (IODIP1) ;READ DIP SWITCH GROUP 1

CPL ;FIX 'ON' = 1
OUT (ADDRSS),A ;SEND TO GPIB ADDRESS REGISTER

;
LD A,SIC ;I/F CLEAR CND
OUT CAUXCMD),A ;SEND INTERFACE CLEAR COMMAND
LD A,CLRRST ;CLR S/W RESET CMD
OUT (AUXCMD),A ;START SENDING IFC ON BUS

· ,
LD B,31 ;LOOP COUNT

DLY: . D.JNZ DLY ;DELAY 100 USEC. (AT 4MHZ CPU CLOCK)
· ,

LD A,SICCLR ;CLR IFC CMD
OUT (AUXCMD), A ;CLEAR IFC COMMAND
LD A,SRE ;REMOTE'ENABLE CMD
OUT (AUXCMD),A ;SEND REMOTE ENABLE CMD

; THE GPIB CHIP IS NOW IN THE CONTROLLER ACTIVE STATE AND REMOTE ENABLE
; HAS BEEN SENT TO ALL DEVICES.
;**
;STEP 2: ADDRESS DEVICE 2 TO LISTEN
; SEND DEVICE DEPENDENT CONTROL DATA TO DEVICE 2

IN A, (INTSTO) ;CLEAR BYTE OUT INTERRUPT STATUS
· ,

· 7

· ,
LOOP:

· 7

LD
CALL

LD
CALL
LD
LD

LD
INC
CALL .~
D.JNZ·

A,LISAD2
DATAW

A, TON
AlIXW
B,COUNT
HL,DEVDAT

A, (HL)
.HL

DATAW
LOOP

LD A,TCA
CALL AlIXW
LD A, TONCLR
OUT (AUXCMD),A
LD A,UNL
CALL DATAW

;DEVICE 2 IS NOW SET UP TO

;LOAD DEVICE 2 LISTEN ADRS
;SEND TO DATA REG AND WAIT

;TALK ONLY COMMAND
;ADDRESS SELF TO TALK
;LOOP COUNT
;BASE OF DEVICE CONTROL DATA

;GET BYTE
;INCR FOR NEXT LOOP
;SEND TO DATA REG AND WAIT
;SEND ALL DEVICE DEPENDENT CONTROLS

;TAKE CONTROL ASYNCRONOUSLY CMD
;SEND AND WAIT FOR BO
;CLEAR TALK ONLY COMMAND
;SEND TO AUXCMD REG
;UNLISTEN ALL DEVICES eMD
;SEND TO DATA REG AND WAIT FOR BO

TAKE MEASUREMENTS.
;**

;**
;STEP 3: DEVICE . .2 IS ADDRESSED TO TALK
; DEVICE 3 IS ADDRESSED TO LISTEN

LD A,LISAD3 ;LISTEN ADRS FOR DEVICE 3
CALL DATAW ; SEND AND WAIT

LD
CALL

A,TAKAD2
DATAW

;TALK ADRS OF DEVICE 2
;SEND AND WAIT

;**
;STEP 4: THE CONTROLLER NOW RELEASES THE ATTENTION LINE AND MONITORS
;THE "EOI" LINE UNTIL AN END OCCURS.

LD A,SDWH ;SHADOW HANDSHAKE CMD
OUT (AUXCMD),A ;LOAD INTO AUXCMD REG
LD . A,OTS ;RELEASE ATN LINE eMD
OUT (AUXCMD),A .;SEND TO OPIB CHIP . .,

;WE ASSUME THAT PIO A HAS
WAIT: IN A, (IOPAD)

BIT 5,A

BEEN INITIALIZED IN THE BIT CONTROL MODE.
;READ OPIB INTERRUPT LINE FROM PIO A
;TEST OPIB BIT

JR NZ,WAIT
; ALTERNATE: PIO A COULD BE
;GOES TRUE (LOW).

JP SOMEWHERE

;LOOP HERE UNTIL TRUE
SET TO INTERRUPT IF THE GPIB INT LINE

;FROM HERE 00 TO REST OF PROGRAM
;**
;

;**
;THESE ARE SUBROUTINES WHICH OUTPUT A COMMAND AND THEN WAIT FOR THE
;BYTE OUT ('BO') STATUS BIT.
DATAW= OUT (DATOUT).,A ;SEND TO DATA OUT REGISTER

JR BOWAIT ; WAIT FOR BYTE OUT . .,
AUXW: OUT
BOWAIT: IN

BIT
JR
RET

(AUXCMD).,A
A, (INTSTO)
4.,A
NZ,BOWAIT

;SEND TO AUXILIARY COMMAND REO
;READ INTERNAL STATUS REGISTER
;TEST BO BIT
;LOOP UNTIL READY

;**
END

69

70

WINCHESTER INTERFACE

The MLZ-91 has been designed to allow easy connection to

numerous Winchester drives and controllers. The interface

provides a byte level, DMA controlled data transfer to

achieve maximum speed.

All connections to the drive controllers is via P2 (the

"Auxiliary" connector). This 60 pin connector has been

logically split into sections and five hardware jumpers are

used to account for variations between controllers. The

summary below shows the basic controller interfaces which are

accommodated by the MLZ-91. Refer to pages 150 through 155

for P2pinout details and cable -specifications.

Controller

Micropolis

Priam

Shugart

Seagate

DTC

There are 5 jumpers

P2 Pins

1-34

35-60

1-34

1-34

1-34

which must

Cable type

MLZ-P2M

MLZ-P2P

MLZ-P2S

MLZ-P2S

MLZ-P2S

be set either

depending on the controller being used. (See

Jll "S" (no "M")

J15 tIS" or "M"

J16 "s" or "M"
J16 "S" or "M"
JIB "s" or tiM"

I/O Port Addresses (See page 111)

Jumpers

"M"

n/a

~'S "

"S"

"S"

"s" or "M"

p~ge 144)

page

150

152

154

154

154

The functions of each I/O port, meaning of control signals and
~

commands are highly dependent on the particular controller being

used. The following information is summary in nature. Refer

to the MLZ-91 schematics and controller manuals or contact Heurikon

for assistance.

I/O Port Name

IOWSEL

IOWCLR

IOWWR,

IOWWRl

IOWRD~

IOWRDl

IOWRDS

IOSTAT

FUNCTION

Micropolis Shugart

Select Select

Deselect Clear SEL

WR DATA WR DATA/CMD

Command WR DATA/CMD

RD DATA RD DATA/STATUS

Status RD DATA/STATUS

Read general interface status

07 = Attention (LOW true)

D6 = Data Request (LOW true)

05 = Busy (LOW true, except
Micropolis)

04 = OUT line (LOW

Read Board Status

07 (See page 64)

06 (See page 64>-

true)

HIGH

Priam

(none)

(none)

(Reg B)

(Reg B)

for

05 = DIRECTION (for Shugart, LOW true) or

CBUSY (for Micropolis, HIGH true)

When I/O instructions are executed with the Priam controller,

the contents of register B specifies the Priam control

register as follows (use "INA., (C)" or "OUT (C), A")

Register B INPUT OUTPUT

~ Result 5 Parameter 5

1 Result 4 Parameter 4

2 Result 3 Parameter 3

3 Result 2 Parameter 2

4 Result 1 Parameter 1

5 Result g Parameter g
6 Read Data Write Data

7 I/F Status Command

If the MLZ-9l DMA is accessing the Winchester interface, the

Priam Data register is automatically selected. (The DMA

cannot directly access any of the other Priam registers.)

71

72

General

Data signals on the interface lines are inverted with

respect to the CPU or DMA. Therefore, commands, status and

data passed between the CPU or DMA and the controller will

appear inverted from the specifications in the manuals for

those controllers which have a positive true data bus,
e.g., Priam. Thus, care must be taken to invert command and

status bit patterns when using some controllers. The actua~

sector data need not be inverted in any case since the Win­

chester media is not removable. If data is written "inverted"

by the interface it will be reinverted when read back.

The Data request (or Data Ready) and Attention (or Interrupt

Request) are available to the CPU as bits via I/O port

IOWRDS. The Data request line may be selected as the DMA

Ready signal and the Attention signal can be programmed to

cause a CPU interrupt via the System PIO. Refer to page 57

for details on how to configure the System PlO.

Heurikon provides software support for.various Winchester

controllers. Consult factory for details.

STREAMER TAPE

The streamer tape logic on the MLZ-9l performs two

functions:

1. Provide interface to the Archive Corporation Streamer

tape for backup of Winchester data and program

files.

2. Provide a general purpose 8-bit parallel I/O port

for systems not using a streamer tape.

The Archive streamer tape controller has been designed for

programmed I/O of commands and status with either programmed

I/O or DMA transfer of the actual tape data. The average

byte transfer rate for continuous operation at 90 ips is

87,200 bytes/second. Thus, 20 megabytes of Winchester data

can be backed up in as little as four minutes.

The hardware interface consists of the following signals:

Signal Name

HB.0-HB7

ONLINE "/(

REQUEST *

RESET

TRANSFER

ACKNOWLEDGE *

READY *

EXCEPTION*

DIRECTION *

Source Function (all are negative true)

(both) Bi-directional data bus used
for commands, status and data
transfers.

MLZ-9l Active during command transfer
and execution.

MLZ-9l Used as a handshake for
command and status transfers

MLZ-91 Power-on reset

MLZ-91 Used as a handshake for data
transfers

Archive Used as a handshake for data
transfers

Archive Used as a handshake for command
and status transfers and as
buffer status during data trans­
fers.

Archive Indicates an error condition

Archive Indicates the direction of the
data transfer

74

Consult the Arch.ive product description and specifications for

details on these signals and the sequence of operations for

using the streamer tape drive.

Those signals marked "*" above share circuits with the

DIP switches and LED array.

Signal Source Connec·tion Port Name State

ONLINE MLZ-9l LED array, bit 1 IOLED , = TRUE
REQUEST MLZ-9l LED array, bit $J IOLED $J = TRUE
READY Archive Ol:PSW" bit 7 IODIPj; ~ = TRUE

EXCEPTION Archive DIPSW" bit 6 IODIP"" , = TRUE

DIRECTION Archive DIPSW" bit 5 IODIP.0' g = TRUE

ACKNOW-
LEDGE Archive DIPSW_, bit 4 IODIP.0' ~ = TRUE

When using the streamer tape interface, DIP switches 1,2,3 and 4

must be OFF (OPEN) to allow those bits to be used by the

tape controller. Also, LED bits g and 1 must be reserved for

the tape interface. The other 12 DIP switches and 6 LEDs may be

used as desired by. the application.

The HB9 - HB7 Data bus signals have been defined by Archive

as negative true. The MLZ-9l logic, however, does not invert

these lines. Thus, commands and status bits must be inverted

from the definitions in the Archive documentation. The actual

tape data written to the drive need not be inverted since the

data will be re-inverted by the read operation.

Heurikon provides software suppor~ for the Archive streaming

tape drive. Consult factory for details.
" The'Archive controller connects to P3. See page 156 for pinout

and cable details.

The interface circuits on the MLZ-9l generate a data ready

signal for use with DMA data transfers. (Refer to page 57.)

LED "1" will indicate when a data transfer is in progress

since ONLINE will true during that time.

Use as a general purpose PIO port

If a streamer tape is not connected to P3, the interface

circuits may be used as a general purpose eight bit parallel port.

uNLINE, REQUEST, READY and EXCEPTION may· be used as control

and handshake signals via the IODIP~ and IOLED ports. The

DIRECTION signal may be controlled. by DIP switch 13, the device

connected to P3 or by the CPU by jumpering ONLINE or REQUEST to

DIRECTION via P3. DIRECTION = LOW or DIPSW 3 ON means data transfer

.is from the device to the MLZ-9l.

DIRe ~ / \ I / r-
(FROM DEVlCE) '--7 FROM DEVICE OR DIP SW. 3._.~~. ____ 7--'!

DATA
(FROM DEVICE) ____ ~ __ ~~_---S-T-A-8-L-£--~X-____________ _

I I
(FR~V,c~---~t---------~~4-1--
(T~~~A) ------,.~'------J1 ~ ~

t

IOTRDSI
(I/o PORT) \ (RD) [

XFER -. -----------------~J l'~---
(TO DEVICE) \\.-. __ -oJ.

DIRe
(FRo,¥. PEV1C£)

j,

DATA
(TO DEVICE)

IOTWRS
(I/O PORT)

XFER
(TO DEV1C E')

ACK
(FROM PE:V.C£.)

TRDY .
(to DMA)

DATA INPUT (RD) CYCLE
J 5 FROM DEVICE: OR PIP SW. 3 'OFF'

X LATcHED
--------~,~-------------------------------------.,i (WR) 1

I ~~-----.Jf

J
'\ 11

__ ~l~--------------~\~_

DATA OUTPUT (WR) CYCLE

76

APU

The (optional) Am95ll Arithmetic Processing unit (APU)

contains firmware which executes high level math functions

and relieves the Z-80 processor lengthy software routines.

The APU performs fixed and floating point arithmetic plus a

variety of trigonometric functions. Operands (16, 32 or 64

bits each) are pushed into the APU's internal stack by using

the Z80 OUTPUT instruction. A command is then issued, also

via an OUTPUT instruction, which initiates a particular math

operation. When the function is complete, the result may be

popped from the APU's stack by using an INPUT instruction.

Here is a ·typical example of the command sequence for the AM9511

APU. This example will multiply the contents of register

pair HL by the contents of register pair DE.

LD C,IOPUSH ;APU PUSH DATA PORT ADRS
OUT (C) ,L ;L HALF OPERAND 1
OUT (C) ,H ; H HALF OPERAND 1
OUT (C) ,E ;L HALF OPERAND 2
OUT (C) ,D ;H HALF OPERAND 2
LD A,9F6H ; .. SMUL" COMMAND (MULTIPLY,

OUT (IOAPUW) ,A ;INITIATE MULTIPLYPPER)

At this point, the requested operation is executed. When

the operation is complete, the result may be popped from

the APU'~; •.. stack. However, if the operation is not completed when th.

result is read, the CPU will enter a wait state until the APUis done

LD
IN
IN
IN

C, IOPOP
H, (C)
L, (C)
A, (IOAPUR)

; APU POP DATA PORT ADRS
iH HALF RESULT
;L HALF RESULT
iREAO COMPLETION STATUS

This example used 16 bit operands. However, some APU commands

operate on 32 or 64 bit operands.

In some systems it may be undesirable to have the processor

enter an extended wait state prior to reading the result. Two

methods may be used to prevent such a condition:

1. Read the APU/FPU status port and wait (in a loop) for

the "busy" bit to go false.

LOOP: IN A, (IOAPUR) i READ APU/FPU STATUS
i TEST BUSY BIT AND 8gB

JR NZ, LOOP i WAIT FOR NOT BUSY
i NOW READ RESULT

2. Enable the APU END interrupt via PIO port A.

a) Program port A to interrupt when the APU END signal
goes true.

b) Set a flag or read the result in the interrupt routine.

LD A,vector iLOW HALF OF A INT VECTOR
OUT (IOPAC),A iSET INTERRUPT VECTOR
LD A,17H iBCL LOW (or as desired)
OUT {IOPAD),A iSET A DATA LINES
LD A,97H iENABLE INTERRUPT ON END LOW

OUT (IOPAC) ,A iSET A CONTROL
LD A,gDFH iMASK (D5 LOW)
OUT (IOPAC) ,A iONLY MONITOR DMA READY

c) Load the upper half of the interrupt vector via:

LD A,vector iHIGH HALF OF VECTOR
LD I,A iSET I REGISTER
1M 2 iSELECT INT MODE 2

d) Execute an EI (Enable Interrupt) instruction.

Note: The APU clock rate (2/4 MHZ) is set by jumper J2 and
is independent of the processor clock. See page 142.

STATUS REGISTER

ERROR CODE

7 6 5 4 3 2 o

BUSY: Indicates that AM95llA is currently executing a command
(l=Busy).

SIGN: Indicates that the value on the top of stack is negative
(l=Negative).

ZERO: Indicates that the value on the top of stack is zero
(l=Value is zero).

ERROR This field contains an indication of the validity of the
CODE: result of the last operation.

(~~~~ indicates no error).

CARRY: Previous operation resulted in carry or borrow from most
significant bit. (l=Carry/Borrow, O=No Carry/No Borrow)

.. . ('

If the BUSY bit in the status register is a one, the other status
bits are not defined; if zero, indicating not busy, the operation is
complete and the other status bits are defined as given above.

APU Conunand Summary (AM95ll)

78

Fixed-Point, 16-bit

SADD Add TOS to NOS. Result to NOS. Pop Stack.
SSUB Subtract TOS from NOS. Result to NOS. Pop Stack.
SMUL Multiply NOS by TOS. Lower half of result to NOS. Pop Stack.
SMUU Multiply NOS by TOS. Upper half of result to NOS. Pop Stack.
SDIVDivide NOS by TOS. Result to NOS. Pop Stack.

Fixed-Point, 32-bit

DADD Add TOS to NOS. Result to NOS. Pop Stack.
DSUB Subtract TOS from NOS. Result to NOS. Pop Stack.
DMUL Multiply NOS by TOS. Lower half of result to NOS. Pop Stack.
DMUU Multiply NOS by TOS. Upper half of result to NOS. Pop Stack.
DDIV Divide NOS by TOS. Result to NOS. Pop Stack.

Floating-Point, 32-bit

FADD Add TOS to NOS. Result to NOS. Pop Stack.
FSUB Subtract TOS from NOS. Result to NOS. Pop Stack.
FMUL Multiply NOS by TOS. Result.to NOS. Pop Stack.
FDIV Divide NOS by TOS. Result to NOS. Pop Stack.

Derived

SQRT
SIN
COS
TAN
ASIN
ACOS
ATAN
LOG
LN
EXP
PWR

Floating-Point Functions

Square Root of TOS. Result in TOS.
Sine of TOS. Result in TOS.
Cosine of TOS. Result in TOS.
Tangent of TOS. Result in TOS.
Inverse Sine of TOS. Result in TOS.
Inverse Cosine of TOS·.Result in TOS.
Inverse Tangent of TOS. Result in TOS.
Common Logarithm (base lO) of TOS. Result
Natural Logarithm (base e) of TOS. Result
.Expon~ntial (eX) of TOS. Result in TOS.
NOS rCl:.ised to the power in TOS. Resul t in

Data Manipulation Commands

NOP No Operation

in TOS.
in TOS.

NOS. Pop Stack.

FIXS Convert TOS from floating point to l6-bit fixed point format.
FIXD .~Convert TOS from floating point to 32-bit fixed point format.
FLTS convert TOS from l6-bit fixed point to floating point format.
FLTD Convert TOS from 32-bit fixed point to floating point format.
CHSS Change sign of l6-bit fixed point operand on TOS.
CHSD Change sign·of 32-bit fixed point operand on TOS.
CHSF Change sign of floating point operand on TOS.
PTOS Push l6-bit fixed point operand on TOS to NOS (Copy)
PTOD Push 32-bit fixed point operand on TOS to NOS. (Copy)
PTOF Push floating point operand on TOS to NOS. (Copy)
POPS Pop l6-bit fixed point operand from TOS. NOS becomes TOS.
POPD Pop 32-bit fixed point operand from TOS. NOS becomes TOS.
POPF Pop floating point operand fran TOS. NOS becomes TOS.
XCHS Exchange l6-bit fixed point operands TOS and NOS.
XCaD Exchange 32-bit fixed point operands TOS and NOS.
XCHF Exchange floating point operands TOS and NOS.

PUPI Push floating point constant "1(" onto TOS. Previous
TOS becomes NOS.

Access to the APU chip may be made directly from a program written

in a higher level language by using the language's INPUT and OUTPUT

commands in a fashion similar to the machine code examples discussed

earlier. For example, the following BASIC s.ubroutine will perform a

double precision DIVIDE (32 bit operands) according to the formula

100
110
120
130
140
150
160

170

ISO
190
200
210

220
230
240
250

Q = DIE

FOR J = 1 TO 2
FOR I = 1 TO 4
OUT{170,D)
LET 0 = 0/256
NEXT I
LET 0 = E
NEXT J

OUT(171,172)

Transfer both operands to the APU
stack (dividend "0" first, then
divisor "Elf). Operands are
transferred S-bits at a time,
LSBs first.

Issue divide command "DDIV"

LET Q = ~ \ Read result. (Automatic WAIT at
FOR I = 1 TO 4 I line 200 until APU ready.)
Q = Q*256 + INP(16S>j
NEXT I

IF INP (169) AND 3~ GOTO 240
RETURN
PRINT "DIVIDE ERROR"
RETURN

Device port numbers (16S, 169, 170, 171) assume lOA base is S~H.

This is a function of the I/O mapping RAM.

For single parameter functions (e.g. Square Root), delete lines

100,150, and 160.

A careful reader may observe that the BASIC routine above uses S

divides and. 4 multiplies within the BASIC code which nullifies

any potety'tial savings from the APU. (The "DDIV" command executes

in approximately 100 microseconds while most BASIC multiply and

divide operators take considerably longer.) The BASIC program was

presented as an example to illustrate the software to hardware

interface when using a higher level language. To utilize the full

power of the APU it would be best to transfer the operands via a

machine code subroutine.

79

80

SOFTWARE EXAMPLES

There are many methods which may be used to initialize the

MLZ-9l mapping RAMs and I/O devices. The program listings

which follow show details of one scheme which could be ~ple­

mented. These programs are written in Z-80 source code and

were assembled on Microsoft's Macro-80 assembler. For addi­

tional samples plus samples of initialization software written

in 8080 source code and assembled with the Digital Research

MAC assembler, refer to the ZRAID monitor source code listing,

available from Heurikon.

Pro9:ram Pa9:e Description

Init& Slave 82 I/O device assignments

84 Baud Rate generator constants

85 Power-on initialization-I/O.
mapping RAM

86 Memory mapping RAM

87 Bus mapping RAM

88 Map utility subroutine

89 I/O Device initialization

91 Example vectored interrupt service
routine

92 NMI service routine

93 Slave logic - converts the MLZ-9l
into an intelligent s~a~~ I/O board.

Multi-user 95 Example of using memory mapping
RAM to switch between tasks in
a multi-user environment.

Macros 98 Sample Macro definitions which
facilitate loading the MLZ-9l mapping
RAMs.

Heurikon offers software support and applications assistance.

Contact us if you have questions or need help.

There are also miscellaneous software samples scattered

throughout this manual. Some major examples are:

Topic

System PIO
GP1B
APU
S10
DMA

Page

57
66
76
112
138

;**
;**
;** **
;** **
;** H H EEEEE U U RRRR 11111 K K 000 N N **
;** H H E U 1I R R I K K .0 0 NN N **
;** H H E U 1I R R I K K 0 0 N N N **
;** HHHHH EEEE U U RRRR I KK 0 0 N N N **
;** H H E LI LI R R I K K 0 0 N N N **
;** H H E U U R R I K K 0 0 N NN **
;** H H EEEEE L1l1U R R 11111 K K 000 N N **
;** **
;** **
;**
;**~*************************
;**
;**
;**

COPYRIGHT 1981 HEURIKON CORPORATION MADISON, WI
**
**
**

;**
;** **
;** PROGRAM: MLZ-91 INIT & SLAVE LOGIC EXAMPLE **
;** **
;** VERSION: 1 **
;** **
;** DATE: APRIL 17, 1981 **
;** **
;** · ,

· ,

· , · , · , · ,

ASEG
.Z80
TITLE MLZ-91 INITIALIZATION EXAMPLE
HEURIKON CORPORATION

WRITTEN BY JEFFREY MATTOX
;**
;THESE TABLES AND ROUTINES ARE PROVIDED FOR INSTRUCTIONAL PURPOSES ONLY.
;THEY MAY NOT BE APPROPRIATE FOR ALL APPLICATIONS. HOWEVER, FEEL FREE
;TO EDIT SECTIONS OF THE FOLLOWING CODE AS NECESSARY FOR YOUR PARTICULAR
; NEEDS. THIS SOURCE FILE ASSEMBLES ON MICROSOFT~S MACRO-SO Z80/S0S0
; ASSEMBLER. "
;**

81

;**
;MEMORY ADDRESS CONSTANTS:
ROM BASE EQU OFOOOH
RAMBASE EQU OEOOOH
CLOCK: DS 2
STACK EQU RAMBASE+4096
IOMAP EQU ROMBASE+I0H
BUSMAP EQU ROMBASE+20H

;BASE OF ROM AFTER MEMORY MAP ACTIVATION
;BASE OF A 4K RAM BLOCK
;FOR INT SERVICE EXAMPLE, RT CLOCK
;STACK AT END OF RAM
;1/0 DEVICE MAP (VIA WRITE TO ROM)
;BUS MAP (ALSO VIA WRITE TO ROM)

;**
;1/0 DEVICE CONSTANTS:
lOA EQU 080H ;BASE OF I/O DEVICE GROUP "A"
lOB EQU OCOH ;BASE OF I/O DEVICE GROUP "B"
; NOTE: THE DEVICE GROUP BASE ADDRESSES ARE DETERMINED BY THE I/O MAPPING
; RAM. THE BASE ADDRESSES MAY BE SET AT OOH, 40H, SOH OR COH.
IOXXXA EQU 07H ;MAP DATA FOR I/O GROUP A (IDA)
IOXXXB EQU OBH ;MAP DATA FOR I/O GROUP B (lOB)
IOXXXO EQU OEH ;MAP DATA FOR OFF-CARD DEVICES
IOXXXD EQU OFH ;MAP DATA FOR NO DEVICE ASSIGNMENT
;********************************
;IOA DEVICE GROUP:
IOBDA EQU 10A+OOH ;LOAD BAUD DATA FOR SIO PORT A (D7-D4)
IOBDB EQU IOA+OSH ;LOAD BAUD DATA FOR SID PORT B (D3-DO)
;
IODMA EQU IOA+I0H ;DMA CONTROL AND STATUS
IOFSEL EQU IOA+18H ;FDIO DRIVE SELECT AND USER LED
MEMMAP EQU IOA+20H ;MEMORY MAPPING RAM
· 'I

10POP EQU IOA+28H ;APU POP DATA
IOAPUR EQU IOA+29H ;APU READ STATUS
IOPUSH EQIJ IOA+30H ;APU PUSH DATA
IOAPUW EQU IOA+31H ;APU ENTER COMMAND
· 7

IODIPO EQU IOA+38H ;READ DIP SWITCH GROUP 0 (1-8)
10DIPI EQU IOA+39H ;READ DIP SWITCH GROUP 1 (9-16)
· ,
IOWCLR EQU IOA+3AH ;CLEAR WINCHESTER MSEL FF
· ,
IOCNTO EQU IOA+3EH ;CTC CHANNEL 0 COUNT/TRIGGER
;**

82

;**
;IOB DEVICE GROUP:
IOSAD EQU IOB+OOH
IOSBD EQU 10B+OIH
IOSAC EQU IOB+02H
IOSBC EQU IOB+03H
· .,
IOTRDC EQU IOB+08H
IOTRDS EQU IOB+09H
IOTWRC EQU IOB+OAH
IOTWRS EQU IOB+OBH
IOTRDY EQU IOB+OCH
· .,
IOLED EQU IOB+OEH
· .,
IOFDCS EQU IOB+IOH
IOFDTR EQU IOB+IIH
IOF[ISR EQU IOB+12H
IOFDAT EQU IOB+13H
· .,
IOCTCO EQU IOB+18H
IOCTCl EQU IOB+19H
IOCTC2 EQU IOB+IAH
IOCTC3 EQU IOB+IBH
· .,
IOCLRN EQU IOB+20H
· .,
IOWSEL EQU IOB+28H
IOWWRO EQU IOB+2AH
IOWWRl EQU IOB+2BH
IOWRDO EQU IOB+2CH
IOWRDl EQU IOB+2DH
IOWRDS EQU IOB+2EH
· .,
IOSTAT EQU IOB+2FH
· .,
IOOPIB EQU IOB+30H
IOOPDA EGU IOGPIB+7
· .,
IOPAD EQU IOB+38H
IOPBD EQU IOB+39H

;SIO PORT A DATA
;SIO PORT B DATA.
;SIO PORT A CONTROL/STATUS
;SIO PORT B CONTROL/STATUS

;STREAMER TAPE READ DATA & CLR XFER
;STREAMER TAPE READ DATA & SET XFER
;STREAMER TAPE WRITE DATA & CLR XFER
;STREAMER TAPE WRITE DATA & SET XFER
;STREAMER TAPE SET READY (TRDY)

; LOAD LED ARRAY

;FDIO COMMAND/STATUS REGISTER
;FDIO TRACK REGISTER
;FDIO SECTOR REGISTER
;FDIO DATA REGISTER

;CTC o DATA & CONTROL
;CTC 1 DATA & CONTROL
;·CTC 2 DATA & CONTROL
;CTC 3 DATA & CONTROL

;CLEAR NMI FF (PARITY to,(WRITE PROTECT ERRORS)

;WINCHESTER - SET MSEL FF
;WINCHESTER - WRITE DATA/COMMAND (C/D- LOW)
;WINCHESTER - WRITE DATA/COMMAND (C/D- HIGH)
;WINCHESTER - READ DATA (C/D- LOW)
;WINCHESTER - READ DATA/STATUS (C/D- HIGH)
;WINCHESTER - READ INTERFACE STATUS

; READ BOARD STATUS BITS (D7-D4)

;GPIB CIEEE-488) - BASE OF REGISTERS
;GPIB (IEEE-488) - DATA REGISTER

;PIO A DATA - SYSTEM INT/BUS/DMA RDY
;PIO B DATA - MULTIBUS INTERRUPTS

IOPAC EQU " IOB+3AH ;PIO A CNTRL., SET BIT MODE (CFH) AND EOH MASK
IOPBC EQU IOB+3BH ;PIO B CNTRL., SET BIT MODE (CFH) AND MASK AS REQ
;**

83

;**
;OTHER CONSTANTS OF INTEREST:
;BAUD RATE CONSTANTS (D7-D4 ARE FOR PORT A7 D3-DO ARE FOR PORT B)
B50 EQU OOOH ; 50 BAUD
B75 EQU 011H ;75 BAUD
BII0 EQU 022H ; 110 BAUD
B134 EQU 033H ; 134.5 BAUD
B150 EQU 044H ;150 BAUD
B300 EQU OS5H ;300 BAUD
B600 ,EQU 066H ; 600 BAUD
B1200 EQU 077H ;1200 BAUD
B 1800 EQU 088H ; 1800 BAUD
B2000 EQU 099H ;2000 BAUD
B2400 EQU OAAH ;2400 BAUD
B3600 EQU OBBH ;3600 BAUD
B4800 EQU OCCH ; 4800 BAUD.
B7200 EQU ODDH ;7200 BAUD
B9600 EQU 'OEEH ; 9600 BAUD
B19200 EQU "OFFH ; 19200 BAUD
;**
;THESE CONSTANTS ARE FOR eTC TIMER OPERATION WITH A SYSTEM CLOCK
;OF 4 MHZ. (THE CTC DIVIDES THE CLOCK BY 256.)
CI0MSEC EQU 156 ;APPROX 10 MSEC'TIME BASE (156.25 = EXACT)
C16MSEC EQU 250 ;16.0 MSEC TIME BASE
C1MSEC EQU 15 ;APPROX 1 MSEC TIME BASE (15.625 = EXACT)
C8MSEC EQU 125 ; 8. 0 MSEC TIME BASE
;**

84

;**
;THE FOLLOWING SEQUENCE IS USED TO INITIALIZE THE MLZ-91 MAPPING RAMS:
; 1. LOAD THE 110 DEVICE MAP TO ASSIGN 110 DEVICES
; 2. LOAD THE BUS MAPPING RAM WITH DISABLE CODES TO
; PREVENT ANY ACCESSES FROM THE BUS UNTIL WE ARE

· , · , · ,
· ,-

3.
4.
5.

100% READY.
ALLOCATE THE ROM VIA THE MEMORY MAPPING RAM
ALLOCATE ON-CARD RAM.
CHANGE THE BUS MAPPING RAM TO ASSIGN THE MLZ-91 A
SPOT ON THE MULTIBUS.

;NOTE THAT THERE ARE THREE SEPARATE MAPPING RAMS:
· ,
· , · ,

1. 1/0
2. BUS
3. MEMORY

;**
;AT POWER ON ROM EXISTS EVERYWHERE THROUGHOUT THE MEMORY SPACE IN
;4K MIRRORS. NO RAM OR 1/0 DEVICES ARE ALLOCATED AND THE MULTIBUS
; INTERFACE LOGIC IS INACTIVE. THE FIRST STEP IN INITIALIZING THE
;MLZ-91 IS TO SETUP THE lID MAPPING RAM WHICH WILL ALLOCATE (AND
;THUS ACTIVATE) THE 1/0 DEVICES.

ORO OOOOH ; CPU PC AT POWER ON RESET
;THE ROM IS MIRRORED UNTIL WE SET THE MEMORY MAP RAM, LATER ON.

PWRON:
;

INIT91:

· ,
· ,

ORG ROMBASE
JP INIT91

ORO ROMBASE+0100H
LD L,IOXXXO
LD H,IOXXXO
LD (IOMAP),HL

;SET ASSEMBLER PC TO ROM BLOCK
;EXECUTE PWR-ON-JP & SKIP RST, NMI LOCS

;WE HAVE LEFT SPACE FOR RST & NMI LOCS
;OFF-CARD DEVICE DATA FOR 1/0 BASE OOH
;OFF-CARD DEVICE DATA FOR 110 BASE 40H
;WRITE TO ~ROM~ LOADS 1/0 MAP RAM
; (THIS LOADS TWO CONSECUTIVE MAP LOACTIONS.)

LD L,IOXXXA ;ON-CARD DEVICE DATA FOR 1/0 BASE SOH (lOA)
LD H,IOXXXB ;ON-CARD DEVICE DATA FOR 110 BASE COH (lOB)
LD (IOMAP+2),HL ;SET REMAINING TWO LOCATIONS IN 1/0 MAP

;THE 1/0 DEVICES ARE NOW ALLOCATED.
;**
; EVENTUALLV, THE BUS MAPPING RAM MUST BE SET TO IDENTIFY WHERE THE MLZ-91
;RESIDES ON THE MULTIBUS AND TO SPECIFY ANY INHIBITED BUS-TO-BOARD
; OPERATIONS. HERE WE LOAD THE BUS MAP WITH ALL ZEROS WHICH INHIBITS
;ALL ACCESSES FROM THE MULTIBUS. THIS STEP MUST PRECEDE THE
;INITIALIZATI~N OF THE MEMORY MAPPING RAM BECAUSE THE FISRT WRITE TO
;THE MEMORY MAP WILL ACTIVATE THE BUS MAP AS WELL. THE BUS MAP WILL
;CONTAIN INDETERMINATE DATA UNLESS IT HAS BEEN FORMALLY INITIALIZED.
; LATER, THE BUS MAP CAN BE MODIFIED TO ENABLE SPECIFIC TYPES OF
; ACCESSES. THE REASON FOR DELAYING THE ENABLE SEQUENCE IS SO THAT WE
;CAN BE SURE THAT THE MEMORY MAPPING RAM IS FULLY INITIALIZED PRIOR TO
;ENABLING ANY OFF-CARD REQUESTS FOR EITHER MLZ-91 1/0 DEVICES OR MEMORY.

LD HL,BUSMAP ;DESTINATION (BUS MAPPING RAM)
LD B,16 ;TABLE LENGTH

LOOP: LD (HL),OOH ;DISABLE ALL BUS-TO-BOARD OPERATIONS
INC HL ;TO NEXT MAP LOCATION
DJNZ LOOP ; CONT I NUE

;**

8:

86

;**
;NOW IT IS SAFE TO INITIALIZE THE MEMORY MAPPING ·RAM.
;THE FIRST LOCATION IN THE MEMORY MAP TO BE SET MUST BE FOR THE ROM
;SOCKET OUT OF WHICH WE ARE EXECUTING (OTHERWISE WE WILL BE SENT TO
;NEVER-NEVER LAND.) THIS CODE SETS SOCKET MO TO THE BASE ADDRESS
;OF THE (THIS) ROM.

IN A~CIOCLRN) ;BE SURE NMI LOGIC IS RESET BEFORE MAP ON
LD C,MEMMAP ;MEMORY MAPPING RAM PORT ADRS
LD B,HIGH ROMBASE ;MAP RAM BLOCK ADRS (ROM BLOCK)
LD A,OOH ;DATA WHICH SPECIFIES SOCKET MO (FOR 2732)
OUT (C),A ;PUT SOCKET MO AT ROMBASE (FOOOH)

;SOCKET MO NOW EXISTS AND THE MEMORY MAPPING RAM (AS WELL AS THE BUS
;MAPPING RAM) ARE ACTIVATED. HOWEVER, NO RAM EXISTS YET SO THE NEXT
;STEP SHOULD BE TO FINISH LOADING THE MEMORY MAP.
;**
;THE FOLLOWING CODE ALLOCATES 15 BLOCKS (EACH 4K IN LENGTH) OF ON-CARD
;RAM STARTING AT LOCATION OOOOH. THE 16TH BLOCK (FOOOH) HAS ALREADY BEEN
;ASSIGNED BY THE PREVIOUS CODE. WE COULD HAVE PUT THE NECESSARY BYTES
;TO ASSIGN THE ROM SOCKET AT THE BEGINNING OF THE FOLLOWING
;DATA TABLE INSTEAD OF USING A SPECIFIC SET OF INSTRUCTIONS AS WAS
;DONE ABOVE. (THIS WOULD ONLY WORK FOR ROMBASE = OFOOOH BECAUSE REGISTER
;B IN THE MAP ROUTINE CAN ROLLOVER TO BLOCK 00 FOR THE RAM ALLOCATION.)
; NOTE: WRITE PROTECT IS'TURNED OFF.

;
TABLE:

EXIT:

LD HL,TABLE ;DATA FOR MEMORY MAP ROUTINE
LD DE,EXIT ;RETURN ADDRESS (NO STACK EXISTS YET)
JP MAP ;PROCESS THE DATA TABLE

DB OOH,7EH
DB 7DH
DB 7CH
DB 7BH
DB 7AH
DB 79H
DB 7SH
DB 77H
DB 76H
DB 75H
DB 74H
DB 73H
DB 72H,
DB 71H
DB 7FH
DB OFH

;*4K OF ON-CARD RAM AT OOOOH
;*4K AT 1000H
;*2000H
;3000H
;4000H
;SOOOH
;6000H
;7000H
;SOOOH
;9000H
; AOOOH
; BOOOH
;COOOH
; DOOOH
;*EOOOH
;END OF TABLE (MARKER FOR 'MAP~ ROUTINE)

;PHYSICAL BLOCK FOOO (MAP DATA 70H) WILL BE USED IN THE /SLAVE 1/0/ EXAMPLE.
;RAM IS ALLOCATED SO THAT IF TOTAL RAM IS 16K OR 32K (NOT 64K), BLOCKS
; EOOO, 0000, 1000 & 2000 ALWAYS OET RAM. (SEE /*~ LINES IN TABLE) . ,
;NOW, 110 DEVICES AND BOTH ROM AND RAM MEMORY HAVE BEEN ALLOCATED.
;**

;**
;THE CODE BELOW ASSIGNS THE MLZ-91 BOARD TO MULTIBUS LOCATION OXXXXH.
;ALL 1/0 DEVICES MAY BE USED FROM THE BUS AND THERE IS NO RESTRICTION
;PLACED ON THE USE OF MEMORY (I.E. NO I/O~ MEMORY RD OR MEMORY WR
; INHIBITS ARE ON.) .
;FOR EXAMPLE PURPOSES? THIS CODE ALSO ASSIGNS THE MLZ-91 BOARD
;TO MULTIBUS BLOCK 3XXXXH BUT INHIBITS USE OF ON-CARD 1/0 DEVICES AND
;DOES NOT ALLOW WRITES TO MEMORY.
SETBUS: LD HL~TABL ;ADRS OF DATA TABLE FOR BUS MAPPING RAM

. ,

LD DE? BUSMAP ; DESTINATION
LD BC,16 ; LENGTH
LDIR ;TRANSFER TABLE TO BUS MAPPING RAM
dP IOINIT ; NEXT ~ INITIALIZE THE ON-CARD 1/0 DEVICES

TABL: DB OOH ;BUS BLOCK 15 (INHIBIT ACCESS FROM BUS)
DB OOH ;BUSoBLOCK 14
DB OOH ;BLOCK 13
DB OOH ;12
DB OOH ;11
DB OOH ;10
DB OOH ;9
DB OOH ;8
DB OOH ;7
DB OOH ;6
DB OOH ;5
DB OOH ;4
DB 90H ;BLOCK 3 (ALLOW MEMORY READ ONLY)
DB OOH ;2 (INHIBIT ALL ACCESS FROM BUS)
DB OOH ;1 (INHIBIT ALL)
DB OFOH ;BLOCK 0 (NO INHIBITS)

; ••• END OF MLZ-91 POWER-ON INITIALIZATION EXAMPLE.
;THERE IS AN EXAMPLE L~TER (~SLAVE I/O~) OF USING THE DIP SWITCHES TO .
;SET THE BUS BLOCK TO WHICH THE BOARD IS ASSIGNED.
;**
;THERE IS AN EASIER WAY TO CREATE ALL OF THE ABOVE CODE BY USING MACROS.
;THE FOLLOWING SEQUENCE OF MACRO CALLS WILL PERFORM THE SAME TASKS ·AS
;DETAILED ABOVE: (SEE PAGE 98 FOR MACRO DEFINITIONS)
; . ORG 0 ;CPU PC AT PWR ON
; ORG ROMBASE ;SET ASSEMBLER PC TO ROM BLOCK
;PWRON: JP INIT91 ;PWR-ON-JMP AND SKIP RST & NMI LOCS .
7

; ORG .f>

;INIT91=MAPIO
; MAPBUS
; IN
; MAP ROM
; MAPRAM
; MAP BUS
; MAPBUS

ROMBASE+0100H ;AFTER NMI LOCATION
ROMBASE,O,O~1,2 ;MAP DATA (OFF-CARD,OFF-CARD?IOA~IOB)
ROMBASE ;CLEAR BUS MAPPING RAM
A~(IOCLRN) ;RESET NMI LOGIC
ROMBASE,4 ;MAP SOCKET MO.AT ROMBASE (4K)
OOOOH,OOOH,60 ;MAP IN 60K OF ON-CARD RAM AT OOOOH
ROMBASE,OOH,l,l,l ;BUS BLOCK 0, ALLOW I/O~ RD, WR
ROMBASE~03H?O,1?O ;BUS BLOCK 3~ ALLOW MEMORY RD ONLY

;DONE •••
;**

8

;**
;GENERAL COMMENTS CONCERNING THE INTERACTION OF THE MAPPING RAMS:
; 1. IF ROM IS NOT ASSIGNED (OR IS TURNED OFF) YOU CANNOT
; REASSIGN 1/0 DEVICE ADDRESS GROUPS UNTIL THE ROM IS
; REALLOCATED. (BECAUSE A WRITE TO ~ROM~ IS REQUIRED TO
; ACCESS THE 1/0 MAPPING RAM.> "ROM" .SPACE IS ALSO REQUIRED
; TO ACCESS THE BUS MAPPING RAM.
; 2. IF 1/0 DEVICE GROUP A IS UNALLOCATED YOU CANNOT ALTER
; THE MEMORY MAPPING RAM UNTIL 1/0 GROUP A IS REALLOCATED.
; (BECALISE I/O PORT ~MEMMAP~ IN I/O GROUP A IS USED TO
; ACCESS THE MEMORY MAPPING RAM.)
; 3. THIS MEANS THAT THE I/O MAP AND THE MEMORY MAP RAMS ARE
; ~INTERLOCKED' IN THAT:
; A. EACH IS USED IN THE ACCESSING OF THE OTHER.
; B. IT IS IMPOSSIBLE TO DEALLOCATE BOTH I/O GROUP A
; AND ROM, WHICH IS GOOD BECAUSE OTHERWISE BOTH
; WOULD BE ~LOST' FOREVER.
;**
;THIS IS THE ACTUAL MAP ROUTINE WHICH PROCESSES THE TABLE
;DATA GENERATED BY THE MAPRAM MACRO. SINCE THE ACT OF
;CHANGING THE MAPPING RAM CONTENTS MAY AFFECT THE LOCATION
;OF THE HARDWARE STACK, THIS ROUTINE CANNOT USE THE STACK
;AND THUS CANNOT BE CALLED AS A SUBROUTINE. THEREFORE, THE
;RETURN ADDRESS IS PASSED IN REGISTER PAIR DE.
· .,
MAP: LD C.,MEMMAP ;MAPPING RAM PORT ADDRESS

88

· ,

· .,
MOONE:

LD

INC
LD
CP
JR
OUT
LD
ADD
LD
JR

EX
,JP

B,(HL) ;FETCH B REG ENTRY (MAP BLK)

HL ;ADVANCE POINTER
A,(HL) ;FETCH NEXT REG A VALUE
OFH ;TEST FOR END OF TABLE
Z,MDONE ;END OF TABLE
(C) ,A ;SEND TO MAPPING RAM
A,B ;PREVIOUS BLOCK
A,lOH ;COMPUTE NEXT BLOCK
B,A ;FOR NEXT LOOP
M1 ;PROCESS NEXT ENTRY

DE,HL ;GET RETURN ADRS TO HL
(HL) ; RETURN

;**

;**
;HERE WE INITIALIZE THE I/O DEVICES AND SET THE INTERRUPT LOGIC:
IOINIT: LD SP,STACK ;INIT STACK POINTER, NOW THAT RAM IS ON . ,

LD
CALL

HL,IODATA
IOSUBR

;DATA TABLE FOR IOSUBR
;INIT ON-CARD 1/0 DEVICES (VIA TABLE)

LD A,HIGH VSIO ;INIT HIGH PART OF INTERRUPT VECTOR
LD I,A ;SET I REGISTER
1M 2 ;SET INTERRUPT MODE (VECTORED)

;WHEN THE PROGRAM IS READY FOR INTERRUPTS, IT CAN ENABLE EACH DEVICE
;AND DO AN /EI/ INSTRUCTION. FOR THIS EXAMPLE, IF AN /EI/ IS DONE NOW,
;CTC CHANNEL 1 WILL INTERRUPT EVERY 1.0 SECOND.
;WE ARE NOW DONE WITH THE MLZ-91 MAP AND DEVICE INITIALIZATION EXAMPLES.

EI ;START TIMER (& RT CLOCK)
JP SLAVE ; GO TO REST OF THE PGM •••

;**
;THE FOLLOWING ROUTINE AND TABLE MAY BE USED TO INITIALIZE THE ACTUAL
;1/0 DEVICES ON THE MLZ-91. THE I/O SUBROUTINE (IOSUBR) PROCESSES
;A TABLE OF DEVICE PORT ADDRESSES AND INITIALIZATION VALUES. HERE,
;WE ARE SETTING THE SID, GTC, PIO, DMA, BAUD RATES AND OTHER MISCELLANEOUS
;PORTS ON THE BOARD.
IOSUBR: LD C,(HL) ;GET PORT ADRS

;MOVE FOR TEST
;TEST FOR OFFH
;END OF TABLE . ,

LD A,C
INC A
RET Z

INC
LD
INC
OTIR
JR

HL
B,(HL)
HL

IOSUBR

;TO LENGTH PARAMETER
;LENGTH OF THIS ENTRY
;TO FIRST BYTE FOR DEVICE
;TRANSFER TABLE DATA TO DEVICE
;CONTINUE UNTIL DEVICE ADRS = OFFH

;**
;HERE IS THE DATA TABLE FOR THE IOSUBR: (CHANGE FOR YOUR APPLICATION)
IODATA: DB IOSAC ;SIO PORT A DEVICE'ADRS

. ,

DB 9 ; LENGTH
DB 0 ; (RESET SIO REG COUNTER)
DB 4,04CH ;CMD, ASYNC, CLK, STOPS
DB 5,OEAH ;CMD 5: RTS, ENBL, SBITS, DTR
DB 3,OEIH ;CMD 3: RTS, ENBL, ENBL, SBITS
DB .1>. 1,OOOH ;CMD 1: NO INT, UPDATE STATUS

DB Iosse
DB 11
DB 0
DB 4,04CH
DB 5,OEAH
DB 3,OEIH
DB l,OOOH

;810 PORT B ADRS
; LENGTH
; (RESET SIO REG COUNTER)
; (SEE SIO A INIT FOR DETAILS)

DB 2,LOW VSIO ; INTERRUPT VECTOR (FOR BOTH PORTS)
;**

89

90

;**

· ,

· ,

· .,

· .,

· .,

· ,

· .,.

· .,

· .,

· .,

· .,

DB IOBDA ;DEVICE ADRS (BAUD GEN A)
DB 1
DB 89600 ;BAUD RATE DATA

DB
DB
DB

DB
DB
DB
DB

DB
DB
DB

DB
DB
DB
DB

DB
DB
DB
DB
DB

DB
DB
DB
DB

DB
DB
DB

DB
DB
DB

DB ~

DB
DB

DB
DB
DB

DB

IOBDB
1
B9600

IOPAC
3
OCFH.,OEOH
LOW VPIO

IOPAD
1
OSH

IOPBe
3
OCFH,OFFH
LOW VPIO

IOCTCO
3
025H
CSMSEC
LOW VCTC

I OCTC 1
2
OCSH
125

IOCTC2
2
0,0

IOCTC3
2
0.,0

IOFSEL
1
OFFH

IOLED
1
OFFH

OFFH

; (BAUD GEN B)

;BAun RATE DATA

;PIO PORT A DEVICE ADRS
;ENTRY LENGTH
;BIT MODE., 3 INS & 5 OUTS
;PIO MODE 2 INTERRUPT VECTOR

;PIO A DATA

;RELEASE BUS IF ANY OTHER BOARD REQUEST

;PIOPORT B DEVICE AnRS
; LENGTH
;BIT MODE, ALL INS (THIS DEPENDS ON APPL.)
; INTERRUPT VECTOR

;DEVICE ADRS (CTC 0)
; LENGTH
; CONTROL CDSBL INT, TIMER..,. 1256, TC FOLL.)
;TIME CONSTANT (8.0 MSEC AT 4 MHZ.>
;INT VECTOR FOR ALL FOUR CHANNELS

;DEVICE ADRS (CTC 1)
; LENGTH
;CONTROL CENBL INT, COUNTER, TC FOLLOWS)
;TIME CONSTANT (8 MSEC/125 = 1.0 SEC)

; (CTC 2)
; LENGTH
;CONTROL AND TIME CONSTANT

; (CTC 3)

; LENGTH
;CONTROL AND TIME CONSTANT

;DEVICE ADRS (FDIO DRIVE SELECT, ETC.)

;ALL OFF

;CLED ARRAY)

;ALL OFF

;END OF TABLE
;**

;**
;INTERRUPT (MODE 2) VECTORS FOR 1/0 DEVICES:

ORG $+«-$) AND 7) ;FORCE CORRECT BYTE BOUNDRV
VSIO: DW DUMMY, DUMMY, DUMMY, DUMMY ;SIO PORT A VECTORS

DW DUMMY,DUMMV,DUMMY,DUMMV ;SIO PORT B VECTORS
VCTC: DW DUMMY,RTCLK,DUMMY,DUMMY ;CTC VECTORS (NOTE "RTCLK" VECTOR)
VDMA: DW DUMMY,DUMMY,DUMMV,DUMMV ;DMA VECTORS
VPIO: DW DUMMY, DUMMY ;PIO VECTORS
;**
;THIS IS AN EXAMPLE OF AN INTERRUPT SERVICE ROUTINE. HERE WE
;SIMPLY COUNT THE NUMBER OF INTERRUPTS FROM CTC CHANNEL 1 (WHICH
;OCCUR ONCE EVERY SECOND) AND DISPLAY THE LOW B BITS OF THE COUNT
;IN THE MLZ-91 LED ARRAY.
RTCLK: PUSH HL

PUSH PSW
LD HL,(CLOCK.)
INC HL
LD (CLOCK),HL
LD A,L
OUT (IOLED),A
POP PSW
POP HL

DUMMY: EI
RET I

· ,
PC EQU $

;SAVE USER REGISTERS

;GET PREVIOUS COUNTER
; ADD (1 SECOND)
; RESTORE
;OET LSB"S
; DISPLAY
;RESTORE USER REGS·

;RE-ENABLE INTERRUPTS
; RETURN

;SAVE CURRENT PC VALUE
;** · ,
; EXAMPLE OF OFF-CARD MEMORY ALLOCATION:
;16K OF OFF-CARD MEMORY. PHYSICAL OFF-CARD ADRS OF 14000H. ALLOCATED
;AT CPU ADRS 8000H.
; .LD HL,TAB. ;TABLE ADRS
; LD DE,EXIT ; RETURN
; JP MAP ;PROCESS TABLE DATA
· ,
;TAB: DB SOH ;STARTING BLOCK NUMBER
· DB OF5H ;FIRST 4K BLOCK ,
· DB OF5H ;SECOND 4K BLOCK ,
· DB OF4H ,
· DB OF4H ,
· DB .j. OFH ;END OF TABLE ,
;EXIT:
;OR: MAPMEM SOOOH,140H,16 ;WILL DO THE SAME THING
;**

91

92

;**
;WHEN AN NMI OCCURS (AS A RESULT OF A RAM PARITY ERROR OR A WRITE
;PROTECT ERROR), THE PC IS SAVED IN RAM (ASSUMING A STACK HAS BEEN
; ASSIGNED) AND CONTROL IS TRANSFERRED TO LOCATION 0066H IN SOCKET MO.
;THE MEMORY MAPPING RAM IS DISABLED (ALTHOUGH THE MAP RAM CONTENTS ARE
;NOT ALTERED.> THIS PUTS SOCKET MO ALL OVER THE MEMORY SPACE (IN 4K
;MIRRORS) AND DEALLOCATES RAM. IF THE MEMORY MAP IS RE-ACTIVATED (BY
;SETTING ANY MAP LOCATION) THE STACK MAY BE POPPED TO FIND THE
;APPROXIMATE ERROR ADDRESS. TRIVIAL CASES OF NMI INTERRUPT
;ERROR PROCESSING WOULD BE A 'RETN' INSTRUCTION (WHICH WOULD
;CAUSE THE ERROR TO BE IGNORED) OR A 'HALT' INSTRUCTION (WHICH WOULD
;CAUSE THE SYSTEM TO STOP.) THIS CODE ASSUMES lOB = OCOH.

ORG ROMBASE+0066H ;NMI LOCATION (PC WILL BE 0066H)
NMILOC: JP NMII ;EXECUTE A POWER-ON-JMP
NMI1: IN A, (IOSTAT) ;READ ON-CARD STATUS BITS

LD L,A ;SAVE (CAN'T USE STACK, NO RAM IS ON)
;CONSIDER CODE AT THIS POINT TO DO THE FOLLOWING OPERATIONS:
; 1. RELOAD THE 1/0 MAPPING RAM (IN CASE SOMEBODY CHANGED IT)
; 2. CLEAR THE NMI LOG1C (VIA 'IN A, (IOCLRN)') WHICH WILL
; TURN OFF BOTH ERROR LEDS (THE HUMAN EYE PROBABLY
; WON'T EVEN SEE THEM FLASH ON) AND ALLOW THE
; MEMORY MAPPING RAM TO BE TURNED BACK ON.
; 3. TURN ON THE MEMORY MAP (E. G." RE-ASSIGN ROM)
; AND RE-ALLOCATE RAM (IN CASE SOMEBODY CHANGED IT.)
;SEE ZRAID-91 LISTING FOR A MORE SPECIFIC EXAMPLE OF AN NMI PROCESSING
;ROUTINE (INCLUDES PRINTING ERROR MESSAGES, ETC.)
; CAUTION: DON'T CHANGE REGISTER L (IF YOU WANT TO TEST THE NMI REASON.)

· ,
· ,
NMIP:

;

· ,

BIT, 6,L ;TEST ERROR TYPE
JP Z,NMIP ;JUMP IF PARITY ERROR

;ELSE WRITE PROTECT ERROR

, JP EREXIT
;WRITE PROTECT ERROR ROUTINE GOES HERE
;END OF ERROR PROC

;PARITY ERROR RECOVERY ROUTINE ODES HERE

EREXIT: ;JUMP SOMEWHERE •••
;GENERALLV, THE ORIGINAL PROGRAM SHOULD BE RESTARTED AT THIS POINT.
;(CAUTION: DON'T GO PAST ROMBASE+OOFFH WITH THE ABOVE CODE. THE
;ORG AT 'INIT91' IS THERE.)
;**
;FOR A MORE DETAILED EXAMPLE OF NMI ERROR PROCESSING (INCLUDING ERROR
;ADDRESS CAPTURE,) REFER TO ZRAID SOURCE CODE.
;**

;**
ORG PC ;GET BACK TO WHERE WE LEFT OFF BEFORE NMI.

;THE FOLLOWING CODE SEGMENTS SHOW HOW A SLAVE lID AND MEMORY BOARD COULD
;BE IMPLEMENTED USING A MLZ-91.
;**
SLAVE: LD L,IOXXXA ;ON-CARD DEVICE GROUP A

LD H,IOXXXB fON-CARD DEVICE GROUP B
LD (IOMAP),HL fWRITE TO ~ROM~ LOADS I/O MAP RAM

fTHE I/O DEVICES HAVE NOW ALLOCATED IN THE LOWER TWO lID BLOCKS AS WELL
;AS THE UPPER TWO. THE LOWER TWO BLOCKS WOULD BE USED FROM THE BUS.
· ,
;THE CODE BELOW ASSIGNS THE MLZ-91 BOARD TO THE MULTIBUS LOCATION
;SPECIFIED BY TH~.SETTINGS OF DIP SWITCHES 5,6,7 8< 8 (DIP SW 0)
;ALL ON-CARD I/O DEVICES MAY BE ACCESSED FROM THE BUS AND THERE IS NO
;RESTRICTION PLACED ON THE USE OF ON-CARD MEMORY (NO INHIBITS).

IN A, (IODIPO) ;READ DIP SWITCH GROUP 0 (INVERTED)
AND OFH ;REMOVE UPPER (GARBAGE) BITS
ADD A,LOW BUSMAP ;COMPUTE LOW ADRS HALF
LD L,A ;MOVE TO L
LD H, HIGH BUSMAP ; FORM COMPLETE ADRS (OF BUS MAP RAM)
LD (HL),OFOH ;ENABLE BUS OPERATIONS IN SELECTED· BLOCK

;BE SURE TO DELETE THE CODE AT ~SETBUS~ (EARLIER) IF THIS LOGIC IS USED.
;**
fAS LONG AS WE ARE FOOLING AROUND WITH THE DIP SWITCHES, LET~S
;READ IN DIP SWITCH GROUP 1 AND USE THAT VALUE TO SET THE SIO BAUD RATES.
; DIP SW SIO PORT

;

· , · .,

1,2,3,4
5,6,7,8

A
B

;THE SWITCH SETTING SPECIFIES WHICH BAUD RATE (FROM 75 TO 19200) SHOULD
;BE GENERATED. BAUD RATES ARE SET INDEPENDENTLY FOR EACH PORT AS FOLLOWS:
; SETTING BAUD SETTING BAUD
; 1 = ~ON~ RATE 1 = ~ON~ RATE
· -------- -------- -------- --------,
· .0000 DEFAULT (9600) 1000 1800 ,
· 0001 75 1001 2000 ,
· 0010 110 1010 2400 ,
· 0011 134.5 1011 3600 .,
· 0100 150 1100 4800 ,
· 0101 300 1101 7200 ,
· 0110~ 600 1110 9600 ,
· 0111 1200 1111 19200 ,
· ,

IN A, (IODIP1) ;READ DIP SWITCHES (GROUP 1)
CPL ; FIX /ON~ = 1
OR A fTEST FOR SWITCHES ~OFF~ (NOT THERE)
JR Z.,SLAVEl fUSE DEFAULT BAUD RATES (9600)
OUT (IOBDA), A ;SET UPPER FOUR BITS (SID PORT A)
OUT (IOBDB), A ;SET LOWER FOUR BITS (SIO PORT B)
\.oIR SLAVE 1 ;00 TO SLAVE BOARD MAINLINE CODE

;**

93

94

;**
;THIS IS THE SLAVE BOARD MAINLINE LOGIC. AT THIS POINT ALL OF THE
;1/0 DEVICES HAVE BEEN INITIALIZED AND THE BOARD EXISTS ON THE BUS.
; NEXT, WE DO THE FOLLOWING:
; 1. LOAD THE END OF A RAM BLOCK WITH A SET OF INSTRUCTIONS
; WHICH WE WILL LATER EXECUTE. THESE INSTRUCTIONS WILL
; BE A HALT INSTRUCTION FOLLOWED BY A JUMP TO THE HALT.
; 2. CHANGE THE MEMORY MAP TO DEALLOCATE THE ROM,
; ALLOCATE 64K OF RAM AND RESUME EXECUTION AT THE HALT
; INSTRUCTION IN RAM.
;THIS SLAVE BOARD WILL THEN BECOME ~INACTIVE~ UNTIL AN ON-CARD DEVICE
; INTERRUPT OCCURS (E.G., THE CTC - RTCLOCK OR AN NMI DUE TO A RAM ERROR.)
;IF OTHER DEVICE INTERRUPTS ARE ENABLED AND THE APPROPRIATE INTERRUPT
;SERVICE ROUTINES ARE ADDED, THIS BOARD WOULD BE AN INTELLIGENT 1/0 BOARD.
· ,
;BEFORE THIS CODE IS EXECUTED, THE FOLLOWING STATE EXISTS:
; MEMORY BLOCK EOOO MAP DATA = 7F CRAM)
; MEMORY BLOCK FOOO MAP DATA = 00 (ROM)
; MAP DATA 70H IS NOT.ASSIGNED (THE LAST 4K BLOCK OF ON-CARD RAM)
;THIS CODE ASSUMES THERE IS 64K OF RAM (ELSE MAP DATA MUST BE CHANGED).
· ,
SLAVE1: LD

LD
LD
LDIR

· ,
LD
LD
LD
OUT

· ,
LD
LD
OUT

· , · ,
JP

· ,
ORO

HALTI: HALT
JP

HL,ROMBASE
DE,RAMBASE
BC.4096

C,MEMMAP
B,HIGH RAMBASE
A.70H
(C),A

B,HIGH ROMBASE
A,7FH
(C).A

HALT I

ROMBASE+4096-4

HALTI

;OBJECT CODE TO BE MOVED (ALL OF ROM)
;DESTINATION (TEMPORARY RAM ADRS)
;LENGTH (1 BLOCK)
;MOVE CODE FROM ROM TO RAM

;MEMORY MAP RAM ADRS
;BLOCK WITH OBJECT CODE
;PUT IN A BLOCK OF ~FRESH~ RAM
;ALLOCATE THE FRESH BLOCK

; (ROM BLOCK)
;THE RAM BLOCK THAT HAS THE OBJECT CODE
;MAGIC, WE ARE NOW IN RAM
;THE SYSTEM IS 100Y. (64K) RAM

;GO TO THE END OF RAM

;BACKUP A LITTLE FROM THE END OF MEMORY
;STOP HERE UNTIL NEXT DEVICE INT OR NMI
;GO BACK TO HALT AFTER INTERRUPT SERVICE

;**
;THIS CODE IS~IN CASE THE .HEX FILE IS USED TO PROGRAM A 2716 TYPE EPROM.
;THISIS A MIRROR OF THE OBJECT CODE AT THE END OF THE 4K BLOCK.

ORG ROMBASE+2048-4 ;NEAR END OF A 2716
HALT
JP HALTI

;IF A 2716 TYPE EPROM IS USED, SET THE MLZ-91 BOARD JUMPERS AS FOLLOWS:
; J12-A, J14-B
;THIS WILL CAUSE THE 2K ROM TO BE MIRRORED IN THE SECOND HALF OF THE
;4K MEMORY BLOCK.
;**

END

• 1-.

MULTI-USER EXAMPLE

The ability to dynamically re-allocate memory allows a

number of special programming functions to be implemented
without great difficulty.

One such use is in creating a multi-task environment. In
its sLmplest form, the entire memory, except for a small

executive routine, can be switched between tasks. For

example, two independent programs, both of which execute at·
the same address can be loaded into different physical memory
addresses. Then, the mapping RAM can be set to point to

one program or the other depending on which task is tOfbe

active. Another method where each task is executing the
same program is to leave the program code permanently

allocated but switch different blocks of RAM in as each

task executes. The trick for either method is to determine
when to switch tasks (or when not to) and to save the·CPU

registers before re-a~locating memory.

The "when to switch" decision could be based on a number of
conditions. For example, whenever a task is in an idle loop

or waiting for a hardware I/O device would be an appropriate

opportunity to switch to a different task. Also, a timer
interrupt at, say 10 millisecond intervals, could .trigger a

switch. A "when not to switch" condition could be during
a DMA data transfer which is using the current task's RAM •

In order to show the ease of implementing a multi-tasking

system using the memory mapping RAM, we .convert~d the ZRAID
monitor program from a single user system to a multi-user

system.

Single user ZRAID configuration:

4K ROM in socket M~ (at F~~~H)

4K RAM (at E~~~H)
Console device on SIO·port B

qr;

96

Multi-user ZRAID configuration:

ROM in socket M~ (at F~~~H)

User 1 RAM at E~~~H when allocated

User 1 console device on SIO port B

User 2 RAM, also at E~~~H when allocated

User 2 console device on SIO port A

Switch to other task when doing character I/O to/from

ports A or B.

The code used to implement the multi-user ZRAID logic follows.
(See next page)

In order to extend these routines to handle three or more

users, these steps could be used:

1. At initialization, setup e~ch task's RAM area

with a stack, user ID code, flags, etc.

2. The SWITCH routine could maintain a list (or .

"queue") of tasks which'are.waiting for service.

This task queue could contain information per­

taining to the individual task's priority, RAM

block code, I/O status and other special conditions.

~ SW 'TC \4 J/~OUT1"'E. La (;:, 1 C.
~f.fOWf'J SWm:.~IU6 F~OM TASt<.1. i:eTASK 2-

TASK~ I2AM TA~K 2. 2AM

'MULTI FLAuN --
STAC.K SPAC.E ---
"sP5Ave" .--
"MAP DATA " -

TEST MULTI-use~MODE

PUS'" RE61~~5 .

SAVE STACK pOft4TE(C!.

FETCH ar~Ee eM\CODE

5WITCJ-f RM\~

~ RESTO£E S1l\C.I(P()~£ I
POP ~E6'~TE.~S

~ETueN

~ULT'FLA6"

STAC.K SPAce

r-- '5P5AVE "

"MAPDAT~I

; ***
;THIS IS THE MULTI-TASKING CODE. "MULTI" IS THE tt!" COMMAND WHICH TURNS
JON THE MULTIFLAG OF BOTH TASKS AND STARTS TASK 2. "SWITCH" IS THE ROUTINE
;WHICH ALTERNATES BETWEEN THE TWO TASKS. SWITCH IS CALLED FROM THE CHARACTER
;1/0 ROUTINES AND THE FLOPPY DISK MULTIPLE SECTOR RDIWR LOOP.
;CONSULT ZRAID91 LISTING FOR MORE DETAILS.
· ,
;EACH TASK HAS THE
; MULTIFLAG: DS 1

FOLLOWING VARIABLES:
;SET NON ZERO TO INDICATE TO CURRENT

· , · , · , · .,
· .,
· .,

;TASK THAT IT SHOULD SWITCH TO OTHER TASK
;FROM TIME TO TIME. IF THIS FLAG IS CLEARED
;IN EITHER TASK, THE SWITCH LOGIC WILL BE
; DISABLED., EFFECTIVELY GIVING THE "CURRENT"
; TASK· ABSOLUTE PRIORITY.

;MAPDATA: DS 1 ;CONTAINS THE DATA FOR THE MAPPING RAM WHICH
;WILL BE USED TO SWITCH TO THE OTHER TASK. · ,

· .,
;SPSAVE:
· ,
;
MULTI:

· .,

· ,

· .,

DS

LD
LD

PUSH
PUSH
PUSH
LD

LD
LD
LD
LD
OUT

LD
LD
LD
LD
.jp

1· ;USED TO SAVE THIS TASK~S SP WHILE THE OTHER
;TASK IS RUNNING.

A,l
CMULTIFLAG).,A

HL
DE
BC
CSPSAVE).,SP

. A.,70H
CMAPDATA),A
B.,OEOH
C.,MEMMAP
(C),A

A.,7FH
(MAPDATA).,A
(MLILTIFLAG).,A
SP.,STACK
INITSA

;GET SOMETHING NON-ZERO
; SET MULTI -iYiODE FLAG ON

;PlISH SOME REGS (FOR SWITCH POPS)

;SAVE THIS TASK~S SP

;MAP DATA FOR OTHER TASK (TASK 2)
;SAVE FOR LISE BY SWITCH
;BLOCK ADRS
;MAPPING RAM ADRS
;SWITCH RAM~S AND SWITCH TASKS

;ORIGINAL TASK~S RAM (TASK 1)
;SET FOR LATER RETURN TO TASK 1
;ALSO KEEP MULTI MODE ON
;INIT TASK 2 STACK
;INIT TASK 2 ON SID PORT A

; ************************************
;THIS ROUTINE DOES THE ACTUAL SWITCHING BETWEEN TASKS:
SWITCH: LD A., (MULTIFLAG) ;TEST FOR MULTI TASK MODE ON

· .,

· .,

· .,

OR :A A
RET Z ; OFF

PUSH
PUSH
PUSH
LD

LD
LD
LD
OUT

LD
POP
POP
POP
RET

HL
DE
Be
(SPSAVE).,SP

A., (MAPDATA)
C.,MEMMAP
B.,OEOH
(C) .,A

SP.,(SPSAVE)
Be
DE
HL

;SAVE THIS TASK~S REGS

; AND SAVE STAC.< POINTER

;OTHER TASK~S RAM MAP DATA
;MAP DEVICE ADRS
;RAM BLOCK ADRS
;SWITCH TASKS

;GET OTHER TASK~S SP
;AND RESTORE ITS REGS

;CONTINUE OTHER TASK
; **~ 97

;**
;THE FOLLOWING MACRO DEFINITIONS ARE TO FACILITATE LOADING OF THE
;THREE MLZ-91 MAPPING RAMS. THESE MACROS EXECUTE ON THE MICROSOFT
;MACRO-SO ASSEMBLER.
· ?

· ?

· , · ?

· , · ?

· , · , · , · ,
· ,
· , · , · , · ,
;

· ,
· , · ,
· , · ,
· ,
· , · , · , · , · ,
;

· ,
· , · ,
· , · , · ?

· ,
· ,
· ?

· , · ,

MACRO PARAMETERS (FUNCTION)

MAPIO ROMBASE?BOO,B40?BSO,BCO
(LOAD I/O DEVICE MAPPING RAM)

BOO = CODE FOR I/O BLOCK OOH
B40 = CODE FOR I/O BLOCK 40H
B80 = CODE FOR I/O BLOCK SOH
BCO = CODE FOR I/O BLOCK COH

USE ~O' FOR OFF-CARD
'1~ FOR IDA (DEVICE GROUP A)
~2~ FOR lOB (DEVICE GROUP B)
~3~ FOR NOT ASSIGNED (DISABLE BLOCK)

MAP BUS ROMBASE
(CLEAR BUS MAPPING RAM)

MAPBUS ROMBASE,BUSBLOCK,I/OINH,RDINH?WRINH
(SET BUS MAPPING RAM FOR BUS BLOCK = 00 TO OFH)

I/OINH = 0 INHIBIT 1/0 OPERATIONS
RDINH = 0 MEANS INHIBIT MEMORY RD
WRINH = 0 MEANS INHIBIT MEMORY WR
(ELSE, INHIBITS = 1)

MAPROM ROMBASE,KBYTES[?SKTl
(ALLOCATE ROM SOCKETS)

KBYTES = 4, 8 OR 16
SKT (OPTIONAL) = 1 TO ALLOCATE ONLY SKT M1

(ELSE, BOTH ALLOCATED IF NECESSARY)
EACH SOCKET = 4K UNLESS KBYTES = 16 (THEN EACH = 8K)

MAPRAM BASEADRS,PAGE,KBYTES[?1l
(ALLOCATE ON-CARD RAM)
BASEADRS = LOGICAL START ADRS (ON A 4K BOUNDARY)

PAGE = PHYSICAL STARTING PAGE OF RAM
KBYTES = 4, 8, 12, 16, ETC (MULTIPLE OF 4)
INCLUDE THE LAST PARAMETER TO ALLOCATED PROTECTED RAM

MAPMEM "BASEADRS,PAGE,KBYTES
~ (ALLOCATE OFF-CARD MEMORY)

SEE MAPRAM MACRO FOR PARAMETERS
;**

98

;**
MAPIO MACRO ROMB,A,B,C,D
PRO DEFL OEH ; ; OFF-CARD·
PR1 DEFL 07H ; ; IDA·
PR2 DEFL OBH ; ; I DB
PR3 DEFL OFH ;;NOT ASSIGNED
· ,

LD HL, PRt-<B*256+PR&A; ; FORM WORD FOR BLOCKS 0 ~(1
LD (ROMB+10H),HL ;;SEND TO DEVICE MAPPING RAM
LD HL,PR&D*256+PR&C;;FORM WORD FOR BLOCKS 2 & 3
LD (ROMB+12H),HL ;;SEND TO DEVICE MAPPING RAM
ENDM

;IT WOULD BE POSSIBLE FOR THIS MACRO TO ALSO REDEFINE THE 1/0 PORT
;ADDRESSES SO THAT 1/0 PORT REFERENCES FOLLOWING INVOKATIONS
; OF THIS MACRO WOULD REFERENCE THE PROPER ADDRESS·~'''-

;**
MAP BUS MACRO

LOCAL
IFB
LD
LD

LOOP: LD

· ,
· ,

INC
DJNZ

ELSE

LD
LD
ENDIF
ENDM

ROMB,BLOCK,IO,RD,WR
LOOP ,
<BLOCK>
HL,ROMB+20H
B,16
(HL),OOH
HL
LOOP

;;TEST FOR OPTIONAL FORM
;;START OF BUS MAPPING RAM
; ; LENGTH
;;CLEAR BUS MAP RAM

. ; ;,'TO NEXT, MAP ENTRY
; ; CONTINUE

A,16*<1+RD*S+WR*4+IO*2) ;;FORM NIBBLE FOR BUS MAP RAM
(ROMB+2FH-BLOCK),A ;;SEND TO BUS MAPPING RAM

;**

99

;**
MAPROM MACRO BLOCK.,KBVTES.,SKTI .

· .,

· .,

· .,

· .,

· .,

· .,

LD C.,MEMMAP ;;MEMORV MAP DEVICE ADRS
LD B.,BLOCK/256 ;;DESIRED ROM BASE

IFB
LD
OUT

IFF
LD
LD
OLIT
ENDIF

IFF
LD
LD
OUT
LD
LD
OUT
LD
LD
OUT
ENDIF

ELSE

LD
OUT

IFF
LD
LD
OUT
ENDIF
ENDIF
ENDM

<SKT1>
A., 00
(C) .,A

KBYTES-S

;;TEST OPTIONAL FORM
;;DATA FOR SOCKET MO
;;SEND TO MAPPING RAM

A.,20H ;;DATA FOR SOCKET Ml
B.,BLOCK/256+10H ;;NEXT MAP BLOCK
(C).,A ;;SET MAP RAM

KBYTES-16
A.,10H
B.,BLOCK/256+10H
(C) .,A
A.,20H
B.,BLOCK/256+20H
(C), A
A.,30H
B.,BLOCK/256+30H
ec) ,A

A,20H
(C).,A

KBYTES-B

;;DATA FOR SECOND HALF OF SKT MO
;;NEXT MAP BLOCK
; ; SET MAP RAM
;;FIRST HALF OF SOCKET M1
;;NEXT MAP BLOCK
; ;TO MAP
;;SECOND.HALF OF M1
;;NEXT MAP BLOCK
; ;TO MAP

;;DATA FOR SOCKET HI
;;SEND TO MAPPING RAM

A,30H ;;SECOND HALF OF M1
B,BLOCK/256+10H ;;NEXT MAP BLOCK
(C).,A

;**

100

;**
MAPSET MACRO TABLE, BLOCK, EXIT ;;UTILITY.MACRO

LD HL,TABLE ;;START OF DATA TABLE
LD DE,EXIT ;;RETURN POINT
JP MAP ;;~CALL~ MAP ROUTINE

TABLE: DB BLOCK/256 ;;INITIAL BLOCK ADRS IN MAP
ENDM

;**
MAPRAM MACRO BASE, PAGE, KBYTES, PROTCT

LOCAL TABLE, EXIT
MAPSET TABLE,BASE,EXIT ;;OENERATE .INITIAL CODE

· ,
DATA DEFL 7FH-PAGE/16 ;;STARTING DATA VALUE

IFNB <PROTCT>
DATA DEFL DATA-20H ;;SET-PROTECTED MODE BIT

ENDIF
· ..

REPT KBYTES/4
DB DATA

DATA DEFL DATA-l ;;FOR NEXT LOOP
ENDM
DB OFH ;;END OF T.ABLE

EXIT:
ENDM

;**
MAPMEM MACRO BASE .. PAGE,KBYTES

LOCAL TABLE, EXIT
MAPSET TABLE, BASE, EXIT ;;GENERATE INITIAL CODE

· ,
DATA DEFL NOT PAGE/32 ; ; STARTING DATA VALUE
BLK DEFL BASE/4096 ;;STARTING BLOCK ADRS
;

REPT KBYTES/4
DB DATA

DATA DEFL DATA-(BLK AND l);;COMPUTE NEXT DATA VALUE
BLK DEFL BLK+l ;;KEEP TRACK OF BLOCK VALUE

ENDM
DB OFH ; ; END OF TABLE

EXIT:
ENDM

;**

101

102

OFF-CARD I/O

I/O devices on the Multibus may be accessed by the MLZ-9l
appropriately setting the I/O mapping RAM to enable off-card

accesses. If the MLZ-9l is sharing the bus with other cards,

none of which are other MLZ-9l's or boards monitoring the upper

4 Multibus address bits, (A19, A18, A17 and A16), then the

standard Z-80 INPUT and OUTPUT instructions may be used and

the memory mapping RAM contents are not significant.

However, if the MLZ-9l is sharing the bus with another MLZ-91,

or similar board, then the upper 4 addre~§ lines must be specified

during any I/O operation on the bus. To do this, the. special

Z-80 INPUT and OUTPUT instructions are used so that register B

can be used to specify the state of the upper address lines

via the memory mapping RAM. The proper method to do bus I/O

operations is as follows:

1. Setup the I/O map to specify one (or more) quarters

of the I/O space as "EXTERNAL" I/O. (Store the value

~EH in the I/O map.)

2. Load one (BLOCK) entry in the memory map with 06,

05, 04 and 03 specifying A19-, A18-, Ai7- and Al6-

(No.te that the data stored in the memory ma~ping RAM

is negative true with respect to the bus address lines.)

The vaiue of these upper address lines specifies which

MLZ-9l board on the Multibus will respond to a bus

I/O or memory reque.s.t.

3. Execute the desired I/O operations using a sequence

similar to the following:

LD C,IOPORT ;DESIREO PORT ADRS (EXTERNAL)

LD B,BLOCK

OUT (C) ·,A

;MEMORY MAPPING RAM BLOCK
same block address used in
step 2)

·;EXECUTE EXTERNAL I/O

See page 104 for a program 1isting and more information.

[
._ -~--]-.-_ .. "-_~~9 ··r -~18._ ' .. 1.· "~~-; .. 1_. A16 , ... -. - -" . T- ····---··-1

__ ~_ . __ -,,---Al~_j""". ~~~j ___ ~ :
'- . - ____ .. -y___ -------".1

Specifies upper 4
Address lines
(~us BiOC~)

MEMORY MAP CONTENTS DURING OFF-CARD I/O

0,
D,
05

0 .. -
D~

D~

0,

Dtt
'1''4-

IF ..

.. JEUO k ~-4--+--+-' _ __ _. b----!--!-'~.,!.L.p.:. . ~~
+-J.-4.--J--+M A P P 1 N Gi ---l---lf-.+-

-- RAM-

-I II

D'TOOl D~ . r./O .
Ds MAP.
D.,. EXT

~~'7
I I (C Rt,.'ST£R)

BoARD 1-ACTING

AS MASTER

REGISTERS (8 R£GISYER\

C BOARD
-' ADRS

'r-.4-
Au. A,~

I/O
DEVICE (-+-I-+-+-+-+-lf--t­
ADR5

tOB

MULTIBUS

BOARD 2-AcTING

AS SLAV~

r/o
DEVICES

·MLZ.-q, EXTERNAL 1/0 LOGIC

103

ASEG
.Z80
TITLE EXAMPLE OF MLZ-91 INTER-BOARD I/O

;**
;CONSTANTS CUSUALY THESE WILL BE PART OF A LARGER PROGRAM):
IOXXXO EQU OEH ;1/0 MAP DATA FOR'OFF-CARD DEVICES
IOXXXA EQU 07H ;1/0 MAP DATA FOR DEVICE GROUP IDA
IOXXXB EQU OBH ;1/0 MAP DATA FOR DEVICE GROUP lOB
lOA EQU 080H ;1/0 GROUP A BASE ADRS
lOB EQU OCOH ;1/0 GROUP B BASE ADRS
MEMMAP EQU IOA+20H ;MEMORY MAPPING RAM DEVICE ADRS .
?

ROM BASE EQU
IOMAP EQU
BUSMAP EQU

OFOOOH
ROMBASE+I0H
ROMBASE+20H

;BASE OF ROM
;1/0 DEVICE MAP (VIA WRITE TO ROM)
;BUS MAP (ALSO VIA WRITE TO ROM)

;**
;THIS PROGRAM ILLUSTRATES HOW TO DO 1/0 OPERATIONS BETWEEN MLZ-91 BOARDS.
;MANY OF THE TECHNIQUES USED HERE ARE ALSO APPROPRIATE FOR OTHER SYSTEM
;CONFIGURATIONS~ PARTICULARLY' THOSE WHERE 1/0 DEVICES ON THE MULTIBUS
;HAVE I/O PORT ADDRESSES WHICH CANNOT BE MOVED AND OCCUpy PORT ADDRESSES
;WHICH ARE USED ON-CARD AS WELL. SINCE THE ON-CARD DEVICE ADDRESSES MAY
;BE MOVED AROUND, VIA THE 1/0 DEVICE MAPPING RAM, ALL BUS 1/0 ADDRESS
;CAN BE USED BY AN MLZ-91. THERE IS A SIMPLER METHOD FOR SYSTEMS WHICH
;ONLY HAVE TWO MLZ-91'S, DESCRIBED LATER. THE FOLLOWING EXAMPLES
;ARE FOR 'GENERAL' CASES.
;**

104

;**
;FOR A TWO PROCESSOR SYSTEM:
;IT IS POSSIBLE TO USE THE CONVENTIONAL INPUT (IN) AND OUTPUT (OUT)
;INSTRUCTIONS IN A TWO BOARD SYSTEM. ALSO, THE PROCEDURE FOR DOING
;INTER-BOARD 1/0 IS SIMPLER. THE MAPPING RAMS CAN BE PRESET AND NO
;FIDDLING IS REQUIRED WHEN DOING THE 110 OPERATION.
· ,
;FIRST EACH BOARD ASSIGNS ITS 1/0 SPACE AS FOLLOWS:
;

· BOARD ,
· -----,
· 1 ,
· 2 ,
· BASE= ,

;ON BOARD 1:

· ,
;AND ON

· ,

LD
LD
LD
LD
LD
LD

BOARD
LD
LD
LD
LD
LD
LD

; THEN DO THIS
LD
LD

· ,
BLOOP: LD

INC
DJNZ

GROUP 0 GROUP 1
------- -------
IOXXXO IOXXXO
IOXXXA IOXXXB

OOOH 040H

L,IOXXXO
H,IOXXXO
(IOMAP), HL
L,IOXXXA
H,IOXXXB
(IOMAP+2) , HL

GROUP 2 GROUP 3
------- -------
IOXXXA IOXXXB
IOXXXO IOXXXO
080H OCOH

;OFF-CARD DEVICE DATA
;OFF-CARD DEVICE DATA
; SET GROUP 0 to(1
;ON-CARD DEVICE GROUP A
;ON-CARD DEVICE GROUP B
;SET GROUP 2 ~ 3

IOXXXO = OFF-CARD
IOXXXA = IDA GROUP
IOXXXB = lOB GROUP

2 (ALMOST THE
L,IOXXXA
H,IOXXXB
(IOMAP) ,HL
L,IClXXXO
H,IOXXXO

SAME) :

(IOMAP+2) , HL

ON BOTH BOARDS:
HL,BUSMAP
B,16

(HL) ,OFOH
HL
BLOOP

;ON-CARD DEVICE GROUP A
;ON-CARD DEVICE GROUP B
;SET GROUP 0 & 1
;OFF-CARD DEVICE DATA
;OFF-CARD DEVICE DATA
;SET GROUP 2 8c 3

;DESTINATION (BUS MAPPING
; LENGTH

;ENABLE ALL ACCESSES
;TO NEXT MAP LOCATION
;DO ALL 16 BUS BLOCKS

RAM)

; NOW, BOARD 1 USES THE FIRST TWO 1/0 GROUPS (DEVICE ADDRESSES OOH THROUGH
;07FH) TO ACCESS THE OTHER BOARD~S DEVICES AND THE SECOND TWO 1/0 GROUPS
; (DEVICE ADDRESSES 80H THROUGH OFFH) TO ACCESS ITS ON-CARD DEVICES. FOR
;BOARD 2 IT~S THE OPPOSITE: DEVICES 00 THROUGH 7FH ARE ON-CARD AND SOH
;THROUOH OFFH ARE OFF-CARD.

;FOR EXAMPLE, THE LED ARRAY ADDRESSES FOR EACH BOARD ARE: (PORT /IOLED/)
; BOARD 1: lOB (FOR BOARD 1) + OEH = OCOH + OEH = OCEH
; BOARD 2: lOB (FOR BOARD 2) +OEH = 040H + OEH = 04EH
;**

10:

;**
;THIS SECTION SHOWS HOW TO DO 1/0 OPERATIONS WHEN THERE ARE MORE THAN
;TWO MLZ-91~S IN A SYSTEM WHICH MUST SHARE I/O DEVICES. CAUTION: THIS
;LOOKS RATHER COMPLICATED, BUT IF SOME CONSTRAINTS ARE USED WHEN
;DESIONING YOUR SOFTWARE, MANY OF THESE STEPS CAN. BE DELETED.
;THIS SHOULD BE CONSIDERED AN ~ADVANCED~ EXAMPLE. KNOWLEDGE OF THE
;VARIOUS MAPPING RAM FUNCTIONS IS REQUIRED (SEE THE MLZ-91 USER MANUAL).
;**
;STEP 1: (REQUIRED ONLY IF THE TARGET 110 DEVICE IS ON ANOTHER MLZ-91.)
;PICK ANY MEMORY BLOCK (4K) WHICH IS NOT BEING USED (THERE WOULD BE AT
;MOST 15 OF THEM) AND LOAD THE BLOCK DATA SO AS TO POINT (VIA THE UPPER
;FOUR MULTIBUS ADDRESS LINES) TO THE TARGET MLZ-91. THE CHOSEN BLOCK
;WILL BE USED FOR THE I/O OPERATION (NOT FOR A MEMORY OPERATION.)
;IF ALL MEMORY BLOCKS ARE ~IN USE~ THEN PICK ONE FOR TEMPORARY
; REALLOCATION. IF THERE ALREADY IS A BLOCK WHICH POINTS TO THE TARGET
;BOARD (E.O. PART OF THE TARGET~S MEMORY) THEN THIS STEP IS NOT
; NECESSARY. ALSO, THE TARGET BOARD MUST NOT HAVE ITS I/O INHIBIT BIT
;SET IN ITS BUS MAPPING RAM. HERE WE GO •••

LD B,BLOCK/256 ;LOAD DESIRED BLOCK
LD C,MEMMAP ;MEMORY MAPPING RAM DEVICE ADRS
LD A,NOT (BOARD*S) ;DATA FOR MEMORY MAP CD7 = 1

;D6, D5, D4 & D3 = BOARD NBR (INVERTED)
OUT .(C) , A ; SETUP MAP RAM

;**
;STEP 2: SETUP 1/0 DEVICE MAPPING RAM TO GO OFF-CARD FOR THE PARTICULAR
;DEVICE NUMBER.

LD
LD

A,"IOXXXO
(IOMAP+N), A

;OFF-CARD DEVICE ENABLE CODE
;PUT IN 1/0 MAP. N = 0, 1, 2 OR 3
;DEPENDING ON THE I/O GROUP OF THE DEVICE

;**

106

;**
;STEP 3: DO THE lID OPERATION. THE MEMORY MAPPING RAM BLOCK NUMBER,
;SELECTED IN STEP 1, ABOVE, MUST BE IN REGISTER B DURING THE I/O. THUS,
;THE ~SPECIAL~ zao lID INSTRUCTIONS MUST BE USED.

LD B,BLOCK/256 ;MEMORY BLOCK BEING USED FOR 1/0
LD C,DEVICE ;THE ACTUAL DEVICE NUMBER
IN A,(C) ;(OR ~OUT~) DO THE lID OPERATION

;**
;STEP 4: RESTORE THE 1/0 MAPPING RAM IF NECESSARY (MAY HAVE BEEN ALTERED
;IN STEP 2, ABOVE.)

LD A, IOXXXA ; (EXAMPLE)
LD (IOMAP+N),A ; RESTORE

;**
;STEP 5: RESTORE THE MEMORY MAP RAM IF NECESSARY (MAY HAVE BEEN ALTERED
;IN STEP 1, ABOVE)

LD B,BLOCK/256
LD C,MEMMAP
LD A, DATA
OUT (C), A

;BLOCK ADRS
;MEMORY MAPPING RAM DEVICE ADRS
; ORIGINAL" VALUE
; RESTORE

;**
;IN MANY APPLICATIONS, IT WOULD BE POSSIBLE TO DO STEPS 1 & 2 ONLY ONCE.
; THEN, STEP 1 WOULD BE USED TO CHANGE TARGET BOARDS. STEPS 4 ~(5 MAY
;NEVER BE REQUIRED IF THE MEMORY BLOCK AND DEVICE GROUP CAN REMAIN
;ALLOCATED FOR OFF-CARD USE.
;**
;CONSTANTS USED FOR EXAMPLE PURPOSES:
BOARD EQU3 ;MULTIBUS BOARD NBR <A19, A18, A17, Alb)
N EQU 2 ;1/0 MAP GROUP OF OFF-CARD DEVICE
BLOCK EQU OEOOOH ;MEMORY MAPPING RAM BLOCK USED FOR 1/0
DEVICE EQU 78H ;THE ACTUAL OFF-CARD DEVICE ADRS
DATA EQU 51 ;THE ORIGINAL MEM MAP DATA FOR BLOCK E
;**
;**
;JUST FOR FUN, LET/S SEE WHAT THE TARGET BOARD WOULD HAVE HAD TO DO TO
;ALLOW THE ACCESS ILLUSTRATED ABOVE. THIS CODE WOULD HAVE BEEN DONE ON
;THE TARGET BOARD:
;FIRST, THE TARGET BOARD~S BUS MAP WOULD H~VE TO BE SET TO ALLOW 110
;THROUGH BUS BLOCK 3 (~BOARD~)

LD A,OFOH ;NO INHIBITS, 110 IS ALLOWED
LD <SUSMAP+OFH-BOARD),A ;SET BUS MAPPING RAM

; SECOND, THE TARGET BOARD WOULD HAVE HAD TO HAVE DEVICE 78H (~DEVICE/)
.j>.

; ALLOCATED. THIS PROBABLY WOULD ALREADY HAVE BEEN DONE. DEVICE 78H, IF
;1/0 GROUP lOA IS IN BLOCK 2 (~N~), IS DIP SWITCH GROUP o.

LD A, IOXXXA ;1/0 MAP DATA FOR GROUP A
LD (IOMAP+N), A ; SET MAP DATA

;**
END

****** NOTE: PAGES 108 AND 109 HAVE BEEN INTENTIONALLY OMITTED. ******

107

INPUT/OUTPUT DEVICE ADDRESSES

The MLZ-9l I/O space (256 devices) is divided into four groups. The

MLZ-9l I/O devices are divided into two groups. Each device group

may be assigned to one of the four I/O groups via the I/O mapping

RAM. (See page 42 for details.) The two device groups are na.med

lOA and lOB. The four I/O space blocks start at ~~H, 4~H, 8~H and

C~H. Thus, the base of lOA or lOB will be one of those four values.

The chart below shows the offset from the base address assigned to

each group. Thus, if the base of lOA is 8~H, then the device

address for the FDIO select port is 8~H + I8H or 98H. (IOFSEL)

MEMORY ADDRESS CONSTANTS: .

NAME

ROMBASE
RAM BASE
IOMAP
BUSMAP

ADDRESS

FOOO (HEX)
EOOO (HEX)
ROMBASE;+10H
ROMBASE+20H

DESCRIPTION

BASE OF ROM (TYPICAL)
BASE OF A 4K RAM BLOCK (TYPICAL)
110 DEVICE MAP (VIA WRITE TO ROM)
BUS MAP (ALSO VIA WRITE TO ROM)

***********************.**
I/O DEV·ICE CONSTANTS:
GROUP NAME BASE ADDRESS DESCRIPTION

OSOH BASE OF 110 DEVICE GROllP "A" (TYPICAL)
OCOH BASE OF 1/0 DEVICE GROUP ItBu (TYPICAL)'

IDA
lOB
NOTE:
RAM.

THE DEVICE GROUP BASE ADDRESSES ARE DETERMINED BY THE 110 MAPPING
THE BASE ADDRESSES MAY BE SET AT OOH, 40H, SOH OR COH.

lOA DEVICE GROUP:

DEVICE NAME DEVICE ADDRESS FUNCTION
----------- -------------- _------
IOBDA IOA+OOH LOAD BAUD DATA FOR SID PORT A (D7-D4)
IOBDB IOA+OSH LOAD BAUD DATA FOR SIO PORT B (D3-DO)

IODMA :1>. IOA+10H DMA CONTROL AND STATUS
IOFSEL IOA+1SH FOlD DRIVE SELECT AND USER LED
MENMAP IOA+20H MEMORY MAPPING RAM

IOPOP IOA+2SH APU POP DATA
IOAPUR IOA+29H APU READ STATUS
IOPUSH IOA+30H APU PUSH DATA
IOAPUW IOA+31H APU ENTER COMMAND

IODIPO IOA+3SH READ DIP SWITCH GROUP 0 (1-S)
IODIP1 IOA+39H READ DIP SWITCH GROUP 1 (9-16)

IOWCLR IOA+3AH CLEAR WINCHESTER MSEL FF

IOCNTO IOA+3EH CTC CHANNEL O·COUNT/TRIGGER

110

lOB DEVICE GROUP:

DEVICE NAME

I OS AD
IOSBD
IOSAC
IOSBC

IOTRDC
IOTRDS
IOTWRC
IOTWRS
IOTRDY

IOLED

IOFDCS
IOFDTR
IOFDSR
IOFDAT

IOCTCO
IOCTC1
IOCTC2
IOCTC3

IOCLRN

IOWSEL
IOWWRO
IOWWRl
IOWRDO
IOWRD1
IOWRDS

IOSTAT

IOGPIB
IOGPDA

IOPAD
IOPBD

DEVICE ADDRESS

IOB+OOH
IOB+OIH
IOB+02H
IOB+03H

IOB+08H
IOB+09H
IOB+OAH
IOB+OBH
IOB+OCH

IOB+OEH

IOB+10H
IOB+11H
IOB+12H
IOB+13H

IOB+18H
IOB+19H
IOB+1AH
IOB+1BH

IOB+20H
-

/IOB+28H
I IOB+2AH

IOB+2BH'
IOB+2CH
IOB+2DH
IOB+~EH

IOB+2FH

IOB+30H
IOGPIB+7

:t>.

IOB+38H
IOB+39H

FUNCTION

SIO PORT A DATA
SIO PORT B DATA
SID PORT A CONTROL/STATUS
SIO PORT B CONTROL/STATUS

STREAMER TAPE READ DATA & CLR XFER
STREAMER TAPE READ DATA ~ SET XFER
STREAMER TAPE WRITE DATA & CLR XFER
STREAMER TAPE WRITE DATA ~ SET XFER
STREAMER TAPE SET READY (TROY)

LOAD LED ARRAY

FOlD COMMAND/STATUS REGISTER
FDIO TRACK REGISTER
FDIO SECTOR REGISTER
FDIO DATA REGISTER

CTC 0 DATA & CONTROL
CTC 1 DATA & CONTROL
CTC 2 DATA & CONTROL
CTC 3 DATA & CONTROL

CLEAR NMI FF (PARITY & WRITE PROTECT ERRORS)

WINCHESTER - SET MSEL FF
WINCHESTER - WRITE DATA/COMMAND (C/D- LOW)
WINCHESTER - WRITE DATA/COMMAND (C/D- HIGH)
WINCHESTER - READ DATA (C/D- LOW)
WINCHESTER - READ.DATA/STATUS (C/D- HIGH)
WINCHESTER.- READ INTERFACE STATUS

READ BOARD STATUS BITS (D7-D4)

OPIa (IEEE-4SS) - BASE OF REGISTERS
OPIB (IEEE-48S) - DATA REGISTER

PIa A DATA - SYSTEM INT/BUS/DMA RDY
PIO B DATA - MULTIBUS INTERRUPTS

IOPAC
IOPBC

IOB+3AH
IOB+3BH

PIa A CNTRL, SET BIT MODE (CFH) AND EOH MASK
PIO B CNTRL7 SET BIT MODE (CFH) & REQ/D MASK

III

112

S10

The dual S10 is a complex chip which has several commands and

status registers. As an example of a simple setup procedure,

the command sequence used in ZRAID is shown below. This sequence

defines SIO port B as an asynchronous port without interrupts.

The commands are transferred to the SIO port B control register

(I/O po;toIOSBC) in the order listed.

sequence could easily be used.)

(An OTIR instruction

CMD
COMMAND TYPE

~~ 11
~4 oil
4C 4
~5 ~
EA 5

~3 ~
Cl 3
III 11
f'1I 1

FUNCTION

Reset register select logiC
Select ~Tite register 4
Set X16 clock, transmit 2 stop bits/character
Select write register 5
Set DTR active, transmit 8 bits/character,
enable transmitter, set RTS active.
Seiect write register 3
Set receive 8 bits/character, enable receiver
Select write register.
Disable interrupts

The following subroutines can then be used to test the receive

and transmit register status bits and to transfer data (Port B):

Receiver: RWAIT:

Transmitter: TX:

TWAIT:

XOR

OUT

A

(IOSBC),A

Clear Accumulator

Select read register f'
IN A, (IOSBC) Read" Receiver status

AND 1 Mask Data Ready bit

JP Z,RWAIT Wait for ready

IN A, (IOSBD) Get Character from Data port

RET

PUSH

XOR

OUT

IN

AND

JP

Done

PSW Save character

A Clear Accum

(IOSBC),A Select read register 11
A, (10SBC) A Read transmitter status

4 0 Mask TX buffer empty

Z,TWAIT Wait for empty

POP PSW Get character

OUT (IOSBD),A Transmit data

RET Done

For complete information in programming the SIO chip, refer to

the SIO manual. Summary information follows. See page 158

for connector information.

XTAL

DAUL
D7 - DIJ.-----:l....=-~~ BA U D

IX CLOCK-')o­

RCYCLOCK

DATA-...--..3J~1

RTS

OTR

DATA

__ ~~~ RATE

RS2.32.

RS4-'2.3

I/F-
:~.

GENE'RATOR
BAUD B

L.._ ___ ---' (FOR PORT B)

SIO RS232.

PORT A CON T RoL
(1..0 0 KS L1KE A
"DATA TERMINAL")

~-----~PORT RS42.3
A ~-~ I/F

RTS

OTR

DATA

DATA

BAUD.B

DATA

SID
PORT

B

SIO-RDY
TO pro

(FOR DMA)

RS ~2."2..
~-~~~ l/F ~~DAIA

(RS!J2'2..)
SIPA

~----41'"

DATA

RS'2.'3'2.
RS42..'3

I/F

RS'+2.'2..

CiS

DSR

DATA

I t----,-,..DATA
I F' (RSt4-l.'2.)

SIP 8

PORT B CONTRoL

(LoOKS LIKE: A

"DATA SET u
)

SIO BLOCK DIAGRAM

113

P5

114

SIO PORT RS232/423

A Remove SIP
Install J3

.. ..

B Remove SIP
Install J4 ..

. .

*or cut trace at Ja
**or cut trace at Jb

A*

B**

..
;,

·RS42.2
T~;rmin~:t~~·

Install U15
Install SIP A
Remove J3

. . -
Install SIP B
Install U19
Rem0ve ·J4····

..
. - .

SID B SIO A
r-------A------- _-------A-----__ \(\

RS422
.' 'p;n :b-~;r..mina :t~~

Install U15
Remove SIP A
Remove J3
Remove SIP B ~

Install U15
··Remove· J4

P4
2.1 '---------10

I

P3

'U7 U8

~ ____ ~s~,~P~B ______ .~I~ ______ s~I~P~A~ _____ .~~PlN I

J3°
o

J4°
"0

UJS

--------------~

U26

00 EJ A. A
. 0 0

BaBa . U16
J5 Jb

o U27

~ Z-SO® SIO Z-SOA SIO
Zilog Z-80 SIO Architecture
Data Path

The transmit and receive data path
is identical for both channels. The

receiver has three 8-bit buffer registers in a FIFO ar­
rangement in addition to the 8-bit receive shift register.
This scheme creates additional time for the CPU to ser­
vice an interrupt at the beginning of a block of high­
speed data. Incoming data is routed through one of
several paths (data or CRC) depending on the selected
mode and-in Asynchronous modes-the character
length.

The transmitter has an 8-bit transmit data register
that is loaded from the internal data bus, and a 2O-bit
transmit shift register that can be loaded from the sync
character buffers (WR6 and WR7) or from the transmit
data register. Depending on the operational mode, out­
going data is routed through one of four main paths
before it is transmitted from the Transmit Data Output
(TxO).

Functional Description

The functional capabilities of the Z80-S10 can be
described from two different points of view: as a data
communications device, it transmits and receives serial
data, and meets the requirements of various data com­
munications protocols; as a Z80 family peripheral, it
interacts with the ZSO-CPU and other Z80 peripheral
circuits, and shares the data, address and control
busses, as well as being a part of the Z80 interrupt struc­
ture. As a peripheral to other microprocessors, the
Z80-SI0 offers valuable features such as non-vectored
interrupts, polling and simple handshake capability.

The first part of the following functional description
describes the interaction between the CPU and Z80-S10;
the second part introduces its data communications
capabilities.

1/0 Interface Capabili~es

The Z80-Sl0 offers,;"'the choice of Polling, Interrupt
(vectored or non-vectored) and Block Transfer modes to
transfer data, status and control information to and
from the cpu. The Block Transfer mode can be im­
plemented'under cpu or DMA control.

Polling., There are no interrupts in the Polled mode.
Status registers RRO and RRI are updated at appropriate
times for each function being performed (for example,
CRC Error status valid at the end of the message). All
the interrupt modes of the Z80-SIO must be disabled to
operate the device in a polled environment.

While in its Polling sequence, the cpu examines the
status contained in RRO for each channel; the RRO status
bits serve as an acknowledge to the Poll inquiry. The
two RRO status bits Do and D2 indicate that a data
transfer is needed. The status' also indicates Error or
other special status conditions {see "Z80-SIO Program­
ming"}. The Special Receive Condition status contained

in RRI does not have to be read in a Polling sequence
because the status bits in RRI must be accompanied by a
Receive Character Available status in RRO.

Interrupts. The Z80-S10 offers an elaborate interrupt
scheme to provide fast interrupt response in real-time
applications. Channel B registers WR2 and RR2 contain
the interrupt vector that points to an interrupt service
routine in the memory. To service operations in both
channels and to eliminate the necessity of writing a
status analysis routine, the Z80-SIO can modify the in­
terrupt vector in RR2 so it points directly to one of eight
interrupt service routines. This is done under program
control by setting a program bit (WRI. Dl) in Channel B
called "Status Affects Vector." When this bit is set, the
interrupt vector in WR2 is modified according to the
assigned priority of the various interrupting conditions.
The table in the Write Register t description (Z80-SIO
Programming section) shows the modification details.

Transmit interrupts, Receive interrupts and External/
Status interrupts are the main sources of interrupts.
Each interrupt source is enabled under program control
with Channel A having a higher priority than Channel
B. and with Receiver, Transmit and External/Status
interrupts prioritized in that order within each channel.
When the Transmit interrupt is enabled, the cpu is
interrupted by the transmit buffer becoming empty.
(This implies that the transmitter must have had a data
character written into it so it can become empty.) When
enabled, the receiver can interrupt the CPU in one of
three ways:

• Interrupt on the first received character
• Interrupt on all received characters
• Interrupt on a Special Receive condition

Interrupt On First Character is typically used with the
Block Transfer mode. Interrupt On All Receive Charac­
ters ~as,the option of modifying the interrupt vector in
the event of a parity error. The Special Receive Condi­
tion interrupt can occur on a character or message basis
(End Of Frame interrupt in SDLC. for example). The
Special Receive condition can cause an interrupt only if
the Interrupt On First Receive Character or Interrupt
On All Receive Characters mode is selected. In Interrupt
On First Receive Character. an interrupt can occur from
Special Receive conditions (except Parity Error) after
the first receive character interrupt (example: Receive
Overrun interrupt).

The main function of the External/Status interrupt is
to monitor the signal transitions of the CTS. DCD and
SYNC pins; however. an External/Status interrupt is also
caused by a Transmit Underrun condition or by the
detection of a Break (Asynchronous mode) or Abort
(sDLe mode) sequence in the data stream. The interrupt
caused by the Break/Abort sequence has a special fea­
ture that allows the Z80-S10 to interrupt when the
Break/Abort sequence is detected or terminated. This
feature facilitates the proper termination of the current
message, correct initialization of the next message, and

fa Z-SO@ SIO Z-80A SIO

Zilog Functional Description
the accurat~ timing of the Breakl Abort condition in ex-
ternal logic.

CPU/DMA Block Transfer. The Z80-SIO provides a
Block Transfer mode to accommodate CPU block trans­
fer functions and DMA controllers (Z80-DMA or other
designs). The Block Transfer mode uses the WAIT/
READY output in conjunction with the WaitlReady bits
of Write Register 1. The WAIT/READY output can be
defined under software control as a WAiT line in the CPU
Block Transfer mode or as a iEAi5Y line in the DMA
Block Transfer mode.

To a DMA controller, the Z80-SIO READY output in­
dicates that the Z80-SIO is ready to transfer data to or
from memory. To the cPu, the WAIT output indicates
that the Z80-SIO is not ready to transfer data, thereby
requesting the CPU to extend the 110 cycle. The pro­
gramming of bits 5, 6 and 7 of Write Register 1 and the
logic states of the WAIT/READY line are defined in the
Write Register 1 description (Z80-SIO Programming
section).

Data Communications Capabilities

In addition to the 110 capabilities previously discussed,
the ZSO-SIO provides two independent fuU-duplex
channels that can be programmed for use in Asynchro­
nous, Synchronous and SDLC (HDLC) modes. These dif­
ferent modes are provided to facilitate the implementa­
tion of commonly used data communications protocols.
The following is a short description of the data com­
munications protocols supported by the ZSO-SIO. A
more detailed explanation of these modes can be found
in the ZRO-SIO Technical Manual.

Asynchronous Modes. The Z80-SIO offers transmission
and reception of five to eight bits per character, plus op­
tional even or odd parity. The transmitter can supply
one, one and a half or two stop bits per character and
can provide a break output at any time. The receiver
break detection logic interrupts the CPU only at the start

. arid end of a received break. Reception is protected
from spikes by a transient spike rejection mechanism
that checks the signal one-half a bit time after a Low
level is detected on the Receive Data input. I{the Low
does not persist-as.tn the case of a transient-the char­
acter assembly process is not started.

116

Framing errors and overrun errors are detected and
buffered together with the partial character on which
they occurred. Vectored interrupts allow fast servicing
of error conditions using dedicated routines. Further­
more, a built-in checking process avoids interpreting a
framing error as a new start bit: a framing error results
in the addition of one-half a bit time to the point at
which the search for the next start bit is begun.

The Z80-SIO does not require symmetric Transmit
and Receive Clock signals-a feature that allows it to be
used with a ZSO-CTC or any other clock source. The
transmitter and receiver. can handle data at a rate of 1,
1/16, 1/32 or 1/64 of the clock rate supplied to the
Receive and Transmit Clock inputs.

.... :-

In Asynchronous modes, the SYNC pin may be pro­
grammed for an input that can be used for functions
such as monitoring a ring indicator.

Synchronous Modes. The Z80-SIO supports both byte­
oriented and bit-oriented synchronous communication.
Synchronous byte-oriented protocols can be handled in
several modes that allow character synchronization with
an 8-bit sync character (Monosync), any 16-bit sync pat­
tern (Bisync), or with an external sync signal. Leading
sync characters can be removed without interrupting the
cpu. eRC checking for synchronous byte-oriented
modes is delayed by one character time so the cPU may
disable CRC checking on specific characters. This per­
mits implementation of protocols such as IBM Bisync.

Both CRC-16 (XI6+XIS+X2+1) and eelTT
(XJ6 + X 12 + Xs + 1) error checking polynomials are sup­
ported. In all non-SOLe modes, the eRC generator is in­
itialized to O's; in SDLC modes, it is initialized to 1 's.
(This means that the Z80-SIO cannot generate or check
eRe for IBM-compatible soft-sectored disks.) The
ZSO-SIO also provides a feature that automatically
transmits eRC data when no other data is available for
transmission. This allows very high-speed transmissions
under DMA control with no need for CPU intervention at
the end of a message. When there is no data or CRC to
send in Synchronous modes, the transmitter inserts 8- or
16-bit sync characters regardless of the programmed
character length. Since the CPU can read status informa­
tion from the Z80-SIO, it can determ~ne the type of
transmission (data, CRe or sync characters) that is tak­
ing place at any time.

The ZSO-SIO supports synchronous bit-oriented pro­
tocols such as SDLC and HDLC by performing automatic
flag sending, zero insertion and eRe generation. A spe­
cial command can be used to abort a frame in transmis­
sion. The ZSO-SIO automatically transmits the CRC and
trailing flag when the transmit buff~r pecomes empty.
An interrupt warns the CPU of this status change so an
abort may be issued if a transmitter underrun has oc­
curred. One to eight bits per character can be sent.
which allows transmission of a message exactly as
received with no prior information about the character
structure in the information field of a frame.

The recejver automatically synchronizes on the lead­
ing flag of a frame and provides a synchronization sig­
nal that can be programmed to interrupt. In addition,
an interrupt on the first received character or on every
character can be selected. The receiver automatically
deletes all zeroes inserted by the transmitter during char­
acter assembly. It also calculates and automatically
checks the eRC to validate frame transmission. At the
end of transmission, the status of a received frame is
available in the status registers. The receiver can be pro­
grammed to search for frames addressed to only a speci­
fied user-selectable address or to a global broadcast ad­
dress. In this mode, frames that do not match the user-

~ Z-SO® SIO Z-SOA SIO
Zilog Z-80 SIO Programming
selected or broadcast address are ignored. The Address
Search mode provides for a single-byte address recog­
nizable by the hardware. The number of address bytes
can be extended under software control.

The Z80-SIO can be conveniently used under DMA
control to provide high-speed reception. The Z80-SIO
can interrupt the CPU when the first character of a mes­
sage is received. The CPU then enables the DMA to trans­
fer the message to memory. The Z80-SIO then is~ues an
End Of Frame interrupt and the CPU checks the status
of the received message. Thus, the CPU is freed for other
service while the message is being received. A similar
scheme allows message transmission under DMA con­
trol.

ZSO-SIO Programming

To program the Z80-SIO, the system program first
issues a series of commands that initialize the basic
mode of operation and then other commands that qual­
ify conditions within the selected mode. For example,
the Asynchronous mode, character length, clock rate,
number of stop bits, even or odd parity are first set,
then the interrupt mode and, finally, receiver or
transmitter enable. The ,WR4parameters must be issued
before any other parameters are issued in the initializa­
tion ro·utine.

Both channels contain command registers that must
be programmed via the system program prior to opera­
tion. The Channel Select input (B/A) and the Control/
Data input (C/O) are the command structure addressing
controls, and are normally controlled by the CPU ad­
dress bus.

Write Registers

TheZ80-SIO contains eight registers (WRQ-WR7) in
each channel that ate programmed separately by
the system program to configure the functional
personality of the channels. With the exception of
WRO. programming the write registers requires two
bytes. The first byte contains three bits (00-1>2) that
point to the selected register; the second byte is
the actual control word that is written into the
register to configure the Z80-SI0.

WRO is a special case in that all the basic com­
mands (CMDo-CMI>2) can be accessed with a single
byte. Reset (internal· or external) initializes the
pointer bits DO-D2 to point to WRO.

Read Registers

The Z80-SIO contains three registers. RRO-RR2 (Figure
6), that can be read to obtain the status information for
each channel ~excepl for RR2 - Channel B only). The

status information includes error conditions, interrupt
vector and standard communications-interface signals.

To read the contents of a selected read register
other than RRO, the system program must first
write the pointer byte to WRO. in exactly the same
way as a write register operation. Then, by ex­
ecuting an input instruction, the contents of the
addressed read register can be read by the CPU.

The status bits of RRO and RRI are carefully
grouped to simplify status monitoring. For exam­
ple, when the interrupt vector indicates that a
Special Receive Condition interrupt has occurred.
all the appropriate error bits can be read from a
single register (RRl).

READ REGISTER 0

Rx CHARACTER AVAILABLE
L.....----INT PENDING (CH. A ONLY)
---Tx BUFFER EMPTY

------- ~ClHUNT l
L..-. ___________ f.SUNDERRUNIEOM I·

L..-. _________ . ___ BREAK/ABORT ,

READ REGISTER 1 t

• USED WITH "EXTERNAlJSTATUS
INTERRUPT" MODE

All SENT

I FIELD BITS I FIELD BITS IN
IN PREVIOUS SECOND PREVIOUS

1 0 0
• .1 0
t 1 0
o 0 1
1 0 1
o 1 1
1 1 1
o 0 0

L PARITY ERROR
'-----Ax OVERRUN ERROR

-------CRCiFRAMING ERROR
'--------END Of fRAME SOlC

t USED WITH SPECIAl RECEIVE CONDmON MODE

READ REGISTER 2

BYTE BYTE
o 3
o 4
o 5
o 6
o 1
o 8
1 a
Z 8

• RESIDUE DATA fOR EIGHT
Ax 81TSlCHARACTER PROGRAMMED

'MI~IMI~IMI~IMI~I
; I ' : i . I l. YO I

- Vlt
-. -- V2t

. - V3t INTERRUPT

I VARtAIU IF ··STAruS "FRCTS
JECTOR" !S PROGRAMMED

·V4 \ VECTOR ·-·Y5
• V6

-·---V7 .

.·!~ur~ 6. Read Rf'~isler Bil Functions

118

WRITE REGISTER 0

Iml~I~I~looIMlmlool
I I I
o 0 0
o 0 1
o 1 0
o 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0 NUll CODE

REGISTER 0
REGISTER 1
REGISTER 2
REGISTER 3
REGISTER 4
REGISTER 5
REGISTER 6
REGISTER 7

0 0 1 SEND ABORT \SOlC)
0 1 0 RESET EXT IS ATUS INTERRUPTS
0 1 1 CHANNEl RESET
1 0 0 ENABlE INT ON NEXT Ax CHARACTER
1 0 1 RESET TxfNT PENDING
1 1 0 ERROR RESET
1 1 1 RETURN FROM INT (eN-A ONLy)

o 0 NUll CODE
o 1 RESET Ax CRC CHECKER
1 0 RESET TI CRC GENERATOR
1 1 RESET TI UNOERRUNtEOM LATCH

WRITE REGISTER 1

EXT INT ENABLE
'------Tx INT ENABLE

L..-____ STATUS AFfECTS VECTOR
eCHo B ONLY)

o 0 Rx INT DISABLE
I 0 1 Rx INT ON ARST CHARACTER I

~
' ~ :: g::tt = ="RA~~ l~~ =::rr~ *

VECTOR)

* OR ON
WAIDREADY ON R/T SPECIAl
WlIl'/READY FUNCTION CONDmON

L..-______ WAIT/READY ENABlE

WRITE REGISTER 2 (CHANNEL B ONLY)

1~1~1~1~looTM1~Tool

1 T
VO I V1

~ INTERRUPT
V4 VECTOR
V5
V6
V7

:~,

WRITER REGISTER 3

Ax ENABlE
L..-___ SYNC CHARACTER lOAD INHIBIT

'-------AODRESS SEARCH MODE (SOlt)
L----·-----Ax CRe ENABlE

'-----------ENTER HUNT PHASE
'------------MrrO~S

o 0 Ax 5 BITSICHARACTER
o 1 RI 7 BlTS/CHARACTER
1 0 Rx 6 BlTS/CHARACTER
t 1 Ax • BlTS/CHARACTER

WRITE REGISTER 4

I
I
I

i
I
I
o
8
1
1

o
1
o
1

PARITY ENABLE
L-----PARITY EVENIOilD

o SYNC MODES ENABLE
1 1 STOP BlT/CHARACTER
o lVz STOP BlTSlCHARACTER
1 2 STOP BlTS/CHARACTER

o 0 8 BIISYNC CHARACTER
o 1 16 BIT SYNC CHARACTER
t 0 SDlC MODE {01111110 FLAG)
1 1 EXTERNAl SYNC MODE

Xl ClOCK MODE
X16 ClOCK MODE
X32 ClOCK MODE
X64 ClOCK MODE

WRITE REGISTER 5

o 0
o 1
1 0
1 1

DTR

Tx CRC ENABLE
L-----RTS

L--·----SOi£JCR&-16
L..-.--------TI ENABLE L-. _________ SEND BREAK

Tx 5 BITS COR LESS)ICHARACTER
Tx 7 BlTSlCHARACltR
Tx 6 BlTS/CHARACTER
Tx 8 BITS/CHARACTER

WRITE REGISTER 6

L..-___ SYNC BIT 1
L--____ SYNC BIT 2

I L-.------SYNC BIT 3 •

SYNC BIT 0\

_. ,
I "---SYNC BIT 4

L-----------SYNC BIT 5
L------------SYNC BIT 6

L---~-----------SYNCBlT7

·AlSO SOlC ADDRESS AELD

WRITE REGISTER 7

DI~' .• 3 - D2 ~' me lit '\
SYNC BIT 9

_. .----SYNC BIT 10
. ---- --_._- SYNC BIT 11

I ! - SYNC BIT 12 • . L --------- SYNC BIT 13
- - - ---.------. · .. • ---SYNC BIT 14 L ____ ._-- .. _-_._-- ---- --'-----SYNC BIT 15

·FOR SOle IT MUST BE PROGRAMMED
TO "0111111"'" FOR FlAG RECOGNmON

Write Register 8ft Functions

FUNCTION

INmALIZE

IDLE MODE

DATA mANSFER AND
ERROR MONITORING

. TERMINATION

TYPICAL PROGRAM STEPS

REGISTER: INFORMATION LOADED:

WRO CHANNEL RESET

WRO POINTER 2

WR2 INTERRUPT VECTOR

WRO POINTER 4. RESET EXTERNALJSTATUS INTERRUPT

WR4 ASYNCHRONOUS MODE. PARITY INFORMATION. STOP BITS
INFORMATION. CLOCK RATE INFORMATION

WRO POINTER 3

WR3 RECEIVE ENABLE. AUTO ENABLES. RECEIVE CHARACTER
LENGTH

WRO POINTER S

WRS REOUEST TO ·SEND. TRANSMIT ENABLE. TRANSMIT
CHARACTER LENGTH. DATA TERMINAL READY

WRO POINTER 1. RESET EXTERNALJSTATUS INTERRUPT

WR1 TRANSMIT INTERRUPT ENABLE, STATUS AFFECTS VECTOR.
INTERRUPT ON ALL RECEIVE CHARACTERS. DISABlE WAITI
READY FUNCTION. EXTERNAL INTERRUPT ENAeLE

TRANSFER FIRST DATA BYTE TO SIO

EXECUTE HAlT INSTRUCTION OR SOME OTHER PROGRAM

Z80 INTERRUPT ACKNOWlEDGE CYCLE TRANSFERS RR2 TO CPU

IF A CHARACTER IS RECEIVED:
• TRANSFER DATA CHARACTER TO CPU
• UPDATE POINTERS AND PARAMETERS
• RETURN FROM INTERRUPT

IF TRANSMITTER BUFFER IS EMPTY:
• TRANSFER DATA CHARACTER TO SIO
• UPDATE POINTERS AND PARAMETERS
• RETURN FROM INTERRUPT

IF EXTERNAL STATUS CHANGES:
• TRANSFER RRO TO CPU
• PERFORM ERROR ROUTINES (INCLUDE BREAK DETECTION)
• RETURN FROM INTERRUPT

IF SPECIAL RECENE CONDITION OCCURS:
• TRANSFER RR1 TO CPU
• DO SPEClAL ERROR (E.G. FRAMING ERROR) ROUTINE
• RETURN FROM INTERRUPT

REDEFINE RECEIVEITRANSMIT INTERRUPT MODES

DISABlE TRANSMIT/RECEIVE MODES

UPDATE MODEM CONTROL OUTPUTS (E.G. RTS OFF)

Asynchronous Mode

COMMENTS

Reset SlO

Channel B only

Issue parameters

Receive and Transmit both fully initial­
ized. Auto Enables win enable Trans­
mitter if CTS is active and Receiver if
5Co is active.

Transmit/Receive interrupt mode se­
lected. External Interrupt monitors the
status of the CTS. oeD and SYNC inputs
and detects the Break sequence. Status
Affects Vector in Channel B only.

This data byte must be transferred or no
transmit interrupts wit occur.

Program is waiting for an interrupt from
the SIO.

When the interrupt occurs. the interrupt
vector is modified by: 1. Receive Char­
acter Available; 2. Transmit Buffer emp­
ty; 3. External/Status change; and 4.
Special Receive condition.

Program control is transferred to one of
the eight interrupt service routines.

If used with processors other than the zao.
the modified interrupt vector (RR2) should
be returned to the CPU in the Interrupt Ac­
knowledge sequence.

When transmit or receive data transfer is
complete .

In Transmit, the All Sent status bit indi­
cates transmission is complete.

120

Dual Baud Rate Generator

To obtain the desired baud rate for each S10 port, output data to

the baud rate generator port according to the following chart.

The output signal produced by the Baud' Rate Generator is

actually 16 times the value for the asynchronous rates shown

below.

Baud Rate PORT A PORT B

(x16) , (xl)
ASYNC SYNC Hex Octal Hex Octal

50 00 000 00 000
75 1200 10 020 01 001

110 20 040 02 002
134.5 30 060 03 003
150 2400 40 100 04 004
300 4800 50 120 05 005
600 9600 60 140 06 006
1200 19200 70 160 07 007
1800 80 200 08 010
2000 90 220 09 011
2400 AO 240 OA 012
3600 BO 260 OB 013
4800 CO 300 OC 014
7200' DO 320 00 015
9600 EO 340 OE 016
19200 FO 360 OF 017

The baud clock for S10 port'A may be driven by an external source,

such as a modem. Jumpers J5 and J6 select the source as

follows:

J5

J5-A

J5-B

J6

J6-A

J6-B

Clock Source For Receive Data

P4-8-(25 pin "0" pin 17, EIA signal "DO")

Output of J6, below

Clock Source for Transmit Data

P4-4 (25 pin "D" pin 15, EIA signal "DB")

Baud generator for port A as listed above.

For example, to run both receive and transmit clocks from the

baud rate generator for port A, set J5-B and J6-B.

When using 'the ZRAID monitor, the baud rates may be individually

set via the DIP switches on the MLZ-91. (Refer to the ZRA1D

manual for details. Also page 93.)

(This page left blank intentionally)

,~,

122

CTC

The Z80 counter/Timer Circuit contains four channels which may

be used to count external events or generate time interrupts to

the cpu.

The count limit or time interval may be programmed by the CPU.

Each of the four channels can independently interrupt when the

programmed count or time has been reached.

The count/trigger input of channel one is assigned an IO

device port number. Access of that port can be used to trigger

the timer action or as a simple means of counting events without

using a software counter. The other three channels are

inter-connected to enable a multiple precision count or time

interval to be programmed.

CHANNEL ¢
COUNt/TR1~GcR
IOCNT¢

I MHZ. CLocK

COUNT /TR'~GE'R

....

-"" -

COUNT~R/
TIMeR ¢

COUNTeR!

"'M£"R I

COUNT£R!

TIMER '2.

COVNT£"o/ .

TIMER 3

..n.

.;

"'

-fl.

"'

eTc CONFIGURATION

.
~ z-stf CTC Z-SOA CTC
Zilog eTC Programming

SELECTING AN OPERATING MODE

. When se!ecting a channel's operating mode. bit 0 is set to
1 to indicate this word is to he stored in the channel control
register.

,~

Bit 7 = 0

Bit 7 = 1

Bit 6 = 0

Bit 6 = 1

Bit 5 ="
Bit 5 = I

Bit 4 =0

Bit 4 = 1

Bit 3 = 0

Bit 3= I

' ... ,-.

""t,'
I""M " .. ," "'I~

I-~ '-.

Channel interrupts disabled.

I', ''It

Channel interrupts enabled to occur every
time Down Counter reaches a count of zero.
Setting Bit 7 does not let a preceding count
of zero cause an interrupt.

Timer Mode - Down counter is clocked by
the prescaler. The period of the counter is:

tc • P • TC
tc = system clock period
P = prescale of 16 or 256
TC = 8 bit binary programmable time
constant (256 max)

Counter Mode - Down Counter is clocked
by external clock. The prescaler is not used.

Timer Mode Only-System clock <P is divided
by 16 in prescaler.

Timer Mode Only-System clock <P is divided
by 256 in prescaler.

Timer Mode - negative edge trigger starts
timer operation.
Count-tr Mode - negative edge decrements
the down counter.

Timer Mode - positive edge trigger starts
timer operation.
Counter Mode - positive edge decrements
the down counter.

Timer Mode Only - Timer begins operation
on the rising edge of T 2 of the machine
cycle fol1owing the one that loads the time
constant.

Timer Mode Only - External trigger is valid
for starting timer operation after rising edge
of T 2 of the machine cycle following the
one that loads the time constant. The Pre­
scaler is decrement~d 2 dOL"k cycles later if
the setup time is m;!t. otherwise 3 dock
cycles.

Bit ~ = 0

Bit ~ = I

Bit I = 0

Bit I = 1

No time constant will follow the channel
control word. One time constant must be
written to the channel to initiate operation.

The time constant for the Down Counter
·will be the next word written to the selected
channeL I f a time cunstant is loaded while a
channel is counting. the present count will
be completed before the new time constant
is loaded into the Down Counter.

Channel continues counting.

Stop operation. If Bit 2 = t channel will
resume operation after loading a time
constant. otherwise a new control word
must be loaded.

LOADING A TIME CONSTANT

An R-bit time constant is loaded into the Time Constant
register following a channel control word with bit 2 set. All
zeros indicate a time constant of 256.

' ... n. ""
,., I-I. I.
IC) liD

LOADING AN INTERRUPT VECTOR

The ZSO-CPU requires that an 8-bit interrupt vector be
supplied by the interrupting channel. The CPU forms the
address for the interrupt service routine of the channel
using this vector. During an interrupt acknowledge cycle
the vector is placed on the ZRO Data Bus by the highest
priority channel requesting service at that time. The desired
interrupt vector is loaded into the CTC by writing into
channel 0 with a zero in 00. D7-D3 contain the stored in­
terrupt vector. D2 and 01 are not used in loading the vector.
When the CTC responds to an interrupt acknowledge. these
two bits contain the binary code of the highest priority
channel which requested the interrupt and D0 contains a
zero since the address of the interrupt service r()utine starts
at an even hyte. Channel 0 is the highest priority channel.

I", 1-' n .. I', '" I'"
, , , , ..

123

124

FLOPPY DISK CONTROLlER

Heurikon has floppy disk control software which provides an

easy interface to the floppy disk logic ·on the MLZ-9l. The

information below is intended for the user who wishes to interface

directly with the floppy hardware. (Since the nitty-gritty of

the floppy software is fairly complex and involves numerous

sections on the MLZ-91, e.g. CPU, DMA, FDIO, PIO, etc., we

suggest that you examine the methods used in Heurikon's ZRAID

monitor program in order to become familiar with the problems

involved if you plan to write your own software interface.)

A. Drive, Side and Single/Double Density Selection

When power is first applied, the drive, side and density

select lines come up in a random state. Software must

set these lines to the desired condition. The ZRAID-9l

monitor initializes these signals as follows:

Drive select lines: all off (HIGH)

Side select line: side 1 (HIGH)

Density select line: single density (HIGH)

Later, when the floppy disk I/O routines are executed,

these lines are set as necessary for the specified operation.

The control port for these lines is IOFSEL (typically

98H if I/O group A base address is set at 8~H by the I/O

mapping RAM.) and the function of each bit is as specified

below: (This port is write only.)

D7 O~

r-Ds-i-l=~~_~'~ ~ . r-- ~~>--~~]-.- D~lJ . L.·_-~~~~J-:-_-_·D.DEN-·. r-x'-r ~LE~~ __ J
. I I I

Four Drive Select Lines ' ~ = User
~ = On (Select) I I = User
I = Off (Deselect) ~ = Double Density

1 = Single Density
~ = Side ~
1 = Side 1

Led On
Led Off

Normally, the four drive select lines (DS~ thru OS3) would

select one of four drives. However, additional drives may

be connected and selected via a binary combination of these

four signals.

B. FDIO Controller Chip

There are four register addresses in the FD1793 FDIO chip.

The table below indicates the port addresses assigned to

the various registers. For details on the function of

the registers, refer to the Western Digital manuals.

Read (IN) Write (OUT) Port Address

IOFDCS
IOFDTR
IOFDSR
IOFDAT

Status register Command register
Track register Tractk register
Sector register Sector register
Data register Data register

The FDIO chip can execute the following commands:

1. RESTORE to track ~

2. SEEK track

3. STEP IN or OUT

4. READ TRACK ID

5. READ or WRITE SECTOR

6. READ or WRITE TRACK

7. FORCE INTERRUPT

Data separation for both single and double density is

provided via a PLL (phase locked loop) circuit in order

to achieve a high data recovery reliabili~y. In addition,

write pre-compensation is used for double density formats.

C. FDIO Data Request

There are two methods which can be used to synchronize data

transfers to and from the FDIO chip.

1. Software can monitor the Data Request bit in the FDIO status

register while in a wait loop and then transfer each byte

via programmed I/O. This method generally proves unsatis­

factory for most applications due to the high data transfer

rate of the FDIO chip, especially for the double density

mode. In addition, the CPU cannot be allowed to service

interrupts without suffering some loss of disk data.

2. The FDIO-DRQ (Data Request) signal can be routed to the DMA

chips READY input by selecting the FDIO-DRQ line via PIO port

A. (See page 57.) The DMA is then programmed to handle the

data transfer to or from the FDIO logic. Meanwhile, the CPU

can wait for the completion of the data transfer and is free

to perform other tasks as required by the particular applica­

tion. This is the method used by the floppy disk routines

in the ZRAID monitor program.

l?S

126

D. FDIO Interrupt

When the FDIO chip completes a command,

(Interrupt Request) goes active, (LOW).

connected to bit 7 of PIO Port A (which

the INTRQ line

This signal is

may be programmed

to generate an interrupt if INTRQ goes true.)

To enable the interrupt logic of port A and to select bit

7 for monitoring, the following instruction sequence could

be used: (Assumes PIO A has ,previously been initialized

to BIT mode.)

LD A,vector
OUT (IOPAC),A
LD A,
OUT (IOPAC),A
LD A,7FH
OUT (IOPAC) ,A

; LOW HALF OF INT VECTOR
; SET INTERRUPT VECTOR
i ENABLE INTERRUPT
i SEND TO PIO A CONTROL
i MASK FOR 07 (FDIO-INTRQ)
; SEND TO PIO A CONTROL

Note: ZRAID does not use this method. Instead, the FDIO

status register is polled in a software wait loop until the

BUSY bit indicates that the command has been completed.

(Refer to the discussion qf PIO on page 57)

E. Electrical adju'stme'n'ts

.There are three pots which control data separation and write

precompensation near the floppy disk connector, P6. These

adjustments are factory set. We do not recommend that

they be adjusted in the field unless it is certain that

such adjustments are required. (Most disk errors can be

traced to incorrect supply voltages, bad media, dirty

heads, noise on power supply, drive mechanical failures

or intermittent connections.

The adjustment procedure is as follows:

'1. Verify that the Vce power supplied to the MLZ-9l is

5.0 volts + 0.1 volt.

2. Disconnect the drives from P6. Connect P6-46

(TP-2) to Vcc. (Usually, it is sufficient to

simply leave P6-46 open as the terminating resistor

netword will put P6-46 to the HIGH state.)

a) Adjust R3 (BIAS) for 1.4 volts at + 5% at TP-3/

b) Adjust R2 (RANGE) for 4.0 MHZ + 5% at TP-l.

(For 5-~" drive configuration, adjust for 2.0 MHZ.)

3. Reconnect the drives to P6. (Disconnect any jumper

to TP-2). Via a software routine, continuously write sectors.

ZRAID has a command to perform this function. Enter control­

W 12 (hex). ZRAID will write continuously until the drive

door is opened or the next ZRAID command is entered. While

writing, adjust R3 (PRECO~WENSATION) for 200 nsec. pulses

(+ 5%) at TP-4. These pulses will occur in busts approximately

175 msec. apart. Use a scratch disk formatted for double

density, 1024 bytes per sector. (For writing single density

use control-W 13 as a command to ZRAID. Be sure to use a

scratch, single density diskette). If the diskette is defective

or not properly formatted, no writes will occur.

~--~--TPt yeo oUTPUT

RI R2.

-TP2.. RAW DA-rA

TP3 vco INPt)T

T P4- PRECOMP~NSATION PULSE:: WIDTH

SIO TAPE

P6 P4- P3

~~AN~E R3

j.; BIAS

MLZ-9IA

P\ P2
MULTIE3US WINCHESTER

F DIO ADJUSTMENTS
1?7

128

F. FDIO with 5~" drives

The MLZ-9l is configured and adjusted at the factory

for the standard 8" drives. To configure the board for

use with 5~" drives, set jumpers as follows:

Jumper position for 8" position for 5~"

FC

FN

FI

FS
FR

FP

8

8

8

(remove)

8

(remove)

5

5

5

5

5

5

It may be'necessary to perform the adjustments described

in the previous section following any drive type reconfig­

uration.

G. Drives

Numerous drives may be used with the MLZ-9l. The head

step rate when using ZRAID FDIO routines is 10 msec,.although

this may be changed for fast seeking drives. It is usually

necessary _,to. change option jumpers oil the driv~s from

those shipped with the drives.· As an example of proper

drive set-up, the listing on the next page shows the

correct jumper settings (on the drives) when using the

popular Shugart drives with the MLZ-9l.

H. connector Pinout

See page l62~

I. Drive Power Supply

Be sure to select an adequate power supply for the drives.

dhe note on Shugart drives. The 24V Return and +5 Return

must be connected together at the supply. See Shugart manuals

for details.

DRIVE

SA-80l
(8 ")

SA-8S0/8S1
(8")

SA-400
(5~")

SA-410/460
(5~")

Siemans
FDD-200-8

Qume
OT-8

Jumpers to be installed
on all drives

A, B, C, Z, OS, WP, 800
also RR, RI,·", R, I, S

A, B , C I Z, OS, WP, 850
82, AF, RS, FS, IT
also RR, RI, R, I, M, S

T2, HS
MX (if only one drive)

MX (if only one drive)
MM

RAD STEP 2
RR,RI, 18, 22, L, E, G

S 2, A, B , C , OS
RR, R, RI, I, Y, OC
2S, . vlP

Install one each on I Install on "LAST" !Remove on all
one drive only I drive only drives
(Drive Select) i

OSl, OS2, OS3, 084 TI, T3, T4, TS, T6 X, Y, T2, HL, 0
NP, DDS, DC,
BOl

OSl, DS2, D83 r DS4 RPACK SE

OSl, OS2, OS3 Tl, T3, T4, T5, F

DS1, DS2, DS3 RPACK

: RAD. SElL .~, 1, 2, or 3' Terminator 8D

DS1, DS2, OS3, OS4 TM1, TM2

FLOPPY DISK JUMPERS

NF, HI, HLL
IW, RM
0, 2S, DC
X, Y, HL, NP,
OL, 851
IB, 2B, 3B, 4B
51, S3, TS, F

HM
MX (if more than

one drive)

MX (if mQr~ than
one drive)

~·1S

RAO STEP 1
K, J, V, H, F

Bl, B2, B3, B4
Sl, S3, DDS
X, W, HL, OL, 0
Z, HA, NP, T4.0'

130

User LED

Th1s single L~D is part of the FDIO option on the MLZ-9l

and is separate from the 8-bit LED array. The function of this

LED is left completely up to the user. It is located near P6,

the floppy disk I/O connector.

The state of the LED is controlled by bit D~ of the floppy disk

selection port, IOFSEL. Care must be taken when using this port

to turn the LED on or off that the floppy disk select, density

and side bits are not altered. (See page 124 for a full "descrip­

tion of the control byte.)

D~ = ~
D~ = 1

LED ON

LED OFF

The following subroutines may be used to control the LED

without affecting the other bits. A ram value, LSAVE, is used

to save the state of the other 7 bits of th~ "byte. (LSAVE

must be updated by theFDIO select logic, too.)

LEDON: LD B,~ iCLEAR D~ (REG B)

JR USER

LEDOFF: LD B, 1 iSET D~ ON (REG B)

LD A, (LDATA) iGET CURRENT IMAGE

AND ~FEH iMASK OTHER BITS

OR B iSET/CLEAR D~

LD (LDATA) ,A iSAVE FOR NEXT PASS

OUT IOFSEL iSEND TO H/l~

RET

The MLZ-91 ZRAID monitor turns the LED on whenever the floppy

disk routines are in use. The LED will flash on during disk I/O.

DMA

The DMA is a rat~er complicated chip and it helps to have some

"hands on" experience with the chip in order to feel comfortable

programming it.

The DMA chip is used primarily to do data transfers between

memory and the FDIO logic. However, the DMA chip will allow any

I/O device or memory address to be used both as source or

destination ports. Thus, memory to memory or I/O device to

I/O device transfers are possible.

When the DMA is active, all bus control lines are controlled

by the DMA chip in the same fashion as if the CPU were conducting

a memory or I/O operation. The "WAIT" signal, produced during

external memory or I/O accesses, will synchronize the DMA to

the external device data transfer rate. This means that the
a -

DMA is able to operate with external facilities (memory or I/O)

without any special considerations.

Refer to the DMA manual for programming details -. Some highlights

appear on th~ following pages. If you anticipate doing any-thing

fancier than shown here, we highly recommend that you get a ' .

DMA Technical Manual and call Zilog to discuss your particular

application.

., ,

132

Z Z-sODMA Z-SOA DMA
Zilog

DMA Architecture
A block diagram of the Z80 DMA is shown in Figure 1.

The internal structure consists of the following circuitry:

• Bus Interface: provides driver and receiver circuitry to
interface to the Z8O-CPU Bus.

• Control Logic and Registers: set the class, mode and other
basic control parameters of the DMA.

• Address, Byte Count and Pulse Circuitry: generates the
proper port addresses for the read and write operations,
with provisions for incrementing or decrementing the
address. When zero bytes remain to be handled, the byte
count circuitry sets a flag in the status register. Pulse
circuitry generates a pulse each time the byte counter
lower 8-bits equal the pulse register.

• Timing Circuitry: allows the user to completely specify
the read/write timing for each port.

• Match Circuitry: holds the match byte and a mask
byte which allows for the comparison of only certain
bits within the byte. If a match is encountered during a
Search or Transfer, this circuitry sets a flag in the status
register.

• TNT and li&RQ Circuitry: includes a control regis­
ter which specifies the conditions under which the DMA
can generate an interrupt; priority enc()ding logic to select
between the generation of an INT or BUSRQ output
under these conditions; and an interrupt vector register
for automatic vectoring to the interrupt service routine.

• Status Register: holds current status of DMA.

Register Description

The following DMA-internal registers are available to the
programmer:

Control Registers: Write only; 8 bits. Hold DMA control
information: such as, when to initiate an interrupt or pulse,
what mode or class of operation to perfollll, et.c.

Tuning Regkters: Write only; 8 bits. Hold read/write timing
parameters for the iwo ports.

Interrupt Vector Register: Read/write; 8 bits. Holds the
8-bit vector that the DMA will put onto the data bus after
receiving an IORQ during an interrupt acknowledge se­
quence if it is the highest priority device requesting an
interrupt. (This register is readable only during interrupt
acknowledge cycles.)

Block Length Register: Write only; 16 bits. Contains total
block length of data to be searched and/or transferred.

Byte Counter: Read only; 16 bits. Counts nwnber of bytes
transferred (or searched). On a Load or Continue the Byte
Counter is reset to zero. Thereafter, each byte transfer 0-

peration increments it until it matches the contents of the
Block Length Register, at which time End of Block is set in
the status register and. operation is suspended if program­
med. Also if so programmed' the DMA will generate an
interrupt.

Match Register: Write only; 8 bits. Holds the byte for
which a match is being sought in Search operations.

Mask Register: Write only; 8 bits. Holds the 8-bit mask to
detennine which bits in the match register are to be ex-
amined for a match. .

Starting Address Registers (Port A and Port B): Write only;
16 bits each. Hold the starting addresses (upper and lower
8 bits) for the two ports involved in Transfer operations. In
Search Only operations, only one port address would have
to be specified. Only memory starting addresses require
both upper and lower 8 bits; 1/0 ports are generally ad·
dressed with only the lower 8 bits, and in this case the ad­
dress contained in the register is a generally fIXed address.

Address Counters (Port A and Port B): Read only; 16 bits
each. These counters are loaded with the contents of the
corresponding Starting Address Registers whenever Search­
es or Transfers are initiated with a Load or Continue. They
are incrementedt decremented or remain fixed, as pro­
grammed.

Pulse Control Register: Write only; 8 bits. The content of
this register is continuously compared with the lower eight
bits of the byte counter. When they become equalt the INT
output is activated. Since this occurs while BUSRQ and
BUSAIC are both active, the CPU does not interpret this as
an interrupt request. Instead, the signal is used to conunun­
icate with a peripheral 1/0 device. When the Pulse Control
Register contains a value n, the first pulse is generated after
n + 1 bytes of search or transfer. The next and all subse­
quent pulses occur at 256-byte intervals.

Status Register: Read only; 8 bits. Matcht End of Block,
Ready Active, Interrupt Pending, and DMA Cycle Occurred
bits indicate these functions when set.

Modes of Operation
The DMA may be programmed for one of four modes of

operation. (See Command Register 2B.)

• Byte at a time: control is returned to the CPU after each
one.byte cycle.

• Bunt: operation continues as long as the DMA
9

s RDY
input is active, indicating that the relevant port is ready.
Control returns to the CPU when RDY is inactive or at
end of block or a match if so programmed.

• Continuous: the entire Search and/or Transfer of a block
of data is completed before control is returned to CPU.

~ Z-sODMA Z-80A DMA
Zilog +5V GNO $

!

A15

BYTE/PULSE
COMPARATOR

AO 01 DO

INT lEI lEO BUSRQ BAI BAO ROY

INT PRIORITY
LOGIC

COMPARE DATA
COMPARE MASK

t I
BUS PRIORITY

LOGIC

CONTROL
AND

STATUS
REGISTERS

BUS CONTROL
LOGIC

I

1 __
WR CEIWAIT

DMA Internal Block Diagram
Fig.1

Reading the DMA Internal Registers

The CPU can read seven internal DMA registers~ always
in the following order: Status, lower byte of the Block
Length register, upper byte of the Block Length register,
lower byte of the Port A Address~ upper byte of the Port A
Address, lower byte of the Port B Address and the upper
byt~ of the Port B Address.

The Read Mask register must be programmed to either
include or exclude any of these seven registers by program-

ming a 1 (include) or 0 (exclude) in the appropriate posi­
tions of the Read Mask register. After a Reset or Load, the
read sequence must be initiated through an Initiate Read
Sequence command (Command Byte 2D). The sequence of
reading all registers that are not excluded by the Read Mask
register must be completed before a new Initiate Read Se­
quence or RD Status command.

Programming the DMA

Previous sections of this specification have indicated the
various functions and modes of the DMA. The diagrams and
charts below show how the DMA is programmed to select
among these functions and modes and to adapt itself to the
requirements of the user system.

The Z80-DMA chip may be in an 4'enablen state, in which
it can gain control of the system buses and direct the trans­
fer of data between its ports, or in a Hdisablet9 state, when
H cannot gain control of the bus. Program commands can
be written to it in either state. but writing a command to it
automatically puts it in the disable state. which is maintained
until an enable command is issued to the DM A. The CPU
must program it in advance of any data search or transfer by
addressing it as em I/O port and sending it a sequence of
command bytes via the system data bus using Output in­
structions. When the DMA is powered up or reset by any

means, the DMA is automatically placed into a disable
state, in which it can initiate neither bus·requests nor data
transfers nor interrupts.

The command bytes contain information to be loaded
into the DMA's control and other registers and/or informa­
tion to alter the state of the chip, such as an Enable Interrupt
command. The command structure is designed so that cer­
t~in bits in some commands can be set to alert the DMA to
expect the next byte written to it to be for a particular
internal register.

lhe following diagrams and charts give the function of
each bit in the six different command bytes. Two of these
are defined as being from Group 1, and are termed command
bytes 1 A and I B. These Group 1 commands contain the
most basic DMA set-up information. The other four· are
categorized as Group 2~ and are termed commands 2A. 2B.
2C and 2D. Group 2 words specify more detailed set-up.
information.

134

t& Z-sODMA Z-80A DMA
Zilog

Command Register lA

o 0 = N/A (Command 1B)
o 1 = Transfer
1 0 .. Search
1 1 .. SearchlT ransfer

o '" Port B -+ Port A
1 - Port A -+ Port B

BLOCK LENGTH (LOWER BYTE)

BLOCK LENGTH (UPPER BYTE)

In
Time
Sequence

A "1" in positions D3 through D6
means that the indicated byte will fol­
low. Note that the sequence of bytes
is absolutely rigid.

The DMA always transfers or search­
es one byte more than the number
written into the Block Length registers.
A "on in the block length register re­
sults in the transfer or search of 216 +
1 bytes. The shortest programmable
block length is therefore two bytes
long, programmed by writing a 1 into
the Block Length register.

Command Register IB Command Register 2A

o 0 - Port B-Memory
o 1 • Port A-Memory
1 0 - Port B-I/O
1 1 • Port A-I/O

0- Port Address OecP.ments
1 - Port Address Increments

1 - Port Address Fixed

Timing8yte

o 0 - Cycle Length - 4
o 1 - Cycle Length - 3
1 0 • Cycle Length - 2

0- RmO Ends % Cycle Early
. 0 - flR'm Ends % Cycle Early

0- rm Ends % Cycle Early
0- WR Ends % Cycle Early

For transfers, this byte is nonnally written twice, once
for Port A and again for Port B.

1 - Stop On Match
'----f----lI------1- Interrupt Enable

&...------.11----+-----1- OMA Enable

MASK BYTE (1 - MASK - IGNORE; 0 - UNMASK - COMPARE)

MATCH BYTE

~ Z-sODMA Z-80A DMA
Zilog

Command Register 2B

Byte = 0 0
Continuous = 0 1

Burst = 1 0
Do not program = 1 1

PORT B STARTING ADDRESS (LOW"()RDER HALF)

PORT B STARTING ADDRESS (HIGH"()RDER HALF)

.. Status Affects VectOr
= Interrupt Before Request Bus

PULSE COUNT

.~

Interrupt Control Byte 1

1,. Interrupt On Match
1 .. Interrupt At End Of Block

1 '"' Pulse Generated

lnterrupt Vector

o 0 - Interrupt On ROY
o 1- Match
1 O:a End Of Block
1 1 .. Match, End Of Block

Command Register 2C

0,. Ready Active Low
1 .. Ready Active High

0- CE Only
1 .. C~.-'WAfT Multiple)ted

o s Stop On End Of 310ck
1 = Auto Repeat On End I)f Block

1 If "Interrupt Before Requesting Bus"
is selected (by a 1 in bit 6 of the In­
terrupt Control byte). thC Z-80 DMA
does not request the bus until the
following set of instructions has been
received by the Z-SO OMA:

• Enable after RETI command (B7
in Command byte 20)

• Enable OMA command (87 in
Command byte 20)

• A RETI instruction that resets the
IUS (Interrupt Under Service
latch) in the Z-80 OMA

136

,. Z-sODMA Z-SOA DMA
Zilog

Command Register 2D

~
C3

C7
CB
CF
03
AB
AF
A3

B7
B3
A7

BF
B3

BB
B7

BB

07

I
06 05 04 03 02 01 00

0 0 0 0= Reset Interrupt circuitry. disable interrupt and bus request logic, unforce
internal ready condition. disable "MUXCE" and stop auto repeat.

1 0 0 0 1 = Reset Port A Timing to standard Z-80 CPU-timing.
1 0 0 1 0= Reset Port B Timing to standard Z-80 CPU timing_
1 0 0 1 1 = load starting address for both ports. clear byte counter. *
1 0 1 0 0" Addresses continue from present locations. clear byte counter.
0 1 0 1 o .. Enable interrupts
0 1 0 1 1 z Disable interrupts
0 1 0 0 o ,. Reset and disable interrupt circuits (like RET!) and unforce the internal

ready condition
0 0 0 0 1 .. Enable D~ Both affect all operations except interrupts, but do not
0 .0.-- 0 0 o - Disable OM reset any functions.
0 1 0 0 1 - Initiate read sequence to the first register designated as readable by the

Read Mask register.
0 1 1 1 - Set ~ status so next read is from status register.
0 1 0 o - Force an internal ready condition independent of the ROY input. Used

for memory-to-memory operations where no ROY signal is needed.
This command does not function in the "byte-at-a-time" mode.

0 0 0 o .. Clear Match and End of Block status bits.
0 1 1 0 1 .. Enable after RETI so OMA will request bus only after receiving a RETI.

Must be followed by an Enable OMA command.
0 0= Read mask is the following byte_

Read Mask (1 .. enable)

Status
L..-____ Byte Counter (low byte)

'--------- Byte Counter (high byte)
'-----------Port A address (low byte)

'-------------- Port A address (high byte)
'----------------- Port B address (low byte)

'------------------- Port B address (high byte)

• Loading Port Addresses. The "Load" command (CF in Com­
mand Register 2D) loads a f"lXed address only into a port selected
as the source. not into a port selected as the destination. There­
fore. the destination address must be loaded by temporarily mis­
labeling the destination as the source.

The fonowing example is a set-up procedure for a transfer from
Port A to Port B:

1. Command byte lA with B as source port
2. Command byte 2D with CF = load
3. Command byte IA with A as source port
4. Command byte 2D with CF = load
5_ Command byte 2D with 87 = Enable DMA .

This manipulation is required only when the destination has a
f"lXed. address.

Status Register

O-Match
.. End Of Block

o a DMA Cycle Has Not Occurred
1 .. DMA Cycle Has Occurred

, - Ready Active
1& Interrupt Pending

~ Z-sODMA Z-SOA DMA
Zilog

The Sample DMA Program shows how the DMA may be programmed to transfer data from memory (port A) to a peripheral
device (port B). In this examplep the Port A memory starting address is 1050H and the Port B peripheral fixed address is 05H.
Note that the data flow is 1001H bytes-one more than specified by the block length. The table of DMA commands may be
stored in consecutive memory locations and transferred to the DMA with an output instruction such as OTIR.

Sample DMA Program

07 D6 os D4

,) Command Regist ... 1 A sets OMA to 0 1 , 1
receive block length. Port A starting Group Block Length Block Length PortA Upper
address and temporarily sets Port Bas One Upper Follows Lower Follows Addr Follows
source.

2t Port A address (lower) 0 1 0 1
3) Port A address (upper) 0 0 0 1
4) Block length (lower) 0 0 0 0
5) Block length (upper) 0 0 0 1

6) Command Register 1B defines Port A as 0 0 0 1
memory with incrementing address. Group No Timing Address Address

One Follows Changes Increments

l) Command Regist ... 1 B defines Port B as 0 0 1 0
peripheral with fixed addreu. Group No Timing Fixed Not Used

One Follows Address

8) Command Registef' 2B sets mode to 1 1 0 0
Burst. sets DMA to expect Port B Group Burst Mode No Interrupt
address. Two Control Byte

Follows

9t Port B address (lower) 0 0 0 0

to)Command Re$lister 2C sets Ready 1 0 0 0
active High. Group Not Used No Auto No Wait

Two Restart States

11)Command Regist ... 20 loads Port B 1 1 0 0
address and resets block counter. Group Load

Two

12tCommand Register 1A sets Port A es 0 0 0 0
source. • Group No Addr Or Block Length Bytes

One

13tCommtnd Register 20 loads Port A- 1 1 0
address end resets block counter. • Group

Two

14)Command by. 20 enables OMA to 1 0 0
start operation. .~ Group

Two

NOTE: The actual number of bytes trensferred is one mont than specified by the block length.
• These commands ere necessary only in the case of • fixed destination address.

0
Load

0
EnebleDMA

D3

1
PortA Lower
AddrFollows

0
0
0
0

0
Port Is

Memory

1
Port Is

1/0

0
No Upper
Address

0

1
ROY

Active HIGH

1

0

1

02 01 DO HEX

0 0 1 79
B-+A Command Byte 1A

TempO,ary For Transf No Search
Loading B Address

0 0 0 50
0 0 0 10
0 0 0 00
0 0 0 10

1 0 0 14
This Is Byte 1B
PortA

0 0 0 28
This Is Byte 1B
PortB

1 ... ~-- o· 1 C5
PortB Lower Byte2B
Addr Follows

1 0 1 05

0 1 0 SA
Not Used Byte2C

1 1 1 CF
Byte 20

1 0 1 of'
A--+B Byte 1A. Transf.

No Search

1 1 1 CF
Byte 20

1 1 1 B7
Byte 20

., ...,...,

; **
;THIS IS AN EXAMPLE OF THE METHOD USED TO INITIALIZE THE
;ZILOG DMA CHIP. THIS CODE IS USED BY ZRAID FOR FLOPPY DISK
;DATA TRANSFERS. NOTE: CONSULT COMPLETE ZRAID LISTINGS FOR
;THE ACTUAL ADDRESSES.
; **
FDDMA: LD HL,TABLE ;TABLE ADRS

· , · ,

· ,

· ,
FDDMA1:

LD DE, RAM ;TEMP RAM LOCATION
LD BC,LENOTH ; LENGTH
LDIR ;TRANSFER TABLE TO RAM

LD
LD
LD

LD
CP
JR
LD
LD

LD
LD
OTIR
RET

(RAM+12),A
HL,(DMAADRS)
(RAM+9),HL

A, (DENSITY)
SINGLE
Z,FDDMA1
HL,1024-1
(RAM+3),HL

;(80 IT CAN BE CHANGED)

;SET RD/WR COMMAND
;DATA ADRS
;SET ADRS OF DATA

;GET SD/DD FLAG
;TEST FOR SINGLE
;LEAVE LENGTH AS IS
;NEW LENGTH - 1
;SET NEW LENGTH FOR DD

HL,RAM ; SOURCE
BC,IODMA+LENGTH*256 ;PORT & LENGTH

;SEND TABLE TO DMA

; **
TABLE: DB 0303Q ;RESET DMA

DB 0155Q ;RD/WR CONTROL (SET ,FOR RD)
DB IOFDAT ;FDIO DATA PORT ADRS
DB 0177Q,O ;LENGTH (DEFAULT FOR S-DENS)
DB 054Q,020Q,0332Q,021SQ ;DEFINE PORTS & RDY
DB 0,0 ;FOR DMA DATA ADRS
DB 0317Q ;LOAD DATA
DB 0 ;FOR FINAL RD/WR CONTROL
DB 0317Q,0207Q ;LOAD DATA (AGAIN), ENABLE

LENGTH EQU $-TABLE
· ,
;THE DOUBLE LOAD DATA COMMANDS ABOVE ARE REQUIRED
"; IF THE DESTINATION ADDRESS OF THE DMA IS "FIXED", THE LOAD
;COMMAND DOESN~r ALWAYS LOAD ALL THE PARAMET~RS. THEREFORE,
;THE DMA IS F}RST SETUP WITH THE DESTINATION AS "VARIABLE"
;(IN THIS CASE A DISK READ HAS A DESTINATION WHICH IS RAM
;AND IS A VARIABLE SOURCE ~PORT~ ADRS WITH RESPECT TO THE
;DMA). THEN, THE ACTUAL DMA DIRECTION IS SET (AT TABLE +12)
;AND ANOTHER LOAD COMMAND IS EXECUTED.
; (SEE NEXT PAGE FOR EXPL OF DMA DATA.)
; **

138

; ***
;THE DMA INITIALIZATION TABLE IS EXPANDED AND DETAILED BELOW: .. ,
;HEX BINARYIBIT DEFINITION
· ,
;C3 RESET DMA
· ,
;60
· , .. ,
· ,
.. ,
· ,

0110 1101
--TRANSFER

PORT A -:> B
A ADRS FOLLOWS (L)

--B LENGTH (L,H) FOLLOWS

;XX PORT A ADRS (FDIO DATA REGISTER)

;LL LENGTH (-1) LOW HALF
;HH LENGTH HIGH HALF
;

.. ,

· ,
;10
· .,
· .,
· ,
.. ,
;DA

.. .,

.. .,

0010 1100
---PORT A DEFINITION

PORT IS 110 DEVICE
ADRS IS FIXED

0001 0000
---PORT B DEFINITION

PORT IS MEMORY
--A DRS INCREMENTS

1101 1010 .
--RDY/WAIT SPECIFICATIONS

READY IS ACTIVE HIGH
CE/WAIT MULTIPLEXED

STOP AT END OF TRANSFER

;8D 1000 1101
--MODE CONTROL

; --PORT B STARTING ADRS (L,H) FOLLOWS
--BVTE-AT-A-TIME MODE

;LL PORT B ADRS L (DMA MEMORY ADRS)
;HH PORT B ADRS H
· .,
;CF LOAD DNA WORKING REGISTERS. THIS COMMAND ALWAYS WORKS BECAUSE

THE DESTINATION PORT (B, MEMORY) IS NOT A "FIXED" ADRS.
THE DMA LOAD COMMAND DOES NOT REALLY LOAD ALL THE WORKING
REGISTERS IF THE DESTINATION PORT .IS A FIXED 110 PORT ADRS.

;XX WILL BE EITHER 01H OR 05H TO CONTROL RDIWR DIRECTION
01H: 0000 0001

--TRANSFER
PORT B IS SOURCE (FDIO WR)

05H: 0000 0101
--TRANSFER

PORT A IS SOURCE (FDIO RD)

;CF ANOTHER LOAD COMMAND IN CASE FINAL DIRECTION IS PORT B -:> PORT A.

:87 ENABLE DMA
: ***

139

140

r
s/w

GENERAL
SUMMARY
SEE PACii£

!J.7

STAR,

SETUP HARDWARE: JUMPERS

S££ PAGf:'S g T l't2

SET pC TO PJ::SJRED ROM BASE (VIA JUMP)
INIT'ALI2..E I/O MAPPING RAM l=oR oN-CARD DEVICES

SE"E PAGtES 37 AND ~2.

IN1TJALIZ.E MEMoRY MAPPING RAM FOR SOCKET M¢

IN IT/AL'Z£' MEMORY MAPPING; RAM FOR OTHER MEMORV2 As

)N ITIAL1Z£ BUS MAPPIN~ RAM J DESIREP

SEE PAGt;"S 2..0 +85

INITIALIZE PIo PORT B

SEE' PA~£ 57

>----.;:;~
INIT/AL/Z.E. P TO PORT A
SET uP READY SELECTOR

IN1TIALIZ.E. PIO PORT A
>---~

SET UP BUS cortTROL (Be) LINES

SE'£" PAqES 4q. ~ 57

NO INn: FDIO CHIP
INn: DMA CHIP

INITIALIZE' OTHeR rio DEVIC.E'S AS DESIRED

No

SEE" PA(:iE g9

VECTORED

SIMPLE"

St::T lNTERRVPT MOPE 1 (IM1)
(ALL INTERRUPTS CALL 003&H)
"--___ --.. ______ -J. ;':".,

SEE:' PA~£,S 12."""" 131

SETUP VECTOR TABLE

SET CPU I RJ:: q.
SET INTERRUPT MOD£ 2.

(IM2.)
LoAD DEVICE VE;CTORS

SEC PAt;ES 52.+8Cf

ENABLE" INDIVIDUAL DEVICE lNTE'RRUPTS

SEE PA~~ 55

!:NABLE INTERRUPTS (1;1)

.j,.

BE SURE ROM (M0) INCLUDE'S PARITY A~D 'wRIT£'

PROTEcT HJT£RRUPT SE:.RVIC~ ROUtiNE (AT ¢~"I-I)

$~£ PA~E'5 36 92..

Po REST OF PROG,RAM

6,000 LUCK

USER CHECKLIST

SEE 'NO'VIDUAL SEC.TloN S OF THIS MAN VAL FOR
DETAILS ON EAcH lrE:M_

142

HARDWARE JUMPERS

A minimum of .hardware jumpers are used on the MLZ-9l (most options are

under software control). These jumpers will usually be installed once

and not changed unless the MLZ-9l is used in a different system.

Each jumper group is assigned a name. A letter des.ignation is used

within each group to indicate the location of a shorting pin. For

example, "J6-A" means install a shorting pin between the two posts on

either side of "A" at location "J6".

Name Function Options
~ CPU Clock JI-A 2MHz

(one required) JI-B 4MHz

J2 APU Clock J2-A 2MHz
(one required for APU option) J2-B 4MHz

J3 SIO Port A Interface
Install for RS-232 or RS423 I/F on SIO Port A

J4 SIO Port B Interface
"_ Install for RS-232 or RS423 I/F on SIO Port B

J5

J6

SIO- Port A Receive Data Clock
(one required)

SIO Port B Transmit Data Clock
(one required)

J7 Upper Address Enable

J5-A
J5-B

J6:"'A
J6-B

P4-B (D pin 17)
J6 output

P4-4 (D pin 15)
Baud Gen. A

Install to enable use of Multibus lines A19, AlB, A17 & A16

J8 Processor Priority
Install on highest priority board in Multibus

J9

JIO

Wait State Logic - Memory Type
('one or none required)

wait State Logic - Cycles
(one required)

JII Winchester configuration
Install for Shugart controller

Jl2 ROM type select
(one required) - See also J14

Jl3 RAM type select
(one, two· or none required)

J9-A
J9-B
none

JIO-A
JIO-B

ROM sockets only
All on-card memory
No WAIT states

All cycles
Opcode fetch only

/------------~

(~12-A J 2732/2764
J12-B 2716

JI3-A
J13-A,C
J13-B
J13-B,D
none

4532-1
4532-2/4164
4532-3
4532-4
4116

J14 ROM type select
(one required) - See also Jl2

- Jl5 Winchester configuration

Jl6 Winchester configuration

Jl7 Winchester configunation

Jl8 Winchester configuration

Jl9 Disable Parity Logic

~~~ 2732/2764 
Jl~~B 2716 

JlS-M Microp<blis 
JlS-S Shugart 
JlS-W WDlOOO 
None Priam 

Jl6-M Micropolis 
JI6-S Shugart 
Jl6-W WDIOOO 
None Priam 

Jl7-M Micropolis 
Jl7-S Shugart 
None Others· 

Jl8-M Micropolis 
Jl8-S Shugart 
None Others 

Install to disable on-card RAM parity logic 

J20 Winchester configuration J20-W 

J2l,22,23,24 Reserved for ~ffiZ-92 

J25 Winchester configuration 

J26 XACK response time 

J20-P 

J2S-S 
J2S-W 
,125-X 

J26-A 
J26-B 

WDlOOO 
Others 

Shugart 
WDI.OOO 
Others 

Fast 
Slow 

J27,2S;29 J27-B, J28-B, J29 J27-B, J28-B, J29 Normal 
J27-A, J28-A, J28-C Port A 
No J29 Tx Clock 

:f" 

Other Jumpers 

Ja Open if RS232 required on SIO port A and SIP A soldered in. 

Jb Open if SIP B is soldered in place and RS232/423 I/F required 
on SIO port B. 

Fe, FN, FI, FS, FR 
FP 

Floppy disk drive jumpers (8" or SJ.4"). 
See page 128. 

See page 144 for jumper locations. 

143 



PROCESSOR 
SPEED 

JI 

APU 
SPEED 

J2 

SIO 
INTERFACE 

SIO-A 
RE'CE IVE 

CLOCK 
J5 

SIO-A 
TRANSMIT 

CLOCK 
J6 

o 0 
A

O 

BI!l (Ll-MHz) 
A r:J(?f04H:r.) 
Bo 

J3 [:](RS232..) 

J 4- [;)< RS232..) r:J<SAM£ ASTx) ~(BAUD GENA) . 

P\ 

UPPER ADRS PROCESSOR WAIT STATE 
ENABLE .,J. PRIORItY LOGIC 

J7 J8 Jq J10 

~ ~ D~ o~ 

(ALL OPCOOES) 

ROM CONFIGURATION 

JI2 JI4-

~o ~o 

(2/32/2164- ) 

PARITY 

DISABLE: 

J19 

o 0 

(RE~OV!::) 

RAM 
TYPE 
JI3 

B 

AI!l [:lC 
D 

NOTE: JIl} J15) Jt6, JJ7, 4- JIS' SET FOR "S" OR 'M" (SE£ PAGE 70 ) 

JUMPERS Fe, FN, Fr.l FS (FOR FLoPPY DISK DR1V£TYPE:') NoT SHOWN 

FR, FP 

HARDWARE JUMPER LOCATIONS 

144 



Signal Definitions (PI) 

All signals are active HIGH or active LOW as specified in the table 

below.-A minus sign (-) following a signal name also indicates an 

active LOW signal. The listing is alphabetical by name and covers 

those signals appearing on connectors PI (Main System Bus). 

Signal Pin Active In/Out 

Name f State Bidirectional Description 

AO- PI-57 LOW OUT Address Bus bit 0 (LSB) 
Al- PI-58 LOW OUT Address Bus bit 1 
A2- PI-55. LOW OUT Address Bus bit 2 
A3- PI-56 LOW OUT Address Bus bit 3 
A4- PI-53 -LOW OUT Address Bus bit 4 
A5- Pl-54 LOW OUT Address Bus bit 5 
A6- PI-51 LOW OUT Address Bus bit 6 
A7- PI-52 LOW OUT Address Bus bit 7 
A8- Pl-49 LO~l OUT Address Bus bit 8 
A9- PI-50 LOW OUT Address Bus bit 9 
alO- PI-47 LOW OUT Address Bus bit 10 
All- Pl-48 LOW OUT Address Bus bit 11 
A12- Pl-45 LOW OUT Address Bus bit 12 . 
A13- Pl-46 LOW .oUT Address Bus bit 13 
A14- Pl-43 LOW OUT Address Bus bit 14 
A15- PI-44 LOW OUT Address Bus bit 15 
A16- Pl-28 LOW OUT Address Bus bit 16 
A17- Pl-30 LOW OUT Address Bus bit 17 
A18- Pl-32 LOW OUT Address Bus bit 18 
A19- Pl-34 LOW OUT Address Bus bit 19 (MSB) 

BACK- PI-23 LOW IN Bus Acknowledge. Used by external 
memory or I/O devices to acknow-
ledge a read or write request. 

BAI- Pl-l5 LOW IN Bus Available In. Indicates 
that the System Bus is idle and 
there are no higher priority 
processors requesting use of' 
the Bus. This signal forms a 
daisy chain when connected to 

: the next higher priority BAO-. 

BAO- Pl-16 LOW OUT Bus Available Out. Indicates 
that the Syst;~ Bus is idle, 
there are nq higber priority 
processors requesting the Bus, 
and that the MLZ-9l .does not 
require use of the System Bus. 
BAa-goes low,wh~I} ;the MLZ-9l de--
sires use of thei.Bus and the Bus 
is idle. This signal forms a 
daisy chain with another 
processor's BAI-. 

1.1" 



Signal 

Name 

BBUSY-

BCLK-

BRQST-

CBREQ-

CC-

00-
01-
D2-
D3-
04-
05-
06-
D7-

INTO­
INTl­
INT2-
INT3-
INT4-
INT5-
INT6-
INT7-

Pin 

# 

Pl-17 

Pl-13 

Pl-18 

Pl-29 

Pl-3l 

Pl-73 
Pl-74 
Pl-7l 
Pl-72 
Pl-69 
Pl-70 
Pl-67 
Pl-68 

Pl-4l 
Pl-42 
Pl-39 
Pl-40 
Pl-37 
Pl-38 
Pl-35 
Pl-36 

Active In/Out 

State Bidirectional 

LOW BI 

LOW 

LOW 

LOW 
LOW 
LOW 
LOW 
LOW 
LOW 
LOW 
LOW 

LOW 
LOW 
LOW 
LOW 
LOW 
LOW 
LOW 
LOW 

IN or OUT 

OUT 

BI 

OUT 

BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 

BI* 
BI* 
BI* 
BI* 
B1* 
BI* 
BI* 
BI* 

Description 

Indicates that the System Bus is 
in use. Inhibits any other pro­
cessor from requesting use of the 
Bus. 

Bus Clock. Used to synchronize 
BBUSY- and BAO-. Generated by 
the highest priority board. 8 MHZ. 

Bus Request. Goes LO~.when~ 
ever the MLZ-9l requires the 
System Bus for an external mem­
ory or" I/O operation. Used to 
implement an external bus 
priority network. 

Common Bus Request. Pulled low 
whenever any processor requires 
use of the system bus. 

constant Clock. Generates an 
8 MHz clock signal to allow 
external device synchronization 
where necessary. Active only 
on the highest priority card. 

Data Bus bit 0 (LSB) 
Data Bus bit 1 
Data Bus bit 2 
Data Bus bit 3 
Data Bus bi,t 4 
Data Bus bit 5 
Data Bus bit 6 
Data Bus bit 7 (MSB) 

Bus Interrupt 0, Port B3, bit 0 
Bus Interrupt 1, Port.B3, bit 1 
Bus Interrupt 2, Port B3, bit 2 
Bus Interrupt 3, Port B3, bit 3 
Bus Interrupt 4, Port B3, bit 4 
Bus Interrupt 5, Port B3, bit 5 
Bus Interrupt 6, Port B3, bit 6 
Bus Interrupt 7, Port B3, bit 7 

* The eight System Bus interrupt lines (INTO- through INT7-) may be 
treated as inputs or as outputs by using the' proper port specification 
to PIO port B • 

146 



Signal Pin Active In/Out 

Name -'- State Bidirectional 

IORD- Pl-2l LOW OUT 

IOWR- Pl-22 LOW OUT 

MEMRD- Pl-19 LOW OUT 

MEMt-VR- Pl-20 LOW OUT 

RESET- Pl-14 LO~l BI 

Description 

I/O Read Request. Indicates 
that the address of an I/O 
device is on the System Address 
Bus (AO: through A7) and that the 
device 'should place data on the 
System Data Bus. 

I/O Write Request. Indicates 
that the address of an I/O device 
is on the System Address Bus 
and the data on the System Data 
Bus is valid for an I/O write. 

Memory Read Request. Indicates 
that the System Address Bus has 
a stable memory address and that 
the data should be placed on the 
System Data Bus. 

Memory write Request. Indicates 
that the System Address Bus has 
a stable memory address and that 
the data on the System Data Bus 
should be written ·into the 
addressed memory. 

System Reset. May be used as 
an: input or: output. 



150 

WINCHESTER I/O CONNECTOR (P2) 

The pinout of P2 is arranged for easy connection of the MLZ-91 to 

any of the following Winchester controllers: (Only one may be con­

nected at a time) 

1. Priam ·'SMART" Interface 4. Seagate Technology 
2. Micropolis 1220 controller 5. DTC 
3. Shugart 1403D series 

P2 is a 60 pin connector on the Multibus edge of the MLZ-9l. Pins 

1 through 34 are used for Micropolis and Shugart while pins 35 

through 60 are used for Priam. 

MICROPOLIS 

P2 
Pin # 

2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 

32 
34 

Micropolis 
Pin i 

2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 

32 
34 

Source 
MLZ/Micropolis 

both 
both 
both 
both 
both 
both 
both 
both 
Micropolis 
MLZ 
MLZ 
MLZ 
MLZ 
MLZ 
Micropolis 

Microp6.lis 
Micropolis 

Function (Negative True) 

Data bit 7 (11SB) 
Data bit 6 
Data bit S 
Data bit 4 
Data bit 3 
Data bit 2 
Data bit 1 
Data bit ~ (LSB) 
Attention (ATTN-) 
Data/Control (DATA-) 
Read Strobe (RSTB-) 
write Strobe (WSTB-) 
Enable (ENABLE-) 
Select (MSEL-) 
Controller Busy (CBUSY ) 
positive True 
Data Request (DREQ-) 
Input/Output (OUT-) 

P2 odd pins 1 through 33 are ground. Pins 35 through 60 are 

not used. There are four groups of jumper posts near P2 which 

must be configured for "M" (remove all "s" jumpers). JlS, 

Jl6 ~ J17 and Jl8 must be set to ~'m". Do not install Jil. 



MLZ -gl 
P2. 

ANSl.tY ~oq-6o's"M 

CARD EDGE: 
CONN'CTOR 

C')NCUC:TOR ., ~ 9~' ____________________________ ~~ __ __ 
0 0 
2- I 

" 

MICROPOLIS 
1'2. 2.0 

CoNTR01..LER 
ANSLEY 60Q-34'5M 

~ .. cARO EDGE: 
CONN£CTOR 

l' 
0 

}i.". d~o p ~ N 
:~·l -:. .; ~ .. :; 

i) 

5' -' ; ; o ,t. -. 
~, 

1~~~--~,;---':-'~~~---------------------3~~------------------------------------~ r.. J.~ ", j . ~ ': 

Ji :. ' 

-c' 

HEURIKON COR P. 
MAt> ISo N J vi I'S CON SIN 

COPYRIGHT 'QSI 

CABLE MLZ-P2..M FOR ML'Z..-'i I 
CH£C:~£O: DAT£ 

'2.-11 

PRAWN: 

NCiiK 

• 



152 

PRIAM 

P2 Priam Source 
Pin , Pin # MLZ/Priam ,Function 

35 1 Ground 
36 2 both Data bit J' (Positive True) 
37 3 both Data bit 1 
38 4 both Data bit 2 
39 5 both Data bit 3 
40 6 both Data bit 4 
41 7 both Data bit 5 
42 8 both Data bit ·6 
43 9 both Data bit 7 (MSB) 
"'44 10 Ground 

"f.' 

-4S 11 MLZ Host Read (RSTB-) 
~.~ 12 Ground 
-47 13 MLZ Host Write (WSTB-) 
"lt8 14 Ground 
-49 15 MLZ Host Address 2 (HAD2) 
-50 16 MLZ Host Address 1 (HAD1) 
..81 17, MLZ Host Address ~ (HAD~) 
.-5-2 18 Ground 
..53 19 MLZ Reset (RESET-) 
--54 20 "Ground 
--55 21 Priam 'Host Interrupt (ATTN-) 
--56 22 Ground 
57 23 Priam Host Read/Write (OUT-) 

:s:-s 24 Priam Data bus enable (BUSY-) 
"59 25 Ground 
..60 26 Priam Data Request (DREQ-) 

Priam connector pins 27 through 40 are not used. MLZ-P2' pins 

1 through 34 are not used. For de'tai1s on cable arrangements, see 

MLZ-P2P diagram. 

The positions of the "~1" and "s" jumpers are not critical when using 

the ·Priaminterface. Do not install Jl1. 



MLZ- g I 
P-2 

ANSLEY 
60Q-601SM 
CARD EDGE' 
CONNE:CTOR 

LJ~----------------jB 

ro-=9 .... 2," 

~q ~I~,~~ __ ~C~O~N_DV~C_T~O~~~N~I~~ ____________ ~ __ , 

III "'~ ) 
I~ I 

( I 'oj t" " ,> \ r', , ':1& 
~ n'~~~6 ______ -----'2.-6-C-O-N-D-U-C-T~O-R---'RIBBON C'A~l.£7 ", " ,.,.' .'. ~~ ~PC~{", 

1-4-1~ --"-'--3~"----"] 

PRIAM 
"SMA RT" 

CONTROLLE'R 
c" :3M 
Ii;' .~! 3 Lf l7-10Ll-O 

? ~',j (.') ;~OCKE;'" 

CONNECTOR, 

CHEcKED: PAT£ 

HEUR1KO N CORP. CABLE /v\LZ-P2P ~OR MLZ-q, 
J,.v. 

2..-lrl 

MADISON) WISCONSIN 
DRAW),!: 

COPYRIGHT let 81 N~K 



154 

SHUGART/SEAGATEj;DTC 

P2 
Pin i 

2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 

C6ritiroller 
. "'~Pin i 

16 
.~4 
12 
io ('., 
:8 
! 6 _'" 

4 .'; 
i 2 ~. 

:.;. 34 
." 1~ 

;36 'f 
!38 c 

:40 
142 
,44 
,46 
;48 
50 

Source 
MLZ/Controller 

b9th -
bbth 
bptli 
bpth 
bbth 
bpth 
Doth .. 
both 

Function (Negative True) 

Data bit 7 (MSB) 
Data bit 6 
Data bit 5 
pata bit 4 
Data bit 3 
Data bit 2 
Data bit I 
Data bit ~ (LSB) 

Busy (BUSY-) 
Acknowledge (ACK-) 
Reset· (RESET- ) 
Attention (ATTN-) 
setect (SEL-) 
Direction (DIR-) 
Request (REQ-) 
Input/Output (I/O-) 

P2 odd pins l:through 33 are ground. P2 pins 35 through 60 are not 

used;_ A special cable is required to, connect the controller inter­

face' cable (which is 50 conductors) to' the MLZ P2 connector. Cable 

pins 18 through 33i, are not us'ed~;~:::jTCab1e pins l.through 17a~e re-
,; ~ . . . : . '-.. -" .: ,.1 ,~ 

versed when ihserted in the P2 • edge conn~~~or.. Cable pins'--:34 

through 50 are connected to P2'pins 18 through! 34. See the:MLZ-P2S 
. i I 

diagram for d~tails of the co~nector arrangement. 

There are five gr?ups of jumR~~_ .P9sts·-ne~.t.~.P2 which must be configured 
;' ••. , -'. .." r _ .. ' ..... '- ',,,. ~ ~ 

for "S" (remove all "M" jump~;rs). JIl, J15, J~6, Jl7 and J18 must 
be set· to "S". 



ML'Z.-91 
P2 

AN51..EV 6o~·60'S~ 
C Jo.."O £Ocs,E 
CON\I~GTOR. 

D 

L 
t 

NO,; : CONOUCjORS 1- " ARc FOLt>E P :'t 
! .. \.i 

To R!V£RSE ORDER WHEN 
c p.. \ M p, N <; \ N M \.1. -'l I ? '2.. 

r \' 
'; 

::: 
" ; '.' 

\ .. ...:.-~ 
r-, 

~,;. i K 
'0 

(;i 
01:,:1 (i) 

~~> 

·'t.";~.' 
,,\';~ 

, > 

h< (i 
,. ~ 

~ . . 

: Fot..t>S 

SJ..lU~ARi 
l4-c3P 

.. CON rROL.LE'R 

AWSI..£Y 6 o~-S030 
, T~~N\~\TIO"'" 

C.Ot-olN e.C.iOR. 

{ 

(It) 

/ 
/, 

1 
/ 

CUTTIN4 

(17) 

, _.. '-. I ~ 

". t~~ 

I' CONDVC.ToR,.S 
(C:VT 01.1")1 

i, 
f c;;; i-. 

.. (\,;,c KEt>: o"-r£. 
CORp. CAeLE" ML 1.- P2 S FOR ML:Z. _c\l,~"; 1'1 

MAC) I $'ON JV'I f $ C~N S.t N 

CO'YPI.l~"'''; ,qa, 

, .. F • 

.. j.t; 

l ~- , 



STREAMER TAPE I/O CONNECTOR (P3) 
: : 

The streamek"tape I/O connector is wired to conv~niently mate with 
.~ ~ f ' :" . ::~ •. ' .': 

the Arhh;i.Ye! C;o~oration Streaming CartriQ.~~"<T~pe'~~Controller. That 
j .:~, :'. .~ .~"~ ::/ ~ :, ' (', ~ •• : .-

controil~~ ;use~!a 40 conductor cable, h<:>~~iV:~r ).ines 1 through 10 

and 45(th~~~gh'-SO are not used. The retil<jl:~n:ing: 34 conductors mate 
1 -r··; ... '~~ " 

direct;ly withi~ P3, as follows: ' 

P3 ! Arch!.ve! Source ,'," ' __ -'-~~,=:",':"--~." 
Pin # ~n :.# MLZ/Archive D~saliption' 

2 
4 
6 
8 
10 
12 
14 
16 

18 
20 
22 
24 
26 
28 
30 
32 
34 

~ ... ·f 
.-'.~ 

d12 .. 
,~ 14'i 
-'~i 16"; 

;; 18 
::.~, 20' 
~; 22( 
:",2 A 
'f "'t:' 

26 

28 
30 
32 
34 

" 3~; 
38 
40 
42 
44 

both 
both 
both 
both 
both 
both 
both 
both 

MLZ 
MLZ 
MLZ 
MLZ 
Archive 
Archive 
Archive 
Archive 

Data! bit 7 (MSB) 
Data: bit 6 
Data: bit 5 
Data! bit 4 
Data! bit 3 
Data; bit 2 
Dat~ bit 1 
Dat~ bit ~ (LSB) 

On Line (ONL-)* 
Request (REQ-) * 
Reset (RES-) 
Transfer (XFER-) 
Acknowledge (~CK-)* 
Ready (ROY -) *: 
E~ception (EXC-) * 
Di,rection (:DIR- ) * 
no connection' 

. ~ .- . , .. ~ 

1 

All odd nUmbered pins on P3 a~e gro,und. Handsnake signals marked (*) 

utilize the DIP switch 

Signal 

ONL­
REQ-

RDY­
EXC­
DIR-
ACK-

and LED artay logi'c for;:lcon tro1 , 
l . ~.. , 

1 .. -.... I 

~ontrdl1ed/Monitored by 
,- 1 

LED ""1 1 (01) 
,LED ~: (DJJ) 

:nIP Switch 1 (Giroup 1, 07) 
iDIP Switch 2 (Group 1, D6) 
DIP Switch 3 (Gtroup 1, 05) 

DIP Switch 4 (Gxoup 1, 04) 

See page 73 for discussion of this' interf~ce. 

156 

l 

as follows: 



f,4LZ- '1 I 
P-3 

ANSLEY 
b09 -,:!q.ISM 
CARO eOGE: 

'CONNE.CTOR 

'\, 

D 

s ...... 

." '. 

c c ~. ~ \ .... ) , , , , 
-; 

'1 1 
Q) ", '.J ' ... ..,t' " . 

.' .• ~"" .. 'v-' 

't;7 : '1 0/; 

1--1 -, '''' >-
() U -" 

"": , , 
(. ~& t, ....... , ...• I 

" " 
, I- ~. 

)) -, 
111 q. 
C 0 ,V .;:,;""; ,~ \:. ;~) 

• ~,l ;-, J.C~ • f~ 
~. ( 

1'1 : ... ~ t, f· ... ; 

............ ,. 
() 
.,.-

,~' 

\..e ;!) 

;.<-", ~ 

. ) '.o"<!'-

" 

#~., ~~.-,'" ~;.~ 

! ;,: - ,;. ~'"i 

:;' o i.i' 
!- ' 

;0 

,-1 I"'" .)! 0 i! i" , 
,;"" !-3ij /4,PND;ciC1;PR RIBsoN: l¢AaCE':' u, 
C1 (.,4 : ;": ~::~' v ~~~ C'" Jy-;,j t,"'~ ~~:{ 'r J ...... .: ("~ 

10 o,,{ 
~ '" . ..,. 

\.,.;. :.: t > ~.~. L!. t ~ ~ .~. t~ .. 

t~ t;: E~: ~~~ r:', ~( rl: s.: 
'I t;) 

• l- f ~'i 
; !. ~J ~: 

~~. } .. ,,: ( ~ 

/:'1 ;: 
t.~~ (~ 6 6 P£N 
i'~. , I; '; : ", 

D 
c 

1- I 

10 
II 

,~ .. - .. 

'.) :.1 

;AR'CH)V',~ 
'~' DCRlVE ~~ 

ANSLEY U 
l.Oq ~'so_'f5M' 
CA'R tt ~tt~ E -\. 
co N N,:I:C T~ ~ tJl 

;iJ ~:", ~I iii 
1-< 4-

1·~ i"" 
. ...; (I) I..iJ (~~ ~., 1 .., 

j .. ~;' I 

: .... r L~ :.....l 
:.~1;":1 i' ~.~, ,i\ 

~ ________________ ~~ __ ~r~.~~r~ ___ ~~~!~·~~'_' ____ 36/_' ____________________________________________ ~ 
!r; ~I .... j 

", 

: . .rJ 

C. 

H EU R 1 K 0 :N: .eo:,' G-QR ,p, .... :4 .. : ·~··..,,··~:·,f·;~ ... (.",~,.. 

M/tb, SON) wISCONsIN 

copy Ft.1 6 H T I q ! I 

CABLE; MLZ~P')N ,F~R. ~LZ,-q l' 
c) i' . ,_ , , 

STRE:AMER TAPE" t/O <' :) 
i : . ~ ~: ,r' .-., 

·1 ~L 

I '-"1 '\..~. 

. i :..., 
;~ ;:1 
~.-' ill 

C.HEC~ED: DATE 

'2.-" 
ORAWN~ 
~~K·<· (' 
,. ~ ...... } ~:'-'L 



~--~.- -----r'--~--·'·--·-r--'·-·----, ... - .. -· 

SERIAL!I/O dONNECTOR (P4) 
) I, L! I 

P4 ! 251prn~ 1'D" RS232 , MLi-91 
Pin 1I '--finJiCircuit f;'~§or~e 

3 ~ BA ~N 

)'} Q" 

S! 91l~1 "'t> 

;: ~ ~~ ~j (~:~ 

5 ,_~_ BB ~ 

7 4, CA X 
9 1 CB 
11;6 ---c€-
13 -1 '_ !A~~ 
2 ~i 4 !~'~-::-x: 
4 ~51~ DB 
6 :~615 X 
8';L 7 ' DD 
10 -;18 
12 ~19 
14 :~20 CD X 

20 ('"2 
22 ;3 
24 4 
26 :5-
28 ,,6 
30 ,..,7 
19 114; 
23 'i16 
27 "18 
29 --19 
31 ~2d 

, ' , 

(1) 
r-f 
cd 

~ 
C,J...4 

BA 
BB 
CA 
CB 
CC 
AB 

CD 

X 

X 
X 

X 
X 

T~a:n~~ift~ Data (From Port A) 
M<ieti~"'Data (To Port A) 
Request to Send (RTS) 
Clear to Send (CTS) 
Data Set Ready' (DSR) 

=Srgffa:t:· nr-eund ;- -- '. - . 
~1iS:4~2'i:-:~wr.a,;rt'smi t<Data :(..;.) 
T~ansmi t-= clock ,._L., __ .• ", ,. 

R$422 T~ansmit Data (+) 
Recei ve clock '1: 

R$422 R~ce~ve Data\(-) 
R$422 R¢ce1ve Data ~(+) 
D;ata Teirminal REady: (DTR) 

i 

Transmit Data (To Port B) 
/Receive Data (From Bart Bl/ 
f, \ J 

Reque~t to Send' (RTS') ./ 
Clear/ to Send (CTS) \ / 
Da tal Set Ready (DSR) '\' i 

Sigrlal Ground I 
RS1'22 Trans~ t Data ~(- (To Port B) 
RS422 Transm1t Data <t), (To Port B) 
~422 Receive Data (- /(FromPort B) 
RS422 Receive Data (+)\ / (From Port B) 
D,ata Terminal Ready (I:l1rR) 

d 
1 

unsp~cified pins arE! not connected on ttie MLZ-90 board. 
. - . :1 I I 

;; , .-- i ' /1 ; 
Notethat-~ ~e ~rrange~~nt of lthe Q9nnecti<j>ns relative to the 34 pin 

connector': CF4) 'allows~the 34 '~~ndu~tor cable to be split in th¢ middl~ 
to bri~g J::h~ _~l'l0 port~ to se~a*a t~ 25 pin! connectors. P4 pins i 1 and 

, • .1' ,"' I 

18 connect to pin 1 or the r~srec~ive ~cpnnectors. It is recpmmended 
, ' .. " ',.., ,-' ! 

that, pin 1 on both cohnector',$ l(pr6tectiire~~Ground) be brought directly to 

chas~is ground{thes~ two pirisl ar~ not~q~ected on the MLZ-90!). 
f Xl ~ 1 : -,- .. --

"';: 1 • 
:.; ; 'j) 

Port! A (first signal Igroup) ~~ donnected,t~ make the MLZ-9l 190k like, 

a "Data Terminal" while porJ~, :t~econ~~~s~~al group) is connected as ! 
1 V ~ '= ~. i.::' 1 ;;_ !, 

if' it were a "Data S~t" exc~~ ~~r th?~R$.f,22 signals which ar~ not part 

of the interface spe<;:ificatiot;l -fdr RS2S2~ Pins 14, 16, 18 ancp. 19 are 
,! i 

the;RS422 signals an~ should not be connected when using an RS232 or 

RS423 interface. 

RS232/423 level :_j __ ,.S.tate 

158 

HIGH. ___ , _____ . __ 1:) ;~·~:':::-~-:::C6n€roT::'·~ ignals : TRUE 
-.. -'---·Dafa.:'--- 1(= or START BIT 

LOW 

" ''''", 

Contro'r;,Signals: FALSE 
.oata::-: ): or STOP BIT 



,­
~ .. 

: ... '1 

.-1 
M" 

,.,- ;l';> 

~.'),,. Of i .. ~ ~\.:-'" 

;8 o:y ~lK O~N-' 1-, t·ORP.~· ... 
'.'!...$. h· 

I ,A,.\A.P I S ~:NJW I SC ON SI N 
(. Vi . 
:~OP.'(RI ~Hi 19 S' 
0. \.~ ,'\ 

('1 h 

'}"-.• 
\ •• > 

..... -" 

, ·S··IOA 
,~-:. A~St.'EY; ,"0" 

h i, CON N ECrrOR. 
~ ,;:' ~Q'f)- ~~:e 
h i~; (~:MA L E ~~-. 
U ;q ~ t-J r~·} 

., S'O~ ~~ 
AN-SLtrt:; ~" 
c:.ONN£~16~ 
~09- 2.~S 
(F'£MALE) 

1 ~ .. :' 



t: C:J 

160 

Description 

DIO 1 (LSB) 
DI02 
DIO 3 
DIO 4 
EOI 
DAV ::g r- -r ;--;1 
IFC! Ii . ---~r:--
SRQ ~-

ATN I 
Shield (G~ound) 
DIO 5 ! 
DIO 6 I 
DIO 7 
D10 8 (MS~) 

:~und I 
Ground II 
Ground 
Ground I 

Ground I 
Ground ! 

Logic GrouIjld 
j 

l 

standatd connect9r 
I 1 

of P 5 connects 



MLZ .... 91 
PS 

ANS\..EY 
609-2.615M 
CARD E:OG£ 
CONNECTOR.. 

. , 
\.'"1--

LJ 
0 t" t)' r 

8 
iJ i 1 ~? :~~ ;, ~. 

Ui ;, 
.J (" j 

;"\/ ,",. ("'j 

a a 
~ I~----------------~----~--~--------~----------------------------~r 

GPIB 
IEEE -4-88 

') 
C{. 

~.:{ '--
~ U :::l 
,'-.!~ 0 o ,) I) tv \-;0 
!~ 

~,.. ,_.... , I J.... ~ 10..1 -, , f'" .'. "'.~.; 

!.-:) y' J ~.r) 1"'j vi r-', ~-." }---. ~-~i h i--', ~.- , i-, } .. .., ~~".~ ~ ..I 

2~ C.ot-lDUCTOP. RIBSON CABI...E 

12/~----------------------------------~~ 

i -~ 

.. ,-t; ''')1 CU 'D- V 1.:; co (:.' ;: '! 0 r'; i··, !J ~'i n.J ('i h CHEC: K£. -:l %T E' i g) 
i1'\ ECU R \ K'bVt{) V'CO-R P> j-- i CASt: e:-·ML"Z.JP>~N·\F}·o~-)MIJ'!..;9 l1J r"} h ! P ;.ea.- ~\( 

l, <.+ . JM I:' i rr : 

!, ~A8IS0NJ WISCONSIN ...:, DRAWN: :~i 

2. so~~~.\eHT Iq~1 N'GK i.!:.:! 
I' ..... ' 



162 

F~OPPY I DISK I/O CONNEC'i'orf(1?6T-

I 
The ~1hZ-9l supports standard 8" drives or the smaller 5~" dr~ves. 

T~e connector pinout is s~i1~_~,er the two drive types. 
"1 C,F 

PG ~in i 
'-0 

8" ~in t Signal Name (8") 

all odd Gr<lund-~",;:? 
! (::) \!-

~4 Si4e sci~ct 
I 

Loa~-i8 Head 
! 

20 Index- I 
1 

I I 22 Re~dy- ! 

:24 
i 

26 Drive Se!lect Jf-
i 

sieet 28 Dr/ive 1-

Dr[ive 30 S ect 2-

D~ive 
j 

32 Select 3-
I 

34 Djrect~n-
36 S ~ep- 111 ! 
38 W~fte~~ta-
40 .-. q 

w~J.~e~G,te-

42 
'. 1 .:S: I 

TrackJtfl-

44 
;. flJ I 

W+J.te:'QProtect-

46 R~W D~t~ 
48 

50 

5~n Pin 

~ 
2: 

i 
4 

6 
8, 

I 

j 

10 
~ _. ~ 

lC2 
! 

114 

~6 

~~ 
~2 

~4 
t 

}; 
~cf 

t~ 0 

,~ 

t 
I 

Signal Name (S:~" ) 
I 
I 

(DS-~ot used) 

Ind~x-

Driv~ Select ~­
DrivJ selec~ 1-

DrivJ Select 2-
! 

Motof ON- I 
. ito i 

Dl.re~ J.on- I 
! , 

Step~ I 
Writ~ Data~ 

I i 

Writb Gate~ 
I I 

Trac~ $J$J- I 

writf prot~ct­

Raw!Data ; 

Sid~ select. 

Even numbered ~ins n1t listed above iFe not connecttd. 

The connector Jinout liS directly comJatible with mahy commp;~ n 
I ~ 

drives, e.g. SqugartjSA80l, SA8S1, Si4l0/460. 
I i ) 
~ r'-'~l 

There are four-:-jump~rS=Whieh'-mus£l5e-':;~et according __ .t,o the; 
I 

drive type (8" or S~") being ~sed. See page 128. I 
" 

ft.! 

I j 
Cable specifications are s~~~ on~:.}the next pages for both; 8" 

and 5~" drives. 



t 

0' . 
I,,~~ 

t 

1 :'--';. t, ... 
,..'"'" " 

Li, 
... 

-:. 
~"~~ 

U ,' .. , , ,'" 
~"" 

:('-! 
i~ 

, 
() U :" , 

~fl 
t; 

t:: Ci ~l j (L. (f.' (f, fl,) i 
t) .. :.]) 

~-! i,!; I I~ ~ I h i-, l-l ~ ... 
!i.ii .,' 

t.I-
r.~ 'j 

R5 i)) 0 ~ lD IJ> IJ) IV ~'"' 

G C~ (') jZJ ;.::) ro" 0 Xl ru N ": {U !\J 

c, 
('U 

4- ..... 
ij) .... ::.., 

0 f· ...... ~ ~ .... ~ 
'i 

.. Q .... 
; ~ >-, 

)) 
.~ U> 0 <: 

h r< t{) 

0 tTl L; tr' ~ h· lJ) ~ l,!, h· 
V't t:, t~ 

, :! 
b " h t! i ~ h 4- t,· 0 :~ 

I~ ~~ 

ili C\) XI ...... I'';' (lJ W ~ 0 ;'0 L L 
,~ 

t') .1) 0.. ~ 

jh. '-~ 8 

(j) tv i,l- ~ 

i CD ru 

to ' i h· 0 3 
,~ 

'J, :?: () 

(:r r ~ 1 

"'" (~ () 0 

5-
oi, ... (, 

l. 

0 W. 

tJl ~'J ) 
I~ $' 

,.Ci 
~ 

I~ 
(4.. ~ 

{4-

0 

;0 i..iI 
ed~Duc"'odl 

t~· (J) 

/Jl 
,"y 

.... (lj ....... 

(q 

I ~ <..;.. w 

... - ~ 

<; 

,.~ 

L4-
(J) 

I~;" 

FDI~" 
}-.4 

MLZ -9J ~ 

!(U j..{ 

:1 t" h 8. 
tJI 

)' 

ANSI..E..f 

P6 '..~. IXt ru I<~ ;;) co ."1 m 

60q-S~F '. 
ANSI..EY 6~q .. SOISltt ~ 4-

CO 
:(J.J 

EDGJ t\) 0 0'\ , , 
I 

h 

CAA.O rCj tD i!) 
J M V) h £J ...... tJ1 I~ 

CON N E'C,.O Ii.. ~ '" :,.f w.. 4-
:: 

~. K /: 
(lJ h, h h· ~J 0 Col, '+ 4- 00 en 

;0 0 tr' r·~· U) I V ~; v ru ty 

\.£l (~ 

00 h 4- ~ lD if) U> 
Q 0 

Ii.. , . .< 
~ CU q 4 

rD ~'J j) 

I~~ 
1:11 ro ..,. 

tii tn ~ -, q. lJ. ttetiN C!JcAil£' (\) 0 !~ i'J . i~·~! 

ro ~!-. 
~ !;"O eo t.JDIJCTdR. 

~ 4- 1"'-, 

""- ,.J 
0 (l) ~ (i) {f} I 

I t.: C'J I"" 

~ •. 1. 

I ~" 
10 

('I 
rv 4- () 'w. 4 ~.Q 

0 4-

h· . ' 
~ h· til ~. ~ .. tV 

!1;1 ~ ~-l ILl 

1-' l! {) 
.. :!'2~. 

I') h· 0 
In 

(ii 
~ :!! 1-3 ~ ~ ('J Q ru ~. ~ ;.0 

':V U ::: 

.a 1/ 

(~ r-;' 00 t::: ~ tJI 
iCU ~ t:: 1-;'1 

H -- 0 • 0 to 

0 (\J I 

h- I-V ''0 4 .\ 

W. !~ 

j..-.;. 

!'-\ 

I ' 

je.4 0 ~ ( , 
Ul 

v j-, !i-\) 

',/ ~}' q) 
~ ili {j) '!I 0.. 

tt' to IH 

.~1 ..... ~ ~ :-, 

~\r ~~ ! ' (...: 

ClJ ~ ~'1 ~.'\ ~ 
, 

~(.. ru 0 " 

CHEC.Ktp~ ~T£ ! ... ' 

,.... 

,.,-, 

rlJ III tlJ t.9 I.D !J 0 '.i.I 'V' V) c> co OJ 'P VJ 0 CD OJ 't-' Vi c' 00 0 :-~-r "C! 

r:, S ~ .q ''', f"i le'J> 

'HEt7URIK~ON fr) c'b FfP. (Y; vCAaL £> MU1.~'P8~ JI-1 ~~~ 

C'I ~N I.,.", /"1' fiJ ~"'" . {Jj CD 

I f.:: (D C) 
&; trl ,4 ' , 1-4 ~ < 

I~ (') 
" .. t-< 

..... 
(J (Yi 8 b~ ."~'; 

il~ PRAWN: ~ ;..iJ 

>"-I 

MAOI SON) WISCONSIN 

COPYRI GHT lq 81 NQJ< 



CAB!. E' 
PA.RT NO. 

NO. OF NO. OF DRIV£ DIMENsION DIMENSION 
ORIV£S eONNtC:TOA$ MOUNT/Ne:. A. - B 

~ HORt%.6NTAL :to" 
'3 II '2.0" 

4- . ~..!L._ '2.0" 

1- 3 VEP-T/CAL.. //' 
3 '" 

/1 ," ," 
~ S " t/' 6" 

PAAW"l~ 

NGk 



1 

~LZ-CJl 
i P6 
i 

,bJNS\.EY 60Cl-S'OISM 
<fcR P6M CABLE)-

ANSL£Y ,oq-S<>M 

(r:oR P'M P .'~~~ .. AJ 

NO. of No. OF DRlV;: OIME'N'ION 1>11I\£N5'ON 
PRI"£S c::ow,..£GTORS MOUNTING A B 

r 2 

3 U II 

S " '-'~ .... ~-........,-." 

'3 V'~T/eA1. 

'+ 11 6 11 ,I' 
.!) II 6" ," 

-1·· .. -- ......... - i-' .-~-._Aot 

I Yt~ to; ! I 
I :)d '-;';,.:\: ; I 

I~----·-- t-
-;\.i 

'- .:~ i 

I 
i i_ j • .; . ~. ::~'j~~ ~~ :... __ 

10 C n 2 ~:..:: .. \-, t.. 'j e.;, r c! C. ! ,- 'tj' . l.,:i ~ 
'* D I Y-;f:li?! C >i .,d" CV K 8;: U>';, ,:::.t.: 

HEURIKONr·-~OR ~ <fB!tE MI.Z-P6I"Y"i P6MF 
'liiADfSON ~eQ1Jt5'*':"-- -~ _~a.~;Ml~_~\ ~~, L ) --' . ;---1 - --L:.'::~:' ---,... --

COPYRl ~HT Jq 81 

CH.tCK!O~ l>ATC 

- 2.-il 4ft.t--j 

I 
i 
I 
1 

J 
I 



POWER REQUIREMENTS 
+5 +12 

Base logic including CPU, OMA, CTC 

d.:.t rl:J i::~~=:r ~F ~i~~~¥r~F~o:r:t 9.£fl£..1 .rEVS • D:'9:Lt :: 

LEOs, DIP switches X 

;}F969-rac ......... 4' 'r. X X ..L.'-~, -.~ '''-' ...l.:) .... 8S11~:)r:..lil :;.G~;·j-···8.r.loq()·· ... ""1 (\VI ....... , ..... =t- C.1~K.-. .....,. r;r'\'f, .• S10 with RS422 I/F ~ \. . -~ ..... __ ,l .~ J._ -= ~':) . ., , I 

.. ic.'{ .3~sq :S:':~;:: 

-12 

,'S~O[ritiIORS2s2;Oja:4aJt\lI/1f~:,SfJ!2 If 1YIs.l::rq :rox :3 .~a£::> '.l\I X q<;q~.~ e 
~.n.~~.3~g.x~!!.lum;.Tcon~!-gu!"{1~ion (InCludi~~[FB¥t{t ftS~32 I ROM) 

Y.Y :' ,., ... 9j.~ ...... .fl.rtV 9:j15~)59G \...JTG\.:t:t6'QJd2 :tOI glus:') '1\1 
but, W1 thout APU I the P9~.l;" ;-~1~~en~2'Xg.f.fd'X.:t.n:';l:) 8~ q-1. e 

,q 992 h .sV".1::rft5::)~¥~lt.~;;m:.6.9-:!j'2 9J.. Ii ~pSo' ~tvt)~J. -:r\ _. 3.0 PJ!lJ?s $max.) 
.... !'!!) ........ - .'[, ..... ~tu . .b~) ~ ~..L jS,,. :r-, (;) 

.ee.! !)fsq~;yolj:~8~-a~3I,1?S._~.''''o(:t-~fW ,_ t:S\' 200 mra:,.·· (max.) 
r-rr.I'3:~T..... .:L"'~J_d.o.:::> :J. I .. i~"I-··.( e 

.. faI 9p.6q ~ VO~q .~51'":!#~ ~~ -:!<OtY.P91rfs~ r~L\I 50 'tfig-1F·) 
::}gLl.Q..~~Z. l09V i:~' b .,...., '\ . r ',' 

ENvJ.1:{Ul.'U"ll~;NT1ili~- .. '. "-'} )',a~::: \:·:::::qo.f3:. :t:o} 9'(d.6~ r-i\I fFlq-.U~ 

~i~~::tu~e\89Voi¥~ :~1c)d~~~~~sY~OI:t ~O:t s[d0::> ~\I 2~·8uq-··.{2 
~9f;!JI:.)[11: £~lds_Ll.Gv.5 2m~::l.t.t 9'!s~·;b"X3.d '::tsn.::t:) 

Pursuant to FCC Technical StiiJ~~~& OfJr ~'(i'mptifJi1.¥g Devices, 

section 15. 805 (In~::l~;it~~lfJ¥f'; ffig9f8:i:i:8ifJ~ notice is 
included: -:.tn:.60 9o.s1·:!9j'nl moj-a::~) 

8115il'::,;]'1'"1:::-":' It,H~' 

"Warning: This equipment generates ~., y.jr~.' .. :,andcan 
radiate radio frequency energy and if~h8tlinstalled 
and used in accordance with the ins.truct;ions manual{r q 

~¥..ictl~~·~ interfe~e~ce to redi~ <;o~~nfcationS£1;i.:A1IS' o~' ~ 
tempora:t1.l ynf>ernaHe~:r b91 <i-~gQ:t.a'f.l.lb'm:t .1J.tD.~~\ ~1 Qe@~",e;51 ~ 
~s.bedTi!iOZ'v~~l~w~it-h:. t~~ms f9 r Glass A 
aOil\Putiaqs~i~~.ppi.~~ ~fb;¥6 pafti~k~:~arl:· lSH\q'-) 
of FCC Rules~ iWP.~~~ ar~ d~s1gne 'to, pr·OVl.'dE!- reason: 
able protectl:1>it '~~~Sl!!linitil'p:b1~reI1Cf:f~~8: Oper~3R~ 
of, thi~ equipment il!- a r7si~A~)r~Jilir~rr~r!J).ik7ly to 
cause 1nterference 1n which case·{llilie u~~>"at .hl.s own 
expense will be required to ta1a!t:whataN@:!~Iqeasures 
may be required to correct ~mti~~t~~f1£3~~~)" 



ACCESSORIES 

The following items, available from Heurlkan, ~ bet~~ci~.A'lith the 
MLZ-9lA: 

A. HARDWARE 

91"';P2l-1 

X 
91-P2P 

9l-P2S 

;~i -~'~iK£' 
. fIT) • }':".' ~I 
91-P4N 

,,i':a) • £:. .;";1 
9l-P5N 

X 
I/F c~le for Micropolis-type Winchester cont26¥lers. 
See pa~e 151. 

~I/F cable for Priam "Smarir'\IWID~lRi$£ef'~~o1ii:.tQld:e~. 
. ~~flr PB¥ar.r 1~~.r." ~ .. r t" .... !II·) .. t .-

'IiF ~?h.i~ !~r :sh~qart/~4c7§~~g~~~~w1:Wak~1§t~e~{~~ 
contro~i~r'S~rt-1§~~.r,~e 1!f5(Jq .9rf.:t \ U<IA jUO!~'l-w :tud 

I/F ck'i~:J~o<¥~JM:cl1i~e stream~.:1-Tay>e2tlrive. See page 157 • 

. I/F cab1~L4-br~~'~~IEEE-48aJ:tio'f.)~1?age 159. 

. I/F cable~:¥&r ~ ~rial po:.~.:t;.':ov see- page 161. 

9l-P6H I/F cable for floppy disk (8" drivesl~V1~,'fifu)fl~r::L 164::'>·.,: ~ 

91-P6S-5 I/F cable for flO~P~;~~;p~of5~" drives)-;--S'ee-page 165. 

Other hardware items available include: 

B. SOFmARE-~. 

~~~b?p·~MO ~~~~~~~;:;,~ 
~.~~el-l.~eo~ c~l~ assembi1es

... '11, ·,lu:I'IO'J. £OIL::; ." D[lLlsdi; - . -
Custom interface~cards

CRT terminals
. rIs"f~ s ~ ,~ ,~Jt·. 1;"

ZRA~n-'9l.;;.<m/!4f::!lOJlitQr[~~~~~.pIOroutiDe.S_ ana ,C!')/t-1: boo't.strap (in ROM).

CP lMe1. ~~~1R+'&.1~#~ dlst . ~~~~~ wj<tJi:t ec;1itor,
-f!C2~-;)~,:Y~~ ~i~;~.ff~~~~:t and !ift::1.~1.~~~aus-.{1llrl) dl.skette}

otl\:ero'I9qO B~O~:.dnte~En::ftJ~nd comDiler:

I ~~~b.Q1rtili¥~s ./n ..i.._., , --:;>;.. , .':)2.6~
~ 8OJ\m$emb letrs 'j-
~BJJ~6&1~rdi;/ta1ii~~3

Complete development systems are also available which consist of

dombinations of the above hardware and software items. F(!)r a com­

plete lis-t of hardware and software,' refer to ti:.e Heurikon Product

List or consult Heurikon direct.

I

I

heuri~m corporatim

Copyright 1981

"ZRAID-91" MANUAL

with support for the

CP/M Operating System

. .

<#~ :. ,,:'
~... 1

. .

~

~ "- ., L: ~ ----~ - -

4/81 Version 91-1

Revision B

HEURIKON CORPORATION, 3001 LATHAM DRIVE, MADISON, WISCONSIN 53713 U.S.A. (608) 271·8700

...

Conunand Summary

Getting Going

Initialization State

Command Descriptions

Memory Commands

ZRAID-9l MANUAL

CONTENTS

Transfer of Control Commands

I/O Commands

Floppy Disk Commands

Program Debugging Commands

Mapping RAM Commands

Other Commands

Special Commands

Error Correction

Troubleshooting

Register Display and Alteration

Parity and Write Protect Logic

Baud Rates and Bus Position

CP/M System Considerations

Diskette Configuration

Entry Points and Links

Disk I/O via ZRAID

Disk I/O Error Types

SIO Port Connections

Octal-Hex conversion functions

Enhancements - AUTOBOOT/AUTOSLAVE

Drive Configuration Chart

1

3

5

8

9

11

12

13

15

16

17

18

19

20

21

23

24

25

28

30

33

34

37

38

39

40

CP/M is a trademark of Digital Research Corporation
Rev B

Command

Hnn

Lnn

Snnnn

A

Z

w

.nn

I

D

G

P

Pn

N

*

C

Cn

J

&

y

Fnn

1

ZRAID Command Summary

Function Example Reference

Page

Set upper eight bits of POINTER Hl~

Set lower eight bits OI POINTER L24

Set POINTER (both Hand L halves) SlE34

Print POINTER value in H, L, format A

Print POINTER value in l6-bit octal Z
format

Print contents of addressed location W

Set addressed location .13

Increment POINTER, print location I

Decrement POINTER, print location D

Set/reset auto-verify option G

Print - 32 lines (8 values per line) P

Print - nn lines (nn in hex) P2

Read the AUXPOINT in l6-bit octal N

Transfer control to POINTER address
via a JUMP *

Transfer control to POINTER Address

via a CALL (User stack)

CALL using ZRAID's stack

Indirect CALL

Transfer control to AUXPOINT via a
JUMP

Return to user's PROC CALL

(Apostrophe) CP/M Bootstrap

Input from I/O·device L

Output to I/O device L

C

C2

J

&

y

F12

9

9

9

9

9

9

9

9

9

10

10

10

10

10

11

11

11

11

11

12

12

12

a

CNTRL-V

Rn

~n

U

=
@

B

T

K

x

"

E

/

Set disk track (H) and Sector (L)
value

Read from disk (Load)

Write to disk

Print floppy disk error counter
{also exit from CP /t-1 to ZRAID)

Insert a RST instruction

Force another RST instruction

Remove the last RST instruction

Set memory mapping RAM

Set I/O mapping RAM

Set Bus mapping RAM

Transfer I/O between TTY and CRT

Set/Reset Echo flag

Set/Reset octal/hex I/O mode

Set bus control mode

Blink LEDs

Initiate Multi-user mode

(Minus Sign) Enter Slave mode

Cancel previous input

a 13

-(13

-) 14

H152/ 14

R2 15

iL 15

U 15

=FF 16

@7 16

BF~ 16

T 17

K 17

X 17

"3 17

E 18

18

18

H152/ 18

Line feed and rubout characters are ignored. Underscored

characters are operator inputs.

All commands except "/" must be followed by a space or a

carriage return to cause execution to begin.

Note: The examples above and those which follow in the text use

HEX numeric values which is the power-up default mode. These

commands also work in octal. Use the X command to flip-flop

between modes.

2

3

GETTING GOING

This section is an outline of the minimum work necessary to

get the MLZ-9l "on the air":

Items required: (See diagram)

MLZ-9l Microcomputer Board

ZRAID-9l Software Monitor program (ROM)

RS232 Interactive Terminal and cable with male "D" connector

MLZ-P4N Serial Interface cable and connectors

Power supply (+5, +12, -12, volts)

Card Rack

1. Insert ZRAID ROM in socket M~ (See diagram for position
detail.)

2. Install Jumpers as follows:

JI-A (2MHz clock)

J3,J4 (SID I/F)

J5-B, J6-B

J7

J8

J9-A, JIO-A

J12-A, J14-A

J13-A,C

(SID Port A Receive clock)

(Upper address enable)

(Processor priority)

(Wait states for ROM)

(ROM type 2732)

(RAM type) (Assumes 4164 or 4532-1)

3. Connect console terminal to SID port B via MLZ-P4N cable
and P4 connector. Use the female D connector on the cable.

"D" Pin #

2 Data from terminal

3 Data to terminal

4-5 Jumper (RTS-CTS)

6-20 Jumper (DSR-DTR)

7 Ground

4. Set baud rate on terminal for 9600 baud.

5. Set terminal options, if available, to 8 bits, no parity,
two stop bits.

6. Apply power to MLZ-9l and terminal.

7. Activate RESET (momentarily ground Pl-14)

8. ZRAID sign-on message should appear on terminal.

9. Consult ZRAID manual for further details. ZRAID automat­
ically sets up the MLZ-9l mapping RAMs and allows access
to all memory and I/O devices from the terminal.

TERMINAL

A~
Bo

JI

~
J7

~
J8

sro poRT B

J5 Jf>

~A~A
l.Qj8laJB

FDro

PG

P\
MULTIBUS

~--1 pow ER. 5 U PP L-Y I---ii----~

\
J <:f J 10
~c ~c

A B A B

(FoR PRINTER)

" II
25' PIN D
MALE"

SIO PORT A

MLZ.- P4N
CABLE ASSEMBL-Y

TAPE:

AS

J'1..

P"3

JILt
@:9Jo

A B

ZRAJD-91
ROM

MLZ-91A WITH Z.RAID - SETUP DIAGRAM

4

5

To load the CP/M operating system, follow the above steps but

also connect a floppy disk drive to P6. Set the floppy disk

configuration jumpers for "8" or "5" as appropriate. After

turning on power a:ld resetting the system, insert the CP/M

system diskette in drive "A" and enter apostrophe space on the

terminal.

ZRAID-9l Initialization State

The ZRAID-91 monitor initializes the mapping RAMs and on­

card I/O derives as follows:

A. Memory Mapping RAM (See diagram, next page)

ROM socket M9 at CPU address F.9. (hex)

On-card RAM allocated from address ~~~~
through address EFFF. l

B. I/O MaEEins RAM

I/O Addresses Assisnment

ff thru 3F Off-card

4$f thru 7F Off-card

816 thru BF On-card I/O Group A (e.g. Baud Gen)

Cf6 thru FF On-card I/O Group B (e.g. eTC)

C. Bus Mappins RAM

If DIP switches installed:

Board is assigned to the bus block (f6 - F)

as specified by switches 5, 6, 7 and 8 of DIP switch

group.. Otherwise, the board is assigned to block

16 (default). In either case, all board operations

are enabled (i.e., Memory RD, WR and I/O operations

are valid.)

D. SIO Baud rates:

If DIP switches installed, the baud rates are set according

to DIP switch group 1 as shown on page 24. Otherwise, both

SIO port baud rates are set at 9600 baud (default).

Note: These vaillesrnay be modified by special ZRAID commands

or the initial values may be changed in the ZRAID

ROM.

CPU ADRS SPAcE
0000

(iJ. KEACH)
FIXED VAR \ABL.E'

)000

2.000 fv1).PP / N Ci RAM

3000 BLK 0 7E
BLK I 7D

1.\-000
\.u BLK'2. 7C

5000 U 81- K 3 79

<:! B~K 4- iA
~OOO 0.. eLK S 7q
7000 lI) BLK 6 78

gooo
~

BL.K ..., -'7
61.)< 8 76

qooo <1: B l..K q ,s
AOO cr Sl...K A 74-

S1..K e '73
8000 ((BL-K C "72

W 61-K D 7' cooo
Ul eLK E' 7F

POOO ::l eLK F 00

EOOO ~MAP 'Z.RAlD RAM
Faoo

~RA'D PROGRAM DATA

E,,"CH LJ.K BLOCK of CPU ADDRC:SS SPAcE
ISCONTROLLED BY AN ENiRY \N THE MAPPING-'
RAM. THE DATA IN TJ-IE MAPPJN ~ RAM
\\POU~TS" TO AN ON-CARD ROM SOCKET OR

RAM ADDRESS OR TO AN OFF - CARD
MEMORY APORESS

4K)

ON-CARD

RAM
(bLtX)

(AVAIL)

Mf/J oN-CARD
ROM

Mt socKETS

OFF CARD ADRS SPACe
(I M£5ABYT£')

00000

NOT

ASSIGNED

FFFFF-

6

ZRAID

(It will kill bugs dead)

CP/M Version

Command Descriptions

All ZRAID (!-80 ~ealtime ~alysis and Interactive gebugger) commands

use the following format:

Xnnn

followed by a space. "X" represents a valid command character and

"nnn" represents an optional parameter. The commands are used to

set, modify, and examine contents of the system memory. The

parameter specifies address values, memory contents, and word

counts.

All commands must be ter.minated by a space or a carriage return.

After each command is executed, ZRAID types a prompt character,

">", to indicate that it is ready to receive another operator

input. The radix defaults to hexidecimal (but may be changed to

octal, see "X" command).

ZRAID maintains an entry in its data area called the "POINTER".

This is a l6-bit address value that parallels the functions of the

processor's Hand L register pair. Most commands in ZRAID use the

POINTER in some way. The POINTER is composed of two parts, called

"H" and "L", each representing eight bits. Some commands require

two addresses. For those commands another pointer, called the

AUXILIARY POINTER, or "AUXPOINT" is provided.

HEURIKON CORPORATION. 3001 LATHAM DRIVE. MADISON. WISCONSIN 53713 U.S.A. (608) 271-8700 8

9

Memory Commands

Command

Hnnn

Lnnn

Snnnn

A

Z

w

.nnn

I

D

Description

Set the "H" half (upper 8 bits) of the POINTER to "nnn".

The other half of the pointer can be set by using the

"L" command.

Set the "L" half (lower 8 bits) of the POINTER to "nnn".

The "H" and "L" commands may be used together to set the

POINTER to any memory address, or the "s" command, below,

can be used to set the POINTER in one operation.

Set the value of the POINTER to "nnnn" (all 16 bits).

This command combines the functions of the "H" and "L"

functions.

Display the value of the POINTER in "Hnn Lnn" format.

Display the value of the POINTER in 16-bit octal format.

Display the contents of the memory location specified by

the POINTER ("~hat' s there?").

Set the contents of the memory location specified by the

POINTER to "nnn". The POINTER is automatically incremented

to the next location (POINTER + 1). Successive store

commands may be used to set contiguous locations or enter

a complete program.

After this command is executed, the contents of addressed

location are automatically verified. If the location did

not store properly an error warning is generated (bell or

beep) .

Increment the POINTER to the next memory location and dis­

play the contents of that location.

Decrement the POINTER to the previous memory location and

display the contents of that location.

Command

G

Pnn

M

N

Description

Turn the auto-verify feature ON and OFF. In certain

cases the auto-verify feature may not be desired.

Examples of this are "memory locations" that are actually

ports for I/O devices. The auto-verify feature will re­

sult in the location to be accessed twice for every write

operation. Auto-verify is initially set ON.

The "G" command will also turn verify back on after a

previous "G" command. To test if the verification logic

is ON or OFF, execute a store command to a ROM location

(but be sure the location chosen has address bits AS and

A4 ON to prevent altering of the I/O or bus mapping RAMs) .

Print "nn" lines of consecutive memory locations, eight "-.

locations per line. If "nn" is zero (or not entered)

32 (decimal) lines will be output. The output may be

cut off early by hitting any key on the keyboard •.

Each print line will contain the starting POINTER value

plus eight values for eight locations, each preceded by

a"

Set the AUXPOINT contents equal to the POINTER value.

This is the only command which alters the value of

AUXPOINT.

Print the current AUXPOINT value.

Register Display and Alteration

See Page 21.

Parity and Write Protect Errors

See Page 23.

10

11

Transfer of Control Commands

All commands which transfer control to a location outside of ZRAID

restore the Z-80 internal registers, prior to the transfer, from

the "register save area" in ZRAID's memory area. To set the Z-80

registers to specific values, modify the appropriate memory locations

corresponding to the registers prior to issuing the transfer of control

command. See page 21 for a description of the register save area.

Prior to transfering control, these commands issue a "1" to the

display to indicate command execution.

Command

*

C

J

&

Description

Transfer control to the location s?ecified by the

POINTER via a JUMP instruction.

Transfer control to the location specified by the

POINTER via a CALL instruction. This allows ZRAID

to test a subroutine which terminates with a RETURN

instruction.

If the "c" command is issued without a parameter (or

with a zero parameter) the stack pointer register is

restored according to the value in the register save

area which must, therefore, specify a valid RAM

address. If the "c" command is issued with a non zero

parameter (e.g. C4) the stack pointer is automatically

set to ZRAID's stack area prior to transferring control.

Transfer control, via a CALL (using ZRAID's stack),

to the location specified by the contents of the

memory address specified by the POINTER. This is an

indirect CALL. The POINTER specifies the address of

the low byte half of a l6-bit value which is taken

as the desired address.

(Left arrow or underscore) Transfer control, via a

JUMP, to the location specified by the auxiliary point­

er, AUXPOINT.

Transfer control, after restoring the Z-80 registers, via

a RETURN instruction. This command is useful to return

to a user program following ZRAID entry via location
._RPROC •..... __ (.S_ee oaae 30.)

Command

I/O Commands

Command
y

Fnnn

Description

CP/M bootstrap. The CP/M system is loaded from drive

A. See CP/M System Considerations, page 25, for

details.

Description

Input from the device address specified by the low

half of the POINTER. When this command is executed,

the H half- of the pointer appears on the upper CPU

address lines to specify a memory mapping block

address, as may be required for off-card I/O

operations.

Output data "nnn" to the device address specified by

the low half of the POINTER. This command also

places the high half of the pointer on the upper

CPU address lines. (This is done to facilitate I/O

to the GPIB, PRIAM Winchester or the system bus.)

12

13

Floppy Disk Control Commands

These commands allow access to specific tracks and sectors on a

floppy diskette. Drive "A" is used for all disk operations.

Command

a

M

Description

Set the starting track and sector values for the next

floppy disk access.

TRACK = H half of the POINTER

SECTOR = L half of the POINTER

Set the AUXPOINTER from the POINTER. This address

represents the starting location of memory data for

the disk data transfer.

(Left paren.) Initiate a floppy disk READ (load) oper­

ation. The "a" and "M" commands must have previously

been issued and the POINTER must specify the ending

memory data address. The correct sequence for using

this command is as follows:

1. Use "Hnnn" to specify the starting TRACK.

2. Use "Lnnn" to specify the starting SECTOR.

3. Use "a" to set the TRACK and SECTOR values.

4. Use "Hnnn" and "Lnnn" or "Snnn" to specify

the starting data address.

5. Use "M" to set the starting memory data address.

6. Use "Hnnn" and "Lnnn" or "Snnn" to set the

ending memory data address.

7. Use "(n" to initiate the read operation, where

"n" is a hexidecimal value as follows:

none or ~

6~

7~

Single density, 128 bytes/sector

Double density 1024

Double density 128

The "c" command will cause a data verification message

to be printed with the following format:

R Hnnn Lnnn - Hnnn Lnnn Tnn Snn ?

where "R" means disk READ (will be "w" for disk WRITE)

The first H,L pair is the starting memory address

The second H,L pair is the ending address

"T" and "SIt are the beginning TRACK and SECTOR

Command

Control-V

Description

If the data is correct, enter ":" to execute the

disk command. To abort the command enter any other

character (e.g., space).

An exclamation point {"l"} will be displayed on the

successful completion of the disk operation. Other­

wise, an error message will be displayed.

{See "DISK I/O ERROR TYPES", page 34.

(Right paren.) Disk WRITE command. Same as above

except data is written to the floppy diskette. The

same parameter setup procedures apply.

Print the running total of the floppy disk error re­

entry counter. This count value is reset at the be­

ginning of each II (tI, ")" or "'" command.

14

15

Program Debugging Commands

These commands are used to control breakpoints for use in debugging

programs.

Command

Rn

U

Description

Insert a restart instruction (RST~ to RST7) at the

location specified by the POINTER. The instruction

which is replaced is saved for subsequent reinsertion

later. (Verification is performed unless shut off by
the "G" command.) "n" may take on the values of ~

through 7 corresponding to one of the desired 8

restart instructions.

An error "beep" will be generated if an attempt is

made to insert a second restart before removing the

first, or if the restart failed to store correctly.

NOTE: A JUMP to DEBUG must be placed at the chosen

restart location, for example RST I at ~~~8H, in the

first page of memory. When the restart is encountered
during program execution the registers and flags will

be saved and ZRAID will become active.

Force a restart at the location specified by the

POINTER even if one has already been inserted by an

"R" instruction. Caution: It is easy to loose track

of excess restarts.

Remove the restart inserted by the last "R" or "$"

command. The value of the POINTER is not used or

affected by this command.

Mapping RAM Control Commands

These commands facilitate the loading of the various mapping RAMs

on the MLZ-9l. Whenever ZRAID is restarted, the mapping RAMs are

setup with specific initial values as listed on page 5. These

commands may be used to alter the mapping RAM contents. Refer

to the MLZ-91 User Manual for details on the mapping RAM logic.

Command Description

=nn Set the contents of the memory mapping RAM block specified

by the H half of the pointer (upper 4 bits) to the

@nn

Bnn

value "nnn". For example, to specify 4K of off-card

memory at location l~~~ (hex) do the following:

HI~ (block address)

=FF (map data for some off-card memory)

Set the contents of the I/O Device mapping RAM

block specified by the L half of the pointer (lower

2 bits) to the value "nnn". For example, to specify

I/O Device Group A to be located at I/O block 2 (base

aSH) do the following:

L2 (block address)

@7 (map data for I/O group A)

Set the contents of the BUS mapping RAM block specified

by the L half of the pointer (lower 4 bits) to the

value "nnn". For example, to enable all on-card

functions and assign the board to bus block "~", do

the following:

L_ (bus block ~)

BF~ (enable all operations)

Note: ZRAID expects a certain configuration of the I/O map

and memory mapping RAMs. If the I/O mapping RAM contents are

changed, ZRAID may not function correctly since the I/O device

addresses are assumed to be constant.

Consult the MLZ-91 User's Manual for the correct data values to

use with these commands.

16

17

Other Commands

Command

T

K

x

lin

Description

Transfer control of ZRAID from SIO port A to SIO port

B, or vice versa.

Echo all ZRIAD commands and responses on the other

SIO port. If the echo feature is already ON, this

command will turn echo OFF.

If a printer is connected to the alternate SIO port,

this command may be used to print any or all ZRAID

responses. For example, to print a memory dump, issue

a "Kit command and a group of "P" commands.

Switch the numeric I/O base (radix) to/from hex or

octal modes. ZRAID defaults to hex mode. (Note: The

"z" command always outputs in octal, regardless of

the selected base.)

Set the system Multibus control mode as follows:

Command

"

"1

"2

Function

Release bus between each operation

Release on any other board request

Release only on higher priority board

request

"3 Never release the bus

Special Commands

These commands perform special functions and are provided mainly to

illustrate certain features of the MLZ-9l.

Command

E

11

CNTRL-W 12

CENTRL-W 13

Description

Count in binary, display count value on the LED array

and blink the floppy disk USER LED. This command will

remain active until the next command is entered.

Initiate the MULTI-USER mode. This command demonstrates

the memory mapping features. To use, connect a console

device to both SIO ports. Issue this command from the

console connected to port B. Both consoles will become

active. To return to the single user mode, enter "!"

(with no parameter). (This command is not supported in

some versions of ZRAID.)

(Minus sign) Enter SLAVE mode. This command converts

the MLZ-91 to a slave I/O board for use in a multi­

processor system. The following state will exist:

I/O Blocks ~ & 2 = On-card device group A (lOA)

I/O Blocks 1 & 3 = On-card device group B (lOB)

Bus Block - Value specified by DIP SW group ~

(low 4 bits)

The on-card memory is also re-al1ocated to 100% RAM.

(Note: 64K of RAM is required for this command.)

If this command is issued with a non-zero parameter,

the memory is converted to 100% RAM but ZRAID remains

active. This allows temporary RAM changes to be made

to ZRAID.

This is a special command which will execute continuous

double density writes to the floppy disk for use when

adjusting the write precompensation logic. Note: This

command requires a parameter value of 12 (hex) to be

entered with the command. Caution should be taken when

using this command since disk writes are performed

which could destroy valid disk data. Use a "scratch"

disk only. Refer to the MLZ-91 User's Manual for details

on the adjustment procedures.

Same as above except single density.

19

Error Correction

If an error is made while making an entry, type "/" (slash).

The previous input characters will be ignored. For example,

LIS (no space entered as yet)

may be cancelled and the correct entry reentered, as follows:

LIS/ > HIS
-- \ -;;;;rrected command entered

prompt
slash cancels previous erroneous entry

Numerical errors may be corrected simply by typing the corrected

value. For example, suppose "HIS" is desired, but instead we type:
H16 (no space entered as yet)

the correct numerals may be entered as follows:

H16lS

In the hex mode, only the last two digits will be used as the

parameter for commands expecting an eight bit value (or the last

four digits for the l6-bit parameters). If the I/O mode is octal,

only the last 3 (or 6) characters will be used for the parameter.

TROUBLESHOOTING

1. System locks up following a command: The addressed memory

location or I/O device is not assigned or the addressed board

is not issuing BACK (bus acknowledge).

2. Memory mapped I/O devices are not responding to the store

command properly: The auto-verify feature is following each

store with a read. Turn auto-verify OFF by issuing a "G" command.

3. Program does not run following a transfer of control command:

The POINTER value or register save area was not set correctly

prior to issuing the command, or the user program at the

POINTER location does not function properly.

4. ZRAID does not issue sign-on message and does not respond to

commands: Terminal connected incorrectly or to wrong port.

Possible power supply or jumper problem.

20

21

Register Display and Alteration

When ZRAID is entered through "DEBUG" or "RPROC" the flags

and the contents of the primary user registers are saved. The

POINTER is initialized to location EE~~, (hex.) The flags

and registers are saved at the

Location

EE~~

EE~l

EE,02

EE,03

EE,04

EE,05

EE/eJ6

EE/eJ7

EE,08

EE~9

EE/eJA

EE~B

EE~C

EE~D

following locations:

Register

F (PSW flags)

A

C

B

E

D

L

H

SP-L (User stack pointer, L half)

SP-H (User stack pointer, H half)

IX-L

IX-H

IY-L

IY-H

Since the POINTER is initialized to EE/eJ/eJ, the content of the

registers can be output with a "P2" conunand as follows:

HEE L,0/eJ .ff .aa .cc .bb .ee .dd .11 .hh

HEE L~8 .sl .sh .xl .xh .yl .yh .xx .xx
Where "ff" and "aa" represent the flags and the contents of

register A, etc. respectively.

Where "ff" through "hh" represent the content of the flags and the

internal user registers, and "sl" through "yh" represent the content

of the stack pointer (low half, high half), index register IX and

index register IY.

To modify the user registers prior to a return to the user program

(via the n*, C, or E-" conunands), set the desired values in the

appropriate address of the register save area. When ZRAID exits

to the user program the registers and flags will be restored from

the save area.

The flag word is arranged as follows:

Z-80 FLAG DATA BIT

7 6 5 4 3 2 1 0

S Z H - p/v N C

where:

S = Sign flag

Z = Zero flag

H = Half carry flag (for OAA)

p/v = Parity/Overflow flag

N = Add/Subtract flag

C = Carry flag

= indeterminate value

22

23

Parity and Write Protect Logic

Whenever an on-card RAM parity error or write protect error occurs,

the MLZ-91 executes a RESTART to location ~~66. This is the

NMI (Non-Maskable Interrupt) location.

ZRAID-91 contains an interrupt processing routine which determines

the error type and the approximate program execution address when the

error occurred. For example, the message:

WRITE PROTECT ERROR, DURING INSTRUCTION PRECEDING H2~ LDA

means that the instruction just prior to hex address 2~DA attempted to

write to protected memory. Note that the address printed is related

to the CPU execution address, not the memory address of the protected

memory (or the address having the parity error.) If the error occurred

during an off-card access of on-card memory or during a DMA memory

cycle, the address value displayed will not have any relation to

the error address. The address of the next instruction is pushed

into the software stack if a write protect error occurs. The address

of the second next instruction is saved in the case of a parity error.

To test the NMI error logic, enter these commands:

1. For WRITE PROTECT error:

a) Write protect a block of memory:

i) H (Set H=~~, block ~)

ii) =5E (Load memory mapping RAM with data value
---- to protect block ~)

b) Write to protected memory:

• (Try to write ~~ to block ~)
(H half of the POINTER is still ~~)

c) An immediate write protect error should result

d) Unprotect memory

i) H (Optional, H Still = ~~)

ii) =7E (Turn write protect off)

2. For PARITY error:
a) Set POINTER to any unused RAM address

b) Enter "P" to display memory. A parity error should

occur after printing a few locations. If not, enter

another liP" command. If all of memory has been

initialized (written to), then momentarily

turn power-off.

BAUD RATES and BOARD BUS POSITION

The DIP switches, if present, are used to select the SIO baud

rates and the bus block occupied by the MLZ-9l.

(If the DIP switch option is not installed, the baud rates for

both SIO ports defaults to 9600 and the board position defaults

to bus block JJ.)

DIP switch group JJ is used to select the bus block as follows:

SWITCH

5,6,7,8

BUS BLOCK

Binary value formed by switches
e.g. OFF, OFF, OFF, OFF = block JJ

OFF, OFF, OFF, ON = block 1
etc.

DIP switch group 1 is used to select the SIO baud rates as follows:

SWITCH PORT

9,10,11,12 SIO PORT A

13,14,15,16 SIO PORT B

SWITCH SETTING

(~ = OFF, l=ON) BAUD RATE

~~~~ 96~11 (Default) 

1I11~1 75 

JfJflll 110 

JJ~11 134.5 

JJlllJJ 150 

1I1JCf1 300 

161116 600 

~111 1200 

l~JJII 1800 

1~111 2000 

1JJ1.0 2400 

1JJ11 3600 

111111 4800 

11[61 7200 

11111 9600 

1111 19200 

Note: If you have DIP 
switches installed, set them 
for the desired baud rate. 
Do not use the "default" 
position as that will cause 
ZRAID to ignore switches 1-8. 

The MLZ-91 must be RESET in order for a new baud rate selection 

to take effect. 



25 

CP/M System Considerations 

One feature of ZRAIO is the inclusion of CP/M* system bootstrap 

and I/O routines. The "'" (apostrophe) command will transfer 
control to the bootstrap procedure and then automatically 

transfer control to CP/M. 

Input and output routines for the console, list, punch and 

reader devices, as well as the disk I/O routines, are contained 

in ROM. After CP/M has been loaded, ZRAIO automatically over­

lays a Jump Table in the CP/M "BIOS" area which effectively 

substitutes the I/O procedures available through ZRAIO for 

those provided by CP/M. 

The actual location of the BIOS Jump Table is determined by 

examining the original CP/M BIOS Jump Table on the diskette. 

This method allows the size of the CP/M system to be modified 

(via the CP/M "MOVCPM" and "SYSGEN" command) without changing 

ZRAIO. The load location for CP/M is also computed from the 

BIOS Jump Table. The largest system size allowed is 56K. 

Specifically, the following procedure is used to load CP/M: 

* 

1. Enter' to ZRAIO (or 'n where "n" is a parameter 
as described below.) --

2. System RAM (address gg~~ through E3FF is cleared 
to zero~s. This prevents parity errors from occurring 
with some CP/M programs which read from uninitialized 
memory locations. (This step will be skipped if 
parameter bit 07 is non-zero.) 

3. The winchester I/F is tested to see if a controller 
is connected. If so, the system is loaded from the 
winchester (see below). Otherwise, or if the parameter 
bit 07 is non-zero, the system is loaded from floppy. 
See page 28 for physical drive address assignments. 

4. The beginning sector of CP/M's BIOS is read into 
ZRAID's memory. 

5. The first byte of this sector is checked to see if 
it is the proper code for a JUMP instruction. A 
"wrong disk" error occurs and the load is aborted 
if the JUMP is not found. 

6. The third word is fetched (the H half of the BIOS 
JUMP to CP/M's CBOOT) and masked to determine the 
base address of the BIOS. 

CP/M is a product of Digital Research. 



7. The load location for CP/M's CCP and BOOS is computed 
and the whole CP/M system is loaded into memory -
starting from the computed CCP location. 

8. The BIOS Jump Table is overlayed with a new Jump 
Table which points to the special CP/M I/O procedures 
that are part of ZRAID (tlCBIOStI). 

9. The message 
xxK CP/M VERSION a.b 
HEURIKON CORP Zc.d 

is output to the console indicating the system size 
(lxxK" bytes), the CP/M version (tla.b n

) and the ZRAID 
version ("Z c .d"). 

10. The first 8 words of memory are initialized according 
to CP/M specifications. In addition a JUMP to DEBUG 
is stored at location H~ L~8 to allow a RST1 to return 
to ZRAID. 

11. Control is transferred to the CP/M CCP. 

ZRAID supports the "IOBYTE" control system referred to in the 

CP/M documentation. "Logical tl and "physical" I/O devices may 

be associated with each other by using the CP/M "STAT" command. 

The physical I/O devices are defined as follows: 

Logical Device Ph~sical Device 

CON (Console) TTY SIO Port A 

CRT SIO Port B (Default) 

BAT SIO Port A 

UCI Dummy 

LST (List) TTY SIO Port A (Default 
Value) 

CRT SIO Port B 

LPT SIO Port A 

UCl Dummy 

PUN (Punch) TTY SIO Port A (Default 
Value) 

PTP SIO Port A 

UPI SIO Port B 

UP2 Dummy 

RDR (Reader) TTY SIO Port A (Default 
Value) 

PTR SIO Port A 

URI SIO Port B 

UR2 Dummy 

26 



27 

A "dummy" device appears as an I/O device which is always ready. 

On input, a value of all zeros is returned as the input "data". 

Physical device addresses may be changed (e.g. to an external 

I/O port). Consult factory for details. 

The default device for the CONSOLE (TTY or CRT) is automatically 

set to the same device being used to input ZRAID commands. (This 

can be changed via the CP/M "STAT" command.) 

Some CP/M programs terminate with a system warmstart which 

reloads the operating system from diskette. ZRAID outputs a left 

and right bracket and a beep to the console to indicate a 

warmstart operation is in progress. 

Control can be returned to ZRAID from CP/M by one of two methods: 

1. Push the system RESET button. 

2. Enter CNTRL-V on the console. This will cause the 

console input routine to CALL DEBUG in ZRAID. A 

return to CP/M can be made without affecting CP/M's 

status by entering the & command to ZRAID. 

(or a coldstart can be done via "'''.) 

If the CNTRL-V exit from CP/M'is not desirable (some CP/M 

programs use CNTRL-V as a command) use a parameter value of 

~8 (hex) when loading CP/M, as follows: 
, 8 

During CP/M disk I/O, if an error occurs, ZRAID will output a 

message indicating the track and sector location and the error 

type. (This is in addition to the normal error message generated 

by CP/M.) The location of the error will be output as w~ll. 

(The error types are described on page 34.) For example, 

the message "DISK ERR $~6-~~14.~5" means a CRC ERROR (error 

type 6 decimal) occurred on track 14 sector 5 (all numbers are 

decimal) . Use PIO (P3-centronics) 
\ as the "list" device. 

~R--~---X--~--X--~--X--~--V--~--X--~~C--~--D--I 

I 
RAM clear 
~=Clear at colds tart 
l=Do not clear RAM 

Control-V reSDonse 
g=Return to ZRAID 

I • 
Default Devl.ce 
S=Winchester 
l=Floppy 

1=00 not return to ZRAID 

CP/M PARAMETER FORMAT 



CP/M Diskette .Configuration 

Floppy diskette based system: 

1. The system diskette is double density, 1024 bytes 

per sector, 8 sectors per track. 

2. The system resides on track 1, starting at 

sector 1. 

3. Track g is not used. 

4. The system diskette must be obtained from Heurikon 

in order to assure proper operation of CP/M, SYSGEN 

and MOVCPM. 

5. Drives are assigned as follows: 

Drive Name Ph:tsica1 Unit # Confis:uration 

A ~ 00-1024 
B 1 00-1024 
C 2 00-1024 
0 3 00-1024 

E ~ SO-128 
F 1 SO-128 
G 2 SO-128 
H 3 00-128 

I WINCHESTER 

Winchester based system: 

1. The system must be on the Winchester drive (via SYSGEN). 

2. The Winchester has space reserved for 2048 directory 

entries. 

3. Drives are assigned as follows: 

Drive Name Ph:tsica1 Unit # 

A WINCHESTER 

B 1 
C 2 
o 3 

E 
F 
G 
H 

I 

o 
1 
2 
3 

o 

Configuration 

00-1024 
00-1024 
00-1024 

90-128 
80-128 
80-128 
00-128 

00-1024 

The drive parameters may be changed by making modifications to 

ZRAIO. Consult the factory if a special configuration is needed. 

00-1024 means double density floppy, 1024 bytes per sector. 

00-128 means double density floppy, 128 bytes per sector for M08 
compatibility. 

SO-128 means single density floppy, 128 bytes per sector for 1.4 
compatibility. 
See page 40 for a drive configuration chart. 

28 



29 

Typical ZRAID Usage (without CP/M) 

1. Push the system RESET button to enter ZRAID and initialize 

to the desired device. Note: If RTS or DTR is not TRUE 

on SID Port B, ZRAID will automatically switch to Port A 

even if location RCRT was entered. See page 37. 

2. Set location ~~~8 (hex) to a JUMP to DEBUG (as a break­

point) while debugging a program. Note: For use with CP/M, 

this step is not required; it is automatic. 

3. Use ZRAID to load and edit the desired program or to boot 

strap CP/M~ (See CP/M System Considerations) 

4. Use the "*" , C, or "~" commands to execute the program. 

5. If the program "crumps" push the RESET button to re-enter 

ZRAID. 

6. Make any necessary modifications to the program and repeat 

steps 4 through 7 as necessary. 

7. Use the "RI" and "U" commands to insert and "march" a 

breakpoint (RST 1) through the program, if necessary, to 

examine the operation of the program. When the RST 1 is 

encountered a "CALL" to "DEBUG" will occur due to the 

JUMP to DEBUG at location ~~~8. 

Note: CP/M has a debugging program, "DDT", which has more power 

than ZRAID. ZRAID's main purpose is to allow easy access 

to all board facilities for testing of small programs. 



Entry Points and Links 

ZRAID entry points and addresses are maintained by a JUMP table 

at the beginning of ZRAID. This method allows future program 

versions to be compatible with older versions. 

The entry points are as follows: (NOTE: Only the "L" half of the 

address is listed. The "H" half is F_ hex or 360 octal.) 

Address "L" 

Hex octal Name 

~~ ~~~ COLD START 

DEBUG 

~6 RPROC 

~9 ~ll RSIOAS 

~14 RSIOAD 

Registers 
Affected 

all 

none 

none 

A,F 

A,F 

Function 

ZRAID Power-On-Jump address. 
Performs I/O and memory init. 

Entry to save user registers. 
The previously enabled console 
device is used for I/O 

This entry assumes the user 
program executed a CALL RPROC. 
If the console device is not 
ready (no key hit) a RET is 
executed. If the console has 
a character ready, ZRAID is 
given control at DEBUG and the 
user program is suspended. The 
user program status can be 
examined using ZRAID commands 
and a return to the user 
program can be effected with 
the "&" command. 

Test SIO A data ready status 
and set Register A and the 
condition code as follows: 

Character ready: non-zero 
Character not ready: zero 

Test SIO A data ready status 
and wait for data ready. 
Return with the input char­
acter in Register A. 

30 



31 

Address ilL" 
Hex Octal 

~F 917 

12 922 

15 925 

18 

lB 933 

IE 936 

21 941 

24 944 

27 ~47 

2A 952 

2D ~55 

3~ 

Name 

RSIOA 

RSIOBS 

RSIOBD 

RSIOB 

RSTAT 

RREAD 

RWRITE 

RPRINT 

ROCT 

RHEX 

RWRITEHL 

RPOS 

Registers 
Affected Function 

none 

A,F 

A,F 

none 

A,F 

A,F 

none 

A,F 

A,F, 
D,E 

A,F, 
D,E 

A,F, 
D,E 

A,F 

Output character in 
Register A to SIO port A 

Same as RSIOAS but test 
SIO port B status. 

Same as RSIOAD but input 
from SIO port B. 

Same as RSIOA but output to 
SIO port B 

Same as RSIOAS but test 
ZRAID console device. 

Input one character from 
ZRAID console device (SIO 
port A or port B) to register 
A. 

Output one character from 
register A to ZRAID console 
device. 

Output one character from 
register A to the non-ZRAID 
console device. (e.g. Printer) 

Print contents of register 
A in octal to the ZRAID console 
device. Three digits plus 
a space are output. 

Print contents of register 
A in hexidecimal to the ZRAID 
console device. Two digits 
plus a space are output. 

Print contents of HL in 
"Hxxx Lxxx" format to the 
ZRAID console device. Octal 
or hex output is determined 
by the current mode switch ("X" 
command) in ZRAID. 

Output· a CR,LF sequence 
to ZRAID console device. 



Address ilL" 
Hex Octal 

33 fJ63 

36 966 

39 fJ7l 

3C fJ74 

3F 

FFFE 

FFFF 

Name 

RFDIO 

Registers 
Affected 

A,F 

RIOSUBR (all) 

RMAP (all) 

(reserved) 

(reserved) 

Function 

Perform FLOPPY DISK I/O 
according to the parameter 
list address passed in H,L. 
See page 33. 

Output the I/O device initialization 
values (or character string) from 
the table whose address passed in 
H, L. Refer to the MLZ-9l User's 
Manual or the ZRAID-91 source code 
listing for details. 

Set the memory mapping RAM from 
the table whose address is passed 
in H,L. Return to the address 
specified in register pair DE. 
Refer to the MLZ-9l User's Manual 
or the ZRAID-91 source code 
listing for details 

Contains ZRAID9l version number 

Contains 91 (hex) 

32 



33 

Disk I/O Via ZRAID Routines 

The disk I/O routines of ZRAID are accessible for general 
purpose disk I/O operations. The routines contain automatic 
track seek logic plus error recovery and retry logic. The 
calling sequence is as follows: 

LZI H,PARAMLIST 

CALL RFDIO 

All of the calling register values are saved and restored 
except A and F. The Parameter List ("PARAMLIST") must be 
preset to the following format: 

PARAMLIST+,0 

07 06 05 04 03 02 01 

V DO DSIZE I X I RI Cl C,0 

where: V = 1 to enable verification (i.e., read 
data following a write and compare or read 
again following a read and compare.) 

00= ,0 Single Density 
= 1 Double Density 

D,0,0= ,0 Double Density only on tracks above ,0,0 
= I Double Density on all tracks 

DSIZE= ,0 Double Density sector size = 1024 bytes 
= 1 Double Density sector size = 128 bytes 

(Single density sector size is always 128 bytes) 

RI= ,0 Enable error recover retry operations 
= 1 Inhibit error retry procedure 

Cl,C,0= COMMAND 

PARAMLIST+l 
PARAMLIST+2 
PARAMLIST+3 
PARAMLIST+4 
PARAMLIST+S 
PARAMLIST+6 
PARAMLIST+7 

,0,0 = Initialize drive (RESTORE) 
,01 = READ DATA 
1,0 = WRITE DATA 
11 = (invalid) 

Starting data address-L half 
Starting data address-H half 
Desired drive (,0-3) 
Desired sector (1-52) 
Desired track (J-76) 
Reserved (future) 
Reserved (future) 

A successful I/O operation is indicated by a return with NO 
CARRY. An error is indicated by the CARRY flag set in which 
case register A will contain the error type. See the next 
section for error type meanings. 

Refer to the ZRAID Source Code Listing for more details. 



Disk I/O Error Types 

Error Type 

hex 

~l A 

B 

~3 C 

D 

~5 E 

~6 F 

Error Description 

DISK DRIVE NOT READY 

The diskette is either not inserted, not inserted 

correctly, or there is a drive malfunction. 

SEEK ERROR, TRACK NOT FOUND 

The specified track cannot be found. The 

diskette is probably defective. 

WRITE PROTECTED DISK 

An attempt has been made to write on a write pro­

tected diskette. 

LOST DATA * 
One or more bytes of data have been lost during the 

transfer of data to or from the diskette. This 

generally indicates a timing problem due to un­

available facilities, such as a busy memory or 

DMA controller. Retry the original request. 

SECTOR NOT FOUND * 
The specified sector cannot be found or there is 

a CRC error in the ID field. The diskette is probably 

defective or the disk I/O hardware is malfunctioning. 

eRC ERROR * 
A CRC (Cyclic Redundancy Check) error has occurred 

in the transfer of data from the diskette. This 

generally indicates a defective diskette, dirty 

head, or a worn pressure pad. 

See note page 36 

34 



35 

Disk I/O Error Types (continued) 

Error Type 
hex 

~7 G 

168 H 

J69 I 

J 

K 

L 

M 

J6E N 

Error Description 

RECORD TYPE NOT ~~ * 
The record type for ·the requested sector was not 

'data'. This may not be an error if the sector 

has been marked as "deleted" by changing the 

sector's ID mark. 

ILLEGAL COMMAND 

The command type (PARAMLIST+J6) was not recognized 

as a valid command. 

ILLEGAL TRACK OR SECTOR 

The track and/or sector value specified in the 

command is out of range. This is a calling software 

error. 

(Not assigned) 

VERIFICATION ERROR * 
After a write with verify command this error indi­

cates that the data read back from the disk did not 

match the data block specified for writing. (Only 

the last byte is tested although the entire CRC is 

checked. ) 

See error J6J64 "0". 

SECTOR NOT FOUND ON VERIFY * 
See error J6J65 "E". 

CRC ON VERIFY * 
See error ~J66 "F". 



Disk I/O Error Types (Continued) 

Error Type 
hex Error Description 

l~ 

11 

12 

E~ 

* 

o 

P 

Q 

R 

Note: 

(Not assigned) 

DRIVE SELECT ERROR 

The specified drive number is out of range. 

(Must be ~,1,2,or 3.) 

WRONG DISK 

The disk in drive "A" (Drive ~) is not a CP/M 

system disk. This error could occur during a 

CP/M bootstrap or warmstart. 

MEMORY DMA WRAPAROUND 

The upper limit of address space (64K) has been 

reached in a disk RD/WR operation. 

OPERATOR ABORT 

The decimal equivalent of the error number is 

displayed when using CP/M. 

The command has automatically been retried (unless inhibited 

by bit D2 of the command) and the disk head position has been 

checked prior to the error return. These errors may not be 

recoverable since more than one attempt has already been tried. 

36 



37 

SIC Port Connections 

The recommended connections are as follows: 

91 User Manual for details.) 
(Consult the MLZ-

Port A: 

Port B: 

25 pin "D" 

Connector 

2 

3 

4 

5 

6 

7 

20 

Name 

Tx Data 

Rcv Data 

RTS 

CTS 

DSR 

Ground 

DTR 

Connections 

Data to device A 

Data from device A 

CTS or open 

RTS, TRUE, or from device 

receiver control timing 

logic 

DTR or TRUE 

Ground 

DSR or open 

CTS (Clear to Send) must be TRUE in order for ZRAID to 

transmit to the device. DSR (Data Set Ready) must 

be TRUE in order for ZRAID to receive data. 

2 Tx Data Data from device 

3 Rcv Data Data to device B 

4 RTS CTS or TRUE 

5 CTS RTS -or.· open -' 

6 DSR DTR or open 

7 Ground 

20 DTR DSR or TRUE 

RTS must be TRUE in order for data to be sent 

to the device and DTR must be TRUE for data from 

the device to be recognized. At least one 

(RTS or DTR) must be TRUE in order to initialize 

ZRAID to port B. 

B 

Note that Port A is configured as a data terminal device while 

Port B is setup as a data set. 



w 
CD 

OUTPUT ~ 

INPUT t 

H, L 

octal 

16-bit 
octal 

H, L 

hex 

Octal - Hex Conversion Functions 

H, L octal 

Enter value via. 
"S" command 

Output values via 
"A" command 

Enter values via "H" 
and "L" commands 

Switch to octal mode 
via "X" command 

Output values via 
"A" command 

16-bit octal 

Enter values via "H" 
and "L" commands 

Output 16-bit octal 
via "z" command 

Enter values via "H" 
and "L" commands 

Output value via 
"Z .. command 

H, L hex 

Enter values via "H" 
and ilL" commands 

Switch to hex mode 
via "X" command 

Output hex values 
via "A" command 

Enter value via 
US" command 

Switch to hex mode 
via "X" command 

Output hex values 
via "A" command 

Note: For all cases above, use the "X" command prior to entering the data, 

if necessary, to switch to the correct data base mode. Hex is the normal 
(at initialization) mode. 



39 

Enhancements - AUTOBOOT/AUTOS LAVE 

1. Normally, the apostrophe conunand is used to boot the 

CP/M operating system. However, ZRAID will automati­

cally load CP/M following a hardware reset if DIP 

switch group zero, switches 5,6,7 and 8 are all "ON". 

AUTOBOOT 

2. By setting DIP switch group zero, switches 1,2,3 and 

4 all "ON", the monitor will automatically convert to 

"slave" mode and 100% RAM. This is useful for a multi­

processor system (e.g., when using MP/M). AUTOSLAVE 

3. For systems using P3 to connect to a Centronics-type 

printer, use '2 command to boot CP/M. This will direct 

listings to P3 instead of SIO port A. 



Floppies 
(4 Physical 

drives) 
8" 

Winchesters 
(2 Physical 

drives) 

"e" 
"1.4" 
"XX" 

ZRAID Version 1.xS 
(Single-sided, 8" Floppy Versions)_ 

CP/M Drive Name Assignments 

"A" (Note 1) 
"I" (Note 2) "B" "c" 

e 69 69 

---- 100-__ - ----
1.4 1.4 1.4 

"E" "F" "G" 

(Note 1 "J" 
(Note 2 

"K" "L" 

Media Type 

"0" 

69 

---
XX 

"H" 

CP/M 2.2 (Heurikon), single-sided, double-density, 1024 b/s 
CP/M 1.A compatible, single-sided, single-density, 128 b/s 
Single-sided, double-density, 128 b/s (MFM) 

Letters 
Note 1: 

(e.g., "A", "B") refer to the CP/M drive name. 

Note 2: 

When the system is loaded from floppy, "A" is the first floppy, 
"I" is part of the Winchester. 
When the system is loaded from Winchester, "A" is assigned to 
the Winchester and "I" is assigned to the floppy. 

40 


