PROGRAMMERS REFERENCE MANUAL

Honeywell

Doc. No. 70130072242A
M-1164

H112 DIGITAL CONTROLLER

PROGRAMMERS REFERENCE MANUAL

October 1969

Honeywell

COMPUTER CONTROL DIVISION

COPYRIGHT 1969, by Honeywell Inc., Computer Control
Division, Framingham, Massachusetts. Contents of this publication
may not be reproduced in any form in whole or in part, without per-
mission of the copyright owner. All rights reserved.

Printed in U.S.A.

Published by the Publications Department,
Honeywell Inc., Computer Control Division

CONTENTS

SECTION I
INTRODUCTION
Scope
H112 Controller Characteristics
References
SECTION II

MACHINE CHARACTERISTICS
H112 Controller Basic Operation
Registers Available to the Programmer
Registers Unavailable to the Programmer
Core Memory
Input/Output Characteristics
Control Panel
Auxiliary Control
Word Organization
Data Word Organization
Instruction Word Organization
Addressing
Instruction Repertoire
Memory Reference Instructions
Input/Output Instructions
Shift Instructions
Skip Instructions
Generic Instructions
Interrupts
Interruptible Conditions
Response to an Interrupt
Programming an Interrupt
Memory Organization
Extended Addressing (8K Memory)
Memory Wrap
Direct Data Channel
Power Failure and Initialization
Power Failure

Power Failure Interrupt

SECTION III
INPUT/OUTPUT CHARACTERISTICS

Program I/O Bus Interface Requirements

Signal Descriptions

1ii

1
Ul Ul W W W = =

[S SR AU R oS N O A A]
1

vV
| 1 1 1 ' 1 t
O ~N NN o

2-11
2-12
2-14
2-16
2-16
2-16
2-16
2-17
2-17
2-18
2-18
2-19
2-19
2-19

KDBO1- through KDB12-

KOTAL-, KINAL-, KOCPL-,

KABOl- through KABO06-
KTSTL-
KSTRB-
KINTL-
KSMKL-
KXCLR-
KLOAD-
KSTAL-
KPWFL-

Interrupts

Direct Data Channel

Load Mode

System Assembly Program
Assembly Language
Assembly Procedure

Addressing

Language Structure
Source Program
Source Program Format
Symbols
Expressions
Strings
Source Preparation
Paper Tape
Cards

Asterisk Conventions
Assembly Listing

Page Heading

Page Title

Body of Page

Typical Listed Line

Error Flag Definitions

T o tal T mae o
Ialtal LITrrors

CONTENTS (Cont)

KSKSL-

SECTION IV
SAP-12 ASSEMBLER

iv

Page

4-1
4-1
4-1
4-3
4-3
4-3
4-4
4-5
4-5
4-6
4-6
4-7
4-7
4-7

CONTENTS (Cont)

Page
Object Tape 4-10
Tape Format 4-10
Typical Block Format 4-11
Block Types 4-11
Post Processor Listing Output 4-14
SECTION V
BASIC PROGRAMMING
Machine Instructions 5-1
Memory Reference Instructions 5-1
Input/Output Instructions 5-1
Shift Instructions 5-1
Skip Instructions 5-2
Generic Instructions 5-2
Pseudo Operations 5-3
Data Defining Pseudo Operations 5-4
Storage Allocation Pseudo Operation 5-4
Symbol Defining Pseudo Operations 5-4
Assembly Controlling Pseudo Operations 5-6
SETB (Set Base Sector) 5-7
List Controlling Pseudo Operations 5-9
Special Pseudo Operation 5-11
SECTION VI
PROGRAMMING THE HI112
Programming Organization 6-1
Sector Programming 6-2
Sector Zero 6-3
Automatic Sectorization 6-4
Subroutines 6-4
Programming With Expanded (8K) Memory 6-9
Carry vs Overflow During Addition 6-9
Normal I/O Process 6-18
Interrupts 6-18
Interruptible Interrupts 6-21
Interrupts In An 8K Machine 6-22
Generating a System Object Tape 6-22
SECTION VII
OPERATING INSTRUCTIONS
General Operation 7-1
Source Program Assembly 7-1

CONTENTS (Cont)

Page
Object Tape Loading 7-3
Hl12 Paper Tape Loader Program

Loader Operation 7-4
Loading With Control Panel 7-4
Loading Without Control Panel -7
H112 Debug Utility 7-8
General Operation 7-9
Detailed Operation 7-9

APPENDIX A

MACHINE INSTRUCTION CODES
APPENDIX B
LOAD MODE CODES
APPENDIX C
INTERNAL 6 BIT CODE
APPENDIX D
INSTRUCTION WORD IDENTIFICATION
(BY OCTAL WORD FORMAT)
APPENDIX E
INSTRUCTION WORD FORMAT LIST
(BY OP CODE MNEMONIC)
APPENDIX F
(MODEL 112-25) I/O TYPEWRITER (ASR-33)
APPENDIX G
HIGH SPEED PAPER TAPE READER (MODEL 112-20/22)
ILLUSTRATIONS

Figure Page
2-1 H112 Controller — System Block Diagram 2-2
2-2 H112 Controller Control Panel 2-5
2-3 Data Word Organization 2-6
2-4 Instruction Word Organization 2-6
2-5 Mcmory Reference Instruction 2-6
2-6 I/O Instructions 2-9
2-7 Shift Instructions 2-1
2-8 Skip Instructions 2-1
3-1 Signal Timing for I/O Instruction Execution 3-3
4-1 Processing of One Line 4-2

Figure

4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
7-1
7-2

Table

3-1

6-1

CONTENTS (Cont)

Source Program Coding Form
Sample Assembly Listing
Paper Tape Format

ASCII Punched Tape Format
Block Type Zero Format
Block Type One Format

Block Type Two Format

Block Type Three Format
Block Type Four Format
Sample Post Processor Listing
Typical Sector Zero Allocation
SETB Pseudo Operation

ASR Space Subroutine

Print Subroutine

Inefficient 8K Programming

Efficient 8K Programming

Jump Instructions Across Memory Bank Boundaries

Addition and Overflow Detection

High-Speed Tape Reader Subroutine
Normal ASR-33 I/O Process Subroutine

Typical Interrupt Routine
Programming Examples
Loader Tape Format

Bootstrap Program Control

I/O Bus Signals

Machine Instructions

TABLES

Memory Referencing in 4K Mode

vii

Page

4-4
4-8
4-10
4-11
4-12
4-12
4-13
4-14
4-14
4-15
6-3
6-5
6-6
6-7
6-10
6-12
6-14
6-16
6-19
6-20
6-23
6-26
7-5
7-6

SECTION I
INTRODUCTION

The Honeywell H112 Controller is a low cost processor which features high speed,
efficient use of memory, and the adaptability needed to tailor the unit to a wide variety of
on-line, real-time control, data collection, and data-reduction applications, Honeywell has
configured the H112 to meet the varied needs of control and systems engineers, This unit
can be tailored to practically any application by the use of standard, off-the-shelf, plug-in
modules. Memory is field expandable from 4to 8K, using a standard 4K plug-in module. The
plug-in approach also allows a user to share one control panel among several HI12 installa-

tions by unplugging the panel once each unit is on-line,

SCOPE

The H112 Programmers Reference Manual is divided into seven sections with additional
appendices which provide quick reference data, Section I provides leading particulars on the
controller hardware. Section II contains a brief hardware block diagram description and
machine instructions and functions. Section III contains a brief discussion of I/O signals
and controller interface modes, Section IV discusses basic assembler specifications, the
processing involved, and output formats for printed and punched data, Section V contains a
brief table of machine instructions and all pseudo operations available to the programmer,
Section VI provides programming instructions and includes examples. The operating
instructions contained in Section VII provide the user with procedures for loading tapes,
operating via the control panel or other devices, and communication between operator and

controller when using the Utility Debug Program,

H1l2 CONTROLLER CHARACTERISTICS

Type: Parallel, binary, stored program
Addressing: Single-word addressing with single-level indirect
addressing
Number System: Two's complement
Circuitry: Integrated, DTL
Typical Execution Times: Load Accumulator 3,39 ps
Add 7.63 pus
Jump Unconditional 3.39 ps
Clear Accumulator 2.54 us
Instruction Complement: Five instruction types, making up 37 standard
instructions; skip instructions are microprogram-
mable -
Word Length: 12 bits

Control Panel: Optional control panel is plug-in. The panel has
facilities for display of the A, P, or W registers
as well as RUN/STOP, STORE, FETCH, START,
LLOAD, and MASTER CLEAR functions, Interlocks
prevent accidental entry in the run mode.

Input/Output Rate: One 12-bit word/3. 39 us or 295K words/sec (Direct
Data Channel Option)

Input/Output Bus: Party line with priority interrupt structure, Optional
bidirectional direct data channels (2).

Memory: Coincident current, random access, ferrite core;
12-bit word length; one or two 4K modules, field
expandable to 8K,

Memory cycle time 1. 69 ps

Programming: Standard Software includes:

Assembler
Debug/Utility
Loader

Math Library
Diagnostics

Peripherals and Options: 10-cps ASR-33 paper tape reader/punch/printer
High speed paper tape reader (400 cps)
A second 4K memory module for 8K memory capability
Real Time Clock
Analog Input/Output
Digital Input/Output
Special options, such as magnetic tape, paper tape
punch, and communication interfaces, are easily
applied using standard Honeywell logic modules.

Physical Characteristics: Power consumption: 200W, 115V +£10% single phase,
48 to 62 Hz

Dimensions: 19-inch rack mount, 7 inches high by
26 inches deep

Environment: Room ambient (less I/O devices):
0° to 50°C
Storage, -65° to 150°C

REFERENCES

The publications listed below will assist programmers, engineers and technicians in
installing, using, and servicing the H112 Controller:

H112 Installation and Interface, Doc., No. 70130072243

IT1 12 Mantr 1
H112 Central Processor Descr

SECTION II
MACHINE CHARACTERISTICS

H1ll2 CONTROLLER BASIC OPERATION

The H112 system is comprised of the basic functional blocks shown in Figure 2-1, A

brief description of each function follows,

Registers Available to the Programmer

A Register. -- The A register is the accumulator used in the H112 system, Its
function is to perform arithmetic operations in conjunction with the serial adder and to

contain the results. The A register (12-bit) also functions as an interface for 1/O operations.

W Register. -- The W register is a 12-bit working register used for memory data

interface and instruction execution,

P Register, -- The P register is the program counter and normally contains the address
of the next instruction to be executed, In the standard 4K memory, the register has 12 bits,

In the 8K memory controller (option), the register has 13 bits,

B Register. -- The B register is the single-bit bank register used with the 8K memory

option to select memory banks; it is the most significant bit in all indirect pointer words,

Z Register. -~ The Z register is a two-bit register used with the 8K memory option,
After an interrupt, the Z register stores the B register bit and bit 13 of the P register so

that the original program may be restored after the interrupt.

OV Register. -- The OV register is the overflow flip-flop (F/F) which stores the
A register carry bit, It is used with Add and Shift instructions. With Add instructions, the
OV F/F (register) will be set if two negative numbers of any size are added, or if a negative
and positive number are added and the result is positive or zero. Shift instructions cause

the OV F/F to be set if any logical 1's are shifted out of the A register.

Registers Unavailable to the Programmer

Y Register - The Y register is the memory address register, It is a 12-bit register
for the standard 4K memory and 13-bit for the 8K memory option, This register stores the

effective memory address during accessing operations.

(4l

COMMON BUS A REGISTER
- (ACCUMULATOR)
12-BIT
oV
ADDER
SeRiaL) [+ REGISTER
FF)
1/0 1
BUS W REGISTER CONTROL 1/0
(1V\2/%IIR_|I_<ING REGISTER) LoGIC INTERRUPT
&(I)EK{/IE)RY Y REGISTER
s (MEMORY
12-BIT WORDS REGISTER)
(8192 WORDS o
OPTIONAL) -BIT (4K)
_LOPTIONAL) | 13-BIT (8K)
[7
| |(3 REGISTERSTER) | C REGISTER
BANK REG! (SHIFT
1 ——
I 18T | COUNTER) |]
:] BT | | P REGISTER 4-BIT
BIT 13| | (PROGRAM
| Z REGISTER +| COUNTER) |oss F REGISTER
| (2 BIT) | | 12-81T (ak) (OPERATION e
PART OF 8k MEMORY | L13BIT (8K) CODE (LOAD)
| OPTION REGISTER)
L ornon] 4-BIT
CONTROL
PANEL

[3

6209

Figure 2~1, HI12 Controller — System Block Diagram

C Register. -- The C register is a 4-bit shift counter which stores the required
number of right shifts required when using shift instructions, Additionally, it serves as a

counter during the execution of instructions involving the serial adder,

F Register. -- The F register is a 4-bit storage register which contains the operation

code of the instruction being processed,

Core Memory

The 12-bit, 4K memory module used in the H112 is the standard Honeywell ICM-160
core memory unit,

In the basic controller, one module provides 4096 12-bit words of memory, with an
additional 4096-word module available as an option. Direct addressing can access 256
storage words. Single-level indirect addressing accesses 4096 words. All storage and

retrieval operations are in parallel, with all 12 bits of each word available for data.

Input/Output Characteristics

The standard I/O structure in the H112 is a single cable, duplex, "party line'" system,
Six I/O instructions, plus reassignable, programmed priority interrupts, make the H112's
parallel transfer 1/O bus capable of an unlimited variety of applications. Normal transfers
are 12 bits in parallel to and from the accumulator; two device-controlled bidirectional
Direct Data Channels are optional.

I/O characteristics have been carefully tailored to provide maximum interface flexi-
bility with the widest possible interface tolerances, I/O signals are true in the ground
state and are relatively immune to noise; the timing requirements have been chosen to
allow ample time for a device to respond; strobe pulses are wide to eliminate capacitive
losses., Timing is consistent for all I/0 transfers, the I/0 instructions all being of the same
length., A stall instruction is included as part of the standard instruction complement to
allow convenient synchronization (with very low latency time) to external devices,

Two direct data channels are available as options, These bidirectional channels are
completely controlled by the peripheral devices, with no software required for devices to
directly access memory. The address registers and range counters are external and are

not stored in memory. A more detailed discussion of the DDC mode is provided in Section III.

Control Panel

The plug-in control panel used with the H112 allows considerable savings to large scale
users., A user may buy and use only as many panels as he requires for startup and service,
unplugging the panel once service is completed and then using it with a different controller,
On large-scale unattended installations, such as oil well monitoring or pipeline remote
control and monitoring, the panel can be part of the control engineer's and service techni-
cian's equipment, Once the panel is detached, unauthorized personnel cannot interfere with

the controller operation, thus eliminating a problem common to widely scattered systems,

Panel Controls and Indicators (see Figure 2-2), --

Displays - Indicators are provided to display the contents of the A, P, or W
registers, The control panel displays the contents of the A register following an LDA or
INA instruction when the machine is running, with the overflow flop as bit 13. The other
registers may be displayed when the machine is halted and the RUN switch is in the STOP

position,

Switch Register - 13 switches are provided to allow entry of data for bits 1-13,

which correspond to the display indicators.,

Interlock - The RUN/STOP switch must be in the STOP position in order to use
the panel,

REGISTER Select - Switches A, P, and W select the desired register for display

or data entry.
CLEAR - The CLEAR switch clears the selected register.

RUN/STOP - The STOP position of the RUN/STOP switch halts the controller,
Once in the stopped mode, registers can be selected, displayed, and modified; in this mode,
the controller can be stepped using the START switch, The controller reads the instruction
from memory, executes the instruction, increments the P register, and halts each time the

START switch is depressed.

STORE - To store data, the memory location is entered in the P register, the
STORE switch is depressed, and data is placed in the W register, The START switch is
depressed to store the contents of the W register in the location specified by the program

counter, The program counter is then automatically incremented,

FETCH - To retrieve data from a memory location, the location is entered in the
P register and then the FETCH and START switches are depressed. The data is displayed

in the W register, The P register is incremented,

LOAD - Load format tapes are loaded by setting the P register to the starting
location, setting the RUN/STOP switch to RUN, depressing the LOAD switch, and then the
START switch,

RUN - The RUN indicator, when lighted, signifies that the controller is running

the stored program.

START - In addition to the Store, Load, etc functions, the START switch, when
depressed, causes the controller to begin program execution at the address specified by the

P register if the RUN/STOP switch is set to run.

MASTER CLEAR - The MASTER CLEAR switch clears main registers, plus control
addressing, and I/O F/F's, but does not affect the A and W registers.

POWER/OFF - controls operating power to controller,

Figure 2-2, HI112 Controller Control Panel

Load Mode, -- The H112 controller may be placed in the load mode either with or
without a control panel. A control panel enables the operator to set the starting address of
the loader to any desired point by inserting that location in the P register, Without a panel,

loading will always begin at location zero.

Auxiliary Control

In addition to the standard control panel, or when full displays are not required for a
specific application, plug-in connections are available for external control of the following

functions: Run/Stop, Start, Master Clear, Load, and single instruction execution,

WORD ORGANIZATION

Two types of internal words are used by the H112: data and instruction. FEach is a

12-bit word type and is discussed below,

Data Word Organization (Figure 2-3)

Data is represented by a 12-bit binary number, Bit 12 is the sign bit with 0 indicating
a positive (or zero) number and a 1 indicating a negative number, Negative numbers are

represented in two's complement, The data word can also be considered as a 12-bit binary

integer (unsigned),

Luyz_}lu|1o]9[s]7|s]s]4|3]z|n]

Figure 2-3, Data Word Organization

Instruction Word Organization (Figure 2-4)

Instructions are represented by a 12-bit binary number., The instruction word is

divided into functional parts as shown below.

[l2[n o[[8[7[e6[5[af3]2]! j
or __/ ADDRESS OR
CODE j OP CODE EXTENSION
SECTOR BIT

Figure 2-4, Instruction Word Organization

ADDRESSIN

N 2T

All memory reference instructions (Figure 2-5) refer to an effective address which is
a function of the status of the machine, location of the instruction, and selected address

modification mode. The memory reference instruction is organized as shown in Figure 2-5,

2] [wo]s[s[7]e[5[a]3]2]rt]
|

INDIRECT —_T __J
ADDRESS BIT OP CODE I L ADDRESS
SECTOR

BIT

Figure 2-5, Memory Reference Instruction

Fach of the seven H112 memory reference instructions (LDA, STA, ADD, ANA, IRS,
JMP, JST) contains a seven bit address field, allowing 128 locations (0 - 1778) to be directly
referenced, As a result, memory is divided into sectors of 128 words each, The sectors
begin at addresses 0, 2008" 4008, 6008, etc., A 4K Hl12 memory contains 32 sectors num-
bered O - 378; an 8K H112 memory contains 64 sectors numbered 0 - 778.

Each memory reference instruction contains a sector bit, This bit determines the
sector in which the direct address is located, If the bit is ZERO, the direct address is
located in a primary sector {sector 0 or 4V8); if the bit is ONE, the direct address is located
in the same sector as the instruction,

Fach memory reference instruction contains an indirect bit, If this bit is a ZERO,
the instruction operates on the contents of the direct address, or the effective address

equals the direct address. If the indirect bit is a ONE, the instruction operates on the
contents of the location specified by the direct address, or the effective address equals
the contents of the location specified by the direct address, Indirect addressing adds 1. 69 us

to the instruction execution times,

INSTRUCTION REPERTOIRE

Instructions for the H112 are divided into five groups: Memory Reference, Input/

Output, Shift, Skip, and Generic. FEach group is discussed in detail in the following,

Memory Reference Instructions

Memory reference instructions refer to an effective address which is a function of the

machine status, location of the instruction, and address mode selected. The op code contained

in bits 9, 10, and 11 of the word (see Figure 2-5) is an octal digit. A description of each op
code is provided in the following paragraphs. The execution times listed for each instruction
are without indirect addressing; indirect addressing adds 1. 69 ps. Note that the operation of

some instructions is modified under interrupt conditions.

LDA (Load A), -~

Op Code:

Execution time:

Function:

STA (Store A), --

Op Code:

Execution time:

Function:

JMP (Jump)., --

Op Code:

Execution time:

Function:

1

3.39 us

The contents of the memory location at the effective address
are loaded into the accumulator. The previous contents of the

accumulator are lost,

2

3.39 us

The contents of the accumulator are deposited in the memory cell
at the effective address., The previous contents of the memory

cell are lost, The contents of the accumulator is unaltered,

3

3.39 us

The P register is loaded with the effective address which causes
program control to transfer to that address, When this instruction
is not indirectly addressed, P13 is not altered, When it is in-

directly addressed, the contents of the bank register are

transferred to P13 and P13 to the bank register. The operation
of this instruction is substantially altered when executed for the
first time in the indirect addressing mode following the execu-
tion of an ITR (interrupt return) instruction. See the description

of that instruction,

ADD (Add). --

Op Code: 4

Execution time: 7.63 ps

Function: The contents of the memory cell at the effective address are
added to the contents of the accumulator and the sum deposited
in the accumulator, If addition is considered to be an unsigned
binary add, the overflow flop is set if there is a carry out of the
most significant bit (which indicates that the register has over-
flowed). The overflow flop is useful for double precision arithme-
tic. If addition is considered to be in a two's complement fashion,
the overflow flop is set if: (a) two negative numbers of any size
are added, (b) a negative and a positive number arc added and
the result is positive or zero (positive > magnitude of negative).
The overflow flop is not set if: (a) two positive numbers of any
size are added, (b) a negative and a positive number are added
and the sum is negative (magnitude of negative > positive). Note
that if the result does not set the overflow flop, the previous

contents of the flip-flop are not altered.

ANA (And A), --

Op Code: 5

Execution time: 7,63 ps

Function: The contents of the memory cell at the effective address are
logically ANDed with the contents of the accumulator and the
results placed into the accumulator. The final value of any
accumulator bit is a 1 if and only if both the initial accumulator
bit in this position and the corresponding bit in the memory

location are 1's,

IRS {Increment, Re

Op Code: 6

Execution time: 9,33 us

Function: The contents of the memory cell at the effective address are
incremented by 1 and the result returned to the same cell, 1If,

after the addition, the result is 0, the next instruction is skipped,

JST (Jump and Store P), --

Op Code:
Execution time:

Function:

7

4, 66 ps

The address of the next sequential instruction is stored in the
memory cell at the effective address. The next instruction
executed is the contents of the memory cell following the
effective address. Thus, the P register plus 1 (lower 12 bits
only) is stored in the memory cell at the effective address and
then the P register is loaded with the effective address plus 1.
This instruction is used in interrupt response routines and has
a different action under those conditions, (See the section on

interrupts.)

When this instruction is not indirectly addressed, P 13 is not
altered. When it is indirectly addressed, the contents of the

bank register are transferred to P13 and P13 to the bank register,

The operation of this instruction is substantially altered when
executed for the first time in the indirect addressing mode follow-
ing the execution of an ITR instruction. See the description of

that instruction,

Input/Qutput Instructions

The format of the I/O instruction word is shown in Figure 2-6. Most I/0 instructions

require an address which specifies not only the device to be used but also the nature of the

command, The op codes listed below are the entire 12-bit instruction words read as four

octal digits with the address (if present) as the second two digits, XX. Note that the stall

instruction (STL) is described on page 2-14,

lreJinJiwo]Jeo]s[7]e[s]a[3]z2]1

L—OP CODE ADDRESS——+

Figure 2-6, I/0 Instructions

INA (Input Transfer to Accumulator), --

Op Code:
Execution time:

Description:

40XX

4. 66 ps

If the addressed device is ready and responds, the accumulator
is cleared, the bit pattern on the 1/0 bus from the addressed

device is transferred into the accumulator and the next sequential

2-9

instruction is skipped. If the addressed device is not ready or
does not respond, the accumulator is cleared but the data is not
transferred into the machine; the next sequential instruction is

executed,

SKS (Skip if Set). --

Op Code: 41XX

Execution time: 4, 66 us

Description: If the device condition specified in the address field is true (set)
and the device responds, the next sequential instruction is
skipped. If the condition is not true (not set) or the device does

not respond, the next sequential instruction is executed,

OTA (Output Transfer From Accumulator), --

Op Code: 42XX

Execution time: 4, 66 us

Description: If the addressed device is ready and responds, the contents of
the accumulator are transferred to the device and the next
sequential instruction is skipped. If the addressed device is not
ready or does not respond, the transfer does not take place and
the next sequential instruction is executed. In either case, the

contents of the accumulator are unaltered,

OCP (Output Control Pulse), --

Op Code: 43XX

Execution time: 4, 66 ps

Description: Upon execution of this instruction, a command pulse is delivered
to the device (or device function) specified by the address field,
The execution of this command is not contingent upon a device
ready response; the following instruction will never be skipped.
Addresses 00 and 0Ol are not available for OCP instructions, See

(=) B
SMK instruction,.

SMK (Set Mask)., --

Op Codes: 4300, 4301

Execution time: 4, 66 us

Description: These instructions transfer the contents of the accumulator to
the interrupt mask bits of the individual peripheral devices.
Generally, a peripheral device is assigned to one accumulator

bit of one of the instructions. A l in the accumulator bit permits

Shift Instructions

The shift instructions

by the shift count (Figure 2-

an interrupt while a 0 not only inhibits further interrupts but
also temporarily removes an interrupt request, Because of
circuit speeds, this instruction may not be effective until after
the next instruction, This instruction is not contingent upon de-

vice ready and the following instruction is never skipped.

shift the accumulator to the right the number of places specified

7). The shift count, read as a positive integer, specifies the

number of places to be shifted. A shift count of 0l causes a shift of | place; 02 causes a

shift of 2 places, etc, A shift count of 00 causes a shift of 16 places, The op codes below

arc the entire 12-bit instruction words read as four octal digits with the shift count of YX,

The variable N in the execution times below is the number of shifts specified.

el Jw]s][se[7][e[s5[a[3]z2]1

.

OP CODE -||= SHIFT COUNT —

g

Figure 2-7., Shift Instructions

LGR (Logical Right Shift). --

Op Code:
Execution time:

Description:

RAR (Rotate A Right),

Op Code:
Execution time:

Description:

0lYX (Y =0 or 1)
3.8 + N (0. 424) us
The accumulator is shifted to the right with 0's filling from the
left. If any l's are shifted out of the accumulator the overflow
flop is set. If no l's are shifted out, the status of the overflow

flop is unaltered,

01YX (Y = 4 or 5)
3.8 + N (0, 424) ps
The accumulator is rotated with the data out of bit 1 being shifted

into bit 12, The status of the overflow flop is unaltered,

ARS (Arithmetic Right Shift), --

Op Code:
Execution Time:

Description:

0lYX (Y = 2 or 3)
3.8 + N (0. 424) us
The accumulator is shifted to the right with the sign being spread

from the left. If any l's are shifted out of the accumulator, the

overflow flop will be set, If no l's are shifted out, the status

of the overflow flop is unaltered,

Skip Instructions

The entire 12 bits of the skip instruction word is op code. The op code is micropro-

grammed as shown in Figure 2-8,

2] Jlo]o [8[7][e[5]a]3]2]1]

le————— SKIP GROUP——+
INVERT BIT — OVERFLOW
ACCUMULATOR ZERO
ACCUMULATOR NEGATIVE

Figure 2-8, Skip Instructions

If the invert bit is a 0 and any condition is true for which the corresponding bit in the
instruction is set, the next sequential instruction is skipped. If the invert bit is a I, the
next instruction is skipped unless at least one condition is true for which the corresponding
bit is set.

If the bit which tests the overflow flop is a 1 and the overflow flop is set, the flop is
reset after execution of the instruction, The No Operation Instruction is formed by testing
no conditions, The following instructions are the only commands documented, although all
combinations function as described. The op codes listed below are the 12-bit instruction

words read as four octal digits.

NOP (No Operation), --

Op Code: 0200
Execution time: 3,39 us

Description: No operation

SMI (Skip if Accumulator is VMinus). --

Op Code: 0201
Execution time: 3,39 us

Description: This instruction skips if bit 12 of the accumulator is a 1.

SZE (Skip if Accumulator is Zero). --

Op Ceode: 0202
Execution time: 3,39 us

Description: This instruction skips if the accumulator contains a 0 in each bit.

SMZ (Skip If Minus or Zero), --

Op Code: 0203

Execution time: 3,39 us

Description: This instruction skips if the accumulator is either negative or
zZero,

SOV (Skip If the Overflow Flop Is Set), --

Op Code: 0204
Execution time: 3,39 ps
Description: This instruction skips if the overflow flop is set and also resets

the overflow flop if set,

SKP (Skip Unconditionally). --

Op Code: 0300
Execution time: 3,39 us

Description: Skip next instruction,

SPL (Skip If Accumulator Is Plus), --

Op Code: 0301
Execution time: 3,39 us

Description: This instruction skips if bit 12 of the accumulator is 0,

SNZ (Skip If Accumulator Is Non-Zero). --

Op Code: 0302

Execution time: 3,39 us

Description: This instruction skips if there is a 1 in any accumulator bit
position,

SPN (Skip If Positive And Non-Zero), --

Op Code: 0303
Execution time: 3,39 us
Description: This instruction skips if the accumulator is both positive and

non-zero,

SNO (Skip On No Overflow), --

Op Code: 0304
Execution time: 3,39 us
Description: This instruction skips if the overflow flop is reset and resets the

overflow flop if set.

Generic Instructions

The entire instruction word is op code and the 12-bit word is read as four octal digits

in the instructions below,

HLT (Halt)., --

Op Code:
Execution time:

Description:

0000
2.54 us + wait until restart
The machine is halted in a non-interruptable condition until

manually restarted.

OCA (One's Complement Accumulator), --

N
Up coae:
Execution time:

Description:

3 X

he logical state of each bit of the accumulator is inverted,

TCA (Two's Complement Accumulator). --

Op Code:
Execution time;

Description:

STL (Stall On Line).

Op Code:
Execution time:

Description:

0005

The accumulator is l's complemented and then incremented,

0021

3,39 ps + wait

If the KSTAL- line is positive when this instruction is executed,
the machine stallis, When the KSTAL- line goes to ground, the
machine starts at the next instruction, Execution of the next
instruction starts within 450 to 900 ns of the ground transition of
KSTAI,-. If the instruction is executed when the line is ground,

the instruction is treated as a NOP,

TBA (Transfer Bank Register to Accurnulator), --

Op Code:
Execution time:

Description:

0022

3.39 us

The entire accumulator is cleared, the contents of the bank
register are loaded into the accumulator bit 1 and bit 13 of the
P register is loaded into the bank register, This instruction
operates with the 8K memory option and is treated as an CRA in
4K. If TBA is in the last location in a bank, the accumulator

bit 1 is set to the next bank,

ITS (Interrupt Save), =--

Op Code:
Execution time:

Description:

0024

3,39 ps

The contents of P13 and the bank register are copied into the
Z register upon interrupt in the 8K version., This instruction
copies the Z register into the accumulator such that the bank
register is copied into bit 1 and P13 into bit 3, The entire
accumulator is cleared before the Z register is copied. This

instruction is treated as a CRA in the 4K version.

TOA (Transfer Overflow To Accumulator), --

Op Code:
Execution time:

Description:

0030
3,39 ps
This instruction clears the accumulator, transfers the overflow

flop to bit 1, and then clears the overflow flop if it was set,

TAB (Transfer Accumulator to Bank Register), --

Op Code:
Execution time:

Description:

0041

2,54 pus

The contents of accumulator bit 1 are transferred to the bank
register, This instruction operates with the 8K memory option

and is treated as a NOP in 4K,

ITR (Interrupt Return), --

Op Code:
Execution time:

Description:

0042

2,54 ps

The contents of the accumulator are copied into the Z register
and the Z register copied into the bank register and P13 on the
next indirect jump or jump store instruction, Bit 1 of the ac-
cumulator is placed into the bank register and bit 3 goes to P13,
The normal transfers of P13 to the bank register and the bank to
P13 are inhibited on the indirect jump following this instruction,
This instruction is supplied in the 8K version, and is treated as

a NOP in 4K,

ENB (Enable Interrupts), --

Op Code:
Execution time:

Description:

0044
2.54 us
Interrupts are permitted after the execution of the next sequential

instruction,

INH (Inhibit Interrupts). --

Op Code: 0050
Execution time: 2,54 us

Description: No interrupts are permitted after the execution of this instruction.

CRA (Clear Accumulator), --

Op Code: 0060

Execution time: 2. 54 us

Description: The accumulator is reset to all 0's,
INTERRUPTS

Interruptible Conditions

An interrupt is recognized by the machine at the end of the execution of an instruction

if interrupts are enabled. Interrupts are also contingent on the following:

a. A halt due to the execution of an HLT instruction is not interruptible,

b. A stall after the execution of the STL instruction and before the KSTAL-~ line
goes to ground is not interruptible,

c. The direct data channel has priority over the interrupt., A DDC request is
honored before an interrupt request,

d. An interrupt disables further interrupts until an ENB instruction is executed.

e. Master clear disables interrupts until an ENB is executed.

f. The machine must be running to be interruptible,

Response to an Interrupt

When an interrupt occurs, the machine does the following, instead of executing the

next instruction as specified by the P register:

a. Inhibit further interrupts.
P13 and the bank register are placed in the Z register for eventual storage
(8K only).

c. The bank register and P13 are cleared (8K only).

d. The instruction in location 00002 is executed.

Programming an Interrupt

4K Memory., -- The instruction in location 00002 must be a JST or indirect JST. The
JST saves the address of the next sequential instruction in the interrupted program. Once
entered, the interrupt subroutine may determine the interrupt source by polling the peripheral
save the A register and overflow flop, and then execute the procedure associated

with the interrupting device, If it is desirable to have the interrupt routine itself be

interruptible for higher priority requests, the I/O devices may be remasked by use of the
SMK instruction and interrupts enabled., It is then necessary to inhibit interrupts at the end
of the interrupt subroutine in order to restore the original I/O mask, In either case (inter-
ruptible or non-interruptible subroutines), the method of exiting is to restore the overflow
flop and the A register, enable interrupts, and finally do an indirect jump to restore the
program counter. The indirect jump always takes place because the ENB does not allow a
new interrupt until after the execution of the next instruction.

Note that, if the original interrupt had occurred just after the execution of a JMP or

JST command, the return takes place to the location specified by the jump command.

4K Or 8K Memory, -~ The following procedure permits the saving of the bank register

and P13, This procedure may be used in a machine with 4K memory because the instructions
which are included only in the 8K version are treated as NOPs or CRAs in 4K.

As in the procedure described for the 4K memory, the instruction in location 00002
must be a JST or indirect JST. After polling the I/O devices, the A register and overflow
flop are saved. An ITS (interrupt save) instruction may be executed to transfer the Z register
to the A register which may then be stored. The Z register saved the contents of the bank
register and P13 when the interrupt request was honored, As in the 4K procedure, the 1/0
may be remasked, depending on the desirability of having an interruptible subroutine,

When the interrupt subroutine has been executed and the I/O mask restored (if
necessary) with interrupts inhibited, the Z register is loaded with the previously saved
contents of P13 and the bank register by executing an ITR instruction, This instruction
also prepares for a modified action on the next indirect jump. After the overflow flop and
the A register have been restored and interrupts enabled, the return is made by an indirect
jump. The normal action of the indirect jump in the 8K version is to transfer the bank
register to P13 and vice versa; however, due to the action of the ITR instruction, such
transfers are inhibited and the contents of the Z register are loaded into the bank register
and P13, restoring full machine context,

As in the 4K version, an interrupt just after a JMP or JST causes the eventual return

to the location specified by that jump command,

MEMORY ORGANIZATION

Extended Addressing (8K Memory)

A program written to run in the 4K version of the machine runs in either bank of an 8K
machine with the factors listed below to be considered., Since a direct memory reference
instruction with the sector bit set references the sector containing the instruction, no action
out of the ordinary takes place., When a direct memory reference instruction references a
primary sector, the sector referenced is the first sector of the bank in which the instruction
is contained, The factors to be considered have to do with indirect addressing and interrupts

and are as follows:

a. Each pointer or indirect word is prefixed by the bank register as the most
significant bit of the pointer. If the bank register is made equal to P13, each pointer
references the bank in which the instruction is contained, just as in 2 4K machine,

b. The interrupt location is in the lower bank and the effective address of the
JST or indirect JST in the interrupt location is within the lower bank. If the interrupt
handler is to be in the upper bank, a small routine is needed to jump from the lower bank to

the upper. The interrupt return can be from either bank,.

The instructions used to communicate between banks are TAB (transfer A to bank
register) and TBA (transfer bank to A register), These instructions are treated as a NOP
and CRA in 4K. The TBA and TAB instructions can store and load the bank register into and
out of bit 1 of the accumulator,

To reference data in the upper bank, the bank bit is set to a 1 and an indirect reference
is made, The data is acquired from the given address in the upper bank regardless of the
location of the instruction. The contents of the bank register are unaltered. To move from
one bank to another, the bank bit is established and an indirect JMP or JST is executed. In
this case, the address of the next instruction is constructed from the bank bit and the remainder
of the effective address. The previous contents of P13 are loaded into the bank register. In

this manner, the full 13 bits of the P register are saved on JST commands.

In the 4K machine, the memory location after 77778 is 00008' The P register, pointers,

and skip instructions increment in this fashion, A JST to 77778 causes the next instruction to
be taken from OOOO8 and likewise a JST in 77778 stores OOOO8 as the return address.
In the 8K machine, the memory location after 077778 is 100008. A JST to location

077778 (effective address) causes the instruction in 100008 to be executed next, A JST from
077778 causes OOOO8 to be stored and the bank register to be set,
The P register increments from 17777, to 00000,. JST instructions to 17777, cause

8 8 8
the instruction in 000008 to be executed and JST's from 177778 cause OOOO8 to be stored and

resets the bank bit,

Since pointer overflows do not alter the contents of the bank register, a pointer incre-
ments to the bank boundary and resets to the beginning of the bank, i.e., 077778 to OOOO8
and 177778 to 100008.

DIRECT DATA CHANNEL

The DDC option provides for I/O rates of up to a word every 3,39 us. Up to two

o

idirectional subchannels may bhe used simultaneously. The subchannels are in the peripher-
al device adapters while the DDC option is in the mainframe,

The DDC is entirely controlled by the peripheral device. The location of the data in
memory and the number of words to be transferred are contained in hardware registers in
the subchannels, The direction of transfer and the time at which the transfers take place

e

are under the control of the subchannel., There are no instructions in the mainfram

pertaining to this option; however, there may be I/O instructions to load the address and
range counters and to initiate the transfer via the peripheral device.

DDC transfers are not constrained to one bank or the other and can increment across
either bank boundary, A DDC request has higher priority than an interrupt request, The DDC
channel transfers only at the completion of the execution of the present instruction and is
not inhibitable. DDC transfers do not occur while the machine is not running, while it is
halted due to a HLT instruction, or while the machine is stalled due to an STL instruction,

If the DDC requests occur fast enough, the execution of the program can be completely

locked out,

POWER FAILURE AND INITIALIZATION

Power Failure

The standard machine is designed to preserve the contents of all core locations if the
power fails or is turned off while the machine is running, stopped, halted, or in the stall
mode. The register contents are lost, If power is restored, the machine comes on in the

stopped mode with the P register and critical control F/F's cleared.

Power Failure Interrupt

As an option, a power failure interrupt option may be added which causes an interrupt
when the power fails, The time between the interrupt and when memory shutdown occurs for
lack of power is a minimum of 1 millisecond, The interrupt also occurs on power turn-off.
The machine comes up cleared and not running when power returns, The option is an omni-

block in the peripheral option area,

SECTION III
INPUT/OUTPUT CHARACTERISTICS

The Hll2 Controller normally communicates with an external system and I/O devices
by way of the programmed I/O bus where data transfers are under program control, Load
mode transfers also occur over the I/O bus but are entirely under the control of the controller
hardware with no program in execution, DDC transfers occur between the channel in the
controller and subchannels in the peripheral devices over the DDC bus under the control of
the subchannel (although the transfer may originate with a command from the program to
the peripheral device over the I/O bus),

The control panel exercises a macro control over the machine and serves to reset the
machine, start the program, etc. Certain functions are also available to the system via the
machine control interface whether or not the panel is included in the machine.

See H112 Interface and Installation Manual for further details.

PROGRAM I/0O BUS INTERFACE REQUIREMENTS

The program I/O bus consists of 30 signals on a u-PAC connector as shown in Table 3-1,
All levels are p-PAC (0 to +6 volts) levels, The controller drives, on each output line, 16
receiver loads, each consisting of a standard u-PAC gate input in parallel with 6, 8K to +6V
and a diode with anode to ground. Each input line to the controller appears as one receiver
load; however, peripheral devices load the input lines in parallel, FEach line may appear as
up to 17 loads to a particular device including the device's own load and the controller's input
load. The I/O bus timings are guaranteed only when driven and received with circuits such
as on the CS-517 PAC, which contains six receiver circuits and six driver circuits,

All signals into and out of the controller are true (represent logical 1) when at ground
and are false (represent 0) when at +6V, Signal timings are guaranteed to be correct at the
input or output of a peripheral device when the device is driven by a standard cable whose
total length is less than 25 feet,

Each peripheral device is to load the bus with no more than one load and to drive the
bus with only one driver,

Signal edges are guaranteed to fall within the specified time but edges are not unambiguous.

They may cross gate threshold more than once during transition times.

SIGNAL DESCRIPTIONS

A description of the I/O signals is provided in the paragraphs which follow, Signal
timing for OTA, INA, OCP, SKS, and SMK is shown in Figure 3-1,

KDBO1-
KDBO02-
KDBO03-
KDB04-
KDB05-
KDBO06-
KDBO7-
KDBO08-
KDB09-
KDB10-
KDBI11-
KDB12-
KABOI-
KABO2-
KABO3-
KABO4-
KABO5-
KABO6-
KOTAL-
KINAL-
KOCPL-
KSKSL.-
KSMKL-
KSTRB-
KINT L-
KLOAD-
KTSTL-
KSTAL-

KXCLR-
KGND-
KPWEFL-

Signal Name

]

-

Table 3-1.
I/O Bus Signals

Function

(Data Bus - 12 lines)

(Address Bus - 6 lines)

OTA (Output Transfer From Accumulator) Instruction
INA (Input Transfer to Accumulator) Instruction
OCP (Output Control Pulse) Instruction

SKS (Skip If Set) Instruction

SMK (Set Mask) Instruction

Strobe Signal

Interrupt Signal

Load Signal

Test Line

Stall Line

Master Clear
Ground

Power Failure

TIME (uSEC)

0 1 2 3 4 5 6 7
OUTPUT SIGNALS I] | | | l I
0 5.1

DATA BUS 0 // /
KDBO1- THROUGH -12 : A /

| 1.3 I I I 5.1 I I
ADDRESS BUS :
KABO1- THROUGH -06

I 1.7 | | I 5.1 l |
INSTRUCTION SIGNAL
KOTAL-, KINAL-, KSKSL-, Z . 7
KOCPL-

I | | 34 38 |4.25 4.9 | l I

STROBE SIGNAL, KSTRB-

€-¢

SMK SIGNAL, KSMKL- 800 NS MIN /
INPUT SIGNALS l I l I
1.3 2.1 3.0 6.0
TEST SIGNAL
KTSTL- 7
I 1.3 25 I 3.4 l I 6.0 I
0
DATA BUS INPUT
KDBO1- THROUGH -12 Z R %
NOTE:

LOGICAL 0=+6V
LOGICAL 1= 0OV

Figure 3-1, Signal Timing for I/O Instruction Execution

KDBO1- through KDB12-

These 12 output signals from the controller represent the contents of the accumulator
during execution of OTA and OCP commands. During INA's, the addressed peripheral
device places data on this bus for eventual gating into the accumulator. FEach device must
permit these lines to be false except when data is being transferred to the controller in

response to an INA.

KOTAL-, KINAL-, KOCPL-, KS5KS5L-

Each output line indicates that the execution of the corresponding instruction is in

progress, The OCP line pulses during execution of SMK,

KABOl- through KABO06-

These six output signals are the least significant bits of the W register and present

the address portion of the I/O instruction,

KTSTL-

This input signal is made true by the peripheral device in response to address and
instruction signals if the device is ready for a data transfer. This signal is used during an
INA or OTA instruction or if a skip is to occur during an SKS instruction., The line serves

no function during OCP. Each device must permit this line to be false except during the

period when it is addressed.

KSTRB-

This output signal indicates that a true test signal has been recognized during either
an INA, OTA, or SKS signal, that the next instruction will be skipped, and that a data trans-
fer, if any, will take place,

During OCP and OTA commands, this signal defines the time when the address and

data lines are stable, This signal is also active, but redundant during execution of an SMK,

KINTL-
Interrupt signal is an input signal to the controller. This line is made true to interrupt

KSMKL-

This output signal is true during the execution of either an SMKO or SMKI! instruction.
The peripheral device uses this line with KABOl+ and the appropriate data bus bit to set or
reset the mask F/F.

w
1
M

KXCLR-

This line is true during the operation of the master clear pushbutton on the panel,

activation of the remote clear line, and during power-on and during power-off conditions.

KLOAD-

This line is true when the load function is activated,

KSTAL-

A true pulse which must be greater than 500 ns on this line restarts the controller after
the execution of an STL instruction, If this line is true during execution of the STL instruction

the machine does not stop.

KPWEF L-

A true level on this output line indicates that operation of the controller is terminated
because of a power failure or turn-off operation. The line goes true at least 1 millisecond
before the memory supply is turned off. This signal is supplied only with the power failure

interrupt option,

INTERRUPTS

The interrupt facility enables an external device to change the normal program sequence
with low response latency, An interrupt request occurs when one of the devices on the
common interrupt line (KINTL) grounds the line, If interrupts have been enabled by the
controller program in progress, the request is honored on completion of the current
instruction and control is transferred to the dedicated location 00002, Additional interrupts
will be inhibited until the execution of an ENB instruction. The device which causes the
interrupt maintains the interrupt line at ground until the interrupt is acknowledged, This
may be done by data transfer or by separate instruction depending on the devices' purpose
in causing the interrupt.

The ability to selectively inhibit or enable interrupts on a device basis is desirable in
some real time systems, To provide this facility each device has a mask flip-flop in addition
to the interrupt flip-flop. The mask flip-flop is set and reset by the set mask instruction
(SMKOO or SMKO1). Interrupts are permitted from a particular device only when the mask

flip-flop is set and are inhibited when reset,

DIRECT DATA CHANNEL

The DDC allows an external device to interface directly with core memory, Control
of DDC transfers are entirely under the control of the external device; the H112 central
processor suspends all normal operations when a DDC cycle occurs,

The DDC mode is entered between normal program instructions, When the external

device requests the DDC mode, the controller completes the present instruction, The

contents of all registers are maintained throughout the DDC operation and the original
program data is not lost. DDC operation is inhibited when the machine is halted, stalled
or stopped. Because the DDC mode is a high priority mode, the normal program execution

is delayed, Normal program operation resumes upon completion of the DDC speration.

LOAD MODE

Load mode transfers load 3-bit data into the H112 controller for storage in core
memory, Transfers are via the programmed I/0 bus under HI112 hardware control. Four
consecutive octal characters are stored at each 12-bit memory location,

The load mode may be initiated by either the control panel LOAD and START switches
or via machine control interface. The KLOAD signal line initiates the load mode on transi-
tion to true state (ground) and remains there during the transfer, When the stop character
is detected (KDBO7 true), KLOAD becomes false (high) and the load mode terminates. The
controller accepts one octal digit upon transition of KDB09 from false (+6) to the true

(ground) state.

SECTION IV
SAP-12 ASSEMBLER

SYSTEM ASSEMBLY PROGRAM

Assembly Language

SAP-12 is the system assembly program used with the H112 Controller. It is a pro-
gramming aid which translates the symbolic (source) program into the machine language
(code) which is compatible with the hardware. SAP-12 provides symbolic programming
while maintaining the characteristics, flexibility, speed, and conciseness of machine
language programming, and permits the assignment of symbolic addresses to storage

locations ,

Assembly Procedure

The SAP-12 assembly program paper tape is first loaded into a Honeywell H316 or
DDP-516 General Purpose computer via a paper tape reader, After the SAP-12 program
has been loaded, the source program may be read into the computer via paper tape, magnetic
tape or cards,

The source program is read twice under the control of the SAP-12 program, During
the first pass, a table of symbols is established. During the second pass, object program
assembly takes place and an assembly listing printout is generated, This is followed by a
post processor cross-reference listing printout.

A description of the source program line processing follows, (Refer to Figure 4-1.)
Program assembly takes place during pass 2, A line is first read from the tape and stored
in a buffer (part of memory), SAP-12 calls the subroutines used for reading and storing
one line of input. The line is separated into its subfields and the operation menemonic is
examined., The nature of the indicated operation (normal or pseudo) determines the sub-
routines used to process the operation field, For normal operations, SAP-12 determines
the specified machine operation code and places this in the appropriate location of the in-
struction word being assembled, For pseudo operations, analytical routines are used which
modify the assembly process, allocate storage, or define data words. The variable field
is then processed. Defined data is converted to binary; the SAP-12 symbol table is searched
to evaluate symbols; calculations are performed to evaluate expressions, If the operation
field specifies a normal machine operation, the resultant value forms the address field of
the instruction being assembled.,

The assembled object program is punched on an "object tape.'" This tape is punched

in blocks of from 4 to 38 12-bit words. The words are object program words converted to

READ ONE
INPUT LINE

ISOLATE THE
VARIOUS FIELDS

PROCESS OP CODE
AND DETERMINE
TYPE

PSEUDO OP
ANALYZERS

NORMAL OP

|

Figure 4-1,

Y

PROCESS
VARIABLE
FIELD

OUTPUT
ASSEMBLED WORD

Processing of One Line

(printable) ASCII characters, The object tape block formats, types, program printing

format and other details are discussed in later paragraphs.

ADDRESSING

The HI112 controller memory is divided into banks of 4096 words. FEach bank is
divided into sectors of 128 words, Each of the seven memory reference instructions (LDA,
STA, ADD, ANA, IRS, JMP, JST) has a 7-bit address field, allowing direct reference to
words contained in a single sector, The sector bit determines the sector which contains
the required word, If the sector bit is 0, the address is in the primary sector; if it is 1, the
address is in the sector containing the instruction. A memory reference instruction may,
therefore, address 256 words: 128 in the primary sector and 128 in the current sector,

The assembler maintains a base location counter (BLC) in addition to the normal
location counter. The BLC is normally set to location 0004 when the assembler is initialized,
When the assembler must create an indirect link, it places the full 12-bit address in the
word specified by the BLC, creates a memory reference instruction which indirectly ref-
erences that word, and increments the BLC,

Through the use of the SETB pseudo operation, the programmer should set the BLC to
some location in memory, (See example Section 6-3), This is necessary to place the indirect
links for a given sector within that sector. If the BLC is incremented across a sector bound-
ary, no further indirect links are created until another SETB pseudo operation is encountered,
and any instructions requiring cross-sector references are marked with an error flag. An
error flag is also printed if a cross-sector address is required on an indirect memory
reference instruction, or if a SETB region is exceeded,

Because the execution of instructions with addresses in another bank requires the
programmer to perform certain actions (see TAB, TBA machine instructions), a warning

flag is placed on the listing at each instruction requiring a cross-bank address,

LANGUAGE STRUCTURE

Source Program

Programs written in the SAP-12 source language consist of a sequence of symbolic
instructions or statements known as source lines, Figure 4-2 shows a typical symbolic
instruction written on a SAP-12 source program coding form, The instruction shown
represents one source line.

As indicated on the coding form, symbolic instructions consist of four main fields,
Fach field is variable in length and is delimited by a space. For convenience when key-
punching cards, forms are available which provide fixed fields. (See Figure 4-2.) This
format also contains an extra field used for entering the card sequence number; however,

it is not required as part of a symbolic instruction.

CAP/SAP 12 CODING FORM
F2435-869

AN S R

Location Operation Variables C)

oTaTals ol 7[5 ol 2 1 alishol7 6 o0k 1oz s alzsee 7zazopols! 32333435 36573833 4041 42 43445146 47 48
112{3,4/5|67|8]9}0]!112)13)4 I5&16|1|7118}|912012l‘122}23!24{25]26@27!28&29303I132'133134!3535|3 138394041 4214344:4546/47148)

STRTL L | |wbAaL | jeems] SITIAl THE!L ICHUNT, |
EEEEEEE IR I IR L T R

Figure 4-2. Source Program Coding Form

Source Program Format

Each source language statement consists of five fields: line number (optional), location,
operation, variable and comment. FEach of these fields is delimited by a space character,
The five fields must be punched in the above order. A line is terminated at 80 characters
when the input is cards or mag tape, and at an X-OFF when the input is paper tape. Car-

riage returns, line feeds, and rubout characters are ignored on paper tape,

Line Number Field (Not Shown on Figure 4-2). -- The line number field is optional

and is allowed only for paper tape. It is provided for compatibility with input prepared for
the Honeywell 1648 time sharing system. The line number is a number less than 32768,
It must be terminated by exactly one space. The occurrence of more than one space will

indicate the absence of the location field.

Location Field. -- The location field may be used to assign a symbolic address or

"abel' to an instruction so that the instruction can be referred to elsewhere in the program.,
The symbolic address in the location field must be a legal symbol. SAP-12 assigns memory
addresses to the symbolic locations when assembling the object program. If the first char-

acter of the location field is an asterisk (%), the entire statement is regarded as comments,

Operation Field., -- The operation field is analogous to the operation-code portion of

a machine language instruction. The contents of the operation field may be either a machine
language instruction mnemonic, or one of the pseudo-operation menemonics provided in the
SAP-12 repertoire, Operation mnemonics are either three or four characters in length.

In addition to specifying an operation, the operation field also specifies that in-
direct addressing is desired if an asterisk (*) immediately follows the operation-code

mnemonic,

Variable Field. -- The variable field is normally used to specify an address or a shift

count, When used with a SAP-12 pseudo-operation, the significance of the variable field

depends upon the nature of the pseudo-operation,

Comments Field, -- The comments field may be used for any comments the program-

mer cares to write, This field has no effect on the assembler, but is printed out on the

symbolic assembly listing.

Sequence Number Field, -- The sequence number field is actually contained within the

comments field and its use is optional. It is used for the assembler sequence check on
cards (SEQC) pseudo-operation,

The source line shown on the form in Figure 4-2 is an instruction located at the
symbolic location STRT. When executed the instruction will load a constant, located at

the symbolic location CONS, into the A register.

Symbols

Symbols generally represent memory addresses and may appear in both the location
and the variable field of symbolic statements, The programmer defines a symbol by
placing it in the location field of a statement, thus giving the statement a symbolic address.
The assembly program keeps track of the location of statement in the source program by
stepping a location counter by one for each instruction, When a symbol appears in the
location field, it is normally assigned the current value of the location counter. This is
not true of some pseudo-ops; see EQU, SET and FORM. The first such occurrence consti-
tutes the definition of the symbol, and any subsequent occurrence in the location field causes
an error flag (M) to be printed., If a symbol appears in a variable field and never appears in
a location field, it is an undefined symbol and will cause an error flag (U) to be printed. The
value of an undefined symbol is zero.

Symbols consist of one to eight characters from among the 36-character set of the
letters of the alphabet and the 10 digits, The first character in any symbol must be
alphabetic.

Expressions

Expressions appear only in the variable field and may be either simple (composed of a

single element) or compound (composed of two or more elements separated by operators).

Elements. -- An element may be:

a. A binary number less than Zl2 (coded as B'n....n)

b. An octal number less than 10000 (coded as O'n....n)

c. A decimal number less than 4096 (coded as D'n,...n)

d. An asterisk (representing the current contents of the location counter)

e. A character pair (coded as C'aa)

f. An address constant {(coded as a symbol)
g. An absolute number (coded as n....n; evaluated according to the base
established by the previous BASE pseudo operation)

h., A single ASCII character, (coded as A'a and assembled with leading binary zeroes).

Operators., -- An operator may be:

a. Blank (terminates expression)
b. Asterisk (multiply)

c. Slash (divide)

d. Plus (add)

e. Minus (subtract)

f. Parentheses (evaluate expression within parentheses first)
The following is an example of a valid expression:
TAB EQU 2+%-REL/(XX3%3)

This reads '""TAB equals the value of REL divided by the value of XX times 3, sub-

tracted from the current location plus 2."

Strings
A string is valid only in a DATA statement, It is coded as follows:
S'daaa....aaad
a. S' defines the String.

b.d...... d are the delimiter characters which start and end the string.

c. aaa....aaa is the string,

The characters in the string are stored two per word, left-justified, The last word
is space-filled if necessary. The delimiter characters may be any valid character.

An example of a string is:
S'$WHAT'S UP, DOC 2%

The dollar signs delimit the string which may contain any character except the

delimiter character,

Source Preparation

The first statement in each program should be a comment line {(* in column 1) con-
taining a $ in column 2, and the program name in columns 3-8. This statement will cause
a Header block to be punched on the object tape. This statement will also allow the program
to be called as a source library tape by a COPY pseudo operation, when source is punched
from Pass 1 using pseudo-op PCH.

The last statement in the program must be an END statement,

Paper Tape
The ASR 33/35 requires that each line be punched as follows:

a. one line feed character
b. source statement

¢. one carriage return character

d. one X-OFF character

e. one or more rubout characters for ASR-33, two or more rubout characters

for ASR-35,

SAP-12 recognizes the X-OFF character as the line terminator; all line feed, car-
riage return, and rubout characters are ignored,

Holding down the control key and depressing the H key causes the previous character
to be deleted. Repeated operation will delete multiple characters, Operating the X key with

the control key will cause the entire current line to be deleted.

Cards

Each source statement must start on a new card and must be completed on that card.

The statement scan is under the control of the CARD pseudo operation.

Magnetic Tape

SAP-12 accepts unblocked card images on magnetic tape. They are processed in the

same manner as cards,

Asterisk Conventions

The conventions for use of the asterisk are summarized below,

a. An asterisk in the first character of the location field: treat the entire
statement as remarks.,

b. An asterisk appended to instruction mnemonic: set the indirect address flag,

c. An asterisk as an element in an expression: current value of the location
counter,

d. A single asterisk as an operator in an expression: multiply,

e. An asterisk - asterisk (*-%) or a double asterisk (*%*) as a symbolic address:
assemble an address of zero (address is modified by another instruction).

f. A triple asterisk (*%*%) as an operation code: assemble the instruction as a

memory reference with an op code of 0 (op-code is modified by another instruction).

ASSEMBLY LISTING

The assembler produces a side-by-side listing of the assembled object code and the

source input (see Figure 4-3), The format of this listing is as follows:

¥010-0031-6804 (MTPY) CCcD Np, 70181245000 REV., A SECTOR: 00 PAGE: 6

0169 00500 1325 50525 STA oMY RESTORE SHIFTED MULTIPLIER

0170 00501 0726 00526 oA (P PICK UP H,0,W, OR PRODUCT

0171 00502 0304 SNO 1F MULTIPILIER BIT WAS QNE, ADD IN
0172 00503 2324 00524 ADD LMD MULTIPLICAND, NOTE TA

0173 00504 2324 00524 ADD (MD MULTIPLICAND, NOTE THAT THE OVF
0174 L4 HAS BEEN RESET AND OVERFLOW CANNOT
0175 - L] . OCCUR DURING THE ADD

0176 00505 0101 LGR 1 SHIFT H,0,W, OF PRODUCT RIGHT ONE
0177 00506 1326 00526 STA (P AND RESTORE 1T

0178 00507 0030 104 PICK UP THE BIT SHIFTED OFF AND
0179 00510 0141 RAR 1 MAKE [T M,S,B, OVF IS AGAIN RESET
0180 00511 2327 00527 ADD Pl ADD IN L,0.W, OF PRODUCT

0181 00512 0101 LGR 1 SHIFT NEW L,0,W, RIGHT ONE AND
0182 00513 1327 00527 STA LP+1 RESTORE 1T, THE SHIFT NEVER SETS OVF
0183 00514 3327 00527 IRS ___ MCNT INCREMENT ITERATION COUNTER

0184 00515 1676 00476 JMP MPLP RECYCLE IF NOT DONE

0185 00516 5651 00451 JMPe _ MPYS RETURN

0186 » IF BOTH OPERANDS WERE LNN, RETURN WITH ZERO PRODUCT, ZERO ACC,
0187 » AND WITH OVF SET

0188 00517 0060 MLNN CRA CLEAR

0189 00520 0003 0CA ONE'S COMPL IMENT

0190 00521 0101 LGR 1 SET OVF

0191 00522 0060 CRA CLEAR ACC

0192 00523 5651 00451 JMP® MPYS RETURN

0193 00524 LMD BSS 1

0194 00525 LMY 8ss 1

195 00526 LP BSS 1

0196 00527 MCNT BSS i

0197 0 7765 013 DATA . ~0'0043

 ON B Y W KL L

COMPUTER CONTROL DIVISION

Figure 4-3, Sample Assembly Listing

Page Heading

Fach page is headed by a line consisting of the first comment card encountered.

Page Title

Fach page may, under control of a pseudo operation (TTL), have a title line between
the heading line and the body of the page.
Body of Page

The assembler produces one line for each object word produced by the assembler,
plus lines created by comment and space cards. Multiple lines are generated by certain

pseudo operations and are printed under control of the GENR pseudo operation.

Typical Listed Line

The typical listed line consists of six fields:

a. Line number (decimal)

b. Error flags (one to four alphabetic characters)

c. Assembled location (5-digit octal number)

d. Assembled H112 word (4-digit octal number)

e. Absolute address (5-digit octal number)

f. Reproduced source input (may be controlled by TABS)

Error Flag Definitions

M Multiply defined symbol; the same symbol appears in the location field of two
or more statements. Every reference to this symbol is flagged. Because
the symbol table uses a hash-coding technique, it is possible for two different
symbols to look the same to the assembler., This will result in a spurious

"M'" flag. To correct this condition, merely change one of the two symbols,

A The pass 1 and pass 2 values assigned to this tag are not equal. Example:

LOC BSS VAL
TAG LDA P5
VAL EQU 10

"TAG" line will be flagged with A, because "VAL" is not defined in pass 1
(=0) while it is 10 in pass 2,

R Core wrap-around; instruction addresses a location beyond the top of
memory, High order bits of address will be masked to force core-wrap;

i.e., the address will be calculated modulo the memory size.

S The address of a memory reference instruction is in neither the current sector

nor a primary sector. An indirect link could not be made.

X There is no room in the current SETB region to store the indirect link re-

quired by this statement; link not generated.

W The most recent SETB pseudo operation specified a location neither in the
current sector nor a primary sector; therefore, the indirect link required by

this statement cannot be generated,

B The address specified by this statement is not in the bank in which this

statement resides,
F A format error has been found in a FORM or TABS pseudo operation,
U A symbol specified in the variable field of this statement is undefined,
I The operation code of this statement is invalid.
L The location field of this statement is blank; a symbol is required.

P A pushdown list is exhausted. Possible causes are too many nested parentheses

in this expression or SETB list overflowed,

T A number has been truncated in order to fit it into its field as defined in a

FORM pseudo operation,

E An expression is invalid, The field is set to 0O,

Fatal Errors

Three fatal errors will abort the assembly;
PTBL full! — symbol pointer table is full,
STBL full! — symbol table itself is full.
SRCL ERROR — assembler self-check error,

OBJECT TAPE

The object paper tape is punched in blocks consisting of from 4 to 38 words. Each
12-bit word is punched as two 6-bit characters, Each 6-bit character is added to 2408 to
produce an 8-bit ASCII character in the range 2408 - 3378. All the characters in this
range are printable. The tape feed character is 0018 which is not printable, This tape

format is compatible with tape produced by the Honeywell Series 16 time sharing system.

Tape Format

The paper tape format for the object tape is shown in Figure 4-4. As shown, one
vertical column of holes is a frame, One frame corresponds to one typed character or
typing function. The holes which make up the frame are numbered as channels 1 through 8.
Sprocket holes are used for tape drive.

Each channel may be regarded as a binary bit. A hole in the tape (filled in circle -
see Figure 4-5) represents a logical 1, The absence of a punched hole (plain circle)
represents a logical 0. The binary bits are grouped, as shown in Figure 4-5, to form a
3-bit octal number. Note the examples shown on the figure for a line feed and carriage
return, They are read as 212, and 215_, respectively, Although these two characters do

8 8’
not actually print, they do control the format of the printed output.

FRAME

=

|

1)
2 o SPROCKET
3 o HOLES
0 0000 000000000000 0CO0D00O0D00D0OD0D0DO00D00O0
CHANNELS < 4 o
5 o
6 o
7 o
8 o

Figure 4-4, Paper Tape Format

ASR-33 TYPEWRITER

CONTROL CODES POSITION
l VALUES

1 ° o) 01
2 o ° BIT GROUP3 ¢ O 2
3 [] [e] 04
00000000OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
CHANNEL 4 ° ° 01
NUMBERS 5 o) o BITGROUP2 { O 2
6 [0} [e] O 4
7 o o) 01
8 ° ® BITGROUP1 < g 2

L 212g LINE FEED

215g CARRIAGE RETURN ~ ® = PUNCHED HOLE
o = HOLE POSITION

Figure 4-5, ASCII Punched Tape Format

Typical Block Format

Each block has the following format,

Word 1: left character: block type (0-4) converted to ASCII (2408-2448),

right character: data block length in 12-bit words (0-34) converted
to ASCII (2408—3028); the data block length is the
number of words after word 1 and before the
checksum.

Words 2-(n-3):
data block (if any); each 12-bit word is converted to two ASCII characters,

Word n-2: checksum of words 1 through n-3; converted to two printable ASCII
characters (2408-3378).

Word n-1: left character: ASCII carriage return (215

).
right character: ASCII line feed (212). ©

Word n: left character: X-OFF (2238).
right character: tape feed (0018),
Block Types
Block type 0 - header (Figure 4-6)
Word 1: left character: block type (=0)
right character: data block length (=3)

Words 2-4: 6 character program name

Word 5: checksum of words 1-4
Word 6: carriage return and line feed
Word 7: X-OFF and tape feed

1 BLOCK TYPE (=0) DATA BLOCK LENGTH
2 1ST CHARACTER 2ND CHARACTER
- .
3 3RD CHARACTER 4TH CHARACTER
WORD - J
4 5TH CHARACTER 6TH CHARACTER
5 CHECKSUM OF WORDS 1 THROUGH 4
6 CARRIAGE RETURN LINE FEED
7 X-OFF TAPE FEED

Figure 4-6. Block Type Zero Format

Block Type 1 - Data Block (Figure 4-7). --

Word 1: left character: block type (=1)
right character: data block length (=3-34)

Word 2-3: 13-bit location of first word to be loaded
(right-justified in a 24-bit double word).

Word 4 through n-3: data words to be loaded (1-32 words)

Word n-2: checksum of words 1 through n-3

Word n-1: carriage return and line feed

Word n: X-OFF and tape feed
1 BLOCK TYPE (=1) DATA BLOCK LENGTH
/ MOST SIGNIFICANT
2 /y (BITS 2 THROUGH 12 NOT USED) / “T— LOCATION BIT
3 LOCATION OF FIRST DATA WORD
-12 LEAST SIGNIFICANT BITS
~ ~
(WORDS 4
WORD THROUGH J]{ DATA T
N-3) \... (1-32 WORDS) J.
N-2 CHECKSUM OF WORDS 1 THROUGH N-3
N-1 CARRIAGE RETURN LINE FEED
N X-OFF TAPE FEED

NOTE: N=3-35WORDS

Figure 4-7, Block Type One Format

Block Type 2 - Fill Block (Figure 4-8). --

Word 1: left character: block type (=2)
right character: data block length (=4)

Words 2-3: 13-bit location of first word to be filled

Word 4: number of words to be filled
Word 5: data word; all words are filled with this value
Word 6 checksum of words 1-5
Word 7: carriage return and line feed
Word 8 X-OFF and tape feed
1 BLOCK TYPE=2 DATA BLOCK LENGTH
7 ; 7 / MOST SIGNIFICANT
2 (BITS 2 THROUGH 12 NOT USED) y “—TLOCATION BIT
Z /
3 LOCATION OF 1ST WORD OF SERIES
-12 LEAST SIGNIFICANT BITS
WORD 4 NUMBER OF WORDS IN SERIES
5 FILL VALUE (FROM 0000 TO 77778)
6 "CHECKSUM OF WORDS 1 THROUGH 5
7 CARRIAGE RETURN LINE FEED
8 X-OFF TAPE FEED

Figure 4-8, Block Type Two Format

Block Type 3 - Transfer Block (Figure 4-9). --

Word 1: left character: block type (=3)
right character: data block length (=2)
Word 2-3: 13-bit location at which to start program execution
Word 4: checksum of words 1-3
Word 5: carriage return and line feed
Word 6: X-OFF and tape feed

1 BLOCK TYPE (=3) DATA BLOCK LENGTH
/s /S L7 7/
2 1 /(BITS2THROUGH12 NOT USED) / % o S e BT
ya

LOCATION WHERE PROGRAM IS TO START

3

WORD -12 LEAST SIGNIFICANT BITS
4 CHECKSUM OF WORDS 1 THROUGH 3
5 CARRIAGE RETURN LINE FEED
6 X—OFF TAPE FEED

Figure 4-9. Block Type Three Format

Block Type 4 - End-of-File Block (Figure 4-10), --

Word 1: left character: block type (=4)
right character: data block length (=0)

Word 2: checksum of word 1

Word 3: carriage return and line feed

Word 4: X-OFF and tape feed
1 BLOCK TYPE (=4) DATA BLOCK LENGTH
2 CHECKSUM OF WORD 1

WORD

3 CARRIAGE RETURN LINE FEED
4 X-OFF TAPE FEED

Figure 4-10, Block Type Four Format

POST PROCESSOR LISTING OUTPUT

The post processor listing output is printed immediately after the assembly listing if
requested by the POST pseudo operation., It is a list of all symbols defined during program
assembly, their locations and all references to the symbols, The format of the list is
described below and is shown in Figure 4-11, FEach page is headed with the same line as

the assembly listing. There is one line containing the following fields for each symbol

defined:

a, Sector which contains the symbol,
b. Location of the symbol, (or value, in the case of EQU and SET).
c. Symbol,
d. Reference List: the location of each reference to the symbol,
NOTE:
POST increases the size of the symbol
table by a factor of about 3,
TEST OF SAP=12 NUMBER 1 SECTOR: 47 PAGE: 12

CROSS REFERENTCE TABLE

00 00001 AA 00046, 00214, 00244, 00216, 00216, 00235, 00425, 01020,
40 10001 B2 01026,

02 00426 BAD
0o 00000 8B

01 00204 BEGIN 00205, 00205, 01017,

00 00054 BK

00 00004 BLQCK QQu54, 00054, =~

00 00062 BSET p0gez,

00 00004 cCC 00016, 00046, 00236,

01 00220 CSET 00200,

00 00016 DATAL

00 00012 pp 00001, 00001, 00002, 00002, 00033, 00040, 00425,
02 00432 DSET 00400,

00 00001 DTESTA 00207,
00 o00p02 DTESTR

00 00014 FF 00016, 00236,

00 00014 FRLLBLK -
01 00237 Hi234567

01 00233 HELP 00403, 00406, 01046,

04 01021 HIBLK 01015,

0200427 | ABEL Q1U13, N
02 00430 LABEL2
02 00431 LABELJ
04 01001 LOWLBL 01014,
02 00445 MULDEF 00235,
02 004p2 NEXTSECT 00241, 00401,
4 4

02 00407 __QYER11 ‘ 3 12, 0041 4 00424, 00425 42 610
o0 00017 @ T T .
00 00033 Q3 - : - . L S ; .

00 00046 Q3
00 00055 Q4

02 00410 -spF . -0 . K S AT T T e L
01 00243 TWI1SSECY 00242, 00400, 10000, o e T
01 00234 WHY 00404, 00427, 0043p, 01015,

40 10003 XBANK _ 10002,

47 11610 XYZ 01000, 10002,

Figure 4-11, Sample Post Processor Listing

SECTION V
BASIC PROGRAMMING

This section contains information for coding H112 machine instructions and pseudo-

operations used in programming the H112 with the SAP-12 assembler language,

MACHINE INSTRUCTIONS

There are five general types of H112 machine instructions: memory reference (MR),
input/output (I/0), shift (SH), skip (SK) and generic (G).
p P p g
A summary of Hl12 machine instructions is provided in Table 5-1. Refer to Section II

for a detailed explanation of each instruction,

Memory Reference Instructions

The 7 memory reference instruction codes are: LDA, STA, ADD, ANA, IRS, JMP,
JST. They are coded as follows:

LOCATION: blank or any valid symbol.

OPERATION: one of 7 codes above, followed by an asterisk () if indirect
addressing is desired,

VARIABLE: any valid expression which will result in a 7 bit address in
either the current sector or a primary sector.

COMMENTS: ignored.

Input/Output Instructions

The 5 input/output instruction codes are: OTA, INA, SKS, OCP, SMK. They are

coded follows:

LOCATION: blank or any valid symbol,

OPERATION: one of 5 codes above,

VARIABLE: any valid expression which will result in a six bit device address
for all except SMK which requires a one bit result,

COMMENTS: ignored,

Shift Instructions

The 3 shift instruction codes are: LGR, RAR, ARS. They are coded as follows:

LOCATION: same,

OPERATION: one of 3 codes above,

VARIABLE: any valid expression which will result in a four bit shift count.
COMMENTS: ignored,

Skip Instructions

The 10 skip instruction codes are: SPL, SMI, SZE, SNZ, 50V, SNO, SPN, SMZ,
NOP, SKP. They are coded as follows:

LOCATION: same,

OPERATION: one of 10 codes above
VARIABLE: ignored.
COMMENTS: ignored.

Variations of these can be created by using the FORM pseudo-up. Refer to page 2-12.

Generic Instructions

The 12 generic instruction codes are: CRA, OCA, TCA, TOA, ENB, INH, STL, HLT,
TAB, TBA, ITS, ITR., They are coded as follows:

LOCATION: same,
OPERATION: one of 12 codes above,
VARIABLE: ignored,
COMMENTS: ignored,
Table 5-1.
Machine Instructions
Op Code Execution
Octal Mnemonic Instruction Type Time (us)
1 LDA Load A MR 3.39
2 STA Store A MR 3.39
3 IMP Jump MR 3.39
4 ADD Add MR 7.63
5 ANA AND to A MR 7.63
6 IRS Increment, Replace, and Skip MR 9.33
7 JST Jump and Store P MR 4. 66
40XX INA Input Transfer to Accumulator 10 4. 66
41XX SKS Skip If Set 10 4., 66
42XX OTA Output Transfer From Accumulator IO 4.66
43XX OCP Output Control Pulse 10 4. 66
2309 sMK Set Mask 10 4.66
010X Lar Logical Right Shift SH 3. 8+N(0. 424)
gigi’ ARS Arithmetic Right Shift SH 3. 8+N(0. 424)
1% RaR Rotate A Right SH 3. 8+N(0. 424)
0200 NOP No Operation SK 3.39
0201 SMI Skip If Accumulator is Negative SK 3.39

Table 5-1. (Cont)
Machine Instructions

Op Code

Execution

Octal Mnemonic Instruction Type Time (us)
0202 SZE Skip If Accumulator is Zero SK 3.39
0203 SMZ Skip If Zero Or Negative SK 3.39
0204 SOV Skip If Overflow F/F is Set SK 3.39
0300 SKP Skip Unconditionally SK 3.39
0301 SPL Skip if Accumulator is Positive SK 3.39
0302 SNZ Skip if Accumulator is Non-Zero SK 3.39
0303 SPN Skip if Positive and Non-Zero SK 3.39
0304 SNO Skip if Overflow F/F is Reset SK 3.39
0000 HLT Halt G 2.54
0003 OCA One's Complement Accumulator G 7.63
0005 TCA Two's Complement Accumulator G 7.63
0021 STL Stall On Line G 3.39 + (Wait)
0022 TBA Transfer Bank Register to

Accumulator G 3.39
0024 ITS Interrupt Save G 3.39
0030 TOA Transfer Overflow to Accumulator G 3.39
0041 TAB Transfer Accumulator to Bank

Register G 2.54
0042 ITR Interrupt Return G 2.54
0044 ENB Enable Interrupts G 2.54
0050 INH Inhibit Interrupts G 2.54
0060 CRA Clear Interrupts G 2.54

PSEUDO OPERATIONS

The 21 pseudo operations included in this section supplement standard instructions,
They allow the programmer to execute functions which do not have any counterparts in

machine language, Pseudo operations are divided into the following six groups of operations:

a, Data defining pseudo operations

b. Storage allocation pseudo operation

c., Symbol defining pseudo operations

d. Assembly controlling pseudo operations
e, List controlling pseudo operations

f. Special pseudo operation

Fach group is discussed in detail in paragraphs which follow, Read Section 4-5 to 4-6

for expression types.

5-3

Data Defining Pseudo Operations

Two data defining pseudo operations, DATA and BASE, are described below,

DATA. -- The DATA pseudo operation defines constants and strings, and reserves the

proper number of storage locations to hold them, It is coded as follows:

LOCATION: blank or any valid symbol; if present, the symbol is assigned
the address of the first location reserved.

OPERATION: DATA

VARIABLE: a list of strings and/or expressions, separated by commas.

COMMENTS: ignored

Fach expression in the list causes one word to be reserved and filled with the value
of the expression, Each string causes a number of words sufficient to hold the string (two
characters/word) to be reserved and filled, A string or expression may be repeated by
preceding it by a repetition constant. This is an expression indicating the number of
repetitions, followed by a period.

Example:

TABLE DATA 3.7, (AA-FF). C'AB, O'77
will assemble 3 decimal 7's, "AA-FF" worth of 'AB', and 1 octal 77,

BASE. -- The BASE pseudo operation defines the radix (base) of any numeric elements

in succeeding statements which are not prefixed by D', B', or O'. It is coded as follows:

LOCATION: ignored

OPERATION: BASE

VARIABLE: n{n=2, 3,..... , 10)
COMMENTS: ignored

The assembler is initialized to BASE 10,

Storage Allocation Pseudo Operation

The BSS (Block Starting With Symbol) storage allocation pseudo operation reserves a

block of storage and fills it with a specified value,

BSS is coded as follows:

LOCATION: blank or any valid symbol; if present, the symbol is assigned
the address of the first location reserved
OPERATION: BSS
VARIABLE: n, f (two valid expressions)
n = number of locations to be reserved
f = value with which to fill the reserved locations, If{ is
omitted, the reserved locations retain their previous values
when the program is loaded into memory,.
COMMENTS: ignored

Symbol Defining Pseudo Operations

The three symbols defining pseudo operations, EQU, SET, and FORM, are as follows:

EQU (Equals). -- The EQU pseudo operation is used for permanently defining a value

for a symbol for reference by other SAP-12 operations., It is coded as follows:

LOCATION: must contain a symbol,
OPERATION: EQU
VARIABLE: any absolute expression. Any symbol used in this field must
have been previously defined,
COMMENTS: ignored,
SET. -- The SET pseudo operation is used to define and redefine a value for a symbol,

A SET is coded as follows:

LOCATION: must contain a symbol,
OPERATION: SET
VARIABLE: any absolute expression,
COMMENTS: ignored,
Example:
AA EQU D20
BB EQuU D'30
FACT SET D'10
VALl EQU (AA+BB)/FACT
FACT SET D'5
VAL2 EQU (AA+BB)/FACT

VALL is set equal to 510; VALZ to lOlO.

FORM. -- FORM is used to define a 12-bit word in any format desired and, optionally,

to fill any part with a constant value, It is coded as follows:

LOCATION: must contain a symbol,
OPERATION: FORM

VARIABLE: nl,nz,n3,..,n12
COMMENTS: ignored,

When FORM is specified, the location symbol becomes a "pseudo-op' used to break

up a string of numbers into the fields defined by DDy, oy e ., Ty o

Example:
HALF FORM 6, 6
This establishes "HALF'" as a pseudo-op which, when called as an operation, creates

a data word with a value in the upper 6 bits and a value in the lower 6.

Example:
location HALF 6,5
will generate a data word: 06058.
Optionally, the FORM may establish that parts or all of the field should be pre-filled

with a certain value,

Example:
TABC FORM 1,5,6=0'717
defines TABC as a pseudo-op breaking a field down into a 1-bit portion, a 5-bit portion, and
a 6-bit portion filled with binary l's:
location TABC 1,9
will generate: 51778.

Assembly Controlling Pseudo Operations

Eight assembly controlling pseudo operations, ORG, END, SETB, COPY, PCH,
CARD, SEQC, and POST, are described below.

ORG (Origin). -- The ORG pseudo operation sets the location counter to a specified

value. It is coded as follows:

LOCATION: ignored.

OPERATION: ORG.

VARIABLE: any absolute expression. Any symbol used in this field must
have been previously defined.

COMMENTS: ignored,

The ORG pseudo operation performs the following functions:
a. The expression in the variable field is evaluated,

b. The location counter is set to the value thus determined.

END. -- The END pseudo operation is used to terminate the current assembly pass.

It is coded as follows:

LOCATION: ignored.
OPERATION: END.
VARIABLE: (T\I%S), expression
COMMENTS: ignored.

If the first subfield of the variable field contains YES, the assembler will punch an
End of File block on the object tape, The second subfield defines the address to which

P S _ T mnd € hlom T A e e Ao
be transferred at the end of the loading process. I

[oN

control should
present a transfer block will be punched on the object tape.

The END pseudo-operation causes SAP-12 to perform the following functions:

a. The current block of assembly output information is terminated,
b, Transfer and End of File blocks are punched on the object tape if specified,

c. The current pass is terminated.

The END pseudo-operation must be the last statement in the source program,

5-6

SETB (Set Base Sector)

The SETB pseudo operation sets the base location counter to a new location. It is

coded as follows:

LLOCATION: ignored,
OPERATION: SETB
VARIABLE: k, n {two valid expressions)

k = location at which base location counter is to be set,
n = number of locations in the block reserved for this SETRB.

COMMENTS: ignored,

The location specified by the first expression in a SETB instruction should be defined
as the beginning of a block of storage of length equal to the second expression in the SETB,
All indirect links generated in the assembler are stored in this block until another SETB is
encountered, A SETB will normally have a corresponding BSS with location field = k and

variable field = n,

A special case of SETB is as follows:

SETB !

This allows the programmer to switch between a SETB in the current sector and a

SETB in the primary sector, (See Figure 6-2.)

COPY. -- The COPY pseudo operation directs the assembler to copy symbolic state-

ments from a symbolic punched paper tape. It is coded as follows:

LOCATION: ignored,

OPERATION: COPY

VARIABLE: asterisk or program name (1l - 6 letters)
COMMENTS: ignored.

If the variable field is an asterisk, the assembler stops immediately and requests the
operator to load more paper tape, This option is used when a source language paper tape
is in two or more pieces,

If the variable field contains a program name, the assembler stores the name until
the end of the current pass, At that time, it requests the operator to load a symbolic
library paper tape. The assembler reads that tape, copying subroutines whose names are
in the list, ignoring all others,

Subroutines are named by a special statement containing an asterisk in column I, a
dollar sign in column 2, and the name in columns 3-8, This statement must be the first

statement in the subroutine,

PCH (Punch). -- The PCH pseudo operation directs the assembler to punch a copy of

the source program onto paper tape., It is coded as follows:

LOCATION: ignored.
OPERATION: PCH
VARIABLE: YES or NO
COMMENTS: ignored.

If the variable is YES, all statements are copied until a PCH NO statement is en-
countered, at which time, punching stops. The assembler is normally in the PCH NO mode.
The output is formatted according to the current TABS. PCH does not operate when the
ASR is the input device,

NOTE
The PCH statement itself will never be punched,

CARD (Card Length), -- The CARD pseudo operation gives the assembler the length

in characters of the longest source statement. It is coded as follows:

LOCATION: ignored
OPERATION: CARD

VARIABLE: n (n = 1-80, decimal)
COMMENTS: ignored

The CARD pseudo operation speeds up the assembler by terminating the image scan.
The entire statement is printed on the listing regardless of the value on a CARD statement.
The assembler assumes 80 column images until a CARD statement is encountered. CARD

operates on all input media,

SEQC (Sequence Check On Cards), -- The SEQC pseudo operation notifies the assembler

that the input cards have a sequence number punched in columns 73 to 80 which should be
checked, The contents of symbolic instructions containing the SEQC pseudo operation are

as follows:

LOCATION: ignored
OPERATION: SEQC
VARIABLE: YES or NO
COMMENTS: ignored

When YES, this pseudo operation directs the assembler to perform a sequence check
of columns 73 to 80 while reading the source cards. Any sequence errors are flagged.
Cards with blanks in columns 73 to 80 are regarded as not in error. The assembler is nor-

mally in SEQC NO mode. SEQC YES operates only if CARD pseudo-op is 80,

nnnnnnnn MNMaoa~taoat

™
t Processor I\CLiuCDL). -- The POS

18

-3

nageud
pseud

g
(e}
w
O
O

to produce a post processor listing. It is coded as follows:

LOCATION: ignored
OPERATION: POST

VARIABLE: ignored
COMMENTS: ignored

The POST pseudo operation (if included) must be the first non-comment statement in

the program. Otherwise, it is ignored, The use of POST expands the symbol table,

List Controlling Pseudo Operations

Six list controlling pseudo operations, LIST, GENR, TABS, EJCT, SPAC, and TTL

are described below,

LIST. -- The LIST pseudo operation directs the assembler to print a side-by-side

listing of the program being assembled. It is coded as follows:

LOCATION: ignored.
OPERATION: LIST
VARIABLE: YES or NO
COMMENTS: ignored,

When YES, the LIST pseudo operation causes the source program and its octal repre-
sentation to be listed on the on-line typewriter or printer, The assembler then continues to
operate in the listing mode until a LIST NO pseudo operation is encountered., The assembler
is normally in the LIST YES mode,

When NO, this pseudo operation directs the assembler to suppress the listing of the

program being assembled,

GENR (Print Generated Lines). -- The GENR pseudo operation directs SAP-12 to print

generated object code lines on the assembly listing. It is coded as follows:

LOCATION: ignored,
OPERATION: GENR
VARIABLE: YES or NO
COMMENTS: ignored,

When YES, the GENR pseudo operation causes the printout routine to print one line for
each generated word produced by the assembler., Generated words include indirect links
and multiple words created as a result of a DATA statement. The assembler is normally
in the GENR YES mode,

When NO, this pseudo operation directs the assembler to suppress generated words on

the assembly listing,

TABS (Set Tabs On Listing). -- The TABS pseudo operation allows the programmer

to set tab stops for the four fields of symbolic output: location, operation, variable, and
comments. It allows reformatting of the source which may have been punched free form.

It is coded as follows:

LOCATION: ignored,
OPERATION: TABS
VARIABLE: L,O,V,C
COMMENTS: ignored.

5-9

L = print column to begin location field (default = 1)
O = print column to begin operation field (default = 12)
V = print column to begin variable field (default = 19)
C = print column to begin comment field (default = 34)
NOTE
Depending on the value of C, the comment
field may be truncated to fit on the page.
EJCT (Eject Page), -- The EJCT pseudo operation directs the assembler to begin or

resume listing on a new page. It is coded as follows:

LOCATION: ignored,
OPERATION: EJCT

VARIABLE: ignored,
COMMENTS: ignored.

The EJCT pseudo operation causes the printout routine to generate the necessary
commands to advance the listing one page and continue listing on a new page. This pseudo
operation is ignored if the most recent LIST pseudo operation was NO.

An automatic EJCT is performed whenever: the page line count is reached; a TTL

pseudo operation is encountered; a new sector is begun,

SPAC (Space One Line), -- The SPAC pseudo operation directs the assembler to space

a number of lines before resuming printing. It is coded as follows:

LOCATION: ignored,

OPERATION: SPAC

VARIABLE: an expression whose value is the number of lines to be spaced.
COMMENTS: ignored.

The SPAC pseudo operation causes the printout routine to generate the number of blank
lines specified in the variable field. A blank variable field produces one space. Should the
printout routine reach the bottom of a page while spacing, the printout skips to the top of a

new page and further spacing is discontinued,

TTL (Page Title), -- The TTL pseudo operation directs the assembler to print a title
line beneath the heading line at the top of each page of the assembly printout. It is coded as
follows:

LOCATION: ignored.

OPERATION: TTL

VARIABLE: a string containing from 1 to 60 characters which make up the
title line to be printed,

COMMENTS: none,

The TTL operation causes the printout routine to store the contents of the variable

field in a title buffer, This buffer is printed at the top of each page beneath the heading

line and above the first line of the assembly listing, This title buffer is normally set to
blank when the assembler is initialized,

TTL causes a page eject,

Special Pseudo Operation

The special pseudo operation "*¥:¥' is an undefined operation code, This pseudo
operation is provided as a programmer convenience to indicate an operation to be filled

in at run time. The special pseudo operation is coded as follows:

LOCATION: blank or any valid symbol,

OPERATION: AR

VARIABLE: any valid expression which will result in a 7-bit address in
either the current sector or a primary sector,

COMMENTS: ignored.

This pseudo operation is assembled as a memory reference instruction with an opera-
tion code of zero, A fourth asterisk in the operation field causes the indirect bit to be set

in the generated word.,

SECTION VI
PROGRAMMING THE Hl112

This section serves as a guide for programmers who have never programmed a small
computer, The more experienced programmer will be introduced to the programming
features of the H112, The programming examples shown in this section were carefully
selected to demonstrate basic programming considerations, Most programs written for

the HI12 will use a number of the routines shown,

PROGRAMMING ORGANIZATION

The effort involved in producing a working program in a small machine is dependent
upon several considerations and practices, It is possible to reduce that effort by careful

attention to organization,

1. The program should be organized into subroutines, each of which is a logical
entity. FEach subroutine should be entirely contained in one sector of core memory, A sub-
routine should never cross a sector boundary,

2. A hierarchical chart should be generated, illustrating the "program tree' of sub-
routines, This chart should show the subroutines called by each routine and the common
symbols used by each (a common symbol is one which is used in more than one routine),

The size of each routine should be included.

3. Using the information contained on the hierarchical chart, the programmer should
group small subroutines which use common symbols into ''units". Each unit should be
contained in a single sector. Symbols which are unique to one subroutine or which are
common only to the subroutines in one sector should refer to locations in that sector,

4. The allocation of memory may change during the debuggin process, It is, there-
fore, especially important that rigorous documentation procedures be established and
followed. In general, every line of code should have a comment; every group of instructions
that form a procedure should be clearly labeled as such,

5. Subroutines should be checked out individually, The routines at the bottom of
the 'program tree' should be checked out first, These are the routines that do not call other
routines. By debugging in this manner, the problems of reallocation of memory are
generally reduced, since once a sector unit has been checked out, it does not require
alteration again,

Fach of the seven H112 memory reference instructions (LDA, STA, ADD, ANA, IRS,
JMP, JST) contains a seven bit address field. This allows 128 locations (0-1778) to be
directly referenced. As a result, memory is divided into sectors of 128 words each, The
sectors begin at addresses 0, 2008, 4008, 6008,
numbered 0-378; an 8K HI112 memory contains 64 sectors numbered 0-77g.

etc. A 4K Hl1ll2 memory contains 32 sectors

Each memory reference instruction contains a sector bit, This bit determines the
sector in which the direct address is located, If the bit is ZERO, the direct address is
located in a primary sector (sector 0 or 408); if the bit is ONE, the direct address is located
in the same sector as the instruction,

Each memory reference instruction contains an indirect bit. If this bit is a ZERO,
the instruction operates on the contents of the direct address; i.e., the cffective address
equals the direct address. If the indirect bit is a ONE, the instruction operates on the
contents of the location specified by the direct address; i.e., the effective address equals
the contents of the location specified by the direct address.

In a 4K machine, or when the bank bit in an 8K machine is ZERO, memory referencing
occurs as shown in Table 6-1.

Table 6-1.
Memory Referencing in 4K Mode

Current | Address assembled l
Example | Program in the Instruction 1 s] Sector and] Indirect ['elds] Effective
No. Location (7-~bits) [plu Bit of: & Bit of: U* Address of:
1 204 134 1 0 334
2 204 134 0 0 134
204 134 1 1 (all 12 bits
at location
334)
4 204 134 0 1 (all 12 bits
at location
134)

SECTOR PROGRAMMING

In example 1, the sector bit is a logical '"1", This designates the 7-bit address as
being within the current sector. Thus, the effective address is the present sector starting
address (200) plus the 7-bit address (134), or 334,

In example 2, the sector bit is a "0'". This designates the address as being in the pri-
mary sector, starting with memory location 0000. Hence, the effective address 134 is
referenced.

In example 3, the indirect bit, in addition to the sector bit, is a ''1"", This indicates
indirect memory referencing. Indirect addressing requires that the machine go to the
address, as specified in example 1, and read the full 12-bit word as the effective address
for the instruction. Indirect addressing takes longer than direct referencing but allows
reference to any sector,

Example 4 also shows indirect addressing. However, the machine will obtain the
12-bit effective address from location 134,

In an H112 with 8K memory, the bank bit is included in the calculation of the effective
address. If the instruction is located in the lower 4K and the bank bit is ZERO, memory
referencing occurs exactly as shown in Table 6-1., If the instruction is located in the upper

4K and the bank bit is ONE, memory referencing occurs in a similar manner to that shown

in Table 6-1 except that 100008 (409610) is added to each address, For example, if the
instruction location is 102048, the instruction address is 1348, and the sector and indirect
bits are both ONE (see example 3), then the effective address is all 12 bits at location 103344.

If the instruction is in the lower bank and the bank bit is ONE, all direct addresses
are in the lower bank, but all indirect addresses are increased by 100008. Using example 3
under this condition, the instruction location is 2048, the instruction address is 1348, and
the effective address is the contents of location 3348 plus 100008. If 3348 contains 12348,
the effective address is 112348.

If the instruction is in the upper bank and the bank bit is ZERO, all direct addresses
are in the upper bank, but all indirect addresses are in the lower bank, Again referring to
example 3, the instruction location is 102048, the instruction address is 1348, and the
effective address is the contents of location 103348. if 103348 contains 12348, the effective
address is 12348,

Sector Zero

Sector zero and sector 408 are the primary sectors and certain uses are reserved
for these sectors. This is due to the addressing structure of the machine and the fact that
upon receipt of an interrupt, the machine will go to location 00002 for interrupt instructions,
Sector zero is generally used for storage of frequently referenced data and for start-up

entries. Typical content for sector zero is shown in Figure 6-1,

Octal
Memory Symbolic
Location Location Operation Variables
ORG 0
SET B ENDSECT,N Primary Sector Indirect Link Block
0000 JIMP w41 Start After Reset
0001 DATA START Start Address
0002 JST* R Executed on Interrupt
0003 DATA INTR Interrupt Routine Address
Dl DATA 1
D2 DATA 2
* Commonly Used Constants
M7777 DATA 07777
AA DATA A
BA DATA B
* Commonly Used Parameters
XA DATA X
NA DATA N
ENDSECT BSS N
0177 (Last Address in Sector Zero)

Figure 6-1. Typical Sector Zero Allocation

Automatic Sectorization

Because a memory reference instruction can directly address only those locations
which are either in its own sector or in the primary sector, it is necessary to create
windirect links' to locations in other sectors. To assist the programmer in this task, the
assembler creates these links whenever possible, For example, if a memory reference
instruction in location 3428 requires an address of 4018, the instruction may be assembled
with an address of 0078, a sector bit of zero and an indirect bit of 1, Location 0078 will
have 04018 placed in it by the assembler; this is the mindirect link" for the instruction in
3428.

The programmer must give the assembler a block of storage in which to place the
links which it creates. This is accomplished with the SETB pseudo operation. The most
efficient method is to place all links in the primary sector; however, a large program may
require more links than can fit in the primary sector. In addition, the programmer will
normally wish to reserve part of the primary sector for common parameters and constants.
In this case, some links must be placed in the sector containing the corresponding memory
reference instructions,

A SETB instruction should reference a corresponding BSS instruction. Normal practice
is to place a SETB as the first instruction in a sector, and the corresponding BSS as the last
instruction in that sector, A useful estimate in allocating storage is that a block of approxi-
mately 10010 words of code will require about 25 words of parameters, constants and
indirect links,

The assembler retains two base location counters: the most recent SETB location in
the primary sector and the most recent SETB location in the current sector, The use of
an exclamation point in the variable field of an SETB enables the programmer to swap

between the two. (See Figure 6-2).

Subroutines

Coding subroutines in the H112 is simplified by using instructions which perform
multiple functions, The JST instruction jumps to the subroutine and stores a return address;
the IRS instruction increments a cell and replaces it in memory.

When a single parameter is to be passed to a subroutine, the usual method is to pass
it in the A-register. As an example, a subroutine which spaces the ASR a variable number
of lines is shown in Figure 6-3.

As an alternative, or when more than one parameter is required by the subroutine,

a parameter vector may be listed below the JST, as shown in the print subroutines,
Figure 6-4,
Note that the above examples of subroutines require that the subroutines reside in

the same sector as the calling program. If they are in different sectors, indirect address-

ing (JST*) is required,

12 CODING FORM

CAP/SAP
F2435-869

NeMBF R

CHARGS

equence Number

ralrojreiriralraso

T I

N T B O

L1

|
!

11
|
|
|
1
|

L1
|

|
i

[

I
[I B

] T |

I

I Y
I

|

I |

I

I T S I O |

[72]7

|
|

|
|
|

1
!
L
I
|
!

|

|
|
|

|

l
|
|
|

1

EYPUNCH NOTFS

PROGRAMME i

PROGHAM

T

!

|
}
|
I

[
|
{
{
|

T

L]

!
L1
|
|

*immm. |
}

|

T

|

T
|
|
T

11

i

T

|

!
|
N

|

|
L1

| 11

|

[
11

|
1

‘ezls 3]64!65 se‘s7|seleglm7|

|

[
-
L1
[

|

|

|
!
Ll

|

I

Lt]]

|

L1 1]
[

L1t

|
|

1
|

N1 Bl K
L L]
|

1 S

il

L1

Ll
|

R[]

I

[

[

L]

T !
I 11

i I

L4 1

|

f

|
[

LI
|

L

L1
»
l

L
L
I

l

P11

|

I

|
!
1
|
|

|
L1
|

L]

Comments

Ly

i

BEI TN
Ll

L Ll

|

L1

I

[

[

S
[

L1

T

L1l

[L]]

[

1

Ll

1

|

P4
Ll
|
|

|

|
|

|
|
|

|

|

I
I

|

|

| 11

18

XN

Ll d

L1
L1

IN
|

[L1l
L] L |
ILINL CURREINTL S
LS TN AN@THER] SECTOR, | THE LLNK

L1

i

|
L L]
i

L1

]

|
Ll

L
|

1

|

|

|

|
[11|

|

STIARIT

|
[
L L1l

[Pl |

IR
TIHT S

lRE: GENERATED TN THE [RS|4 BLECK| 11

Ll

|

I
L il

|

|
L1t

L1

|

|

L1l

[

Variables

I

Ll

[

L1l

4 | |

|

11

N I

L1

RET AL 1o 1T, TR A A A
1

10i0]

N T

!
|

N N Y I

Ll

l
\
|
l
|

|
|
|

|
!
|
I

Y Y O

Pl

|

S O O A
L1111

l
|
l
|
|
!
|

|

T T O U O T O

|

|
!
|
L
|

|
|
|

I

I T R T O O I

L]
I

I

N T Y

[

|
|

Operation|

|

18

L

|

L

1

|

|

|

|

f

L

]

1

1|2 [L:]C: ﬁ:s | 7] 8l ||o[| | ll2] 13fia]is I |e| ana [|9I20]2 | [2 2|23IZ4[25]26127|2 s]z 013 113213313{35 36[37138‘39[40 4i l42{43‘44‘4546|47|48]4450 51]52]53‘54[55 56 57158159[60 6!

I I

N

|

L1 1]

[

S O

I T O
I T

|

1

I

L L1
I |
I I

I

L

T
I

LL1]]

]

J

SETB Pseudo Operation

Figure 6-2,

9-9

CAP/SAP 12 CODING FORM

F2435-869 l
PROGKAMME R lzx:. tYPUNCH NOVFS GATE »

Location Operation Variables Comments equence Number
I‘ZI3]4151617|8 9 IO!IIIIZ'B 14 I5|I6\l?|t8||9l20izI{22123]24[25126|27l2812 O3I13ZISBI34‘353437‘38‘39I404I‘42]4444]4546|474814450 5IISZ153IS4]5556IST{55]59ISdGI }&kBlG-tlSﬁ‘SSjGYISJSQINTIIF rar475176B7T781‘—l-
iu_i_u_l_thA}unJEJmmmwlllllll 0 X T I A O A
Ll i1l €1 1 N O Y A 0 T T e T B A B
LLilra AN T Y I 0 T T B G B W W S
I I W %) 1.V NS <|EMIDIPIINIU (SR o 1 C N O T T I O B I O
Ll Ll ST JISPACE! [[111111 .V aft I T T v I O 0 A T A B
Ll 1] 1L 1 R I N S -
Y O O R 1211 T Y T Y Y S U A Y S A S
L PACIE! SVRBREGELTITNE | | | 0 Y S S S O s
ﬁilllll! 11 I S G T T e s | IIIllllJIlIl\IlIIllLAIIIIILII;LLIIIIIILIJ
SPACE | | | IDAT Ll il] JENTRY] IPARIN S| RETURN ADDRESS (| L1111 1111
I A N (Y N O I O B CIQ]MELE&LEM_MIUWTJIHHIIHH EEEEEENE NN
IS I -Th T, VI O =17 VTN I (3-8 fNC% TV 17, T 0 O 5 R Y [O S A O A 1
Ll it oA pEEE®™ (11111111] [PLCK U IASCTL WINE FEED CRARACTER | f | | 13111111111
siPimcmHlmm__omtulululwlmumzulmmi W o YRV VI - N O OO O T O I Y A
[A1 11 #ﬁtl\lllll(llllll IAIUTMEM_LAE:LBﬁmYHHHHllllglllllllllu
Lt | (IR ISPACN 1111 TN (AT TP i f I A A O
Ll b P PISPACILE 1L]| NG (R OVTPOT ANGTHER | ({1 |yt
Liti] [Pl ISPACEL | | | L1 [11| W|mo MALN, PROGIRAM | | 1 L1 bi b1l
SPACN | i} IBSS 0 e ST (o0 Y O YU I I
j:JElEli.lnL_l_L_jIQLAL[JA '‘nr ot JASCTE] LANE] FEED o p o e b by b b r i
L1 Ll RN NN NN NN AR S NS
[Lo Ll TN T T O 5 T O VY O B
| R R Lt I N T O 0 Y I I T T e 0 o i s ¢
L1l L1 Lrb el AN NN NN N S|

Figure 6-3, ASR Space Subroutine

CAP/SAP 12 CODING FORM

L-9

F2435-869
PROGRAMME R]nm EVPUNCH NODTFS DATE J“m j
Location Operationf Variables Comment equence Number
| 12! 314] 5] 6] 7 [e 9 IOIIIIIZ!IS 14 ISIIGIITIIBI'QIZOIZI|22|23I24|25]26|27|28‘2 03Il32‘33|3413536i37{36|39l40 4I]42]444414546147I444J5O 51 52}53‘54]5456'57158‘591606!iezk3164]6] 7I65'69‘707I[37475[76‘7_7*;;1:.4:0'
EH_LJAL_LJAL“_{ﬂuﬂlﬂi_JEEUQMHBMlWﬂ I EEE NI NN N NN Y R
Lt 1] 61 1 I T Y O Y T S W R S AR Y OO
[A Llb il 0 A A Y
Lot LIS fIPRIINT L0111 |G PREINTL 4L e T N N
et ioamal [tz oS, MESIG |1 | ISPACES,| NG @F CHRS, |, | ADIRIS IF MESSAGE! | | 11 |||
NN Lol | NN RN A N R AN AR TN AN
I Y B 18 1 I S T S Illllltlilllllllllllllll||||i111111|11|1
% 1] IPRITINGT SURRGY TITINE! [| | 0 O T T T A O
1LJL1111 L1 | S S O O | IlllllllllilIIIIllLLlLlIIllllrlIlIIlllIIl
PRITNTL o | ISATA| beok 1101 RY| ®@nNT L e b
Lt bl pJubiAded PRI {1 (PR (Ul N e ISPACEIS] 11 f o e bbbl
L Jsm ffspAacE i1 Gl sPe® i bl I BV O A
Ll RGP IPRINTL] IDNCREMENT! [RETURN ADDRESS | 1 111 | bbbyttt
Pttt L A PRIINTI L L1111 1] (PTiciK P NG| IQE CHRIRSL | | b o 1) o BN N O T A A AR I A
I NI 1 o o7, VIR I O O O A O AV I ' CAONT e e fte o e e
Lot L ISMAL Y IPREINNL L L] (=301 T i T T O A VI AN O O O O
Lttt L Ly ITRSE L IPRIVNT (L1] 1) [TNCRE! RETURN ABDDRESS! | | 1| 0]l
AN W X RINT | 1Ll]] PRk VP ADDRESS! (@F MESSAGE | | 1| (Lol i
tir b lora L IPRENA EYT ADNRES!S: 1 1 |11 111 NN NN NN NN NN
[PRIMILL | | | JLDAR IPRYINA 111111111 | IPLGK WP ONE CHARACTER GF MEBSSAGE! i | | 11 d1 111111
Ll [Jo® | 1 1yl T PN JASR || 1] I N S T NN
Lo e e WiMe LI P A R A FOR ASR MNGT BVISY | | || 11§ 111 I N
crr b P LRSS FIPRENAL (o1 1] uEﬂIL&mmmﬂgstl 0 T O 0 I I A N I I A S e
Ll JJIRS JIPRTNN L L1 I INCREMENT! CO0MNT L bbb b b

Figure 6-4, Print Subroutine

NUMKF R

CHARGE

EYPUNCH NOTES

CAP/SAP 12 CODING FORM

F2435-869
PROGRAMME R

TROGHAM

0 [
uTlnlllltlillllllllllIll _]
sLe _ N N T O R S R A S
#2144 4 — 4
evlwl[Jlllllll.lll}lllllklllllll'|.
M7|.|L — — - 4 g9 44 4 J|L.|||.L|
of] — 1 — — —

Al g dd 4 ddd4dd4dddd 494444444
eMI..llll; =4 4 4 4 4 4 4 949 4 4 4 4 494 94 4 4 4 —
g
.IW[llllI.|I|'IILII|II||||.|.|.|I||.)I,I[|.
~

A5 [O A
ImIIIllllllAllllllLllllllll
|7|.|.|.|.|.|.||n|l|.|.|.|.11|.L.|.L"JIII.I
]ml —t o L L 4t 4 -t — 4 4 e
[2]
TmlllllllllllI[lll\;lll||l|_ll
FHol 1 4 4 4 44 9144331311171 17 77
%]l[ll|lll|l|l|lll|lI||.|.l
ey] o — — = ey o - 4 g - 4 A 4 A A 4 — —
®

Is‘l RS [S NN [U B U e T T e T B e T B s B B
L o) | g d g d 4 ddd 4 94444494 4494-+444
(8] @ | 1] 104 4d0d44dd44d 44444
P

| o] _| g dddddd44dd4dd 40444444
B8

/2]

i - 2 ddd4d 4 44d4d4dd944d44-4d4
um Jdddddddd 4444444444444 -
o 1T 11— 311 31T 11T 11111 7777 7
w2 4 ddda044ddd 444444444444
l v

23 _ —

N A R R U N (U B (s R O B _

m _— - — — — —
FHIE QA4 44441141

| < | S N R N ([N N U N N N N O S
~

| < | 4 04 4 d g4 4 4 94 4 4 4 4 4 g4 4 44
©0

< |

HZE 1944319331
[~y | = 7 7 1 1 1 1 U 771 77707 T T T T
| < | T S S NS N N S N U U (U U D
o

| | A 4 4 A 444 4 44 94 44 94 444 4 4
B

K S O e A [
2] —_—]] - o A - - — — - - -
[8] 0 S i R e e A A e e A
(2]

=3 444 ddddd444dd 44444444
2]

2]

| .| o d a4 dd 44
5] g T s e s s e s s s s
" o d] 44 4 444 4 A4 4 g 4 4 4
B]]

4444444944494 4 4 1

2 ™~

Lol |]]] [[N N O O O N B
F

Y [| N . A ddad 4444449440444 4
Tml llllll A4 d 4444444 4d4d4d4a44444

llllll 5 [N A N N [(U [B DR S
Ei i i 1 1 e e e e T At T A A e R O
=3 .
%,I".M llllll - 4 4 4 4 4 4 4 4 4 4 4 —1 4 1 —1
S 444444 444444944 4449499144
rIMI B B e e T T
hz lllllllllll JS DS — g
23 I = I = T (N A O A I S B
(22 ZZ L 4 4 4 44 dddd4d4d4g4d444
3 (e I (. U
elag g |] g 44
o | A -]

<

B B

skel | & | | g ddd4d 4
nlmi.mm 44404144444 4d44d4d4d4
sl-|lE A | |] a4
S ol = H -
ol 2 &

]

Ld —_) 4 4 - == — - @ — @ — -
Lol | a4

~ 4 a4 NN R N e e T T T T e e
F=3 W R (R I a4 d A4 a4 4
el 0 0&®< | dd 04444444444
] N I - S N [A Sl Al O
Spel) e V]
(] 1] Jagee 10 40 dddd4d4 44444
- Ph !

o
i
o)

Print Subroutine (Cont)

Figure 6-4,

Programming With Expanded (8K) Memory

The full 12-bit word of the H112 allows only 4K of the memory to be indirectly
addressed; however, in the 8K machine, the programmer uses the bank register (B register
bit) to indicate whether the upper or lower 4K memory bank is used, Thus, the programmer
must be careful with indirect addressing when programming the 8K machine, having regard
for memory bank boundaries,

A routine which copies a block of data across the bank boundary is provided as an
example in Figure 6-5, using non-jump instructions. Assume that the routine is in the
lower bank (zero), and that the data is in the upper bank (one),

The inefficiency of the above routine demonstrates the problems which may be
encountered when communicating across banks, and indicates why this should be avoided
whenever possible,)

Notice that the routine would be more efficient if the destination address were in the
same sector as the routine, allowing direct address, More efficient programming for a
similar routine is shown in Figure 6-6.

A jump instruction to a subroutine across the bank boundary is shown in Figure 6-7.

A programmer may wish to write a general subroutine which can be assembled with
any main program, In such a case, it may be necessary for the subroutine to determine
the bank in which it is residing. This may be accomplished by executing two TBA instructions
when the subroutine is entered. The first TBA will transfer to the A-register the bank bit
of the bank in which the calling program resides, and will transfer (P13) of the current

routine into the bank register. A second TBA will transfer this bark bit to the A-register.

CARRY VS OVERFLOW DURING ADDITION

The overflow bit, contained in the overflow (OV) register, is actually a carry bit. An

addition results in a carry bit if:

1. Both numbers being added are negative

2. Numbers being added are different in signs and a positive number results.

The following subroutine demonstrates the use of the carry bit to determine whether or not

overflow occurred during addition (see Figure 6-8).

6-9

]

CAP/SAP 12 CODING FORM

12435%-869

AN ln'. tYPONCH NOTLS AT ['.M“

Location Operation Variables Comments equence Number
\!2[[l I]7{8 9 IO]H?IZ[RS 14| I51|G[l7]l8‘l9{20[21{22{23124125!2427]2812 BI|32I33]34[3536‘37{38I39I404l142|4444l4546]47‘48|4450 51]5453]54[5556157]58]59} Gl}eZ}GBlGd]S566JS?]68[69TTO7 Irzr r4]75176b7‘}76jl 80
oL M VIEL IRBILGICIK IGIFI ISTIFRAGIE! FIRGN| BANIK| 11| T@ BANKL 001t} 11 pLLb bl bbbl
t JE N L] I N B O B N N I 0 S O T A A 0 B
drtrrr o P RbAar P IADRBIV L b ISIEM ITNLTITIALL JAIDIORIEISS] [TINL IBANKL M f L L npp i bl
[T O N - . YOO A . I A T 5 N O
Ll Ll L edAr] JADRROU L L | ISET G INTTILAN IADDRIESS: (TN BIANK O | | | || N N
AR T N Y 7 VAN .1 T Y
bttt) fphdhy § INMBR | 1111 1| [SIEMT NUMBER (¢ @ BE| MEVED o f v bl
Ll r P ITICIAL 0 . T O T O A S O O S
Ll STA COWINCT | | | [1L AN U T 0 U T T T T U O W A W v
., I Ll I Y O A I A T T O e T T T O O o A
L@@P | f S I e SIET BIANK REGTSTER T@ o0 f b p bbbt
Ll nas T Y O A S 1 T v U e T A O
T N A (YY1 A .V T O T £ T (V1 NNV YOV 131 o T R A v O B
A0 A~ P VI A L=V 17 YA 0« o T T Y A B
Ll Ll 1] RIAL N O O I O A O A A SIEITII[M_LRMIMM_JLLEB_QlIIIlel!JIll !
Ll L) TAB N T T . T G T R T O
Ll] JLiDIAl T[ElMAPHHIHIHl[B@&MﬁLM N 5 A O I O 0
Lbd bt pqomras JAOL L 1 L1ttt f POT LT 1AW I O O A S O R O O S O A
Ll p YRS RAN L e T N O Y
N A 1Y I Vo O Y Y A I VR I B VA N I B
N 1RSI CI@MINTL L1 L L] N U O O TS A WS
P) MNP L@@ [1oy Lo N Y
T N 1L A« I O O T O I A oSl v v e bbb et el N Ty A B
| AT AN I I T Y T) T T A O O A B A O

Figure 6-5, Inefficient 8K Programming

12 CODING FORM

CAP/SAP
F2435-869

PAGH

equence Number

T

|

| I

|
O |
|

|
|
I

!
I

1

|

L1
L

!
L1

L1 11

|
I

1
[
I I

|
|
!

.

I T I o
I O I

|
L1 1y

|

l

1

|

I

|

N

I O
|

|

|

|
|

f

Y

Ll d 11

I T

|
i

I

I O I

|

|
i
|
l
{
|
|
|
|
|
|

1

I
|
|
!
[
]
|

NEMAF b

[

PYPUNCH NOTES

Comments

‘43{44]4546[47]43]4450 5|]52153{54}55 56]57[58[59]60& iszlsslst&lss;‘ss]e?[se[ss‘mﬂ}m 7 mhs]n}n}'/e)n]so

PROGKAMME i¢

t

|
1

|
|
|
|

|

|

[1]

+
|
1
|
f

|

{
P4l
{ |
! I
!

|
|
|11

I

1111

T

41

L

T

| L 11

111

Ll

|

T

| L1}

T

| L1

L L1

[

| 1]

-

L1Lld

I

v YN

Ll
[
Ly
[
Ll 1]

L1

L1
L1

L 1]

L1

L1
[
[

|

[

Ll

L 111

L1 11

L1 11

L 111

L1
L1111

I

|

LL Ll

|

[
L1 1
L]

-

L1 1]

Pl

|11

I

Ll
L 111

Pl

[111

L1 1]

|-

1
1

|
1

|

|

|
|

|

|11

[

Lt

I
l
|

[

|

L1

L]

|

|

|

Lt

I

|

L

L1

[

1

|
L1l

Ll 11

1

|
l

|

|
|

|

|
I

L

L1

LGINI 1A
DDRESIS | |1
L1
| IRIANKI JADDRESS
L1
L1

pbtogd
!

|

TIZINAIT

RCE] (A
Lt

|

|

Ll 1]

| I

|
[
[

|

Lt

Libl

Lt

.

T
[
L L1

|

|

l
|

L1 1|

[

Ll 1]

|

|

|

[

[

L1

|

Ll

Ll

L]

|

|

|

L1

Ll
Lt

Ll t1

L1 11

|

|

|

|

111t

L1 11

11|

| 111

Ll 1]

P14
T |
.

| |

[
!
.
L1t
Ll

Lot

1111

343&34345534;&;439&044@2

CIPINISITIAINITL 1)

|

|

|

|

!
l
!

12| BILTIS|_IGF| VPPE
LEWER| IBANK ADDRESGS |

COVINTER | |

3EMBm:§t§:Et§§$

I
|

|

|

|

|
.

|
L1l
Lt

11

{

|

L

|

|

|

l
L1

Variables

||

|

L 111
|

!

L1 L

Vo

|

I

|

[

|

l

Ll

|
0
O I I

|

l

|
L1t
L1l

L1

i

Lt bl
I I

\
!
|
|
|
l
|
|

|
|

|

|
|
|
|
|

|
|

I

|1

|
|

L1

|

| Y T I
I

|

)
O O T O

|

Y I

| | |

|

|

I |

L

|

N Y I I I

N O I O
[|

I T T |

I O
I T Y I

|

]

J

SIPIVRICIE | |
|N| |
1|

Operationf

|DATIA

15” |

|

L1

|
|

I

|
|
|
|

l
|
|
|
|
|

|
|
]

1
|

|

Tl oo ool e bl el tesdodton

Dibp 11

NN

|

11

 [zss

S|

Y

DIAIT
ADRRO | | | DATA

Vo]

CIGUINIT | |

INMBR | | |
| 1|

LY

I
|

L1
Lt

-

i

L

N
L1

N Y

Ll

|

I
|

|

|

I

l
L1

A

O T I e
I Y O
L1 1|

L 11

|
l

| |
I T T
||

Inefficient 8K Programming (Cont)

Figure 6-5,

o~

—

CAP/SAP 12 CODING FORM

F2435-869

PROLRAMME i

Irxi. FYPUNCH NOTFS

D GnAM

Location Operation| Variables Comments equence Number
| {2{ 3 ’ 41 5 l 6] 7] 819 IO[I | [I:Z ll3 i4 |5IIGIIY'IBIIB|2012 ll22|23]24125|26127|28|2 3|l32|33|34{3536‘37!38‘39l40 4|I42|43144|4546l47l48{4450 5Il52]53|54|5456157|58159‘ 61 362{63[641656616716469‘70 I}rz m75176b7178]7480
L S| PV €] Bl idicik FROM| BANK ()| T BAMNKI O | | []l p bl il
Hel | L4] L1l T O O N A 0 T T A Y Y B A
Lid o Al | JADRRIN [11 1 F 1] [SIET (LNLITIUALL ADD ITINL BAINKL AL L b p bbb
LU L1] §STiAl IiALLLLl\IIIlIIIII N T Y R R A I
Ll L) juidiag BO Lt PleK 0P ITNIETILALL ADDRE [INCBANKI O b L i
T 1.1 7L VI I o T 4 I B O A LT (T R S SR -
[o | ISTAX Lol STI@RE TNSTRU) EENEER I I SRR AVES S S
Lo bt Flblbl SRIITL L L1l (=F.ef w1411 S o T N O A O e
I SITIA VOTAL 1t SEBY STERE INGTRLCTIGNG 1+ 1 |1 Ll te by v P bl
prr e | s [INMeR amunmm_mFMM_M%UIElll NN NN N AN
Ll] meA N T .. T T T T A U O A o
0 I N T iYL VON A (o Y'YV o T S A O
et o o crrr i | sem @lank REGLSTER T@| w@PER 0| L] pri b
Lil et TAm A Y ¢ T A 2 O O O o
L. SRR L1 O O I B I O I O O D I O A A A
80 Y Y <O I (N> YVCY: Y VO N O O I O I X1 1T ™ T 1= 0 A A I O O A I
VOTAL L | bk | s 00 dsmemis)l n | e e [) O A B B
Lttt Ly URS VAL L] JINCREMENT DESTITNATIIGN ADBRESS: [[1 1o [¢ filin i1
Ll a1 Rﬂ'm__if\nlmulalllull INCREMENT |SQURCE ABDRESS: | 1 1o [vt bbbl il
Lt RS L ICOONT o fINCREMENT COUNTL L b b Py e b el
U T I 1 11 11 7 YY) O O O Y B A I BNE, | IGET A LI A A O A S O B
O I Y [1 T U O Y I L1 11 L4 11 L1 L1 11 [| 1] !lll i N O T O
T U ! N O O I S T S A
SRIT | | (| joATAl B'R00 (11111111][SECTIGR BT FOR MENGRY REFERENCE | [[|1 11 b1 1011
Figure 6-6, Efficient 8K Programming

CAP/SAP 12 CODING FORM

F2435-869

NCMBF &

CHADGE

8748—0

7 5|7

equence Number

I
I I

|

L)l
[

T O I |
{

I
I I |
I T W |
[O
S S R |
L 11

T .

I T I I
I

I T |

I T
O O Y
O |
I
S O

I

I T G I

O S

N T T O O

I T N T Y O O

(727374

I

|
1
|
I
|
|
1
|
I
l

i
|
|

|

|
|
|

|

|
|
|

EYPUNCH NOTPS

PROGRAMME i

FROGHAM

T

|
L
|
|
[

L
I
|

11
|

|
|
1

)
l

|

[
|

L

!
|
I

lLlll

]
|
i

|
}
|
T

1t 1|

| L1

-

| 111

}
}
|
]

|

|
|
1
|

I

l
l
L

L
!
!

| 11

.|

[

11 4]

sales[u[s 66]67165[69‘707:

!

Ly
Ll]
Ll L]
Ll
L1
I
[!
Ll

I

L1l

[.|

L1

L1 1

[

Ll

[|

L L1

L

L1
[

L1l
L] d
L 1]}

Lt
L L1
L1

L1l
L1
L1l
Ll

|

L]]

Ll

[
[

L1 4]

Ll

|

|

111
I .

|

L1 L4

L1

Comment

|
|

L
{1
L1t
|
L]
L1t

[
Ll

|
|
I
|

|

|

|

L1l

L1
|

Ll

l
|

|

1

|

|

i

|
L1l

I

|
l

[
l
I 11]

|

LICTNG (THE IS SElCT@R)|

!

L1

[

L1

L1

|
[
[

!

|

1

T

|

[I
I
[

L]

L1

L1l

L1
Ll

|

|

|

L4l

[

Ll

L

[

| |

|

|

|

[

L]

Ll
I

|
|

|

|

|
|

L1

[

|
|

|

|

|
|

|

Ll

Ll
Lldd

Ll

L1 1]

L L1

Ly |

L1

LR BRTS! IQF UPPERI BANK ADDREISS
|1 T
A
| [
L @F. ISTORAGE T@ (B
| [11]

SIREL BTN SITIGRE| [1INSTIRVICITIL!

Ll

[
1]
Ll

|

|
|

|

|
|

|

1

|

|

L

[

Ld1d

|

|

|

Variables

f
I
|
|
!
|
|
I

!
I I I

N T O O

|
|
|
|
]

|
l
|
|

1

|
I
I
|

|
|
|
|

L

|
I I

I T

|

|
|

|

N O O Y

|
|
|

I
Ll i
Ll

|

!

Ll Lt

Y T T I

L1 11

|
|
|

Ll |

[

|

1

N O Y B

N T Y

|
L
|

I Y

| I

|
|

it

Ll
I

T

Operation

|
l

|
|
|

L
|
|

|
|

|
I

1

]

|Lz[L3T: [tslTne[7[8 9 |o[| |L2|«3 14 ISIIG’WIIGLS[ZOlZ |Iaa|23]24|25!2¢5!27]23{2 an‘sz‘ss]ulss 35'37{35]39‘40 4||42]43lA¢l4546L7|4614450 51 52|53‘54!55 56]57|5e|59]sos|

|

Ll

L1

[
I

|
I I

|

|

|

O |

|
) I O
I

I

Figure 6-6, Efficient 8K Programming (Cont)

12 CODING FORM

CAP/SAP
F2435-869

NUMKE R

CHADGE

Number

equenc

11

L1111

I
|
1

|11
L4t
Pl
S O
I O Y
|
T O T

|

-
i

N

I
T Y Y I

|
I |

T T T O

O
L1l

I W
[

N B
I O T
S O
L1l

T S
Ll il

Ll
|

N

|
I

|

N O B

|

L

1

Lt 111

|

|
l
1
L
|
1
L
|
|
|
!
|
|
|
I
1
|
|

|
|
|
I

FYPUNCH NOTFS

Ifx"

PROGRAMME

FROGWAM

U

[
b

L
!
L

p Ll

!

|
l
|
|
|
L

I
1

| S
i
|
L1 |
|
L
|

- L]
| |
|

_

]

[1L
B I
L
[1]
T
Ll
I
|
I
Pl
1l
L

T
t

|

}
L1
L
|

|

|
t

[

EJ646464645465k§F07J72rer475bev%;a;q;;

[
!

|

[

|

L
Ll
|
|11
Lidd
N
L1
K _AGATINLL |
Ll
[
Ll
L1
L1l
111
Ll
L1
1 1

|
|

[

|

L

[

L)

bl

|
|
|

.
| 1]
L1
|1
L
[
|
L1

L1

[
Ll

|

|

\

|

|

|

!

|
[
L4

4 - 44 -

Ll
|
L

Ll
|
|

1

|

1

||

[
LIl

Ll

|

|
1
Llil
[
Ll

I

L

|

1

|
L i

[
[

il
L1l

L1
[
L1
[.

|
|
|

[

[
L1l

-

Comments

L1

|

|
|
Ll

|
[
[
L1l
L
!

l
Lt

L
L1l
Ll
L Lt

[
!
[
[

P41

|

|

L1l
|

[

I

|

|

L1

{
l

[11
[
L1

Lt
ELid
Ll
Ll
I
LLdd

|
[

|

L1
L

LlLd

L1 1]

[

L

[
!

|

INT]
re)

L1l
E

Ll
|

Lol

|

L1

i
|

Pl

L1
[
It

|

L1
Ll

VP IPARAMETER | |
L1l

|1

|

[

|
|

|
’l\ 11

6@ IEXEICVITIE | | []

i1l
Ll
I
Ll
L1 L
1]
Ll
Ll
NITIRY
PILICIK
W |||

RETURNI.! ESTARWESH (Y

SIET| IBANK T 1\ |
TNCREMEINT

PARAM

REGTORE CAlLLING BAN

% | | |

RETVRMN | | |

{

Variables

|9kok|kzksk4k5kskﬂz%asao343434343534343434404lkﬂ44&4454skﬂ44§4505J5J545455545453k§6061

I

L]
L1
!

|
l

I T Y
I
A O O

T O
|

0N N O
|
N Y T T T

0 T Y

| TR A O O O O A A A

N

SOBMRI | LIl

N O

|
|
i
[|

|
TINEL (DINE IBIAINIK
|
Ll L]

| |
[
!
1
N Y W
L I B e
|

|
|

AO | | |||
QUBR | {11 11111
BANK i

S T T I B i
R

|
|

[N O

BANK | 0 101

|

N S

Rttt

I O B B

Operation|

MAIIN| [PR@ GRAM (TIN IBANK| RERI@

L 1D
t
7Y lt..Y N - O O B O A

ST ¥

I
LDAN ISVRRE | | 1 11111

1 RS!
TiI8IA
TIAL

| 161

|
LBA
TAR

JMPR] [SV|

Location

I[é[3y415l61718 9IOL\h2h3l4l5h6h7h8

. |

|
O

1 T S Y |

3 S I

I

Jump Instructions Across

Figure 6-7.

Memory Bank Boundaries

r—lmvllllllllll,lllllllll]IlI'lllIlll
§:{ 13 [N A A A N NN AN N NN AN N SN A N NN SN S S A B A
ms _ - — o = - - — —y
U(lllllll'nll.llllll
o —d
5 S Sl A S A S S A S A R S A S N A A I A O
: ele~l 44444
13 [[S) NN O A RO
Hm|'l]l."|llllll[lllll[|[l
& y
¢
z B T e e T I IS RPY R—
. L. N R S N O U N S (R A
3
I =3 S S S U N O (R O N S T U N (A B
2 S SR N IS (RS R R O I
Lol | &\ | 4 4 444 44 44 4
: | 8 B el (S A A R
E I'IA? _ _ _ —_— — - e e —t— e .
W m - e e e o —— e . . 4 L — —t — —t
z
.] [O S O O S B B
B4 4344433444444 43 434
: e "3 U RS S R N B I D R R R D
\\&le_llll.lnl,il.'|l[l\\\‘lll‘
©
.@lllll[!\ill[llll[\l\\LL[
{3 [T S T O S N O O U
(N i S R S (B 4499411741
B 1131333333334 9333533341
% 0
;1 I N R Y A O O O A O O I I
& & — — e - 4 — o - - @A - @ — — —
H 21 I e e e e e s s s e B
8 1T T3 31337 1733131231223 3133 :
M..N m Mo
I 1 S [O B
Sl 2za= - 17 - 7177 EES
J0 Y T I B | 5 U R I R R O
| | _ 541 - . £%
¢ 3o
IW.S = 4 14 11333 3317 S
lﬂ;l - J N I N - —H H H4 H4 A H = Y
— lllllL\lL'l' ra
< g NS S (N U N U T O D A y:m
Yﬂl R e e s e e e T
Higg - 1111141111 Z5
3 g2
: %) 1100333317123 WB
9\ e T e T T e
: —51 — i e e B B B e B B B B M v
: Iﬂ;o — 4 4 4 4 44 4 4 4 4 4 4 4 4 A4 4 4 4 hn
: | _ 4 4 4 4 4 4 4 4 44 4 4 <
: Eil i e e e e =
: E 4 4 44 44444444 ~ >
< o) | — 4~ 4 4 4 4 4 — 7 e
K3 A (B Lk
| 003 4 1
Fod & 94 A 9494 A A A~ 4 - -4 -+ em
S = 23333333333 ef
o] | 0 T R R [A R B z
o AN 5 S
3 2 o
. A1 R O O (N (N A (O O (U N N S (R R A I
& _ N 4 o e - - — - —
- (U S (R S 17
<" R D U | | U N [O U | [[B -
& A4 dd 0444944444444 4
4{]1]]!‘ _ N - o = — — — —d
N — —] 4 A Ao - — - — —
4'1 B T T R S B B B e
% S5 [T (N (U N A N S (R SN R N B
K3 S N S S ([A A A A A N S O B B O
af~] 1 I R R R O I I
ol f | | | | 4 g
r.lmmllllllr‘!llll['llll‘l'lllrl[
h — N o 4 o A o - — A = A 4 4 4 - —
|’|p‘v.| —_ 4 = 4 A g A 4 = q A — A4 = 4 — - —
en" _ - — - e 4 - —d
I‘N!Ill\[- e~ 4 A —_—— - - -t - - - @ - — - — —
.lblll —— q4 = 4 4 4 A4 4 A 4 4 4 4 4 494 4 H4 d4 —
o]] A =
= mm
p=4 —_ = 4 [—
= st g == 4 444444444444 .
- t.|.2 e e T e T T s e s s e e D | _—
ol —1 4 —_—] = o
o= 3133137313333
=t o =1 — - - o o H - —H —
= S| o m
a >
mV BI]I._llllllllllk — a4 4 44 A 4 4 -
,|71 —_ 4 4 RN VU ! [U i U U S O
o~ SR [s O O (S [_ -1
- c| @ 7 o A g
= sl R - 1171313137177
o m]mll] 4 44 44 4 4 4 4 4 17 7]
- I e e e e R e e e O e O
S%wm M3ll — -4 - - 1 [e e e e A e
i 3 Bl g . 11
- [~ Jo < 1] 4 J 5] 444444
oD —

91-9

CAP/SAP 12 CODING FORM

F2435-869

PROGIAMME i

VOGN AM

FYPUNCH NOTFES

Location Operation Variables Sequence Number
1]2' 3[4’ S]Sl 7 Ioll I‘IZII3 14 IS{IG[I'?\IB{ISlZO{Z I122|23|24|25|26127]28[2 03Il32{33‘34!3536[37‘38139|40 41142?4;[44]4546]4714 6! ;sziesls l, S }[74 7476 7&78}74&0
Ll iy TTL N I A LLrLg [
¢ VRO B V1% 0 1YY (A Ll N A O I S | Lidd Ll 1]
¢ DATAl |(F1RSIT INVMBER)! L1t LU Lldd Li1i 11
L DATA| |OSECOND INVMBIERD| | | [| | LUl NN [
| ER| | RETVRN | | Ll [O O IR Ll g
i VI NG RMAJLL RETILIRIN] | L Lid [I O T Ly L1
ADDIPITI |D|A1T;A Ll ENTRIY [N N L 11 AR
Ll TIQAl [CLIEAR| (CARRN BXLT| | bl Lo L1
! LIDIA bt PLCK FIRST INVMBER L4 i Ll
L] SITIAL | [L I N O O O R B I Ll Ll 1]
Lt L] IRS! Ll TNCREMENT RETUVR Lt [
L1 AN | L1 MEJ&EQMMMW L1l Pl

L] SITIAl Ll Wl [A A Ll Ll
L1 Al | [N MASK |QUIT ALILL BUT BILT SYIGND| | ||| L1l
L1 1| ADD L1 JADD T FIRSIT NUMBER Ll L1111
L1] SINIG L1 SIRT P TFI NG| CARRY | || Ll [
Ll JIMPI Ll =IRIGTM| NEGATILVIE L11] RN
L] SIMI/ Ll TINVSI= |gPIPIPIS| Ll Ll g
1111 JIMP PMM_LLWMM= i N [
W || Ll [N T T U N A O A | N
Ll LiDIAI DAL LI ﬂlmmmmm&mm L1t L1
L1 ADD Ll 1 Db THEM TIPGETHER Ll [
L JIMP) R 111 ! [[111 [I
kL [[AT I I L1l O O L1 LLdi1]

Figure 6-8, Addition and Overflow Detection

12 CODING FORM

CAP/SAP
F2435-869

NiUMHF R

ChADGE

oo

equence Number

I
Lt g

|

I
L1

|

!
I I |
L1l rEdd
Ll 110
[11

|
I

[11
]

|

)
|

] | |

1

[|

I O I

L

T U T
|

I Y

1

P11y
I |
S O

|
I T B |

L1l

|

|

T S T

| |

I I

I

N

|

|
L
I
I
|

l
I
|
|
1

|

|
|
|
|
]

l
|
|

|
|
I

EYPUNCH NOTF®

PROGRAMME R

T AT

Comments

T

[

11l

1

Lt
||
[

Ll

T
:
|
1
]
1

| L1

|
|
|
Ll 11
T

|
|

1
|
!

1
|
1

|
|

Ll

PLL
i
L1

L1t
L1

:

| L1

T

I

Lt

[

| 111

L 114

ezles[ent]s ss[sﬂsslsslmninna‘rus"r 78|7:

|

[

|

I
Pl

L1

L L1
L1
L]
1]

|
|

|

Lt

L4l

1

Ll

L1

[
L1 1]
[

L L1

L1
[

|
\

L1
L1 1]

|

|

[1|
|

[
L1 1]

|

Ll

I
|

|
|
|

|
I
|

l
|
|

L1 L1

L]

Ll

I

Ll

A4 1

Ll 4!

L1l
[

T

L1l
[
|

[

L1 1]

L1 1]
|
|

L1
[
L 111

L1

Y
L1
Ll

L4 |

Ll 1 d

|

L1 11

|
[L

|

|
|
|
|

|

]
]

Pl

L

|

|

L1

|

L1

[

L1

|

L1l
L1l

|

[

L1y

1
|

[
L

1

ST INUMBER
[
Ll
L4 1]

CSTGND: | | |

I

L L1

I

| 111

RIETVRNI

[L1

!

111

LAl

I

I |

Ll

[|

L1 4
L1

| NPRMAL

L]

|

| IRETVRN, | STIES! QNCE! |

|

Ll

I |

L1 11

|

{

|

|

|l
L1

|

ERFL®W | ERRGR RETURN | |

S THEM TQGETHER | |

IFl INEGATITINE | WA

BOTH NEGATLYE |

ADDI |THI

1LF POSILTINE , WANE QGVERFLIGW | | |

ASK! TN IBIT (LRI
Lt

|

|

1

Ll

Lt

LA

[|

L1

Variables

—

I B S O

ADD

a o O R

| |
L L |
T
Ll
A Y O O
[|
Ll L li

l

000!

L L

[

i

I

|
T

Ll i i

|
|

|

t

!
|

T O O Y O O B A

Lol

I
U I T I Y

Operation|

ADID|

SeiL

I
{

|

I

LRS! |

) 1M P k)

|

|
DATIA| |’
[1
1

|
|

1

|
|
[

|

|

T ele]

7]8 9 uofnlmlls 14 15[:6||7||8I|9|20|2|‘22]23|24|25{25127|23i2 03!132[33]34[3536137!38[39]404Il42‘4?||44]4546i47j4814450 5l[52!53|54l5556l57|58|59|606l

[N |

N T T S T T

Y | | |||

MIDNRL | |

ADDERI | |

s

O Y

L1 L1
[

00 | | |
IDIAL 1]

|

ADDS | [|
Ll

|

I U

O

I Y |

L LAl

|
L

L
|

S S

Figure 6-8, Addition and Overflow Detection (Cont)

Normal I/0O Process

The normal I;0 process is the noninterrupt exchange of data between the H112 and
other equipment, such as the ASR and high-speed tape reader. The normal [/O process
could occur when outputting data to the ASR or inputting data as in the program loader,
Programming examples for the high-speed tape reader and ASR-33 are shown in Figures

6-9 and 6-10, respectively.

Interrupts

The interrupt facility enables an external device to change the normal program sequence
with low response latency, An interrupt request occurs when one of the devices on the common
interrupt line (KINTL) grounds the line, If interrupts have been enabled by the controller pro-
gram in progress, the request is honored on completion of the current instruction and control
is transferred to the dedicated location 00002, Additional interrupts will be inhibited until the
execution of an ENB instruction,

Since it is generally desirable, after servicing an interrupt, to continue the interrupted
program as though no interrupt processing intervened, the contents of all registers affected by
the servicing routine must be saved before they are changed and restored before control is
returned to the interrupted program, The program counter is saved during the execution of
the JST or JST* which must be in location 00002, This instruction stores in its effective
address the location of the next command of the main (interrupted) program, The accumulator
is stored by an STA instruction, The overflow flip-flop is transferred to the accumulator with
a TOA and then stored with an STA,

The next task to be executed is the determination of the interrupting device, Each device
is polled in turn with an SKS, skip if device not interrupting, instruction. If a particular device
is interrupting, the SKS will not skip, and control can be transferred to the interrupt service
routine, The order in which the devices are polled determines priorities in cases of simul-
taneous interrupt. Therefore, devices with higher priority should be polled first. Another
consideration in the ordering of device polling is the relative frequency with which the devices
will cause interrupts. Those devices causing frequent interrupts should be polled early in the
list to minimize SKS processing time,

Once the interrupting device has been determined, the interrupt service routine for that
device may be executed. If the interrupt was calling for a data transfer, the transfer may now
take place. The interrupt request logic in the device is normally reset by the data transfer;
however, if the interrupt does not call for a transfer, (a real time clock pulse interrupt for
example), the execution of an instruction may be required to reset the interrupt.

After the interrupt service routine is completed, control is usually returned to the main
(interrupted) program. Before this is done, however, the various registers of the machine
must be restored to their condition just prior to the interrupt. The status of the overflow may
be restored by clearing the flip-flop with a TOA, loading the value saved into the A-register
with an LDA, and shifting it into the overflow flip-flop with an LGR 0l. The contents of the

A-register may be restored with an LDA from the location where the accumulator was saved,

12 CODING FORM

CAP/SAP
F2435-869

NUMBF &

CHADGY

EYPUNCH NOTFS

PROGRAMME K

PO rAM

I3 0 I A A A A I
ale] dddddddgdddddd4gdd
El ©
e 444444444 d 444 44ddd4d4 44444
@ 4 4 949 994 444 4 44 4 4 4~ A4 4 4 4 4 —
g 4144144444444 4444444 = -
mlﬁw — H o A - A4 4 4 A4 dd 4 a4 4d 49 4d44d4d4d 449 —
—_4 4 4 4 4 4 94 4 4 4 4 4 4 4 4 4 4 4 4 4 -4 4 —H -
©
] N U O (N O S O A O O
=)
2 [0 (A O O O O I O O R D B A A
o
Lol 4 4 4 4 4 44 4 444044444444 44
8 141 dddd2dddddd353d4ddd4
™~
" N N S U A A A A A S S
8 -
1ﬂsIlllmltl||||||!|lllllill
[e|1||Ml1|11|1||111|||1111
| o
- - — — l]lll’llllllll‘llllu
8 1711311233133 3124d333334
© AN
JmJill N N O O I O B
|l o} | | | _ S [(N N O (N N O S S N I B
1 e~ s s s s s e s s
lSll'.In _ 4 4 - d o 4 4 g4 - H d 4 44 4 -
3
B ,
2 NS I R Illllll;lll.llllLJlll.
1~ s e s e e e e e s s A s e e s
A e e s — 4 A4 A 444444 4 94444 4
'] o 44 4 4 4 44 4
o1 1 1 1 1@ 1 1 1 3 7 1
e
L
El © - 4 - -4 A A - -4 4 - - - —q —
e 1 1 1 — 1
SH A4 44 {444 444444444144 444
%||I‘| — A H 4 A4 A4 A4 4 4 44 4 4 4 4 4 4 -
2]
- - € 44444444444 4d44 44
.2 (N R . MIllllllllllltzllll
FS — = — e e e e e e T B e e B I B B I B I B
| <] I I o 4 g4 d a4 dd g g
5 < o
g = [S R R
1 — = — - —H — - — 44— 4 4 —+H - A
[+
Jﬁl lexm -4 — N d 4 4 4 4 4 4 4 4 4 4 4d 4
Li2) — - —_ 4 A - - - N o — - o
Lo | B I B]
= 44 4« I A4 44 4d4d 4444444
10
El IR ||1&\111111|11111|
k3 B T o ™ O S ™ (S s v A Al A I
"
| m | o & I I dddd 4444 444494 4
318 ™ s = s e s e s s e s s s I
0 H a
[#]
¢|111|1|l|!?|..L|1\1|lllll||
RV [U O I S (N R N U N N O R R N R O I N
Y [A [[O A A S O N O A
[
FH 4 4 - 4 4 4 4 4 4 A4 A4 4 4 4 d 4444 A4 44 4 - -
<Y1 [S A (N N O N N N R R D O D
<
IR | | | U
[+
N e U (I R e e e
Sl 71 1 7 71
] SV [(S S (R AR R B dd 44 dddddd4ddd 444
Sl] o 4 4 4 444 g d 4 4 a4 4 94 d 4 4
11 A s s s s A A T O
[N A O O O A) B
@] 7 I T I I O
B B
=1 4 4 o 4 4= 4 1 a4 4 44 4ddd 44 44
I3 - » G Rt O 7, D B S I 7> (A S A S
| O (=
<
Sl ™
2L =] = g4 4 4 4 44 494 4 4 4 4 4 4 d 4 4 J4 4 4 4 4 4]
£ I -V [A A I O O O O U A
uluxun(ll.llmmu)l\lvcn(u\lllllil111111
S[o - AMT
o
@® [S B e e . —
LIS T [T U (N N
~ _ [SRS SRS KR K SN S (R NN SN SN SN N N NN S
nGJ) lluleJll|lI.|||.I.|.|ll.
‘ml..|5l4|< — N O I A R
M.|4A — - el e e e e e e e s s B e |
Q — RN R U (U | [U o U U i i D e e e e
S]] AR S S S S A S R O B O
o — - — -1 —
| — 4] - B N T I _] -

High-Speed Tape Reader Subroutine

Figure 6-9,

[=]
UL S -] R — — - - \#] — -
.Mv|7.|l|l||.l|ll|.l|lll 4 4 4+ -
E[® —
e 444 44444494 44444441317
§ -3 [- [B J N (S RS O U U U (U
- 8re - - -1 —
cp =4 — e d] g 4 e 4 - 1 ~ — —
o w] =] J — N
u7|llll\‘ll|.|.1‘llll|.l|‘. _ - — — 4 -
A N I A 03432
: 4 -
=~ N
— 5 3 R I S S I S B B B R T e T T e T e B e e B B
~
<
e T B e e M M fie e e M S S M s M B M S e e M i
| o | 4] 4 - — g 4 4 4 4 d 4 49 4 4 A - - -
: 1] S o R B R T B s B R e s
H |m.-llllllllll lmllll.lnl% =4 - 4 4 4+ 4 4+ 4 4 4 —
. 8
B e e e i R 4 4 g 4 o4 44 4 4 4 1 4 4
S e e e e — 4 4 4 4 4 4 4 494 4 4 4 4 4 4
: |z |1mw 0 S R R [S A [0 TS R I N B S I R
J -5 IR A S I (. [B B o4 4 4 4 4 4 4
4 44 4 - [R S B —

h ¢

(S

[
L1l

[111

Comments
[

L Lt
L

L L1

I

Ll
Ll
[
l
!
L1l
Ll
1]

[

I
[111
/o L4 1
LAT@R WLTR X~
I (R=
BUSY ||
| 111
[| [
[-
R| TAPE| READER ||
[- [Lt
N Y 0 O
[L1 [
N O O B
T A I
N T NS O A
| Ll Ll L1
~@PFF_CHARACTRR BN TH)
[Lt
L1t Pt
[

It

Ll

L
[
[1
it
|

Lt

|

|

|

|
.

L1
L1
L]

AceclymMu

1]
L1l
Ll
1
L1l
L1 11
L1l
P
x

FQR READY

EYPUNCH NOTFS

!

[

zls 3[34[35 35]37\3439]40 4l 142]43‘444 46147‘48‘4450 5i 52153{54]55 56157153159[60 6l
Dl

THIEL JASR [PAPER TAPE! |

|

[
|
[
[N
L g
[1 1]
111
|
[
L1

|

L4

L1

L1l
INPUT| FRGIM ASR [PAPE
X-@N CHRARACTER

Normal ASR-33 I/O Process Subroutine

Inn
N

|

1

S ——

I

Figure 6-10,

S T U I I

T
1
\
|

|
|
|

|

ol [TMEL CHARACTERS!
1 T 1 0 O A B
Lo 12 I Y Y
1 T O Y O A

N T 0 T O
i JT U T O R
(8 0 O O
| I O
N A O
T O A
0 0 O S A A
- W O B B
N T O O A
Ll eyl
S T B
O O A O
N Y O
S N N YO T O Y I A
| oeE| [REANER, | THERE MST BE AN |
N T O Y B A
S T T S O T
TN O N O T Y A B |

Operationf

I
|
1

L

I

IiNeN

12 CODING FORM

I]2{3|4\5]Gi7~8 9 lO[ll]IZIL’: 14 ISlIGIWlIS

J [MP |
IDIAI
OTA
JMP!
I
1§1 |
i\
INAL |
MP_
¢l 1
& |
|’1 |
X@N | 11 |bATA] @122

L1
L1

v, S (N - - s
a A 444 I I
[=4
5 z | | | 4 1
a _|* p « | | g 44 1 I
<t |z o
w w w W [T (R I S S [. s T T e s O — - — — —
~&lz |z i . [0 TS A R R N R R RN R B I I .
P3MH ,V‘il
AMW« 23 agl I e Il.,\ll\l.l.ll — - — -
] - * & *

I O Y I

o

-20

To complete the restoration of the machine context, interrupts are enabled with an
ENB and the P register is restored with a JMP%* through the location which is the effective
address of the instruction in the interrupt location 00002. Because the ENB does not
immediately enable interrupts, but delays the action until the end of the next instruction, the
JMP* will be completed even though another interrupt may have occurred during the service
routine. In this case, the interrupt will be waiting when the ENB is executed and will be
recognized at the completion of the TMP*, The entire procedure above of saving and restor-
ing content will again be executed without a single line of the main program code being
processed. However, when all of the interrupts have been serviced, control will be returned

to the main program with the original register contents restored,

INTERRUPTIBLE INTERRUPTS

The above discussion presents a method of handling interrupts in which the entire
interrupt service routine is processed while interrupts are inhibited, In some applications
which have one or more interrupts that require immediate servicing, it may be desirable to
have the interrupt service routines be interruptible themselves, This may be the case if the
system has some interrupt service routines which are longer in processing time than can be
tolerated by the interrupts which require immediate service, Two additional factors must
be considered in the programming for interruptible interrupt service routines, The first is
that a common area for the storage of the program counter, A register and overflow flip-flop
is not sufficient. If service routine "An interrupts the main program and stores its param-
eters in a set of locations, then interrupt "B' occurs, service routine "B must store the
parameters of ""A', yet the parameters of the main program must not be destroyed. Service
routine "A' will be resumed after "B is completed and when ""A" is completed, control will
be returned to the main program. A convenient way of providing this storage in each routine
is first to determine the interrupt source in the conventional manner with the SKS-JMP list
before storing the accumulator and overflow flip-flop. Once the interrupting device has
been determined, and the service routine entered, the service routine may store the accumu-
lator and the overflow flip-flop in local storage. The return information must be moved from
where the instruction in location 00002 stored the program counter to storage local to the
service routine, so that the next interrupt will not destroy the previous return address,

The second factor which must be considered when programming interruptible interrupt
service routines is masking, Provision is made in the interrupt logic of each device to
selectively inhibit interrupts on a device basis by use of the SMK instructions, By masking
off the interrupt from the device being serviced and all other devices which are less important,
the problem of a double device interrupt is solved and a priority sequence is provided,

This service routine may have interrupted a lower priority routine with a mask con-
figuration it would be desirous to restore, This may be accomplished by maintaining an
image of the mask bits in a common depository in memory, An interrupt routine may first
retrieve this mask image, save it locally for future restoration, then AND in a field of

ONE's for higher priority devices and ZERO's for lower priority devices including the device

6-21

being serviced. This mask is then outputted with an SMK instruction and also stored in the
common depository,

Once both of the above tasks have been accomplished, interrupts may be enabled with
an ENB instruction,

On exiting from such an interruptible service routine, interrupts are first inhibited
with an INH instruction. The former mask may be restored with an SMK instruction and
placed in the common depository. The accumulator and overflow flip-flop are restored in the
usual manner from local storage and interrupts are enabled. Control is returned with a

JMP# through the locally stored program counter,

Interrupts In An 8K Machine

Several other factors must be considered when programming an 8K machine, The
hardware is such that upon interrupt recognition, the bank register and P13 are stored in
the Z register and then the bank register and P13 are cleared, Thus if location 00002 con-
tains a JST%, the effective address will be in the lower 4K bank and unless the bank register
is modified by the service routine, all indirect references will be in the lower 4K bank. The
contents of the Z register may be saved by using an ITS instruction to transfer Z to A for
storage. When the service routine is complete and context is to be restored, the Z register
can be loaded from the A register with an ITR instruction. This instruction also readies
logic in the controller such that on the first JMPs following the ITR, the contents of Z is
transferred to the bank register and P13. This JMP* should be the instruction which trans-
fers control to the interrupted program, See Figure 6-11 for an example of an 8K non-

interruptible service routine,

Generating a System Object Tape

It is often useful to assemble sections of a large program as separate subprograms.
Since the loader tape does not contain a facility for linking these programs, a transfer
vector in the primary sector must be used. See programming examples in Figure 6-12.
The three small programs shown are assembled by three separate assemblies, but are
punched on the same piece of object tape; hence, the entire tape is loaded as if it were one
program, As each subroutine is loaded, it fills the proper entry in the transfer vector with
its own starting address, It is also reasonable to allocate each subroutine a few locations
in the primary sector for indirect links, Any common parameters should be defined in all

programs.

6-22

£€2-9

CAP/SAP 12 CODING FORM

F2435-869

PROGKAMME R Ifx:. FYFUNCH NOTFS CATF

TN AM CHARGS NUMBE K

Location Operation| Variables Comments Sequence Number
IJ;Z‘3[4[51'6|7IB 9 IOIHLZIB 14 |5|161I7II8]!9120‘2I{22]23[24l25]26l27[28[2 3l132T33I3413536[37{38[39l404I]421431444546l47l46‘4450 5Il$2]5454]5556|57|53|59led61 iGZkSIS‘!IS 66!67166(69{7074(27 74[7517 [78|7
NN L1 |1|1|||111||11WM0|PH11|N llJIIIll,LilllllLlllllllHll
B | Ll | [I O N B R B B I Y Illllllllll1IIIIllllllllllllltlllllllllll
IRTIN | | | Ll memm N
I | L1 I O Y O O O O Cual-l)Illlllllllllllll%lljllllllll
PlillJOMAL | IsACE | | | 11 ([1} AVE [AciciuiM [HlilHlH!l;lHlJlnillx
llillllmw IHIIIIIJHHIIS)ALLM_PDL&RJE TTHIHIIIIIJH['LHIIIIIHH
Ll t L1] ISTAl $MI_ELﬂjtllllll\Jﬂ>llllllllillIIlIIllllllllllt%illiilliill
L1111 YS! Y I A A &AM.ELJBIANIKII!MNBC.AIMJ&_MMJBIH NS SENEE I RN
L L r 1) ISTAL | BING I\Illljliﬂllllllllllllill1I11VIJKIllll;lllllllllli
v I L] Ll ity = NN N T RN
tmlulu beTERIMINE ISIPVRCE I@F | IS NN TN NN AR EE T NN
{ Pl N O Y O O O O IIIIHHIIIJHIIJIIIIIIlHIl;llLIllHJH
L1l 1 Iy IoKe | IDPORDR [|] 1| [|| {Te (X7 1P DER L L rr e bbby
Ll fMe P ISTROR 111y LTSRN RS NN NN RN
I KISL | IIMTAPEL | |11 |] LS T av’ VL A N T A N RN
O | AGTAP [| | (111N m‘nl||1111|111||!x111111|1||
Lttt] ISRS | IMCORDIR | 1| | |11 | |Te: 17 BlﬁJAJ_QLEjR.LllIIHIIllIIHIIIIIIIHI
LILLE L L IMe | ICRIDRDIR L L || [[[][y b 3h VI I R T T R
[N N - ITTYe. | 1| jTe 11T A - NSNS AR NN
Ll it} OMP | MELTN® e LN I (N A W N RN I N
Lld i1 11| Ll it bl IlllIIIlIllIIIIIllIlIJHlllJ%llllllJlIll
O T |11 O T S O O I I llIlJlJIIll!liJllillllllllll!llllLlJlJlI
L L1 T T T Y O O O I O lllllil'\I|J|ll||||Il|l|||l|!l||l|l|||ll
N L1 Pyl by NN I RN

Figure 6-11, Typical Interrupt Routine

12 CODING FORM

CAP/SAP
869

F243%

NUMHF K

CHARGE

Sequence Number

Lt]

L4l
I T B B |
[|

|

Ll i1l
N O
N O T O
Ll

N B

L1
L1l

l
|

L1l
N O I

|

l
[111
I

|
|
|

L1 11
S T

-

S
I B

I

S I I |

[

|

1
It

|

|
|
|
n
|
l
1
!

L
|
|
!
!
|

|
|

Bl
|

i
|
|

|
|
|

FYPUNCH NOTES

PROGAMME K

TOn AN

L1
|
.% L1

.

[11

T

L L]

[

l

P4

i

|
|

|
!

I
|
i
|
I

1

[-
L1
pLL
P
L

+

P
11
L

T
|
}

|

|
T

l
L

l

Pl

[

+

[

1

L1

|
1

;salesisalsslss]sﬁselsg‘?o ul |72 3{74 u 5176[77‘173];4;

Pl
i1l
L1t
L1
1]

|
|

I |

|

|

|
[
[
Ll

Lt
] |
Ll

L

[

[

L1

L]

[11

|

L1
[11
[.

|

[

L1

-

|

L1
Ll
Lt
L
L1l
Ll

|

[-

|
L 111

[!

|

L1

MEL_REAJDE&-n L1

|
|

L

=]

[
|
L1

S| TINTERRAUPITIS!

Ll

Lt
L1l
[

|

|

|
|

||

L]
I
[L4
]

|
l
|

|

|

L1t

I I

I

L

Comment

) T

[

|

I

[

L1l
[
[
[

L1 11
|

|
[

[

|

Lidd

L LA

LPCATIIEN 0002 |

TcH P

[
L1

[

PLil

[
|
TAPE
|

L]

Lil

|

|

|

l

L1t

0 PT

l

39]40 4:]42\43‘44]45 46\47‘48'49[50 51 52153|54{55 56‘57[56[59]60 6l

LTI INE| WANRDLER/IEXECNTILVE

[L]
[

|

[

Pt

[
||
[

[
|
[
I

[
-
L 1]

TLON |[CEDE [FER MAGNETITC TAPEK -

[-

L1

I

|
L 111
Ll
g

[

L1

|

CONDLITLON CODE F@R CARD READER= | | |

NQT (INTERRVPTING | | |

COND TTTIGN |

P e 1 R A

LE @IF

_RIESIT

I I

y I

N O I

L PIAIRAMETERS!

I B
TNAL TIYPIES
N U N O W I
Sl

[N A |

I I

1 i

L1

|

SKSI MRS | 1 |||

Lt
I I

I
l

|

N T B e
Lt

T

I |

|

|

S I

Y

i‘\luum

N T
|

3

I

L1l

 Pewld LDl

Operation|

i
i
eI

N

DATAl [XRITNL | | |||

WAN

|
|
!
|
|

!
Il
1
!
EQMN!
|

l
|
|

1
L
EqQu

|

L

|

|

[#]

I

l

V]

e

Jﬂ&&

Location

I‘2‘3\4|516\7[8 QIOLILEL3I4ISMGL7

D Y Y

EL
¢ A

b 1L 11
b IR SRR
IRDR || |
o IO
x

N

11

|

|

ITCDR | | |

i, A

. O B

ITMTAIPE| |

l

v (IR

LPTRDR |

. IR

ATTNPE| | |

6-24

Typical Interrupt Routine (Cont)

Figure 6-11,

§2-9

CAP/SAP 12 CODING FORM

F2435-869
FEOGRAMME R \“;_ TNPUNTH NOVES ATE l“m]
Location Operation| Variables Comments equence Number
I}2'3(4‘5‘617]8] IOIII‘iZ‘IZ& 14 |5‘|6l|7||e‘|9‘zolal‘zzjzﬂz«;]zs]ze]z?]zelz 03Il32133[3413536137138139[404Il42]43{44|4546|47]48¥4450 5|i52‘5454|5556]57158|59‘6d6l16216?»{64[6 66!67]66‘69?’07!'“& Idr4[75176|77]7;]7—48—0
Ll [Ll byl T Y N O O N
ﬁLLiiLJL JLNTERRUPT! QCCWRRED | 1 11 oo Ly by
T L1 S O Y ||Mi|i||||lx|||||lll|l|lllll|114111111¢
LEXITT | | Al Pl bbbt TIUIRJBLQLEELNMEMFJLM_LBIXTIIIIHIIIIII‘|¢||||1|1111
Ll DA PISOVIER i | SANED] @QVERELGW ISTATVS 1 1L rr b fy bbb
Lol R P it | NVERELGW BLT RESTORED 1 1] o i PP
et JLbAr | IBNKeY 3 NK O INDTCATIGR ANDI PARL 1 by 1)
Ll P JUTR T O O A A I T T O A A T A AR A N N A A O S A Y
T N D A (N[, YY_ VI 7. V o A N I R S L ACCOMULATGR | 1100]t ppy v e ey
Ll eNB N O Y I O A O T A O 0 A
LLr it NP JTRTNG 1 (1 (1|]] | IINTERRUVPT, GCCVRRED | | | | | [f 1111111
N L1 S I v O A T I T T e Y O I
Ll TAPE READER TG WANOLER | 111 cp vl rn oo pypr bt
Ll [I O O O O I O SN NN N RN NN N R
PTRDRI ; | L1l IR O O VI O A
LLLL L IINA L TR) | JREAD THE FERAME | Lo bbbt b by
T O 1€ | N O T O O N I T T T T O O
I 13l | A O O Y O O O O N R T Y T S v LLLL\ILJIIII!IIJIIIIIIII
Lttt e L f e JITEXTT b e LJ_EJI[EIilillllillll%lllllllllll
L I L1 T T T T I IIlJLIIIilLL\IIIIIllllllllli!lllllllllll
Ll 1| 1! Lottt 0 T T O VI N Y O O
N T S O [I T T O O | IliIIIIIIIII\IllIIlLll]lIiJl!lllllllllll
L1 i T T Y 0 O O O bl bbb b L b by
I L1 AR NN AN NN I RN

Figure 6-11, Typical Interrupt Routine (Cont)

CAP/SAP 12 CODING FORM

£2435-869

PROGIRAMME i Fxo, EYPUNCH NOTES GATE
PAGH

T AN CHADGE NCMHE R

Location Operation| Variables Comments equence Number
I]2l314l5]6|7[8 9 IO]II‘IZII?: 14 I5]l6{l7|l8 ISPZOIZI‘22‘23i24]25|26[27|28l2 3‘|32’33l34‘3536|37{33139]404Il42|4444|4546k7]48|4450 5ll52]53154]5556]57]§8[59[606lEEZES[6566'67L6ﬂ69‘l707l}727 747517%;]'7-48—0.
Rﬁlll\ll IMALN] IPROGGRAM | | 1| | | | | [FIIRST ICARD @F 1M T Y A A S A B
Li1ig] L1 1 T O O I O B R B W 0 T Y R A AV W A
I iRGL {100 | | [1111 1%%@&@&1}6&1&_ Lifrbbpppronpi bt
Ll Ly .llm'lejﬂmulullllul JUumMe T AR €L MAXING P ST T Y O S
NN ATA]l JSTARY | {1 1111 SSI @F| B ¢ A
N J9T PRV [t JIUIHIPI[QMJ_LIJ&EE[RJ&IUPITIJJl\II Ll IllJTLlllI}LJiIII
Illllll[DerA INYR (1t ADDRESS @GF TINTERRLUPT ROV TINE | I N
Ll L] N N T T T O N I O O O O
SURBRIN | | BS/G Wotoboi bt ISToRIA] TNE Al v b
SUBRER | (| IBSHSI | IV b0 SW@MWWWIUHIHIHL
i I Ll Ll bbbl T 1 T X A N VI O O 0 A 0 N A O B O O
bl b ser®) e i | ISPACE! FiPR ISECTORIZED LMLNKS! |)L L L b bl
Ll 11 iL:mHHHHHIHmH;iulluluuHllllu|1114u:|i111ul
Lt Lt IR 0 O 1 A A A IR AT A A W o
1111111ﬁ;ﬂﬂ_:ﬁ'mom]lllllllil MAIN PROGRAM ISTARY | 1111 |ty
START | 1 | VI N 0 I O B O I T T OO NI N Y 0
Ll i€l Lot O 0 T 0 Y N A A I O O
Lt S CLl bl A T A I O O B
Lt P NST ISR 1] Gl (T SUBR@UTILINE (M o br b bbb R bl
I O O | 1§l | T T O T I I IIIIIJLIIXIIIIIIIllllllLIlIl!ll\ililllll
Lllg 1] i [I O B A O A O B 0 0 T T T S A Y B
crrrrrc ST s o [ICARL T SUBRGUTIENG R 1t bbb c b
TSN U A I LY AN Y O 0 O I B P ettt e bbbt ;Jllllllll!k
Ll 1511 NN EEN NN AN A T Y T I N O A O O B A O O

Figure 6-12, Programming Examples

gl | | 1] B [e S I I R I O A A I O O
14 [A s e s s s s s e s s s e
E{ ®
Mlmlllllllulllxlll.lll].llllll|
s 28 133023131343 37321333324
M!d:lll.lbllllx.ll..l.ull]
A o 4 4 4 4 4 4 4 4 4 4 d 4 d 44 44 44 44
4 [I O T O O N A O
= Y
M ~
- I [N O O O) O O
~
A3 [O N I S D D B
T e I L U I R I I I s D D S I SR B
s 8 o ddddddd3dd 40033333733
H ey L L L
: H 14444444499 4444444444444
S| Bl23333333339333339497939397
= < el | 1 1 4 0 4 4 4 4 g 444 dd g]
A1 S A R R I S [S U (e A A S A B R
@
B 7 T T 111 Jd 2370001711013
2 [—
ol | | | | 4 4 4 J4 4 44444 444
8 14444 1233313443337
_ S —_—) — - -_— — — —
I EEFEEEEE
b : Z] B I B —_
Lo (R S — g~ g — — < 4 - =
e] T Taw 14 1110273607717 5
5] 1= B ™" S S B A N S I o
8]] 1] B R 13137 S}
M.WLﬁ w
[3
eld| | _| I] P I\ B [D o
11917484 lf-m:: 2
<] J — [I R
~1 —1 - 1 1 17
FREREE R IELEE :
g ! — — — — - - — K
3 0 0Z 17172 T s - s e o
2 T O R A "V IR " Y T R R 5
EINEpEN N - o I s s m
<
< L e 4] | _ - - 4 4 1 g
= [| |] I S e
: 211111«] 7 T3 0717777 %
= =1 —1 - 1]] 17 N 0 77 o
: o3 O = W i e i N £ £
: 3 RN € IHE 1121174 .
EignE B & a3 17737 o
B 148] 1] & < 4 7] 233 =
. R -] — 4 44 4 -
(8] 7 = 1] =] Mﬁx (=S - O~ I I R I 2
= b T vaa v v,
. Q m
- ‘ 11771 5
— R EEEEEEE A
I S U S (O O B e
Y 5L S (N S S Sl e I S O N A [
(i}
Y I SRS [I (L U U [O U U A T U I R e
0
| N} 4 a9 4 4 4 d4 4 g9 4 4 4 4 4 4 49 d 494 4 4 4
4 —
R R o 4 444 d 4449 4d44d4d4a4d4d44 44
<1 I = I A s A A A 0 O
| IESH A~ s e s s s e s e s s s s e e B
w2 e 1= e s s e s e~ s s e s e s s e
2] 7] I I A I 119]] I I e A
e] Jle 39 2 18 | 110 17
IS A N I =142 7717777]
el 1 Je 1177701, 1. 131377197777
=1 1Z2 1171 1g5= Q.ﬁ z
= k3
= B3 [- I I 1|&|1M1111
w el]l dJa 101 1aHdé] 1 de] J Ja 107
N R S Y AN~ | 1 1
[o| — | WY [S R R G _ b A B L B anedll BNP < BN
= &g} - wl
= ~
3 IR [S S O O S A O A
~ L~ 0 4 =] [(s [I R A N NN AN NS N
- cl @] 1 [S N R R NS S R S
. s B i i i e o 0 s s s s s e B
weli | Y I S R (R = (R 4~ %+ A
~hlz |z P i [O R 4 M| g 4 d A a4 4 4
[N S Y] T A A e O B
NP b—or" — — 4 — — —
Mw,;« — ﬂ_

6-27

NUMKF ko

CHARGE

EVPLUNCH NOTES

!E\T.

12 CODING FORM

CAP/SAP
869

2439

TR0 ammr w

ullmw 44 4 4 4 — 4 - A 4 494 4 4 o4 4 4 4 4 4
alr~ 4) d g4 d 4 dd 4444 A4 4dH4 -4 A
El o]
h_.lmlilllll||L]llllll|lll||I..
3 [e e s s s s s e s s s o s s s s s s
o] T 77 717 17 1 31 77 1 71T 1 7 }|l.||.,,l|||1
A 4 4 4 A 44 4444 444 4449 449 447 1
g 11123230 d4 3444404944444
N~
|~ 0 R (U T D S N I A
~
2 [[[
[]
o} _ | _ 0 4 43 4 4 4 4 4 44 d 4 4494 H4 A4 494 4 4 -
Bl 1144111113414 44334344437
M T et

-4 4 4 4 949 A4 4 4 4 4 4 9494 4 94 4 4 4 94 94 4 9 -
4 e e e s e e s T s s s s s s s s s (s
2] o e s s s s s s s s s s
© Lol
3 7 J319331d332233333123233
2 - - 0 I s s s s s s s s s s
8] & | 110 1
8] | | o 1= 144 44434490 44d4d444
S _ 72 2000 U S A A A S N A NV R AN S N S B
o] 13 117 I I O A R O I e
JH = a o [e s e e s s s s e s s B
< & e ~
e O -
Ej_W 1 1 _1 4 4 4 4 4 4 4 4 4 —44
E o I T
] % & A4 4444444444444
<} —] — - 4 4 - 4 4 4 4 4 494 4 44 44 -4 —
¢ &S
L EEEYEEEL EEECEEEEEEEEEEEE
I |] — - 1 = 1 1 4 1t 1 1 1 1 71 71 7
|] — —] JE S S o 4 g g 4 — —
(Y]
sk S LEEEEEEEEEEEEEEEE
<
g a N N R R P
Rl e _| _ R I [S S O
5l < - 13 d=2 30033444534 44
l&lf'v!. — — - — 4 4 4 4 4 4 4 4 4 4 4 -
n
E . mlltmlllxll-ll‘ll
<
S Es — Addd 444449494447
| | 1 PR R o 444 444 d 4 4
(o] o | w e | | 1Z] 31144444
o | L N - wl

Q

2
o 1 —] 1 T 1 1 = =1 = 1t 7t 1T 1 7 3 1T 1 1 1 1 71T 71
VIR R (RS IS R IR o4 g 4 d e d g 4 a4 4 d A
T i i i I O 2 d a0 ddddd 534444 4
| & I I B 0 d a4 da4d44d4d
I o A 10 S R S S e S S e Sl S A e A
S I R I
< e e e e e e s s s s s s s s s s s s o
ol N
sl o S A 44 d 4 dddd 444444444
<13 e s - O e e s s e e
44488 4444444441114
il k=-Ruk: T S S S e e e n s N Aw e
2] 1 1H 1< A S . 2 T A R S
) I =0 #* >

<
sl ® 11m1&|;|1<11|111111|||
frel T J@ag @311 Ja 10002122017
ﬂMuim. < | A~~T2] 21331303 J 4
5 Ee _S s w

0N
L [B o A a4 4dd g ddd 444
|~ A a0 ddd g 444 dd
nG“Il_llJ\||I|“l\|l\l|]‘l|l
- B =X R SR = N A A [A R
(]
EB u|mm1jmllllluuuuuuuuuuu
=10 Sl i = M s s s s s s s s s s s s R
— - m S,J

o

Programming Examples (Cont)

Figure 6-12,

SECTION VII
OPERATING INSTRUCTIONS

GENERAL OPERATION
The normal operations required in programming the H112 controller are listed below:

1. Write source program -- see Sections II and IV through VI,

2. Punch the source program into cards or paper tape or generate magnetic tape.

3. Load the SAP-12 tape into an H316 or DDP-516 General Purpose Digital
Computer (instructions provided in this section).

4. SAP-12 reads the source program into the H316 or DDP-516 and generates
an object program tape, assembly printout, and post processor listing (if requested),

5. Read the loader program tape into the H112 Controller. The controller load
mode may be initiated either with or without the use of the H112 control panel (described in
this section).

6. Execute loader program which loads the assembled object program tape into
the H112 Controller core memory,

7. The HI1l2 controller program may now be exercised and the system may be
considered operational, If it is desired to use the HI112 Utility/Debug program for program
checkout, etc,, the following is required,

8. Read the Utility/Debug tape into the H112 Controller by executing the loader.

9. Communicate with the controller via the Utility/Debug program and ASR
(I/0O typewriter) (described fully in this section),

SOURCE PROGRAM ASSEMBLY

The first step in a source program assembly consists of loading the SAP-12 tape into
the H316 or DDP-516, The source program tape or card deck is then read and assembled
into the object program under the control of SAP-12, A punched object tape and printouts

are produced, Detailed instructions follow:

1. Load the SAP-12 self-loading tape into memory via an ASR or high speed
paper tape reader,
a. Set the MA/SI/RUN switch to SI.
b. Press MSTR CLEAR.
Press REGISTER select button P/Y.
d. Mount the SAP-12 assembler tape in the proper reader device.

e. Set the switch register to 000001 ; the switch register is the set of 16
indicator/switches which correspond to the 16-bit computer word,

f. Set the MA/SI/RUN switch to RUN,

g. Press START. The SAP-12 tape will load automatically and stop when
completed, Remove and store the SAP-12 tape.

h. Install the source program into the appropriate reader device.

i. Set P/Y to 1000g - press START to initiate the first pass. The assembler
will type "H112 ASSEMBLER SAP-12'" on the 1/0 typewriter and begin
reading the source program.

2. The first pass by the SAP-12 program is executed,

If any COPY statements are included in the source program, the COPY pseudo
operation directs the assembler to copy symbolic statements from a symbolic punched

paper tape, It is coded as follows in the source program:

LOCATION: ignored

OPERATION: COPY

VARIABLE: asterisk or program name (l-6 letters)
COMMENTS: ignored

If the variable field is an asterisk, the assembler stops immediately and requests the
operator to load more paper tape by typing "MORE SOURCE'" on the /O typewriter, This
option is used when a source language paper tape is in two or more pieces,

If the variable field contains a program name, the assembler stores the name in a list
until the end of the current pass. At that time, it requests the operator to load a symbolic

TTRAD

library paper tape, by typing "LOAD LIBRAR
ing subroutines whose names are in the list, ignoring all others. Missing subroutines will be
noted on the log.

The subroutine is named by a special statement containing an asterisk in column 1,

a dollar sign in column 2, and the name in columns 3-8, This statement must be the first
statement in the subroutine,

At the end of pass 1, the SAP-12 assembler types "RELOAD SOURCE" on the ASR,
requesting the operator to reload the source program card deck or tape. Then Sense Switch 1
must be flipped up and down,

If the input is on magnetic tape, or if an intermediate magnetic tape is used, the
assembler proceeds from pass 1 to pass 2 without halt or comment, If the only I/O device
available is an ASR, pass 2 must be executed twice: once to list; again to punch the object
tape.

3. The second pass progresses and the object tape is punched by the I/O type-
writer or punch.

If any COPY statements were included in the program, the assembler will, after all
the original source is read in, ask the operator to mount and read in another tape as in
pass 1, The assembly listing is automatically typed by the I/O typewriter or printer.

4, The post-processor cross-reference listing is typed by the ASR or printer
immediately after the assembly listing if requested by the POST pseudo operation in the
source program,

5. At the end of an assembly, SAP-12 types "END OF JOB'' on the ASR, If

another program is to be assembled, the operator loads the source and flips SS1 up and down.

OBJECT TAPE LOADING

H112 Paper Tape Loader Program

The Hl1l2 Paper Tape Loader is a program which loads assembled object program
paper tapes into the H112 core memory. The loader program reads the object program
tape, which is in the ASCII format, and formats 12-bit words for memory; the object
program word block types control the type of loader operation desired, The processing
of each block type is discussed in detail in this section. General loader operation is

described below,

General Loader Operation. -- Each assembled block, on the object tape, consists

of data block length, block type, data block (if any), checksum, carriage return, line feed,
X-OFF, and a tape feed character, All printable characters are in the ASCII format; each
character was previously added to 2408 to produce a printable ASCII character, The format
of object tape word blocks is shown in detail in Section IV.

The loader program subtracts 2408 from each 8-bit object tape character, The result
is a 6-bit character (two octal digits). Two such 6-bit characters are then combined to form
a 12-bit word, The block type is read from word 1, examined for validity, and used to
select the proper subroutine for processing the block. The data block length is read,
examined for validity, and then stored in a counter, The proper subroutine, selected by
the block type, is executed to process the data block., The checksum is then validated, The
carriage return, line feed, X-OFF and tape feed characters are bypassed; they are not read
into memory., At this point the processing of the block is complete and it is stored in the

HI112 core memory,

Detailed Loader Operation, -- Each block type and the resulting Paper Tape Loader

program operation are listed below, Refer to Section IV for a detailed discussion of block

types.

Block Type 0 - Header. -- The loader program does not load the header into the H112
core memory, If the I/O typewriter is available, the program name (header) is typed; other-

wise, the header block is ignored,

Block Type 1 - Data Block. -- The loader program first reads the two words contain-
ing the 13-bit location for the first data word to be loaded. The data words are then sequen-

tially loaded into memory starting at the location specified,

Block Type 2 - Fill Block. -- The loader program first reads the two words containing
the 13-bit location for the first ''fill'" loading operation, The program then reads the number
of words to be filled, starting at the specified location, The program then reads the fill
value, ranging from 0000 to 77778, to be sequentially read into the core memory locations

beginning at the specified address,

7-3

Block Type 3 - Transfer Block., -- The loader program reads the two words containing

the program start address and loads it into memory,

Block Type 4 - End-Of-File Block, -- The loader program may perform one of two
actions, based on whether or not a transfer block had been previously read. If a transfer
block had been previously read, control is transferred to that location specified. 1If no
transfer block had been read, the loader program halts, Another object tape may then be
placed in the reader, Loading may resume by pressing the START button on the H112

control panel,

LLOADER OPERATION

The loading process is under the control of the loader program which is punched on
tape. Loading may occur with or without a control panel permanently installed; however,
a portable panel providing basic machine control is available (model no, 112-19). Panel
functions START, STOP, RUN, LOAD and MASTER CLEAR must be provided if the control
panel is not on the machine,

The loader tape format is shown in Figure 7-1. The tape is punched with characters to
be read as octal integers, In addition, control functions are provided, The H112 reads each

tape character as shown in Figure 7-2 under the control of the bootstrap portion of the tape.

Loading With Control Panel

A description of Control Panel controls and indicators is provided in Section II. The
Control Panel allows the operator to set the load mode starting address via the P register.

Proceed as follows:

1., Mount tape at blank just prior to loader portion.

2. Press MASTER CLEAR.,

3, Set LOAD switch to ON.

4, Press REGISTER select switch P,

5. Using the panel switch register, set the P register to the first location of the

sector into which the loader is to be loaded; P register bits 1 through 7 must be 0's.
6. Press START. The loader will automatically be read and will stop at the stop
adi i the START/STOP/

&3]
S
=
=

W
ever must be moved to the START position, See Appendix F for detailed operation of
the ASR in the load mode,.
Press MASTER CLEAR.

-+
—

!

e

8.,

n

OAD switch to OFF,

9. Set RUN/STOP switch to RUN,

10. Set P register to the first location of the loader (same location established in
step 5, above),

11, Mount the object tape to be loaded into the reader,

LEAD BLANK

END
1 BLANK BLANK
‘ —r— —r —A— —
[4 7
CHANNELS % W 2 798| LOADER N
l / / // ((///
8 : v ’ X-OFF X-OFF
BOOTSTRAP L— (223g) ? I~ (2238)
STOP
RELOCATION CHARACTER
ADDRESS
STOP
CHARACTER

THIS PORTION IS
«—— READ WHEN NO

4

CONTROL PANEL
IS USED

ONLY THIS PORTION OF TAPE IS

REQUIRED WHEN CONTROL PANEL
IS USED.

OPERATOR SUPPLIES
STARTING LOCATION VIA P REGISTER

NOTES:

1. LOADER CHARACTERS = 0g — 7g (ASCII CODES 260 - 267 OR 020g - 027g)
2. LOAD MODE IGNORES BLANK TAPE. STOP ISBY STOP CHARACTER ONLY.
3. FOUR TAPE CHARACTERS = ONE 12-BIT MEMORY WORD.

4.

ADDRESS BITS:

6206

RELOCATION ADDRESS IS TWO TAPE CHARACTERS FOLLOWED BY STOP CODE.
TAPE CHARACTER 1 =BITS 1-3 OF SECTOR NUMBER;
TAPE CHARACTER 2 = BITS 4-6 OF SECTOR NUMBER

A PUNCHED CHANNEL 7 INDICATES STOP CHARACTER (SUCH AS “"H* -ASCII 310).

Figure 7-1. Loader Tape Format

9-L

GO TO NEXT CHARACTER

-

(ENTER)

READ
CHARACTER

L »—— < CHANNEL

1S

7=1"
?

WRITE
OCTAL
VALUE
OF
CHANNELS
1-3 INTO
CORE
MEMORY
PACK INTO
YES,ASSUME 12 BIT
(BLANK TAPE) WORDS

ARE
CHANNELS 1-3
AND 5=0
?

STOP READER
AND HALT
LOADING

DELETE
CHARACTER

GO TO NEXT CHARACTER

NOTES:
1. A 1NOTATION FOR A CHANNEL = A PUNCHED HOLE

6207

Figure 7-2.

IN THAT LOCATION, A 0= AN UNPUNCHED LOCATION.
2. CHANNELS 6 AND 8 ARE NOT READ IN LOAD MODE.
3. TAPE SPROCKET HOLES CONTROL TIMING.

Bootstrap Program Control

12, Press START.

a. If a high-speed paper tape reader is used, the object tape will automatically
load and then stop.

b. If the I/O typewriter paper tape reader is used, it is necessary to initiate
tape reader operation by momentarily placing the function switch to the
START position, The tape will stop at the X-OFF character,

13. Repeat steps 11 and 12 for additional object tapes,
14, To execute the loaded object tape programs, press START (assuming

the object tape contains a transfer block).

Loading Without Control Panel

Loading without the control panel is made possible by the bootstrap loader portion of
the H112 loader tape, The bootstrap loader occupies a section of core memory in sector
zero, starting with core location zero. This is followed by the relocation address which
contains the sector into which the loader is relocated by the bootstrap loader. The reloca-
tion address consists of two octal characters followed by the stop code, Note that the two
octal characters for the relocation address appear in reverse order; tape character 1 is
bits 1-3 of sector number; tape character 2 is bits 4-6 of sector number,

The loader may be loaded into sector zero or in another sector, A procedure for each

is provided below,

Loader to be Resident in Sector Zero, --

Mount tape at blank between relocation address stop character and loader.
Turn on the tape reading device.

Press MASTER CLEAR.

Set the LOAD switch to ON,

Press START; the loader will be loaded, (If ASR, move start lever to
START position,)

Press MASTER CLEAR,

Set the LOAD switch to OFF,

Set the RUN/STOP switch to RUN.

Mount the object tape to be loaded into the tape reading device,
Press START.

L L O S N

S O ® N o

a. If a high-speed paper tape reader is used, the object tape will automatic-
ally load and then stop,

b. If the I/O typewriter paper tape reader is used, it is necessary to initiate
tape reader operation by momentarily placing the function switch to the
START position, The tape will stop at the X-OFF character,

l11. Repeat steps 9 and 10 for additional tapes,
12, To execute loaded object programs, press START (assumming the object

tape contains a transfer block),

Loader to be Resident in Sector Other than Zero, --

Mount the tape at the lead blank position,

Turn on the tape reading device,

Press MASTER CLEAR.

Set LOAD switch to ON, (Move START lever on ASR to the START position.)

(6 2 B S U N

Press START: the bootstrap and relocation address portion of the tape will
be loaded.

Press MASTER CLEAR.

Set the LOAD switch to OFF.

Set the RUN/STOP switch to RUN,

Press START: the loader will be loaded.

Mount the object tape to be loaded into the tape reading device,

Press START.

—_ O O ® N O

— b

a. If a high-speed paper tape reader is used, the object tape will auto-
matically load and then stop.

b. If the I/O typewriter paper tape reader is used, it is necessary to initiate
tape reader operation by momentarily placing the function switch to the
START position, The tape will stop at the X-OFF character,

12. Repeat steps 10 and 11 for additional object tapes.
13. To execute the loaded object tape programs, press START (assuming the

object tape contains a transfer block),

NOTE

The relocation address for the loader may be changed.
First, prepare a duplicate tape., The relocation address
may then be replaced with a new section of tape with the
desired address., The relocation address may also be
changed by locating the two relocation characters, on the
reproduced loader tape, and by repunching those two charac-
ters with "8" on the I/O typewriter keyboard; the coded 8
causes a punched hole in channel 4, indicating ''delete',
Repunch the desired characters in the blank space preceding
the "delete' characters, Take care that the two characters
are punched in the proper order (bits 1-3 first, then bits
4-6).

H112 DEBUG UTILITY

The H112 Debug Utility program is a programming aid which allows the programmer
to communicate with the H112 central processor during the program checkout process,
Program functions include 11 basic operator commands and program responses. Program
responses generally include memory dump operations via I/O typewriter typed or punched
outputs, access to memory for program changes, and entry of data via I/O typewriter or

tape reader,

General Operation

The general operation described in this section occurs after the HI112 Debug Utility
tape has been loaded into the central processor, The program initiates operator action by
typing a carriage return, a line feed, and a question mark; this indicates that the program
is awaiting an operator command, FEach operator command consists of a single mnemonic
alphabetic character, Most commands are then followed by one or more octal parameters,
The operator command is normally terminated by a carriage return; however, in the event
that a typing error is made, the operator types a slash mark. The program then types a
carriage return, line feed, and question mark and is ready for a new command and the
command previously typed is ignored, When command is terminated by a carriage return,
the program executes the command. When program execution has been completed, the
program types the carriage return, line feed, and question mark, A new command may
then be entered,

A list of commands and program response is provided below:

A = Access a memory location Jump to

= Breakpoint set Mnemonic core dump

il

Punch memory

= Dump core in octal

J
M

= Compare to memory P
R Reproduce memory
S

H o o w

n

= Enter into memory Search memory

G = Go after breakpoint

The Debug Utility program may reside in any part of memory, Two versions of the

Debug Utility are provided:

Minimum version — allows the use of the A, D, J and P commands only,

Full version — allows the use of all commands.

Detailed Operation

The following paragraphs contain the required operator command entries and the
resulting program response., General operation previously described applies to all program

functions following,

Dump Core in Octal on I/O Typewriter, --

Operator Command:
Daaaaa, bbbbb (CR)
aaaaa and bbbbb are addresses of from one to five octal digits. If bbbbb is

omitted, it is assumed equal to aaaaa.

Program Response:
A listing of core from location aaaaa through bbbbb is produced on the I/O typewriter,

The listing is printed with eight locations on a line, with each line preceded by the location of

-9

the first word on that line, The operator may terminate the core dump operation by press-

ing the BREAK key on the I/0O typewriter,

Mnemonic Core Dump on I/O Typewriter, --

Operator Command:
Maaaaa, bbbbb (CR)
aaaaa and bbbbb are addresses of from one to five octal digits. If bbbbb is

omitted, it is assumed equal to aaaaa.

Program Response:
A listing of core from location aaaaa through bbbbb is typed by the I/O typewriter.
The listing is typed with one location on each line,
Each line will consist of:
a. The location (five octal digits).
b. The mnemonic operation code (three alphabetic characters),
c. An asterisk if the indirect bit is set,
d. The contents of the location (four octal digits).

The operator may terminate the core dump by pressing the BREAK key on the I/0O typewriter,

Access a Memory Location, --

Operator Command:
Aaaaaa (CR)

aaaaa is an address of from one to five octal digits,

Program Response:
The program types the location contents of the location (octal), the instruction

mnemonict, (asterisk)T and waits for an operator response,

Operator Response:
The operator may type one of the following:
a, cccc (CR), which changes the contents of the location to cccc; the program
then types the next location, its contents and waits for the operator response,
.t aaakccc(CR), which changes the contents of the location to the instruction
ified by mnemonic aaa, indirect address indicator *, and address ccc; the program then
, its contents and waits for the operator response,

NOTE
-‘-

This option is not available in the minimum
version of the Debug Htility,

c. Carriage return, which will cause the program to advance to the next location
without changing the contents of the current location,

d. Slash, which will cause the program to exit from the access routine and wait

for the next command.

Enter Into Memory., --

Operator Command:
Eaaaaa, bbbbb, xxxx (CR)
aaaaa and bbbbb are addresses of from one to five octal digits; xxxx is a number
of from one to four octal digits; if bbbbb is omitted, it is assumed equal to aaaaa; if xxxx is

omitted, it is assumed equal to zero.

Program Response:

All memory cells from aaaaa through bbbbb are set to xxxx.

Punch Memory, --

Operator Command:
Paaaaa, bbbbb (CR)

aaaaa and bbbbb are addresses of from one to five octal digits; if bbbbb is omitted,

it is assumed equal to aaaaa,

Program Response:
The contents of memory from location aaaaa through bbbbb are punched on the I/0
typewriter in the object format, See the object tape format described in Section IV.

The operator may terminate the memory dump by pressing the BREAK key on the
1/0 typewriter,

Compare to Memory, --

Operator Command:
Cx (CR)
x is 0 for I/O typewriter, 1 for high speed paper tape reader,

Program Response:
An object tape (or one punched by a "P'" command) is compared with the memory
locations to which it corresponds and any differences are printed on the 1/0O typewriter, The

address of the memory location, the contents of the tape, and the current contents of memory

are printed,

Breakpoint Set, --

Operator Command:
Baaaaa (CR)

aaaaa is an address of from one to five octal digits,

Program Response:
A breakpoint is set at location aaaaa, When the program to be executed reaches
location aaaaa, it jumps into the Debug routine. The I/O typewriter prints the location and
the contents of the A register, and waits for another command, The instruction at location

aaaaa is not executed, A command of BO cancels any outstanding breakpoints,

Go After Breakpoint. --

Operator Command:
Gxxxx (CR)

xxXxX is a number of from one to four octal digits.

Program Response:

Execution is continued at the location of the breakpoint with xxxx in the A register;

if xxxx is omitted, the previous contents of the A-register are restored,

Jump to Location. --

Operator Command:
Jaaaaa, xxxx (CR)
aaaaa is an address of from one to five octal digits; xxxx is a number of from

one to four octal digits; if either is omitted, 0 is assumed,

Program Response:

xxxx is placed in the A register and execution begins at aaaaa,

Search Memory, --

Operator Command:
Saaaaa, bbbbb, xxxx, yyyy (CR)
aaaaa and bbbbb are addresses of from one to five octal digits; xxxx is a number

of from one to four octal digits; yyyy is a mask,

Program Response:
All memory locations from location aaaaa through location bbbbb are compared
to xxxx; both numbers are masked by (ANDed with) yyyy before the compare; all locations
which match are printed on the I/O typewriter; the operator may terminate the operation by

pressing the BREAK key on the I/O typewriter.

Reproduce Memory, --

Operator Command:
Raaaaa, bbbbb, ccccc (CR)

aaaaa, bbbbb, and ccccc are addresses of from one to five octal digits.

Program Response:

Memory locations from aaaaa through bbbbb are copied into corresponding loca-

t1ons =slartln

APPENDIX A
MACHINE INSTRUCTION CODES

The HI112 controller instruction codes are shown in this appendix, Observe the word
format shown for each of the five instruction types; the word format shown identifies the
op code bit locations within the 12-bit type, Execution time is given in microseconds and

quarter cycles, Each quarter cycle is 423, 7 ns £0, 1%,

Op Code Execution
Time Quarter
Octal Mnemonic Instruction (ps) Cycles

Memory Reference Instructions:

Liz | Jwofofs[7]6]s5]4]3]z]1]

Indirect O;/Code Sector Address
Address Bit
Bit
1 LDA Load A (Direct) 3.39 8
LDA* Load A (Indirect) 5.09 12
2 STA Store A (Direct) 3.39 8
STA Store A (Indirect) 5.09 12
3 JIMP Jump (Direct) 3.39 8
IMP* Jump (Indirect) 5.09 12
4 ADD Add (Direct) 7.63 18
ADD* Add (Indirect 9. 33 22
5 ANA AND A (Direct) 7.63 18
ANA% AND A (Indirect) 9.33 22
6 IRS Increment, Replace and Skip (Direct) 9.33 22
IRS#* Increment, Replace and Skip (Indirect) 11.02 26
7 JST Jump and Store P (Direct) 4.66 11
JST* Jump and Store P (Indirect) 6. 36 15

Input/Output Instructions:

[12]11110r9|817]6l5|4 3

—

™

L

A

~ ,
Op Code Address (XX8 in Op Code)

40XX INA Input Transfer to Accumulator 4. 66 11

41XX SKS Skip If Set 4. 66 i1

42XX OTA Output Transfer From Accumulator 4. 66 11

43XX OCP Output Control Pulse 4.66 11

4300 SMK Set Mask 4.66 11

4301

Shift Instructions:

12|11]10|9ls|7|6[5]14J|3]z|1]

Y Vv
Op Code Shift Count (N)
(Bits 1-3 = X in Op Code)

010X | 1gr Logical Right Shift 3. 84N(0, 424) 94N
011X |
012X ARS Arithmetic Right Shift 3. 84N(0. 424) 9+N
013X }
014X RAR Rotate A Right 3. 8+N(0. 424) 94N
015X }

Skip Instructions:

12 11 10 9 8 7 6 5 4 3 2 1

ﬁ/ AW—I
Skip Group Invert Overflow j
Bit Accumulator Zero
Accumulator Negative
- OP CODE d

0200 NOP No Operation 3.39 8
0201 SMI Skip If Accumulator is Minus 3.39 8
0202 SZE Skip If Accumulator is Zero 3.39 8
0203 SMZ Skip If Minus or Zero 3.39 8
0204 SOV Skip If Overflow Flop is Set 3.39 8
0300 SKP Skip Unconditionally 3.39 8
0301 SPL Skip If Accumulator is Plus 3.39 8

Skip Instructions (Cont):

0302
0303
0304

Generic Instructions:

0000

0003
0005
0021

0022

0024
0030
0041

0042
0044
0050
0060

SNZ
SPN
SNO

Skip If Accumulator is Non-Zero 3.39
Skip If Positive and Non-Zero 3.39
Skip On No Overflow 3.39

Lz |11[rof9fs]7]e[s[4[s]2]s]

s
Op Code
HLT Halt 2.54
+ Wait
OCA One's Complement Accumulator 7.63
TCA Two's Complement Accumulator 7.63
STL Stall On Line 3.39
+ Wait
TBA Transfer Bank Register to 3. 39
Accumulator
ITS Interrupt Save 3.39
TOA Transfer Overflow to Accumulator 3.39
TAB Transfer Accumulator to 2.54
Bank Register
ITR Interrupt Return 2.54
ENB Enable Interrupts 2.54
INH Inhibit Interrupts 2.54
CRA Clear Accumulator 2.54

6+

Wait

18
18
8+

Wait

o

o O O O

APPENDIX B
LOAD MODE CODES

Octal Bit Paper Tape I/O Typewriter Key
Configuration Format ASCII To Produce ASCII
In Core Memory Character Character
Channel No.
8 716 54 321

0 eocleeO|: |OOO 260 0

1 e Cle ® O T 00 e 261 1

2 eCleeC| ;|0 @C 262 2

3 ecleecC 'E‘OJ cee 263 3

4 eolee 0 E eo0oO 264 4

5 eCle e % eC o 265 5

6 e 0|00 E_‘ e 00 266 6

7 e Cle @0 (‘/I-)’ eece 261 7

(Blank) o olo oo ; 0oo0 000 "Here Is"
(Delete) eceee|. O0O0OO 270 8
(Halt) eeoco0e| . 000 310 H

NOTE:

In Paper Tape Format,

(e]

"

Unpunched location (0)

Punched location (1)

B-1

APPENDIX C
INTERNAL 6 BIT CODE

The internal 6 bit code is related to ASCII code and is used for the H112 object tape.
ASCII is compatible with teletype ASR-33 and ASR-35 typing equipment. The table below
shows the ASCII codes and associated characters which they represent, The internal 6 bit
code allows packing of two characters per Hl112 memory word, An alphanumeric string in
a DATA statement produces two 6 bit characters per word in this internal set. The internal

6 bit code, the ASCII code, and the corresponding character are listed below,

Character Internal 6 Bit ASCII
Space 00 240
! 01 241
" (quote) 02 242
03 243
$ 04 244
%o 05 245
& 06 246
' (apostrophe) 07 247
(10 250
) 11 251
e 12 252
+ 13 253
, 14 254
- 15 255
. 16 256
/ 17 257
0 20 260
1 21 261
2 22 262
3 23 263
4 24 264
5 25 265
6 26 266
7 27 267
8 30 270
9 31 271

Character

\

-~

NHKX=s=2=<ad+H?®mpOwozzZrRA =TI 09 HITOD »®

Line Feed
Carriage Return
X-ON

X-OFF

Rubout

Internal 6 Bit ASCII
32 272
33 273
34 274
35 275
36 276
37 277
40 300
41 301
42 302
43 303
44 304
45 305
46 306
47 307
50 310
51 311
52 312
53 313
54 314
55 315
56 316
57 317
60 320
61 321
62 322
63 323
64 324
65 325
66 326
67 327
70 330
71 331
72 332
73 212
74 215
75 221
76 223
77 377

APPENDIX D
INSTRUCTION WORD IDENTIFICATION
(BY OCTAL WORD FORMAT)

Octal Word Op Code Instruction
Format Mnemonic Type
0000 HLT Generic
0003 OCA Generic
0005 TCA Generic
0021 STL Generic
0022 TBA Generic
0024 ITS Generic
0030 TOA Generic
0041 TAB Generic
0042 ITR Generic
0044 ENB Generic
0050 INH Generic
0060 CRA Generic
010 } LGR Shift
011X
012X } ARS Shift
013X
014X } RAR Shift
015X
0200 NOP Skip
0201 SMI Skip
0202 SZE Skip
0203 SMzZ Skip
0204 SOV Skip
0300 SKP Skip
0301 SPL Skip
0302 SNZ Skip
0303 SPN Skip
0304 SNO Skip
04XX l
05XX LDA Memory Reference

06XX J (Direct)
07XX

Octal Word Op Code Instruction
Format Mnemonic Type
10XX l
11XX STA Memory Reference
12XX] (Direct)
13XX
14XX
15XX IMP Memory Reference
16XX [(Direct)
17XX
20XX
21XX ADD Memory Reference
22XX I (Direct)
23XX
24XX
25XX ANA Memory Reference
26XX (Direct)
27XX
30XX l
31XX IRS Memory Reference
32XX I (Direct)
33XX
34XX
35XX JST Memory Reference
36XX (Direct)
37XX
40XX INA Input/Cutput
41XX SKS Input/Output
42XX OTA Input/Output
43XX OCP Input/Output

(See Note 3)
4300 SMK Input/Output
4301
44XX l
45XX LDA* Memory Reference
46XX] (Indirect)
47XX ec
50XX]
51XX STA* Memory Reference
52XX (Indirect)
53XX]
54XX l
55XX IMP* Memory Reference
56XX l (Indirect)
57TXX
60XX ‘l
61XX | ADD* Memory Reference
62XX ‘ (Indirect)
63XX
64XX ‘
65XX ANA* Memory Reference
66XX [(Indirect)
67XX

Octal Word Op Code Instruction

Format Mnemonic Type
70XX l
71XX IRS:#* Memory Reference
72XX I (Indirect)
73XX
74XX
75XX JST= Memory Reference
76XX (Indirect)
T7XX
NOTES:

I. "X'" indicates an octal digit,

2. See Appendix A for description and timing.

3. OCP word format cannot be 4300 or 4301.

4. First octal word format shown for memory reference

instructions is the primary word format for the
associated instructior code, The three additional word
formats shown result from sector bit and most significant
address bit combinations, (See memory reference
instruction format in Appendix A.)

APPENDIX E
INSTRUCTION WORD FORMAT LIST
(BY OP CODE MNEMONIC)

Op Code Octal Word
Mnemonic Format Instruction Type

ADD 20XX Memory Reference (Direct)
21XX
22XX
23XX

ADD* 60XX Memory Reference (Indirect)
61XX
62XX
63XX

ANA 24XX Memory Reference (Direct)
25XX
26XX
27XX

ANA 64XX Memory Reference (Indirect)
65XX
66XX
67XX

ARS 012X Shift
013X

CRA 0060 Generic
ENB 0044 Generic
HLT 0000 Generic
INA 40XX Input/Output
INH 0050 Generic

IRS 30XX Memory Reference (Direct)
31XX
32XX
33XX

IRS* 70XX Memory Reference (Indirect)
71XX
72XX
73XX

ITR 0042 Generic
ITS 0024 Generic

JMP 14XX Memory Reference (Direct)
15XX
16XX
17XX

IMP* 54XX Memory Reference (Indirect)
55XX
56XX
57XX

Op Code Octal Word
Mnemonic Format
JST 34XX

35XX
36XX
37XX
JSTH 74XX
75XX
76XX
T7XX
LDA 04XX
05XX
06XX
07XX
LDA* 44XX
45XX
46XX
47XX
LGR 010X
011X
NOP 0200
OCA 0003
OCP 43XX
(See Note 3)
OTA 42XX
RAR 014X
015X
SKP 0300
SKS 41XX
SM1I 0201
SMK 4300
4301
SMZ 0203
SNO 0304
SNZ 0302
SOV 0204
SPL 0301
SPN 0303
STA 10XX
11XX
12XX
13XX
STA™ 50XX
51XX
52XX
53XX

Instruction Type

Memory Reference (Direct)

Memory Reference (Indirect)

Memory Reference (Direct)

Memory Reference (Indirect)

Shift

Skip
Generic

Input/Output

Input/Output
Shift

Skip
Input/Output
Skip
Input/Output

Skip

Memory Reference (Direct)

........... }

Op Code Octal Word
Mnemonic Format Instruction Type

STL 0021 Generic

SZE 0202 Skip

TAB 0041 Generic

TBA 0022 Generic

TCA 0005 Generic

TOA 0030 Generic

NOTES:

B W NN

"X'" indicates an octal digit,

See Appendix A for description and timing.
OCP word format cannot be 4300 or 4301.

First octal word format shown for memory reference
instructions is the primary word format for the associated

instruction code.

The three additional word formats

shown result from sector bit and most significant address

bit combinations.

format in Appendix A,)

(See memory reference instruction

APPENDIX F
(MODEL 112-25) I/O TYPEWRITER (ASR-33)

The ASR-33 Teletype Unit is the basic I/O device for the H112 controller. It is a
versatile device that receives data from the computer at a 10-cps rate for printing on a roll
of paper or punching on a paper tape punch, It also transmits data from a paper tape reader
or from the keyboard to the computer at a maximum rate of 10 cps. In the LOCAL mode it

may be used off-line for paper tape generation, paper tape reproduction, and printer listing,

KEYBOARD AND CARRIAGE FEATURES

The ASR-33 keyboard is similar to that of a standard typewriter. The keyboard con-
tains four rows of keys that generate an 8-bit internal code (see Figure F-1 and Table F-1),
Letters and numerals are transmitted without use of the shift key. All letters are printed
as capitals. The shift key is only used for special punctuation marks, and symbols which
correspond to upper case positions on certain typewriters. Control functions, such as
X-ON (which turns on the paper tape reader), X-OFF (which turns off the paper tape reader),
and BELL, are generated by holding down the control key (CTRL) while the particular function
key is being pressed (Q, S, and G keys, respectively, in the examples given above),

The unit can print up to 72 characters per line. A line feed and a carriage return must
be executed after the last character to be printed in each line, The keyboard is mechanically
interlocked (for all keys except SHIFT, CTRL, and REPT) to prevent more than one key from
being depressed at a time, The keyboard does not lock in the upper case position, thus the

operator must hold the SHIFT key depressed to produce the special upper case characters,

ON-LINE OPERATING MODES

There are three basic modes of operation when the I/O typewriter is on-line: input,
output, and load. The control logic automatically resets to the input mode at the end of each
output transfer operation and when a master clear is performed, To enter the output mode
it is only necessary to give the OTA associated with the output transfer to this device, Load

mode is detailed later,

Input Mode

The input mode is used to transfer information from the reader or keyboard of the
ASR-33 to the controller, Printed copy is always produced if the 8-bit character is printable,
If it is a control character, a specific control function is performed, There are 256 possible
8-bit characters that can be read by the reader and transferred to the controller., When the

X-OFF character is read, the reader stops after reading the character following the X-OFF

unless that character is the X-ON, The control logic will always be in the input mode except
during the time a character is being transferred out. When the character has been trans-

ferred to the ASR-33, the control logic automatically reverts to the input mode,

Output Mode

The output mode is used to transfer information from the controller to the printer
and/or punch of the ASR-33. Printed copy is always produced if the 8-bit character is
printable, If it is a control character, a specific control function is performed. Any of the
256 possible 8-bit characters will be punched, if the punch is turned on, though certain
characters will cause a control action by the ASR-33 which affects reception of additional
characters (i.e., X-ON starts the paper tape reader and WRU triggers the answer-back

drum). Control of the punch is manual only,

Character Format

The character format is exclusively 8-bit ASCII (see Table F-1 for codes), If the
internal 6 bit code is to be transferred to the I/O typewriter, a code translation to ASCIIL

must be made,

Load Mode

The load mode is used to transfer information from the ASR-33 to the controller with-
out the use of a software program. The load function is controlled by hardware in the con-
troller and is initiated by pressing the LOAD pushbutton followed by the START pushbutton
on the control panel and moving the motion control lever on the reader housing assembly of
the ASR-33 to its START position,

Transfers are made using a 3-bit character, Four such characters are packed into a
12-bit memory location of the controller with the first digit in bits 1-3, the second in bits 4-6,
the third in bits 7-9, and the fourth in bits 10-12, The next four 3-bit characters on the tape
are packed into the following memory location, etc., until all characters on the tape have
been read, The loading of characters terminates when the controller receives a character
with a 1 in channel 7. 1If the reader on the ASR-33 is to stop at this point, the next character
on the tape must be X-OFF, If there is no X-OFF on the tape, the reader continues to slew

L. - PEEE DRV TR Y 0 1 UG S P 3
tape until Lnc €nd Ol Lie Ldape as

~

een reached. (See Figure F-2
The load mode is especially useful when the memory does not contain a loader, or

when the only available panel is the remote operators panel. The load lever on the high speed

paper tape reader must be up while the ASR-33 is operated in the load mode.

.................

- - 1 a
o] ne Keyopdodara, nowever, th

[2 o TP RS R =Y s ol
1I1€ lodu Il1niouc 1 Jd.y aldu

-
ct+
-

ssged xrat
usca witn

m

the instruction must be typed in reverse order, e, g, to load 3126 into a location, 6213 is typed,

OPERATION
Off-line operation includes the following combination of functions:
a. Keyboard to printer (normal typewriter operation)

b. Keyboard to printer and punch

c. Reader to printer

d. Reader to printer and punch

During on-line operation, as in off-line, the printer always functions whenever the reader

or punch is being used and printable characters are being transferred,

Punch Control

The punch is controlled by manually operating the punch ON and OFF pushbuttons on the
punch housing. With the ON button depressed, any input to or output from the ASR-33 causes
tape to be punched. Tape leader can be generated by depressing the HERE IS key on the key-
board. This causes generation of a burst of 20 blank characters, Extra leader can be
generated by repeated operation of this key, The tape can be back-spaced one character
position at a time by depressing the B.SP. pushbutton, Tape insertion in and removal from

the punch mechanism is facilitated by depressing the REL, pushbutton,

Reader Control

The reader is controlled either manually or through the program. When under manual
control, the reader is operated with the START/STOP/FREE lever on the reader housing.
The first character to be read when the lever is moved from the STOP to the START position
is the one initially placed over the read pins, The FREE position of the lever is used to
allow tape to be drawn freely through the reader mechanism,

The reader is started under program control by first outputting an X-ON character
and waiting for the reader to begin reading tape. The reader stops (both under program and
manual control) upon recognition of an X-OFF character, The X-OFF character and the
character immediately following are transmitted to the interface buffer before the reader
stops. The reader stops during both manual and programmed operation if the manual control
lever is moved to the STOP position or if the reader runs out of tape before processing an
X-OFF character. A reader which has stopped because it has read an X-OFF character can
be started again simply by moving the manual control lever to its START position or output-

ting an X-ON character,

PROGRAMMING

The instructions assigned to the I/O typewriter are as follows:
SKS 03 Skip If [/O Typewriter NOT Interrupting

This instruction determines whether the I/O typewriter has caused an
interrupt on the standard interrupt line,

SKS 01 Skip If I/O Typewriter Ready

This instruction determines whether the I/O typewriter interface buffer
is ready to transfer a new character to the controller, The device is
ready as soon as the last bit in the character has been received in the
interface buffer from the ASR-33 and remains ready until the character
has been transferred to the controller, This instruction is used in
connection with input transfers,

SKS 02 Skip If I/O Typewriter NOT Busy

This instruction determines whether the I/O typewriter interface buffer
is in the process of transferring a character to or receiving a character
from the ASR-33, In the input mode, the device is busy from the time
the first bit of the character enters the interface buffer until the time
the entire character is ready for transfer to the controller, In the
output mode the device is busy from the time a character has been
transferred from the controller to the interface buffer until the time

the last bit in the character has been received by the ASR-33, This
test is used in connection with output transfers,

INA 01 Input a Character From [/O Typewriter, If Device Is Ready

This instruction transfers an 8 bit character from the I/O typewriter
interface buffer to the least significant 8-bits of the A register in the
controller and skips the next instruction in the program if the device is
ready, The transfer must take place within 4 ms after the device has
become ready or the interrupt has occurred. Completion of the instruc-
tion will reset the ready flip-flop and the interrupt. The A register is
cleared before the transfer takes place. If the device is not ready, the
A register is cleared, no transfer takes place and the next instruction
in the program is executed., (See Figure F-1 for input format,)

OTA 02 Output a Character To I/O Typewriter If Device Is NOT Busy

This instruction transfers the least significant 8 bits of the A register
in the controller to the I/O typewriter interface buffer and skips the next
instruction in the program if the device is NOT busy. Completion of
this instruction will reset the interrupt, If the device is busy, no trans-
fer takes place and the next instruction in the program is executed,

(See Figure F-1 for output format.)

OCP 03 Reset I/O Typewriter Interrupt

This instruction resets the 1/O typewriter interrupt request logic if no
transfer action is required as a result of the interrupt. The interrupt
logic is normally reset by the appropriate input or output instruction,

SMK 00 Set Standard Interrupt Mask

This instruction sets the standard interrupt mask F/F in the I/O type-
writer interface if the accumulator bit 4 is a 1, and resets it if the
accumulator bit 4 is a 0, There is no skip test associated with this
instruction and the next instruction in the program is always executed,
Masking off an interrupt will not reset the interrupt F/F.

Program Examples

The first example shows coding which may be used for inputting a character under
program control:

INA 01 Input character from buffer, if ready.

IMP -1 Delay until ready.
Since the device is always reset to the input mode at the end of any operation, no mode
setting command is necessary. If it is not desirable to wait in an input loop for a period
of time, a test instruction may precede the INA instruction. Failure of the test could cause

a jump to another part of the program which could be executed prior to trying the test again,

Under interrupt control the program would automatically enter a subroutine with the above
two instructions contained in it, immediately input the character and exit from the subroutine
without delay, The INA resets the interrupt at the end of the transfer.

If the input is to be immediately followed by an output command, the built-in test will
inhibit outputting until the device becomes NOT busy. A delay is built into the interface which
holds the busy line true for such time as it takes to determine whether a new character is
coming in from the ASR-33. This delay is at most 15 ms,

The second example shows coding which may be used for outputting a character under

program control:

OTA 02 Output character to I/O typewriter if not busy
JIMP -1 If busy, try again

Because the OTA 02 will detect a busy condition, the controller may wait in the OTA-
JMP loop. If the interface is busy transferring the previous character to the ASR-33, the
transfer will take place when the previous transfer is completed. The interface may also be
busy due to a transfer from the ASR-33 to the interface. This may occur if break key or
other keys are operated, The controller will then wait in the OTA~-JMP loop for the duration
of the operation of the key. The SKS 02 may be used to detect the busy condition and other
codes may be executed while waiting for the ASR-33 to be not busy.

Under interrupt control, the program would automatically enter a subroutine with the
above loop contained in it, If the device is not busy, the output transfer from the controller
will occur and the OTA will reset the interrupt.

The device automatically reverts to the input mode when an output transfer has been
completed (i.e., a character has been sent to the ASR-33) and a delay is built into the inter-
face to hold the busy line true for such time as it takes to make sure that the ASR-33 has
completely received and processed the character. This delay is at most 10 ms. When the
interrupt is used it always occurs at the end of this delay,

When the program has sent its last character to the interface buffer, a final interrupt
occurs when the transfer has been completed, This must be reset using the OCP 03 com-
mand. Normally the INA 01 and the OTA 02 reset the interrupts,

In some cases it is desirable that the operator be able to terminate a lengthy output
by use of the BREAK key. To accomplish this, the following coding may be used:

OUTP LDA DATA OTA 02 Output character to I/O typewriter, if not busy

JMP INPT Try inputting if device is ready

INPT INA 01 Input character if ready

JMP OUTP Try outputting if device is not ready

The interface continues in the output mode, as usual, until the last bit of the character it was
attempting to output has been sent and it has returned to the input mode, At this instant the
continuous spacing (i. e., break in the line) enters the interface and appears as an incoming
character. By using the loop described above the interface accepts the all zero character,
sets READY or initiates an interrupt when the entire character has been received, and

waits for the character to be transferred to the controller, When the transfer is completed,
the program is then able to test for an all zero character and refrain from outputting the
next character if the test is true, Several such characters may enter and be tested in this
manner before the break key is released., When the break key is released an indeterminate

character is produced.

K CHARACTER

L4 R
8 T 6 5 4 3 2 | READER CHANNEL
12 1 10 9 8 7 6 5 4 3 2 | BIT
A REGISTER
Figure F-1, Bit Assignments During Programmed Input Transfers
K+3 K+2 K+I K CHARACTER
A A A A
N7 ™ 7 N 7 N
3 2 | 3 2 | 3 2 | 3 2 ! READER CHANNEL
12 " 10 9 8 7 6 5 4 3 2 | BIT
A REGISTER

Figure F-2, Bit Assignments During Load Mode Input Transfers

Table F-1,
ASR-33 Character and Symbol Codes

Character Character Character Character

Code Printed Code Printed Code Printed Code Printed
000 Null#* 040 Space 100 @ 140 @
001 Null 041 ! 101 A 141 A
002 Null 042 " 102 B 142 B
003 Null 043 # 103 C 143 C
004 Null 044 $ 104 D 144 D
005 WRU 045 %o 105 E 145 E
006 Null 046 & 106 F 146 F
007 BELL 047 ! 107 G 147 G
010 Null 050 (110 H 150 H
011 Null 051) 111 I 151 I
012 LF¥ 052 112 J 152 J
013 Null 053 + 113 K 153 K
014 Null 054 , 114 L 154 L
015 Null 055 - 115 M 155 M
016 Null 056 . 116 N 156 N
017 Null 057 / 117 O 157 O
020 Null 060 0 120 P 160 P
021 Null 061 1 121 Q 161 Q
022 Null 062 2 122 R 162 R
023 Null 063 3 123 S 163 S
024 Null 064 4 124 T 164 T
025 Null 065 5 125 8] 165 8]
026 Null 066 6 126 v 166 \Y
027 Null 067 7 127 w 167 w
030 Null 070 8 130 X 170 X
031 Null 071 9 131 Y 171 Y
032 Null 072 132 Z 172 Z
033 Null 073 ; 133 [173 [
034 Null 074 < 134 \ 174 Null
035 Null 075 = 135] 175 Null
036 Null 076 > 136 4 176 Null
037 Null 077 137 -~ 177 Null

#*Whenever the HERE-IS key is depressed, the answer-back drum is activated,

producing a burst of 20 characters of all zeros,

Table F-1, (Cont)
ASR-33 Character and Symbol Codes

Key Depressed

Simult,
Character Lower Simult, Shift and
Code Printed Case Control Control
200 Null P
201 Null A
202 Null B
203 Null C
204 Null D
205 WRU E
206 Null F
207 BELL G
210 Null H
211 Null I
212 LF LF J
213 Null K
214 Null L
215 CR CR M
216 Null N
217 Null O
220 Null P
221 X-ON Q
222 TAPE R
223 X-OFF S
224 Null T
225 Null §)
226 Null A%
227 Null w
230 Null X
231 Null Y
232 Null Z
233 Null K
234 Null L
235 Null M
236 Null N
237 Null ©)

Table F-1, (Cont)
ASR-33 Character and Symbol Codes

Code

Character
Printed

Key Depressed

Lower
Case

Simult.
Shift

Simult.
Control

Simult,
Shift and
Control

240

241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
2717

Space

O 0 ~1 O A W N = O T .

Space
Bar

-(minus)

O 00 3 O U b W N = O ™

O ® =2 O Ul W N

Space Bar

’

-{minus)

O 00 2 O U B W N = O N

- Alt Mode

/ Rub Out

O 00 2 O U b W N

Table F-1, (Cont)

ASR-33 Character and Symbol Codes

Code

Character
Printed

Key Depressed

Lower
Case

Simult,
Shift

300
301
302
303
304
305
306
307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337

P> = 77T N XEg<aocHWEBO0UYOoOZEZOrRS " TOoHBO OW>E

N Xs<adAa®WempDgozZgzrXRae "o oo ooy

P

Oz 2 r =X

Table F-1, (Cont)
ASR-33 Character and Symbol Codes

Character Page Lower
Code Printed Code Printer Case
340 @ 360 P
341 A 361 Q
342 B 362 R
343 C 363 S
344 D 364 T
345 E 365 8]
346 F 366 A%
347 G 367 w
350 H 370 X
351 I 371 Y
352 J 372 Z
353 K 373 [
354 L 374 Null
355 M 375 Null
356 N 376 Null
357 O 377 Null Rub Out
NOTES:
1. Whenever the BREAK key is depressed, a 000 code is generated as long as the

key is held depressed. However, when the key is released, an indeterminate
character is produced,

The symbols appearing in the Character Printed column indicate the reaction of
the printer to codes received on the line in the output mode and to codes generated
by the reader or keyboard in the input mode, Null indicates no printing and no
spacing.

The lack of an entry in the Key Depressed column indicates the inability of
the keyboard to produce that code,

The punch perforates all codes transmitted in the input or output mode when it
is turned on,

APPENDIX G
HIGH SPEED PAPER TAPE READER (MODEL 112-20/22)

The high speed paper tape reader, together with its interface logic, transmits data to
the controller at a maximum rate of 400 cps. Opaque paper or Mylar tapes, 0.0025 to 0. 005
inch thick, can be used with no adjustments required. Tapes are loaded by positioning the
RUN/LOAD/OFF power switch in either the LOAD or OFF position, lifting the LOAD lever
on the reader housing, threading the tape through the reader with sprocket side inwards,
lowering the LOAD lever, and returning the power switch to the RUN position, The pinch

roller and brake solenoids are energized in the RUN position only,

OPERATING MODES

In addition to the normal input mode (described below under PROGRAMMING) wherein
characters on the tape are transferred to the controller under program control, the reader
may operate in the load mode, wherein characters are transferred to the controller without
the use of a program. The load function is controlled by hardware in the controller and is
initiated, when the tape has been loaded as described above, by pressing the LOAD push-
button followed by the START pushbutton on the control panel, This starts the reader,

Transfers are made using a 3-bit character instead of an 8-bit character. Four such
characters are packed into a 12-bit memory location of the controller with the first one in
bits 1-3, the second in bits 4-6, the third in bits 7-9, and the fourth in bits 10-12, The
next four 3-bit characters on the tape are packed into the following memory location, etc,,
until all characters on the tape have been read. The reader stops whenever it detects a
character with a 1 in channel 7. (See Appendix B for load mode format.)

The load mode is especially useful when the memory does not contain a loader or
when the only available panel is the remote operators panel., The ASR-33 keyboard or
reader must not be used while the high speed reader is in the load mode.

The interface guarantees that the tape will stop after the end of the character just

read but before the beginning of the next character in both the normal input and load modes.

PROGRAMMING
The instructions assigned to the high speed paper tape reader are as follows:

SKS 04 Skip If High Speed Paper Tape Reader NOT Interrupting

This instruction determines whether the reader has caused the interrupt
on the standard interrupt line,

SKS 05 Skip If High Speed Paper Tape Reader Is Ready

This instruction determines whether the reader is ready to transfer

a new character to the controller. The device is ready as soon as the
control logic has received the sprocket pulse and remains ready until
the character has been transferred to the controller.

INA 05

OCP 04

OCP 05

SMK 00

Input A Character From The High Speed Paper Tape Reader, If
Device Is Ready.

This instruction transfers an 8-bit character from the reader to the
least significant 8 bits of the A register in the controller and skips

the next instruction in the program, if the device is ready, The trans-
fer must take place within 1 ms after the device has become ready or
the interrupt has occurred, Completion of the instruction will reset
the ready flip-flop and the interrupt. If the device is not ready, the

A register is cleared, no transfer takes place, and the next instruction
in the program is executed,

Start High Speed Paper Tape Reader,

This instruction initializes the control logic and starts tape motion,
The start response (time to advance one character) is less than 10 ms,

Stop High Speed Paper Tape Reader.

This instruction resets the control logic and stops tape motion. The
tape will stop between characters if this instruction is given within 1 ms
after the device is ready or an interrupt has occurred,

Set Standard Interrupt Mask,

This instruction sets the standard interrupt mask F/F in the high speed
paper tape interface if the accumulator bit 3 is a 1 and resets it if the
accumulator bit 3 is a 0, There is no skip test associated with this
instruction and the next instruction in the program is always executed.
Masking off an interrupt will not reset the interrupt F/F.

Program Examples

The example shows coding which may be used for inputting a character under program

control:

Start tape reader
Input character from reader, if ready

Delay until ready

Stop tape reader

Under interrupt control the program would enter a routine with the INA/JMP *-1 routine

contained in it, immediately input the character and exit from the subroutine without delay.

The routine should contain coding to determine whether a stop character had been read in

and if so to stop the tape with an OCP 05, The controller has less than 1 ms to respond to

the interrupt before data is lost and the ability to stop before next character is lost. The

INA resets the interrupt at the end of the transfer.

Honeywell cOMPUTER CONTROL DIVISION, FRAMINGHAM, MASS. 01701 i

Printed in U.S.A. l

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	A-01
	A-02
	A-03
	B-01
	C-01
	C-02
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	G-01
	G-02
	xBack

