A NEW BUSINESS LANGUAGE

HONEYWELL
\.

Copyright 1960
Minneapolis-Honeywell
DATAmatic Division
Wellesley Hills 81, Massachusetts
160-2M

DSI-27

A NEW BUSINESS LANGUAGE

Honeywell
H | Elodtronic Data. Procssiug

HONEYWELL

ii

The specifications of FACT have been created
by Computer Sciences Corporation, 3402 West
Century Boulevard, Inglewood, California,
under contract to the DATAmatic Division of
Minneapolis-Honeywell. Computer Sciences
Corporation also has the contract to implement
FACT for the Honeywell 800 Data Processing

System.

Section I.

Section II.

Section III.

Section IV.

TABLE OF CONTENTS

Introduction
Equipment Requirements

............

FACT Inputs « « « « « « « « .« . e e e

FACT Outputs

Files

Source Language « .
Names .« ¢« v« ¢ o o o o o s o o o »
Modification of Names
Abbreviations
Literals . . « ¢« v v v v ¢ o o o
Numbers « « ¢« ¢« ¢« .« .
Numeric Quantities .,
Characters . . . « « « « ¢« « « o &
Sentences
Source Program Statement Form
Paragraphs
Procedures
Notes.
Data Placement
Data Deletion.
Imperative Arithmetic.
Validity. . + « « « ¢ v v v o o o
Control Statements
Conditional Statements
Use of Tape Files
Definitions « « « « ¢ « o o o &« « &
Sorting . « « « 0.
The Update Function.
Report Preparation
Tables
Lexicon. . « « + « « « « &

.......
...........

o v e e

..............

e e o »

Reports. . . .« « « ¢« v v o o v
Tabulation
Report Description e e
Report Name Descriptors. . . .
Report Line Layout Descriptors.
Report Line Action Descriptors.
Report Field Descriptors
Execution of Generated Reports.

..............

..............

..............

..............

===========

..............

..............

..............

..............

............

..............

..............

............

...............

..............

..............

..............

..............

.........

..............

..............

..............

..............

..............

..............

N — =

o™ O v

13
14
14
15
15
16
16
17
17
18
18
20
21
21
23
23
24
25
26
27
30
32
35
38
39
40

41
41
42
42
43
45
51

iii

Section V.

Section VI.

iv

TABLE OF CONTENTS (cont.)

Input Data Description
Overflow Card Fields
Name Association

Sample Application ,

......

............

PREFACE

FACT (Fully Automatic Compiling Technique) is a complete programming sys-
tem which constitutes a major breakthrough in programming cost reduction. It can
be used on any data processor for which it is implemented. In the past, problem
preparation for a major data processing application has been exceedingly expensive
and time consuming. In some cases, its cost has approximated that of the equip-
ment itself. Initial efforts by many people to reduce this cost led gradually to an
assortment of programming aids, each of which contributed a little to making the
programmer's task easier. Though the combined effect of these aids has been sig-
nificant, their very abundance has limited their usefulness. Furthermore, the vari-
ation from installation to installation has been unfortunate. Now for the first time,
a tool is presented which provides for easy and uniform handling of all aspects of
data processing, including input editing, sorting, processing of variable-length

records, and report writing.

FACT provides the following major benefits:

1. Drastic reduction of the cost of problem preparation;
2. Significant reduction of the staff required;
3.

Significant reduction of time needed to put electronic data processing
into operation;

4. Significantly easier program modification to reflect changing requirements;
5. Increased computer use on broader range of jobs; and
6. Interchangeability of programs among different installations.

There are many ways in which FACT accomplishes these effects. Some of these

ways are discussed in the following paragraphs.

The programmer provides the compiler with a set of simple inputs which com=-
pletely describe his problem. FACT creates the program which does the job. All
of the machine-oriented problems are solved by the compiler. This is the reason
that the programmer's task is so drastically reduced. For example, the following
features of FACT greatly reduce tasks which formerly accounted for large amounts

of programmer effort.

FIELDS: The natural nouns of data processing are fields; the natural nouns of

machines are words. Since these are usually incommensurate, much of the program-

PREFACE FACT

mer's task has been devoted to writing orders which fit fields into words.

DIRECTORIES: The description of a file used to be buried in every program related
to that file in the form of shifts, transfers, extractions, substitutions, and address
selections. This was a never-ending source of programmer labor. Now the pro-
grammer describes his file once; FACT creates a directory which it then uses over
and over to create new programs related to that file without the programmer giving
it any further thought. The programmer's file description is now concerned only,
with the information in the file - not how its fields are placed in words. This elim-
inates all that reprogramming which was formerly required when a file structure

was changed.

INPUT-OUTPUT HOUSEKEEPING: A significant portion of any data processing job
consists of programs to write and check tape labels, read tapes, check the validity
of information read, reread or reconstruct if necessary, and move the records into
working position or into position to be written. All of these programs are created

by FACT without any attention by the programmer.

RESTART PROCEDURES: Formerly programmers were required to devote a con-
siderable amount of attention to writing their programs in such a way that only a
small amount of time would be lost if a program were interrupted for any reason,

FACT provides a way to do this with little programmer effort.

GENERATORS: Not the smallest contributions to reduced programming effort are

the built-in generators; input editing, sorting and report writing. These make the
necessary preparation so simple that it will frequently be possible to conceive a
small data processing job in the morning, execute all the necessary preparations,
compile a program and make the run the same day. The job might contain input
editing, file creation, sorting, merging, record selection and elementary processing,
and reporting. Using the best tools formerly available - library routines, linkages,
and pieces of manual coding - the programmer would have been very fortunate and

skilled to accomplish the same job in a month or two.

FACT A INTRODUCTION

SECTION i
INTRODUCTION

FACT translates problem-oriented (or source) language into computer language,
creating a program in operating form. The operating program produced by FACT,
called the object program, may be placed on punched cards or magnetic tape. The
conciseness of FACT language‘ results in a high ratio of machine instructions to
source statements. In addition,.FACT produées complete printed information about
its own operation, including program listings, memory assignments, and diagnostic
data pertaining to programming errors encountered during compilation. All of these

outputs and aids are expressed in language easily understood by the programmer.

The FACT lexicon is made up of the familiar words of everyday business usage,
such as FILE, ENTRY, PROCEDURE, REPORT, DELETE, and UPDATE. Source
programs are written by combining lexicon words with the names of data units {files,
entries, fields) to form ordinary English sentences and paragraphs. The resultis a
smooth-flowing language. FACT is offered as a contribution to the development of a

common data processing language.

Equipment Requirements

As implemented on the Honeywell 800, FACT can compile with only four mag-
netic tape units and minimum memory. It can, however, take advantage of more
equipment. The programmer uses environment statements to describe the equip-
ment array available for compilation, as well as the array on which the object pro-
gram is to be run, Each object program is compiled to operate as efficiently as
possible with the allotted machine units. A Honeywell 800 System having the mini-
mum configuration of equipment may be used to compile programs for execution on

any other Honeywell 800.

FACT Inputs

The inputs required for compilation may include any or all of the following:

{1) Descriptions of the formats of all input data cards to be processed by the
object program;

(2) Descriptions of all data files to be created by the object program;

(3) Descriptions of all reports to be prepared by the object program;

INTRODUCTION FACT

(4) Source statements in narrative business English which describe the pro-
cessing operations to be performed by the object program;

(5) Environment statements which specify the kinds and amounts of equipment
(actual machine units) available for both the compilation and execution of
the object program;

(6) Control statements which specify the forms of output required, error pro-
cedures, and actions to be taken after compilation or during execution of
the object program.

The inputs required to compile a specific program depend upon the nature of the
program. FACT may be used to prepare many different types of programs at many
different levels of complexity. For example, a given object program may perform
any or all of the following functions:

(1) Input card reading and editing;

(2) Creation of data files;

(3) Data sorting;

(4) Arithmetic computations;

{5) Updating of the data files; and

(6) Generation of printed or punched reports based on input data, file data
or program results.

The specific functions to be performed by a given program and the equipment
array allotted for their performance govern the program solution produced by FACT.
In particular, the programmer may use environment statements to take advantage of
the multi-programming feature of the Honeywell 800. For example, an input editing
program is particularly suited for processing in parallel with a reporting program.
If sufficient equipment is provided, both may be executed in parallel with a file up-
dating program. Thus, large, complex programs involving input editing, data pro-
cessing, and reporting may be designed for a three-phase type of operation in which
an input file is processed in parallel with the preparation of reports generated by the

previous run and the editing of input data for the succeeding run.

FACT Outputs

The primary output from FACT is an operating program. After compilation,
this program is on magnetic tape or punched cards. In either case, the programmer
may direct that the object program be immediately loaded into the computer and ex-
ecuted. The object program is accompanied by the labels and the directories of all

data files which it creates or references.

In addition to the object program, FACT produces the following outputs:

FACT ' ‘ " ' INTRODUCTION

1), A listing of the na.rrative gource statements;

(2). A. detalled map; showmg the use- of high-speed memory by the object
,program, - :

- 4{3) Diagnostlc comments describing the number, kinds, and locations of all
‘ erfors encountered in the sourc& program; (FACT can detect such errors
- as 1ncorrect spelhng, unproper use of data names, and 111ega1 file
structures. 3 : :

{4 Operator 1nst;ruct10ns requestmg spec1f1c actmns durmg and 1mmed1ately
» after compﬂatmn.

(5) New file d1rector1es.

The following sections of the manual present detailed descriptions of the various
FACT inputs and the manner in which source programs are presented for compila-
tion. The reader may find it helpful to refer to the sample application contained in

Section VI for examples of these inputs.

>

FILES FACT

SECTION i
FILES

The basic function of a data processing operation is the creation and manipula-
tion of files. A file is an arrangement of data according to a specific format and
usually in a specific sequence. The basic units of data, (e.g., part number, city,
name, quantity) are called fields. A number of fields may be so related that for
purposes of manipulation it is desirable to give them a collective name. Such a set
of related fields is called a group. In the same way, it may be desirable to assign
a name to a set of related groups, forming a group of higher rank or level. This
process may be extended to form a hierarchy of groups of several ranks. FACT

allows the programmer to reference and manipulate individual groups of any rank.

The programmer uses a File Outline Form to assign the names of groups,
specify their order within the file and describe their relationships (inclusiveness).
The relationships of fields within groups and of groups within higher -ranking groups

is specified on the File Outline Form by means of indentation.

Within a group of any rank, the names of all groups of the next lower rank are
indented on the file outline by the same amount, which may be one or more columns.
The name appearing farthest to the left is the file name and includes all groups and
fields in the file. The first group name below and to the right of the file name is
called an entry name. Any other group whose name is indented the same amount is
also an entry. An entry may include fields and groups. For example, a payrollfile
might include such fields as DIV-NO, DEPT-NO, and CLOCK-NO. Figure 1 is an
outline of such a file which is arranged in wage-type, employee-number sequence.

For purposes of clarity, all non-field names are identified in a separate column.

The reader will note in Figure 1 that fields are not always of the lowest rank.
On the contrary, fields may occur at any rank up to that of an entry. In this manual,
a field is regarded as a special type of group which contains no lower-level informa-

tion.

Another basic distinction among groups is illustrated in Figure 1. Within a
group, certain subgroups (e.g., NUMBER) occur a fixed number of times. Such
groups are called primary. Other subgroups (e.g., EMPLOYEE-RECORD, HOURS,

BASESHIFT, etc.) occur an indefinite number of times. Such groups are called

FACT : FILES

PAYROLL (file name)
*HOURLY (entry name)
*EMPLOYEE-RECORD (group name)
NUMBER (group name)
DIV-NO
DEPT-NO
CLOCK-NO
BASE WAGE

OVERTIME-PERCENTAGE~-BONUS
*HOURS (group name)
TOTAL-HOURS

*BASESHIFT (group name)
PER-DAY
*NIGHTSHIF T (group name)
PER-DAY
*SALARIED (entry name)
*EMPLOYEE-RECORD (group name)
NUMBER (group name)
DIV-NO
DEPT-NO

EMPLOYEE-NO
SALARY
OVERTIME-RATE
HOURS-WORKED

Figure 1.

secondary and are so designated on the file outline by placing an asterisk in front of
their names. The asterisk is not considered part of the name for indentation pur-
poses. Note that any group which contains one or more secondary subgroups must

itself be secondary.

The distinction between primary and secondary groups is important since it de~
termines the manner in which information is stored on magnetic tape and in memory.
Primary groups are stored in memory throughout the processing of the related
higher-ranked group. Secondary groups are stored in memory a fixed number at a
time. This subject is described in greater detail under '""Data Placement' (page 22)

and "Use of Tape Files' (page 27).

FILES FACT

File Description

Object programs produced by FACT may create original files from input data.
Such programs may also process existing files and create new files as a result of
such processing. In particular, an object program may create a working file which
exists only in memory and is not recorded on tape. Such a file is called an internal
file. Tape files may be either packed or unpacked. A packed file occupies less
space on tape than an unpacked file; however, it requires more complicated input-
output routines to handle it. Both packed and unpacked files may be specified as
reversible, which means that they may be read (but not written) in both the forward

and the reverse direction.

One of the basic tasks involved in the preparation of a FACT source program is
the description of the structures of new internal and tape files to be used by the
object program. The structure of each such file is presented on a special form
called the File Outline Form, which is shown in Figure 2. One or more lines (or
rows) on this form are used to describe each group from the file itself down to the
lowest-level field. The hierarchical relationships between the various file elements

are represented by relative amounts of indentation, just as they were in Figure 1.

Each line of the File Outline Form becomes the contents of a special punched
card called a File Outline Descriptor. A deck of File Outline Descriptors, then,
contains the complete description of a file structure. (To prevent any confusion
between punched cards which provide input information to the Compiler and those
which provide input data to the object program, the former will be consistently re-
ferred to as ''descriptors' and the latter as ''cards'. FACT input includes several

other types of descriptors, which are described in later sections.)

FACT uses the information obtained from the deck of File Outline Descriptors
to generate a directory of the file being created. The file directory is stored with
the file which it describes and also in a library of file directories on the program
tape. It is not necessary to prepare a File Outline for an existing file which is to be
processed by an object program since FACT can reference the library of directories

to obtain the necessary structural information about the desired file.

File Outline Form

As noted above, each information unit in a file is described by one or more lines
on the File Outline Form. The descriptive information is written in fixed fields, as
shown in Figure 2. If the information corresponding to any fixed field exceeds the

capacity of that field, additional lines {called continuation lines) are used to complete

Title .« ¢ ¢ o o « » PA >./ ﬂ (?1.‘1‘.‘ .—.-F_.-I .L.E Revision « « ¢« ¢ ¢ o ¢ o o o ¢ o o 0 ¢ 0 o 0 o s o oo comm—
Honeywell Prepared By. « o o ¢ s 0 o s 0 o s 0 s 0t s 0 s s e 0 s e FOr PIOgTam « » o s o o o s o o o s o o o o a s a4 FA Gr
@ WD@M% Date v o o o o o o 6 o s 0 s 8 0 s s o x e s e s e s e s Checked BY « v v v o o o o o o o o s o s 0 0 0 0 s nea———
Remarks

...

12345617851 11‘\?13,1415161718192021222‘52425262728291)3132333435363738394)4142434445464748495051525354555657585960616263646565676869707172737475767778790

0| SERIAL NORMAL égg NAME (DECREASING RANK)
NUMBER A&oﬁgéﬁ Ié; g‘ngE
sxd| = |B5|8)2|3
ol 11 14 Rl | | [2lalyRlolLlL ’
210 2 | HlolU [RILIY
3o 3 b4 EIMP|L O |YIE|E|-[RIE|C|O[RID
4|0 Y NIUMBIER
5[0 U D D M-Injo
[0 6 2[p DIEPITI-INlo
7o 7 YD ¢lLlolc|K-INlo
)0 3 3D |ol2 BlAISIEWAIG|E!
s|o 9 yip| lof2] | | olVIER(TL MIEL-PlE RICEINTIAIGIE |- [Blo|N|UIS
{0 /ol HlolUMRIS
ol | |/ 3| lolt TIo|T|AIL |- [Hlo|URIS
2j0) | /12 (BIAIS|EISIHL/ [FIT,
slof | /13 3in| [ofT [PIE[RI-DA V]
wlol | /|4 INUGIHITISHLL IF|T,
51| | |/]5] 3P| o1 PIEIRID|ALY
wlol | 1k SIAILIARIED
lo] | 117 haE IMIPLL IOIYIEIE-RIEIClOR D
wlo] | |/]8 NIUMIBIE R
ol | 1|9 Ju) D1 V|- Mo 1
2|0 2;3 21D EPT=-INIo
FORM NO. T1204

Figure 2.

1DOv4d

S31l4

FILES | FACT

the description of that information unit. The information contained in a continuation
line is punched in a continuation descriptor. The use of the File Outline Form is

clarified in Figure 2 by repeating a portion of the simple file described earlier.

DESCRIPTOR TYPE -- column 1: Every descriptor is identified as to type by the con-
tents of this column, A File Outline Descriptor is identified by the presence of the

letter O or the numeral zero punched in column 1.

SERIAL NUMBER -~ columns 2-6: Each line of the File Outline Form may be assigned
a serial number by the programmer. If these numbers are assigned, the Compiler
may be directed to check their sequence, listing any sequence errors detected or else
sorting the descriptor information on these numbers. Unserialized descriptors must
be presented to the Compiler in the correct sequence. If the description of any in-
formation unit in the file requires the use of one or more continuation lines, each
continuation line is designated by the presence of an X overpunch in column 6. If
serial numbers are assigned, the first or base line and all continuation lines relating
to a specific information unit are assigned numbers in sequence. (If decimal num-
bers up to 99999 do not suffice, B C D E F or G may be used in any digit position,
according to the sequence 0,14, 2,3,4,5,6,7,8,9,B,C,D,E,F,G.)

NORMAL ALLOTTED LENGTH -- columns 7-9: In order to minimize space on tape for
internally created variable-length fields, the programmer specifies here a length
which is sufficient to accommodate most anticipated values. For a fixed-length

field, these columns are left blank.

MAXIMUM LENGTH OR NUMBER OF APPEARANCES -- columns 10-12: The length of
an internally created field is stated in these columns. If the length of such a field is
variable, the maximum length is stated here. The lengths of other fields are avail-
able to FACT from the description of the input data and need not be repeated on the

File Qutline Form.

In the case of primary groups, columns 10-42 are used to state the number of
appearances of such groups within the related higher-level group. In the case of
secondary groups, they may be used to specify the number of such groups which are
desired to be simultaneously available in memory. If the latter is not specified,

secondary groups are made available one at a time.

If columns 7-9 and/or 10-12 are used, their contents must be written justified
to the right, If they are not used, FACT assumes that the information is otherwise

available to it.

FACT . FILES

MODE -~ columns 43-14: The data to be processed by an object program may be in

any of a number of different modes, as specified by the following codes:

Code Mode Legal Characters
A Alphabetic A-Z
AN Alphanumeric A-Z and 0-9

AS Alphabetic, Numeric and Sign A-Z, 0-9, 11, and 12 (or - and +)

H Hollerith Any legitimate punch

NH Numeric Hollerith 0-9

SP Single Punch 0-9,11, and 12

D Decirna,ll'l 0-9 and possible zone punches for signs

CD Decimal with Check Digii:2 0-9
HD Hexadecinaa,l3 0-9 and B-G
OoC Octal3 0-7

The mode of ans
i0ne megae oI any I

S
[
(4]
et
[oN
7]
5
Fede
0
o
P
n

iled from input data cards is described as part
of the input data description and need not be described on the File Outline Form.
Columns 13-14 need only be completed for fields which are created internally.
Single-character codes may be written in either column 10 or 14; i.e., (A, blank)

is equivalent to (blank, A).

In the case of the file name, the mode columns are used to state whether the file
is to be Packed (P), Unpacked (U), Reversible Packed (RP), Reversible Unpacked
{RU), or Internal (I).

DECIMAL POINT -~ columns 15-46: In decimal fields which are internally created
by the object program, the position of the decimal point may be indicated by a num-
ber in columns 15-16. This is called scaling. In this manner, a numeric quantity
may be represented internally as an integer and treated by the object program as a
number with a decimal point. If the contents of a field are to be internally scaled,
the position of the decimal point is indicated by a number written in these columns
and justified to the right. If these columns are blank and no scaling is specified

elsewhere, the decimal point is assumed to be to the right of the low~order digit. If

1. A decimal field in the Honeywell 800 may contain up to eleven digits.

2. A check decimal field or an unsigned decimal field in the Honeywell 800 may
contain up to twelve digits, including the check digit.

3. A hexadecimal or octal field may be up to one machine word in length.

FILES ' FACT

scaling is specified, the direction of scaling is indicated by an overpunch in column
16. A 12 overpunch indicates positive scaling or a decimal point to the right of the
above assumed position. An 11 overpunch indicates negative scaling or a decimal
point to the left of the above assumed position. If scaling is specified, but column
16 does not contain an overpunch, negative scaling will occur. For example, the
value stored in a decimal field is 47894, If columns 15-16 contain the punches 03
or 03 (where 3 represents a 3 punch with an 11 overpunch), the scaled value of this
field is 47.891. If columns 15-16 contain the punches 0-5 (where E represents a 2
punch with a 12 overpunch), the scaled value of this field is 4,789, 100. As in the
case of length and mode, the scale of fields read from input cards is specified as

part of the card input description.

ROUND -~ column 17: Sometimes it is desirable to retain in a file only a portion of
the significant digits of a decimal or check decimal field. A field read from punched
cards or from an input tape file may contain seven significant digits, whereas five

of these digits are sufficient for the purposes of a particular output file being created.
If column 17 of the File Outline Form contains an R punch or is blank, the low-order
digit of the shortened field will be rounded according to the value of the digits dropped.
If this column contains a T punch, the field will be truncated, i.e., the resulting

low-order digit will be unmodified regardless of the value of the digits dropped.

NAME -- columns 18-80: The name of the file, entry, group, or field being described
is punched in these columns. The position of the left-most character in the name de-
notes the rank of the corresponding unit. The highest-ranking group (which is the

file) is always described in the first line and its name is punched starting in column

18. A name which starts in column 19 is either an entry or a field at the entry level.

If two or more files are to have identical file structures, the names of all such
files may be written on consecutive lines at the top of the file outline which describes
their structure. If one or more new files are to have the same structure as a file
which has been previously described, the name of the earlier file may be written at
the top of the file outline, followed on succeeding lines by the names of all new files
which are to have the same structure. The final name is followed by a blank line
(i.e., a blank File Descriptor) which signifies that the desired file structure is al-

ready available and need not be repeated.

In some cases, a processing run simultaneously involves two or more instances

of the same file. For example, an updating run may read an existing file and create

FACT FILES

an updated file having the same name (often to be used as input to the next updating
run, etc.). The name of such a file (or files) may be modified on the file outline
by writing adjectives after the file name. The programmer writes a different ad-
jective to represent each of the files of that name to be manipulated simultaneously.
The file name and all modifying adjectives are separated by commas. For example,
the name columns of a file outline may contain:

MASTERFILE, ANNUAL, MONTHLY, WEEKLY
where MASTERFILE is the name assigned to three different files. Any of these
three files may be specifically referenced in the source program by using the modi-

fied name (i.e., WEEKLY MASTERFILE]).

The name of an information unit is assigned by the programmer and is used by
the Compiler to cross-reference that unit in the input data, the various files involved,
the source statements, and the required reports. The programmer must take care to
identify a given unit by the same name wherever this unit is referenced, with the
exception that a name may be followed by one or more abbreviations in parentheses
and then referenced by either the full name or any abbreviation so listed. A name
may be composed of any number of letters (A-Z), numerals (0-9), and hyphens,
except that the first character of a name must be a letter. Imbedded blanks are not
allowed; consequently, multi-word names must be connected by hyphens, as in the
following:

INVENTORY (INVENT)

OLD-MASTER-FILE (O), (OMF)

CITY-AND-STATE

POLICY-NUMBER (POLNUM), (NO), (NU).
As indicated above, a name may be followed by any number of abbreviations. These
are individually enclosed in parentheses and may be separated by commas if desired.
The length of a name is unrestricted. If the complete name (including all abbrevia-
tions) is too long to write on a single line, any required number of continuation lines

may be used to complete the information.

The name of a field may also be followed by one or more numeric or non-numeric
literals. A literal is an explicit expression of the value of a field as opposed to a
value which is implicitly expressed by referencing the field name. In other words,
instead of referencing a field called PRICE by name, the programmer might reference
an explicit value of this field, such as 124.95. Such a value is called a numeric

literal. In the same manner, a field called TITLE might represent the title of a

11

12

FILES FACT

report. The programmer might reference a specific report title, such as "Summary
of Operating Costs', which would be a non-numeric literal. Numeric literals may
be entered directly in the name columns of the file outline. Since a name is not
allowed to start with a numeral, there is no danger of confusion. However, non-
numeric literals must be distinguished from names by writing them preceded and
followed by two dots (..). Literals may be used on a file outline for any of several
purposes. If the value of a field is constant throughout a program, the value may be
written as a literal following the name of the field, as follows:

PI 3.1416

COMPTROLLER ..DAVID S. PARKER ..
The programmer's source statements may then reference the name of such a field

in order to utilize the stated literal value of the field.

Another use of literals is the relating of codes which appear in input data to
adjectives which can then be used to represent these codes in the s ource program,
as in the following example:

WAGE-SCHEDULE ..H..(HOURLY) ..W..(WEEKLY) ..M..(MONTHLY)

In this example, the three literals H, W, and M are the only defined values for the
field WAGE-SCHEDULE. These values may be referenced in the source program
by means of the related adjectives. This type of literal expression facilitates the
writing of conditional source statements. The presentation and use of literals is

described in greater detail in Section III.

FACT SOURCE LANGUAGE

SECTION 11l
SOURCE LANGUAGE

The object program produced by FACT is an efficient machine-language trans-
lation of the source program statements which the programmer writes. This object
program is base‘d, in addition, on programmer statements of the directories of the
data files to be processed, the equipment configuration available for both compila-
tion and execution, the formats of any reports to be printed, and the desired error
procedures and operator actions during compilation. The program statements,
themselves, constitute a straight-forward description in everyday business English
of the operations to be performed, presented in familiar paragraph format. The
ingredients of these statements are the basic verbs, nouns, and connectives of the
Compiler lexicon, the names of information units to be processed, ordinal and
cardinal numbers, and explicit quantities and names called literals. The following
types of source statements may be included in a program:

Imperative
Control
Conditional
Definition
The use of these types of statements is illustrated in the sample application described

in Section VI.

In addition to the above, the source program language contains several unusual

and powerful features. These include:

(1) A generalized updating routine which can be tailored to a specific
set of updating functions merely by stating the master file, detail
file, and key names, and the procedures to be followed at a set of
standard junctures;

(2) A generalized sort routine which requires only the file name and,
in some cases, the names of the sort keys, in major-to-minor
sequence;

(3) A report generator which requires only the format of the desired
report and its included lines and fields; and

(4) The ability to handle information in tabular form and to obtain any

value from such a table when called for by the program.

13

ot
i

SOURCE LANGUAGE FACT

Any of these routines and special features can be used by means of a single source

language statement.

Throughout this section, numerous examples of source language are presented
for illustrative purposes. These examples adhere to several editorial conventions
which are not a part of the source language and are not used during actual program
preparation.

(1) Lexicon words are not underlined; all other words, which are under-

*‘lined, may be freely changed to conform to a particular application;

(2) Lexicon words which may be omitted without change of meaning are
enclosed in parentheses;

(3) Typical names or symbols (e.g., A,B,C) are used in some examples.
Elsewhere, the possible presence of a name is indicated by an under-
lined blank. Such names, symbols, and blanks in no way connote any
definition of or restriction on the names which the programmer may

use.

Names

The name of any information unit may contain any number of alphabetic charac-
ters and decimal digits, except that it must start with an alphabetic character. Im-
bedded blanks are not permitted; hyphens must be used to connect multi-word names.
The programmer may also assign a name to any paragraph or procedure. Names of
this type need not start with a letter; in other words, only paragraphs and procedures

may be numbered.

Modification of Names

Names of groups at any level may be modified by either adjectives or preposi-

tional phrases.

ADJECTIVES: A name may be preceded by one or more adjectives, written in order
from the least limiting to the most limiting. In other words, the adjective which de-
fines the broadest category is written first; that which defines the narrowest category
immediately precedes the name. For example, a file called WAREHOUSE may con-
tain an entry called PART which contains a field called NUMBER. This field, then,
is completely described by the modified name:

WAREHOUSE PART NUMBER.

PREPOSITIONAL PHRASES: A second method of modifying a name is by the use

of prepositional phrases involving the prepositions IN or OF. Modifiers of this type

FACT : SOURCE LANGUAGE

must be written in order from the narrowest to the broadest category. Thus the
above example , if Written with ‘.phra.sai modifiers, would appear as: -

- NUMBER OF PART IN WAREHOUSE.

(The reader is reminded that the 'nc;n'-'u.nderlined words are to be found in the

Compiler lexicon.)

- Any combinétiqn'of adjeciti?éi é./hd phrasal modification is acceptable, pfovided
only that each type _of mod"ifi'er‘is prééented in the correct sequence. Thus the fol-
lowing are both correct méthods of specifying the above field:

PART NUMBER IN WAREHOUSE;
NUMBER OF WAREHOUSE PART

Abbreviations

Any name may be followed in the source program by one or more abbreviations,
each individually enclosed in parentheses. An abbreviation may not include embedded
blanks. An abbreviation which follows a modified name applies to the name as modi~

fied and not merely to the name itself.

An information unit may be referenced by its name or by any properly assigned
abbreviation. Alternate abbreviations may be assigned at the same point or at dif-
ferent points in the source program. An abbreviation assigned to a group name must
not be reassigned within the same program. An abbreviation assigned to a field name,
on the other hand, may be reassigned to a different field name at another point in the
source program. When this type of dynamic abbreviating is used, an abbreviation
retains its assigned meaning during object program execution up to the time that a

new assignment is reached.

Literals
A literal is an explicit use of the actual value of an information unit, as opposed
to the use of the name of that unit. Literals may be either numeric or non-numeric.

The former may be written in the source statements in their natural form.

Non-numeric literals must be distinguished from other source language words,
since they are handled explicitly as written and not used to refer to other informa-
tion. This may be accomplished by preceding and following a non-numeric literal
with quote symbols ("). Since this symbol is not available on most card punches,
the symbol .. preceding and following the literal is interpreted in the same manner.
For example, the statement:

REPLACE TITLE BY ..SUMMARY OF OPERATING COSTS...

15

16

SOURCE LANGUAGE FACT

directs the Compiler to insert the words ""Summary of Operating Costs' in the field
named "Title''. Notice that the literal at the end of a sentence is followed by two dots
which comprise the literal marker and a third dot which denotes the end of the sen-
tence. If this is liable to result in any confusion, the entire literal with its literal
marker may be enclosed in parentheses without altering the meaning of the statement.
A non-numeric literal may never include the symbol which is used as the literal
marker. In other words, no literal containing two successive dots may be written

if this symbol is used, no literal containing a quote symbol may be written if quote
symbols are used, and no literal containing two successive dots followed by a closing
parenthesis may be written if dots and parentheses are used. A literal may not end

with a period if two periods are used as a literal marker.

Numbers
Cardinal numbers, in addition to being recognized as numeric literals, are
recognized from zero to billion when written out according to the spellings as given

in the Table of Numbers, Webster's New Collegiate Dictionary, except for the word

""Naught'. Ordinal numbers from first to billionth may be used as adjectives when
abbreviated according to the above table, except for the short forms 2d and 3d, which
are not permitted. A generalized or variable ordinal is written by enclosing the
name of the quantity in parentheses and appending the letters TH after the closing
parenthesis, e.g.:

(I)TH, or (M PLUS N)TH.

Numeric Quantities

Numeric quantities may be specified as field names, numeric literals, or arith-
metic expressions which are combinations of either or both. Such combinations may
be formed by the use of the lexicon words or symbols:

PLUS or +

LESS or MINUS or -

TIMES or MULTIPLIED BY or *

OVER or DIVIDED BY or /.
Parentheses may be used to denote the distribution of these operations. If no paren-
theses are included, all multiplications and divisions are performed before additions
and subtractions. In other words, in the absence of parentheses the words TIMES
and OVER (and their substitutes) are not distributive. For example, the quantity

A TIMES B PLUS Cor A*B +C

is equivalent to C plus the product of A and B, Likewise, the quantity

FACT SOURCE LANGUAGE

A/B-C*D
is equivalent to the difference between the quotient of A over B and the product of
C and D. Any other distribution of operations is expressed by the inclusion of
parentheses, as follows:

A TIMES (B PLUS C)

A/((B-C)*D)
These quantities are equivalent, respectively, to A times the sum of B and C, and

A divided by the product of B minus C and D.

Characters
The programmer may refer to an individual character, digit, or letter of a
field by an expression of the form:
FIRST DIGIT OF POLICY NUMBER
or (24)TH LETTER OF NAME
or THIRD CHARACTER OF ADDRESS,

counting from the left.

Sentences

Program statements take the familiar form of sentences, complete with terminal
periods and commas where customary. Construction is normally idiomatic, with the
exception of some plural forms and some definitions of combined conditions described
below. Words in a series may be separated by commas or by the word "AND', If
the latter is used, commas may also be written to improve readability, but they are
not required. Successive words must be separated by at least one space. It is sug-
gested that this rule be followed even where punctuation marks separate words. An
opening parenthesis must be preceded by at least one space except where it is the
first character of a line. The Compiler does not distinguish between one space and

several spaces, except in the determination of indentations.

No line in the source language may end in the middle of a word without hyphen-
ating. If a hyphenated multi-word name is written with its hyphen at the end of a
line, a second hyphen is required at the beginning of the next line. No line may
begin with a punctuation mark other than a hyphen, opening parenthesis, or a literal
marker. Every sentence, and hence every paragraph, must be followed by a period.
Two or more simple sentences may be combined using the connective AND to form a

compound sentence.

17

SOURCE LANGUAGE FACT

Source Program Statement Form

Source statements are written by the programmer using the Source Program
Statement Form, shown in Figure 3, page19. The contents of this form are used to
punch Source Program Descriptors, identified by a P punched in column 4. Columns
2-6 may be used to specify serial numbers, exactly as on File Outline Descriptors
(see page 8). The balance of the form (columns 7-80) contains the statements them-

selves, according to the paragraph technique described below.

Paragraphs

Source sentences should be combined, as nearly as possible, into logically
integrated paragraphs, as in normal English. The efficiency of segmentation in
the object program is related to the effectiveness of paragraphing in the source

program.

PARAGRAPH NAMES: The programmer may assign a name to a paragraph if he

desires to refer elsewhere to that paragraph as a whole. A paragraph name takes

the same form as any other name except that it may begin with a number. Alternate

names or abbreviations may be defined using parentheses, e.g.:
PAY-COMPUTATION (P-~C), (PAY).

The comma, is optional.

The first line of a paragraph (beginning with the name, if any) is indented by at
least one space with respect to any succeeding lines of the paragraph. The first
lines of all paragraphs within a given program must be indented by the same amount.
Alternatively, the paragraph name may be made to stand out by writing it on a sepa-
rate card preceding the paragraph. In this case, the position of the paragraph name

on the card is irrelevant.

These two ways of presenting paragraph names are illustrated by the following
two examples.
TAX. IF 13 TIMES OLD EXEMPT IS LESS THAN TEMPGROSS
SET TEMPTAX TO .18 TIMES (TEMPGROSS MINUS 413 TIMES OLD
EXEMPT).
TAX.
IF 13 TIMES OLD EXEMPT IS LESS THAN TEMPGROSS SET
TEMPTAX TO .18 TIMES (TEMPGROSS MINUS 43 TIMES OLD
EXEMPT).

61

Honeywell

(H] Ettioie Dite. Praessiag

12345678 91011121314151617 18192021 22 23 2425 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 7273 74 75 76 77 18 719 &

Title o o v o o s o o o o

Prepared By. « « « + « &

Date ..

..... . e e

Remarks. « « + o ¢ s o »

.

.

SOURCE PROGRAM STATEMENT FORM

s e e

e e e

P

e e e

.

.

« «Revision . ¢ ¢« o v v ¢ ¢ 0 o 0

. For Program .,

v s e ee.CheckedBYy o v v v o 0 o & ..

.

.

D S T R S S S R S S IR

FAcT

SERIAL
NUMBER

v

PROGRAM STATEMENTS

FORM NO. T1205

Figure 3.

1Ov4

I9VNONV1 3D2IN0S

20

SOURCE LANGUAGE FACT

SUB-PARAGRAPHS: Sub-paragraphs are logical sub-divisions of a paragraph and
are indented any desired amount with respect to the master paragraph. (In other
words, if the first line is indented n spaces with regard to the first line of the mas~
ter paragraph, then the body is indented n spaces with respect to the body of the
master paragraph.) The name of a paragraph encompasses all included sub-
paragraphs., If sub-paragraphs of different master paragraphs have the same name,
a specific sub-paragraph reference may be made distinct by using either adjectival
or phrasal modification. A blank line must follow a sub-paragraph which is followed

by a paragraph starting farther to the left.

SUBROUTINES: A paragraph or sub-paragraph may be used by the programmer as
a subroutine. The dynamic abbreviation technique described on page 15 provides a
method of generalizing subroutine parameters. For example, paragraph A is a
subroutine which computes the interest (I) on a quantity Q at rate R. The same pro-
gram contains two paragraphs called MORTGAGE and BANKLOAN which execute
this subroutine for different values of Q and R. These two paragraphs are written
as follows:
MORTGAGE. PUT MASTERFILE-PRINCIPAL (Q) INTO SUMMARY -
-PRINCIPAL AND MASTERFILE-RATE (R) INTO SUMMARY-RATE. DO
PARAGRAPH A. ADD I TO PRINCIPAL.

BANKLOAN. ADD LOAN (Q) TO TOTAL-LOAN. PUT CHARGES (R)
INTO CURRENT-RATE, DO PARAGRAPH A. ADD I TO TOTAL-INTEREST.

When A is executed from paragraph MORTGAGE, the subroutine computes interest
on MASTERFILE~PRINCIPAL at the rate MASTERFILE-RATE. When A is executed
from paragraph BANKLOAN, the subroutine computes interest on LOAN at the rate
CHARGES. The fields MASTERFILE-PRINCIPAL and LOAN may be of different
lengths.

Procedures
A procedure is a paragraph or group of successive paragraphs which perform
a particular computational task. The beginning of a procedure is indicated by either
of the titular forms:
PROCEDURE .
or PROCEDURE.

If a procedure is assigned multiple names, parentheses are used as follows:

ALPHA (BETA) PROCEDURE,

FACT SOURCE LANGUAGE

Then either of the names ALPHA or BETA may be used to reference the procedure.

All source statements following a procedure name are assumed to be a part of
that procedure until the programmer writes either the name of another procedure or
one of the following statements:

END OF (PROCEDURE) .
or END OF (PROCEDURE).

Notes

A sentence wholly enclosed in parentheses or a paragraph headed by the name
"NOTES." is defined as a note or set of notes. These may be inserted at any point in
the source language to describe a situation or a procedure in greater detail. Notes
are not compiled and result in no object coding, but are retained with the program and
reproduced as part of any program listing. Hence they are not limited as to vocabu~

lary. A paragraph entitled "NOTES. " must be followed by a blank line.

Data Placement

The verbs REPLACE and PUT are provided for moving data internally. These
verbs are followed by the prepositions INTO and BY, respectively. Either of the fol-
lowing statements will store the contents of field A in field B:

PUT A INTO B.
or REPLACE B BY A.
If the object field is compound, the contents of the subject field will be stored in both
places, for example:
PUT C INTO A AND B.
or REPLACE A AND B BY C.

If the subject field is compound, the component subfields are juxtaposed in order
of appearance, forming an extended field to be placed in the object field., For example,
the statement

PUT A AND B INTO C.
or REPLACE CBY AANDB.,
where A is a 3~character field, B is a 2-character field and C is a 5-character field,
will result in C containing as its first three characters the contents of A, and as its

fourth and fifth characters the contents of B.

The object program can distinguish blank fields from fields which contain infor -
mation (even zeros). The programmer may test for blank fields as in the following

examples:

21

22

SOURCE LANGUAGE FACT

PUT A INTO B UNLESS BLANK
IF BLANK, REPLACE B BY A. OTHERWISE,

When a Hollerith field is moved internally by a PUT or a REPLACE statement,
if the object field is not the same length as the subject field, the information is
justified to the left and either truncated or followed by the necessary number of
blanks. If the field moved is numeric, its resulting position depends upon the
scaling specified on the File Outline. The field is shifted to line up the specified
decimal~point positions. The high~order end of the field is either truncated or
filled in with zeros. The low~-order end of the field is either truncated or rounded

(as specified on the File Outline) or filled in with zeros.

The verbs PUT and REPLACE may be used to move either fields or groups.
If a group is moved, all included primary subgroups of A, down to but not including
the first secondary subgroup, are moved into like-named subgroups of B (if such
exist). A special case is the statement

PUT A FIELDS INTO B FIELDS
or REPLACE B FIELDS BY A FIELDS

where A and B are groups. In this case, fields and subgroups of A are placed in B
in the order specified by the File Outline, regardless of like or unlike names. Each
field moved is treated just as in the case of moving a single field with regard to

shifting, truncating, rounding, or filling in blanks or zeros.

If most, but not all, of a group or entry is to be moved, the data to be moved
may be specified in a single statement, rather than writing individual statements for
each unit of such data. Thus, if a master file group consisting of Name, Street,
City, State, Telno, Hours, and Rate fields is to be replaced by a detail file group
consisting of the same fields, the programmer may write:

REPLACE MASTER Group Name BY DETAIL Group Name,
In the above example, if all fields except Hours are to be replaced, the condensed
statement:

REPLACE MASTER FIELDS BY DETAIL FIELDS EXCEPT HOURS
has the same effect as the lengthier statement:

REPLACE NAME, STREET, CITY, STATE, TELNO, AND RATE

OF MASTER BY NAME, STREET, CITY, STATE, TELNO, AND

RATE OF DETAIL.

An attempt to move a field of one mode into a field of different mode will result in

an error indication during compilation.

FACT SOURCE LANGUAGE

Data Deletion

The verb DELETE may be used to remove a field or group from the entry being
processed or {o remove an entire entry from the file. It has no effect on a field or
group not yet created.

DELETE CHANGE - EO (GROUP),

Imperative Arithmetic

Numeric quantities may be combined and the result stored in a different field
by the use of the verb SET, as in the statement:
SET PRICE (EQUAL) TO COST PLUS PROFIT
which adds the value of COST to that of PROFIT and stores the result in the PRICE
field.

In addition, imperative arithmetic statements may be written using the verbs
ADD, SUBTRACT, MULTIPLY, and DIVIDE, as follows:
ADD A TO B.

DIVIDE B BY A. or DIVIDE A INTO B.
Each of these statements produces object coding which performs the stated operation
“and stores the result as the new value of field B, thus destroying the old value. In
any of the above statements, the quantity A may be a field name, a numeric literal,
or a numeric quantity (as defined above); however, B must always be a field name.

Thus, each of the following is a legitimate imperative arithmetic statement:

MULTIPLY C BY 2. (2% >C)
ADD A TIMES B TO F. (A*B+F———————F)
DIVIDE X BY Y PLUS 4. (X/(Y+4)———>X)
SUBTRACT X OVER B FROM E. (E-X/B—————>E)

In any of the basic imperative arithmetic formats above, either the A or the B
quantity or both may be compounded by the connective AND. Again, any quantities
which are compounded in the B field must be field names. For example:

ADD A AND B TO C.
produces the same result as the two statements:

ADD A TO C. ADD B TO C.
Similarly,

ADD A TO B AND C.

23

24

SOURCE LANGUAGE FACT

produces the same result as:
ADD A TOB. ADD A TO C.
As a slightly more complicated example:
SUBTRACT A AND B FROM C AND D.
has the effect of:
SUBTRACT A FROM C. SUBTRACT B FROM C.
SUBTRACT A FROM D. SUBTRACT B FROM D.
A series of simple and/or compound arithmetic imperatives may be written as a
single statement, using either the connective AND or a comma, as follows:

ADD A TO B, SUBTRACT C FROM D AND E AND DIVIDE E BY F.

Validity
If a Hollerith field of one maximum size is put in another Hollerith field of a

smaller maximum size, the overflow characters on the right will be lost and a vali-
dity error will occur. The same problem arises with decimal fields in other ways.
Many arithmetic operations may create numbers which contain more digits than are
provided for in the object field. If the excess digits are to the right of the low-order
end of the object field, they are truncated or rounded as specified by the object field
description. (In this case, there is no validity error.) If the excess digits are to the

left of the high-order end of the object field, the number is too large for the field.

If A is a numeric field, too large for B, the statement
PUT A INTO B
results in a validity error. Similarly, such errors may occur as the result of arith-

metic operations.

Two forms may be used in a statement to check the operation for validity error

and take corrective action if necessary. In the first case, the statement:

IF VALID, PUT A INTO B, OTHERWISE DO ERROR.
puts A into B unless a validity error occurs. However, if A is too large for B,
nothing is put into B and the procedure named ERROR is executed. Thus, this state-
ment results in an either/or situation. The second form is written:

PUT A INTO B AND IF INVALID DO ERROR.
This statement again puts A into B if no validity error occurs. However, if A is too
large for B, it puts a truncated version of A into B and then executes the error pro-

cedure.

FACT SOURCE LANGUAGE

Certain arithmetic statements imply the creation of many intermediate quantities,

of which any one or more might be invalid. For example, the statement:

SET C EQUAL TO (A +B)/ (A -B)* (A -B * B).
results in a sequence of six operations which may produce one or more validity
errors. On the other hand, the statement:

IF VALID SET C EQUAL TO (A + B) / (A - B) * (A - B * B),

OTHERWISE DO ERROR.
causes the error procedure to be executed if any of the intermediate results is in-
valid. The expressions IF VALID or IF INVALID apply only to the sentence in which

they appear.

A validity error which occurs as the result of a statement containing no IF
VALID or IF INVALID provision is called an unchecked validity error. The occur-
rence of such an error may subsequently be checked by writing an expression of the
form:

IF NO UNCHECKED VALIDITY ERROR,

or IF UNCHECKED VALIDITY ERROR.

Statements of the second type may be followed by an OTHERWISE provision. Either
of these statements checks all previous unchecked validity errors since the start of
the paragraph in which it appears. If validity errors occur because of a paragraph
or procedure which is inserted by means of a SEE, DO, or EXECUTE statement(see
page 26), such errors are not checked unless the inserted matter contains its own
validity checks. However, validity checks can be made on one or more specific
paragraphs or procedures by writing a statement which includes the condition:

IF NO UNCHECKED VALIDITY ERROR IN A, B, AND C,.

Where a portion of a program involves multiple possibilities for validity errors,
programming is simplified by checking entire paragraphs for validity rather than

checking each operation individually.

Control Statements

Three types of control statements may be used to perform a portion of the pro-
gram other than the next sequential portion. The first type, designated by any of the
verbs SEE, EXECUTE, or DO, directs the program to perform a single specified
paragraph or procedure and then return to the statement following the control
change.

SEE ALPHA,
DO NEW-ACCOUNT PROCEDURE.

25

26

SOURCE LANGUAGE FACT

The verbs SEE, DO and EXECUTE are treated identically by the Compiler. They
may also be used to change control to a sequential group of paragraphs or procedures
before returning to the original coding by writing
DO 11 THROUGH 14.
where 11 and 14 are assigned as paragraph numbers. The still more extended usage
DO 11, 12, 15 THROUGH 21, AND 24.
is allowed. (The alternate spelling THRU is also acceptable to the Compiler.)

The second type of control statement, which directs the Compiler to change con-
trol to a specified paragraph or procedure without returning to the original coding,

may be designated by any of the following forms:

GO TO .
or SKIP TO .
or RETURN TO .

The third type of sequence-~changing control statement is:
LEAVE PROCEDURE.
or LEAVE PARAGRAPH.

A statement of this form may be inserted in a procedure or paragraph, usually in
connection with a condition. When executed, it causes a control change to the next
operation to be performed following the procedure. That is, if the procedure was
reached in normal sequence or by a SKIP, GO, or RETURN statement, LEAVE
PROCEDURE changes control to the next sequential operation. However, if the pro-
cedure was reached by a SEE, DO, or EXECUTE statement, LEAVE PROCEDURE
changes control to the operation following the SEE, DO, or EXECUTE.

Conditional Statements

Several methods may be used to write conditional statements. The operation to
be performed may be made dependent upon the relative magnitude of two quantities
by writing one of the following expressions:

IF X IS GREATER THAN Y,

or IF X IS LESS THAN Y,
or IF X IS (EQUAL TO) Y,
or IF X EQUALS Y.

As stated earlier, the words in parentheses may be omitted without change of
meaning. Any of the above expressions may be written using the word WHEN in

place of IF. A conditional clause may be made negative by the inclusion of the word

FACT SOURCE LANGUAGE

NOT (IF X IS NOT GREATER THAN Y, etc.) or by using the word UNLESS in place

of IF in the above forms.

A condition affects only the statement in which it appears. If the condition is
followed immediately by the word OTHERWISE, then an either~-or situation is estab-
lished. In this case, if the condition is met, all statements are performed up to the
OTHERWISE, after which control skips to the following sentence. If the condition is
not met, the conditional statement is not performed and control skips to the
OTHERWISE. A simple example follows:

IF X IS (EQUAL TO) Y, ADD A TO B. OTHERWISE SUBTRACT A FROM B.

Use of Tape Files

Except where using the powerful functions SORT or UPDATE which implicitly
include all necessary file handling procedures, a tape file must be manipulated by

explicit program statements,

OPENING FILES: Before any tape file may be used, one of the following statements
must be written:
OPEN (FILE) A.
or GET (FILE) A.
More than one file may be opened by normal compounding of these statements, as in

the example:

OPEN (FILES) A, B, AND C.

In addition to opening the file, the OPEN statement reads all primary information
at the file level into memory until a secondary group is encountered. Such informa-
tion might include, for example, file name, number of entries, date, and other in-
formation not related to specific entries. The GET statement also opens the file and
reads the same information into memory. In addition, it reads one of each secondary
group into memory until a secondary group is encountered whose rank is equal to or
higher than that of its predecessor. The amount of information read by a GET FILE

statement is called the first information hierarchy of the file.

Before an output file can be created, one of the following statements must be
written:
OPEN NEW (FILE) A.
or FILE (NEW) (FILE) A.

27

28

SOURCE LANGUAGE FACT

The verbs OPEN, FILE, and GET when applied to files cause the necessary
reading or writing of labels and directories, and any other action which is required

prior to obtaining or preparing the first records of a file.

CLOSING FILES: When processing for a tape file is complete, the file is closed by
the statement:

CLOSE (FILE) A.

All required action by the computer, such as the recording of trailing labels, is
performed by object coding produced by the CLOSE statement. Every file opened
must be closed. The CLOSE statement may be compounded in the same manner

illustrated for the OPEN statement.

GETTING AND FILING INFORMATION: Once a file has been opened, groups of in-
formation may be obtained from it by means of OPEN or GET statements and re-
corded by means of FILE statements. Here, as elsewhere, the term group includes
entry, which is the highest ranking group under a file. The statement:

GET NEXT group name.
obtains the first hierarchy of information in the next group of the given name. The
programmer can use OPEN in place of GET in any statement described here. In
each case, an OPEN statement obtains only the primary information of the top level
of the group instead of the entire first hierarchy as with the GET statement. If the
group contains various subgroups, any lower ranking group obtained may be deter-
mined by the condition:

IF group name.

To obtain a specific type of group within the current next higher ranking group,

the programmer may write:

GET group name.
and may include in the same sentence a condition:

(OR) IF NONE
followed by the procedure to be performed if this group is not present. If the pro-
grammer requests a group which does not occur in the current next higher ranking
group, or, if he does not indicate the above conditional clause and no group is found,

then an error is signaled and diagnostic information is produced.

If the programmer writes:
GET NEXT GROUP.

the program obtains the next information from the file. This may be the first hier-

FACT SOURCE LANGUAGE

archy of a new entry or the next hierarchy of the current group. In order to skip
over intervening data to obtain another group of specific rank, the programmer may
write:

GET NEXT GROUP WITHIN group name.

A test for the end of the current group, entry, or file may be performed by
writing the following conditional phrase:

IF END OF group name, .

Information may be recorded in a file by writing the following statement:
FILE group name.
This statement files all primary information in the specified group down to the first

included secondary group.

After filing information on tape, the programmer may wish to indicate that the
end of a higher-level group has been reached and that no more information is to be
filed in that group. This is accomplished by writing the statement:

CLOSE (group name).
A CLOSE statement closes the specified group and all included open groups. A sub-
sequent FILE statement will file all closed higher-level groups, thus starting a new

higher-level group on tape, as well as filing the specified information.

Two precautions are pointed out regarding the obtaining and the recording of file
information. If data is generated in a secondary group before the preceding secondary
group of the same level is filed, data in the preceding secondary group is lost. Also,
if a request for a specific group name is not accompanied by a test for the end of a
higher-level group, large amounts of data may be passed over before a group of the

specified type is located.

In order to transfer an entire group or the balance of a group from one file to
another, the programmer may write:

FILE ENTIRE (GROUP) (group name) FROM (FILE) file name.

The two files involved must have identical file outlines. The programmer must
have given a prior OPEN or GET statement to obtain at least part of the group. He
may have changed and/or already filed any parts of the entry or he may have inserted
a new group by means of a FILE statement. However, any parts of the entry which
have been passed over (not filed and no longer available) will be lost. When a FILE

ENTIRE statement is given, it is not possible for the object program to tell whether

29

w
[}

SOURCE LANGUAGE FACT

the last output filed was from a group just obtained or from a previous similar group.
In order to allow the programmer to file changes or additions prior to a FILE
ENTIRE statement, the program always assumes that as much information has been
filed as possible in view of the last type of group filed. If the information last filed
was from a previous group, the programmer should close that group subsequent to
filing it and prior to the FILE ENTIRE GROUP statement. The phrase FROM (FILE)
file name may be omitted if no ambiguity is possible. On the other hand, any FILE
or FILE ENTIRE statement may have a phrase

IN (FILE) file name

if such is needed to remove ambiguity.

REVERSE FILE: If the programmer writes

REVERSE (FILE) file name.
Succeeding GET and OPEN verbs are executed with the tape moving backward until
a second REVERSE FILE statement sets up forward reading. The verb REVERSE
should only be applied to reversible files. The verbs DELETE and FILE may not be

applied to a file which is reversed.

RESTART: To facilitate restart procedures, the statement
SET RESTART

can be inserted at those points in the program where restart breaks are desired.

Definitions
A definition is an expression containing no verbs except "is' or "equals' or

their variants. Each definition must be assigned a name and made a paragraph.
Whenever a definition is referenced in a conditional statement, the definition is
tested to determine the resulting action. For example, the name "SENIOR' might
be defined as follows:

SENIOR. TENURE IS GREATER THAN 10 AND RANK

IS GREATER THAN LEADMAN,

This definition can then be used as the basis of a conditional statement of the type:

IF SENIOR ADD BONUS TO PAY.

The object program will examine the fields called "TENURE'" and "RANK!" in each

group to determine whether or not the condition is met.

Definitions may be combined and a name assigned to the combination. For
example:

ELIGIBLE. SENIOR AND GRADUATE CR OFFICER.

FACT SOURCE LANGUAGE

Here, the names "SENIOR'", "GRADUATE", and "OFFICER" must be individually
defined. (Note that ANDs are performed before ORs. Parentheses are used to de-
note any exception to this distribution.) In this case, the eligibility of employees (as
for a training céurse) is determined either by seniority plus education level or by
company officer status. The connectives which may be used in such combined def-
initions are AND, EITHER, OR, NEITHER, and NOR. The same connectives may
be used to combine conditions within a conditional sentence, with parentheses in-
cluded if necessary to clarify their distribution. It is important to note that defini-

tions produce no results by themselves, but only specify the manner in which a test

is to be performed.

Another method of indicating a conditional situation is by means of a value or a
set or range of values of a particular field, called a conditional field. The value or
range of the conditional field which satisfies the condition can be used as an adjective.
For example, a payroll file contains a field called NAME and a conditional field
called SCHEDULE in a group called EMPLOYEE. The latter may have either of two
values: '"S" for salaried or "H' for hourly. To perform a particular operation only
on hourly employee records, the statement:

PUT NAME OF HOURLY EMPLOYEE INTO ADDRESSEE.

specifies in adjectival form the same condition expressed in the longer statement:
IF SCHEDULE OF EMPLOYEE IS (EQUAL TO) .,H.., THEN PUT NAME
OF EMPLOYEE INTO ADDRESSEE.

Either statement results in a test of the value of "SCHEDULE'" to determine whether
or not the stated action is to be performed. The programmer could equally well have
said:

IF HOURLY EMPLOYEE, THEN=--=-=~--

LOGICAL MULTIPLIER: A logical multiplier is a factor in an arithmetic expression
or statement which can have either of the values one or zero. The programmer may
use the name of a definition as a logical multiplier. When the arithmetic is per-
formed, if the definition is true, its name has the value one; otherwise its value is
zero. For example, the following definition might be used as a logical multipliexr:

OVERTIME. HOURS IS GREATER THAN 40.

by referencing its name in the arithmetic statement:

SET GROSSPAY TO RATE * (HOURS + .5 * OVERTIME * (HOURS-40)).

When this statement is performed, if the definition of OVERTIME is true, this word

is assigned the value one; otherwise it is assigned the value zerc. This is equiva=

31

SOURCE LANGUAGE FACT

lent to writing the long conditional statements:
IF HOURS IS GREATER THAN 40, SET GROSSPAY TO RATE *
(HOURS + .5 * (HOURS - 40). OTHERWISE SET GROSSPAY TO
RATE * HOURS.

Sorting

The SORT statement is an especially powerful feature of FACT which causes the
generation of a merge~-sort routine specifically tailored to perform the requested
sorting with the amount of high-speed storage and the number of magnetic tape units
provided. Unless a sort is small enough to be performed entirely internally, a min-
imum of three tape units is required. When worthwhile, the first phase of the gen-
erated merge~sort routine will automatically be processed in parallel with the pre-
ceding source statements in order to save the time required for one pass over the
input data. Likewise, when worthwhile, the last phase of the generated routine will
automatically be combined with the following source statements in order to accom-

plish some additional work while the sorted data is being written on tape.

The simplest form of the SORT statement is:
SORT (file name),
This statement sorts every group in the specified file separately and according to
all of its component fields. The relative significance of these fields as sort keys is
determined by their order in the file outline. The sorted groups are also ordered as
specified by the file outline. This type of sort is illustrated in terms of the simple

file structure given in Figure 4.

% A
B
% C
D
% E
F
G
* H
I
D

Figure 4.

32

FACT SOURCE LANGUAGE

If this file is sorted by writing the above statement, the sort routine first sorts
all E groups within each A group, using F and G as major and minor keys, respec-
tively. All C groups are then sorted on field D, carrying the ordered E groups with
them. The H groups are sorted on I and D and finally, the A groups are sorted on
B. Within A, all of the ordered C groups end up ahead of all ordered H groups, as

specified by the file outline.

The most general SORT statement takes the form:
SORT (group name) ON (field names) WITHIN (higher-ranking group name).

This statement sorts the specified group according to a key made up of the fields
named. File keys must be named in order of significance, from major to minor.
Groups having identical keys remain in the order that they had in the original file.
Groups not specified in the SORT statement follow the sorted groups in the order
that they had in the original file, but all groups within the specified higher-ranking
group remain within that group. All groups of higher rank than the sorted groups
remain in their original order. Referring to the file shown in Figure 4, the state-
ment:

SORT E ON G AND F WITHIN C.
causes the sorting of all E groups on field G and then on field F within their related
C groups. All C,H, and A groups retain their original order and all C groups pre-
cede all H groups within any A group.

The SORT statement may be compounded so that different groups are sorted on
different keys, as in the statement:
SORT E ON G AND F WITHIN C AND H ON D AND I WITHIN A.
This statement causes sorting of E groups within C and H groups within A, but leaves
C and A groups in their original order, as well as all C groups ahead of H groups

within the related A group.

If only one set of keys is specified for two or more kinds of groups, the speci-
fied groups are intermixed and sorted jointly according to the stated keys. All un-
specified groups will follow the ordered groups and retain their original order. This
case is illustrated by the statement:

SORT C AND H ON D WITHIN A.
Referring again to Figure 4, this statement intermixes C and H groups and sorts
them all together on the common key D. All E groups retain their original order

within the related C groups.
If the WITHIN phrase is omitted, FACT assumes that the phrase WITHIN FILE

33

34

SOURCE LANGUAGE FACT

is intended. In this case, if the specified group appears in several different higher-
ranking groups, these higher-ranking groups are intermixed and sorted jointly. For
example, the statement:

| SORT E ON F.
intermixes all E groups from all C groups and sorts them all jointly. Since sorting
must not remove any information from its proper higher-level group, this type of
sort will necessitate duplicating much higher-level information in the sorted file,
Figure 5 shows a specific portion of a file organized according to Figure 4, both be-
fore and after sorting by the above statement. Note that after sorting two C groups
in this example, four C groups are recorded in the sorted file. In Figure 5, the

numbers in parentheses represent the values of the keys F.

Before Sorting After Sorting
C1 C1
D1 D1
E11 Ei1
F11 (1) Fi1 (1)
G11 G114
E12 Cc2
Fi2 (7) D2
G12 E21
Cc2 F21 (2)
Dz G21
E21 C1
F21 (2) D1
Ga1 E12
E22 F12 (7)
F22 (8) Gi2
G22 Cc2
E23 D2
F23 (9) E22
G23 F22 (8)
G22
E23
F23 (9)
Figure 5 G23

FACT SOURCE LANGUAGE

If (group name) is omitted, the result is the same as though a separate SORT
statement were written for every group containing the specified fields. In this case,
each such group is sorted separately and left in the original group sequence. For
example, the statement:

SORT (file name) ON (field names).
causes sorting of all groups in the file outline which contain any of the specified
fields. All groups of the same type are sorted separately on these fields and the

final sequence of the ordered groups is as specified on the file outline.

If a numeric key (or keys) is specified, the data will be sorted to arithmetic
order (negatives less than _pos_itives). If a non-numeric key (or keys) is specified,
the data will be sorted to standard collator sequence (blanks, punctuation marks,
alphabetic characters, and numerals). In either case, the output will be in normal

ascending sequence unless the verb SORT is preceded by the word REVERSE.

The Update Function

Undatin
Updatir

o ig the process of modifvin
1g 1s the process ol modifyir

ot

permanent master file according to the transactions and other activity in a detail file.
This process results in a new updated master file tape and, in many cases, in a
variety of reports and other output. One of the special features of FACT is the abil-

ity to generate updating routines for files containing entries of a single type.

The updating routines generated by FACT perform the following operations:
(1) GET information from master and detail files, compare the keys of
master and detail file entries, and test for the end of the data;
(2) UPDATE a master entry each time it is matched by a detail entry;
(3) Perform any necessary procedures each time that the compared
keys do not match;
(4) Perform any necessary procedures each time a master or detail
entry fails to occur in the correct sequence; and

(5) FILE updated information in new master file.

The UPDATE statement makes a generalized or skeletal updating routine avail-
able to the object program. Figure 6 is a flow chart of this skeletal routine, which
contains essentially the coding to perform operations (1) and (5) above. This routine
is specialized to perform a particular update by the statement of a series of proce-
dures which the programmer provides to perform the other three operations above.

Referring to Figure 6, these procedures are represented by eight procedure boxes

35

SOURCE LANGUAGE

FACT

Q == ®
GET NEXT GET NEXT TURN FLAG OFF;
GROUP OF GROUP OF GET NEXT GROUP
DETAIL DETAIL OF DETAIL

N

(8)

UNORDERED -~

COMPARE TO
MASTER <1 LAST FILED
PROCEDURE MASTER

TURN FLAG

(3) (1

2
IS FLAG ON P)
OFF jolES :
NO

UPDATED-MASTER UNMATCHED—
PROCEDURE MASTER
PROC EDURE
1
FILE ITEM FILE ITEM
UNCHANGED

NOTE 1: For all comparisons,
an "end of file item' larger than
all other items is generated tem-
porarily. When two such items
are compared, this procedure

is finished.

NOTE 2: Double boxes contain
procedures written by the pro-
grammer.

Al

COMPARE . MASTER

TO DETAIL TO
THIS LEVEL

(7)

DO WE HAVE
LOWEST RANK?

YES

TURN FLAG
ON

(2) 1

MATCHED-MASTER
PROCEDURE

Hl

WAS THERE A
DELETION ?

YES

END OF DELETED
GROUP P

NO

GET NEXT

\YE UNORDERED -
IS FLAG ON P DETAIL
PROCEDURE
NO
PUT LAST MASTER
GROUP IN BUFFER,;
PUT DETAIL IN
MASTER
NEW— MASTER
PROCED URE
(5) 1
GET NEXT MATCHED- NEW-
GROUP OF MASTER
DETAIL PROCEDURE

COMPARE DETAIL
TO MASTER

UNORDERED -
DETAIL
PROCEDURE

(6) J

UPDATED -NEW-
MASTER
PROCEDURE

FILE ITEM

REPLACE MASTER
GROUP FROM
BUFFER

|

Figure 6. Flow Diagram of Routine Generated by the UPDATE Statement

36

FACT SOURCE LANGUAGE

identified by the arabic numerals from 1 to 8. The successful interpretation of the
UPDATE statement requires that the programmer furnish properly titled procedures
to handle these eight circumstances. The successful operation of the generated rou-
tine requires that the master and detail files be arranged in the same sequence and
that every entry in the master file be identified by a unique key. However, detail
entries may have duplicate keys and entries may appear in either file which do not

appear in the other.

The following are the procedures that are used by FACT to generate an opera-
ting update routine. These procedures must be given the specified names in the
source program.,

(1) UNMATCHED-MASTER PROCEDURE. This procedure is executed
when a master entry is not matched by a detail entry. If this proce-
dure is not specified, the updating routine writes the unmatched mas-
ter entry on the new master file and reads another master entry from
the old file. A detail entry with a higher key than the unmatched mas-
ter entry remains in memory for the next comparison.

(2) MATCHED-MASTER PROCEDURE. When a master entry and a de~
tail entry are matched, the routine executes this procedure, which
includes the source statements required to perform the desired up-
dating. If the detail entry deletes the master entry, new entries will
be read from both files.

(3) UPDATED-MASTER PROCEDURE. This procedure is executed when
a master entry has been updated by all matching detail entries and is
ready to be written on the new master file tape.

(4) NEW-MASTER PROCEDURE. When a detail entry does not match any
master entry, this procedure is executed to create a new master entry
out of all detail fields which have the same names as master fields.

(5) MATCHED-NEW-MASTER PROCEDURE. When a new master entry
created by procedure (4) above is matched by a detail entry, the new
master entry is updated in accordance with the source statements of
this procedure. Thus a series of unmatched detail entries having the
same key will create a new master entry and then update it.

(6) UPDATED-NEW-MASTER PROCEDURE. This procedure is executed
when a new master entry created by procedure (4) above has been up-

dated by all matching detail entries according to procedure (5) above

37

SOURCE LANGUAGE FACT

and is ready to be written on the new master file tape.
(7) UNORDERED-DETAIL PROCEDURE. This procedure is executed
when a detail entry is out of sequence. A new detail entry is read.
(8) UNORDERED-MASTER PROCEDURE. This procedure is executed

when a master entry is out of sequence. A new master entry is read.

In summary, the desired updating routine is generated from a statement of the
form:

UPDATE B BY A. CONTROL ON Kn’ Kn

eKZ, AND Ki.

together with the necessary procedures which tailor the skeletal routine to the par-
ticular application. B represents the name of the old master file; A the name of the
the keys to be used in matching entries, in the order

1
from higher to lower levels in the file hierarchy. The UPDATE statement is im-

detail file; and Kn through K

mediately followed by a series of procedures having the titles listed above. If the

programmer wishes to execute the same procedure in two or more of the situations

represented in the flow chart, he may assign multiple titles to this procedure using

parentheses. For example, if the same procedure is used to update a matched master

and to update a matched new master, this procedure ‘may be titled:
MATCHED-MASTER, (MATCHED-NEW-MASTER) PROCEDURE.

The use of the update function is illustrated in the sample problem described in

Section VI.

Report Preparation

The third major function specifically built into FACT is the preparation of printed
reports from magnetic tape files. The process by which such reports are described
as input to FACT is described in detail in Section IV. Once a report has been unam-
biguously described by means of this process, a statement of the form:

WRITE (REPORT) .

will cause the information pertaining to this report from the current entry to be re-
corded on a report tape. If any ambiguity exists as to the location of information
comprising the report, the WRITE statement can be amplified by means of the word

FROM followed by the appropriate group, entry, or file name.

Information for printing a number of different reports can be interspersed on the
report tape for selective printing. Alternatively, report information can be repro-
duced directly as it is generated. As in the case of the sorting and updating functions,

the necessary information access statements (OPEN, CLOSE, FILE, and GET) are

FACT SOURCE LANGUAGE

automatically provided by the report generator. If the programmer should desire to
begin the next information on a fresh page, he should use the statement:

CLOSE PAGE (OF REPORT).

Tables

The programmer may include in his source statements one or more tables of
information (such as prices, taxes, freight rates, or trigonometric functions) to be
used by the object program in the course of some computation. Other source state-

ments can then look up any information presented in tabular form for use as operands.

The beginning of a table is indicated by either of the following titles:
TABLE .
or TABLE.
Following the title, the names of the respondents are listed in standard series form
and terminated by the word OF and the name of the argument, as follows:
BOND TABLE. Q-BOND-VALUE, E-BOND-VALUE, AND
H-BOND-VALUE OF YEAR.
Each respondent and the argument must be defined as a field in an Internal File

Outline.

Following the title and description of the table, the columnar positions of the
argument and the respondents are laid out on the Source Program Statement Form
by writing their names in the appropriate columns. The name of the argument must
be written to the left of the respondent names. The columnar position of each name
indicates the approximate columns of the source document in which the values of that
quantity will appear. This line is followed by the necessary number of lines com-
prising the table., The values listed for each quantity should be left justified within
the columns so defined for non-numeric quantities and right justified within these
columns for numeric quantities. The mode of these quantities is interpreted by
FACT from the Internal File Outline. Each data column in the table must be sepa-

rated from the adjoining column(s) by at least one space.

If the table contains more respondents than can be listed on a single line of the
Source Program Statement Form, the table may be divided into sections. All values
of the argument and the corresponding values of the first-section respondents are
then written in the first section of the table. The beginning of a new section is then

indicated by one of the following statements:

39

SOURCE LANGUAGE FACT

TABLE , CONTINUED.
or TABLE, CONTINUED.
The continuation statement is then followed by a line of column headings as before,
with the name of the argument at the left and the names of the second~section re-
spondents in the appropriate columns. A table may be broken into as many sections
as necessary in this manner. Each section must contain all of the same values of
the argument and all of the corresponding values of the included respondents. The
end of a table is indicated by one of the following statements:
END OF TABLE .
or END OF TABLE.

Table look-up is accomplished by writing the name of the desired respondent,
the word OF, and the quantity to be used as argument. Note that the quantity to be

used as argument can be referenced either by its field name or by its literal value.

For example, if a source program contains the bond table referred to above,
that same program can reference data from the table by means of a phrase such as:

E-BOND-VALUE OF 1926

using this phrase as an ordinary numeric literal. FACT interprets this phrase by
referring to the respondent named E-BOND-VALUE in the bond table and selecting
the value of this respondent which corresponds to the argument value 1926. Alter-
natively, the program can reference the table by means of the statement:

E-BOND-VALUE OF YEAR

where YEAR is the name of a field containing one of the argument values listed in the

table. If more than one table in the program includes the respondent E-BOND~

VALUE, the desired quantity may be more specifically referenced by the phrase:
E-BOND-VALUE OF 1935 IN BOND TABLE

Lexicon

The basic FACT vocabulary consists of the words listed in Table I, page 93,
plus the cardinal numbers (from zero to billion) and ordinal numbers (from first to
billionth) and the punctuation marks (), .. '""and . No lexicon word may be used
with any meaning other than that illustrated in Section III. However, they may be

included in hyphenated multi-word names which are defined in the program.

FACT REPORTS

SECTION IV
REPORTS

The requirements of a complete compiler system include the ability to generate
printed or punched card reports from information stored in tape files or derived
from processing operations. FACT includes a powerful and flexible report genera-
tor which is activated by simple source statements. The description of each report
to be generated is part of the input to FACT and includes a description of each type
of line and each field comprising the report. Once a report has been completely
described, each execution of a WRITE REPORT statement will generate the report
information pertaining to the file data currently being processed. This information:
is normally recorded on a special report tape for subsequent on-line or off-line
printing or punching. A number of different reports may be intermixed on the re-
port tape for selective printing or punching. If the programmer wishes to use ter-
minal equipment rather than a magnetic tape unit during the processing run, he may
designate immediate reporting. In this case, report information will be printed or

punched directly as it is generated.

Tabulation

Tabulation is the process of accumulating the individual values of certain detail
fields until a '"control break' is reached. At that point, a total line is generated con-
taining the accumulated values of the tabulated fields. This process can be extended
by accumulating these first-level totals until a different type of control break is
reached and then generating first- and second-level total lines. In this manner,

tabulation can be performed at many different levels within the same report.

For example, a file which is in sequence by employee number within group and
by group number within department might have a first-level control break on a change
in group number and a second-level control break on a change in department number.
Since employee number is the lowest level, its detail values are printed at level 00,
Whenever a change in group number is encountered, a total line at level 01 is gener-
ated following the last detail line in the group. Similarly, whenever a change in de-
partment number is encountered, total lines at levels 04 and 02 are generated follow-
ing the last detail line in the department. In general, a control break at any level

causes the generation of total lines at that and all lower levels.

41

REPORTS FACT

Report Description

The complete description of a report consists of:
(1) A Report Name Descriptor;

(2) A pair of Report Line Layout Descriptors for each line of the
report (optional);

(3) A Report Line Action Descriptor for each line of the report; and

(4) A Report Field Descriptor for each field of the report.
At the programmer's option, the Line Layout Descriptors may be entirely eliminated
and their contents represented on the Field Descriptors. This option depends en-
tirely upon the convenience of the programmer. If Line Layout Descriptors are
used, their contents are presented on the Report Layout Form shown in Figure 7,
pages 44-45., The contents of the Report Name Descriptor, Report Line Action De-
scriptors, and the Report Field Descriptors are presented on the Report Description
Form shown in Figure 8, page 46. All of these descriptors are prepared in fixed-~
field format. The following details, which outline the description of printed reports,

are equally applicable to punched reports.

Report Name Descriptors

These descriptors are used to assign the report name and form a means of
reference to the report from the source program statements. One such descriptor
must be prepared for each report to be generated. Report Name Descriptor informa-

tion is presented on the Report Description Form (Figure 8).

DESCRIPTOR TYPE -- Column 1: A Report Name Descriptor is identified by an

"R'" punched in column 4.

SERIAL NUMBER -- columns 2-6: The use of serial numbers on the Report Name

Descriptor is identical to the use of such numbers on the File Outline Form (see

page 8).

LINES-PER-~PAGE -~ columns 7-9: Up to 999 lines per page, including interline
spaces but not including top and bottom margins, may be specified in these columns.
This information must be right justified. If these columns are blank, the desired
paperfeed controls must be individually specified for each report line on the Report

Line Action Descriptors.

REPORT NAME -- columns 10~80: The report name is used to reference the report
in the source program statements. As with other names, embedded blanks are not
permitted in the report name; hyphens must be used to separate the words in a multi-

word name.

FACT REPORTS

Report Line Layout Descriptors

If the programmer wishes to use Line Layout Descriptors, he must prepare two
such Descriptors for each line of the report. Each pair presents a 120-columnimage
of a report line (or an 80-column image of an output card). Report Line Layout De-

scriptors are punched from information written on the Report Layout Form (Figure 7).

DESCRIPTOR TYPE -- column 1: Report Line Layout Descriptors are identified by

an "L' punched in column 1.

SERIAL NUMBER -- columns 2-6: The use of serial numbers complies with the
standard use of such numbers, except that the second card of each pair contains an

X overpunch in column 6.

SUBLINE NUMBER -- column 7: Two or more physical lines of print may be grouped
together and described as a single report line (i.e., the number of print positions in
a report line may be 120, 240, 360, etc.). A 360-position report line will be "folded"

or

]
[0

presented as three physical lines of print
applications (see page 52) since the fields which are used as operands and result in a
single crossfoot operation must appear in the same report line. Each physical line
of print within a folded line is assigned a subline number which is specified in column

7. Subline descriptors may have continuation descriptors.

LINE NAME -- columns 8-25 (1st card only): The name of a line may contain as
many as 18 characters. Hyphens must be used in place of embedded blanks in multi-
word names. The line name may be referenced directly in source program

statements.

LINE IMAGE -~ 1st card columns 26-80, 2nd card columns 8-72: This area, con-
taining a total of 120 columns, represents an image of the line layout, complete with
field placement symbols and literal information. These columns have a one-to-one
correspondence with the 120 print positions which are active during any printing run.
The placement of a field in the line layout is indicated by marking a carat (A) at the
point where the low-order (rightmost) character of the field is to be printed. Any
Hollerith character written in the line image area will be literally reproduced in the
resulting printed line, with the e xception of periods and commas, which are de-
scribed below. If the contents of a field extend into print positions where literal
characters are specified, the latter are suppressed and the field is printed. Literals
may be used to insert signs, names of units, background characters, or other in-

formation in th If the least-significant character of a literal is to be

43

REPORTS FACT

REPORT LAYOUT FORM

B L e R I Revision .« « ¢ v o s 0 s v v o o o s o s o o s n 0 s

Honeyweu Prepared BY . o+ oo o e e e e e For Program « « o o o o v v oo o s oo a o s o

m%mmﬁ DA v 4 v e v s e e s e e e e e e e s Checked BY o ¢ v v o o o o v v o n s s o s n s oo
Remarks

12345678 910ll12131415101718l9m2122232425ZbZ72829303132333435%373839&:1142434445464748")50515253545556575859606162636465666768697071HB‘MTSTG

e
LINE IMAGE

L] SER. NO. LINE NAME
o ola]e|e|o|x]e]ale|lzlole|ale|~(o|e|e|alsls]s|s|3ln]ase)aln|5]s]s|aln]n nle s]z]2 3]s e)5

afol=
HH R

FoRM MO TIZ08

Figure 7.
printed in the right-most position of a field, the carat for that field cannot be placed
in the line image. Instead, the programmer must specify the right margin of this

field in columns 46-48 of the corresponding Field Descriptor (see page 55).

The fields which comprise a printed line are inserted in the line layout at the
print positions indicated by the carats and in the order that they are described on

the Report Description Form. All the characters in a Hollerith field are inserted

into the line format. In a decimal field, leading zeros are automatically suppressed.

A decimal field which is not scaled internally is printed in the indicated print posi-
tions unless shifting is specified (see below). A literal decimal point may be written
in the line layout to indicate scaling of the printed field. An internally scaled deci-
mal field, on the other hand, is automatically shifted to align the internally carried
decimal point with the literal decimal point, except that a specified shift (see below)
is in addition to a scaling shift. If no literal decimal point is specified for an in-
ternally scaled field, the field is shifted right a sufficient number of places to drop
all fractional digits, and the integral digits are rounded and printed. Literal com-
mas may be used to distinguish thousands, millions, billions, and trillions. Such

commas will not actually print unless the number of significant digits is sufficient

FACT REPORTS

§€

FACT

ﬂ7819i1 8 91011121314151617 18192021 2 324252 27 2829 30 31 32 33 34 3536 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52535455565758596061626364656667686970717273747576777819m

2ND

« .
6|BlS

si3/sl8ls|slslaisis|s|sisleiclrRiziel2|rlelr|g|a|a|a]s|s|8|s|S]2[|s]a]a]s|2|8]s|n]e|8]snn]n8]2 5]8(8llz]zl|elele]t]e]le|s

Figure 7 {continued)

to require them.

If the generated report is to be punched, the image of the punched output cards
is presented in columns 26-80 of the first card and 8-32 of the second card; columns

33-80 of the second card are not used in this case.

Report Line Action Descriptors

Regardless of the inclusion or omission of Line Layout Descriptors, each line
of a report is described by a Report Line Action Descriptor. Lines exceeding 120
print positions {''folded") require a descriptor for each physical print line. These

descriptors are prepared using the Report Description Form (Figure 8).

DESCRIPTOR TYPE -- column 1: Report Line Action Descriptors are identified by

the presence of an "A" punched in this column.

SERIAL NUMBER -- columns 2-6: The use of serial numbers on the Report Descrip-
tion Form is identical to the use of such numbers on the File Outline Form (see

page 8).

LINE NAME -~ columns 7-24: If Line Layout Descriptors are used, these columns

must contain the same line name as punched on the first card of the corresponding

45

9%

REPORT DESCRIPTION FORM
THtle o o o o « o o o s o s ¢ o a v o o e v s s e s e e e Revislon ., ¢ ¢ v v 0o 00 v e e e e e e ee s e e

—————————
Honeywell Prepared By. o o« o ¢ o « & 4 & i et e e e et e e e FOr PrOgram o o s o o o o o s s s s s s s st o FAOT

(¥ .
:ﬂ}ﬂwﬂw@ﬁﬂm&w DALE v o v o « o o s o s s s s s s e e e e s as e s es o CheckedBy o v v v v v v v et e e oo e —

REINATKE ¢ o o o o o o o o s « o » s o ¢ 5 s s o o s o s ¢ 8 & o s o s 8 ¢ 8 o s s s v ¢ 0 6 s s 2w eS0T

1234567 8951HRIBIUILITIBIIANZ 22232425262728293031323334353637383940414243444546414849505152535455565753596061626364656667686970717273741576771879!)

Lt I I S S STRAT T =

[R| ser no. |LNES I REPORT NAME

S04

TYPE ~1POST-|
Al SER.NO. LINE NAME PPSI?IP ?vg TAB CONDITION OR CONTROL FIELD PRE-PRINT PROCEDURE PRINT CONDITION

Foor |z SHFT |4 waxno. | Lerr | ikt
F{ SER. NO FIELD NAME 7 z gc;dm;, warain [marain | FIELD IMAGE

+|=|=1e

TAR ACT ION
[FIELD SUPP,
SiGN
I
IMAL

EXTEN

H
3

FORM NO. TI207

Figure 8.

1Dovd

FACT REPORTS

pair of Line Layout Descriptors in order to relate the line action information to the
corresponding line layout information. If Line Layout Descriptors are not used,
these columns are used to assign the line name, according to the standard rules
governing names and abbreviations. For folded lines, the line name is omitted on

all but the first subline descriptor.

LINE TYPE OR LEVEL -- columns 25-26: A 2-character code is punched in these
columns to distinguish among the various types of lines which may be included in a
report. The following codes are permitted. Only the first subline of a folded line
requires line type specification.
TT (Title Line). Such lines contain identification and descriptive information
pertaining to the report. They are composed solely of literal information. The
first reference to the report in the source program statements generates all
title lines and causes a skip to the top of the next page after these lines are

printed. Title lines do not appear again in the same report.

NH (Normal Heading Lines). A report may include one or more of these lines
of columnar heading information. All such lines are printed each time a page
is ejected under control of the '""Lines Per Page' control from the Report Name
Descriptor or the "Pre-print Skip" or '""Post-print Skip'" control (see below).

Fields as well as literals may be included.

FL (Footing Lines). A footing line is similar to a heading line except that it is
printed at the bottom of each page. Normally, the carriage is directed to eject
a page following a footing line. If each page contains a fixed number of lines,
the footing line (if any) is the last one printed. If each page contains a variable
number of lines, the last line should contain a post-print control (see below);
however, a footing line is always spaced to the bottom of the page before the

page is ejected. Fields as well as literals may be included.

00 (Detail Lines). These lines, containing information from the data files or
created by the object program, form the body of the report. Every source
reference to the report generates the entire group of detail lines. To distinguish
detail lines from any possible total and final total lines which may be included in
a report, the former are referred to by their level (which is defined as 00),
rather than by a mnemonic line-type code. A blank line type is interpreted as

00.

47

REPORTS FACT

01-99 (Total Lines). If a report includes any tabulated fields, the lines which
present accumulated values of these fields are called total lines. The Line
Action Descriptor for a total line specifies in columns 25-26 the tabulation level,
from 04 to 99, to which that line pertains, Total lines do not require line names
unless they are referenced in the source prograxﬁ. If a control field occurs in

a total line, the preceding detail value of that field is used.

The programmer may designate a pair of total lines for each control break,
one containing columnar headings for the subtotals and the other the actual sub-
totals. Both of these lines will be generated by each control break at the cor-

responding level, Moreover, either of these total lines may be folded.

FT (Final Total Lines). This line is a variant of the total line which contains
final totals of all accumulated fields and is usually printed at the end of the re-
port. It carries an implicit level which is one higher than the highest-level

total line printed.

PRE-PRINT SKIP -- columns 27-28: These two columns specify the paper feeding
which is to take place prior to printing a line. Each descriptor may specify a sepa-
rate pre-print skip. Permissible controls are:
EJ - Eject to the first print line of the next page before printing this line;
01-99 - Skip the specified number of lines before printing this line;

Blank or 00 - Do not advance paper before printing this line.

POST-PRINT SKIP -- columns 29-30: These columns indicate the paper feeding
which is to take place after printing a line. Each descriptor may specify a separate
post-print skip. Permissible controls are:

EJ - Eject to the first print line of the next page after printing this line;

04-99 - Skip the specified number of lines after printing this line;

00 - Do not advance paper after printing this line;

Blank - Advance paper one line after printing this line;

ES - Eject to the first print line of the next page and stop printing after printing

this line.

It is recommended that paper feeding on the Honeywell 800 be accomplished by means

of the post-print skip control wherever possible.

COLUMNS 31-32 are not used.

FACT REPORTS

The remaining columns of a Line Action Descriptor are used to specify three

types of information whose effects are illustrated in Figure 9. This figure presents

Ix]

WRITE (Report Name).
The program performs a series of checks for control breaks starting at level 041 and
continuing up to the highest included level. At each level where a control break
occurs, the necessary tabulation is performed and a print line at that level is assem-
bled. After a line is assembled, a specified source program procedure may be ex-
ecuted if desired. Finally, the printing of the line may be made contingent upon the

truth of a pre-print condition statement.

TABULATION CONDITION OR CONTROL FIELD -- columns 33-48: In describing a
detail, total, or final total line, these columns may contain the name of the control
field at that level or the name of a definition whose truth represents a control break
at that level. These columns are not used on descriptors for type TT, NH, or FL

lines. In the case of a folded line, they may only be used on the subline 1 descriptor.

A control break is said to occur at a given level if any of the following occurs at
that level:
(1) The control field designated at that level changes value (does not apply
at detail level);
(2) The tabulation condition named in columns 33-48 is true (a blank tabu-
lation condition is defined as true); or

(3) A control break occurs at a higher level.

PRE-PRINT PROCEDURE -- columns 49-64: The programmer may designate here
the name of a source program procedure to be performed prior to printing a line.
The normal rules governing procedure names (see page 20) apply. Continuation
descriptors may be used if the name exceeds 16 characters. A pre-print procedure
is performed after all crossfooting and tabulation have been performed on the cur-
rent line and immediately before testing the Print Condition (see below). In the case

of a folded line, only the descriptor for subline 1 may designate a pre-print procedure.

PRINT CONDITION -- columns 65-80: The programmer may designate here the
name of a definition to be tested immediately before printing the current line. Con-~
tinuation descriptors may be used if the name exceeds 16 characters. When a print
condition is tested, its truth allows the line to be printed. In the case of a folded

line, a separate print condition may be specified for each included subline.

49

WRITE REPORT

SET CONTROL
BREAK
INDICATORS

PERFORM NECESSARY

IS THERE A

DO PREPRINT

IS THE PRINT
CONDITION TRUE? |YES

PRINT . DETAIL

IS THERE A
DETAIL LEVEL TABULATION OPER PREPRINT PROCEDURE. LINE.
ATIONS. ASSEMBLE PROCEDURE?
CONTROL BREAK P LINE OF PRINT \
NO lNO NO
-
IS THERE A \ PERFORM NECESSARY IS THERE A DO PREPRINT JIS THE PRINT PRINT FIRST
FIRST TOTAL LEVEL JYES | TABULATION OPER - PREPRINT YES PROCEDURE CONDITON TRUEP [YES 9! TOTAL LINE
| ATIONS. ASSEMBLE .
CONTROL BREAK ? LINE OF PRINT. PROCEDURE?
NO No
NO
y
|
|
IS THERE A PERFORM NECES! IS THERE A DO PREPRINT IS THE PRINT PRINT TOP
TABULATION OPER-
TOP-LEVEL CONTROL | ATIONS. ASSEMBLE PREPRINT ES PROCEDURE., CONDITION TRUE ? [ESypl LEVEL LINE.
BREAK P . PROCEDURE ? '
LINE OF PRINT. .
NO
No I NO
EXIT
Figure 9. Flow Diagram of Actions Resulting from WRITE Statement

SLIIO4TY

1OVv4

FACT REPORTS

Report Field Descriptors

Each field which is to be used in a report must be described on a Report Field
Descriptor, punched from information presented on the Report Description Form

(Figure 8).

DESCRIPTOR TYPE -- column 1: Report Field Descriptors are identified by the

presence of an "F' punched in this column.

SERIAL NUMBER -- columns 2-6: The use of serial numbers on Report Field
Descriptors complies with the standard use of such numbers. If these numbers
are assigned, each descriptor presented on the Report Descriptor Form must be
serialized according to one over-all numbering sequence (i.e., each Report Name
Descriptor followed by the related Line Action Descriptors and each of the latter

followed by the related Report Field Descriptors).

FIELD NAME -- columns 7-24: The name of each field to be used in preparing a
report is placed in these columns. If the field name exceeds 18 characters, con-
tinuation cards may be used. The standard rules for field names apply. If no line
layout is prepared, a literal which does not lie within a field is made the contents

of an un-named field.

TABULATION ACTION CODE -- column 25: This column is used to specify which
fields in a line are to be accumulated and tabulated on control breaks. Permissible

codes are T, A, and blank.

T (Tabulate) or A (Accumulate). Either of these action codes directs that the
current field is to be tabulated. If one or more fields in a line have either of these
action codes, the Line Action Descriptor for that line must designate a control field
or a tab condition. Each time that a control break occurs, the accumulated value of
all tabulated fields at that or any lower level are used to generate a total line and
then cleared to zero. If the accumulated value of a tabulated field exceeds the as-
signed length of that field, the overflow information is not lost unless the accumula-
ted value exceeds either eleven digits or the allotted number of print positions in the
total line, whichever is smaller. A tabulated field may be referenced directly in the
source statements by using the name of the line in which it occurs as a modifier for
the field. For example, the total grosspay of a department could be referenced

either as DEPARTMENT GROSSPAY or as GROSSPAY OF DEPARTMENT.

Blank (do not tabulate). Fields which are described by a blank in column 25

are not tabulated.

51

52

REPORTS FACT

FIELD SUPPRESSION -- column 26: Fields which are described by an "'S'" in column
26 are unconditionally suppressed and must not be represented by a carat in the line
layout description. Unconditional field suppression may be used, for example, to
suppress quantities used in a crossfooting operation (see columns 27-29 below).
Fields which are described by a blank in column 26 are printed normally unless they

are conditionally suppressed according to the code in column 30 (below).

CROSSFOOTING -- columns 27-29: Crossfooting is the performance of addition or
subtraction on two or more decimal fields which appear in a single report line, the
result being inserted into the same report line where it may be referenced by source
statements. A crossfoot operation is specified by placing any Hollerith character in
the addition column (27) of each field to be summed and the subtraction column (28)
of each field to be subtracted and the same character in the result column (29) of the
field in which the sum is to appear. Several different crossfoot operations may be
performed within a given report line, using a different character to represent each
separate operation. If several different crossfoot operations involve the same field,
that field may have more descriptors as necessary. Operand and/or result fields
may be unconditionally suppressed if desired. A single crossfoot operation may ex-

tend over all of the physical print lines comprising a 'folded" report line.

Figure 10 illustrates the use of the Field Suppression and Crossfoot columns to
set up two multiple crossfoot operations within a single report line, suppress cer-
tain operands, and print certain results. The operations designated to be performed
in this illustration are:

(1) A-C+D=G

(2) B+E=H
All of the operands in these operations are unconditionally suppressed. Only the

results G and H are printed.

Columns 7-24 26 27 28 29
Field Name Supp. CF+ CF- CF=
A S X
B S Y
C S X
D S X
E S Y
F S
G X
H Y
Figure 10

FACT REPORTS

ZERO AND GROUP SUPPRESSION -- column 30: This column may be used to desig-
nate two different types of conditional suppression. Permissible codes are Z, G,
Z (Zero Suppression). This code applies only to decimal fields. If it is applied
to a non-decimal field, it will have no effect on the printing of the field. If the
value of a zero-suppressed decimal field is zero, the entire field is replaced by
blanks, including literal commas, decimal points, and floated characters, if

any.

Blank (Normal Suppression). A blank in this column has no effect on non-deci-
mal fields. With decimal fields, it has the effect of suppressing only zeros to
the left of the first non-zero digit. If the value of the field is zero, only a single
zero digit is printed in the print position indicated by the carat. In this case,

literal commas, decimal points, and floated characters are not printed.

G (Group Suppression). This code applies only to fields which appear in detail
lines. If it is applied to a field which does not appear in a detail line, it will
have no effect on the printing of the field., A field which is group suppressed is
printed only in the first detail line following a total line and is then suppressed
until the appearance of the next total line. Group suppression is usually used to
suppress identical values of control fields, printing only each new value of the

control field in the line in which it first occurs.

SIGN SPECIFICATION -~ column 31: This column is used to specify the convention
which will represent positive and negative signs in the related field. The following
is a list of the permissible codes and the actions which result if the related field con-
tains a negative or a positive sign, respectively:
(1) P or Blank: The position immediately to the right of a signed field will
contain either - or blank.
{2) C: The above position will contain either CR or blank.
(3) B
(4) R: The above position will contain either CR or +.
(5) F

The above position will contain either - or +.

The position immediately to the left of the high-order digit in a
signed field will contain either - or +.

(6)

g

The position immediately to the left of the high-order digit in a
signed field will contain either - or blank.

(7) A: Absolute value; no sign information is printed.

53

n
o

REPORTS FACT

(8) H: The card column containing the high~order digit of a signed field
will also contain an 11 or 12 overpunch.
(9) L1: The card column containing the low-order digit of a signed field

will also contain an 11 or 12 overpunch.

The sign codes H and L are provided for specifying sign conventions in punch
card reports. If these codes are used in a printed report, the character with the
sign will be non-numeric. All other codes may be used in connection with either

printed or punched reports.

CHECK DECIMAL -- column 32: If the code ""D" appears in this column, a check
digit is automatically computed and appended to the right of a decimal field. The
check digit prints in the position designated by the carat. If any other code (or no
code) appears in this column or if the related field is non-decimal, this column is
ignored. The value of the check digit is computed by multiplying the low-order digit
of the field by one, and successively higher-order digits by 2, 22, etc. These pro-
ducts are summed and 1 is added to the sum. The units digit of the result is the

check digit.

INCREMENT -- columns 33-35: These columns may contain a right-justified nu-
meric increment from 000 to 999 which will be added to the contents of the related
field before printing. Incrementing may be used for counting, in which case the
initial value of the field to be counted is automatically set to zero unless otherwise

specified.

SHIFTING -~ columns 36-38; These columns may be used to indicate the scaling
of decimal fields which are not internally scaled. If the related field is scaled both
internally and by an amount stated in these columns, the scaling stated in columns
36-38 is in addition to the internal scaling. The related field is shifted in the man-
ner indicated by the code in column 36 and by the amount specified (right-justified)
in columns 37-38. The permissible codes for column 36 are R, T, L, and blank.
The effects of these codes are as follows:
(1) R: Shift right the number of places specified in columns 37-38 and
round the result;
(2) T: Shift right the number of places specified in columns 37-38 and
truncate the result;
(3) L: Shift left the number of places specified in columns 37-38 and fill

in the same number of low-order digit positions with zeros;

FACT REPORTS

(4) Blank: Do not shift the related field, except as required for internal

scaling.

If columns 37-38 are blank, then column 36 is ignored. If columns 37-38 con-
tain a number and column 36 is blank, the field is not shifted but is rounded at the
specified position from the right. All digits to the right of a rounded digit are set

to zero. Several examples of shift codes and their results are shown in Figure 14.

Scaled Number | Shift Code | Shifted Number | Field Image Printed Number
123. 456 RO1 12.3456 . AN [12.346
1234.56 Lo2 123456, . Al 1123456,000
1234.56 TO02 12,3456 J oAl 12,34

Figure 11.

FLOATED CHARACTERS -~ column 39: Any character {usually $ or %) placed in
this column is printed immediately to the left of the high-order digit in the related

e 1

field. Floating characters apply only to decimal fields.
MAXIMUM NUMBER OF CHARACTERS -~ columns 40-42: If the maximum length
of a variable-length field to be printed is different from the maximum length given

in the File Outline Form, then the maximum length to be printed is specified in

these columns, justified to the right.

LEFT MARGIN -~ columns 43-45: The starting print position of a variable-length
field is written in these columns, justified to the right. (The ending position may be
specified in the Right Margin columns or by means of a carat on the line layout).
Variable-length fields are printed left justified at the stated starting position and
continue between the designated left and right margins through as many lines as

necessary. These columns are not used to describe a fixed-length field.

If the programmer chooses to prepare complete Line Layout Descriptors, then
the related Field Descriptors are completed with the preparation of columns 1-45 and
columns 46-80 may be left blank. If Line Layout Descriptors are not prepared, col-

umns 46-80 are used to present the layout information.

RIGHT MARGIN -~ columns 46-48: The ending print position of a field is written in

these columns, justified to the right.

FIELD IMAGE -- columns 49-80: An image of the field is written in these columns,

exactly as would have been done on Line Layout Descriptors. The field image is

55

m

o~

REPORTS FACT

presented with a carat in the low-order character position and may include literal
characters, background, a decimal point, commas separating thousands and mil-
lions, etc., as described under Line Layout Descriptors on page 43. The position
in the field image which contains the carat corresponds to the ending position speci-
fied in the Right Margin columns. If the least-significant character of a literal is to
be printed in the right-most position of a field, the image of that field must be justi-
fied to the right (i.e., the least-significant character must appear in column 80).
If a literal is not to be printed within a field, it must be made an un-named field un-

less a Line Layout is used.

Execution of Generated Reports

FACT includes a select and print routine which selects and prints the reports
generated onto the report tape. The reports on this tape may be printed in any pri-

ority which the programmer may specify.

FACT INPUT DATA DESCRIPTION

SECTION V
INPUT DATA DESCRIPTION

If the functions of the program to be compiled include input data editing, then
the programmer must describe the format of the input data to FACT. Data which
is to be used as input to an object program may be punched on standard 80-column
cards in an unrestricted number of different formats. Each of these card formats
must be completely described on the Card Descriptor Form shown in Figure 12,
The description of a data card includes one (or more) lines to identify the card, fol-
lowed by one (or more) lines to describe each included field. (Here, as elsewhere,
the convention applies that a card which contains input information to the object pro-
gram is called a ''card", whereas one which contains input information to FACT is
called a "descriptor".) Thus the input which is required by FACT to create an input
editing program includes a deck of Card Descriptors, a deck of File Descriptors,

and the necessary configuration and control statements.

The Card Descriptor Form consists of the following fields, some of which per-

tain to every line of the form and some of which pertain only to certain lines.

DESCRIPTOR TYPE -- column 1: A Card Descriptor is identified by the presence

of a C punched in column 1.

SERIAL NUMBER -- columns 2-6: The use of serial numbers on the Card Descrip-

tor Form is identical to the use of such numbers on the File Outline Form.

FIELD NAME OR IDENTIFICATION CODE -- columns 7-22: These columns may
contain either the name of a field being described or the code which is used to identify
a particular card. The use of these columns in any given line is indicated by the con-
tents of the Mode columns (33-34). If the Mode columns contain the punches "ID",
then the contents of columns 7-22 represent the punch configurations which identify a
specific card, and columns 23-26 define the area of the card in which these identifica-
tions appear. For example, a particular data card might be identified by the con-
figuration ""276" in columns 1-3. The identification Card Descriptor for this format
would then contain the punches "ID" in columns 33-34, '"276" in columns 7-9, and
10103" in columns 23-26. More complicated card identifications can be handled by

the use of ¥ and X overpunches in column 26 to represent, respectively, the con-

57

89

CARD DESCRIPTOR FORM

Title & o v o o v o 0 6o o o s s v o o s s s e s essosesRevision o v v v v vt v v i i e

Honeywell Prepared BY. ¢ v o ¢« « s o o 0 o ¢ o s o a o s s o0 o0sc FOrProgram. . o « ¢« o ¢ o o ¢ s o ¢ s 0 o s 0 oo
@moﬂw“‘% Date & v v v o o s o s s o s o s s s s e v s s o s s es e o ChockedBY o v v v o o v e s s s 0 v s o s o a0 n _F__-A_O_Z-

ReMATKB . o o o 4 v o o o o o s o o s o s o o s s o 1t s s o o s s s s s o s8 8 86 s s s o v o s b v o8 e s 0 a0

1234567 89101112131415161718192021 2223242526 27 2829 30 313233 343536 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 71071 7273 74 1576 7T 18 19 &0

c| seriaL FIELD NAME SIZE SELEGTOR SIGN

NUMBER REPORT OR PROCEDURE NAME ACGEPTANCE CONDITION

b3 =
< Q
[-3
w ™

TO0

KEY
MODE
MODE ERROR
BLANKS
PLUS
LOCATION
DEGIMAL
POINT
NORMAL
ALLOTTED
LENGTH
MAXIMUM
LENGTH

o
-

JUSTFICATION
ACTION GODE

NOILdI¥OS3IA V1IVA 1Nd N

4
(3]

»
Q

~
o|jolo o o

S
[3)

18§C

19)C

:ol c

FORM NO. TI203

Figure 12

1ov4

FACT INPUT DATA DESCRIPTION

nectives AND and OR. For example, a card might be identified by either of two iden-
tification codes: (1) ""276'" in columns 4-3 and "Q" in column 79; or (2) '"138'" in col-
umns 1-3 and "P'" in column 80. The description of this identification convention re-
quires four descriptors, of which the first is a base descriptor and the others are con-
tinuation descriptors. The relevant contents of these four descriptors would then be

as follows:

Column 7 8 9| 23 24 25 26| 33 34
> 17 6lo 1 o 3 |1 D
Q 7 9 7 9 I D
1+ 3 8|0 1 o 3 |1 D
P 8 o 8 0 | I D

In combining multiple codes of this type, all AND operations are performed before
OR operations. In the above example, the existence of a Y or an X overpunch in col-

umn 26 is represented, respectively, by the signs + and -.

The identification Card Descriptor for a given card is followed by the series of
field Card Descriptors which describe all of the fields comprising that card. A field
Card Descriptor is distinguished from an identification Card Descriptor by the exis-
tence of any punches other than "ID" in the Mode columns (33-34). Thus the structure
of a Card Descriptor deck consists of an identification descriptor followed by all of the
descriptors for the related fields; then the identification descriptor of another input
card, followed by all of the descriptors of the fields in that card, etc. It is possible
that the input data may include one or more fields which are common to all of the in-
put formats involved. The descriptors for such fields may be grouped together fol-
lowing an identification descriptor which contains the punches "ALL'" in columns 24-

26 and no punches in columns 7-22.

A field Card Descriptor contains the name of the field being described in columns
7-22. Every field must be assigned a name, the length of which is virtually unrestric-
ted. The name, which may include any alphanumeric character (A-Z and 0-9) plus
the hyphen, may be punched anywhere in this area as leading and trailing blanks are
disregarded. Embedded blanks, however, are not allowed, which means that multi-
word names must be connected by hyphens, vis., PART-NUMBER, BASIC-PAY-
RATE, etc. However, a field name may be modified by adjectives or by prepositional
phrases exactly as in source language (Section III). For example, if the File Outline
Form includes a field called NUMBER within a group called PART, the input field
might be referenced either as PART NUMBER or as NUMBER OF PART. If the

59

INPUT DATA DESCRIPTION FACT

length of the name exceeds 16 characters (including hyphens), continuation descrip-

tors may be used to punch this information.

FIELD LOCATION -- columns 23-26: The starting and ending locations of the field
on the input card are punched in columns 23-24 and 25-26 respectively, using 2-digit
numbers from 01 to 80, The same number is punched as both start and end location
to describe a single-column field. Continuation descriptors may be used to combine
several non-continuous columns or groups of columns to form a single field in the
‘tape format. The field name appears only on the first descriptor of such a set, but
may be continued if necessary. The first non-continuation descriptor indicates the
termination of the set. Fields formed by combining non-contiguous sub-fields are
constructed by starting with the column(s) indicated on the base descriptor and ap-

pending sub-fields to the right in sequential order.

ROW SELECTOR -~ columns 27-32: One or more columns of an input card may be
used for more than one purpose. For example, throughout all or any portion of a
card, the numeric rows (0-9) may be used to store data while the zone rows (11 and
12) are used for control purposes. In such a case, the Row Selector is used to de~
scribe those punches which are to be used (or selected) as part of a data field and the
columnar limits within which such row selection will be used. Column 27 may con-
tain one of the punches S, U, or L, while column 28 may contain any single punch.
An "S'" means that the row specified in column 28 is selected. A "U' means that all
the upper rows are selected, down to and including that specified in column 28. An
"L" means that all the lower rows are selected, up to and including that specified in
column 28, Columns 29-30 and 31-32 specify the columnar limits within which the
selection described is effective. Any combination of non-continuous rows may be se-
lected by means of continuation descriptors. The limits specified in columns 29-32
must not lie outside of the field limits specified in descriptor columns 23-26, even

though the Row Selection process may be used in more than one input field.

FIELD MODE -~ columns 33-34: On an identification Card Descriptor, columns 33-
34 contain the code ID. On a field Card Descriptor, any of the following nine modes

of input data may be specified in these columns by writing the indicated codes:

(=
[}

FACT INPUT DATA DESCRIPTION

Code Mode Legal Characters
SP Single Punch 0-9, 11, or 12
NH Numeric Hollerithi 0-9

A Alphabetic 1 A-Z

AN Alpha.nurneric:'1 A-Z and 0-9

AS Alphabetic, Numeric and Sign{l A-Z, 0-9, 141, and 12 (or - and +)

H Hollerith Any legitimate punch

D Decimal2 0-9 and zone punches for signs
CD Decimal with Check Digit3 0-9

HD Hexadecima14 0-9 and B-G

oC Octa,l4 0-7

Single character codes may be punched in either column 33 or 34. For example,

the codes "A blank' and "blank A" are equivalent.

adle nne ~ae
culicL vl

MODE ERROR -- column 35: Each time that an input field is read from an input card,
its mode is compared with the mode specified in descriptor columns 33-34. If this
comparison fails, the resulting action is determined by the contents of column 35.

Acceptable punches in this column are E, B, Z, S, L, and blank.

E or blank If column 35 contains an E or a blank, any discrepancy in mode
results in an error indication.

Z If column 35 contains a Z, any incorrect punch is replaced by a
zero. In the CD mode, the check digit is corrected if necessary.

B If this code is specified, any incorrect punch is replaced by a
zero in the D, CD, HD, and OC modes. In the NH, SP, A, AN,
AS, and H modes, however, an incorrect punch is replaced by a

blank. In the CD mode, the check digit is corrected if necessary.

1. These modes may be intermixed to form a single field from non-contiguous
columns.

2. A decimal field in the Honeywell 800 may contain up to eleven digits.

3. A check decimal field or an unsigned decimal field in the Honeywell 800 may
contain up to twelve digits, including the check digit.

4. A hexadecimal or octal field may be up to one machine word in length.

61

INPUT DATA DESCRIPTION FACT

S This code may be specified only for the D, CD, and OC modes. The
smallest legitimate punch in an error column is selected. If no legi-
timate punch is present, a zero is substituted. In the CD mode, an
incorrect check digit after selection results in an error indication.

L This code may also be specified only for the D, CD, and OC modes.
The largest legitimate punch in the error column is selected. If no
legitimate punch is present, a zero is substituted. In the CD mode,

an incorrect check digit after selection results in an error indication.

BLANK COLUMN CONVENTION -~ column 36: This column is used to specify the
manner of handling blanks in the input data. Acceptable punches in this column are
E, B, Z, I, and blank.
E If column 36 contains an E, any blank in an input field, regardless
of mode, is considered an error.
B or If column 36 contains a B or a blank, any blank in an input field is
blank accepted. If the field is D, CD, HD, or OC, the blank is replaced by
a zero; otherwise, it remains a blank.
Z If this code is specified, any blank in an input field, regardless of
mode, is accepted and replaced by a zero.
I This code may only be specified for the D, HD, OC, or CD mode.
Leading and trailing blanks in an input field are accepted and replaced

by zeros; embedded blanks are treated as errors.

SIGN (for decimal fields only) -- columns 37-40: These columns may be used to de-
scribe a convention for designating the sign of a numeric field. The sign itself may
be punched anywhere on the data card. The punch convention specifying plus is
punched in column 37; the convention specifying minus is punched in column 38. Col-
umns 39-40 designate the input card column (from 01 to 80) in which the sign conven-
tions are punched. An unsigned decimal field is specified by the code UN in columns
37-38 and blanks in columns 39-40. If the programmer wishes to specify only a plus

or a minus convention but not both, column 37 or 38 may be left blank.

If plus and minus are not punched in the same input card column, continuation
descriptors may be used. Continuation descriptors may also be used to specify more
than two sign conventions for the same field. In the latter case, the related data field

may contain any of the specified conventions.

62

FACT INPUT DATA DESCRIPTION

If a numeric field is to be right justified (see below), signs may be positioned
immediately to the left of the high-order digit or overpunched in the same input card
column as the high-order digit. Similarly, if a numeric field is to be left justified,
signs may be positioned immediately to the right of the low-order digit or overpunched
in the same column as the low-order digit. The following codes may be punched in
columns 39~40 to specify one of these ''floating'' sign locations:

CODE INTERPRETATION

LS Leading sign (preceding high-~order digit)

TS Trailing sign (following low-order digit)

Lz Leading sign, zone overpunch (on high-order digit)
TZ Trailing sign, zone overpunch {(on low-order digit)

Overpunch sign conventions are restricted to the 12 and 11 punches. The same re-

striction applies whenever the signs are located anywhere within the numeric field.

If no sign convention is described, the following standard sign convention is
assumed:
(1) A field containing no zone punch (14 or 12) is considered positive;
(2) A field containing a 12 punch in either its first or last column is con-
sidered positive;
(3) A field containing an 14 punch in either its first or last column is con-
sidered negative.
Under this convention, the column containing a sign overpunch may also contain a
numerical punch representing one digit of the field. Obviously, a blank may be used

as a positive but not as a negative sign convention.

DECIMAL POINT -~ columns 41-42: These columns are used only with decimal fields
to indicate the position of the decimal point. If these columns are blank, the decimal
point is assumed to be immediately to the right of the low-order digit. If these col-
umns are used, the position of the decimal point is indicated relative to the above
position. A 2-digit number is written, right justified, to indicate the amount by which
the decimal point is removed from the above position. An 11 overpunch in column 42
or a scale ﬁumber without an overpunch indicates that the decimal point is to the left
of the low~-order digit. A 12 overpunch in column 42 indicates that the decimal point

is further to the right of the low-order digit.

NORMAL ALLOTTED LENGTH -- columns 43-45: In describing a variable-length
field, these columns specify a number of characters sufficient to accommodate most

appearances of the field. In describing a fixed-length field, these columns are not used.

63

INPUT DATA DESCRIPTION FACT

MAXIMUM LENGTH -- columns 46-48: The maximum length of a variable-length

input field must be presented in these columns, justified to the right, just as is done
on the File Outline Form for fields which are created internally., Therefore, if col-
umns 46-48 are used, columns 43-45 must also be used and the presence of punches

in these two areas defines a field as variable-length.

JUSTIFICATION (for numeric fields only) -~ column 49: This column is used to de-
scribe the justification of an input field. Acceptable punches are L, R, and blank.

L L punched in these columns specifies that the input field is left
justified; i.e., the high-order digit is punched in the left-most
column of the field. Blanks to the left of a left-justified field are
treated as errors, regardless of the Blank Column Convention
specified. Blanks to the right of a left-justified field are replaced
by zeros.

R An R punched in these columns specifies that the input field is right-
justified; i.e., the low-order digit is punched in the right-most col-
umn of the field, Blanks to the right of a right-justified field are
treated as errors, regardless of the Blank Column Convention speci-
fied. Blanks to the left of a right-justified field are replaced by
Zeros.

Blank A blank in these columns specifies that the input field is not justified
and that the treatment of all blanks is governed by the Blank Column

Convention specified.

ACTION CODE ~-- column 50: The manner in which information from data cards is
filed on tape is determined by the structure described on the File Outline Form, the
action codes assigned, and the order in which the data is received. The legitimate

codes which may appear in column 50 are C, E, R, and blank, which are defined as

follows:

C Any field which has an action code of C is called a ""change control
field". This means that a change in the value of this field from the
preceding value constitutes a control break and causes information
to be filed.

E Any field which has an action code of E is called an "existence con-
trol field". This means that each occurrence of this field constitutes
a control break and causes information to be filed.

R Any field which has an action code of R is called a "replacement

o~
S

FACT INPUT DATA DESCRIPTION

field". This means that the current value of this field replaces the
preceding value internally. Such a field never constitutes a control
break and never causes information to be filed.

Blank If column 50 is blank, FACT assigns an action code to the corres~-
ponding field as follows: (1) if the field is part of a secondary group
which contains no secondary subgroups (as shown on the File Outline
Form), an action code of "E'" is assigned; (2) otherwise, an action

code of "C" is assigned.

The action codes assigned by FACT in the absence of programmer-specified
codes are designed to handle the great majority of applications. Thus the program-

mer is not normally required to use column 50.

When a card-editing program is executed, the file structure specified by the File
Outline Form is established within the computer. As cards are read, the information
obtained from them is inserted into the proper locations in this structure by relating
the names of the input fields to the corresponding names in the file outline. Thus the
first occurrence of each field merely serves to fill out the file skeleton internally and
transfers no information to the file tape. As each field is read from an input card,
the program examines the skeleton to see if this field is already represented by pre-
vious information. If not, then the value just read is inserted at the proper point inthe
skeleton. However, if the corresponding field of the skeleton contains a previously
read value, then the program tests the action code and the new value of the field to
see if a control break has occurred. (Note that a control break may be any occur-
rence of an E-type field or a change in the value of a C-type field; therefore, the ab-
sence of a control break may be any occurrence of an R-type field or a repetition of
the previous value of a C-type field.) If a control break has not occurred, the field
value just read is inserted into the skeleton, replacing the previously stored value, and
no information is filed on tape. If a control break has occurred, all information
stored in the skeleton is filed on tape, except that which has been previously filed.
However, not all of the skeleton is cleared to receive new information. That portion
of the skeleton which is cleared consists of the smallest secondary group containing
the field which caused the control break. This group is entirely cleared, including
all of its subordinate groups and fields. Note that the related secondary group is the
governing factor in file creation. In this connection, the difference between primary

and secondary groups is critical because it determines the effects which subsequently

read fields will have on file creation, After clearing, the field which caused the con~

65

INPUT DATA DESCRIPTION FACT

trol break is stored in the skeleton. The technique of filing data is diagrammed in

Figure 13.

For example, Figure 14 shows the structure of a tape file to be written and the
formats of three types of input cards to be read, all in very simplified form. In this
figure, an entry (A) is composed of a number of primary groups followed by a secon-
dary group (H). This group, in turn, is composed of two fields (I and J) and a secon-
dary subgroup (K) which contains the two fields (L and M). The file is to be built up
by reading and editing cards of the types X, Y, and Z, whose contents are also listed
in Figure 14. If no action codes are provided, the Compiler assigns type E to fields
L and M, since they are the onlyfields which are part of a secondary group contain-
ing no secondary subgroups, and type C to all of the other input fields. Consider the

sequence of file creation if action codes are so assigned.

READ NEXT

»! INPUT FELD, [

IS CORRESPONDING

FIELD OF SKELETON
FULL P

STORE FIELD IS THERE A

IN SKELETON

CONTROL BREAK P

FLE ALL SKELETON
FIELDS NOT PREVI-
OUSLY FILED;CLEAR
RELATED SECONDARY
GROUP, INCLUDING
ALL SUBORDINATE f
GROUPS AND FIELDS;
STORE FIELD JUST
READ IN SKELETON.

REPLACE STORED
VALUE OF FIELD

WITH NEW VALUE.

Figure 13

66

FACT INPUT DATA DESCRIPTION

File Outline Input Card Type Contents
A X B DFG
B (type C)
C Y B I J
D (type C)
E z BI LM
F (type C)
G (type C)
*H
I (type C)
J (type C)
*K
L (type E)
M {type E)
Figure 14

The normal order which can be anticipated in the input deck is an X card, fol-
lowed by a number of Y and Z cards, each Y card being followed by a number of Z
cards., This is just another way of saying that lower-level information normally
changes more often than higher-level information. Assuming this general arrange-
ment of the input deck, then, the first three cards read will probably be an X, a Y,
and a Z in that order. The information derived from these three cards will just fill
out the internal skeleton. The next card is probably a Z card which causes the filing
of the entire skeleton, the clearing of secondary group (K), and the refilling of this
group with new information. Another Z card then causes filing only of the new group
(K), since the balance of the entry is already filed, and again clears and refills this
group. When a Y card is encountered, a control break can be assumed, since a card
containing only previously read information is unlikely. This, then, causes the filing
of all information not previously filed (in this case, the last K group), the clearing of
the entire group (H), and the refilling of fields (I) and (J). When an X card is encoun-
tered, a control break may be assumed for the same reason, and thus such a card will
cause all unfiled information to be filed and the entire entry cleared for new informa-
tion. The reader should note that the foregoing brief discussion of the example does
not cover every case which may arise, since every sequence of X, Y, and Z cards is
actually a special case. However, the actions which result from any such sequence

can be determined by applying the stated rules for file creation.

67

INPUT DATA DESCRIPTION FACT

REPORT OR PROCEDURE NAME -- columns 51-65: During the execution of a card-
editing program, the editing of any input field may be immediately followed by the
performance of any procedure which is defined on the Program Statements Form.
This technique, which is specified by writing the name of the desired procedure in
columns 51-65 of the Card Descriptor, allows the programmer to integrate program

statements with card-editing operations to achieve considerable editing sophistication.

A specific instance of the use of these columns is batch control, which is a tech-
nique commonly used to check the accuracy of input data. Batch control is achieved
by integrating the card-editing function with the report writer and the program state-
ments in the following manner. Detail data cards are read in batches, each batch be-
ing followed by a uniquely identified total card which contains the batch totals of all
fields which are to be checked. A report is described on the Report Description Form
which consists of the input fields to be batch totalled. The tabulation controls de-
scribed in Section IV are used to total these fields. This report is normally a dum-
my report; that is, the batch totals are never printed but are merely used for com-
parison with the totals read from the total card. Each input field is described on the
Card Descriptor Form in the usual manner, except that the description of the right-
most field to be checked contains the name of the dummy report in columns 51-65.

Thus, as the detail cards are read, the report writer is set up to accumulate the spe-

cified fields.

A source procedure must be prepared to check the batch totals against the total
cards. Appropriate action must be specified for balanced and out-of-balance batches.
Normally a balanced batch is accepted and editing proceeds with the next batch. A
typical corrective action for an out-of-balance batch might consist of reversing the
file tape, transferring the bad batch to an error-file tape, reversing the file tape
again, and continuing with the following batch. The procedure which does the com-
paring and takes appropriate action is named in columns 51-65 of the batch-total de-
scriptor. If a single balance procedure is to be used to check all of the fields on a
batch total card, the procedure is named on the last batch-total descriptor. Alter-
natively, separate procedures may be used to balance different fields. In summary,
each time that the object program identifies and reads a detail card, it enters the re-
port writer to accumulate the specified fields. Each time that the object program
identifies and reads a total card, it enters the specified procedure to perform a batch

check and any necessary resulting action.

68

FACT INPUT DATA DESCRIPTION

ACCEPTANCE CONDITION -- columns 66-80: These columns may contain the name

of a definition whose truth determines the acceptance of the input field. Th

,4
¢
;.n

4
€
[¢]

may be used to achieve many types of input validity checking in addition to the normal
checks for field length and mode. The acceptance statement might specify a series of
legitimate values for the input field, a range of legitimate values, or a series of such
ranges. For example, a field called RATE may contain any of the following legitimate
values: 175, 200, 225, 250, or 275. The descriptor for this field contains the name
CHECKRATE in columns 66-80. Each time that this field is read from an input card,
the following definition is referenced.

CHECKRATE. RATE IS 175, OR 200 OR 225 OR 250 OR 275.
If this definition is correct, the field is accepted; otherwise, it is flagged as an error.
If an input card format contains several detail fields plus a crossfoot total, this total

may be checked during editing by means of an acceptance condition.

Overflow Card Fields

It may be necessary to describe on the Card Description Form a field which is
too long to be contained on a single card. This may be a fixed-length field which is
divided between two or more input cards, or it may be a variable-length field which
in its longer appearances is divided between two or more input cards. In either of
these cases, it is necessary to prepare a special descriptor, called a subsidiary iden-

tification descriptor, to describe the overflow field.

A subsidiary identification descriptor contains the same information as any other
identification descriptor plus a continuation overpunch in column 6. It must immedi-
ately follow the card descriptor (or the last continuation descriptor) pertaining to the
overflow field. The subsidiary ID descriptor (or its last continuation) must be imme-
diately followed, in turn, by an overflow card descriptor which specifies the columns
occupied by the field on the overflow card, using the Field Location columns (23-26).

The Field Name columns on this descriptor are left blank.

If the overflow field is variable in length, this pair of continuation cards is suf-
ficient to describe any number of overflow cards, limited only by the maximum field
length stated on the base descriptor. If the overflow field is fixed in length, a similar
pair of continuation cards (subsidiary ID and overflow descriptor) is required for each
overflow card comprising the entire field. All of these continuation cards must con-
tain the customary overpunch in column 6. If serial numbers are as signed, subsidiary

ID and overflow descriptors are simply numbered in the normal sequence. The cor-

69

INPUT DATA DESCRIPTION FACT

responding input cards which contain the various portions of an overflow field must

be presented to the computer in the correct order.

Name Association

As has already been described, an input editing run may reference the FACT re-
port writer, by means of the Report or Procedure columns, to perform certain oper-
ations on the input data. Sometimes the report writer is used during input editing to

generate information which is to be included in the file being written.

For example, a file of bond redemptions is being written for use in updating a
master file of bond records. The information describing three different bonds is
punched in each redemption card. The input run which prepares the redemption file
includes the necessary batch control provisions to accumulate vertical totals on each
of the three columns of bonds being read simultaneously. Each batch of redemption
cards is followed by a total card containing three columnar totals to be compared with
the totals accumulated internally. To obtain the actual total value of bonds represen-
ted by each batch, it is necessary to crossfoot the three vertical totals, which can be
accomplished by the report writer. This produces a total which is available internally
but which has no name that can be referenced by source language. To make this total
available to the source language, it must be added to the redemption file outline. The
programmer inserts in this outline a phrase which specifies the batch total, followed
by a legitimate field name in parentheses, as follows:

FINAL TOTAL OF BATCH-TOTAL REPORT (TOTAL)

70

FACT SAMPLE APPLICATION

SECTION VI
SAMPLE APPLICATION

A simple payroll application is shown here to demonstrate the use of FACT inputs
in problem preparation. The sample payroll is illustrative only and not intended as a

general solution of payroll problems.

The sample payroll runs in two phases: one phase prepares a data file from cards;

the other updates the master file and calculates the payroll.

The card processing phase creates a data tape from the following types of input
cards:

0. Date.

1. New employee records.

2. Changes to be made to the master file.

3. Deletions to be made from the master file.

4. Hours worked by each employee.

5. Batch totals.
The hours cards are batched and eachbatch is followed by a batch-total card. Each
total card contains the batch number, the sum of the HOURS field of the detail cards,
and the count of cards in the batch. Batch checks are performed to verify that the de-
tail cards balance with the batch-total card. An error routine removes the bad batches

from the output tape and lists them in an ERROR-REPORT.

The second phase of the payroll run begins by sorting the input on employee num-
ber. Using the Update function, the detail file is then run against the master file, add-
ing new items, changing existing items, making deletions, and calculating the payroll.
Besides the updated master file, output from the maintenance run consists of:

1. Paychecks

2. DBond orders

3. Listings of deletions, unprocessed master-file entries, and erroneous

detail items.

The error report is illustrated twice. First, it is worked out completely using the
line layout format with fields and lines listed on the Report Description form. Then the
same report is completely worked out on the Report Description Form, utilizing the

field images.

71

SAMPLE APPLICATION FACT

One page of source statements is presented using the Source Program Statement

Form. In addition, the entire source program is shown in the form of a card listing.

-1
i~

vl

CARD DESCRIPTOR FORM
Title o o o o o o o s o s o o o o s o o o o o s s a0 0 s Revision .« 4 ¢ ¢ ¢ ¢ ¢ o ¢ 0 ¢ 0 ¢ ¢ ¢ 0 0o 0 0 oo

Honeywell Prepared By. o ¢ v o 4 ¢ o ¢t v o s et v o v v o o0 00 s For Program ,SAM.PLE_ PAYROLL /_-Acr
@ WD@M% Dat@ o o o o s o o s s s s e s b e e s e s e e e e e e Checked BY ¢ « ¢ o ¢ o ¢ o v 0 s o s 0 6 0 0 0 s o e O
ReEmAaTKB . o o 4 o « ¢ o o ¢ o s o s o 6 6 ¢ o 6 6 8 8 o 6 a s s s 6 o6 00 80 0006000080008 a0 0000

12345678 9101112131415161718192021 2223242526 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 721374 7516 11 18 19

1Ovd

o sERAL FIELD NAME SIZE SEL:°T°R ‘ég S'GNS , -;'3 §x 25 REPORT OR PROGEDURE NAME AGGEPTANGE GONDITION
3l ol>| 2 8 35‘3" & EEKEE =h [
HNEHEEEEEEIES R g“’g

e il o | | 1| 17 (D

g 2| MONTH 9119 5P E

3e 3] DIA]Y O | DI {EUIN

el L] YIEJAR 1213 D[[ElUN

sic 5 | 7 Ilb

oo bl [EMPLICIYEIE[-IND b oDl [EIUN G

7|¢ 71N INJAME 81213 H

sic A1 INW RIAITIE 2[4 DI | UN 4

s|C A INWEIEKEMPITIIIONIS 2191310 Dl | UN s

10]c HOE INWE BIOINIRE PluiciT 313D Dl | UN)

nje HIT INWE BIOND |- DIEINIOMT INJA

nfel | |HTITION 3[b||0 DL UM | | 2

nlc Hal 12 71 [7 P

ulo B EMPLIOYEIE|-INO b CIpl [EUIN C

18[C [l [CH INIAME 81213 H

14{C HSLCIH RIATIE 2&28 D UN "

n(c LG 1CIHE TEXEMPIT T IOINS 219310 Dl | UN 2

1sfc HTEICHE BIONDEEPIUIC|T 31135 Dl | IUN 2

1|c HELICHE BIOINIDI- DIE INIOMIT NIA

njc| | |I3[1[T|T]ON 3iblk0 DTN T

FORM NO, T1203

NOILVIITddV I1dWVS

vi

CARD DESCRIPTOR FORM

s U LRI I SRR RO R Revision . o ¢ o v ¢ o o o s s s v o 0 0 0 s o s o
Honeywell PreparedBy. . o v o ¢ v o s s 0 st st a s s e s e s For Program 0 A M PLE PA\(R.OH.- Fz.ﬁ
Lg] &WD"I@M% Date v v o o o o s s s v o e st e e e Checked BY « o o o o s o s s o s s s s s o s s o A)= &
REMATKS o o o o o o o s o o 5 o o o o s o s 8 s o 0 s o o s o s o o s » s se s o v s o s e s o sy

123456178 91011121314151617181920212223242526272829303132333435363138390414243444546474849505152535455565758596061626364656667686970717273747576771819&

NOILVDI1ddV FTdWVS

of semiaL FIELD NAME 5:5 55‘-:‘770" _ gg 5'°"§ " g@a §E ;g REPORT OR PROGEDURE NAME AGGEPTANGE CONDITION
el TTAT Tl IBloiNplalclcluM NAE D IUN | [D

2fc| | 12|01 [CIH] IAICICIUMIGRIDIS S o512 Dl | UN 2

el | {1 CIHE AICICUMITIAX 51315917 D UIN "

slel | al2] 1CIHE TAICICIUMIF [T A L0}k |+ DI [UN 2

sle] | PPBLCIHL AICISJUMITINIS[UR LISl |7 D] | JUN ”

slef | DL ICH] ACICUMARIETHHREM

o] | Rl+RJEINT 7111716 Dl | UV 2

sie] | 251 B 7] |7 1D

slol | R216| [EMPILIOWYIEE|FINIO b ¢Ipl EUN G

olc| | (7] DIEIL] [EMPILICIYIEE e CIo[[E|UN

uel | I8 [+ 717 IiD

afcl | 2(9] |EMPILIOIYIEIE]-INIC I |6 Cp| |EJUN

nlel | 310] RIP| {H|O|UR[S 31! D UN | SIUMMIA[TITION
ulc 315 N ID

s(C] | B2 BIAITICIHI-|S (UM 3115 Dl | JUIN |

wfe| | 1313] [BIA[TICIH|=INJUMIBIE R [{8[2|0 Al | YN BIAITICIH [CHIE G
wlo] T BIu] Blalrle K- clolulng AR D | v

i18|C

19|C

20{C

FORM NO, T1203

1OV

gl

FILE OUTLNE FORM

Title o o o o o o o o o o o o 0 o 0 0 o s 3 s 06 0 0 a0 a0 Revision « o ¢« v ¢ o s ¢ s o o ¢ o o s s 08 o 06 o o
Honeywell Prepared By. e For Program SAMPLE . PAYROLL FA CcT
@ S&MM‘DMMW% Date o 4 o v ot s va ot s e et ae e Checked BY + v v e o v o v o oo o v oo e e e ————
RemarkB s o o o ¢ o o o o o o 5 0 0 6 0 8 s s o 8 o8 s s o o s o0 T T S T T
1234567 861211121314151617 181920212223 24252 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 697071 7273747576 771 18 79 &
58 : e
0| SERIAL |NORMAL gﬁg NAME (DECREASING RANK)
NUMBER MLIOTTHI W 2 €| w |d (2] (>
e 233 8 (3|2 E
PR RIEHERE

o n &l | | olefrlal jul-Fh el | dpierral D] | (DD)

2|0 2 DIAITIE e
3o 3]] | OINITIH
4|0 y e | | _DJALY 1
5|0 5 YIEA R 1Ll
sfo b ¢ |EIMP|L [olY|E|E|-IRIE|ClORD
710 7 EMP oY IEIE|-INjol | [([EWMPILIO)Y|N|O])
'° 8 XINJEIW-EIMIPIL ol YIEIE], | (VW)

[yi NAMIE .
o] | /]o RIA[TIE
ulof | 1,1, EIX|EMP T OINS] [(IEIX EMPIT)
jof | /|2 BIONDI-DIEDVICIT], | ([BloNDIEDVIC[T])
slo| | |/|3 BioiNp|-[DEIVIOM 1 INAIT] 1O, | BloNDIENIoM])
o} | /¢ CHAINIGIE] [(lcH])
wlo| |]« kel 111
160 A [RIAITIE
wlof | 11]7 ElX[EMPIT] lolas| |(Elx[EmPT])
elo| | |/]9 B OINID|-IDEDIVICIT], | ([BloND[ED|V| ¢[T])
wol | /]9 (B olNDI-DIEIN oM INJAIT]1 o] | (BloINDIE N oM])
o | [2/o Blopvpi-|alelcluMulLialtlioi | (Blojnlalelc|uM)

FORM NQ. T1204 ra

15v4d

NOILVII1ddY ITdWVS

-J
o

SAMPLE APPLICATION FACT

N =
2
ql :
K~
A =
'y
=
R
]
=
R
2
]
S
8
8
. b3
° 3
. P
.o 3
<
3
-
e ®
I
> R
. T R -
Q. X y
.. ®
S
2. X
S, R
L . g
« VD *
m > —
. -y € |~ ~
nmu -3 S| >
R 3 Ao <
anmm..u < ~ FEEIE ~
L o o g 9 v ~lH O [}
WR.JC = w <| o] | Y =
o % o Ol ol W >
= K A <<] s}
3 ® S x| Ll < - =
. = SIS ES) 1 A Y
u : R FIIES 2~ = S
T . . £ < o< W | o)
. X | Ol v Y| ~| ~ [e) .
« o+ R <t ~ W]~ - X bWl .
. Y m K] T x| - WO o O
° - « W) < | D[>~ O] =~ o Wkl 2
. R o S x|o|wn < SIEEINIES MINESESIEIES
. & z ol H[Z{Wwla Wl Jd[=~ o zlD/od[o =W
. gl g DN SN < S ool] la
. &0 W NN S| >Lla[S3| Dol =w v >
. &l 9 Tl | s ol | »w N Q1w izlor v NI —
: &) & SIolS ool d]le[=[Jd][Jd[d v by djch 2 0
. M.wE Dol oluolol s oclwlalc|TIT [T T| O i=2 Q&
. Sy o= lololololslolalTizIH|OIQo IO/ ZININIO
. - ony 2 T < << < wT|u b olc ks loo]x[k[a
: *R o [Wlo | <l l<| </ d]lg</[Wla]lolas
> .8 * * o @ @malwnlol-]o]<t]w
a . = XUIN3 =3 ==
T -2 0= T4 [[
a8 o= aNNOX
4 » & g = INOd =
nmmmm TWw03g
=1 300N [Dl ololo]lal | ©
% SIONVHVIddY — — | =] ~| = ~|S
Wn. = 1140 ¥38NNN HO _— e ~]~~~ -~
M S| HINTXVI
o N mm ;
=g C mmu M
fFo o = “
w. 5Lm /234567870/23#567?70w
4 il 23 = = o A]] S A | o | o] o] | o[o o] o] @] #15
ol LZ m
B~ © ﬂ z
eE ~r— o 0 6 o, 0]o]lolo|lolo]lolololololo]lololo]o]g
H TN e v @ e R~ ®= o 8§ = o m ¥ ® = & s ® §

LL

FILE OUTLINE FORM

Title o o o o o s o o o s s s o 0 6 0 0 s s e b e e e s e Revision « o ¢ o v o s o ¢ o o o o 2 0 0 8 o s ¢ o o »
Honeywell Prepared BY. « + v vt ettt For Program SAMPLE | PAYROLL /j ﬁ-‘
@ g&mwomm% Dat® « o ¢ ¢ o ¢ ¢ o 6 0 ¢ 0 066 8 8 s s 8 68 600 Check@d BY o ¢ o ¢ s o o o ¢ 0 s s 0 o 0 s s s s oo ———
ReMATKB o+ o o o o o ¢ o o o o o s ¢ ¢ o o 0 6 4 6 6 0 6 8 8 s 5 a5 0 05 s o s s 8 e 0 0008 es o0 s a6
123456789 1Mt 13,1415161718192021222’1242526272829]]313233343536313839&414243444546474849505152535455565758596061626364656667686910717273747516Tl78190
0| SERIAL NORMAL. %gg NAME (DECREASING RANK)
NUMBER AUOTTI @ Z x| w |F 9] >
LENTH 2 23 3 (25 |3|ulx
e HREIHEEE
o 4l D] [2]R TIEM|P|-HIOJURIS
2)o| | Jul2| | o| 2[Rl | [TIEIMP|-|cRlols|S
3o | W3] | ol 12[R| | ITEMP-TIAX
slof | 4 D] 2[Rl | |TEMIP-[F]1[c|A
sfol | Jul5 2AR| | [1NIS|UR]=PRIEMICLNS|PREM)
sfol | |46 D[[2[R] | [RIE[THRIE|-[PRIEM] |(RIEITPRIE])
10| | 147 D NUM
0] | |4]8 PRINITIL | N[E
ool | [4]9 3 EIR[Rlo[RI=1 [TEM], | I([ED
ol | 1510 EMPILoly|EIEl-INof (JE]N])
nol | ls]s RIEIPlo[RITI-HIOlURIS| |([RIH)
20] | 1512 U MAISITIER[F[ULE] (MO INEM=IMAISITIERL I(INDLL [OILDI=IMASTEIRI=IFIVULIEL | (101
nlol | 513 DIATIE]
ulo| | |5y MolN[TH
sfef | 1515 DAY
9] | 1516 YIEIAIR
o] | 1517 XIPIAY[RIO[LIL - [RIEICIORID | ([PIR])
sfo] | 1518 EIMPIL [olY[EIE]- N0 ([EMPILIaYING)
wjof | 1517 NIAIMIE
/0| | |40 MTIE]
FORM NO. T1204

1ov4d

NOILVIITddV ITdWVS

8L

FILE OUTLNE FORM

NOILVYDI1ddV I1dWVS

Tl o ¢ ¢ ¢ o ¢ ¢ s 4 o o ¢ o s s 8 s 0 a e s s o oo Revision « « v o v o v o o o o 0 o s 8 2 06 0 ¢ o o o o
Honeywell Prepared BY. « o v o o v vt e vttt an e For Program 2AMFPLE PAYROLL = | F AGT
[g] gm‘om%% Date o o ¢ v o o o e o 0 e s 0 0 s a2 s 808 a a0 ae s Checked BY o ¢ o v ¢ v o s s o ¢ s 0 s 0 o o s o o
Remarkl. o ¢« ¢ ¢ o o ¢ 0 o o o 0 0 s 0 0 8 s o o s 00 euoeane @ 8 s 6 e s s e e a e s e e s st e e
12345678 510112 131415161718192021224‘*2425262728291'313233343536373839()414243444546474849505152535455565758596061626364656661686970117213747576771!190
O SERIAL NORMAL. §§§ NAME (DECREASING RANK)
NUMBER A&?\Eﬁ—ég § g._ gwg
3s3) ¥ 88225
tlo] | 16|/ EIXIEMIPITITIONNS| CHEIX|E IMIPITD
20| | |b]2 B |0|N|D|-|DIEIDjUIC|T] |¢{B|O|N[DIE|D|U|CITP
o] | {63 i Blolv|D]-|p|E|No[MIZ|N|AITIT[ON| |C|B|o|N|DIE [NjoM]
so] | |b|y BlOIN|D|-[AlcICiuMIUILIAITIZIOING |<|BlolnvDIA|CIC [ulMD
siof | |b]5 AlCICIUMI-|GRIOIS|S| |CJAICICIGIRIOIS (S
{0 blb AlICICIUMI-ITIAIX] [CIA[CICITIAIXD
110 b|7 AICICIUMI-FITICIAL [CJAlCICIF(ZIelaD
0ol | |6]8 AlCiClulMl- [TINs|UIRE C]AlCICluiml =T IVISIUIRD | [CIALC [C|TIMSIUIRD
9|0 b7 AlCICIUM-RIETITIRIEMEINIT] [ClAlc|CIRIEITD
10{0 '
H|o
A EEEaERSRRESRERE SRS RERRRRERERRR ARl
1310
14{0
15|0
5|0
17]0
18j0
19]0
zolo

FORM NO. TI204

1Ov4d

6L

g 5]

vl

g

SOURCE STATEMENTS FOR SAMPLE PAYROLL

1 NOTE. SAMPLE PROGRAM -~ A FILE MAINTENANCE PAYROLL PROGRAM DONE IN TWO

2

3
b
5
6

8
9

PHASES, A CARD READING PHASE (I) AND A FILE MAINTENANCE - PAYROLL CAL-
CULATION PHASE (II).

PHASE IT.

SORT DETAILFILE. (THE TAPE FILE PREPARED BY PHASE I IS SORTED ON
EMPLOYEE NUMBER.) OPEN DETATIFILE, OLD-MASTERFILE. PUT DETAIL DATE

INTO N DATE. FILE NEW-MASTERFILE.

10 NOTE. THE UPDATE FUNCTION WILL BE USED TO PROCESS THIS PAYROLL FILE.

11
12
13
1L
15
16
17
18

19

UPDATE OLD-MASTERFILE BY DETAILFILE, CONTROL ON EMPLOYNO.

MATCHED-MASTER PROCEDURE.

SEE PROCESS PROCEDURE.

MATCHED-NEW-MASTER PROCEDURE.

SEE PROCESS PROCEDURE.

1ovd

NOILVIITddV I1dWVS

08

+g

gl

v

)

20
21
22
23
2L

N
i

26
27
28
29
30
31
32
33
3L
35
36
37
38
39
Lo

Ll

UPDATED-MASTER PROCEDURE.
IF ACTION IS NOT ..PAID .. OR ..DELETED.. PUT ..NO CHECK OR DEL
.. INTO ERROR-TYPE AND WRITE ERROR FROM PR. PUT ..NONE .. INTO

ACTION.

UPDATED-NEW-MASTER PROCEDURE.

SEE UPDATED-MASTER PROCEDURE.

NEW-MASTER PROCEINMRE.
IF NEW-EMPLOYEE PUT NEW-EMPLOYEE AND EMPLOYNO INTO PAYROLL~-
-RECORD, AND PUT ZEROS INTO BONDACCUM, ACCGROSS, ACCTAX, ACCINSUR,
ACCFICA, AND ACCRET OF PAYROLL-RECORD, OTHERWISE PUT ..NONEXIST. EMP-
L .. INTO ERROR-TYPE, WRITE ERROR FROM DETAILFILE, AND DELETE NEW-

-MASTER ENTRY.

UNMATCHED-MASTER PROCEDURE.

PUT ..UNMATCHED MASTER.. INTO ERROR-TYPE AND WRITE ERROR FROM

UNORDERED-MASTER PROCEDURE.

PUT ..UNORDERED MASTER.. INTO ERROR-TYPE AND WRITE ERROR FROM FR.

NOILYDI11ddV I1dWVS

1ovd

18

s}

'd

jav)

o]

2 V]

412 UNORDERED-DETAIL PROCEDURE.

L3 PUT ..UNORDERED DETAIL.. INTO ERROR-TYPE AND WRITE ERROR FROM D.
Ly

45 PROCESS PROCEDURE. IF REGULAR-PAY SEE PAYCALCULATION FROCEDURE AND LEAVE
L6 PROCEDURE. IF CHANGE SEE MASTER-CHANGE PROCEDURE AND LEAVE PROCEDURE.
L7 IF DELETION SEE MASTER-DELETE PRCOCEDURE AND LEAVE PROCEDURY. PUT

e « ILLEGAL TYPE 1 .. INTO ERROR-TYPE AND WRITE ERROR FROM D.

L9

50 MASTER-CHANGE PROCEDURE., PUT CHANGE EXCEPT BLANK FIELDS INTO PAYROLL-

51 -RECORD. IF D YEAR IS GREATER THAN CLD YEAR PUT ZERQS INTO PR
52 ACCGROSS5, ACCTAX, AND ACCFICA.
53

54 MASTER-DELZTE PROCEDURE. WRITE DELETIONS, DELATZ PR ENTRY, AND PUT

55 +.DELETED.. INTO ACTION.

56

57 PATCALCULATION PROCEDURE. IF ACTION IS ..PAID ». PJOT . .2ND REG-PAY CARD.
58 . INTO ERROR-TYPE, WRITE ERROR FROM DETAILFILE AND LEAVE PROCEDURE.

59

60 OVERTIME. HCURS IS GREATER THAN L0.

™
Fenad
[€3}

ET TEIMP-GROSS TO RATE % (HOURS + ,5 % OVERTIME * (HOURS - 40)).
62 IF N YEAR IS GREATER THAN CLD YEAR PUT ZEROS INTO OLD ACCGROSS, OLD

63 ACCTAX, AND OLD ACCFICA. ADD TEMP-GROSS TO ACCGROSS.

1Dovd

NOILVDITddV ITdWVS

8

~d

‘g

el

6L
65
66
67
68
69
70
71
72
73

75
76
(i
78
79
80
81
82
83
8l
85
86

PAY-TAX. TEMP-GROSS IS GREATER THAN 13 * EXEMPT. SET TEMP-TAX

TO PAY-TAX * .18 3 (TEMP-GROSS - 13 * EXEMPT). ADD TEMP-TAX TO

IF ACCFICA PLGS .025 TIMES TEMP-GROSS IS LESS THAN 120 SET TEMP-
-FICA TO .025 TIMES TEMP-GROSS, OTHERWISE SET TEMP-FICA TO 120 LESS

ACCFICA. ADD TEMP-FICA TC ACCFICA.

SET INSPREM TO .75 PLUS (.22 TIMES OLD RATE). SET RETPRE TO .55
PLUS (1.15 TIMES RATE). ADD INSPREM TO ACCINSUR. ADD RETPRE TO

ACCRET.

ADD BONDEDUCT TO BONDACCUM. IF BONDACCUM IS LESS THAN BONDENOM
SET NUM TO ZERO, OTHERWISE SET NUM TO BONDACCUM DIVIDED BY BONDENOM.
SUBTRACT NUM TIMES BONDENOM FROM BONDACCUM. DO BOND PROCEDURE UNTIL

NUM IS ZERO.

WRITE CHECK FROM MASTERFILE AND PUT ..PAID .. INTO ACTION.

NETPAY IS COMPUTED BY REPORT CROSSFOOTING.

BOND PROCEDURE. WRITE BONDORDER AND SUBTRACT 1 FROM NUM.

NOILYDI1ddY FTdWYS

1DOVv4

€8

J

37
p 88
P 89
P 90
p 91
P 92
P 93
P 94
P 95
P 96
P 97
P 98
P 99
P 100
P 101
P 102
P 103
P 104

P 105

NOTH. PHASE I OF SAMPLE PROGRAM. THE FOLLOWING PROCEDURES ARE USED TO

MAKE BATCH CHECKS DURING THE CARD READING PASS.

SUMMATION PROCEDURE. ADD RP HCURS TO SUM-OF-HOURS. ADD 1 TO CARDS~-IN-

-BATCH.

BATCH-CHECK PROCEDURE. IF BATCH-SUM IS NOT EQUAL TO SUM-OF-HOURS OR BATCH-
-COUNT IS NOT EQUAL TO CARDS-IN-BATCH SEE BAD~BATCH. SET SUM-OF-HOURS

AND CARDS-IN-BATCH TO ZERO.

BAD-BATCH PROCEDURE. REVERSE NEW-MASTER. CLOSE PAGE OF ERROR~-REPORT.

L. PUT ZEROS INTO PRINTLINE, SET NUM TO 8.

BUILD. PUT EMPLOYNO AND RP HOURS INTO (NUM)TH EN AND EH. SUB-
TRACT 1 FROM CARDS-IN-BATCH AND NUM. IF CARDS~IN-BATCH IS ZERO WRITE
FRROR-REPORT, REVERSE NEW-~MASTER, LEAVE PROCEDURE. GET NEXT GROUP.
IF NUM IS ZERO WRITE ERROR-REPORT AND GO TO L, OTHERWISE RETURN TO

BUILD. END OF PROCEDURE.

1Ov4

NOILVDI1ddV I1dWVS

¥8

REPORT DESCRIPTION FORM

Title & v o ¢ s o o s o s 6 0 s m w8 s et e s e e e ReviSiON o o o v o o ¢ o o o s o o s s s s s 0 o o oo
Honeywell Prepared By. « « o o o s ¢ o o v o0 o o 8 s o 0 0o b 0 s For Program .S.A I.\/). :PL .E ?A XR .OL"’.'. FAGT
|H| Etutinie Data, Procumin Date « v v v v e et n e Checked By + o v + v o - e e e e L
REMATKS . « « o o« o o o s o s s s s o o na s s e n et

12345678 9104112i314151617 18192021 22232425 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 6566 67 68 697071 7273741576 11 18 19 8

NOILYD11ddY ITdWYS

R| SER NO. ;—FER“"{:GE T T RePORT NAME -
A}l SER.NO. LINE NAME TYP; @ﬁﬁ?& TAB CONDITION OR CONTROL FIELD >PRE-PRINT PROCEDURE. JPRINT CONDITION
£| ser NoO FIELD NAME § g j:%srs_ Z §§§mm gﬂg §:§:‘f§. et oot | FieLD mace
'R | 4]o|ER|H OR|-[R|E[PlO[RIT]
1A 2| PRIGIEI- HIEAD| NIG] HID|E[T] |2
3F 3| |PlalGlEl- N|VIMIBIER /
1A Y| IcloL|uimiyl- [HIEIAD] INGIS H{D 3
s|A 151 |ER[RloRI- LI NE 0lo /
s|F LLLUSIT] [EN
AR L2 LSy R
fF| L] 8 |2INp] e
ofF| i 119l 12IN[Dl RIH
101 ‘Uo SRID| |EIN
sFE L] BRPL R
effl |2 (YT AL EN
S|lA | 3L HITH] R
wFL L dsITIH) N
slF] 1)s] 1STIH] [FH
wlFL L6 LT IH] IEN
alF| | []2) |bTIH] RH
wlEl s ITHLEN || |
wlF| | L4l [7TH] HH
® FFORM N02r$207 XT H EN

1Dv4

a8

REPORT DESCRIPTION FORM
Title & ¢ 4 v o s o o o o s o 0 8 s s b e e s 4 e s s e e e ReviBion + o ¢ ¢ ¢ ¢ ¢ ¢« t ¢ o s o o o s s ¢ s o o o

(————
Honeywell Prepared By. o o o o ¢ ¢ s ¢ o o s 6 o 0 6 0 s 0 8 s s o ~+ » For Program 5.4./‘.’)?%- .E. —.Pﬁ)/.ﬁo. LL P f,-ACT
@ Eluitiouie Dt Phoorssivy DAt 4 v ot s 4 b e b e b e e e Checked BY o o o ¢ ¢ o = s s s o s s o o o s o s —————
REMATKB . & o o o o o o o o 5 o o s s s s s o o o o s o 4 6 ¢ s ¢ s o o s s o 5 s s s s 0 0 5 ¢ o 0 s s s s 08 e

1234567 8 9104012i314151617 181920212223 2425 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 697071 721374 1576 77 7879 &

1Ov4d

R| SER. NO. PLEIRNE;GE[“M—I;B’JR”T NAME T
TYPE {PRE~|POST-|
A| SER.NO. LINE NAME T_UPSI'\:‘III"J, Pgl?l‘;r TAB CONDITION OR GCONTROL FIELD PRE-PRINT PROCEDURE PRINT CONDITION
HHESAE tm«l SHIET | £ |waxno. [et | RiHT
£{ SER NO FIELD NAME gl2l1_1-17]2 §§'N°“ s| £ |5 |or cuar.|marain [marein | FIELD iMAGE
HANMEE G| 32|58 £l & 5
NELL 2] 3ITIH -
2
: L |
IRl |1]ol!] | 1¥|o[BloNDIOIRIDIER
s|Al 1/10[2] 1Bio|vDL-IHElaD!/ V|G HIDIEIT] |2
sIFl lilol3| IBP|AIGIE)
(AL [/ [ol%] IBlOIVID|ORDIEIR|~[L| 1IN|E] olo /
'Erlos M |EIMPLL Lo YINiO
*IFl Jloj6] M INIAME]
olFl 1110171 INL IMlo|MT
WIEL]of8] 1Y PIALY
2iFl 1ol 9 (M IVIEIAR .
siF| (/1/1o] M [BloiNIDIEINIO
WRL 0/ | IB6RIEILIET OIS
wiAl 1/1112] IDIEILI-HIEAD]INIGIS HDIEIT] |2
wlF| [1/131 biplalelg /
oAl DY DIELLET [ol|S|=IL L INE] olo /
wiF| 171115] EMPILIolYIN O
wlFL 121206 INL IMlolw|Tis
oF /171 Iy DAY
FORM NO. TI207

NOILVDI1ddY ITdWVS

98

REPORT DESCRIPTION FORM

= A eviBION ¢« « ¢ 4 o s+ s ¢ 8 s e s e 0w o b s e . e s
Honeywell ey LTI e SAMPLE PAYROLL T
[;_ﬂ Elestionic Dt Pracsssivey Dae & v v e e i et e e e s ChecKe@ BY o « v v o v = o oo s o nsesannns LI
REIMATKE o o o o o o o o o o o o o » s s o s s o s s a s o s 8 o 8 s s 3 s s s s o s 8 s o v s o s 9 o s s 00 v v
12345678 9103121314151617181920212223242526 27 2829 30 313233343536 3738394041 4243 444546 47 484950 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 697071 7273747576 771 718 19 &
R| SER.NO. FLE‘;ESHGE T RepoRT NawE
A| SER.NO. LINE NAME R ggli: :oa}- TAB CONDITION OR CONTROL FIELD PRE-PRINT PROCEDURE PRINT GONDITION
HESAN SHIFT g wmax.No. | LEFT | riGHT
F{| SER. NO FIELD NAME 3 §+ 1. é §§§ “‘E' g g@mm marain fmarcin | FIELD IMAGE
WA K207 (N YIELALR
2F] 1))218] M INIAIM
3F 17129 [Blo|ND|AICICIUM
sIFL 1/13lo] M AICICIGR0lSIS
sIFp L3l P JAICICITIAX
stFLB21 M JAICICIFLLICIA
"E 33 ML AlCICH YSIU
olF| 131 ML AICICRIEIT
"Rl A3IE] | I412|ERFoR
olpl 1/1316] |ERRI6IR - IHIEIADL NG HIDIET |2
ulE. 1/1312] [E|PIAIGIE] /
24l |/1318] [ERIRIORAILL IME 0|0 /
nif} 111319] [EMPILIelYINlo
wIFL 1ol INL [MolnT#
wif| /(A7) [N [DIAlY |
wwlF| /12 VIEAR
wiF| |13 |E[TRIOR-[TYPE
wiR| |/ ¥]Y ClHElC|K
wAl DS [TIATILIEL- (L[T|71E[TIELS
oAl [)\4b] [PIALYILLME] 2
FORM NO. TI207

NOILVII11ddV JTdWVS

1Ov4d

L8

REPORT DESCRIPTION FORM

Title & o o vt v e e i e s e h e e e e s e e e e e e Revision ¢« ¢ ¢ s o ¢ v o v o 0 v s 0 0 6 0 v o o o0 -
Honeywell Prepared By. v o v o ¢ ¢ 4 ¢ o 0 v o o 6 o b o 0 u e e For Program -S-A M. E lr-E:. FAX EO.L.Lv .. chr
@ MMDMM Date v o s it v e et e e e e e s s e e e e s e e e Checked BY v v ¢ o o o = o o s o s 0 e o o o o o o ——————
RemMarks, v v b v v o o v o e st ot v o ot ot o o ot st ettt e e e e e

1234567 89101112i3415161718192021 2223 24 25 26 27 28 29 30 31 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 10TV V273 M4 T576 T 18 19

1Ovd

R| SER.NO. FLERlNEsF;GE T RepoRT namE
A| SER.NO. LINE NAME ;g\'?; |£SITNP_ %’lﬁ& TAB CONDITION OR GONTROL FIELD PRE-PRINT PROCEDURE PRINT CONDITION
F{ SER. NO FIELD NAME § % e 5 . [x3IneR :HIET gm’ﬂ, MA"i;,TN Mif;::, FIELD IMAGE
a|2*|-|=|5|3fs HEAE
"L 1A7] [EMIPILIOlYNo
2F| 4|8 MlolV[TIH,
S\FL DY) N IDIALY
sIfl ilslo Y|EIA
s|F| 1115101 [TEEIMIPIHIolURIS
siFf D1s]2] N MloINITIH
(H 531N DIALY
SFL sl N IYIEALR
*lAL /15151 [PLAIYILILINIE] /
ol 11516 [TIEMIPleRlols|S SIA
nIFl 11170 ITEMIPITIALX A
2|FL |11518| TEMIPLEL (cla Z
w|F| 111519 [RIEITIPIRIE A
WL |/l6lo] |1YISIPRIE] A
slF| 1/161/] [BlolND|EDlulciT A |z
wAl 1/1412] [PlAYILLIME EQ]
a|F] 11413 INAIMIE
wiF| [1161%) [MIE[TIPAY A
wlF| 1216141 [TEWMIRSERolSIS
® fORM ﬁoé TI207 N ETP A

NOILVII1ddY ITdWVS

SAMPLE APPLICATION FACT

REPORT LAYOUT FORM

Title .+ 4 v o0 o v 0 00 oo e e r e st i e e Revislon . o« v v v o o o o v s s o s 0 s s o s s o

Honeywell Prepared By . o v vt o v o v 2o o o v s s o s s 00 v s s For Program .s!q M.Pé E. .Pf‘ Y 8 O. I'.L

@ Elesinie Dt Pracsiag T Checked BY « o v o v v oo v o v o v v v o nuans
Remarks

12345678 9101112131415161713198)212282425&212829!J3132333‘35%3138390‘14243“45“‘7484950515253545556?565060616263“65666763697071727314757677
UINE IMAGE)

—lulw|ejwe/riolalelinin

L| SER. NO. LINE NAME

-HIE

elejr|olel@iajlR|8%
C|H| |N|O]- A
M|P]. N|O]-| IH

FEIE SRR EAH

alalelsls
E
HIOlU

b3vat SR HFIHH

L

O

DII |N|G|

QO |O pr
>
[

2L

O [{re
=
=)

m [

BEdERD

O[> e

MIP|.|NIO]-| [H|OlUIR

<
—
=
%)
(52}

St EMIPL. INIC

. >
= A [b
™

3L

»
-

=l S

N EEAEAEE D

>
- r

~
[

e | [Z
_.l
™
=
=
—t
=
. > 0| >
. —
—
[«
=z
N
[l
=
©
=
<o
Cr
p=y

=
)
[l
ES)
=
(=]
=
w
[l
-
O
=
S
=]
>
SH ==
™
=
<
s
™M

A
HIE
IN
AD
ERR
D|I|N
N|S
ElA
IIN
IN

Al
oL
RIR
O|N
OIN
ElL
3
RIR
RIR
7
ALY
AlY
ALY

-
=
q;w}-'Q*DMNQ\\Rﬂ?\.uu~
S o oA]lMiMm|O O ® o [Mmic
\
mim M [L o[> o jm|r

— Il rjrjo(o(m

FORM NO Ti208

88

FACT SAMPLE APPLICATION

s S———
; FACT
{Aavs
8
b2
=~
!'.’9!!1 S 010N 121314151617 18192021 2 B24252%2128293031323334353637383940 414243444546 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 6263 64 6566 67 6369 N 2 BT BT BN @

s|slzlalsls|zz]3]s]s]s|sleieic|nin|z|ele|r|ele]s]s|s|s|s]s|s|s|s|s|8]s(2]a|2]a|2|s|2[]8 =[0858 2 5[B|8|e/s(2(aiz]e|2(c]e|e]]

LA
84
o5

|
!

Hiolulrlst | lEMeL Inlol. | Hlolulrls| | IEIMP]. o l. | W|olUIR]s| | IEMMIPL. IVl | HIOWUIRIS| | IEIMIP. IN[OL.| IHIO[URIS

LA A LA A LA A N A .
BIONID PIAIGIE A :
A
N el [Tle[T[AlLls ¢[Rlo[s]s TIAlx FlIjcla IINIS|UIR REE|T RAIGE] | A
", A N A A
2AGE] | A ,
| |
A A1 A/
A A A A A
A

89

06

SOURCE PROGRAM STATEMENT FORM

Title o ¢ v o s o o o s e o e 0 s 0 s o s 0 e 0 o o s s oo Revislon . o ¢ o v v v v e vt vt v v et o v o
Honeywell Prepared By. o « v v ¢ s ¢ o o o s v s o s v s s o s 0 0 un For Program SA M.F IrE-. ?AY. gQL L .. FAGT
[!ﬂ S&MMDDE,M% Date . o v o v o s 0 6 0o b 0 e bt e b e e Checked By . + v ¢ « » o o & I SR ——
Remarks. o v v v v i v v v i st e s o 6 s o s s o s e s s s e et e e e e e e e e I A T T

1234567 8 9101112131415161718192021 2223242526 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 697071 7273741576 1718 19 &

NOILVYDITddVY IT1dWYS

Pl SER aeR PROGRAM STATEMENTS
1{P 23
2P | [2{«] |ulP [D|A|TIE|D|-IN]EIW-M[A]S PRIOJCIEID|VIRIE].
el | |afs SIEJE] VPP PATIEDRI-MAISITIEIR] [PIRIOICIE IPUIRIE
4P 2k
siPl | [2f7] INEW-IMVAISITIER] [PRICICIEPIVIRIEL.
oP[| |2]3 TIF| INEWIEMPILIOYIEIE] (PJUIT] INJEWIEMIPILIONYIEIE] |ANID] [EMIPILIOIYN[D} {TIN|TIO| |PIALY [R|O|L|L|-|RIEIC|OIR|D|,
1LIERAE AINP| PUIT] [ZIER[O[S] [TIN] [BIOINPIALC[ClUML, | JACICIGR[0|SISL | IAICICITIAX, | IAIEICIZINISIURL | [AlC|CIFITIC]AL | JAND
Pl | Blo AICICIRIEIT] [o]F| [PIAY[RIOILILI-RIEICIOIR[DL. | | OITIHIER WITISIE] 1PU[T] {. 1. INJOIN[EIX|T|SIT].| [E[MPIL TN
oPl | 13]) ERRIOIRIFITIYIPIEL | MIRIZITIE] [E|RIR|0|R] [FIR[OM| [PIE|TIA{TILIFITILIE], | [AINID] [PIELIEITIE] INJEW-MAISTIER| ENTIR (Y
10| P 31
P 3[3] JUINIMA[TICIHIE D= IMAISITIEIR| IPIRIOICIEIDIURIE
2Pl | |31k PlulT UINMAITICIHEP] IMAISITIEIR IN| [EIRRIORIATIYIPIE] JANP] WIRITITIE] [ERRIOR] |FIRIOM [PIR
3P 315
wlPl | Blo| JUNIOIRPIEIRIEID[-MAISITIEIR| [PIRIOICIE P|UR E
s1PE 87 PlUIT UN|ORPIEIRIED| MAIS[TIEIR IIND IERRIRIORI-[TIYIPIE] [AINID] WRIZITIE] [EIRIR|OR] [F[R|oM] [PIR
18|P 3¢
ofPl 3L [UNPRPPIERIED]-DIEITIAIZIL] [PRIOICIEIDURIE
wlel | o PlUIT UNNIOIRIDIEIRIEIP| IDIETIAILIL IIN| [ERRIORI-[TIYIPIE] [AIN[D]| WR|Z|TIE| [EIR|ROIR] |FIR|OM D
wfpf |l
w[Pl | 42| PIRICICIEISIS] PRIOICIE[DVRIE]. LIF| IRIEIGIUILIAR|-[PIAN] [SIEIE] [PIAIY(CIAILICIVILIAITITION] [PIRICICIEPIUIRIE| JAINID] [LIE|AVE

FORM NO. TI1205

10vd

16

REPORT DESCRIPTION FORM

1OV

THIE « v v ittt e e e e e e e REVISION + « v ¢ v 4 4 v o b oo ee e eeee o eas
Honeywell Prepared BY. .« o ettt e For Program S AMPLE, Py ROLL, . FZW
H| Eldiouic Date, Procsshe — Date . oo v P Checked BY v v v v o o v o o o v s n s s os s L) A8
Remarks J) (/7L L CA T USYNG, ETELD T MAGE ..o o
12345678 9M01112i314151617181920212223 24252627 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 4 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 18 19 80
R| SER.NO. F‘-E‘;‘ﬁ,ie T ReoRT name T '
Al SER.NO. LINE NAME P iﬁﬁ" g&%— TAB CONDITION OR CONTROL FIELD PRE-PRINT PROGEDURE PRINT GONDITION
F{ SER. NO FIELD NAME 5|8 Tt [z |y sHeT §W~"°- LEFT } RIGHT
- g|a /| = [ERHINCR w| & | |oFcHAR [MarGIN fmarGin | FIELD IMAGE
HE MGt IR
"R L) | HLolETRIRIO[R| - RIE[P|O[RIT]
*IA 2| [PIAIGIE|-IHIEIAD] INIG HD|E T |2
3|F 3| BIA[TICIHI-INJUIMBIE R 2|4\B|AITIC|H] [N|O A
4|F Y| [PIAIGIE|- |NJUIMIB|E[R / HI3IIIN| |EIR[RIo[R PIAIGIE] | |n
SIAL LS| |ClolL {UIMINI-IHIEIA[D] 1 N GIS HD 3
L] 3lolEMPL. [Nol. | [HloluRls| | IEMPL INiol. |Hlo|UlRIS| A
L7 ClOEMPL. Mol .| IHloluiRrS| | IEIMPL IN|o|. IHlo|URIS|A
L8 N01EMPL. INlo| -1 HloluRS| | [EMIP|. Mol |HIo[U[RIS|A
"L 12 L20lEMPL. N0l | HlolRIs| | |EMPL Mol [Ho|URS|
oAl | 1110l |ERIR|oR|-IL] ! NE 0l0 /
el | L] ik [y 8 A
2iF) | 1/02] [11S[7] [RIH IH A
olFL 3] f2iNlp] EN 2|3 A
'fF 1] 12|NMD| [RIH 209 N
slFL 11181 13l] LE 38 A
6[F 16| [3[RD] kI Yl A
olf) | |7t lel 7 55]
o) | (18] luirlal [Rly 901 1,
wiFl |19 51714 EIN L8 R
oF | 2] TIH| [RIY 7|y iR
FORM NO. TI207

NOILVYDI1ddY 31dWVS

26

REPORT DESCRIPTION FORM
Title . ¢« s « « P e s e e [ReviBlOn o « o o o o s o o o o 3 = ¢ o o o o0 o o0

NOILYDI1ddV I1dWVS

Hﬂneywell Prepared By. . « « o « ¢+ P « « » For Program SAM-PLE —PA YPO LL F-Z&-f

[H) Cletiouic Dta Prsctsit ~ Date + o v ovvvwveeeeaa e Checked BY o o o v v o s o oo s annoeosnons L\ AN
Remarks /2 & - L/“ TE, USI'\/G’ FJELD CEMAGE. e
1234567aomumnuwmnwwwnﬁnnﬁmnnnwnunuﬁxnnnwaaﬂuﬁuuanwn2ﬂﬁﬁﬁwnwwﬂ&$uﬁﬁﬂwwmnnuunnnnnm
R| SER.NO. é’;‘sm T reoRT Nave
Al SER.NO. LINE NAME - PRRTPRNT| |74 CONDITION OR CONTROL FIELD PRE-PRINT PROCEDURE PRINT GONDITION
£ ser. nO FIELD NAME g g e i, ggmwnj : " 5:2;; e D | FiELD MAGE
M HEAE

HE| | 2l] Lbirlal [E g3 A

2IF 21 1b|TIH] RN 29 A

F) | j2i3) 17T H] BN 92 A

slF| | el {77 |H) [RIH /o4 A

stfl | lols] 18IT1H] EEIN /13 A

slF| ! J2l6] 18714 [l _ L9 A

7

]

9

10 "'—.

1

|2~—

13

1

5

16

17

18

|9- 1

2

FORM NO. Ti207

1ovd

FACT LEXICON
FACT LEXICON

ADD (verb) FIELDS (noun)

AND (conj.) FILE (verb, noun)

ARE (verb) FROM (prep.)

BLANK (adj.)

BY (prep.)
CHARACTER (noun)
CLOSE (verb)
CONTINUED (adj.)
CONTROL (verb, noun)
DELETE (verb)
DIVIDE (verb)
DIVIDED (adj.)
DO (verb)

EACH (adj.)
EITHER (conj.)
END (noun)
ENTRY (noun)
EQUAL (adj.)
EQUALS (verb)
ERROR (noun)
EVERY (adj.)
EXCEPT (conj.)
EXECUTE (verb)
FIELD (noun)

GET (verb)

GO (verb)
GREATER (adj.)
GROUP (noun)
IF (comnj.)

IN (prep.)

INTO (prep.)

IS (verb)
LEAVE (verb)
LESS (adj.}
LETTER (noun)
LINE (noun)

MATCHED-MASTER (adj.)

MATCHED-NEW-MASTER (adj.)

MINUS (prep.)

MULTIPLIED (adj.)
MULTIPLY (verb)

NEITHER (conj.)
NEW (adj.)

NEW-MASTER (adj.)

NEXT (adj.)

Table I

93

LEXICON

FACT

NO (adj.)

NONE (noun)

NOR (conj.)

NOT (adv.)

NOTE (noun)

OF (prep.)

ON (prep.)

OPEN (verb)

OR (conj.)
OTHERWISE (conj.)
OVER (prep.)
PAGE (noun)
PARAGRAPH (noun)
PLUS (prep.)
POSITION (noun)
PRIMARY (adj.)
PROCEDURE (noun)
PUT (verb)
REMAINDER (noun)
REPLACE (verb)
REPORT (noun)
RETURN (verb)
REVERSE (verb, adv.)
SEE (verb)

SET (verb)

94

SKIP (verb)

SORT (verb)

SUBTRACT (verb)

TABLE (noun)

THE (adj.)

THEN (adv.)

TIMES (prep.)

THROUGH (prep.)

THRU (prep.)

TO (prep.)

UNCHECKED (adj.)

UNLESS (conj.)
UNMATCHED-MASTER (adj.)
UNORDERED-DETAIL (adj.)
UNORDERED-MASTER (adj.)
UNTIL (prep.)
UPDATED-MASTER (adj.)
UPDATE (verb)
UPDATED-NEW-MASTER (adj.)
VALID (adj.)

VALIDITY (adj.)

WHEN (conj.)

WITHIN (prep.)

ZERO (noun)

ZEROES (noun)

ZEROS (noun)

Table I {(continued)

Honeywell
Elctioie Data, Phocessing

	0001
	0002
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	xBack

