
Heurikon UNIX System V & V.2

Reference Guide

HElRIK9N
Microcomputers For Industry

Heurikon t~!X - Reference Guide

System V and V.2

Heurikon Corporation
3201 Latham Drive
Madison, WI 53713

(608)-271-8700

Apr 1987

Rev D

The information in this guide has been checked and is believed to be
accurate and reliable. HOWEVER, NO RESPONSIBILITY IS ASSUMED BY HEURIKON
FOR ITS USE OR FOR ANY INACCURACIES. Specifications are subject to change
without notice. HEURIKON DOES NOT ASSUME ANY LIABILITY ARISING OUT OF USE
OR OTHER APPLICATION OF ANY PRODUCT, CIRCUIT OR PROGRAM DESCRIBED HEREIN.
This document does not convey any license under Heurikon's patents or the
rights of others.

Copyright 1987 Heurikon Corporation Madison, WI

1.

2.

3.

4.

5.

6.

7.

Heurikon u~IX - Reference Guide
Heurikon Corporation

Madison, WI

BOOTING THE SySTEM •• 2
1.1
1.2
1.3

Winchester Booting •••••••••••••••••••••••••••••••••••••••
Floppy Booting •••
Initial System Configuration •••••••••••••••••••••••••••••

3
12
13

POWER-DOWN PROCEDURE •• 14

IN CASE OF TROUBLE •• 15
15
15
17
18
18
20

3.1
3.2
3.3
3.4
3.5
3.6

THE
4.1
4.2
4.3
4.4
4.5
4.6
4.7

T~

5.1
5.2
5.3
5.4
5.5

TOUR
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Cannot Boot ••
Programs that Don't Work •••••••••••••••••••••••••••••••••
Terminal or System Lockups •••••••••••••••••••••••••••••••
System Crashes •••
Other Problems •••
Reporting Bugs •••

UNIX MANUALS.. 21
User's Manual.. 21
Adminiscrator~s Manual................................... 2S
User Guide... 25
Programming Guide.. 25
Support Tools Guide...................................... 26
Document Processing Guide................................ 26
Administrator Guide...................................... 26

UNIX FILE SySTEM.. 27
Structure, File and Directory Names...................... 27
Creating Directories and Files........................... 28
Typical Organization..................................... 29
Owners and Permissions................................... 30
Repairing a Damaged File System.......................... 30

OF IMPORTANT FILES... 31
/etc/passwd.. 31
/etc/inittab... 32
/etc/gettydefs... 33
/etc/rc.. 34
C-Shell Login Scripts.................................... 35
Bourne-Shell Login Scripts............................... 37
/etc/termcap and terminfo................................ 38
The Clock Daemon... 38
News... 40
/etc/motd.. 41
/dev... 41

THE S~LL •• ••••• 42

- i -

8.

9.

10.

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Csh Alias Feature ••
Csh History Feature ••••••••••••••••••••••••••••••••••••••
Wild Cards and Expansions ••••••••••••••••••••••••••••••••
Shell Scripts ••
Special Characters •••••••••••••••••••••••••••••••••••••••
Redirection of I/O and Pipes •••••••••••••••••••••••••••••
Background Commands ••••••••••••••••••••••••••••••••••••••
Use of Shell Variables •••••••••••••••••••••••••••••••••••
Shell Layering •••

INTERESTING COMMANDS •••••••••••••••••••••• -••••••••••••• _ •••••••••
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22

Process Status •••
Change Directory and List •••••••••••••••••• -••••••••••••••
Change Directory and Print Working Directory •••••••••••••
Pattern Search •••
Display File Contents ••••••••••••••••••••••••••••••••••••
Display Who is Logged On •••••••••••••••••••••••••••••••••
Sleep~ •• •••
Display Environment and Shell Variables ••••••••••••••••••
Date and Time ••
Translate Characters •••••••••••••••••••••••••••••••••••••
Copy. Move and Remove ••••••••••••••••••••••••••••••••••••
Display File Types •••••••••••••••••••••••••••••••••••••••
Check Spelling •••••••••••••••••••••••••••••• 0 •••••••••••••

Echo Arguments •••
Time a Command •••
Send Mail ••
Display Terminal Options •••••••••••••••••••••••••••••••••
Repeat the Previous Command ••••••••••••••••••••••••••••••
Display History and Aliases ••••••••••••••••••••••••••••••
Correcting Simple Errors •••••••••••••••••••••••••••••••••
Repeating a Command ••••••••••••••••••••••••••••••••••••••
Head and Tail ••

OTHER THINGS TO LEARN (TOOLS) •••••••••••••••••••••••••••••••••••
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

Summary ••
Move vs. Copy vs Link ••••••••••••••••••••••••••••••••••••
The Visual Editor ••
Other UNIX Editors •••••••••••••••••••••••••••••••••••••••
Compiling a 'c' Program ••••••••••••••••••••••••••••••••••
Linking C, FORTRAN, Pascal and Assembler Programs ••••••••
The Make Command •••
nroff/troff ••
awk ••
SCCS •••
Debuggers ••

ADMINISTRATIVE FUNCTIONS ••
10.1 Adding New Users - Removing Old Users ••••••••••••••••••••
10.2
10.3

Managing Processes ••••••••••••••••••••••••• : •••••••••••••
Setting /etc/motd ••

- ii -

42
42
43
43
46
47
49
50
51

52
52
52
52
52
52
53
53
53
53
53
53
53
53
54
54
54
54
54
54
54
54
54

55
55
56
57
59
60
60
62
64
67
67
67

69
69
72
72

11.

12.

13.

14.

10.5
10.6
10.7
10.8
10.9
10.10

10.12
10.13
10.14
10.15

Monitoring File System Usage •••••••••••••••••••••••••••••
Garbage Collection •••••••••••••••••••••••••••••••••••••••
Examining Log Files ••••••••••••••••••••••••••••••••••••••
Setting the Date and TZ ••••••••••••••••••••••••••••••••••
Checking the Nodename ••••••••••••••••••••••••••••••••••••
Running Vchk •••
Init •••
Adjusting /etc/inittab and letc/rc._ •• _ ••• _ •••• ___ ._~. __ =

Mail Aliases (System V.O) ••••••••••••••••••••••••••••••••
System Security ••
System Backups •••
Other Things to Watch ••••••••••••••••••••••••••••••••••••

USING FLOPPY DISKETTES AND TAPE •••••••••••••••••••••••••••••••••
11.1
11.2
11.3
11.4
11.5
11.6

Floppy Disk ••
Streamer Tape ••
Reel-to-Reel Tape ••
Media Interchange ••
Backups via Ethernet •••••••••••••••••••••••••••••••••••••
Method Comparison ••

REBUILDING THE UNIX SySTEM ••••••••••••••••••••••••••••••••••••••
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11

Floppy or Tape Rebuilding ••••••••••••••••••••••••••••••••
Creating Boot and Rebuild Diskettes ••••••••••••••••••••••
Creating Streamer Tape Dumps •••••••••••••••••••••••••••••
Writing the Standalone Boot to Winchester ••••••••••••••••
Bad Block Checking •••••••••••••••••••••••••••••••••••••••
Manual Disk Format/Mkfs ••••••••••••••••••••••••••••••••••
Changing the Swap Space Size •••••••••••••••••••••••••••••
File System Check, fsck ••••••••••••••••••••••••••••••••••
Creative Use of the Rebuild Diskette •••••••••••••••••••••
Winchester Partitioning ••••••••••••••••••••••••••••••••••
Multiple Winchester Drives •••••••••••••••••••••••••••••••

ACCESSING I/O DEVICES (DEVICE DRIVERS) ••••••••••••••••••••••••••
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

phys(2) System Call ••••••••••••••••••••••••••••••••••••••
/dev/mem and /dev/kmem •••••••••••••••••••••••••••••••••••
Device Drivers - Reconfiguration Rights ••••••••••••••••••
Installing a New Device Driver •••••••••••••••••••••••••••
Removing a Device Driver •••••••••••••••••••••••••••••••••
Hints for Writing a New Device Driver ••••••••••••••••••••
Common Device Driver Problems ••••••••••••••••••••••••••••
Kernel Routines and Macros •••••••••••••••••••••••••••••••
Kernel Tables ••

I/O ERROR CODES •••
14.1 Winchester Errors ••
14.2 Reel-to-Reel Tape Errors (MI0) •••••••••••••••••••••••••••
14.3 Floppy Disk Errors •••••••••••••••••••••••••••••••••••••••
14.4 Streamer Tape Errors •••••••••••••••••••••••••••••••••••••

- iii -

72
73
74
74
76
76
77
78
78
79
80
80

81
81
85
89
90
91
91

92
94
98
99

100
100
100
101
102
103
104
106

107
107
109
110
113
115
116
117
117
123

124
124
125
126
126

15.

16.

17.

18.

19.

20.

21.

MISCELLANEOUS OTHER INFORMATION •••••••••••••••••••••••••••••••••
15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14
15.15
15.16

SERIAL
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11

DEVICE
17.1
17.2
17.3
17.4

Floating Point Support •••••••••••••••••••••••••••••••••••
SUDH LEDs ••
User Jumpers and LEDs (MI0) ••••••••••••••••••••••••••••••
Using Environment Variables ••••••••••••••••••••••••••••••
/etc/update ••
Sticky Bits and Shared Text ••••••••••••••••••••••••••••••
Signals ••
RAM Considerations •••••••••••••••••••••••••••••••••••••••
Memory Map •••
Interrupt Usage ••
DMAC Channel Assignments •••••••••••••••••••••••••••••••••
Making pROMs •••
System V.2 Porting to/from System V.O ••••••••••••••••••••
Shared Memory, Semaphore and Messages ••••••••••••••••••••
Accessing Kernel Variables •••••••••••••••••••••••••••••••
System V.2 Notes •••

Standard Ports •••
Modem Ports ••
Network Ports ••
RS-232-C Connections •••••••••••••••••••••••••••••••••••••
Device File Setup ••
Sample System Configuration ••••••••••••••••••••••••••••••
Changing Serial Baud Rates •••••••••••••••••••••••••••••••
The UUCP System - Hints ••••••••••••••••••••••••••••••••••
'Cu' Usage •••
The LP Spooler Logic •••••••••••••••••••••••••••••••••••••
Stty Options •••

NUMBERING AND NAMING CONVENTIONS •••••••••••••••••••••••••
Device Numbers and Types •••••••••••••••••••••••••••••••••
Major Device Numbers •••••••••••••••••••••••••••••••••••••
Minor Device Numbers •••••••••••••••••••••••••••••••••••••
Device Naming Conventions ••••••••••••••••••••••••••••••••

REFERENCE MATERIALS •••

APPENDIX A - Changing HK68 Serial Baud Rates ••••••••••••••••••••
19.1
19.2
19.3
19.4
19.5

Background •••
MI0 and VI0 Baud Rates •••••••••••••••••••••••••••••••••••
Changing the Hbug Configuration Word (MI0, VI0) ••••••••••
SBX-SCC Expansion Module Configuration •••••••••••••••••••
V20 and M220 Default Baud Rates ••••••••••••••••••••••••••

APPENDIX B Sed, Awk Usage Examples ••••••••••••••••••••••••••••

APPENDIX C - Other Information ••••••••••••••••••••••••••••••••••
21.1
21.2

Additional Documentation •••••••••••••••••••••••••••••••••
Unsupported Commands •••••••••••••••••••••••••••••••••••••

- iv -

127
127
127
128
129
129
129
130
130
131
134
134
135
136
137
140
142

144
144
144
149
150
153
155
158
160
164
165
170

172
172
172
174
176

180

181
181
181
181
182
182

183

187
187
188

22.

23.

24.

21.3 System Configuration Summary •••••••••••••••••••••••••••••

READER COMMENT FORM •••

COMMAND PAGES •••

INDEX •••

-v-

189

191

193

215

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

LIST OF FIGURES

UNIX Startup Sequence - Flowchart........................ 6

Permuted Index... 21

UNIX Documentation •••• '. • 21

Typical UNIX Directory Structure......................... 29

/etc/passwd file (typical)............................... 31

/etc/inittab file (typical).............................. 32

/etc/gettydefs file (typical)............................ 33

/etc/rc file (typical)................................... 34

/etc/cshrc file (typical)................................ 35

.cshrc file (typical).................................... 36

.login file (typical).................................... 36

fetc/profile file (typical).............................. 37

.profile file (typical).................................. 37

/etc/termcap file - portion ••••••••••••••••••••••••••••••

crontab file (typical) •••••••••••••••••••••••••••••••••••

/usr/adm/cronlog file (typical) ••••••• ~ ••••••••••••••••••

calendar file (typical) ••••••••••••••••••••••• ' •••••••••••

/bin/calendar -Day enhancement •••••••••••••••••••••••••••

/dev directory (typical) •••••••••••••••••••••••••••••••••

'whereis' script •••

'vmail' script •••••••••••••••••••••••••• ~ ••••••••••••••••

Linking Languages C fragment (c.c) •••••••••••••••••••••

Linking Languages - FORTRAN fragment (fort.f) ••••••••••••

- vi -

38

38

39

39

40

41

44

45

61

61

Figure 24.

Figure 25.

Figure 26.

Linking Languages = Assembler fragment (ass.s) •••••••••••

Sample makefile {C programs) •••••••••••••••••••••••••••••

Sample makefile (nroff files) ••••••••••••••••••••••••••••

61

63

63

Figure 27. 'under' program.. 66

Figure 28. Adduser script... 72

Figure 29. log files.. 74

Figure 30. /etc/chgnod change....................................... 76

Figure 31. Script for Incremental Backup ••••••••••••••••••••••••••• 87

Figure 32. Rebuild Media Diagram - Typical.......................... 93

Figure 33. Winchester Partitions.................................... 105

Figure 34. Multiple Drive Configuration - Typical................... 106

Figure 35.

Figure 36.

'phys()' system call •••••••••••••••••••••••••••••••••••••

'jumper.c' program (M10. V10) ••••••••••••••••••••••••••••

107

108

Figure 37. Device Driver and Kernel Hooks (Summary)................. 113

Figure 38. System V Physical Memory Map (MlO. VIO).................. 132

Figure 39. System V.2 Physical Memory Map (V20)..................... 133

Figure 40. Semaphore and Shared Memory Example Program.............. 140

Figure 41. nlist(3) example... 141

Figure 42. Serial Port Minor Device Format.......................... 155

Figure 43. Sample Network Configuration............................. 156

Figure 44. /usr/lib/uucp/L.sys file................................. 163

Figure 45. /usr/lib/uucp/L-devices file............................. 163

Figure 46. /usr/lib/uucp/USERFILE file.............................. 163

Figure 47. /usr/spool/lp directory ••• ~.............................. 168

Figure 48. Sample LP Interface Program.............................. 169

Figure 49. Example Termio(7) Ioctl Calls............................ 171

- vii -

Figure 50.

Figure 51.

Figure 52.

Guide and Index Preparation Flowchart ••••••••••••••••••••

Nroff INDEX script part 1 ••••••••••••••••••••••••••••••

Nroff INDEX script - part 2 ••••••••••••••••••••••••••••••

- viii -

184

185

186

LIST OF TABLES

Table 1. Quick Summary - Boot Procedure •••••••••••••••••••••••••••• 3

Table 2. Initial System Configuration •••••••••••••••••••••••••••••• 13

Table 3. file name-forms ••• 27

Table 4. Special Characters - partial list ••••••••••••••••••••••••• 46

Table 5. 'vi' command summary •••••••••••••••••••••••••••••••••••••• 57

Table 6. Floppy Diskette Capacities (Blocks) ••••••••••••••••••••••• 84

Table 7. Reconfiguration Rights - Contents (partial) ••••••••••••••• 111

Table B. Kernel Routines and Macros (part 1) ••••••••••••••••••••••• lIB

Table 9. Kernel Routines and Macros (part 2) ••••••••••••••••••••••• 119

Table 10. Kernel Routines and Macros (part 3) ••••••••••••••••••••••• 120

Table 11. Kernel Routines and Macros (part 4) ••••••••••••••••••••••• 121

Table 12. Kernel Routines and Macros (part 5) ••••••••••••••••••••••• 122

Table 13. SCSI I/O Errors ••• 124

Table 14. Reel-to-Reel Tape Errors, Ciprico Tapemaster (MIO
only)... 125

Table 15. Floppy Errors (SBX-FDIO only) ••••••••••••••••••••••••••••• 126

Table 16. HK68 Status LEDs •• 127

Table 17. Signals ••• 130

Table 18. DMAC Channel Assignments •••••••••••••••••••••••••••••••••• 134

Table 19. Ven-Tel 212-4 Modem Switch Settings ••••••••••••••••••••••• 146

Table 20. Hayes Smartmodem 1200 Switch Settings ••••••••••••••••••••• 147

Table 21. Hayes Smartmodem 1200 Wiring •••••••••••••••••••••••••••••• 147

Table 22. US Robotics Password Modem Switch Settings •••••••••••••••• 147

- ix -

Table 23. US Robotics Password Modem Wiring ••••••••••••••••••••••••• 147

Table 24. Novation Modem Switch Settings •••••••••••••••••••••••••••• 148

Table 25. Novation Modem Wiring ••••••••••••••••••••••••••••••••••••• 148

Table 26. Connection to a Data Terminal Device •••••••••••••••••••••• 150

Table 27. Connection to a Data Set (Modem) •••••••••••••••••••••••••• 150

Table 28. HK68 RS-232-C Interface •••••• -.. ••••••••••••• ••• ••••••••••• 151

Table 29. CDC Eight Channel Expansion RS-232-C Interface •••••••••••• 152

Table 30. Serial Port Connections ••••••••••••••••••••••••••••••••••• 153

Table 31. /dev/tty nodes (M10 Example) •••••••••••••••••••••••••••••• 154

Table 32. Sample Network Configuration •••••••••••••••••••••••••••••• 156

Table 33. 'stty' options •• 170

Table 34. Major Block Device Numbers................................ 173

Table 35. Major Character Device Numbers (RAW)...................... 173

Table 36. Serial Port Device Assignments (on-card).................. 174

Table 37. SBX-FDIO Minor Device As.signments {MI0) ••••••••••••••••••• 174

Table 38. OMTI 5400 - Winchester Minor Device Numbers (MIa, VI0,
M220)... 175

Table 39. OMTI 5400 - Floppy Minor Device Numbers (MI0, VIa,
M220)... 175

Table 40. OMTI 5400 Floppy Type Values (M10, VIO, M220) ••••••••••• 175

Table 41. OMTI 5400 - Streamer Minor Device Numbers (MIO, VIO,
M220)... 175

Table 42. mknod Device Summary - Partial............................ 178

Table 43. Device Naming Conventions................................. 179

Table 44. Hbug Configuration Word Values............................ 182

Table 45. Hbug Configuration Word Detail............................ 182

Table 46. System Configuration Summary •••••••••••••••••••••••••••••• 189

- x -

1 Heurikon UNIX - Reference Guide
System V and V.2

1

Welcome to UNIX.

If you are a first time user, there are many interesting things ahead to
learn. In fact, whether you're a beginner or an expert, you will always
be learning new things about UNIX. Don't let the apparent complexity
scare you; one key to understanding UNIX is to realize that you don't have
to learn everything. You only need to learn a few basic commands and know
where to look for additional information about new or unfamiliar areas=

This Guide is written for the novice, but it is also useful for the
experienced user, because it describes the specific characteristics of our
implementation. Use the table of contents and the index to find
particular areas of interest. If you are a beginner, be sure to read
"UNIX for Beginners" in the UNIX User Guide.

This guide is only a supplement to the UNIX manuals. Our objectives are
to:

Go Document Heurikon specific features and procedures. In particular,
the methods used to load, backup and rebuild the UNIX system are
detailed. We've included information about how to configure the
serial ports for connection to a modem, a printer or another
processor.

~ Document general UNIX features for the beginner. As an example, we
discuss the purpose and formats of some of the system configuration
files. These files allow you to alter the operation of UNIX to fit
your own personal tastes. We have also included a detailed
description of the UNIX manual set, so you will know how to make the
most use of them.

~ Document administrative functions. There should always be one person
assigned to a system who is responsible for its proper operation.
That person,' the "system administrator", adds new users, modifies
features that effect all users, does file backups and generally
assures that the system is in good shape. That job usually requires
a few minutes each day to browse through the system, looking for
irregularities.

This guide covers UNIX software topics and a few hardware issues. For
specifics on particular hardware characteristics, refer to the appropriate
hardware manuals.

1 RK68 and Hbug are trademarks of Heurikon Corporation.
2 UNIX is a trademark of AT&T Bell Laboratories.
3 This document was prepared using the UNIX nroff facility and the

PWB/mm macros.

Copyright 1987 Heurikon Corporation Madison, WI

2 Heurikon UNIX - Reference Guide
BOOTING THE SYSTEM

2

1. BOOTING THE SYSTEM

This section describes the procedure to use to boot and start the UNIX
operating system. We'd really like you to skim all the manuals arid
documentation before you start using the system, but we are realists.
That's why this section comes first.

The standard method of booting is directly from the Winchester drive.
When Heurikon ships a system, the Winchester already contains the
bootstrap loader and the complete UNIX system.

In this guide, operator inputs are underscored and/or enclosed in single
quotes (e .g., 'bw') and must be followed by a carriage return. For
clarity, the act of entering a carriage return is not explicitly stated on
most steps; but, you must do so in order for your command to be
recognized.

If you make a typing mistake while entering a UNIX command, you can use
the backspace key (or the Control-H key) to backup one character. To
erase the entire line, hit the "@" key or the "DEL" key. To cancel a
command after it has been entered, hit the "DEL" key.

CAUTION ITEMS:

~ After unpacking your system, allow it to reach normal room
temperature before applying power. Allow at least 24 hours after
receipt for environmental stabilization to prevent damage due to
condensation. Extremes of temperature or humidity can damage the
unit.

G- Static discharges can easily damage electronic components. Do not
handle the circuit boards unless absolutely necessary, and then only
for as short a time as possible. Do not wear static producing
clothing. Before you touch a circuit board, discharge your body by
touching the system chassis first. And please, don't hand boards
around from person to person •

• Avoid physical shocks, which might cause the Winchester's read/write
head to hit the surface of the media. Do not move the system while
power is on. When power is off, the heads are brought to a "safe"
zone.

Some steps include a list of what to do in case of trouble. If your
problems persist after making the indicated checks, call Heurikon Customer
Service or our Service Department for help.

Copyright 1987 Heurikon Corporation Madison, WI

3 Heurikon UNIX - Reference Guide
BOOTING THE SYSTEM

3

1.1 Winchester Booting

Condition/Prompt

Some LEDs come on
Hbug prompt, ")"

Operator Response
Turn Power on
Push Reset PB
Wait 30 sec for

drive stabilization

"Standalone boot :"
tI ••• RETURN to start at
UNIX prompt, "11"
" ••• date correct?"
"Enter correct date:"
..... date correct?"
..... check file systems?"
"Phase I, 2, 3, 4, 5
"login:
"Password: "
"TERM 925"
UNIX prompt, "%" or "U"

<CR)
<CR)
.... init 2'
.... n ...

MMDDHHMM
.... y
.... y

(logname)
(password)
.... dumb

U<CR)" means enter only a carriage return

Table Ie Quick Summary - Boot Procedure

[1) Apply power and push the system reset button.

e CAUTION. Be certain your system is not at an extreme
temperature. All parts of the system, including the internal
drives, must be at normal room temperatures before applying
power.

[2] When power is applied, or .after a hardware reset, the HK68 is
executing instructions from the Hbug monitor pROM. It is generally
a good idea to manually push the system reset button after applying
power, even if you have the Hbug prompt, just to be certain that all
I/O devices are properly initialized. The prompt from the Hbug
monitor will look something like this:

Heurikon Corporation
Hbug
Ver x.y
)

Hbug will allow you to perform a number of simple tasks. Here' is a
very abbreviated list of Hbug commands:

Copyright 1987 Heurikon Corporation Madison, WI

4 Heurikon UNIX - Reference Guide
BOOTING THE SYSTEM

'uc'
'um'
'dm adrs'
'sb adrs'
'c adrs'
'bw'
'bf'
'bsf'

Print HK68 Configuration
Perform RAM test
Display Memory
Substitute Byte at adrs
Call Routine at adrs
Boot from Winchester
Boot from floppy (MIO, SBX-FDIO)
Boot from floppy (SCSI)

4

Refer to the Hbug manual for a complete listing of the commands and
more details. If you do not receive a prompt after pushing the
reset button, check these items:

$ The power switch must be all the way in the ON position, the
line cord must be firmly inserted at both ends, the fuse must
not be blown and the line voltage selector (near the fuse) must
be set correctly.

$ The fan must be working. Do not operate the unit if the fan is
not functioning properly.

$ If the fan is running, push and release the reset button and
observe .the status LEDs on the HK68. The "s" (Supervisor) LED
near the corner of the HK68 or on the front panel should be on.
The "S" LED means that Hbug is running. The "H" LED should go
on only when the reset button is pressed.

• If the "H" (Halt) LED is always on, then the HK68 is not
executing instructions, which is indicative of a loose board on
the bus or a hardware problem on the HK68. Remove all boards
from the system, except for the HK68, and try running the
system again. If that does not help (H LED still on), then
remove the HK68 and check that all chips are firmly in place.
CAUTION: Static discharges can damage components on the HK68.

• Check that the serial cables are properly attached to the HK68.
Also check that the external cables are connected to your
terminal correctly. Try your terminal on the other serial
ports. Refer to section {16} and the appropriate hardware
manual and drawings for details.

• Check the setting of your terminal options. Unless you made a
special order, the monitor program will be transmitting the
prompt at 9600 baud. If you get some characters, but they are
garbage, your baud rate is probably incorrect.

$ Check that the RS-232-C control signals (RTS, CTS, DTR, DSR)
are connected properly. The HK68 expects RTS and DTR to be
"true" (positive voltage). Check that these pins on the 25 pin
tiD" connector at the HK68 are wired correctly:

Copyright 1987 Heurikon Corporation Madison, WI

5 Heurikon UNIX - Reference Guide
BOOTING THE SYSTEM

Pin Connection
2 Transmit data, from the terminal.
3 Receive data, to the terminal.
4 RTS, from the terminal or connect

to pin 5. Must be true.
(Not required on HK68/V20)

5 CTS, to the terminal.
True if Hbug is running=

6 DSR, to the terminal.
True if Hbug is running.

7 Ground
20 DTR, from the terminal or connect

to pin 6. Must be true.
(Not required on HK68/V20)

5

See section {I6} for more information about the serial ports.

[3] At this point, allow sufficient time for the Winchesters to get up
to speed. Depending on the type of drives you have, you should hear
a series of clicks or whines as the drives reset themselves. Wait
at least 20 to 30 seconds for the drives to stabilize.

[4] Mter you have the Hbug prompt (n>,,), enter bw..... This will load a
short bootstrap program from
a floppy. UNIX will respond:

.&..-"- _ YT..! ___ '1 ___ ..L.. __ _

LIlt! W~IlClle~Le.[".

Standalone boot

Use ,,, L-'
DL to boot from

Some versions of Hbug have an autoboot feature. If this feature is
enabled, then you should not expect the boot prompt; go to step 8.

If you do not get a response, try these checks:

$ Reset the system and enter uc This will cause Hbug to print
out a summary of the current hardware configuration. This
information may help you locate the problem.

$ Check that all cables are properly attached to the HK68 and the
Winchester controller.

$ If you do not hear the drive resetting itself after power is
applied, and if the system will not boot, then check all of the
Winchester drive and controller power and data cables. See the
appropriate hardware manual for cable details.

$ If you get a drive error, wait a few seconds, push reset and
try the bw.... command again. The drives must have sufficient
time to spin up before they may be used. Sometimes, depending
on the previous head position, it takes two attempts to boot.

Copyright 1987 Heurikon Corporation Madison, WI

6 Heurikon UNIX - Reference Guide
BOOTING THE SYSTEM

6

• An "ID not found" error indicates that the form~t information
on the drive is not readable. The system will have to be
booted from floppy. Refer to sections {1.2} (floppy) and {12}
(rebuilding) for details.

[5] Enter a carriage return to continue the boot process. This will
cause the (default) "/unix" file to be loaded and executed. An
input of the form ' / another .unix.... can be used to specify a system
file other than the default on drive "wOb".

• If you get a message like "unix not found", the loader cannot
find the default /unix file. Reset the system, repeat the
above steps and, instead of just hitting the carriage return at
this point, try responding '/unix.tp', /unix.no tp/, or the
complete path na~e for any unix file you have on-your system.
This will instruct the boot program to load a different ver~ion
of the kernel.

If the boot or kernel programs on the Winchester are corrupted,
it may be possible to boot from floppy and correct the problem.
If this does not work, then it may be necessary to completely
rebuild the system according to section {I2}.

• A "unix not found" error could be due to the root file system
not being at the expected block on the drive, possibly because
the drive has been configured with a larger swap space. Try
responding with wd(O,16000)..... (This is automatically done in
release 7a an later).

• If you get a "bus error", you probably have a hardware problem,
such as bad memory. The bootstrap or file system on the
Winchester could also be damaged, in which case you should be
able to boot from floppy.

• Winchester error codes are described in section {14.1}.

[6] The loader will display some messages during the boot process. This
information consists of the sizes of the text, data and bss areas of
the kernel. This step will take about a minute.

• Then, you may be asked to "Type RETURN to start at OxIOOO". If
you are so asked, enter another carriage return to start
execution of the kernel.

[7] The kernel will begin by initializing the various I/O devices. You
will get a whole bunch of configuration messages, including the
amount of free memory (e.g., "mem-765952M"). Allow another half
minute for this step.

• Trouble here usually indicates a memory or peripheral board
problem. UNIX is trying to size memory by looking for

Copyright 1987 Heurikon Corporation Madison, WI

7 Heurikon UNIX - Reference Guide
BOOTING THE SYSTEM

.~-~~-----~~~--------.

I Hbug - HK68 Monitor I
pROM

,----------'
[4] bw

. ---------------------.
I UNIX Standalone boot I

on disk ... , -------------

[5,7J I (CR>, (CR)

---'------------.
lunix
letc/init
Ibin/sh -----------------

[9] 'init 2'

letc/bcheckrc
Ibin/fsck
/etc/rc

, , ----------------

.-----------------.

I /etc/inittab
/etc/getty

,---------------,

[14] login

/bin/login
letc/cshrc
$HOME/.cshrc
$HOME/.login

----.

, , -------------

.---------------.
I /bin/csh , , ---------------

Initialize serial port B
Initialize disk interface
Load standalone boot

Initialize SCSI interface
Load lunix kernel from disk

Initialize all devices, ints
Source of all UNIX life
Accept user commands (shell)

Single-user mode

Transition to multi-user

Set date
Check file system(s)
Mount file system(s)
Start daemons

Multi-user mode

Control file for processes
Wait for user login

Process user password
set TZ, print /etc/motd
User dependent
Set terminal characteristics

Accept user commands (shell)

Figure 1. UNIX Startup Sequence - Flowchart

7

Copyright 1987 Heurikon Corporation Madison, WI

8 Heurikon UNIX - Reference Guide
BOOTING THE SYSTEM

8

unresponsive or "stuck" bytes (meaning it has hit the end of
contiguous RAM), and initialize the I/O devices. If it cannot
do this properly, it mayor may not recognize the problem and
generate a specific error message. Be sure all boards are in
their proper slots and that all option switches and jumpers on
the peripheral boards are set correctly.

0- If your terminal is not configured properly, the system may
appear to hang. Check the parity controls of your terminal;
configure for eight data bits, no parity.

~ If the system appears to stop after initializing the I/O
devices but before the "single user mode" message is displayed,
it may be due to the /devfsyscon device node being linked to
the wrong tty port. Try hitting the "DELETE" key on the
console. If that doesn't help, refer to section {10.10}.

e If there is a long delay (about five minutes or so) during the
boot phase, it may be because your console te rminal does not
have DTR and RTS true. Refer to section {16.4}.

e If /etc/init is missing or damaged, you will probably not get a
prompt, either. Boot from floppy to check or restore the disk
copy of /etc/init.

[8] You should receive the standard UNIX super-user prompt "I". This
indicates that the UNIX shell (the command interpreter) is ready for
a command.

At this point, you are the "super-user" and are in single user mode.
The super-user has access to all files, commands and devices,
regardless of the permissions or usual restrictions on them.
Because of this, the system is "vulnerable". Therefore, we
recommend that the console device be located in a secure area if you
have sensitive information stored in your system.

You may want to stay in single-user mode if you are trying to repair
damage to the file system or prevent file changes (by another user
or by fetc/cron) during a dump. It is not good practice, however,
to be super-user all the time, since it is easy to accidentally
damage the system by deleting or altering important files •

.. The visual editor, "vi", will not work in single-user mode
unless you manually set the TERM environment variable to ,your
terminal type. See section {3.5} for details. You can use the
other editors, however.

[9] Enter 'init !' to switch to multi-user mode. In UNIX, the "init"
program starts all other programs. Before allowing other users to
log on, the init program runs a series of command scripts which
checks the date, checks file system integrity, starts background

'Copyright 1987 Heurikon Corporation Madison, WI

9 Heurikon UNIX - Reference Guide
BOOTING THE SYSTEM

9

daemons (e.g. j the "cron" program) and removes old log and program
locking files. These scripts are described in more detail later in
this guide.

[10] You will be asked if the date and time are correct. They probably
aren t, so reply n..... You will then be able to enter the correct
date and time using-the following format:

.... MMDDHHMM
or
.... MMDDHHMMYY
where MM is the month (01-12)

DD is the day (01-31)
HH is the hour (00-23)
MM 1.S the minute (00-59)
yy is the (optional) year (85-99)
e.g., 01251330 would be

1:30 pm on Jan 25, current year

It is good practice to set the date and time before entering multi­
user mode, since doing so later could burden the system. If the
date or time is changed in multi-user mode (while /etc/cron is
running), cron will try to "catch up" by doing, at once, all of the
tasks it should have done between the old and new times.

[11] Next, you will be asked if you want to perform a file system check,
"fsck". Respond Z Fsck will do a file system consistency check.
We recommend that you always answer y..... Otherwise, if the file
system is corrupted, using it may damage it beyond easy repair.
Fsck will offer to repair any file system problems it detects. This
procedure can take from five to ten minutes. The standard output
from this command will look like this (some numbers may vary):

** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List
1833 files 22107 blocks 77455 free

Refer to the fsck documentation in the UNIX "Administrator Guide"
for more details •

• If fsck finds a problem, it will print details concerning the
trouble (e.g., inode number and file ownership) and offer to
fix it for you. Generally, it is safe to respond 1. to all
fsck requests. The fsck documentation contains more details.

For releases prior to V.O 7a or on V.2 systems, if fsck makes
any changes to the root file system, it will halt when it is
done. If you get a "BOOT UNIX (NO SYNC!)" message, push the

Copyright 1987 Heurikon Corporation Madison, WI

10 Heurikon UNIX - Reference Guide
BOOTING THE SYSTEM

10

system reset button and restart this entire boot procedure,
including a second file system check (which should find no
errors).

• Some fsck messages are only warnings. For example, a message
of the form "Possible File Size Error ••• " is probably not an
error. Do not be concerned if you see one of these. They may
be suppressed by modifying the fsck command used in the startup
script.

[12] The system "nodename" will be checked against a value in
/ etc/bcheckrc. The nodename is used by the uucp logic as a host
name; if it is not correct (as would be the case after installing a
new /unix file), you will be asked if you would like it fixed.

[13] If /etc/bcheckrc finds no problems, /etc/rc will be run which will
start the standard UNIX daemons (such as update and cron) and mount
any secondary file systems (such as /dev/wlb). These actions may
take up to 30 seconds. Then, you will get the standard UNIX
"login:" prompt, usually preceded by a banner of some sort, which
identifies your computer system.

[14] To login, enter a valid user name, such as rootcsh.... or guest
The who.... command can also be executed at this point, without
logging in, simply by entering who , assuming the /etc/passwd file
has not been altered to prevent this. The console device usually
logs on as rootcsh

• The "rootcsh" super-user login will use the C-shell, "csh".
The Bourne shell login, "sh"; is root e Use root.... if you
have trouble logging in as "rootcsh":--Refer to section {7} for
information on the differences between "csh" and "sh". A
super-user login should be used only for system administration
functions, not for normal usage. Also, it is best to use a
regular user login, then history files used by 'last and Sy

• Other login names may be used
previously in the /etc/passwd
administrator, per section {IO.I}.

if they
file

have been
by your

setup
system

[15] If there is password protection for the login name which you use,
the system will request your "password:". Enter your correct
.... password.... • Be sure to hit the carriage return key, too. The
system will not echo the characters you type.

[16] You will see the "message of the day", which is contained in
/etc/motd.

• "Login incorrect" means that you have either chosen a login
name that does not exist in /etc/passwd or you have not typed
the password correctly. Be sure you are using the proper case,

Copyright 1987 Heurikon Corporation Madison, WI

11 Heurikon UNIX - Reference Guide
BOOTING THE SYSTEM

11

since UNIX makes a distinction between upper and lower case
characters, even in a password. Also, while entering the
password, you cannot correct typing errors with the backspace
key. You must use the If@" and retype the whole password. Or,
enter a carriage return and wait for another login prompt.

(17] The operation of the system from this point on is highly dependent
upon the contents of the /etc/cshrc, -/.cshrc and -I.login files,
which are associated with the particular login name you used.. (If-n
means your home directory.)

(18] You may be asked what type of terminal you are using via a message
of the form "TEIU1 (925) ". If you are using the type indicated
(e.g., a Televideo 925), simply enter a carriage return. If you are
using another type, enter the terminal type code. For example,
, avp' would be an ADDS Viewpoint. This will cause the proper
initialization sequence for your terminal to be used, instead of the
default. It is important for the terminal type to be set properly
since the visual editor ('lvi If) will not work correctly otherwise.
(The line editors "ex" or "ed", however, will still work.)

• If you do not know the proper abbreviation for your terminal,
enter 'dumb' and you will be minimally initialized. Later, you
can scan through /etc/termcap for the correct entry, or use
ned" or u ex" to add a new terminal type to the termcap file.
You can also modify your .login file to make the terminal
selection automatically for you, once you know the· correct
abbreviation. The termcap file contains entries for over 200
terminal types.

[19] At this point, you should be "on-the-air". If you logged in as
"rootcsh" or "root", you should have the super-user prompt, "111. If
you logged in as a normal user, then you will probably have a 11%11

prompt. These are the default prompts; they can easily be changed.
You can have your prompt automatically set when you log in by
including the appropriate command in your .login file. See sections
{6.5.2} and {7.2}.

(20] Look in section one of the UNIX User's Manual for descriptions of
the UNIX commands. See section --r4':ff of this guide for help in
using the UNIX manuals, section {8} for some simple command
examples and section {I8} for a list of suggested reference books •

• If all else fails, read the instructions!

(21] Some commands or functions are restricted, unless you are the
f1super-user". To become the super-user without logging off, enter
'su rootcsh' and, when prompted, the rootcsh password. Later, to
return to your previous login, type 'exit'.

Copyright 1987 Heurikon Corporation Madison, WI

12 Heurikon UNIX - Reference Guide
BOOTING THE SYSTEM

12

~ Do not run commands as the super-user any longer than
necessary, so as to lessen the chances of accidentally deleting
or damaging important files.

[22] To terminate your UNIX session, type 'exit' or 'logout'.

System power down procedures are detailed in section {2} of this guide.

Certain features have been "preset" at the factory. The initial system
configuration information can be found in section {1.3}.

1.2 Floppy Booting

These procedures may be used instead of the standard method of booting
from the Winchester. Typically, the only reason you would boot from a
floppy would be if you are rebuilding your system or trying to recover
from a "crash" which wiped out the standalone boot program or a critical
file on the Winchester.

These procedures assume some familiarity with the system. Refer to the
previous section on booting from the Winchester for help concerning the
expected UNIX responses and troubleshooting hints if you encounter
problems.

[1] Push the system reset button.

[2] Insert the floppy disk labeled "boot" and close the door. This disk
should be write protected.

[3] Enter 'bf'.

[4] When you get the standalone boot prompt (" :") , remove the boot
diskette and insert the "rebuild" diskette •

.. If you did not get the standalone boot prompt, remove the
diskette and check that it has been properly inserted.

[5] Hit the carriage return key, which will cause the "/unix" file to be
read from the floppy. This will take a few minutes to complete.

[6] When you get the UNIX prompt, "I", you may execute any command which
is contained on the diskette. Not all commands will be available,
due to limited space on the diskette.

[7] If you are going to rebuild the system, refer to section {12}.
Note: Rebuild the system only as a last resort.

[8] If you want to examine the Winchester, enter 'mount /dev/wOb
/floppy' • The" / floppy" directory on the floppy based system is
really just a dummy directory (it is empty). Mounting the
Winchester there is a way of attaching the Winchester to the floppy

Copyright 1987 Heurikon Corporation Madison, WI

13 Heurikon UNIX - Reference Guide
BOOTING THE SYSTEM

13

rooL I1~e system so that it can be accessed. You can then refer to
the Winchester files with the pathname '/floppy/name ••• '. See
section {12.9} for additional information.

If you cannot boot from the Winchester and you feel that the Winchester's
file system is okay, then you may have a defective boot program (which is
on the first few sectors of the Winchester) or the /unix file on the
Winchester could be bad. Either of these conditions can be corrected
without rebuilding. Section {12.4} explains how to rewrite the bootstrap.
See {11.1.3} for help in recovering /unix.

1.3 Initial System Configuration

Certain system features have been configured at the factory, as shown
below.

Feature

uucp

cu

Ip

lpr

pass­
words

log ins

Initial State

nodename = "hum"
uucp daemons disabled (3)

/dev/tty2 at 1200 baud

enabled
lpsched running
printer "tosh" on /dev/ttyO

off. /dev/lp not created

no passwords required

console speed = 9600 baud
alternate port = /dev/ttyl
modem port = "off"
modem speed = 1200 baud
other serial ports "off"

daemons cron enabled
calendar, 5:00 am
atrun twice per hour

accounting off

Files/Commands

/etc/bcheckrc
/usr/lib/crontab

/usr/lib/uucp/L-devices

Ipadmin(l)
/etc/rc
Ipadmin(l)

Ipr(l)

Ref Section

16.8
6.8

16.9

i6.iO

16.10

/etc/passwd 6.1

/etc/gettydefs 6.3
/etc/inittab 6.2
/etc/inittab
/etc/inittab, /etc/gettydefs
/etc/inittab

/etc/rc
/usr/lib/crontab
/usr/lib/crontab

(numerous)

6.4
6.8
6.8

4.7

Table 2. Initial System Configuration

Copyright 1987 Heurikon Corporation Madison, WI

14 Heurikon UNIX - Reference Guide
POWER-DOWN PROCEDURE

14

2. POWER-DOWN PROCEDURE

• We do not recommend that you power the system down if you will be
using ~again in only a few hours. It is much less traumatic for
the equipment to be left on over a weekend than it is to turn power
off and on. Also, the UNIX time of day clock and /etc/cron features
should be allowed to run normally, so the automatic (preprogrammed)
system maintenance functions can operate as scheduled •

• If you plan to move the system, it is advisable to power it down.
The media can be damaged if physical shocks cause the Winchester
read/write head to touch the disk surface.

Before you reset the system and remove power, it is important that UNIX
has wri tten all of its buffers to the Winchester drive. UNIX does not
necessarily do a physical disk write at the same time that a program
executes a logical "write" system call. If care is not taken, you may
lose portions of data which you thought were. written to the disk, but
weren't. Also, UNIX maintains information in memory concerning the file
system (the iisuper-blockii) which must be written to the drive before the
system is stopped.

[1] Log off all users but one, usually the console. This step is not
strictly necessary, but it insures that other users know the system
is coming down. In addition to being courteous, this prevents users
from making file changes just prior to stopping the system.

You can do this by entering 'exit' at each terminal or by using the
"ps" and "kill" commands at the console. You could also use "wall"
to notify all users to logoff and wait for them to do so. Another
alternative is to enter 'init s' to force a return to single user
mode. See section {IO.10} for-more information about the "init"
command.

[2] Enter '~'.

[3] Enter '~' (again). This insures that all UNIX internal buffers
are flushed out to the drives. Some people think the second 'sync'
command is just superstition. Others explain that the second
command insures the first has completed. Anyway, two or more do no
harm.

[4] Remove all floppy diskettes or cassette tapes from the drives.

[5] Push the system reset button, then power the system down.

Copyright 1987 Heurikon Corporation Madison, WI

15 Heurikon UNIX - Reference Guide
IN CASE OF TROUBLE

15

3. IN CASE OF TROUBLE

3.1 Cannot Boot

If you cannot boot the system from the Winchester t try to boot from a
floppy t as detailed in section {I. 2} , above. If the standalone boot
program or the /unix file is damaged on the winchester, you will be able
to repair the problem without too much trouble. If there is a more severe
problem with the file system on the Winchester, then it may be necessary
to rebuild it; but, do so only as a last resort since the rebuild
procedure is time consuming and will wipe out any recent changes made to
your files.

Read the troubleshooting hints given with the instructions on booting the
system at the beginning of this guide.

3.2 Programs that Don't Work

Sometimes a previously functional or an original distribution program will
refuse to work, no matter how hard you try. Sometimes the error message
will be of help, sometimes not. Here are some debugging hints:

• Do you have permission to execute the program? Are you the owner of
the file, a member of the group or just !!other!!1 Is l:ne appropr~at:e
execute bit on? Use 'Is -1 pgmname' to check these bits. Change to
super-user and try it again. Refer to ls(l) and chmod(l) in the UNIX
User's Manual.

• Do, you have permission to search the directories in the program's
path? Check the "x" bits using ls -1..... Change to super-user and
try it again.

• Do you have the permissions on your devices set correctly? For
example, the ups" command is "suid check". In order for it to work,
the /dev/mem and /dev/swap devices must be owned by "check". The
floppy or tape devices must be mode 666, or you must be running as
super-user, to do floppy disk or tape I/O.

• If the "ps" command produces no output, garbage output or complains
about a bad "namelist", then you probably booted a kernel other than
/unix. Use the "-u" option with "ps" (to specify the kernel file in
use) or rename your kernel file to "/unix", if appropriate.

• Do you have to be the super-user to execute the program? Change to
super-user (via su rootcsh') and try it again.

• Some files are "hidden" from the "Is" command. If the file name
begins with a dot, e.g., ".cshrc", then you have to use "Is -a" to
list them. Dot files are not included in the list when the shell
expands a wild card, such as n*".

Copyright 1987 Heurikon Corporation Madison, WI

16 Heurikon UNIX - Reference Guide
IN CASE OF TROUBLE

16

• Are you using the correct command format? Check the UNIX User
Manual. Try a simpler version of the command.

• Do all the files and directories that the command needs exist and do
they have the proper r/w permissions? For example, "/bin/mail" needs
the lusr Imail directory with 777 permissions. Check the "FILES"
section of the manual page and verify that all files and directories
are present.

tt Have you just "installed" the program somewhere, like in lusr Ibin?
Execute 'rehash' to make it visible to your csh.

tt Is there another program of the same name earlier in the shell's
search path? Use ls' to search for such a program or the "whereis"
script, shown in figure {20}. Enter the full pathname of the
program, as in ' lusr/yourname/a.out' or, if the program is in your
current directory, './a.out', instead of just a.out'.

tit Maybe there is a csh "alias" for the bad command. Type' alias' to
see the current set of aliases. You can use ~unalias cmd~ to remove
an alias.

$- Is the program in your search path? Enter echo Spath' (csh) or
.... echo $PATH' (sh) to see the path list. You can change the path list
by putting a "set" command in your .login file.

• If the program is binary, try 'strings Ibin/pgmname' and check for
undocumented files, devices, directories or other programs it is
trying to access. This step is not easy to explain since you must
use some intuition to figure out what the program is trying to do.
To get the hang of this technique, experiment by running "strings" on
some familiar programs.

$- If the program generates a "core dump" and all other things have been
checked, try reading another copy of it from the appropriate
distribution diskette or tape. You can check if the version you have
is okay by using the 'sumdir command, and comparing the results with
the appropriate line in letc/vchk_tree for that program.

• Does your command line have any special shell characters? You may
have to escape the special characters using a pair of single quotes
(....) or a backslash ("\"). See section {7.5}.

• If you are trying to run a shell script, it may not be executing with
the proper shell. If the script is started from a Bourne shell, then
it will execute using a Bourne shell. However, if you are invoking
the script from a C-shell (as is most likely), then the first
character of the script is used to select the shell for running the
script. If that character is "I", then a C-shell ("csh") will be
used; otherwise, a Bourne shell ("sh") will be used.

Copyright 1987 Heurikon Corporation Madison, WI

17 Heurikon UNIX - Reference Guide
IN CASE OF TROUBLE

3a3 Terminal or System Lockups

17

If your terminal stops functioning, don't panic, and don't push the reset
button. The reset button is always the last resort.--Try these steps to
clear the problem:

[1] Enter 'AQ' (Control-Q) in case you have stopped your output with a
ACt

D.

[2] If you are in the "vi" editor, hit ESC twice and try the R command.
If the screen does not update, enter 'ZZ' to save your file and exit
the editor. Do this in case the system is still acting on your
commands j even though you do not see a responsee

[3] Hit your 'DEL' key to kill the program. If that doesn't work, try
entering '''''1' (Control-I) to send a QUIT signal to the process.

[4] Enter '(LF)reset(LF)' (that's "reset" surrounded by two line feeds).
The linefeeds are used here in case the tty modes have been set to
prevent a carriage return from terminating a line.

[5] Enter 'stty sane'.

[6] Enter'tset'. Wait 10 seconds.

[7] Hit,carriage return a few times. See if you get a prompt.

[8] Enter 'exit'.
listening.

Wait 10 seconds. Maybe your shell is still

[9] Reset your terminal (power it off, then on). Repeat the above
steps.

[10] Go to another terminal, login as "rootcsh", execute 'ps -e', find
the programs attached to the locked port and kill them. Use 'kill
-9 pid'. If you only have one terminal, reconnect it to another
serial port. This is why we recommend having gettys on unused ports
(see section {6.2}.)

[11] If all of the above fails, now is the time to reset the system. But
before you do, enter two "sync" commands at a working terminal, if
there is one, or wait 60 seconds. Then, reset the system. (If the
system is still running, the /etc/update process will do an
automatic "sync" every 30 seconds.)

[12] Reboot and be sure'to run 'fsck'.

[13] If you were in the editor when the system crashed, you can recover
the edit session up to the last two or three changes you made to the
file. Refer to sections {9.3}, {9.4} and the UNIX manuals for more
information about the UNIX text editors.

Copyright 1987 Heurikon Corporation Madison, WI

18 Heurikon UNIX - Reference Guide
IN CASE OF TROUBLE

18

3.4 System Crashes

If the system "crashes" t it is usually due to a hardware error. When you
are executing a user program (without super-user privileges), it should be
impossible to accidentally do anything which would bring the system down.
If you tried to do something illegal, the worst you could get would be
"Segmentation violation - core dumped." Such a message usually means the
program made a memory reference to an illegal (out of bounds) address.

A true crash results in a "panic" message from the kernel or the "R"
(halt) LED coming on. A panic message means that the kernel encountered a
situation which is impossible to resolve. So, it just stops. This could
be the result of a memory error, where some value the kernel read was way
out of limits. At any rate, panic errors are indicative of a hardware
problem or an obscure software bug. Contact us if you have persistent
errors of this nature.

Refer to section {3.6} for information on how to report bugs.

There are two commands in the Houg moni tor program which may bel? you
localize a hardware problem. Refer to the Rbug manual for details on the
"uc" and "um" commands.

3.5 Other Problems

0- (MI0, VI0 only). If the console scrolls up one line every few
seconds, or if you get strange status messages from one of the device
drivers, check to be sure all of the user jumpers on the HK68 are
removed. (See section {15.3} for more information on the user
jumpers.)

• If you try to send data to a serial port to which there is no device
connected, the program might hang, waiting for the characters to be
transmitted. The HK68 will not transmit unless DTR is true. Even a
'kill -9 pid' may not release the process. Connect a serial device
(your terminal will do) to the port for a few seconds. This will
allow the HK68 to transmit the characters, so the process can
terminate.

0- If you delete a file using the firm" command, it is gone. There is no
practical way to recover a deleted file since the disk blocks are
immediately released for reuse. You might be able to reload a lost
file from a backup tape or diskette. You may be interested in using
the "rm" alias shown in section {7.l} •

.. The serial port characteristics may not be set properly for your
terminal or personal tastes. The 'stty' command will let you change
some of the special characters, such as backspace, kill and end-of­
file. You can use 'stty' to change the baud rate, specify parity
options and select how the backspace key affects your CRT display.
Refer to section {16.ll} for more information.

Copyright 1987 Heurikon Corporation Madison, WI

19 Heurikon UNIX - Reference Guide
IN CASE OF TROUBLE

19

It The "console" port, which, by default, is connectEd to hardware port
B, may be redefined to point to a different hardware port, by
changing /dev/syscon. This could be done automatically by "init", if
you switch to single user mode, in which case you may have unexpected
trouble when rebooting. See section {10.10} for details •

.. If the file system becomes full, due to unmanaged log files or too
many old files, you can boot from floppy, mount the winchester and
delete some files to create space. See section {12.9} for details.
There is some discussion in section {lO.4} about monitoring file
system usage and obtaining more disk space.

• The visual editor, "vi", will not work properly unless your terminal
type is set in the "TERM" environment variable. When you login in
multi-user mode, commands in your .login file set the' TERM and
TERMCAP variables. If the TERM variable is incorrect or if you are
in single-user mode (where TERM is not set), then you may set the
TERM variable manually, as follows (this example is for an ADDS
ViewPoint terminal, which is coded "avp" in /etc/termcap):

Single-user mode (sh):
Multi-user mode (csh):

TERM=avp; export TERM
se tenv TERM avp

• If you are having trouble sena1ng mail between machines,
sections {IO.8} and {16.8} for help.

• UNIX is a very flexible operating system. Sometimes, apparent
malfunctions are actually not problems at all, but simply normal
operation of the system as it is presently configured. Chances are,
you can modify the behavior of your system to suit your needs; it
only takes experience to learn how. Also, pranksters occasionally
prey on UNIX neophytes. A common trick is to change the shell prompt
to look like an error message •

.. To avoid hangups when using a defective floppy diskette, specify the
"raw" device instead of the "block" device •

.. If you run out of swap space (usually indicated by "Not enough swap
space to fork" messages), you may need to enlarge the swap space.
Refer to section {12.7}. A short term solution is to add memory or
reduce the number of users.

• If you suddenly run out of memory to run programs (e.g., the compiler
starts to complain) you may really have too little memory or a
previous program which used shared memory may not have released the
shared memory area. Refer to section {IS.14}.

• If the date looks right, but the day of the week is wrong, check the
year.

Copyright 1987 Heurikon Corporation Madison, WI

20 Heurikon UNIX - Reference Guide
IN CASE OF TROUBLE

20

3.6 Reporting Bugs

If you do have a repeatable system software error, please contact our
Customer Support Department with the following information:

~ Your UNIX (or other program) serial number, as assigned by us when
shipped.

~ The output of 'size /unix' and 'sumdir /unix'.

~ A list of any local changes you have made ·to the system, such as the
addition of a custom device driver. We may ask you to demonstrate
that the bug exists on an unmodified version of our UNIX release •

• The program size, checksum and version (output of 'size', 'sumdir'
and 'version' programs).

~ The shortest version of your program which demonstrates the problem.
If we can repeat the error, we can correct the bug.

~ The output of any register dumps from the console. In the case of a
kernel panic, copy down the register data before rebooting.

Copyright 1987 Heurikon Corporation Madison, WI

21 Heurikon UNIX - Reference Guide
THE UNIX MANUALS

21

4. THE UNIX MANUALS

One key to understanding UNIX, and learning how to use all the features,
is to thoroughly understand how the UNIX manuals are organized. This will
make it easy for you to find information and to dig out buried items.

~ A manual is a fundamental reference tool.
information about commands and UNIX features.

It contains precise

~ A guide is a tutorial or description of a feature or program. A
guide gives more details about certain programs and has usage
examples.

This document is a guide, and there are some manual pages at the end.

4.1 User's Manual

The User's Manual is the primary reference manual for UNIX. There are six
"sections" in this manual, split between two books. The first book
contains the user portion of section one, the second book contains
sections two through six. Section ~ is the primary ~ reference. It
contains the command descriptions.

Usually, a separate page is reserved for each command. If a group of
commands are related, they may share pages ,in the manual. The pages are
ordered alphabetically (by the first command in a group) with the command
clearly listed at the top of each page.

At the beginning of each book, there is a "permuted index. II These are,
perhaps, the most important pages of the manuals. At first, it may look a
bit complicated. But this is due to its unusual format; a format which
actually provides much more information than a typical "index". Here are
some sample lines from near the middle of the permuted index:

lpstat: print

information.
directories.

update.
pointer.

m4:
tp:

mail, rmail: send
program. ctags:

LP status information •••• lpstat.l
lpr: line printer spooler •• lpr.l
lpstat: print LP status ••• lpstat.l
Is: list contents of ••••• 1s.1
lsearch: linear search and •• search.3c
lseek: move read/write file • seek.2
m4: macro processor ••••• m4.1
macro processor • • • • m4.1
magnetic tape format ••••• tp.4
mail to users or read mail •• mail.l
maintain tags file for a C •• ctags.l

Figure 2. Permuted Index

To use it, scan down the middle column, which is in alphabetical order.
Every command, system call, subroutine and file page in the manual starts
with a "NAME" section containing the command or routine name followed by a

Copyright 1987 Heurikon Corporation Madison, WI

22 Heurikon UNIX - Reference Guide
THE UNIX MANUALS

UNIX User's Manual
.--------------.

Permuted Index

Section 1
Commands & Programs

, ,
----------~------------

. - UNIX User's Manual
---------'-------.

Permuted Index

Section 2
System Calls

UNIX User Guide
.-----------------------.

Basics
C Shell
Bourne Shell
Editor Tutorials

..... _----------------,
UNIX Programming Guide

. ---------------.
"c" Tutorial
UNIX I/O System
UNIX Implementation

--------------,

Section 3 UNIX Support Tools Guide
Subroutines • ----------------.

Section 4
File Formats

Section 5
Mise Facilities

Section 6
Games

... ---~----------.. ----,
UNIX Administrator's Manual

.~------------------.
Permuted Index

Section 1
Commands & Programs

Section 7
Special Files

Section 8
System Maintenance
Procedures

'----------------,

Figure 3. UNIX Documentation

Make Tutorial I
sees, dc, lex, yacc I
Awk Tutorial I
Uucp description , , -------------------

Document Processing Guide
-----. .
I Nroff/troff,Tutorialsl

Macro Descriptions
, , ---------------

UNIX Administrator Guide
.------------------.

Fsck Description
Line Printer Spooler
Uucp Administration

'-----------------------~

Heurikon UNIX - Ref Guide
.---------------------.

Contents

You are here -> *
Special Manual Pages

Index
'-----------------------,

22

Copyright 1987 Heurikon Corporation Madison, WI

23 Heurikon UNIX - Reference Guide
THE UNIX MA..T\fUALS

23

very brief description. The permuted index is formed by taking each of
these lines (one from each manual page) and rotating it numerous times so
each keyword in the description has a turn at being positioned at the
middle column. The result is alphabetized. Thus t each command may be
listed in the index in more that one placet depending on the keywords used
in its description. This scheme makes it easy to find almost any command t
as long as you know something about its function.

The right hand column of the index lists the command name under which the
information can be found. The suffix number following the name indicates
the section number. Thus, the "Is" command, which is listed in section
one of the manual as:

Is: list contents of directories

will be cross-referenced in the permuted index at
"directories", "list"t and "Is".

"contents",

Frequently, the suffix number is enclosed in "()If, as in "mail(I)" and
"seek(2)".

Commands and files suffixed ".lm" , It. 7" or " .8" are in the
"Administrator's Manual", described later.

4.1.1 Section 1 - Commands and Application Programs
These are the descriptions -of the commands which can be invoked by a user
in response to a UNIX shell prompt. This is the most used section of the
manuals. Each page contains a detailed list of the options and arguments
which may be used with the command. Most descriptions also include an
example of how to use the command. The "SEE ALSO" section will point you
to other related commands or files, the descriptions of which frequently
shed more light on the usage of the command.

Most of the actual programs are located in the Ibin and lusr Ibin
directories.

If you cannot find a command in this section, which you know exists, look
also in section one of the the "Administrator's Manual", described below.

4.1.2 Section 2 - System Calls
System calls are the means which a program uses to communicate with the
UNIX kernel to request I/O, allocate resources or do other kernel
functions. This section describes the system calls and details the exact
format for both "c" and assembler interface with the kernel. Example
system calls would be disk file "open"t "read", "write" and "close".

The introduction found at the beginning of section two explains all the
possible errors which could be returned from a system call and defines
some of the basic terminology used by UNIX. You should skim the
introduction (intro.2) even if you do not plan to do any "c" programming
under UNIX.

Copyright 1987 Heurikon Corporation Madison, WI

24 Heurikon UNIX - Reference Guide
THE UNIX MANUALS

4.1.3 Section 3 - Subroutines

24

There are many pre-coded subroutines which may be called from a "C"
program. For example, to print a formatted line containing some text and
a decimal value, you need only use a statement of the following form:

printf("The value is: %d.", value);

The "printf" subroutine will take care of all the dirty work associated
with printing the text and converting the value. The above command would
output a line like this:

The value is: 349.

Don't confuse a subroutine with a system call. A subroutine performs some
useful or commonly used function which mayor may not make a system call.
A system call makes some specific and primitive demand on the UNIX kernel.

4.1.4 Section 4 - File Formats
There are numerous control files used in UNIX. Most of them are in ASCII,
so they can be read by us humans and easily modified. Section four
details the formats of particular file types, such as:

~ The System V.2 terminfo data base.

$ executable files (a.out) and core image dumps (core)

• archive libraries (ar) and tape archives (cpio)

• the file system (fs), directories (dir) and inodes (inode)

• process control files (inittab, gettydefs)

• the system user information and password file (pa$swd)

4.1.5 Section 5 - Miscellaneous Facilities
This is a small catch-all section. The most important item contained here
is the definition of the terminal capabilities data base file (termcap).

4.1.6 Section 6 - Games
This section explains how to run the games and educational programs. They
could have been included in section one; but, since some installations
might want to delete them or restrict their use, they are documented
separately. The actual game programs are kept in a separate section of
the file system (/usr/games). The programs listed in this section are not
supported. They are provided for recreational use only.

Copyright 1987 Heurikon Corporation Madison, WI

25 Heurikon UNIX - Reference Guide
THE UNIX MANUALS

4.2 Administrator's Manual

25

This is a supplement to the User's Manual described above. The commands
and files listed in this volume are generally used only by the system
administrator, since their improper use could compromise the integrity of
the system.

4.2.1 Section 1 - System Maintenance Commands and programs
The system administrator can use these programs to configure the system or
to check and repair it. Most of the commands in this section reside in
the /etc directory. In the permuted index they are suffixed ".lm".

4.2.2 Section 7 - Special Files
UNIX "special" files refer to I/O devices. This section
information on the "mem", "null" and "tty" devices. There
descriptions of the networking mail aliases and hosts files
section, which really ought to be in section four.

4.2.3 Section 8 - System Maintenance Procedures

contains
are also
in this

Additional information on the boot procedure and kernel error messages are
listed here, along with the manual pages for some of the mail programs.

4.3 User Guide

This guide is a general overview and a description of some of the features
of UNIX. It has a section on "Basics", which, like this document, offers
some help to the beginner. It also has tutorial sections on the editors,
including "vi", and both standard shells, "sh" and "csh". You should
definitely read the sections on "vi" and "csh" before going too far with
UNIX.

4.4 Programming Guide

If you plan to write any "C" programs, then this is the place to go for
some tutorial information on the "C" language and "c" libraries. This
guide also contains the (only) detailed description of the "UNIX I/O
system" (which is necessary information if you plan to write a device
driver) and "UNIX Implementation" (with details on the file system, I/O
system, and some aspects of the kernel).

If you are going to do any serious "C" programming, you must get the the
ultimate "C" reference book:

Go The f Programming Language, by Brian W. Kernighan and Dennis M.
Ritchie. Prentice-Hall.

Copyright 1987 Heurikon Corporation Madison, WI

26 Heurikon UNIX - Reference Guide
THE UNIX MANUALS

26

4.5 Support Tools Guide

There are many software "tools" in the UNIX system. This guide describes
a number of them, using tutorials. For example, you will find details on
"dc", "lex", "awk", "make", "yacc" and the "SCCS" package. There is also
a section on the "uucp" facility.

4.6 Document Processing Guide

If you anticipate using the document preparation programs, "nroff" and
"troff", the Document Processing Guide will answer most of the questions
concerning their use. For example, this document was created using the
"mm" macros and "nroff". "Nroff" handles all section numbering, page
formatting, column justification and other functions associated with the
document.

4.7 Administrator Guide

This guide contains information and advice for the person who is primarily
responsible for the operation of your system. Most notable are these
sections:

~ User mode - has some aiscussion about fsck.

~ File System Checking fsck. The system administrator should
definitely read this description of fsck. Fsck is executed semi­
automatically (by /etc/bcheckrc) before multi-user mode is entered,
after a system boot.

~ Line Printer Spooling System. This section explains the installation
and operation of the line printer spooling programs. This package
allows UNIX to support a number of various printers simultaneously on
one system. See section {16.10} for hints on installing and using
LP.

~ Uucp Administration. The uucp system allows two computer systems to
communicate with each other and exchange files over a serial link,
either hard wired or via modems and telephone lines. This section
explains the formats used by the various control files and how to use
some of the commands which oversee the operation of the uucp system.
See section {16.8} for hints on using uucp.

~ System Accounting - description. (Note: Most of our customers will
not want to use the system accounting package. The processor
overhead and maintenance of the programs themselves are usually not
worth the information gained in a small user environment.)

Copyright 1987 Heurikon Corporation Madison, WI

27 Heurikon UNIX - Reference Guide
THE UNIX FILE SYSTEM

5. THE UNIX FILE SYSTEM

5.1 Structure, File and Directory Names

27

The UNIX file system structure is generally described as a "tree". It has
a base, or "root", plus limbs, branches and files. The limbs and branches
are the directories. To completely describe the location of a file you
need its name (e.g., Utest.file;;) and its path. The path describes the
sequence of branches (the directories) which must be traversed in order to
get to the file. The root directory is called "I". All subsequent
directories are then listed, separated by a slash (another "I") and,
finally, the filename is placed at the end. The slashes within such a
"pathname" have no relation to the initial "/" used to identify the root.

For example, if "test .file" is located in your home directory (which we
assume is named "yourhome"), its complete pathname would be:

lusr/yourhome/test.file

In this example, the file can be found by starting at the root, moving
from there to the "usr" directory, then to the "yourname" directory which
will contain "test .file". There are also shorthand notations for
specifying a filename. If you are currently "in" your home directory
("yourhome"), then it is sufficient to simply say

test.file

to specify the file. Here is a summary of the forms which may be used to
specify any particular file (assumes csh):

Form

I name

name
./name
•• /name
-/name
-fred/x

Relative to

root

working directory
working directory
parent directory
your home directory
Fred's home directory

Examples

lusr/bin/sumdir
lusr/guest/test.file
test.file
./a.out
cd ••
cat -/mbox
cat -fred/mbox

Table 3. file name forms

The "working directory" is the directory which you are "in". You can move
around in the directory tree by using the "cd" (change directory) command.

Whenever a filename is required as a command argument, you may chose any
of the above methods to specify the name. That is, the shell (and the
kernel) will accept either a full pathname, or one which starts from the
current working directory. The "-II style is recognized by the C-Shell, so
that style cannot be used when issuing system calls to the kernel.

Copyright 1987 Heurikon Corporation Madison, WI

28 Heurikon UNIX - Reference Guide
THE UNIX FILE SYSTEM

28

The special names If." and " •• " (called "dot" and "dot dot") refer to the
current directory and the parent directory, respectively. They allow
references to be made relative to the current directory. For example, if
you are in /usr/yourhome/src andwnt to move to lusr/yourhome/bin, any
one of these lines will do the job:

cd /usr/yourhome/bin
cd ; cd bin
cd •• /bin
cd -/bin
cd ; cd bin

As used in the last line above, the "edit command without any arguments
simply returns you to your home directory.

Any character can be used in a file name. However, because some
characters have special significance to the shell or as option flags, we
recommend you use only upper or lower case letters, numbers, underscore
and the period. A dash (It_") may be used but, to avoid confusion with
command options, not as the first character of a file name.

In UNIX, there are few restrictions when naming files. However, there are
certain conventions. The following file types, for example, are
frequently encountered (the "*" is a wild card and stands for any sequence
of characters):

*.c
*.s
*.0
*.h
*.f
*.p
s.*
.*
a.out

e source code file
Assembly language source code
Object file (binary)
Include file (header file)
FORTRAN source code file
Pascal source code file
sees file
Hidden file (hidden from "Is")
Default link editor (ld) output

5.2 Creating Directories and Files

The following commands may be used to create or modify the directory
structure. Files may also be created by redirecting the output of a
command, as described in section {7.6}.

Copyright 1987

mkdir
rmdir
rm -r
mv
In
cp

make directory
remove directory
remove, recursive
move
link
copy

Heurikon Corporation Madison, WI

29 Heurikon UNIX - Reference Guide
THE UNIX FILE SYSTEM

5.3 Typical Organization

29

There is a typical file system layout for a UNIX system, although there
are many variations. Some programs assume certain files are in certain
directories; so, it is usually a good idea to stay close to the
convention.

Tne following list
organization.

Directory
/bin

illustrates a portion of

Notes
Most commands

the

/floppy A place to mount a floppy
/lib Libraries

TnTTV ~.l 1 _
U1'I.J.A .J..J...J.C

/etc System maintenance programs/files
/tmp Temporary files
/lost+found Used by fsck to stash lost files
/usr/bin More commands
/usr/tmp More temporary files
/usr/adm System accounting programs/files
/usr/mail Mail spool area
/usr/games Game programs and files
/usr/guest Guest login home directory
/usr/src System source code
/usr/include System include files
/usrlspool/uucp Spool area for uucp system
lusrlspool/lp Spool area for line printers
/usr/spool/at Spool area for the "at" command
/usr/lib/uucp Uucp programs and control files
/usr/lib More libraries
/usr/lib/cron/ Cron directory (System V.2)
/usr/yourname/ Your home directory
/usr/lib/terminfo/ Curses directory (System V.2)
/usr/yourname/src Place for your source code
/usr/yourname/bin Place for your commands
/usr/local/yourname/ Alternate home directory
/usr/local/bin/ Alternate binary directory

Figure 4. Typical UNIX Directory Structure

Systeiii

Copyright 1987 Heurikon Corporation Madison, WI

30 Heurikon UNIX - Reference Guide
THE UNIX FILE SYSTEM

5.4 Owners and Permissions

30

Every file (and directory) in UNIX is "owned" by someone, and has a group
ownership, too. The owner of a file can place certain restrictions on the
use of the file or directory by others. The "Is -1" command will display
the ownership information for a file. An executable file can also be
given a "suid" (Set User ID) attribute, which means that it can be given
special permissions while it is running. These commands are used to check
and modify file permissions:

Is -1
chown
chgrp
chmod

Refer to the UNIX User's Manual f~r details.

5.5 Repairing a Damaged File System

Sometimes, it· is possible to repair a damagea I1~e system. The techniques
are not easily described, since the procedures require a thorough
knowledge of how UNIX operates. It is, therefore, an advanced topic.
Here are some of the commands which are used:

Is -i
find
ncheck
fsck
dd
badblk
pstat
fsdb
od

Copyright 1987 Heurikon Corporation Madison, WI

31 Heurikon UNIX - Reference Guide
TOUR OF IMPORTANT FILES

6e TOUR OF IMPORT~_NT FILES

6.1 /etc/passwd

31

The password file is one of the most important files in the system.
Critical information about all authorized system users is stored there.
This file contains the user's login name, encrypted password, ID number,
and home directory. The password file contains "public" data. It has
general read permissions, since many UNIX programs use the information to
correlate user id numbers with names. There is no security risk, however,
because the passwords are encrypted.

root:Wz2YUsEt51Snw:O:O::/:/bin/sh
rootcsh:4zuAHY2G9sHtI:O:0::/:/bin/csh
daemon:xxxxxxxxxxxxx:l:l::/:
bin:xxxxxxxxxxxxx:2:2::/bin:
sys:xxxxxxxxxxxxx:3:3::/bin:
adm:xxxxxxxxxxxxx:4:4::/usr/adm:
uucp:T7H17CubieODM:5:5:admin:/usr/lib/uucp:/bin/csh
check:xxxxxxxxxxxxx:6:6::/:
who::22:0:who command:/bin:/bin/who
guest:BNBenIFsomjhE:100:100::/usr/guest:/bin/csh
pete:neCtlikEGi6Dk:l0l:1:Peter Lee:/usr/pete:/bin/csh
.; o-F-F .",,~al"l-F'Df-TT'I7_' n 1 ("11).1 • T",++ V1 .; 1 •• ,.,_ I.; ++. 11-': _ 1 __ 1-
.J •,~"1 " J6 ... v6 v'" L'-L LL ... ·I UO.L/..J I u..Lu./ ,,-;;:tu

dan:CHxxiv3lH09DU:103:1:Dan Lake:/usr/dan:/bin/csh

Figure 5. /etc/passwd file (typical)

All files in the system 1fbelong" to someone. This file relates the file
owner ID codes to their names. The system administrator can edit this
file to add or delete users. The gobbledygook fields are encrypted
passwords. If a user forgets his password, the administrator can delete
the password from /etc/passwd. The 'passwd' command may be used to enter
a new or change an existing password.

The lines with "xxx ••• " in the password field are for pseudo-users. These
"users" are owners of certain system files and directories. For example,
most programs are owned by "bin" and the accounting files are owned by
"adm". There is no real user named "bin"; the password file entry for
"bin" associates user id number "2" with the name "bin".

Note that "root" and "rootcsh" both have the same user id number ("ott).
By convention, the super-user is always user id "0". Logging in as "root"
or "rootcsh" will give you super-user privileges.

For more details, refer to section four of the UNIX User's Manual.

(Glad to see you're using the index.)

Copyright 1987 Heurikon Corporation Madison, WI

32

6.2 /etc/inittab

Heurikon UNIX - Reference Guide
TOUR OF IMPORTANT FILES

32

This is a control file for the "init" program. It controls the sequencing
used to switch from single to multi-user modes. It specifies which serial
ports are to be used for user terminals and the port's baud rate.

is:s:initdefault:
bl::bootwait:/etc/bcheckrc </dev/console \

>/dev/console 2>&1 'bootlog
bc::bootwait:/etc/brc l>/dev/console \

2>&1 Ibootrun command
sl::wait:(rm -f /dev/syscon; \

In /dev/systty /dev/syscon;) \
l>/dev/console 2>&1

rc::wait:/etc/rc l>/dev/console 2>&1
pf::powerfail:/etc/powerfail

l>/dev/console 2>&1
d1::once:/etc/some daemon # typical daemon
co::respawn:/etc/getty console 9600
to::respawn:/etc/getty ttyO 9600
tl::respawn:/etc/getty -t 60 ttylm md 1200 # modem
t2::respawn:/etc/getty -t 60 tty2m md-1200 , modem
t3::off:/etc/getty tty3 co 9600 , ti8IO printer
t4::respawn:/etc/getty tty4 9600
t5::respawn:/etc/getty tty5 co 9600
t6::respawn:/etc/getty tty6 4800
pO::respawn:/etc/getty ttyTO co 9600 , Ethernet 0
p1::respawn:/etc/getty ttyTl co-9600 # Ethernet 1
p2::respawn:/etc/getty ttyT2 co-9600 , Ethernet 2
p3::respawn:/etc/getty ttyT3 co-9600 I Ethernet 3

·Figure 6. /etc/inittab file (typical)

This example is for a system with eight serial ports (including two modems
and one printer) and Ethernet connections.

Each line controls one process, depending on the init "level" of the
system. Level "s" is the single user state which is entered at boot time
according to the first line of inittab. When the multi-user state is
selected (init level 2), the other lines in this file are used. It would
be possible to use different init levels to energize different system
configurations. There is more discussion about "init" and "inittab" in
sections {10.10} and {10.11}.

You should always have a "getty" running on your unused ports. This will
permit you to login on another line to kill a stuck process.

There are more inittab examples in section {16.6}. Refer to "inittab" in
section four of the UNIX User's Manual for more details. See the caution
"NOTE" on the next page.

Copyright 1987 Heurikon Corporation Madison, WI

33 Heurikon UNIX - Reference Guide
TOUR OF IMPORTANT FILES

33

6.3 /etc/gettydefs

The gettydefs file is used by /etc/getty to control terminal
characteristics during the login phase.

9600# B9600 # B9600 SANE TAB3
#\r\n\nHeurikon System V\r\nlogin: #9600

4800# B4800 # B4800 SANE TAB3
H\r\n\nHeurikon System V\r\nlogin: #4800

md 1200# BI200 # BI200 CS8 CREAD IGNPAR ISTRIP
ICRNL IXON IXANY ISIG ICJl~ON ECHO ECHOE ECHOK
OPOST ONLCR TAB3 #\r\n\nHeu V\r\nlogin: Imd_300

md 300# B300 n B300 CS8 CREAD IGNPAR ISTRIP "ICRNL
IXON IXANY ISIG ICANON ECHO ECHOE ECHOK OPOST
ONLCR TAB3 #\r\n\nHeu V\r\nlogin: #md 1200

co 9600# B9600 H B9600 SANE TAB3
#\r\n\nHeurikon System V\r\n\nlogin: Rco 1200

co 1200# B1200 R B1200 SANE TAB3
U\r\n\nHeurikon System V\r\n\nlogin: Ico 9600

Figure 7. /etc/gettydefs file (typical)

Each entry in this file has a name (e .g., "md 1200") which is used as an
argument to getty in the / etc/ inittab file. The" Rtf symbol is a field
separator. This file also specifies the "login banner" which identifies
the system on the terminal.

The las t field of an / etc/ inittab "getty" line and the firs t field of a
/etc/gettydefs line correspond to each other. Those fields do not, in
themselves, specify a baud rate. The baud rate is selected in the second
and third fields of the referenced gettydefs entry (e.g., by "B96001f

).

In the above listing, the format of the file has been changed slightly for
clarity (newlines have been added). Refer to "gettydefs" in section four
of the UNIX User's Manual for more details.

See section {16.11} for the definition of "SANE".

~ NOTE: Do not attempt to change the gettydefs or inittab files unless
you are very familiar with their functions and the operation of the
UNIX editors. You could easily cause improper system operation if
these files are changed in an incorrect manner. See section {IO.II}
for more discussion.

Copyright 1987 Heurikon Corporation Madison, WI

34

6.4 /etc/rc

Heurikon UNIX - Reference Guide
TOUR OF IMPORTANT FILES

34

The / etc/rc file is a shell script which is executed by "init" as
specified by /etc/inittab. It controls the mounting of additional file
systems (other Winchesters), cleaning up old temporary files, removing
program lock files (which may be left from a previous run) and starting
background daemons, such as the line printer scheduler.

TZ=CST6CDT
export TZ
if [! -f /etc/mnttab ; then

> /etc/mnttab

fi

/etc/devnm / 1 grep -v swap 1\
grep -v root I /etc/setmnt

set 'who -r'
if [$7 = 2] ; then

mount /dev/wlb /u
mount fdev/wla ftmp

fi

rm -f /usr/adm/acct/nite/lock*
/usr/lib/ex3.7preserve -
/etc/update
echo Starting EXOS Network V3.2
echo netload •••
/net/netload fnet/net ; sleep 2
echo remshd ••• ; /net/remshd
echo ud ••• ; fnet/ud
echo ftpd ••• ; /net/ftpd
echo rwhod ••• ; /net/rwhod
, mv /usr/adm/sulog /usr/adm/OLDsulog
H mv /usr/adm/cronlog /usr/adm/OLDcronlog
H > /usr/adm/cronlog
nice -20 /etc/cron
echo cron started
rm -f /tmp/*
rm -f /usr/spool/uucp/LCK*
echo starting lp scheduler
rm -f /usr/spool/lp/SCHEDLOCK
/usr/lib/lpsched

sleep 2 H let daemons take hold

Figure 8. /etc/rc file (typical)

There are two other scripts of interest, /etc/brc and /etc/bcheckrc, which
are not shown here. /etc/bcheckrc is the script which asks you to set the
date and run fsck when switching to multi-user mode. The /ete/bre script
removes the mount table, "mnttab". By the way, the designation "re"
stands for "run control".

Copyright 1987 Heurikon Corporation Madison, WI

35 Heurikon UNIX - Reference Guide
TOUR OF L~PORTANT FILES

6.5 C-Shell Login Scripts

These scripts are used routinely by the C-Shell.

6.5.1 /etc/cshrc

35

The first file read by the C-shell at login time is the system-wide
/etc/cshrc file. This file does setup functions which are common for
every user.

6.5.2 $HOME/.cshrc

setenv TZ CST6CDT
cat /etc/motd
stty ixon echoe
set mail = /usr/mail/$LOGNAME
if (-e $mail && ! -z $mail) then

echo You have mail.
endif

Figure 9. /etc/cshrc file (typical)

After the /etc/cshrc is executed, the login process executes the commands
in the cshrc file in your home directory. Your "home" directory is
specified in the /etc/passwd file. The /$HOME/.cshrc file contains
commands which are specific for each user. Tn1S is where you have 1:ne
most flexibility in configuring the system for your personal tastes. In
the following example, the csh aliases provide short names for long
commands, allow sloppy typing ("car" = "cat") or to automatically invoke
commands with particular options.

Copyright 1987

if ($?prompt) then
interactive shell

set history = 50
set cdpath = -
set ignoreeof
set mail = /usr/mail/$LOGNAME
set path = (/bin /usr/bin /etc • $HOME/bin)
set prompt = "%\![el1 "
set noclobber
alias from ngrep From $mail"
alias games cd /usr/games
alias h history
alias ht "history I tail"
alias car cat
alias Is ls7 -F
alias prn pr -nf160
alias vid vi dead.letter
alias vic vi $HOME/calendar
alias who who -uT

endif

Figure 10. .cshrc file (typical)

Heurikon Corporation Madison, WI

36 Heurikon UNIX - Reference Guide
TOUR OF IMPORTANT FILES

36

Your .cshrc file is also read each time one of your processes starts a new
shell, as would be the case when you execute a shell command from within
the editor or switch users via "su". Thus, you should not put too much in
this script, in order not to slow response times each time a new shell is
started. If you have a bunch of commands you occasionally want to
execute, it is easy to assign an alias which will "source" the appropriate
file. Another way of speeding up response times is to use an "if"
statement to skip over the .cshrc commands in certain cases, as is done in
the above example.

6.5.3 $HOME/.login
The .login file in your home directory is read, once, each time you log
into the system. Its function is to configure the system for your
particular type of terminal and initialize your terminal, if necessary.
It is read after your .cshrc file.

set noglob
set term = ('tset -e -Q -S -r 925')
setenv TERM "$term[l]"
setenv TERMCAP !'$term[2]"
unset term noglob
setenv EXINIT "set autoindent"
stty -parenb cs8 echoe ixany
news -s

Figure 11. .login file (typical)

The second line of this .login file selects the /etc/termcap entry for
your terminal. This example automatically selects a Televideo 925.

Some people like to put the line ". /usr/games/fortune' in their .login
file.

6.5.4 $HOME/.logout
Your .logout script is executed when you type "logout" or "exit" to your
C-Shell. It may be used to clean up certain directories or execute
programs as you log off the system. Typical entries might be:

/bin/rm $HOME/tmp/*
clear
kill 0

(to clean your tmp directory)
(to clear your display)
(to stop your background pgms)

Copyright 1987 Heurikon Corporation Madison, WI

37 Heurikon UNIX - Reference Guide
TOUR OF IMPORTANT FILES

6.6 Bourne-Shell Login Scripts

37

Since the Bourne shell isn't used as often as the csh, we won t go into
detail here. However, two of the typical scripts used by "sh" are shown
below for your reference. These scripts perform functions similar to the
C-Shell cshrc files, described above.

V~.·~v.-l ler~/n~n~~'o - I '-/.r~ v ~'-

This is the system-wide configuration script for all users who use the
Bourne shell, "sh".

trap nn 1 2 3
export TZ LOGNAME
readonly LOGNAME
cat /etc/motd
TZ=CST6CDT
case "$0" in
-811 I -rsh)

if mail -e
then echo "you have mail"
fi
if [$LOGNAME != root]
then

news -n
fi
; ;

-su)

.. , ,
esac
trap 1 2 3

Figure 12. /etc/profile file (typical)

6.6.2 $HOME/.profile
This script is the personal "sh" configuration file. There would be a
separate one for each user.

Copyright 1987

stty echoe erase AH
SHELL=/bin/sh
export SHELL
PATH=/bin:/usr/bin:/etc:.:
export PATH

Figure 13. .profile file (typical)

Heurikon Corporation Madison, WI

38 Heurikon UNIX - Reference Guide
TOUR OF IMPORTANT FILES

6.7 /etc/termcap and terminfo

38

The UNIX system will operate with a large variety of CRT terminals. The
/etc/termcap file and, in System V.2, the /usr/lib/terminfo files, detail
the terminal capabilities for programs which need to know such things as
how to clear or scroll the screen. The termcap file is read by the "tset"
command in your .login script, which loads the TERM and TERMCAP entries in
the environment. (The "environment" is a group of variables which
"follow" you and any child processes around.) The visual editor, "vi",
uses the TERM entry to get terminfo data. The files supplied with the
UNIX system cover a wide variety of terminals (over 200). You may add or
change the entries, if you wish. Refer to termcap(5) and terminfo(4) in
the UNIX User's Manual for details. If you place your most-used entries
near the top of the /etc/termcap file, you will find it slightly faster to
log in.

v41tvi9504Pl9504pltelevide0950 w/4 pages:\
:is=\EDF\EC\Ed\EGO\Eg\Er\EO\E\047\E(\E%\Ew\EX\Ee AO\
\Ek\E016\E004\ExO\200\200\Ex1\200\200\Ex2\200\200\
\Ex3\200\200\Ex4\r\200\E\\3\E-07 \E3\
:te=\E\\3\E-07 :ti=\E\\1\E-07 :tc=tvi950:

Figure 14. /etc/termcap file - portion

6.8 The Clock Daemon

6.8.1 /usr/lib/crontab
The cron table is the control file for the clock daemon, "cron". Cron
monitors this file (it checks the file once each minute) and performs any
functions specified. For example, certain processes are scheduled to run
every day. In System V.2, each user can have their own crontab. The "at"
program is also controlled by cron, via "atrun". Lines beginning with "fI"
are comments.

I 0-60min 0-23hour 1-31date 1-12month 0-6day Things-to-do
0,10,20,30,40,50 * * * * /usr/lib/atrun
59 23 * * 6 mv /usr/adm/cronlog /usr/adm/ocronlog ;\

touch /usr/adm/cron10g
58 23 * * * mv /usr/adm/sulog /usr/adm/OLDsulog ;\

touch /usr/adm/su10g
58 23 * * * mv /etc/wtmp /etc/owtmp ;\

touch /etc/wtmp
o 5 * * * calendar -
17,39 * * * * /usr/lib/uucp/uucp.hourly
2 4 * * * /usr/1ib/uucp/uucp.daily
6 4 * * 0 /usr/1ib/uucp/uucp.week1y

Figure 15. crontab file (typical)

Copyright 1987 Heurikon Corporation Madison, WI

39 Heurikon UNIX - Reference Guide
TOUR OF IMPORTANT FILES

6.8.2 iusriadmicronlog

39

Whenever cron does something, it records critical information about what
it did along with any error messages in a log file. Here is a portion of
such a file:

Sat Aug 27 05:00:00

/usr/lib/atrun
calendar -
/usr/lib/atrun
/usr/lib/uucp/uucp.hourly
/usr/lib/atrun
iusrilibiatrun
/usr/lib/uucp/uucp.hourly
/usr/lib/atrun

Figure 16. /usr/adm/cronlog file (typical)

6.8.3 $HOME/calendar
In most installations, the "calendar" program is automatically run early
each morning by "cronn. If you have any important events which you would
like to be reminded of, enter the critical information. in your calendar
file. You will receive mail a day in advance of the event. ~fer to
calendar(l).

Aug 30 3:00pm medical
Aug 30 Canadian reps here for visit
Aug 31 11am Meet w/Accountants
Sept 1 12noon Lunch w/Bill
Sept 5 Register for seminar
Sept 12 Bob G to Chicago
Sept 13 Call NY Reps
Nov 29 10:30am meeting w/Mktng

Figure 17. calendar file (typical)

There is an improvement which you can make to your /bin/calendar program
to alert you to regular weekly events& If you add this code just before
the "case" statement in the calendar script, your $HOME/calendar file can
have lines of the form "-Wed 11:30 Staff Meeting".

Copyright 1987 Heurikon Corporation Madison, WI

40

6.9 News

Heurikon UNIX - Reference Guide
TOUR OF IMPORTANT FILES

day='date'
case $day in
Mon*) echo _[Mm] on" »$ {_tmp} ; ;
Tue*) echo " -[Tt]ue" »$ {_tmp} , ,
Wed*) echo " -[WW]ed" »$ {_tmp} ; ;
Thu*) echo """-[Tt]hu" »$ {_tmp} .. , ,
Fri*) echo " -[Ff]ri" »${ tmp} "
Sat*) echo nA-[Ss 1st r-[SsTun , A_ [Mm1on" »$Ctmp}
Sun*) echo It""-[Ss]un "'-[Mm]on" »${_tmp} ;;
esac

Figure 18. /bin/calendar -Day enhancement

40

; ;

The "news" program is usually called from your .login script. Any new
entries in the /usr/news directory will create a message when you log onto
the system. By typing "news" you can see the new news entries. A special
file in your home directory records which items you've seen, so you won't
be bothered with "old" news each time you login.

You can create news items yourself by placing a text file in the /usr/news
directory. Typical items would be announcements of new computer
facilities, e.g., "modem now connected to port tty3", or company events,
e.g., "The baseball team is in first place! " Give the files names which
relate to their contents, e.g., "modem".

Another way of issuing "news" is to send messages.via the "mail" facility.
You could compose an announcement and send it to everybody, via:

mail jeff dan pete Ian debbie dave bruce bob < message

The UNIX "news" program should not be confused with the worldwide user's
network, "Usenet". Usenet news software (which is not part of UNIX) works
with uucp and manages thousands of news articles per week in hundreds of
"newsgroups" (technical and non-technical topics). Usenet is an informal
network of over 1300 machines, running UNIX and other operating systems,
linked by modems, telephone lines and high speed networks. The Usenet
population is mostly individuals at corporations in the computer business
and universities. Some estimates place the number of people who
participate in the network at over 20,000.

Copyright 1987 Heurikon Corporation Madison, WI

41

6.10 /etc/motd

Heurikon UNIX - Reference Guide
TOt~ OF L~PORT~~T FILES

41

The "Message of the Day" file is displayed on the user's terminal at login
time (by /etc/cshrc or /etc/profile). Unlike the "news" files, this file
is output each time a user logs in, whether or not he has already seen it.
It could be used to inform users of special system conditions such as:
"The printer will be off-line all day Friday". If there are no messages,
this file should simply be empty.

6.11 /dev

The /dev directory contains entries which describe the I/O devices, such
as serial ports and disk drives. This file provides the link between the
operating system and the environment. There is no data stored in this
directory, only pointers to device drivers.

cent rf 1 tty tty3m
console rf5dd ttyO tty4
fO rf5sd ttyl tty4a
f1 rf8dd ttyla tty4b
f5dd rf8sd tty1b tty5
f5sd rwOb tty2 tty6
f8dd rwOc tty2a wOb
f8sd rwOh tty2b wOe
kmem rwlh tty2m wOh
lp swOh tty3 wlb
mem swlh tty3a wic
null swap tty3b wIh
rfO

Figure 19. /dev directory (typical)

Refer to section {I7} for more information on device numbering and naming
conventions.

Copyright 1987 Heurikon Corporation Madison, WI

42

7. THE SHELL

Heurikon UNIX - Reference Guide
THE SHELL

42

A shell is a program that interacts with the user to allow commands to be
executed. The commands usually come from the user's keyboard; however,
they could just as well come from a file which has been previously set up
with a desired command sequence. An "executable" file in UNIX could be
either a true binary file, such as would be produced by compiling a "C"
program, or an ASCII text "script" which is a (human readable) sequence of
commands that can also be executed by the shell. There are two shells in
the Heurikon UNIX system: the Bourne Shell and the C-Shell. The Bourne
Shell ("sh"). was developed by Bell Laboratories as part of the original
UNIX. The C-Shell ("csh") is the result of enhancements made at Berkeley
by William Joy, and is usually more popular for interactive use on those
systems which have it because of the "alias" and "history" features.

7.1 Csh Alias Feature

Alias substitutions allow you to rename another command or assign a short
name to a frequently used or complicated sequence. Example:

alias Iss /bin/ls -It
Iss

Here are some advanced alias examples. The last one, in particular, is
helpful iOf you have ever wanted to "unremove" a file after doing an "rm"
command. It causes the "rm" command to save everything you delete. A
, /bin/rm $HOME/tmp/*' command, executed manually or by your - / .logout
file, will really purge the data.

alias vim vi fetc/motd
alias look egrep \A\!\A /usr/dict/words
alias append 'cat \!:1 » \!:2 ; rm \!:1 '
alias bak cp \!\A \!\A.bak
alias Ie 'echo \!-1:q >! /tmp/I$$; vi /tmp/I$$;\

cat /tmp/I$$; source /tmp/I$$; rm /tmp/I$$'
alias rm mv \!* $HOME/tmp

There are other alias examples in the .cshrc file, shown earlier in
section {6. 5.2} • Refer to the UNIX User's Manual and User Guide for
details.

7.2 Csh History Feature

The C Shell history feature records your previous commands and allows you
to re-execute them without having to retype the whole thing. Example:
Type "!!" (called "Bang Bang") to repeat the previous command. Also, if
you"'ve ever tried to execute a long command which has a typo in it, you'll
appreciate this feature because the typo is easily corrected without
retyping everything. There is an example in section {8.20}. The history
mechanism also allows you to re-execute a previous command by giving its
line number or the first few unique characters of the command. For

Copyright 1987 Heurikon Corporation Madison, WI

43 Heurikon UNIX - Reference Guide
THE SHELL

43

example, if you have recently done a 'Is -1 /usr/lib/uucp > temp' command,
then the whole thing can be done again be entering only '! Is'. To have
the current command number displayed as part of your prompt, include a
line like this in your .cshrc file:

set prompt = "\! % 11

For complete details and more examples,
UNIX User's Manual and User Guide.

pages

7.3 Wild Cards and Expansions

Wild cards provide a shorthand method of specifying strings or filenames=
The shell will "expand". an argument which has wild cards in it before
running the program.

Wild card ----
?

*
[]

{}

Description
Stands for any single character.
Stands for any number of

any characters.
Allows a group or range of

characters
Allows variations in strings

For more information, refer to the CSH pages in the UNIX User's Manual and
the UNIX User Guide. The curly braces ,"{}", are the most fun.

echo /usr/{fred,joe}/{rc,xx} will give:
/usr/fred/rc /usr/fred/xx /usr/joe/rc /usr/joe/xx

7.4 Shell Scripts

You have already seen examples of shell scripts. The .cshrc, .login and
/etc/rc files, shown earlier, are all shell scripts. The two shells have
slightly different formats for the built-in commands; so, be careful to
keep them straight. The Bourne shell ("sh") will only run scripts written
for it. The C-Shell ("csh") will accept either. If you feed a Bourne
Shell script into a C-Shell, the csh will simply start a "sh" to execute
it. The very first character of the script is used by the C-Shell to
figure out what type of script it is. If the first character is a "I",
which signifies a comment line, it is a C-Shell script. If there isn't a
"I" at the beginning, the script is for the Bourne shell.

Although "csh" is more popular as a command interpreter (if available),
most scripts are written in "sh" format. This is due to historical
reasons, and to maintain portability of programs between UNIX systems. It
is generally accepted that the command language of "sh" is better suited
for most scripts.

To install a script, follow these steps:

Copyright 1987 Heurikon Corporation Madison, WI

44

[1]

Heurikon UNIX - Reference Guide
THE SHELL

44

Use the editor ("vi") to create a
Usually this file will be in one
development.

file and write the script.
of your directories during

[2] Test the script by entering 'source scriptname' (for a csh script)
or 'sh scriptname' (for a sh script).

[3] After it's debugged, use "chmod" to make it executable, and put the
file in /usr/bin or one of your own directories.

[4] Execute a 'rehash' command. If you put the file in an unusual
place, be sure your "path" variable is set properly, so your shell
can find it.

Frequently, tasks can be implemented with a script which otherwise would
require many hours of coding and testing using a conventional program.
Some UNIX commands are actually shell scripts instead of binary programs.
For example, the following commands are shell scripts:

/bin/spell
/bin/diff3

/bin/calendar
/bin/man

Some of these scripts call binary programs to do the really hard work.
The scripts put things in logical order and allow new commands to be built
on the old ones.

You can use the "file" command to find other command scripts and the "cat"
command to print them out.

The following sh shell script, "whereis", will tell you where a program Is
located.

: # force /bin/sh
whereis: Look in reasonable places for commands.
places="/bin lusr/bin lusr/local/bin \

/etc /usr/lib • $HOME/bin /lib"
for param do

done

Copyright 1987

echo $param: \\c
for place in $places ; do

done
echo

if [-x $place/$param] ; then
echo $place/$param \\c

fi

Figure 20. 'whereis' script

Heurikon Corporation Madison, WI

45 Heurikon UNIX - Reference Guide
THE SHELL

45

The standard "mail" program does not allow interac ti ve message editing.
This is a shell script which can ·be used to compose and send mail using
"vi".

/I vi mail
PATH=/bin:/usr/bin
t=/tmp/vmail$$
if test $# -eq 0 ; then

echo "To:" \\c

else

fi

echo "To:" "'line'" > $t
echo "Subj ect:" \ \ c
echo "Subject:" "'line'" "\ »$t
echo Fetching vi ••• Go ahead with \'0\' and text entry

trap "nn -f $t ; exit" 1 2
echo "Subject:" \\c
echo "To: $* \nSubject:" "'line'" "\nlt » $t
echo Fetching vi ••• Go ahead with \'0\' and text entry

trap "mv $t dead.letter ; exit" 1
trap "ff 2
vi +3 $t ; H get the text of the msg
trap "echo Saving mail in dead.letter ;\

mv $t dead.letter ; exit" 2
echo "Okay to send (yIn)? " \\c
response="'line' "
if test $response -a $response!= y then

echo "Saving in dead.letter"
mv$t dead.letter
exit

fi
echo ••• mailing
(set 'nice sed -n -e "/A$/q" -e "s/ATo:.\(.*\)$/\1/p" \

)&

-e "s/ Cc:.\(.*\)$/\1/p" $t' "" If get "To:" & "Cc:"
if test $1 = I"'; then

fi

echo "To: line error, saving in dead.letter"
mv $t dead.letter
exit

for i do
nice -20 /bin/mail $i < $t

done
nn -f $t

Figure 21. 'vmail' script

Copyright 1987 Heurikon Corporation Madison, WI

46 Heurikon UNIX - Reference Guide
THE SHELL

7.5 Special Characters

46

Some characters have special significance to the kernel or the shell. In
the following table, the notation " X" means control character "X". Some
of these characters may be changed by using the "stty" command.

Character
.... S
.... Q
AD

@

IF

DEL
.... ,
A\
AH
AI

"
$

*
?
!

&

()[]{}<>
\

Table 4.

Function
Stop output
Restart stopped output
EOF (end of file)
Line kill (delete line)
Gridlet, Line kill (alternate)
(also csh script identifier)
Interrupt
Quit (dumps core)
Q*it (dumps core)
Backspace (erase)
Tab
(single quote)
(double quote)
(back quote)
(dollar sign)
wild card, any group of characters
wild card, any single character
("bang"), csh history feature
(caret), csh history feature
(ampersand) background
(tilde)
(dodads) used by the shell
escape

Special Characters - partial list

You must be careful when using any of these characters. For example, the
commands:

echo Continue?
echo It cost $10.00.
mail sysb!fred

will not work, but these will:

echo "Continue?"
echo 'It cost $10.00.'
mail sysb\!fred

Refer to stty(l), csh(I), sh(l) and termio(7) in the UNIX User's Manual
for more information.

Copyright 1987 Heurikon Corporation Madison, WI

47 Heurikon UNIX - Reference Guide
THE SHELL

47

7.6 Redirection of 110 and Pipes

In UNIX, a program has files called the "standard input" , "standard
output" and "standard error" associated with it. The shell sets these up
to point to your terminal under normal circumstances so that you can
communicate interactively with a program. The standard input of your
login shell, for example, comes from your terminal keyboard, and the
standard output and standard error go to your CRT display. When the shell
starts a command up for you, it usually connects your terminal to the
standard input, standard output and standard error of the command •

. ----------.
I 1 ----) Standard Output

Standard Input ------->10 Process
2 --> Standard Error , , ------------

When you issue a command to the shell, however, you can specify that the
standard input, output and/or standard error connect somewhere else. This
is a very fundamental and useful feature of UNIX. It allows you to
control the input and output of a command. Also, it allows you to
logically connect a series of commands together to perform a more
complicated function than could any single command standing by itself.
For example, here are some examples of !!redirecting!! the I/O:

• Redirecting input. Assume you have a lengthy mail message to be sent
to someone. You can compose it in advance using "vi It. Say it is
named "textfile". When you are ready to send it, all you have to do
is enter:

mail fred < textfile

and off it goes. The "<If symbol redirects the standard input of the
mail command to be from "textfile" instead of your keyboard •

• Redirecting output. The standard output of a command can be sent to
a file. This means that you can save the output of a command or have
the output sent to a particular I/O device.

Is -1 /usr/bin > ls.output

saves the output of the "Is" command in a file called "ls.output" in
your current directory. You could also use a "»" symbol, in which
case the output would be appended to the file. A command such as
'date >/dev/console' will print the output (e.g., date and time) on
the console port, even if you're executing the command at some other
terminal.

~ Pipes. This feature combines the redirection of output with the
redirection of input, using a "I" symbol. For example, you can take
the output of a "Is -1" command and have it fed to the input of

Copyright 1987 Heurikon Corporation Madison, WI

48 Heurikon UNIX - Reference Guide
THE SHELL

another command, "grep", as in:

Is -1 /usr/lib I grep " drwxrwxrwx"

48

The output of that series of commands will be a list of any
subdirectory of /usr/lib having permissions 777. (You could use the
"find" command to do this, too.)

.-------------. std std .-------------. I Process 1 I--->pipe--->I Process 2 I-->std out
.... --------, out in --------'

{"Is" cmd} "I" {"grep" cmd}

Pipes (also known as FIFOs) have a wide application in UNIX. It is
not uncommon to find a whole series of commands linked together using
"I". A text file can be processed and manipulated in very intricate
ways using a sequence of simple UNIX commands. The commands in a
pipeline are frequently referred to as "filters". Here is another
example:

cat fl f2 - I tr "[a-z)" "[A-Z)" I sort I head -20 > f.out

That sequence concatenates files "f 1", "f2" and whatever you type on
the keyboard up to °a Control-D, converts all lower case letters to
upper case, sorts the lines alphabetically and stuffs only the first
20 lines of the result into "f.out".

e Redirecting the standard error. Perhaps you have a large program to
compile, and you expect some error messages which you want to save.
Normally, the messages will just come to your terminal. However, you
can redirect the output of the compile command and put it into a
file, as follows:

cc -v test.c >& cc.errors

In this case, both the standard output and the standard error are
redirected to the "cc.errors" file by the ">&" symbol. The standard
output of the "cc" command would be information from the compiler,
e.g., the list of compile steps, and the standard error would be the
compilation error messages.

The standard output and standard error may be directed to different
files by using one of these forms, depending on the shell in use:

for csh:
for sh:

(cmd > stdout) >& stderr
cmd > stdout 2) stderr

Copyright 1987 Heurikon Corporation Madison, WI

49 Heurikon UNIX - Reference Guide
THE SHELL

49

7.7 Background Commands

A "background" task is one which is running while you are still able to
issue new commands. For example, in the previous section, we showed how
to redirect the output of the "c" compiler. By running that command in
the background, you will be able to run other commands while the compiler
is still working. You won't have to wait for it to finish first. That is
done by adding a "&" symbol after the command, as follows:

cc -v test.c)& cc.errors &

If you didn't redirect the output (including stderr), any error messages
would appear on your terminal, even if you were executing another program
at the time - a condition you mayor may not want.

Another reason for running a command in the background is that it may take
considerable time to run, and you may want to logout before the command
finishes. If you run it in the background, it will continue to run even
after you have logged out. Here is an example:

make bigpgm > make.out &
logout

MOS~ backgrouna ~asks do not neea ~o be run at normal priority, since you
probably are not waiting for the resul ts. Thus, you can be "nice" to
other users by lowering the priority of your background job, as in:

nice make bigpgm > make.out &

You can check on the status of your background tasks two ways.

ct Use the "ps" command to see if they are still running.

~ Enter 'wait'. If your tasks have finished t you will get a prompt.
Otherwise;- the "wait" command will not return until they have
finished. You can hit DEL to a hung "wait" command to get a prompt
back. If you do that, wait will list your background tasks which are
still running.

When you start a background task, the shell prints the task's process
number. To stop a background task, you can enter 'kill pid' where "pid"·
is the process number of the background task you want to stop. You can
also enter 'kill 0"', which will kill all your background tasks.

Some background tasks may not be willing to die easily. They may be
"ignoring" the termination signal or they may be waiting for a device
driver to complete an 110 command. Programs which are simply ignoring the
termination signal can be convinced you mean business by using 'kill -9
pid'. Programs which are waiting for 110 (such as character output) will
not die until the 110 command is completed. For more information on this
later case with respect to the serial ports, refer to section {3.5}.

Copyright 1987 Heurikon Corporation Madison, WI

50 Heurikon UNIX - Reference Guide
THE SHELL

50

By the way, a C program can put itself into the background by executing a
fork(2) system call, such as:

if (fork() != 0) /* if parent or error */
exit(O); /* parent returns, child continues */

7.8 Use of Shell Variables

Variables may be defined by either "sh" or "csh" and used for that shell
or "exported" to the environment for use by other shells and programs.
Certain variables have special meanings to the shell. For complete
details , see the appropriate shell manual pages. Here is a summary and
some hints for using shell variables.

cdpath When you issue a "cd" or "chdir" command, this variable is used as
an list of alternate search paths if the specified directory is
not found.

mail Specifies what file or files you want checked for mail and how
often the check is to be made. Thus, you can have your csh check
for new mail every few minutes, rather than the 10 minute default,
and you can have more than one file monitored for new mail.

history Specifies how many "old" commands to keep around.

path Specifies where to look for commands.

prompt This variable is used by the csh as a command prompt. It can be
set to any string you like, and can set to display the command
number, as in the example below.

Variables may be set from the command line or in a script, such as your
.cshrc ftle, as follows:

set prompt = "\! What now, master? "
set history = 50
set cdpath - (- /usr)
set path = (/bin /usr/bin /u/usr/bin /etc $HOME/bin • /usr/bin/uc)
set mail = (90 /usr/mail/$LOGNAME /usr/mail/root /usr/mail/adm)

To print a list of the current variables, enter 'set' without any
arguments. To list those in the environment, enter 'env'. You may want
to pipe the output through 'see' if any of the variables contain non-ascii
characters.

Shell variables find their biggest use in scripts as containers for
character strings and loop counts.

Copyright 1987 Heurikon Corporation Madison, WI

51

7.9 Shell Layering

(System V.2 only)

Heurikon UNIX - Reference Guide
THE SHELL

51

Shell layering allows you to have multiple interactive commands running
concurrently. You can switch from one command to another without losing
input or output. This is accomplished by logically connecting your
communication port to only one sne.!..!. at a
controls this feature. For more details,
description of csh(I) in the User Guide.

time.
refer

The s hI (i) command
to shl(l) and the

Here are a couple things which aren't obvious when reading the manual
pages:

[1] The "commands" listed in the shl(1) pages may be abbreviated. For
example, the "resume" command can be entered simply as 'r'.

[2] To have shell layering automatically start when you begin a session,
put 'shl' as the last line in your .login file. This will cause the
layering manager to start when you log in. Then, manually enter 'c'
or 'c name' to start your first layer.

Copyright 1987 Heurikon Corporation Madison, WI

52 Heurikon UNIX - Reference Guide
INTERESTING COMMANDS

8. INTERESTING COMMANDS

52

Here are some commands you may try. These are all fairly harmless, so
don't worry about causing any problems. Some commands are built into the
Shell, but most live in /bin or /usr/bin. If you want to obtain more
information about these commands, look in section one of the UNIX User's
Manual under the appropriate command and, since some of the c~nds are
built into the shell, in the CSH(l) pages of that manual.

8.1

8.2

Process Status

ps -e Display process status, all users
ps -ef Display process status, "full" form
ps -el Display process status, "long" form

Chanse DirectorI and List

cd
Is
ibinils
/usr/bin/ls7
Is -a
cd letc
Is -1
cd Ibin
Is m*

Go to home directory
List contents
Force Bell Labs 1s
Force Berkeley Is
Show the "." files, too
Change to the letc/directory
Display contents in long form
Change to Ibin directory
Display all commands which start with "m"

8.3 Chanse Directory and Print Working Directory

pwd
cd
pwd

Display current directory
Change to HOME directory
Display current directory

8.4 Pattern Search

grep rootcsh /etc/passwd
grep tvi925 letc/termcap
grep " pre" lusr/dict/words
grep 00 lusr/dict/words
grep tset -I.login

8.5 Display File Contents

cat /etc/bcheckrc
see /etc/utmp
more /etc/termcap

Copyright 1987

Used for ASCII text files
Used for ASCII or non-ASCII files
For long files

Heurikon Corporation Madison, WI

53 Heurikon UNIX - Reference Guide
INTERESTING COMMANDS

8.6 Display Who is Logged On

who -uT
last

8.7 Sleep

Report who is logged in
Report login history

sleep 10 ; echo wakeup

8.8 Display Environment and Shell Variables

set
env

Display shell variables
Display environment

53

If your environmental variables contain control characters, you may want
to pipe the output of "env" through the "see" program:

env J see Display environment

8.9 Date and Time

date Display current date and time

8.10 Translate Characters

tr "abcdefghi" "ABCDEFGHI"
This is a test

(Type a Control-D when done)

8.11 Copy, Move and Remove

cd
cp /etc/passwd localpasswd
Is
mv localpasswd tempxx
Is
rm tempxx

8.12 Display File Types

file *
file /etc/*
file /usr/bin/*

8.13 Check Spelling

spell textfile

Copyright 1987 Heurikon Corporation Madison, WI

54 Heurikon UNIX - Reference Guide
INTERESTING COMMANDS

8.14 Echo Arguments

echo this is a test
echo test *
echo "test *"
echo /bin/*
echo $mail Echo the contents of a shell variable
echo $path
echo $ LOGNAME Echo the contents of an

environment variable

8.15 Time a Command

time ps -e Time the "ps -e" command

8.16 Send Mail

mail fred
Don't forget the meeting at 3pm, RE: Berk Contract.

8.17 Display Terminal Options

stty -a

8.18 Repeat the Previous Command

! !
!fi

8.19 Display History and Aliases

history
alias

8.20 Correcting Simple Errors

grwp guest /etc/passwd
AwAe

8.21 Repeating a Command

repeat 10 date

8.22 Head and Tail

head -3 /etc/passwd
tail -2 /etc/passwd
tail -f file Display file as it grows

Copyright 1987 Heurikon Corporation

54

Madison, WI

55 Heurikon UNIX - Reference Guide
OTHER THINGS TO LEARN (TOOLS)

55

9. OTHER THINGS TO LEARN (TOOLS)

9.1 Summary

Here is an outline of the important items which you should learn about
UNIX before you can graduate from the novice category:

~ Familiarity with the following commands:

ps Is cd pwd cat head
tail more grep mv rm date
who mail wc pr dc echo

~ Use of the csh history ("'" . , "A") and aliasing features.

• Familiarity with the visual editor, "vi".

• Understanding of a "regular expression" as defined in the lied"
manual pages in the UNIX User's Manual. A regular expression is
used to specify a set of character strings which meet particular
requirements and is widely used by the UNIX editors and pattern
matching programs such as ·'grep".

• Familiarity with the C language and the C compiler, nee".

0- Familiarity with other commands:

diff sort spell cut fsck tar
cpio at make split strings stty
tee tr sed awk

0- Familiarity with the text formatter, "nroff", and the "mm" macros.

If you play with the UNIX commands, you will find they become more and
more useful as you recognize how they can be applied to everyday needs.
Think of them as "tools" which you can use as the need arises.

Copyright 1987 Heurikon Corporation Madison, WI

56 Heurikon UNIX - Reference Guide
OTHER THINGS TO LEARN (TOOLS)

56

9.2 Move vs. Copy vs Link

Sometimes, there is confusion regarding the differences among these three
commands:

.. Move ("mv") will pick up a file and move it to another directory or
allow you to change its name in the same directory. The actual data
stored on disk is not touched in any way, only the directory pointers
(links) are adjusted. The file attributes (owner, size, permissions,
etc.) are not changed. However, if you try to move a file between
partitions or drives, the move command will automatically be turned
into a copy •

.. Copy ("cp") will duplicate the file in another directory or duplicate
it in the same directory, using a different naJPe. This command
clones the file.

~ Link ("In") will connect, or "link", a file into two (or more) places
in the file system. The actual data will not be duplicated; however,
the file can be referenced by any of its names. If one of the files
is modified, the change will instantly be seen in all the other files
because, in fact, they are identical. The file attributes will be
the same for each link. You can use the "Is -1" command to find
linked files.

Links are used frequently when two or more programs are so similar
that they may as well be one program. The "ex", "vi" and "edit"
programs are links for that reason. When the program executes, it
can easily find out which name was used to call it, so that it is
able to do the correct function.

Incidentally, the "mv", "cp" and "In" programs are all links to the same
program. Why? Because they do tasks, which are so similar in nature,
that it is simpler to have just one program which can do all three.

Copyright 1987 Heurikon Corporation Madison, WI

57 Heurikon UNIX - Reference Guide
OTHER THINGS TO LEARN (TOOLS)

ge3 The Visual Editor

57

Although there are many commands associated with "vi", only a few are
needed to get going. Be sure to read about vi in the UNIX User's Guide.

arrows
Ad (,"'u)
Af C"b)

$
G
nG
dw
dd
<ESC)
cw
D
C
i
I
a
A
s
rx
R
x
X

P
p

Y
xp

0

0
u

move cursor (alternates:
move down (up) 1/2 screen
move forward (back) full
move to start of line
move to end of line
move to end of file
move to line unn
delete word(s)
delete line(s)

h,j,k &

screen

escape from insert or append mode
change word(s)
delete to end of line
change to end of line
insert characters

1)

insert characters (beginning of line)
append characters
append characters (end of line)
substitute characters
replace 1 character (with !!x!!)

replace characters
delete character(s) (at cursor)
delete character(s) (before cursor)
put after
put before
yank (copy) line(s)
transpose characters
repeat previous command
open new line (below)
open new line (above)
undo last change

U
"'R or

undo all changes on this line
"'L redraw screen

:map
:r fl
:r !cmd
:w fl
:e fl
:n
:q
ZZ
: !cmd
%

Copyright 1987

define keystroke macro
read file in

read in output of cmd
write file out
change file
edit next file
quit
write and quit (same as
shell escape

:x or

show matching (), [), or {}

:wq)

Table 5. 'vi' command summary

Heurikon Corporation Madison, WI

58 Heurikon UNIX - Reference Guide
OTHER THINGS TO LEARN (TOOLS)

58

The "ex" and "vi" UNIX editors have a number of interesting features.

~ You can abbreviate keystrokes by using the "abbr" function.

• Certain options can be adjusted via the ":set" command.

• A directory full of related source files can be cross-referenced
using the "ctags" program. Then, the editor"'s ":ta" command will let
you move around between "C" routines, as if they were all part of one
monster file. You don"'t have to remember where each routine is.
UNIX makes it easy to be lazy.

• The "map" command allows you to customize your keyboard and have
certain keys take on special functions. Often used keystroke
sequences can be crunched into a single key by us:i,ng the "map"
command. For example, you can program a key which will write your
updated file to disk and then feed it to the compiler. There are
more examples below.

• You can set the iiEXINITii variable in your environment via your
$HOME/.login file to initialize "vi" with the features, options and
commands which you most prefer when you use the editor.

Here"'s an advanced example. The penultimate line, shown below,
programs the "K" key to write your file out, feed it to the "spell"
program and append any misspelled words to the end of your file. The
last line programs the "Q" key to pick out one of those words and
find it in the text for you so you can correct it.

setenv EXINIT "'set autoindentlmap ~C :w~M:\! 1\
map ~X :w~M:\!%~M I map g 1G I map z xPP 1\
map V :$r /usr/$HOME/.signature~MO~D--~[1\
map K :w~MGoSpellList~[:$r spell i.~M 1\
map Q GI/~[A>A["zdd@z'

The above example is split into five lines for clarity. It really
should be all on one line. The "~,, symbol means the following
character is a control character. To enter them while using "vi",
type control-V followed by the control key. E.g., "~M" is entered by
typing control-V then control-M.

• If you do much "C" programming, you'll love the showmatch and "%"
function.

• Crash Recovery. If the system is brought down while you are editing,
or if you're using a telephone link and the connection is broken, you
will not lose your changes. To recover all but the last few changes
you made, go to the same directory you were in before the crash and
enter 'vi -r filename

Copyright 1987 Heurikon Corporation Madison, WI

59 Heurikon UNIX - Reference Guide
OTHER THINGS TO LEARN (TOOLS)

59

9.4 Other UNIX Editors

Here is a summary of the various editors which are provided as part of the
UNIX operating system.

ed This is the standard UNIX interactive, line-oriented, text editor.
The "ed" manual page in the UNIX User's Manual details the concept
of a "regular expression", which ma.y be used in "ed" and numerous
other UNIX programs to define sets of character strings which match
or conform to certain specifications.

red "Red" is a restricted version of "ed". It only allows files in the
current directory to be edited. "Red" and ned" are links to the
same program.

ex This is the (Berkeley) enhanced UNIX line editor. It has some
features which make it ideal for editing programs, and has a
"visual" mode ("vi") which allows full screen editing on CRT
terminals. See the previous section for more information.

edit This is a version of "ex" for beginners. It automatically defines
some default parameters and is easier to learn. It is a subset of
"ex" •

vi This is the "visual" portion of the "ex" editor. It starts. up in
visual mode rather than the "open" mode of "ex". You can switch
back and forth between open and visual from either "ex" or "vi".

view "View" is equivalent to "vi", except it operates in read-only mode.
You will not be allowed to overwrite a file with the usual write
commands. It should be used if you want to examine a file and
protect it against accidental modifications. "vi", "view", "ex" and
"edit" are all links to the same program.

sed The "sed" stream editor finds extensive use in UNIX as a filter. It
processes a file, line by line, and applies a set of editing
commands to each line. It is typically used to reformat files or
extract lines which meet certain conditions. For example, the
following "sed" command will output only the lines which occur
between the strings "HX" and "HE" and change any occurrence of
"test" to "text".

sed -n -e "s/test/text/" -e "/HX/,/HE/p" file

See Appendix {B} and the "vmail" script in section {7.4} for other
examples. "Sed" also permits editing files which are too large for
the other editors to handle.

Copyright 1987 Heurikon Corporation Madison, WI

60 Heurikon UNIX - Reference Guide
OTHER THINGS TO LEARN (TOOLS)

9.5 Compiling a 'c' Program

If you are going to write a program in "C", follow these steps:

60

[1] Use the editor ("vi", "ex" or "ed") to create the source code file.
Use a ".c" suffix on the file, as in "testpgm.c".

[2] Invoke the compiler and loader by entering 'cc -v testPgm.~'.

[3] Execute the result by entering '!!. .out' • It may be necessary to
enter ' ./~.out', if there is another a.out file in the shell's
search path.

[4] You can enter 'mv ~.out testpgm to rename the a.out file. Then
enter testpgm.... to execute the program.

You can compile the program directly into "testpgm" via

cc -v testpgm.c -0 testpgm

If you move the program to /bin or /usr/bin, don t forget to execute a
.... rehash' command. Also, you may want to change the permission modes of
the file to protect it from other users. Use "chmod", "chown" and
"chgrp".

Some programs need special "libraries" to run. For example, there are
math libraries and terminal control libraries ("curses", "termcap"). The
libraries are in Ilib and lusr/lib. The standard "C" library is
automatically used by the link edit phase of "cc". Other libraries must
be specifically listed if needed, as in:

cc -v testpgm.c -0 testpgm -lcurses -ltermcap

Information on the "curses" library is not included in the standard UNIX
manuals. Contact us if you need curses documentation.

9.6 Linking C, FORTRAN, Pascal and Assembler Programs

Object modules created from programs written in different languages can be
linked together as long as certain conventions are observed.

Care must be taken when passing subroutine arguments. FORTRAN is "pass by
address" while C and Pascal are "pass by value". Pass by address means
that subroutine arguments are pointers to a data item, while pass by value
means the argument is the actual data. This difference is handled by
properly coding all shared subroutines-ind subroutine calls made by C and
Pascal routines.

Another interface problem concerns subroutine and variable names. All
compiler variables and routines names have a prepended underscore. In
addition, the Green Hills FORTRAN compiler appends an underscore to names.

Copyright 1987 Heurikon Corporation Madison, WI

61 Heurikon UNIX - Reference Guide
OTHER THINGS TO LEARN (TOOLS)

This means that C and Pascal programs must do so, too.

61

The following C, FORTRAN and assembler programs illustrate this interface:

main() 1* This is the main entry point *1
{

}

int x,y,result;
f init(); /* you only need to do this here to allow FORTRAN I/O */
x-= 3; y = 4;
result = fort (&x,&y); /* pass addresses to FORTRAN */
printf("Resuit" = %d\n"j result); /* should print "22" *1
exit();

cprog (arg1,arg2) 1* this routine is called from the FORTRAN program */
int *arg1,*arg2; /* use FORTRAN pass by address convention */
{

}
return(addit(*arg1,*arg2)); /* gets values and pass to asm pgm */

Figure 22. Linking Languages - C fragment (c.c)

subroutine fort(in1,in2)
integer in1,in2,temp,c1
return(cprog(in1*in2,10))
end

Figure 23. Linking Languages - FORTRAN fragment (fort.f)

.text

.even

.globl addit
addit: movl sp@(4) ,dO get x

addl sp@(8) ,dO add y
rts return sum

Figure 24. Linking Languages - Assembler fragment (ass.s)

The following command sequences will compile and link these programs:

gf77 -e fort.f
as addit.s -0 addit.o
gce c.e addit.o fort.o

gf77 -e fort.f
or gcc e.c addit.s fort.o

If you are having problems, ask the compiler to leave behind the ... s"
file; then examine it to see what the program is really doing.
Information about register allocation can be found in the compiler
documentation. By the way, the UniSoft assembler (lias") uses MIT
mnemonics if you're System V; Motorola-like if System V.2.

Copyright 1987 Heurikon Corporation Madison, WI

62

9.7 The Make Command

Heurikon UNIX - Reference Guide
OTHER THINGS TO LEARN (TOOLS)

62

Typically, a large UNIX program is broken up into numerous, easy to
handle, small source files. Each source file contains the routines for
some particular and distinct function. For example, the UNIX kernel is
composed of about fifty "c" source files, and the device drivers and
system configuration files add another twenty. It would be very difficult
to manually control all those files and to remember which ones are
current, which have been updated and how, in the end, to compile and link
them all together.

The "make" facility is a tool for maintaining such a group of programs.
One control file, called a "makefile" , is used to describe the
relationship bebween the source files and to specify how to compile and
link the final result. Then, a single command, "make", will cause the end
product to be recreated. Any source files which have been updated since
the last "make" will automatically be recompiled and included in the
result. "Make" does this by checking the modification times associated
with each file, comparing them against the times of the various
intermediate and end products and invoking the specified command sequence,
if necessary, to bring the intermediate files up to date. Any old
"dependent" files are regenerated.

It is also quite common for a number of slightly different "versions" of a
program to be required. If one of the source files which is common to all
versions is updated, then one command, "make", will automatically recreate
all of the variations.

Makefiles can get quite large themselves. Which means, however, there is
that much less for the programmer to remember. The following, relatively
short, makefile is used to maintain a group of C programs.

In this case, 'make' already understands how to compile a 'c' program; it
just has be told how to put the pieces together. Typing 'make' will
compile and link any (of the seven) updated C programs to create "hds".
Typing 'make tags' will produce a cross reference listing of C routines
for the editor.

It is not necessary for the files to be "programs"; any group of related
files can be maintained via 'make'. For example, here is a short makefile
which is used to maintain a directory of nroff-type documentation files.

Copyright 1987 Heurikon Corporation Madison, WI

63 Heurikon UNIX - Reference Guide
OTHER THINGS TO LEARN (TOOLS)

H description file for HDS terminal window control

INCLUDE = -I.
SHELL Ibinlsh

DEFS
LINTFLAGS = $(DEFS) $ (INCLUDE)
"T.lT .t."co to 'n"I~T.lCO' $(INCLUDE) _1'\

~v \.or uti.\7i) V \ uc,r i) J -v

LFLAGS = -s

FILES = bmove.o util.o data.o fkproc.o init.o main.o set.o
LINTFILES = bmove.c util.c data.c fkproc.c init.c main.c set.c

all: hds

hds: $(FILES)
cc $(LFLAGS) -0 hds $(FILES)

lint:
lint $(LINTFLAGS) $(LINTFILES)

tags: Itmp
ctags *.c > tags

Figure 25. Sample makefile (C programs)

63

This next makefile will automatically feed any updated file with a ".t"
suffix to "nroff" and place to output in a corresponding II .fn file. It
also makes a backup copy of any modified ". tIt file. The UNIX make
facility is usually used to maintain directories of "Cn programs.

Description file for documentation using nroff

ffiles = intro.f ports.f devices.f baud.f
bfiles = intro.bak ports.bak devices.bak baud.bak

.SUFFIXES:
• SUFFIXES: .f.t .bak

.t.f :
rm -f $@
nroff -em -rB2 $< >$@

.t.bak
cp $< $@

all: $(ffiles) $(bfiles)

Figure 26. Sample makefile (nroff files)·

Copyright 1987 Heurikon Corporation Madison, WI

64 Heurikon UNIX - Reference Guide
OTHER THINGS TO LEARN (TOOLS)

64

9.8 nroff/troff

The l1 nroff" and "troff" programs
are document formatters. Nroff is
for use with a typewriter-like
printer; troff is for a typesetter
or laser printer. Both programs
allow free form text input, inter­
mixed with formatting commands.

There are a number of macro pack­
ages which make it very easy to
use the document formatters. A
"macro" is a sequence of formatter
commands that perform some
specific function (such as output­
ting a page header) but which can
be invoked with a simple, one-line
command. For example, this guide
was produced using the "mm" mac­
ros. There are macros for speci­
fying section headers, page
headers, page footers, and style.
For those of you who are
interested, we used the following
mm parameters:

.SA 1

.ds HF 2 2 2 2 2 2 2
• TC 1 1 2 0 •••

The single-line " • TC" command
prints the table of contents and
the "Figure" and "Table" lists,
which you will find at the begin­
ning of this guide.

We're showing off a little on this
page, as you can see. The" • 2C"
(two column) command is all it
takes. Automatic hyphenation has
also been used on this page, by
using ".nr Hy 1"

In addition to the pre programmed
macros, you can write your own, or
modify the existing ones, if you
need some special functions. For
most situations, however, the
existing macro packages will be
sufficient.

Here is a summary of some of the
programs and macro packages which
are provided as part of UNIX:

nun The "nun" macros are for gen­
eral purpose documents, such
as this UNIX guide. It is
the most general and com­
plete set of macros for
document preparation.

mv Macros for making slides and
viewgraphs with troff.

man The UNIX manual pages are
prepared using the "man"
macros. They are designed
to make documentation of
UNIX commands and files con-
form to a standard format.

mptx Macros for formatting the
permuted index.

tbl A program to format tables
with headings, columns and
borders. Tbl automatically
computes column spacings,
etc •

eqn

neqn

A program
mathematical
troff.

Same as eqn,
with nroff.

to process
equations for

but for use

Refer to the UNIX Document Pro­
cessing Guide for more information
concerning the text formatting
features of UNIX.

* * * * * * * * * * * * * * * *
* * * If it's square, it's fish; *
* If it's round, it's a burger *
* (Else, it might be chicken.) *
* *
* * * * * * * * * * * * * * * *

Copyright 1987 Heurikon Corporation Madison, WI

65 Heurikon UNIX - Reference Guide
OTHER THINGS TO LEARN (TOOLS)

65

Here are some more details on how this guide was produced.

• Level one headings and the top of page headings are produced by the
"HH" macro, as follows:

.de HH

.OH " \\$1 "

.EH " \\$1 "

.SK

.H 1 "\\$1"

~ The nroff command is

nroff -cm -rW74 -rB2 -e -T450-12 guide.t > guide.f

-$- The index is generated by writing a special line for each item and
processing the nroff output with "sort" and a bunch of fancy "sed"
and "awk" commands. Then, nroff is used a second time to format the
index pages. Appendix {B} contains the macros and scripts used to do
this.

0- Some printers cannot backspace or do reverse linefeeds.
case, the nroff output file may be printed using:

cat guide.f I col -x I under I Ip -t"UNIX Ref Guide"

In that

The "col -x" program process the reverse line feeds used by nroff to
generate the .2C format of the previous page or output of the 'tbl'
macros. "Under" is a short program which processes the backspaces
used by nroff to produce bold or underscored text. It converts lines
with imbedded backspaces into two lines separated by a carriage
return (no line feed). The source code for "under" is shown on the
next page. flIp" prints the result.

0- AI though the headings and lists are automatically numbered,
references within the document are coded by hand. Nroff makes only
one pass through the document so there is no way to generate
automatic forward references. A macro was used to format the
references and place them inside curly braces, mainly to make them
easy for "grep" and the editor to find.

Copyright 1987 Heurikon Corporation Madison, WI

66 Heurikon UNIX - Reference Guide
OTHER THINGS TO LEARN (TOOLS)

linclude <stdio.h>
main()
{

}

char line 1 (140);
char line2(140);
int pflag;
int c, i,j;

pflag = 0;
i = OJ
while ((c=getchar()) != EOF) {

line1[i) = c;
line2[i++) = ' ';
switch (c) {

}
}
exit(O);

case '\b':
--i; /* back up to \b */
line2[i-1) = line1[i-1);
line1[i-1) = getchar();
pflag = 1;
break;

case '\n':
--i;
for (j=O;j<i;j++)

putchar(linel[j);
if (pflag) {

}

putchar('\15'); /* cr */
for (j=O;j(i ;j++)

putchar(line2[j]);
pflag = 0;

i 0;
putchar('\n');
break;

Figure 27. 'under' program

9.8.1 nroff Terminal Description Files

66

Nroff uses the If-Tn option to find a description file in /usr Ilib/term
which contains details about how to control a particular printer (e.g.,
how to do boldface characters). Numerous description files are provided
with the system. For example, n-T450-121f will operate a Qume printer in
12-point mode. Additional documentation is available if you need to write
your own description files; contact our Customer Service Department.

Copyright 1987 Heurikon Corporation Madison, WI

67

9.9 awk

Heurikon UNIX - Reference Guide
OTHER THINGS TO LEARN (TOOLS)

67

"Awk" can be used to scan and process a text file according to some set of
commands. It is similar to the "sed" stream editor in function; however,
it allows very complex operations to be performed. It can be programmed
to make decisions and do various things, depending on the particular input
text. Awk commands resemble "c" language source code.

Awk was a big help in formatting the index section to this guide. For
details on how that was done, including an awk program, see Appendix {B}.

Refer to the pages in the UNIX User's Manual and the UNIX Support Tools
Guide for more details. It is worth the effort to experiment with this
program to get a feel for its capabilities. It may come in handy.

9.10 SCCS

The UNIX "Source Code Control System" is a collection of programs for
controlling software versions and updates. Basically, the SCCS software
allows you to keep track of numerous program versions which have resulted
from modifications. It allows old program versions to be extracted from
the sources without having to keep a separate copy of each release. For
mor~ information: refer to the UNIX Support Tools Guide.

9.11 Debuggers

9.11.1 adb
"Adb" is the System V. 0 UNIX debugger program. You can use it to examine
a core dump or to single step through a program, looking at registers as
you go.

The command syntax is a little hard to cope with at first, so, to get you
started, try this: Compile a program (but do not "strip" it). Leave the
output in "a.out ll • If you are on system V. 2, convert your program using
'coffbin -s -u a.out'. Execute it and hope for a gross error which "dumps
core". Enter this sequence to load the program (assumes name is a.out)
and the core file:

adb
$r
$c

This will display a register dump taken at the time of the error, the
instruction near the one which caused the error (or one very near to it)
and a stack trace. The stack trace will help you determine which
subroutines were called and which caused the error. The subroutine
argument addresses are also shown, so you can check the actual data passed
to the routines.

Other commands to learn are '?i' to disassemble code (in a.out) and 'Ix'
to display hexadecimal values (in the core file). To "go to" a particular

Copyright 1987 Heurikon Corporation Madison, WI

68 Heurikon UNIX - Reference Guide
OTHER THINGS TO LEARN (TOOLS)

68

routine or variable, just enter its name. Now, read the manual.

In system V.2, adb and coffbin are provided for use by the rebuild
procedure. However, they are not supported commands.

9.11.2 sdb
"Sdb" is the System V. 2 UNIX Symbolic debugger program. It includes the
basic features of adb.... but also allows you to debug a C.... or Fortran
program at the source code level; sdb understands source code text and
can relate variable by name. Look in the System V. 2 UNIX Programming
Guide for an sdb tutotial.

Sdb is not available with system V.D.

Copyright 1987 Heurikon Corporation Madison, WI

69 Heurikon UNIX - Reference Guide
ADMINISTRATIVE FUNCTIONS

69

10. ADMINISTRATIVE FUNCTIONS

In addition to booting the system and doing backups, procedures that are
described elsewhere in this guide, there are other duties for the system
administrator •

• Caution: The system administrator must be super-user to perform many
of his duties. However, since you could cause accidental. damage to
your system while super-user, it is unwise to be super-user unless
absolutely necessary. You should have a ordinary user login, switch
to super-user (via 'su rootcsh') only when needed, and 'exit' back to
your regular login as soon as possible.

10.1 Adding New Users - Removing Old Users

To add a new user to the system, become the super-user and do the
following:

[1] Add a new line for the user to the /etc/passwd file. Use "ed" or
"vi".

a. Duplicate the last regular user line.

b. Change the logname field of the new line.

c. Change the user id field. For regular users, assign a user id
number of 101, 102, etc.

d. Check the group id field.
changed.

It probably won't need to be

e. Change the GCOS field. This usually contains the user's full
name or any other information you desire. Its use is
optional.

f. Change the home directory field.

[2] Check the /etc/group file and add the user to the appropriate
groups, if necessary. It is usually sufficient to just assign the
"users" group ID to the individual in the /etc/passwd entry. The
/etc/group file will only need to be changed, if the user belongs to
more than one group.

[3] Make a new home directory for the user.

mkdir /usr/username

[4] Change the ownership of the user's home directory to the new user's
name.

Copyright 1987 Heurikon Corporation Madison, WI

70 Heurikon UNIX - Reference Guide
ADMINISTRATIVE FUNCTIONS

chown username /usr/username

70

[5] Change the group ownership of the user's home directory to the new
user's group name.

chgrp users /usr/username

[6] Change the permissions on the new home directory to 755.

chmod 755 /usr/username

[7] Copy a .login and .cshrc file to the new user's home directory.
Usually, you can just copy the root's files over or use another
user's files.

cp /.login /.cshrc /usr/username

[8] Change the ownership of the .cshrc and .login files to that of the
new user.

chown username /usr/username/.[cl]*
chgrp users /usr/username/.[cll*

[9] Use the 'passwd' command to put in an initial password for the user.

The 1f adduser" script in figure {28}, below, can be used to automatically
do all of the above steps. Prior to using it the first time, place this
line at the end of your /etc/password file:

nextuser:xxxxxxxxxxxxx:101:100:marker for adduser script:/:

Change the user id (" 101"), if necessary, to reflect the next available
user id number. Then, while in super-user mode, executeThe adduser
script with the new user's logname and full name as arguments, as follows:

adduser mike "Mike Flinch"

Note that the second argument is quoted because it contains a space.

To remove a user, follow these steps:

[1] Use "find" to locate all files belonging to the user. Either delete
them or change their ownership and move them to an appropriate
place.

[2] Remove the line in the /etc/passwd file for the old user (or change
the logname to something like "SPARE 1 " and put x's in the password
field.)

[3] Delete the old user's home directory and subdirectories.

Copyright 1987 Heurikon Corporation Madison, WI

71 Heurikon UNIX - Reference Guide
ADMINISTRATIVE FUNCTIONS

: , force /bin/sh
Add a new user to the system, must be super-user to use.
I Syntax: adduser logname "fullname"
PASSWD=/etc/passwd
LOGNAM=$1
FULLNAME=$2
HOMEDIR=/usr/$LOGNAM
I Check legality of request and compute params as we go •••
if [$# != 2] ; then

echo "usage: $0 logname fullname" ; exit 2
fi
if grep """$1:" $PASSWD·)/dev/null 2)&1 ; then

fi

echo d"Error: n$LOGNAM" already exists in $PASSwu
exit 2

LASTID='grep """nextuser:" $PASSWD I cut -f3 -d:'
if ["$LASTID " = " "] ; then

fi

echo Error: "nextuser" line not found in $PASSWD
exit 2

NEXTID='expr $LASTID + l'
if grep n *:.*:$NEXTID:" $PASSWD)/dev/null 2)&1 ; then

echo "Error: next id ($NEXTID) already in $PASSWD"
exit 2

fi
if [-d $HOMEDIR] ; then

fi

echo "Error: home directory ($HOME) already exists"
exit 2

echo updating passwd file •••
cp $PASSWD /etc/old.passwd
ed $PASSWD «-ENDED) /dev/null

/""nextuser:/
i
$LOGNAM:x:$LASTID:100:$FULLNAME:$HOMEDIR:/bin/csh

.+1
s/$LASTID/$NEXTID/
w
Q

ENDED
echo "creating new home directory ••• "
mkdir $HOMEDIR ; chmod 755 $HOMEDIR
cp /.login /.profile /.cshrc $HOMEDIR
cd $HOMEDIR
chown $LOGNAM • .login .profile .cshrc
chgrp users • .login .profile .cshrc
echo "Operation complete. New user: $LOGNAM uid= $LASTID"
echo "'Use "passwd $ LOGNAM" ·to enter the newuser password

Figure 28. Adduser script

71

Copyright 1987 Heurikon Corporation Madison, WI

72 Heurikon UNIX - Reference Guide
ADMINISTRATIVE FUNCTIONS

10.2 Managing Processes

72

Occasionally, a user will start a program which will lock out his terminal
or somehow render his CRT inoperative. The super-user must then "kill"
the offending program(s). This is done as follows:

[1] Execute 'ps -e' to see what processes are running.

[2] Find the process attached to the particular terminal (tty) which is
causing the problem.

[3] Issue 'kill pid' where "pid" is the process ID found on the ps
display. Then, enter 'kill -9 pid', in case the process requires
special convincing to stop.

If no particular problem can be found, kill the user's "csh" (or "sh") ,
and any children of the shell, which you can find. (A "child" process is
one which was started by another process, the "parent". Both child and
parent can be identified by referencing the PID and PPID columns in a
"ps -ef" display.)

10.3 Setting /etc/motd

The message of the day (/ etc/motd) is displayed to each user when they
log-in. You can use it to make general announcements about system
configuration, company news, etc. Try to keep the messages short and
remove them when they are no longer valid.

The "login" banner may be changed by editing !etc!gettydefs.
usually identifies the system and is displayed prior to
attempt.

10.4 Monitoring File System Usage

The banner
each login

If you run out of space during normal use, the system will stop. If the
system will not reboot from Winchester, boot from floppy and delete some
files in order to be able to run again from the Winchester. See section
{12.9}.

To prevent a problem from occurring in the first place, monitor the
system. Use the "df" command to check on the available free space on the
Winchester. The' du'" command can be used to count the number of disk
blocks consumed by files and directories. A complete system V UNIX file
system will consume about 30250 disk blocks (512 bytes/block).

Here are some suggestions on files to remove or programs to check to get
more space:

$ Portions of the online manual pages (in /usr/man) can be removed.
You can delete only those sections to which you do not often refer.

Copyright 1987 Heurikon Corporation Madison, WI

73 Heurikon UNIX - Reference Guide
ADMINISTRATIVE FUNCTIONS

73

Chances are, you only use the written manual pages, anyway. This
could release about two megabytes. Also, the /usr/games directory
and libraries can be deleted or cleaned. This could give you a
megabyte or more of space, depending on what files you have. Some
distributions have a script, "/ etc/make .smaller", which can be used
to strip the file system to the bare minimum. Execute it with no
arguments to display a menu.

~ Read the following sections for suggestions on finding big files.

~ Be sure the accounting programs
accounting log files from growing.

are off.
Execute:

/usr/lib/acct/turnacct off

This will keep the

~ Check your crontab to see if various log files are periodically being
cleaned.

~ Ask your users to purge any garbage files.
/etc/motd.

Put a notice in

~ Look for old user files, starting in the /usr directory. There may
be some large files left behind by de,parted compatriots. The
'Is -IR' command may be uSeful.

~ Check /tmp and /usr/tmp for unclaimed garbage.

~ Add another Winchester, as described in section {12.11}.

~ Use "tar" or "cpio" to copy old files to floppy or tape, then delete
the files on your Winchester. Refer to section {II}.

10.5 Garbage Collection

Many programs use / tmp and /usr / tmp for temporary files. Some programs
don't clean up after themselves very well; so, you may find some old files
in these directories which you can remove. The following lines could be
put in your crontab file to automatically clean the /tmp and /usr/tmp
directories of unused files:

30 4 * * * find /tmp -atime +1 -mtime +1 -exec rm "{}ff ";"
32 4 * * * find /usr/tmp -atime +1 -mtime +1 -exec rm "{}" If." ,

Also, there may be some "core" image files left in various places as the
result of program dumps that users have forgotten to remove. You can use
this command to find them:

find I -name core -print

A UNIX "core" file is just a memory dump. The name is a carryover from
the old days when computers used core memory.

Copyright 1987 Heurikon Corporation Madison, WI

74 Heurikon UNIX - Reference Guide
ADMINISTRATIVE FUNCTIONS

10.6 Examining Log Files

74

There are a number of log files which UNIX maintains to record various
events. For example, /etc/cron keeps a log file, /usr/adm/cronlog or
/usr /lib/ cron/log, a piece of which was shown in an earlier section.
These files should be examined from time to time to see if the associated
programs are functioning properly. The log files should be cleared out
occasionally so they don't grow too big - a good function for cron. (See
section {6.8.1}.) If you want some ideas on getting more disk space, look
in section {10.4}.

Here is a partial list of UNIX log files.

/usr/lib/cron/log
/usr/adm/cronlog
/usr/lib/spell/spellhist
/usr/spool/uucp/LOGFILE
/usr/spool/uucp/ERRLOG
/usr/spool/uucp/SYSLOG
/usr/spool/uucp/AUDIT
/usr/spool/lp/log
/usr/adm/sulog
/usr/adm/acct/ •••
/usr/games/ •••
/etc/wtmp

Figure 29.

/etc/cron activity log (V.2)
/etc/cron activity log (V.O)
records misspelled words
uucp system activity log
uucp system error log
uucp system system log
uucp system log
LP spooler activity log
/bin/su log
mise accounting log files
mise game logs
login log (non-ASCII)

log files

Since you can use the "find" command to locate any files having particular
attributes, you can search for growing log files which you may happen to
miss. For example:

find / -size +400 -print

will inform you of any files larger than 400 blocks (200K bytes). If your
file system runs out of space, the system will stop. You will have to
reboot (from floppy), mount the Winchester and clean the file system of
unnecessary files.

10.7 Setting the Date and TZ

To set the date or time, you must be the super-user and you should be in
single-user mode. The command format is:

date MMDDHHMM

where "MMDDHHMM" is the (numerical) month, day, hour and minute. For
example, "date 12051310" would be December 5, 1:10 pm •

• If you must set the date or time while in multi-user mode, you may
want to kill /etc/cron first. This is to prevent cron from going

Copyright 1987 Heurikon Corporation Madison, WI

75 Heurikon UNIX - Reference Guide
ADMINISTRATIVE FUNCTIONS

75

berserk trying to ;icatch up;; to the new time 8 Atter the new time has
been set, you can restart cron by entering '/etc/cron'. If you are
only adjusting the time by a few hours, this should not be necessary.

UNIX keeps track of the time in an internal format based on the number of
seconds from January 1, 1970. When you do a "date" the time is converted
to your local time based on the value of the "TZ" variable in the
environment. The TZ variable is set in a number of places, such as:

/etc/rc
/etc/bcheckrc
/etc/profile
/etc/cshrc
/usr/lib/uucp/uushell

and should have one of the following formats, depending on your own zone:

TZ=EST5EDT
TZ=CST6CDT
TZ=MST7MDT
TZ=PST8PDT
TZ=HSTIOHDT

TZ=JST-9
TZ=GMTO
TZ=AST-IO
TZ=GST-l

(for Japan)
(for England)
(for Sydney)
(for Germany)

The number is lIhours", relative to Greenwich, and may be a positive or
negative integer.

If the output of "date" is not correct for your time zone, edit the TZ
line in the files listed above, and wherever else you find the TZ variable
being set. You should then log out and back in again to check if it was
changed properly.

UNIX has U.S. legislative action built in (unfortunately) and assumes
everybody observes daylight saving time on the same schedule. If you live
in an area which does not observe daylight saving time or if congress
changes the law, then set TZ as in this example:

TZ=MST7

and manually adj ust the numeric value when daylight saving starts or
stops.

If you want to find the time in another time zone, say Germany, enter the
following command (include the parens to protect your own TZ variable from
being changed).

(setenv TZ xxx-I date)

Copyright 1987 Heurikon Corporation Madison, WI

76 Heurikon UNIX - Reference Guide
ADMINISTRATIVE FUNCTIONS

10.8 Checking the Nodename

76

If you are using the uUcp or Ethernet logic, you must be sure your system
"nodename" is correct. This is the name by which your system is known to
your neighbors on the network. The initial value is compiled into the
lunix file. To check it, enter 'uname -n'. To change it in lunix enter
'/etc/chgnod newname'. You must reboot for the new name to take effect.
You only have to run chgnod once for each new lunix file. If you copy a
lunix file from one machine to another, remember to adjust the nodename in
the copy.

It is possible to change your active nodename without rebooting by adding
these lines to the end of the letc/chgnod script:

echo changing Idev/mem
adb -k -w $kernel Idev/mem « F I sed -n \

-e '4sl utsname+Ox9/old name/p' \
-e '$s/-utsname+Ox9/new name/p'

utsname+9/s­
utsname+8/w $V
utsname+9/s
F

Figure 30. /etc/chgnod change

(Note: To add these lines, just copy the existing "adb" command already in
the letc/chgnod script, add the "/dev/mem" argument and change the three
adb "?" commands to "I".)

10.9 Running Vchk

The /etc/vchk program will check the directories and files on your system
to be sure they have the proper permissions and sizes. Vchk uses a file
called "vchk tree" which contains information about how the system should
look. It compares that information with the actual files on the system
and prints a list of discrepancies. Vchk will even generate a list of
the commands needed to correct any problems. The vchk tree can be created
(by vchk) and examined or modified (with an editor).

The following command will check the system and create a script of repair
commands in file "vchk.sh":

vchk -Sc > vchk.sh

Edit the "vchk.sh" file to remove any commands which are inappropriate for
your system (specifically, the UniSoft "take" command or any attempt to
read a file from a network). There are many options which you can use
with "vchk". Refer to the vchk pages in the UNIX Administrator's Manual.

Do not be alarmed by many of the "errors" which vchk finds. It does a
very thorough job of checking your file system and will complain about

Copyright 1987 Heurikon Corporation Madison, WI

77 Heurikon UNIX - Reference Guide
ADMINISTRATIVE FUNCTIONS

77

files which have grown (like ietc/passwd) or appeared since the system was
built (such as log files). If you like, you can recreate or edit
/ etc/vchk_ tree to account for your special .circumstances.

10.10 Init

The /etc/init program is the source of all UNIX life. When the system is
boocea, the kernel loads and starts /etc/init, which, in t..U1.l1, is
responsible for starting all other activities. lnit uses /etc/inittab to
control which other processes are started. (See section {6. 2} .) The
normal configuration causes init to enter the "s" state (single-user)
until specifically commanded to do otherwise. When the system is in the
single-user state, the system administrator can run "fsck" and other
programs to check or repair the file system, without interference from
other processes.

To switch to multi-user mode, enter 'init !'. Run level "2" is, by
convention, the multi-user state. There are other numerical states as
well, which are not assigned. The 'telinit' command is used to enter
states "a", "bit or "c". By adjusting /etc/inittab, you could use state 3,
for example, to enable getty's on certain tty ports which are not used in
level 2. Study the distribution /etc/inittab and the manual pages for
inittab in section four of the UNIX User's Manual to learn more about how
to use init.

The command 'init s' will send you back to single-user mode. When doing
so, init will link the "/ dev/ syscon" device to the tty port which issued
the "init sIt command. This is to allow you to continue issuing commands
while in the single user mode, since /dev/syscon is the "virtual" system
console.

Normally, the system administrator should use the physical "console"
device (port B) when using init. If you use a different tty port, then
/dev/syscon will be changed, and, if you later reset and reboot, the
/dev/syscon device will still be linked to the non-console tty. This may
cause some confusion when you reboot, since you will not receive all of
the normal boot messages on the console. You can try hitting the "DELETE"
key at the console device to get control back. You could also boot from
floppy and remake the /dev/syscon device as follows:

mknod /dev/syscon cOO

The /dev/systty device is used by the init program as a reference for the
physical system console. That is, when the init program wants to know
where the default console should be, it links /dev/syscon back to
/dev/systty. Thus, you should have /dev/systty linked to /dev/console.

Copyright 1987 Heurikon Corporation Madison, WI

78 Heurikon UNIX - Reference Guide
ADMINISTRATIVE FUNCTIONS

10.11 Adjusting /etc/inittab and /etc/rc

78

If it is nece.ssary to modify /etc/inittab (to change serial port
configurations) or /etc/rc (to change multiuser mode setup), certain steps
are required.

The /etc/init program only reads its control file, /etc/inittab, when the
init command is executed. Thus, after /etc/inittab is modified, you must
execute at least 'init q' (as super-user) to instruct init to reread the
modified table. Otherwise, your changes will not take effect. Also, any
lingering getty's which you turned "off" will have to be killed manually,
via 'kill -9 pid'. See section {6.2} for an example inittab.

/Etc/rc is only executed if you change run levels. That is, if you are in
run level two (normal multi-user mode), you must go to run level three (or
four, etc) to cause /etc/rc to be executed. Also, if you change the level
two entry in /etc/rc, you do not want to re-execute that entry unless you
are in single-user mode. Thus, the best way to test level two in the
modified /etc/rc script is to either 'sync', 'sync' and reboot, or return
to single user mode via ;init s' and kill off all daemons and getty's.
Then, enter 'init 2'.

It is common to use run levels greater than two to start optional system
features. For example, the Ethernet daemons ~ould be started via /etc/rc
from init level three. In this case, to restart Ethernet after entering
level three, you must first go to some other level (e.g., four) then back
to three.

10.12 Mail Aliases (System V.O)

On a system which connects to other machines via uucp or Ethernet, you can
control mail delivery via the /usr/lib/aliases file, which allows you to
specify routings. For example, the entries:

fred: sm3!fred
sales: jim,sales!tim
adm: yourname
root: yourname

will route mail for "fred" to "fred" on machine "sm3". Mail for "sales"
will be sent to two destinations. This helps local users, since they do
not have to specify the mail routing for to people on other machines. The
last two lines reroute any mail for "adm" and "root" to go to your
mailbox. The /etc/delivermail program is used by /bin/mail to check the
aliases file for routings.

Also, a local mail file, such as "/usr/mail/fred" which starts with a line
such as:

Forward to sys3!fred

Copyright 1987 Heurikon Corporation Madison, WI

79 Heurikon UNIX - Reference Guide
ADMINISTRATIVE FUNCTIONS

79

will cause the mail program to route mail for "fred" on the local system
to "fred" on system "sys3". This method, however, requires "fred" to have
an account on the local machine.

10.13 System Security

This section outlines some items to watch for when setting up your UNIX
system. If you need additional information, look in the L~iIX manuals and
the reference books listed at the end of this guide.

~ Whenever the system is in single-user mode, the system is very
insecure. This is because the default single user is the super-user
and no password is required = You should have the system and the
"console" device in a secure area to prevent somebody from resetting
the system and using the console. in single-user mode. You can also
modify /etc/inittab so that the system automatically goes to multi­
user mode, although this is not recommended.

~ The /etc/passwd file allows passwords to be automatically expired (to
force users to change their passwords) or locked (to prevent a
password from being changed by anyone but the super-user) • See
section four of the UNIX User's Manual.

~ All lines of the password file shouLa have an entry in the password
field if your system is I connected to the phone lines or local
network.

~ All files and directories should be checked for proper ownership and
modes. You can use the "vchk" program to check most of the system
files and directories. See section {10.9}.

~ To secure mail files from being read by others, create a (possibly
empty) mail file for each user (and owned by that user) with mode
600. You could also put these commands in /etc/cshrc:

touch $MAIL
chmod 600 $MAIL

The mode for the /usr/mail directory should be 755 •

• The disk devices, /dev/mem and /dev/kmem should not be accessible by
ordinary users. They should be owned by "check" with mode 600.

~ Certain users can be "restricted" by using special home directories
and the restricted shell and editor, "rsh" and "red" •

• You can look through /usr/adm/sulog to find who has changed user id's
after logging in. However, the log can be doctored by a sneaky user.

~ You can use "find" to search for programs with the "suid" bit set.
These programs can masquerade as the super-user.

Copyright 1987 Heurikon Corporation Madison, WI

80 Heurikon UNIX - Reference Guide
ADMINISTRATIVE FUNCTIONS

80

• You can use the accounting programs to monitor who is doing what and
when. Execute:

/bin/su - adm -c /usr/lib/acct/startup

or put it in your /etc/rc script. Use 'acctcom' (and others
commands) to display the acquired information.

10.14 System Backups

The administrator is usually responsible for backing up the file system on
a routine basis. There are two fundamental methods of backing up system
files.

[1] Copy the entire system or important/changed files to media, such as
floppy or tape. Details on using media can be found in section
{II}.

[2] Copy the file system (or just selected files) to another partition
of the Winchester or to another Winchester. For example, a single
'dd' command could be used (in single user mode!) to make a "clone"
of the root file system on another partition or drive. The standard
partion sizes have been selected so that partion "c" can be backed
up on partion "d" and "f" on "g". {Refer to sections {I2.IO} and
{I2.11} for more details on Winchester drive configuration.)
Although this method does not require any media handling, it does
consume extra Winchester space.

10.15 Other Things to Watch

[1] The system has certain limitations on the number of active processes
and open files. You can display the current usage and maximum
values with the 'pstat' command. (Reconfiguration Rights, described
in section {I3.3}, will allow you to change these parameters.)

[2] Programs that use the shared memory, message and semaphore inter­
process communication features of UNIX must release these facilities
before exiting. Failure to do so will consume memory and queues
which could impair later operation or, in the case of shared memory,
cause the system to run out of storage. If you forget, the system
will automatically release them if your program exits normally.
However, if you are testing a buggy program, things may get left
behind. Use the 'ipcs' and 'ipcrm' commands to report and control
these facilities.

Copyright 1987 Heurikon Corporation Madison, WI

81 Heurikon UNIX - Reference Guide
USING FLOPPY DISKETTES AND TAPE

81

11. USING FLOPPY DISKETTES AND TAPE

11.1 Floppy Disk

CAUTION ITEMS:

~ Do not touch the surface of the media •

• Do not manually rotate the diskette in its jacket. The jacket is
specially designed to remove dust particles from the diskette and
manual movement will defeat the cleaning action.

$ Do not store your diskettes in high temperatures.

~ Keep your diskettes away from radiation such as power supply magnetic
fields or CRT high voltage transformers. Diskettes can go through
airport x-ray equipment; however, the magnetic fields, used to
produce the x-rays and operate the conveyor bel t motors, may be
harmful.

~ Remove your diskette from the drive when not in use.

Note: Refer to section {14.3} for help in interpreting floppy I/O errors.

11.1.1 Formatting a Floppy Diskette
To format a floppy diskette, follow these steps:

[1] Check that the diskette is not write protected. For a 5-1/4"
diskette, the write protect hole must be uncovered. For a 8"
diskette, the write protect hole must be covered. (An example of
Man's infinite wisdom.)

[2] Insert the diskette into the drive and close the door. The label
should either face to the right or up, depending on the orientation
of your drive.

[3] Use either fdref(l) or diskformat(l), depending on the system and
the type of diskette you are using. (You must be super-user on some
systems.)

Command (for SBX-FDIO only)
fdref /dev/rf5sd -d 4
fdref /dev/rf5dd -d 4
fdref /dev/rf8sd -d 7
fdref /dev/rf8dd -d 7
fdref /dev/rf5dh -d 7

Size
5-1/4"
5-1/4"
8"
8"
5-1/4" HD

Copyright 1987 Heurikon Corporation

Sides
single
double
single
double
double

Madison, WI

82 Heurikon UNIX - Reference Guide
USING FLOPPY DISKETTES AND TAPE

Command (for OMTI-5400 Floppy) Size
diskformat /dev/rf5sd -il 4 -head 0 5-1/4"
diskformat /dev/rf5dd -il 4 5-1/4"
diskformat /dev/rf8sd -il 7 -head 0 8"
diskformat /dev/rf8dd -il 7 8"

82

Sides
single
double
single
double

Note that the "raw" floppy device is used. See the fdref (1) manual page
at the end of this guide or diskformat(IM) for details.

11.1.2 . Writing Data to a Floppy Disk

[1] Check that the diskette is not write protected. For a 5-1/4"
diskette, the write protect hole must be uncovered. For an 8"
diskette, the write protect hole must be covered.

[2] Insert the diskette into the drive and close the door. The label
should either face to the right or up, depending on the orientation
of your drive.

[3] If the diskette has never been used before in the system, it will
probably need to be formatted. See the previous section for
details.

[4] Enter one of the following commands:

Command Size Sides
tar -cvlf /dev/rf5sd files 5-1/4" single
tar -cvlf /dev/rfSdd files 5-1/4" double
tar -cvlf /dev/rf8sd files 8" single
tar -cvlf /dev/rf8dd files 8" double

In the above table, "files" is a file name, a list of file names or
a directory name (including If.").

If you specify the size of the diskette (see section {11.1.5}) and
if no single file is larger than one diskette, then "tar" will allow
a large directory to be split between diskettes. It will prompt you
when to change disks. Refer to Section one of the UNIX User's
Manual for information on "tar".

The "cpio" program could have been used as well, as in:

cpio -oev files> /dev/rf5dd

There are more examples of "cpio" backup techniques in the sections
on the streamer tape, below.

11.1.3 Recovering Data from a Floppy Disk

[1] Insert the diskette and enter one of the following commands:

Copyright 1987 Heurikon Corporation Madison, WI

83 Heurikon UNIX - Reference Guide
USING FLOPPY DISKETTES AND TAPE

Command Size
tar -xvlf Idev/rf5sd files 5-114"
tar -xvlf Idev/rfSdd files 5-114"
tar -xvlf Idev/rf8sd files 8"
tar -xvlf Idev/rf8dd files 8"

83

Sides
single
double
single
double

This will extract the named files (or directory) and put them in
your current directory, unless the aa~a on the diskette specifies a
full pathname starting at "I", the root •

• Caution: be sure you are in the desired directory before
issuing this commando. Otherwise, you may overwrite important
files.

[2] You can list the contents of a diskette without actually reading the
data by using a "tar" command of the following form:

tar -tvlf /dev/rf5dd

11.1.4 Other Ways of Using a Floppy
There are other methods which may be used to put data on a floppy
diskette. We do not recommend that you use these techniques unless you
have special circumstances.

a. Use the "dd" command to write or read data. This treats the
diskette as one giant file. You can skip or seek to certain blocks
on the diskettes; but, it is slow going. This command is generally
only used to look at the data on a diskette for debugging-problems
or for writing the standalone boot program on the first few blocks.
Example command:

dd if=/dev/rf8dd of=/tmp/file count=3

b. You can use the 'mkfs1b' command to make a file system on the
diskette (which has a directory structure, etc.) and then 'mount'
the diskette and treat the files on it as part of the UNIX file
system. This structure allows random access. For sequential file
access, use 'tar' or 'cpio'. Example mkfs commands are:

mkfs1b /dev/f5dd 1440
mkfslb Idev/f8dd 2310

(for 5")
(for 8" DD)

The "mkfs Ib" uses 512-byte logical sectors, whereas "mkfs" uses
1024. Also, note that the block device name was used.

c. If you're really lazy or interested in doing a quick test, you can
"cat" directly to and from the device, as follows:

Copyright 1987

cat file > /dev/rf5dd
cat /dev/rf5dd > newfile

Heurikon Corporation Madison, WI

84 Heurikon UNIX - Reference Guide
USING FLOPPY DISKETTES AND TAPE

84

When the file is read back from the device, it will have garbage at
the end because the end-of-file will be at the end of the device.
In this case, the whole floppy will be read back in, unless you hit
the "DELETE" key.

11.1.5 Diskette Capacity
The following chart shows the capacity of a floppy diskette, in blocks.
One "block" contains 512 bytes. The UNIX kernel works with 1024 bytes at
a time, but maintains block numbers in multiples of 512 bytes. The double
density (DD) format block size may be specified by the fdref command. The
following table assumes 512 byte physical blocks for DD and lID (high
density) and 128 byte physical blocks for single density (SD) diskettes.
All formats are soft sectored.

~
5"
511

8"
8t1

8"

dens
OD
HO
DO
DD

sectors/track
9

15
15
15
26

trl<s/side
--80--

80
77
77
77

sides
2
2
2
1
1

BLOCK$
1440
2400
2310
1155

500

device
/dev/rf5dd
/dev/rf5dh (MI0)
/dev/rf8dd
/dev/rf8sd
idevirf8ss

Table 6. Floppy Diskette Capacities (Blocks)

The HD fprmat (for IBM PC diskettes) requires the use of a special SBX­
FOIO module. Support for this format is available only on the HK68/MI0.

If you are using the "tar" -B option (which specifies media size), this is
the proper format:

tar -cvlfB /dev/rf5dd 1440

Other formats may be used. Refer to the fdref(l) manual page (at the end
of this guide) or the standard diskformat(l) page for details.

11.1.6 Floppy Media
Do not use "quad density" or "high density" diskettes for a double density
recording, even if they say "96 tpi" on the label. Contrary to what your
local computer dealer may tell you, they are not compatible with double
density diskettes. "High density" diskettes, however, must be used with
the high density format. If you use the wrong type of diskette media, you
will get frequent read and write errors.

11.1.7 Raw Devices
Al though the block device (such as "dev / f 5dd") could be used for all
floppy operations except formatting, the raw device (such as "/dev/rf5dd")
is usually a better choice. I/O errors, such as no media or physical
end-of-file are reported more promptly by the raw device. This is
important if you need to store a large file across multiple diskettes
since the physical end-of-file needs to be reported to tar or cpio. The
block device must be used only with 'mkfs' and 'mount'.

Copyright 1987 Heurikon Corporation Madison, WI

85 Heurikon UNIX - Reference Guide
USING FLOPPY DISKETTES AND TAPE

85

11.2 Streamer Tape

A streamer tape may be used to efficiently save and restore large amounts
of data. The data transfer rate is high and the tapes have a large
capacity (about 40 megabytes). Tape capaci ty (in megabytes) is
approximately equal to the tape length (in feet) divided by 10.

There are two logical streamer tape devices assigned to the drive.

0- Device "/dev/stl" will rewind the tape after each use.

0- Device "/ dev / stOff will seek forward to the next file mark after each
command. "stO" allows additional files to be appended to a tape.

There are also a few utility commands which control the streamer drive:

strewind
stretension
sterase
ststats

Rewind the tape
Run forward and back
Erase tape
Display drive status

You will find manual pages for these commands and more details on the
streamer interface at the back of this guide (see ST(7).)

-AI though the following procedures utilize the "cpio" program, "tar" could
be used as well with only slight variation in the command format.

Refer to section {14.4} for help in interpreting streamer tape I/O errors.
Common errors are due to the cassette not being in place, the write
protect setting being on "safe" or the tape having wound off the cassette
reel.

CAUTION ITEMS:

~ Do not touch the surface of the tape as oil and grease can damage the
tape and the drive heads.

ct Do not manually crank the tape in the cassette. If it is not
positioned properly, it could be wound off the takeup reels by the
controller.

ct Do not remove the cassette while the tape is in motion. If the LED
on the drive is off, then it is okay to open the door. If the LED is
on, then the tape mayor may not be in motion, depending on the
command you issued. Also, the tape may be in motion even though you
have a prompt. If you are unsure, listen closely to the drive for
activity before you open the door.

Copyright 1987 Heurikon Corporation Madison, WI

86 Heurikon UNIX - Reference Guide
USING FLOPPY DISKETTES AND TAPE

86

11.2.1 Writing Data to Streamer Tape

[I] Make sure the tape cartridge is not write-protected. The write
protect adjustment in the corner of the cassette must not be on
"safe". Insert it into the drive and close the door.

[2] Erase the tape by entering sterase.... • Or, if the tape is already
erased, enter stretension.... to run the tape to the end and back.
This step insures that the tape is correctly tensioned in the
cartridge, which will give you a more reliable recording.

[3] Write to the tape by using a command sequence of the following form:

cd wherever
find • [-other args] -print I cpio -ocvF > /dev/stl

The "find" command will generate a list containing the name of every
file in the system which meets whatever constraints you place in the
"find" command. Each name is passed to the "epio" command. The
options on epio are "0" for output, "C" ascii headers (to improve
portability between UNIX implementations), "V" for verbose, and "F"
which forces a 32K byte buffer. You should do this when the system
is relatively calm, since any files which are changed while the tape
is being written may not be copied correctly.

The use of cd and the "." pathname in "'find'" causes find to
generate file names which are not anchored at any particular place.
This allows more flexibility, since files which are later retrieved
from tape can be placed wherever desired.

The "cpio" program will respond with a list of the file names that
are transferred to tape and the total number of blocks written.

[4] The tape will automatically rewind when the copy is completed, since
/dev/stl was used.

A ... tar.... command may also be used with the streamer, in which case the
syntax for creating a tape would be:

cd wherever
tar -cvlfb /dev/stl 64 files

The tar -r and -u options are not supported when using a streamer tape.

Here is an example of a script which will backup your files. When run
without an argument, backup ... will write to tape any files which have been
modified since the last backup was done. You can, instead, provide the
number of days to look back for updated files. You should be super-user
when you run this command to be sure you have access to the tape device
and all directories and files in the search path.

Copyright 1987 Heurikon Corporation Madison, WI

87 Heurikon UNIX - Reference Guide
USING FLOPPY DISKETTES AND TAPE

: 1'1 backup files to streamer Ii !!backup [days]!!
stoplist=" \./devl ... \·/usr/spool/I ... \·/tmp/"
base=/
daily=/usr/adm/last backup
daily new=/usr/tmp/backup
rpt=/tmp/backup.rpt
if [$# != 1 -a $#!= 0 then

echo usage: $0 '[days]'
exit 1

fi
if [$# = 0] ; then

else

fi

echo Doing daily backup •••
if [! -f $daily] ; then

else

fi

echo No basis file found, creating •••
touch $daily new
echo Backing-up over past 2 days.
cmd="-mtime -2"

echo "Backing up since: "\
" ls -1 $daily I cut -c42-54'"

touch $daily new
cmd="-newer $daily"

echo Backing up over past $1 days.
touch $daily new
cmd="-mtime -$1"

echo Insert tape and hit CR \\c
read response
echo Stoplist = $stoplist
sterase
cd $base
find • $cmd -print 1\

egrep -v $stoplist) $tmpl 1\
cpio -ovcF) /dev/stl 2) $rpt

lp -c -t"Backup Report" $rpt
rm -f $tmpl $rpt
echo Backup complete.
echo "Okay to update last_backup_time (y/n)?" \\c
read response
if ["$response" = y -0 "$response" = ''''] ; then

mv $daily_new $daily
fi
echo Remove tape when rewound.
exit 0

Figure 31. Script for Incremental Backup

87

The "stoplist" function could be provided by a file instead of a shell
variable, if desired.

Copyright 1987 Heurikon Corporation ~fadison, WI

88 Heurikon UNIX - Reference Guide
USING FLOPPY DISKETTES AND TAPE

11.2.2 Recovering Data from Streamer Tape

[1] Insert the tape and close the drive door.

88

[2] Do a "cd" command to position yourself in the directory where you
want to put the files.

[3] You can list the contents of a tape via:

cpio -itmvcF < Idev/stl

[4] To read a tape, enter:

cpio -icmvdF files < Idev/stl

Cpio will read the specified "files" from the tape and place them
into your current directory. If no files are specified in the
command, all files on the tape will be read.

$ Caution: be sure you are in the desired directory when you read
from the tape. Otherwise, you may overwrite important files.

11.2.3 Other Streamer Notes
If the streamer is connected to an (JotTI 5400 controller and you wish to
use a UNIX utility other than cpio or tar, you will have to provide a data
buffer in your utility or use the dd command, as in:

cat files I dd of=/dev/stl obs=lOb

Otherwise, the drive will not "stream".

Copyright 1987 Heurikon Corporation Madison, WI

89 Heurikon UNIX - Reference Guide
USING FLOPPY DISKETTES AND TAPE

89

lle3 Reel-to-Reel Tape

The method used to store and retrieve data from a reel-to-reel tape is
similar to the streamer tape procedures detailed in the previous section.
Either "tar" or "cpio" may be used. Refer to section {14. 2} for a
description of tape I/O errors.

The special notes which apply to reel tape operations are:

.. A tape may be write protected by removing the plastic "write ring"
from the reel hub. The drive senses if the ring is in place when you
mount the tape •

.. The following commands may be used to position the tape. You will
find manual pages for these at the back of this guide.

mtrewind
mtskip

rewind tape
skip file marks

G- The n tar" command, if used, must always have the blocksize specified.
That is, the tar "b" option flag (and blocksize argument) must always
be used. For example, this command will write files to tape:

tar -cvfb idevimtO 20 files

"Files" can be a name list or a directory name (including ".").

0- The "cpio" commands for reel-to-reel tape are similar to the commands
used for a streamer tape. The only difference is the device names,
and you may need to use the "B" option (for a 5K buffer) instead of a
"F" 32K buffer). Refer to the previous sections on using a streamer.

0- Large dumps can be split between tapes. With cpio, this is done
automatically done. With tar, you will need to specify the "s" or
liB" options; see tar(1).

0- Typical 1600 BPI tape devices are:

rewinds the tape after each command. /dev/mtl
/dev/mtO does not rewind the tape after each command.

For complete details on the tape devices, refer to the mt(7) manual page
at the back of this guide.

Approximate tape capacities (megabytes) are as follows:

Copyright 1987

BPI
800

1600
3200

2400 ft
20 meg
40 meg
80 meg

1200 ft
10 meg
20 meg
40 meg

Heurikon Corporation

600 ft
5 meg

10 meg
20 meg

Madison, WI

90 Heurikon UNIX - Reference Guide
USING FLOPPY DISKETTES AND TAPE

90

11.4 Media Interchange

If you are exchanging media between a Heurikon system and another UNIX
system, keep these items in mind:

$ Standard floppy format is 128 bytes/sector, 26 sectors/track (single
density) or 512 bytes/sector, 15 sectors/track (double density).

$ Byte swapping: There is, unfortunately, more than one standard byte
orientation for tapes. The "normal" convention is to write the high
byte of a 16-bit binary value followed by the low byte. The other
convention (DEC) is to write the low byte first. This would not be a
problem if it weren't for the fact that in both cases character
strings are always written in normal byte order. Thus, when a tape
is read, you must know whether you are reading binary or character
data in order to determine which bytes should be swapped. You can
deal with this problem the following ways:

a. Read the data to a buffer and write a program to swap whichever
bytes need to be swapped. This will work if you know in
advance the exact byte structure of the tape data.

b. Use the 'conv=swap' option on the 'dd' command to swap all byte
pairs.

c. Specify the swapping minor device names for the (reel-to-reel)
tape. See the mt(7) manual page at the back of this guide.

$ Most systems support a similar "tar" format. Use "tar" instead of
"epio" to create tapes for other systems.

$ Use the same data blocking factor on both machines. That is, the tar
-b option or the cpio -B option must correspond. Values larger than
20 with tar or use of the -F option with cpio will probably not work.
The mtforeign(l) command may help you determine the format of a tape;
see the manual pages at the end of this Guide •

• After reading in foreign files, check their modes (e.g., user id), to
be sure they are correct for your system.

Another option is to use Uucp to transfer files between systems.

Programs which were compiled on a Heurikon System III machine should be
recompiled in order to run on System V or V.2. Streamer tapes written on
a Tanberg drive may not be readable on a Kennedy drive.

Copyright 1987 Heurikon Corporation Madison, WI

91 Heurikon UNIX - Reference Guide
USING FLOPPY DISKETTES AND TAPE

91

11.5 Backups via Ethernet

Files can be sent between machines very efficiently using Ethernet links.
The following command examples allow files to be saved on remote tape
facilities:

11.6 Method Comparison

There are various methods described above for using media to backup UNIX
files. Here is a summary of those methods and their relative advantagese

file system

tar command

cpio command

dd command

cat, see

Copyright 1987

Use the mkfslb command to crate a file system on the media.
Allows random access to files. Places a directory
structure above the raw data. Cannot be used with streamer
or reel-to-reel tape. Best for a situation where mUltiple
files will be placed on a floppy and a section of a file
must be updated at a later time. Data will not be
contiguous on the media.

Sequential access method. Can handle a whole directory and
sub directories by spec1ty1ng only one directory name =
Cannot handle special files (devices). The most standard
inter-system format.

Sequential access method. Requires a list of file names to
be fed to the command. Can handle special files (devices).
Will automatically request a volume change at the end of
the media.

Sequential access method. Allows access to specific blocks
on the media. Does not interpret any data or place any
meaning on specific records.

Since a UNIX device is treated like an ordinary file from
the point of view of a user program, any utility (e .g.,
cat) can do I/O directly. Not very elegant, but
functional.

Heurikon Corporation Madison, WI

92 Heurikon UNIX - Reference Guide
REBUILDING THE UNIX SYSTEM

92

12. REBUILDING THE UNIX SYSTEM

Rebuilding a UNIX system is defined as:

• Reformatting (reinitializing) your Winchester disks.

e Reexamining your Winchester disks for defects.

• Recreating an empty UNIX file systems on your disks.

e Reloading these new file systems with files from a previously
existing file system.

Rebuilding the UNIX system can take three or four hours from floppy disk
or half an hour by streamer tape. Do not rebuild the system unless it is
absolutely necessary, such as, after replacing a Winchester drive or after
experiencing a major hardware problem, which resulted in many corrupted
files.

If you cannot boot, then you may only have a bad standalone boot program.
That can be rewritten, as described in a section {12.4}, without
rebuilding. A few lost files can be retrieved by specifying them in a
"tar" command instead of reading in all of the UNIX files. If you have
new bad blocks on the Winchester, the badblk.... program can be used to
assign alternates. Refer to section {12.5}. Rebuilding should be
considered only as a last resort.

• ASK YOURSELF "IS REBUILDING REALLY WHAT YOU SHOULD BE DOING?" If you
are unsure of the answer to this question, call Heurikon Technical
Support for advice rather than make the wrong choice.

When you rebuild the system, you will overwrite all the files on your
system and lose any recent work. Of course, if you have backup diskettes
or tapes containing your recent file changes, then you will be able to
load those back in after rebuilding.

• CAUTION: If the system is off, power it up and wait at least an hour
for it to come to a stable temperature before rebuilding. This is
important because the Winchester drive should not be formatted until
it has had a chance to stabilize; otherwise, you may have trouble
reading from the drive later.

The diagram on the next page shows the general relationships between the
various diskettes and the Winchester drive with respect to the rebuild
procedure.

Copyright 1987 Heurikon Corporation Madison, WI

93 Heurikon UNIX - Reference Guide
REBUILDING THE UNIX SYSTEM

"rebuild" floppy diskette Winchester drive (wOh)

.-------------------------. .------------------------.
Files executed to
rebuild the Winchester
(and some to be copied
to the Winchester):

Isbootx (boot pgm)
iunix
letc/inittab
letc/passwd
/etc/rc
letc/loadsys (script)
/etc/init
letc/mkfs & mkfs1b
Ibin/tar & cpio
Ibin/diskformat
Ibin/badblk
letc/fsck
Ibin/ls
/bin/mkdir & mknod
/bin/mount
/bin/sync
/bin/dd
Ibin/sh
/bin/stty
Ibin/su
Irebuild (script)
/dev/{misc)
Ibin/{others)

l-d~~--?
-a<10->
-mkfs-)
-mkfs-)
-mkfs-)

'-mkfS-)I
=mkfs~>

-mkfs-)
-mkfs-)
-mkfs-)
-mkfs-)
-mkfs-)
--mkfs--)
-mkfs--)
-mkfs-)
-mkfs-)
-mkfs-)

i--mkfs->,
-mkfs-)
-mkfs-)

.-)

wOb

(root file system)

wOa
(swap)

Wine standalone boot

'--------------------------, '----------------------,

floppy "boot" diskette
.--------------------------.

(empty)

floppy standalone boot
, , ---------------

"tar" volumes (diskettes)
or "cpio" tapes

.-------------------------.
,-I UNIX programs and files

I- - - - - - I

I- - - I
, , -----------------

Figure 32. Rebuild Media Diagram - Typical

93

"Note: The actual files of the media may vary slightly from the
diagram, depending on the release.

Copyright 1987 Heurikon Corporation Madison, WI

94 Heurikon UNIX - Reference Guide
REBUILDING THE UNIX SYSTEM

94

12.1 Floppy or Tape Rebuilding

Use this sequence to rebuild the UNIX system from floppy disk, streamer or
reel-to-reel tape.

[1] You will need the following items to rebuild the system: (Refer to
figure {32}.)

a. The "boot" diskette. This diskette has the standalone boot on
the beginning and nothing else. It is a separate diskette so
that the "rebuild" diskette has more space for files.

b. The "rebuild" diskette, containing the minimum set of programs
and files needed to run UNIX, format the Winchester, create a
file system, copy files and debug problems. In particular, it
has a floppy-based /unix for execution, which is modified and
moved to the Winchester to become a Winchester-based /unix, a
standalone boot for copying to the Winchester, /etc/init,
Jetciinittab and numerous programs in ibin. See section
{12.9} for more information.

c. One "cpio" format tape or streamer tape cassette or a set of
from 15 to 25 diskettes containing all of the standard UNIX
files.

d. Any special language diskettes and your own file backup
diskettes or tapes.

[2] Push the system reset button. See the "CAUTION" note above.

[3] Insert the "boot" diskette in the drive.

[4] Enter 'bf'. You should get the "standalone boot" message from the
loader.

[5] Remove the boot diskette and insert the "rebuild" diskette.

[6] Enter <CR) to load the floppy-based /unix. This will take a few
seconds •

• With older rebuild scripts, you may also get a "Type RETURN to
start at Oxl000" message. If so, do so.

[7] Enter <CR), again. This will start execution of the floppy Junix.

[8] If you are going to rebuild from tape, then insert the "cpio"
streamer cassette in the tape drive and close the door or mount the
reel-to-reel tape.

[9] Enter' /rebuild'" • This will run the rebuild script on the floppy
diskette. You can print this file (via "'cat' or 'dd') for specific

Copyright 1987 Heurikon Corporation Madison, WI

95 Heurikon UNIX - Reference Guide
REBUILDING THE UNIX SYSTEM

details. You will receive a menu with some options to choose •

95

• Note: Some system releases have a rebuild procedure which
varies somewhat from that described below. Follow the specific
instructions provided with your rebuild media or as prompted by
the rebuild script. Use this document as a guide to what will
be happening.

[10] You will be asked if you want to do a "dry run" instead of the real
thing. On your first time through, say 'yes'. This will cause all
format and rebuild commands to be displayed but they will not be
executed. Later, you can repeat this procedure to actually perform
the rebuild ..

[11] If you are asked "Enter Device (wd/smd)", answer "wd" for a
Winchester or "smd" for a SMD based system.

[12] You will be asked to select the type of controller used in your
system (e.g., Adaptec or OMTI). Respond according to the menu
choices.

[13] For each of two drives, you will be asked to select the code for the
type of Winchester (or SMD) in your system and the partition you
wish to build. Enter the code for your winchester according to the
menu choices. There will be a few seconds of disk and CPU activity,
after which the computed drive parameters will be displayed.

[14] You will be given the option of formatting the drive. This activity
can be skipped if you are sure the drive is properly formatted and
there are no bad blocks. You must skip this step if you want to
save data or the file system on any partition of the drive. If you
format the drive, you may be able to hear it step from cylinder to
cylinder as it goes. Formatting will take a few minutes to
complete. When the format operation is completed, a few status
messages will be printed.

[15] After the format operation, the drive will (optionally) be checked
for bad blocks and, if any are found, alternate blocks will be
assigned. Error messages will be generated as bad blocks are
encountered. This step will take about 10 minutes, depending on
your drive size •

• You must let the "badblk" program run to completion in order
for the bad block information on the drive to be updated and
alternate blocks to be assigned.

[16] After the bad block check is done, the rebuild script will write a
standalone boot program on the beginning of the drive (drive 0 only)

. and a UNIX file system will be constructed.

Copyright 1987 Heurikon Corporation Madison, WI

96 Heurikon UNIX - Reference Guide
REBUILDING THE UNIX SYSTEM

96

• (For releases prior to 7a only): You will be asked whether you
want to rebuild from floppy or tape. Respond 'f' or 't'. If
you only want to place an empty file system on the partition,
answer't'.

[17] A "mini" version of UNIX, consisting only of the kernel and a few
vital commands, will be placed on the Winchester.

[18] When you get the message "Finished rebuilding" (or "done") and a
UNIX prompt, enter two '~' commands. This will make sure the
Winchester superblock is updated.

[19] Push the system reset button. This will return you to the Hbug
monitor.

[20] Enter 'bw' to boot from the Winchester (or 'bd' for SMD). You will
get a "Standalone boot" message. (Note: from here on, if you have
trouble, refer to the boot procedure described in section {l.l} for
troubleshooting hints.

[21] Enter a carriage return. The boot program will read the kernel from
the Winchester. This will take up to a minute.

• Enter another carriage return if you get "Type RETURN to
start ••• "

[22] After a minute or two, you will get the standard messages from UNIX
as the system is initialized. When you get the UNIX prompt ("I"),
the system will be ready to load the rest of the UNIX programs.

[23] Enter 'loadsys'. This script will load in the "tar" format
diskettes or "cpio" format streamer tape containing all of the UNIX
programs and files.

• Prior to release 7a, 'loadsys' was called 'loadtar'.

[24] When asked to do so, insert the the streamer tape (or diskette
volume 1) in the drive and enter a carriage return. The name of
each file will be listed as it is read from the media and loaded
onto the Winchester.

• If you are not building the root file system or if no files
need be put on the partition, hit the "DELETE" key and go to
step the next step (or back to step 9 to do another partition.)

• Loading from streamer tape will take about half an hour. When
the tape has been read in, you will receive the standard UNIX
prompt.

• If you are rebuilding from reel-to-reel tape, when the message
instructing you to insert a streamer tape appears, hit the

Copyright 1987 Heurikon Corporation Madison, WI

97 Heurikon UNIX - Reference Guide
REBUILDING THE UNIX SYSTEM

97

iiDELETE" key, which will stop the loadsys script. Then,
physically mount your tape and enter the following commands:

cd /
cpio -icvBdu < /dev/mti
rm -fr /lost+found
mklost+found

• If you are loading from floppy, the system will prompt you to
change diskettes as each volume is completed. Insert the next
diskette and type a carriage return. When all the volumes have
been read in, respond 'q'.

If you skip any volumes or do not complete the rebuild
procedure, you may be missing some important files. Some
programs will give strange results if they cannot find all of
the library and data files, etc., that they need to operate.
You can remove files you do not want after the rebuild has been
completed.

[25] The loadsys script will make the "lost+found" directory, which is
needed by 'fsck' to correct file system problems.

[26] If you are using a HK68/MIO system, run 'Install'.

[27] Enter two '~' commands.

[28] Press the system reset button.

[29] Reboot from the Winchester (see section {I.I}). You will be running
the "real" UNIX, placed on the Winchester by loadsys.

[30] Run 'fsck'.

[31] (Optional) Run the "vchk" program to check for missing files and
incorrect file modes. Refer to section {10.9} for details. You can
do this step later, if you like.

[32] Load any language or backup tapes or diskettes using the "tar" or
"cpio" commands, as follows:

tar -xvfl /dev/rf5dd (for 5-1/4" diskettes)
tar -xvfl /dev/rf8dd (for 8" diskettes)
cpio -icvud files </dev/stl (for tape)

Refer to section {II} for details on floppy and tape backup/restore
procedures.

That completes the rebuild procedure. You should be able to boot and run
UNIX according to the instructions at the beginning of this guide. Be
sure to run the "fsck" portion of the boot procedure.

Copyright 1987 Heurikon Corporation Madison, WI

98 Heurikon UNIX - Reference Guide
REBUILDING THE UNIX SYSTEM

12.2 Creating Boot and Rebuild Diskettes

98

A "boot" diskette contains the standalone boot program on the beginning of
the diskette. A "rebuild" diskette has a minimum UNIX system on it; just
enough to bring in programs from other media.

[1] Enter 'cd /usr/src/rebuild' to ensure that you are in the proper
directory.

[2] Boot Diskettes are made as follows:

For 5-1/4" diskettes: 'make bootS'
For 8" diskettes: 'make boot8'
Manually: 'dd if=sbootx of=/dev/fSsd ibs=32 skip=l'
Manually: 'dd if=sbootk of=/dev/f8sd ibs=32 skip=1'

[3] Rebuild Diskettes are made as follows:

For 5-1/4" diskettes:
For 8" diskettes:

'make sys5'
'make sys8'

Those commands use the "make" program to execute a series of commands
which will ask you some questions and prompt you to do certain manual
things, like inserting a floppy diskette. (Look at
"/usr/src/rebuild/Makefile" to see the actual commands that are executed
to make boot and rebuild diskettes. You can enter them manually, if you
would rather.)

There is also a 'fix' diskette, which can be made by typing 'make fixS'
(or 'make fix8'). This diskette will contain some programs which might be
useful when repairing a damaged file system.

Copyright 1987 Heurikon Corporation Madison, WI

99 Heurikon UNIX - Reference Guide
REBUILDING THE UNIX SYSTEM

99

12.3 Creating Streamer Tape Dumps

Note: This is not the incremental dump procedure. This section describes
how to make a complete system dump, which should be done infrequently.
Instructions for doing incremental dumps are in section {II.2.I}.

[1] Ensure that all mountable file systems are unmounted.
command. Any file systems other the "wOb" must
Unmount them using the "umount" command, as in:

cd I
umount /dev/wla

Do a 'mount'
be unmounted.

The reason that only the root file system should be mounted is that
the tape back-up will contain every file on the system which is
reachable at the time the back-up is made. If the back-up contains
files from many tile systems in addition to the root file system, it
is very likely that when the tape is loaded to reinitialize the root
file system, the root file system will overflow.

[2] Be sure the system is calm. Manually log off all users or enter
'init s' at the console.

[3] Make sure the tape cartridge is not write-protected. Insert it into
the drive and close the door.

[4] Erase the tape by entering sterase', or, if the tape is already
erased, enter 'stretension' to run the tape to the end and back.
This step will insure that the tape is correctly tensioned in the
cartridge to insure a reliable recording.

[5] Write to the tape by typing:

cd /
find • -print I cpio -ocvF > /dev/stl

The "find" command will generate a list containing the name of every
file and directory in the system. Each name is passed to the "cpio"
command. The options on cpio are "0" for output, "c" ascii headers
(to improve portability between UNIX implementations) and "v" for
verbose.

The "cpio" program will respond with a list of the file names that
are transferred to tape and the total number of blocks that are
written.

[6] The tape will automatically rewind when the copy is completed.

Copyright 1987 Heurikon Corporation Madison, WI

100 Heurikon UNIX - Reference Guide
REBUILDING THE UNIX SYSTEM

12.4 Writing the Standalone Boot to Winchester

[1] Boot from floppy, according to section {1.2}.

100

[2] The standalone boot can be placed on the Winchester, using one of
these "dd" commands:

dd if=/sbootx of=/dev/rwOh ibs=32 skip=I seek=I
dd if=/bootx.bin of=/dev/rwOh ibs=32 skip=1 seek=1

(Sys V.O)
(Sys V.2)

The 'sbootx' file is a copy of either 'm10boot' or 'vlOboot', which are
the unified bootstrap routines for system V.O.

12.5 Bad Block Checking

On a large file system, you should expect an occasional defective disk
block. UNIX System V.O (V.2) deals with this problem by reserving a group
of extra blocks (tracks) at the end of the drive, for use as "alternates",
in case a bad block is found. The 'badblk' program can be used to check
the drive for bad blocks, assign an alternate for a specific disk block
(system V.O) or entire track (system V.2) and list the current bad blocks
on a drive.

The bad block program is automatically run by the 'rebuild' script during
the system rebuild process. It takes about 10 minutes to run using the
read only option; longer, if you use the write/verify option. System V.O
has a 50 block limit on the number of bad blocks which can be remapped.
System V.2 can remap 100 tracks.

12.6 Manual Disk Format/Mkfs

If you want to manually format and create a file system on a Winchester
(instead of using the rebuild script), you will have to specify numerous
drive parameter values. These numbers are automatically computed for you
when you use the /usr/src/rebuild/rebuild script, which you should examine
for details. You can run the rebuild script in the "dry run" mode to see
the values for a particular type of drive configuration. Here are
examples of the format and mkf s commands used for a Maxtor 65 megabyte
drive, with an OMTI 5400 SCSI controller.

diskformat /dev/rwlh -cyl 0-917 -head 0-6 -ill
chstep /dev/rwlh 0 0 (System V.O only)
badblk /dev/rwlh
mkfs /dev/wla 3983 1 119
mkfs /dev/wlb 50571:12642 1 119

The physical block size on the Winchester is 512 bytes/sector. The
logical block size is 1024 bytes/sector.

Copyright 1987 Heurikon Corporation Madison, WI

101 Heurikon UNIX - Reference Guide
REBUILDING THE UNIX SYSTEM

12.7 Changing the Swap Space Size

101

The UNIX operating system uses one partition of one drive as a "swap
area" • This space is used primarily for temporary storage of a program
and its data when some other program needs more RAM space. There is no
way to predict the maximum amount of space required, since that value
depends on system loading and program sizes. The standard system has
about four megabytes (7966 disk blocks) reserved for the swap area. If
you have a large system memory (more than two megabytes) this might be too
small. If the swap space is too small, you will get some warning messages
or your system may "thrash" (drastically reducing performance). The
kernel will panic if it runs out of swap space at a critical time.

The following procedure may be used to enlarge the swap space to eight
megabytes. Read though all steps before you start.

[1] Backup your files; this procedure will wipe your drives clean.

[2] Make a new rebuild disk. (See section {12.2}.)

cd /usr/src/rebuild
make sys5

[3] Modify the (new) disk to have a floppy based unix which knows of the
new partition boundaries.

mount /dev/f5dd /floppy
adb -k -w /floppy/unix
nswap,l?U Displays old length of 7966
?W Od15966 New length of 15966 blocks
$q exits adb

[4] Change the rebuild script on the floppy so that it will build the
partitions using the larger swap area. (This is not required for
release 7a and later; the rebuild script has been taught to adjust
itself).

vi rebuild
/7966
cw15966(ESC)
ZZ

[5] Enter two 'sync' commands and reset the system. Reboot from floppy
(per section {I.2}) using the new rebuild diskette.

[6] Do a rebuild using the new rebuild disk and the new script. If you
have two Winchester drives, you must rebuild (mkfs) the second drive
also because the kernel assumes the swap partition is the same size
on both drives. The partition boundaries will be adjusted to
conform to the layout in section {12.10}.

Copyright 1987 Heurikon Corporation Madison, WI

102 Heurikon UNIX - Reference Guide
REBUILDING THE UNIX SYSTEM

102

$ Some (old) rebuild scripts might imply that partitions "b" and
"cn still start at block 8000. Don't worry; the kernel knows.

[7] Modify the UNIX kernel that you plan on booting from the Winchester
(e.g., /unix) as shown below. When the rebuild script exits,
/dev/wOb should still be mounted at /floppy.

adb -k -w /floppy/unix; default boot kernel
nswap,l?U Displays old length of 7966
?W Od15966 New length of 15966 blocks
$q exits adb

If the "?U" command displays "15966", that kernel has already been
changed. This would be expected if you rebuild from floppy since
the Winchester /unix written by the rebuild process is actually a
(slightly modified) copy of the floppy /unix.

[8] Enter two 'sync' commands and reset the system.

[9] Enter 'bw' to boot from Hbug. The bootstrap will automatically try
look at both blocks 8000 and 16000 to find the root file system.

~ Older bootstraps require you to enter

wd(0,16000)/unix

at the n:" prompt enter. If so, from now on, any kernel that
you boot will require the "wd(O,16000)". This boot-time
argument specifies the beginning of the root file system, which
is always at 34 blocks more than the size of the swap area.

[10] Run the adb command as per the above on all other UNIX kernels on
your system.

[11] If you are using an old rebuild script (prior to release 7a), run
the vi command as per the above on /usr/src/rebuild/rebuild.

To adj ust the swap space to any particular size, follow the above steps
but substitute new arguments where appropriate. Replace the "15966"
values with the swap space size in decimal and replace the "16000" value
with the swap space size in decimal plus 34.

12.8 File System Check, fsck

When the system is booted, it is always a good idea to run the 'fsck'
program. This is done automatically when going to multi-user mode. (See
section {1.1}). If you run it manually, fsck should be used on a mounted
file system (such as the root file system) only when in single-user mode.
This is to prevent the file system from being changed by cron or another
user while fsck is running. If fsck corrects an error on the root
(mounted) file system, you will have to reboot to make the correction

Copyright 1987 Heurikon Corporation Madison, WI

103

permanent.

Heurikon UNIX - Reference Guide
REBUILDING THE UNIX SYSTEM

103

The "-s" option of fsck can be used to restructure the free list. This
will improve system performance, but only for a few hours, since the
random nature of the file system will ultimately return.

12.9 Creative Use of the Rebuild Diskette

In addition to providing the means to rebuild the system in the event of a
maj or crash, the rebuild diskette can also be used to examine, and
possibly re"pair» a damaged file system.

There are some problems, however •

• Due to space limitations, the diskette does not contain many
programs •

• If the Winchester file system is damaged, chances are you won"'t be
able to do much anyway, unless you re a UNIX wizard, in which case
you probably wouldn t be reading this section.

Here are some hints for expanding the usefulness of the rebuild diskette.

[1] Boot the system from floppy as described in section {1.2}.

[2] Mount the Winchester at "/floppy":

mount /dev/wOb /floppy

[3] Commands which are "not found" on the floppy, such as "Is", "rm" and
"cat" can be executed from the Winchester by entering
.... /floppy/bin/rm ... , etc.

[4] Some programs on the floppy can be used for other purposes. For
example, "dd" can be used instead of "Is", "cat" or "cp"; ")" can be
used to clear a file instead of "rm".

The makefile in the rebuild directory can make a fix diskette containing
programs which are useful for debugging and repairing a file system. To
be of any value, however, you must make the 'fix' diskette in anticipation
of its need.

Copyright 1987 Heurikon Corporation Madison, WI

104 Heurikon UNIX - Reference Guide
REBUILDING THE UNIX SYSTEM

12.10 Winchester Partitioning

12.10.1 Winchester Partitioning - General

104

The main Winchester drive is logically separated into four areas. The
first is a small area reserved at the beginning of the drive for the
standalone boot program. The next section is the "swap area" and is used
by UNIX to construct memory images and as a place to put programs which
are waiting to execute but which cannot due to lack of memory, I/O in
progress or low priority. The third area is the actual file system and is
known as the "root" file system. It extends almost to the end of the
drive. There is another small area reserved at the end of the drive for
the "alternate" blocks. In System V.O, this is 100 blocks, although only
50 are ever used; in System V.2, 1% of the drive is reserved for alternate
tracks; 100 of which are used, at most. Any defective (or "bad") blocks
in the swap or root file system areas are "mapped" into a good block (or
track) in the alternate block (track) area of the drive.

Partition

a
b

From To
(biOckS)
o 0
1 33
34 7999
8000 alt
alt end

Function

Drive parameter block
Reserved for boot
Swap area (standard)
Root file system
Alternate blocks/tracks

The parameter block starts with a branch instruction to the second block.
This causes the MPU to jump over the parameter block to get to the
bootstrap.

A physical "block" is 512 bytes. The device name "wOb" refers to the "b"
partition of drive O. See section {17.3.3} and {17.4} for details on
minor device assignments and Winchester device names.

The swap device, /dev/swap, is assumed to be the first partition of drive
0, /dev/wOa. The "root" of the file system is assumed to be at block
8000, /dev/wOb. These notions are defined in the kernel, but the size and
root base can be changed as detailed in section {12.7}.

If you boot from floppy, then the swap space and the root file system is
on the floppy. The swap space on a floppy is not used, so it is only
allocated a few sectors.

The following commands are available under System V.2:

diskconf /dev/wOh
psize /dev/wO?

Copyright 1987

Display drive format information
Display partition size

Heurikon Corporation Madison, WI

105 Heurikon UNIX - Reference Guide
REBUILDING THE UNIX SYSTEM

12.10.2 Winchester Partitioning - Details

105

There are other configurations possible for the drives. The following
information is for those readers who crave the gory details. This data is
valid for Heurikon UNIX Release "Scn, and later.

Parameter
nheads
ncyls

Definition
number of data heads on drive
number of cylinders on drive
17 (blocks) nsect

maxbn
boot_length
swap_start
nswap
after_swap
b size

nhead * ncyls * nsect
34 (blocks)
34 (blocks)
7966 (blocks, adjustable)
swap start + nswap
maxbn - after swap - alts

alts 100 blocks (V~O); 1%, rounded (V.2)

Partition Start Block Length (blocks)
X 0 boot_length
a swap_start nswap
b after_swap b size
c after_swap b-size/2
d after_swap + (b size/2) b-size/2
e swap start b-size/2 + nswap
f after_swap + (b size/2) b-size/4
g after_swap + (b size*3/4) b size/4
h 0 maxbn
y maxbn-alts alts

Partition "hit includes the entire drive and is used only for formatting,
bad block checking and writing the standalone boot.

Option
(1)
(2)
(3)

Option
(1)
(2)
(3)
(4)
(5)
(6)

Copyright 1987

(letters indicate partition name)

System Disks
X aaaaa bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb Y
X aaaaa ccccccccccccccccc ddddddddddddddddd Y
X aaaaa ccccccccccccccccc ffffffff gggggggg Y

~-System Disks
X aaaaa bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb Y
X aaaaa ccccccccccccccccc ddddddddddddddddd Y
X aaaaa ccccccccccccccccc ffffffff gggggggg Y
X eeeeeeeeeeeeeeeeeeeeeee ddddddddddddddddd Y
X eeeeeeeeeeeeeeeeeeeeeee ffffffff gggggggg Y
hhh

Figure 33. Winchester Partitions

Heurikon Corporation Madison, WI

106 Heurikon UNIX - Reference Guide
REBUILDING THE UNIX SYSTEM

12.11 Multiple Winchester Drives

106

A multiple drive system can be used to increase storage capacity, improve
performance or both. Increased performance is achieved by separating
files and programs between drives so that average head seek time is
minimized. One common configuration is to put the Itmp directory on a
different drive from lusr, Ilib and Ibin, so the "c" compiler, link editor
and similar programs will run faster.

Winchester Drive 0 ("wOn)

--~----------------------.
Partition a ("wOa")

swap area

Partition b ("wOb")
I (root)
lusr
letc
Ibin I

, ____ ~~~: _________________ l

Winchester Drive I ("wI")
. ------------------.

Partition a {If wI an)
Itmp

Partition b ("wIb")
lu

user home directories
archives

, , -------------------------
Figure 34. Multiple Drive Configuration - Typical

The drives do not have to be of the save type. Partition "a" on both
drives, however, will be the same size since the swap size (nswap) is
built into the kernel.

The 'mount' or 'df' commands will display the current configuration.

The general command sequence used to configure the system as shown above
is:

diskformat /dev/rw1h
chstep Idev/rwlh 0 0
badblk Idev/rw1h
mkfs Idev/w1a •••
mkfs Idev/wIb •••
mkdir lu
mount Idev/w1a Itmp
mount Idev/wlb lu

...

Refer to section {12.6} and the lusrlsrc/rebuild/rebuild script for
specifics on the diskformat and mkfs commands. The mount commands could
be put in letc/rc to be done automatically after booting.

Copyright 1987 Heurikon Corporation Madison, WI

107 Heurikon UNIX - Reference Guide
ACCESSING I/O DEVICES (DEVICE DRIVERS)

13. ACCESSING I/O DEVICES (DEVICE DRIVERS)

107

There are a number of ways-to access a physical I/O device. The following
list ranks the methods from "worst" to "best" • Each is described in
detail below.

phys call:

/dev/mem:

Not standard, Non-Portable.
Simple and quick to try.
Allows fast executing, in-line I/O.
No interrupt support.

Somewhat better, but cumbersome.
Limited addressing range.
Slow access via kernel system calls.
No interrupt support.

Device driver: Most reliable and flexible.
Total device control, including interrupts.
Takes time and effort to implement.
Requires rebooting to test new version.

13.1 phys(2) System Call

The iiphysii system call can be used to access an on-card or off-card I/O
device. This call instructs the kernel to associate a particular range of
virtual (logical) addresses with a particular range of physical addresses.
Your program must be running as the super-user to execute this call.

phys(n,Vadrs,size,Padrs)

where "n" is 0,1,2 or 3
"Vadrs" is the base virtual address
"size" specifies the window size in bytes

(will convert to a power of two, 4096 or larger)
"Padrs" is the base physical address

Example: "phys(0,Ox800000,4096,Oxfe8000)"

assigns virtual addresses Ox800000 thru Ox800fff
to physical addresses Oxfe8000 thru Oxfe8fff.

Figure 35. 'phys()' system call

The "jumper.c program, below, uses the phys call to read the status of the
user jumpers. (An easier way to access the jumpers and user LEDs is
described in section {IS.3}. This is just an example of phys usage.)

Copyright 1987 Heurikon Corporation Madison, WI

108 Heurikon UNIX - Reference Guide
ACCESSING I/O DEVICES (DEVICE DRIVERS)

#include <stdio.h>
'define PSIZE 4096
'define JUMPHYS «char *)OxfefOOO)
Idefine JUMPVIR «char *)(Ox800000-PSIZE)
maine)
{

}

if (phys(O,JUMPVIR,PSIZE,JUMPHYS» {
printf("must be super-user\nn);
exit(I);

}
for (;;) /* do forever */

printf("%x\r\n",*JUMPVIR);

Figure 36. 'jumper.c' program (MIO, VIOl

108

The problem with the phys call method is that the user has no control over
which virtual addresses are available for use and which are being used by
the program, since they have been aSSigned by the operating system at run
c~me. If you choose a value that is already in use by the kernel, there
will be trouble when you reference that address, since a virtual address
can only be mapped to one physical addresses. The critical factor is the
value you choose for the virtual address.

Specifically, the phys(2) call will fail if the virtual address conflicts
with some other address space in the program. Those other spaces are
program text, data, stack, shared memory and other phys segments. In
System V (MIO, VIO), text and data (combined) run upward from OxOOOOOO,
and the stack grows downward from about OxfefcOO. The virtual address of
a shared memory segment is returned by the shmat(2) system call, and is
usually between Ox800000 and OxFOOOOO. System V.2 parameters are T.B.D.

A phys(2) call will also fail if the specified size, after rounding up to
the next power of two, is not an exact multiple of the virtual or physical
address arguments. This insures that only one MMU descriptor will be
needed.

Unless your program is relatively simple, you should avoid the phys(2)
call. If your memory environment changes, previously working phys (2)
calls might fail due to changes in kernel-assigned virtual addresses.
Also, remember that the phys(2) call may not be portable to other systems.

If you decide to use a phys(2) call, we suggest you start by trying the
following virtual address values (MIO, VIO systems):

(a) Ox800000 minus your phys(2) segment size.
(b) Ox800000, if you are not using shared memory.
(c) OxffOOOO (configuration dependent)
(d) "&end", rounded up to the next power of 2 boundary> 4096;

see ld(l).

Copyright 1987 Heurikon Corporation Madison, WI

109 Heurikon UNIX - Reference Guide
ACCESSING I/O DEVICES (DEVICE DRI\~RS)

109

Refer to section two of the UNIX User's Manual for more details on the
phys call.

13.2 /dev/mem and /dev/kmem

The device "/dev/mem" allows you to access the first portion of physical
memory as if it were an I/O device. In System V, this is OxOOOOOO through
Ox7fffff. You can place your I/O device near the end of that area; be
sure it is not contiguous with RAM. Then, you can "open" /dev/mem,
"lseek" to a particular byte position and "read" or "write" data. Refer
to section two of the UNIX User's Manual for details on those system
calls. Because of all the system calls required, this access method is
somewhat slow and clumsy.

Device "/dev/kmem" allows you to access memory as the kernel sees it
through the memory mapping logic (virtual memory). It is generally used
in conjunction with nlist(3} and adb(l}. It should not be used to access
physical memory.

On MlO and VlO systems, physical bus addresses above eight megabytes
(Ox800000) are inaccessible using /dev/[k]mem. See section {15.9} for
more information on the memory configuration. System V.2 parameters are
T.B.D.

Copyright 1987 Heurikon Corporation Madison, WI

110 Heurikon UNIX - Reference Guide
ACCESSING I/O DEVICES (DEVICE DRIVERS)

110

13.3 Device Drivers - Reconfiguration Rights

This is the best way to handle devices. Unlike the methods discussed
above, a UNIX device driver has complete control over a device and can
handle interrupts. The only drawback is that you need considerable
experience with UNIX and "c" in order to write one. There is little
documentation available which will teach you how to write a driver. If
you do not have any experience writing a device driver for UNIX, do not
plan on whipping one up and having it work in a short period of time.

Follow these steps to learn how a device driver works and is hooked into
the kernel:

[1] Read "UNIX Implementation" in the UNIX Programming Guide.

[2] Read "UNIX yo System" in the UNIX Programming Guide. This
describes the interface between I/O device drivers and the kernel.

[3] For information concerning UNIX internals, including some discussion
about the liO system and device drivers, we recommend itThe Design of
the .!!!!!! Operating System" , by Maurice J. Bach, published by
Prentice Hall.

[4] Obtain "Reconfiguration Rights" from Heurikon. For system V, this
is the source code for the existing device drivers and all files
needed to make a new version of /unix. System V.2 source files are
available "a la carte". Examine the files and use them as examples
for your device driver. The ac tual content of recon-rights may
change from those files listed below, as the distribution is updated
from time to time.

[5] Be sure you start with a simple driver first. Do one which has a
minimum of fancy functions and interrupts. It may be possible to
use an existing driver as the skeleton for a new one. Remember that
a "character" device (such as the serial I/O driver) is easier to
understand than a blocked device •

• Caution: You may violate a Copyright if you use an existing
device driver as a skeleton for another driver unless you own
complete rights to the original program. Don't let your editor
lead you into trouble.

Reconfiguration Rights also allow you to modify certain system parameters,
such as, the maximum number of active inodes, processes, open files and
disk buffers. These values are initially set as a compromise between
capacity and memory usage. You can use the 'pstat' command to see some of
the current parameter usages and the maximum values.

The reconfiguration rights package does not include the source code for
the kernel or utility programs. It only has the sources for files needed
to modify or add device drivers and a binary copy of the kernel.

Copyright 1987 Heurikon Corporation Madison, WI

111 Heurikon UNIX - Reference Guide
ACCESSING I/O DEVICES (DEVICE DRIVERS)

111

Reconfiguration rights also includes source code for the standalone
bootstrap, if requested. Source code for the kernel is available
separately; an AT&T license may be required. Contact us for details.

File
Makefile
adb.script
badints.c
cio util.c
conf.c
config.c
datasud cent.c
datasud ser.c
dipled.c
dmainit.c
fd1793.c
fpp.c
it2190.c
it3200.c
itc.c
ivec.s
libex driver.a
linesw.c
mbl031.c
mfpser.c
mpc_msg.c
mt.c
mct.c
mx.c
name.c
omti ???c
p3.c
plessey.c
rtc.t
sbx.c
scsi.c
sccio.c
std.a
steamer.c
unix.no_tp
unix.tp
unix.o
unix.f*
windows .c
vrtxio.o
xycom.c

Table 7.

Comment
For use with "make" to create /unix.
Used during rebuild.
Stubs for unused interrupts.
Special pgms for CIO usage. (MIO, VIO, M220)
Configuration info and driver hooks.
Initialization control for devices.

" Datasud Centronics driver. (VIO)
Datasud Serial driver. (VIO)
User jumpers and LEDs driver. (MIO)
Initialization code for the DMAC. (MI0, VIO)
SBX-FDIO Floppy disk driver. (MIO)
68881 FPP device driver. (MI0, VIO)
Interphase 2190 SMD drive. (MIO)
Interphase 3200 SMD driver. (VIO, V20)
Central Data Serial driver. (V20)
Interrupt vectors.
Ethernet driver, library.
Serial I/O line switch logic.
CDC Serial Port Expansion board driver.
MFP serial device driver. (V20)
Message Passing (MPC) driver. (M220)
Reel-to-reel tape driver. (MIO)
Reel-to-reel tape driver. (VIO, V20)
CP/M-Shell driver. (MIO)
System version & compile time info.
Drivers for Winch, Floppy & Streamer. (V20)
Centronics printer driver. (MIO)
Plessey Host adapter driver. (V20)
Real-Time Clock driver.
Initialization code for SBX modules. (MIO)
SCSI Winchester driver. (MIO, VIO)
Serial I/O driver. (MIO, VIO, M220)
Device driver binaries, library.
Streamer tape driver. (MIO)
UNIX kernel, w/o streamer, w/Centronics (MIO)
UNIX kernel, with streamer tape.
This is the UNIX kernel, in binary.
Various floppy-based versions.
Windowing device driver.
VRTX R/T device driver (object).
Xycom Serial driver. (VIO)

Reconfiguration Rights - Contents (partial)

~ Caution: The above listing is approximate. Actual files vary from
release to release. Use this information for training purposes only.

Copyright 1987 Heurikon Corporation Madison, WI

112 Heurikon UNIX - Reference Guide
ACCESSING I/O DEVICES (DEVICE DRIVERS)

112

Each "major" device number has a device driver associated with it. Basic
sections of a device driver are:

• init. Called once at boot time from config.c to initialize the
device.

• open(dev ,flag). Called near the beginning of a program to prepare
the device (dev) for an operation. For example, set the default baud
rate. "Flag" is a modified version of the of lag value used in the
open(2) system call; the bit assignments are defined in file.h.

• read(dev). Read data from minor device "dev". Used for a character
deviceonly.

• write(dev). Write data to minor device "dev". Used for a character
device only.

• close(dev,flag). Do anything that is required after the last
operation. For example, tape rewind.

• ioctl(dev,cmd,arg,mode). Do a special I/O device control function,
as determined by "cmd". For example, change serial port baud rates
or rewind a tape drive. The particular functions of the "ioctl"
routine are device dependent. Used for a character device only.

• strategy(~). Queues the requested I/O function for a block device
and starts the I/O if the device is idle. The argument is a pointer
to a buffer structure which contains details of the I/O request and
the data •

.. print(str ,dev). A short routine which prints the string pointed to
by "str", then expands and prints information about the the device
number, "dev", so as to identify the particular physical and logical
drive. Used to print a kernel warning or error message concerning
the device, e.g., if a bad block is found.

• Interrupt handlers. Usually the actual data transfer between the
device and memory is done using DMA and interrupts. An interrupt
handler services the device when it becomes ready and wakes the
driver read/write routines when the transfer has been completed.

The following chart shows some of the relationships between the
reconfiguration files and a device driver. The files "ivec.s" and
"conf .cn are where the device driver is hooked into the kernel. Those
files have interrupt vector tables and major-device-number switch tables,
respectively.

A name with parentheses following it, such as "open() ft, represents a
procedure name.

Copyright 1987 Heurikon Corporation Madison, WI

113 Heurikon UNIX - Reference Guide
ACCESSING I/O DEVICES (DEVICE DRIVERS)

H/W Interrupts
e.g., Rcv Ready

I . --------.

ivec.s

.... , -----

System Calls
e.g., open(2)

I .--------.
I conf.e
I

.... _----'
I config.c I
I I , -------

.-----------------------------::-------.
interrupt
service
routines

open();
close();
read() ;
write();
ioctl();
strategy();
print();

init();

. -----
I

Device
Driver

.... _--'

.--.
wakeup(event) ;
timeout(delay) ;
delay(ticks)j

sleep(event);
wakeup(event);
iocheck()j
timeout(delay);
physio() ;
signal(pgrp,signal);
getc(); putc();
cpass(); passc();
copyin(); copyout();
dophys(); iomove();
splx();

iocheck() ;

UNIX
Kernel
(unix.o)

Figure 37. Device Driver and Kernel Hooks (Summary)

,

113

A blocked device is usually more complicated than a character device.
There are more kernel routines used to schedule the device activities and
control transfer of data blocks to and from the driver. Also, it is
likely that the DMAC (direct memory access controller) is used, which
somewhat complicates the driver logic.

13.4 Installing a New Device Driver

.. Notice: this section is written using System V. 0 as an example. In
system V.2, files reside in subdirectories such as libconf and
libdev. Also, the specific changes may vary from release to release.
Use existing lines in the reconfiguration rights files as a guide for
your additions or modifications.

Copyright 1987 Heurikon Corporation Madison, WI

114 Heurikon UNIX - Reference Guide
ACCESSING I/O DEVICES (DEVICE DRIVERS)

114

Be sure to read the "UNIX 1/ 0 System" in the UNIX Programming Guide. The
rest of this section will make more sense if you do that now. To wire-up
the new device driver, a number of files must be changed.

[1] First, connect the device driver entry points to the kernel. Edit
conf.c as follows:

a. Add a line of the form:

extern int devopen(), devclose(), devread();
extern int devwrite(), devioctl();

declaring the existence of the device driver entry points for
use by the kernel. There are other similar lines in conf.c;
place the new line at the appropriate spot just before the
"cdevsw" or "bdevsw" arrays. The entry for a block device
will have to declare two additional entry points, as follows:

extern int devstrateqy(), devprint();

b. For a character device, add (or replace) a line in the
"cdevsw" structure of the form:

devopen, devclose, devread, devwrite, devioctl, 0,

in the "cdevsw" array. Each group of entries represents one
major device number assignment, the first entry being major
number zero. For a block device, the "bdevsw" entries are of
the form:

devopen, devclose, devstrategy, devprint,

[2] Next, connect the interrupt routines, if any, to the MPU interrupt
logic. Examine the vector table, "_dispatc" in "ivec.s". This
assembly language file causes the proper interrupt service routine
(ISR) to be called, depending on the interrupt source. Each entry
in the ivec table corresponds to one MPU exception vector, starting
from zero. The CIO (or MFP on the HK68/V20) and bus interrupts are
assigned the vector numbers listed in the MPU section of the HK68
User's Manual. If no interrupt is ever expected for a particular
vector, a "jsr" to a routine in badints.c or a "jsr lfault" is used.

Edit ivec.s as follows:

a. Replace one of the existing entries in "dispatc" with a
"jsr routine", where "routine" is a short setup routine at the
end of ivec.s. Be sure you do not change the size of the
dispatch table.

b. Add an interrupt setup routine. For example:

Copyright 1987 Heurikon Corporation Madison, WI

115 Heurikon UNIX - Reference Guide
ACCESSING I/O DEVICES (DEViCE DRIVERS)

.globl
routine:movl

movw
jmp

isr
Ii isr,sp@
nl,sp@­
call

115

In this case, "isr" is the C language ISR; the compiler
prepends an underscore to procedure names. The setup routine
stacks two items: the address of the ISR and a 16-bit argument
which is passed to the ISR. The argument allows one ISR to
serve multiple interrupt sources. The "jmp call" goes off
into the kernel to save the registers and status prior to
calling the ISR. The stack is fixed so that the kernel gets
control in order to restore the registers when the ISR
returns.

[3] (This step does not apply to HK68/V20 systems.) Edit "ciotable" in
config.c, changing the CIa initialization values so that the proper
interrupt is enabled. The table consists of pairs of numbers; the
first item of each pair is a CIa register number and the second item
is the value to be stored in that register. There are three
sections to the table. The first group of values initializes CIa
port A, which controls the on-card interrupts. The second group is
for port B: whieh eonneets to the bus interrupts~ The third group
initializes timer three (to generate 60 Hz. time ticks) and enables
the CIO as a whole. Examine the existing values and refer to the
HK68 User's Manual and the Zilog CIa Technical Manual.

[4] If the device needs initialization before UNIX starts or before
interrupts are enabled, call the initialization routine from
"oem7init" in config.c. This is a good place to do a facilities
check if automatic recognition of the device is required (see
"iocheck", below). Another method sometimes used to initialize a
device is to do so on the first open. This method, however, is not
appropriate if interrupts are used by the device.

[5] Examine Makefile in reconfiguration rights. Edit Makefile so that
the new driver will be compiled and included in the link edit phase.
Usually, all that is required is that the driver name be added to
one of the lines for "std.a". Test the new Makefile via 'make -n
unix.tp' (M10) or 'make -n unix' (others).

13.5 Removing a Device Driver

Deleting a device driver is relatively simple. The only problems are
usually the generation of undefined variable references, a situation which
is corrected by searching for those references in all of the
reconfiguration rights source files.

[1] Remove the extern statements in conf.c which declare the driver
entry points.

Copyright 1987 Heurikon Corporation Madison, WI

116 Heurikon UNIX - Reference Guide
ACCESSING I/O DEVICES (DEVICE DRIVERS)

116

[2] Remove the entries in the conf.c "cdevsw" (and "bdevsw") structures.
Be careful to replace an entry with a dummy line of the form:

nodev, nodev, nodev, nodev, nodev, 0,
nodev, nodev, nulldev, nulldev,

(for cdevsw)
(for bdevsw)

If you do not do this, the maj or numbers for devices which have
entries further down in the table will not be correct.

[3] Remove any calls to the driver from config.c.

[4] Edit ivec.s and ciotable to remove unused interrupt hooks.

[5] Makefile may have to be changed, depending of the device removed.

13.6 Hints for Writing a New Device Driver

Here are some hints for writing and debugging a new driver.

[1] Write the device driver, using some existing driver as a model. The
serial driver (usually sccio.c) is a good character device example.
Use the Winchester driver (usually scsi.c) for a block device
example.

[2] Use printf(3)'s liberally in the driver. Put them in the code at
critical points, preferably not in loops. (The kernel printf
routine temporarily suspends the entire system while the print is
executed.) Bracket your print statements with lifdef/lendif so that
the debug messages can be turned off after the driver is finished.
For example:

lIifdef DEBUG
printf(nnew device: err=%d, ret=Ox%x\n",errc,retn);

#endif

[3] Keep interrupt service routines short and concise. Do as little
processing as possible in an interrupt service routine. Interrupt
stack space is limited, therefore, do not make excessive use of the
stack in an ISR (i.e., use few automatic variables and don't use
recursive routines).

Copyright 1987 Heurikon Corporation Madison, WI

117 Heurikon UNIX - Reference Guide
ACCESSING I/O DEVICES (DEVICE DRIVERS)

117

13.7 Common Device Driver Problems

Here are some tips and common mistakes:

[1] Your device driver must be re-entrant. You should assume, for
example, that your read () routine will be used by more than one
process at a time. Although, UNIX will not arbitrarily suspend one
process in favor of another while executing at "kernel" level in a
driver, another process may start up if you go to sleep. Use
automatic variables, rather than globals, unless you really want a
variable to be global.

[2 j An interrupt could occur and modify some parameter you are using.
If you have a critical region, turn interrupts off, them back on.

[3] Avoid large automatic arrays or structures in interrupt routines.
Such items are placed on the interrupt stack, which is of limited
size.

[4] An interrupt service routine should not access user variables such
as u base or u count. This is because the interrupt could occur at
any time, not necessarily when a specific user is executing.

13.8 Kernel Routines and Macros

There are numerous kernel routines which a device driver can utilize.
Many are described in the "UNIX I/O System" section of the UNIX
Programming Guide. Some device drivers use kernel routines which are not
documented; some of those are listed below.

'" Use extreme caution when using any of these procedures; there is
absolutely E£ guarantee that the characteristics of these routines
will not change from release to release. These routines are not part
of a defined interface. This listing is for training purposes only.

To learn more about these calls, examine the existing device drivers for
examples of their use. Those marked u**" are discussed in the "UNIX I/O
System" paper 0 Most of the macros used by a driver are defined--at the
beginning of the driver or in /usr/include/sys/sysmacros.h.

Copyright 1987 Heurikon Corporation Madison, WI

118 Heurikon UNIX - Reference Guide
ACCESSING I/O DEVICES (DEVICE DRIVERS)

118

iocheck{adrs);
Tests if address "adrs" is accessible as a longword. Intercepts a bus
error, and returns, instead of allowing the bus error to panic the
kernel. Used for facilities checks using setjmp(2) during
initialization. See config.c for examples.

if { !iocheck{ (char *)Ox700000))
device NOT_PRESENT; /* bus error, iocheck failed */

else
device = PRESENT; /* iocheck passed */

splx(s); **
Sets the MPU interrupt level to "s" and returns the original level.
Level zero is all interrupts enabled, level 7 is all interrupts except
level seven disabled. Interrupts must be disabled during certain
critical regions of code {e.g., to prevent race conditions or while
making modifications to queue or buffer linkages; see "sleep", below}.

sold splx{s_new);

printf(args);
Similar to printf(3), except for limited use ~tnln kernel. Supports
a limited set of formats (%c 70s %u %d %0 %x %D). Caution: interrupts
are turned off and all characters are output in polled mode while this
statement is being executed. Use for debug or gross error messages
only. Prints to the console only.

printf("\nscsi: err %d, CIR=Oxiox\n",err,reg);

sleep(value,pri); **
Suspend a process at priority "pri" until event "value" occurs
(signaled via a wakeup). This call is usually done to wait for a
physical event such as a device interrupt. "Value" is just a number
which ties the sleep call to a corresponding wakeup call; usually an
address value of some significant data item is used. The priority
argument determines whether or not the sleeping process can be
interrupted by a signal. PZERO+l, and greater, are interruptible
sleep levels.

SPL6(); /* prevent state from going TRUE between test and sleep */
while (state != TRUE) /* wait for event, sleep may ret early */

sleep{&queue,TTOPRI); /* does an internal SPLO() */
SPLO{); /* back to normal */

Table 8. Kernel Routines and Macros (part 1)

Note: These table entries are in a random order.

Copyright 1987 Heurikon Corporation Madison, WI

119 Heurikon UNIX - Reference Guide
ACCESSING I/O DEVICES (DEVICE DRIVERS)

119

wakeup(value); **
Mark those processes sleeping on event "value" as ready to run.
Usually called from an interrupt service routine. See sleep(), above.

state = TRUE;
wakeup(&queue); /* let sleeping process run */

timeout(proc,arg,delay); **
Execute procedure "proc(arg)" after "delay" clock ticks. "Arg" is
passed to the procedure as an argument. Timeout returns to the caller
immediately. Do not use timeouts indiscriminately; the kernel will
panic if there are too many (see NCALL in conf.c). A timeout, once
set, cannot be canceled. A procedure can use timeout to restart
itself.

timeout(tmproc, dtrflag, HZ/2); /* start tmproc in 1/2 second *1

delay(xx) ;
Goes to sleep for "xx"

delay(HZ*2);

signal(pgrp,sig);

clock ticks.
/* disappear for two seconds */

Send signal "sig" to all processes having the process group "pgrp".
"Sig" corresponds to the signals listed in signal(2).

signal{tp-)t_pgrp;SIGKILL); 1* kill the processes *1

psignal(pid,sig);
Send signal "sig" to process "pid"".
Sig" corresponds to the signals listed in signal(2).

psignal(u.u_proc-)p_pid,SIGFPE); 1* send SIGFPE to the process */

prdev(str ,dev);
Prints the string, then calls the block device's print routine via the
entry in bdevsw.

prdev("fdstrategy: bad floppy format", bp-)b_dev);

cpass(); **
Returns the next character from the current process's output queue.
Used by character devices to fetch the next character to send to the
device. Usually found in the write routine of a character device.

while((c = cpass(» != -1) 1* while characters to output *1
*DEVADDR = c;

passc(ch); **
Places the character nch" into the current process's input queue.
Usually found in the read routine of a character device.

while(passc(*DEVADDR) != -1);

Table 9. Kernel Routines and Macros (part 2)

Copyright 1987 Heurikon Corporation Madison, WI

120 Heurikon UNIX - Reference Guide
ACCESSING I/O DEVICES (DEVICE DRIVERS)

120

dophys(num,viradrs,size,phyadrs);
This is a driver callable entry point for the phys(2) system call.
It bypasses the super-user check so that a device driver can map in
an address region for a user program. The responsibility for security
rests with the driver. It is typically used in the open routine (and
the close routine to release the region). Refer to phys(2) and
section {I3.1} for argument and failure information.

dophys(O, fppaddr, ctob(I), fppaddr);
if (!up->u error) {

1* dophys failed */
}

suword(adrs,value);
subyte(adrs,value);

Store the 32-bit (or 8-bit) "value" at "adrs" in the user s address
space. These procedures compute the physical location of an address
which is relative to the user s text and data space. They return -1
if "adrs" is out of range of the user s address space.

if (suword(addr, info) == -1)
up-)u_error = EFAULTj

fuword(addr);
fubyte(addr) j

Return the 32-bit (or 8-bit) value at "adrs" from the user s address
space. These procedures compute the physical location of an address
which is relative to the user s text and data space. They return -1
if "adrs" is out of range of the user s address space or, for fuword,
if the target value itself is -1 (caution).

if ((info=fuword(addr» == -1)
up->u~error = EFAULT;

copyin(src,dst,size);
Move "size" bytes from "src" in the user space to "dst" in the system
(kernel) space. Returns non-zero if there is an error.

if (copyin(addr, &steprate, sizeof(steprate»)
u.u error = EFAULT;

copyout(src,dst,size);
Move "size" bytes from "src" in the kernel to "dst" in the user space.
Returns non-zero if there is an error.

if (copyout(&data, addr, sizeof(data»)
u.u_error = EFAULT;

Table 10. Kernel Routines and Macros (part 3)

Copyright 1987 Heurikon Corporation Madison, WI

121 Heurikon UNIX - Reference Guide
ACCESSING 1/0 DEVICES (DEVICE DRIVERS)·

121

iomove(addr,length,flag); **
Similar to copyin and copyout, except automatically determines if data
address is in the kernel or user space. Moves "length" bytes to or
from u base. The "flag" argument is either B READ (move from addr to
u_base) or B_WRlTE (move from u_base to addr)7 This routine adjusts
u.u base, u.u count and u.u offset if addr is in user space and sets
u error on an-error (but does not clear it if no error).
- iomove(cp, cc, B_WRITE);

iowait(bp);
Suspends the process until the requested block I/O·has been completed.
This procedure executes a sleep. Sets u error on an I/O error.

iowait«struct buf *)bp);

iodone(bp); **
Used by an interrupt routine to notify the kernel that the 1/0 for a
particular block has been completed. This procedure does a wakeup.

iodone«struct buf *)bp);

suser();
Returns non-zero if the current process is executing as "root". This
call can be used to enforce security by enabling certain functions
only if the current user is the superuser.

if (!suser(» {

}

u.u error = EPERM;
return();

disksort(iobuf, bp);
Adds buffer "bp" to a list of buffers ready for I/O. Sorts the list
so as to minimize head travel. Implements an elevator algorithm.

disksort(&fdtab, bp);

physio(strategy,buf,dev,flag); **
Used with a block device to implement a character device read and
write. Physio calls the block device's strategy routine and waits for
the I/O to be completed.

physio(fdstrategy, &fdrbuf, dev, B_READ);

vtop(virt);
Convert the virtual address "virt" in the user's address space to a
physical address in system memory.

physaddr = vtop(viradrs);

Table 11. Kernel Routines and Macros (part 4)

Copyright 1987 Heurikon Corporation Madison, WI

122 Heurikon UNIX - Reference Guide
ACCESSING I/O DEVICES (DEVICE DRIVERS)

getc(&queue); **
putc(c, &queue); **

122

Manage character queues. A return of -1 indicates an empty (getc) or
a full (putc) queue.

while (c=getc(&tp-)t outq»)= 0)
todevice(c); -

cmalloc(coremap, size, 0); (MIO, VI0)
mfree(coremap, size, start);

Allocate (or deallocate) memory for the current process's data area.
Returns the click address of the new memory, or zero on error.
"Coremap" is the name of the kernel's allocation table for memory.

if (buffer=ctob(cmalloc(coremap, btoc(sizeof(buf», 0 ») {
/* okay, got the memory, use it ••• */
mfree(coremap, btoc(sizeof(buf», btoc«(int)buffer»);

}

major (dev); **
minor{dev); **

(MACRO)
(lof..ACRO)

Returns the maj or (or m.inor) portion of the device number, !!dev!!.

makedev(major,minor); (MACRO)
Returns the device number, given the major and minor numbers. Thus,
dev makedev(major(dev),minor(dev».

SPLx(); (MACRO)
These macros set the MPU interrupt level. They are slightly less
expensive (in time and space) than splx(). "x" is zero through seven.

S PLO () ; ••• , S PL 7 () ;

ctob(clicks); (MACRO)
This macro converts the argument, representing the number of memory
blocks, to the size in bytes. A "click" is one memory allocation
unit, or "block" (usually 4K bytes). It is based on a kernel
compile-time constant.

bytes = ctob(clicks);

btoc(bytes);
The reverse of ctob{).

clicks = btoc(bytes);

(MACRO)

btod(bytes); (MACRO)
dtob(blocks); (MACRO)

Converts disk blocks to (or from) number of bytes (512 bytes/block).

Table 12. Kernel Routines and Macros (part 5)

Copyright 1987 Heurikon Corporation Madison, WI

123 Heurikon UNIX - Reference Guide
ACCESSING I/O DEVICES (DEVICE DRIVERS)

123

13.9 Kernel Tables

The UNIX kernel makes heavy use of structures to describe a process or
device state. Some if the most used structures and pointers are listed
below.

user

proc

tty

Defined in user.h. Contains information about a process which does
not need to be referenced while the process is swapped out of
memory. It has things like the user's register save area,
effective user id, process timings and I/O pointers. It is
referenced as n u .", as in "u.u error = EIO;" e It is also called
"u DOT". The area following the user structure, up to the end of
the click boundary, is used for an interrupt (supervisor) stack.
The kernel always maps the U area of whichever process is currently
running to the value of "&u". This simplifies references to the U
area since the U area of all processes will be at the same
(logical) address.

Defined in proc.h. Contains information about a process which must
stay in memory when the process is swapped out. It contains the
data such as the process's state, scheduler priority and memory
mapping information. The proc structure is usually referenced
using a pointer to the struc.ture~ as in "pid = p-)p_pid;".,

Defined in tty.h. Contains information about a serial port, such
as the line modes and pointers to the I/O queues. It is usually
referenced using a pointer, as in "tp-)t_cflag = 0;".

Copyright 1987 Heurikon Corporation Madison, WI

124

14. I/O ERROR CODES

Heurikon UNIX - Reference Guide
I/O ERROR CODES

14.1 Winchester Errors

124

If you get a Winchester disk I/O error, it usually indicates a problem
with the data format on the drive. It could result from a severe power
glitch or a physical problem inside the drive. If you have a persistent
error, check the drive data and power cables and listen to hear if the
drive is spinning properly. Contact our service department for assistance
in debugging a drive error.

Controller Errors:
"Unable to select device"
"Unable to select drive"
"Request Sense returns bad status"
"Non-zero completion message"

Dri ve Errors:
~ code
o 0
o

o
o
o

o

o
o
o
1
1
1
1
1
1
1
1
1
1
1
2
2
2
3

1

2
3
4

5

6
7
D
o
1
2
3
4
5
8
9
A
C
E
o
1
3
o

No error detected
No index pulses from drive

See if drive is spinning.
No seek complete from drive
Write fault from drive
Drive not ready after select

Check cables and power.
Drive not selected - Check

cables and power.
No track 0 from drive
Multiple drives selected
Seek in progress
ECC error in ID field
ECC error in data field
No Adrs mark detected on drive
No data mark detected
Sector not found
Seek error - Bad format
Correctable data error
Bad track flag set
Bad interleave code
Unable to read alternate track
Illegal alternate track access
Invalid command
Illegal disk access
Volume overflow
Controller internal RAM error

Table 13. SCSI I/O Errors

Note: This section does not apply to the Plessey interface (used on V20).

Copyright 1987 Heurikon Corporation Madison, WI

125 Heurikon UNIX - Reference Guide
I/O ERROR CODES

14.2 Reel-to-Reel Tape Errors (MiO)

125

The list below pertains to unrecoverable reel-to-reel tape errors on an
MI0 system (using a Tapemaster controller).

Code
1
2

3
4
5
6
1
8
9
A
B
D
E
F

10
11
13
14
15
16

18
19

Description
Timeout waiting for Data Busy false.
Timeout waitir~ for Data Busy false,

Formatter Busy false and Ready true.
Timeout waiting for Ready false.
Timeout waiting for Ready true.
Timeout waiting for Data Busy true.
System memory timeout~
Blank tape encountered, expected data.
Micro-diagnostic error.
Unexpected EOT or Load Point.
Unable to eliminate error on retry.
Read overflow or write underflow.
Drive interface parity error.
PROM checksum error.
Drive strobe timeout. Usually due to

reading a record larger than written.
Tape not ready.
Tape write protected.
Missing diagnostic mode jumper.
Attempt to link unlinkable command.
Unexpected file mark encountered.
Parameter error. Usually due to a zero

or too large of a byte count field.
Unidentifiable hardware error.
Streaming r/w operation terminated by

the operating system or disk.

Table 14. Reel-to-Reel Tape Errors, Ciprico Tapemaster (MI0 only)

Errors messages on VI0 and V20 systems (which use the MCT controller and
device driver) are self-explanatory.

Copyright 1981 Heurikon Corporation Madison, WI

126 Heurikon UNIX - Reference Guide
I/O ERROR CODES

126

14.3 Floppy Disk Errors

A SBX-FDIO (MID) floppy disk I/O error is described by a status byte,
which has the following format:

Bit
7(msb)

6

5
4
3
2
1
O(lsb)

Meaning
Drive. not ready. Check diskette
insertion and closed door.
Check cables and power.
Write protect. The diskette
is write protected.
Record type error.
Sector not found. Format error.
CRS error. Bad sector.
Lost data. DMAC error.
n/a
n/a

Table 15. Floppy Errors (SBX-FDIO only)

14.4 Streamer Tape Errors

If a streamer tape error occurs, the error type is printed in English,
rather than as a number.

Some of the most typical problems are:

ct Tape cannot be written because it is write protected. Check the
small round indicator in the corner of the cassette. In order to
write, it should not be on "safe".

ct Cassette not in place or inserted improperly. Remove and reinsert
the cassette.

Itt A read error on a write protected tape or a rash of errors, which
makes no sense, could be because the tape has been wound off the edge
of the cassette. To avoid this problem in the first place, never
remove a cassette while the tape is in motion and never manually
crank the tape.

Copyright 1987 Heurikon Corporation Madison, WI

127 Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFORMATION

15. MISCELLANEOUS OTHER INFORMATION

15.1 Floating Point Support

127

There are various methods which may be used to support floating point
computations. They are summarized below.

[lj Math Library. Use the standard math library routines, vi and math.h
and libm.a. This requires no special hardware, but uses the most
MPU time to perform computations.

[2] 68881, In-line Code (MI0, VI0). The 68881 Floating Point Processor
may be used on the MIO and VIO as a peripheral device. Special
support software is available from Heurikon which uses the Green
Hills compilers to generate 68010 instructions and in-line emulation
of the 68881 coprocessor interface. The 68881 is installed on a MI0
via a SBX module; the VI0 has a 68881 socket.

[3] 68881, Daughter Board (MI0, VI0). This is a special hardware module
which plugs into the 68010 chip socket. The module has a 68020 MPU
and a 68881 FPP. The 68881 operates as true coprocessor.

[4] V20, 68881 Coprocessor (V20). The 68881 operates as a coprocessor
via the on-card 68881 socket.

15.2 SUDH LEDs

Depending on the system, there are four or five status LEDs on the HK68
processor board. On some of our systems, these indicators are extended to
the front panel. They continuously show the state of the HK68 MPU and
DMAC.

LED
S
U
D
B
H

Name
Supr
User
DMA
Bus
Halt

Meaning
The MPU is in the Supervisor state.
The MPU is in the User state.
The DMAC has control.
The Bus is in control.
The HK68 has halted.

Table 16. HK68 Status LEDs

S When the UNIX kernel is executing, the "s" LED will be on. This would
be the case during I/O, any system call and when the system is idle.

U The "U" LED indicates that a user program is executing. A program is
said to be "CPU intensive" if the "U" LED is on heavily while it is
executing.

D When an I/O device is transferring a block of data, the tiD" indicator
will flicker. Data transfers are usually very fast, so this LED is
hard to see.

Copyright 1987 Heurikon Corporation Madison, WI

128 Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFORMATION

128

B If the HK68 is acting as a bus slave, this LED will flicker. This
indi.cates that an intelligent I/O board is transferring a block of
data.

H You never want to see the "R" LED on, for if it is, the MPU has halted
and only a hardware reset will unlock it. If the system halts with
the "H" LED on, it usually indicates a hardware problem (e.g., bad
memory), either on the HK68 or the bus.

15.3 User Jumpers and LEDs (MI0)

Note: this section applies to HK68/MI0 systems only.

There are eight software accessible user jumpers and eight user LEDs,
which may be used to select options and indicate status conditions. These
are currently used by some of the UNIX device drivers; however, they can
also be reserved for the UNIX user.

The jumpers should normally be removed. From time-to-time, Heurikon uses
various settings to debug portions of the device drivers, so you may see
strange messages or the console display will slowly scroll, if any of
these jumpers are installed. One LED normally indicates activity over the
serial I/O ports. The LED will change state whenever a character is
received or transmitted over any serial port. This is a useful indicator
of activity with a remote site, a modem or any device not located near the
system.

The jumpers and LEDs are accessible through device "/dev/dipled". When
the device is opened, the default action of the jumpers and LEDs is turned
off. Reading from the device will return a byte containing the state of
the eight jumpers, where a "1" bit indicates an installed jumper. Writing
a character to the device will set the LEDs. Refer to dipled(7) at the
end of this guide for details.

To manually turn the default actions of the jumpers and LEDs off, all that
is necessary is to open the /dev/dipled port. For example,

touch /dev/dipled

will do it. You could include that command in /etc/rc, if you always
wanted the jumper and LED defaults disabled.

You can (wastefully) "connect" the jumpers to the LEDs via:

cat /dev/dipled)/dev/dipled

An 'exterr /dev/dipled' command will restore the default user jumpers and
LED actions.

Copyright 1987 Heurikon Corporation Madison, WI

129 Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFORMATION

15.4 Using Environment Variables

129

Environment variables (which a program usually inherits from the shell)
can be accessed from within a C program two ways. The hard way is to use
the pointer passed as the third argument to main(). The easy way is to
use code similar to the following fragment:

char *user;
if ((user = getenv("USERtf

)) == (char *)OL)
user = getenve'LOGNAMEtf

); /* no USER, try LOGNAME */
printf(Uname = %s\n", user? user: "NONE");

The execle(2) and execve(2) system calls may be used to create a new
process and pass a specific environment.

15.5 /etc/update

/etc/update is a short program that executes the "sync" system call every
30 seconds, which flushes the disk buffers and the superblock to the
Winchester. This insures that the Winchester is always up to date, just
in case somebody trips over your power cord. /etc/update is started by
/etc/rc when going to multi-user mode.

15.6 Sticky Bits and Shared Text

Certain programs can be "shared text" and have a "sticky" bit set. A
program which is shared text can be executed concurrently by more than one
user with only one copy required in memory. In addition, if the "sticky
bit" is on, the executable image of the program will be retained on the
swap device for faster loading. The "sh", "csh" and "vi" programs usually
have their sticky bits set on.

To compile your own "sticky" programs, use the "-n" option with "cclt or
"ld". That will make the program shared text. Use the chmod command to
turn on the sticky bit, per the ls(l) and chmod(l) pages in the UNIX
User s Manual.

There are some trade-offs to consider, however.

~ Using shared text pgms will reduce RAM requirements if one program is
needed simultaneously, multiple times •

• Using a shared text program with the sticky bit set will cause the
program to load faster •

• Using a shared text program with the sticky bit set will consume swap
space. If you run out of swap space, the system will crash.

To see if a program has been compiled with the "_n" option, use the file
command. A "pure executable" file is shared text. The pstat -x'" command
will show you the current swap space used by sticky programs.

Copyright 1987 Heurikon Corporation Madison, WI

130

15.7 Signals

Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFORMATION

130

Certain conditions, such as an illegal memory reference, will cause the
system to abort a program or "panic". If the error occurs while a user
program is executing, the kernel will simply abort the process, perhaps
generating a "core" dump file. However, if the kernel was executing when
the error occurs, it generally "panics". This is because, in a properly
working system, the error is unexpected and there is no sensible or
reliable method of recovery.

These conditions will cause the indicated signal - to be sent to a user
process (see "signal(2)") or, if the kernel is executing, a panic:

Condition Reason Signal
MMU Fault Illegal memory access SIGSEGV
Watchdog No peripheral response SIGSEGV
Adrs Error Memory Alignment Error SIGBUS
RAM Parity Defective RAM chip SIGBUS
DIV Zero Divide by Zero SIGFPE
III Instr Illegal Instruction SIGILL
Privilege Privileged Instruction SIGILL
Trap 1 Trap #1 (adb/sdb trace) SIGTRAP
Trap 2 Trap 12 SIGIOT
Trap 3 Trap 13 SIGEMT
Spurious No vector during INTACK ignored

Table 17. Signals

Note that there -are two causes for the SIGSEGV signal: either an access
outside of the user's allocated memory area or a system bus timeout due to
no bus acknowledge.

The system watchdog timer is used at boot time to size memory and do a
facilities check (i.e., find out which I/O device are present). The
watchdog is also used by the kernel to detect an access to an unassigned
bus address. The watchdog timer must not be disabled.

The responses to these and other signals can be controlled by a user
process, via the signal(2) system call.

15.8 RAM Considerations

A single user version of System V.O or V.2 UNIX must have at least one
megabyte of RAM for operation. The recommended minimum for System V.2,
however, is two megabytes. The Green Hills Fortran and Pascal compilers
(as well as the "'c' compiler, in many cases) require two megabytes.
Unless you have a special requirement, more than three or four megabytes
of RAM will probably not be useful.

For system V (MI0, VI0), ·the maximum amount of RAM which will be
recognized by UNIX is eight megabytes, less any space needed for memory

Copyright 1987 Heurikon Corporation Madison, WI

131 Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFO~~TION

131

mapped I/O devices. The upper half of the memory map is reserved for
special purposes and I/O devices. The UNIX RAM must be contiguous,
starting at location O. You can install non-contiguous RAM, but it will
not be used directly by the kernel. If you want to prevent UNIX from
using all of the available RAM, the "maxmeml n variable, defined in
config.c, may be adjusted; its initial value is Ox800000. You can use
.... adb -k --w /unix to read or modify maxmeml in your /unix kernel file.
Any change won't take effect until you reboot. If you have Recon Rights,
maxmeml can be changed in config.c; see section {13.3}.

System. V. 2 supports up to eight megabytes of RAM, in two non-contiguous
areas (four megabytes on-card plus four megabytes off-card) Off-card
expansion memory must be accessible over both the VME bus (for driver DNA
hardware) and the VSB (for UNIX).

The amount of user memory (RAM, less kernel space) can be determined from
the "mem =" message, printed at boot time, or by using adb to examine the
long integer, "maxmem". The value in maxmem is in "clicks", which is the
memory mapping segment size. There are 4096 bytes in a click.

If UNIX does not have enough memory for a program, it will "swap out"
lower priority processes from RAM. Swapping is no problem, if it does not
happen too often. However, if there is too big a demand on RAM, then
swapping could start to consume a high percentage of the system time and
performance will drop drastically. At its worst, a system which is doing
excessive swapping is said to be "thrashing". This is the case where
additional RAM will help. The "swapper" task (seen on a ps -ef'" output)
should normally consume less than one percent of total system time.

With some programs (e.g., vi), you can tell if you are being swapped out
by typing a character and observing if it is echoed to your display
immediately or if there is a slight delay. A delay is due to your program
being swapped back into memory. The ps ... and pstat commands can be used
to see whether a program is in memory or swapped out.

A RAM parity error which occurs while a user program is executing will
simply result in a "SIGBUS" signal being sent to the process. This will
generally cause the process to terminate. If the kernel is executing when
a parity error occurs, there is no graceful recovery, so the kernel
upanics". A random parity error is a very rare occurrence; parity errors
are more likely to signal a truly defective memory chip.

15.9 Memory Map

The UNIX system is configured with certain memory and I/O addresses
reserved for optional features, such as Ethernet and serial expansion
boards. The following diagrams show the approximate range of addresses
currently in use. Since these values may change, be careful if you are
installing your own peripheral cards. There is no guarantee that Heurikon
will not allocate some of the unused space for future options. Refer to
section {13} for more information on accessing I/O devices.

Copyright 1987 Heurikon Corporation Madison, WI

132 Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFORMATION

Adrs Memory Space (physical) Notes

FF FFFF .=======================. (top of memory)

FF C220 -------------,---
SKY FFP

FF C200 -------------------

MCT

FF 8000 ------------

FF 0100 ---------------

Floating Pt Processor

Reel-to-reel tape (VIO)

Tapemaster(OOBO,OOBI) Reel-to-reel tape (MI0)

Ethernet(0010,00Il)
FF 0000 ======================= (base of bus I/O)

HK68 On-card I/O MHU, DMAC, SCC, SCSI
FE 0000 ----------

HK68 ROM (128K) Rhug monitor
FC 0000 --------------

(reserved)
FO 0000 ----------,----

- (shared memory and
(Twilight Zone) logical area for

shared text.)
80 0000 ========3============== (top of /dev/mem)

(reserved)
7C 0000 ----------------

8 Chnl serial Expn(1-4) (CDC)
78 0000 -----------

HK68 (1-15)
MLZ-93 (1-4)

70 0000 ---------------

(open)

xO 0000 1=======================1

RAM (bus)
20 0000 ------

RAM (bus)
10 0000 - - - - - - - - - - - -

User RAM
00 1000 UNIX Kernel

Exception Vectors

VRTX
CP/M Shell

(maxmeml)

(optional)
(top of 2 meg
(optional)
(top of 1 meg

RAM)

RAM)

00 0000 '=======================' (bottom of memory)

Figure 38. System V Physical Memory Map (MIO, VIOl

132

Copyright 1987 Heurikon Corporation Madison, WI

133 Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFORMATION

Adrs Memory Space (physical) Notes

FFFF,FFFF .=======================. (top of memory)

=======================1
VRTX

I==========~~===========I

EI00,OOOO
(Also available

EOOO,OOOO

(Twilight Zone)

for OEM use)

,'=======================,'
RAM (bus) (optional i 4 meg max)

133

0300,0000 1------- I Start of Bus RAM (VSB & extended)

0240,0000 (top of 4 meg on-card RAM)
User RAM

0210,0000 - - - - - - - - - - (top of 1 meg on-card RAM)
User RAM

0200,1000 UNIX Kernel
Exception Vectors

0200,0000 -------------

OlFE,OOOO

01FA,0000
Avail for OEM devices

8 Chnl serial Expn(I-4)
Ethernet

01FO,0000 --------------

Base of on-card RAM

RAM (optional) (see below)
0100,0000 ---------------- Start of Standard Adrs

Xycom Serial
Interphase 3200

MCT
00FF,8000 -------------------

Avail for OEM devices
00FF,4000 --------------­

Datasud Serial & Cent
Plessey SCSI IfF

OOFF,OOOO ---------------
HK68 On-card I/O

OOFE,OOOO ----------------
(reserved)

1

_-------

HK68 ROM (128K)
0000,0000 '======================='

SMD
Reel-to-reel tape

Start of Short Adrs
MFP

Hbug monitor
(bottom of memory)

Figure 39. System V.2 Physical Memory Map (V20)

For V20 systems, if on-card RAM size is one megabyte, then off-card RAM
starts at VME bus address 0110,0000, with VSB access at 0300,0000. If

Copyright 1987 Heurikon Corporation Madison, WI

134 Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFORMATION

134

on-card RAM size is four megabytes, then off-card RAM starts at VME bus
address 0140,0000, with VSB access at 0300,0000.

15.10 Interrupt Usage

Bus interrupts are used for signals to or from various device controllers.
The exact allocations are system dependent, however, here is one typical
configuration:

Device MI0 Bus VI0 Bus V20 Bus
EXOS Ethernet
Tapemaster Reel-to-Ree1 Tape
MCT Reel-to-Ree1 Tape
CDC MBI031 Serial Expansion
IT 2190 SMD Interface
IT 3200 SMD Interface
P1essey (OMTI interface)
Datasud (Centronics, Serial)

5
3

2
1

4 5 (vectored)

5 T.B.D.
2 2

3 3 (vectored)
3 (vectored)
1 (vectored)

Mailbox interrupts are also used, to extend the capability of the I/O
devices.

By the way, a "mbi 7" message from the kernel indicates that a CIO
interrupt input went false before the MPU interrupt acknowledge cycle
started. You might see this while debugging a new (buggy) device driver
or if there is an unterminated bus interrupt line.

15.11 DMAC Channel Assignments

(This section does not apply to the V20)

Channel MI0 VI0
0 SCSI SCSI
1 Streamer (P3) nla
2 nla nla
3 SBX-FDIO nla

Table 18. DMAC Channel Assignments

"n/a" means not assigned.

Copyright 1987 Heurikon Corporation Madison, WI

135 Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFORMATION

135

15.12 Making pROMs

If you compile a program "with the intent of putting the code in a read
only memory (ROM), then you must observe these rules. Note: if you are
System V.2, use the cc5.0, as5.0 and Id5.0 utilities.

[1] You cannot initialize external and static variables in a
declaration; they must be explicitly initialized in your program.
This is because the program will not be loaded and initialized by
the kernel, as would be the case if you were executing under UNIX.

[2] You cannot rely on variables being initialized to zero, as is the
case when running
indeterminate value.

under UNIX. Variables will
Clear" edata" to " end".

start with an

[3] Of course, you cannot use the UNIX system calls or any library
subroutines which make a kernel call.

[4] Include a short machine code (asm) program to initialize your stack
pointer and branch to your "c" code (Sf main"). Don't forget to
include the proper RAM "turn-on" code, as explained in the HK68
User s Manual.

[5] Use the -oPS and -c options with "cc" to prevent stack probe
instructions from being inserted and to prevent the link edit phase
from being done automatically when you compile. The -c option is
necessary to prevent the standard C startup routines from being
attached to your program.

[6] The following link editor command will force the ROM and RAM
portions of your program to be at the addresses you specify. (Use
Id5.0 for System V.2). In this example, the ROM code is placed at
OxFEOOOO and the variables are at Ox400. Your data must be
contiguous with your text areas; do not use the LD option.

cc -c filel.c
ld -LT FCOOOO -LC 400 filel.o [file2.o ••• l -0 ld.out

[7] Use nm ld.out to verify the locations of variables and constants.

[8] The ld.out file can be sent to the pROM programmer using a custom
program to output in the programmer s format. The "hex" command can
be used if your programmer understands "s" records.

hex ld.out > hex.out

Other commands which may help are "od", "see" and "cat". You can
modify the format of the hex file using the stream editor, "sed".
It may be necessary for you to separate your even and odd bytes if
your programmer cannot do so internally.

Copyright 1987 Heurikon Corporation Madison, WI

136 Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFORMATION

136

[9] If you output to your programmer over a serial port, you may need to
put the port to "sleep" and use the "stty" command to set the baud
rate and other modes. Refer to sections {16.7} and {16.10}.

IS.13 System V.2 Porting to/from System V.O

In general, programs compiled under System V.O (on an MIO or VIO system)
will run on a System V.2 (V20), although shared text binaries are not
interchangeable. Due to certain quirks, such as not having access to the
68881 FPP coprocessor or the symbolic debugger, we recommend that when
both systems are available, all programs be developed under System V. 2
with V.2 utilities. If pROMS need to be made, the System V.O utilities
(e.g., ldS.O) should be used.

Some other considerations are:

• Valid ccS.O flags are "c", "0", "0" and "r".

• Avoid use of cc5.0 flags "s" and "n".

• To produce a shared text program on V.2 to run on V.2:

or

CC -0 outfile -0 -s -n infile.c

cc -c -0 filel.c
cc -c -0 file2.c
cc -0 outfile -s -n fileI.o file2.0

• To produce a shared text program on a V.2 system to run on V.O:

or

ct To

ct To

ccS.O -0 tempfile -0 -r infile.c
ld -0 outfile -n -s tempfile

ccS.O -c -0 fileI.c
ccS.O -c -0 file2.c
ccS.O -0 tempfile -r filel.o file2.0
ld -0 outfile -n -s tempfile

produce a shared text program on a V.O

ld -0 outfile -n -s infile

produce a shared text program on a V.O

cc -r -0 tempfile infile.c
ccS.O -0 outfile -n -s tempfile

Copyright 1987 Heurikon Corporation

(on V.2)
(on V.O)

(on V.2)
(on V.2)
(on V.2)
(on V.O)

system to run

system to run

(on V.O)
(on V.2)

on V.O:

on V.2:

Madison, WI

137 Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFORMATION

137

• Use 'coffbin -s -u file' to convert a V.2 ~coff~1 format file to a V.O
binary. This command operates on "file"; the named file is altered.

15.14 Shared Memory, Semaphore and Messages

The UNIX manuals do not include examples showing how to use the shared
memory, semaphore and message features of the system. The introduction to
section two, intro(2), details the various structures which are used, and
the various system calls are documented in section two.

• Shared Memory is used when two or more processes need to access a
common area of memory, each being allowed, perhaps, to read or write
the data stored there~ This permits separate processes to exchange
data or control information. Shared memory segments may even remain
allocated when no processes currently exist which are using the data.
The processes must have a common understanding of the data structure,
generally accomplished via a n.h" file.

• Semaphores are used to provide exclusive use of some resource,
perhaps a memory region or a device. A process may read and set the
semaphore "value". Usually, a zero value indicates that no process
"owns" the semaphore, while a non-zero value connotes ownership or
some status information. The kernel can be instructed to suspend a
process until the semaphore is released by another process.

• Messages allow programs to communicate with by sending a (usually
short) block of data to each other via the kernel. Processes can
"send" and "receive" messages via queues maintained by the kernel.

The following program shows examples of shared memory and semaphore system
calls. The message passing system calls are used in a similar fashion.
This program doesn't really do much; its only purpose is to illustrate a
typical sequence of system calls needed to allocate shared memory and grab
semaphores. This program creates, uses and removes a shared memory
segment and a semaphore. Since those items are used only by this program
(and its children), the "key" value is "IPC PRIVATE". If you have a
number of separate programs which need to access these features, the
programs must have a prior agreement on the key value.

You can monitor the current status of all semaphores, shared
segments and messages in the system by using the "ipcs(I)"
Garbage items can be removed via the "ipcrm(I)" command.

memory
command.

Be aware that these resources might remain allocated even after all
programs using them exit. This could cause problems later, such as
running out of user memory for executing programs. When you allocate the
resources, you can specify that they should be removed when all programs
exit, or you can manually remove them via the ipcrm(1) command.

Copyright 1987 Heurikon Corporation Madison, WI

138 Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFORMATION

'include <sys/types.h>
'include <sys/ipc.h>
#include <sys/shm.h>
'include <sys/sem.h>
Hinclude <errno.h>
'include <stdio.h>
#include <sys/signal.h>

int semid = -1; /* semaphore id */
struct sembuf acquire[2];
struct sembuf release[I];
struct shared memory {

/* structures to get semaphore */
/* structure to rel~ase semaphore */
/* example shared memory structure */

} ;

short - item 1 ;
short item2;

'define SH SIZE sizeof(struct shared memory)
int shmid = -1; /* shared memory segment id */
struct shared memory *shm; /* pointer to shared memory segment */
Idefine NCHILD- 2
int child[NCHILD];

maine)
{

int cleanup(), i, number;
signal(SIGTERM,cleanup); /* don't leave a mess when done */
signal(SIGINT,cleanup);
if ((shmid=shmget(IPC_PRIVATE,SH_SIZE,SHM_RISHM_W» < 0) {

perror(tlxx : shmget fail");
cleanup(O); /* we don't return */

}
if ((shm=(struct shared memory *)shmat(shmid,NULL,O)) < 0) {

perror("xx: shmat fail");
cleanup (0) ;

}
/* create a semaphore ••• */
if ((semid=semget(IPC_PRIVATE,I,SEM_RISEM_A» < 0) {

perror(tlxx : semget fail");
cleanup(O);

}
/* setup semaphore structures for use by slock and sunlock */
release[O].sem op = -1; /* decr semval */
release[O].sem-num = 0;
release[O].sem-flg = 0666;
acquire[O].sem-op = 0; /* if semval!=O, suspends */
acquire[O].se~num = 0;
acquire[O].sem-flg = 0666;
acquire[I].sem-op = 1; /* add one to semval */
acquire[l].sem-num = 0;
acquire[l].sem fIg = 0666;

138

Copyright 1987 Heurikon Corporation Madison, WI

139 Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFORMATION

for (i=O; i<NCHILD; i++) {
if ((child[i)=fork()) == °) { /* clone thyself */

signal(SIGTERM,SIG IGN); signal(SIGINT,SIG_IGN);
while (1) {- /* this is a child */

shm-)item1 = shm-)item2 + child[i);/* access shmem */
if (slock() == getpid()) { /* lock semaphore */

;/* do work here, this process had it last */
} else {

139

;/* work here, this process did not have it last */

}

}
sunlock(); /* release semaphore */

}
} else if (child[i] < 0) /* fork error */

perror("xx: fork error");

while (1) /* this is the parent */
shm->item2 = number++; /* example shared memory access */

}
slock() /* get the semaphore */
{ int pid, ret;

if ((pid=semctl{semid,O,GETPID» < °)
.perror(Uxx : sernet:l fail");

/* suspend and get semaphore */
while ((ret=semop(semid,acquire,2» < ° && errno == EINTR)

if (ret < °)
perror("xx: semop, acquire fail");

return(pid) ;
}
sunlock() /* release semaphore */
{ if (semop(semid,release,l) < °)

perror(nxx : semop, release fail");
}
cleanup(sig)
{ int

for
ij
(i=O; i<NCHILD; i++)
if (child[i])

kill(child[i],SIGTERM);
if (semid)=0)

if (semctl(semid,O,IPC RMID,O) != °) /* remove semaphore */
perror("xx: semet! IPC RMID fail");

}

if (shmid)= °) { /* remove the shared memory segment */
if (shmdt{shm) != °)

perror("xx: shmdt fail");
if (shmctl(shmid,IPC RMID,O) != °)

perror("xx: shmctI" fail");
}
exit:(O);

Figure 3. Semaphore and Shared Memory Example Program

Copyright 1987 Heurikon Corporation Madison, WI

140 Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFORMATION

15.15 Accessing Kernel Variables

140

The nlist(3) subroutine allows kernel variables to be accessed from a user
program. This is the facility used by 'ps' and other system utilities to
fetch and display kernel variables.

The following program illustrates the use of the nlist(3) routine.

/* probe the depths of the kernel */
'include "fcntl.h"
'include "stdio.h"
'include "sys/types.h"
'include "a.out.hlt /* needed by nlist(3) */
'include "sys/sysinfo.h" /* for the example, below */

'define fetch(index,thing) (lseekit(fdmem,(long)value(index), 0),\
readit(fdmem, &thing, sizeof(thing»)

'define getval(adrs,thing) (lseekit(fdmem,(long)adrs, 0),\
readit{fdmem, & thing , sizeof(thing»)

'define value(index) (nnL[index).n_value)

struct nlist nnL[] = {
{ "_lbolt" }, /* lbolt is total ticks since boot */
{ "_sysinfo" }, /* sysinfo is start of system info table */
{ 0 }, /* marker, end of table */

} ;
'define LBOLT 0 /* index into nnL[] */
IIdefine SYSINFO 1

time t lbolt; /* a place to put the value when we read it */
struct sysinfo *psysinfo; /* pointer to data in the kernel ••• */
struct sysinfo sysinfo; /* and a place to put the data when read */

char *pgmname; /* for use with perror() */

main(argc,argv)
char **argv;
{

int i, fdmem;

pgmname ~ argv[O]; /* save program name for perror() */
if «fdmem = open(n/dev/kmem",O» < 0) { /* open memory */

perror(pgmname);

}

fprintf(stderr, "%s: cannot open /dev/kmem\n",pgmname);
exit(I);

Copyright 1987 Heurikon Corporation Madison, WI

141

}

Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFORMATION

141

if (close (open("/unix", 0» < 0) { /* test availability for nlist() */
fprintf(stderr, "%s: cannot open /unix\n,pgmname"};
exit(I);

}
if (nlist("/unix", nnL) != 0) { /* read namelist from kernel */

fprintf(stderr, "%s: bad nlist\n",pgmname);
exit(I);

}
for (i=O; nnL[i).n name[O]!=O; i++) { /* validate nlist structure */

if (nnL[i).n type == 0) {

}
}

fprintf(stderr~ "%s: incomplete namelist in /unix\n1l ,pgmname);
exit(I);

/* EXAMPLE: print a nlist value *1
printf("&lbolt = Ox%x (adrs)\n",value(LBOLT»;

1* EXAMPLE: simple, one-level fetch and print
(nlist gave us a pointer to a value) */

fetch(LBOLT,lbolt); /* get the value from the kernel */
printf("lbolt = %d (ticks)\n",lbolt);

''/* EXAMPLE: two-level fetch and print
enlist gave us a pointer to a structure) */

psysinfo = (struct sysinfo *)value(SYSINFO); 1* get the pointer */
getval(&(psysinfo-)rcvint), sysinfo.rcvint); /* get the value */
printf("sysinfo.rcvint = %d (interrupts)\n", sysinfo.rcvint);

lseekit(fd, offset, whence) /* lseek with error checking */
long offset;
{

}

if (lseek(fd, offset, whence) == -1) {
perror(pgmname);

}

fprintf(stderr, 1I%s: error on lseek\n",pgmname);
exit(I);

readit(fd, buf, nbytes) /* read with error checking */
char *buf;
{

}

if (read(fd, buf, nbytes) != nbytes) {
perror(pgmname);

}

fprintf(stder:.:, "%s: error on read\n",pgmname);
exit(I);

Figure 41. nlist(3) example

Copyright 1987 Heurikon Corporation Madison, WI

142 Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFORMATION

142

15.16 System V.2 Notes

On a V. 2 system, the following programs are in /usr /local/bin, which is
first in the shell's search path. These programs are additions to or
modifications of the standard UNIX release.

adb

badblk

captoinfo

chktrks

chstep

coffbin

cpio

diskconf

Id5.0

psize

status

statwrite

stretension

tar

This is the system V.O debugger. It is supplied with system
V.2 to allow conversion of a floppy kernel to a disk kernel
during the rebuild process. Adb is not supported under
system V.2 (see 'sdb').

V20 Badblk program. 'badblk /dev/rwOh'

Takes a single termcap entry from standard input and
translates it to terminfo input on standard output. Sources
are in /usr/local/src.

captoinfo (file.1tcap) file.1info
tic file.1info

Simply checks the disk format track by track. This will not
damage data already on the disk. Badblk will check and
allow you to map out badblks. 'chktrks /dev/rwOh'

Moved here to distinguish it as System V. 2 for rebuild
script.

Coff format to a .out format conversion program. Used to
allow adb to redo the floppy kernel at rebuild time. It
rewrites the filename given to it. 'coffbin -u -s filename'

This version has the -F option which causes the blocking
factor for tape to be 64. This makes reading and writing of
streamer tapes much faster.

Checks the disk parameters. 'diskconf (/dev/rwOh'

Has symbol table increased to about 10,000 symbols.

Displays the size of the disk partition. 'psize (/dev/rwOb'

See below.

Status and statwrite are diagnostic programs for the Central
Data smart serial cards.

Streamer retension program.

This version has the 'b' option which allows blocking
factors as high as 64. As in cpio, above, this improves
streamer tape performance.

Copyright 1987 Heurikon Corporation Madison, WI

143

untie

vmail, xmail

Heurikon UNIX - Reference Guide
MISCELLANEOUS OTHER INFORMATION

143

Converts a terminfo entry into ASCII form, allowing changes.
The modified ASCII file is put back via the tic command.
Sources are in /usr/local/src.

Allows mail using the vi editor.
to vmail and check that xmail
/usr/bin/xmail.

Not supported.
is linked or

Alias mail
copied to

Copyright 1987 Heurikon Corporation Madison, WI

144 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

144

16. SERIAL PORT CONFIGURATION

Heurikon HK68 microcomputers have from one to four on-card serial ports.
On some boards, up to eight expansion ports may be added to the HK68 via
plug-on SBX modules, four additional ports per module. In addition, one
to four, eight-channel serial expansion boards may also be added to the
bus. These may be used instead of the SBX modules or in addition to them.
There are three types of serial ports on the Heurikon UNIX system. These
are summarized below:

~ Standard Ports: These are conventional serial ports which would be
used for connecting to devices such as terminals and printers.

~ Modem Ports: These ports are designed for auto-answer modems. They
monitor certain control lines from the modems to determine if a call
has been answered or terminated.

ct Network Ports: These ports allow an interconnection between two
systems. They are configured so that one RS-232-C cable can be used
to permit concurrent communications between two Heurikon UNIX MI0
systems, with either system acting as a master.

Each of these port types is discussed in more detail below, along with the
necessary information which you would need to properly configure your
system and files to use the serial ports.

16.1 Standard Ports

Standard ports connect to simple devices such as terminals, printers and
originate modems. The "console" device is assumed to be connected to the
on-card HK68 port "B". The other ports may be used as desired. These
ports have names such as:

console (or usually simply noted as "co")
ttyO
ttyl
(etc)

The console device is unique in that certain system messages will always
be directed there. (See sections {IO.10} for information on /dev/syscon).
Some installations use a hard copy terminal for the console in orde·r to
keep activity and error logs. We recommend that you simply use a CRT for
the console, assign it to the primary person responsible for the system
and leave it on at all times.

16.2 Modem Ports

Modem ports differ from standard ports in that the software monitors
certain modem control lines to determine if an incoming call has been
answered and if the call is still in progress. If a connection is
terminated during a session (loss of carrier), the "hangup" signal will be

Copyright 1987 Heurikon Corpot~tion Madison, WI

145 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

145

sent to your shell, which will log you off. These ports should only be
used for modems which are intended to receive calls.

The following modem signals are used: (For a complete listing of the
interface signals and their functions, refer to section {16.4}, below.)

DSR Data Set Ready. ("D" modem pin 6, HK68 pin 4) from modem
RI Ring Indicator. ("D" modem and HK68 pin 22) from modem
DCD Data Carrier Detect (nO" modem pin 8) from modem

There would normally be a ~'getty" running on a modem port, waiting for an
incoming call. The getty starts by initializing the port, which causes
DTR and RTS to turn on, and then it goes to "sleep" waiting for the modem
to indicate that a call has been answered. When the modem brings DSR
true, the getty process is given a "wakeup" to start the login process.
For the on-card ports (four on MIa, two on VIa), both DSR and RI must be
true for the wakeup call to be issued. The eight channer- CDC serial
expansion boards (on the bus) require both DSR and DCD to be true. This
allows "intelligent" modems to be used, such as the Ven-Tel-2I2, which
keeps DSR true between calls.

On the VMEbus Datasud serial expansion board (two ports), only DSR (pin 6
or 20, depending on Datasud jumpers) is used to control the getty.

Once a call has been answered, the modem maintains DSR (and RI or DCD on
an MIa or CDC) in the true state. When the connection is broken, either
by loss of carrier (phone line) or removal of DTR (UNIX), the modem will
drop DSR. This will cause a hangup signal (logout) to be sent to the
shell attached to the modem port.

During the session, the modem must maintain DSR true. In addition, if you
are using a MIa or VIa on-card port, RI must also stay true, as is the
case with the Ven-Tel 212 series of modems. If your modem does not
maintain RI, then you should either use a special interface cable or an
off-card port, which do not monitor RI.

Modem ports have names such as:

tty2m tty3m (etc)

If you are using a modem for an outgoing call, use a standard port, such
as "tty2". The DTR signal from the HK68 will be on as long as the port is
open (active).

If you are using an intelligent modem and wish to be able to receive calls
and make outgoing calls over the same port, configure the system as
follows: (tty2 is used as an example.)

Copyright 1987 Heurikon Corporation Madison, WI

146 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

device tty2m:
device tty2:

getty (/etc/inittab)
use for outgoing calls
("cu" or "uucp")

146

On System V.O, this bi-directional feature is available only on SBX-SCC,
Datasud and on-card ports; not on CDC or other expansion ports. On System
V.2, Datasud and CDC expansion boards support the modem logic.

When the tty device (e.g. , tty2) is opened for the outgoing call, the
getty running on the corresponding modem device (tty2m) will be
automatically killed and the modem ~ay then be used for the outgoing call.
When the call is completed, a new getty will be allowed to monitor the
modem for an incoming call. If the modem is "active" with an incoming
call, the attempt to open the tty device will fail. This feature allows a
single port and modem combination to be used for both incoming or outgoing
calls. ----

If your modem port is wired and configured properly for auto answer, a
'ps -e' should normally display a "1" in the TTY column for the modem
getty. If, for example, you see "2m", the system thinks an incoming call
is in progress.

Avoid using automatic baud rate selection logic of getty or your modem.
Automatic baud rate selection based on the first characters coming to or
going from the CPU is not very reliable.

By the way, if you hook your system to the phone lines, check that every
line in your /etc/passwd file has a non-null password field.

Various makes of modems may be used with the Heurikon UNIX system (see
section {16.8.1} for a list). The following sections detail wiring and
configuration information for some specific types. Contact us if you need
help connecting another variety.

G- The big secret in getting a modem to work properly is to ~ a
breakout box to look at the signals and permit wiring experiments.

16.2.1 Ven-tel 212-4 (ACUVENTEL)

Switch
S6
S7

ON
2,4-;5,6,7,9
1,8,10

OFF
1,3,8,10
2,3,4,5,6,7,9

Table 19. Ven-Tel 212-4 Modem Switch Settings

Wiring is per section {16.4}. When you use a Ven-Tel modem, be sure you
have the proper end of the telephone cable plugged into the modem. The
modem end should only have ~ of the four wires attached in the RJ11
jack. Look closely. If this is incorrect, noise on the extra two wires

Copyright 1987 Heurikon Corporation Madison, WI

147 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

can cause the modem to capture and busy-out the phone circuit.

147

The Ven-tel modem will not work in auto-answer mode on a CDC expansion
port. It won't terminate the session when you hang up because of the RI
and DCD signal characteristics.

16.2.2 Hayes Smartmodem 1200 (ACUHAYES)

UP(off)
Switch 1,2,~5,6,7

DOWN(on)
3,8-

9,10 (if present)

Table 20. Hayes Smartmodem 1200 Switch Settings

HK68
pin 2
pin 3
pin 4
pin 5
pin 7
pin 20
pin 22

MODEM
pin 3
pin 2
pin 6
pin 20
pin 7
pin 5
pin 8

Data from modem
Data to modem
DSR
DTR
Ground
CTS
Dcn

Table 21. Hayes Smartmodem 1200 Wiring

16.2.3 US Robotics Password Modem (ACUUSR)

Switch
ON

(none)
OFF

1,2,3,4

Table 22. US Robotics Password Modem Switch Settings

Copyright 1987

HK68
pin 2
pin 3
pin 4
pin 5
pin 7
pin 20
pin 22

MODEM
pin 3
pin 2
pin 6
pin 20
pin 7
pin 5
pin 8

Data from modem
Data to modem
DSR
DTR
Ground
CTS
DCD

Table 23. US Robotics Password Modem Wiring

Heurikon Corporation Madison, WI

148 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

16.2.4 Novation Professional 2400 Hodem (ACUNOVATION)

Switch ON OFF
A 2, "4,""5,8 1,3,6,7
B 3,7 1,2,4,5,6,8
C 1 2,3

Table 24. Novation Modem Switch Settings

HK68 MODEM
pin 2 pin 3 Data from modem
pin 3 pin 2 Data to modem
pin 4 pin 6 DSR
pin 5 pin 20 DTR
pin 7 pin 7 Ground
pin 20 pin 5 CTS
pin 22 pin 8 DCD

Table 25. Novation Modem Wiring

Copyright 1987 Heurikon Corporation

148

Madison, WI

149

16.3 Network Ports

Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

149

The term "network", as used here, means an interconnection between two
Heurikon MIO computer systems. When two Heurikon MIO UNIX systems are
connected via a serial link, usually one system acts as a master and the
other as a slave. The slave system has a getty running, which waits for
the master to login and initiate commands. These commands may cause
processes to be started on the slave machine or data to be transferred
between systems. When the master is finished, it does a logout. The
Heurikon serial network ports allow either machine to act as a master.
The single physical serial link has two logical devices at each end,
referred to as device "a" and device "b". On system 1, any characters
associated with the "a" side will correspond with the "b" logic on system
2, and vice versa. This results in two independent communication
"channels" using only one serial link.

System 1 port "a" connects to System 2 port "b".
System 1 port "b" connects to System 2 port "a".

The physical connection is shared by the two channels. Characters
received at each end are automatically routed to the proper logical device
(i.e., the "a" or the "b" side) by the serial device driver. Channel
priority is determined on a first come, first served basis, except that
neither port is allowed to "hog" the interface for more than 20
consecutive characters.

This logical connection method allows each end of the network to be
configured the same, e.g., gettys running on the "a" side at both ends.
Either system may then act as a master and initiate a conversation on the
"b" side of the link via "cu" or "uucp".

The serial network ports have names such as:

tty3a
tty3b
tty4a
tty4b

Serial ports which are configured for "network" operation cannot be used
as a standard port. That is, if "tty3a" and/or "t;ty3b" are open, you will
not be allowed to access "tty3". If you try to do so, you will receive a
"Mount Device Busy" or "device unavailable" message.

The default baud rate for the network ports is 4800. This value cannot be
changed via "stty". It has been chosen so that the probability of
overrunning the serial receiver is low.

The standard version of the Heurikon UNIX system allows network ports to
be assigned to the last two on-card devices and the first two SBX-SCC
expansion ports on P7 (four total). These would normally be tty devices
la, lb, 2a, 2b, 3a, 3b, 4a and 4b.

Copyright 1987 Heurikon Corporation Madison, WI

150 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

16.4 RS-232-C Connections

16.4.1 HK68 and SBX-SCC

150

This section lists the RS-232-C signals which are used by the HK68 and a
serial device. Except for the "RI" signal. this section applies to both
the HK68 and the four channel SBX-SCC expansion modules. See section
{16.4.2} for information on the eight channel expansion board.

The HK68 is designed to appear as a "data set" at the interface. When a
"data terminal" type device (e.g •• a CRT terminal or a printer) is to be
connected, a direct hook-up may be used.

HK68 "0" pin "0" pin Terminal
Si~na1 Number Dir Number Si~na1
Rcv Data 2 (- 2 Tx Data
Tx Data 3 -) 3 Rcv Data
DCD 4 (- 4 RTS
DTR 5 -) 5 CTS
RTS 6 -) 6 DSR
Glld 7 7 Gnd
CTS 20 (- 20 DTR

Table 26. Connection to a Data Terminal Device

Notice that the signals go straight through. although their names depend
on which end of the interface you're on. D pin 20 is not used on the
HK68/V20.

When a "data set" device (such as a modem) is connected. a cable reversal
must be inserted between the HK68 and the device. The chart below
indicates how to make such a reversal cable.

HK68 "0" pin "D" pin Modem
Si~na1 Number Dir Number Sisna1
Rcv Data 2 (- 3 Rcv Data
Tx Data 3 -) 2 Tx Data
DCD 4 (- 6 DSR
DTR 5 -) 20 DTR
RTS 6 -) 4 RTS
Gnd 7 7 Gnd
CTS 20 (- 5 CTS
RI 22 (- 22 RI

(- 8 DCD

Table 27. Connection to a Data Set (Modem)

Note that three pairs of signals (pin 2-3. 4-6, 5-20) are reversed between
the HK68 and the modem, although the signals at both ends have the same
name. For some devices.DCD (pin 8) may need to be connected to RI on the
HK68.

Copyright 1987 Heurikon Corporation Madison, WI

151 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

151

In order for the serial interface to work, the following conditions must
prevail regardless of the device type which is connected. Otherwise, the
port may appear to lock up. To avoid confusion, this listing is with
respect to the HK68 end of the interface. A "TRUE" RS-232-C signal is a
positive voltage.

HK68-SCC "D" pin
Si~al Number Dir Comments
Rcv Data 2 <- Data
Tx Data 3 -) Data
DCD 4 <- Must be TRUE for HK68

to Receive (MID, V20)
DTR 5 -> Will be TRUE if

port is open
RTS 6 -) Will be TRUE if

port is open
Gnd 7 Signal Ground
CTS 20 <- Must be TRUE for HK68

to Transmit (MID, V2D)
RI 22 (- Ring Indicator for

on-card ports

Table 28. HK68 RS-232-C Interface

The HK68 Clear to Send signal (CTS) may be used to synchronize the HK68
with a slow device or one which may be remotely switched on- and off-line.
The DCD and CTS status inputs to the HK68 (and SBX-SCC) have a default
jumper, which can be set so that an unconnected input appears either
"true" or "false". The normal default is "false", so that UNIX cannot
dump characters out to an unconnected port.

By the way, if RS-232 "standards" confuse you, then you're normal.

Copyright 1987 Heurikon Corporation Madison, WI

152 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

152

16.4.2 CDC Eight Channel Expansion Board
The eight channel CDC expansion board has a slightly different interface.
In particular, the OeD signal is used instead of RI for the modem
interface.

The eight channel serial expansion boards allow either data terminal or
data set devices to be connected without a special cable. This is
achieved by jumper plugs on the expansion board which route the interface
signals to the proper chips.

8 Channel "0" pin "0" pin
Board Dir data term data set Comments

Rvc Data (- --3-- ---2-

Tx Data -) 2 3
DCD (- 8 8 Must be true

(or open) to
receive data

DTR -) 20 6
RTS -) 4 5
Gnd 7 7
CTS (- 5 4 Must be true

(or jumpered)
to transmit

DSR (- 6 20

Table 29. CDC Eight Channel Expansion RS-232-C Interface

Use the "data term" column when you are connecting the serial board to a
data terminal. Use the "data set" column when you are connecting to a
modem device. In either case, the ribbon cable does not need a reversal.
There are a number of jumpers on the expansion board. Refer to the serial
expansion board hardware manual for details. (Central Data, board model
BI031).

External cables connect to Heurikon equipment according to the following
table. (Note: refer to the particular hardware manual for details.)

Copyright 1987 Heurikon Corporation Madison, WI

153 Heurikon UNIX - Reference Guide 153
SEoRIAL PORT CONFIGURATION

Physical Physical --. ----Connector Label------
Device I Name Device Loc (MIO) Minibox MLZ-804/814 HSE

0 co HK68 port B -- BI El CONSOLE
I ttyO HK68 port A CI 01 SI
2 ttyl HK68 port 0 B2 E2 S2
3 tty2 HK68 port C C2 02 S3

4 tty3 SBX-SCC P7 port B B3 E3 S4
5 tty4 SBX-SCC P7 port A C3 03 SS
6 ttyS SBX-SCC P7 port D B4 E4 S6
7 tty6 SBX--SCC P7 port C C4 D4 S7

8 tty7 SBX-SCC P8 port B ES S8
9 tty8 SBX-SCC P8 port A OS S9

10 tty9 ° SBX-SCC P8 port 0 S10
II ttyA SBX-SCC P8 port C Sil

Table 30. Serial Port Connections

16.5 Device File Setu12

For MI0 systems, the first four physical serial port interfaces are on the
HK68 itself. The second group of four are assumed to be on an SBX-SCC
serial expansion module connected to P7. The next four expansion ports,
if used, are assumed to be on SBX P8. Note that in ° order to have more
than eight ports, both SBX connectors must be used.

On VI0 and V20 systems, only one (V20) or two (VI0) serial ports are
on-card. All others are on serial port expansion cards.

All on-card serial ports (except for one which is special) are major
device zero. The desired serial port configuration is conveyed to the
system via the minor device numbers, which are assigned to the device in
the /dev directory.

The suggested port configuration data to use in creating the /dev entries
for the serial ports on an MI0 system is shown below. Of course, you may
name the ports as you please; however, certain programs assume that the
ports are named "tty ••• ".

Copyright 1987 Heurikon Corporation Madison, WI

154

(format:

Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

mknod device type major minor)

154

mknod /dev/tty c 1 0 Active process tty

On-card Ports (M10):
- mknod /dev/co c o 0 Console device

mknod /dev/lp c o 1 Same as ttyO
mknod /dev/ttyO c o 1
mknod /dev/ttyOm c o 129
mknod /dev/tty1 c o 2
mknod /dev/ttyla c o 66
mknod /dev/tty1b c 0 98
mknod /dev/tty1m c 0 130
mknod /dev/tty2 c 0 3
mknod /dev/tty2a c o 67
mknod /dev/tty2b c o 99
mknod /dev/tty2m c 0 131

Expansion Ports: (SBX-SCC 2.!!. P7) Expansion Ports:
mknod /dev/tty3 c 0 4 mknod
mknod /dev/tty3a c 0 68
mknod /dev/tty3b c o 100
mknod /dev/tty3m c o 132 mknod
mknod /dev/tty4 c 0 5 mknod
mknod /dev/tty4a c 0 69
mknod /dev/tty4b c 0 101
mknod /dev/tty4m c o 133 mknod
mknod /dev/tty5 c o 6 mknod
mknod /dev/tty5m c 0 134 mknod
mknod /dev/tty6 c 0 7 mknod
mknod /dev/tty6m c 0 135

~ Chnl Expansion Ports: (CDC)
mknod /dev/tty10 c 12 0 board 1
mknod /dev/tty11 c 12 1 ••• etc •••
mknod /dev/tty20 c 12 8 board 2
mknod /dev/tty23m c 12 139

Datasud Expansion Ports:
mknod /dev/ttyX c 8 0
mknod /dev/ttyY c 8 1

/dev/tty7

/dev/tty7m
/dev/tty8

/dev/tty8m
/dev/tty9
/dev/tty9m
/dev/ttyA

Table 31. /dev/tty nodes (MI0 Example)

(SBX-SCC ~ P8 j
c 0 8

c 0 136
c 0 9

c 0 137
c 0 10
c 0 138
c 0 11

The device "/dev/tty" may be used by a program as a pseudonym for the
actual tty device in use. By using this designation, a program need not
know which port is actually being used for the controlling terminal.

Copyright 1987 Heurikon Corporation Madison, WI

155 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

In general, the format for the minor device number is:

.---. I D7 06 05 04 03 D2 01 DO

'--,----------
Modem
Flag

Net
Flag

Net
Half

----Physical Device Number----

Figure 42. Serial Port Minor Device Format

155

For more information about minor device numbers, refer to section {17.3}.
The minor device number for "mknod" is constructed by adding the desired
bit values to create a decimal number.

There are two other serial port names used by "getty" and "lnit" to
communicate with the system "console". They allow the console device to
be assigned to whatever port or file you desire, instead of the
/dev/console device (which is port B on the HK68.) They implement a
"virtual" console. /dev/syscon is linked to /dev/systty according to an
entry in /etc/inittab.

/dev/syscon
!dev!systty

Refer to section {10.10} for more information on those.

16.6 Sample System Configuration

This is an example of a typical system configuration, assuming there are
three systems, with names "el" , "e2" and "sales". The system name is the
"nodename", which may be set by the system administrator. (See section
{lO.8}.)

Copyright 1987 Heurikon Corporation Madison, WI

156

Szstem Port
"el": co

ttyO
ttyl
tty2m
tty2
tty3
tty4
tty5
tty6

"e2" co
ttyO
ttyl
tty2
tty3
tty4
tty5
tty6

"sales" co
ttyO
ttyl
tty2

Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

Devices
CRT-el-Console
Line Printer tie 1"
Network connection to/from system "e2"
Auto-answer modem
modem dial-out
User CRT-el-3
(not used)
User CRT-e 1-5
User CRT-e1-6

CRT-e2-Console
Line Printer "e2"
User CRT-e2-1
Network connection to/from system "el"
Network connection to/from system "sales"
(not used)
User CRT-e2-5
(not used)

CRT-sales-Console
Line Printer "sales"
Network connection to/from system "e2"
User CRT-sales-2

Table 32. Sample Network Configuration

el------------e2----------sales

I
Modem

Figure 43. Sample Network Configuration

156

The three systems are linked together in a chain. System "e1" at one end,
system "sales" at the other and system "e2" in the middle. Of course, the
chain could be converted to a ring by adding a link between tie 1" and
"sales"; howeve.r, this is not necessary except to increase the overall
system reliability in case system tle 2" goes off-line. Adding another
system connected to "e2" would create a "star" network.

To call system "e2" from "el", you could use one of these commands:

cu -lttylb dir

uucp file e2\!file

The "/etc/inittab" entries for these systems are shown below. Only the
multiuser entries (init level 2) are shown. The baud rate arguments on

Copyright 1987 Heurikon Corporation Madison, WI

157 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

157

the /etc/getty commands refer to the lines in the /etc/gettydefs file, as
explained in section {6.3}.

System "e1"
co::respawn:/etc/getty console 9600
to::off:/etc/getty ttyO 9600
t1::respawn:/etc/getty tty1a 4800
t2::respawn:ietcigetty -t 60 tty2m md 1200 modem
t3::respawn:/etc/getty tty3 co 9600 -
t4::off:/etc/getty tty4 9600 -
t5::respawn:/etc/getty tty5 co 9600
t6::respawn:/etc/getty tty6 co-9600

System "e2"
co::respawn:/etc/getty console 9600
to::off:/etc/getty ttyO 9600
t1::respawn:/etc/getty tty1 co 9600
t2::respawn:/etc/getty tty2a 4800
t3::respawn:/etc/getty tty3a 4800
t4::off:/etc/getty tty4 9600
t5::respawri:/etc/getty tty5 co 9600
t6::off:/etc/getty tty6 co 9600

System "sales"
co::respawn:/etc/getty console 9600
to::off:/etc/getty ttyO 9600
t1::respawn:/etc/getty tty1a 4800
t2::respawn:/etc/getty tty2 co_9600

The "uucp" files (used by uucp, uux and cu) describing devices on system
"e1" should look something like this:

File L-devices ---DIR tty2 0 1200
DIR tty1b 0 4800
ACUVENTEL tty2 0 1200

File L.~
e2 Any,2 tty1b 4800 tty1b "" @ login:-@-login: uucp

System "e2" uses port tty2b to call system "e1" and port tty3b to call the
"sales" system. For more information about the uucp system, refer to the
UNIX Administrator Guide and the uucp "hints" in section {I6.8} below.

Copyright 1987 Heurikon Corporation Madison, WI

158 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

158

16.7 Changing Serial Baud Rates

This section explains the 'procedures for changing the default baud rates
of the HK68 serial communication ports.

16.7.1 How to Change the Baud Rate Values Used by UNIX
Any ordinary baud rate value of 19,200 or lower may be used with UNIX.
The actual character throughput is a function of the baud rate and the
number of active processes. It is difficult to sustain baud rates above
9600 baud, although short bursts may be achieved. This is because of the
amount of processing required by UNIX to handle each character. The best
way to determine the maximum baud rate is to actually run the desired
program and measure the character rate.

[1] In single user mode, the console baud rate is initialized according
to the value of the Hbug monitor configuration word (See Appendix
A).

[2] In multiuser mode, the console and other login "tty" ports are
initialized to baud rate values as specified in /etc/inittab and
/etc/gettydefs. For example, the /etc/inittab lines:

co::respawn:/etc/getty console co 9600
t3::respawn:/etc/getty tty3 co_4800

coupled with these /etc/gettydefs lines:

co 9600# B9600 # B9600 SANE TAB3 I\r\nlogin: Ico 4800
co-48001 B4800 I B4800 SANE TAB3 I\r\nlogin: Ico-2400

will cause the console to be initialized at 9600 baud and port tty3
at 4800 baud. Although not shown above, a blank line is required
between each line of the gettydefs file. These particular
definitions will also cause getty to search for another rate, if it
cannot make sense out of the login response. (The designation EXTA
should be used for 19,200 baud (not "B19200".) For more details,
refer to stty(I), init(lm), inittab(4), gettydefs(4) and getty(IM)
in the UNIX User's Manual and Administrator's Manual. If you modify
the /etc/gettydefs file, execute '/etc/getty -c' to check for
errors.

NOTE: DO NOT ATTEMPT TO CHANGE THESE FILES UNLESS YOU ARE VERY
FAMILIAR WITH THEIR FUNCTIONS AND THE OPERATION OF THE UNIX EDITORS.
You could easily cause gross improper system operation if these
files are changed in an incorrect manner.

[3] During a terminal se'ssion, the baud rate of your port may be changed
as follows:

A. Type 'stty.!!!!!!!!.' (where "nnnn" is the desired common baud rate
value)

Copyright 1987 Heurikon Corporation Madison, WI

159 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

B. Change your terminal to the new baud rate.

159

C. Hit the carriage return key a couple of times to get a new
prompt.

D. If you reset your terminal, it may be necessary to type 'tset'
to reinitia1ize your terminal characteristics, prior to using
iiVi ii.

The original baud rate (as specified by inittab) will be re­
established if you logout.

[4] The baud rates of non-login ports (e.g., an output port) can be
changed by using the stty command. It may be necessary to put the
port to sleep in the background to prevent the baud rate from being
automatically reset to 9600. Example:

sleep 10000 </dev/ttyO &
stty 1200 </dev/ttyO

A good place to put the above commands for automatic execution would
be in /etc/rc. A larger sleep time should be used to make the baud
rate change "permanent". Be sure there is no "getty" running for
such a port, by adjusting the /etc/inittab file. There is an sample
of such a line in the /etc/inittab example, shown earlier in this
guide.

[5] Printer baud rates should be set via a stty command in the
appropriate file in the lusr/spoo1/1p/interface directory. See
1padmin(1m), et a1., and the UNIX Administrator Guide for more
information on the line printer logic. See section {16.10} in this
guide for installation hints on the LP spooler system.

[6] The current baud rate and other parameters of any port may be
checked by using the stty command, as follows:

stty -a </dev/tty2

Copyright 1987 Heurikon Corporation Madison, WI

160 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

16.8 The UUCP System - Hints

160

The objective of this section is to fill in some gaps in the UNIX
documentation and give some advice on debugging the uucp system.

See also:

.. "Uucp Administration" in the UNIX Administrator Guide. This is the
best material on installing the uucp system •

.. "Uucp System" in the UNIX Support Tools Guide •

• "Cu Usage" in section {16.9} of this guide •

.. "UUCp" manual page in section one of the UNIX User's Manual.

These hints are in random order. They represent solutions or ideas which
we had while installing uucp.

[
'I 1
.1 J In addition to the standard distribution files, you may need to

create (via "mkdir" or "touch") these directories and files. All
should be owned by "uucp" and belong to group "uucp".

drwxrwxrwx
drwxrwxrwx
drwxrwxrwx
drwx----­
-rw-r--r-
-rw-r-r-
-rw-r--r-
-rw-r-r-

/usr/spool/uucppublic
/usr/spool/uucp
/usr/spool/uucp/.XQTDIR
/usr/lib/uucp
/usr/lib/uucp/L stat
/usr/lib/uucp/L-sub
/usr/lib/uucp/R-stat
lusr/lib/uucp/R_sub

[2] A "no shell" message could be because a script in /usr/lib/uucp does
not have "group" and "other" read permissions. Also, try changing
the mode of that directory to 755.

[3] All files should be owned by uucp.

[4] /etc/passwd must have read permissions for group and other. That is
the standard UNIX configuration, since /etc/passwd has "public"
information in it.

[5] "ACCESS (DENIED)" messages mean you or uucp do not have permission
to create or read files in the directory you specified. The best
thing to do is to move files back and forth between machines by
using the /usr/spool/uucppublic directories at both ends.

[6] Some handy commands to have around (as aliases):

Copyright 1987 Heurikon Corporation Madison, WI

161 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

alias L grep n\!*." /usr/spool/uucp/LOGFILE
alias mL tail -f /usr/spool/uucp/LOGFILE
alias uutest /usr/lib/uucp/uucico -r1 -x4 &
alias rmS rm /usr/spool/uucp/STST.*
alias rmCD rm /usr/spool/uucp/[CD].*
alias spool cd /usr/spool/uucp
alias cdu cd /usr/spool/uucp

161

[7] If you ever get "Shere= ••• " you forgot the "-r1" option on a manual
uucico command. You will have to wait a minute or two for uucico to
get tired and timeout.

[8] If you run a manual 'uucico -ri' command for testing, put it in the
background, so you can kill it (via 'kill 0'), if it hangs. Uucico
is the workhorse for the uucp system. It handles all the protocols
used to dial out, login on the remote machine and transfer files,
and it checks the integrity of the data transfer.

[9] Try 'uucico -rl -x4 -ssystem' to initiate a manual call to a
particular system. Remove any STST* files in the spool directory
first.

[10] If the time stamps on messages or log entries are incorrect, check
the iiTZ" variable in /usr/lib/uucp/uushell.

[11] If uucico gives "RETRY TIME NOT REACHED" in the LOGFILE, then remove
the STST.* files from /usr/spool/uucp to allow testing to continue.
The STST. * files prevent a retry until at least 10 minutes have
elaps-ed, regardless of the retry time specified in L.sys.

[12] Check your USERFILE, L. sys and L-devices very carefully, and check
them often.

[13] "NO (DEVICE)", "tty open failed" or "tty open did not work" errors
could be because the tty* device, which is used for calling out, is
not owned by the uucp "user". Uucico leaves the tty device with
mode 600, and, if it doesn't own it, uucico can't use it the next
time. These errors could also be due to the baud rate
specifications in L.sys and L-devices not being in agreement.

[14] An error such as: "UUCp XQT DENIED (rmail jeff)" means that the
program "rmail" isn't listed in the L-cmd file. It may also be due
to a problem with the USERFILE.

[15] If you get something along these lines:

uucp!e2 ••• ret (400) from e2!root (MAIL FAIL)

it probably means that uuxqt cannot create, find or write a
temporary file someplace. Be sure the /usr/spool/uucp/.XQTDIR
directory exists and has mode 777. Also, the mode of

Copyright 1987 Heurikon Corporation Madison, WI

162 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

/usr/spool/uucp must be at least 755.

162

[16] If mail or uucp transfers will only go in one direction or if the
"Remote from ••• " line in mail files is wrong, it may be because
your "nodename" is incorrect. Use /etc/chgnod and reboot to correct
your nodename. Refer to "Checking the Nodename", in section {10.8}.
Remember to do that if you copy a /unix file from one system to
another. To check the current value of the nodename, enter
'uname -n'.

[17] If uucp works when a password is ~ required, but does not work if
the uucp login has a password, then try this line for the
appropriate entry in /etc/gettydefs:

md 12001 B1200 1 B1200 CS8 CREAD IGNPAR ISTRIP
ICRNL IXON IXANY ISIG ICANON ECHO ECHOE ECHOK
OPOST ONLCR TAB3 l\r\n\nHeu V\r\nlogin: Imd_1200

[18] Have separate lognames for various uucp logins. For example, local
machines could use "luucp" and external machines "euucp". This will
allow you to change or delete logins for security reasons.

Remember, Man always wins in the end! (Although UUCP may stretch your
endurance to the limit!)

16.8.1 Uucp Modem Support
The uucp logic will support a variety of autodial modems. The "device"
field in the L.sys file is used to indicate the modem type (e .g.,
"ACUVENTEL" means a Ven-Tel modem); and, the "phone" field has the
telephone number dialing code for the modem~ At this timet these
manufacturers are supported:

Bizcomp
HayesDT
Smart Cat
USRobotics

Datec
HayesDP
Vadic

Hayes
Novation
Ven-Tel

Use "ACUHAYES" or "ACUVENTEL", for example, in L.sys and L-devices to
reference those devices.

Sometimes, a "smart" modem may get itself into a "zombie" state where it
will not accept calls, yet it is not in use. To reset the modems at
regular intervals, put a line like

56 * * * * echo (/dev/tty2

in /usr/lib/crontab for each modem line. The "sleep" will cause the
kernel to briefly drop DTR (which will reset the modem), and start another
getty if the port is not in use. It has no effect if the modem is in use.

Copyright 1987 Heurikon Corporation Madison, WI

163 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

16.8.2 Uucp Control Files

163

Here are some example /usr/lib/uucp control files: (Note: some of the
lines in the L.sys file have been split for clarity.)

e2 Any,5 tty2b 4800 tty2b n" @ login:-exit-login: uucp
c·· A ___ 2 A~TT~lENT"I"ET' l')nn ,)77123/.~1 \
'U:)L fillY, \JUV 1 J. J..o J.~VV ~I I J. '"t.fo \

"" @ login:-@-login: uucp3 ssword: Nathan
ihnp4 Any0400-0800 ACUVENTEL 1200 13125552171%% \

Copyright 1987

in:-@-in: kuucp word: Blimp

Figure 44= /usr/lib/uucp/Lesys file

DIR tty2
DIR tty1
ACUVENTEL tty2
ACUVENTEL tty 1

tty2
ttyl
tty2
ttyl

1200
1200
1200
1200

Figure 45. /usr/lib/uucp/L-devices file

luucp, /
uucp, /usr/spool/uucppublic
kuucp,ihnp4 /usr/spool/uucppublic
kuucp, /usr/spool/uucppublic
, /

Figure 46. /usr/lib/uucp/USERFILE file

Heurikon Corporation Madison, WI

164 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

164

16.9 'Cu' Usage

• Note: This procedure is presented here because it is typical of that
used to initiate a manual call to another system. You should use the
standard uucp commands instead of this procedure for most activities,
such as file transfers.

Do not confuse the n-%take" and "-%put" routines built into the "cu"
program with the "uucp" (UNIX to UNIX Copy) file transfer program. "Cu"
allows a manual connection to be made for an interactive session on a
remote machine; while "uucp" automatically performs processor to processor
transfers. The "cu" "-%take" and "-%put" allow only ASCII file exchanges
and perform no error checking, while Uucp will transfer binary and/or
ASCII files. Summary:

... "Cu" is for manual, interactive connections to remote systems •

• "Uucp" is the best way to move data between two systems.

NOTE: This example assumes port "tty2" is connected to the modem. The
actual modem port will be a function of your system configuration. E.g.,
you may be using "ttyO" on a VI0 system. Remember that a port name such
as "tty2m" is used for incoming calls only. Devices "tty2" and "tty2m"
refer to the same physical port.

[1] (This step is not required if "cu" will be used throughout the
session. That is. only do this if you need to disconnect "cu" and
still maintain the telephone link.) Enter:

sleep 2000 </dev/tty2 &

This starts a "sleep" running in the background attached to the
modem port to keep DTR on even if "cu" is terminated. The number of
seconds should be chosen to be just greater than the expected
session length. This will cause the modem to be released even if
you forget to kill the sleep later.

[2] cu -ltty2 dire This will connect you to the modem. The getty
running on tty2m, if any, will be killed by this command (or the
"sleep", if used). A new getty will start, but it will be blocked
by the serial device driver •

[3]

.. The L-devices file must have a "DIR" line for any port used by
'cu'. Refer to figure {45}, above.

Dial the desired number. Login on the remote system and conduct
your session •

... The 'cu' dial function and the dial(3)
supported. You (or your program) must

subroutine
send the

are not
dialing

Copyright 1987 Heurikon Corporation Madison, WI

165 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

information to the modem.

165

[4] To disconnect, enter '-.'. (That s a "tilde-dot carriage return".)
This brings control back to the local system. If you did a "sleep"
on the port earlier, the modem will maintain the connection. To
reconnect to the modem, just do another cu -ltty2 dir

\it Caution: if you are using "cu'" from another ~ cu~ or over
Ethernet, be sure to add another n-n to your disconnect command
(e.g., "--."). Otherwise, you will disconnect only the closest
'cu or rlogin

[5] J.I you started a !! sleep!!, above, kill the "sleep" process to release
the modem and the telephone connection. If you ve forgotten the
sleep's process ID, enter "wait" followed by the delete key to get a
listing of the background processes, or just enter 'kill 0..... The
"getty" for tty2m, if one was running, will restart and incoming
calls will be recognized.

If you have trouble getting cu' to work, check section {16.8}.

16.10 The LP Spooler Logic

There are numerous ways to connect a printer to the HK68 and program UNIX
to output a file to the printer port.

Connection Methods:

0- Connect to a serial port, such as /dev/ttyO. This method allows a
wide range of printers to be used. The only interface requirement is
RS-232-C compatibility. Any port used for a printer should not have
a "getty" running. That is, it should not be assigned as a login
port by /etc/inittab.

0- Connect to the Streamer/Centronics parallel port, "/dev/cent". This
is a Centronics-type interface, supported on some Heurikon systems.

On the MI0, this connector is usually used for a streamer tape. It
can be used for either a Streamer tape or a printer, but not both. A
special adapter cable is needed to connect the HK68 to a Centronics­
type printer. See the HK68 User's Manual for details and the CENT(7)
manual page at the end of this guide.

On VI0 or V20 systems, a separate board is required to support the
Centronics interface.

0- Connect the printer to the "auxiliary" port of your CRT terminal, if
it has one. Then, write a short program, which will command your
terminal to transfer any data received directly to the auxiliary
port. (This can be done with the LP Spooler logic, described below,
or via a standalone program under your own control.) This has the

Copyright 1987 Heurikon Corporation Madison, WI

166 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

166

advantage of not using up a separate port for each printer; however,
you probably will not be able to use your terminal while the printing
is in progress. This method works well in situations which need a
small "personal" printer at each terminal for printing short files or
mail.

UNIX Printing Facilities:

• The Line Printer Spooler logic, "lp". This is a package of routines
which can handle one or more printers and of various types. It is
described in more detail below.

• The tllpr" program, designed to work with one printer on port
"/dev/lp". This is a simple system, which supports only one printer,
and does not allow customization. Since it is inferior to the "lp"
system, we are not providing details here. Consult the UNIX User's
Manual for more information on lpr.

• You can provide your own programs, if you wish. The most trivial
case would be to "cat" directly to the port, as in:

cat file)/dev/tty2

You must take care when using this method to set the baud rate and
other port characteristics correctly. Refer to section {16.7} for
information on setting the baud rate. You may need to use the "stty"
command to enable output post processing and insertion of carriage
returns wherever a line feed occurs, as in:

stty opost onlcr < /dev/tty2

• The 'pr' program is helpful in formatting a file prior to using lp or
lpr. It will add line numbers (-n) and headings, and can do special
manipulations on the output file, such as expanding tabs (-e) and
text positioning (-0).

16.10.1 Printing Via the LP Spooler
The UNIX LP Spooler facility allows numerous printers of various types to
be used. Files may be printed on any printer, by any printer in the same
"class" or only on a particular device.

This flexibility is achieved by having a separate interface program for
each printer or class of printers. The system administrator can assign
each printer a port, a class and an interface program.

There is a group of programs associated with the spooler logic. Some of
them are described below along with installation instructions. This guide
does not intend to answer all the questions about the LP Spooler system.
The discussion below should only be used as an example. The complete
story may be found in "LP" section of the UNIX Administrator Guide. Be
sure to read it. Also, for system V.2, look at /etc/lp/README.lp.

Copyright 1987 Heurikon Corporation Madison, WI

167 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

167

Installation instructions - Example and Summary:

[1] When shipped from Heurikon, your lp spooler may already be enabled.
Before doing any configuration changes, you must turn off the
scheduler via '/usr/lib/lpshut'.

[2] If you want to remove the default "tosh" (Toshiba) destination,
execute:

/usr/lib/lpadmin -d
/usr/lih/lpadmin -xtosh

(removes default destination)
(removes destination tash)

[3] Execute the "Ipadmin" command according· to the needs of your
situation. For example, the following commands will install a TI-
810 printer on port /dev/tty3 and pull in the "dumb" interface
model. The second command assigns the printer as the "default" so
it does not have to be explicitly named with each nIp" command.

Ipadmin -pti810 -mdumb -v/dev/tty3
Ipadmin -dti810

When you execute the "Ipadmin" command, you must be the super-user
or have changed to "lp" via '811 Ip'~

[4] Go to the interface directory and edit the printer program (script)
as needed for your particular needs. In this example, the interface
program will be "/usr/spool/lp/interface/ti810", a listing of which
appears later in this section. The interface program actually does
the work, including setting up the proper serial port attributes and
baud rate. The interface scripts should be mode 755.

[5] Execute "accept" and "enable" commands to turn the printer on.

cit When using "accept", a message like "printer prl has
disappeared!" indicates that the printer specified in the
accept command was not recognized as being a valid destination;
it is not in the qstatus file. Be sure you are typing the
command properly. Try clearing the qstatus and pstatus files
and repeating the 'Ipadmin' commands.

[6] Become the super-user and start the scheduler ("lpsched") via the
following commands:

rm -f /usr/spool/lp/SCHEDLOCK
/usr/lib/lpsched

Those two commands can be put in /etc/rc to make them automatic when
booting. They are probably already there.

[7] If you do not want interrupted jobs to be restarted after a reboot,
add this line to the beginning of the above command sequence:

Copyright 1987 Heurikon Corporation Madison, WI

168 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

rm -f /usr/spool/lp/request/*/*

[8] Use 'lpstat _tIt to check the status of the lp system.

168

If you have trouble installing a printer, sometimes it helps to remove all
files (except those in the model directory) and start over. Also, try
running 'vchk' to check your system configuration. These manual steps may
be useful in debugging your system:

[1] Check the /usr/spool/lp directory to be sure you have the following
files and subdirectories. All files and directories should
initially be empty, except the "model" directory. All files and
directories should be owned by nIp".

permissions
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

-rw-r-r-
-rw-r--r--
-rw-r-r-
-rw-r--r--

dir or file name
class----

interface
member
model
request

outputq
pstatus
qstatus
seqfile

Figure 47. /usr/spool/lp directory

[2] Create those you do not have by using one of the following command
sequences:

[3] The

mkdir dirname
chmod 755 dirname
chown lp dirname
chgrp lp dirname

following files should

file
/usr/lib!lpadmin
/usr/lib/lpsched
/usr/bin/lp

be

or

set as

mode
755
755

6755

touch filename
chmod 644 filename
chown lp filename
chgrp lp filename

indicated:

user
1P

lp
lp

group
bin
bin
lp

[4] The "lp" line in the /etc/passwd file should be:

Ip:xxxxxxxxxxxxx:7:2:lp:/usr/spool/lp:

G Note: The previous
documentation on lp.
in the pudding.

two items are contrary to the UNIX
Believe what you will, but the proof is

Copyright 1987 Heurikon Corporation Madison, WI

169 Heurikon UNIX - Reference Guide 169
SERIAL PORT CONFIGURATION

[5] Be sure there is a 'sleep 2' at the end of / etc/ rc. Otherwise,
lpsched may not take hold.

After the LP system has been installed, the nIp" command can be used to
start printing, as in these examples:

lp filename
Ip -t""TneSe are Titles!! filename
pr -fn file1 file 2 I lp

Here is a typical interface program.
/usr/spool/lp/model directory.

There are others in the

n lp interface for TI 810
n ./ti810 lpid username title copies options files
stty 1200 tab3 opost onlcr 0<&1
x="XX"
echo "\014\c"
echo n$x\n\n\n"
banner n$2"
echo "\n"
user='grep " $2:" /etc/passwd I line I cut -d: -fS'
if [-n "$user"] , then

echo "User: $user\n"
else

echo "\n"
fi
echo "Request id: $1 Printer: 'basename $O'\n"
date
echo "\n"
if [-n "$3" ; then

banner $3
fi
copies=$4
echo "\014\c"
shift; shift; shift; shift; shift
files="$*"
i=1
while
do

done
exit 0

Copyright 1987

$i -Ie $copies]

for file in $files ; do
cat "$file" 2)&1
echo "\OI4\c"

done
i='expr $i + I'

Figure 48. Sample LP Interface Program

Heurikon Corporation Madison, WI

170

16.11 Stty Options

Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

170

The stty command allows you to adjust certain aspects of your serial
port interface. The stty -a command will print out the current state of
the variables. Here is a list of some of the variables, and their
"normal" states (a n_" means that flag is off):

speed 9600 baud
intr DEL (pgm interrupt, stop)
quit AI (pgm interrupt, dump)
erase Ah (backspace)
kill @ (line erase)
eof Ad (keyboard end-of-file)
eol

-parenb -parodd cs8 -cstopb -hupcl cread -clocal
-ignbrk brkint ignpar -parmrk -inpck is trip isig
-inler -igner iernl -iuclc ixon ixany -ixoff opost
icanon -xcase echo echoe eehok -echonl -noflsh
-oleuc onler -oernl -onoer -onlret -of ill -ofdel

Table 33.stty options

Some of these flags control conversion of the carriage return key to a
line feed, how the backspace character is handled (just backspace or
backspace and delete on the CRT), the baud rate, parity checking and
whether the Control-S scroll-stop logic (ixon) is enabled.

Refer to the "stty(1)" manual page in the UNIX User s Manual for a
complete description of these flags. There are example n stty" commands in
figure {4B} and section {B.17}. Note that for an stty command to "stick",
the port must be "open". This will be the case if the tty port is active
(user logged in) or put to "sleep" in the background, as described in
section {16.7}. To see if the values are sticking, run stty­
a </dev/deviee

The "SANE" option for stty (used in stty sane or in /etc/gettydefs) is a
composite of the following options:

brkint, ignpar, istrip, icrnl, ixon, opost, onlcr
cs7, parenb, cread, isig, icanon, echo, echok

To set the terminal options from a program, use the "ioctl" call,
described in the termio(7) section of the UNIX User s Manual. This
example sequence turns off canonical input processing, enables ixon,
changes the baud rate and causes the immediate delivery of each received
character (no buffering).

Copyright 19B7 Heurikon Corporation Madison, WI

171 Heurikon UNIX - Reference Guide
SERIAL PORT CONFIGURATION

#include <sys/types.h>
Hinclude <errno.h>
'include <termio.h> /* be sure to study termio(7) */
'include <fcntl.h>

int fdtty;
struct termio tio;
#define TTY "/dev/ttyl" /* could use idevitty *i

maine)
{

if ((fdtty=open(TTY,O RDWR» < 0) {
perrore!yy: tty open fail");
exit(l);

}
flifdef MODIFY

/* this code will modify modes on a previously open port */

171

if (ioctl(fdtty,TCGETA,&tio) < 0) { /* get current modes */
perror("yy: ioctl TCGETA fail");

HeIse

Hendif

}

exit(l);
}
tio.c lflag &= -(ISIGIICANON);
tio.c-iflag 1= IXON; /* enable IXON protocol */
tio.c-cflag &= -(CBAUD);
tio.c-cflag 1= B9600; /* change baud rate */
tio.c_cc[VMIN] = 1; /* read each character ASAP */

/* this version will just set the modes as desired */
tio.c_line = 0;
tio.c lflag = 0;
tio.c-oflag = 0;
tio.c iflag = IXON;
tio.c-cflag = CREAD
tio.c-cc[VMIN] = 1;
tio.c=cc[VTIME] = 0;

/* no post processing */

CS8 1 B9600;
/* read each character ASAP */

if (ioctl(fdtty,TCSETA,&tio) < 0) { /* set the new modes */
perror("yy: ioct! TCSETA fail");
exit(l);

}

/* put real work here ••• */

Figure 49. Example Termio(7) Ioctl Calls
If you want to restore the tty settings to their original value, simply
use TCGETA at the start of the program to save the original termio
structure, then use TCSETA at the end to restore the values.

Copyright 1987 Heurikon Corporation Madison, WI

172 Heurikon UNIX - Reference Guide
DEVICE NUMBERING AND NAMING CONVENTIONS

17. DEVICE NUMBERING AND NAMING CONVENTIONS

172

This section details the maj or and minor device numbers used in the
Heurikon implementation of the UNIX Operating System •

.. See also the "UNIX I/O System" in the UNIX Programming Guide.

17.1 Device Numbers and Types

UNIX device numbers consist of two eight-bit parts. These are called the
"major" and the "minor" device numbers •

.. The major device number references a class of devices, such as
terminals or disk drives. Each device class is usually served by a
separate device driver •

• The minor number specifies which device of the class is to be
accessed, and indicates any special modes.

The device numbers correspond to a device name which is contained in the
/dev file.

There are two types of I/O devices: character and blocked. Character
devices (also known as "raw" devices) are the terminals and printers.
Block devices are used for the Winchester disk and floppy drives. In
general, character devices are slower than blocked devices although the
raw (character) device interface is faster. (I.e., a character device is
usually slow, physically. However, a raw interface to a block device is
faster than the block interface to the same device.) Also, blocked devices
are random access; character devices usually are not.

A blocked device also has a character device interface, which is called a
"raw" device. A raw device is used for formatting and other special
operations. See also section {11.1.7}.

17.2 Major Device Numbers

The following tables detail the major device numbers:

MlO VI0 V20 M220 Manual
Sls V SIS V V.2 V.2 Device Reference

0 0 -0- SCSI (Winch, floppy, tape) 17.3.3
I SBX Floppy (MI0) floppy(7)
2 Interphase 2190 SMD it2190(7)

0 Plessey-oMTI Winchester wch(7)
2 1 Interphase 3200 SMD it3200(7)

1 Ciprico Rimfire 2200 SMD
2 Plessey-OMTI Floppy flp(7)
3 Plessey-oMTI Streamer Tape stp(7)

Table 34. Major Block Devi.ce Numbers

Copyright 1987 Heurikon Corporation Madison, WI

173 Heurikon UNIX - Reference Guide 173
DEVICE NUMBERING AND N~IING CONVENTIONS

MIO VIO V20 M220 Manual
SIs V SIs V V.2 V.2 Device Reference

0 0 0 -0- Serial Ports termio(7)
1 1 1 1 /dev/tty tty(7)
2 2 2 2 mem, kmem, null mem(7)
3 3 3 3 error log err(7)
4 4 4 Raw SCSI Winchester, etal 17.3.3

4 Plessey-OMTI Floppy flp(7)
5 Raw SBX Floppy (MI0) floppy(7)
6 Centronics (P3) cent(7)
7 7 5 68881 Floating Point

7 Ciprico Rimfire 2200 SMD
6 6 Datasud Centronics cent(7)
8 8 Datasud Dual Serial

8 Streamer Tape (P3) st(7)
9 CP/M Shell (Obsolete)

10 10 Reel Tape (Ciprico) mt-ml0(7)
10 10 Reel Tape (MCT) mt-v(7)

11 User Jumpers and LEDs (MIO) dipled(7)
11 Shell Layers, shl(l) stx(7)

12 12 12 12 8 Chnl CDC Serial Expansion
13 13 13 VRTX Bus Link

6 MPC mpc(7)
13 MPC Link link(7)

14 Interphase 2190 SMD it2190(7)
14 7 Interphase 3200 SMD it3200(7)

15 15 9 9 Real Time Clock rtc(7)
14 Plessey-OMTI Winchester wch(7)
15 Plessey-OMTI Streamer stp(7)

14 MB II Interconnect
20 20 20 Window, control tty, *wty
21 21 21 Window, user tty, ttw*
23 23 23 EXOS Ethernet xtty xtty(4x)
24 24 24 EXOS Ethernet admin admin(4x)
25 25 25 EXOS Ethernet xmem xmem(4x)
26 26 26 EXOS Ethernet sockets socket(4x)

Table 35. Major Character Device Numbers (RAW)

Copyright 1987 Heurikon Corporation Madison, WI

174 Heurikon UNIX - Reference Guide
DEVICE NUMBERING AND NAMING CONVENTIONS

17.3 Minor Device Numbers

174

Minor device numbers are dependent on the particular I/O device driver.
Some of the bits specify device characteristics, such as drive size; while
others specify a physical unit number, such as drive 0 or drive 1.

The minor device value used with the 'mknod'" command is the decimal
equivalent of the binary pattern chosen from the following tables.

17.3.1 Serial Ports (HK68 and SBX-SCC only)

Bit
-7-

6
5

4-0

Function
Modem flag: 0
Network flag:
Net Half flag:
Physical device

Value
0-3
4-7

8=11
12+

= std port, 1
o = std port,
o = "a", 1 =
number
Location
On-card
SBX-SeC P7
SBX=SCC F8
Not used

= modem port
1 = net port
"b"

Table 36. Serial Port Device Assignments (on-card)

For details on the usage of the serial ports, refer to section {16}.

17.3.2 Floppy Disks - (SBX Module)
This section details the minor device number bit assignments for the SBX­
Floppy Disk Controller module.

Bit
7
6
5
4

3
2

1,0

Table 37.

Function
Partition: 0 = normal, 1 = swap
High Density: 0 = off, 1 = on*
Sides: 0 = double, 1 = single
Base of root file system:

o = cylinder 0, 1 = cylinder 2
Density: 0 = double or high, 1 = single
Size: 0 = 8 inch*, 1 = 5 inch
Physical unit number (MSB,LSB)

SBX-FDIO Minor Device Assignments (MIO)

Note: The high density option requires a factory hardware modification to
the SBX-FDIO module. Also, 8" support is not available if the high
density modification is done.

Copyright 1987 Heurikon Corporation Madison, WI

175 Heurikon UNIX - Reference Guide
DEVICE NUMBERING"AND NAMING CONVENTIONS

17.3.3 OMTI 5400 SCSI (MID, VIO, M220)

175

This section details the bit assignments for the OMTI 5400 driver. This
driver uses the "SCSI" interface.

Bit
7,6,5
4
3
2,1,0

Function (or value)
Controller number (0)

° Physical Unit (O=wO, l=wl)
Partition (OOO=a, ••• , 111=h)

Table 38. OMT! 5400 - Winchester Minor Device Numbers (MI0, VI0, M220)

Bit
7,6
5
4
3
2,1,0

Function (or value)
Partition (OO="b", 01="h", 10="a")
Size (0=5", 1=8")
1
o
Floppy Type (see below)

Table 39. OMTI 5400 - Floppy Minor Device Numbers (MID, VI0, M220)

Floppy Sector Sectors per Track
Type Size (5-!/4") (8") Densit! Sides
000 5T2 9 15 double 2
001 512 9 15 double 1
010 256 16 26 double 2
011 256 16 26 double 1
100 256 16 26 double* 2
101 256 16 26 double* 1
110 128 16 26 single 2
III 128 16 26 single 1
* single density on track zero

Table 40. OMTI 5400 - Floppy Type Values (MI0, VI0, M220)

Bit
7,6,5
4
3
2,1
o

Function (or value)
0,0,0
1
1
0,0
Rewind on Close (O=no, l=yes)

Table 41. OMTI 5400 - Streamer Minor Device Numbers (MI0, Via, M220)

Refer to section {12.10} for details on Winchester drive partioning.

Copyright 1987 Heurikon Corporation Madison, WI

176 Heurikon UNIX - Reference Guide
DEVICE NUMBERING AND NAMING CONVENTIONS

17.3.4 Streamer Tape
Streamer minor devices numbers are:

MI0 V20
Value

o
Value
2

Function
Run forward to file mark on close
Rewind on close 1 o

Refer to st(7) and stp(7) in Appendix C for more details.

17.3.5 Reel-to-Reel Tape (Ciprico Tapemaster)
Some of the reel tape minor devices numbers are:

Value
o
1
2
3

Function
1600 BPI
1600 BPI, rewind on close
800 BPI Kennedy, 3200 BPI Cipher
800 BPI Kennedy, 3200 BPI Cipher

rewind on close

Refer to the mt(7) pages in Appendix C for more details.

17.3.6 Ethernet

176

Refer to the separate documentation on the Ethernet interface for details.

17.4 Device Naming Conventions

The following list shows the correct device numbers to use for the "mknod"
command. This list may not be complete, depending on your particular
system configuration. Use it as a guide.

Sometimes, devices may be assigned more than one name either by having two
separate nodes or by having two nodes linked together. The 'Is -I'
display can be used to determine the major and minor device numbers
actually assigned to a particular device name.

For details on the serial ports, refer to section {16}.

Copyright 1987 Heurikon Corporation Madison, WI

177 Heurikon UNIX - Reference Guide 177
DEVICE NUMBERING AND NAMING CONVENTIONS

(format: mknod device type major minor)

mknod /dev/tty c 1 0
mknod /dev/console c 0 0
mknod /dev/lp c 0 1 (for lpr)
mknod /dev/tty* c 0 ? (varies)
mknod /dev/tty* c 12 ? (varies)
mknod idevisyscon c 0 0
mknod /dev/systty c 0 0
mknod /dev/wty* c 20 ? (varies)
mknod /dev/ttyw* c 21 ? (varies)
mknod /dev/ttyT* c 23 ? (varies)
mknod idevittyT8 c 23 8

Copyright 1987 Heurikon Corporation Madison, WI

178 Heurikon UNIX - Reference Guide 178
DEVICE NUMBERING AND NAMING CONVENTIONS

(format: mknod device type major minor)

mknod /dev/mem c 2 0
mknod /dev/kmem c 2 1
mknod /dev/null c 2 2
mknod /dev/rwOb c 4 I (MIO)
mknod /dev/rwOc c 4 2 (MIO)
mknod /dev/rwOh c 4 135 (MI0)
mknod /dev/rwlh c 4 143 (MIO)
mknod /dev/rfSdd c 5 4 (MID SBX-FDIO)
mknod /dev/rf5sd c 5 36 (MIO SBX-FDIO)
mknod /dev/rf5dh c 5 68 (MID SBX-FDIO)
mknod /dev/rf8dd c 5 0 (MID SBX-FDIO)
mknod /dev/rf8sd c 5 32 (MID SBX-FDIO)
mknod /dev/rf8ss c 5 40 (MIO SBX-FDIO)
mknod /dev/rf5dd c 4 16 (OMTI 5400)
mknod /dev/rf5sd c 4 17 (OMTI 5400)
mknod /dev/cent c 6 0
mknod /dev/ffp c 7 0 (SKY)
mknod /dev/fpp c 7 0 (68881)
mknod /dev/stO c 8 0 (MIO P3)
mknod /dev/stl c 8 1 (MIO P3)
mknod /dev/stO c 4 24 (OMTI 5400)
mknod /dev/stl c 4 25 (OMTI 5400)
mknod /dev/rtc c 15 0 (MIO, VIO)
mknod /dev/rtcioctl c 15 I
mknod /dev/rnxO c 9 0
mknod /dev/mtO c 10 0
mknod /dev/mtl c 10 I
mknod /dev/dipled c 11 0

mknod /dev/swap b 0 0
mknod /dev/wOb b 0 I
mknod /dev/wOc b 0 2
mknod /dev/wOh b 0 7
mknod /dev/wlb b 0 9
mknod /dev/wlc b 0 10
mknod /dev/wlh b 0 15

mknod /dev/f5dd b I 4 (MID SBX-FDIO)
mknod /dev/f5sd b 1 36 (MIO SBX-FDIO)
mknod /dev/f5dh b I 68 (MIO SBX-FDIO)
mknod /dev/f8dd b I 0 (MIO SBX-FDIO)
mknod /dev/f8sd b I 32 (MIO SBX-FDIO)
mknod /dev/f8ss b I 40 (HIO SBX-FDIO)
mknod /dev/f5dd b 0 16 (OMTI 5400)
mknod /dev/f5sd b 0 17 (OMTI 5400)

Table 42. mknod Device Summary - Partial

Copyright 1987 Heurikon Corporation Madison, WI

179

Copyright 1987

Heurikon UNIX - Reference Guide
DEVICE NUMBERING AND NAMING CONVENTIONS

Name
co
tty
tty*
lp
cent

mem
kmem
null

fsxy

swap
wnx
snx

rfsxy

rwnx
rsnx

Meaning
console
active tty
terminals
line printer
Centronics

memory
kernel memory
null device

Floppy
s size
x = sides (s,d)
y = density (s,d,h)

Swap Device
Winchester
SMD

n = phy unit
x = partition

Raw floppy
s = size
x = sides
y = density

Raw Winchester
Raw SMD

n = phy unit
x = partition

Example
co
tty
tty3
lp
cent·

IDem
kmem
null

f5sd

swap
wOh
sOb

rf5dd

rwOb
rsOb

fpp 68881 Floating Pt Proc fpp
ffp Sky Fast Floating ffp

Point Processor (MI0)
tpx Streamer Tape tpO

mxn

mtn

rtc
dipled
ttyTx

wtyx

ttywx

x=O seek mark on close
x=1 rewind on close

CP/M Shell
Z80 Processor
n = unit

R-R Tape
n = function

Real Time Clock
Jumpers & LEDs
Ethernet

x = port
Windowing

x = port
Windowing

x = port

mxO

mtO

rtc
dipled
ttyTO

wtyO

ttywO

Table 43. Device Naming Conventions

Heurikon Corporation

179

Madison, WI

180 Heurikon UNIX - Reference Guide
REFERENCE MATERIALS

180

18. REFERENCE MATERIALS

Here are some books which we recommend you read for the basics and the
details of UNIX. They are available at most computer and book stores
(try: Uni-Ops Books, San Francisco, CA). Some are available from
Heurikon.

~ The Design of the UNIX Operating System, by Maurice J. Bach,
Prentice Hall. This is a excellent book which covers UNIX
internals. Required reading for those interested in how UNIX works.
Covers UNIX architecture, scheduler algorithm, system calls, shared
memory, context switching, memory management, device drivers and
more •

.tt Using The UNIX System, by Richard Gauthier. Reston Publishing
Company, Inc. In addition to explaining many fundamental concepts,
this text includes some valuable information about system
administration.

• The UNIX System, by S.R. Bourne. Addison-Wesley Publishing Company.
Steve Bourne was one of the key individuals at Bell Laboratories
responsible for the development of the UNIX Operating System. His
book is a good, easy to follow, user's guide to UNIX.

• Introducing The UNIX Operating System, by McGilton and Morgan.
McGraw-Hill Book Company. This book has some very good sections on
using the text editor and document preparation features of the UNIX
system.

• The UNIX Programming Environment, by Kernighan and Pike. Prentice­
Hall. A good book for beginners and experienced UNIX users as well.

• UNIX Operating System Security, by F. T. Grampp and R. H. Morris,
AT&T Bell Lab Technical Journal, Vol. 63, No.4, Part 2, October
1984. This edition of the Technical Journal is devoted to UNIX
topics.

• The C Programming Language, by Brian W. Kernighan and Dennis M.
Ritchie. Prentice-Hall. This is a very well written and important
book describing the syntax of the "c" language. This is the
standard "c" language reference book.

• Exploring the UNIX System, by Stephen G. Kochan and Patrick H. Wood.
Hayden Publishing. This is an excellent text based on system V. It
has some sections on UNIX system security.

e Understanding UNIX, A Conceptual Guide, by James R. Groff and Paul
N. Weinberg. Que Corporation. Easy reading for the neophyte to
learn about the file system, administrative functions, etc.

Copyright 1987 Heurikon Corporation Madison, WI

181 Heurikon UNIX - Reference Guide
APPENDIX A - Changing HK68 Serial Baud Rates

19. APPENDIX A - Changing HK68 Serial Baud Rates

19.1 Background

181

The serial communication controller chips on the HK68 generate the baud
rate frequency for asynchronous communications. Each port has its own
internal baud rate generator. The generator divides the master clock
input signal according to an integer value loaded by the software. The
accuracy of the resulting baud rate clock is dependent on the master clock
frequency and the particular value of the divider.

The default baud rate is set by the Hbug monitor program. The MI0 and VI0
monitor programs reads a pROM location for the default information. The
V20 and M220 monitors read the NV RAM.

19.2 MI0 and VI0 Baud Rates

When the Hbug monitor (in pROM on the HK68) starts, it initializes the
console CRT port (SCC port B) at 9600 or 19,200 baud. It computes the
proper SCC divider value based on a configuration word in pROM, which
tells Hbug what clock rates are being used on the HK68 and which baud rate
is the default. The standard version is set for a 9600 console baud rate.
The configuration word is also used by UNIX to initialize the other serial
ports, and by UNIX whenever it is commanded to change port baud rates (via
the stty command).

19.3 Changing the Hbug Configuration Word (MI0, VI0)

[1] Remove the upper Hbug monitor pROM (HK68 ROM socket U27). Both
bytes of the configuration word are contained in this ROM.

[2] Load the contents of the pROM into a pROM programmer. Modify the
appropriate locations according to the tables below.

Byte offset
in pROM L
+0000 thru +0009

+OOOA (hex)

+OOOB (hex)

MPU clock SCC clock
10 Mhz 4. 9152Mhz
10 Mhz 4.9152Mhz

12 Mhz 4. 9152Mhz
12 Mhz 4. 9152Mhz

Table 44. Hbug

Notes
Do not change
High half of configuration word.

Reserved. Do not change.
Low half of configuration word.

Change as follows:

Console default ROM byte OOOB
9600 baud 15

19,200 baud 55

9600 baud 16
19,200 baud 56

Configuration Word Values

Copyright 1987 Heurikon Corporation Madison, WI

182 Heurikon UNIX - Reference Guide
APPENDIX A - Changing HK68 Serial Baud Rates

Configuration word detail:

D15-D8 reserved (= 0)
D7(MSB) = 0
D6 = 0 for console default 9600 baud
D6 = 1 for console default 19,200 baud
D5,D4,D3,D2 = 0101 for 4.9152 Mhz SCC clock
D1,DO 01 for 10 Mhz MPU clock
D1,DO = 10 for 12 Mhz MPU clock

Table 45. Hbug Configuration Word Detail

[3] Program a new pROM and install it on the HK68.

182

[4] The configuration word may be checked by using the Hbug "uc"
command.

Although the configuration word is in pROM, it is copied to address OX0004
in RAM when Hbug starts. The RAM value is used by the Hbug 'uc' command
and UNIX.

19.4 SBX-SCC Expansion Module Configuration

The SBX-SCC module(s) get their master clock from the HK68. The SBX-SCC
module has a clock control jumper (J2 on the module), which should be set
in the B position, J2-B. (This setting causes the module input clock to
be divided by 2, which delivers 4.9152 Mhz to the SBX-SCC.) Note: The SCC
chips on the SBX-SCC must be rated for 5 Mhz or more.

19.5 V20 and M220 Default Baud Rates

The V20 and M220 Hbug monitors read the default configuration information
from the non-volatile RAM. To change the default values, the Hbug NV RAM
commands may be used, according to the Hbug User's Manual.

Copyright 1987 Heurikon Corporation Madison, WI

183 Heurikon UNIX - Reference Guide
APPENDIX B - Sed, Awk Usage Examples

183

20. APPENDIX B - Sed, Awk Usage Examples

This section details the nroff mm macro and shell script which were used
to produce the index for this guide. The standard rom macros produce the
Table of Contents, but there is no "built-in" facility for generating an
index. Although these examples are for use with nroff, the primary
purpose of this section is to show a real-life usage example of the sed
and awk programs.

tt The following "IN" macro definition was placed at the beginning of
the nroff input file for the guide •

• de IN
.br
.nr nl -\\n(.v
.po 0
.ti 0
]\\$1 \\$2 \\$3 \\$4:\\nP
.br
.po

tt The above macro was invoked throughout 'the document wherever an index
key item occurred. For example, the lines:

.IN boot procedure, floppy

.IN floppy, booting

cause two items to appear in the index. The "IN" macro writes a
special, left-adjusted line to the output file which contains the
index key item and the current page number. These lines will be
stripped out of the document before printing. The IN macro also sets
the vertical line position back so the extra output line won't affect
the page size for the "real" text.

tt Nroff was run on the document source files using:

nice nroff -cm -rB2 -rW74 -e -T450-12 guide?t >guide.f

See section {9.8} for other information about the nroff command.

tt Within the formatted document, each index item starts with a right
square bracket "]", which is used by the script listed on the
following pages, to identify the index items and separate them from
the formatted document itself. At this point, the index items are
not sorted alphabetically; they are in page order and there may be
some duplicates. Typical lines look like this:

Copyright 1987 Heurikon Corporation Madison, WI

184 Heurikon UNIX - Reference Guide
APPENDIX B - Sed, Awk Usage Examples

lphys system call :91
l/dev/mem :91
]device drivers :91 .
]jumper.c program :92
]printf subroutine :92
]memory mapping :92
]/dev/kmem :93

184

• The script on the following pages takes the key items, sorts them,
removes duplicates, combines page numbers for identical key items and
creates a new text source file which, when fed back into. nroff,
produces the index. The script illustrates how a complicated
function is easily implemented using existing UNIX tools. It took
about one day to write, test and fine tune these programs. The
script is installed in the documentation directory with names
"do .guide", "print .guide", "do .index" and "print • index" • They are
linked together so that only one file needs to be maintained for the
related functions.

The flowchart below illustrates the various reiationships between the
nroff files and the scripts.

nroff input
files

nroff output
file

.--------.
.========.

guidel.t --. print­
---+---) guide

.========. guide.f script

guide2.t --+--) nroff --)

.... ======='

Contents
guide3. t

] items -)--.

" " I -------- "]" line s --------

.--(-----------------------(-------'
I

.....========

I
printer

1
.========.

print­
index

script
========

.========. --------. .=======.--------. I do-
index ---) index.t ---) nroff ---) index.f

script
'========' ... , ------- '=======' ... ---------
sed, awk

--)'

Figure 50. Guide and Index Preparation Flowchart

Copyright 1987 Heurikon Corporation Madison, WI

185 Heurikon UNIX - Reference Guide
ApPENDIX B - Sed, Awk Usage Examples

: # force Ibinlsh
infile=guide.f
DOC'DIR=/usr /locall jeff / doc
indext=$DOCDIR/index.t
indexf=$DOeDIR/index.f
awk=/tmp/awktemp

if [$0 = "do.index" then

echo indexing
cat >$awk «nAWK.SCRIPT"

BEGIN {
FS = !!:~!

x=97 ; X=65 II "a" and "A", create upper case conversion array
for (s = 0 ; s < 26 ; s++) { II for "a" thru "z"

upper[sprintf("%c",x)]=sprintf("%c",X)
upper[sprintf("%c",X)]=sprintf("%c",X)

}
{

}
x++ ; X++

char = substr($l,l,l) II get first character of item
if (upper[char] == "") {

}

char = substr($1,2,1) H use second char instead
if (upper[char] == "") {

char = substr($1,3,1) I use third char instead
}

CHAR =upper[char]
if (previous == $1) { # compare items, input stream is sorted

temp line
line = sprintf("%s,%s", temp, $2) II add another pg number

} else {
if (

}

line
if (

}

line ! = nt,)

printf(n.tl "'%s"'\n",
= sprintf("%s %s", $1,

II don"'t do first time
line) # output finished line
$2) II starting new item

CHAR != pchar) {
printf(".P\nlf

) I space,
I starting new letter
force page near bottom

printf("%s\n",CHAR)
printf(".br\n") I force letter out

pchar CHAR
previous = $1
}
END { printf(n.tl '%s'\n", line) } I flush last item

AWK.SCRIPT

Figure 51. Nroff INDEX script - part 1

185

Copyright 1987 Heurikon Corporation Madison, WI

186 Heurikon UNIX - Reference Guide
APPENDIX B - Sed, Awk Usage Examples

cat >$indext «_nNROFF.HEADER"
.SA 1
.PH " I-\\\\nP'Heurikon UNIX - Reference Guide I-\\\\np ... "
.PF "'Copyright 1987'Heurikon Corporation Madison, WI"'''
.OH 'INDEX '"
.EH " INDEX' "
.2C
.It 34

NROFF.HEADER

sed -n -e "sr"\]\(.*\)/\I/p" $infile 1\
sort -duft: +0 -1 +In I awk -f $awk » $indext

nroff -em -rW74 -e -T4S0-12 $indext > $indexf
rm $awk
exit

elif [$0 = "print.index"] ; then
cat $indexf I col -x I under 1\

lp -t"UNIX Reference Guide INDEX"
-:.
'CA.LL

elif [$0 = "do.guide"] ; then
nroff -em -rB2 -rW74 -e -T4S0-12 guide?t > guide.f
exit

elif [$0 = "print.guide"] ; then
echo printing

fi

sed -n -e "/A\]/!p" $infile 1\
col -x I under I lp -t"UNIX Reference Guide"

exit

Figure 52. Nroff INDEX script - part 2

The "col" and "under" programs are explained in section {9.8}.

186

Copyright 1987 Heurikon Corporation Madison, WI

187 Heurikon UNIX - Reference Guide
APPENDIX C '- Other Information

21. APPENDIX C - Other Information

21.1 Additional Documentation

187

The pages at the back of this guide detail certain additional commands and
features of Heurikon UNIX. They do not appear in the permuted index.

badblk(l)
bootname(I)
clock(l)
fdref(l)
mt(I)

mtforeign(1)
mtrewind(I)
mtskip(1)

stape(I)
sterase(1)
stretention(l)
strewind(1)
ststats(I)

cent(7)
dipled(7)
floppy(7)
flp(7)
it2190(7)
it3200(7)
mt-mIO(7)
mt-v(7)
rtc(7)
scsi(7)
st(7)
stp(7)
wch(7)

Copyright 1987

Bad Block utility (V20)
Display unix file name (MIO, VIO)
Real Time Clock utility
Floppy disk reformatter (MIO)

Determine tape blocking factor
Reel-to-reel tape rewind
Reel-to-reel tape skip

Streamer erase command
Streamer retention command
Streamer rewind command
Streamer status command

Centronics printer port (MI0)
User jumpers and LEDs (MIO)
Floppy disk devices (MIO)
Plessey -OMTI Floppy (V20)
SMD Controller (MIO)
SMD Controller (VIO, V20)
Reel-to-reel tape device (MIO)
Reel-to-reel tape device (VIO, V20)
Real Time Clock module
OMTI-5400 devices (MIO, VIOl
Streamer tape device (MIO)
Plessey - OMT! Streamer (V20)
Plessey - OMTI Winchester (V20)

Heurikon Corporation Madison, WI

188 Heurikon UNIX - Reference Guide
APPENDIX C - Other Information

21.2 Unsupported Commands

188

Although these commands appear in the permuted index, and there may be
pages for them in the UNIX manuals, they are either not supported or are
incorrect. For example, take(l) is a special UniSoft command and is not
supported. Ethernet commands (such as rlogin) are supported but are
documented in separate Excellan manuals; some of these are marked with
U*".

Section 1 Commands:
ftp* hostid hostname netstat
rcp* remsh* rlogin* ruptime*
take talk telnet tp
take7 put7 rtake se
vmail xmail adb(S.2) captoinfo
untie

Section 2 System Calls
accept* bind connect* gethostid
getpeername getsockname getsockopt listen
recvfrom recvmsg select* send*
sendto sethostid sethostname shutdown

Section 3 Subroutines
endhostent
getdtablesize
getnetbyaddr
getprotobynumber
getservbyport
inet netof
killpg
rexec
setnetent
dial

endnetent
gethostbyaddr
getnetbyname
getprotoent
inet addr
inet-network
rcmd~

rresvport
setprotoent

endprotoent
gethostbyname
getnetent
getservent
inet lnaof
inet ntoa
ready
ruserok
setservent

put
rwho*
updater
sar
coffbin

gethostname
recv
sendmsg
socket*

endservent
gethostent
getprotobyname
getservbyname
inet makeaddr
insque
remque
sethostent
writev

Section 4 File Formats: hosts protocols services

Section 5 Miscellaneous Facilities
intro(Sn) arp inet

Section 7 Special Files: sxt

Section 8 Procedures
ftpd ifconfig
rexecd rlogind
telnetd tftpd

Volume 8 Administrator Manual

netmail
route
trtp

ip tcp

netmailer
routed

Disregard the entire section in the Administrators
Guide on Take/Put.

Copyright 1987 Heurikon Corporation

udp

remshd*
rwhod*

Madison, WI

189 Heurikon UNIX - Reference Guide
APPENDIX C - Other Information

21.3 System Configuration Summary

Feature
MPU
MMU

UNIX

Winchester

MI0
68010/020
68451

v.O

on-card NCR5380
adapter
controller OMTI-5400

Adaptec

Floppy
optional
size

Serial

SBX-FDIO
OMTI-5400
5", 8"

VI0
68010/020
68451

v.O

NCR5380

OMTI-5400
Adaptec

OMTI-5400

5"

on-card sec (4 ports) sec (2 ports)
expansion SBX-SCC (4)

CDC MBI031 (8) CD23/3608 (8)
Datasud (2)

Streamer I/F
optional

SMD

P3
OMTI-5400

IT2190
(Interphase)

OMTI-5400

IT3200

Reel-to-Reel Ciprico MCT 6020
Tapemaster A

Floating Pt SBX-FPP 68881

Centronics P3 Datasud

VRTX ME VE/V20/V2F

Ethernet EXOS 101/201 EXOS 202

V20
68020
68851

V.2

Plessey
OMTI-5400

OMTI-5400

5"

MFP (1 port)

CD23/3608 (8)
Datasud (2)

OMTI-5400

IT3200

MCT 6020

68881

Datasud

VE/V20/V2F

EXOS 202

Table 46. System Configuration Summary

Copyright 1987 Heurikon Corporation

M220
68020
68851

V.2

WD33C93

OMTI-5400

OMTI-5400

5"

189

scc (2)
SBX-SCC (4)
CDC (8)

OMTI-5400

Ciprico 2200
Rimfire

Ciprico 2000
Tapemaster

68881

T.B.D.

M2F

Madison, WI

190

Copyright 1987

Heurikon UNIX - Reference Guide
APPENDIX C - Other Information

Heurikon Corporation

190

Madison, WI

191 Heurikon UNIX - Reference Guide
APPENDIX C ~ Other Information

22. READER COMMENT FORM

191

We would appreciate any comments you have concerning this guide. Please
let us know if you have found any errors or feel that certain sections
should be expanded. Thank you.

---.

Name: Title: --------------------------------------- ---------------------
Company: Date: ---------------------------------- ---------------------
Address: -----------------------------------
City: State: ZIP: --------------------------------- -------- -----------
Telephone: ()-

--~-

-;:~;;::----~:::::;~---1

Mail to: Heurikon Corporation
3201 Latham Drive
Madison, WI 53713

'---'
Ref Guide - Rev D

Copyright 1987 Heurikon Corporation Madison, WI

Copyright 1987 Heurikon Corporation Madison, WI

BADBLK(l) UNIX 5.2 BADBLK(l)

NAME
badblk - check a disk for bad blocks (V20 Plessey version)

SYNOPSIS
badblk -fav] special [blockno •••]

DESCRIPTION
Badblk checks a disk for bad tracks and if requested maps the offending
tracks to alternates. It will try to save as much of the damaged tracks
a possible, writing the salvaged information back to the assigned
alternate. It will notify the user of blocks that it couldn't recover.
It is therefore possible to run badblk on a disk which has a file system
on it without reformatting. The block numbers of the unrecoverable
blocks can be used to determine of which files they are a part (using
ncheck(lM) Any such files may not be recoverable intact.

The normal operation is to scan the whole disk represented by special for
bad tracks (except for the alternate track region). If block numbers are
given at the end of the command, badblk will only test the tracks
associated with those blocks for defects. In any event, for each bad
block, badblk will ask whether it should be mapped out.

The f option forces the given blocks to be treated as bad even if there
are no defects on the associated tracks. This can be used to map
out intermitently failing blocks.

The a option directs badblk to scan all of the disk including the
alternate track area. This should probably be done immediatly after
a disk format to check for possible bad alternate tracks.

The v option causes a verbose trace of operation to be given.

This routine is for a system with an OMTI-5400 and a Plessey host
adapter.

SEE ALSO
ncheck(IM), badblksmd(l), wch(7), ioctl(2).

BUGS
There is currently no convenient way to avoid using bad alternates.

Page 1 (printed 10/14/86)

193

194

BOOTNAME(l) UNIX 5.0 BOOTNAME(I)

NAME
bootname - Display the name of the executing kernel

SYNOPSIS
bootname [arg]

DESCRIPTION
With no argument, bootname prints the name of the file which was loaded
by the standalone bootstrap. The name will be anchored at root. If any
argument is provided, bootname prints the complete string used by the
loader, which includes the drive number and root block number.

EXAMPLES
ps -n 'bootname' -ef

will allow 'ps' to work properly, regardless of which kernel was booted.

Normal usage would be to put the lines:

set kernel='bootname'
alias ps ps -n $kernel
alias pstat pstat -n $kernel

in your .cshrc file, or simply add

cp 'bootname' /unix

to letc/rc; both methods m1n1m1ze the number of times bootname needs to
be executed. The last usage example allows those UNIX commands which
assume the operating kernel is "/unix", such as ipcrs(l) and lav(l), to
operate properly.

DIAGNOSTICS
If the file name cannot be found or if it makes no sense, an error
message will be printed on stderr, the default UNIX file name, "/unix",
will be output on stdout and the exit status will be non-zero.

CAVEATS
The long word at absolute memory address OxOOO contains a pointer which
must not be destroyed in order for this command to work.

Bootname is operational as of Heurikon V.O UNIX release 7a.

FILES
/dev/kmem

SEE ALSO
ps(l), nlist(3)

AUTHOR

to read memory

Heurikon Corporation

Page 1 (printed 3/31/87)

CLOCK(l) UNIX 5.0/5.2 CLOCK(l)

NAME
clock - Real Time Clock (RTC) module utility

SYNOPSIS
clock
clock -u
clock -r
clock -D
clock mmddhhmm

DESCRIPTION
Clock will read and display the current time and date as known to UNIX
and the DS1216 RTC module. (Special hardware is required).

Clock -u will read the current time as known to the RTC module and use
that value to set the UNIX time and date. This command is restricted to
the supe r-use r •

Clock -r will read the current time as known to UNIX and use that value
to set the DS1216 Clock/Calendar Module. This command is restricted to
the super-user.

Clock -Q starts the clock daemon which will try to keep the UNIX time in
sync with the RTC module. The daemon will not run if the times disagree
by more than five minutes. The daemon may be run continuously (it sleeps
most of the time); only one daemon should be allowed to run at a time.
UNIX time convergence rate is about one second per minute. Sending
signal SIGUSRI to the daemon (via 'kill -16 pid') will display some
statistics. This command is restricted to the super-user.

Clock mmddhhmm will set both the UNIX date and time and the RTC module.
The argument format is the same as date(l).

EXIT CODES
Clock in its first three forms returns 0 if the RTC and UNIX agree to
within one second as to the current time, otherwise 1 is returned. A
system or other error returns 2. Clock -D returns 0 if the daemon starts
successfully, non-zero otherwise.

EXAMPLES

FILES

To set the RTC, first use the UNIX date command. Then, execute clock -~.
If there is a power failure, execute-crock -u after rebooting to reset
the UNIX date and time.

The clock -u and clock -D commands may be put in /etc/rc.

/dev/rtc
/dev/rtcioctl

SEE ALSO
date (1), rtc (7)

Page 1 (printed 3/31/87)

195

196

FDREF(l) UNIX 5.0 FDREF(l)

NAME
fdref - Unified Floppy diskette formatter (MI0 - SBX-FDIO)

SYNOPSIS
fdref device [-s 1281256151211024] [-x mode]

[-d distance] [-k skewfactor] [-t lasttrk] [-q]

DESCRIPTION
Fdref formats 5-1/4 inch and 8 inch floppy diskettes on an HK68/MI0
using a SBX-FDIO module. (Not for OMTI-5400 floppy). The character OxE5
is written in the data fields of each sector.

Device must be a raw floppy character device.

Options (may be specified in any order):

-s n sets the sector size to ~ bytes. The default value is 512.

-k skewfactor
Set the skew factor to skewfactor. This parameter is used to compute
the logical sector values for each physical sector. A skew factor
of 1 (default) will generate logical sectors in the sequence 1, 2,
3, 4, etc. A skew factor of 3 will generate the sequence 1, 4, 7,
11, etc. See also the -d option, below. Use the -x option to
display a complete list of sector maps.

-d distance
Set the distance between logical sectors to distance sectors. This
parameter operates like the skew factor except it specifies how many
sectors separate logical sectors. A distance of 1 will generate
logical sectors in the sequence 1, 2, 3, 4, etc. A distance of 2
will generate the sequence 1, a, 2, b, 3, c, 4, etc., where a, band
c are other sector numbers (whose values depend on the total sectors
per track). Use the -x option to display a complete list of sector
maps. This parameter has priority over -k and is generally more
useful than -k when trying to optimize diskette performance.

-t lasttrk
Stop formatting after track lasttrk is reached. The default value
for an 8 inch drive is 76 •. The defaults for 5-1/4 inch drives are
79 for 96 TPI drives and 39 for 48 TPI drives. Tracks are numbered
from 0 to the value specified.

-x mode

-q

Page 1

Set debug mode to mode. A value of 1 will print a complete map of
logical sectors for all legal distance values. No formatting will
be done. Other values of mode are illegal.

Set quiet mode. The default is to generate some terminal activity
to keep you aware of what's happening. This option will allow only
error messages to be printed.

(printed 3/31/87)

FDREF(I) UNIX 5.0 FDREF(I)

E~~PLES

fdref /dev/rf8sd -d 7

will format an eight inch, single sided, double density, 512 bytes/sector
diskette using a distance of 7 sectors between logical sectors.

fdref /dev/rf8sd -s 1024 -x 1

will print a sector map for a floppy with 1024 bytes/sector.

The following sh script can be used to find the optimal skew or distance
values for use with dd:

for dist in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 do
echo $dist
fdref /dev/rf8dd -d $dist -t 10
time dd if=/dev/f8sd of=/dev/null count=150

done

We have found that a distance value of 7 is optimal for 8 inch floppies
(512 bytes/sector, double density) and for high density 5-1/4 inch
floppies. A distance of 4 works well for double density 5-1/4 inch
floppies (512 bytes/sector).

FILES
/dev/rfd*

SEE ALSO

raw floppy devices

dd(l), floppy(7)

DIAGNOSTICS
Generally self-explanatory. The logical sector map for the specified
skew factor or distance will be printed for skews other than 1. Fdref
will complain about a device or data file which does not exist or has
improper modes. The current track number will be printed to indicate
activity unless turned off by the -q option.

AUTHOR
Heurikon Corporation

Page 2 (printed 3/31/87)

197

198

MT(I) UNIX 5.0/5.2 MT(I)

NAME
mtforeign, mtrewind, mtskip

SYNOPSIS
mtforeign

mtrewind

mtskip device
mtskip .!!. device
mtskip -n device

DESCRIPTION
Mtforeign prints the size (in decimal bytes) of the next block on the
tape. This information can be used with tar(l) -b option.

Mtrewind moves the tape head position to a point immediately prior to the
first set of data on a tape. This point is known as the BOT or
beginning-of-tape position.

Mtskip allows users of systems equipped with reel-to-reel magnetic tape
drives to quickly move about on tapes containing multiple file marks.
Such tapes are created by using the tape special file which does not
rewind on close (mtO). The first form will move the tape head position
forward to a point immediately following the next file mark. The second
form will move the tape head position forward to a point immediately
following the "nth" file mark. The third form will move the tape head
positiDn backwar~to 9 point immediately preceeding the "nth" file
mark encountered.

CAVEATS
When using the third form be aware that file marks are detectable in both
the forward and backward directions. See the examples.

EXAMPLES
Given the tape created with the following commands:

mtrewind /dev/mtO
tar cvfb /dev/mtO 20 /usr/games
tar cvfb /dev/mtO 20 /usr/man
mtrewind /dev/mtO'

The second tar set may be read directly by saying:

mtskip /dev/mtO; tar tvf /dev/mtO

or

mtskip 1 /dev/mtO; tar tvf /dev/mtO

The same tar set may be read a second time by saying

Page 1 (printed 10/14/86)

MT{l)

FILES

UNIX 5.0/5.2 MT(l)

mtskip -1 /dev/mtO; mtskip /dev/mtO

That is, move the tape head position backwards through the data of the
second tar set to a point immediately preceeding the tape mark
introducing the second tar set. The second mtskip advances the tape head
position over this tape mark leaving the drive ready to read the second
tar set.

/dev/mtO - the character special file for non-rewinding magtape.

SEE ALSO
cpio(l), tar(l), mt(7)

DIAGNOSTICS
If the tape drive is offline or the driver has not been installed
properly, the program will report as such. Other diagnostics are taken
from the standard perror{) list.

Page 2 (printed 10/14/86)

i99

200

STAPE(I) UNIX 5.0/5.2 STAPE(I)

NAME
sterase, strewind, stretension, ststats

SYNOPSIS
sterase

strewind

stretension

ststats

DESCRIPTION
Sterase causes the write-enabled tape in drive 0 to become initialized to
an erased condition. All information on the tape is lost. The QIC-02
standard for quarter-inch tapes specifies that all writing must be done
on erased tape. The tape drives used in this product do not require that
this condition be met. However, erasing used tapes before re-use is
recommended. Control returns to the user immediately after the erase
command is sent to the drive.

Strewind causes the tape to rewind to the "beginning-of-tape" position.
Control returns to the user immediately after the rewind command is sent
to the drive.

Stretension causes the tape to be repositioned to bot, then advanced to
eot (end-of-tape) and then back to bot. This operation serves to place
the tape under constant tension throughout its length thereby increasing
reliability. Often, tape read errors will disappear after executing a
stretension. This operation should be executed prior to the use of any
used tape. Control is returned to the user immediately after the command
is sent to the drive.

Ststats prints lots of interesting facts about the operation of the tape
drive. This command is only available on MI0 systems.

DIAGNOSTICS
Error messages will be directed to the system console.

SEE ALSO
st(7)

Page 1 (printed 10/14/86)

CENT(7) UNIX 5.0 CENT(7)

NAME
cent - Centronics printer driver (MI0 only)

DESCRIPTION
Cent is the Centronics printer driver. It controls a printer connected
to the P3 connector on the HK-68/MIO processor.

The major device number is 6. Cent ignores the minor device number.

Two ioctl system calls apply. They have the form:

ioctl (fildes, command, arg)
int arg;

The argument arg is ignored by cent. The commands using this form are:

UIOCEXTE Turn extended errors on. Forces cent to print the cause
of I/O errors on the console.

UIOCNEXTE Turn extended errors off. This is the initial state of
the driver.

FILES
/dev/cent

SEE ALSO
Ipd(l), exterr(l), ioctl(2), lp(l).

AUTHOR
Heurikon Corporation

Page 1 (printed 10/9/86)

201

202

DIPLED(7) UNIX 5.0 DIPLED(7)

NAME
dipled - user jumpers and LED interface (MI0 only)

DESCRIPTION
The state of the HK68/MI0 user jumpers may be read and the user LEDs may
be set using this device. This device is only applicable to MI0 systems.

For read(!), the returned character represents the state of the user
jumpers. Jumper number "I" (when numbering 1 through 8) is in bit
position D7. A "1" bit means the corresponding jumper is installed.

For write(!), the last character written will affect the LEDs as follows:

If the .minor device number is 0, the lower four bits of the character
will be used to set the four LEDs. LED number "1" is controlled by bit
position D3. A "1" bit will turn the corresponding LED on.

If the minor device number is 1, 2, 3 or 4, only one LED will be
affected. Bit position DO will be used in all cases to set or clear the
addressed LED.

An open(l) of this port will turn off any kernel usage of the jumpers and
LEDs. The debug usage may be restored by executing an ioctl(!) with cmd
equal to UIOCEXTE.

SEE ALSO
Heurikon UNIX - Reference Guide
open(2), read(2), write(2), ioctl(2)

FILES
/dev/dipled
/dev/ledl
/dev/led2
/dev/led3
/dev/led4

Page 1

read all jumpers or set all LEDs
set LEDl
set LED2
set LED3
set LED4

(printed 10/9/86)

FLOPPY(7) UNIX 5.0 FLOPPY(7)

NAME
floppy - Floppy disk driver (MIO)

DESCRIPTION
Floppy is the SBX floppy disk driver for a HK68/MIO system. Up to four
floppy disk drives may be connected to the system. The floppy driver's
major numbers are 5 for the raw device and 1 for the block device.

FILES

The following table describes the available formats. All of these
formats may be used on single or double sided diskettes.

Drive
5 1/4"

5 1/4"

5-1/4"

8"

8"

Density
double

single

high

double

single

Bytes/Sector
128
256
512

1024
128
256
512

1024
128
256
512

1024
128
256
512

1024
128
256
512

1024

Sectors/Track
24
16

9
5

16
9
5
2

52
26
15

8
52
26
15

8
26
15

8
4

The minor device number is formed from the following table:

Bit Function
7 Partition (O="b", 1="a" swap)
6 Density (0 = single or double, 1 = high)
5 Number of sides (1 = single sided)
4 Skip the first two tracks (1 = yes)
3 Density (0 = double or high, 1 = single)
2 8" or 5 1/4 " drive (1 = 5 1/4 ")
0, 1 Physical unit number

Note that the driver adjusts itself for sector size. It reads an ID
field off the disk and uses the sector length information stored there.

/dev/f*, /dev/rf*

SEE ALSO
exterr(I), fdref(l), tar(l), cpio(I), mkfs(l)

Page 1 (printed 10/14/86)

203

204

FLP(7) UNIX 5.2 FLP(7)

NAME
/dev/flp[OI][a-d] - floppy disks (V20)

DESCRIPTION
This is the driver for the floppy aspect of the OMT! 5400 disk controller
when used with a Plessey host adapter. The driver supports one 5-1/4
inch drive.

The minor number is composed of three parts and can be represented like
'OOttttpp', where 'tttt' is the type designator and the 'pp' is the
partition designator.

PARTITIONS
Each drive has four partitions which are layed out as follows (units in
blocks):

Partition (.E.E.) Start Length
a (00) 0 1360 (root)
b (01) 0 1440 (whole drive)

, .. "', 1360 80 (swap) c \.lU)

d (11) (unused)

TYPES
The following table describes the mapping of disk type to
characteristics:

~(!E!E..) Sides Densitz bztes/sector sect/trk
0 1 Single 128 16
1 2 Single 128 16
2 1 Single 128 (trk 0) 16

1 Double 256 (others) 16
3 2 Single 128 (trk 0) 16

2 Double 256 (others) 16
4 1 Double 256 16
5 2 Double 256 16
6 1 Double 512 8
7 1 Double 512 9
8 2 Double 512 8
9 2 Double 512 9

10 1 Double 1024 4
11 2 Double 1024 4
12-15 not used

IOCTLS
The driver understands one ioctl:

UIOCFORMAT takes a diskformat structure as argument,
formats the disk. It formats the whole drive.

SEE ALSO
Heurikon UNIX - Reference Guide

Page 1 (printed 10/15/86)

IT2190(7) UNIX 5.0 IT2190(7)

NAME
it2190 - SMD disk driver (MI0)

DESCRIPTION
It2190 is a SMD disk controller driver for Multibus I. It connects up to
four SMD disk drives using an Interphase 2190 controller.

The driver's major numbers are 14 for the raw device and 2 for the block
device.

-The minor device number selects drive type, physical unit, and logical
unit as follows:

Bits
3
0-2

Function
Physical unit number
Logical unit number

Drive partitioning is as described in the Heurikon UNIX Reference Guide.

FILES
/dev/f*, /dev/rf*

SEE ALSO
exterr(I), fdref(I), tar(I), badblk(l}, mkfs{l)

Page 1 (printed 3/31/87)

205

206

IT3200(7) UNIX 5.0/5.2 IT3200(7)

NAME
it3200 - SMD disk driver (VIO, V20)

DESCRIPTION
It3200 is a SMD disk controller driver for the VME bus. It connects up
to two SMD disk drives using an Interphase 3200 controller. The driver's
major numbers are 14 for the raw device and 2 (or 1) for the System V (or
V.2) block device. The minor device number selects physical unit and
logical unit as follows:

Bits
3
0-2

Function
Physical unit number
Logical unit number

The physical unit number selects one of two disks drives connected to the
system. The logical unit number selects the parttion. Partion sizes are
described in the Heurikon UNIX Reference Guide.

EXAMPLES

FILES

This sequence of command will format the disk, test for bad blocks, and
build a file system using the entire disk.

diskformat /dev/ritOe
badblk /dev/ritOeo (for VIO)
badblksmd /dev/ritOe (for V20)
mkfs /dev/itOe (maxbn/2) 2 2

Examine the rebuild script for command details and examples.

/dev/it*, /dev/rit*

SEE ALSO
badblk(I), diskformat(I), mkfs(I), badblksmd(l)

Page 1 (printed 3/31/87)

MT-M10(7) UNIX 5.0 MT-M10(7)

NAME
mt - a description of the magtape interface (MI0)

DESCRIPTION
The magnetic tape interface to Heurikon MI0 Unix systems is accomplished
via sixteen special files.

The tape (actually character) special files whose minor device numbers
are odd will rewind to BOT whenever the device is closed. Those whose
minor device numbers are even will leave the tape position untouched when
the device is closed.

~~nor devices 07 17 4$ 5$ 8$ 9$ 12, and 13 will select high density
(1600 BPI) on the Kennedy drives and high speed (120 ips) on the CIPHER
Microstreamer. Devices 2, 3, 6, 7, 10, 11, 14, and 15 will select low
density on the Kennedy drive (800 BPI) and low speed (25 ips) on the
Cipher drive.

The density switch on the Kennedy drive may be left on "REM" allowing
the density to be selected completely by the minor device used to access
the drive.

The Cipher drive must be manually set to agree with the density of the
tape. Failure to do so will prevent valid reading and writing.

The driver understands the CIPRICO Tapemaster. The largest tape blocking
factor is limited by the memory installed on the Tapemaster except when
using DIRECT mode. We suggest the Tapemaster be fully memory populated
(16Kb). In DIRECT mode the largest block size is limited to 16Kb.

Care should be taken when using DIRECT mode. In this mode, no buffering
is done for either input or output. While this is the fastest mode of
operation, interrupts from other devices (eg: disk) will be enough to
cause the tape transfer to burp and abort. DIRECT mode is useful for
dumping large portions of memory (thus no device interrupts) to tape as
rapidly as possible.

Meanings of each bit of the minor device number:

Page 1

7 6 5 4 3 2 1 0

\ \ \ \ \ \ if a one then drive rewinds on close
\ \ \ \ \ if a one then use "other" density

\ \ \ \ - if a one then DON'T byte swap data
\ \ \ -- if a one then use DIRECT MODE

\ \ --- drive select MSB
\ ---- drive select LSB

(printed 3/31/87)

207

208

MT-MIO(7) UNIX 5.0 MT-MIO(7)

Several ioctl system calls apply. They have the form:

int arg;
ioctl (fildes, command, arg);

UIOCEXTE
Turn extended errors on. Forces mt to print the cause of I/O errors . -
on the console. This is the initial state of the driver. This call
ignores 3!!.[.

UIOCNEXTE
Turn extended errors off. This call ignores ~.

HMT REWIND
Issues a rewind command to the tape transport. This call ignores
~.

HMT OFFLINE
Issues an off-line command to the tape transport. This call ignores
~.

HMT WFM
Writes a filemark at the current tape position. This call ignores
~.

HMT SKIP
Skips forwards or backwards a number of filemarks. Arg is a signed
integer indicating the number of filemarks to be skipped.

lIMT SPACE
Spaces forwards or backwards a number of blocks. Arg is a signed
integer indicating the number of blocks to be skipped.

lIMT FOREIGN
Returns the number of bytes in the next tape block. The tape
position is advanced one block. The number of bytes is returned in
arg.

lIMT REPORT

SEE ALSO

Returns the drive status and the Tapemaster error code for the last
tape error. Arg is a structure defined in magtape.h having the
following form:

struct mt errors arg;

mtskip(l), mtrewind(I), exterr(l)

DIAGNOSTICS
If a Cipher drive is asked to skip backwards up to or past the BOT the
mtskip command will produce a diagnostic. This message can be ignored.

Page 2 (printed 3/31/87)

MT-M10(7) UNIX 5.0 MT-M10(7)

Diagnostics will be printed in the form of:

tm: ecode: nn drvsts: nn

Ecode will be a one or two digit hexadecimal number whose meaning can be
found in the Heurikon Corporation Unix Reference Guide. Drvsts, which
stands for drive status, will be a two digit hexadecimal number whose
meaning can similarly be found in the Unix Reference Guide. The "tm"
stands for TAPEMASTER.

Page 3 (printed 3/31/87)

209

210

MT-V(7) UNIX 5.0/5.2 MT-V(7)

NAME
mt - a description of the magtape interface (VIO, V20)

DESCRIPTION
Mt is the nine-track tape driver. It controls up to four tape transports
connected to a MCT-6020 VME card.

The meaning of each bit of the minor device number is:

7 6 5 4 3 2 1 0

\ \ \ \ \ \ \ unit number lsb
\ \ \ \ \ \ unit number msb

\ \ \ \ \ - not used
\\\\- "
\ \ \­
\\-

"
"

\ rewind on close "---
Several ioctl system calls apply. They have the form:

int arg;
ioctl (fildes, command, arg);

HMT REWIND
Issues a rewind command to the tape transport. Arg is ignored.

lIMT WFM
Writes a filemark at the current tape position. Arg is ignored.

HMT SKIP
Skips forwards or backwards a number of filemarks. Arg is a signed
integer indicating the number of filemarks to be skipped.

HMT SPACE
Spaces forwards or backwards a number of blocks. Arg is a $igned
integer indicating the number of blocks to be skipped.

lIMT FOREIGN
The tape position is advanced one block. The number of bytes in
that block is returned in !![.

SEE ALSO

NOTES

mtskip(l), mtrewind(l), mtforeign(l)

The MCT-6020 hardware will not support transfers of odd numbers of bytes.

The current MeT-6020 firmware (version 1.8) will ignore EOT when
executing the HMK SKIP ioctl. The tape may be wound off its reel if a
filemark is not found.

Page 1 (printed 3/31/87)

RTC(7) UNIX 5.0/5.2 RTC(7)

NAME
rtc - Real Time Clock/Timer driver

DESCRIPTION

FILES

Rtc is the Dallas Semiconductor DSI2I6 1fSmartWatch" real time clock
devicee

/Dev/rtc is used to read or set the RTC. Only one process may have this
device open at a time. While the device is open, the process may access
the RTC module. There is one ioctl command, RTC_ADRS, which will return
the base address of the RTC module.

/Dev/rtcioctl is used to control the speed of the UNIX clock using an
ioctl(~) command. The UNIX clock rate may be adjusted by 1 .• 5%. The
following commands are defined in !I!/rtc.~.

"CLK UP" speeds the UNIX clock up.
The device must be kept open for this command to remain effective.

"CLK DOWN" slows the UNIX clock down.
The device must be kept open for this command to remain effective.

"CLK RESTORE" returns the UNIX clock to its normal rate.
This command is done automatically if /dev/rtcioctl is closed while
the UNIX clock rate is "abnormal".

The major number for this character device is 15 (MIO, VI0) or 9 (V20).
/Dev/rtc minor number is 0; /dev/rtcioctl minor number is 1.

/dev/rtc
/dev/rtcioctl

INSTALLATION
On the HK68/MI0 or VI0, the RTC module should be installed in the ODD
byte ROM socket, MI0-U33 or VI0-U23. On the HK68/V20 or M220, install it
in U52.

SEE ALSO
clock(I), open(2), read(2), write(2), ioctl(2), close(2)

Page 1 (printed 10/15/86)

211

212

SCSI(7) UNIX 5.0 SCSI(7)

NAME
/dev/w[Ol][a-h] - OMTI-5400 SCSI winchester disks, (MI0, VI0) .

DESCRIPTION
This is the driver for the OMTI 5400 disk/floppy/streamer controller when
used with the NCR 5380 host controller. Details are in section 17.3.3 of
the Heurikon UNIX Reference Guide.

Page 1 (printed 10/15/86)

ST(7) UNIX 5.0 ST(7)

NAME
Notes on the Streaming Tape Driver (M10)

DESCRIPTION
The streaming tape driver user interface is accomp~ished via two special
files. /dev/st1 will rewind whenever it is closed. On writes; /dev/stO
will remain at a position just after the newly written end-of-file mark.
If closed during a read (and not yet at an end-of-file mark) /dev/stO
will seek to the next end-of-file mark.

CAVEATS AND NOTES
Tape cartridges are extremely temperature sensitive. Their integrity
degrades sharply with increases in temperature.

Tape capacity in megabytes can be approximated by dividing the length of
the tape in feet by 10. Thus, a 600 foot tape will have a maximum
capacity of 60 Mbytes. Actual capacity will be less due to tape
overhead.

It is normal for the drive to stream for one and a half to two seconds
and then pause. Each stream represents approximately 130 512 byte
buffers being read or written to tape. The Unix file system isn't fast
enough to keep a 90 inch per second drive constantly streaming:

Erasing a used tape before reuse helps increase integrity.

Retensioning any tape helps increase integrity on both reading and
writing. An erase also retensions the tape.

Erase, rewind, and retension each return control to the user immediately.
If another of these commands are executed while a previous one is in
progress, the second will not return until the first is complete.

Only one process may have the tape drive open at any time.

DIAGNOSTICS
Error messages will be directed to the system console. They are se1f­
explanatory.

SEE ALSO
stape(l)

Page 1 (printed 10/14/86)

213

214

STP(7) UNIX 5.2 STP(7)

NAME
/dev/[n][r]stp[Ol] - streamer tape (V20)

DESCRIPTION
This is the driver for the streamer tape aspect of the OMTI 5400 disk
controller when used with a Plessey host adapter.

The minor number is composed of two parts and can be represented like
'OOOOOOrO', where 'r' is the rewind-on-close control bit. If the
rewind-on-close bit is ~, the tape will ~ rewind on the last close.

The block size on the tape is fixed at 512 bytes. Attempts to read past
end of file will first result in an indication of zero bytes read and
further reads will return errors.

IOCTLS
The driver understands one ioctl:

UIOCRETEN Retensions the tape.

SEE ALSO
Heurikon UNIX - Reference Guide

Page 1 (printed 10/15/86)

WCH(7) UNIX 5.2 WCH(7)

NAME
/dev/wch[Ol][a-h] - SCSI winchester disks (V20)

DESCRIPTION
This is the driver for the OMTI 5400 disk controller when used with a
Plessey host adapter.

The minor number is composed of two parts and can be represented like
'OOOOuppp', where 'u' is the unit designator (drive select) and 'ppp' is
the partion designator. Each drive has eight partitions which are layed
out as follows (units in blocks):

Partition (ppp) Start Length
7966 a (000)

b (001)
c (010)
d (all)
e (100)
f (101)
g (110)
h (111)

34
8000
8000
8000+b_size/2
34
8000+b size/2
8000+b size*3/4
o

(swap)
(root)
(alt root)

b size
b-size/2
b-size/2
b-size/2+7966
b-size/4
bSize/4
maxbn

yT'L _________ 1...._ ~_ ~'-_ _ _, _ ... _'L __ .-..t! 1...'.I"L""'l,....,1""\; A":n'1., (..; 0
Wll~I.-~ illClAUll ..Lb 1.1lt:: l.Ul.<1.L llUWUCL VL U..I..V'-'~O vu "- ,.;; 40~ , _ _

nsects*nheads*ncyls) and b size is maxbn minus the swap partition size
(i.e. 7966) and the number-of blocks in the alternate tracks.
Approximatly 1% of the disk is allocated as alternate track space. The
driver uses the controllers bad track mapping facility.

IOCTLS
The driver understands six ioctls:

UIOCFORMAT takes a diskformat structure as argument,
formats the disk, and writes out a disk parameter block
(first block on the disk). It currently formats the whole drive.

UIOCSTEP takes an array of two chars as argument and
changes the controller step rate and step width to the
given values (resp).

UIOCBDBK forces the driver to reread the disk parameter block
(first block on the disk).

UIOCMAPTRK takes the address of a block on a bad track and maps
that track to the next available alternate.

UIOCPARTSIZE returns the size in blocks of the partition.

UIOCHKFMT takes the address of a block on a track and
returns an error if that track has a defect in it.

SEE ALSO
Heurikon UNIX - Reference Guide

Page 1 (printed 10/15/86)

215

I-I Heurikon UNIX - Reference Guide
INDEX

I-I

A
accounting system 13,26,80
adb command 67,76,101
adb command (V.2) 142
adding new users 69
addresses, memory map 131
adduser script 72
administrative functions 1,26,69
alias command 54
alias examples 35,42,161
alias feature, esh 16,42
aliases, mail 78
alternate blocks, assignment 100
alternate blocks, location 104,105
ampersand character 49
a.out 24,60
as command 61
at command 38
atrun program 38
awk command 67,185

B
B (Bus) LED
background daemons
background tasks (&)
backspace key
backup, methods
backup script
bad blocks
badblk command
badblk command, V.2
bang (!)
base addresses
baud rate clock

128
9,34

49
170
80
87

100
95,100

193
42

131
181

baud rates 4,181
baud rates, changing 158
bcheckrc 34
big files 74
block size 84,104
blocked devices 172
boot, disk location 105
boot diskette 94,98
boot procedure, alternate root 6
boot procedure, floppy 12
boot procedure, Winchester 2
boot, writing to disk 100
bootname command 194
Bourne shell, sh 37,42
bug reports 20
bus error 6,18
byte swapping, tape 90

c
C compiler
C programming
C Shell
cable connections
calendar program
capacity, floppy
cat command
CAUTION ITEMS, media
CAUTION ITEMS, system
cc command
cc5.0 command
cd command
cdpath variable
Centronics interface
character devices
chgnod
child process
chstep command
clicks, memory
clock, baud rate
clock command
clock~ cron daemon
coffbin command
col command

60
25

35,42
153

39
84
52

81,85,92
2

60
136

28,52
50

165
172

76
72

100
122,131

181
195
38

67,137
65

23,25
52
13

181

command descriptions
command, examples
configuration, initial
configuration word, Hbug
console device 32,77,155

46
16,24,73

53,56
82,83,86,88,91,99

control characters
core dumps
cp command
cpio command
crash, editor
crash, system

recovery 17,58
18

cron 38,74
cronlog 39
crontab 38
cross-reference, ctags 58
csh 35
.cshrc file 36
ctags command 58,63
cu program 164
curly braces {} 43
curses library 60
cut command 87,169

D
D (DMAC) LED 127
daemons 32,34

Copyright 1987 Heurikon Corporation Madison, WI

1-2 Heurikon UNIX - Reference Guide
INDEX

1-2

data set, connections 150
data terminal, connections 150
Datasud serial card 145
date command
dd command
debuggers
default configuration
DEL key
density, diskette
/dev directory
/dev/cent
/dev/dipled
device drivers
device names/numbers
/dev/kmem
/dev/lp
/dev/mem
/dev/stO, /dev/stl
/dev/swap
/dev/syscon
/dev/systty
/dev/tty
df command
dial(3) subroutine
directory structure
disk usage
diskconf command
diskette capacity
diskformat command
dot (.), dot dot (••)
dot files
du command
dumps, core image

E
echo command
ed editor

9,53,74
83,91,100

67
13

2,17,170
84
41

165
128

25,41,107,110
172
109
166

15,107
85

15,104
").., "7"7 1 c: c:
Jk,II,J.JJ

32,77,155
154

72,106
164

27
72

104,142
84

82,100
28
15
72
24

54
59

editor features, ex, vi 57,58
editor, file recovery 17,58
editor initialization 58
editors 59
egrep command 87
end-of-file, EOF 46,170
enlarging swap space 101
enlarging system parameters 110
env command 53
environ variables 19,38,53,75,129
environmental stabilization 2,3
eqn command 64
error codes 23,124
error correction, cmd entry 42,54

error messages
escape character
/etc/bcheckrc
/etc/brc
/etc/chgnod
/etc/cron
/etc/cshrc
/etc/gettydefs
/etc/init
/etc/inittab
/etc/make.smaller
/etc/motd
/etc/passwd
/etc/profile
/etc/rc
/etc/termcap
/etc/update
/etc/vchk tree
Ethernet,-flle backups
_ _....1': __
CA CU.J..LVI.

EXINIT variable
exit command
export command
exterr command

F
fdref command
FIFO (pipes)
file command
file formats
file permissions
file recovery, disk
file recovery, editor

25
16,46

34
34
76
74
35

33,158,170
8,78

13,32,78,157
73

10,41,72
31
37

13,34,78
11,24,36,38

129
16
91

58,59
36,58

12
19

128

81,196
48

53,129
24

15,30
18,92

58
file system check, fsck 9,102
file system check, vchk 76
file system, make 83
file system organization 29
file system repair
file system structure
file types (suffix)
filename specification
files, hidden
filters
find command
fix diskette
fix diskettes
floating point support
floppy, booting
floppy capacity
/floppy directory

30
27
28
27
15
48

73,74,86,99
103
98

127
12
84

floppy diskette operations
12,102

81

Copyright 1987 Heurikon Corporation Madison, WI

1-3 Heurikon UNIX - Reference Guide
INDEX

1-3

floppy, error codes
floppy media
fork(2) system call
formatting, floppies
formatting, Winchester
FORTRAN programs, linking
forwarding mail
fsck command
fsdb command
full file system

G
games
garbage collection
gcc command
getty

126
84

50,139
81

92,100
60
78

9,102
30
72

24
73
61

33,145
gettydefs
gf77 command
gobbledygook
grep command

33,158,170
61
31
52

group ownership

H
H (Halt) LED
Hbug commands
Hbug configuration word
head command
hex command
hidden files
high density, floppy
history command
history feature
history variable
HK68 baud rate, changing
home directory
hung program

I
incremental backup
index, permuted
init command
init level
init program
initial configuration
inittab
inodes
interchange, media
interrupt, DEL key
interrupt service routine
interrupt usage
I/O devices

30,70

4,18,128
3

181
54

135
15
84
54
42
50

181
27,69

18

86
21
77

32,77,78
8

13
32
24
90

2,17,170
114
134
107

I/O errors
I/O system
iocheck(), kernel routine
ioctl(2) system call
ipcrm and ipcs commands
ivec.s

124
25

118
112,171
80,137

114

J
jumper.c program
jumpers, user

K
kernel error messages
kernel routines
kernel tables
kill command

L
last command
lbolt kernel variable
ld command, ROM
Id5.0 command
L-devices file
LEDs, status and user
libraries, compiler
line printer scheduler
line printers, hints
linked files
lint command
In command
loadsys command
loadtar command
lockup, terminal
log files
login banner
.login file
login procedure
logout command
.logout file
lost files, recovery
/lost+found directory
lp command
LP spooler logic
Ipadmin command
lpr program
lpsched command
Is command
lseek(2) system call
L.sys file

108
128

25
117
123

17,49,72

53
140
135

135,136
157,163,164

127,128
60

34,167
165

56,184
63
56
96
96

17,18,151
74
33

16,36
10
12
36

18,92
29

166,169,186
166
167
166

34,167,168
15,52

141
157,163

Copyright 1987 Heurikon Corporation Madison, WI

1-4 Heurikon UNIX - Reference Guide
INDEX

1-4

M
macros, nroff/troff
mail aliases
mail command
mail command,
mail security
mail variable
major device
make command
makefile

trouble

numbers

make.smaller script
manuals, UNIX

64
25,78

54
16
79
50

map command, editor
maxmeml kernel variable
mbi7 message

172
62
63
73
21
58

131
134
84
90

131

media, floppy
media interchange
memory limitations
memory mapping
memory, shared

108,131
137

memory test command, Hbug
message of the day
messages

4
10,41,72

137
174
28

minor device numbers
mkdir command
mkfs command
mkfslb command
mknod command
mm nroff/troff macros
MMU fault
modem, connections
modem ports
modems
more command
motd file
mount command
mounting file systems
mtforeign command
mUltiple drives
multi-user mode
mv command

N
namelist, ps command
network ports, serial
new users, adding
news command
nice command
nlist() subroutine
nodename
nroff

83,100
83

154,176
64

130
150
144
162

52
41,72

12,34,99,106
34
90

106
8,32,74,77

53,56

15
149

69
40

34,45,49
140

10,76,162
64,183

o
option jumpers
output post process
owner, file

P
panic errors
parent directory
parent process
parity, RAM
parity, stty command
partitions, disk

18,128
166

30

18,130,131
27
72

131
170
104

Pascal programs, linking
password, changing/removing
password entry, login

60
31
10

password file
path variable
pathname
pattern search. grep
permissions
permuted index
perror subroutine
phys(2) system call
physical memory map
physical shocks
PID
pipes
post process output
Power Down procedure
PPID
pr command
printers, hints
printf subroutine
proc structure
process number
profile file
prompt, setting
prompt, user/super-user
prompt variable
ps command
pseudo-users
psize command
psize comma~d, V.2
pstat command
put command, cu
put command, UniSoft
pwd command

Q
QUIT interrupt

31
16,35,50

27
52

15,30,76
21

139,141,171
107
131

2
49,72

48
166

14
72

166,169
165

24,108
123

49
37

43,50
11
50

15,52,72
31

142
104

80,110
164
188

52

17

Copyright 1987 Heurikon Corporation Madison, WI

1-5 Heurikon UNIX - Reference Guide
INDEX

1-5

R
RAM size
raw devices
read(2) system call
rebuild diskette
rebuild procedure
Reconfiguration Rights
redirection of Iio
reel-to-reel tape
reference materials
regular expression
rehash command
repair, file system
repeat command
repeat earlier command
reporting bugs
reset button
reset command
ring indicator, modems
rm command
rm, file recovery
rmdir command
ROM programs
root & rootcsh log ins
root file system
root user id
RS-232-e
rtake command, UniSoft
run level

s

130
84,172

141
94,98,103

92
110

47
89

180
55

16,60
30
54
42
20

4
17

145
42,53

18
28

135
10

27,104
31

4,145,150
188

77,78

S (Supervisor) LED
SANE, stty option
sar, system activity
SBX-See jumpers

package

127
170
188
182
181 sec clock

SCCS
script,
script,

67
big example 185
examples 44,45,72,87,169

scripts
scroll stop
scrolling display
sdb command
search path
security
sed command
sed editor
see command
segmentation violation
semaphores
serial expansion

42,43
170

18
68
16

79,146
45,186

59
52

130
137

144,152

serial port connections
serial ports
serial throughput
set command
set user id
setenv command
sh
shared memory
shared text programs
shell
shell scripts
shell variables

153
144
158

50,53
30
19
37

80,137
129,136

42
16,43

50
showmatch, editor function 58
SIGBUS signal 130,131
signal(2) system call 130,138
SIGSEGV signal 130
single-user mode 8,77,79
sleep command 53,159,164
slow boot trouble 8
sort command 186
source code control system 67
source code, device drivers 110
special characters 46
special files, devices 25
spell command 53,58
stack probes 135
standalone boot prompt 5
standalone boot, writing 100
standard input/output/error 47
static discharges 2
status LEDs 127
sticky bits 129
stream editor, sed 45,59
streamer errors 126
streamer tape operations 85
strings command 16
stty command 18,35,36,54,158,170
su command 11,34
subroutines 24
SUDH LEDs 127
suffix number 23
suid 30
sumdir command 16
super-block 14

. super-user prompt
swap space
swap space, enlarging
swapping, memory
swapping, tape byte
sync command
system administration

8,11
104,129

101
131
90
14

1,25,26,69

Copyright 1987 Heurikon Corporation Madison, WI

1-6 Heurikon UNIX - Reference Guide
INDEX

1-6

system calls 23
system crashes 18
system file dumps 99
System III, pgms 90
system parameters 110
system V.2 notes 142
System V.2, porting 136

T
tabxxx files 66
tags feature, editor 58
tail command 54
take command, cu 164
take command, UniSoft 76,188
tape, reel-to-reel 89
tape, streamer operations 85
tar command 82,83,89,91
tbl command 64
telinit command 77
temporary files 73
TERM (925) 11
TERM variable 19
termcap, entry selection 36
termcap library 24,38,60
TERMCAP variable 36
terminal capabilities 24
terminal description files 66
terminal initialization 11
terminal lockup 17,18,151
terminal options, stty 18
termination signal 49
terminfo database 38
tilde (-) character 27
time command 54
time zone, (TZ) 74
time/date, setting 9
/tmp directory 73
touch command 87
TPI, floppy tpi 174
tr command 53
troff 64
trouble shooting 15
tset command 36,38,159
tty structure 123
tutorials, UNIX manuals 25
TZ, time zone 74

U
U (User) LED
uc command, Hbug
umount command

127
5,182

99

unalias command
under program
/unix kernel file
UNIX manuals
unsupported commands
update program
upper case
Usenet, Users network
user, adding/removing
user id numbers
user jumpers
user LEDs
user structure
USERFILE file
/usr/tmp directory
uucico program
uucp modem support
Uucp system

V
variables, shell
vchk command
vchk tree
vi editor
view editor
virtual address, phys call
virtual memory, /dev/kmem
vmail script

W
wOb
wait command
wall command
watchdog timeout
wd(O,16000)/unix
whereis script
who command
wild cards
Winchester booting
Winchester error codes
Winchester formatting
Winchester partitions
Winchester stabilization
working directory

16
66

6,76
21

188
129

10
40
69
31

18,128
128
123
163

73
161
164
160

50
76
76

19,57,59
59

107
109
45

104
49
14

130
102
44
53

16,43
3

124
92

104

write protection, floppy
write protection, reel tape
write protection, streamer

5
27
81
89
86

Copyright 1987 Heurikon Corporation Madison, WI

Heurikon Corporation
3201 Latham Drive
Madison, WI 53713

(608) 271-8700

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	000a
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	xBack

