Heurikon MLZ-91/92 Microcomputer

User's Manual

HEWRIKON

Microcomputers For mdustry

MLZ-91 User Manual
HEURIKON CORPORATION

Contents
Introduction Page

General Information

Component Viegw 2
Block Diagram & Description 3
Getting Going (A MUST READ!) 6
ZRAID Initial State 8
Features Discussion
CPU Description : 11
Instruction Set Map 14
Introduction to Mapping RAMs 18
Memory Management
MLZ-91 Memory Mapping RAM 24
On-Card ROM 27
On-Card RAM 30
Off-Card Memory 32
Summary Data (Memory Map) 34
Parity and Write Protect Logic 36
Power-On-Jump 37
Bus Mapping RAM ' 38
I/0 Mapping RAM . 42
Bus Control 44
Summary Information (Maps & Bus Logic) 47
Memory and I/O Timing 48
Memory & Bus Logic Flowchart 50
Interrupt Structure 52
System PIO 57
DIP Switches and LEDs 62
Board Status 64
GPIB (IEEE-488) 65
Winchester Interface 70
Streamer Tape 73
APU _ - : 75
Software Examples
Board Initialization & Slave Mode 80
Multi-User example 95
Macros 98
off-Card I/0 . ' 102
1/0 Devices (MLZ-91 Specific)

- I/0 Device Addresses ‘110
SIO & Dual Baud Rate Generator 112
CTC 122
Floppy Disk Controller & User LED 124
DMA 131

Appendix
User Checklist) 140
Hardware Jumpers 142
Pl Signal Definitions - 145
Winchester I/0 Connector (P2) 150
Streamer Tape I/0 Connector (P3) 156
Serial I/0 Connector- (P4) 158
GPIB IEEE-488 Connector (P5) . 160
Floppy Disk I/0 Connector (P6) 162
Power & Environment 166
Accessories 167

91-Rev B

INTRODUCTION

The purpose of this manual is to document the features and present
implementation examples of the MLZ-91 microcomputer board.

The MLZ-91 contains a number of special features not commonly avail-
able on single board microcomputers. This manual covers these unique
features in detail. General information, such as FDIO, CTC, and SIO
commands are discussed, however, the following documents and manuals
should be consulted to obtain complete information on the chip set
and external peripherals:

MLZ-91 Schematic Diagrams (Heurikon)

Z-80 Chip Set Product Specification booklet: (leog, Mostek)
280 chip set Technical Manuals (Zilog, Mostek)

APU/FPU Technical Manuals (Advanced Micro Devices)

FD1793 (FDIO) Controller Manual (Western Digital)

TMS 9914 GPIB Controller (Texas Instruments)

ZRAID Monitor Manual (Heurikon)

ZRAID Monitor source code listing (Heurikon)

Floppy disk drive specifications (Shugart)

Streamer Tape drive specification (Archive)

Winchester Controller Manuals (Priam, Shugart, Mlcropolls)
CpP/M Operatlng System Manuals (Digital Research)

Heurikon; Madlson, WI. (608) 271-8700

AMD; Sunnyvale, CA (408) 732-2400 , _

zZilog; Cupertino, CA - (408) 446-4666 TR SR
Western Digital; .Newport Beach, - CA -(714) 557—3550 e

Texas Instruments; Dallas, TX (214) 238-6531

Archive Corporation; Costa Mesa, CA (714) 641-0279

Priam Corporation; San Jose, CA (408) 946-4600

Micropolis Corporation; Chatsworth, CA (213) 709-3300

Shugart; Sunnyvale, CA (408) 733-0100 L '

Digital Research Corporation; Pacific Grove, CA (408) 375-6262

7-80 is a trademark of ZILOG Corp.
MULTIBUS is a trademark of INTEL Corp.
CP/M is a trademark of DIGITAL RESEARCH
Some portions of the 2-80 chip literature are reprinted herein

courtesy of Zilog Corporation.
The information furnished by Heurikon is believed to be accurate and

reliable. However, no responsibility is assumed by Heurikon f&r
its use. Specifications are subject to change without notice.

Heurikon Corporation / 3201 Latham Drive / Madison. Wisconsie 53713 / 608-271-8700 / Telex 469532

'E
E

U ! !,l&,:

-
%

=3 L—Jll l ll ll L—J 160
4 &
L J
.

} oo omy v
t:nenn

Pt

HEURIKON MLZ-91A MICROCOMPUTER

PARITY AND
WRITE
PROTECT
LOGIC

Z-80A"CPU

RAM
16K/32K/64K BYTES

EpROM/ROM
16K BYTES MAX.

RS 232C
RS 422
OR

: GPIB
IEEE m BUS<——>1 |\ R CE

i

a9

MICROPOLIS 1220 CONTROLLER

|
]
‘WINCHESTER 1
SHUGART 1400D CONTROLLER $~¢—»- DRIVE I
PRIAM SMART ™ INTERFACE INTERFACE .
OTHE?]
|
%
! {
‘ STREAMER TAPE
| — .
APU
(AM 9511)
BI-DIRECTIONAL MULTIBUS I/F AND BUS MAPPING RAM
INTERRUPT CONTROL DATA ADDRESS
4 INTEL°MULTIBUS™)

FACILITIES DESCRIPTION

CPU Z-80A or equivalent.
Standard 2-80 instruction set - 158 instruc-
tions.
16 bit address bus, 8 bit data bus.
8, 16, 24, and 32 bit instruction lengths.

APU AMD 9511 arithmetic processing unit
(APU) .

Stack oriented data transfers. _

43 microprogrammed "macro commands" includ-
ing cos, sin, tan, mult, div, sqgrt,
log, 1n, exp, asin, etc.

Results computed to 32 bit precision.

DMA Z-80 compatible I/O and memory data
transfers.
. Multi-mode operation (byte-at-time, burst,
and continuous).
Transfers data from I/0 or memory t¢ I/O
or memory. Also has data search mode.
Vectored interrupt generated on completion.

MEMORY Two memory sockets for ROM (types 2716, 2732,
or 2764with maximum capacity of 8K bytes
per socket).

16K/32K/0or64K on-card RAM with optional
parity bit.

Software controlled write-protection for
each 4K block of on-card RAM.

Any (or all) on~card memory blocks may .
be disabled to 1ncrease off-card address
space.

BUS I/F ' Intel Multibus compatible
20 bit memory address space, fully
addressable by CPU or DMA.
1 megabyte addressing capability.
Bi-directional I/F (Master/Slave)
Software programmable master mode operation:
Mode 0 - Release bus after each transac-
tion
Mode 1 - Release bus for any other card
(uses CBREQ-)
Mode 2 - Release bus only for higher
priority cards (uses BAI-)
Mode 3 - Never release bus (override)

Software programmable slave mode operation:
Board location on bus
Inhibited bus operations (Mem RD,
Mem WR, all 1I/0)
Eight bus interrupts. (Bi-directional)

MEMORY MANAGEMENT Programmable address mapping RAM.
Memory map completely under software
control.

Allows full use of 20 bit address space on bus

FDIO

OTHER I/O

POWER-ON
JUMP

BOARD
OPTIONS

Any 8K block of bus address space may be mapped
into any 8K block of CPU/DMA address space.

Any 4K block of on-card address space may be mapped
into any 4K block of CPU/DMA address space.

Double density floppy-disk interface (uses WD1793).

On-card data separation (PLL) and write pre-composition
logic.

Four drive select lines plus side select for dual
sided drives. (4 megabyte capacity).

Also supports single density and 5%" formats.

Software controllable status LED.

On-card:

I/0 device base addresses mappable under software
control.

Winchester controller I/F (Priam, Micropolis or
Shugart)

GPIB (IEEE-488) controller, talker and listener

8 bit parallel port for Streamer tape I/F

16 position user DIP switches

8 bit user LED display

Two SIO ports.
RS232/423/422 interface.
Asynchronous or sychronous modes (including

SCLC) .

Software controlled dual baud rate generator.

Two utility 8-bit PIO ports for on-card control
and bus interrupt functions.

Four counter/timer channels.

Off-card:
Entire I/0 device address space avallable for off-
" card use. -

Provided via memory mapping RAM, above.

Multilayer, 6.75 inch by 12 inch

Hardware jumpers:
System clock (2 or 4 MHZ)
APU clock (2 or 4 MHz)
Highest priority board designation
Memory configuration (ROM type, RAM size)

Memory wait state select (all cycles, M1 only, ROM only)

Drive type (8" oxr 5%")

SIO clock control (1 port)

SIO 1/F select (RS232/423/422)

Winchester type select (Prlam, Mlcropolls or
Shugart)

Software controlled:
Bus mode (control release)
Memory map contents
Bus map contents and inhibit states
I/0 map contents
DMA "aata ready" source selection
Bus interruots
Baud rates
FDIO sinagle/double density select
Drive select and side select
User status LED

GETTING GOING

This section is an outline of the minimum work necessary to
get the MLZ-91 "on the air":

Items required: (See'diagram)

3.

6.
7.
8.
9.

MLZ-91 Microcomputer Board

ZRAID-91 Software Monitor program (ROM)

RS232 Interactive Terminal and cable with male "D" connector
MLZ-P4N Serial Interface cable and connectors

Power supply (+5, +12, -12, volts)

Card Rack

Insert ZRAID ROM in socket M@ (See diagram for position
detail.) .

Install Jumpers as follows:“

Jl-a (2MHz clock)

J3,J4 © (SIO I/F)

J5-B, J6-B (SIO Port A Receive clock)

J7 (Upper address enable)

Js (Processor priority)

J9-A, J10-Aa (Wait states for ROM)

J12-A, Jl4-A (ROM type 2732)

J13-a,C (RAM type) (Assumes 4164 or 4532-2)

Connect console terminal to SIO port B via MLZ-P4N cable
and P4 connector. Use the female D connector on the cable.

"DY pPin #

2 Data from terminal
3 Data to terminal
4-5 Jumper (RTS-CTS)

s 6-20 Jumper (DSR-DTR)

V 7 Ground

Turn all DIP switches on MLZ-91, if installed, to "OFF".

Set baud rate on terminal for 9600 baud. Set terminal options,

if available, to eight bits, no parity, two stop bits.
Apply power to MLZ-91 and terminal.

Activate RESET (momentarily ground P1l-14).

ZRAID sign-on message should appear on terminal.

Consult ZRAID manual for further details. ZRAID automat-
ically sets up the MLZ-91 mapping RAMs and allows access
to all memory and I/0 devices from the terminal.

X (FOR PRINTER)

2; P]N \\DM
/MALE

TERMINAL STIO PORT B

J5 Jé6
| J3 o,0.
JL!» ~BB

FDIO \ - TAPE

: o L pe N\ ps Y . P3 o
A P ;
T~
B o ‘ - }Eude : Ji3
- 'J"‘l' ;'. J19q " B
3593 ’ i o ,
' |

MLZ - P4N
CABLE ASSEMBLY

f D
MLZ-9lA RIE
N iz | M
L e
e e
';—'[+5 iz Pl

'\ ?l MULTIBUS
POWER SUPPLY

MLZ —91A WITH ZRAID — SETUP DIAGRAM

To load the CP/M operating system, follow the ébove steps

but also connect a floppy disk drive to P6. Set the floppy

disk configuration jumpers for "8" or "5" as appropriate.

(See page 128). After turning on power and resetting the systen,
insert the CP/M system diskette in drive "A" and enter apostrophe-
space on the terminal. Refer to the ZRAID manual for details.

ZRAID-91 Initialization State

The ZRAID-91 monitor initializes the mapping RAMs and on-
card I/0 derives as follows:

A. Memory Mapping RAM (See diagram, next page)
ROM socket M@ at CPU address F@g@@g (hex)

Oon-card RAM allocated from address g@ggg
through address EFFF.

B. I/O0 Mapping RAM

I/0 Addresses Assignment

#8 thru 3F Off-card

48 thru 7F Off-card

8¢ thru BF On-card I/O Group A (e.g. Baud Gen)
C# thru FF Oon-card I/O Group.B (e.g. CTC)

C. Bus Mapping RAM
If DIP switches installed:
Board is assigned to the bus block (g - F)

as specified by switches 5, 6, 7 and 8 of DIP switch
group #. Otherwise, the board is assigned to block
(default). In either case, all board operations
are enabled (i.e., Memory RD, WR and I/0 operations
gre valid.)
D. SIO Baud rates:
If DIP switches installed, the baud rates are set according

to DIP switch group 1 as shown on page 93.
(See also the ZRAID manual.) Otherwise, both SIO port
baud rates are set at 9600 baud (default).

Note: These valnesmay be modified by special ZRAID commands
or the initial values may be changed in the ZRAID
ROM.

CPU ADRS SPACE

ZRAID =41 INITIAL MEMGKRY

0000 XED VARIABLE
(4 K EACH) F ~ (4K)
J000 — / \ A
2000 — —————\MAppma RAM /7
3000 f———— —————-\ BLKO T7E //:
| BLK1 7D / A
3000 W \ BLKZ Jc /// P
5000l— |, —-—_—_\ BLK3 7B // car
BLK ¥ 7A ON—CARD
6000—— Em\ BLK5 74 %?: RAM
7000—+) "Bk e 73 // (64K)
8000 > BLK7 T7 // .
: g | —>1 BLK 8 76 //
qo00 < ' BLKQ 75 g /
A000 4 /; BLKA T4 7/ (AVAIL)
BLKB 73 /
B00O 4 —-———/ BLKC T2 / ¢ N - CARD
M ON-
000 i _______/ BLKD T! / - cAl
) BLKE T7F M SOCKETS
pooof——— O — BLK F 00 .
E000 k OFF CARD ADRS SPACE
Fooo ZRAID RAM MAP () MEGABYTE)
ZRAID PROGRAM DATA 00000
EACH 4K BLOCK OF CPU ADDRESS SPACE
1S CONTROLLED BY AN ENTRY IN THE MAPPING
RAM. THE DATA IN THE MAPPING RAM -
“PoOINTS” To AN ON-CARD ROM SOCKET OR NoT
RAM ADDRESS OR TO AN OFF—-CARD ASSIGNED
MEMORY ADDRESS
FFFFF

MAP

ZRAID Command Summary (Partial listing)

Command " Function Example
Hnn Set upper eight bits of POINTER H45
Lnn Set lower eight bits of POINTER LAS
A Print POINTER value in H, L, format A
Snnnn Set POINTER using 4 character hex value (or -
16-bit octal value) SC709
.nn Set addressed location +5A
W Print contents of addressed location W
I Increment POINTER, print location I
D Decrement POINTER, print location D _
* Transfer control to POINTER address via JUMP *
C Transfer control to POINTER address via CALL C_
J Indirect CALL J_
Pnn Print-nn lines (nn in hex or octal) P2
X Set/Reset octal/hex I/O mode X
Rn Insert a RST instruction R2
U Remove the last RST instruction u_
' (Apostrophe) CP/M Bootstrap r
Fnn Output to I/O device L Fl2
Y Input from I/0 device'Lﬁ_ Y
~Blink USER LED E
= Set contents of memory mapping RAM =98
Set contents of I/0O mapping RAM a7
B Set contents of bus mapping RAM BF g
" Set system bus mode "3
/ Cancel previous input H152/
All commands except "/" must be followed by a space
or carriage return to cause execution to begin.
A
The above list shows only the most used commands. Additional

commands are provided to allow disk I/0 and other functions.

Since all commands must be used in the proper sequence, refer
the ZRAID Manual for details before attempting to use ZRAID.

10

to

CPU DESCRIPTION

The Zilog Z-80 CPU is a powerful single-chip 8-bit microprocessor.

All of the original Intel 8080 instructions are executable

by the 2-80 while adding numerous other instructions and internal
registers, which give added versatility.

the CPU and the internal register detail are shown below.

The registers include two sets of six general purpose registers
that may be used individually as 8-bit registers or as 16-bit

register pairs. There are also two sets of accumulator and
flag registers. The programmer has access to either

set of main or alternate registers through a group of exchange
instructions. This alternate set allows foreground/background
mode of operation or may be reserved for very fast Interrupt

response. The CPU also contains a l6-bit stack pointer which

permits simple implementation of multiple level interrupts,

unlimited subroutine nesting and simplification of many types

of data handling.

The two 1l6-bit index registers allow tabular data manipulation
and easy implementation of relocatable code.
is used in a powerful interrupt response mode to form the upper
8 bits of a pointer to a interrupt service address table, while

The I register

the interrupting device supplies the lower 8 bits of the

pointer. An indirect call is then made to this service address.

1687
ADDRAESS BUS

280, Z80OA CPU BLOCK DIAGRAM

MAIN REG SET ALTEANATE REG SEY

.
[accumuLATOR FLAGS ACCUMULATOR FLAGS 1
[a [
c [3 <
€ o €
[§ " X
5 TR i
INTERRUPY MEMORY
VECTOR REFAESH
by [L)
£] woexnecisren x| fsreciad
] INDEX REGISTER "w REGISTERS
.] svacx rointer P
" rmoGram counten rc

280, Z80OA CPU REGISTERS

A block diagram of

% Z-80°CPU Z-80A CPU

Zilog

8-BIT LOADS

16-BIT LOADS

EXCHANGES

The following is a summary of the Z80, Z80A instruction d

Instruction Set

any 8-bit destination register or memory location
any 16-bit destination register or memory location
8-bit signed 2's complement displacement used in

relative jumps and indexed addressing

8 special call locations in page zero. In decimal

notation these are 0, 8, 16, 24,32, 40, 48 and 56

any 8-bit binary number
any 16-bit binary number
any 8-bit general purpose register (A,B,C,D, E,

H,orL)

set showing the assembly language mnemonic and the sym- dd =
bolic operation performed by the instruction. A more de- e =
tailed listing appears in the Z80-CPU technical manual, and
assembly language programming manual. The instructions L =
are divided into the following categories:
8-bit loads ‘Miscellaneous Group n =
16-bit loads Rotates and Shifts mm =
Exchanges Bit Set, Reset and Test r =
Memory Block Moves Input and Output
Memory Block Searches Jumps s =
8-bit arithmetic and logic Calls $ =
16-bit arithmetic ' Restarts ss =
General purpose Accumulator Returns subscript “L”
& Flag Operations

In the table the following terminology is used.

subscript *H™

O

any 8-bit source register or memory location

a bit in a specific 8-bit register or memory location
any 16-bit source register or memory location

the low order 8 bits of a 16-bit register
the high order 8 bits of a 16-bit register

= the contents within the () are to be used asa

b = abit number in any 8-bit register or memory pointer to a memory location or I/O port number
location 8-bit registers are A,B,C,D,E,H,L,1and R
cc = flag condition code 16-bit register pairs are AF, BC, DE and HL
NZ = nonzero 16-bit registers are SP,PC, IX and IY
Z = zero
NC = noncarnry Addressing Modes implemented include combinations of
C = carry the following: Immediate Indexed
PO = Parity odd or no over flow Immediate extended Register
PE = Parity even or over flow Modified Page Zero Implied '
P = Positive Relative Register Indirect
M = Negative (minus) Extended Bit
Mnemonic | Symbolic Operation Comments Mnemonic | Symbolic Operation Comments
IDr,s r<s s =1, n,(HL), LDt (DE) < (HL), DE « DE+1
(IX+e), (1Y+e) ; HL < HL+1, BC « BC-1
LDd,r der d=(HL),r e LDIR (DE) « (HL), DE « DE+1
(IXte), (1Y+e) v HL <« HL+1, BC « BC-1
LDd,n den d=(HL), 8 Repeat until BC=0
(IX+e),(IY+e) | @] LDD (DE) « (HL), DE « DE-1
LDA,s A«s s=(BC), (DE). | =& HL « HL-1.BC « BC-1
< (o), L.R % LDDR (DE) « (HL), DE « DE-1
LDd,A d«A d=(BC),(DE).| = HL «HL-1. BC « BC-1
(nn), I.R Repeat until BC =0
————— R
LDdd,nn dd «nn dd =BC, DE, » CPI A-(HL). HL <« HL+]
HL, SP,IX.1Y § BC « BC-1 ;
LD dd, (nn) dq +(nn) dd =BC, DE, %] CPIR A-(HL), HL « HL+1 A-(HL) sets
> HL.SP, IX. 1Y w BC « BC-1. Repeat the flags only.
LD(nn),ss | (nn)<«ss ss = BC, DE, § untit BC=0or A=(HL) | Aisnot affected
HL,SP.IX.Y | 31 cpp A~(HL), HL « HL-1
LD SP,ss SP «5ss ss=HL, IX, 1Y z BC « BC-1
PUSHss 1 (SP-1) - ssyyi(SP-2) sy | ss=BC,DE. | o] cppg A~(HL), HL ~ HL-1
HL,AF, IX. 1Y z BC < BC-1. Repeat
POP dd dd; « (SP).ddyy +(SP+1) | dd =BC, DE, until BC=0 or A = (HL)
HL,AF, IX,IY
I ————————— ADDs A-A+s
EXDE.HL | DE «+HL ADC s A«-A+s+CY CY is the
EX AF,AF’ | AF « AF’ % SUB's A«A-s carry flag
EXX BC BC’ +=| SBCs A<A-s-CY s=r,n,(HL)
DE)| DE’ 2] ANDs A<AAs (1X+e), (IY+e)
EX (SP HL HL _ v ORs A+AVs
(SP),ss | (SP) s (SP+1)—~ssy | ss=HL,IX.! XOR s AvA®s

% Z-80°CPU Z-80A CPU

Zilog
Mnemonic Symbolic Operation Comments Mnemonic | Symbolic Operation Comments
[
S| CPs A-s s=r,n(HL) < | BITb,s Z+ey Z is zero flag
Z| Inca ded+1 Waen(re | SIsETos gl s=r.(HL)
£ d=r,(HL) ~] RESb,s s+ 0 (IX+e), (1Y+e)
N -]
*| pecd ded-1 (1X3e), (IYse) INA () A~
IN 1, (C) r+(C) Set flags
ADDHL,ss | HL«HL +ss ~ INI gﬂk)s«(‘C). HL < HL + 1
ADCHL,ss | HL «HL +ss+CY ::;SDE) (O HL < HL
-
2| sBCHL.ss | HL«HL-ss-CY ’ INIR g‘_)s 2O 1
| ADDIX.ss | IX+IX+ss ss=BC, DE, Repeat until B =0
= 1X, SP.
= D HL) «(C),HL « HL - |
S| ADDIY.ss | 1Y <Y 455 - ss = BC, DE, e IN g «)B _(])-HL
e 1Y, sp >
2| incad dd —dd+ 1 aa=pc.pE. | E5f™PR b (O-HL - HL-
: 3 -
HL,SP, IX, Y = Repeat until B=0
DEC dd dd «dd-1 dd = BC, DE, 2l outin).a |m~A
P ,
HLSPIXIY) 5|ounene |(©++ ADRSy < B
DAA Converts A contents into | Operands must Z1 ouTI (C)«(HL).HL « HL + 1
2 packed BCD following add | be in packed B«B-1
:5 or subtract. BCD format OTIR (C)«(HL). HL «~HL + 1
< C— B«B-1
§ CPL‘ A+A . Repeat until B=0
5 NEG A+ 00_-.A OUTD (C)~(HL),HL «HL - |
CCF CY «CY B<B-1
SCF CY+1 OTDR . [(O)+~(HL),HL«HL-1
" NOP No operation ' :: l:t-ulmii B0
3| HALT Halt CPU m————————
21 DI Disable Interrupts JP an PC «<nn NZ PO
SlE Enable Interrupts JP cc,nn If condition cc is true Z PE
2 ; , PC + nn, else continue €€YNC P
3] IMO Set interrupt mode 0 8080A mode ’ c M
S{IM1I Set interrupt mode 1 Call to 0038y » JRe PC *'P(.:f ¢)
M2 Set interrupt mode 2 Indirect Call H R :";‘:m:g‘:’“ k': istrue | {gz NC
21 - - e, else continue C
RLCs B g) JP(ss) |PCess | ss=HL,IX, 1Y
) i : DINZe - |B+B-1.ifB=0
RLs b .- 7 - 0 N continue, else PC +PC + ¢
s [remmm—
CALL nn (SP-1) « PCy NZ PO
RRCs -—. al l. : (SP-2) « PC; ,PC «~mn 7 PE
5 2| CALL cc, nn | If condition cc is false c« SN P
.| RRs o continue, else same as cC M
- S CALL nn
= nm —
5| sLAs Ele{T—a |s=r.(HL) 2[RSTL (SP-1) - PCyy
% S (|X+e),(lY*e) IS :’SCP-Z)«PCL, PCH +«0
(%]
o] SRAs =3~ 2 Lo~
£ | ¥ RET PC_+ (SP),
S| SRLs P e PCy < (SP+1)
x s " RET ec If condition cc is false NZ PO
RLD T e g continue, else same as RET e i(- }l:ii
A b] | RETI Return from interrupt, -
x same as RET ¢ M
RRD 7 4y o] [i_sp ofmn RETN Return from non-
AL] maskable interrupt

13

14

instruction Set Map

[}

2

NOP tDBCnn } LD(BC)A RLCA
00 NOP LXiB.nn STAX 8 RLC
000-00 001-01 002-02 007-07
4A 10D 7A 4A-C
EXAF.AF | ADD*BC :| LDA.(BC) RRCA
01 - - DADB - LDAX 8 RRC
010-08 01108 " 012-0A 017-0F
4A-SZVC 11A/15€--C 7A 4A-C
DINZ e LDDE.nn { LD(DE).A RLA
02 — LX1D.0n STAXD RAL
020-10 021-11 022-12 02717
8C/13C 10D 7A 4A-C
JRe LD A(DE) RRA
3 — LOAX O RAR
030-18 037-1F
12C 4A-C
JP NZe DAA
04 - DAA
040-20 047-27
7C/12C 4A--SZPC
JRZe CPL
05 - CMA
050-28 057-2F
7C/12C 4A
JRNCe SCF
06 —_ STA STC
060-30 062-32 067-37
7C/12C 130 4A-C
JRCe LD A,(nn)
o7 . ‘LDA
070-38 072-3A
7C112C 130
LDB,B LDB,C LbDBD
10 MOVBS MOV B.C MOV B.D
100-40 101-41 10242
4A 4A 4A
tbCB LbDCC tbCpD
11 MovCes MOvCCe MOVCD
11048 111-49 112:4A
4A 4A 4A
tbbB LtoD,.C tODD
12 MOV DB MOV D.C MOV DD
120-50 121-51 12252
4A 4A 4A
LDEB LDEC LDED
13 MOVES 'MOVE.C MOV EO

130-58

COPYRIGHT 1980, HEURIKON CORPORATION, MADISON, WI.

(4] 1 2 3 4 5 6 7
ADD B ADDC ADD D ADD E ADD H ADDL [ADD (") ADD A
20 ADD B ADDC ADD D ADDE ADDH ADDL ADDM ADD A
200-80 201-81 202-82 203-83 204-84 205-85 206-86 207-87
4A-SZVC 4A-SZVC 4A-SZVC 4A-SZVC 4A--SZVC 4A-SZVC | TAN19G—-SZVC 4A--SZVC
ADC B ADCC ADCD ADCE ADCH ADC L ADC(') ADC A
21 ADCB ADCC ADCD ADCE ADCH ADCL ADC A
21088 211-89 212-8A 21388 214-8C 215-8D - 216-8E 217-8F
4A-SZVC 4A--SZVC 4A--SZVC 4A--SZVC 4A--SZVC 4A-SZVC 7AI!96-SZVC 4A--SZVC
SuB B suBC SUBD SUBE SUB H suslL |- SUB(?) SUB A
2 susB suBC susD SUBE SUBH SustL SUBM SUBA
220-90 2219 222-92 223-93 224-94 225-95 0122696 . 227-97
4A-SZVC 4A-SZVC 4A-SZVC 4A--SZVC 4A--SZVC 4A-SZVC . 7Ni96>-SZVC 4A--SZVC
SBCB SBCC SBCD SBCE SBCH SBCL [.SBC(") SBCA
23 sSB88 sBBC S8B D SBBE SBBH sBBL seam SBBA
230-98 23199 232-9A 23398 234-9C '235-9D . 206-9E 237-9F
4A-SZVC 4A--SZVC 4A--SZVC 4A--SZVC 4A~-SZVC 4A-SZVC | 7TAN19G-SZVC 4A--SZVC
ANDB ANDC ANDD ANDE ANDH ANDL [AND() | ANDA
24 ANAB ANAC ANA D ANAE ANA H ANAL - ANAM ANA A
240-A0 241-At 242-A2 243-A3 244-A4 245-A5 L. 246-A6 247-A7
4A--SZPC 4A--SZPC 4A-SZPC 4A-SZPC 4A-SZPC . 4A--SZPC
XOR B XORC XOR D XORE XORH XOR A
25 XRA B XRAC XRAD XRAE XRAH XRAA
250-A8 251-A9 252-AA 253-AB 254-AC 257-AF
4A--SZPC 4A--SZPC 4A-SZPC 4A--SZPC 4A--SZPC 4A--SZPC
ORB ORC ORD ORE ORH ORA
26 ORAB ORAC ORAD ORAE ORAH ORAA
260-80 261-B1 262-82 263-83 264-B4 267-87
4A-SZPC 4A--SZPC 4A-SZPC 4A~-SZPC 4A--SZPC 4A-SZPC
CPB CcCPC CcPD CPE CPH CPA
27 CMLPB CMPC CMP D CMPE CMPH { CMP A
270-88 271-89. 272-BA 273-88 274-BC 276-BE 277-BF
4A-SZVC AA-SZVC 4A~-SZVC 4A--SZVC 4A--SZVC (3= 4A--SZVC
RETNZ | POPBC | JPNZnn | JPnn |CALLNZnn|PUSHBC| ADDn RSTO
30 RNZ POPB JINZ JMP CNZ .JPUSH B AD} RSTO
300-CO 301-Ct 302-C2 303-C3 304-C4 305-CS - . 306-C6 307-C7
SA/11A 10A 100 10D 100/1?0 1A 78-SZvC 11A
RET Z RET JPZnn | (SPECIAL)| CALLZnn | CALL nn ADCn RST 1
3t RZ RET - Jz {PREFIX) cz CALL ACH RST1
310-C8 311-C9 312-CA 313CB 314-CC 315-CD 316-CE 317-CF
SA/11A 10A 100 10D/17D 170 78--SZVC 11A
RETNC | POPDE | JPNC,nn | OUT (n)A |CALLNCn| PUSHDE| SuUBn RST 2
32 RANC POP D JNC our CNC PUSH D SuUt RST2
320-D0 321-D1 322-02 323-03 324-D4 325-D05 326-D6 327-D7
SA/11A 10A 100 118 100170 HA 78-S2VC 11A
RETC EXX JPCon | INA() | CALLCon | “IX™" SBCn RST3
33 RC -— Jc N cCc {PREFIX) SBi RST3
330-D8 331-D9 332-DA 334-DC 335-00 337-DF
SA/11A 4A _ 100 . 100/17D A
RETPO | 'PORESE] JPPONn |4 JCALL POAN |5 RST 4
7 RPO * - POPHAHY JPO CPO RST4
EO : 341- 342-E2 344-E4 Y : 347-E7
11A 10A/1 100 1007170 - 11ANSE - 3 11A
RETPE | JP(; JP PE,nn CALLPEnn| * RSTS
35 APE N JPE CPE (PREFIX) XRi RSTS
350-E8 T - 351 352-EA 354-EC 355-ED 356-EE ° 357-EF
SA/11A 10D 10D/17D 78--SZPC 1A
RETP POPAF | JPP,nn CALLP,nn | PUSH AF ORn RST6
36 RP POP PSW b ce PUSH PSW ORI RST6
360-FO 361-F1 362-F2 364-F4 365-F5 366-F6 367-F7
SA/11A 10A--SZVC 100 10D/170 11A 78--SZPC 1A
RETM | 'LDSP JP M,nn CALLMnn | *Iy** CPn RST7
37 RM . L W™ CM {PREFIX) CpPi RST7
370-F8 371E 372-FA 374-FC 375-FD 376-FE 377-FF
SA/11A - . GASY 100 100/170 78--SZVC 11A
A OPCODE
B OPCODE Operand
C OPCODE Displacement OPCODE? = 335-DD For IX O
= perand
D OPCODE Operand L Operand H = 375-ED ForlY Opefand
E OPCODE1 OPCODE
F OPCODE1 OPCODE Operand * MEANS HL,'IX; or IY
G OPCODE?Y OPCODE Displacement) MEAN >
H OPCODE1 OPCODE Displacement Operand () S (HL). (X + o), or (¥ «-»ndy
J OPCODE1 OPCODE Operandl. Operand H

COPYRIGHT 1980, HEURIKON CORPORATION, MADISON, Wi

15

16

[4] 1 2 3 4 5 6 7
INB,(C) |OUT(C)B [SBCHLBC|LD(NN)BC| NEG RETN MO LDIA
10 100-40 101-41 10242 103-43 104-44 105-45 106-46 107-47
11K--SZP 12K 15K-SZvC 20L 8K--CZVS 14K 8K 9K
INC,(C) |OUT(C),C |ADC HLBC| LD BC,(nn) RETI LDRA
11 110-48 111-49 1124A 113-48 11540 117-4F
11K--SZP 12K 15K-SZVC 20t 14K 9K
IND,(C) |OUT (C),D | SBC HL.DE | LD (nn),DE M1 LD Al
12 120-50 121-51 122-52 ¢ 123-53 126-56 127-57
11K-SZP 12K 15K--SZVC 20t 8K oK--SZV
INE(C) |OUT (C),E | ADC HL,DE| LD DE,(nn) M2 LDAR
13 130-58 13159 132-5A 133-58 136-SE 137-5F
11K-SZP 12K 15K--SZVC 20L 8K 9K--SZV
INH(C) |OUT(C)H | SBC HLHL | LD (nn),HL RRD
14 140-60 14161 142-62 143-63 147-67
11K--SZP 12K 15K--SZVC 20L 16K--SZP
INL(C) |OuUT(C).L | ADCHLHL| LD HL (nn) RLD
15 150-68 151-69 152-6A . 15368 157-6F
11K-SZP 12K 15K--SZVC 20t 18K--SZP
INF{C) |OUT(C).F|SBCHLSP|LD (nn),SP
'° e | | e | en 313 PREFIX GROUP
INA(C) |OUT(C).A|ADCHLSP] LD SP.(nn) RLCr RRC ALr RRr
17 170-78 171-79 172-7A 173-78 313/00r 313/01¢ 313/02r 313/03¢
11K--SZP 12K 15K--SZVC 20L 8B/23H--SZPC | 88/23H--SZPC | 88/23H--SZPC | 88/23H--SZPC
~LDI CPI N ouT SLAT SRAT = SRLr
24 240-A0 241-At 242-A2 243-A3 313/04r 313/05¢ 313/0x6 313/07r
16K--P(SZ) 16K-SZP 15K-~-Z(SP) 15K-Z(SP) 88/23H-SZPC | 88/23H-SZPC 158 88/23H--SZPC
LDD CPD IND ouTD enmessseT | BITbyr RESb,r SET b,r
25 250-A8 251-A9 252-AA 253-AB 313/xb6 313/1br 3137200 313/3br
16K--P(S2Z) 16K-SZP 15K--Z(SP) 15K~2Z(SP) 128 8B8/20H--Z(SP) 88/20H 887204
. 293'3 gﬁf ;:;:‘,L : "?J'g SLASH INDICATES TWO WORD OPCODE
21M/716K-P 21/ 16K-SZP ZWIiSK-ZgSP) 20M/15K--2(SP) ‘D" ="bitv 7 = MSB‘ 0 =1LS8
LDDR CPDR INDR OTDR “r* = “register” SEE REGISTER LIST
27 270-88 271-89 272-8A 273-88°
21M/16K~-P(S2) | 21M/16K--SZP | 20M/15K--Z(SP) | 20M/15K~-Z(SP)
{HL) = SOURCE (HL) = ADDRESS r REGISTER
(DE) = DESTINATION (C) = DEVICE
BC =LENGTH B =LENGTH ? g
2 D
355 PREFIX GROUP 3 E
K 355-ED OPCODE 4 H
L 355-ED OPCODE Operand L Operand H 5 L
M 355-ED OPCODE Timing when BC+0 g (l-x-)
— Z80 MNEMONIC
280 MACHINE CYC ADD *HL
lNSTRUC’l’%%l FOR'EMfoND DAD H 8080 EQUIVALENT MNEMONIC
IF TWO SETS OF VALUES: 051-29 —
FIRST (“11A") IS FALSE CONDITION 11A/15E-C OCTAL-HEX OPCODE

TIMING FOR JUMP/CALL/RETURN
INSTRUCTIONS, OR FOR OPERAND
o Py HL
SECOND (“15E™) IS TRUE CONDITION

TIMING FOR JUMP/CALL/RETURN
INSTRUCTIONS, OR FOR OPERAND
"= XorlY. :

SEE INSTRUCTION FORMAT LISTING

\ CONDITION CODE FLAGS AFFECTED

S = SIGN FLAG
Z = ZERO FLAG
P = PARITY FLAG

FLAG REGISTER V = OVERFLOW FLAG
7|6151413]1 2|1{0 C = CARRY FLAG
sizl |l Prinde FLAGS ENCLOSED IN PARENTHESIS
N ARE AFFECTED BUT NOT
DETERMINATE

COPYRIGHT 1980, HEURIKON CORPORATION, MADISON, W1.

(This page left blank intentionally)

17

18

INTRODUCTION TO THE MLZ-91 MAPPING RAMS

The MLZ-91 has three mapping RAMs which are used to dynamically
allocate the resources of the MLZ-91.

The mapping RAMs and their functions are:
1. Memory Mapping RAM

Controls the allocation of all memory and allows the
CPU/DMA (which has a 16 bit address bus) to access a
full megabyte of memory (which requires a 20 bit
address). In addition, the memory mapping RAM controls
the memory write protect feature for on-card RAM.

2. I/0 Device Mapping RAM

Specifies the base addresses for the on-card I/0 devices.
Also specifies the regions of the I/0 device address space
(8 bits) which are to be used for on-card devices and
which are for off-card devices. This feature allows
a system to be configured with more than 256 device
addresses from being masked by on-card devices. On-card
devices may be "shadowed" or moved to different base

- addresses. ‘

3. Bus Mapping RAM
This RAM is-used to assign the MLZ-91 to a spot on the
Multibus. The 20-bit Multibus is divided into 16 regions,
specified by the upper four bits. Each MLZ-91 on the
Multibus can be assigned to any region or regions. In
addition, the mapping RAM specifies what type of
operation from the bus is allowed. Memory read, Memory
write and I/0 device access may each be enabled or
disabled in each block.

Since the contents of the mapping RAMs are controllable by software,
the program may allocate resources as necessary for the particular
application.

Detailed descriptions of each of these mapping RAMs and software
examples of their use are presented in the following sections of
this manual. Summary information appears on page 47 and

software examples start on page 80.

BUS MAPPING
RAM

MEMORY 5
ADDRESS

MEMORY
MAPPING
RAM

LOAD

MULTIBUS ADDRESS
—n———
AND CONTROL. SIGNALS

Y

CPU/DMA

/

ON—-CARD
MEMORY
DECODE

—>ROM ENABLE

—=RAM ENABLE

——OF F-CARD ENABLE

I/0
DEVICE —»
ADDRESS

I/0
MAPPI NG
RAM

SIMPLIFIED DIAGRAM

I/0
DEVICE
DECODE

1/0 DEVICE
” ENABLES

OF MAPPING RAMS

19

20

MEMORY MANAGEMENT

Introduction

The MLZ-91 has the capacity to address over one megabyte of
memory. This is accomplished by using a system address bus
which is 20 bits wide. The CPU and DMA chips, however, are
designed using 16 bit internal registers and a 16 bit address
bus. The memory mapping logic is the link between these two
address buses.

The MLZ-91 memory mapping RAM allows the full 20 bit address bus
to be utilized. The mapping RAM output provides the upper four
bits plus three of the remaining 16 bits (seven total). The
four upper address lines from the CPU, instead of going directly
to the address bus, are used to select a location within the
mapping RAM. The mapping RAM can be preloaded with various
combinations of the upper seven bits. Then, the CPU address

‘ specifies the mapping RAM address plus the lower address bus

bits. The RAM provides the other upper seven address bits. To
switch from one preset block to another all that is required

is a variation in the upper CPU address’ lines, a relatively
easy task for the program. The mapping RAM contents may be A
changed from time to time to keep the most frequently used upper
address line combinations always available. (The eighth bit |
from the mapping RAM is used to designate an on-card or an
off-card address.)

Think of the mapping RAM as two, unequal sized funnels attached
together at the small ends. The 16 bit CPU address bus feeds
into the small funnel. After passing through the mapping RAM
(represe;ted by the junction of the funnels) the address bus

is expanded into the full 20-bit space.

CPU ADRS SPACE

0000 FIXED VARIABLE
(4 K EACH) M@ | ON-cARD
jooo / \ RoM
SOCKE TS
2000 MAPPING RAM M
3000 \ BLOCK 00
' BLOCK | ©O
Looo \ BLOCK 20
5000 \ BLOCK 3O \4;(BLOCK
BLOCK 4 © ON—CARD
6000 T~ BLOCK 50O \ RAM
7000 | ——I"BLock &0 4K BLOCK (64K)
8000 > BLOCK 7O
——> BLockK 8o ——
qo000 |7 BLOCK QO
BLOCK BO |~ |
B0OOO / BLOCK CoO
BLOCK Do
le}
co00 / BLOCK EO
poOoo BLOCK FO
EoOOO ' OFF CARD ADRS SPACE
Fooo (1 MEGABYTE)
00000
EACH 4K BLOCK OF CPU ADDRESS SPACE
1S CONTROLLED BY AN ENTRY IN THE MAPPING
RAM. THE DATA IN THE MAPPING RAM N K MEMORY BLOCK
“PoINTS” To AN ON-CARD ROM SOCKET OR
RAM ADDRESS OR TO AN OFF-CARD
MEMORY ADPDRESS ~al &K MEMORY BLOCK
FEFFF

MEMORY MAPPING LOGIC

21

22

As a direct result of using this method, the MLZ-91 allows easy
implementation of multi-tasking systems because each task, or

usef, can be assigned a section of memory which would only be
allocated by the mapping RAM when that task was active. Memory

for the inactive tasks would therefore not be wasting any of the CPU's
address space.

DMA data transfers could always be made to only one or two blocks
as assigned by the mapping RAM. Only potentially active blocks
would need to be assigned (inactive memory would be de-allocated)
thus leaving more blocks free for use by the CpuU.

The user has the option of specifying any combination or mix of
on-card and off-card memory,' Memory blocks may be turned "on"

or "off", overlayed or moved around simply by changing the mapping
RAM contents. Program segments can even be “"cloned" without
physically moving bytes from one location to another.

PARITY ERROR AND
WRITE PROTECT TRAP

S ET
OCKETS LOGIC RAM
INT/EXT
Y \g CONTROL-
NMI A|5,Am. Al3 Az MAPPING
() ’ > A D V
CPU 1l f- ram L J \>_,—]
3 A,—Ag 168 RAM]
DMA
NP 20 BIT
/> > MULTIBUS
~

SIMPLIFIED BLOCK DIAGRAM OF ADDRESS MEMORY LoGIC
(DATA AND CONTROL. BUSES NOT SHOWN)

7?3

Use of the MLZ-91 Memory Mapping RAM

The following pages describe the mapping RAM in more detail and show
the CPU instructions for loading the mapping RAM data. There
are also a number of examples showing specific instruction sequences

which could be used to setup the mapping logic.

Later sections of this manual describe the Bus mapping RAM (used

to designate the position that the MLZ-91 occupies on the Multibus)

and the I/O mapping RAM (used to specify the base address of the on-card
I/0 devices).

Since the mapping RAM initially contains a random bit pattern, some
scheme must be employed to load the RAM before any data from it is
used. This is automatiqally accomplished by disabling the mapping
RAM and forcing the'map logic to address only ROM on the MLZ-91.

The mapping RAM is enabled as the first attempt is made to load data
into it. The RAMifications (!) of this are explained in the following
text.

The basic sequence of instructions which is used to set the memory
mapping RAM involves the following:
1. Load register C with the I/0 port address assigned to the
memory mapping RAM.
LD C,MAPRAM
2. Load register B with the high half of the 4K memory address which
'is to be assigned. Only the upper four bits of the
address (i.e. Al5, Al4, Al3 & Al2) are significant. This
value determines which cell within the mapping RAM will be
loaded. The 64K CPU address space is thus divided into
16 4K blocks.
., LD B,BLOCK
3. Load register A with the data which is to be stored in the
mapping RAM. This value is determined from one of the
accompanying charts showing the (HEX) data corresponding
to each ROM socket (e.g. "@g@g"), on-card RAM block (e.g. "7F")
or off-card memory block (e.g. "FB").
LD A,DATA

4. Execute an OUTPUT instruction to laod the DATA into the
specified BLOCK address of the mapping RAM. (The special
z-80 OUTPUT instruction must be used. If your assembler cannot
handle anything but pure 8080 mnemonics, use the following
sequence of defined bytes (DB): e.g. DB PEDH, @59H.)

For example, the following sequence of instructions will map ROM
socket MJ at memory block "5" which starts at CPU address 54dg

(HEX)
LD C,MAPRAM ; LOAD PORT ADDRESS
LD B,5¢H ; LOAD BLOCK ADDRESS
LD A,gpH ;LOAD MAP DATA
OUT(C) ,A ;SEND TO MAPPING RAM

During execution of the OUT instruction, the content of register

B appears on the upper 8 CPU address lines, the most significant

4 bits of which specify the memory mapping RAM block address (see
diagram). Register C contains the I/0 port address which is used
when writing to the mapping RAM. The DATA loaded into thekmapping
RAM specifies the physical location of the memory which is to be
assigned to the specified CPU memory BLOCK. In addition, on-card
RAM may be write protected by proper specification of a bit in the
map DATA.

Summary informations on the memory mapping RAM data format appears
at the end of this section, pages 34 and 35. However, if the

mapping concept is unfamiliar to you it would be wise to read the
text between here and there. '

Z-80 CPU L y seu%g;;ggﬁ?
X/0 I/O DEVICE T —————— <> TO O VICES
= REGUEST | DECODE LOGIC iﬁ;ﬁ%ﬁ‘m" (PTO, SIO, ETC.)
L
A DEVICE RAM
o ADDRESS DATA
= s {"—“— ________________ 1
BLocK MAPPING RAM BLOCK
&] “%(”PPEZ‘*B’T’),, lmzessal ADDRE S5 DECODE I
8 _ !
TRt EERERE 2NN’ 9
- MAP DATA MW WRITE ENABLES TO A
A ' RAM CELLS
(ONPOTY bobabab g, T b b0 1 11
1{01V1212,4,5,60,7,8,9,A,Blciple|F |
REGISTERS L1:111L1;1|11111J

CPU RE&ISTER USAGE DURING \\OUT(C),A”(WITH B =.50 R)
25

26

The contents of the memory mapping RAM may be changed as often as
desired to reallocate the memory space or to enable or disable

the write protection logic on a particular RAM block. After

power is applied, after a hardware RESET or following a memory error
(parity or write protect) the mapping RAM output is disabled and
ROM socket M@ is selected until the first attempt is made to load
data into the mapping RAM. Thus, socket M@ must contain a ROM

and the initial instructions fetched from the ROM will start at
address @@gPH. Also, the first memory mapping RAM data loaded

must be for socket M@, otherwise execution will continue at an in-

determinate address. Once socket M@ has been officially mapped,

other memory may be assigned. More on this later.

This discussion has ignored the other MLZ-91 mapping RAMs (the
BUS MAP and the I/0 MAP) in order not to complicate matters. Be
aware, however, that these other mapping RAMs must be properly
initialized prior to loading the memory map. Luckily, the BUS
and I/O mapping procedures are not difficult, so details on
these have been deferred to a later section.

The next pages detail the proéedure for mapping:

A) On-card ROM

B) On-card RAM

C) Off-card memory
There are mapping examples (with program listings) of typical
map configurations later in this manual. (See page 80).

A. ON-CARD ROM
There are two memory sockets on the MLZ-91, both of which

may contain up to 8K bytes of ROM. To setup the memory mapping
RAM for the on-card ROM sockets, follow these steps:
1. Select the desired memory socket configuration from the
"ROM MAPPING CHART". (See page 28). .
2. Locate the two digit hexidecimal number shown under the
desired configuation (i.e. "gg", "1g", "28" or "3g".
Note: The 8K socket cbnfiguration for a 2764 type ROM
requires two map entries, one for each 4K half. (See
below.)

3. Store the value found above in the memory mapping RAM

using the instruction sequence explained earlier.

LD C,MEMMAP ; LOAD PORT ADDRESS

LD B,BLOCK ;LOAD 4K BLOCK ADDRESS

LD A,DATA ;MAP DATA (found in step 2,
| “above) '

ouT (C),A ;SET MAP DATA

If a 2764 is being mapped, the second 4K half may be
assigned by using these additional instructions:

LD B,BLOCK+1fH NEXT BLOCK -
LD A,DATA ;DATA FOR 2ND HALF
ouT (C),A ;SET MAP DATA

Normally, the two halves would be mapped into adjacent
blocks, although this is not required.

4. Locate the hardware jumper specification in the chart for
the chosen mémory type and'éonfiguratioh. Set the
jumpers on the MLZ-91 as indicated. (e.g. J12-A, Jl4-3)

Recall that thekmemory mapping RAM is disabled following a power-
up or manual system RESET and socket M@ is automatically assigned
to all 4K memory blocks. When an output is done to load the
mapping RAM it is re-enabled. In order to prevent the uninitalized
contents of the mapping RAM from turning off the ROM from which

we are executing, the first output to the map must be to assign
socket M@ to the current memory block being executed. If the CPU
is not executing in the proper block (prior to loading the map)
simply execute a JUMP instruction to the desired block. The upper
4 CPU address bits have no significance until the mapping RAM is

27

28

T . SOCKET | ROM TYPE:2716

WK M e JUMPERS: JI2-B, JI4-B
SOCKET

l 2K M | .

EACH SOCKET oOccuPIES HALF
OF A 4K BLOCK. ADDRESS
LINE A, SELECTS sSocKET

SOCKET M@ SOCKET M]
T ' ROM TYPE: 2732
4K 4K 4K | | JUMPERS: J12-A Jiu-A
l (o X~} 20

EACH SOCKET OCCUPIES A FuLL
UK BLOCK. MEMORY MAP RAM
SFLECTS SOCKET

SOCKET M@ = SOCKET M|

: - ROM TYPE:. 2764
. QO 1B o 20
8K : o = 30 JUMPERS: JI2-A, Jlb-p

(NUMBERS INDICATE
' DATA FOR MEMORY

Y MAPPING RAM)

ROM MAPPING CHART

activated. Socket M@ will always be selected (and will thus
"mirror" itself every 4K addresses. (I.e., locations g@g@ggH,

19@PH, etc, will be identical.) This procedure (of jumping to

the desired 4K block prior to setting the memory map) is equivalent
to doing a power-on-jump. This procedure is illustrated in

the memory mapping program examples. (See page 85.)

After socket M@ is mapped the next step should be to allocate
some RAM. Up to this point no user RAM exists!

It is possible to deallocate the ROM and replace it with RAM.

The technique for doing this is illustrated in the "SLAVE" software
example on page 94 . (Note: If ROM is turned off, the I/0
mapping RAM and bus mapping RAM cannot be altered until ROM is

reallocated.)

29

30

B. ON-CARD RAM

On-card RAM is allocated in a manner similar to assigning the
ROM sockets. The only difference is the DATA value used.

The data for on-card RAM specifies the physical 4K block of
RAM (instead of a physical ROM socket) which is to be assigned

to one of the 16 CPU 4K address blocks. Also, on-card RAM may be

write protected by specifying the proper data.
Here is the sequence to use to map on-card RAM:

1. Select the desired 4K physical block of RAM to be
allocated from the "MEMORY MAP DATA CHART". (Page 35)

2. Locate the two digit hexidecimal number shown for the
desired physical block (e.g. "5F").

3. To disable the memory write protect logic for the memory
block, add 2@H to the value found above. If write
protection is desired, skip this step and simply use

- the original value. See page 36 for a description of the
write protect logic.

4. Store the result of step 3 in the memory mapping RAM as

' follows: (This is the same as for the ROM sockets.
Only the BLOCK and DATA values are different.)

LD. C ,MEMMAP ;LOAD PORT ADDRESS

LD B,BLOCK ;LOAD 4K BLOCK ADDRESS

LD A,DATA ;MAP DATA (from step 3,
above)

ouT (C),A ;SET MAP DATA

Since the instruction sequence above is similar for both ROM

and RAM allocation and since the allocation of numerous blocks of
RAM would be repetitive operation with changes only in registers

B and A, an instruction loop may be used to simplify the procedure
for loading the entire memory map. This technique is illustrated
in the software example on page 86.

Note: Jumper J13 must be set according to the type of RAM
chip being used (See page 142).

Refer to page 36 for a discussion of the RAM parity and write
protect error logic.

MEMORY SOCKET JUMPER LOCATIONS

FOR RAM CONFIGURATION SELECT,
SEE PAGE 142
A
8 ‘SET FOoR w4ieu

JI3 aflfle or 4s32-2
D

|

‘o L PG LT ps LI py LJ Pz L1 o)
_ . | ~ON-CARD
L D7 l RAM
PARITY R [os
ERROR
LED NMI {Ej
MLZ-9]A O .[pos3]
T |rom mi
RoMm Mo
| | =
7 P — Ll P2\
Ja Jio Jiz Jig
AB AB AB A B
WAIT ON WAIT ON SKT setect A, PIN
ALL ON-CARD OPCODES SET FoR 2732/2744-
. MEMORY ONLY ~ Y d
v 7 FOR ROM CONFIGURATION SELECT,
WAIT STATES,SEE PAGE 48 SEE MAPPING CHART PAGE 2%
Ic PN}
N
o]
2% PIN Rom J Ic PN '\
ey
(2764) 123K
l RAM
28 PIN \ g PIN
SOCKE ICPIN I
KETS 2t ICPINI, / SOCKETS
PIN ROM o~ :l___________%
2% d T~ UNUSED_/_...//?"{' 4led °
- PINS \‘--.. H o - ?
(2716 oR 277372) // Lozl
.o 10
27 2%

31

32

OFF-CARD MEMORY

The main difference between on-card and off-card memory

is that CPU address line Al2 controls both bus address
line Al2 and the least significant mapping RAM block
address. This means that bus address Al2 is not inde-
pendent of the block address. All even numbered 4K groups
of physical off-card memory addresses must be mapped by
even numbered map blocks (and odd 4K physical off-card
memory groups must be mapped by odd numbered map blocks.)

Therefore, the mapping RAM has total control of off-card
address space only in 8K blocks if mapping RAM blocks
are paired (i.e., same map data loaded into an even-odd
pair of map blocks.)

1 Al9 AlS8 Al7- Alé AlS5 Al4 Al3

~"

Upper 7 bits of
OFF-CARD MEMORY
{(Stored Inverted)

Vo .) Y
\

Indicates an
Off-card location

To load the‘mépping RAM for a particular off-card memory

block (8K in length) proceed as follows:

l.

Right justify the upper 7 bits of the desired 20 bit
address block (shift right one bit) and convert to
hexidecimal. These upper 7 bits (Al3 through Al9)
‘§pecify one of the 128 8K memory blocks.

2. Invert all 8 bits (MSB should be ON to indicate an
off card address). (See "Memory Map Data Chart", page 35.)
3. Store the result in a pair of map locations as follows:
LD C ,MEMMAP ;LOAD REG C WITH MAP PORT ADRS

LD B,HADRS ;LOAD THE UPPER 3 BITS OF REG B
WITH A MAP BLOCK NUMBER. ' (EVEN)
(Bit 4 should be zero.)

LD A,DATA ;LOAD REG A WITH MAP DATA

(Found in previous step)
our (C),A ;SET MAP DATA - FIRST PART
LD B,HADRS+1@H ;SET BIT 4 ON (ODD BLOCK)
out (C),A ;SET MAP - SECOND PART

Two OUTPUT instructions are required, each to a different
mapping RAM location, in order to prevent address line Al2
from affecting the output of the mapping RAM. This is
accomplished by setting the data in the two map locations
(selected by Al2) to the same value. Off-card memory can
be allocated in 4K blocks of physical memory must be mapped
(controlled) by even numbered map blocks.

The write protect feature is not available for off-card memory.

Note on use of the "Memory Map Data Chart" (page 35)

The data values to use to map on-card or off-card memory are.
shown on the Memory Map Data Chart, page 35. At any one time,
at most 16 of these values may be loaded into the memory mapping

RAM in order to specify the physical location of each 4K block
of the 64K CPU memory space. ‘

The top line represents the CPU address space from oooo through
FFFF* (hex address values). The second line represents the
memory mapping blocks associated with each 4K of the CPU
address space. The following lines show the appropriate data
value to load into the mapping RAM in order to assign that
particular memory segment. For example, to assign an on-card 2732
ROM in socket M@ to CPU address Fg@g@g@, the data value "gg"

must be loaded into the 16th (last) cell of the mapping RAM
(sécond line). To assign the off-card physical address 48000
to CPU address @@ggg, data value "DB" must be loaded into the
first cell of the mapping RAM.

33

D7 Dg
B g Socket Half X X X X
Specifies Controls Al2 for 2764 Type ROMS
On-Card ROM # = First Half of 2764
' 1 = Second Half of 2764
Selects ROM Socket (Via J12-3)
g = Mg
1 =M1
! . N YT — —
g 1 Protect Al6 AI15 ; AT AT3 AT2
i
-](_
Specifies Controls Upper RAM Address Lines
On~-Card RAM (Al6 used for 128K Memories only)
Memory Protect
= Enable Protect
-1 = Disable Protect
— J— R 1
1 Al9 Al8 Al7 Alée % AlS A14 213
} :
— — - . J
. Y
Specifies Controls Upper 7 Multibus Address

Off-Card Memory Lines .

Use OUT (C), A to load the memory mapping RAM. Register B, upper
4 bits is memory block address during loading of the mapping RAM.
Register C is the device address assigned to the Mapping Ram,

"MEMMAP" .

Summary of Memory Mapping RAM
Data Format

cpu/pMA 0000 1000 2000 Yooo0 6000 gooo Aooco Boobo EO00O0 Fooo FFFF

ADDRESS
SFPACE

MEMORY
MAPPIN=
RAM

64K

| |
i |
100 10 20 30 Y0 50 60 70 B0 d0. Ao BO Co DO EO FO|

64-K

-

ON-CARD MEMORY

RAM:

o000

N

ROM ool 20| 2716 M@ = ROM SOocKET M@
SOCKET < Mg Mi M| = ROM SOCKET mi

ATIONS M

(Mﬁ MIi
T EACH BoxX REPRESENTS

oo 2716 K oF MEMORY SPACE
Mg Mt

L ocof 1o 2764 20|30 276y

+2000 +Yooo +6000 +8ooo +A00O0 +Cooo +Eo0OO
S5F|5e|5D |5c | 5B|5A |59 |58 |57|5¢|55|54|53 52|51 58] 64K

ADD 2 & To DISABLE RAM WRITE PROTECT (oN CARD RAM om.Y)J

00000
10000
20000
30000
40000
50000
60000
70000
g0000
q0000
ACO00
B00OO0OO

OFF - CARD MEMORY

coo0o00
D000O
Eoooo
Foooo
FFFEF

+2000 +18000 46000 +8000 +A000 +CO000 +EO0O
FF|FF|FE|FE|FD|FD|FCc|FC|FB|FB|FA|FA|FqQ|Fq|FZ|F8|oldK

FT1lF7|Fe|F6|F5|F5|Fu|FU|F3|F3|F2|F2|FI [FI |Fo |[FO|64K
EF |EF |[EE |EE [ED |ED |EC |EC |EB |[EB |EA |EA |[EQ [EQ|EY |[EB |O%K
E7|E7|E€ |E6 |E5|E5 |EY |[EY |E3 [E3 |E2|E2|EI |EI |EO|EO
DF | bF |DE |PE |DD |DD |DcC |DC {DB {DB |DA |DA {D9|D9|D¥ |DZ
p7 |p7 |D6|Dé |Ds D5 |DY|DY D2 D3 D2 |D2|D 1} |DI|PO |PO
CF |CFlcE|cE |cDh|cD|cclccicr|cB|CA|cA|Ca|cq|cy|cq

C7|c7|cglcg|csics|clcy|c3|c3 (c2|cz2|ci |ci|CO|CO
BF |BF |BE |BE |BD |BD |BC {BC |BB |BB |BA|BA |Bq B2 |BZ |B¥
B7|B7|Bé|Bé |B5|B5 B4 |{Bu|B3|B3|B2 |B2|B} B |BO|BO
AF | AF |AE |AE |AD |AD|AC |AcC |AB |AB |[AA |AA |AG |AT |AT |AT
A7 |A7 |[A6 |AG [A5 A5 AL JA4IABIAR |A2 A2 |AL AL [AOAO
AF | 9F|9E [9E |9D 9D |9C|9C |9B 9B [FA [FA[A|919]98 |98
97197|96 {26 |95{95 {94 {94 |93 |93 |92 |92|9!| 91|{90| 90
B8F|8F|8E|BE|8D|{8D|8c|8c|8B|BB|BA|BA| 87| 83|88 57
87| 87|86 86|85|85|84|8Y| 83| 83| 52| 82| 81| 81 |80 | 80|64k

(ONE MEGABYTE TOTAL)

EACH Box REPRESENTS J4o96 BYTES. NUMBERS INSIPE
BOXES ARE THE MAP DATA (IN HEX) FOR THAT BLOGCK OF
MEMORY. SEE PAGE 33 FOR NOTE ON USE OF THIS CHART.

MEMORY MAP DATA CHART

35

PARITY AND WRITE PROTECT LOGIC

A standard feature of the MLZ-91 is the ability to selectively
write protect any block or group of blocks of on-card RAM.

Bit D5 of the memory mapping RAM data is used to control the
write protect logic. If on-card RAM is allocated with this

bit in the @ state (D5 LOW), then any attempt to write to an
address in the 4K block so allocated will result in an NMI
(Non-maskable Interrupt) to the Z-80 CPU. Generally, this feature
is used as follows:

1. Allocate on-card RAM with memory protect disabled.
(E.G., map data 7F)

2. Write data to the on-card RAM as desired.

3. Re-allocate the same RAM but with memory protect
enabled. (E.G., map data S5SF)

4. An NMI will occur if any attempt is made to write
to that block of memory. The write operation
will not be performed.

See below for a description of the NMI response. On-card
RAM may also be protected by de-allocating the block, however
this method will prevent any accesses of the memory block.

Whenvthé write protect logic is enabled any attempt to write to
on-card RAM, whether from the CPU, DMA or frombthe system bus,
will be "trapped”. It is also possible to write (or read)
protéct on-card‘memory from the system bus only, without inhib-
iting use of the memory by the CPU -or DMA, by properly loading
the Qgg_mapping RAM. See page 38.

The parity feature (an MLZ-91 option) is useful to guarantee
the integrity of the data stored in the on-card RAM. Whenever
data is written to the memory, odd parity is computed and the
result’ is stored as a ninth memory bit. When the data is
subsequently read back, the parity computed across all nine
bits is checked and, if not odd, an NMI is generated.

Either of the above errors (write protect or parity) produces an
NMI. The MLZ-91 responds as follows:

1. The address of the next instruction is pushed into the
software stack if a write protect error occurs. The
address of the second next instruction is saved in the
case of a parity error.

2. The CPU program counter is set to @g@g66 (hex).

3. The memory mapping RAM is disabled which puts
ROM at every 4K boundary (mirrors).

A program at address @@66 can then service the NMI, generally

by printing an error message and re-initializing the program.
It is possible for the service routine to determine the cause
of the error and the approximate location where it occurred.

See page 92 for a software example.

.

There are two error LED's which indicate the status of the NMI
logic. One indicates a parity error, the other indicates a

parity error or a write protect error. Thus,

Both off = error logic is reset
(See page 31 for LED One ON = write protect error
locations) ' BothON = parity error

If a HALT instruction is placed at location @@66 (in ROM socket
M@), the error indicators will show the error type and the MLZ-91
will halt following an error. However, if the NMI service routine
at gP66 performs any other task, it must clear the NMI error logic
before RAM can be reallocated, and the error indicators will be

turned off.
The status of the NMI error logic may be determined by doing an

input from I/O port IOSTAT. See page 64 for details:" The parityﬁ

logic may be disabled by shunting jumper J19.
POWER-ON JUMP '

Since the entire memory space is controlled by a mapping RAM,

any memory socket or external address block may be dynamically
allocated by the software. A power-on-jump is easily implemented
by properly initializing the mapping RAM.

When program execution begins after a power up or RESET the output
of the mapping RAM is forced to select memory socket M@ regardless
of the upper four CPU address lines. Execution begins at CPU
address ﬁﬂﬂﬁ from address @@@g in the ROM. If a jump instruction
is executed to a different 4K block without changing the

relative location from the base of the block, execution will
merely continue at the next sequential ROM address (although

the program counter in the CPU will be pointing to the desired

4K block). Then, the mapping RAM can be set so that socket

MR is relocated to the desired block.

For an illustration of this method, refer to the MLZ-91
initialization example on page 85.

37

38

BUS MAPPING RAM

The conventional method of board assignment in the Multibus
address' space is to utilize a group of DIP switches or jumpers
to specify the base address of the board. The MLZ-91 uses a
special mapping RAM instead which is loaded under software
control. Bits in the RAM perform the same functions as DIP
switches but allow the operating program to modify the board's
position and and status on the bus.

The one megabyte (20 bit) address space on the Multibus is
split into 16 blocks. The upper four address lines (i.e. Al9,
Al8, Al7 and Al6) are used to select an entry in the bus mapping
RAM which corresponds to the block being addressed on the bus.
The RAM's output specifies: '

1. Whether or not the board is assigned to that block.

2. If it is assigned, then other bits determine:

a. 1if the board's i/o devices may be accessed,

b. 1if the on-card memory may be read from, or

c. if the on-card memory may be altered.
Thus, @ board may be set up to allow memory reads, memory
writes, I/O device accesses of”any combination of these
functions.

Access to the bus mapping RAM by the CPU is done by executing
a memory write operation to either on-card ROM socket with A5
set on and A3, A2, Al and Af specifying the inverse of the
logical bus block number. Note that it would normally be
inappropriate to do a write to ROM. This type of operation

is intercepted by hardware and the CPU data is stored in the
busjmabping RAM. (This technique is also used to load the I/O
mapéing RAM.).

If on-card ROM has been deallocated (via the memory mapping

RAM), one of the ROM sockets must be reassigned, at least
temporarily. This is a function of the memory mapping RAM.
(See page24.)

6t

\m

P+ INH MEM RD
b~INH MEM WR

beINH I/0

" p-EWEL

3 OFF=CARD
3 ON=CARD

-0

ON CARD
”~ MEMORY
LoGic

AAEARERA;

ON=CARD

J

MULT- ,
BOARD 1-ACTING AS MASTER BUS BOARD 2-ACTING AS SLAVE
A
Asg
Ary
T P l
O NCCARD BLOCK BOARD SE
ADRS D, FTT T TP T
MEMORY D¢ BuUS MAPPJNGW 5
' D
. - N\APPING Aot D:, l ' IRAM
RAN\ U n
. An
1 |
101 2345 67%9ABCDETF
4y T
BLOCK SELECT An D¢
. Ds MEMORY .
v Py MAPPING
t 14 Py o RAM
lAvslAmlAulAu IAuIﬁul‘“ lAllA-r %alkg I::-I%; Az IA' lA.l ADRS D;
N N) l:,'
o,za¢ssvquscozF
N2
[A.;]A,.IA.,]A..[A..IAuIA« [as Jas lAa lAsIM [as[Aalas [Ae] ADRS
RGN
A 12.
Y9SN ")
DATA = $ » DATA

MULT|—-PROCESSOR MEMORY ACCESS-SIMPLIFIED DIAGRAM

The following sequence of instructions may be used to load
the bus mapping RAM:
LD A,DATA
LD (ROMBASE+2FH-BLOCK) ,A
Where: ROMBASE is the base address of either ROM socket (e. g.
FgggH)
BLOCK is the desired address within the bus mapping
RAM. BLOCK may take on the values of @g@PH through @FH
corresponding to the values allowable for the upper
4 address bits on the 20 bit Multibus. Note that the
expression ROMBASE+2F-BLOCK forms a value which is the
compliment of the actual bus block number (plus A5 high.)
DATA is determined as follows: ;
D7 Set to 1 to allow memory read operations
in the specified BLOCK
D6 Set to 1 to allow memory write operations
in the specified BLOCK _
D5 Set to 1 to allow use of on-card I/0 devices
in the specified BLOCK -
D4 Set to § to disable all operations. If
- D4 = g§ the board will not even respond
with BACK (Bus Acknowledge) on the
Multibus, thus ignoring all bus requests.
If D4 is set to 1 and D7, D6 or DS are
all zero, BACK will still be issued in
respdnse to a bus request even though
all operations are inhibited.

The bus mapping RAM output is enabled and disabled along with
the memory mapping RAM. Thus, the bus mapping RAM output is
disabled following power-on, a system reset or an NMI. The
bus mapping RAM may still be loaded, however, prior to being
enabled. 1In fact, it should be completely loaded prior to
any access of the memory mapping RAM so that the contents are
defined when both mapping RAMs are enabled.

40

We suggest that the bus mapping RAM be loaded with all zeros
prior to setting the memory map. The following loop will
accomplish this:

LD HL , ROMBASE+2#H ;BUS MAPPING RAM
LD B,16 ; LENGTH
Loop: LD (HL) , §gH ;WRITE TO MAPPING RAM
INC HL ' ‘
DINZ LOOP

Then, after the memory map has been initialized, selected
entries of the bus map may be changed. For more details,
refer to the example MLZ-91 initialization program on page 80.

If the MLZ-91 is used in a system with other master boards

which do not support the upper 4 address lines, then the bus
mapping RAM must be connected to Al5, Al4, Al3 and Al2 on'the
Multibus. To do this,remove jumper J7 (which will disable

the ability of the ML2-91 to drive the upper 4 lines) and
conncect Al9 to Al5, Al8 to Al4, Al7 to Al3 and Al6 to Al2 on the
Multibus. This will allow Al2 through Al5 to specify:the bus
block. '

D17 : : D@

ENBL ENBL ENBL ENBL X
MEM MEM I/0 BLOCK
READ WRITE !

X | X : X

T

Disaﬁie all functions

Enable I/0 only

Enable Memory Read only
1 1 1 Enable all functions

(other combinations are also valid)

R W
T . W
| W
SIS N

BUS MAPPING RAM DATA FORMAT

41

I/0 MAP

The on-card I/0 devices are divided into two groups. The

base address of each group is specified by the I/O Mapping

RAM. This allows the I/0 devices on the MLZ-91 to be allocated
so that off-card I/O0 addresses are not shadowed by the on-card
devices.

The base addresses of each group may be specified to be one
of the following:
g# (hex) for device addresses gg through 3F

4ﬂ L " L 4¢ " 7F
8g " " " 8g " 8F
cg " " " cg " FF

Typically one of the on-card device groups would be assigned
base 8¢ and the other would be located at Cg. Then all
addresses from @@ through 7F would be usable as off-card
devices. If an off-card device occupied address 98, for
example, then it would be possible to put the on-card devices
at bases @@ and Cg to allow access off-card at base'8¢.

Since'the I/0 Map is controlled>by a RaM, it is pdssible to
alter the map contents at any time and as often as necessary
for the particular application.

The I/O mapping RAM contains four locations, one for each of
the base addresses listed aboove. The data loaded into the
map specifies how the corresponding block of I/O addresses
(e.g. 48 through 7F) is allocated. Each block may be set to
one of the following states:

Assigned to on-card device group A

’Assigned to on-card device group B

Assigned to off-card devices

Not assigned. '

The following instruction sequence is typical of the method

used to load one of the four locations in the mapping RAM.
LD A, DATA
LD (ROMBASE + 1fH + BASE/4) A

Where ROMBASE is the base address of either ROM socket (e.g. F@gg)
BASE is one of the four I/0 base addresses (I.e., @gH,

D

4gH, 8@H or CPH.
DATA is one of four values determined from the data
format chart, below.
To load the entire I/0 mapping RAM, four data bytes must be
stored, similar to the above sequence, at ROMBASE + 10H,
ROMBASE + 11H, ROMBASE + 12H and ROMBASE + 13H.

The first operation performed by the software following power
on (or a reset) should be to load the I/0O Map. Once assigned,
the I/0 devices may be accessed.

For an example of using the I/0 mapping RAM, see page 80.

There are a number of special considerations which must be
taken into account when performing interboard I/O. There
is a discussion and programming examples starting on page 102.

, 1 —_
X 1 X X X IO0A ! IOB X EXT ; Hex
i i N

I/0 not assigned 1 1 X 1 ﬂF‘
Block assigned to
I/0 Device '
Group A] 1 X 1 27
Block assigned to
I1/0 Device
Group B 1 g X 1 ¢B

Block assigned to .
off-Card 1 1 X g 9E

I/0 Mapping RAM Data Format

44

BUS CONTROL

The control logic for the Intel Multibus allows the MLZ-91 to
share the bus with other processor cards.

The following signals are used by the bus arbitration and
control logic:

BAI- Bus Available In. Low level indicates that no
(P1-15) higher priority processor needs the bus.

BAO- Bus Available Out. Low level indicates that neither
(P1-16) this board nor a higher level board needs the bus.

BAI- and BAO- form a daisy chain for priority resolution
when BAO- of each board is connected to BAI- of the next
lower priority processor. The BAI- of the highest
priority processor is forced low by installing jumper J8
on that particular card.

BRQST- Bus Request. Low level indicates that this board
(P1-18i>' has need of the bus. Used to implement a parallel
- B priority structure instead of a daisy chain.
BROST- for each slot in the multibus is independent
of the other BROST- signals (i.e., not bused).

CBREQ- Common Bus Request. This signal is common for all

(P1-29) cards in the system. A low level indicates that
there is a bus request from any card not already
using fhe bué: regardless of priority. This signal
allows a board to maintain control of the bus,
whether actively using the bus facilities or not,
until such time as any other board has a request.

BBUSY- Bus Busy. A low level on this line indicates that
(P1-17) bus is in use.

BCLK- Bus clock. An 8 MHz clock generated by the highest
(P1-13) priority board. Used to synchronize all bus

requests and arbitration.

When a processor makes a request for use of the bus, the arbi-
tration logic automatically takes over. If necessary, the
requesting board will enter a wait state until the bus is
available. When the requested bus operation is completed,

the bus will be released according to the state of two control
signals which are under soft-ware control as follows:

BCl BCG Bus release status

g g Release bus after every operation.

g 1 Release bus if any other board has a
request for the bus (Uses CBREQ-

1l g Release bus only if a higher priority
board has a request for the bus. (Uses
BAI-)

1 1 Never release bus, once acquired. This

state can be used to capture the bus.

The actual status of the bus control logic can be determined
by reading the MLZ-91 board status port. - (See page 64.)

The two bus control signals are generated by PIO port A. Since
there are six other lines on port A, some consideration must
be given to properly initializing that port. The table below
shows the function of all eight bits:

Bit Number Name - Type Function
7 (MSB) FDIO-INTRQ Input Interrupt request from floppy
disk
6 .. WINC-INTRQ Input Interrupt request from
Winchester
5 - APU/GPIB Input Interrupt request from
> APU or GPIB
4 BC1 Output Bus control bit 1
3 BCg@ Output Bus control bit &
2 S2 Output DMA ready select 2
1 sl Output DMA ready select 1
g (LSB) s@ Output DMA ready select g

PIO A may be initialized as follows: (This example assumes we
want to release the bus if any other board has a request, BCl
LOW.)

a5

46

LD
ouT
LD
ouT
LD
ouT

A,fCFH
(I0OPAC) ,A
A,EfH
(IOPAC) ,A
A,p4H
(IOPAD) ,A

L1 - - L1} -

e

PIO "BUT" MODE CONTROL
SEND TO PORT A CONTROL
IN/OUT MASK (3 INS, 5 OUTS)
SEND TO PORT A

BCl LOW, BZ HIGH

SEND TO PORT A AS DATA

Later, the state of the control signals may be changed by éoing

another output to port IOPAD.

However, since that port is also

used to select the DMA Ready signal (S2,S1,S@) it would be
advisable to use the following scheme:

IN
AND
OR
ouT

A, (IOPAD)
g7H
DATA
(I0PAD) ,A

o %o we

-

READ CURRENT DMA SELECT BITS
TURN OTHERS OFF

TURN BC BITS ON AS DESIRED
SET NEW BUS CONTROL BITS

Further details describing the functions of PIO port A can be

found in a later segtion, "PIO (System PIO)" page 57.

MAPPING RAM AND BUS CONTROL SUMMARY INFORMATION

The'table below summarizes the data and addresses for the MLZ-91
mapping RAMs and the Sequence in which the mapping RAMs should be

loaded. See page 80 for an actual program example.
Ref.
Sequence | Description Data (hex) Address pages
— - 3 — e o s ree e et e e e — e .
1. Load I/0 gg=not assigned ROMBASE +1gH=base @@
Mapping RAM |@7=I/0 Device Group A|ROMBASE +llH=base 4@ 42
#8=1/0 Device Group B|ROMBASE +12H=base 8§
PE=0ff-card devices ROMBASE +13H=base Cf@
2. Clear Bus g8 ROMBASE +2@H through
Mapping RAM ' ROMBASE +2FH 38-41
3. Assign ‘pg Reg. B=HIGH ROMBASE
Socket ! Reg C=MEMMAP (port) 27
M@ (ROM) our (C),A
4. Assign ! See pages 34 & 35 Reg B=HIGH blockadrs
other memory‘ - - Reg Cc=MEMMAP 30-35
i outr (C),A
5. Assign boardg
to bus ! @@=disable all oprns ;ROMBASE +2FH-BLOCK
3@=enable I/0 only 38
9fg=enable Memory RD
F@g=enable all oprns
(others, see page 41)
6. Bus Control |BCl BC@g Release modelIOPAD (I/O port) 44
logic (part |g g every oprn
of System] 1 CBREQ- i
PIO port A) |1 g BAI-
» 1 1 never

release

48

MEMORY AND I/0 TIMING

A.

On-Card Memory of I/O Devices

There are optioh jumpers on the MLZ-91 that may be set to
insert a WAIT state in specific memory access cycles.
The following chart details the various jumper configurations:

—

| Wait State ﬁﬂéﬁééﬁé ' ' ©oan memory—_j
Condition . Fetch Only : Cycles

ROM only J9-A . J9-A i

J10-B [J10-A :

ROM and RAM J9-B : J9-B :

J10-B | J10-Aa

- — ___________,_____,{.--_._...._ e vere o ere m _-

No Wait States | Remove ! Remove !

: both jumpers i both jumpers |

PR et e

After accounting for the gate delays inserted by the memory
mapping RAM and chip select logic, the access times for ROM
memories should be no longer that specified below:

(Assumes NO WAIT states) (worst case timings)

CPU/DMA clock Max CE to DATA valid Max ADRS to DATA
selected by J1l ROM = valid
2MHz » 580 nsec 785 nsec

4MHz) 205 nsec 320 nsec

If the WAIT state logic has been enabled, add the following
times to the worst case values, above:

J10 2 MHz clock 4 MHz clock
J10-A 500 nsec 250 nsec
J10-B 250 nsec 125 nsec

On-card I/0O devices operate at full CPU speed regardless
of the WAIT state jumpers.

Off-card Memory or I/0 Devices
When off-card memory or I/0 is addressed, the bus interface
logic puts the CPU (or DMA) into a wait state until the bus

is acquired and the addressed memory or device issues bus
acknowledge (BACK-).

External devices of any access time may be used for off-card
memory or I/0. The BACK-delay circuit (part of the external
control board) must not issue BACK- until the access delay of
the addressed memory or device has expired.

On card RAM will be automatically refreshed to prevent loss
of data due to a lengthy wait state. This function is completely
automatic and transparent to the user.

The minimum delay inserted in an off-card access by the bus
arbitration logic is 375 nanoseconds (unless the bus has been
"captured") . Additional delay time will occur if the bus is
unavailable (BBUSY- true).

The delay inserted by the bus arbitration logic when an off-card
access is attempted depends upon the state of the bus, as

follows: .
Minimum Delay inserted
Condition by arbitration logic*

Bus Idle 375 nanoseconds
Total access time will be a combination
of above delay plus BACK- delay from
external ‘device.

Bus Busy 375 nanoseconds
Total access time will be combination
of above delay plus time until bus no
longer busy (BBUSY-false) plus BACK-
delay from external device.

Bus not re- No delay inserted

leased fol- Total access time will be determined
- lowing previous only by BACK- delay

operation

*The @gximum delay inserted will be the values computed above
plus the time for the CPU/DMA to recognize the BAC- signal.
This timing depends on the BACK- edge relative to the CPU clock.
For a 2 MHz board, add 500 nanoseconds, for 4 MHz boards,

add 250 Nanoseconds, maximum. .

Refer to the flowchart on page 50 for a graphic description
of the memory timing.

49

50

VIA FloA}

oN - CARD
MEMORY

RESPONSE

(PAGE 51)

ACTIVATE DATA BuUs l

WAIT
FOoR

BuUS
AVAILABLE

ISsue BUS Busy (BBYSY)
L [ACTIVATE ADRs ¢ pATA GaTES

[pELAY 125 NAnosECoNDS]

) s

|ssue ERORY o Ifo cowtror |

DEVICE
DELAY

| ReLeasE crwoma pary]

WAIT
FoR

REMOVE BUS CONTROL SIGNAL
RELEASE DATA BUs

L

WAIT
FOor
DEVICE

CPU/DMA

MULTIBUS IDLE

BUS MAPPING RAM

WAIT FOR
DMA
DONE

|AcTivaTE ADRS, DATA BUS GATES |

SEE
SECTION

FOR
RESPONSE
(PAGE s1)

|DELAY 125 Nstcl

BUS MAPPING RAM

ISSUE ON-CARD COMMAND

(MEMORY RD, WR oR 1/o)

| peLAY 375 NsEc|

1SSVE ‘BAck’

WALT FOR
Bus
IDLE

REMOVE ON-CARD CONTROL SIGNAL
RELEASE BUSRQ,BACK, ADRS, DATA

'ADRS “LoAD \ YES

LOAD MEMORY MAP RAM

(PAGE 50)

A

MEMORY
MAP*

ENABLE MEMORY MAP

ACTIVATE. ON-CARD DEVICE

MEMORY
MAPPING
RAM

DO ROM READ

(VIA I/0 MAP)

WRITE Dy — Dy TO I/0 MAP]

YES WRITE Dy —Dgy TO BUS MAP —— >

No

DO RAM WRITE

SET NMI FF

w/PARITY

SET PARITY ERROR FF}

YES

PARITY

ERROR
FF
ON

?
No

PUSH PC INTO STACK (NMI RESPONSE)

TURN OFF MEMORY MAP RAM (DISABLE)
GO TO PpP66H (NMI RESPONSE)

SET NMI FF

Y

“FF” MEANS FLIP-FLOP

MEMORY AND BUS CONTROL LOGIC

FLOWCHART

51

52

INTERRUPT STRUCTURE

Internally, the MLZ-91 uses either the mode 1 or mode 2
interrupt state of the processor. The mode is selected by
the software and has the following characteristics:

Mode 1: Any interrupt from a device causes a CALL to be
executed to address 0038 hex (or 070 octal). The
interrupt service routine located at that address
must then poll each device which was enabled to
determine which requires service. .

Mode 2: Each device is provided with a vector pointing to
the address of an interrupt service routine. The
vector is used at the time of the interrupt to
cause a CALL to be automatically executed to the
specified service routine. If each device is
given a different vector, a very efficient means
of interrupt service will result since it will
not be necessary to poll the devices to determine
which generated the interrupt. For some I/0 devices
(e.g. the SIO) different vectors may be specified
for certain conditions (such as transmit buffer
empty or receive buffer full). ,

Externally, the MLZ-91 can support the standard eight interrupts
available on the system bus. However, these eight lines do not
produce a direct priority interrupt as with a conventional

8080 system. Instead, lines INTO- thru INT7- are connected to

a special 8-bit pbft on P103. This port may be configured

to monitor the eight interrupt lines for any specified combination
of'gpaﬁes and to produce a vectored interrupt when that state
occurs. Using this scheme the conventional priority interrupt
system or a more complex structure can be achieved.

Since the bus interrupts described above are connected to a PIO
chip, some or all lines may be configured as outputs. This
will allow the MLZ-91 to activate an interrupt line for multi-
processor communications or for peripheral control. For more
discussion on use of this feature, refer to page 57.

In addition to all interrupt modes and signals described above,
the processor also has a non-maskable interrupt (NMI) which

is always enabled. This interrupt has the highest absolute
priority and is internally connected to the memory write
protection and parity logic.

When an NMI occurs, the program counter is pushed and control
transferred to location g@66H in memory socket M@. Since the
NMI cannot be disabled by the CPU, there must be a service
routine at location @@66H for write protect and parity error
recovery.

Each I/Obdevice on the MLZ-91 is connected in a daisy chain
which defines the relative device priority for interrupt
processing. The table below shows the mode 2 priority structure.
Other priorities may be created under software control by
selectively enabling or disabling devices during interrupt
processing. (See page 56 for daisy chain diagram.)

A higher priority device may cause an interrupt during the
serviéing of a lower priority device, as long as interrupts
have been re-enabled by the lower priority device's service
routine. Interrupts from any devices of lower priority than
the one currently being serviced will remain pending until
the service routine has been completed. This priority
structure is implemented via hardware in the mlcroprocessor
and the varlous perlpheral chips. ' "

_’Priority'(Mode 2) Deviqe
1 (highest) CTC :
2 System PIO (FDIO/Winchester/
APU/GPIB/BUS)
3 SIO

4 (lowest) DMA

54

VECTORED INTERRUPT OPERATION

At some area in memory, usually ROM, there should be a table of
interrupt service routine addresses. All tabie entries must begin
on an even byte address (Af = zero) and the table must not cross
a page boundary (H address constant.) The table might look like
this:

ORG even address

ITABLE: DW CTCf@ service routine address

DW CTCl service routine address

DW SIOA service routine address

etc. etc.
During system initialization, the upper half of the table base
address must be loaded into the CPU "I" register via a command
sequence similar to the following:

IM 2 ; SET VECTORED INTERRUPT MODE

LD A,HADRS; H HALF OF TABLE ADRS (UPPER 8-BITS)

LD I,A ; LOAD I REGISTER |
Then the individual I/O devices should be initialized and the low
half of the particular table entry (for that device's service
routine address) loaded into the device'skinterrupt'vector‘tegister.
This value is the low half of the table entry address, not the dow
half of the actual service routine address.

When the CPU's I register is éoﬁpled with the device's vector
register, as is done during an interrupt acknowledge cycle, the
CPU can locate the appropriate service routine address from the
list of addresses in the table and use that address to transfer
control to the service routine. This method allows an 8-bit vector
register in each device to point (indirectly) to a 16-bit memory
address.

During the execution of the service routine, CPU interrupts may
be re-enabled (EI instruction) and any higher priority devices (as
defined by the daisy chain) will be allowed to interrupt. The
device being serviced, as well as lower priority devices, will

be inhibited. When the RETI instruction is executed at the

completion of a service routine, the device being serviced will
automatically be reset and its interrupts enabled. (The Z-80
I/0 devices monitor the data bus during instruction execution
looking for RETI instructions and can determine which service
routine is executing by the state of the daisy chain signals.)
See page 91 for an example of an interrupt service routine.

Mode 2 Interrupt Diagram

| __— PROCESSOR

1/0 DEVICE 1. Processorloads — |
vector during

— system initialization.

Vector Register

\

INT INT

~ 2. Interrupt is generated
by device.
_ MEMORY
3. Current Program Program
Counter (PC) value is]
pushed into stack. PC

Vector

Stack Area

4. Vector from device is
used to fetch service
routine address.

s »|Service Routine
5. Control is l_ Addresses
ADRS

transferred to
service routine.

6. Service routine com- | Interrupt
pletes and executes a / Service Routine
retumn from interrupt RETI
instruction. o

* 7.01d PC value is re-
stored. Interrupted pro-
gram resumes execu-
tion.

In order to guarantee proper device initialization, we recommend

that the following code be inserted prior to enabling interrupts:

LD B,13 ;LOOP COUNT, 13 DEVICES*
LD HL, RETADRS ;ADRS FOR RETI

LOOP: PUSH HL ;STACK ADRS FOR RETI
RETI ;RESET DAISY CHAIN

RETADRS: DJNZ Loop ; CONTINUE, LOOP

* includes the internal devices within each chip; e.g., the CTC
is reallv 4 devices.

56

CTC PIO STO DMA

HIGH HIGH

lHnaH HieH Hiex
IEt 1E >E} lEo—‘r{IEl lEo—){lEl EoOr——

l. PRIORITY INTERRUPT PAISY CHAIN BEFORE !INTERRUPT OCCURS,

UNDER
+ SERVICE
HigH HiGt HIGH
L—-)EI \EO |E} IEO‘——!IEl {EO IEl 1EO
Low Low

2. THE SIO CHIP INTERRUPTS AND TS SERVICE ROUTINE STARTS,

UNDER SERVICE
+ SERVICE SUSPENPED
HIGH HIGH
l———lEt \E HIEl IEO \E! IEO IEl [Eof——
Low Low Low
3. PIO INTERRUPTS SUSPENDING SERVICE OF THE STIO,
SERViIcCE SERVICE
+ COMPLETED RESUMED
plaH

HIGH HiGH
l —HEl 1EO IEV 1EO IE) IED —{E: IEO]
LOW Low

4. PrO SERVICE ROUTINE COMPLETE. RET! ISSVED, SIO SERVICE RESUMED,

SERVICE

COMPLETED
HIGH HgH

+ Y,
HigH HIGH JHIGH

IEl |EO|

\E} lEO

IE1 JEO

IEl JEO

5. SIO SERVICE ROUTINE COMPLETE, SECONP RET!| ISSUED.

THE DAISY CHA|N ABOVE |S SHOWN ON THE CHIP LEVEL., EAcCH
CHIP HAS ‘AN INTERNAL DA|SY CHAIN, SIMILAR TO THE ABOVE,
To PRIORITIZE INPIWIPVAL PORTS. FOR EXAMPLE, THE SITIo
INTERNAL DAISY CHAIN 1S SHOWN BELOW. THIS IS AN EXPANSION
OF THE SIO ROX IN THE ABoVE PRAWING:

|

I st so1 A sio B

1 oA SIOA EYTE SIoB S1o0B . i
3 E RNAL}——>—

IEI | |RECEWER TRANS, s);-ATlg‘;L RECEIVER TRANS Sﬁ;f-rus : IEO

! t
“IEI” = INTERRUPT ENABLE IN
“IEO” = INTERRUPT ENABLE OULT

INTERRUPT DAISY CHAIN CONFIGURATION

SYSTEM PIO

In- addition to the device 1I/0 ports, there are two additional
ports which control certain on-card functions and the eight
System Bus interrupt lines.

The functions provided by port A are: (Refer to PIO Block
Diagram, Page 59)
1. Interrupt service request from floppy Disk, Winchester,
APU or GPIB logic
2, System Bus Release control
3. Interrupt from certain on-card I/0 devices.

Port A

Bit # Name Type Function (True State)

7 FDIO-INTRQ Input Interrupt request
from FDIO(HIGH)

.6 WINC-INTRQ Input .- Interrupt request

v from WINCHESTER (LOW)

5 APU/GPIB~INT Input Interrupt request
from APU or GPIB(LOW)

4 BCl Output Bus Control bit 1

3 BCg Output Bus Control bit @

2 S2 Output DMA Ready Select 2

1 sl Output DMA Ready Select 1

g (LSB) 5§ . Output DMA Ready Select @

The two bus control lines(BCl, BCf@)determine what conditions
will cause the system bus to be released following a bus
operation. This feature is described in detail in another
section of this manual (see "Bus Control" page 44).' The
default value should be BCl and BCg LOW which will release the
bus between every operation.

57

58

The two DMA Ready select lines determine which I/O port READY
signal will be used by the DMA to synchronize DMA data
transfers. These two bits control the selector as follows:

Select Bit

S2 Sl sg DMA Ready Signal (True state)-
Not used
Not used
Not used

SIO Ready (HIGH)

Streamer TAPE Ready (LOW)
GPIB Ready (LOW)
WINCHESTER Ready (LOW)
FDIO Ready (HIGH)

el a8 S
HreweHHFe®
HFRHW RS

The select bits should be initialized to whichever I/0 port
will be used with the DMA. It is allowable to change the
select bits between DMA operations.

At system initialization, port A should be setup in the BIT
control mode and the eight I/O0 lines should be properly
specified as inputs or outputs. This sequence of instructions
could be used:

LD A,8CFH ; PIO "BIT" MODE CONTROL

OouT (IOPAC) ,A ; SEND TO PORT A3 CONTROL

LD A,PE@H ; IN/IN/IN/OUT/OUT/OUT/OUT/OUT
ouT (I0PAC) ,A ; SET I/O MASK

Next, the state of the Bus Control and DMA Ready select lines
should be specified:

LD A,17H ; BCL LOW, FDIO RDY SELECT
ouT (IOPAD) ,A ; SET OUTPUT BITS

Later, the state of the Bus Control or Ready select bits may

be changed by using an instruction sequence similar to the

A .

following:
IN A, (IOPAD) ; READ CURRENT STATE
AND mask ; TURN OFF DESIRED BITS
OR data ; SET DESIRED BITS
ouT (I0PAD) ,A ; RESTORE

For a description of the use of
interrupt, refer to the section

port A to generate an
on the APU (page 76).

PIO PORT

U TNTERRUPT |
BIT 7 h< INTERRUPT FDIO
r
TTEN
BIT6I— ATTENT ON WINCHESTER
ON — CARD
- DEVICES
AEUEND APU
ur —
BITS5}=< REQUEST GPIB
/
BITS 2 conNTRoL BUS CONTROL
3 N 1 Loalc
BITS 3 SELECT
2,10 < J
g DMA
B —— READY our > roy
Bus SELECTOR
INTERRUPTS 7 6 5 & a DMA
A A A A A
: Ju
u .
WINCHESTER o STREAMER
TAPE
U
GPIB

SYSTEM PIO BLOCK DIAGRAM

L]

60

PIO port B is used to monitor
interrupts., This port should
mode and, normally, all lines

LD
ouT
LD
ouT
LD
ouT
LD
ouT
LD
ourT
LD
LD

IM
EI

A modelz

A,9CFH
(IOPBC) ,A
A,@gFFH
(IOPBC) ,A
A,vector
(IOPBC) ,A
A,97H
(IOPBC),A

A,mask
(IOPBC) ,A

A,vector
I,A
2

or control the eight System Bus
be initialized in the "BIT"

will be inputs, as follows:

LT TR VI Y

e - - -

- N

N N0 N0 N

Z8@ interrupt will be

selected bus interrupt lines go

structure can be implemented.

PIO "BIT" MODE CONTROL
SEND TO PORT B CONTROL
I/0 MASK (ALL INPUTS)
SETUP ALL LINES AS INPUTS

INTERRUPT MODE 2 VECTOR
(LOW HALF)
SET VECTOR

INTERRUPT ENBL, "OR",
"LOW" STATE
SEND TO B CONTROL

ENBL/DSBL MASK (@g=ENABLE)
SELECT LINES TO BE MONITORED

HIGH HALF OF INTERRUPT VECTORS
SET INTERRUPT REGISTER

SELECT INTERRUPT MODE 2

ENABLE INTERRUPTS

generated by port B when any
LOW. By using specific masks

" while processing an interrupt, a bus interrupt priority

The states of the bus interrupt lines are still available

even if Z8§ or port A interrupts are disabled. Executing an
INPUT instruction from port A (address IOPBD) will return the
current state of the eight interrupt lines.

A bus“interrupt can be generated (for another processor board)
by port B if the "I/O MASK", above, specifies an interrupt
bit as an output line instead of an input. Then, by sending
data to port address IOPBD (Port B DATA) these lines may be

selectively turned on or off.

Note: The actual values assigned to the port addresses
(e.g., IOPAD, IOPBC, etc.) will depend on the data stored in

the I/0 mapping RAM.

‘See pages 42 and 110.

'//‘ Z.-80 PIO Z-80A PIO

Zilog PIO Programming
LOAD INTERRUPT VECTOR INTERRUPT CONTROL
The Z80-CPU requires an 8-bit interrupt vector be supplied Bit7=1 interrupt enable is set—allowing
by the interrupting device. The CPU forms the address for interrupt to be generated.
the interrupt service routine of the port using this vector. Bit7=0 indicates the enable flag is reset and

During an interrupt acknowledge cycle the vector is placed

interrupts may not be generated.
on the Z-80 data bus by the highest priority device request-

ing service at that time. The desired interrupt vector is Bits 6,5.4 are used in th‘?‘ bit mode interrupt
loaded into the PIO by writing a control word to the operations; otherwise they are
desired port of the PIO with the following format. disregarded.
: Bits 3,2,1,0 signify that this command word is an
D7 Do D5 DI DI DX DI Do i. terrupt control word.
viive|lvslwvilwvi|jva]w] o

. . R . D7 be DS D4 n3 D2 D1 DO
significs this control word is an interrupt

vector ’ Enable | ANDL. | High/ | Mask 0 1 1 1
Interrupt! OR Low tollows

~ I\ /7
N/

~ -
used in Mode Jonly signities interrupt control word

SELECTING AN OPERATING MODE

When selecting an operating mode, the 2-bit mode con- ,
trol register is set to one of four values. These two bits are If the *“‘mask follows™ bit is high (D4.= 1), the next
the most significant bits of the register, bits 7 and 6; bits 5 control word written to the port must be the mask.
and 4 are not used while bits 3 through O are all set to 1111

- - (19 ”»”
to indicate “‘set mode. b7 Do DS D4 DI D> DI Do

D7 D6 D5 D3 D3 b2 D1 DO MB; | MB, | MBg | MB, | MBy | MB, | MB; | MB,
MI MO X X ! ! ! ! Only those port lines whose mask bit is a 0 will be monitored for
\ 7 < ~ 7 generating an interrupt. , o
mode word signifies mode word ' ‘
to be set
X=unused bit

The interrupt enable flip-flop of a port may be set or
reset without modifying the rest of the interrupt control
word by the following command.

Mode MM, D7 Ds DS D4 D3 D2 DI DO
Output o lo Eamel x [x | x o] o} 1
Input (V]
Bidirectional 1 {0
Bit 1 1

MODE 0 active indicates that data is to be written from
the CPU to the peripheral.

MODE 1 active indicates that data is to be read from the
peripheral to the CPU.
MODE 2 allows data to be written to or read from the
peripheral device. Use Mode 3 for both ports

i.e., use CF hex
MODE 3 is intended for status and control applications. !

When selected, the next control word must set the 1/0
Register to indicate which lines are to be input and
which lines are to be output.

1/0 = 1 sets bit to input.
1/0 = 0 sets bit to output.

D7 Do D5 D+ D3 D2 DI DO

105 | YOg | W05 | vO, | 103 | YO, | VO, | 1O,

62

DIP SWITCHES AND LEDs ‘
The DIP Switch/LED feature of the MLZ-91 allows software
controlled options to be selected and status valves to be

displayed.

DIPs

There are 16 dip switches, located near the I/0 edge of the
board, which are accessible without removing the MLZ-91 board
from the Multibus card rack. The functions of each switch
are defined by the software (except that four switches are
used by the streamer tape interface, if the tape option is
used) . Examples of switch use are: '

1. SIO baud rate selection

2. Software option selection

3. Board position on bus or board priority

In each case, the program is responsible for reading the switch

position and taking the action necessary to implement the
function (e.g. loading the baud rate generator with the data
read from the switches.) See example, page 93.

The 16 switches are'arranged'as two 8-bit groups with each
group accessible as an input device. o
Switch Groﬁp Switch Numbers I/0 Port Address

g 1-8 (D7-Dg) ~ IODIPY
1 9-16 (D7-Df) IODIP1
" Data bit Switch State
g ON (down)
1 OFF (up)

See diagram, next page for switch locations.

LED ARRAY

There are eight LEDs arranged as one 8-bit output port. The functions

of each LED is specified by the software. (wa of the LEDs are re- |

quired by the streamer tape interface, if the tape option is used.)
LED PORT ADDRESS: IOLED (Write only) '

Data bit LED State
g ON
1 OFF

The LEDs are not initialized to any particular state at power-on
and are not changed by RESET.

LED ARRAY

6 LI Pe LI ps LI Py LIX L—I,__s?

D DT
(LsB) (MsB)(ss) (s

&

| DIP swiTcH
GROUP &

| PIP SWITCH
GROVUP |

MLZ-NA

1. P — P2 [

For restrictions on use of the switches and LEDs with the streamer

tape interface, refer to page 73.

63

64

BOARD STATUS

It is sometimes useful to know the state of a few on-card signals for

memory error processing and bus control functions.

There 15 an 1nput

port assigned to allow four signals to be read as follows:

STATUS PORT ADDRESS:
Data bit

D7
D6
D5
D4

IOSTAT

Function (Negative true, @="on")

NMI flip flop (See page 36)
PARITY ERROR flip flop (See page 36)
(for Winchester I/F, see page 70)

BUS ADRS ENABLE state

The state of D7 & D6 can be used following an NMI to determine the

reason for the interrupt.

There are also two status LEDs on the
MLZ-91 which visually indicate an error condition.

On-card RAM parity error

D7 D6 Reason for NMI
g [

2] 1 (invalid)

1 g

1 1 (No error,

reset state)

On-card RAM write protect error

Status LEDs

Both on

One on
Both off

D7 and D6 may be reset (to one) by executing any I/O 1n—

struction to I/O PORT ADDRESS:

NOTE: -

JOCLRN
If D6 is not reset back to one by either a system

RESET or an access to IOCLRN another NMI cannot occur.

Bit D4 allows the bus control status to be determined.
(g) then the MLZ-91 has control of the Multibus.

If D4 is low

This bit, in con-

junction with the bus control lines can be used as indicated below:

Bus Control lines (BCl & BCf)

ADRS-ENBL (D4)

Meaning

Both ON -{11)

Either OFF (10, 01, 00)

D4=g

D4

D4

D4

1

MLZ-91 has control of
the MULTIBUS and will
never release control
(bus lockout state)

MLZ-91 does not have
control of the MULTIBUS
but will capture control
on the next attempt to
use the bus

MLZ-91 has control of
the bus. No other board
has used the bus since
the last bus access by
the MLZ-91

MLZ-91 does not have
control of the bus.

The bus has been used
since the last bus access
by the MLZ-91

GPIB (IEEE-488) I/F

The General Purpose Interface Bus was originally designed by
Hewlett-Packard to provide a universal method of device intercon-
nection. The basic bus definition gained acceptance by the IEEE
and has since become known as IEEE standard 488.

The MLZ-91 utilizes a Texas Instruments GPIB controller chip (the
TMS-9914) which handles the bus protocol and allows the 2Z-80 to
operate the bus with a minimum amount of concern for the.actual bus
control signals. For example, the data valid (DAV), not data accepted
(NDAC) and not ready for data (NRFD) handshaking during data transfer
operations is transparent to the CPU side of the TMS-9914. The CPU
tests bits in a status register in order to synchronize data

transfers.

The GPIB devices are defined as controllers, talkers or listeners.
In any system there is one active controller, one talker and any
number of listeners. The controller specifies which devices are
talkers and listeners. A device can be both controller and talker
or controller and listener. For example, the MLZ-91 could designate
itself as cbntroller and listener and receive data from a data

acquisition device (talker).

For more details on the TMS-9914, refer to the TI TMS-9914 GPIB
ADAPTER DATA MANUAL. For information concerning licensing of the GPIB
by Hewlett-Packard, contact Hewlett-Packard, Legal Department.

>

See page 160 for MLZ-91 connection information.

The program on the following pages illustrates one method of using
the GPIB feature of the MLZ-91. (This example has been adapted from
the example in the TI Data Manual.)

65

ASEG
- 230
TITLE GFIB (IEEE-488) I/F EXAMPLE

H HEURIKON CORPORATION

RAM EQu OEQOOH $RAM BASE

ROM EQU OFQQOH $ROM BASE (PGM) -

;

10A EQU 0g0oH s I0A (DEVICE GROUF A) BASE ADRS
10B EGU OCOH s 1I0B (DEVICE GROUP B) BASE ADRS
IODIPL EQU I0A+3%H sDIF SWITCH GROUP 1

I0PAD EQU 10B+38H $I1/0 PIO PORT A DATA ADRS
IOGFPIBR EQU I10B+30H $BASE OF GPIB CHIF REGISTERS

$ 36363030 36 30 30036 30 30 303 3036 3036 96 30 346 3030 3090 3630 30 303036 363 300 36 36 30 30030 30300 30 303046 3636 36 30 30 30 36 0 3030 SE 00 S0 SE IR B S0 S0 30 30 3
$THIS EXAMPLE HAS BEEN ADAPTED FROM THE SOFTWARE EXAMPLE SHOWN IN THE

sTI MANUAL FOR THE TMS-9914 GPIB CONTROLLER CHIP. THE PORT ADDRESSES

$AND INSTRUCTIONS HAVE BEEN CHANGED TO CONFORM WITH THE MLZ-%?1.

$ 3633630 336303690 3 336 36 3036 3036 30 363 3636 3036 36 35 36 3036 3036 36 30336 3 36 30 330 30 303 90 3036030 30 3000 6 30000 30 3016 3030 306 3033030 300 30 50 38
$A TYPICAL SYSTEM USING THE GPIB/IEEE-488 BUS CONSISTS OF THREE ITEMS:
DEVICE 1: SYSTEM CONTROLLER (CPU, MEMORY. ETC.)

DEVICE 2: INSTRUMENT PRODUCING DATA (TALKER)

DEVICE 3: INSTRUMENT ACCEPTING DATA (LISTENER — E.G., PRINTER)

us us

8 N8 S

s THIZ PROGRAM EXAMPLE RUNS THE CONTROLLER IN ORDER TO SET UP DEVICE 2.

$THE ASCII CONTROL CHARACTERS REQUIRED TO PROGRAM DEVICE 2 FOR RANGE.,
sFUNCTION. ETC.. ARE ASSUMED TO HAVE BEEN PREVIOQUSLY LOADED INTO MEMORY

$AT LOCATION “DEVDAT“. DEVICE 2 IS FIRST ADDRESSED TO LISTEN AND THE CONTROL
s CHARACTERS ARE SENT TO DEVICE 2. THEN DEVICE 2 IS ADDRESSED TO TALK AND
sDEVICE 3 IS ADDRESSED TO LISTEN. WHEN THE CONTROLLER PUTS ITSELF IN THE
$STANDBY MODE. THE MEASUREMENT DATA FROM DEVICE 2 IS SENT TO DEVICE 3 OVER
sTHE GPIB. IN PRACTICE. THE FORMAT OF THE DATA SENT BETWEEN DEVICES

sWOULD PROBABLY HAVE TO BE CHANGED BUT THIS STEP IS OMITTED HERE FOR
sCLARITY. ‘ ' '

$ B AE I I I 636 I IO I IO I IEIE I3 3 3 3 3B I I 46 3636 2 02 30 I IR SRS EIE IR S S S S 8
$GPIB REGISTER ADDRESSES:

sREAD REGISTERS:

INTSTO EQU IGGPIE+O $ INTERNAL STATUS REGISTER 0
INTST1 . EQU I0GPIB+1 s INTERNAL STATUS REGISTER 1
ADODSTS EQU IOGPIB+2 $ADDRESS STATUS

BUSSTS EQU I0GPIB+3 $BUS STATUS

CMOPAS EQU- IOGPIB+& s COMMAND PASS THROUGH
DATIN eau - IOGPIB+7 sDATA IN

iWRITE REGISTERS:

INTMKO EGL IOGPIE+Q s INTERRUPT MASK 1§

INTMKL EQU I0GPIB+1 $ INTERRUPT MASK 2

AUXCMD EQU IOQGPIB+3 $AUXILIARY COMMAND REG
ADDRSS EQU 10GPIB+4 $ ADDRESS REG

SERPOL EQU IOGPIB+S $SERIAL POLL

PARPOL EQU IOGPIB+6& sPARALLEL POLL

DATOUT EQU IQGPIB+7 s DATA QUT

7 FEFEE I 303 30 3036 36 36 30 36 36 36 36 36 36 30 3 30 35 36 36 3 36 36 30 36 3636 30 30 300 30 3030 30 36 36 3 3 36 30 30 30 30 I 30 I 30 3E 330 I 0 I I IR

66

,*******************************&**
3 TMS-9914 AUXILIARY COMMANDS:

TCA EQU ODH $ TAKE CONTROL AQYNCHRDNOUSLY
TON EQU 8AH $TALK ONLY

TONCLR EGU OAH sCLEAR TALK ONLY

CLRRST EQU OOH $CLEAR CHIP RESET

GTS EQU OBH 3GO0 TO STANDBY

SDWH EQU 96H $ SHADOW HANDSHAKE

SRE EQU SOH $SEND REMOTE ENABLE

SRECLR EQU 10H 3CLEAR REMOTE ENABLE

SIC EQU SFH $SEND INTERFACE CLEAR

SICCLR EQU OFH $CLEAR INTERFACE CLEAR CMD

§ 3636463046 36 3036 36 3 336 36 330306 U003 006 300 36 36 36 3536 35 3696 38366 36366 36 356 3636 363030 269630 3636 36 36 30 3630 30 S 40306 303 04030 S0 333
3 INTERFACE CONTROL COMMANDS: ,

UNL EQU 3FH : SUNLISTEN ALL DEVICES

UNT EQU SFH SUNTALK ALL DEVICES

§ 33636 303636 38 306 36 38 35 346 3036 30 30 3636 3006 36 3238 33 363836 3536 36 356 36 303036 36 3036 3020 30 336903 303630 3000 303 636 26 96036 36 306 36 3000 30 30300606
s DATA: '

ORG RAM :
COUNT EQU 7 $7 BYTES FOR THIS EXAMPLE
DEVDAT: DS COUNT $RESERVE SPACE FOR TALKER CONTROL

$ 35030 30 I 6 36 38 30 30 300 30 30 36 30330 36 30 36 30 3036 35 303036 96 38 35 30636 35 3630 30 303 H 36 H 30 30 30303030 30 3036 30 030 SIS0 03008
s DEVICE ADDRESSES ON GPIB:

LISADL EQU s1e $(33) LISTEN ADRS 1
TAKAD1 EQU 1% . 3(65) TALK ADRS 1
LISAD2 EQU 7"~ $(34) LISTEN ADRS 2
TAKADZ EQU 3% $(66) TALK ADRS 2
LISAD3 EQU sy . $¢(35) LISTEN ADRS 3
TAKADZ EQU g $(67) TALK ADRS 3

H *%*** *********** 3363638 3638

67

68

$ 6363036304036 303036 3 46 36 3030 36 3 2030 I 306 3038 36 33030 303030 30 36 30 30 2036 36 30 30 302090 3636 30 3 3 30 30 2030 30 I 300 I 030 BB 20
ORG ROM

$THIS IS THE MAIN PROGRAM:

sPIO A AND STACK POINTER ARE ASSUMED TO BE INITIALIZED.

,**&*&*******

SSTEP 12 INITIALIZE THE GPIB CHIP.

LOAD THE DEVICE ADRS FROM THE DIP SNITCHEQ

SEND INTERFACE CLEAR

CLEAR AUXILIARY RESET

G) v s v

PIB: IN A, (IODIP1) $READ DIP SWITCH GROUP 1
CcPL SFIX “ON” = 1
ouT - (ADDRSS) - A $SEND TO GPIB ADDRESS REGISTER
LD A,SIC $I/F CLEAR CMD
ouT (AUXCMD) > A $SEND INTERFACE CLEAR COMMAND
Lo A>CLRRST $CLR S/W RESET CMD
ouT (AUXCMD) > A $START SENDING IFC ON BUS
LD B.31 . sLOOP COUNT :

DLY: " DJNZ DLY sDELAY 100 USEC. (AT 4MHZ CPU CLOCK)

LD A,SICCLR sCLR IFC CMD
ouT (AUXCMD) > A sCLEAR IFC COMMAND
LD A>SRE $REMOTE ENABLE CMD
ouT (AUXCMD) > A $SEND REMOTE ENABLE CMD

$THE GPIB CHIP IS NOW IN THE CONTROLLER ACTIVE STATE AND REMOTE ENABLE

$HAS BEEN SENT TOQ ALL DEVICES. -
$ 64363 3036 3000330 3 36 303036 2630 46 30 SR B0 006 36303636 638 3696 36 26 636 3 4040 306 36 36 3036 36 90636 36 0 9046 436 300 S0 40040 S0 H0 SIS S R0
$STEP 2: ADDRESS DEVICE 2 TO LISTEN

3 SEND DEVICE DEPENDENT CONTROL DATA TO DEVICE 2
IN A: (INTSTO) sCLEAR BYTE OUT INTERRUPT STATUS
LD A, LISADZ2 _,LOAD DEVICE 2 LISTEN ADRS
cALL DATAW $SEND TO DATA REG AND WAIT
LD A, TON s TALK ONLY COMMAND
CALL AUXW $ADDRESS SELF TO TALK
LD B, COUNT sLOOP COUNT
LD HL, DEVDAT $BASE OF DEVICE CONTROL DATA
LoapP: LD A> (HL) $GET BYTE
" INC .HL $INCR FOR NEXT LOOP
CALL ;, DATAW $SEND TO DATA REG AND WAIT
DJNZ LOQP $SEND ALL DEVICE DEPENDENT CONTROLS
LD A, TCA s TAKE CONTROL ASYNCRONQUSLY CMD
CALL AUXW $SEND AND WAIT FOR BOQ
LD A, TONCLR sCLEAR TALK ONLY COMMAND
ouT (AUXCMD) » A $SEND TO AUXCMD REG
LD A> UNL SUNLISTEN ALL DEVICES CMD
CALL DATAW $SEND TO DATA REG AND WAIT FOR BO

sDEVICE 2 IS NOW SET UP TO TAKE MEASUREMENTS.
$ F63636 30 3040903036 30 3036 03096 3638 2030 3036 303096 30 36 3036 306 30 3036 30 30360 36 30 30 H 0 I IE 3040 303030 400 3630 300 3033030 B0 I I B S S0 SR S0 30 3

§ FE3EEIE I SIS 6 IEI6 300 36306 3638 3638 E 630 0633036 36 36 90303606 36 3636 2636 30 36030 3036 36 36 35 3 303 36 30 3036 36 3 38 3 30 I I I H S 330 3038
sSTEP 3¢ DEVICE 2 IS ADDRESSED TO TALK

H DEVICE 3 IS ADDRESSED TO LISTEN
LD A>LISAD3 sLISTEN ADRS FOR DEVICE 3
cAaLL DATAW $SEND AND WAIT
LD A» TAKAD2 $TALK ADRS OF DEVICE 2
CALL DATAW $SEND AND WAIT

$ 363636338 36363 36 36 3 36 3636 36 38 38 36 36 3636 36 363 36 36 36 3 30 36 36 30 36 36 3636 36 3 36 3 36 36 36 36 36 3¢ 36 36 36 38 6 3 36 3 3¢ 3536 36 3 36 36 36 I JE I IR IEIE I R

$STEP 4: THE CONTROLLER NOW RELEASES THE ATTENTION LINE AND MONITORS
5THE “EOI“ LINE UNTIL AN END OCCURS. '

LD A» SDWH $ SHADOW HANDSHAKE CMD

ouT {AUXCMD)>A sLOAD INTO AUXCMD REG

LD A, GTS $RELEASE ATN LINE CMD

ouT {AUXCMD) > A $SEND TO GPIB CHIP
$WE ASSUME THAT PIO A HAS BEEN INITIALIZED IN THE BIT CONTROL MODE.
WAIT: IN A, (1IOPAD) $READ GPIB INTERRUPT LINE FROM PIO A

BIT 5:A s TEST GPIB BIT

JR NZ,WAIT sLOOP HERE UNTIL TRUE

SALTERNATE: PIO A COULD BE SET TO INTERRUPT IF THE GPIB INT LINE
$GOES TRUE (LOW). ‘

JP SOMEWHERE $FROM HERE GO TO REST OF PROGRAM
§ H I I I I I I I3 I I I IO I I I3 303030 3030 I 3030 I I H

~e

$ 36353635 346 36 90636 36 36 2006 3636 36 3 306 3363636 56 36 36 3036303 6 303536 3636 3046 38 3636 3630366 36 36 38 30336 30 3646 3 3636 3030696 303 S 3606330303638
$ THESE ARE SUBROUTINES WHICH DUTPUT A COMMAND AND THEN WAIT FOR THE
sBYTE OUT (/BO“) STATUS BIT.

DATAW: OUT (DATOUT) A $SEND TO DATA UUT REGISTER
JR BOWAIT sWAIT FOR BYTE OUT
AUXW: ouT (AUXCMD) - A $SEND TO AUXILIARY COMNAND‘REG
BOWAIT: IN A, {INTSTO) $READ INTERNAL STATUS REGISTER
BIT 4,0 sTEST BO BIT
JR NZ,BOWAIT sLOOP UNTIL READY
RET -
§ H A3 30 35 3636 36 3695 B 3045 3 3036 36 30 30 B0 36 36 2033630 3 38 3 36 30 36 3030 30 B2 6 36 3630 36 3836 3035 38 36 36 36 36 336 303006 3630 36 30 4630 30 33 0 3 93
END

69

WINCHESTER INTERFACE

The MLZ-91 has been designed to allow easy connection to
numerous Winchester drives and controllers. The interface
provides a byte level, DMA controlled data transfer to
achieve maximum speed.

All connections to the drive controllers is via P2 (the
"Auxiliary" connector). This 60 pin connector has been
logically split into sections and five hardware jumpers are
used to account for variations between controllers. The
summary below shows the basic controller interfaces which are
accommodated by the MLZ-91. Refer to pages 150 through 155
for P2 pinout details and cable specifications.

Controller P2 Pins Cable type Jumpers Page

Micropolis 1-34 MLZ-P2M M" 150
Priam 35-60 . MLZ-P2P n/a 152
Shugart 1-34 MLZ-P2S 'S 154
Seagate 1-34 MLZ-P2S rs" 154

DTC 1-34 - MLZ-P2S "s" 154

There are 5 jumpers which must be set either "S" or "M"

depending on the controller being used. (See page 144)

Ji1 . "s" (no "M")
J15 “s" or "M"
Jle "s" or "M"
Jlé6 "s" or "M"
Jl8 : "s" or "M"
I/0 Port Addresses (See page 111)

The fynétions of each I/0 port, meaning of control signals and
commands are highly dependent on the particular controller being
used. The following information is summary in nature. Refer

to the MLZ-91 schematics and controller manuals or contact Heurikon
for assistance. |

I/0 Port Name

IOWSEL
IOWCLR
IOWWRS
IOWWR1
IOWRDS
IOWRD1
IOWRDS

IOSTAT

FUNCTION

Micropolis Shugart Priam
Select Select (none)
Deselect Clear SEL (none)
WR DATA WR DATA/CMD (Reg B)
Command WR DATA/CMD -
RD DATA RD DATA/STATUS (Reg B)
Status RD DATA/STATUS

Read general interface status
D7 = Attention (LOW true)

D6 = Data Request (LOW true)
D5 = Busy (LOW true, except HIGH for

Micropolis)

D4 = OUT line (LOW true)

Read Board Status

D7 (See page 64)
D6 (See page 64)

D5 = DIRECTION (for Shugart, LOW true) or
CBUSY (for Micropolis, HIGH true)

When I/0 instructions are executed with the Priam controller,

the contents of register B specifies the Priam control

register as follows (use "IN A,

Register B INPUT

g

L I =2 W O 1 B S VU (R g

Result 5
Result 4
Result 3
Result 2
Result 1
Result ¢
Read Data
I/F Status

OUTPUT

Parameter
Parameter
Parameter
Parameter
Parameter

Parameter

Write Data

Command

(C)" or "ouT (C), A")

N W oW,

If the MLZ-91 DMA is accessing the Winchester interface, the

Priam Data register is automatically selected. (The

DMA

cannot directly access any of the other Priam registers.)

71

72

General

Data signals on the interface lines are inverted with
respect to the CPU or DMA. Therefore, commands, status and
data passed between the CPU or DMA and the controller will
appear inverted from the specifications in the manuals for
those controllers which have a positive true data bus,

e.g., Priam. Thus, care must be taken to invert command and
status bit patterns when using some controllers. The actual
sector data need not be inverted in any case since the Win-
chester media is not removable. If data is written "inverted"
by the interface it will be reinverted when read back.

The Data request (or Data Ready) and Attention (or Interrupt
Request) are available to the CPU as bits via I/O port
IOWRDS. The Data request line may be selected as the DMA
Ready signal and thé Attention signal can be programmed to
cause a CPU interrﬁpt via the System PIO. Refer to page 57
for details on how to configure the System PIO.

Heurikon provides software support for various Winchester
controllers. Consult factory for details.

STREAMER TAPE

The streamer tape logic on the MLZ-91 performs two
functions: |)
1. Provide interface to the Archive Corporation Streamer
tape for backup of Winchester data and program
files.
2. Provide a general purpose 8-bit parallel 1I/0 port
for systems not using a streamer tape.

The Archive streamer tape controller has been designed for
programmed I/0 of commands and status with either programmed
I/0 or DMA transfer of the actual tape data. The average
byte transfer rate for continuous operation at 90 ips is
87,200 bytes/second. Thus, 20 megabytes of Winchester data
can be backed up in as little as four minutes.

The hardware interface consists of the following signals:

Signal Name Source Function (all are negative true)

HB@-HB7 (both) Bi-directional data bus used
for commands, status and data
transfers. :

ONLINE * MLZ-91 Active during command transfer

and execution.

REQUEST * MLZ-91 Used as a handshake for
' command and status transfers

RESET MLZ-91 Power-on reset
TRANSFER MLZ-91 Used as a handshake for data
transfers

ACKNOWLEDGE * Archive Used as a handshake for data
transfers

READY * Archive Used as a handshake for command
: and status transfers and as
buffer status during data trans-

fers.
EXCEPTION* Archive Indicates an error condition
DIRECTION * Archive 1Indicates the direction of the

data transfer

74

Consult the Archive product description and specifications for
details on these signals and the sequence of operations for
using the streamer tape drive.

Those signals marked "*" above share circuits with the
DIP switches and LED array.

Signal Source Connection Port Name State
ONLINE MLZ-91 LED array, bit 1 IOLED # = TRUE
REQUEST MLZ-91 LED array, bit § IOLED g = TRUE
READY Archive DIPSW@, bit 7 IODIPg # = TRUE
EXCEPTION Archive DIPSW@, bit 6 IODIP@ g = TRUE
DIRECTION Archive DIPSWP, bit 5 IODIPf # = TRUE
ACKNOW-

LEDGE Archive DIPSW@, bit 4 I0ODIP@ @ = TRUE

When using the streamer tape interface, DIP switches 1,2,3 and 4
must be OFF (OPEN) to allow those bits to be used by the

tape controller. Also, LED bits g and 1 must be reserved for
the tape interface. The other 12 DIP switches and 6 LEDs may be
used as desired by the application. l

The HBF - HB7 Data bus signals have been defined by Archive
as negative true. The MLZ-91 logic, however, does not invert
these lines. Thus, commands and status bits must be inverted

. from the definitions in the Archive documentation. The actual

tape data written to the drive need not be inverted since the
data will be re-inverted by the read operation.

Heurikon provides software support for the Archive streaming

tape drive. Consult factory for details.
A

The Archive controller connects to P3. See page 156 for pinout
and cable details.

The interface circuits on the MLZ-91 generate a data ready
signal for use with DMA data transfers. (Refer to page 57.)

LED "1" will indicate when a data transfer is in progress

since ONLINE will true during that time.

Use as a general purpose PIO port

If a streamer tape is not connected to P3, the interface

circuits may be used as a general purpose eight bit parallel port.
ONLINE, REQUEST, READY and EXCEPTION may be used as control

and handshake signals via the IODIPZ and IOLED ports. The
DIRECTION signal may be controlled by DIP switch #3, the device
connected to P3 or by the CPU by jumpering ONLINE or REQUEST to
DIRECTION via P3. DIRECTION = LOW or DIPSW 3 ON means data transfer
.is from the device to the MLZ-91.

RC T\
(FRo?rz stxcz)—__ § FROM DEVICE oR DIP SW. 3 oN’ é —/—

-

DATA
(FROM DEVICE) . X stame X
|

(FRo/ev‘\Cnpévzca) AN /

N ; _
T T .

" TOTRDS

.
(1/0 PORT) _Ro) /- |

(Té(gg\'%CE) | 4 _____7_——
DATA INPUT (RD) CYCLE

) FROM DEVICE OR PIP Sw. 3 oFF’
DIRC -/_
(FRoM DEVICE)

DATA "
(To DEVICE) X LATERED

OTWRS __M’___/
(]i/o PORT) (wR) I
. 0
('rg(gz%fis) \ /
ACK \ /
(FRoM DEVICE)

(+BFBAy J \
DATA OUTPUT (WR) CYCLE

76

APU

The (optional) Am9511 Arithmetic Processing Unit (APU)
contains firmware which executes high level math functions

and relieves the 2-80 processor lengthy software routines.

The APU performs fixed and floating point arithmetic plus a

variety of trigonometric functions. Operands (16, 32 or 64

bits each) are pushed into the APU's internal stack by using
the Z80 OUTPUT instruction. A command is then issued, also

via an OUTPUT instruction, which initiates a particular math
operation. When the function is complete, the result may be
popped from the APU's stack by using an INPUT instruction.

Here is a typical example of the command sequence for the AM9511
APU. This example will multiply the contents of register
pair HL by the contents of register pair DE.

LD C,IOPUSH ;APU PUSH DATA PORT ADRS
oUT (C) ,L :I, HALF OPERAND 1

OUT (C) ,H :H HALF OPERAND 1

OUT (C) ,E ;L HALF OPERAND 2

OUT (c),p :H HALF OPERAND 2

LD A, gF6H ;"SMUL" COMMAND (MULTIPLY,
ouT (IOAPUW) ,A ; INITIATE MULTIPLYFFER)

At this point, the requested operation is executed. When
the operation is complete, the result may be popped from
the APU's, stack. However, if the operation is not completed when th
result is read, the CPU will enter a wait state until the APU is don:

LD C, I0POP ;APU POP DATA PORT ADRS
IN H,(C) ;H HALF RESULT
IN L, (C) ;L HALF RESULT
IN A, (IOAPUR) ;s READ COMPLETION STATUS

This example used 16 bit operands. However, some APU commands
operate on 32 or 64 bit operands.

In some systems it may be undesirable to have the processor
enter an extended wait state prior to reading the result. Two
methods may be used to prevent such a condition:

1. Read the APU/FPU status port and wait (in a loop) for
the "busy" bit to go false.

LOOP: 1IN A, (IOAPUR)
AND 8@H
JR NZ, LOOP

READ APU/FPU STATUS
TEST BUSY BIT

WAIT FOR NOT BUSY
NOW READ RESULT

we N9 we W

2. Enable the APU END interrupt via PIO port A.

a) Program port A to interrupt when the APU END signal
goes true.

b) Set a flag or read the result in the interrupt routine.

LD A,vector ;LOW HALF OF A INT VECTOR
ouT (IOPAC) ,A ;SET INTERRUPT VECTOR

LD A,17H ;:BCL LOW (or as desired)

ouT (IOPAD) ,A ;SET A DATA LINES

LD A,97H ;sENABLE INTERRUPT ON END LOW
ouT (I0PAC) ,A ;SET A CONTROL

LD A,gDFH ;MASK (D5 LOW)

ouT (IOPAC) ,A ;ONLY MONITOR DMA READY

c) Load the upper half of the interrupt vector via:

LD A,vector ;HIGH HALF OF VECTOR
LD I,A ;SET I REGISTER
M 2 ; SELECT INT MODE 2

d) Execute an EI (Enable Interrupt) instruction.

Note: The APU clock rate (2/4 MHZ) is set by jumper J2 and
is independent of the processor clock. See page 142.

STATUS REGISTER

BUSY | SIGN | ZERO ERROR CODE CARRY

7 6 5 4 3 2 1 0

BUSY: Indicates that AM9511A is currently executing a command
- (1=Busy) .

SIGN: Indicates that the value on the top of stack is negative
(1=Negative). ‘

ZERO: Indicates that the value on the top of stack is zero
(1=Value is zero).

ERROR This field contains an indication of the validity of the
CODE: result of the last operation.
(9gd@ indicates no error).

CARRY: Previous operation resulted in carry or borrow from most
significant bit. (l=Carry/Borrow, 0=No Carry/No Borrow)

If the BUSY bit in the status register is a one, the other status
bits are not defined; if zero, indicating not busy, the operation is
complete and the other status bits are defined as given above.

APU Command Summary (AM9511)

78

Fixed-~Point, 16-bit

SADD
SSUB
SMUL
SMUU
SDIV

Add TOS to NOS. Result to NOS. Pop Stack.
Subtract TOS from NOS. Result to NOS. Pop Stack.

Fixed-Point, 32-bit

DADD
DSUB
DMUL
DMUU
DDIV

Multiply NOS by TOS. Lower half of result to NOS. Pop Stack.
Multiply NOS by TOS. Upper half of result to NOS. Pop Stack.
‘Divide NOS by TOS. Result to NOS. Pop Stack.

Add TOS to NOS. Result to NOS. Pop Stack.

Subtract TOS from NOS. Result to NOS. Pop Stack.

Multiply NOS by TOS. Lower half of result to NOS. Pop Stack.
Multiply NOS by TOS. Upper half of result to NOS. Pop Stack.

Divide NOS by TOS. Result to NOS. Pop Stack.

Floating-Point, 32-bit

FADD
FSUB
FMUL
FDIV

Derived

SORT
SIN
COs
TAN
ASIN
ACOS
ATAN
LOG
LN
EXP
PWR

Add TOS to NOS. Result to NOS. Pop Stack.
Subtract TOS from NOS. Result to NOS. Pop Stack.
Multiply NOS by TOS. Result to NOS. Pop Stack.
Divide NOS by TOS. Result to NOS. Pop Stack.

Floating-Point Functions

Square Root of TOS. Result in TOS.

Sine of TOS. Result in TOS.

Cosine of TOS. Result in TOS.

Tangent of TOS. Result in TOS.

Inverse Sine of TOS. Result in TOS.

Inverse Cosine of TOS. Result in TOS.

Inverse Tangent of TOS. Result in TOS.

Common Logarithm (base 10) of TOS. Result in TOS.
Natural Logarithm (base e) of TOS. Result in TOS.

'Exponential (eX) of TOS. Result in TOS.

NOS raised to the power in TOS. Result in NOS. Pop Stack.

Data Manipulation Commands

NOP

FIXS
FIXD
FLTS
FLTD
CHSS
CHSD
CHSF
PTOS
PTOD
PTOF
POPS
POPD
POPF
XCHS
XCHD
XCHF

PUPI

No Operation

Convert TOS
’Convert TOS
Convert TOS
Convert TOS
Change sign
Change sign
Change sign
Push 16-bit
Push 32-bit

from floating point to 16-bit fixed point format.
from floating point to 32-bit fixed point format.
from 16-bit fixed point to floating point format.
from 32-bit fixed point to floating point format.
of 16-bit fixed point operand on TOS.

‘of 32-bit fixed point operand on TOS.

of floating point operand on TOS.
fixed point operand on TOS to NOS (Copy)
fixed point operand on TOS to NOS. (Copy)

Push floating point operand on TOS to NOS. (Copy)

Pop 16-bit fixed point operand from TOS. NOS becomes TOS.
Pop 32-bit fixed point operand from TOS. NOS becomes TOS.
Pop floating point operand from TOS. NOS becomes TOS.
Exchange 16-bit fixed point operands TOS and NOS.
Exchange 32-bit fixed point operands TOS and NOS.
Exchange floating point operands TOS and NOS.

Push floating point constant "4{ " onto TOS. Previous
TOS becomes NOS.

Access to the APU chip may be made directly from a program written
in a higher level language by using the language's INPUT and OUTPUT
commands in a fashion similar to the machine code examples discussed
earlier. For example, the following BASIC subroutine will perform a
double precision DIVIDE (32 bit operands) according to the formula

Q = D/E
100 FORJ =1 TO 2) Transfer both operands to the APU
110 FOR I = 1 TO 4 stack (dividend "D" first, then
120 ouT(170,D) divisor "E"). Operands are
130 LET D = D/256 > transferred 8-bits at a time,
140 NEXT I T LSBs first.
150 LET D =E :
160 NEXT J)
170 OuUT(171,172) Issue divide command "DDIV"
180 IET Q = @ W Read result. (Automatic WAIT at
190 FORI =1 T0 4 line 200 until APU ready.)
200 Q = Q*256 + INP(168)
210 NEXT I
220 IF INP (169) AND 3¢ GOTO 240
230 RETURN
240 PRINT "DIVIDE ERROR"

250 RETURN

Device port numbers (168, 169, 170, 171) assume IOA base is 8fgH.
This is a function of the I/0 mapping RAM.

For single parameter functions (e.g. Square Root), delete lines
100, 150, and 160.

A careful reader may observe that the BASIC routine above uses 8
divides and 4 multiplies within the BASIC code which nullifies

any potential savings from the APU. (The "DDIV" command executes
in approximately 100 microseconds while most BASIC multiply and
divide operators take considerably longer.) The BASIC program was
presented as an example to illustrate the software to hardware
interface when using a higher level language. To utilize the full
power of the APU it would be best to transfer the operands via a
machine code subroutine.

79

80

SOFTWARE EXAMPLES

There are many methods which may be used to initialize the
MLZ-91 mapping RAMs and I/0 devices. The program listings
which follow show details of one scheme which could be imple-

mented. These programs are written in 2-80 source code and
were assembled on Microsoft's Macro-80 assembler. For addi-

tional samples plus sampl
in 8080 source code and a
MAC assembler, refer to t
available from Heurikon.

Program Page
Init g Slave 82

84
85

86
87
88
89
91

92
93

Multi-user 95

Macros 98

Heurikon offers software

es of initialization software written
ssembled with the Digital Research
he ZRAID monitor source code listing,

Description

I/0 device assignments
Baud Rate generator constants

Power-on initialization-I/0
mapping RAM

Memory mapping RAM

Bus mapping RAM

Map utility subroutine
I/0 Device initialization

Example vectored interrupt service
routine

NMI service routine

Slave logic - converts the MLZ-91
into an intelligent slave I/0 board.

Example of using memory mapping
RAM to switch between tasks in
a multi-user environment.

Sample Macro definitions which
facilitate loading the MLZ-91 mapping
RAMs.

support and applications assistance.

Contact us if you have questions or need help.

There are also miscellaneous software samples scattered

throughout this manual.

Some major examples are:

Topic Page
System PIO 57
GPIB 66
APU 76
SIO 112
DMA 138

$ 33636 36 30 36 36 3636 35 36 36 3636 36 36 3 36 3 36 3 35 35 36 36 3636 36 36 36 36 3 36 36 36 3 36 3 36 36 36 3 3636 36 36 3 36 36 36 36 36 36 36 3 36 36 36 36 3 3 3036 36 36 6 303
3 3E3E 63630 3E 338 3 3636 36 3030 38 3 30 36 35 3038 3 36 34 36 34 36 35 30 36 36 35 36 36 36 336 30 36 35 35 36 36 36 36 3036 34 36 38 3630 30 30 30 3 3030 30 303 3300 333 I

3 3t3t 3
3 3 . 3
5 H H EEEEE U ! RRRR IT1II K K 000 N N #3
3 ¥ H H E U U R R I K K 0 O NN N #3#
53 H H E u u R R I KK) 0O NNN 3
33 HHHHH EEEE U U RRRR I KK 0 O NNN #%
R 2 H H E . u U RR I K K 0 0 NNN *3
3 33 H H E u U R R 1 K K) O N NN 3
$ 3#3% H H EEEEE uuu R R IIIII K K oo N N S
3 %3 3*3%
7 3638 ’ #¥#

$ 33363036 30 36 30 36 35 35 35 38 3 30 3 36 36 3 36 3630 36 36 3 35 35 36 30 3036 30 30 3 T30 3 I 36 96 34 30 36 35 36 36 38 35 3 363 3 303 35 3 I I 30 3030 I 30 I3
$ 33036363 36 30 36 36 36 3 36 36 3636 36 36 36 36 30 36 36 36 38 36 35 36 36 36 3636 I 36 35 3635 36 3636 36 36 363 36 9 36 36 36 36 36 36 36 3 36 H 36310 036 30 IS0 03E

3 3 . #3#
e COPYRIGHT 1981 HEURIKON CORPORATION MADISON, WI -
3 ¥ ’ * ¥
$ 36363633006 I 3 3636 3036 3 36 36 M3 3636 30 36 36 36 96 36 36 36 36 30 36 36 36 36 3036 36 36 36 36 36 36 36 36 W 30 W 30 36 36 3 36 36 36 36 30 3638 30 363630 3 0 M
3 3 Coe
2 PROGRAM: MLZ-91 INIT & SLAVE LOGIC EXAMPLE #
7 ¥# 33
3 VERSION: 1 i
3 ¥ 3¢
5 s DATE: APRIL 17, 1981 i
3 ¥#* *3

3 33636 3630 6 EAE 30 6 36 3636 3 30 3 3638 36 36 30 3E 36 30 36 36 36 3 3636 30 336 30 30 36 36 36 3 3630 366 I I 304 36 636 3 0 IS I 036 S 3 IS0

< e Jus v

ASEG
.Z80
TITLE MLZ-91 INITIALIZATION EXAMPL
HEURIKON CORPORATION o

ve N8 vN

e

WRITTEN BY JEFFREY MATTOX

$ 336 363536 36 35 3636 36 36 336 3H 30038 3636 36 33096 96 38 3536 36 36 96 36 96 363536 36 3638 3636 303636 3 04036 36 36038 3036 3638 303030 3630 30403 3 3000 H 3 H B0 0
$THESE TABLES AND ROUTINES ARE PROVIDED FOR INSTRUCTIONAL PURPOSES ONLY.
$THEY MAY NOT BE APPROPRIATE FOR ALL APPLICATIONS. HOWEVER. FEEL FREE

$TO EDIT SECTIONS OF THE FOLLOWING CODE AS NECESSARY FOR YOUR PARTICULAR
$NEEDS. THIS SOURCE FILE ASSEMBLES ON MICROSOFT’S MACRO-80 Z80/8080

$ ASSEMBLER. ,

$ 636363646 3 36 28 303636 3630 3 2036 36 35 38 3836 36 36036 96 36 3 3536 3036 396 36 35 36 38 303000 38 35 2036 383036 36 36 36 36 36 36 36 3 38 33 H0 03 36 30 309 B0 H 462

$ 364635 36 363636 30 6 303036 36 3 30330 3030400 TE 303036 3 36 96 36 30 3046 3630 T 3 30 303030 30303030 303036 36 90 30 303030 36 3 6090 30 3030303 30 30 303 303030 30 3036
$MEMORY ADDRESS CONSTANTS:

ROMBASE EQU OF000H s BASE OF ROM AFTER MEMORY MAP ACTIVATION
RAMBASE EQU OEOOOH $BASE OF A 4K RAM BLOCK '
CLOCK: DS 2 $FOR INT SERVICE EXAMPLE, RT CLOCK
STACK EQU RAMBASE+4096 $STACK AT END OF - RAM

I0OMAP EQU ROMBASE+10H $I1/0 DEVICE MAP (VIA WRITE TO ROM)
BUSMAP EQU ROMBASE+20H $BUS MAP (ALSO VIA WRITE TO ROM)

$ 35304634630 96 36 3636 3036 36 36 463636 30 36 60 636 3036 36 36 36 36 36 3636 3636 36 3636 36 36 36 3636 36 3636 36 36 36 36 3 36 6 0 I S0 6 I 3636 38 4030 FE HE I 30363036
$1/0 DEVICE CONSTANTS:

10A EQU 020H $BASE OF 1/0 DEVICE GROUP "A*®

I0B EQU QCOH $BASE OF I/0 DEVICE GROUP “B"

$NOTE: THE DEVICE GROUP BASE ADDRESSES ARE DETERMINED BY THE I/0 MAPPING
sRAM. THE BASE ADDRESSES MAY BE SET AT OOH, 40H, 8OH OR COH.

IOXXXA EQU O7H sMAP DATA FOR I/0 GROUP A (IOA)
IOXXXR EQU OBH $MAP DATA FOR I/0 GROUP B (I0B)
IOXXX0o EQU OEH $MAP DATA FOR OFF-CARD DEVICES
IOXXXD EQU ‘OFH $sMAP DATA FOR NO DEVICE ASSIGNMENT

R R e R R 2 S
$10A DEVICE GROUP:

IOBDA EQU 10A+00H ;LOAD BAUD DATA FOR SIO PORT A (D7-D4)
IORDR EQu IOA+08H $LOAD BAUD DATA FOR SIO PORT B (D3-D0O)
I0DMA EQU I0A+10H sDMA CONTROL AND STATUS

IOFSEL. EQU 10A+18H $sFDIO DRIVE SELECT AND USER LED
MEMMAP EQU - IOA+20H s MEMORY MAPPING RAM

10POP EQU 10A+28H $APU POP DATA

IOAPUR EQU - I0A+29H $APU READ STATUS

IOFUSH EQU 10A+30H $APU PUSH DATA

I0APUW EQU I0A+31H $APU ENTER COMMAND

I0DIPO EQU 10A+38H $READ DIP SWITCH GROUP O (1-8)

IODIP1 EQU I0A+3%9H $READ DIP SWITCH GROUP 1 (9-16)

ICWCLR EQU I0A+3AH $CLEAR WINCHESTER MSEL FF

IOCNTO EQU 10A+3EH sCTC CHANNEL O COUNT/TRIGGER

$ 363636 36 3E 36 36 330 26 30 30 36 3 JE 30 30 3 36 36 36 36 3636 36 I I FE 0 36 I 636 36 6 36 I 3636 0 3630 36 3E 0 036 36 36 30 30 30 30 30 I I I I IE I 03I

82

$ 633633 3036 336 3030 36 36 3 36 3036 3030 303 306 36 6363 36036 38 38 36 36 9606636 30 9630 36 3096 36 3638 38 363636 36 36 36 36 3630 90 304036 6 3630 30 D036 96963 3836
$I0OB DEVICE GROUP: :

I0SAD
I0SBD
I0OSAC
I0SBC

IOTRDC
IOTRDS
I0TWRC
I0TWRS
10TRDY

IOLED

I0OFDCS
I0FDTR
IOFISR
IOFDAT

I0CTCO
I0CTCY
I0CTCZ2
I0CTCS3

?
IOCLRN

IOWSEL
IOWWRO
IOWWR1
IOWRDO
IOWRD1
IOWRDS

I0STAT

IOGPIB
10GPDA

I0PAD
I0PBD
I0PAC
10PBC

EQU
EQU
EQU
EQuU

EQU:

EQU
EQU
EQU
EQuU

E&L

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU

EGU
EQuU
EQU
EQU

I10B+Q0H
I0B+01H
10B+02H
I10B+03H

10B+0O3H
I10B+09H
10B+0AH
IQB+OBH
10B+0OCH

I10B+OEH

I0B+10H
I0B+11H
10B+12H
I10B+13H

10B+18H
10B+19H
I10B+1AH
I0B+1BH

I0OB+20H

I10B+28H
10B+2AH
I0B+2BH
10B+2CH
I10B+20H
IOBR+2EH

I0B+2FH

I10B+30H
IOGPIB+7

10B+38H
10B+39H
10B+3AH
I0B+2BH

$SI0 PORT A DATA
5810 PORT B DATA .
$SI0 PORT A CONTROL/STATUS
$SI0 PORT B CONTROL/STATUS

$STREAMER TAPE READ DATA & CLR XFER
$STREAMER TAFE READ DATA & SET XFER
$ STREAMER TAPE WRITE DATA & CLR XFER
s STREAMER TAPE WRITE DATA % SET XFER
$STREAMER TAPE SET READY (TRDY)

sLOAD LED ARRAY

$FDIO COMMAND/STATUS REGISTER
$FDIO TRACK REGISTER

$FDIO SECTOR REGISTER

$FDIO DATA REGISTER

sCTC O DATA &
5CTC 1 DATA &
SCTC 2 DATA &
sCTC 3 DATA &

SCLEAR NMI FF

$WINCHESTER -
$WINCHESTER
$WINCHESTER -
$WINCHESTER -
sWINCHESTER
$WINCHESTER

!

CONTROL
CONTROL
CONTROL
CONTROL

(PARITY & WRITE PROTECT ERRORS)

SET MSEL FF

WRITE DATA/COMMAND (C/D- LOW)
WRITE DATA/COMMAND (C/D- HIGH)
READ DATA (C/D- LOW)

READ DATA/STATUS (C/D- HIGH)
READ INTERFACE STATUS

$READ BOARD STATUS BITS (D7-D4)

$GPIB (IEEE-488) — BASE OF REGISTERS
sGPIB (IEEE-488) - DATA REGISTER

sPIO A DATA -
sPIO B DATA -
sPIO A CNTRL.,
sPIO B CNTRL.,

SYSTEM INT/BUS/DMA RDY

MULTIBUS INTERRUPTS

SET BIT MODE (CFH) AND EOH MASK
SET BIT MODE (CFH) AND MASK AS REQ

$ I 36036 30 30 38 36 36 36 36 30 3 0 I 36 3 3638 3 363 3638 3636 3630 I IE3E I 3636 36 30 3E 3036 36 335 30 36 30 36 36 36 36 30 36 36 16 36 36 30 36 36 3630 36 3630 36 303 30 3436

83

$ 363033040630 3 303 H 00 I 30 0T I0 I 30 3036 90 36 36 303 336 303036 303036 36 3096 30 396 36 36 903036 36 90 3036 30 30303 303303 00 R0 3
$OTHER CONSTANTS OF INTEREST: ‘
$ BAUD RATE CONSTANTS (D7-D4 ARE FOR PORT A, D3-DO ARE FOR PORT B)

BSO EQU O00H $50 BAUD
B7S EQU O11H $75 BAUD
Bi110O EQU 022H $110 BAUD
B134 EQU 033H $134.5 BAUD
B1350 EQU 044H 3150 BAUD
B300 EQU OS5SH $300 BAUD
B&0OO . EQU 066H $ 600 BAUD
B1200 EQU O77H 31200 BAUD
B1&800 EQU 088H 31800 BAUD
B2000 EQU 099H $2000 BAUD
B2400 EQU OAAH $2400 BAUD
B2600 EQU OBBH $3600 BAUD
B4800 EQU OCCH $4800 BAUD.
B7200 EQU ODDH $7200 BAUD
B?600 EQU ‘OEEH $9600 BAUD
B19200 EQU ‘OFFH $19200 BAUD

$ F63EEIE 36636303336 640 3036 3646 3603646 296 3646 96 0669696 35 3696 35 36 36636 305636096 36 36 36 30306036 36060 3096 36 03690 20304 36469696346 S 1030003000
3 THESE CONSTANTS ARE FOR CTC TIMER OPERATION WITH A SYSTEM CLOCK
5OF 4 MHZ. (THE CTC DIVIDES THE CLOCK BY 256.)

C1OMSEC EQU 156 $APPROX 10 MSEC TIME BASE (156.25 = EXACT)
C16MSEC EQU 250 516.0 MSEC TIME BASE
CIMSEC EQU 15 $APPROX 1 MSEC TIME BASE (15.625 = EXACT)
CE8MSEC EQU 125 $8.0 MSEC TIME BASE

3 363603336 3040 3040 30 30 36 0 30 36 36 36 303030 30 030 3 36 36 36 3 30 30 363030 36 3 30636 36 3636 36 36 J0 0 30 I 3 630 0630 3303 I3 I I A H

84

$ 3646 30363 36 3636 336 336 36303 336 3 30 3400 30 303006 46 336 638 36 36 38 3030 36 30 36 30336 36 30636 38 38 353 33030 BF 3 3663 36 203636 3 3030 B 630 3636302
$ THE FOLLOWING SEQUENCE IS USED TO INITIALIZE THE MLZ-91 MAPPING RAMS:
1. LOAD THE 1/0 DEVICE MAP TO ASSIGN 1I/0 DEVICES
2. LOAD THE BUS MAPPING RAM WITH DISABLE CODES TO
PREVENT ANY ACCESSES FROM THE BUS UNTIL WE ARE
100%Z READY.

v vs

us v v

3. ALLOCATE THE ROM VIA THE MEMORY MAPPING RAM
H 4. ALLOCATE ON-CARD RAM.
H S. CHANGE THE BUS MAPFING RAM TO ASSIGN THE MLZ-91 A
5. SPOT ON THE MULTIBUS.
sNOTE THAT THERE ARE THREE SEFPARATE MAPPING RAMS:
H i. 1/0
5 2. BUS
H 3. MEMORY

3 3363 3630 36 30 30 30 I 36 36 36 36 36 34 36 I 35 36 36 36 38 30 38 36 3 36 30 36 36 30 35 36 3635 36 36 30 36 36 36 38 36 3 36 30 35 3636 38 36 6 38 36 3 63 3 36 30 36 30 36 3 3030 3 303030 308
sAT POWER ON ROM EXISTS EVERYWHERE THROUGHOUT THE MEMORY SPACE IN
54K MIRRORS. NO RAM OR 1/0 DEVICES ARE ALLOCATED AND THE MULTIBUS
s INTERFACE LOGIC IS INACTIVE. THE FIRST STEP IN INITIALIZING THE
sMLZ-21 IS TO SETUP THE I/0 MAFPING RAM WHICH WILL ALLOCATE (AND
s THUS ACTIVATE) THE 1/0 DEVICES.
ORG O0000H sCPU PC AT POWER ON RESET
sTHE ROM IS MIRRORED UNTIL WE SET THE MEMORY MAP RAM,. LATER ON.

?

ORG ROMBASE $SET ASSEMBLER PC TGO ROM BLOCK ‘
PWRON: JP INIT?1 $EXECUTE PWR-ON-JP & SKIP RST, NMI LOCS
ORG . ROMBASE+0100H sWE HAVE LEFT SPACE FOR RST & NMI LOCS
INIT91: LD L, IOXXXO s OFF—-CARD DEVICE DATA FOR I/0 BASE OOH
LD H»> IOXXX0 s OFF-CARD DEVICE DATA FOR I/0 BASE 40H
LD (IOMAP) »HL SWRITE TO “ROM” LOADS I/0 MAP RAM
H 5 (THIS LOADS TWO CONSECUTIVE MAP LOACTIONS.)
LD L. IOXXXA s ON-CARD DEVICE DATA FOR I/0 BASE S80H (IOA)
LD H, IOXXXB s ON-CARD DEVICE DATA FOR I/0 BASE COH (I0B)
LD (IOMAP+2) , HL 5SET REMAINING TWO LOCATIONS IN I/0 MAP

35THE I/0 DEVICES ARE NOW ALLOCATED.

$ 6363003 303000 203 36 45 3 3030 30 636 36 636 36 36 36 38 36 36 36 336 3636 36 363036 33636 36 35 36 38 3696 3636 3363636 36 3348 3036 36 36 36 3 35 3036 330 S FE I 48
$EVENTUALLY, THE BUS MAPPING RAM MUST BE SET TO IDENTIFY WHERE THE MLZ-91
$RESIDES ON THE MULTIBUS AND TO SPECIFY ANY INHIBITED BUS-TO-BOARD
sOPERATIONS. HERE WE LOAD THE BUS MAP WITH ALL ZEROS WHICH INHIBITS

sALL ACCESSES FROM THE MULTIBUS. THIS STEP MUST PRECEDE THE

s INITIALIZATION OF THE MEMORY MAPPING RAM BECAUSE THE FISRT WRITE TO

s THE MEMORY MAP WILL ACTIVATE THE BUS MAP AS WELL. THE BUS MAP WILL
SCONTAIN INDETERMINATE DATA UNLESS IT HAS BEEN FORMALLY INITIALIZED.
sLATER, THE BUS MAP CAN BE MODIFIED TO ENABLE SPECIFIC TYPES OF
sACCESSES. THE REASON FOR DELAYING THE ENABLE SERUENCE IS SO THAT WE
sCAN BE SURE THAT THE MEMORY MAPPING RAM IS FULLY INITIALIZED PRIOR TO
5ENABLING ANY OFF-CARD REQUESTS FOR EITHER MLZ-91 I/0 DEVICES OR MEMORY.

LD HL » BUSMAP sDESTINATION (BUS MAPPING RAM)
LD B> 16 s TABLE LENGTH
LOOP: LD (HL.) , OOH sDISABLE ALL BUS-TO-BOARD OPERATIONS
INC HL 5T NEXT MAP LOCATION
D.JINZ LOoP sCONTINUE

3 363303630 3630 30 30 30 3E 36 30 3036 35 30 3 3 36 30 36 36 36 338 36 30 31 3030 I 35 36 30 3 3030 36 3034 30 36 3040 36 30 36 35 36 30 330 30 30 36 36 30 36 30 36 30 I 3 1630 36 030 33383

86

$ 4630346 602 36303636 30303630 366 36360630 3008 4046 FE 4006 30 30 3036 3696 046 36 3636 35369 3096 36 30 330036 30 S0 ISR I H S0 I BB 2 30
sNOW IT IS SAFE TO INITIALIZE THE MEMORY MAPPING -RAM.

$THE FIRST LOCATION IN THE MEMORY MAP TO BE SET MUST BE FOR THE ROM
$SOCKET OUT OF WHICH WE ARE EXECUTING (OTHERWISE WE WILL BE SENT TO
$NEVER-NEVER LAND.) THIS CODE SETS SOCKET MO TO THE BASE ADDRESS

sOF THE (THIS) ROM.

IN A (IOCLRN) $BE SURE NMI LOGIC IS RESET BEFORE MAP ON

Lp C, MEMMAP $MEMORY MAPPING RAM PORT ADRS

Ln B,HIGH ROMBASE $MAP RAM BLOCK ADRS (ROM BLOCK)

LD A> OOH sDATA WHICH SPECIFIES SOCKET MO (FOR 2732)
ouT (C)HA sPUT SOCKET MO AT ROMBASE (FOOOH)

$SOCKET MO NOW EXISTS AND THE MEMORY MAPPING RAM (AS WELL AS THE BUS
$MAPPING RAM) ARE ACTIVATED. HOWEVER, NO RAM EXISTS YET SO THE NEXT
$STEP SHOULD BE TO FINISH LOADING THE MEMORY MAP.

$ AR 610302006 2606 66 36 36 36 3625 4646 36 2636 6 38 363098 36 303636 36 46 36 4036 36 96 363630 3098 38 36 36 30300 3688 3 4030 3020303036 S0 S0 9030 2096
$THE FOLLOWING CODE ALLOCATES 1S5 BLOCKS (EACH 4K IN LENGTH) OF ON-CARD
$RAM STARTING AT LOCATION O000H. THE 16TH BLOCK (FOOOH) HAS ALREADY BEEN
$ASSIGNED BY THE PREVIOUS CODE. WE COULD HAVE PUT THE NECESSARY BYTES
$TO ASSIGN THE ROM SOCKET AT THE BEGINNING OF THE FOLLOWING

sDATA TABLE INSTEAD OF USING A SPECIFIC SET OF INSTRUCTIONS AS WAS

sDONE ABOVE. (THIS WOULD ONLY WORK FOR ROMBASE = OFOQ0OH BECAUSE REGISTER
$B IN THE MAP ROUTINE CAN ROLLOVER TO BLOCK 00 FOR THE RAM ALLOCATION.)
$NOTE: WRITE PROTECT IS TURNED OFF,

LD HL, TABLE $DATA FOR MEMORY MAP ROUTINE
LD DE,EXIT sRETURN ADDRESS (NO STACK EXISTS YET)
JP MAP ~ $PROCESS THE DATA TABLE
TABLE: DB - OOH,7EH s #4K OF ON-CARD RAM AT OOOOH
DB 7DH s #4K AT 1000H
DB 7CH 3 #2000H
DB 7BH 3 3000H
DB 7AH 3 4000H
DB 79H 3 SO00H
DB 78H 3 6000H
DB 77H 5 7000H
DB 7&H $ 8OOOH
DB 75H 3 9000H
DB 74H $ AOOOH
DE 73H 3 BOOOH
DB 72H . $ COOOH
DB 71H 3 DOOOH
DE 7FH 3 *EOOOH
DB OFH $END OF TABLE (MARKER FOR “MAP’ ROUTINE)

EXIT:

sPHYSICAL BLOCK FOOO (MAP DATA 70H) WILL BE USED IN THE “SLAVE I/0° EXAMFLE.
sRAM IS ALLOCATED SO THAT IF TOTAL RAM IS 16K OR 32K (NOT 64K), BLOCKS
$E000. 0000, 1000 & 2000 ALWAYS GET RAM. (SEE ‘%7 LINES IN TABLE)

y

sNOW. I/70 DEVICES AND BOTH ROM AND RAM MEMORY HAVE BEEN ALLOCATED.
$ 33036303030 03030 33030 36 336 30 3030 36 3030306 36 36 3036 36 30 303636 36 30 36 30 303036 30 300 3000 300303030 H0 30 30 330 I 0303000 IS0 S0 HE 66

$ 636363 36 36 3036 36 36 36 36 I 46 38 36 36 30 36 3636 30 36 6 36 36 35 36 3 36 36 36 36 36 30 38 36 30 36 3036 36 36 36 36 36 36 3 36 36 38 36 2636 36 36 36 36 36 36 36 36 36 36 6 3636 I I 3336
sTHE CODE BELOW ASSIGNS THE MLZ-91 BOARD TO MULTIBUS LOCATION OXXXXH.

SALL I/70 DEVICES MAY BE USED FROM THE BUS AND THERE IS NO RESTRICTION
$PLACED ON THE USE OF MEMORY (I.E. NO I/0, MEMORY RD OR MEMORY WR

$ INHIBITS ARE ON.) :

sFOR EXAMPLE PURPQSES. THIS CODE ALSO ASSIGNS THE MLZ-91 BOARD

$TO MULTIBUS BLOCK 3XXXXH BUT INHIBITS USE OF ON-CARD I/0 DEVICES AND

$DOES NOT ALLOW WRITES TO MEMORY.

SETBUS: LD HL., TABL $ADRS OF DATA TABLE FDR BUS MAFPING RAM

LD DE ., BUSMAP SDESTINATION

LD BC, 16 $LENGTH

LDIR s TRANSFER TABLE TO BUS MAPPING RAM

JP IOINIT $NEXT. INITIALIZE THE ON-CARD I/0 DEVICES
TABL : DB OOH 3BUS BLOCK 15 (INHIBIT ACCESS FROM BUS)

DB OOH $BUS BLOCK 14

DB O0H sBLOCK 13

DB O0H 512

DB OOH 511

DB OOH 310

DB OOH 39

DB OOH HE=

DB OOH 57

DB OOH 36

DB O0H 35

DB O0OH 54

DB ~ 90H $BLOCK 3 (ALLOW MEMORY READ ONLY)

DB OOH 52 (INHIBIT ALL ACCESS FROM BUS)

DB OOH 51 (INHIBIT ALL)

DB OFOH $BLOCK O (NO INHIBITS)

$...END OF MLZ-91 POWER-ON INITIALIZATION EXAMPLE.

$THERE IS AN EXAMPLE LATER (“SLAVE 1/07) OF USING THE DIP SNITCHES TO

$SET THE BUS BLOCK TO WHICH THE BOARD IS ASSIGNED.

$ F3E3E 303030 3030 30 30 30 30 30 30 30 30 30 30 36 3030 30 30 330 303 30 30 30 36 30 30 35 3 3 3030 3E 30 30 30 30 36 3E 31 30 3630 36 30 3H 30 303 3 I3 I I3
sTHERE IS AN EASIER WAY TO CREATE ALL OF THE ABOVE CODE BY USING MACROS.

$ THE FOLLOWING SEQUENCE OF MACRO CALLS WILL PERFORM THE SAME TASKS AS
sDETAILED ABOVE: (SEE PAGE 98 FOR MACRO DEFINITIONS)

e ORG o sCPU PC AT PWR ON

5 ORG ROMBASE $SET ASSEMBLER PC TO ROM BLOCK

sPWRON: JP CINIT91 3 PWR-ON-JMP AND SKIP RST & NMI LOCS

H ORG -~ ROMBASE+0100H SAFTER NMI LOCATION

S$INIT?1:MAPIO ROMBASE,©0,0,1,2 3MAP DATA (OFF-CARD,OFF-CARD, I10A, 10B)

3 MAPBUS ROMBASE sCLEAR BUS MAPPING RAM

3 IN A, (IOCLRN) sRESET NMI LOGIC

H MAPROM ROMBASE., 4 sMAP SOCKET MO. AT ROMBASE (4K)

5 MAPRAM OOOOH, OOOH, &0 sMAP IN &0K OF ON-CARD RAM AT 0000H

3 MAPBUS ROMBASE,OOH,1,1,1 : sBUS BLOCK O, ALLOW I/0, RD»> WR
H MAPBUS ROMBASE.O3H,0,1,0 $BUS BLOCK 3, ALLOW MEMORY RD ONLY
sDONE. ..

$ FE 303636 36 36 3030 36 J 36 36 30 330 3 36 30 30 30 3030 30 36 36 30 30 3 38 3 36 36 36 30 30 30 36 36 30 30 3 363630 3 3638 36 38 30 3636 38 36 36 3636 36 36 2636 3036 36 30 3 I 36 36303 3

§ 3636630303 3003030 30046 IEIEIEIE I 09030 3 3030 3036 3030 3000 3403036 35 3036 30 30403030 3H 40 B 0303030 330 0 0 30 303030 03 0 90 30 003 H 30 3 30 3008 36
s GENERAL. COMMENTS CONCERNING THE INTERACTION OF THE MAPPING RAMS:
1. IF ROM IS NOT ASSIGNED (OR IS TURNED OFF) YOU CANNOT
REASSIGN 1/0 DEVICE ADDRESS GROUPS UNTIL THE ROM IS
REALLOCATED. (BECAUSE A WRITE TO “ROM” IS REQUIRED TO
ACCESS THE I/0 MAPPING RAM.) "ROM" SPACE IS ALSO REQUIRED .
TO ACCESS THE BUS MAPPING RAM.
IF I/0 DEVICE GROUP A IS UNALLOCATED YOU CANNOT ALTER
THE MEMORY MAPPING RAM UNTIL I/0 GROUP A IS REALLOCATED.
(BECAUSE 1/0 PORT “MEMMAP‘ IN I/0 GROUP A IS USED TO
ACCESS THE MEMORY MAPPING RAM.)
3. THIS MEANS THAT THE I/0 MAP AND THE MEMORY MAP RAMS ARE
“INTERLOCKED” IN THAT:
A. EACH IS USED IN THE ACCESSING OF THE OTHER.
B. IT IS IMPOSSIBLE TO DEALLOCATE ROTH 1/0 GROUP A

AND ROM, WHICH IS GOOD BECAUSE OTHERWISE BOTH

WOULD BE “LOST“ FOREVER. :
§ W IEIEEIEIIEIEIEIE I I6 36 30 3006 306 3636 38 3630 80363636 6 3696 36 36 36 303636 36 363646 36 3636 36 3636 5636 36 3303046090 30903463630 90 36 S0 30 3630 8036
sTHIS IS THE ACTUAL MAP ROUTINE WHICH PROCESSES THE TABLE
$DATA GENERATED BY THE MAPRAM MACRO. SINCE THE ACT OF
sCHANGING THE MAPPING RAM CONTENTS MAY AFFECT THE LOCATION
$0OF THE HARDWARE STACK», THIS ROUTINE CANNOT USE THE STACK
$AND THUS CANNOT BE CALLED AS A SUBROUTINE. THEREFORE, THE
$RETURN ADDRESS IS PASSED IN REGISTER PAIR DE.

¥8 o8 us v

NE NE NS MR NE 98 v e
3

48 ug ve

MAF: LD C, MEMMAP $MAPPING RAM PORT ADDRESS

LD B, (HL) $FETCH B REG ENTRY (MAP BLK)
M1 INC HL s ADVANCE POINTER

LD As (HL) SFETCH NEXT REG A VALUE

CcP OFH $sTEST FOR END OF TABLE

JR Z, MDONE $END OF TABLE i

ouT (C)>A ~ $SEND TO MAPPING RAM

LD AB $PREVIOUS BLOCK

ADD A, 10H : $COMPUTE NEXT BLOCK

LD B.A $FOR NEXT LOOP

JrRO M1 $PROCESS NEXT ENTRY
MDONE: EX DE,HL $GET RETURN ADRS TO HL

P (HL) $ RETURN

3 HE A6 36 3036 I 30 36 6 6 30 36 35 36 6 36 36 336 36 36 30 36 36 36 3636 36 36 36 36 36 366 36 3630 36 36 3636 46 36 363636 36 36 36 36 36 300 3 I6 046 30 36 I 6B 3300 30 3

88

$ 34 3E336 398 3036 36 30 30 36 36 36 3 3036 30 303030 36 36 38 30 3030336 30 30303 0 0 303 303636 30336 9 38 3636 70 36 36 3 30303 36 H 36 36 903 69 6 36 3030336 3030343036
$HERE WE INITIALIZE THE 1/0 DEVICES AND SET THE INTERRUPT LOGIC:

IOINIT: LD SP,STACK $INIT STACK POINTER. NOW THAT RAM IS ON
LD HL» IODATA s DATA TABLE FOR IOSUBR
CALL IOSUBR $INIT ON-CARD I/0 DEVICES (VIA TABLE)
LD A>HIGH VSI10 $INIT HIGH PART OF INTERRUPT VECTOR
LD 1.A $SET I REGISTER
IM 2 $SET INTERRUPT MODE (VECTORED)

sWHEN THE PROGRAM IS READY FOR INTERRUPTS., IT CAN ENABLE EACH DEVICE
$AND DO AN “EI“ INSTRUCTION. FOR THIS EXAMPLE. IF AN “EI” IS DONE NOW,
$CTC CHANNEL. 1 WILL INTERRUPT EVERY 1.0 SECOND.
SWE ARE NOW DONE WITH THE MLZ-91 MAP AND DEVICE INITIALIZATION EXAMPLES.
EI $START TIMER (& RT CLOCK)
JP SLAVE $6G0 TO REST OF THE PGM...
$ 3H3E3E I3 3332030 30 30 36 30 30 303 3030 06 300 0 SR 0 30 30 30 36 30 3030 36 338 3 30303 3 0 30 90 3 3036 3 36 3036 3030 3 30 330 IS H I I IR R4
$THE FOLLOWING ROUTINE AND TABLE MAY BE USED TO INITIALIZE THE ACTUAL
$1/0 DEVICES ON THE MLZ-91. THE I/0 SUBROUTINE (IOSUBR) PROCESSES
sA TABLE OF DEVICE PORT ADDRESSES AND INITIALIZATION VALUES. HERE,
sWE ARE SETTING THE SI0. CTC, PIO. DMA, BAUD RATES AND OTHER MISCELLANEOUS
$PORTS ON THE BOARD.

IOSUBR: LD C» (HL) sGET PORT ADRS
LD A,C sMOVE FOR TEST
INC A s TEST FOR OFFH
RET z $END OF TABLE
INC HL 3 TO LENGTH PARAMETER
LD B, (HL) SLENGTH OF THIS ENTRY
INC HL _ . 3TO FIRST BYTE FOR DEVICE
OTIR s TRANSFER TABLE DATA TO DEVICE
JR I0SUBR : sCONTINUE UNTIL DEVICE ADRS = OFFH

$ 333630363035 36 30 30 303036 36 30330 336 38 33030 36 30 3036 3 3033030 330 303636 3036 30 30 30 35 300 3036 36 30 30 30036 30 3030 90 30 30 3030 96 30 3330 3 090690 303
$HERE IS THE DATA TABLE FOR THE IOSUBR: (CHANGE FOR YOUR APPLICATION)

IODATA: DB I0SAC $SI0 PORT A DEVICE-ADRS
DB 9 $ LENGTH :
DB 0 $ (RESET SIO REG COUNTER)
DB 4,04CH sCMD. ASYNC. CLK, STOPS
DB S5, 0EAH sCMD 5: RTS, ENBL., 8BITS, DTR
DB 30ELIH - sCMD 3: RTS, ENBL., ENBL. 8BITS
DB » 1,000H $SCMD 1: NO INT., UPDATE STATUS
DB I0SBC 5810 PORT B ADRS
DB 11 SLENGTH
DB o $ {RESET SI0 REG COUNTER)
DB 4,04CH $(SEE SIO A INIT FOR DETAILS)
DE 5, 0EAH
DB 3, 0E1H
DB 1,000H
DB 2,L0W VSIO $ INTERRUPT VECTOR (FOR BOTH PORTS)

3 36383838 3830 3 35 30 36 35 35 35 36 36 36 3535 3 36 I 36 36 38 38 36 3 36 36 36 3 3 3 3 3 36 I 3 36 3630 0 30 I 36 I 36 36 36 36 36 36 3636 3635 30 3 36 I 36 30 36 30 3 3L

89

920

§ 3660 I 03636 36 36 20 3646 36 36 3636 36 36 36 3 46 3636 36 36 36 36 46 3636 36 26 36 46 3 0 30 3 3630 30 3 30 3 30 I I IR I I WU

“e

-8

“s

e

-8

-8

A

e

1)

<s

-
kd

DB

DB

DB

DB
DE
DB

DB
DB
DB
DB

DB
DB
DB

DB
DB
DB
DB

DB
DB
DB
DR
DR

DB
DB
DB
DR

DB
DB
DB

DB
DB
DB

DR
DR
DB

DR
DR
DR

DB

I0BDA
1
B9600

IOBOR
1
B2600

IOPAC

3

OCFH, OEOH
LOW VPIO

I10PAD
1
O8H

I10PBC

3

OCFH, OFFH
LaWw VPIO

I0CTCO

3

025H
C8MSEC
LOW VCTC

I0CTC1
2

. OCSH

125

1GCTC2
2
0,0

10CTC3
2

0,0

IOFSEL
1
OFFH

IOLED
1
OFFH

OFFH

$DEVICE ADRS (BAUD GEN A)
s BAUD RATE DATA

$ (BAUD GEN B)

$BAUD RATE DATA

sPIO PORT A DEVICE ADRS
$ENTRY LENGTH

$BIT MODE, 32 INS & 5 QUTS
$PI0O MODE 2 INTERRUPT VECTOR

$PIO A DATA
sRELEASE BUS IF ANY OTHER BOARD REQUEST

sPIO PORT B DEVICE ADRS

$LENGTH

$BIT MODE, ALL INS (THIS DEPENDS ON APPL.)
$ INTERRUPT VECTOR

$DEVICE ADRS (CTC 0)
s LENGTH
sCONTROL (DSBL INT. TIMER. /256, TC FOLL.)

. STIME CONSTANT (8.0 MSEC AT 4 MHZ.)

$ INT VECTOR FOR ALL FOUR CHANNELS

$DEVICE ADRS (CTC 1)

sLENGTH :

$CONTROL (ENBL INT, COUNTER, TC FOLLOWS)
$TIME CONSTANT (8 MSEC/125 = 1.0 SEC)

$(CTC 2)

$LENGTH

$CONTROL AND TIME CONSTANT

$(CTC &)

SLENGTH IR

:CONTROL AND TIME CONSTANT

s DEVICE ADRS (FDIO DRIVE SELECT. ETC.)
;ALL OFF

s (LED ARRAY)

$ALL OFF

$END OF TABLE

$ 363303036 I 3030 3636 I JE I 6 36300 36 3630 30 30 3636 3636 36 36 36 3 30 30 36 3630 3 630 I 36 30 36 30 30 36 30 30 30 30 30 30 36 30 36 30 JE 0 30 303 I 0 IE R FHIE IR RN

$ 3363635 3630 303036 36 3636 306 36 3036 36 30346 36 3636 36 36 38 36 3006 303630 36 36 303046 330 30 36030 30 30030696 38 3636 3036 3630 36 3646 36 38 336 96 96 36 46 30 33030 303088
s INTERRUPT (MODE 2) VECTORS FOR I/0 DEVICES: '

ORG $+({—-%) AND 7) 3FORCE CORRECT BYTE BOUNDRY
Vsi0: DW DUMMY » DUMMY » DUMMY > DUMMY 3SI0 PORT A VECTORS
DW DUMMY > DUMMY » DUMMY >, DUMMY 3SI0O PORT B VECTORS
VCTC: DW DUMMY » RTCLK, DUMMY, DUMMY 3CTC VECTORS (NOTE “RTCLK” VECTOR)
VDMA: DW DUMMY > DUMMY > DUMMY . DUMMY ;DMA VECTORS
VPIO: DW DUMMY » DUMMY sPIO VECTORS

$ 6464636636 3636 36 46 36 36 36 38 36 35 36 3036 3636 30 36 36 6 36 38 35 3546 200036 48 3 36 3036 3036 300030303016 36 30 35 3630 36 36 36 3 4036303 0 30030 36 36 36 3636 3 3603
sTHIS IS AN EXAMPLE OF AN INTERRUPT SERVICE ROUTINE. HERE WE

sSIMPLY COUNT THE NUMBER OF INTERRUPTS FROM CTC CHANNEL 1 (WHICH

sOCCUR ONCE EVERY SECOND) AND DISPLAY THE LOW 8 BITS OF THE COUNT

sIN THE MLZ-91 LED ARRAY. '

RTCLK: PUSH HL $SAVE USER REGISTERS
PUSH PSW ,
LD HL» (CLOCK) sGET PREVIOUS COUNTER
INC HL $ADD (1 SECOND)
LD (CLOCK) > HL SRESTORE
LD AL $GET LSB'S
ouT (IOLED).A sDISFLAY
POP PSW $RESTORE USER REGS
POP HL :
DUMMY: EI $RE-ENABLE INTERRUPTS
RETI . SRETURN
PC EQU R $SAVE CURRENT PC VALUE
$ 363630 3E 335 3336 36 3030 36 30 3 3 36 30 36 35 30 30 36 36 36 30 3 30 30 336 30 6 30 30 36 36 3130 30 3630 330 30 3036 3636 30 90 30 30 30 30 20 3030 20 3033 3033 30 I SIS0 S R 33
H EXAMPLE OF OFF-CARD MEMORY ALLOCATION:
s 16K OF OFF-CARD MEMORY. PHYSICAL OFF-CARD ADRS OF 14000H. ALLOCATED
sAT CPU ADRS SO00H.
H LD HL. TAB. $ TABLE ADRS
H LD DE.EXIT $RETURN
5 JP MAP sPROCESS TABLE DATA
sTAB: DB 80H 7 - $STARTING BLOCK NUMBER
H DB OFSH ‘ $FIRST 4K BLOCK
H DB OFSH ‘ $SECOND 4K BLOCK
H DB OF4H
H DB - OF4H
H DB ? OFH $END OF TABLE

XIT:

E
OR: MAPMEM 8000H>, 140H, 14 sWILL DO THE SAME THING
33030 903096 30 30 30 36 3030 300 36 30 30 36 36 36 3036 3 30 300 3030 H 030 30330 30 30 3 33 330 3030 30 36 0 3630 36 36 360 30 30 6 330330 303 30 30 3030030330

ve ws

91

§ S0 IEIEEAE I 6 00 I J6 003 200 2096 3000 303638 4036 63638 3303603636 3040 30 20 $H B IS0 6B I HE 636 330 B0 H 40 40 30 200 SIS B 030 36 3¢
SWHEN AN NMI OCCURS (AS A RESULT OF A RAM PARITY ERROR OR A WRITE
sPROTECT ERROR), THE PC IS SAVED IN RAM (ASSUMING A STACK HAS BEEN
$ASSIGNED) AND CONTROL IS TRANSFERRED TO LOCATION 0066H IN SOCKET MO.
s THE MEMORY MAPPING RAM IS DISABLED (ALTHOUGH THE MAP RAM CONTENTS ARE
$NOT ALTERED.) THIS PUTS SOCKET MO ALL OVER THE MEMORY SPACE (IN 4K
$MIRRORS) AND DEALLOCATES RAM. IF THE MEMORY MAP IS RE-ACTIVATED (RY
$SETTING ANY MAP LOCATION) THE STACK MAY BRE POPPED TO FIND THE

s APPROXIMATE ERROR ADDRESS. TRIVIAL CASES OF NMI INTERRUPT

$ERROR PROCESSING WOULD BE A “RETN“ INSTRUCTION (WHICH WOULD

$CAUSE THE ERROR TO BE IGNORED) OR A “HALT” INSTRUCTION (WHICH WOULD
$CAUSE THE SYSTEM TO STOP.) THIS CODE ASSUMES I0OB = OCOH.

ORG ROMBASE+0066H $NMI LOCATION (PC WILL BE 0066&H)
NMILOC: JP NMI1 $EXECUTE A POWER-ON—-JMP
NMI1: IN A, (I10STAT) $READ ON-CARD STATUS BITS
‘ LD L.A $SAVE (CAN‘T USE STACK. NO RAM IS ON)

sCONSIDER CODE AT THIS POINT TO DO THE FOLLOWING OPERATIONS:
1. RELOAD THE I/0 MAPPING RAM (IN CASE SOMEBODY CHANGED IT)
2. CLEAR THE NMI LOGIC (VIA “IN A, (IOCLRN)“) WHICH WILL
TURN OFF BOTH ERROR LEDS (THE HUMAN EYE PROBABLY
WON‘T EVEN SEE THEM FLASH ON) AND ALLOW THE
MEMORY MAPPING RAM TO BE TURNED BACK ON.
3. TURN ON THE MEMORY MAP (E.G.., RE-ASSIGN ROM)
AND RE-ALLOCATE RAM (IN CASE SOMEBODY CHANGED IT)
$SEE ZRAID-91 LISTING FOR A MORE SPECIFIC EXAMPLE OF AN NMI PROCESSING
$ROUTINE (INCLUDES PRINTING ERROR MESSAGES. ETC.)
sCAUTION: DON‘T CHANGE REGISTER L (IF YOU WANT TO TEST THE NMI REASON.)

N8 “a v

L1}

<8 vy w8

BIT. - 6-L) $TEST ERROR TYPE
JP Z.NMIP sJUMP IF PARITY ERROR
$ELSE WRITE PROTECT ERROR
H ces . $WRITE PROTECT ERROR ROUTINE GOES HERE
CJP EREXIT - $END OF ERROR PROC
NMIF: $PARITY ERROR RECOVERY ROUTINE GOES HERE
H
EREXIT: s JUMP SOMEWHERE. ..

$GENERALLY. THE ORIGINAL PROGRAM SHOULD BE RESTARTED AT THIS POINT.

s (CAUTION: DON‘T GO PAST ROMBASE+0OFFH WITH THE ABOVE CODE. THE

$ORG AT “INIT?1“ IS THERE.)

$ A6 IE IS0 36 63036 63636 30036 300036 366 46 336 3635 3696 302096 36 2030 3636 309638 3630300 3000 B0 HE 03030 3000 3000 S0 HIE S0 SISO SRS I SR
$FOR A MORE DETAILED EXAMPLE OF NMI ERROR PROCESSING (INCLUDING ERROR
$ADDRESS CAPTURE,) REFER TO ZRAID SOURCE CODE.

$ 6003630 3030 30304630 3696 36 3636 3 30 30 3 306 30 33030 303096 30 30 3090 30 30 3030 30 30 030 030 300303 3030030 3 00T ARSI 30 030

$ 369635 3636 38 36 36 35 26 36 3636 96 35 36 36 36 35 38 36 35 3636 35 36 3063 35 336 3636 36 38 38 3036036 96 38 36 36 35 46 36 36 36 38 36 38 36 35 38 3636 3 36 36 96 36 30 35 3636 2 H 30 3 2030 3096
ORG PC $GET BACK TO WHERE WE LEFT OFF BEFORE NMI.
$THE FOLLOWING CODE SEGMENTS SHOW HOW A SLAVE 1/0 AND MEMORY BOARD COULD
$BE IMPLEMENTED USING A MLZ-%1.
,**

SLAVE: LD L» IOXXXA $ON-CARD DEVICE GROUP A
LD H» I0XXXB $ON-CARD DEVICE GROUP B
LD (IOMAP) > HL SWRITE TO “ROM” LDADS I/0 MAP RAM

$THE I1/0 DEVICES HAVE NOW ALLOCATED IN THE LOWER TWO 1/0 BLOCKS AS WELL
3AS THE UPPER TW0O. THE LOWER TWO BLOCKS WOULD BE USED FROM THE BUS.

$THE CODE BELOW ASSIGNS THE MLZ-9% BOARD TO THE MULTIBUS LOCATION
3SPECIFIED BY THE SETTINGS OF DIP SWITCHES S5,6.7 & 8 (DIP SW 0O)

sALL ON-CARD 1/0 DEVICES MAY BE ACCESSED FROM THE BUS AND THERE IS NO
SRESTRICTION PLACED ON THE USE OF ON-CARD MEMORY (NO INHIBITS).

IN A, (I0DIPO) SREAD DIP SWITCH GROUP O (INVERTED)

AND OFH s REMOVE UPPER (GARBAGE) BITS

ADD A, LOW BUSMAP sCOMPUTE LOW ADRS HALF

LD L.A SMOVE TO L

LD H. HIGH BUSMAP sFORM COMPLETE ADRS (OF BUS MAP RAM)

LD (HL) >, OFOH 5ENABLE BUS OPERATIONS IN SELECTED BLOCK

sBE SURE TO DELETE THE CODE AT “SETBUS” (EARLIER) IF THIS LOGIC IS USED.

$ 3H3H3E3E 332020 336 0 30 30300 30 303 33320 3030 30 0 30 300 30 30 30 3030 2 30 30 30 I 030 330 30 3 3303 30 I H I A0S0 I 36 90 3 3 BB H 03330 303
$AS LONG AS WE ARE FOOLING AROCUND WITH THE DIP SWITCHES. LET’S

SREAD IN DIP SWITCH GROUP 1 AND USE THAT VALUE TO SET THE SIO BAUD RATES.
DIP SW SI0O FORT

e

e

1.2.3,4 A
5+:6,7,8 B

N N

ve

THE SWITCH SETTING SPECIFIES WHICH BAUD RATE (FROM 75 TO 19200) SHOULD
BE GENERATED. BAUD RATES ARE SET INDEPENDENTLY FOR EACH PORT AS FOLLOWS:

ve ¥E <8

SETTING BAUD SETTING BAUD

H 1 = “ON“ RATE 1 = 7ON“ RATE

3 -0000 DEFAULT (9600) 1000 1800

H 0001 75 1001 2000

5 0010 110 1010 2400

3 0011 134.5 1011 3600

H 0100 . 150 1100 4800

H 0101 300 1101 7200

H 0110 600 1110 2600

H o111 1200 1111 12200
IN A, (IODIPY1) sREAD DIP SWITCHES (GROUP 1)
CPL SFIX “ON” =1
OR A $TEST FOR SWITCHES “0OFF” (NOT THERE)
JR Z,SLAVEL $USE DEFAULT BAUD RATES (9600)
ouT (I0BDA),A $SET UPPER FOUR BITS (SIO PORT A)
ouT (IOBDB),»A $SET LOWER FOUR BITS (SIO PORT B)
JR SLAVE1 . sGO TO SLAVE BOARD MAINLINE CODE

3 33033033 36 30 36 36 35 36 35 3 I 3 I 3 36 36 3 33035 30 30 36 3036 30 36 30 36 3030 36 30 3 36 30 3 30 30 I 0 I 34 0 03 330 30 3 330 330 I I IE I I 38343

93

$ HEFE AR IR IEHIE IS0 I I 0TI FE I 3638 30350 36 3036 36 36 246 36 38 35 36 35 38 3036 363636 46 48 38 4848 36 036 303 I 3EHE S0 00000 3 00 30 3¢
sTHIS IS THE SLAVE BOARD MAINLINE LOGIC. AT THIS POINT ALL OF THE

s 1/0 DEVICES HAVE BEEN INITIALIZED AND THE BOARD EXISTS ON THE BUS.

sNEXT, WE DO THE FOLLOWING:

1. LOAD THE END OF A RAM BLOCK WITH A SET OF INSTRUCTIONS

WHICH WE WILL LATER EXECUTE. THESE INSTRUCTIONS WILL

BE A HALT INSTRUCTION FOLLOWED BY A JUMP TO THE HALT.

CHANGE THE MEMORY MAP TO DEALLOCATE THE ROM,

ALLOCATE 64K OF RAM AND RESUME EXECUTION AT THE HALT
INSTRUCTION IN RAM.

sTHIS SLAVE BOARD WILL THEN BECOME “INACTIVE“ UNTIL AN ON-CARD DEVICE

$ INTERRUPT OCCURS (E.G., THE CTC - RTCLOCK OR AN NMI DUE TO A RAM ERROR.)
s IF OTHER DEVICE INTERRUPTS ARE ENABLED AND THE APPROPRIATE INTERRUPT

$ SERVICE ROUTINES ARE ADDED, THIS BOARD WOULD BE AN INTELLIGENT I/0 BOARD.

L1}

“e

L L]

2.

-e

8“0

us

BEFORE THIS CODE IS EXECUTED.
MEMORY BLOCK EO000 MAP DATA = 7F (RAM)
MEMORY BLOCK F000 MAP DATA = 00 (ROM)
MAP DATA 70H IS NOT ASSIGNED (THE LAST 4K BLOCK OF ON-CARD RAM)
$ THIS CODE ASSUMES THERE IS 64K OF RAM (ELSE MAP DATA MUST BE CHANGED).

THE FOLLOWING STATE EXISTS:

¥s ¥e v

e

k]

SLAVEL: LD HL » ROMBASE $ OBJECT CODE TG BE MOVED (ALL OF ROM)
LD DE. RAMBASE sDESTINATION (TEMPORARY RAM ADRS)
LD BC, 4094 sLENGTH (1 BLOCK)
LDIR sMOVE CODE FROM ROM TO RAM
LD €, MEMMAP $MEMORY MAP RAM ADRS
LD B-HIGH RAMBASE 3BLOCK WITH OBJECT CODE
LD A» 70H sPUT IN A BLOCK OF “FRESH” RAM
ouT (C)»A $ALLOCATE THE FRESH BLOCK
LD B>HIGH ROMBASE - 5 (ROM BLOCK)
LD A, 7FH s THE RAM BLOCK THAT HAS THE OBJECT CODE
auT (C)»A $MAGIC, WE ARE NOW IN RAM
3 $THE SYSTEM IS 1007 (64K) RAM
JP HALTI $GO TO THE END OF RAM
ORG ROMBASE+40%96-4 ;BACKUP A LITTLE FROM THE END OF MEMORY
HALTI: HALT $STOP HERE UNTIL NEXT DEVICE INT OR NMI
JP HALTI $GO0 BACK TO HALT AFTER INTERRUPT SERVICE

$ FEIEIEIEIEIEIEIEIE I I 36300 S I 3636 36 36 36 30 30 36 36 36 36 36 36 36 30 36 36 36 36 303 00 0 I3 36 36 3636 30 34 36 3636 3 3036 30 30 3 IE 30 0 304030 E 3L 330303

sTHIS CODE IS»*IN CASE THE .HEX FILE IS USED TO PROGRAM A 2716 TYPE EPROM.
s THIS IS A MIRROR OF THE OBJECT CODE AT THE END OF THE 4K BLOCK.

ORG ROMBASE+2048-4 3NEAR END OF A 2716

HALT :

JP HALTI :
sIF A 2716 TYPE EPROM IS USED, SET THE MLZ-91 BOARD JUMFERS AS FOLLOWS:
$ Ji2-A, J14-B

$THIS WILL CAUSE THE 2K ROM TO BE MIRRORED IN THE SECOND HALF OF THE

34K MEMORY BLOCK.

$ 30 I 303403638 3046 3036 30330 3690 3030 636 4596 3096 36 36 36 30 36 8036 363096 36 36 36 3040 309 3630 6 336 3636036 36 3040 3300 RSS20 8
END

MULTI-USER EXAMPLE

The ability to dynamically re-allocate memory allows a
number of special programming functions to be implemented
without great difficulty.

One such use is in creating a multi-task environment. In
its simplest form, the entire memory, except for a small
executive routine, can be switched between tasks. For
example, two independent programs, both of which execute at .
the same address can be loaded into different physical memory
addresses. Then, the mapping RAM can be set to point to
one program or the other depending on which task is to be
active. Another method where each task is executing the
same program is to leave the pfogram code permanently
allocated but switch different blocks of RAM in as each
task executes. The trick for either method is to determine
when to switch tasks (oxr when not to) and to save the CPU
registers before re-allocating memory. - :

The "when to switch” decision could be based on a number of
conditions. For example, whenever a task is in an idle loop
or waiting for a hardware I/O device would be an appropriate
opportunity to switch to a different task. Also, a timer
interrupt at, say 10 millisecond intervals, could trigger a
switch. A "when not to switch" condition could be during

_a DMA data transfer which is using the current task's RAM.

In order to show the ease of implementing a multi-tasking
system using the memory mapping RAM, we converted the ZRAID
monitor program from a single user system to a multi-user
system. | |

Single user ZRAID configuration:
4K ROM in socket Mg (at F@@ggH)
4K RAM (at Ef@gH)
Console device on SIO port B

og

Multi-user ZRAID configuration:
ROM in socket M@ (at F@FIH)
User 1 RAM at E@g@PH when allocated
User 1 console device on SIO port B
User 2 RAM, also at E@@PH when allocated
User 2 console device on SIO port A
Switch to other task when doing character I/0 to/from
ports A or B.

The code used to implement the multi-user ZRAID logic follows.
(See next page)

In order to extend these routines to handle three or more
users, these steps could be used: '

1. At initialization, setup each task's RAM area
with a stack, user ID code, flags, etc.

2. The SWITCH routine could maintain a list (or
"queue") of tasks which are waiting for service.
This task queue could contain information per-
taining to the individual task's priority, RAM
block code, I/O status and other special conditions.

SSWITCH “ROUTINE LOGIC
SHOWN SWITCHING FROM TASK A I_O_TASK 2

TASK 4 RAM B . TASK 2 RAM
SMULTIFLAGY ——>TEST MULT1-USER MODE MULTIFLAG “
STACK SPACE j&———PUSH REGISTERS STACK SPACE
VYsPsSAVE? |je——— SAVE STACK POINTER —“spsave”
SMAPDATA" ——> FETCH OTHER RAMCODE | | |“MaPDATA”

SWITCH RAMS

RESTORE STACK POINTER
POP REGISTERS <
RETURN

96

$ 3360 3E 30303303 B0 36 36 3038 3636 30 36 36 38 36 30 38 3636 36 38 336 36036 36 3 3036 36 31303 35 30 38 36 30 46 36 J 30 36 0 2636 36 3 3 3090 3030 36 0 F H S 3036 38
3THIS IS THE MULTI-TASKING CODE. "MULTI" IS THE "!" COMMAND WHICH TURNS

sON THE MULTIFLAG OF BOTH TASKS AND STARTS TASK 2. "SWITCH" IS THE ROUTINE
$WHICH ALTERNATES BETWEEN THE TWO TASKS. SWITCH IS CALLED FROM THE CHARACTER
$1/0 ROUTINES AND THE FLOPPY DISK MULTIPLE SECTOR RD/WR LOOP.

5CONSULT ZRAID?1 LISTING FOR MORE DETAILS.

$EACH TASK HAS THE FOLLOWING VARIAEBLES:

sMULTIFLAG: DS 1 $SET NON ZERO TO INDICATE TO CURRENT
sTASK THAT IT SHOULD SWITCH TO OTHER TASK

. 3FROM TIME TO TIME. IF THIS FLAG IS CLEARED
3IN EITHER TASK., THE SWITCH LOGIC WILL BE
s DISABLED, EFFECTIVELY GIVING THE "CURRENT"
$ TASK ABSOLUTE PRIORITY.

;CONTAINS THE DATA FOR THE MAPPING RAM WHICH
sWILL BE USED TO SWITCH TO THE OTHER TASK.

MAPDATA: Ds 1

SPSAVE: Ds 1.

eI TR BT L I BRI AR LA L LA 1]

SUSED TO SAVE THIS TASK”’S SP WHILE THE OTHER
3 TASK IS RUNNING.
ULTI: LD A1l - 3GET SOMETHING NON-ZERO
LD (MULTIFLAG),A $SET MULTI-MODE FLAG ON
PUSH HL. sPUSH SOME REGS (FOR SWITCH POFPZ)
PUSH DE
PUSH BC :
LD {SPSAVE) ,SP $SAVE THIS TASK’S SP
LD - A»70H $MAP DATA FOR OTHER TASK (TASK 2)
L.D (MAPDATA) - A $SAVE FOR USE BY SWITCH
LD - B.OEOH $BLOCK ADRS
LD C> MEMMAP $MAPPING RAM ADRS
our (C)>A SSWITCH RAM’S AND SWITCH TASKS
L.D A, 7FH 5ORIGINAL TASK’S RAM (TASK 1)
LD (MAPDATA) - A $SET FOR LATER RETURN TO TASK 1
LD (MULTIFLAG)-A $ALSO KEEP MULTI MODE ON
LD SP,»STACK $INIT TASK 2 STACK
JP INITSA $INIT TASK 2 ON SIO PORT A

§ BRI IR I 30 I 6 36 3 I IE 36 3 3005 3 36 36 23 HE S 33020
s THIS ROUTINE DOES THE ACTUAL SWITCHING BETWEEN TASKS:
SWITCH: LD A> (MULTIFLAG) s TEST FOR MULTI TASK MODE ON

OR * A
RET Z s OFF
PUSH HL $SAVE THIS TASK’S REGS
PUSH DE
PUSH BC
LD (SPSAVE) , 5P sAND SAVE STACK FOINTER
LD A> (MAPDATA) sOTHER TASK’S RAM MAP DATA

LD C» MEMMAP $sMAP DEVICE ADRS

LD B, OEOH $RAM BLOCK ADRS

ouT (C)>A $SWITCH TASKS

LD SP, (SPSAVE) $GET OTHER TASK- S &SP

POP BC sAND RESTORE ITS REGS
POP DE

FOP HL

RET sCONTINUE OTHER TASK

~e

FE 3 36 36 3 35 36 38 30 35 363838 30 35 3636 30 3 30 35 36 30 30 30 36 3 3030 36 336 36 3 30 0 333030 3 3 I 30 30 H 33636 I 303 3033 IR IR FHHHT

97

$ 363664696 36 26696 6 36 36 36 36 36 3696 35 36 6303 36 3636 36 36 336 36 303636 36 38 300 H036 3036000 96 38 36 36 35300 030 305 36 6 30 3B S0 I SE SR ISR IE I SR 25E
$ THE FOLLOWING MACRO DEFINITIONS ARE TO FACILITATE LOADING OF THE

$ THREE MLZ-91 MAPPING RAMS. THESE MACROS EXECUTE ON THE MICROSOFT

s MACRO-80 ASSEMBLER.

“e

MACRO PARAMETERS (FUNCTION) -

ve us

MAPIO ROMBASE,» BOO» B40, BS0O» BCO
(LOAD I/0 DEVICE MAPPING RAM)

e us

H BOO = CODE FOR 1/0 BLOCK OOH
5 B40 = CODE FOR I/0 BLOCK 40H
H B80 = CODE FOR I/0 BLOCK 80H
H BCO = CODE FOR I/0 BLOCK COH

USE “0“ FOR OFF-CARD
“17 FOR 1I0A (DEVICE GROUP A)
727 FOR IOB (DEVICE GROUP B)
“37 FOR NOT ASSIGNED (DISABLE BLOCK)

<8 “a

~e

e e

MAPBUS ROMBASE
(CLEAR BUS MAPPING RAM)
MAPBUS ROMBASE,»BUSBLOCK, I/0INH, RDINH, WRINH
(SET BUS MAPPING RAM FOR BUS BLOCK = 00 TO OFH)
I/CINH = O INHIBIT I/0 OPERATIONS
RDINH = O MEANS INHIBIT MEMORY RD
WRINH = O MEANS INHIBIT MEMORY WR
(ELSE, INHIBITS = 1)

~e

“s 9B

NE 9B NS NI uE

e

MAPROM ROMBASE.,KBYTESL,SKT1
(ALLOCATE ROM SOCKETS)
KBYTES = 4, 8 OR 16
SKT (OPTIONAL) = 1 TO ALLOCATE ONLY SKT M1
o (ELSE, BOTH ALLOCATED IF NECESSARY)
EACH SOCKET = 4K UNLESS KBYTES = 16 (THEN EACH = &K)

NS NE NE ¥R uUn ¥R 9

e

MAPRAM BASEADRS.,PAGE.KBYTESL,11
(ALLOCATE ON-CARD RAM)
BASEADRS = LOGICAL START ADRS (ON A 4K BOUNDARY)
PAGE = PHYSICAL STARTING PAGE OF RAM
KBYTES = 4, 8, 12, 14, ETC (MULTIPLE OF 4)
INCLUDE THE LAST PARAMETER TO ALLOCATED PROTECTED RAM

NE NS M8 up v

L1}

MAPMEM “BASEADRS.PAGE.,KBYTES
2 (ALLOCATE OFF-CARD MEMORY)

SEE MAPRAM MACRO FOR PARAMETERS
§ AW I I I3 I3 I I3 3036 303 26 30 3036 30 30 303 HE 30 3030 30 306 3030 30 3030 30 303 300 30 30 3000 S0 R0 SIS0 S0 36303

“e o8 “e

98

§ 363326130206 0000 IE I 3030 303202030 45 36 36 36 36 3 30 H 0 6 36 36 36 36 36 36 36 36 45 38 3 33 36 3 38 38 36 31 03638 36 38 363 3036 36 H 36 36 36 SH 4036 3696 38
MAPIO MACRO ROMB.A.B,C,D

PRO DEFL OEH 3 s OFF—-CARD

PR1 DEFL O7H 53I0A -

PR2 DEFL OBH $310B

PR3 DEFL OFH $3NOT ASSIGNED
LD HL ., PR&B#256+PR%As s FORM WORD FOR BLOCKS O & 1
LD ({ROMB+10H), HL $3SEND TO DEVICE MAPPING RAM
LD HL >, PR&D#256+PR%C3 s FORM WORD FOR BLOCKS 2 & 3
LD (ROMB+12H), HL 535SEND TO DEVICE MAPPING RAM
ENDM '

$IT WOULD BE POSSIBLE FOR THIS MACRO TO ALSO REDEFINE THE I/0 PORT
$ADDRESSES SO THAT I/0 PORT REFERENCES FOLLOWING INVOKATIONS
3OF THIS MACRO WOULD REFERENCE THE PROPER ADDRESS. ~
5 330333030330 30003 3 303 30 300 30 30 030 30 3 363030 336 36 36 35 36 36 30336 30 3030 3 39 330 303630 30 3000 30 300 30 3030 30 30 30 36 30 S0 30 3 308
MAPBUS MACRO ROMB,BLOCK, I0,RD,WR

LOCAL LOOP

IFB <BLOCK> $3TEST FOR OPTIONAL FORM
LD HL , ROMB+20H $$START OF BUS MAPPING RAM
LD B, 16 5 sLENGTH .
LOOP: LD (HL), OOH :3CLEAR BUS MAP RAM
INC HL '$3TO NEXT MAP ENTRY
DJUNZ LOOP 5 sCONTINUE
ELSE
LD A> 16#(1+RD#8+WR#4+10%2) 53FORM NIBBLE FOR BUS MAP RAM
LD (ROMB+2FH-BLOCK) > A $3SEND TO BUS MAPPING RAM
ENDIF :
ENDM

$ 3636 35336 36 36 36 3 36 36 36 36 36 36 36 36 38 36 96 36 36 36 30 20 30 3638 36 36 36 3636 36 36 3636 36 35 30 36 46 96 35 3636 3 36 36 35 30 30 3036 36 36 36 30 30 30 30 3 36 363 B0 I IE 6

$ 36303003636 36 3046 303 0 I I I0I0 040 30300030 3 300 0 30 3040303630 303030 30 30300 403030 300 30 303 3 30030 300 SR SR I IR0 0
MAPROM MACRO BLOCK.KBYTES» SKT1

LD C.MEMMAP $ sMEMORY MAP DEVICE ADRS
LD B.BLOCK/25& s sDESIRED ROM BASE

IFB <SKT1> $ s TEST OPTIONAL FORM

LD A, 00 $ $sDATA FOR SOCKET MO
ouT (C)»A $3SEND TO MAPPING RAM
IFF KBYTES-8

LD A, 20H $3sDATA FOR SOCKET M1

LD B, BLOCK/256+10H 3 $NEXT MAP BLOCK

our (C)>A $3SET MAP RAM

ENDIF

IFF KBYTES-16&
LD A, 10H $ sDATA FOR SECOND HALF OF SKT MO
LD B, BLOCK/256+10H 3 sNEXT MAP BLOCK

ouT (C).A . $3SET MAP RAM |

LD A» 20H $3FIRST HALF OF SOCKET M1
LD B, BLOCK/256+20H 5 $NEXT MAP BLOCK

ouT (C).A $3TO MAP

LD A, 30H s $SECOND HALF OF M1

LD B, BLOCK/256+30H 3 $NEXT MAP BLOCK

ouT (C)»A $3TO MAP

ENDIF

ELSE

LD A 20H s sDATA FOR SOCKET M1

ouT (C).A $3SEND TO MAPPING RAM
IFF KBYTES-8

LD A»30H 3 $SECOND HALF OF M1

LD B,BLOCK/256+10H 3 3$NEXT MAP BLOCK

ouT (C)»A '

ENDIF

ENDIF

ENDM ’ -

§ 36363638 46 36 3636 36 3630 46 6 36 36 36 36 36 36 36 36 26 36 36 36 36 36 36 26 36 36 36 36 36 36 36 36 JE 363 46 3636 4636 36 36 36 36 3036 636 4636 3636 36 36 36 36 46 30 3 300 S0 30 0 36 03038

100

3 FE3E3E 30303030 38 30 30 36 30 38 36 30 36 36 30 36 30 31 30 34 36 3 30 30 30 94 30 36 30 3 30 36 30 36 336 303 36 30 30 363 3036 3036 36 3 3030 3030 30 3 I 363 I 6 3L I I 3343

MAPSET MACRO
LD
LD
JP
TABLE: DB
ENDM

TABLE, BLOCK.EXIT $S3UTILITY . MACRO

HL, TABLE $3START OF DATA TABLE
DE,EXIT 3 3RETURN POINT

MAP 53 “CALLY MAP ROUTINE

BLOCK/ 256 53 INITIAL BLOCK ADRS IN MAP

3 38363636 36 3 36 36 303 36 35 36 30 36 35 36 3 3 3036 36 36 3036 3030 30 36 3 30 36 3 3636 363 36 30 3636 36 3 36 36 36 336 36 3036 3636 35 36 36 3 36 3 36 I 3L I 3 S S0 3¢

MAPRAM MACRO
LOCAL
MAPSET
DATA DEFL
IFNB
DATA DEFL
ENDIF
REPT
. DB
DATA DEFL
ENDM
DB
EXIT:
ENDM

BASE, PAGE ., KBYTES, PROTCT
TABLE,EXIT
TABLE,BASE.EXIT 33GENERATE INITIAL CODE

7FH-PAGE/16 $SSTARTING DATA VALUE
<PROTCT>

DATA-20H $ 3SET PROTECTED MODE BIT
KBYTES/4

DATA :

DATA-1 53FOR NEXT LOOP

OFH $3END OF TABLE

3 33636360 I 03036 3 36 36 I 3620 I 36 36 36 3 36 30 36 338 3630 30 36 36 36 303636 3 36 36 3E 16 36 36 6 30 30 36 300 36 36 3035 363035 36 30 36 36 FEI0 I 3036 SR I 3030 383

MAPMEM MACRO

LOCAL
MAPSET
DATA DEFL
BLK DEFL
REPT
DB
DATA DEFL
BLK DEFL.
ENDM
DB
EXIT:
ENDM

BASE ., PAGE ., KBYTES

‘TABLE>EXIT

TABLE,BASE,EXIT 53GENERATE INITIAL CODE

NOT PAGE/32 : 3 STARTING DATA VALUE
BASE/4096 3 3STARTING BLOCK ADRS
KBYTES/4

DATA

DATA-(BLK AND 1)33COMPUTE NEXT DATA VALUE
BLK+1 s sKEEP TRACK OF BLOCK VALUE
OFH $SEND OF TABLE

3 ***************-ﬁ'-}‘%************%**********%***********************%*********

101

102

OFF-CARD I/0
I/0 devices on the Multibus may be accessed by the MLZ-91

appropriately setting the I/O mapping RAM to enable off-card

. accesses. If the MLZ-91 is sharing the bus with other cards, :

L

none of which are other ML2Z-91's or boards monitoring the upper
4 Multibus address bits, (A19, Al8, Al7 and Al6), then the
standard Z-80 INPUT and OUTPUT instructions may be used and
the memory mapping RAM contents are not significant.

However, if the MLZ-91 is sharing the bus with another MLZ-91,
or similar board, then the upper 4 address lines must be specified
during any I/O operation on the bus. To do this, the special
Z-80 INPUT and OUTPUT instructions are used so that register B
can be used to specify the state of the upper address lines
via the memory mapping RAM. The proper method to do bus I/0
operations is as follows:
1. Setup the I/O map to specify one (or more) quarters
of the I/0 space as "EXTERNAL" I/O. (Store the value
PEH in the I/0 map.) ; 4
2. Load one (BLOCK) entry in the memory map with D6,
D5, D4 and D3 specifying Al9-, Al8-, AL7- and Al6-
(Note that the data stored in the memory mapping RAM

is negative true with respect to the bus address lines.)
The value of these upper address lines specifies which
MLZ-91 board on the Multibus will respond to a bus
I/0 or memory request.

3. Execute the desired 1I/0 operations using a sequence
similar to the following:

LD C,IOPORT . ;DESIRED PORT ADRS (EXTERNAL)

LD B,BLOCK ;sMEMORY MAPPING RAM BLOCK
same block address used in
step 2)

ouT (C),Aa +EXECUTE EXTERNAL I/0

See page 104 for a program listing and more information.

e e e e G e s
X Al9 i Al8 l Al7 J Alé6 ‘ AlS Em-§§4 I_Al3 -1
S e N .]
Specifies upper 4
Address lines
(Bus Block)

MEMORY MAP CONTENTS DURING OFF-CARD I/O

1]

IMEMORY 1.

MAPPING
| RAMT

L]

FEDCBAQQg 765 %32 1) O

D
ool oo
Ds| MAP
Dol | | l j—EXT
iz I o
l C REGISTER)

Raei?rcéash’l"‘k’sﬁ’wl {1 1 Ipsfeefosipelosipaips o)

Y

(B REGISTER)

i y

BOARD 1-ACTING
AS MASTER

D1
D¢
Ds

D BOARD
t-° ADRS 1/0
\u DEVICE C MULTIBUS
Alag
y v 4
BrlAclasiaslas]aala, [ad] .
EEERE] BOARD 2-ACTING
AS SLAVE
]
Z?. IS
\4 D’ ‘ l t tz:
e NI\{\% I/o
P oJd | || DEVICES
A

(FEDCBAQY76543?.I’CJ

NN ERR
BUS MAPPING

LLRA

b—=JNH MEM RD
_p—INH MEM WR
b—— INH I/0

b——a ENBL

“MLZ-9l EXTERNAL 1/0 LoOGIC

103

ASEG
. 280 |
TITLE EXAMPLE OF MLZ-91 INTER-BOARD 1/0

$ 6363 3036 36 36 36 3 36 36 36 35 3636 35 30 30 36 I 30 0 3630 3 36 36 3636 36 36 638 36 36 36 36 36 38 36 36 35 36 36 36 35 3 36 36 3 35 36 36 36 3E 36 36 36 I IEIEIE LI I IEIEIE LI

s CONSTANTS (USUALY THESE NILL BE PART OF A LARGER PROGRAM):

IOXXX0 EQU OEH s1/0 MAP DATA FOR OFF-CARD DEVICES
IOXXXA EQU O7H $1/70 MAP DATA FOR DEVICE GROUP I0A
IOXXXB EQU OBH $1/0 MAP DATA FOR DEVICE GROUF IOB
I10A EQU O80H $I1/70 GROUP A BASE ADRS

I0B EQU OCOH $1/0 GROUP B BASE ADRS

MEMMAF EQU 10A+20H $MEMORY MAPPING RAM DEVICE ADRS
ROMBASE EGU OF000H $ BASE OF ROM

I0MAP EQU ROMBASE+10H $1/0 DEVICE MAP (VIA WRITE TO ROM)
BUSMAP EQU ROMBASE+20H $BUS MAP (ALSO VIA WRITE TO ROM)

$ 363636 3630 33696046 36 3036 36 96 36 36 46 630 3036 3096 9036046 306 003636 3036 36 36 3036 36 3036 36336 36 96 3036 63036 3696 36 366 366 90 3 26 3036 303040 30 4 346 30 3038
$THIS PROGRAM ILLUSTRATES HOW TO DO I/0 OPERATIONS BETWEEN MLZ-91 BOARDS.
$MANY OF THE TECHNIQUES USED HERE ARE ALSO APPROPRIATE FOR OTHER SYSTEM

$ CONFIGURATIONS, PARTICULARLY THOSE WHERE I/0 DEVICES ON THE MULTIBUS
$HAVE I/0 PORT ADDRESSES WHICH CANNOT BE MOVED AND OCCUPY PORT ADDRESSES
$WHICH ARE USED ON-CARD AS WELL. SINCE THE ON-CARD DEVICE ADDRESSES MAY

s BE MOVED AROUND. VIA THE I/0 DEVICE MAPPING RAM., ALL BUS 1/0 ADDRESS

sCAN BE USED BY AN MLZ-91. THERE IS A SIMPLER METHOD FOR SYSTEMS WHICH
sONLY HAVE TWO MLZ-917S, DESCRIBED LATER. THE FOLLOWING EXAMPLES

$ARE FOR “GENERAL-“ CASES.
$ 6 36363 A6 602004030 3 I 6 040303020 I 3036 003 3096 3630 30403 S0 4636 38 38 36 636 38 36 S0 3033030 300 3E 0 IE 0 ST

104

$ 3383035 3636 36 36 36 3030 36 36 35 36 30 38 3135 30 30 33030 303 30 30 30 30 30 30 30 33630 30 36 30303 30303030 30438 30 3 33 3030 30 0303 3SR 30
$FOR A TWO PROCESSOR SYSTEM:

$IT 1S POSSIBLE TO USE THE CONVENTIONAL INPUT (IN) AND OUTPUT (OUT)

$ INSTRUCTIONS IN A TWO BOARD SYSTEM. ALS0, THE PROCEDURE FOR DOING

s INTER-BOARD 1/0 IS SIMFLER. THE MAPPING RAMS CAN BE PRESET AND NO
sFIDDLING IS REQUIRED WHEN DOING THE I/0 OPERATION.

e

FIRST EACH BOARD ASSIGNS ITS I/0 SPACE AS FOLLOWS:

<8 ve

BOARD GROUP O GROUP 1 GROUP 2 GROUP 3

~s

Ny N9

1 IOXXX0 IO0XXXO IOXXXA I0XXXE I0XXX0 = OFF-CARD

5 2 IOXXXA IOXXXB IOXXXO I0XXXO IOXXXA = I10A GROUP
3 BASE= 000H 040H OS0OH OCOH IOXXXB = IOB GROUP
5ON BOARD 1: .

L.D L. IOXXX0 s OFF-CARD DEVICE DATA

LD H»> IOXXXO sOFF-CARD DEVICE DATA

LD (IOMAP) > HL sSET GROUP O & 1

LD L., IOXXXA $UON-CARD DEVICE GROUP A

LD H, IOXXXE s ON—-CARD DEVICE GROUF B

LD (IOMAP+2) > HL 3SET GROUP 2 & 3
5AND ON BOARD 2 (ALMOST THE SAME):

LD L, IOXXXA s ON—-CARD DEVICE GROUP A

LD . H» IOXXXE s ON-CARD DEVICE GROUP B

LD {IOMAP) » HL $SET GROUP O & 1

LD L, IGXXX0 sOFF-CARD DEVICE DATA

LD H> IOXXX0O s OFF-CARD DEVICE DATA

LD (IOMAP+2) > HL $SET GROUP 2 & 3
sTHEN DO THIS ON BOTH BOARDS: :

LD HL , BUSMAP $DESTINATION (BUS MAFPPING RAM)

LD B, 16 SLENGTH
BLOOP: LD (HL) , OFOH $ENABLE ALL ACCESSES

INC HL $TO NEXT MAFP LOCATION

DJNZ BLOOP s0D0 ALL 16 BUS BLOCKS

$NOW. BOARD 1 USES THE FIRST TWO I/0 GROUPS (DEVICE ADDRESSES OOH THROUGH
$07FH) TO ACCESS THE OTHER BOARD’S DEVICES AND THE SECOND TWO I/0 GROUPS
s {DEVICE ADDRESSES 80H THROUGH OFFH) TO ACCESS ITS ON-CARD DEVICES. FOR
$BOARD 2 IT“S THE OPPOSITE: DEVICES 00 THROUGH 7FH ARE ON-CARD AND 80H

s THROUGH OFFH ARE OFF-CARD.

sFOR EXAMPLE, THE LED ARRAY ADDRESSES FOR EACH BOARD ARE: (PORT “IOLED?)
BOARD 1: IOR (FOR BOARD 1) + OEH = OCOH + OEH = OCEH

BOARD 2: I0OB (FOR BOARD 2) + OEH = O040H + OEH = O4EH

$ 33033040303 H 30 H 3 36 30 303 30 30 30 0 I 330303030 3030 3 30 0 3036 3 3 3 3030 3203036 36 0 I I 303 0 H IR I I 03

Ng NY

1ot

$ S48 66 36 360406 30 06 36 30 3EH AR IR I 36 36 300030 JE 0 60600 36000 66 3636 30 6 3606 4636 369036 2000 3000 3646 36 369036 36 3636 30096 20 JE L0 2030 30 40 0
$THIS SECTION SHOWS HOW TO DO I/0 OPERATIONS WHEN THERE ARE MORE THAN

$TWO MLZ-91“S IN A SYSTEM WHICH MUST SHARE 1/0 DEVICES. CAUTION: THIS
sLOOKS RATHER COMPLICATED, BUT IF SOME CONSTRAINTS ARE USED WHEN

sDESIGNING YOUR SOFTWARE. MANY OF THESE STEPS CAN BE LDELETED.

s THIS SHOULD BE CONSIDERED AN “ADVANCED” EXAMPLE. KNOWLEDGE OF THE
sVARIOUS MAPPING RAM FUNCTIONS IS REQUIRED (SEE THE MLZ-91 USER MANUAL).

$ 46303 09036 303030 30000236 3030 3 3036 6 306 36020 3036 36 3 46 30 30 3030 30 98 36 403030 30 30 36 303030 00 3030403040 30 30 3030 36 40 4030 0 S0 03030
$STEP 1: (REQUIRED ONLY IF THE TARGET 1/0 DEVICE IS ON ANOTHER MLZ-91.)
sPICK ANY MEMORY BLOCK (4K) WHICH IS NOT BEING USED (THERE WOULD BE AT
$MOST 15 OF THEM) AND LOAD THE BLOCK DATA SO AS TGO POINT (VIA THE UPPER
$FOUR MULTIBUS ADDRESS LINES) TO THE TARGET MLZ-91i. THE CHOSEN BLOCK

sWILL BE USED FOR THE I/0 OPERATION (NOT FOR A MEMORY OFPERATION.)

s IF ALL MEMORY BLOCKS ARE “IN USE“ THEN PICK ONE FOR TEMPORARY
SREALLOCATION. IF THERE ALREADY IS A BLOCK WHICH POINTS TO THE TARGET
$BOARD (E.G. PART OF THE TARGET’S MEMORY) THEN THIS STEP IS NOT

$NECESSARY. ALSO, THE TARGET BOARD MUST NOT HAVE ITS I/0 INHIBIT BIT

$SET IN ITS BUS MAPPING RAM. HERE WE GO...

LD B, BLOCK/256 . $LOAD DESIRED BLOCK
LD C,» MEMMAP $MEMORY MAPPING RAM DEVICE ADRS
LD A.NOT (BOARD#*8) 3DATA FOR MEMORY MAP (D7 = 1
' D6, DS, D4 & D3 = BOARD NBR (INVERTED)
ouT (C)»A $SETUP MAP RAM

§ A6 AEIE I 030 36 36 2006 263030 3636 3036030 0000 69 36 3006 303006 36 3026 36 38 24638 36 301030 36 04636 353030 36040 36 306030 0040 H020 300 0 IR S0 034
$STEP 2: SETUP I/0 DEVICE MAPPING RAM TO GO OFF-CARD FOR THE PARTICULAR
s DEVICE NUMBER.
LD A, TOXXXO0 $OFF-CARD DEVICE ENABLE CODE
LD - (IOMAP+N). A sPUT IN I/0 MAP. N =0, 1, 2 OR 3
$DEPENDING ON THE I/0 GROUP OF THE DEVICE
$ 3030300 30306 36 30 30300 300090 300 303000 400 2 636 30 330 30300030 3 36 38 30 3630 3030 3036 300 3030 30 303 30 36 30 30 3030 IR0 30 I 30 IR IS0 36 30 3030 30 3030

106

$ 3333 IE I 36 3 36 30 30 3 302030 0 0 IE I 3 46 38 303030 6 46 30 3096 63696 36 3038 36 336 3 303 9 36 30 0466 3034040 3 04033030 303030333030
$STEP 3¢ DO THE I/0 OPERATION. THE MEMORY MAPPING RAM BLOCK NUMBER,
$SELECTED IN STEP 1, ABOVE, MUST BE IN REGISTER B DURING THE I1/0. THUS.,

s THE “SPECIAL” Z30 1/0 INSTRUCTIONS MUST BE USED.

LD B, BLOCK/256 $MEMORY BLOCK BEING USED FOR 1/0
LD C,DEVICE $ THE ACTUAL DEVICE NUMBER
IN A (C) : s (OR “0UT”) DO THE I/0 OPERATION

§ 33030303 3030 30 30 303032 30 30303 30 303 3000330 30 33030 90 38 303090 30 95 30 3 3036 36 96 35 30 330 3030 90 36 35 303030 3030 3 0 3090 30 I 30 3 3 33303
sSTEP 4: RESTORE THE I/0 MAPFPING RAM IF NECESSARY (MAY HAVE BEEN ALTERED
s IN STEP 2, ABOVE.)
LD A, TOXXXA 35 (EXAMPLE)
LD (IOMAP+N) . A sRESTORE
$ SEHE IR0 G0 030 30 6 346300 030 I 3000 2030 20 S0 36 36 36 36 36 363638 36 230 38 3636 6 4096 36 36 436 30 090 306 30 3 FE 30 3E 3030 3303030 30 SIS 303

$STEP S: RESTORE THE MEMORY MAP RAM IF NECESSARY (MAY HAVE BEEN ALTERED
3 IN STEP 1, ABOVE)

LD R, BLOCK/256 5 BLOCK ADRS

LD C, MEMMAP s MEMORY MAPPING RAM DEVICE ADRS
LD A>DATA sORIGINAL VALLUE

ouT (C).A SRESTORE

$ 4536 35336 30 30 3040 36 36 36 36 36 30 303040 0 0 20 200 0 30 30 3040 36 2030 B0 300036 2 6 36 0 30 30 3 303090 36 0 3696 30 36 3 30 30303030 3 330 3 ISR SR 36 3038
s IN MANY APPLICATIONS. IT WOULD BE POSSIBLE TO DO STEPS 1 & 2 ONLY ONCE.
$THEN. STEF 1 WOULD BE USED TO CHANGE TARGET BOARDS. STEFS 4 & 5 MAY
sNEVER BE RERUIRED IF THE MEMORY BLOCK AND DEVICE GROUP CAN REMAIN

s ALLOCATED FOR OFF-CARD USE.

§ FEAEIE I 6 3036 00303 33000 SIS0 6 36 36 36 3005 30 303036 36 3030 3506 36 36 36 3330 36 4508 38 2030 0 666 6 96 36 3036 3 33030 38 3 S0 S 30 3E
$CONSTANTS USED FOR EXAMPLE PURPOSES:

BOARD EQU ‘3 sMULTIBUS BOARD NBR (A19, Al18, A17, Al4)
N EQLU 2 31/0 MAP GROUP OF OFF-CARD DEVICE

BLOCK EQU OEOOOH s MEMORY MAPPING RAM BLOCK USED FOR 1/0
DEVICE EQU 78H s THE ACTUAL OFF-CARD DEVICE ADRS

DATA EQU 51 s THE ORIGINAL MEM MAP DATA FOR BLOCK E

$ 3636 IEIEIE I B30I 3 30 30 30 36 90 F 3030 303 3 36 35 36 230 30 3630 30336 3 36 36 30 30 30 3 36 36 I3 I 23036 I I I3 3030 30 303630 S
§ 3 3E 36336 3 36 4630 36030 3005 36 30 30 38 36 36 36 36 3036 3038 36 36 3040 36 3636 36 203435 3 36 36 36 3636 30 3 36 3036 63030 36 63 0 36 06 33003 38 S S MG SR 38
$JUST FOR FUN, LET“S SEE WHAT THE TARGET BOARD WOULD HAVE HAD TO DO TO
sALLOW THE ACCESS ILLUSTRATED ABOVE. THIS CODE WOULD HAVE BEEN DONE ON
s THE TARGET BROARD:
sFIRST. THE TARGET BOARD‘S BUS MAP WOULD HAVE TO BE SET TO ALLOW 1/0
s THROUGH BUS BLOCK 3 (“BOARD")

LD A> OFOH $NO INHIBITS, 1/0 IS ALLOWED

LD (BUSMAP+OFH—-BOARD) » A $SET BUS MAPPING RAM
$SECOND, THE TARGET BOARD WOULD HAVE HAD TO HAVE DEVICE 78H (“DEVICE”)
$ALLOCATED. THIS PROBABLY WOULD ALREADY HAVE BEEN DONE. DEVICE 78H, IF
5170 GROUP I0A IS IN BLOCK 2 (“N7), IS DIP SWITCH GROUP O.

LD A» IOXXXA $I1/70 MAP DATA FOR GROUP A
Ln (IOMAP+N) - A sSET MAP DATA

$ 33 3HHE 30 M I 90 30 3030 0 I A0 I 30 30 3030 30 3030 3 3030 0 3030 30 3030 30300 30 3 B30 300 900 30 3 330 30 303 3 I 0 I 030 0 30 A0S IR 0 30 30
END

#x#ie NOTE: PAGES 108 AND 109 HAVE BEEN INTENTIONALLY OMITTED. ####de

107

INPUT/OUTPUT DEVICE ADDRESSES

The MLZ-91 I/O space (256 devices) is divided into four groups. The
MLZ-91 I/O devices are divided into two groups. Each device group
may be assigned to one of the four I/0O groups via the I/0 mapping
RAM. (See page 42 for details.) The two device groups are named
IOA and IOB. The four I/O space blocks start at g@H, 49H, 8PH and
C#H. Thus, the base of IOA or IOB will be one of those four values.
The chart below shows the offset from the base address assigned to
each group. Thus, if the base of IOA is 8fH, then the device
address for the FDIO select port is 8fgH + 18H or 98H. (IOFSEL)

FE4 34636 4 I HE A0 3008 I 6363030630 HE 6 A6 3040 3600003030 3 303006 46 46 3636 30 303096 36 364040 38 3636 4630 3036 36 38 3 SRR S0 IR HEHE SRS B SRR SE
MEMORY ADDRESS CONSTANTS:

NAME ADODRESS DESCRIPTION

ROMBASE FOO0 (HEX) BASE OF ROM (TYPICAL)

RAMBASE E00O0 (HEX) BASE OF A 4K RAM BLOCK (TYPICAL)
IOMAP ROMBASE+10H 1/0 DEVICE MAP (VIA WRITE TCO ROM)
BUSMAP ROMBASE+20H BUS MAP (ALSO VIA WRITE TO ROM)

B30 36 36346302046 2646 36 30063096 302036 36 30036 3036 68036 30 303046 36 36 30 3830 353096 36 338 4036 3030 36046403 S0 8 38 20 SE4E SIS0 S0 0 B0 IR SE
I1/0 DEVICE CONSTANTS:

GROUP NAME BASE ADDRESS DESCRIPTION
I0A 080H BASE OF I/0 DEVICE GROUFP "A" (TYPICAL)
IOB OCOH BASE OF 1/0 DEVICE GROUP "B" (TYPICAL) -

NOTE: THE DEVICE GROUP BASE ADDRESSES ARE DETERMINED BY THE I/0 MAPPING
RAM. THE BASE ADDRESSES MAY BE SET AT OOH, 40H, 30H OR COH.

B A6 A H A6 6306 JE 36 3646 38 33633630 36 60630 309636 030636 98 36036 3648 36 2096 301040 301030 46030 36 3636 4036 402636 FE 3R 330 00300 3 S0 R SE S BHE
I0OA DEVICE GROUP:

DEVICE NAME DEVICE ADDRESS FUNCTION -

10BDA ICA+00H LOAD BAUD DATA FOR SIO PORT A (D7-D4)
IOBDB I0A+08H LOAD BAUD DATA FOR SIOQ PORT B (D3-DO)
I0DMA I0A+10H DMA CONTROL ANLD STATUS |
IOFSEL I0A+18H FDIO DRIVE SELECT AND USER LED
MEMMAP 10A+20H MEMORY MAPPING RAM

1aPOP I0A+28H APU POP DATA

I0APUR I10A+29H APU READ STATUS

IOPUSH I0CA+30H APU PUSH DATA

I1CAPUW I0A+31H APU ENTER COMMAND

IORIPO I0A+38H READ DIP SWITCH GROUP O (1-8)

IODIPL ICA+39H READ DIP SWITCH GROUP 1 (9-1&)

IOWCLR I0A+3AH CLEAR WINCHESTER MSEL FF

IOCNTO IGA+3éH CTC CHANNEL O COUNT/TRIGGER

F36 363636 36 3636 36 36 36 36 35 3636 3636 3 3696 3 36 36 36 3 36 IE IE 36 36 36 36 36 36 36 36 36 36 36 3 36 38 35 36 36 36 36 35 36 363 36 36 36 36 36 36 36 30 H 3 30 0 I3 30 IE IR

11¢

5363636 3536 36 36 35 36 36 36 36 36 38 3 3036 36 36 3 36 36 3 30 35 30 36 36 36 36 336 3 3046 36 3 3 3036 3 303006 36 36 38 36 36 38 3 36 3636 36 36 3336 3 3030 3 303 3B H 30 038
I0B DEVICE GROUP:

DEVICE NAME

I0OSAD
I0SBD
IOSAC
I0SBC

IOTRDC
IOTRDS
IOTWRC
IOTUWRS
IOTRDY

IOLED

I0FDCS
IOFDTR
IOFDSR
IOFDAT

I10CTCO
I0CTC1
10CcTC2
10CTC3

IOCLRN

IOWSEL
IOWWRO
I0WWR1
IOWRDO
IOWRD1
IOWRDS

IOSTAT

IOGPIRB
IOGPDA

I0PAD
IOPRD
I0PAC
I0PBC

DEVICE ADDRESS

10B+00H
I10B+01H
I0B+02H
I0B+0O3H

I0B+0&H
I0B+0%2H
I0B+0AH
I0B+0BH
I0B+0CH

I10B+0OEH

I0B+10H
I0B+11H
10B+12H
I0B+132H

I0B+1&8H
I10B+19H
I0GB+1AH
10B+1BH

I10B+Z0H

10B+28H
” 10B+2AH
I0B+2BH |

I10B+2CH
I0B+2DH
I0OB+2EH
I0B+2FH

10B+30H

10GPIB+7

.IOB+38H

I0B+39H
I0B+3AH
10B+32BH

FUNCTION

SIO PORT A DATA

SI0 PORT B DATA

SI10 PORT A CONTROL/STATUS

SI0 PORT B CONTROL/STATUS

STREAMER TAPE READ DATA & CLR XFER
STREAMER TAPE READ DATA & SET XFER
STREAMER TAPE WRITE DATA & CLR XFER
STREAMER TAPE WRITE DATA % SET XFER
STREAMER TAPE SET READY (TRDY)

LOAD LED ARRAY

FDIO COMMAND/STATUS REGISTER
FDIO TRACK REGISTER

FDIO SECTOR REGISTER

FDIQ DATA REGISTER

CTC O DATA % CONTROL
CTC 1 DATA & CONTROL
CTC 2 DATA & CONTROL
CTC 3 DATA & CONTROL

CLEAR NMI FF (PARITY & WRITE PROTECT ERRORS)

WINCHESTER - SET MSEL FF

WINCHESTER

WRITE DATA/COMMAND (C/D— LOW)

WINCHESTER - WRITE DATA/COMMAND (C/D- HIGH)

WINCHESTER — READ DATA (C/D- LOW)
WINCHESTER — READ DATA/STATUS (C/D— HIGH)
WINCHESTER — READ INTERFACE STATUS

READ BOARD STATUS BITS (D7-D4)

GPIB (IEEE-488) — BASE OF REGISTERS
GPIB (IEEE-488) - DATA REGISTER '

PIO A DATA — SYSTEM INT/BUS/DMA RDY

PIO B DATA — MULTIBUS INTERRUPTS

PIO A CNTRL. SET BIT MODE (CFH) AND EOH MASK
PIO B CNTRL, SET BIT MODE (CFH) & REQ‘'D MASK

363635 36 30 36 36 30 36 36 36 36 35 3 36 3 38 36 3 3 36 3 30 I 3030 6 36 36 38 0 36 6 36 35 30 6 363030 36 336 30 35 303 36 36 36 36 3 3E 30 3 36 3636 30 30 36 0 6 I ESE I IE I

111

SIO

The dual SIO is a complex chip which has several commands and
status registers. As an example of a simple setup procedure,

the command sequence used in ZRAID is shown below. This sequence
defines SIO port B as an asynchronous port without‘interrupts.
The commands are transferred to the SIO port B control register
(x/0 po;t'iOSBC) in the order listed. (An OTIR instruction
sequence could easily be used.)

‘ CMD

COMMAND TYPE FUNCTION

)] g Reset register select logic

g4 - g Select write register 4 ,

4C 4 Set X16 clock, transmit 2 stop bits/character

25 g Select write register 5

EA 5 Set DTR active, transmit 8 bits/character,
enable transmitter, set RTS active.

23 2 Select write register 3

Cl 3 Set receive 8 bits/character, enable receiver

gL g Select write register.

29 1 Disable interrupts

The following subroutines can then be used to test the receive
and transmit register status bits and to transfer data (Port B):

Receiver: RWAIT: XOR A Clear Accumulator

ouTr (IOSBC) ,A Select read register @
IN A, (IOSBC) Read Receiver status
AND i @ Mask Data Ready bit
Jp Z ,RWAIT Wait for ready
IN A, (IOSBD) Get Character from Data port
' RET Done
Transmitter: TX: PUSH PSW Save character
2 TWAIT: XOR A Clear Accum

ouT (IOSBC) ,A Select read register #
IN A, (IOSBC)A Read transmitter status
AND 4 Mask TX buffer empty
JP .2, TWAIT Wait for empty
pPoP PSW Get character
ouT (I0OSBD) ,A Transmit data
RET Done

For complete information in programming the SIO chip, refer to
the SIO manual. Summary information follows. See page 158

for connector information.
112

50688 MHz XTAL

PORT A CONTRoL
(Looks LIKE A
“DATA TERMINAL")

Re232 [~ RTS
RS423 [~ DTR

I/F |->paTa

RS 422
DATA
(RsY422)

1/F
SIPA

DATA

—>»CTS

RS232
—> DSR

RS 423
I/F

——» DATA

LOAD SIGNAL—= DAUL
D_,__D"__———\“-'-—» BAUD
D,—D,——& | RATE
LOAD sigNAL—| GENERATOR| _ o b B
(For PORT B)
7
I g9,
O_ SN
LT
s TP WLE SN
i Ao | CL:ECVK
-.rx CLOCK_>. _— i Bo ' CLoc;z
RCV CLOCK- - —1J5
RS232
CTS —» n— SIO
RSH#23
DSR—> I/F > PORT
DATA - A
¢ ['rsuz2 DATA _
<TL_I/F
SIP A :;‘
RTS —» -
bTR—w] RS232)
RS4Y23 SIO
I,\/F. BAUD.B—-—>p0RT
DATA 2 B
g_ RS '-/n.?. DATA .
I 1/E -
s B loa]
RDYA RbYB
Y
STO-RDY
To PIO
(FOR DMA)

SIO BLOCK DIAGRAM

RsS422
1/F

‘—§—> DATA
(RS42.2)
S}

PB

PORT B CONTRoL
(LOOKS LIKE A
“patrA sETY)

113

SIO PORT RS232/423 ‘RS422 RS422
..... o - Terminated Untermindted
' 1
A . Remove SIP A* Install U1lS5 Install U1l5
- Install J3 Install SIP A Remove SIP A |
I Remove J3 .. Remove J3 1
B Remove SIP B** Install SIP B Remove SIP B |
Install J4 Install Ul5 Install U15)
o ~ - Remove J4--- - +-: --Remove. J4
*or cut trace at Ja C
**or cut trace at Jb
SIOR SIO A
A ‘ A
'd NN N\
34
U 7 U8
I SIP B o] SIP A o}-(—-/P}N l
o o o
J3 Ag Ag
o uis BaBy | V16
Ju o J5 J6
-,!* 0
uJB JA
U2é G uzv

114

':/‘ Z-80° SIO Z-80A SIO

Zilog Z-80 SIO Architecture

Data Path

The transmit and receive data path

is identical for both channels. The

receiver has three 8-bit buffer registers in a FIFO ar-
rangement in addition to the 8-bit receive shift register.
This scheme creates additional time for the CPU to ser-
vice an interrupt at the beginning of a block of high-
speed data. Incoming data is routed through one of
several paths (data or CRC) depending on the selected
mode and—in Asynchronous modes—the character
length.

The transmitter has an 8-bit transmit data register
that is loaded from the internal data bus, and a 20-bit
transmit shift register that can be loaded from the sync
character buffers (WR6 and WR7) or from the transmit
data register. Depending on the operational mode, out-
going data is routed through one of four main paths
before it is transmitted from the Transmit Data Output
(TxD).

Functional Description

The functional capabilities of the Z80-SIO can be
described from two different points of view: as a data
communications device, it transmits and receives serial
data, and meets the requirements of various data com-
munications protocols; as a Z80 family peripheral, it
interacts with the Z80-CPU and other Z80 peripheral
circuits, and shares the data, address and control
busses, as well as being a part of the Z80 interrupt struc-
ture. As a peripheral to other microprocessors, the
Z80-SIO offers valuable features such as non-vectored
interrupts, polling and simple handshake capability.

The first part of the following functional description
describes the interaction between the cpu and Z80-S10;
the second part introduces its data communications
capabilities. -

1/0 Interface Capabilities

The Z80-SIO offers’the choice of Polling, Interrupt
(vectored or non-vectored) and Block Transfer modes to
transfer data, status and control information to and
from the cpu. The Block Transfer mode can be im-
plemented under CPU or DMA control.

Polling. There are no interrupts in the Polled mode.
Status registers RRO and RR1 are updated at appropriate
times for each function being performed (for example,
CRC Error status valid at the end of the message). All
the interrupt modes of the Z80-SIO must be disabled to
operate the device in a polled environment.

While in its Polling sequence, the CPU examines the
status contained in RRO for each channel; the RRO status
bits serve as an acknowledge to the Poll inquiry. The
two RRO status bits Dp and D, indicate that a data
transfer is needed. The status also indicates Error or
other special status conditions (see *“Z80-SIO Program-
ming’’). The Special Receive Condition status contained

in RR1 does not have to be read in a Polling sequence
because the status bits in RR1 must be accompanied by a
Receive Character Available status in RRO.

Interrupts. The Z80-SIO offers an elaborate interrupt
scheme to provide fast interrupt response in real-time
applications. Channel B registers WR2 and RR2 contain
the interrupt vector that points to an interrupt service
routine in the memory. To service operations in both
channels and to eliminate the necessity of writing a
status analysis routine, the Z80-S10 can modify the in-
terrupt vector in RR2 so it points directly to one of eight
interrupt service routines. This is done under program
control by setting a program bit (WR1, Dy) in Channel B
called “*Status Affects Vector.”” When this bit is set, the
interrupt vector in WR2 is modified according to the
assigned priority of the various interrupting conditions.
The table in the Write Register 1 description (Z80-S1O
Programming section) shows the modification details.

Transmit interrupts, Receive interrupts and External/
Status interrupts are the main sources of interrupts.
Each interrupt source is enabled under program control
with Channel A having a higher priority than Channel
B, and with Receiver, Transmit and External/Status
interrupts prioritized in that order within each channel.
When the Transmit interrupt is enabled, the CPU is
interrupted by the transmit buffer becoming empty.
(This implies that the transmitter must have had a data
character written into it so it can become empty.) When
enabled, the receiver can interrupt the CPU in one of
three ways:

¢ Interrupt on the first received character
¢ Interrupt on all received characters
¢ Interrupt on a Special Receive condition

Interrupt On First Character is typically used with the
Block Transfer mode. Interrupt On Al Receive Charac-
ters has the option of modifying the interrupt vector in
the event of a parity error. The Special Receive Condi-
tion interrupt can occur on a character or message basis
(End Of Frame interrupt in sDLC, for example). The
Special Receive condition can cause an interrupt only if
the Interrupt On First Receive Character or Interrupt
On All Receive Characters mode is selected. In Interrupt
On First Receive Character, an interrupt can occur from
Special Receive conditions (except Parity Error) after
the first receive character interrupt (example: Receive
Overrun interrupt). '

The main function of the External/Status interrupt is
to monitor the signal transitions of the CTS, DCD and
SYNC pins; however, an External/Status interrupt is also
caused by a Transmit Underrun condition or by the
detection of a Break (Asynchronous mode) or Abort
(SDLC mode) sequence in the data stream. The interrupt
caused by the Break/Abort sequence has a special fea-
ture that allows the Z80-S10 to interrupt when the
Break/Abort sequence is detected or terminated. This
feature facilitates the proper termination of the current
message, correct initialization of the next message, and

VA Z-80° SIO Z-80A SIO

Zilog

the accurate timing of the Break/Abort condition in ex-
ternal logic.

CPU/DMA Block Transfer. The Z80-SIO provides a
Block Transfer mode to accommodate cpU block trans-
fer functions and DMA controllers (Z80-DMA or other
designs). The Block Transfer mode uses the WAIT/
READY output in conjunction with the Wait/Ready bits
of Write Register 1. The WAIT/READY output can be
defined under software control as a WAIT line in the CPU
Block Transfer mode or as a READY line in the bMA
Block Transfer mode.

To a DMA controller, the Z80-SIO READY output in-
dicates that the Z80-SIO is ready to transfer data to or
from memory. To the CPU, the WAIT output indicates
that the Z80-SIO is not ready to transfer data, thereby
requesting the CPU to extend the 1/0 cycle. The pro-
gramming of bits 5, 6 and 7 of Write Register 1 and the
logic states of the WAIT/READY line are defined in the
Write Register 1 description (Z80-SIO Programming
section). .

Data Communications Capabilities

In addition to the 170 capabilities previously discussed,
the Z80-SIO provides two independent full-duplex
channels that can be programmed for use in Asynchro-
nous, Synchronous and SDLC (HDLC) modes. These dif-
ferent modes are provided to facilitate the implementa-
tion of commonly used data communications protocols.
The following is a short description of the data com-
munications protocols supported by the Z80-SIO. A
more detailed explanation of these modes can be found
in the Z80-SIO Technical Manual.

Asynchronous Modes. The Z80-SIO offers transmission
and reception of five to eight bits per character, plus op-
tional even or odd parity. The transmitter can supply
one, one and a half or two stop bits per character and
can provide a break output at any time. The receiver
break detection logic interrupts the CPU only at the start

- and end of a received break. Reception is protected

116

from spikes by a transient spike rejection mechanism
that checks the signal one-half a bit time after a Low
level is detected on the Receive Data input. If the Low
does not persist—as:in the case of a transient—the char-
acter assembly process is not started.

Framing errors and overrun errors are detected and
buffered together with the partial character on which
they occurred. Vectored interrupts allow fast servicing
of error conditions using dedicated routines. Further-
more, a built-in checking process avoids interpreting a
framing error as a new start bit: a framing error resuits
in the addition of one-half a bit time to the point at
which the search for the next start bit is begun.

The Z80-S10 does not require symmetric Transmit
and Receive Clock signals—a feature that allows it to be
used with a Z80-CTC or any other clock source. The
transmitter and receiver.can handle data at a rate of 1,
1/16, 1/32 or 1/64 of the clock rate supplied to the
Receive and Transmit Clock inputs.

Functional Description

In Asynchronous modes, the SYNC pin may be pro-
grammed for an input that can be used for functions
such as monitoring a ring indicator.

Synchronous Modes. The Z80-SIO supports both byte-
oriented and bit-oriented synchronous communication.
Synchronous byte-oriented protocols can be handled in
several modes that allow character synchronization with
an 8-bit sync character (Monosync), any 16-bit sync pat-
tern (Bisync), or with an external sync signal. Leading
sync characters can be removed without interrupting the
CPU. CRC checking for synchronous byte-oriented
modes is delayed by one character time so the CPU may
disable crRC checking on specific characters. This per-
mits implementation of protocols such as IBM Bisync.

Both CRC-16 (X16+X154+X2+1) and CCITT
(X164 X124+ X5 + 1) error checking polynomials are sup-
ported. In all non-SDLC modes, the CRC generator is in-
itialized to 0’s; in SDLC modes, it is initialized to 1’s.
(This means that the Z80-SIO cannot generate or check
CrC for IBM-compatible soft-sectored disks.) The
Z80-SIO also provides a feature that automatically
transmits CRC data when no other data is available for
transmission. This allows very high-speed transmissions
under DMA control with no need for CPU intervention at
the end of a message. When there is no data or CRC to
send in Synchronous modes, the transmitter inserts 8-or
16-bit sync characters regardless of the programmed
character length. Since the CPU can read status informa-
tion from the Z80-SIO, it can determine the type of
transmission (data, CRC or sync characters) that is tak-
ing place at any time.

The Z80-SIO supports synchronous bit-oriented pro-
tocols such as SDLC and HDLC by performing automatic
flag sending, zero insertion and CRC generation. A spe-
cial command can be used to abort a frame in transmis-
sion. The Z80-SIO automatically transmits the CRC and
trailing flag when the transmit buffer becomes empty.
An interrupt warns the CPU of this status change so an
abort may be issued if a transmitter underrun has oc-
curred. One to eight bits per character can be sent,
which allows transmission of a message exactly as
received with no prior information about the character
structure in the information field of a frame.

The receiver automatically synchronizes on the lead-
ing flag of a frame and provides a synchronization sig-
nal that can be programmed to interrupt. In addition,
an interrupt on the first received character or on every
character can be selected. The receiver automatically
deletes all zeroes inserted by the transmitter during char-
acter assembly. It also calculates and automatically
checks the CRC to validate frame transmission. At the
end of transmission, the status of a received frame is
available in the status registers. The receiver can be pro-
grammed to search for frames addressed to only a speci-
fied user-selectable address or to a global broadcast ad-
dress. In this mode, frames that do not match the user-

'A Z-80° SIO Z-80A SIO

Zilog
selected or broadcast address are ignored. The Address
Search mode provides for a single-byte address recog-

nizable by the hardware. The number of address bytes
can be extended under software control.

The Z80-S1O can be conveniently used under PMA
control to provide high-speed reception. The Z80-SIO
can interrupt the CPU when the first character of a mes-
sage is received. The CPU then enables the DMA to trans-
fer the message to memory. The Z80-S10 then issues an
End Of Frame interrupt and the CPU checks the status
of the received message. Thus, the CPU is freed for other
service while the message is being received. A similar
scheme allows message transmission under DMA con-
trol.

730-S10 Programming

To program the Z80-SIO, the system program first
issues a series of commands that initialize the basic
mode of operation and then other commands that qual-
ify conditions within the selected mode. For example,
the Asynchronous mode, character length, clock rate,
number of stop bits, even or odd parity are first set,
then the interrupt mode and, finally, receiver or
transmitter enable. The WR4 parameters must be issued
before any other parameters are issued in the initializa-
tion routine.

Both channels contain command registers that must
be programmed via the system program prior to opera-
tion. The Channel Select input (8/A) and the Control/
Data input (C/D) are the command structure addressing
controls, and are normally controlled by the cpu ad-
dress bus.

Write Registers

The Z80-SIO contains eight registers (WR0O-WR7) in
each channel that are programmed separately by
the system program to configure the functional
personality of the channels. With the exception of
WRO, programming the write registers requires two
bytes. The first byte contains three bits (Dy-Dy) that
point to the selected register; the second byte is
the actual control word that is written into the
register to configure the Z80-S10.

WRO is a special case in that all the basic com-
mands (CMDg-CMD3y) can be accessed with a single
byte. Reset (internal ~or external) initializes the
pointer bits Dg-D3 to point to WRo.

Read Registers

The Z80-S10 contains three registers, RRO-RR2 (Figure
6), that can be read !0 obtain the status information for
each channe! {except for RR2 — Channel B only). The

Z-80 SIO Programming

status information includes error conditions, interrupt
vector and standard communications-interface signals..

To read the contents of a selected read register
other than RRO, the system program must first
write the pointer byte to WRO0.in exactly the same
way as a write register operation. Then, by ex-
ecuting an input instruction, the contents of the
addressed read register can be read by the cpu.

The status bits of RRO and RRi are carefully
grouped to simplify status monitoring. For exam-
ple, when the interrupt vector indicates that a
Special Receive Condition interrupt has occurred,
all the appropriate. error bits can be read from a
single register (RR1). ‘

READ REGISTER 0

mm[ns[m[ua[ozrm[noi

Ax CHARACTER AVAILABLE
INT PENDING (CH. A ONLY)
e %UFFER EMPTY

SYNC/HUNT }
cTs .
Tx UNDERRUN/EOM ‘
BREAK/ABORT
* USED WITH “EXTERNALSTATUS
INTERRUPT MODE
READ REGISTER 1¢
o7 | o6 o5 04 [03 021 p1foo]
ML SENT
|FIELD BITS | FIELD BITS IN

IN PREVIOUS SECOND PREVIOUS
BYTE B

QO —LO O -
(- X -T-F ¥ % -1
e e-Y-1-J
S -T-X-X-X-1-)
DR N N B W a

L— PARITY ERROR

Rx OVERRUN ERROR
CRC/FRAMING ERROR
END OF FRAME (SDLC)

* RESIDUE DATA FOR EIGHT
Rx BITS/CHARACTER PROGRAMMED

t useo witn SPSC!M. RECEIVE CONDITION MODE

READ REGISTER 2
[u][os;ngjaij o}lq:l D1 foo]
l | : ' : i Vo '
i ' - R - Wit
i X . B T 2]
; ; -- - - --v3* U INTERRUPT
. i - . --V&) VECTOR
— .-.vs
; - -V
| SO Ce e _-_._-.v, s

IVARIABLE If “STATUS AFFECTS
~ JECTOR' 'S PROGRAMMED

¥igure 6. Read Repister Bit Functions

118

WRITE REGISTER € -

[o7Jos [os Joa] o3 Jo2]o01]oo]

REGISTER 0

N O OO
>
m
2
4
-
“

D D D CD]
- D D bk O D wrd

REGISTER 7

NULL CODE

SEND ABORT (SOLC)

RESET EXT/ STATUS INTERRUPTS
CHANNEL RESET

ENABLE INT ON NEXT Rx CHARACTER
RESET TxINT PENDING

ERROR RESET

RETURN FROM INT (CH-A ONLY)

ek ek DDDD
YT XYY
MmN A DD D

NULL CODE

RESET Rx CRC CHECKER

RESET ¥x CRC GENERATOR
RESET Tx UNDERRUN/EOM LATCH

O
P Y-

WRITE REGISTER 1

[o7 Jos Jos T oa o3] o2] o1] oo}

EXT INT ENABLE
l‘x INT ENABLE
STATUS AFFECTS VECTOR
(CH. 8 ONLY)
0 0 RxINT DISABLE
80 1 RxINT on
1 0 INTONAL cummns ‘mamm VECTOR) }
1 Lueron?unxmmns DOES NOT AFFECT
g
‘—— WAIT/READY ON R/T
-—————— WAIT/READY FUNCTION CONDITION
WAIT/READY ENABLE
WRITE REGISTER 2 (CHANNEL B ONLY)
[p7fos]os]osafo3]o2]ot] oo}
vo
1
V2
V3 \ INTERRUPT
V4 [VECTOR
Vs
V6
V7
A
WRITER REGISTER 3
{07 Jos Jos fos o3[o2]01] oo}
Rx ENABLE
SYNC CHARACTER LOAD INHIBIT
ADDRESS SEARCH MODE (SOLC)
Rx CRC ENABLE
ENTER HUNT PHASE
AUTO ENABLES
0 0 RxS BITS/CHARACTER
0 1 Rx7 BITS/CHARACTER
1 0 Rx6 BITS/CHARACTER
1 1 Rx 8 BITS/CHARACTER

WRITE REGISTER 4

lT‘f Tos JosToa] ?’Wﬁﬂ—oﬂ

PARITY ENABLE
PARITY EVEN/ODD

-t O
|t €D b € oot

i SYNC MODES ENABLE
i 1 STOP BIT/CHARACTER
! i 1% STOP BITS/CHARACTER
& 2 STOP BITS/CHARACTER
] 0 0 8 BITSYNC CHARACTER
; 8 1 16 BIT SYNC CHARACTER

10 SDLC MODE @TIT1110 FLAG)
| 1 1 EXTERNAL SYNC MODE
@ 0 X1 CLOCK MODE
8 1 X16 CLOCK MODE
1 0 X32 CLOCK MODE
1 1 X564 CLOCK MODE

WRITE REGISTER S

[o7 Tos Jos o4 o3[o2] o1]oo]

Tx CRC ENABLE

SEND BREAK

Tx § BITS (OR LESS] RACTER
x7 NTSI&MRAC!%I:“A

Tx 6 BITS/CHARACTER

Tx 8 BITS/CHARACTER

b o) € i e]
- =k D

WRITE REGISTER 6

Fnr]m]os[ﬁclozloz]otlooj

s i ———SYNG

*ALSO SOLC ADORESS FIELD

WRITE REGISTER 7

[fo7 o6 Jos Joa Jos o2 o1] oo}

i ' i L———SYNC 8ITs
i ! SYNC BIT S
: ——~ -———-——SYNC BIT 10

- SYNC BIT 11

B
B l__‘ — p— 18

“FOR SOLC IT MUST 8E PROGRAMMED
T0 01111110 FOR FLAG RECOGNITION

Write Register Bit Functions

FUNCTION TYPICAL PROGRAM STEPS COMMENTS
REGISTER: INFORMATION LOADED:
WRO CHANNEL RESET Reset si0

WR0 POINTER 2
WR2 INTERRUPT VECTOR
WRO POINTER 4, RESET EXTERNAL/STATUS INTERRUPT

WR4 ASYNCHRONOUS MODE, PARITY INFORMATION, STOP BITS
INFORMATION, CLOCK RATE INFORMATION

Channel B only

Issue parameters

INITIALIZE WRO POINTER 3
WR3 RECEIVE ENABLE, AUTO ENABLES, RECEIVE CHARACTER
LENGTH
WRO POINTER 5
WRS REQUEST TO SEND, TRANSMIT ENABLE, TRANSMIT . Receive and Transmit both fully initial-
CHARACTER LENGTH, DATA TERMINAL READY ized. Auto Enables will enable Trans-
mitter if CTS is active and Receiver if
DCD is active.
WR0 POINTER 1, RESET EXTERNAL/STATUS INTERRUPT
WR1 TRANSMIT INTERRUPT ENABLE, STATUS AFFECTS VECTOR, Transmit/Receive ihtermpt mode se-
INTERRUPT ON ALL RECEIVE CHARACTERS, DISABLE WAIT/ lected. External Interrupt monitors the
READY FUNCTION, EXTERNAL INTERRUPT ENABLE status of the CTS, DCD and SYNC inputs
: and detects the Break sequence. Status
: Affects Vector in Channel B only.
TRANSFER FIRST DATA BYTE TO SIO This data byte must be transferred or no
transmit interrupts will occur.
IDLE MODE EXECUTE HALT INSTRUCTION OR SOME OTHER PROGRAM Program is waiting for an interrupt from
the sio.
Z80 INTERRUPT ACKNOWLEDGE CYCLE TRANSFERS RR2 TO CPU When the interrupt occurs, the interrupt
vector is modified by: 1. Receive Char-
IF A CHARACTER IS RECEIVED: acter Available; 2. Transmit Buffer Emp-
e TRANSFER DATA CHARACTER TO CPU ty; 3. External/Status change; and 4.
e UPDATE POINTERS AND PARAMETERS Special Receive condition.
e RETURN FROM INTERRUPT : ..
IF TRANSMITTER BUFFER IS EMPTY: Program control is transferred to one of
o TRANSFER DATA CHARACTER TO SIO the eight interrupt service routines.
e UPDATE POINTERS AND PARAMETERS
DATA TRANSFER AND * RETURN FROM INTERRUPT
ERROR MONITORING
IF EXTERNAL STATUS CHANGES: If used with processors other than the z8o,
o TRANSFER RR0O TO CPU the modified interrupt vector (RR2) should
e PERFORM ERROR ROUTINES (INCLUDE BREAK DETECTION) be returned to the CPU in the Interrupt Ac-
o RETURN FROM INTERRUPT knowledge sequence.
IF SPECIAL RECEIVE CONDITION OCCURS:
o TRANSFER RR1 TO CPU
e DO SPECIAL ERROR (E.G. FRAMING ERROR) ROUTINE
* RETURN FROM INTERRUPT
REDEFINE RECEIVE/TRANSMIT INTERRUPT MODES When transmit or receive data transfer is
complete.
" TERMINATION DISABLE TRANSMIT/RECEIVE MODES

UPDATE MODEM CONTROL OUTPUTS (E.G. RTS OFF)

In Transmit, the All Sent status bit indi-
cates transmission is complete.

Asynchronous Mode

120

Dual Baud Rate Generator

To obtain the desired baud rate for each SIO port, output data to
the baud rate generator port according to the following chart.

The output signal produced by the Baud Rate Generator is
actually 16 times the value for the asynchronous rates shown

below.

Baud Rate

(x16)
ASYNC

(x1)
SYNC

50

75
110
134.5
150
300
600
1200
1800
2000
2400
3600
4800
7200
9600
19200

1200

2400
4800
9600
19200

PORT A
Hex Octal
00 000
10 020
20 040
30 060
40 100
50 120
60 140
70 160
80 200
90 220
A0 240
BO 260
Cco 300
DO 320
EO 340
FO 360

PORT B

Hex Octal
00 000
01 001
02 002
03 003
04 004
05 005
06 006
07 007
08 010
09 011
oA 012
0B 013
ocC 014
0D 015
OE 016
OF 017

The baud clock for SIO port A may be driven by an external

such as a modem.

follows:

J5-A
J5-B

Jé

J6-A
J6-B

Jumpers J5 and J6 select the source as

Clock Source For Receive Data

P4-8- (25 pin "D" pin 17, EIA signal "DD")
Output of J6, below

Clock Source for Transmit Data

P4-4 (25 pin "D" pin 15, EIA signal "DB")
Baud generator for port A as listed above.

source,

For example, to run both receive and transmit clocks from the

baud rate generator for port A, set J5-B and J6-B.

When using ‘the ZRAID monitor, the baud rates may be individually
set via the DIP switches on the MLZ-91.

manual for details. Also page 93.)

(Refer to the ZRAID

(This page left blank intentionally)

h e dh}

122

CTC

The Z80 Counter/Timer Circuit contains four channels which may

be used to count external events or generate time interrupts to
the CPU.

The count limit or time interval may be programmed by the CPU.
Each of the four channels can independently interrupt when the
pProgrammed count or time has been reached.

The count/trigger input of channel one is assigned an IO

device port number. Access of that port can be used to trigger
the timer action or as a simple means of counting events without
using a software counter. The other three channels are
inter-connected to enable a multiple precision count or time
interval to be programmed.

CHANNEL @& ' COUNTER/| 1
COUNT/TRIGGER TIMER ¢
IOCNT®

couNTER/’
TIMER |
IMHZ CLOCK COUNTER/|
i JTt
COUNT/ TRIGGER TIMER 2

couNng/’
" TIMER 3

CTC CONFIGURATION

'/.Z-S(f’ CTC Z-80A CTC

Zilog

SELECTING AN OPERATING MODE

“When selecting a channel’s operating mode. bit @ is set to
1 toindicate this word is to be stored in the channel control
register.

L4 (LS He hy 128 " ny ("3
1OA\D
N “"‘“"' so ket | osiom ikean oo RISIY '
(AL CONSE AN
(RS ELIAN TSN

TIMER Ve INg Y IMER MO N Y

Bit7=0 Channel interrupts disabled.

Bit7=1 Channel interrupts enabled to occur every
time Down Counter reaches a count of zero.
Setting Bit 7 does not let a preceding count

of zero cause an interrupt.

Bit 6

1]
h=

Timer Mode — Down counter is clocked by
the prescaler. The period of the counter is:
tc o P e TC
te = system clock period
P = prescale of 16 or 256
TC = 8 bit binary programmable time
constant (256 max)

Bit 6 Counter Mode — Down Counter is clocked

by external clock. The prescaler is not used.

[t}

Bit5=9 Timer Mode Only-System clock ® is divided

by 16 in prescaler.

Bit5=1 Timer Mode Only-System clock & is divided

by 256 in prescaler.

Bit4=0 Timer Mode — negative edge trigger starts
timer operation.
Counter Mode — negative edge decrements

the down counter.

Bit4=1 Timer Mode — positive edge trigger starts
timer operation.

Counter Mode — positive edge decrements
the down counter.

Bit3=0 Timer Mode Only — Timer begins operation
on the rising edge of T, of the machine
cycle following the one that loads the time

constant.

Bit 3=1 Timer Mode Only — External trigger is valid
for starting timer operation after rising edge
of T, of the machine cycle following the
one that loads the time constant. The Pre-
scaler is decremented 2 clock cycles later if
the setup time is met. otherwise 3 clock

cycles.

CTC Programming

No time constant will follow the channel
control word. One time constant must be
written to the channel to initiate operation.

Bit2=0

The time constant for the Down Counter
‘will be the next word written to the selected
channel. If a time constant is loaded while a
channel is counting. the present count will
be completed before the new time constant
is loaded into the Down Counter.

Bit2=1

Bit1=0 Channel continues counting.

Stop operation. If Bit 2 =1 channel will
resume operation atter loading a time
constant, otherwise a new control word
must be loaded.

Bitl =1

LOADING A TIME CONSTANT

An 8-bit time constant is loaded into the Time Constant
register following a channel control word with bit 2 set. All
zeros indicate a time constant of 256.

LOADING AN INTERRUPT VECTOR

The Z80-CPU requires that an 8-bit interrupt vector be
supplied by the interrupting channel. The CPU forms the
address for the interrupt service routine of the channel

“using this vector. During an interrupt acknowledge cycle
the vector is placed on the Z80 Data Bus by the highest
priority channel requesting service at that time. The desired
interrupt vector is loaded into the CTC by writing into
channel @ with a zero in D@. D7-D3 contain the stored in-
terrupt vector, Dy and Dy are not used in loading the vector.
When the CTC responds to an interrupt acknowledge. these
two bits contain the binary code of the highest priority
channel which requested the interrupt and Dg contains a
zero since the address of the interrupt service routine starts
at an even byte. Channel @ is the highest priority channel.

123

124

FLOPPY DISK CONTROLIER

Heurikon has floppy disk control software which provides an

easy interface to the floppy disk logic on the MLZ-91. The
information below is intended for the user who wishes to interface
directly with the floppy hardware. (Since the nitty-gritty of
the floppy software is fairly complex and involves numerous
sections on the MLZ-91, e.g. CPU, DMA, FDIO, PIO, etc., we
suggest that you examine the methods used in Heurikon's ZRAID
monitor program in order to become familiar with the problems

involved if you plan to write your own software interface.)

A. Drive, Side and Single/Double Density Selection

When power is first applied, the drive, side and density
select lines come up in a random state. Software must
set these lines to the desired condition. The ZRAID-91
monitor initializes these signals as follows:

Drive select lines: all off (HIGH)

Side select 1line: side 1 (HIGH)

Density select line: single density (HIGH)
Later, when the floppy disk I/O routines are executed,

these lines are set as necessary for the specified operation.

The control port for these lines is IOFSEL (typically
98H if I/O group A base address is set at 8¢H by the I/0
mapping RAM.) and the function of each bit is as specified
below: (This port is write only.)

53 [psz | ost | osp | 55] oven | x | 1D]

Four Drive Select Lines

]
l g = User Led On
g = On (Select) 1=

User Led Off

|
!
|
g
1

- i
1 = Off (Deselect) g = Double Density
' -1 = Single Density
= Side @
= Side 1

Normally, the four drive select lines (DS thru DS3) would
select one of four drives. However, additional drives may
be connected and selected via a binary combination of these
four signals. |

FDIO Controller Chip

There are four register addresses in the FD1793 FDIO chip.

The table below indicates the port addresses assigned to

the various registers. For details on the function of

the registers, refer to the Western Digital manuals.

Port Address Read (IN) Write (OUT)
IOFDCS Status register Command register
IOFDTR Track register Tractk register
IOFDSR Sector register Sector register
IOFDAT " Data register Data register

The FDIO chip can execute the following commands:

1.
2.
3.
4.
5.
6.
7.

RESTORE to track @
SEEK track

STEP IN or OUT

READ TRACK ID

READ or WRITE SECTOR
READ or WRITE TRACK
FORCE INTERRUPT

Data separation for both single and double density is

provided via a PLL (phase locked loop) circuit in order

to achieve a high data recovery reliability. In addition,

write pre-compensation is used for double density formats.

FDIO Data Request

There are two methods which can be used to synchronize data

transfers to and from the FDIO chip.

l.

Software can monitor the Data Request bit in the FDIO status
register while in a wait loop and then transfer each byte
via programmed I/0. This method generally proves unsatis-
gacfory for most applicatiohs due to the high data transfer
rate of the FDIO chip, especially for the double density
mode. In addition, the CPU cannot be allowed to service
interrupts without suffering some loss of disk data.

The FDIO-DRQ (Data Request) signal can be routed to the DMA
chips READY input by selecting the FDIO-DRQ line via PIO port
A. (See page 57.) The DMA is then programmed to handle the
data transfer to or from the FDIO logic. Meanwhile, the CPU
can wait for the completion of the data transfer and is free
to perfbrm other tasks as required by the particular applica-
tion. This is the method used by the floppy disk routines

in the ZRAID monitor program.

128

126

FDIO Interrupt

When the FDIO chip completes a command, the INTRQ line
(Interrupt Request) goes active, (LOW). This signal is
connected to bit 7 of PIO Port A (which may be programmed
to generate an interrupt if INTRQ gées true.)

To enable the interrupt logic of port A and to select bit
7 for monitoring, the following instruction sequence could
be used: (Assumes PIO A has previously been initialized
to BIT mode.)

LD A,vector ; LOW HALF OF INT VECTOR
ouT (IOPAC) ,A ; SET INTERRUPT VECTOR

LD A, ; ENABLE INTERRUPT

ouT (IOPAC) ,A ; SEND TO PIO A CONTROL
LD A,7FH ; MASK FOR D7 (FDIO-INTRQ)
ouT (IOPAC) ,A ; SEND TO PIO A CONTROL

Note: ZRAID does not use this method. Instead, the FDIO
status register is polled in a software wait loop until the
BUSY bit indicates that the command has been completed.
(Refer to the discussion of PIO on page 57)

E.

Electrical adjustments

There are three pots which control data separation and write

‘ precompenSation near the floppy disk connector, P6. These

’ The

adjustments are factory set. We do not recommend that
they be adjusted in the field unless it is certain that
such adjustments are required. (Most disk errors can be
traced to incorrect supply voltages, bad media, dirty
heads, noise on power supply, drive mechanical failures
or intermittent connections.

adjustment procedure is as follows:

*

1. Verify that the Vcc power supplied to the MLZ-91 is

5.0 volts + 0.1 volt.

2. Disconnect the drives from P6. Connect P6-46
(TP-2) to Vcc. (Usually, it is sufficient to
simply leave P6-46 open as the terminating resistor
netword will put P6-46 to the HIGH state.)

a) Adjust R3 (BIAS) for 1.4 volts at + 5% at TP-3/
b) Adjust R2 (RANGE) for 4.0 MHZ + 5% at TP-l.
(For 5-%" drive configuration, adjust for 2.0 MHZ.)

Reconnect the drives to P6. (Disconnect any jumper

to TP-2). Via a software routine, continuously write sectors.
ZRAID has a command to perform this function. Enter control-
W 12 (hex). ZRAID will write continuously until the drive

door is opened or the next ZRAID command is entered. While
writing, adjust R3 (PRECOMPENSATION) for 200 nsec. pulses

(+ 5%) at TP-4. These pulses will occur in busts approximately
175 msec. apart. Use a scratch disk formatted for double
density, 1024 bytes per sector. (For writing single density
use control-w 13 as a command to ZRAID. Be sure to use a
scratch, single density diskette). If the diskette is defective
or not properly formatted, no writes will occur.

TPl Vvco ouTPUT
TP2 RAW DATA
TP3 VCO INPUT

TPY PRECOMPENSATION PULSE WIDTH

USER LED
FpIo GPIB SIo TAPE

Rt

(O,

S T RANGE
BIAS

{ Peo LT ps LI pu LJd p3 LI o)

L J LN)

R2

*

PRECOMP ML Z-91A

L P — 1Pz [

MVULTIBUS WINCHESTER

FDIO ADJUSTMENTS

127

128

FDIO with 5%" drives

The MLZ-91 is configured and adjusted at the factory
for the standard 8" drives. To configure the board for

use with 5%" drives, set jumpers as follows:

Jumper Position for 8" Position for 5%"
FC 8 5

FN 8 5

FI 8 5

FS (remove) 5

FR 8 5

FP (remove) 5

It may be necessary to perform the adjustments described

in the previous section following any drive type reconfig-
uration.

Drives

Numerous drives may be used with the MLZ-91. The head

step rate when using ZRAID FDIO routines is 10 msec, although
this may be changed for fast seeking drives. It is usually
nécessaryvto,change option jumpers on the diiﬁé% from

those shipped with the drives. As an example of proper
drive set-up, the listing on the next page shows the

correct jumper settings (on the drives) when using the
popular Shugart drives with the MLZ-91.

Connector Pinout

See page 162.

Drive Power Supply

Be sure to select an adequate power supply for the drives.
One note on Shugart drives. The 24V Return and +5 Return
must be connected together at the supply. See Shugart manuals
for details.

Jumpers to be installed

Install one each on

Install on "LAST"

'Remove on all

Z, HA, NP, T4g

. |
i |
DRIVE : on all drives one drive only i drive only ! drives
(Drive Select) i
I
SA-801 A, B, C, 2, DS, WP, 800 DS1l, DS2, DS3, Ds4 T1, T3, T4, T5, T6 X, Y,ATZ, HL, D
(8") also RR, RI,.R, I, S . NP, DDS, DC,
801
NF, HI, HLL
IW, RM
f D, 28, DC
SA-850/851 A, B, C, Z, DS, WP, 850 DSl1, DS2, DS3, DSs4 RPACK 5E X, ¥, HL, NP,
(8") s2, AF, RS, FS, IT DL, 851
also RR, RI, R, I, M, S 1B, 2B, 3B, 4B
Sl' s3' Tsl F
SA-400 T2, HS DS1, DS2, DS3 T1, T3, T4, T5, F HM
(5%") MX (if only one drive) MX (if more than
: one drive)
MX (if more than
SA-410/460 MX (if only one drive) one drive)
(5%") MM DSl, DS2, D83 RPACK MS
Siemans RAD STEP 2 ; ‘ RAD STEP 1
FDD-200~-8 RR,RI, 18, 22, L, E, G . RAD SBEL #, 1, 2, or 3 Terminator 8D K, Jd, V, H, F
Qume s2, A, B, C, DS | DS1, DS2, DS3, DS4 | TM1, TM2 Bl, B2, B3, B4
DT-8 RR, R, RI, I, ¥, DC : sl, 83, DDS
25, WP 3 X, W, HL, DL, D
j’

oct

FLOPPY DISK JUMPERS

User LED

This single L&D is part of the FDIO option on the MLZ-91

and is separate from the 8-bit LED array. The function of this
LED is left completely up to the user. It is located near P6,
the floppy disk I/0 connector.

The state of the LED is controlled by bit D of the floppy disk
selection port, IOFSEL. Care must be taken when using this port
to turn the LED on or off that the floppy disk select, density
and side bits are not altered. (See page 124 for a full descrip-
tion of the control byte.)

Dg =g LED ON
Dg = 1 LED OFF

The following subroutines may be used to control the LED
without affecting the other bits. A ram value, LSAVE, is used
to save the state of the other 7 bits of the byte. (LSAVE
must be updated by the FDIO select logic, too.)

LEDON: LD B,# ;CLEAR Dg (REG B)

JR USER

LEDOFF: LD B, 1 ;SET DJ ON (REG B)
LD A, (LDATA) ;GET CURRENT IMAGE
AND JFEH | ;MASK OTHER BITS
OR B ;SET/CLEAR D@
LD (LDATA) ,A ;SAVE FOR NEXT PASS
ouT IOFSEL ;SEND TO H/W
RET

The MLZ-91 ZRAID monitor turns the LED on whenever the floppy
disk routines are in use. The LED will flash on during disk I/O.

130

DMA

The DMA is a rather complicated chip and it helps to have some

"hands on" experience with the chip in order to feel comfortable
programming it.

The DMA chip is used primarily to do data transfers between
memory and the FDIO logic. However, the DMA‘chip will allow any
I/0 device or memory address to be used both as source or
destination ports. Thus, memory to memory or I/O device to

I/0 device transfers are possible.

When the DMA is active, all bus control lines are controlled

by the DMA chip in the same fashion as if the CPU were conducting
a memory or I/O operation. The "WAIT" signal, produced during
external memory or I/0 accesses, will synchronize the DMA to

the external device data transfer rate. This means that the

bﬁK is able to operate with external facilities (memory or I/O)
without any special considerations. '

Refer to the DMA manual for programming details. Some highlights
appear on the following pages. If you anticipate doing anything
fancier than shown here, we highly recommend that you get a -
DMA Technical Manual and call Zilog to discuss your particular
application.

132

% 7-80 DMA Z-80A DMA

Zilog
DMA Architecture

A block diagram of the Z80 DMA is shown in Figure 1.
The internal structure consists of the following circuitry:

® Bus Interface: provides driver and receiver circuitry to
interface to the Z80-CPU Bus.

® Control Logic and Registers: set the class, mode and other
basic control parameters of the DMA.

® Address, Byte Count and Pulse Circuitry: generates the
proper port addresses for the read and write operations,
with provisions for incrementing or decrementing the
address. When zero bytes remain to be handled, the byte
count circuitry sets a flag in the status register. Pulse
circuitry generates a pulse each time the byte counter
lower 8-bits equal the pulse register.

® Timing Circuitry: allows the user to completely specify
the read/write timing for each port.

® Match Circuitry: holds the match byte and a mask
byte which allows for the comparison of only certain
bits within the byte. If a match is encountered during a
Search or Transfer, this circuitry sets a flag in the status
register.

e INT and BUSRQ Circuitry: includes a control regis-
ter which specifies the conditions under which the DMA
can generate an interrupt; priority encoding logic to select
between the generation of an INT or BUSRQ output
under these conditions; and an interrupt vector register
for automatic vectoring to the interrupt service routine.

® Status Register: holds current status of DMA.

Register Description

The following DMA-internal registers are available to the
programmer:

Control Registers: Write only; 8 bits. Hold DMA control
information: such as, when to initiate an interrupt or puise,
what mode or class of operation to perform, etc.

Timing Registers: Write only; 8 bits. Hold read/write timing
parameters for the two ports.

Interrupt Vector Register: Read/write; 8 bits. Holds the
8bit vector that the DMA will put onto the data bus after
receiving an IORQ during an interrupt acknowledge se-
quence if it is the highest priority device requesting an
interrupt. (This register is readable only during interrupt
acknowledge cycles.)

Block Length Register: Write only; 16 bits. Contains total
block length of data to be searched and/or transferred.

Byte Counter: Read only; 16 bits. Counts number of bytes
transferred (or searched). On a Load or Continue the Byte
Counter is reset to zero. Thereafter, each byte transfer o-
peration increments it until it matches the contents of the
Block Length Register, at which time End of Block is set in
the status register and operation is suspended if program-
med. Also if so programmed-the DMA will generate an
interrupt.

Match Register: Write only; 8 bits. Holds the byte for
which a match is being sought in Search operations.

Mask Register: Write only; 8 bits. Holds the 8-bit mask to
determine which bits in the match register are to be ex-
amined for a match.

Starting Address Registers (Port A and Port B): Write only;
16 bits each. Hold the starting addresses (upper and lower
8 bits) for the two ports involved in Transfer operations. In
Search Only operations, only one port address would have
to be specified. Only memory starting addresses require
both upper and lower 8 bits; 1/O ports are generally ad-
dressed with only the lower 8 bits, and in this case the ad-
dress contained in the register is a generally fixed address.

Address Counters (Port A and Port B): Read only; 16 bits
each. These counters are loaded with the contents of the
corresponding Starting Address Registers whenever Search-
es or Transfers are initiated with a Load or Continue. They
are incremented, decremented or remain fixed, as pro-
grammed.

Pulse Control Register: Write only; 8 bits. The content of
this register is continuously compared with the lower eight
bits of the byte counter. When they become equal, the INT

" output is activated. Since this occurs while BUSRQ and

BUSAK are both active, the CPU does not interpret this as
an interrupt request. Instead, the signal is used to commun-
icate with a peripheral 1/O device. When the Pulse Control
Register contains a value n, the first pulse is generated after
n + 1 bytes of search or transfer. The next and all subse-
quent pulses occur at 256-byte intervals.

Status Register: Kead only; 8 bits. Match, End of Block,
Ready Active, Interrupt Pending, and DMA Cycle Occurred
bits indicate these functions when set.

Modes of Operation

The DMA may be programmed for one of four modes of
operation. (See Command Register 2B.)

® Byte at a time: control is returned to the CPU after each
one-byte cycle. : '

® Burst: operation continues as long as the DMA’s RDY
input is active, indicating that the relevant port is ready.
Control returns to the CPU when RDY is inactive or at
end of block or a match if so programmed.

e Continuous: the entire Search and/or Transfer of a block
of data is completed before control is returned to CPU.

% 7-80 DMA Z-80A DMA

Zilog

+5V GND & INT 1€l 1EO BUSRQ BAI BAO RDY
[_ _BYTE_ | BYTE/PULSE INT PRIORITY
COUNTER = 1 COMPARATOR LOGIC BUS PRIORITY
| _ _BLOCK_ _ INT CONTROL LoGIC
LENGTH ~] PULSE INTERVAL INT VECTOR
~_ l l CONTROL
INTERNAL BUS STA;{?I% s
P REGISTERS
. PORT ASTART | | PORT BSTART | COMPARE DATA
ADDRESS ADDRESS COMPARE MASK BUS CONTROL
| _ portA__ |~ Y " porTs_ _ | COMPARATOR roste
- COUNTER COUNTER-
SOURCE/DEST ADDRESS MUX l
A1 AG D7 Do MI MEMRG IORG RD WR CE/WAIT

DMA Internal Block Diagram

Fig.1

The CPU can read seven internal DMA registers, always
in the following order: Status, lower byte of the Block
Length register, upper byte of the Block Length register,
lower byte of the Port A Address, upper byte of the Port A
Address, lower byte of the Port B Address and the upper
byte of the Port B Address.

The Read Mask register must be programmed to either

include or exclude any of these seven registers by program-

Reading the DMA Internal Registers

ming a 1 (include) or O (exclude) in the appropriate posi-
tions of the Read Mask register. After a Reset or Load, the
read sequence must be initiated through an Initiate Read
Sequence command (Command Byte 2D). The sequence of
reading all registers that are not excluded by the Read Mask
register must be completed before a new Initiate Read Se-
quence or RD Status command.

*

Previous sections of this specification have indicated the
various functions and modes of the DMA. The diagrams and
charts below show how the DMA is programmed to select
among these functions and modes and to adapt itself to the
requirements of the user system.

The Z80-DM A chip may be in an “enable” state, in which
it can gain control of the system buses and direct the trans-
fer of data between its ports, or in a “‘disable” state, when
it cannot gain control of the bus. Program commands can
be written to it in either state, but writing 2 command to it
automatically puts it in the disable state, which is maintained
until an enable command is issued to the DMA. The CPU
must program it in advance of any data search or transfer by
addressing it as an I/O port and sending it a sequence of
command bytes via the system data bus using Output in-
structions. When the DMA is powered up or reset by any

Programming the DMA

means, the DMA is automatically placed into a disable
state, in which it can initiate neither bus requests nor data
transfers nor interrupts.

The command bytes contain information to be loaded
into the DMA’s control and other registers and/or informa-
tion to alter the state of the chip, such as an Enable Interrupt
command. The command structure is designed so that cer-
tain bits in some commands can be set to alert the DMA to
expect the next byte written to it to be for a particular
internal register.

The following diagrams and charts give the function of
each bit in the six different command bytes. Two of these
are defined as being from Group 1, and are termed command
bytes 1A and 1B. These Group 1 commands contain the
most basic DMA set-up information. The other four-are
categorized as Group 2, and are termed commands 2A, 2B,
2C and 2D. Group 2 words specify more detailed set-up
information.

12

% 7-80 DMA Z-80A DMA

Zilog
Command Register 1A
D7 _D6___D5 D4 D3 D2 D1 DO
0
l %1 " T4
[1] 0= N/A {Command 18) A“1”inp 0?11‘1(}!18 D3 through D6
° 1= Transfer means that the indicated byte will fol-
1 0= Search low. Note that the sequence of bytes
1 1= Search/Transfer is absolutely rigid.
0=PortB—~Port A
1=Port A—Port B The DMA always transfers or search-
] es one byte more than the number
n writteninto the Block Length registers.
PORT A STARTING ADDRESS (LOWER BYTE) : Time A “0” in the block length register re-
' I : Seq sults in the transfer or search of 2'¢ +
1 bytes. The shortest programmable
PORT A STARTING ADDRESS (UPPER BYTE) block length is therefore two bytes
T long, programmed by writing a 1 into
Y the Block Length register.
BLOCK LENGTH (LOWER BYTE)
BLOCK LENGTH (UPPER BYTE) v
Command Register 1B Command Register 2A
D7__D6 D5 D4 D3 D2 D1 DO D7 D6 D5 D4 D3 D2 DI DO
o o 0 1 0)
] 0 = Port 8—~Memory 1= Stop On Match
0 1= Port A—Memory 1= Interrupt Enable
1 0=Port 8-1/0 1= DMA Enable
1 1=Port A-1/0
% O=Port Address Decraments
1=Port {\ddm increments
1= Port Address Fixed MASK BYTE (1= MASK = IGNORE; 0 = UNMASK = COMPARE)
\ v
Timing Byte A MATCH BYTE
0 0=Cycle Length=4
o 1=Cycle Length =3
1 0= Cycle Length = 2
0= TORQ Ends % Cycle Early
) 0= MAEG Ends % Cycle Eady
0= RD Ends % Cycle Early
0=WR Ends % Cycle Early

For transfers, this byte is nérmally written twice, once
for Port A and again for Port B.

134

Ma 2-85DMA Z-80A DMA

Zilog
Command Register 2B

D7 D6 DS D4 D3 02 D1 DO

1 1] 1
Byte=0 4]
Continuous = 0 1
Burst=1 1]
Do not program = 1 1
y

PORT B STARTING ADDRESS (LOW-ORDER HALF)

PORT B STARTING ADDRESS (HIGH-ORDER HALF)

-

tnterrupt Control Byte!

l 1' = Interrupt On Match b If “Interrupt Before Requesting Bus”

: 1 = Pulse Generated . terrupt Control byte), the Z-80 DMA
1 = Status Affects Vector - does not request the bus until the
1= Interrupt Before Request Bus following set of instructions has been
‘ received by the Z-80 DMA:

® Enable after REleet;mmaml (B7
in Command byte 2D,
PULSECOUNT ® Enable DMA command (87 in
* Command byte 2D)
® A RETI instruction that resets the
IUS (Interrupt Under Service
latch) in the Z-80 DMA

v? vé V5 v4 v3 v2 vi Vo interrupt Vector

|

0 = Interrupt On RDY
1= Match

0= End Of Block

1= Match, End Of Block

- O O e

Command Register 2C

D7 D6 D5 D4 03 274 D1 DO

1 _ 1 0

0= Ready Active Low
1 = Ready Active High
0= CE Only
1= CEAWAIT Multipiexed
0 = Stop On End Of 3lock
1 = Auto Repeat On End Of Block

136

'A 7-80 DMA Z-80A DMA

Zilog

Command Register 2D

c7
cs
CF
03
AB
AF

87

A7

BF

B3

88

87

D7

D6

D5

D4 D3 D2 D1 DO

1

[~ [-X-N-] O OO bbb P p—

[~ -]

--—_--00O00 O ermened

.-'pa

oy —
[-Y—

COO~000

[-N~N-]
[- -] O b O bt O

-
[)

0 = Reset interrupt circuitry, disable interrupt and bus request logic, unforce
internal ready condition, disable “MUXCE "’ and stop auto repeat.

1= Reset Port A Timing to standard 2-80 CPU-timing.

0 = Reset Port B Timing to standard 2-80 CPU timing.

1 = Load starting address for both ports, clear byte counter.*

0 = Addresses continue from present locations, clear byte counter.

0 = Enable interrupts

1 = Disable interrupts

0 = Reset and disable interrupt circuits (like RET!) and unforce the internal
ready condition

1= Enable DMA | Both affect all operations except interrupts, but do not

0 = Disable DM reset any functions.

1 = Initiate read sequence to the first register designated as readable by the
Read Mask register.

1 = Set read status so next read is from status register.

0 = Force an internal ready condition independent of the RDY input. Used
for memory-to-memory operations where no RDY signal is needed.
This command does not function in the “’byte-at-a-time” mode.

0 = Clear Match and End of Block status bits.

1 = Enable after RETI so DMA will request bus only after receiving a RETI.
Must be followed by an Enable DMA command.

0 = Read mask is the following byte.

Read Mask (1 = enable)

L— Status

Byte Counter (low byte)
Byte C {high byte)

Port A address (low byte}

Port A address (high byte)

Port B address (low byte}

D7

Port B address (high byte)

Loading Port Addresses. The “Load” command (CF in Com-
mand Register 2D) loads a fixed address only into a port selected
as the source, not into a port selected as the destination. There-
fore, the destination address must be loaded by temporarily mis-
labeling the destination as the source.

The following example is a set-up procedure for a transfer from
Port A to Port B:

1. Command byte 1A with B as source port

2. Command byte 2D with CF = load

3. Command byte 1A with A as source port

4. Command byte 2D with CF = load

5. Command byte 2D with 87 = Enable DMA -

This manipulation is required only when the destination has a
fixed address.

Status Register

D6 05 D4 D3 D2 D1 D0

0 = DMA Cycle Has Not Occurred
1= DMA Cycle Has Occurred

1 = Ready Active
0 = Interrupt Pending
0 = Match
0 = End Of Block

% 7-80 DMA Z-80A DMA

Zilog

The Sample DMA Program shows how the DMA may be programmed to transfer data from memory (Port A) to a peripheral
device (Port B). In this example, the Port A memory starting address is 1050y and the Port B peripheral fixed address is 05H.
Note that the data flow is 1001 bytes—one more than specified by the block length. The table of DMA commands may be

stored in consecutive memory locations and transferred to the DMA with an output instruction such as OTIR.

Sample DMA Program
o7 D6 DS D4 D3 D2 D1 Do HEX
1) Command Register 1A sets DMA to [\] 1) 1 1 o] 1 79
receive block fength, Port A starting Group Block Length Block Length | Port A Upper | Port A Lower B=>A Command Byte 1A
address and temporarily sets Port B as One Upper Follows | Lower Follows | Addr Follows] Addr Follows Temporary For Transfer, No Search .
source. Loading B Address
2} Port A address lower) V] 1 o 1 0 L] o 1] 50
3) Port A address {upper} 1] (] (] 1 [} [} [}] 10
4} Block length {tower) ()] o 4] 1] (1]] o 00
5) Btock length (upper) (] o] 1 (] 1]])] 10
6) Command Register 1B defines Port A as o (1] (4] 1 o 1 o o 14
memory with incrementing address. Group No Timing Address Address Port Is Thists Byte 18
One Follows Changes tncrements Memory Port A
7} Command Register 18 defines Port B as 1] [1 o 1 (]] [} 28
peripheral with fixed address. Group No Timing Fixed Not Used Port Is Thisls Byte 18
One Foliows Address 1[e] Port B
8) Command Register 2B sets mode to 1 1 (]] 0 L i o 1 Ccs
Burst, sets DMA to expect Port B Group Burst Mode No Interrupt No Upper Port B Lower Byte 28
address. Two Control Byte Address Addr Follows
Follows
9} Port B address (lower) 1] o (1] [] o 1 (1] I 1 05
10)Command Register 2C sets Ready 1 o (1] [] 1 (] 1 [8A
active High. Group Not Used No Auto No Wait RDY Not Used Byte 2C
Two Restart States Active HIGH
11)Command Register 2D loads Port B] 1] o 1 1 1 1 CF
address and resets block counter. Group Load Byte 2D
Two
12)Command Register 1A sets Port A as [o] 1 (] 1 o
source. * Group No Addr Or Block Length Bytes A8 Byte 1A, Transfer
One No Search
13)Command Register 20 loads Port A 1 1 (]] 1 1 L 1 CF
address and resets block counter. * Group Loed Byte 20
Two
14)Command byte 20 enables DMA to 1 (1] [1] (] 1 \] 1 87
start operation, e Group Ensbie DMA Byte 2D
: Two

NOTE: The actual ber of bytes]

d is one more than specified by the block ltength.

* These commands are necessary only in the case of a fixed destination address.

"

$ 363646 30 3096 36 36 36 36 36 36 36 36 36 36 36 36 36 30 36 36 36 36 36 36 35 30 36 36 36 36 3 353 3036 36 30 H 6 3 30 E R I IE R30I

sTHIS IS AN EXAMPLE OF THE METHOD USED TO INITIALIZE THE

$ZILOG DMA CHIP. THIS CODE IS USED BY ZRAID FOR FLOPPY DISK

s DATA TRANSFERS. NOTE: CONSULT COMPLETE ZRAID LISTINGS FOR
s THE ACTUAL ADDRESSES.

I e a s s

FDDMA: LD HL, TABLE s TABLE ADRS

LD DE.RAM $ TEMP RAM LOCATION

LD BC,LENGTH $LENGTH

LDIR $ TRANSFER TABLE TO RAM
5 5(50 IT CAN BE CHANGED)

LD (RAM+12),A $SET RD/WR COMMAND

LD ~ HL, (DMAADRS) $DATA ADRS

LD (RAM+9) . HL $SET ADRS OF DATA

LD As (DENSITY) $GET SD/DD FLAG

cpP SINGLE $TEST FOR SINGLE

JR Z,FDbMAL . 3LEAVE LENGTH AS IS

LD HL, 1024-1 sNEW LENGTH -~ 1

LD {RAM+3) , HL $SET NEW LENGTH FOR DD
FDDMAL1: LD HL » RAM $ SOURCE

LD BC, IODMA+LENGTH#2S6 5PORT & LENGTH

OTIR sSEND TABLE TO DMA

RET
$ I I I I 1 IR IR FE 6646 36 303636 3638 36 36 3636 36 3 36 3 3660 20 03036 46036030 38 30 384838
TABLE: DB 0303@ $RESET DMA

LB 0135Q sRD/WR CONTROL (SET FOR RD)

DB IOFDAT sFDIO DATA PORT ADRS

DB 0177Q,0 ‘ SLENGTH (DEFAULT FOR S-DENS)

DR 054&, 0201, 03321, 0215@ sDEFINE PORTS & RDY

DR 0,0 sFOR DMA DATA ADRS

DB 0317@ sLOAD DATA -

DB 0 sFOR FINAL RD/WR CONTROL

DB 03174, 0207¢ sLOAD DATA (AGAIN) . ENABLE
LENGTH EQU $-TABLE

s THE DOUBLE LOAD DATA COMMANDS ABOVE ARE REQUIRED

3 IF THE DESTINATION ADDRESS OF THE DMA IS "FIXED". THE LOAD
s COMMAND DOESN‘T ALWAYS LOAD ALL THE PARAMETERS. THEREFORE.,
iTHE DMA IS FIRST SETUP WITH THE DESTINATION AS "VARIABLE"

$ (IN THIS CASE A DISK READ HAS A DESTINATION WHICH IS RAM
$AND IS A VARIABLE SOURCE “PORT- ADRS WITH RESPECT TO THE
$DMA). THEN, THE ACTUAL DMA DIRECTION IS SET (AT TABLE +12)
$ AND ANOTHER LOAD COMMAND IS EXECUTED.

3 (SEE NEXT PAGE FOR EXPL OF DMA DATA.) :

$ AEII I 3039030 I I I I 66 3300 I 2303030306 36 3090 30333030300 H I

138

s 9s

NE NB

EX

N8 WS NE V8 YT v¥E v VB
> O X
oW

us e we s
>
>

b LI
8 Tr

~y 93

10

DA

NMA NY NS VB ME VR VS uE VB

NS MU uE Ny

e ¥E Nk wF wm v

XX

T

C
=]

7

e We We Y Ve YR e We We WS Ve VG WE VWA WE ‘e w& Ve

BINARY/BIT DEFINITION
RESET DMA

0110 1101
- —=TRANSFER
PORT A -> B
A ADRS FOLLOWS (L)
——B LENGTH (L.H) FOLLOWS

PORT A ADRS (FDIO DATA REGISTER)

LENGTH (—-1) LOW HALF
LENGTH HIGH HALF

0010 1100 :
- ——=PORT A DEFINITION
PORT 1S I/0 DEVICE
ADRS IS FIXED

0001 0000
- =—=PORT B DEFINITION
PORT IS MEMORY
~=—ADRS INCREMENTS

1101 1010 .
- --RDY/WAIT SPECIFICATIONS
READY IS ACTIVE HIGH
CE/WAIT MULTIPLEXED
STOP AT END OF TRANSFER

1000 1101
- ~-MODE CONTROL

3636 36 3336 36 35 306 36 36 36 303096 36 30 36 36 36 303050 3030 36 35 3390 30 3030 0 36 302030 30 3536 30 36 36 03 6 36 3 3030200 30 3 35 50 3030 56 3 3040 3030 ISR B3 3
THE DMA INITIALIZATION TABLE IS EXPANDED AND DETAILED BELOW:

—PORT B STARTING ADRS (L,H) FOLLOWS

--BYTE-AT-A-TIME MODE

PORT B ADRS L (DMA MEMORY ADRS)
FORT B ADRS H

LOAD DMA WORKING REGISTERS. THIS COMMAND ALWAYS WORKS BECAUSE

THE DESTINATION PORT (B,

MEMORY) IS NOT A "FIXED" ADRS.

THE DMA LOAD COMMAND DOES NOT REALLY LOAD ALL THE WORKING
REGISTERS IF THE DESTINATION PORT IS A FIXED 1/0 PORT ADRS.

WILL BE EITHER O1H OR OSH TO CONTROL RD/WR DIRECTION

O1H: 0000 0001
- ——TRANSFER
PORT B IS SOURCE (FDIO WR)
O5H: 0000 0101
- ——TRANSFER

PORT A IS SOURCE (FDIO RD)

ANOTHER LOAD COMMAND IN CASE FINAL DIRECTION IS PORT B -> PORT A.

ENABLE DMA

36363 36 3 36 3 36 38 3636 3 35 36 36 35 36 36 36 3F 38 3 36 38 36 35 36 35 36 36 30 3E 3E 303626 3630 6 30 30 330 38 3 36 3 36 36 30 38 36 3 36 36 36 3 36 3 36 30 030 IR IR I

139

(START)

H/w{ SETUP HARDWARE JUMPERS
SEE PAGES 8 + 142
\

L SET PC TO DESIRED ROM BASE (VIA JUMP)
S/W INITIALIZE I/O MAPPING RAM FOR ON—CARD DEVICES

SEE PAGES 37 AND 42

Y

INITIALIZE MEMORY MAPPING RAM FOR socKET_ Mg
INITIALIZE MEMORY MAPPING RAM FOR OTHER MEMoRY} As
INITIALIZE BUS MAPPING RAM DESIRED

SEE PAGES 20+ 85

 INITIALIZE PIo© PoORTB
SEE PAGE 57

GENERAL

SUMMARY

SEE PAGE
47

INITIALIZE PIO PORT A
SET UP READY SELECTOR

SEE PAGE 57

INITIALIZE PIO PORT A
SET UP BUS coNTROL (BC) LINES

SEE PAGES 44 +57

140

wiL L
FDIO

INIT, FDIO CHIP
| INIT. DMA CHIP

BE USED

SEE PAGES 124 + 131

\

SETUP VECTOR TABLE

SET CPU I REG.

SET INTERRUPT MODE 2
(Im2) ' ,

LOAD DEVICE VECTORS

SET INTERRUPT MODE 1 (IM1)

SEE PAGES 52 +89

(ALL INTERRUPTS CALL 0OO38H)

=

\

ENABLE INDIVIDUAL DEVICE INTERRUPTS

RESET DAISY CHAIN
SEE PAGE 55

Y

ENABLE INTERRUPTS (EI

)

‘ |

BE SURE Rom (M@) INCLUDES PARITY

PROTECT INTERRUPT SERVICE ROUTINE (AT @266H)

AND WRITE

)
DO REST OF PROGRAM

(END)

GOOD LVUCK

USER CHECKLIST

SEE INDIVIDUAL SECTIONS OF THIS MAN
DETAILS ON EACH ITEM.

SEE PAGES 36<+92

UAL FOR

142

HARDWARE JUMPERS

A minimum of hardware jumpers are used on the MLZ-91 (most options are

under software control).

These jumpers will usually be installed once

and not changed unless the MLZ-91 is used in a different system.

Each jumper group is assigned a name. A letter designation is used
within each group to indicate the location of a shorting pin. For
example, "J6-A" means install a shorting pin between the two posts on

either side of "A" at location "J6".

2MHz
4MHzZ

2MHz
4MHZ

A

B

P4-8 (D pin 17)
J6 output

P4-4 (D pin 15)
Baud Gen. A

Al8, Al7 & Al6

ROM sockets only
All on-card memory
No WAIT states

All cycles
Opcode fetch only

2732/2764
2716

4532-1
4532-2/4164
4532-3
4532-4

Name Function ' Options
Jl CPU Clock o J1-A
(one required) ’ , J1-B
J2 APU Clock J2-A
(one required for APU option) J2-B
J3 SIO Port A Interface
Install for RS-232 or RS423 I/F on SIO Port
J4 SI0O Port B Interface
.. Install for RS-232 or RS423 I/F on SIO Port
J5 SIO Port A Receive Data Clock J5-a
(one required) J5-B
J6 SIO Port B Transmit Data Clock J6-A
(one required) - J6-B
J7 Upper Address Enable
Install to enable use of Multibus lines Al9,
Js Processor Priority
Install on highest priority board in Multibus
J9 Wait State Logic - Memory Type J9-A
{one or none required) J9-B
none
J1l0 Wait State Logic - Cycles J1l0-A
(one required) J10-B
Jll Winchester configuration
Install for Shugart controller
J12 ~ ROM type select < J12-A >
{(one required) - See also J1l4 JIZ-B
J13 RAM type select Jl3-A
(one, two' or none required) J1l3-a,C
Jl3-B
nahe

4116

Jl4 ROM type select <31;—A 2732/2764
({one required) - See also J1l2 J14-B 2716

J15 Winchester configuration J15-M Micropadlis
J15-8 Shugart
- J15-W WD1000
None Priam

J16 Winchester configuration Jl6-M Micropolis
J1l6-S Shugart
Jl6-W WD1000

None Priam

J17 Winchester configuration : J1l7-M Micropolis
J1l7-S Shugart
None Others

Jl8 Winchester configuration J18-M Micropolis
J1l8-S Shugart
None Others

J19 Disable Parity Logic

Install to disable on-card RAM parity logic
J20 Winchester configuration - J20-W WD1000O

J20-pP Others
J21,22,23,24 Reserved for MLZ-92
J25 Winchester configuration 'J25-8S Shugart

J25-W WD1000
J25-X Others

J26 XACK response time : J26-A Fast
J26-B Slow
J27,28,29 J27-B, J28-B, J29 J27-B, J28-B, J29 Normal
- J27-A, J28-A, J28-C Port A
No J29 Tx Clock

Other Jumpers .
Ja Open if RS232 required on SIO port A and SIP A soldered in.

Jb Open if SIP B is soldered in place and RS232/423 I/F required
on SI0O port B.

FC, FN, FI, FS, FR Floppy disk drive jumpers (8" or 5%").
FP See page 128.

See page 144 for jumper locations.

143

a
g (4mnz) é (QMHZ) Ju (RS232)

SIO-A SIO-A

sIo
PROCESSOR APU RECEIVE TRANSMIT
SPEED speep | 'NTERFACE 2y ock CLOCK
V2 J3 (Rszaz) JDS JDG

(SAME AST) (BAUD GENA)

GPIB SIO

TAPE

pPs / L1 o)
"3 > usi1d6
J1q P
ML Z-4a1A
37
75 "he a2
\) J!.l
L P! L

MULTIBUS

UPPER ADRS PROCESSOR

ENABLE , PRIORITY
J7 | J8

[PARITY

DISABLE
Ji9

oo

(REMmoOVE)

WAIT STATE
LOGIC
J9 J1o

ROM CONFIGURATION

olo ol ala ol

(ALL opPcopEs)

Ji2 Jig
fo oo o
(2732/2764)

RAM
TYPE
Ji3

B
A c
D

NOTE: JIV JI5, J16, J17, € JI% SET FOR"S" orR 'M" (SEE PAGE
JUMPERS Fc, FN, FI, FS (FOR FLOPPY DISK DRIVE TYPE) NoT SHOWN

FR, FP

HARDWARE JUMPER LOCATIONS

144

70)

Signal Definitions (Pl)

All signals are active HIGH or active LOW as specified in the table

_below. A minus sign (-) following a signal name also indicates an

active LOW signal.

Signal

Name

AQ-
Al-
A2-
A3-
Ad-
A5~
A6-
A7-
A8-
A9-
alo-

All- - -

Al2-
‘Al3-
Al4-
Al5-
Al6-
Al7-
Al8-
Al9-

BACK-

BAI-

BAO-

The listing is alphabetical by name and covers
those signals appearing on connectors Pl (Main System Bus),

(LSB)

HE R HOONAN WO
NOAMBWNHO

Address Bus bit 19 (MSB)

Bus Acknowledge. Used by external
memory or I/0 devices to acknow-
ledge a read or write request.

Bus Available In. Indicates
that the System Bus is idle and
there are no higher priority
processors requesting use of

~the Bus. This signal forms a

daisy chain when connected to
the next higher priority BAO-.

Pin Active In/Out

State Bidirectional Description
P1-57 LOW ouT Address Bus bit
P1-58 LOW ouT Address Bus bit
P1-55. LOW ouT - Address Bus bit
Pl1-56 LOW ouT Address Bus bit
P1-53 "LOW ouT Address Bus bit
P1-54 LOW out Address Bus bit
P1-51 LOW ouT Address Bus bit
Pl1-52 LOW ouT Address Bus bit
P1-49 LoV ouUT Address Bus bit
P1-50 LOW ouT Address Bus bit
Pl-47 LOW OouT Address Bus bit
P1-48 LOW our Address Bus bit
P1-45 LOW ouT Address Bus bit
Pil-46 LOW ouT . Address Bus bit
Pl1-43 LOW ouT Address Bus bit
Pl-44 LOW ouT Address Bus bit
Pl-28 LOW ouT Address Bus bit
P1-30 LOW ouT Address Bus bit
P1l-32 LOW ouT Address Bus bit 18
Pl1-34 LOW ouT
P1-23 LOW IN
P1-15 LOW IN
Pl-16 LOW ouT

Bus Available Out. Indicates
that the System Bus is idle,
there are no higher priority
processors redquesting the Bus,
and that the MLZ-91 does not
require use of the System Bus.
BAO-goes low, when the MLZ-91 de--
sires use of the’Bus and the Bus
is idle. This signal forms a
daisy chain with another
processor's BAI-.

A8

Signal Pin Active In/Out

Name # State Bidirectional Description
BBUSY- P1-17 LOW BIX Indicates that the System Bus is

in use. Inhibits any other pro-
cessor from requesting use of the
Bus.

~ BCLK- P1-13 - IN or OUT - Bus Clock. Used to synchronize
BBUSY~ and BAO-. Generated by
the highest priority board. 8 MHZ.

BRQST- P1-18 LOW ouT Bus Request. Goes LOW. when-
ever the MLZ-91 requires the
System Bus for an external mem-
ory or I/0 operation. Used to
_implement an external bus
priority network.

CBREQ- P1-~-29 LOW BI A Common Bus Request. Pulled low
, . whenever any processor requires
use of the system bus.

CcC- P1-31 - ouT Constant Clock. Generates an
8 MHz clock signal to allow
external device synchronization
where necessary. Active only
on the highest priority card.

DO- P1-73 LOW ’ BI Data Bus bit 0 (LSB)

D1~ Pl1-74 LOW BI Data Bus bit 1

D2~ Pl1-71 LOW BI Data Bus bit 2

D3- P1-72 LOW BI Data Bus bit 3

D4- P1-69 LOW BI Data Bus bit 4

D5~ P1-70 LOW BI Data Bus bit 5

D6~ Pl-67 LOW BI Data Bus bit 6

D7~ P1-68 LOW BI Data Bus bit 7 (MSB)

INTO- Pl-41 Low BI* Bus Interrupt 0, Port B3, bit 0
INT1- Pl-42 LOW BI¥* Bus Interrupt 1, Port B3, bit 1
INT2- P1-39 LOW BI* Bus Interrupt 2, Port B3, bit 2
INT3-~ P1-40 LOW BI* Bus Interrupt 3, Port B3, bit 3
INT4- P1-37 LowW BI* Bus Interrupt 4, Port B3, bit 4
INTS- P1-38 LOW BI* Bus Interrupt 5, Port B3, bit 5
INT6- P1-35 LOW BI* Bus Interrupt 6, Port B3, bit 6
INT7~ Pl-36 LOowW BI* Bus Interrupt 7, Port B3, bit 7

* The eight System Bus interrupt lines (INTO- through INT7-) may be
treated as inputs or as outputs by using the proper port specification
to PIO port B .

146

Signal Pin Active In/Out
Name # State Bidirectional Descfiption

IORD- P1-21 Low ouT I/0 Read Request. Indicates
' that the address of an 1/0
device is on the System Address
Bus (AO: through A7) and that the
device should place data on the
System Data Bus.

JIOWR- P1-22 LOW ouT I/0 Write Request. Indicates
that the address of an 1I/0 device
is on the System Address Bus
and the data on the System Data
Bus is valid for an I/0 write.

MEMRD- P1-19 LOW ouT Memory Read Request. Indicates
: ‘ : that the System Address Bus has
a stable memory address and that
the data should be placed on the
System Data Bus.

MEMWR- P1-20 . LOW ouT ' Memory Write Request. Indicates
' that the System Address Bus has
a stable memory address and that
the data on the System Data Bus
should be written into the
addressed memory. -

RESET- Pl-14 LOW BI System Reset. May be used as
Tl an-input or: output.

WINCHESTER I/O CONNECTOR (P2)

The pinout of P2 is arranged for easy connection of the MLZ-91 to)
any of the following Winchester controllers: (Only one may be con-
nected at a time) ,

1. Priam "SMART" Interface 4. Seagate Technology

2. Micropolis 1220 controller S. DTC :

3. Shugart 1403D series
P2 is a 60 pin connector on the Multibus edge of the MLZ-91. Pins
1 through 34 are used for Micropolis and Shugart while pins 35
through 60 are used for Priam.

MICROPOLIS
P2 Micropolis Source

Pin # Pin # MLZ/Micropolis Function (Negative True)
2 2 both ' Data bit 7 (MSB)
4 4 both Data bit 6
6 6 both Data bit 5
8 8 both Data bit 4
10 10 - both Data bit 3
12 12 both Data bit 2
14 14 . both Data bit 1
16 16 both Data bit g (LSB) -
18 18 Micropolis Attention (ATTN-)
20 20 . MLZ Data/Control (DATA-)
22 22 MLZ Read Strobe (RSTB-)
24 24 MLZ Write Strobe (WSTB-)
26 26 MLZ Enable (ENABLE-)
28 28 MLZ Select (MSEL-)
30 30 Micropolis Controller Busy (CBUSY)

‘ ' Positive True

32 32 . Micropolis Data Request (DREQ-)
34 34 Micropolis- Input/Output (OUT-)

P2 odd pins 1 through 33 are ground. Pins 35 through 60 are
not used. There are four groups of’jumper posts near P2 which
must be configured for ﬁM“ (remove all "s" jumpers). Jl5,
J16, J17 and J18 must be set to "m". Do not install J11.

150

[l

MLZ -ql
P2

ANSLEY 609-60i5M
CARD EDGE
CONNECTOR

QO

CAINDUCTOR * N

»0

36

-0

MICROPOLIS
12.20
CONTROLLER

ANSLEY 609-34)5M
CARD EDGE

CONNECTOR

HEURIKON CORP.

MAD!SONI WISCONSIN

COPYRIGHT 1981

®

CHECKED!|DATE
CABLE MLZ-P2M For ML2-9|

, 2-3
«M

DRAWN!
NG K

152

PRIAM

P2 Priam
Pin § Pin #
35 1
36 2
37 3
38 4
39 5
40 6
41 7
42 8
43 9
44 10
45 11
46 12
47 13
48 ’ 14
49 15
50 16
51 17
52 18
53 19
54 20
55 21
56 22
57 23
58 24
59 : 25
60 26

Priam connector pins
1 through 34 are not
MLZ-P2P diagram.

Source

MLZ/Priam

both
both
both
both
both
both
both
both

MLZ
MLZ
MLZ
MLZ
MLZ
MLZ.
Priam

Priam
Priam

- Priam

27 through 40 are not used.

used.

- Data

Data
- Data

~Function

Ground
bit @ (Positive True)
Data bit 1
Data bit 2
Data bit 3
bit 4
bit 5
Data bit 6
Data bit 7
Ground
Host Read
Ground
Host Write
Ground
Host Address 2
Host Address 1
Host Address ¢
Ground
Reset

(MSB)
(RSTB-)

(WSTB-)
(HAD2)
(HAD1)
(HADH)

(RESET-)

~*Ground
"Host Interrupt
- Ground

(ATTN-)

Host Read/Write
Data bus enable
Ground

Data Request

(OUT-)
(BUSY'_-)

(DREQ-)

MLZ-P2 pins

For details on cable arrangeménts, see

The positions of the "M" and “s" juﬁpers are not critical when using
Do not install Jll.

the Priam interface.

MLZ-9!
P-2

ANSLEY
609-6015M
CARD EDGE
CONNECTOR

a N
>34 OPEN
(% CONDUCTOR %)~y o
35 ' : At
:;. PR'AM
s "SMART"
HH CONTROLLER
/ o HHE & 3MmM
26 e IRt —— . 3w 7-T040
26 CONDUCTOR RIBBON CABLE B | -+ SOCKET
- 14 OPEN ;; CONNECTOR
)
28"
: 7 CHECKED: |PATE
- HEURIKON CORP CABLE MLZ-P2P ror MLZ-9] iy 2-31
‘ “
M IK-X~J sco
AD N) w N SIN DRAWN:
COPYRIGHT 1981 NGK

€9l

SHUGART/SEAGATE/DTC

P2 Controller Source

Pin # ‘Pin 4 - MLZ/Controller Function (Negative True)
2 _ ‘16 3 both - - Data bit 7 (MSB)
4 RIS P - A both Data bit 6
6 T 12 s bpth' Data bit 5
8 : ‘ o .. both Data bit 4
10 .8 both Data bit 3
12 LI both - ~Data bit 2
14 ol 4 both. . _ Data bit 1
16 - 52 h both Data bit @§ (LSB)
20 - 36 Controller Busy (BUSY =)
22 ' 38 “ MLZ . . Acknowledge (ACK-)
26 ‘42 Controller ' Attention (ATTN-)
28 44 e MLZ Select (SEL-)
30 46 Controller Direction (DIR-)
32 - 148 Controller . Request (REQ-)
34 150 Controller;’_z Input/Output (I/0-)

P2 odd pins l'through 33 are ground.r P2 plns 35 through 60 are not
used; A special cable is required tc connect the controller inter-
face cable (which is 50 conductors) to the MLZ P2 connector. Cable
pins 18 through 33 are not used: “rrCable pins 1 through 17 are re- .
versed when 1nserted in the P2 edge connector.g Cable pins 34

through 50 are connected to P2 'pins 18 through 34, See the:MLZ—st

i
i
i

diagram for detalls of the connector arrangement.

There are five groups of Jumper Qosts near P2 whlch must be configured
for "S" (remove all "M" jumpers). Jll Jis, JlG J17 and J18 must
be set to "S” f

154

P - N

W
: ' 51
i Cf
i
A :
0 m= o - =,
t‘zin
S . ;‘)
[

CONDUCTOR *§

1
|
i
i

14030

MmLZ -l \ 5
P2 kD) :
ANSLEY 60%-6015Mm

CARD gDgE
CONMECTOR

CONN ECTOR

a3 %

) S0 o . z, :
56 CONDULTOR RIBRON CABLE — 7 = = . :

%6 opEM S, L : i

o LA Selov BE

36"

ARSD S S TR
! E

133
;
L1l
¥
.

s

. FoLps

SHUGART

. ; -~ CONTROLLER
U ANSLEY 609~5030 -
CTRANISITION

[34- CONDUCTOR S

(11

\y/ . (7

1—I

ONDUCTOR *
. ‘},/C ~N oR "}
N

»
w
I~

|6 CONDULTORS

{evT ouTY

CUTTING PATTERN

- L2
5]

NOTE! CONDUCTORS =17 ARE FOLDED ey

To ReVERSE ORDER WHEN . | HEURIKON CORP,

o a

CABLE MLZ~P2S FOR MLZ~91

CRIMPING IN ML =91 P2 e MACISON; WIS CONSIN ©
Wl H) A -

COPYRIGHT, 1a8)

DRAW N,
DHH,

STREAMER TAPE»I/O CONNECTOR (P3)

The streamer tape I/0 connector is wlred to convenlently mate with
the Archlve chporatlon Streaming Cartridfe~Tape .Controller. That
controller uses ‘a 40 conductor cable, howeVer llnes 1 through 10

s st e

and 45 through 50 are not used. The re@%gh}ng 34 conductors mate
dlrectly w1th P3, as follows:

P3 f Arohlvej Source ;
Pin # ! Pinf# ' MLZ/Archive |
i H

2 | w12 both ' pata bit

7
4 “14; both . Data bit 6
6 | ‘16’ both . Data bit 5
8 v418 both f Data bit 4
10 . » 200 both ~ Data bit 3
12 >?2x both . Data bit 2
14 Y24 . . both - Data bit 1
16 .26 both . Data bit g (LSB)
18 | 28 MLZ © On Line (ONL-)*
20 ! 30 MLZ ' Request (REQ-)*
22 | _ 32 MLZ . Reset (RES-)
24 © 34 MLZ ¢ Transfer (XFER-)
26 ! - 36 Archive ' Acknowledge (ACK-)*
28 ¢ 38 . Archive | Ready (RDY-)*
300 - 40 . Archive | Exception (EXC-)*
32 ¢ - - 42 Archive | Direction (DIR-)*

34 . . - 44 - N no connectlon -

3

All odd numbered pins on P3 are ground Handsﬂake signals marked (*)
utlllze the DIP switch and LED array logic for»control, as follows.

{

Signal Controlled/Monltored by

1 e t
ONL-~- LED 1 (D1)
REQ- LED # - (Df) ,
RDY~- DIP Switch 1 (Group 1, D7)
EXC- 'DIP Switch 2 (Group 1, D6)
DIR- DIP Switch 3 (Group 1, DS)
ACK~- .DIP Switch 4 (Group 1, D4)

See page 73 for discussion of this iﬁferféoe.

156

Loas o lo. ope R
; N CONfoUCTOR #' s, :) . I |10 A R»CHJ VE
; e T " DR!VE B

it

-0

e

MLZ=-9!
"~ p-3

ANSLEY
609 -3415SM I
CARD EODOGE L
CONNECTOR i

%)

ANSL.EY
609 =5015M",
CARG: EDGE
CONN.BCT’OR('S‘
oL

o jre
[5 o 5

W
a 0 S N
. ;
2’. [
Ll LE I v
ba 1 B '
4 SV ~
“< > (o
} Yy -
-1 e
.\ O m e
.

o B

N o T ' : ' cﬁEcKED:ADATE.
HEURIKON CORE, | CABLE MLZ-P3N. FOR MLZ-CH ame |2

DRAWN: | i,

-}MAD)SON) WISCONSIN STREAMER TAPE r/o
" NGR« '

_cor’,vman'r 1981 I
. 5 R {

LST

SERIAL I/O éONNECTOR (P4)

% 1 f I

P4 . 25| pzfn“!'n" RS232 _ MIZ-91 9 o
Pin ¢ fﬁ Pln }' Circuit quQngce Si él“b
% 20 oo frd P
3 2 BA kﬁj Tgansmlt Data (From Port A)
5 3. BB » Récgeive 'Data (To Port A)
7 4 CA X Request to Send (RTS)
9 5 CB Clear to Send (CTS)
11 6 —€e- _Data Set Ready- (DSR)
13 7 —~ ‘AB "Sn.qrraf Gr@und~ R
2 149 N X ,RS422~Transm1t Dqgaf(+)
4 15 '« DB ‘ Transmit- clock v
6 716}5 X RS422 Transmit Data (+)
8 17 DD : Receive clock
10 18, R$422 Recelve Datai()
12 ;19 : R5422 Receive Data |(+)
14 =20 CD X Data Terminal REady: (DTR)
20 2 BA ‘ Transmit Data (To Port B)
22 £3 0 BB X' /Receive Data (From Bort B)
24 4 cA , 'Request to Send (RTS) /
26 5 CB X' Clear, to Send (CTS) ! /
28 6 9 cC X Data, Set Ready (DSR) | I
30 VAR AB Slgnal Ground \
19 14 8 ’ RS422 Transmit Data \-) (To Port B)
23 6 ¥ RS422 Transmit Data (})/ (To Port B)
27 18 X R§422 Receive Data (- ‘(From Port B)
29 -19 X RS422 Receive Data (+), (From Port B)
31 '20 CD Data Terminal Ready (DTR)

i

Unspe01f1ed plns aré not connected on the MLZ-90 board. ;

Note téat the arrangement of the connectlons relative to the 3; pin
connector (P4) a110w5“the 34uconductor cable to be split in the mlddle
to brlng the two port$ to separate 25 p;n connectors. P4 plnSIl and

18 connect to pin 1 oh the respecélve chonnectors. It is recommended
that pin 1 on both cohnectors (protectlye Ground) be brought dlrectly to

chassis ground (these two plns,are not connected on the MLZ- 905.

Port A (flrst 51gnal group) 13 connected to make the MLZ-91 lqok 11ke

a “Data Terminal® while portsB ﬁsecond siqnal group) is connected as?
if it were a "Data Set" except fdr thewRS472 signals which are not part
of the interface spec1f1cat10n fdr RSQ32’ Pins 14, 16, 18 and 19 are
the RS422 signals and should not be connected when using an RSZBZ or
RS423 interface. i ; ;

RS232/423 level . State |

HIGH”wWMHMm ;jCéﬁﬁ%él{éignals: TRUE
Data*"' ﬂ“"or START BIT
LOW Control 51gnals. FALSE

Datas:- l or STOP BIT
158

CONNECTOR

“EOR SEO

sfo PorT Bl

st=te

a
jecr

: , i - W
H r\\v i [T C‘q
o i L S
Yioan ' A)
R AN SRR TR o
o iy -
[Lol 3oy - - 1_; - & .
R 3 o) £ - 3 . {9 R
oow =L " : >
',.: i *‘x‘ f :
o SN S ‘(:, O oo = v
- U0 B G ;
S R e e X) .
R R 0o 0z
b 1 ~ A] - e L .
S A ~
Loy 8oL C QG s
: TR B SR N W 2, o
TS T S ¢ W o .o
y Lm0 T o
~f .l TR oMy o TG SRR A Sop
: N R izo] b.; woon G oty R PIN ', S , o A
i oW V', ooy A L
A O O 4 R T ANSLEY;, D"
o SO Moo Dy o t cowzc‘roR
e '1: * T f. /-; Q)‘ :.\ L
feeis A, c;oNJ:éJc‘roR '?}'\ I -
N\LZ QL 27! Yo 7 U oA T
P u, 2 coNoucroR Pu-lv-ru?ouc;q PU=17
= 1 e § for sigPoRT A o g - M A
ANSLEY Il + s S B 5w o0 L 0
60q=3HISM) 1 17 0 g o .;; ,\p iy < L oE i —
CARD EDGE t» S 3 59 , u e - (L_,
o e i /co@uc&)‘oag pu —I8 T&Roq&m,?4§¥34§3 1 SIOR
H GG ANSLEY “B"
h =
coNN:croR

604q-25S

f:', N . e . o
A G, R £t S 4]) 0 [N i
o . o Uoom gt o
t0 e 34 CQNDUETOR RIBBON? QABLE-)/‘ 3 (FEMALE)
: ~ G 3 I
Y] ‘;; i » - JJ f.:) W fas) O " -~ .
i 5oUBoA . Y PN B mme o o
fin S e M 4 Y A0 e o0 SO Um0 A y
- 5 o : " o PV @] * el ~ !
R Ess pee o ‘;" b ot ‘Q =y oy z'A. - e
5 e TTHT0 ¢ g 2
& Sl SRR & 9 - R 8
el '_"5 ,LJ ot ko) 4 Y 9.;1 %] iy F
~4 s !',« i . ~e Q‘, - 1o}
Sy " Ul > ~ R ' s)
P o o 5 o oo~ ™ bW . .
i) won i R B = n e TG ey o P s
§g3 ‘;-‘) Moo & ;(,H > b .E N g ALY G i . K
hds By s 2 : v " > ™ — —
fs bt o o [D s 1 Y CHECKED!|PATE; ;..
; = L B T
H & dq i E 3 4 o CABf.E ML"'Z- PUN PR MEZ=q | RIS -8k
5 E he) Py L
S S A TR “““ -
SR B I ge 5 g_MAH?! SON, W1SCONSIN sro I/o oRAWN: | -
SO ~ oy CE i 23]
R R A I U S NGK
0 G 0 1 copyRIGHT 1981
A T B S SR
=3 g 3 T4 T g [l & i
- A I S I O U eI ST o RGNS S :*"
R it :

6ST

GPIB; (IEEE-€83) I/F CONNECTOR (P5)
g ™ 3
PS IEEE-488 9
TPin conn. quiﬁ 05 Description
fe fig ¥ L3 o8 \
naa121Y 1 28 xon DIO 1 (LSB)
& 3%, 2 5.l DIO 2
5 3 LEly DIO 3
7 4 ox W - DIO 4
I 5 ¥ - EOI -
11 6 DAV
3 T — NRFD __ - -,
Erlis i «‘fp{ — © NDAC [| i
A9 : 10~ i SRQ ¥
! 91 w11 ATN - .
‘ 23 - Shield (Ground)
2 L6013 DIO 5
A4 P 14 DIO 6 ;
i 23 | o 15 ‘ DIO 7 :
; 8 2 16 DIO 8 (MSB)
T 1 o3 17 i REN
[12 i o» 18 s Ground
g .14 3 19 i Ground
! 6 lou 20 i Ground
= A8 L8 21 . Ground
; < (20, s 22 Ground
P2 22 Y 2 Ground
i U ; i =
Pz w24 Pow 2 b Logic Ground
|2 5 225 WA n%c. \ - !
xo 28l NG ! - -
LS - ’ ¥
H _f 5‘, DA . L: *.f lz)
Thefpinoutkof P5 allows}connec ion to the IEEE-488 standatd connector
via a rrbbon uable and b c. e conneb&or. Pin 1 of P5 éonnects ‘

to pln 1 of the 1nterfape connector.

160

191

b o ann)3 ‘ -]
s :~T: :..
ATHES S I St
il
e g cougucmoa‘*u ~ ' /©\ GPIB
2
MLZ-91 T IEEE -4+88
PS woow ANSLEY CONNR&TOR
ANSLEY O U =a 609 ~24F (FEMALE)
609-2615M 5 g 2 5 e e fru
CARD EDGE & L e S S —. 4l R
CONNECTOR fy 3\25 AND 26 NOT CONNgchD g e Badnt 3 v FIU YT b b b e e Y e b e A IO DAy e i‘ {",J,
| 2 ERCEN
5 . & ~—24 CONDUCTOR RIBBON CABLE e 0
.99 18 ¥
“ 0 1 <
. 8o g o
~?
W
'_y(
b4
o .
R L R S s R NI TS (5 fe €73 ~F N £ b CHECKE 5:) %.rggw
vy v oy o ; Y o
HE‘ORIK N CORP | CABLE MUZIPEN For MLz-q | T 1
s < L I
N) v oy
i MA@ SON, WISCONSIN DRAWN! g;
2 cowmeur 1981 NGK H

FLOPPY |DISK I/0 CONNECTOR (P6)

!
The MEZ-91 supports standard 8" drives or the smaller 5%" drives.
The cbhnector pinout is simila%<£g; the two drive types.

PG Rin # ,
8" éin # Signal Name (8") ‘55" pin # . Signal Name (5%")
all odd Grdund A;‘~ Egaiz Ground ;
14 Slde seiéct i}T§¥
18 He?d Loa&— 2i
20 In?ex- § 4 % %
22 Reedye ; 6= (Ds—qot used)
24 E : . 8, Index- ;
26 Drive Select g- 10 Drlvé Select g-
28 Driive Select 1- .- H1P Drive Select 1-
30 Drﬁve Select 2- 14 Drive Select 2-
32 Dﬂive Select 3- 46 Moto% ON- ;
34 Djrect?cn- ' '8 Dire?tion-%
36 ‘ep- | | go . Stept !
38 Wﬁ;teuD ta- 22 wrlte Data—
40 wrlte‘bqte- 24 erté Gate4
42 T#ack%ﬂ? - 6 Tracﬁ 29~
44 WritezProtect~- 8 Wri 'ﬁe Protect-
46 Raw Dat 3¢ Raw [Data |
48 E? Slde selec£
50 4

Even numbered plins i@t listed above aFe not connectéd.

i %

The connector plnoutsls directly comﬁatlble with many com@on
drives, e.g. Shugart [SA801, SA851, SA410/460.

‘ :
! i
: .'

There are four“jumpers—wh&ehmmust‘bemset accord;mg ;o the

drive type (8" or 5%") being used. See page 128. 5

at ;
N

Cable specifications are shqwﬁ on_the next pages for bothf8"
D .
and 5%" drives.

162

(29) A0LTEVHOO C\I i2Iq| zasofiy
w o |
+ 3
AaveTn "¥2 aelisme odd o govixh "8 bdysbhasiao adxogquz 1e-1&F oht
. . et . [T a
SBRUYT oVl 0B ow? o u@&%maﬁﬁm 20 Juoniq uouuwm:mo X
— o Jd I W S
S 01 w <=z
Qoo b x
Z O o [+
F << ® W Sy o
¥laas oY
. i o
Cffsmesll Isapiz & oigq "z ("8) emsM isapid Flagdy 7
i & 529 & % baousbyd - mUOMMHm
_ T .% : b3
- I 2aXoz ship 94
g ~-ps0d Dk 8&
» ~xodal of
’4 .) n
'Ppoen op-za: 0 -ybgei wm
~p5HuT 8 - . S0
. |
17c 92 pvi~a qas -] Insfs? svixa o
I Josisg &viva NB -1 3nalle? ovira »,C
=5 Aoslal bvivg M =3 Zoslle2 svipg 0L
~l0O foioM all ~-£ Fosllb2 aviha m%m -
~noidperi] sl ~\itoaxlta vw a
2
tysia 0] ~-gspe 3 3
|] -—
-k . 0
BIBT FF i N ~53B6@ s 3w 3eZ - ¢
] g '« o 3% =
~oden 3 iyw YN =236 o3 £y Ui >k
. x
3 N ~ -
-8R Aoer 3t N Aosk S m m
N R * ~ 0 o3 B - o
“3OoPJoad siF beid I ~30a3oYdgot 1YW vvw m x
- L]
5350] visg ¥ 4380 wis SO S Y
o
Jun oz kb2 &4 5 &
0 i a .
x4 3 o<
0 J
b
Chpunsnnon S s svods Dedall Sen zailg batsdrmn mevd
COPInn dsa driv eldidshmon vidosxib ai Suonily rodosanon sdv
~OOMCLIMR2 | 123842 | (0842 3YsoUfR .p.s ,z2avivh
°T
ant ol palbran_a uv.Lw sod ¥y e belo oI 318 exadr
LFTD 3usg esk bn\u% prrzec {"y7 upn vg) oqvt swivh
[o]
in
o
Teldgod wof T20s &,..mué,_m ol 9vs ercizenisisas ERERE
« 1
[a] N N .
! osw W S2Lxn YEE Bes
Noges:
4 2%3
£ %38
R
163

ot

L4

_{—-—/«ounvmc FOR CABLES:
T S —P(S=2=H, PEN-3-S AND F“‘
AT | PéS~4=H onLy T !
B RTAN (T T RAUTET Yoy HEAEP) . ___"‘-‘l_,__ — .
SOAN a i 1 b p et
el H T HEasiNou| doss | v, m' =
ki S T La@ss o oyalk vrs-bewlud poywe
‘, R T t""‘”"‘ - ,‘ T s e e e, e i - o M CHEewE o . &
wenitiiael v TR TP Bl aiel Skt

DYIAE '[‘?Mﬁ ! 5 f
SO N ARL I | Helln bty lion
L FDIO

ANSLEY g 2 owru'e ¥oiclelcyrion
/ 609-5015M 2 ciovi 22
Z cHYH@ED

conpuerer i ~

» 0
o

ey B Ediore o) Mighow o
P6 3 r;.]

Pyt

ANSLEY 609-50i1smit| 1] T

s
e

§5
,i
e —

3

<

CARD EDGE ||| i 5 % |
‘4 LCONNESTOR f;;‘ \ [!
Jr2is Sea-pow glf}) ’i;{ ! *
EE A 'g'l:_-\,g}, AI } i ‘X ’I i] §
Mired Qug-pamew ,ff } / ‘1 ! |
Ao , Ff’”’”’lﬁ:__. f . T 5
A W <)o R | S
(N ; i f} 50 coNpucroRCRmeiumghS—“’/;UJ — ;
- = ! gg 1€ DLER hi«! I
H # ‘
7Ll -t 36" - - i
2 0 \ %
\\
o Sim3 0, ~ , i
. *E;ﬁ::zrzif’?w T - * DIMENSION “B” CAN BE CHANGED
CABLE | NO.OF| No oF PDRIVE |DIMENSION |DIMENSION : » i\rir“ } TO CUSTOMERS SPECJPICA'rgIoNs
PART No, | DRIVES| coNNECTORS| MOUNTING| * A 8 e ' |
PGS- |] 2 ’
P6s-2-H| 2 31 |uomizonTAl] 20" : CHECKED: [PATE
PeS-3-H| 3 T " 20" HEURIKON QOR P CABLE-MLZ-P6S For M'—*?q' om 2-F
Pes-4-H| u |ERE N N XM E— whoidan o [’
PeS-2-v| 2 3 VERTICAL & B s o WJSC‘QWNP*~ i R **-—Z'Z——l “-—fl == | PRAWN
- - ! ” " ! ’ I
Pes-3-v| 3 4 ! é. £ copvRiaHT 1981 | | . - NGk
PeS-t-V 13 5 " 6 6 f ! W (k) -4 QWA | ,
AR CROMWEI R MO\ o s i :

S S e

MOUNTING FoR CABLES:
e PEME)-TH, PEMF)-3-H AND

DiwEiz1e
»{— V:‘hi !i

oy

LT —] S N
CobANITHY L 149y | : PGM(F)-‘-H ouLy 7 T MT
3 - l r-._.---l---—-—-— - .—-— ’
M R B2 Famr il el et e 3% otwd ! J ' i 1 ’ :
s : | ' | '—
HEO KN O Clod 1 ! SV {“Eéwﬁ‘l \‘—we S ko L"wr'sl‘“df

Di\v}l‘ﬁ&'!ﬁ‘iﬂf ;

A et e e b one 3 ¥ T —
R

ANSLEY
£09-34i5M

54" FLOPPY

. ‘;.C‘L’ ".;_L"ui“i’

S9T1

T el et bt s st e i

16 OPEN !
\LZ =91 v) gy B9 CUADNC 0o mREToR M, [OO l__ H ;'
Pé sl "“1% oy —— e K N [] J— i
ANSLEY 60Q-5015M i [r I S e e O
(FOR P6M CABLE) iy { } i r i) 43
; i o i
ANSLEY 60a-56M j; f by IR ! | !f :
(S-‘OR PéMF . GABLE) ;j ! R :i ! f i
H ML) Ehei j’;j i j ; l ‘| ,;3;
i Yoz A :\"i:»duks,;s«ﬂau_j ; ‘: : NLn P . l“_.!). 3 X ; 1
i 5]§ _E_ i 1 ! V b———n‘ 20 § ; : f
! L e) # LONDUCTOR RIBBON CABLE] i I
! Wiow -di ; i : 155"
i [(/ i ! L
< ! . SEN— Y’ ;‘ > t A <7 ! 1
o oo T '”""““""““‘,‘““‘W,f—"l_“w’s P o f i
- Colbnany | oo w!i’"},i
\ €54- 20127 % D/wﬁznsson *BY CANBE CHANGED
. ~_ *ﬁgf{?} ‘ e TP O-CUSTEMERS SPECIFICATIONS
No. OF No, oF DRIVE DIMENSION | DINENSION i)l
ISA%%'L%E DRIVES | CONNECTORS| MOUNTING A B
PeMEE)- | 2 ATINER CHECKED:,|DATE
POM(F)R-H| 2 3 HoR1ZoN FAL S . L _1
PeME)-3-H| 3 n " 177 HEURIKON ORP C{FBL}E MLZ P6M1W P6MF *3"1 2-3%
¥ u ! 4 L]
PsM(F)-I‘-" m & L S e it = VS N . 'WW'"' “c ? : - E}QR MLZ Qt_ . |
pemrli-v| 2 3 VERTICAL &) WIRCORSN = R *f“'*“**m‘“@i
77 " ;
PEM(F)3-V] 3 4 ! s 6. COPYRIGHT J98) i bRo~g-} OHFA NeK
Pemis):yv| 4 5 i é é —1 BCF=3 W BYA-3-3 dnp | j
e . - .) s WO LY B0 ooy g fme ,,J

POWER REQUIREMENTS

+5 +12 =12

- Base logic including CPU, DMA, CTC
12 A3 iROBpRAME bws, TAEN GRIB mox> of
Winchester I/F, Tape 1/F,

aslitsvs ,ovedi o

LEDs, DIP switches X

af.«"?i'i?mco xadeaddnnliW sy ; : X X

T "y SLIWN 2GYT-2ifogoroiM 1ol Is TN
SIO with RS422 I/F % ety 2o
' BIOLWithoRS232/BA4AINI/Frsme” meixd voi oi8so 1\ 15X qea o

3 : ngag ‘ 7 Sas

the maximum configuration (Includin FDI8Y #3932, ROM)

I FRe FEEATRYy ejﬁ?gga\i)‘l"ﬂ\i‘xsgada 10?? oldss EANS ’ 259~19

but- without APU, the power i irements ares ., .
4 298 LovixBS.¥eltssussite ofrdoBPE,AtYP), 4\ 3-0 ATPs (max.)
. Y, S R

»82r 53@54']3987011:&;81\-—3331)1?151%"10(?},:2&3&53 INT 200 m;?;{qw_r(gax’)
-lak @"é’fﬁqﬂ&vol&sfcq sitdd B3y I‘Jtiyps‘i)'fsfz N T 50 l%?gg__{(glax')
ENVIROMMENTAIZSVL®D "7} deit yaqoll o eldss @y HoT-(0

23
: \
VS 928 . (20VitE “¥2) Heib vame: .
SVILAL by ragoit ol oldsn T\ TS = O
Temperature: 0 to 65 degrees C. 01 oldso ML 2-209-L2
robslont sidsiisvs emai: 2I5wdasl worddD
X ebrysod OLT =Sa=Ye e .
Pursuant to FCC Technical Standrarc“fs “for ﬂ'C“'ompi.i’&1:1.1':lg Devices,
. .- aauﬂ;&dﬁﬁgaas Fofom oy [l el e TS - F T »y A% A .
section 15.805 (Interim LabelfﬁLg Y E58°F81189FHY notice is
. <bX8D 9D8YIvezini et
included: el motasi)

elsmimynr T30
"Warning: This equipment generates, uses, and can
radiate radio frequency energy and if hot ‘Installed
and used in accordance with the instructions manual fon
m&ch&ggﬁ interference to redio communication GAANSHO
temporarily perid ttédT byl Fegitd bt iont itchas\ notibeens sy

tésbednforvcopplianse with: t imits, for Class)
i A “g@;ﬁg% ot-Part- %@i\q,
e

-~

computings devigeg; pursuant. to; Fr o 08 %
of FCC Rules, which are designed ‘to provide” reason-
able protectibh dFEIhs¥ mitlsdnterference.: 1 Operation-
of this equipment in a residgntial area is likely to
cause interference in which 'éasj}e(f“ Degtggf"‘éat his own
expense will be required to takdwhatever -measures

a 2 n
may be required to correct thgbli%t;\efxife‘%ence‘.

166

ACCESSORIES

The following items, available from Heurikon, can hé&ldsed8 with the

MLZ-91A:
A. HARDWARE x
91-P2M I/F cable for Micropolis-type Winchester cont?&¥ters.
. ’See page 151.
91 pop 'I/F cable for Priam "Smar&“Iw§R&H&:LER Eontiplier.
{057 :§§? p&g&m ;r%,:gﬂkanz} A0L2eXUT LI rOD, Aumig s

91-P2S I/F cable for Shugart/DTC/Seagate 1nches%e?d%y%£
control18r8 I BALIERYE 155wy 53 \UIA jworsiw tud

9fL—l?§"b I/F cibie? e ¥ R chiVe Streame¥d Taped drive. See page 157.

« K871

91—P4N I/F cab1® ¥or BBIE (IEEE-488)1L06eRl page 159.

pafs R ~y 7

91-P5N’ I/F cableTEbr i Sbrial pordbiov sbe-page 161.

91-P6H I/F cable for floppy disk (8" drlvesi(.mﬁ 365 PT8 164

91-P6S-5 I/F cable for flop?y disk (5&" drives). See page 165.
aeovwpebh 24
Other hardware items available include:

1/0b
FmMSop 140 boards .
Bhacelianequs cable assemblies
Custom interface cards

CRT terminals

pripfers’
ZRAIB“?I&QP/M& Mmu.tmmstbpgglo ‘routines and CP/M bootstrap (in ROM).
CP/M: g _2, ‘E’g≷;ke disk operatimaosystem witht editor,
s mbler | 1 and® NG tyeproYrams.. (G diskette)

Other5I990 BASEC: amtiamgtemﬁ;eand comniler:

FORTBN ot

-8 \assenb beas 7
CRsEeRS P rog[fam’é 3

Complete development systems are also available which consist of
comblnatlons of the above hardware and software items. For a com-

plete list of hardware and software, refer to the Heurikon Product
List or consult Heurikon direct.

X6;
<l anna s Avin] Whadican Whernnen 82717 1 ROR.971.2700 [Telex 469532

V.

L‘E heurihon DorporaTiUﬂ

"ZRAID-91" MANUAL

with support for the

CP/M Operating System

Copyright 1981 4/81 Version 91-1
Revision B

HEURIKON CORPORATION, 3001 LATHAM DRIVE, MADISON, WISCONSIN 53713 U.S.A. (608) 271-8700

ZRAID-91 MANUAL

CONTENTS

Command Summary
Getting Going
Initialization State
Command Descriptions
Memory Commands
Transfer of Control Commands
I/0 Commands
Floppy Disk Commands
Program Debugging Commands
Mapping RAM Commands
Other Commands
Special Commands
Error Correction
Troubleshooting
Register Display and Alteration
Parity and Write Protect Logic
Baud Rates and Bus Position
CP/M System Considerations
Diskette Configuration
Entry Points and Links
Disk I/0 via ZRAID
Disk I/O Error Types
SI0O Port Connections
Octal-Hex conversion functions
Enhancements - AUTOBOOT/AUTOSLAVE
Drive Configuration Chart

CP/M is a trademark of Digital Research Corporation

Rev B

ZRAID Command Summary

Command Function Example Reference
Page

Hnn Set upper eight bits of POINTER H1g 9
Lnn Set lower eight bits of POINTER L24 9
Snnnn Set POINTER (both H and L halves) S1E34 9
A Print POINTER value in H, L, format A _ 9
z Print POINTER value in 16-bit octal 2 9

format
1) Print contents of addressed location W 9
.nn Set addressed location <13 9
I Increment POINTER, print location I 9
D Decrement POINTER, print location D _ 9
G Set/feset auto-verify option G_ 10
P Print - 32 lines (8 values per line) P_ 10
Pn Print - nn lines (nn in hex) P2 10
N Read the AUXPOINT in 16-bit octal N_ 10
* Transfer control to POINTER address

via a JUMP * 10
c Transfer control to POINTER Address

via a CALL (User stack) C_ 11
Cn CALL using ZRAID's stack c2 11
J Indirect CALL J_ 11
_— Transfer control to AUXPOINT via a

JUMP 11
& Return to user's PROC CALL & 11
' (Apostrophe) CP/M Bootstrap L 12
Y Input from I/0‘'device L Y 12
Fnn Output to I/O device L Fl2 12

0 Set disk track (H) and Sectar (L)

value o_ 13
(Read from disk (Load) (13
) Write to disk) 14
CNTRL-V Print floppy disk error counter
(also exit from CP/M to ZRAID) H152/ 14
Rn Insert a RST instruction R2 15
$n Force another RST instruction $1 15
U Remove the last RST instruction U_ 15
= Set memory mapping RAM =FF 16
@ Set I/0 mapping RAM e7 16
B . Set Bus mapping RAM BFg 16
T Transfer I/0 between TTY and CRT T 17
K Set/Reset Echo flag K_ 17
X Set/Reset octal/hex I/0 mode X 17
" Set bus control mode ‘13_ 17
E Blink LEDs E 18
! Initiate Multi-user mode P 18
- (Minus Sign) Enter Slave mode - 18
/ Cancel previous input H152/ 18

Line feed and rubout characters are ignored. Underscored

characters are operator inputs.

All commands except "/" must be followed by a space or a

carriage return to cause execution to begin.

Note: The examples above and those which follow in the text use
HEX numeric values which is the power-up default mode. These
commands also work in octal. Use the X command to flip-flop
between modes.

GETTING GOING

This section is an outline of the minimum work necessary to
get the MLZ-91 "on the air":

Items required: (See diagram)

3.

MLZ-91 Microcomputer Board

ZRAID-91 Software Monitor program (ROM)

RS232 Interactive Terminal and cable with male "D" connector
MLZ-P4N Serial Interface cable and connectors

Power supply (45, +12, -12, volts)

Card Rack

Insert ZRAID ROM in socket M@ (See diagram for position
detail.)

Install Jumpers as follows:

Jl-A (2MHz clock)

J3,J4 (s10 1I/F)

J5-B, J6-B (SIO Port A Receive clock)

J7 (Upper address enable)

J8 (Processor priority)

J9-a, J10-a (Wait states for ROM)

J12-a, J14-A (ROM type 2732)

Jl3-A,C (RAM type) (Assumes 4164 or 4532-1)

Connect console terminal to SIO port B via MLZ-P4N cable
and P4 connector. Use the female D connector on the cable.

"D" Pin #

2 Data from terminal
3 Data to terminal
4-5 Jumper (RTS~CTS)
6-20 Jumper (DSR-DTR)

7 Ground

Set baud rate on terminal for 9600 baud.

Set terminal options, if available, to 8 bits, no parity,
two stop bits.

Apply power to MLZ-91 and terminal.
Activate RESET (momentarily ground P1l-14)
ZRAID sign-on message should appear on terminal.

Consult ZRAID manual for further details. ZRAID automat-
ically sets up the MLZ-91 mapping RAMs and allows access
to all memory and I1I/0 devices from the terminal.

FoR PRINTER)

25 P)N \\Du
/ MALE

/
/

:v’r‘l/
| s10 PORT A

25 PIND’
FEMALE

TERMINAL SIO PORT B
J5 Je

J3 0,04

Jl-l- BB

oo L\

o6 T pe N\ ps % P3 °
e
Ala) — L
B \ oy J5EV6 Ji13

MLZ - P4N
CABLE ASSEMBLY

E~ MLZ-9lA JU
Jz M|
J7 \; : L zRAID-9)
J)
=2y, e g o

J$ o
Jn\
T #5412 Pl [4-5]1'—"_1

X z MULTIBUS / /
POWER SUPPLY |— JI2 J 1y

\ [0 o]a [cglo
A B A B
J S J10
loa ojlo |o olo
A B A B

MLZ - 91A WITH ZRAID = SETUP DIAGRAM

To load the CP/M operating system, follow the above steps but
also connect a floppy disk drive to P6. Set the floppy disk
configuration jumpers for "8" or "5" as appropriate. After
turning on power and resetting the system, insert the CP/M
system diskette in drive "A" and enter apostrophe space on the

terminal.

ZRAID~-91 Initialization State

The ZRAID-91 monitor initializes the mapping RAMs and on-
card I1/0 derives as follows:

A. Memory Mapping RAM (See diagram, next page)
ROM socket M@ at CPU address F@@gF (hex)

On-card RAM allocated from address @@gg
through address EFFF. (

B. I/O Mapping RAM

I/0 Addresses Assignment

g8 thru 3F Off-card

49 thru 7F Off-card

88 thru BF On-card I/O Group A (e.g. Baud Gen)
C@ thru FF On-card I/0 Group B (e.g. CTC)

C. Bus Mapping RAM
If DIP switches installed:
Board is assigned to the bus block (g - F)

as specified by switches 5, 6, 7 and 8 of DIP switch
group g#. Otherwise, the board is assigned to block
g (default). 1In either case, all board operations
are enabled (i.e., Memory RD, WR and I/0 operations
are valid.)

D. §SIO Baud rates:
If DIP switches installed, the baud rates are set according

to DIP switch group 1 as shown on page 24. Otherwise, both
SI0 port baud rates are set at 9600 baud (default).

Note: These valuesmay be modified by special ZRAID commands
or the initial values may be changed in the ZRAID
ROM.

CPU ADRS SPACE
0000 FIXED VARIABLE

(4 K EACH) (4K)
1000 / \ /
2000 \MAPPING RAM ///
2000 \ BLKO TE //
BLKk | 7D /
gooo W \ BLK2 7cC ///
5000 Q \ BLK3 7B /74
< BLK 4 7 A // ON—CARD
6000 N E: T EET // RAM
7000 0 BLKG 718§ //‘ (6uK)
8000 ——— BLK T 77 //
g r_,_,_.--—-;-' BLK 8 T6 //
qo00 < | > BLKA & //
A00O 0 4 / BLKA T4 // (AVAIL)
BLKB 73 /
B00O o0’ / BLKC 72 / 2 N — CARD
ON-
cooo P / BLKD 7] M ROM
o) BLKE TF M1 SOCKETS
pooo D BLK F 00
E000 \ OFF CARD ADRS SPACE
Fooo ZRAID RAM MAP (1 MEGABYTE)
ZRAID PRCGRAM DATA 00000
EACH 4K BLOCK OF CPU ADDRESS SPACE
IS CONTROLLED BY AN ENTRY IN THE MAPPING
RAM. THE DATA IN THE MAPPING RAM
“POINTS” To AN ON-CARD ROM SOCKET OR NoT
RAM ADDRESS OR To AN OFF-CARD ASSIGNED
MEMORY ADDRESS
FEFFFF

ZRAID-Q! IMiTIAL MEMCRY /AAFP

ZRAID
(It will kill bugs dead)

CP/M Version

Command Descriptions

All ZRAID (Z-80 Realtime Analysis and Interactive Debugger) commands
use the following format:

Xnnn

followed by a space. "X" represents a valid command character and
"nnn" represents an optional parameter. The commands are used to
set, modify, and examine contents of the system memory. The
parameter specifies address values, memory contents, and word
counts.

All commands must be terminated by a space or a carriage return.
After each command is executed, ZRAID types a prompt character,

">", to indicate that it is ready to receive another operator
input. The radix defaults to hexidecimal (but may be changed to
octal, see "X" command).

ZRAID maintains an entry in its data area called the "POINTER".
This is a 16-bit address value that parallels the functions of the
processor's H and L register pair. Most commands in ZRAID use the
POINTER in some way. The POINTER is composed of two parts, called
"H" and "L", each representing eight bits. Some commands require
two addresses. For those commands another pointer, called the
AUXILIARY POINTER, or "AUXPOINT" is provided.

HEURIKON CORPORATION, 3001 LATHAM DRIVE, MADISON, WISCONSIN 53713 U.S.A. (608) 271-8700

Memory Commands

Command Description .
Hnnn Set the "H" half (upper 8 bits) of the POINTER to "nnn".
The other half of the pointer can be set by using the

"L" command.

Lnnn Set the "L" half (lower 8 bits) of the POINTER to "nnn".
The "H" and "L" commands may be used together to set the

POINTER to any memory address, or the "S" command, below,
can be used to set the POINTER in one operation.

sSnnnn Set the value of the POINTER to "nnnn" (all 16 bits).
This command combines the functions of the "H" and "L"

functions.

Display the value of the POINTER in "Hnn Lnn" format.

>

|09

Display the value of the POINTER in 16-bit octal format.

1=

Display the contents of the memory location specified by
the POINTER ("What's there?").

.nnn Set the contents of the memory location specified by the
POINTER to "nnn". The POINTER is automatically incremented
to the next location (POINTER + 1l). Successive store
commands may be used to set contiguous locations or enter
a complete program.

After this command is executed, the contents of addressed
location are automatically verified. 1If the location did
not store properly an error warning is generated (bell or

beep) .

jH

Increment the POINTER to the next memory location and dis-
play the contents of that location.

Decrement the POINTER to the previous memory location and

e

display the contents of that location.

Command

Pnn

=

N

Description

Turn the auto-verify feature ON and OFF. 1In certain
cases the auto-verify feature may not be desired.
Examples of this are "memory locations" that are actually
ports for I/0O devices. The auto-verify feature will re-
sult in the location to be accessed twice for every write
operation. Auto-verify is initially set ON.

The "G" command will also turn verify back on after a
previous "G" command. To test if the verification logic
is ON or OFF, execute a store command to a ROM location
(but be sure the location chosen has address bits A5 and
A4 ON to prevent altering of the I/0 or bus mapping RAMs).

Print "nn" lines of consecutive memory locations, eight ™
locations per line. If "nn" is zero (or not entered)

32 (decimal) 1lines will be output. The output may be
cut off early by hitting any key on the keyboard.

Each print line will contain the starting POINTER value
plus eight values for eight locations, each preceded by
a ll.".

Set the AUXPOINT contents equal to the POINTER value.

This is the only command which alters the value of
AUXPOINT.

Print the current AUXPOINT value.

Register Display and Alteration

See Page 21.

Parity and Write Protect Errors

See Page 23.

10

11

Transfer of Control Commands

All commands which transfer control to a location outside of ZRAID

restore the 2-80 internal registers, prior to the transfer, from

the "register save area" in ZRAID's memory area. To set the Z-80

registers to specific values, modify the appropriate memory locations

corresponding to the registers prior to issuing the transfer of control

command.

See page 21 for a description of the register save area.

Prior to transfering control, these commands issue a "!" to the

display to indicate command execution.

Command

*

c

<]

U

j

Description

Transfer control to the location specified by the
POINTER via a JUMP instruction.

Transfer control to the location specified by the
POINTER via a CALL instruction. This allows ZRAID
to test a subroutine which terminates with a RETURN
instruction.

If the "C" command is issued without a parameter (or
with a zero parameter) the stack pointer register is
restored according to the value in the register save
area which must, therefore, specify a valid RAM
address. If the "C" command is issued with a non zero
parameter (e.g. C4) the stack pointer is automatically
set to ZRAID's stack area prior to transferring control.

Transfer control, via a CALL (using ZRAID's stack),
to the location specified by the contents of the
memory address specified by the POINTER. This is an
indirect CALL. The POINTER specifies the address of
the low byte half of a 16-bit value which is taken
as the desired address.

(Left arrow or underscore) Transfer control, via a
JUMP, to the location specified by the auxiliary point-
er, AUXPOINT.

Transfer control, after restoring the Z-80 registers, via
a RETURN instruction. This command is useful to return
to a user program following ZRAID entry via location

__RPROC. (See page 30.)

Command

I/0 Commands

Command
Y

Fnnn

Description

CP/M bootstrap. The CP/M system is loaded from drive
A. See CP/M System Considerations, page 25, for
details.

Description

Input from the device address specified by the low
half of the POINTER. When this command is executed,
the H halE>of_the pointer appears on the upper CPU
address lines to specify a memory mapping block

address, as may be required for off-card I/0

operations.

Output data "nnn" to the device address specified by
the low half of the POINTER. This command also
places the high half of the pointer on the upper

CPU address lines. (This is done to facilitate I/O
to the GPIB, PRIAM Winchester or the system bus.)

12

13

Floppy Disk Control Commands

These commands allow access to specific tracks and sectors on a
floppy diskette. Drive "A" is used for all disk operations.

Command Description

0] Set the starting track and sector values for the next
floppy disk access.
TRACK = H half of the POINTER

SECTOR = L half of the POINTER

M Set the AUXPOINTER from the POINTER. This address
represents the starting location of memory data for
the disk data transfer.

(n (Left paren.) Initiate a floppy disk READ (load) oper-

ation. The "O" and "M" commands must have previously
been issued and the POINTER must specify the ending
memory data address. The correct sequence for using
this command is as follows:
1. Use "Hnnn" to specify the starting TRACK.
2. Use "Lnnn" to specify the starting SECTOR.
3. Use "O" to set the TRACK and SECTOR values.
4. Use "Hnnn" and "Lnnn" or "Snnn" to specify
the starting data address.
5. Use "M" to set the starting memory data address.
6. Use "Hnnn" and "Lnnn" or "Snnn" to set the
ending memory data address.
7. Use "(n" to initiate the read operation, where
"n" is a hexidecimal value as follows:
none or @ Single density, 128 bytes/sector
60 Double density 1024
79 Double density 128

The "C" command will cause a data verification message
to be printed with the following format:
R Hnnn Lnnn - Hnnn Lnnn Tnn Snn ?
where "R" means disk READ (will be "W" for disk WRITE)
The first H,L pair is the starting memory address
The second H,L pair is the ending address
"T" and "S" are the beginning TRACK and SECTOR

Command

Control-Vv

Description

If the data is correct, enter ":" to execute the
disk command. To abort the command enter any other
character (e.g., space).

An exclamation point ("!") will be displayed on the
successful completion of the disk operation. Other-
wise, an error message will be displayed.

(See "DISK I/0 ERROR TYPES ", page 34.

(Right paren.) Disk WRITE command. Same as above
except data is written to the floppy diskette. The
same parameter setup procedures apply.

Print the running total of the floppy disk error re-
entry counter. This count value is reset at the be-
ginning of each " (", ")" or "'" command.

14

15

Program Debugging Commands

These commands are used to control breakpoints for use in debugging

programs.

Command
Rn

|

Description
Insert a restart instruction (RST# to RST7) at the
location specified by the POINTER. The instruction

which is replaced is saved for subsequent reinsertion
later. (Verification is performed unless shut off by
the "G" command.) "n" may take on the values of #
through 7 corresponding to one of the desired 8
restart instructions.

An error "beep" will be generated if an attempt is
made to insert a second restart before removing the
first, or if the restart failed to store correctly.

NOTE: A JUMP to DEBUG must be placed at the chosen
restart location, for example RST 1 at @@@8H, in the
first page of memory. When the restart is encountered
during program execution the registers and flags will
be saved and ZRAID will become active.

Force a restart at the location specified by the
POINTER even if one has already been inserted by an
"R" instruction. Caution: It is easy to loose track
of excess restarts.

Remove the restart inserted by the last "R" or "$"
command. The value of the POINTER is not used or
affected by this command.

Mapping RAM Control Commands

These commands facilitate the loading of the various mapping RAMs
on the MLZ-91. Whenever ZRAID is restarted, the mapping RAMs are
setup with specific initial values as listed on page 5. These
commands may be used to alter the mapping RAM contents. Refer
to the MLZ-91 User Manual for details on the mapping RAM logic.

Command Description
=nn Set the contents of the memory mapping RAM block specified

by the H half of the pointer (upper 4 bits) to the
value "nnn". For example, to specify 4K of off-card
memory at location 1g@@ (hex) do the following:

H1g (block address)

=FF (map data for some off-card memory)
@nn Set the contents of the I/0 Device mapping RAM

block specified by the L half of the pointer (lower

2 bits) to the value "nnn". For example, to specify
I/0 Device Group A to be located at I/0 block 2 (base
8gH) do the following:

L2 (block address)
@7 (map data for I/0 group A)
Bnn Set the contents of the BUS mapping RAM block specified

by the L half of the pointer (lower 4 bits) to the
value "nnn". For example, to enable all on-card
functions and assign the board to bus block "@g", do
the following:
Lg (bus block)
BF (enable all operations)
Note: ZRAID expects a certain configuration of the I/O map
and memory mapping RAMs. If the I/O mapping RAM contents are
changed, ZRAID may not function correctly since the I/0 device
addresses are assumed to be constant.

Consult the MLZ-91 User's Manual for the correct data values to
use with these commands.

16

17

Other Commands

Command

T

K

I

Description
Transfer control of ZRAID from SIO port A to SIO port

B, or vice versa.

Echo all ZRIAD commands and responses on the other
SIO port. If the echo feature is already ON, this
command will turn echo OFF.

If a printer is connected to the alternate SIO port,
this command may be used to print any or all ZRAID
responses. For example, to print a memory dump, issue
a "K" command and a group of "P" commands.

Switch the numeric I/0 base (radix) to/from hex or
octal modes. ZRAID defaults to hex mode. (Note: The
"z" command always outputs in octal, regardless of

the selected base.)

Set the system Multibus control mode as follows:
Command Function

Release bus between each operation

"1 Release on any other board request

"2 Release only on higher priority board
request

"3 Never release the bus

Special Commands

These commands perform special functions and are provided mainly to

illustrate certain features of the MLZ-91.

Command
E

H

CNTRL-W 12

CENTRL-W 13

Description

Count in binary, display count value on the LED array
and blink the floppy disk USER LED. This command will
remain active until the next command is entered.

Initiate the MULTI-USER mode. This command demonstrates
the memory mapping features. To use, connect a console
device to both SIO ports. 1Issue this command from the
console connected to port B. Both consoles will become
active. To return to the single user mode, enter "!"
(with no parameter). (This command is not supported in
some versions of ZRAID.)

(Minus sign) Enter SLAVE mode. This command converts
the MLZ-91 to a slave I/0 board for use in a multi-
processor system. The following state will exist:
I/0 Blocks # & 2
I/0 Blocks 1 & 3
Bus Block - Value specified by D1P SW group #
(low 4 bits)

On-card device group A (IOA)

On-card device group B (IOB)

The on-card memory is also re-allocated to 100% RAM.
(Note: 64K of RAM is required for this command.)

If this command is issued with a non-zero parameter,
the memory is converted to 100% RAM but ZRAID remains
active. This allows temporary RAM changes to be made
to ZRAID.

This is a special command which will execute continuous
double density writes to the floppy disk for use when
adjusting the write precompensation logic. Note: This
command requires a parameter value of 12 (hex) to be
entered with the command. Caution should be taken when
using this command since disk writes are performed

which could destroy valid disk data. Use a "scratch"
disk only. Refer to the MLZ-91 User's Manual for details
on the adjustment procedures.

Same as above except single density.

19

Error Correction

If an error is made while making an entry, type "/" (slash).
The previous input characters will be ignored. For example,
Ll15 (no space entered as yet)
may be cancelled and the correct entry reentered, as follows:
L15/> H15
corrected command entered
prompt
slash cancels previous erroneous entry
Numerical errors may be corrected simply by typing the corrected
value. For example, suppose "H15" is desired, but instead we type:
H16 (no space entered as yet)
the correct numerals may be entered as follows:
H1615
In the hex mode, only the last two digits will be used as the
parameter for commands expecting an eight bit value (or the last
four digits for the 16-bit parameters). If the I/O mode is octal,
only the last 3 (or 6) characters will be used for the parameter.

TROUBLESHOOTING

l.

System locks up following a command: The addressed memory
location or I/0 device is not assigned or the addressed board
is not issuing BACK (bus acknowledge).

Memory mapped I/0 devices are not responding to the store
command properly: The auto-verify feature is following each
store with a read. Turn auto-verify OFF by issuing a "G" command.

Program does not run following a transfer of control command:
The POINTER value or register save area was not set correctly
prior to issuing the command, or the user program at the
POINTER location does not function properly.

ZRAID does not issue sign-on message and does not respond to
commands: Terminal connected incorrectly or to wrong port.
Possible power supply or Jjumper problem.

20

21

Register Display and Alteration

When ZRAID is entered through "DEBUG" or "RPROC" the flags
and the contents of the primary user registers are saved. The
POINTER is initialized to location EE@@, (hex.) The flags

and registers are saved at the following locations:

Location Register

EEZQ F (PSW flags)

EEQ] A

EE@2 c

EE@3 B

EE@g4 E

EEg@5 D

EEf@6 L

EE@7 H

EE@8 SP~-L (User stack pointer, L half)
EEP9 SP-H (User stack pointer, H half)
EEZA IX~L

EE@B IX-H

EE@C IY-L

EE@D IY-H

Since the POINTER is initialized to EE@F, the content of the
registers can be output with a "P2" command as follows:
HEE Lgg .ff .aa .cc .bb .ee .4d .11 .hh
HEE 1L@8 .sl .sh .x1 .xh .yl .yh .xx .xx
Where "ff" and "aa" represent the flags and the contents of
register A, etc. respectively.

Where "ff" through "hh" represent the content of the flags and the
internal user registers, and "sl" through "yh" represent the content
of the stack pointer (low half, high half), index register IX and
index register 1IY.

To modify the user registers prior to a return to the user program
(via the "*, C, or «" commands), set the desired values in the
appropriate address of the register save area. When ZRAID exits
to the user program the registers and flags will be restored from
the save area.

The flag word is arranged as follows:
Z-80 FLAG DATA BIT
7 6 5 4 3 2 1 0
S 2 - H -p/vVN C

where:

S = Sign flag

Z = Zero flag

H = Half carry flag (for DAA)
p/v = Parity/Overflow flag

N = Add/Subtract flag

C = Carry flag

- = indeterminate value

23

Parity and Write Protect Logic

Whenever an on-card RAM parity error or write protect error occurs,
the MLZ-91 executes a RESTART to location @g@66. This is the
NMI (Non-Maskable Interrupt) location.

ZRAID-91 contains an interrupt processing routine which determines
the error type and the approximate program execution address when the
error occurred. For example, the message:

WRITE PROTECT ERROR, DURING INSTRUCTION PRECEDING H2¢ LDA

means that the instruction just prior to hex address 2@DA attempted to
write to protected memory. Note that the address printed is related

to the CPU execution address, not the memory address of the protected
memory (or the address having the parity error.) If the error occurred
during an off-card access of on-card memory or during a DMA memory
cycle, the address value displayed will not have any relation to

the error address. The address of the next instruction is pushed

into the software stack if a write protect error occurs. The address
of the second next instruction is saved in the case of a parity error.

To test the NMI error logic, enter these commands:
1. For WRITE PROTECT error:
a) Write protect a block of memory:
i) H_ (set H=#fg, block 9)

ii) =5E (Load memory mapping RAM with data value
to protect block #)

b) Write to protected memory:

. (Try to write @@ to block #)
~ (H half of the POINTER is still g§)

c) An immediate write protect error should result
d) Unprotect memory

i) H_ (Optional, H Still = @g#)

ii) =7E (Turn write protect off)

2. For PARITY error:
a) Set POINTER to any unused RAM address
b) Enter "P" to display memory. A parity error should
occur a;;er printing a few locations. If not, enter
another "P" command. If all of memory has been
initialized (written to), then momentarily

turn power-off.

BAUD RATES and BOARD BUS POSITION

The DIP switches, if present, are used to select the SIO baud
rates and the bus block occupied by the MLZ-91.

(If the DIP switch option is not installed, the baud rates for
both SIO ports defaults to 9600 and the board position defaults

to bus block g.)

DIP switch group # is used to select the bus block as follows:

SWITCH
5,6,7,8

BUS BLOCK

Binary value formed by switches

e.g. OFF, OFF, OFF, OFF
OFF, OFF, OFF, ON

etc.

block g
block 1

DIP switch group 1 is used to select the SIO baud rates as follows:

SWITCH
9,10,11,12
13,14,15,16

SWITCH SETTING
(f = OFF, 1=0ON)

PORT

SIO PORT A
SIO PORT B

BAUD RATE

o888
g8l
paLp
911
2190
g1lgl
g11g
g111
1999
1991
1919
1911
l1p@
1191
1119
1111

96¢g (Default)
75
110
134.5
150
300
600
1200
1800
2000
2400
3600
4800
7200
9600
19200

Note: If you have DIP
switches installed, set them
for the desired baud rate.

Do not use the "default"
position as that will cause
ZRAID to ignore switches 1-8.

The MLZ-91 must be RESET in order for a new baud rate selection

to take effect.

214

CP/M System Considerations

One feature of ZRAID is the inclusion of CP/M* system bootstrap
and I/O routines. The "'" (apostrophe) command will transfer
control to the bootstrap procedure and then automatically
transfer control to CP/M.

Input and output routines for the console, list, punch and
reader devices, as well as the disk I/0 routines, are contained
in ROM. After CP/M has been loaded, ZRAID automatically over-
lays a Jump Table in the CP/M "BIOS" area which effectively
substitutes the I/0 procedures available through ZRAID for
those provided by CP/M.

The actual location of the BIOS Jump Table is determined by
examining the original CP/M BIOS Jump Table on the diskette.
This method allows the size of the CP/M system to be modified
(via the CP/M "MOVCPM" and "SYSGEN" command) without changing
ZRAID. The load location for CP/M is also computed from the
BIOS Jump Table. The largest system size allowed is 56K.

Specifically, the following procedure is used to load CP/M:

1. Enter ' to ZRAID (or 'n where "n" is a parameter
as described below.)

2. System RAM (address @@@@ through E3FF is cleared
to zeroes. This prevents parity errors from occurring
with some CP/M programs which read from uninitialized
memory locations. (This step will be skipped if
parameter bit D7 is non-zero.)

3. The winchester I/F is tested to see if a controller
is connected. 1If so, the system is loaded from the
winchester (see below). Otherwise, or if the parameter
bit D7 is non-zero, the system is loaded from floppy.
See page 28 for physical drive address assignments.

4. The beginning sector of CP/M's BIOS is read into
ZRAID's memory.

5. The first byte of this sector is checked to see if
it is the proper code for a JUMP instruction. A
"wrong disk" error occurs and the load is aborted
if the JUMP is not found.

6. The third word is fetched (the H half of the BIOS
JUMP to CP/M's CBOOT) and masked to determine the
base address of the BIOS.

* gg/g_;gmgwggoduct of Digital Research.

10.

11.

The load location for CP/M's CCP and BDOS is computed
and the whole CP/M system is loaded into memory
starting from the computed CCP location.

The BIOS Jump Table is overlayed with a new Jump
Table which points to the special CP/M I/0 procedures
that are part of ZRAID ("CBIOS").

The message

xxK CP/M VERSION a.b

HEURIKON CORP Zc.d
is output to the console indicating the system size
("xxK" bytes), the CP/M version ("a.b") and the ZRAID
version ("Zc.d").

The first 8 words of memory are initialized according
to CP/M specifications. In addition a JUMP to DEBUG
is stored at location HF L@8 to allow a RSTl to return
to ZRAID.

Control is transferred to the CP/M CCP.

ZRAID supports the "IOBYTE" control system referred to in the

CP/M documentation. "Logical" and "physical" I/O devices may
be associated with each other by using the CP/M "STAT" command.

The physical I/0 devices are defined as follows:

Logical Device Physical Device
CON (Console) TTY SIO Port A
CRT SIO Port B (Default)
BAT SIO Port A
ucl Dummy
LST (List) TTY SIO Port A (Default
Value)
CRT SIO Port B
LPT SIO Port A
UCl Dummy
PUN (Punch) TTY SIO Port A (Default
Value)
PTP SIO Port A
UuPl SI0O Port B
up2 Dummy
RDR (Reader) TTY SIO Port A (Default
Value)
PTR SIO Port A
URLl SIO Port B
UR2 Dummy

26

27

A "dummy" device appears as an I/0 device which is always ready.
On input, a value of all zeros is returned as the input "data".
Physical device addresses may be changed (e.g. to an external
I/0 port). Consult factory for details.

The default device for the CONSOLE (TTY or CRT) is automatically
set to the same device being used to input ZRAID commands. (This
can be changed via the CP/M "STAT" command.)

Some CP/M programs terminate with a system warmstart which
reloads the operating system from diskette. ZRAID outputs a left
and right bracket and a beep to the console to indicate a
warmstart operation is in progress.

Control can be returned to ZRAID from CP/M by one of two methods:
1. Push the system RESET button.
2. Enter CNTRL-V on the console. This will cause the
console input routine to CALL DEBUG in ZRAID. A
return to CP/M can be made without affecting CP/M's
status by entering the & command to ZRAID.
(or a coldstart can be done via "'".,)

If the CNTRL-V exit from CP/M is hot desirable (some CP/M
programs use CNTRL-V as a command) use a parameter value of
@8 (hex) when loading CP/M, as follows:

'8

During CP/M disk I/0, if an error occurs, ZRAID will output a
message indicating the track and sector location and the error
type. (This is in addition to the normal error message generated
by CP/M.) The location of the error will be output as well.

(The error types are described on page 34.) For example,

the message "DISK ERR $@6-g@14.05" means a CRC ERROR (error

type 6 decimal) occurred on track 14 sector 5 (all numbers are

decimal) . Use PIO (P3-Centronics)
t as the "list" device.
LlfIXTXIXlVlXFCIDI
|
RAM clear Default Device
g=Clear at coldstart @g=Winchester
1=Do not clear RAM 1=Floppy

Control-V response
g=Return to ZRAID
1=Do not return to ZRAID

CP/M PARAMETER FORMAT

CP/M Diskette4Configuration
Floppy diskette based system:

1'

2.

The system diskette is double density, 1024 bytes
per sector, 8 sectors per track.

The system resides on track 1, starting at

sector 1.

Track § is not used.

The system diskette must be obtained from Heurikon
in order to assure proper operation of CP/M, SYSGEN
and MOVCPM.

Drives are assigned as follows:

Drive Name Physical Unit # Configuration

DD-1024
DD-1024
DD-1024
DD-1024

SD-128
SD-128
SD-128
DD-128

I WINCHESTER -

mo"E oWy
WhHE®R WS

Winchester based system:

l.
2.

3.

The system must be on the Winchester drive (via SYSGEN).
The Winchester has space reserved for 2048 directory
entries.

Drives are assigned as follows:

Drive Name Physical Unit # Configuration

A WINCHESTER -

B 1 DD-1024

C 2 DD-1024

D 3 DD-1024

E 0 SD-128

F 1 SD-128

G 2 SD-128

H 3 DD-128

I 0 DD-1024

The drive parameters may be changed by making modifications to

ZRAID.

Consult the factory if a special configuration is needed.

DD-1024 means double density floppy, 1024 bytes per sector.

DD-128 means double density floppy, 128 bytes per sector for MDS
compatibility.

SD-128 means single density floppy, 128 bytes per sector for 1.4
compatibility.
See page 40 for a drive configuration chart.

28

29

Typical ZRAID Usage (without CP/M)

1.

Push the system RESET button to enter ZRAID and initialize
to the desired device. Note: If RTS or DTR is not TRUE
on SIO Port B, ZRAID will automatically switch to Port A
even if location RCRT was entered. See page 37.

Set location @g@g@8 (hex) to a JUMP to DEBUG (as a break-
point) while debugging a program. Note: For use with CP/M,
this step is not required; it is automatic.

Use ZRAID to load and edit the desired program or to boot
strap CP/M. (See CP/M System Considerations)

Use the "*", C, or "«" commands to execute the program.

If the program "crumps" push the RESET button to re-enter
ZRAID.

Make any necessary modifications to the program and repeat
steps 4 through 7 as necessary.

Use the "Rl1" and "U" commands to insert and "march" a
breakpoint (RST 1) through the program, if necessary, to
examine the operation of the program. When the RST 1 is
encountered a "CALL" to "DEBUG" will occur due to the
JUMP to DEBUG at location g@ggs.

Note: CP/M has a debugging program, "DDT", which has more power

than ZRAID. ZRAID's main purpose is to allow easy access
to all board facilities for testing of small programs.

Entry Points and Links

ZRAID entry points and addresses are maintained by a JUMP table
at the beginning of ZRAID. This method allows future program
versions to be compatible with older versions.

The entry points are as follows: (NOTE: Only the "L" half of the
address is listed. The "H" half is Fg hex or 360 octal.)

Address "L" .
Registers
Hex octal Name Affected Function

g8 PQ@g COLDSTART all ZRAID Power-On-Jump address.
: Performs I/0 and memory init.

g3 @4@3 DEBUG none Entry to save user registers.
The previously enabled console
device is used for I/0

g6 RPROC none This entry assumes the user
program executed a CALL RPROC.
If the console device is not
ready (no key hit) a RET is
executed. If the console has
a character ready, ZRAID is
given control at DEBUG and the
user program is suspended. The
user program status can be
examined using ZRAID commands
and a return to the user
program can be effected with
the "&" command.

a9 g11 RSIOAS A,F Test S10 A data ready status
and set Register A and the
condition code as follows:

Character ready: non-zero

Character not ready: zero

gc g14 RSIOAD A,F Test S10 A data ready status
and wait for data ready.
Return with the input char-
acter in Register A.

30

31

Address "L"

Hex Octal
gF g17
12 g22
15 @325
18 238
1B @33
1E @36
21 g41
24 g4a4
27 847
2A @52
2D g55
3 geg

Registers
Name Affected

Function

RSIOA

RSIOBS

RSIOBD

RSIOB

RSTAT

RREAD

RWRITE

RPRINT

ROCT

RHEX

RWRITEHL

RPOS

none

A,F

none

none

Output character in
Register A to SIO port A

Same as RSIOAS but test
SIO port B status.

Same as RSIOAD but input
from SIO port B.

Same as RSIOA but output to
SIO port B

Same as RSIOAS but test
ZRAID console device.

Input one character from
ZRAID console device (SIO
port A or port B) to register
A.

Output one character from
register A to ZRAID console
device.

Output one character from
register A to the non-ZRAID
console device. (e.g. Printer)

Print contents of register

A in octal to the ZRAID console
device. Three digits plus

a space are output.

Print contents of register

A in hexidecimal to the ZRAID
console device. Two digits
plus a space are output.

Print contents of HL in

"Hxxx Lxxx" format to the

ZRAID console device. Octal
or hex output is determined

by the current mode switch ("X"
command) in ZRAID.

Output a CR,LF sequence
to ZRAID console device.

Address "L"
Hex Octal

33

36

39

3C

3F

FFFE

FFFF

g63

g66

71

g74

Registers
Name Affected

RFDIO A,F

RIOSUBR (all)

RMAP (all)

(reserved)

(reserved)

Function

Perform FLOPPY DISK I/O
according to the parameter
list address passed in H,L.
See page 33.

Output the I/0O device initialization
values (or character string) from
the table whose address passed in

H, L. Refer to the MLZ-9]1 User's
Manual or the ZRAID-91 source code
listing for details.

Set the memory mapping RAM from
the table whose address is passed
in H,L. Return to the address
specified in register pair DE.
Refer to the MLZ-91 User's Manual
or the ZRAID-91 source code
listing for details

Contains ZRAID91 Version number

Contains 91 (hex)

32

33

Disk I/0 via ZRAID Routines

The disk I/O routines of ZRAID are accessible for general
purpose disk I/0 operations. The routines contain automatic
track seek logic plus error recovery and retry logic. The
calling sequence is as follows:

LZI H,PARAMLIST

CALL RFDIO
All of the calling register values are saved and restored

except A and F. The Parameter List ("PARAMLIST") must be
preset to the following format:

PARAMLIST+@

D7 D6 D5 D4 D3 D2 D1l Dg

\' DD Dgg DSIZE X RI Cl cg

where: V = 1 to enable verification (i.e., read
data following a write and compare or read
again following a read and compare.)

= @ Single Density
= 1 Double Density

D@Pg= @ Double Density only on tracks above @g
= 1 Double Density on all tracks

DSIZE= @ Double Density sector size = 1024 bytes
= 1 Double Density sector size = 128 bytes
(Single density sector size is always 128 bytes)
RI= @ Enable error recover retry operations

= 1 Inhibit error retry procedure

Cl1l,C@= COMMAND

PP = Initialize drive (RESTORE)

@1 = READ DATA

19 = WRITE DATA

11 = (invalid)
PARAMLIST+1 Starting data address-~L half
PARAMLIST+2 Starting data address-H half
PARAMLIST+3 Desired drive (g-3)
PARAMLIST+4 Desired sector (1-52)
PARAMLIST+5 Desired track (@-76)
PARAMLIST+6 Reserved (future)
PARAMLIST+7 Reserved (future)

A successful I/0 operation is indicated by a return with NO
CARRY. An error is indicated by the CARRY flag set in which
case register A will contain the error type. See the next
section for error type meanings.

Refer to the ZRAID Source Code Listing for more details.

Disk I/0 Error Types

Error Type
hex

gl A
g2 B
23 C
a4 D
25 E
a6 F

Error Description
DISK DRIVE NOT READY
The diskette is either not inserted, not inserted

correctly, or there is a drive malfunction.

SEEK ERROR, TRACK NOT FOUND
The specified track cannot be found. The
diskette is probably defective.

WRITE PROTECTED DISK
An attempt has been made to write on a write pro-
tected diskette.

LOST DATA *

One or more bytes of data have been lost during the
transfer of data to or from the diskette. This
generdlly indicates a timing problem due to un-
available facilities, such as a busy memory or

DMA controller. Retry the original request.

SECTOR NOT FOUND *

The specified sector cannot be found or there is

a CRC error in the ID field. The diskette is probably
defective or the disk I/0 hardware is malfunctioning.

CRC ERROR *

A CRC (Cyclic Redundancy Check) error has occurred
in the transfer of data from the diskette. This
generally indicates a defective diskette, dirty
head, or a worn pressure pad.

See note page 36

34

Disk I/0 Error Types (continued)

The record type for the requested sector was not
'data’'. This may not be an error if the sector
has been marked as "deleted" by changing the

The command type (PARAMLIST+f@) was not recognized

The track and/or sector value specified in the
command is out of range. This is a calling software

After a write with verify command this error indi-
cates that the data read back from the disk did not
match the data block specified for writing. (Only
the last byte is tested although the entire CRC is

Error Type
hex Error Description
g7 G RECORD TYPE NOT gg *
sector's ID mark.
g8 H ILLEGAL COMMAND
as a valid command.
g9 I ILLEGAL TRACK OR SECTOR
error.
gA J (Not assigned)
2B K VERIFICATION ERROR *
checked.)
ﬂc L LUDL bAaLlna i viaanaa s
See error @gg4 "D".
aD M SECTOR NOT FOUND ON VERIFY *
See error @g@g5 "E".
gE N CRC ON VERIFY *

35

See error @gg6 "F".

Disk I/0 Error Types (Continued)

Error Type
hex

2F (0]
19 P
11 0
12 R
Eg

Note:

Error Description

(Not assigned)

DRIVE SELECT ERROR
The specified drive number is out of range.

(Must be 4,1,2,0r 3.)

WRONG DISK

The disk in drive "A" (Drive @) is not a CP/M
system disk. This error could occur during a
CP/M bootstrap or warmstart.

MEMORY DMA WRAPAROUND

The upper limit of address space (64K) has been
reached in a disk RD/WR operation.

OPERATOR ABORT

The decimal equivalent of the error number is
displayed when using CP/M.

The command has automatically been retried (unless inhibited
by bit D2 of the command) and the disk head position has been
checked prior to the error return. These errors may not be

recoverable since more than one attempt has already been tried.

36

SIO Port Connections

The recommended connections are as follows:

91 User Manual for details.)
25 pin "D"
Connector
Port A: 2

3
4
5
6

7
20

Name

Tx Data
Rcv Data
RTS

CTS

DSR
Ground
DTR

(Consult the MLZ~-

Connections

Data to device A

Data from device A

CTS or open

RTS, TRUE, or from device
receiver control timing
logic

DTR or TRUE

Ground

DSR or open

CTS (Cleér to Send) must be TRUE in order for ZRAID to

transmit to the device.

DSR (Data Set Ready) must

be TRUE in order for ZRAID to receive data.

Port B:

N N W N

7
20

Tx Data
Rcv Data
RTS

CTS

DSR
Ground
DTR

Data from device B
Data to device B
CTS or TRUE - .
RTS or open -

DTR or open

DSR or TRUE

RTS must be TRUE in order for data to be sent
to the device and DTR must be TRUE for data from

the device to be recognized.
(RTS or DTR) must be TRUE in order to initialize

ZRAID to port B.

At least one

Note that Port A is configured as a data terminal device while

Port B is setup as a data set.

37

8¢

Octal - Hex Conversion Functions

OUTPUT —> H, L octal 16-bit octal H, L hex
INPUT \L
Enter values via "H"
Enter values via "H" and "L" commands
H, L and "L" commands Switch to hex mode
octal - - Output 16-bit octal via "X" command
via "2" command Output hex values
via "A" command
Enter value via
Enter value via. "S" command
16-bit "s" command o Switch to hex mode
octal Output values via via "X" command
"A" command Output hex values
via "A" command
Enter values via "H"
H L and "L" commands Enter values via "H"
! Switch to octal mode and "L" commands o
hex via "X" command Output value via
Output values via "2" command
"A" command

Note: For all cases above, use the "X" command prior to entering the data,
if necessary, to switch to the correct data base mode. Hex is the normal
(at initialization) mode.

39

Enhancements - AUTOBOOT/AUTOSLAVE

l.

Normally, the apostrophe command is used to boot the
CP/M operating system. However, ZRAID will automati-
cally load CP/M following a hardware reset if DIP
switch group zero, switches 5,6,7 and 8 are all "ON".
AUTOBOOT

By setting DIP switch group zero, switches 1,2,3 and

4 all "ON", the monitor will automatically convert to
"slave" mode and 100% RAM. This is useful for a multi-
processor system (e.g., when using MP/M). AUTOSLAVE

For systems using P3 to connect to a Centronics-type
printer, use '2 command to boot CP/M. This will direct
listings to P3 instead of SIO port A.

ZRAID Version 1l.xS
(Single-sided, 8" Floppy Versions)

CP/M Drive Name Assignments

"A" (Note 1)

"Ill (Note 2) "Bll "C'l llD‘l
Floppies ® ® ® 9
(4 Physical |— — —] f T f— — —] T T T
drgf.’es) 1.4 1.4 1.4 XX
llE" "F" IIGII "Hll
” I ” (Note l I'J“ ’IM" "N "
Winchesters "A" (Note 2
(2 Physical
drives)
"Kll "L“ "O" "P"
Key Media Type
"o" CP/M 2.2 (Heurikon), single-sided, double-density, 1024 b/s
"1.4" CP/M 1.4 compatible, single-sided, single-density, 128 b/s
"xx" Single~sided, double~density, 128 b/s (MFM)

Letters (e.g., "A", "B") refer to the CP/M drive name.

Note l: When the system is loaded from floppy, "A" is the first floppy,
"I" is part of the Winchester.

Note 2: When the system is loaded from Winchester, "A" is assigned to
the Winchester and "I" is assigned to the floppy.

40

