H O N E Y W E L &

HONEYWELL

HONEYWELL 800

Transistorized Data Processing System

>
r
(2]
m
@
Al
>
)
0
O
S
T
r
m
A
S
>
Z
=
&
r

Copyright 1962
Minneapolis-Honeywell Regulator Company
Electronic Data Processing Division
Wellesley Hills 81, Massachusetts

Litho in U.S.A. DSI-44A
2262

Fol.~1156

ALGEBRAIC
COMPILER MANUAL

PRICE $3.50

Honeywell
. Eleitrowic Data. Phocssiug

Section

Section

Section

Section

I
II

o1

v

TABLE OF CONTENTS

Page Number

Foreword ov.ititiiniieienenseeesesosososocnsnsonsononsnnssss
Introduction to the Honeywell Algebraic Compilerc0000..

General Properties of a Honeywell Algebraic Compiler
Source Program . .ocececsecsosesecosscssossesscsosssesosnanaes

Constants, Variables, Arrays, and Arithmetic Statements «.cc...

Constants .seeescsseensncsacscnssses te et cssersesssenra s anae
Fixed-Point Constants sesesececccecoscsssasssssssssssssnascs
Floating-Point Constants «...... ... et eesiest e enaaenan
Variables and Names of Variablescccveieeesceccesoanases
Fixed-Point Variables ...ceveeovens seessesesssesestuas e
Floating-Point Variablesciceieeeiinnitereceenrncrananas
Alphanumeric Variables eessecvennas sseaccaansons cee
Boolean Variables .veeeeeeeerereeeaneeenas ceeeen Ceee e
Subscripted Variables ...eoiceeieeenennanes ceanen et ieeanen
EXpressions «..ieieeiiiiiiieiiiiioernennanes
Hierarchy of Operations cheseeeteteeanas
Arithmetic Statements «.eveeiosttocesronans ceeenan teeeraaae
Integer Arithmetic B T T T S S e
Boolean Statements +.ceceeccsccososss tetseeeennas
ARGUS Statements «eeeeeescececosns ceeeeneae teetear i eean
Control Statements i teee et et terset et e
Unconditional GO TO Statement «..ccoeeosesscecoascsssareansse
Computed GO TO Statement «..cceeeeeeiennnasenetnsenenanns
IF Statement «eoeeeeerocseossseseosssrossonoscssessasasesss
Assigned GO TO Statement . e.c.veeenenseserasssnssansnsoses
"ASSIGN Statement - ceeeeeeeeeeeeceesonsocosocnsoaonss cre e
IF PARITY Statement ...cceveencennsns ceerseser et ecee .
IF ENDOF FILE Statement e e e c e s et eesssoeccasonenss ceeeannn
CONTINUE Statement .e:cececeescoscccenses te ettt e e
DO Statement «.ec.0. s esecesscscessssranesns cesenssene PP
PAUSE Staterment ««:ccceeeeescotstsacsasssossoossssosssssss
STOP Statement s+ cseceeoscoscsscascssnsoes E
SENSE LIGHT Statement «ceeccseeccocasocsscsssoes ceesecennn
IF(SENSE LIGHT) Statement «ccccececccessecsonssns ceesevee
IF(SENSE SWITCH) Statement «ccecoevsccsocscesons N .o
IF ACCUMULATOR OVERFLOW statement L I R I I A
IF QUOTIENT OVERFLOW Statement «ccccececeeccssansccses
IF DIVIDE CHECK Statement «...... e etereeee e,
TITLE Statement «+cceeececcecscccsccns cesesesesssessenan
END Staterment «ccceeetsteseceoscssscsssasssscsssssscssssass
FINIS Statement «eeeeeae sessecscsasseenres esesesssssesreas

TABLE OF CONTENTS (cont)

Page Number
Section V Input and Output Statementscc00.. et seescastteeannas 43

Definition of @ List ... enneennnnes - X
FORMAT Statement ..u.eieeveeescoscsososssosens cseens .. 46
Scale Factoruiieneieeconennennese ceesessessnsasssess DO
Field Specification "E” (Floa.tmg Point) . ettt reeeeeen .. 50
Input Data Preparationccoeeiiieeeeneseaans ceeeeses 51
Output Data Presentationeeccvveevecerscasesascs .. 51
Field Specification "F'' (External Fixed Pomt) 52
Input Data Preparationc000.. Crenretananaan seeeas 52
Output Data Presentationcciiiieeeiienninreonnaesns 53

Field Specification "I" (Integer) ..veevuievon. Ceetieeter e 54
Input Data Preparationc00... Gesencacasnesnanas 54
Output Data Presentation Gecssesesscassresasoanan 54

Field Specification "H' (Hollerith) vvvvvesveesosssessscoannss 55

Field Specification "O" (Octal) cveeeeerieecreanss ceesesasnas BT
Input Data Preparation ceaseas testetttesceane .. 57
Output Data Presentationceo00000 cesetsseancnsnns 58

Field Specification "A" (AlphabetiC) cieeieecsvnconssaseoans 58
Input Data Preparationceoceerseccssnces ciiesesees 58
Output Data Presentationoeeeeeesececsccessssassss 59

Field Specification "B'" (Blank)vveiveeerrocscsssesseeas 60
Input Data Preparation ..ieeeeeeeerroceacas et eeees 60
Output Data Presentation00tveeeses etetseannn ... 60

READ Staterment eceeceseeceocoscssssasssosassssscccsssnsece 60

READ ONE Statement ceseeseeceecsccssososascssssssasasoss 61

READ TWO Statement ceceeeercecsosssosscccaccscncs ceesess b1

PRINT Statement «cceeeesess sessessersenenanas ceerscesns . 61

PRINT ONE Statement «cecececocssossscossscssssses ceesees b1

PRINT TWO Statement «...coceee tesssesconscsnsacassans 61

PUNCH Statement seeceesoecccsscsosssscosssscssssossoacsss 6Ol

PUNCH ONE Statement «eccecececscssoccssossssse sesesees b1

PUNCH TWO Statement «cecesececoccsscoscccossssssssssecss bl

READ INPUT TAPE Statement «cccecesocsocsossccsavssancscs 62

WRITE OUTPUT TAPE Statement cceccceescscscssscsssscsces 62

READ TAPE Statement .cceeceececccsscssscccsvssssscscssse 63

WRITE TAPE Statement cssesestsescesesscsssssssecsses 63

END FILE Statement «cceceecoseascersoscssasesscsscssssscs b4

REWIND Statement ccceececescssccccasssssasesccscccscscce 04

BACKSPACE Statement «ccccececscasssssccccoscosssossccsees 64

BUFFER Statement .cccceeess cecees Gesesssessesccccscsess 65

ERASE Statement +eccceccececsocscssscssssassecscnssssscscscs 05

Section VI FUNCEIONS L, .. eeerueaveseeceencoososacosesaseasncansssscssaas 09
General Considerationsceceevevvssscessscssssccss 69
Open Functionsceeeeeeevecsesscssonsecsssssesssassess 69

TABLE OF CONTENTS (cont)

Page Number

Section VI Library Functionseeeeeeseeessssososossssccssssanass T1
(cont) Defined Functionseeeveceoesescsscsssnssssssannas cee. T4
FUNCTION Subprogramseeeeeeeeocsssssssssccsascscnes 17
FUNCTION Statement .oceeeeeeeesasasoscasscasassanses cees 17
SUBROUTINE Subprograms e eeeeteceaeeae e, 81
SUBROUTINE Statement voveeeeeetseeseccscssensassassoss eee 82
CALL Statementcceeeveeecssseceeesesescessscsssssssss 84
RETURN Statement ..oeeeeeeeesseeseossasscsssssssocansns ... 85

Summary of the Differences Between the Five Types

Of Functions ..eeeesseosascsssessossenssssscossocsssosass 86
Naming seeveeeeieeeosoeessosecsossacecccsocsssasnssansonsoss 87
Definition csveesessessscessossessososcssssonsscsoesssnsas .. 87
How Requested ..vveeeteeroaossesssossosnssossnsses ceesess 87

Open vs. Closed .uveverrreeeranronnesssanrnsanas P - 14
How Control is Returned to Calling Program Ceeenens 87
Number of Arguments cetecenenan Ceerecaenaas 88
Number of Outputs ceeesaannn ceneenn eeeeeses. 88
Separate Compilation cecsnns N ceseseses. 88
Dummy Variables in Definition ..cceveeeeeeeereseeceacenss. 88

Section VII Specification Statements ...c.ceoeeeiessceccscoarssssonssossecsnes 89
General ConsiderationNsccvevevsssscsceesascsssssssasecs 89
DIMENSION Statementc... eeesseserssassesans cesseean 89
EQUIVALENCE Statement Ceeerescseescinenaans ... 90
COMMON Statement +ueeeeeceeeeeceeceoensccassssossoncssanes 93

Section VIII Sample Algebraic Compiler Programc.ieveveerenncceceees 97
General Description seuieeseeeesocecsvesssseessssscsssseasss 97
Sample Input Data .eeceetecciesescestoccretacccccaannansss l00

Section IX Summary of Honeywell Algebraic Compiler Systemc..00.. 101
General Properties of a Source Program .ecececececsesccsess 101

CONSTANTS, VARIABLES, ARRAYS,

AND ARITHMETIC STATEMENTS
Fixed-Point Constantsc.uveeeeececencesscancconseseecass 102
Floating-Point Constants seccvveeceesccccessssosescesesesss 102

Variables and the Names of VariableS cceeeeeencecoscenss vees 102
Fixed-Point Variables ...civieerenercoscccctsscaseanns eeeee 103

Floating-Point Variablescicevteescccnes eeeeesssesssss 103
Alphanumeric Variables D .. 103
Boolean VariablesS ..eceveesesescctosssosssossssacsscasssees 104
Subscripted Variableseeuieieriieterecsscsnssssseeessss 104
EXpressions ...ceieeseesesscesscssssssssccassssssssecsssss 105
Hierarchy of Operations .veeeesseessosesoscscssssasssasssess 106
Arithmetic Statements ...eeevesescssctcsosceasssccsssecssees 106
Boolean Statements ...cceeeceesesssasssscssasscssssscseass 107
ARGUS Statements ...cecevecescsssssccsassssasssscssassss LO7

TABLE OF CONTENTS (cont)

Page Number

Section IX CONTROL STATEMENTS
(cont) Unconditional GO TO Statement ««.cccevescesssscsscasesss 109
Computed GO TO Statementccceeeeeererteccsccssssass 109
Assigned GO TO Statementcoevevveecccecassenssssas 109
ASSIGN Statement .oeesseeeveseccsssoccscsscsssssessssss 109
CONTINUE Statement ...veeeevescesosessscasssesassesass 109
IF Statement v veeeaseesossoescssssossssssesasssssasasasses 109
IF PARITY Statementceeeeeeescssossscsssssscsacssesas 110
IF END OF FILE Statement ceeesssersssecassneens 110
DO Statement «..cevecssetecceosscscescnns ceeeas cesesaane 110
PAUSE Statement «...ececesessscccscssasons teesecaanae .. 112
STOP Statement ccveeeevseveennoan seesereesessnssenesses 112
SENSE LIGHT Statement «.ceeeeeceess essecsssesssasssess 112
IF(SENSE LIGHT) Statement v vcceeeeeocecccsscsessesssess 113
IF(SENSE SWITCH) Statement «.ecesvesscsoeassssssocessss 113
IF ACCUMULATOR OVERFLOW Statement ...eecesesesese 113
IF QUOTIENT OVERFLOW Statementeeveeeeeesaeseses 113
IF DIVIDE CHECK Statementcs.. ceeecsesaenae seeees 114
TITLE Statement ..eeeeescescsoasssoscsscasssacasass .o. 114
END Statement ...ecvevececceacss Ceteeesssssnannas ceee.s 114
FINIS Statement ..c.veeenceons cesesecsessecssssesssens 114

INPUT AND OUTPUT STATEMENTS
Definition of @ Jiist cuiveeveesoscessesssascascssosscssess 114
FORMAT Statementceeecese cssecnncans cesesesssesss 115
Scale FFACtOr oceceeoosnscecesscsonssossonsssasssssannscass 117
Field Specification "E" (Floating Point)veveeeeeeeeess 117
Field Specification '"F' (External Fixed Point) «+ccvveveeen.. 118
Field Specification "I'" (Integer) ccveeoeeesseesssccencensss 119
Field Specification "H'" (Hollerith) ...ccceeerieeaens PN 119
Field Specification "O" (Octal) veeeveeessassssseacsveeassss 120
Field Specification A" (Alphabetic) seeeveeeesevaneaneesss 121
Field Specification '"B'" (Blank) «seeseeecesascececscecesess 121
READ Statement +ccceesesoassssessccssasssssssssosssseasa 122
READ ONE Statement ..soeeessvssssccsocsosscscssenscsas 122
READ TWO Statement .ceceeeecsssoscessscsesssacsnscssse 122
PRINT Staterment .eececeseecaccsccscccassscsscssesaances 122
PRINT ONE Statement .eeceeccsccocccassscoscssssssssses 122
PRINT TWO Statement +ccceseccsecscsssssasssosssessnsss 122
PUNCH Statement cecesseocecssscccocsssocsascsssssssesses 123
PUNCH ONE Statement «eoceecsecsessescessccsccscsssssseceesl23
PUNCH TWO Statement «c.cececcecccsssosecccssoaaseasoas 123
READ INPUT TAPE Statement «ccceeeececccccssssssscsse 123
WRITE OUTPUT TAPE Statement ,...cececeencceceseceseses 123
READ TAPE Statement .csecsececocscsccscscsssssssssssase 124
WRITE TAPE Statement «...ceeeeecssscsssascscscssscass 124

TABLE OF CONTENTS (cont)

Page Number

Section IX END FILE Statement v c.vceeeesosescoscscsssssesssasssessas 124
(cont) REWIND Statement cereearenns Ceveensesacceeeass 124
BACKSPACE Statementcceveeees N ceeensea 125
BUFFER Statement ...eeciveasssossscscsesas cecccenens aee 125
ERASE Statement v eeueeeissecsocseessssasssosssscsssasssss 125

FUNCTIONS

General Considerationscceeeecsecscastacsssscsscsnsss 125
Open FunctionsS cuueeeessrsscacoososoissossssasssossssssess 126
Library Functionscetesesescecssassssesscassssssssees 126
Defined Functions ..eeesestesssssescosssssesossssossasanss 127

FUNCTION Subprograms ceeateenaaan cereneasess 128
FUNCTION Statementov00e cesesassseressasescsssasess 128
SUBROUTINE Subprograms....cceeseesscscsccassssssesess 130
SUBROUTINE Statement seessssecaca srceesacnns .o 130
CALL Statementc00.. secessssesns cesanss ceessonns .o 131
RETURN Statement ..ecceessease D A ¥4

SPECIFICATION STATEMENTS
DIMENSION Statement +..ceeseesescsccsessossosossenssasans 132
EQUIVALENCE Statement ...ceoccesecesssssoesssosssansss 133

COMMON Statement ..cecoveseeens N Cetieeaeeean ve.. 134
Appendix A Honeywell 800 Coding and Punched or Printed Equivalents 136
Appendix B Sense Lights and Sense Switchesieveveeriennrsereseenenses 137
Appendix C Limits on Source Program Imposed by Table Sizes.....cc00sse.. 138
Appendix D Source Program Statements and Sequencingeecc0000000. 142

vi

Figure
Figure
Figure

Figure

Figure
Figure

Figure

—

W N

(S}

LIST OF ILLUSTRATIONS

Page Number

Sample Algebraic Compiler Program ..ccccoeeeees Cheessaean 2
Algebraic Compiler Card Formatcciieeeecescnoncesanes T
Alphabetic Sort Example ...uiieeeeeecseresenscsssscaseccsses 28

Transfer of Control with Respect to Sets of Non-Completely
Nested DO'S s iiiieeiiiiinvienesrotesasesosssssscsssans 35

Transfer of Control with Respect to Completely Nested DO's ..., 35
Open Functions of Honeywell Algebraic Compiler...ccvveuaeenn 70
Library Functions of Honeywell Algebraic Compiler 72

vii .

FOREWORD

This manual describes the Honeywell Algebraic Compiler designed and implemented by

Computer Usage Company of New York.

The manual may be thougilt of as consisting of three major parts. Section I gives a
brief, over-all view of the Algebraic Compiler language, in terms of a representative, if
short, example. This section may be of value to the reader who has no background in the
subject of computer programming. Sections II through VIII make up the bulk of the manual,
giving the details of the language with many examples. These sections should be useful to
the beginner, as well as to the reader who is familiar with systems similar to the Algebraic
Compiler. The thoroughly experienced reader may choose to turn immediately to Section IX,
which presents a summary of the language without any examples. After the reader becomes
proficient in the use of the Algebraic Compiler, this section will also be useful as a quick

reference when it is necessary to review some topic.

PREFACE TO SECOND EDITION

This document supercedes the original edition of the Algebraic Compiler Manual
(DSI-44) and should be used by all persons who are programming in the language of the compiler.
The changes in the second edition, though numerous, are relatively minor and do not reflect
. changes in the compiler. In particular, the sample program in Section VIII has been entirely
replaced by a better example and the list of language restrictions in Appendix C has been clar-

ified.

viii

SECTION |
INTRODUCTION TO THE HONEYWELL ALGEBRAIC COMPILER

The language of science and engineering is mathematics; the language of a computer
consists of relatively elementary computer 'instructions'. These two languages are
normally very different, requiring a translation process in order to express a mathematical
procedure in the rigidly-defined format demanded by the computer. The Honeywell Algebraic
Compiler greatly simplifies this translation process, by allowing the problem procedure to
be expressed in a language not greatly different from ordinary mathematical notation, and
by providing a separate computer program to translate from this language to the language

of the computer.

The language of the Honeywell Algebraic Compiler is discussed and illustrated in
Sections II through VIII, and summarized in Section IX; here, in Section I, we shall only
attempt to give an over=all view of the system. It is hoped that this short introduction
will make the fnaterial in the next few sections more meaningful to the reader approaching

this language for the first time.

Suppose that in an engineering calculation it is necessary to compute the value of
the following function, for a number of combinations of values of X and A:

AX
Y = - (A sin X -cosX)+2.8-. 10-'4 \IIO6 + (AX)5° !

A2+1

It is desired to set up an Algebraic Compiler program to accept 10 values of A, punched
on a card, For each A, the program should compute the value of Y for all values of X
between 0.1 and 2.0 inclusive, in steps of 0. 1. Tb‘.e results are to be written onto a
magnetic tape for printing at another time. KEach page of the output is to consist of, first a
heading line giving the value of A for the page and column headings for X and Y. The body

lines will give the 20 pairs of values of X and Y,

An Algebraic Compiler program to carry out these operations is shown in Figure 1.
The lines written on the coding form would be punched onto cards and processed by the
Compiler, to produce a set of computer instructions which would carry out the procedure
defined by the program. Thus, the compilation of the program is seen to be a separate
phase from the execution of the compiled program of computer instructions. Once com-

piled, the program can be used with many sets of data, without recompilation. Each line

SECTION 1

. INTRODUCTION TO THE HONEYWELL ALGEBRAIC COMPILER

of the program shown is a separate statement, with the exception of statement number 23,

which requires two lines.

This statement would be punched on two cards, the second one

being called a continuation card. Up to nine continuation cards are permitted.

ALGEBRAIC COMPILER STATEMENT

e LD T T T T T T3 weritren sy CHECKED BY DATE PAGE — _OF —
Al sTate- [6
%Nﬁﬂéﬁn'f ALGEBRAIC COMPILER STATEMENT
| E 1l 23 38 52 66 72 80
T T T rvyr1rrrrrrrrvrT 'lllllllITIIII|II1IITITIIYll"llllll"‘T‘lll‘ll|lll|ll
TITUE| EXAMPLE
D IMENSTON A(1 O)
READN 15, A
15| |FORMAT(| 0F8. 5)
Po 21 1 =1, lo
\WRITIEE ourPur TARE| 3, 22 A(r)
22| |FoeMatins/ 2ua,| k8.5 368, 1w, 138, 1uv//)
x =lo.1 ’ '
23| |y = |exPF(A(L) %(xX) | (A(L)xx2 4 1.0) * (A(I) |x SINF(X) - COSF(x))
X| +12-BE-0¢ % SQRTF(IE6 t+ (A(T) ¥ X)%k%5.1)
WRITE ouTPUT TAAH 3, 24, %X, ¥
Z4| |FORMAT(148, F4.1,| Ez0-1)
LF(- 2.0) z5, 2|1, 21
25| X = (X + o,
Go 10 23
21 [conTI NUE
END |FILE 3
REWIND 3
STOP
141 E|N|D|.|x|||L11|L IS VOOW TN (NN NN T U N TUN JNS WO N A (N TUNY YUY W U TN N N W N NN N SN O A N N O N T N O 0N TS O O 1
FAI|~|ISIII||||||||||J IS WS S WO VNN W WO WO U0 TS NN UK N AN YO YN N SN OO N0 WG WO VOO DU OONY U0 O U U IO O OO TN N N O B W GO N €
STAT. NO, 4
Al DATA NAME | COMMAND CODE é A ADDRESS B ADDRESS C ADDRESS //

The first card of every program deck must contain a TITLE statement.

the program in later phases of the operation of the Compiler system.

Figure 1. Sample Algebra.i;: Compiler Program

This identifies

The DIMENSION state-

ment is related to the way in which the 10 different values of A are to be handled; the 10

values are made the 10 elements of an array named ""A", and each value of A is then referred

to by a subscript from 1 to 10.

1.

2.

It identifies the name A as being the name of an array of variables rather

than the name of a single variable;

The DIMENSION statement written here does three things:

The 10 in parentheses indicates that there will never be more than 10 ele-
ments in this array;

By the fact of having only one subscript in parentheses (in this case '10"),
it indicates that this is to be a one-dimensional array.

SECTION I. INTRODUCTION TO THE HONEYWELL ALGEBRAIC COMPILER

It is also possible to have two- and three-dimensional arrays. The DIMENSION statement
is called a specification statement; it gives information to the Compiler, but does not itself call

for any operations to be performed. For the latter reason, it is also called a non-executable

statement.

The READ statement calls for the reading of the card containing the 10 values of A. The
15 after the READ is the statement number of a FORMAT statement, which describes how the
information has been punched on the card, and the type of conversion to be applied to the
numbers before storing them in the computer's storage, Since the name "A' appears in a
DIMENSION statement, the Compiler treats it as the name of an array without any further
indication. That is, the statement '"READ 15, A' calls for the entire array to be read in
under control of the FORMAT statement with statement number 15. This FORMAT state-
ment carries the following information:

1. The 10 means that there are 10 numbers, all with the same type of format
and conversion required;

2. The F means that the numbers are punched without an exponent, and are
to be converted to floating binary form before being stored. Floating
point means simply that the numbers are stored in such a way that the
machine can easily keep track of all decimal-point problems, even in a
long computation involving a wide range of number sizes;

3. The 8 means that each number on the card is punched in eight columns;

4, The 5 means that there are five places after the decimal point in the
numbers on the card. It is, in fact, assumed that the numbers are
punched in the form #x.xxxxx, where the x's stand for digits. In such
a case, as we shall see in Section V, the 5 here is not really essential,
but it does no harm.

The DO statement which comes next is one of the most powerful features of the
Algebraic Compiler language; this example is a very incomplete indication of what can be
done with it, The effect of this statement is: ''carry out repeatedly the statements from
here down through the statement with the statement number 21, the first time with I equal
to 1, then with I equal to 2, etc., until the statements have been carried out with I equal
to 10", In this way, we carry out the basic set of operations for each value of the parameter
A, The first value of A is the one referred to by writing A(l); the same number is obtained
by writing A(I), if the variable I is evqual to 1. By always writing A(I) in the arithmetic

statement which comes later, we get that value of A corresponding to the current value of 1.

The WRITE OUTPUT TAPE statement, which follows, writes the heading information

for a page. The information is placed on magnetic tape for later printing. The 3 specifies

SECTION I. INTRODUCTION TO THE HONEYWELL ALGEBRAIC COMPILER

tape unit number -3; the 22 refers to the FORMAT statement to be followed, and A(I) calls

for the writing of whichever one of the A values is determined by the current value of I.

The FORMAT statement begins with a field specification '""H'" for Hollerith, This
calls for the transmission of information directly to the output device from the FORMAT
statement itself, rather than by naming a variable. The particular usage here, i.e., '"1HI1'",
is a special usage of the Hollerith field specification, however. Whenever a FORMAT state-
ment that is used with any output statement begins with a 1H Hollerith specification, the first
character following the H will be interpreted as carriage-control information and not data.
The character 1 appearing here calls for spacing the paper to the head of the next form (or
page) after printing the line. The 2HA= again calls for the transmission of characters from
the FORMAT statement; this time the characters "A="'" go directly into the output for later
printing. Then the field specification F8.5 causes the number referenced by A(I) to be printed
in just the same form as it was read from cards. The 3B causes three blanks to be inserted
into the output, then the character X is written out as a column heading. Thirteen blanks pre-
cede the character Y as a second column heading. The two slashes cause a blank line to be

inserted into the output, between the heading line and the first line of the body of the page.

The next statement is about the simplest possiblesexample of an arithmetic statement;
it causes the value of X to be 0,1. The arithmetic statement which comes next is much more
complex. It begins by requesting the exponential function of the product of the current value
of A(I) and X. The argument of the exponential function (i.e., AX) is enclosed in parentheses.
The exponential function is obtained by writing EXPF, the pre-assigned name for this function,
which is available in the Compiler. The multiplication of A(I) and X is indicated by the asterisk.
The slash specifies division, in this case by A2 + 1. Note that raising to a power, or exponen-
tiation, is indicated by *%, Note also that in order to show that the '"1' is a floating-point
number, it was necessary to write it with a decimal point, The 2 in the exponent is a fixed-
point number, indicated here by the absence of a decimal point. Being fixed point means, in
the Algebraic Compiler, that a number is limited to integer values and zero. Subscripts must
always be fixed-point numbers, and there are also many other uses for them. The names of
fixed-point variables are identified by beginning with the letter I, J, K, L, M, or N; a
variable name may be from one to six characters in length., A floating-point number is

identified by the fact that it begins with any letter but I, J, K, L, M, or N,

With this much introduction, the rest of statement number 23 should be readable. It may
be noted that a floating-point constant may be written with an exponent, which is written fol-

lowing the letter E. When this is done, the decimal point to indicate floating point becomes

SECTION I. INTRODUCTION TO THE HONEYWELL ALGEBRAIC COMPILER

optional. Note finally that a floating-point quantity may be raised to a non-integral power.

The following WRITE OUTPUT TAPE statement puts onto tape the value of X just used
and the value of Y just computed. Its FORMAT statement calls for 14 blanks to be inserted
into the line, then for the first number in the ''list" in the WRITE OUTPUT TAPE statement
to be written out using an F4,1 field specification. X will thus print out in a four-column
field with one place after the decimal point, Y is written out under control of E20.7. The E
means that the number should be written with an exponent, using a total of 20 columns including
blanks if necessary, and with seven places after the decimal point. For instance, the number
-0.00001234567 would print out under control of E20.7 as -0.1234567E-04, which means

-0.1234567+ 10" %%,

The IF statement in effect asks whether X - 2,0 is less than, equal to, or greater than,
zero. Depending on the answer, the next statement executed is 25 or 21. If X - 2.0 is less
than zero, i. e., if X is less than 2.0, statement number 25 is executed next. This state-
ment adds 0.1 to X, and the GO TO statement causes a transfer of control back to statement
23. If X is equal to or greater than 2.0, control transfers to the CONTINUE statement num-
bered 21. This is a dummy statement, used in this case because it is not possible to transfer
directly back to the DO statement, By going to the CONTINUE which was named in the DO
statement as the last one to be carried out repeatedly, the program 'knows'' to go back to

the beginning of the repeated section.

After the repeated statements have been carried out 10 times, as specified in the DO
statement, control will pass to the END FILE statement which will write a signal on tape
that will be recognized by the printer as the end of valid information. The REWIND state-
ment causes the output tape to be rewound. Then the STOP statement causes a short message
to be typed out on the console typewriter, a message which in this case indicates that the jbb
has been completed. The END and FINIS statements are required to properly terminate the

compilation, and have no effect when the compiled program is run.

This short program has indicated some of the major concepts of the Algebraic Compiler
language, without any attempt to be complete. The program uses a total of 15 different types
of statements; the complete language consists of 42 types of statements. Nearly all of the

types of statements used above may be used in a variety of other ways not described above.

With this much background, we may now proceed to a detailed investigation of the com-

plete Algebraic Compiler language.

SECTION 11

GENERAL PROPERTIES OF A HONEYWELL ALGEBRAIC COMPILER SOURCE PROGRAM

An Algebraic Compiler source program consists of a sequence of source statements, of

which there are 42 different types. These statements are described in detail in the sections
which follow, and are summarized in Section IX. A source program is written on coding
sheets like the one shown in Figure 1. The source program is punched on cards, in a manner

described below, and then an object program is compiled from the source program. The

Compiler is itself a large computer program; the object program which it produces from a
source program consists of computer instructions. The instructions of an object program
"instruct'' the computer to carry out operations which will produce the results specified by the
statements of the source program. The instructions of the object program are compiled into
a format which is determined by the characteristics of the Honeywell 800; the object program

is thus said to be expressed in a machine-oriented language. The source program, on the

other hand, is written in a form which much more closely resembles ordinary mathematical

notation, and is said to be expressed in a problem-oriented language.

Each statement of an Algebraic Compiler source program is punched on a separate card
such as the one shown in Figure 2; however, if a statement is too long to fit on one card, it

can be continued on as many as nine continuation cards. The sequence of the source state-

ments is conveyed to the Compiler only by the sequence of the statement cards.

STATEMENT
NUMBER

HONEYWELL 800

— - com»
=N o

222212
33333
414444
55555
66666
N

8888

=Y
~a
w
-
o

— o z-4200

2
3
4
5
6
1
8

ALGEBRAIC COMPILER STATEMENT

poooooo00020
T8 90N 129161506 17181920 20 22 23 24 2526 27 28 29 30 31 12 33 30 35 36 37 38 39 40 41 4743 4445 46 4748 49 50 51 57 53 54 55 56 57 98 9 60 61 62 63 64 65 65 61 68 69 10 11 2
IR R R A R R R R R R R AR R R R R R R R R
22
33
4444444444444 4404444 4444444 444444444404444444444444444444444444444
565555955555555555655555555565555555555555555555555555555555555655
66
1171711771101 7177117101711171171717111111117111771717171717111711171117111171717111711711
§8888888830888088808880880888088380808888888808888888888888880888888888888838

99

nn

9999999999999999999999998998899

9
10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

989999989999

43 44 45 46 47 48 49 50 51 5253 4

999

56 §7 58

9999

81 62 63 64

999 9 99 99999
148 % L] 6 66 67 68

69

9
n

\

00000000
BUBBT N0
IRRRRRRE
22222222
33333333
44444444
555556555
66666666
171111111
88888888

999999

99
nu

nBUBBNN

Figure 2. Algebraic Compiler Card Format

SECTION Il. GENERAL PROPERTIES OF A HONEYWELL ALGEBRAIC COMPILER SOURCE PROGRAM

Cards which contain a "C" in column 1 are not processed by the Compiler program, and
may, therefore, be used to carry comments which will appear when the source program deck
is listed. Statement cards punched with a '"B'' in column 1 are called Boolean statement cards
and are processed somewhat differently from other types of statement cards (see Section III
for a discussion of Boolean statgments). Statement cards with an "A'" punched in column 1 are

called ARGUS statement cards; such statements may be used to carry out certain Honeywell 800

instructions. Thus, it is possible to intersperse machine instructions among ordinary Algebraic

Compiler statements (this subject is discussed in Section III). For all other statements, col-

umn 1 may be left blank or used as part of the statement number field.

Any number less than 32, 768 may be punched in columns 1 through 5 of the first card of a

statement. Such a number is called a statement number, which makes it possible to establish

cross references within a source program, and facilitates the correlation of source and object
programs. A statement number less than five digits in length may be punched anywhere in
columns 1 through 5; leading blanks are equivalent to leading zeros. Thus, the statement num-
ber 15 may be written in any of the following ways, among others:
00015
15
15
15
15
1 5
Statement numbers on cards containing an ""A' or '"B' in column 1 must be four or fewer digits
in length. Anything at all may be punched in a card with a '"C" in column 1 (comment card).

Columns 2 through 5 on such a card are not interpreted as a statement number.

Statement numbers need not be written in any particular sequence, and it is not necessary
to use all numbers within a range of numbers. Thus, the following would be an acceptable se-
quence of statement numbers:

67, 68, 49, 58, 1200, 3, 809
Inbshort, statement numbers may be assigned in any manner whatsoever, as long as no state-
ment number is used twice within one program. It is not necessary for all statements to have

statement numbers.

Column 6 of the initial card of a statement must be left blank or punched with a zero ex-
cept for certain types of statements, such as TITLE and FINIS, which will be mentioned ex-

plicitly later. Continuation cards (which must not have statement numbers) must have column 6

SECTION 1. GENERAL PROPERTIES OF A HONEYWELL ALGEBRAIC COMPILER SOURCE PROGRAM

punched with some character other than zero. One possible method is to number the continua-
tion cards from 1 to 9, but this is not required. Comment cards (punched with a "C'" in column
1) cannot be thought of as having continuation cards. Each comment card must have a '""C'" in
column 1, and column 6 is not interpreted as a continuation column. Continuation cards for
Boolean statements must have both the '"B'" in column 4 and the non-zero punch in column 6.

There can be no continuation card for an ARGUS statement ("A' in column 1).

The statements themselves are punched in columns 7 through 72, on both the first and
continuation cards. Thus, a statement may consist of not more than 660 characters which can
be punched in columns 7 through 72 of 10 cards. A table of the admissable Honeywell 800 char-
acters appears in Appendix A. With the exceptions of the '"blank'' and '""Hollerith' field spec-
ifications in a FORMAT statement (see Section V), blank columns in statement cards are sim-
ply ignored by the Compiler, and may be used freely to improve the readability of the source

program listing.

Columns 73 through 80 of the statement cards are not processed by the Compiler, and

may, if desired, be punched with identifying information.

The 42 types of statements which are available in the Algebraic Compiler system may be
classified as follows: k

1. The arithmetic formula statement which specifies a numerical computation.
(The symbols available for referring to constants, variables, and functions,
and the rules for combining of these into arithmetic formula statements are
discussed in Section III.)

2. The 12 control statements which govern the flow of control in the program.
(These, plus the TITLE, END, and FINIS statements, are discussed in Sec-
tion IV.)

3. The 17 input and output statements which provide for input and output of data

and results. (These, plus the ERASE and BUFFER statements, are dis-
cussed in Section V.)

4, The four subprogram statements which enable the programmer to define and
use subprograms. (These statements and their use are discussed in Section
VI.)

5. The three specification statements which provide certain necessary informa-

tion about the program to the Compiler. (These statements are discussed in
Section VII.)

SECTION Il
CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

The words ''constant' and ''variable' are used in a specialized way in the Algebraic
Compiler. A constant is a number which appears in literal form in a statement. A variable
is any quantity which is given a name, even through it may be used as what would be called a
constant in mathematical language. Thus in the statements:

X=21.7

Y=X+78.2
X and Y are variables, and 21.7 and 78, 2 are constants, It may be that X is never defined

to be anything but 21.7; it is still called a variable.
Constants
Two kinds of constants are permitted: fixed-point and floating-point.

Fixed-Point Constants 1

A fixed-point cgonstant is written as from one to five decimal digits without a decimal
point and without an "E'" which indicates an exponent. It is thus restricted to positive and
negative integer values and zero. A negative constant! is indicated by writing a minus sign
before the constant; a positive constant may be written with or without a plus sign. The value
of a fixed-point constant must be less in absolute value than 2 = 32768. Thus, the following
numbers are acceptable fixed-point constants:

1, +69, -15000, 32767

Floating- Point Constants

A floating-point constant is written as no more than 16 characters with a decimal point
or an "E" to indicate an exponent, or both. A decimal point may be written at the beginning
or at the end, or between any two digits. Negative numbers1 are written with a minus sign;
positive numbers may be written with or without a plus sign. A floating-point number may,
if desired, be written with a decimal exponent which denotes the power of 10 by which the
number is to be multiplied. If this is done, the exponent is written by following the number
with an "E" and then writing the exponent. Negative exponents are written with a minus sign;
positive exponents may be written with or without a plus sign. The value of the floating-point

-717 +76 -64 3
constant must either lie between the approximate limits of 10 and 10 (16 and 16+6)

Although the effect of a negative constant is easily achieved by prefixing the constant with a
minus sign, negative constants as such are not generated by the Compiler.

SECTION 1lI. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

in absolute value, or be zero. Thus, the following are all acceptable floating~point constants:
1., +1., 1.0000000
5000., 5E3, 5.E + 03

234.56, +2.3456E2, 23456.0E - 02
The three constants on each line represent the same number. The following are not acceptable

floating-point constants: 6 (no decimal point or "E'); 12.98 + 2 (no "E"); 1.0 E99 (exponent

too large). Constants must never be written with embedded commas.

Variables and the Names of Variables

There are four kinds of variables in the Algebraic Compiler: fixed-point; fleating-point;
alphanumeric; and Boolean. Fixed-point variables are named in a distinctive way, with the
other three sharing one method of naming. They are named in this manner because in most
problems fixed- and floating-point variables are by far the most heavily used, and because

there is no question of ambiguity among the three that are named the same way.

In order to avoid ambiguity between the naming of variables and functions (see Section VI),

however, it is necessary to follow two rules:

Rule 1. A variable must not be given a name which is the same as the name of a
function without its final F, Thus, since there is a function named SQRTF, SQRT

must not be used as a variable name.
Rule 2. A subscripted variable (see below) must not be given a name ending in F
unless it is less than four characters long. Thus the name DIFF(I, J) would be in

error.,

Fixed-Point Variables

The name of a fixed-point variable is one to six numeric or alphabetic characters (but
no special characters), of which the first is I, J, K, L, M, or N, A fixed-point variable may
44
take on any value less than 2 (approximately equal to 1013) or be zero. For use in sub-

scripts and as indexing parameters (see below), they must be less in absolute value than

15
27" = 32768. Acceptable names of fixed-point variables:

I, JKL, MATRIX, L1200, L1M2N3,
Unacceptable names: J123456 (too many characters); ABC (does not begin with I, J, K, L, M,
or N); 5K (first character not alphabetic); $K23, J23.4 (contain special characters). '

12

SECTION Ill. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

Floating- Point Variables

The name of a floating-point variable is one to six numeric or alphabetic characters (but
no special characters), of which the first is alphabetic but not I, J, K, L, M, or N. A floating-
point variable may take on any value which is permitted as the value of a floating-point constant,
i. e., its absolute value must lie between the approximate limits of 10-77 and 10+76, or be

zero. Examples of acceptable names of floating-point variables:

BVAR, X49T, FRONT, T, R00006, CMATRX.

Unacceptable names: Al123456 (too many characters); TGROSS (first character not alphabetic);
MATRIX (first character one of the excluded letters); *RED, A + B, D23.4 (contain special

characters).

Alphanumeric Variables

Alphanumeric variables are named in the same way as floating-point variables. An

alphanumeric variable itself consists of eight characters, with no restrictions on the characters

used; specifically, 'blank'' is a character. For example, the following are all acceptable

alphanumeric variables, although they are not acceptable names of alphanumeric variables:
12345678

ABC34.90
TODAY IS
SANET %%
$XXKX . XX

It must be emphasized that alphanumeric variables can only be handled in certain special
ways; one obviously cannot do floating-point arithmetic on them, for instance. It must also be
made clear that they are entered into the computer and stored in a manner different from the
handling of any other type of variable. Alphanumeric variables can be entered into the program
by use of an "A'' field specification in a FORMAT statement, or may be defined as an ARGUS
constant, using the "ALF'" pseudo-operation (see ARGUS Manual). Furthermore, an alphanu-
meric variable is stored as the coded six-bit representation of each character in the eight alpha-
numeric character positions of a Honeywell 800 word. The number 12345, 67, for instance, is
stored as the alphanumeric code equivalents of the seven digits and the decimal point (period); it

is not converted to the floating-point equivalent of the quantity represented by the eight characters.

Alphanumeric variables are usually manipulated with ARGUS instructions (see Section III).

Other statements in which alphanumeric variables may be used, with proper planning, are:

1. As arguments in CALL statements;
2. In IF statements;
3. In the list of an input or output statement;

13

SECTION IIl. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

4. In Boolean statements;

5. In statements of the form a = b, where b is the name of an alphanumeric
variable (this will cause the variable to be moved from one location to
another).

The word ''constant' has been defined precisely to mean a number which is written in
literal form and not given a name. With this definition, there is no such thing as an alpha-
numeric constant in the Algebraic Compiler. That is, there is no way to write a combination
of arbitrary characters and have it regarded as a literal alphanumeric value. It would clearly
be impossible to do so, without providing some special mark to set off the literal constant;
otherwise, there would be no way of distinguishing between, for example, DATA as the name
of a floating-point variable and DATA as an alphanumeric constant. This is no real restriction.
It means that every alphanumeric value must be given a name, instead of being used as a literal

in a statement, as with fixed- and floating-point constants.

Boolean Variables

Boolean variables are named in the same manner as floating-point variables. A Boolean
variable consists of the 48 bits of a Honeywell 800 word, a definition which is seen to include
anything that might appear in a word in storage. Boolean variables are ordinarily manipulated
with Boolean statements (see below), but this is partly a matter of interpretation. Since any
variable can in a certain sense be regarded as a Boolean variable, presumably any Algebraic
Compiler statement can be regarded as having the ability to operate on Boolean variables. As
will be seen in the discussion of Boolean statements, however, what is ordinarily meant in
speaking of a Boolean variable is that it is involved in a Boolean statement, so that for practical

purposes we may say that Boolean variables are only operated on by Boolean statements.

Numbers to be used as Boolean variables may be entered as input by use of the "O" field
specification in a FORMAT statement, or as octal numbers with the ARGUS "OCT" pseudo-
operation. When the former is used, particular attention must be paid to the handling of the
sign bits of the Honeywell 800 word, as discussed under the ""O'' field specification in a

FORMAT statement (see Section V).

With the same qualifications as stated for an alphanumeric variable, there is no such

thing as a Boolean constant in the Algebraic Compiler.

Subscripted Variables

It is often necessary or convenient to deal with one-, two-, or three-dimensional arrays.

A one-dimensional array corresponds to a vector and a two-dimensional array to a matrix, but

14

SECTION I1l. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

there are also many circumstances in which arrays are convenient other than in working with
vectors and matrices. Individual elements in arrays are referred to by using subscripted vari-
ables, which have the name of fixed- or floating-point variables (whichever applies) followed

by parentheses enclosing the one, two, or three subscripts. These are separated by commas
if there is more than one. A subscript is a fixed-point quantity, the value of which determines
the element in the array to which reference is made. For example, in working with an array
named COST, the second element in the third row could be referred to by COST(3, 2). This

is an example in which both subscripts are fixed-point constants. A subscript can be expressed
in any of the following forms:

A fixed-point constant;

A fixed-point variable;

A fixed-point variable plus or minus a fixed-point constant;

A fixed-point constant times a fixed-point variable;

O W W N -

A fixed-point constant times a fixed-point variable, plus or minus a
fixed-point constant,

If ADATA is the name of a three-dimensional array, the following are examples of

acceptable subscripts:

ADATA(5, I, J + 2)
ADATA(2 #* K, J - 4, 3 %1+ 8)
The following are examples of unacceptable subscripts:

ADATA(2.0, I *J, K * 2) (2.0 is a floating-point constant. The product
of two fixed-point variables such as I * J is not
permitted. Should be 2 * K, not K * 2.)

ADATA(+ M, I+ K, B) (Should be M + 5, not 5 + M. The sum of two
fixed-point variables is not permitted. B is
a floating-point variable and may not be used
as a subscript.)

ADATA(+2, -N, +J + 9) (Leading signs are not permitted.)

A variable in a subscript must not itself be subscripted. A variable which appears in
subscripted form must appear in a DIMENSION statement to specify to the Compiler the
number of dimensions in the array and the maximum value of each subscript. A subscript
variable must always be written with the same number of subscripts as in its DIMENSION
statement. (See Section VII for a complete description of the DIMENSION statement.) The
value of a subscript must be greater than zero, since there is no zeroth element. The first
element of an array is the one corresponding to the subscripts (1) or (1, 1) or (1, 1, 1).
Furthermore, the value of a subscript must not be greater than the corresponding maximum

size given in the DIMENSION statement.

SECTION 11l. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

For instance, in ADATA(I + 3, 2 * K, K - 8), I may be less than or equal to 1 as long as
I+ 3 exceeds zero; 2 * K must not exceed the maximum size for the second subscript; K may

exceed the maximum size given for the third subscript as long as K - 8 does not.

An array is stored with the element corresponding to the subscript (1), (1, 1), or (1, 1, 1)
in the lowest-numbered location and the other elements in consecutive ascending locations. Two-
and three-dimensional arrays are stored in consecutive locations in such a way that their first
subscript (from the left) varies most rapidly and their last subscript varies least rapidly. For
instance, a 2 x 2 x 3 array with the name A would be stored, with the first element in the lowest-
numbered location, as follows:

A1, 1, 1), A2, 1, 1), A(L, 2, 1), A(2, 2, 1),

A1, 1, 2), A(2, 1, 2), A1, 2, 2), A(2, 2, 2),

A1, 1, 3), A(2, 1, 3), A(1, 2, 3), A(2, 2, 3).

Expressions

The word expression is used in a special sense in the Algebraic Compiler to indicate any
of a variety of allowable combinations of constants, variables, and functions. Every expression
is either of the fixed-point or the floating-point mode, depending on whether the value of the
expression is a fixed-point or floating-point number. (See Section VI for a discussion of func-
tions,) Repeated application of the following set of rules will lead to any permissible expression,
with the exception of Boolean expressions which are discussed separately. Several of these

rules relate to the mode of an expression.

Rule 1. Any fixed-point or floating-point constant, variable, or subscripted variable,

is itself considered to be an expression.

Therefore, when it is stated below that the right-hand side of an arithmetic
statement may be any expression, single constants and variables are included.

Thus, the following are all expressions:

A, 789, 34,987E - 4, DATA(7, 3, 1), VECT(K).

Rule 2. There are a limited number of cases in which it is permissible to have
expressions of mixed mode, i. e., containing both fixed- and floating-point
quantities:

1. A floating-point quantity can appear in a fixed-point expression
only as an argument of a function;

2. A fixed-point quantity can appear in a floating-point expression
only as an argument of -a function, or as an exponent, or as a subscript.

16

SECTION Iil. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

Thus, the following are all expressions:

XINTF(A), FLOATF(NODE), A %% 2, CROSS ** N, VOLTS(8), WATTS(I, J, K).

The character combination ** is used to denote exponentiation. XINTF(A) is the
name of a defined function with a floating-point argument whose value is to be fixed
point (see Section VI), while FLOATF(NODE) is the name of a defined function with

a fixed-point argument whose value is to be a floating-point quantity.

Rule 3. A function is an expression, if expressions of the correct modes are
specified as its arguments, The mode of the function considered as an expres-
sion is the same as the mode of the value determined by the function. Examples:

ABSF(X), XABSF(I), SINF(THETA). (See Figure 6)

Rule 4. If E is any expression, and if its first character is not + or -, then
+E and -E are expressions of the same mode as E. Examples:

+TEMP, -1, -78, +64,77, -CURR #*%* 2,

Rule 5. If E is any expression, then (E) is an expression of the same mode
as E, Thus, the following are all expressions:

(RHO), ((RHO)), (((RHO))), (+9.0).
This rule is used to group expressions as in normal mathematical practice,

and is demonstrated in the second example under Rule 6.

Rule 6. If E and F are any expressions of the same mode, and if the first
character of F is not + or -, then the following are all expressions of the
same mode as E and F:

E+F

E-F

E=xF

E/F
The characters +, -, *, and / are used to denote addition, subtraction,
multiplication, and division, respectively. As in ordinary algebra, we
must distinguish between + used to denote addition and + used to denote
a positive number (similarly with the - sign), The usual algebraic rules
hold; e.g., E + (-F) and E - (+F) are equivalent, but because of Rule 4, the
parentheses are essential. Parentheses are used in arithmetic expres-

sions very much as in ordinary algebra. For instance, A - B + C and

17

SECTION Ill. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

A - (B + C) are both legitimate expressions, but they do not mean the same thing
because of Rule 5. Parentheses never replace the * required to indicate multi-
plication. Examples:

I+2, X-Y, AVAL / 2.0, B * C, RHO + SIGMA - TAU,

2.0 % (U + V), SQRTF(AREA) / 2.0, 2*K -6, (M *N) / 2

Rule 7. If E and F are expressions, if F is a floating-point expression only
if E is, if neither E nor F is of the form A %% B, and if the first character
of F is not + or -, then E ** F is an expression of the same mode as E.

The character combination %% is used to denote exponentiation, Examples:

A ¥k 3,5, X #%Y, 6 %(I - 2), (X -Y) * XABSF(KK -LL).

The following examples all violate some one or more of the rules: ‘
A+ M This is a mixed expression (Rule 2).

Ik 1,5 A fixed-point number cannot be raised to
a floating-point power (Rule 7).

-+A+ B Violates Rule 4. Must be written as -(+A) + B.

A %k B %% C Violates Rule 7. Must be written as A *% (B %% C)
or (A *% B) %% C, whichever is intended.

X% -Y Violates Rule 6, which states implicitly that two
operation symbols must not be written consecutively.
Rewrite as X * (-Y) or -X * Y.

SQRTF(I + J) Violates Rule 3. This (see Figure 6) function
requires a floating-point argument.

Hierarchy of Operations

Expressions often arise which would be ambiguous in the absence of some rules to

define the order in which operations are performed. For instance, does A / B * C mean

A
B e ? (As seen in the following rules, the former would be the meaning.)
Three rules govern such situations.

é-Cdr

Rule 1. Parentheses override everything else. If the expression A * (B + C) +

D/ (E * F) is written, then the meaning is A - (B + C) +

D
T regardless of the
two rules below.

Rule 2. In the absence of parentheses, the hierarchy of operations is:

1. Exponentiation;
2. Multiplication and division;
3. Addition and subtraction.

18

SECTION I1l. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

In other words, in the absence of parentheses, all exponentiations are performed
first, then all multiplications and divisions, then all additions and subtractions.
Thus, the following two expressions are equivalent:

1. A*B+C/D-E*F

2. (A % B) + (C/ D) ~ (E #*kx F)

Rule 3. Expressions in which parentheses are omitted from a sequence of con-
secutive additions and subtractions, or a sequence of consecutive multiplications
and divisions, are treated as though there were parentheses grouped from the
left. With multiplication and division this rule avoids what is considered to be
an ambiguity in mathematics. In the example cited above, A / B * C denotes

(A/ B)- C.
Another example, A* B / C/ D * E * F would mean (({(((A * B) / C) / D) * E) * F),
which could also be rewritten as (A * B * E * F) / (C * D), It is a good procedure to

put in extra parentheses when in doubt.

Arithmetic Statements

An arithmetic statement is of the general form a = b, where a is a subscripted or non-
subscripted variable, and b is an expression. A constant must never be written on the left-
hand side of an arithmetic statement. An arithmetic statement closely resembles a con-
ventional algebraic formula. The important difference is that the = sign is not used here
in the sense of ''is equivalent to', but rather is used to mean ''the value defined by the

expression b replaces the previous value of a''. Examples of arithmetic statements:

ALGEBRAIC COMPILER STATEMENT

e LTI L T T T T T) wrirteNsy CHECKED BY DATE —— _ PAGE ___OF—
8 ek

Cnumserf] ALGEBRAIC COMPILER STATEMENT

! ':’ I 23 38 52 86 72§ 80

L AN § T T T rrrrrrr rryrrJyrrrrrrirrrryvrrrrfyrrrrrrrrrrrrrrrrrrrrrrryyrrrrrgrrrrrrda

A =1]/.0

JINDIEX = 2
X = [71z.8y * (2-2|.))%x%2
ROOT|l = (—BtSQRRT|FI(B%X%2 ~4.%A%)|)/ (2 . %xA)
’ APATIA() Z,4)=BPATIA(2,2,2)

sl] I=1I41 A ' L _—

The last statement, which in itself is a mathematical inaccuracy, is a perfectly legitimate
illustration of the specialized usage of the = sign in the arithmetic statement. This example

indicates that the value of the fixed-point variable is replaced by the value I + 1.

19

SECTION Ill. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

The result of a calculation defined by an arithmetic statement will be in floating-point form
if the variable on the left-hand side of the = sign is named as a floating-point variable and is
in fixed-point form if the variable on the left is named as a fixed-point variable. If the variable
on the left is named as a floating-point variable and the expression on the right is fixed point,
the result is first computed using fixed-point arithmetic, and then convexrted to floating-point
form. If the variable on the left is named as a fixed-point variable and the expression on the
right is floating point, the result is first computed using floating-point arithmetic, then trunca-
ted and converted to a fixed-point integer. Truncate, as used here, means to discard any
fractional part of the result without rounding. Thus, the statements:

I=1.6 * 3.

would give 4 for the value of I, not 5. The statement:
J=28./3.

would give 2 for the value of J, not 3.

The following examples illustrate how arithmetic statements can be written and used.

Given two points in a plane represented by the Cartesian coordinates (X1, Y1) and
(X2, Y2), the distance D between the two points is given by:
p=\(x2 - x1)% + (Y2 - Y1)

which can be written as:
2 2.1
D=((X2 - X1)" +(Y2-Y1)")=

then the following arithmetic statement would result in the computation of D:

ALGEBRAIC COMPILER STATEMENT

Te LT T T T T T 1] wriTten sy CHECKED BY DATE PAGE —_ OF —
Al STATE. §
3 MENT
c NUMBERT ALGEBRAIC COMPILER STATEMENT

N
1 6 1l 23 38 52 8 72 80

T vy T TYTrrevrrrrrr rrrrrrrrrror1rrry Trrrrirryrrryrry ||k‘l|l|||||lll||||| TFTT v
D = [((x2-X1)%%2 |H (YZ-Y1)4%2)%%0.5
—L S———

All of the parentheses here are essential.

The area of a triangle, whose sides are of length A, B, and C, is given by:
AREA = \[S(S - A) (S - B) (S - C)
where:

S=%(A+B+C).

20

SECTION JIl. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

The area would be computed by the following two statements:

ALGEBRAIC COMPILER STATEMENT

e (L T I TP T T wroven®Yy_____ CHECKEDBY __ DATE.e— PAGE__OF—
Al STATE- [o
o Nﬁmk? ALGEBRAIC COMPILER STATEMENT
1 ’:, M 23 38 52 86 72“ 80
| T 'S'='o'.l5¥¥l(lAll+lB'*Ilc'llllllllllllllllllllll Trvrrryirrrrrrryvyryever T LR L
2 ARED = (S%(5-ANH(S-B)R(5-C))Y%¥H0.5
—— [S —

The scalar product of two vectors with components (Xl’ X5 x3) and (yl, Y, y3) is

defined to be x + x +x Given the two one-dimensional arrays with names XVECT

171 7 ¥V T FY
and YVECT, one way to compute the scalar product, which we shall call SCPROD, would

be through the use of the following statement:

ALGEBRAIC COMPILER STATEMENT

Tmel L T I TTTT] weweney____ CHECKEDBY ____ DATE——___ PAGE — OF—
b e e
CINUMBERY] ALGEBRAIC COMPILER STATEMENT
! & 1l 23 38 52 64 7zJ 80
L llscpRlor = xvect (IDRYVECT(1) + XMECT(Z)KYVECT(Z) + XVECT(3)kvecT(3)]
B —

Another way to accomplish the same end will illustrate the use of subscripts, although
in this case it would be more trouble than the method shown above. The value of SCPROD
is first set to zero, and then the scalar product is accumulated in SCPROD, one product at

a time, SCPROD does not contain the complete scalar product until the program has been

completed.
ALGEBRAIC COMPILER STATEMENT
e LT T T T T T) wroteney____ CHECKEDBY ____________ DATE PAGE __ OF ——
e
ShEnr p ALGEBRAIC COMPILER STATEMENT
i : H 23 38 52 66 80
T s‘crpzo'ovl;ﬁ(—)v.loll‘l T Tt T rrTrtrrrrrrrrrrrr1r 3y r[rrrrrrrrrrrrry vttty rfrerrrrrr
=/
3 SCPRIOD = SCPROD |+ XYVECT (I)¥YVECT(I)
4 I:Z
5 SCPRIOD = SCPROD [t XVECT (I)%Y VEC|T(T)
6 =3
7 SCPRIOP = SCPROD |H XYVECT(Z)RYVECT (L)

21

SECTION Ill. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

It should be noted that three of the statements above are exactly the same, with the value of
the subscript being the only thing that changes. This method, although it will work, is unneces-
sarily cumbersome. Section IV specifies the use of a DO loop to carry out this computation in a

parallel but simpler manner.

Integer Arithmetic

Arithmetic statements involving computation on fixed-point quantities are carried out
using integer arithmetic. The important consideration here is that if a division produces a
result which is not an integer, the fractional part is not rounded but truncated (dropped). Thus,
the floating-point division 8. / 3. would give 2,666.... , but the fixed-point division 8 / 3

would give 2, the largest integer not greater than 8 / 3.

Integer arithmetic may produce a result which is greater than 32768, but it must be
less than or equal to 244, which is approximately 1013. If an integer equal to or larger
than 32768 is used as a subscript or as an indexing parameter in a DO statement, only the
rightmost 15 bits will be used, i. e., it will be reduced modulo 215. On output, all 44 bits

(and sign) can be written out.

Boolean Statements

Sometimes it is desirable to use Boolean algebra, either to perform logical operations
or, in certain circumstances, to obtain the effect of masking by using appropriate Boolean
operations. Wherever the operations are defined, it is possible to- specify Boolean algebra
by placing a "B'" in column 1. This procedure may be followed in ordinary arithmetic state-

ments, IF statements, in function definitions, and with the arguments of a CALL statement,

The elements on which Boolean operations are performed must have the names of floating-
point variables, i. e., the names do not begin with I, J, K, L, M, or N. Boolean operations
on literal constants are excluded. The variables may have been defined by any convenient

method, including definition by an "O" format or as an ARGUS constant.

Four Boolean operations are provided in the Compiler. Logical addition, indicated by +,
is the inclusive OR function. Each of the 48 bit positions of the two words is treated separately;
in each position, the logical sum is 1 if either or both bits are 1, and zero only if both are
zero. As an example:

OR 001114114000
101040410104
101144441014

22

SECTION Ill. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

Logical multiplication, indicated by *, is the AND function. In each bit position, the
result is 1 if and only if both bits in the corresponding position in the two words are 1. As

an example:

AND 00111144000
10101010104
00401040000

The exclusive OR function of two variables is specified in the Compiler by the use of the
Boolean function EXCLORF, The two arguments of the function must be stated. The result
in each bit position is 1 if either bit in the corresponding position in the two words is 1, and
zero if both are zero or if both are 1. As an example:

Exclusive OR 00111111000
10101010101
10010101101

Complementation, indicated by -, applies to one variable or expression. In each bit
position, a 1 is replaced by zero and zero by 1. Complementation must not be confused in
any way with subtraction. Subtraction and division are not defined in Boolean algebra, and
cannot be. An expression such as A + (-B) ('form the logical sum of A and the complement
of B'") is correct but A - B is not because it attempts to apply complementation as though it

were a relationship or operation involving two expressions, which it is not.

It should be made clear that the Boolean operations may be applied to expressions
involving many variables, but enough parentheses must be used to avoid ambiguity, especially
with complementation. Thus the expressions A + (-B) + Cand A + (- (B + C)) are both legiti-
mate, although they do not mean the same thing. One further example of an acceptable Boolean
expression is:

-{{A+ B) * (C + D))

If a statement is specified as Boolean, the specification will be applied to all the algebra
in a statement. There is no way at all of mixing Boolean and '"ordinary' algebra in one state-
ment. This perhaps might most easily be overlooked in the use of Boolean algebra on the
arguments of a CALL statement. Usage of Boolean algebra is permissible in a CALL state-
ment, but only if one wishes all the algebra in the CALL to be Boolean. Note in this connec-
tion, however, that one might have a situation where it is convenient to specify Boolean algebra
on the CALL arguments although none or only part of the algebra in the subroutine involved is
Boolean. In short, each statement stands by itself. All the algebra within one statement must

be one type or the other.

23

SECTION IIl. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

To give some indication of how these operations might be used, consider the following
example. Suppose that a routine is being programmed to operate efficiently on sparse square
matrices having elements aij' i. e,, consisting mostly of zeros, of up te order 48. It has
been decided to set up 48 control words in a one-dimensional array called CNTRL which will
specify which of the elements are non-zero, according to the following scheme. If the a

11
element of the matrix is non-zero, bit 1 (the leftmost bit of CNTRI(1)) is to be a 1; if the a

element is non-zero, bit 2 of CNTRL(1) is to be 1; and similarly for the other bits on the fiiit
control word and the elements of the first row. The elements of the second row are described
by the bits of CNTRL(2), etc. Stated concisely, bit J of CNTRL(I) is a 1 if the aij element is
non-zeéro and zero if it is zero. Now if the convention is adopted that the elements are stored
in column order, it is only necessary to store the non-zero elements and the control words,

instead of storing the entire matrix. The latter scheme, under the sparseness hypothesis,

would involve much wasted tape and core space.

Suppose now that all this has been done, and that it is necessary to know if any elements
in the first column are non-zero. This requires inspecting bit 1 of as many control words as
the order of the matrix, which we will call N; if any one or more of these bits is 1, then we
wish to take a different path through the computation than if they are all zero. Suppose now
that there is in storage a word called BIT1, which consists of a 1 in bit 1 and zeros in all
other bit positions. The following Compiler program will jump to statement 100 in the all-

zero case and to 200 if there are any non-zero elements.

ALGEBRAIC COMPILER STATEMENT

e LT T T TTT] wrTreNBY____ CHECKED BY DATE PAGE — — OF — .
8 e
RN | ALGEBRAIC COMPILER STATEMENT
N
i 3 I 23 38 52 1] ¥4 | 80
| T T rrrrrrYTrTo T Trirrrrrrvrr rvyrryrrrrrrrrryrrrrrrrrrrryrryjyrryryryrrrrrord
B TEST| = EXCLORF(BI|Tt, BIT1)

3 Do o I =1 N

518l 20| |[1EsT| = TEsST + cNTRL (1)

2009

78 IF [(TEsST % BIT(|) 200, 100

2.
o

The first statement simply clears to 48 zeros the temporary storage location TEST., The
result might be called a ""Boolean zero', in distinction to an ordinary plus zero which has ones

in the sign bits. The DO loop is to be executed once for each control word, i. e., N times.

24

SECTION I1l. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

Statement 20, which is indicated as a Boolean statement, forms the logical sum of the bits in
each position of all of the control words. The (Boolean) IF statement forms the logical product
of the result of the DO loop and the mask, which is a word that has been set up to be all zeros
except in bit 1, The IF statement then asks, in effect, whether or not the result of this is zero.

By making the IF a Boolean statement, we specify a test for a word of 48 zero bits,

ARGUS Statements

It is expected that most problems on which the Algebraic Compiler is used can be satis-
factorily solved using only the various statements of the Compiler language, but there will
undoubtedly be some tasks which can be handled more easily or simply using a mixture of
Compiler statements and ARGUS instructions. This flexibility is permitted in the Algebraic
Compiler system, which allows one to intersperse instructions written in the ARGUS language
among ordinary Compiler statements. The ARGUS instructions may be written on the Compiler
coding form as desired in the compiled program, by placing an '""A' in column 41 of the state-

ment line of the Compiler coding form (see Figure 3).

The rest of the ARGUS instruction format is:
Columns 2 - 5: Statement Number or Blank
Columns 11 - 22: Operation Code

Columns 24 - 37: A Address

Columns 38 - 51: B Address

Columns 52 - 65: C Address

The discussion which follows assumes a rudimentary knowledge of the ARGUS system.

The allowable types of addresses used in ARGUS statements are limited to names of
floating-point variables, ARGUS constants, literal floating-point constants without a sign,

statement numbers or binary counts according to the following table:

Type of Operation - A Address B Address C Address
Arithmetic (floating binary) General General Variable

Logical Symbol Symbol Variable
Comparison General General Statement Number
TS General or Variable or Statement Number

Inactive Inactive

TX General Variable

Shift Symbol Binary Count Variable

Print General Inactive Statement Number

or Inactive

25

SECTION 11, CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

The result location may be general in all cases and the compiler will allow it, but it is advis-
able that the above rules be followed. In the above table the following definitions apply:
Variable - name of a floating-point variable.

General - includes name of floating-point variable and ARGUS constant and
literal floating- point constants.

Symbol - includes name of floating-point variable and ARGUS constant.

The portions of the ARGUS vocabulary which may be used include the three ARGUS
constant pseudo-instructions ALF, OCT, and FLBIN, with the restriction that these must
appear with only one entry per statement line. In addition to these data entry instructions,
the Algebraic Compiler permits the use of:

BA Binary Add

BS Binary Subtract

BM Binary Multiply

BD Binary Divide

WA Word Add

WD Word Difference

HA Half Add

SM Superimpose

SS Substitute

EX Extract

TX Transfer

TS Transfer and Sequence Change

NN Inequality Comparison, Numeric

NA Inequality Comparison, Alphabetic

LN Less Than or Equal Comparison, Numeric

LA Less Than or Equal Comparison, Alphabetic

SPS Shift Preserving Sign and Substitute

SPE Shift Preserving Sign

SWS Shift Word and Substitute

SWE Shift Word and Extract

PRA Print Alpha

PRD Print Decimal

PRO Print Octal

FBA Floating Binary Add

FBS Floating Binary Subtract

FBM Floating Binary Multiply

FBD Floating Binary Divide

26

SECTION Ill. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

FLN Normalized Less Than Comparison
FFN Fixed to Floating Normalize
FNN Floating Inequality Comparison
All other ARGUS instructions are specifically excluded from the set of permissible instructions

in the Algebraic compiler.

Further, ARGUS instructions may not use the cosequence mode, simulator instructions,

or masking. No Compiler functions may be addressed.

The following example may help to clarify the use of the interspersed ARGUS instructions
in the Algebraic Compiler. Assume that a part of the input to a problem is a list of eight-letter
names which are to be printed out in alphabetic sequence; associated with each of them is a
four-digit fixed-point number. Assume further that the names and the numbers have already
been read in, and are stored as arrays in ABC(I) and NUMB(I), respectively. The task is to
sort the two arrays into sequence on the alphabetical contents of the first array, and then print
out on the typewriter vthe first name in alphabetic sequence and the corresponding number. This

number is to be printed in octal. The size of the array is given by the fixed-point variable "NO',

The first problem is that the Compiler was not intended to handle such things as sorting
alphabetiés. One solution is to employ ARGUS statements and use the LA instruction for making
the required comparisons. The second problem is how to do the sorting. The method used here
is not necessarily the best in all cases, but it will be adequate; selection sorting. With this
method, a comparison is made between first and second, first and third, etc., and finally the
first and Nth words, exchanging each pair that is out of sequence; this "'selects'' the smallest
word in the list and moves it to the top. The process is repeated on the second and third,
second and fourth, ‘etc. , and finally the second and Nth, to get the next larger word, etc., etc.,
until finally a comparison and exchange, if necessary, is made between the (N - 1)st and

Nth words.

Each time an exchange is necessary, not only the names, but also the numbers must be
exchanged. The exchanging of the names may be done either in Compiler terms or in ARGUS,
since they look like floating-point variables, but the exchanging of the numbers will have to
be done in Compiler terms since they are fixed point. An alternative method would be to con-
vert to floating point beforehand, but this clearly would not be worth the effort. In carrying
out the exchanging, two temporary locations are needed. These will be called TEMP and
NTEMP; there must be two because of working with both floating and fixed variables. The

program could be as shown in Figure 3.

27

SECTION I11l. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

The first three statements are required to define the symbols used and to allocate

memory locations to them. NMI and IP1 had to be set up because the only expressions that

may be used in a DO statement are fixed-point variables or constants.

The first ARGUS

statement makes an alphabetic less-or-equal comparison between two names in the array,

and jumps around the interchange if they are already in sequence.

out the sequence of tests and interchanges described above.

print the smallest name and the corresponding number,

The two print instructions

The two DO loops carry

The use of ARGUS arithmetic statements is not illustrated here since their use should

be relatively straightforward to anyone with a basic understanding of ARGUS. A situation

where the interspersing of ARGUS statements may be quite useful is in operating on "packed"

words, i. e., words containing more than one quantity, as is frequently done in tape operations

in data processing.

counterpart in the Algebraic Compiler language itself, would then be required.

ALGEBRAIC COMPILER STATEMENT

e L L T 1

I T T} wriTTen sy

The direct use of the shift instructions, which of course has no direct

CHECKED BY DATE PAGE —_ OF —
) STets ; ALGEBRAIC COMPILER STATEMENT
CInumser]]
| Z " 23 38 52 66 72 80
LI T YT YT T T T i rrrrrrrrrrryrrryrrrrryrryrrryrryrrrrrrrrryrrrryyyrryrgrrrrrrrty
YITITLE soRT
2 DIMENSION ABc(1000]) . NUMB(/00)
3 TEMP = 0,0
4 NTEMP = 0
5 wM! = NO - |
6 bo 2o I =1, w1
7 P 1= I ¢+ 1
sl , po |20 v = IpPt1, INO
s (Al LA 48c(I) ABCc(J) zo0
10 (4] X A8c(1) TEMP
nia X ABCLJ) A8c (1)
124 T TEMP agc(J)
13 NTEMP = NuMB(I)
14 NUMB(I) = NUMB(J))
15 NUMB[(J) = NTEMP
16120 CONT|INUE
7 Al PR A ABe(1) N _
18 PRO NUMB (/) - -
wl! STOP
20 il E|N|D|.|.||.|.||| TUON T TN N U YN WO NN WO YU WO N (N UNSY WO W TN N SN TN WY WO TN NN TN NN N A PO TN N TN T T O O O B B O ¥
STAT. NQ|| 4
A DATA NAME | COMMAND cope & A ADDRESS B ADDRESS C ADDRESS ? Z

28

Figure 3. Alphabetic Sort Example

SECTION IV
CONTROL STATEMENTS

In any meaningful problem to be carried out using the Algebraic Compiler, it may be
necessary to alter the flow of control of the statements from the one-after-the-other sequence
which is followed in the absence of any control statements. Often there are alternative parts
of the program which must be executed, depending on the data. Frequently there are sections
of the program which must be repeated, either to operate successively on new sets of data or
to carry out some iterative process. The Algebraic Compiler provides a number of state-

ments for handling such situations.

In setting up any program, it is necessary to observe the following rules, which are to

some extent self-evident, but which can lead to serious difficulties if not observed.

Rule 1. Every program must terminate on a STOP or PAUSE statement. This does not
mean that a STOP or PAUSE must be the last statement physically (indeed this is im-
possible since END must be the last statement of every program), but that every pro-

gram must be able to reach a STOP or PAUSE when the computation is completed.

Rule 2. Some path of control must be able to reach every executable statement in a
program. This does not mean that every statement must be executed each time a given
program is run, but that there must not be any executable statements which could never

be executed under any circumstances.

Rule 3. All transfers of control must be to executable statements, never to FORMAT,

DIMENSION, EQUIVALENCE, COMMON, END, or ARGUS data entry constants.

Unconditional GO TO Statement GO TOn

This statement is used when it is desired simply to break out of the sequential execution
of statements without making the transfer of control conditional. Control is unconditionally

transferred to the statement with the statement number n.

Computed GO TO Statement GO TO (ni, Dy ooy nm), i

This statement is used when it is desired to transfer control to one of a number of state-

ments, depending on the current value of some fixed-point variable. In this statement, i must

29

SECTION IV. CONTROL STATEMENTS

be a non-subscripted fixed-point variable, and n,n n_ must be statement numbers.

PURERD
If the value of the variable i at the time this statement is executed is j, then control is trans-
ferred to the statement with the statement number nj. The value of the fixed-point variable i
must be in the range of 1 to m. If the value of the fixed-point variable i is incorrectly given

as zero, the object program will stop after giving an error indication; if it is greater than m,

unpredicted incorrect results will occur and there will be no error stop.

For example, suppose that one of four computations should be carried out on some input
data, depending on whether an input number N is 1, 2, 3, or 4. If N is 1, we wish to transfer
control to a program beginning with statement 123, if it is 2 to statement 600, if it is 3 to 507,
and if it is 4 to 1280. Suppose now that the data, including N, has been read in and the pro-
gram is ready to transfer to the correct program. The following statement will have the de-
sired effect:

GO TO (123, 600, 507, 1280), N
This method, although simple, has its risks in the case described, for N could be mispunched
to be greater than 4. It is possible to do the same thing, but with verification of the accuracy

of N, using the IF statement described below.

n
2’ 73
This statement is used when a transfer of control is to be conditional, depending on

IF Statement IF (e) n1, n

whether an expression is less than zero, equal to zero, or greater than zero. In the IF state-

ment, e is an expression and n , nz, n3 are statement numbers. Control is transferred to the

1
statement with the statement number n,, n_, or n,, depending on whether the value of the ex-

2
pression e is less than zero, equal to zt:ro, or greater than zero, respectively. To illustrate
one way to use the IF statement, the previous example may be reworked to include a test to be
sure that N is indeed in the range of 1 to 4. Suppose that a program has been written to handle
the situation of an invalid value of N and that the first statement of the error-handling pro-

gram has statement number 20000. The following three statements will test the value of N for

validity and transfer to the correct program if it is valid:

ALGEBRAIC COMPILER STATEMENT

el L § TP T T 0] wrten sy CHECKED BY DATE PAGE — OF —

>

ALGEBRAIC COMPILER STATEMENT

(o] 4

1 23 38 52 66 72 80

LA B B B B B I Trrrrrrrrerrrrrrrrrfyfrrrrrrrrrryrrrr{rrrryrryryrryrrrqrqgrrrrorvd

1F (M) 20000, z0dolo, 100

100] |[IF(N|=5) 101, 200l0lo, 20000

10t]160 1lo (123, 600,| |507, 1280), N

30.

SECTION IV. CONTROL STATEMENTS

If N is less than or equal to zero, or greater than or equal to 5, control is transferred to the

error program at 20000. Another way to do the same thing would involve only the use of IF

statements:

ALGEBRAIC COMPILER STATEMENT

eI T T T TT11] WRITTEN BY

CHECKED BY _________ DATE PAGE —_ OF ——

';"I SJQE— :é‘ ALGEBRAIC COMPILER STATEMENT

CINumBER)] J

| ’2 1 23 . 38 52 66 7. 80
LI NPRAIAN RN Ty rTrTreT rervrirrrevrveetd Trrrrrrirrrrred AN L Trrt1T 01

IF(M-1) 20000, 1i2i3, 100

100 [1£(A-2) 20000, 6ldo, 101
10/ {IF(N|-3) 20000, 5l017, 102

, 102| \IF(N-4) 20000, (|2|l80, 20000

Control could never get to the second, third, or fourth IF statement if N were less than 1, so

that there is really no need for the 'less than zero' path on the IF statements after the first.

However, there is no way to avoid writing statement numbers for all three paths even though

one of them might never be followed. The choice of statement number of the error program

has no significance.

Assigned GO TO Statement

GO TO n, (n1, n

URERE nm)

This statement, together with the ASSIGN statement, provides another way to effect a

transfer of control, usually, at some point later in the program than when the ''decision' is

made. In this statement, n must be a non-subscripted fixed-point variable which appears in a

previously executed ASSIGN statement, and n,, n_,

..., n must be statement numbers.
1 2 m

Control is transferred to the statement having for its statement number whichever one of the

values D, Ny, oews B Was most recently assigned to n by an ASSIGN statement.

ASSIGN Statement

ASSIGN ni ton

In this statement, n must be a non-subscripted fixed-point variable which appears in an

assigned GO TO statement, and ni must be one of the statement numbers appearing in paren-

theses in the same assigned GO TO. When the assigned GO TO is next executed, control is

transferred to the statement with the statement number n,, unless another applicable ASSIGN

statement intervenes.

It is important not to confuse the assigned GO TO with the computed GO TO, and, in

particular, to understand that what the ASSIGN statement does for the assigned GO TO cannot

be done any other way. For instance, the following two statements are not equivalent:

31

SECTION IV. CONTROL STATEMENTS

1. ASSIGN 208 TO N

2. N = 208 in connection with the statement:
GO TO N, (106, 208, 200).

However, the following two programs are equivalent:

1. ASSIGN 208 TO N
GO TO N, (106, 208, 200)

2. N=2
GO TO (106, 208, 200), N.

IF PARITY Statement IF PARITY n,, n,
This statement may be used to alter the course of a computation upon detection of an un-
correctable parity error on a magnetic tape. In the statement, n'1 and n, must be statement
numbers. If there was a parity error detected during the execution of the preceding input or
output statement and the orthotronic routines were not able to correct it, the statement With
the statement number n, is executed next; if there was no error or if it was corrected, the
statement with the statement number n, is executed next. The IF PARITY statement may
optionally follow any of the statements READ TAPE, WRITE TAPE, READ INPUT TAPE, or
WRITE OUTPUT TAPE; if so, it must be the next executable statement. If the statements IF
PARITY and IF END OF FILE are both used, the IF PARITY must be first., If an uncorrect-
able error is detected and there is no IF PARITY statement following the input or output state-

ment, the object program will print an error indication and stop.

For a further discussion of this statement and its use, see Section V on input and output

statements.

IF END OF FILE Statement IF END OF FILE n;, n,

This statement may be used to alter the course of a computation under any of the follow-

ing conditions:

1. In connection with a READ TAPE statement, upon detection of the indication
written on a magnetic tape by the END FILE statement;

2. In connection with a READ, READONE, or READTWO statement, upon de-
tection of a card with the word FINIS punched in columns 2 through 6;

3. In connection with a READ INPUT TAPE statement, upon detection of a re-~
cord produced by a card with the word FINIS punched in columns 2 thrpugh 6,

32

SECTION IV. CONTROL STATEMENTS

In the statement, n, and n, must be statement numbers. If the relevant condition was detect-
ed in connection with the preceding input or output statement, the statement with the statement
number n, is executed next; if the condition was not detected, the statement with the statement
number n2 is executed next. The IF END OF FILE statement must be the next executable
statement after the input or output statement to which it refers, except that an IF PARITY
statement may intervene. If any of the conditions listed above are detected and there is no IF
END OF FILE statement following the input or output statement, the object program will pro-

duce an error indication and stop.

A further discussion of this statement and its use may be found in Section V on input and

output statements.

CONTINUE Statement CONTINUE

This statement does not generate any instructions in the object programs. It is used
primarily as the last statement in the range of a DO statement (see below), when it is needed
to satisfy the requirement that the range of a DO must not end with any statement which can
cause a transfer of control. This statement is particularly useful since no transfer of control
within the range of a DO can return to the beginning of a new cycle. Instead, control should be
transferred to a CONTINUE at the end of the DO range.

DO Statement DOni=n,n_, n

1

orDOn1=n1, n2

This is a very powerful statement which makes it possible to carry out repetitive pro-

273

cedures, often (but not always) working with the elements of arrays. After describing how the
statement operates and some rules which must be observed in using it, we shall give a number

of examples of the use of this important feature of the Algebraic Compiler language.

In the DO statement, n must be a statement number, i must be a non-subscripted fixed-

point variable, and n,, n,, and n, must each be either an unsigned fixed-point constant or a

non-subscripted fixed-point variable. If n, is not stated, as in the second form of the state-

ment, it is assumed to be 1.

The statements following the DO, up to and including the statement with the statement
number n, are executed repeatedly. They are executed first with i = n,; before each succeed-

ing execution, i is increased by n Repeated execution continues until the statements have

3
been executed with i equal to the largest value which does not exceed n,.

33

SECTION IV. CONTROL STATEMENTS

The range of the DO is defined to be the set of repeatedly executed statements. In other
words, it is the set of statements beginning with the first executable statement immediately
following the DO statement and continuing up to and including the statement with the statement

number n.

The fixed-point variable i is called the index of the DO. Throughout the execution of the
range, i is available for use in computation (see Rule 3 below), either as a fixed-point var-
iable or as a subscript. The value of i is also available for use in computation if control
passes to statements outside of the range. Control may pass outside of the range of the DO
either by the execution of control statements which cause a transfer of control outside or by
the normal completion of the number of executions of the range as specified by the indexing
parameters n

) Dy and n In the latter case, the DO is said to be satisfied.

1 3°

A few rules must be observed in writing DO statements.

Rule 1. If the range of one DO (the 'outer' DO) contains statements in the range of
another DO (the "inner' DQO), then all statements in the range of the inner DO must also
be in the range of the outer DO. This does not prohibit having the ranges of two or more

DO's end with the same statement.

Rule 2. The last statement in the range of a DO must not be a statement which can
cause a transfer of control. The CONTINUE statement is provided for situations which

would otherwise violate this rule.

Rule 3. No statement may be executed within the range of a DO, which redefines or

otherwise alters the value of the index or the indexing parameters of the DO.

Rule 4. Control must not transfer into the range of a DO from a statement outside its
range. One exception to this rule is that it is permissible to transfer control out of the
range of a DO, perform a series of calculations, and then transfer back to the same sec-
tion of the range of the DO from which exit was made. When this is done, the state-
ments to which control is transferred are called the extended range of the DO. It is

still necessary to observe Rule 3, as though the series of calculations performed were
part of the range of the DO -- which they are. If the extended range of the DO itself

contains DQO's, then there is a further restriction. A nest of DO's is defined to be a set

of DO's with overlapping ranges; a completely nested set is one in which every pair of

SECTION IV. CONTROL STATEMENTS

DO's is such that one contains the other. With these definitions, the second part of Rule 4
states: if the extended range of a DO contains other DO's, then a transfer to the extended

range is only permitted from the innermost DO of a completely nested set.

Figure 4. Transfer of Control with Respect to Sets of Non-Completely Nested DO's

Figure 5. Transfer of Control with Respect to Completely Nested DO's

Figure 4 shows some acceptable and unacceptable transfers of control. Transfers 1

through 5 are always acceptable. Transfers 6 and 8 are always wrong. Assuming that

35

SECTION IV. CONTROL STATEMENTS

transfer 2 goes to a series of calculations from which transfer 7 returns, transfer 7 is cor-
rect only if the series of calculations contains no DO's, since the set of DO's is not complete-
ly nested. The DO's in Figure 5 are completely nested, and all the transfers are acceptable

whether or not there are DO's in the extended range.

For a first example of the use of a DO loop, consider the scalar product that was used
earlier to illustrate the use of subscripts. Recall that there were two one-dimensional arrays
XVECT and YVECT, and it was required to compute the sum of the products of corresponding
elements. The DO loop below accomplishes this in a manner similar to the second method

used before:

ALGEBRAIC COMPILER STATEMENT

eI T T T TTT] WRTENBY_______ CHECKED BY DATE PAGE —OF —

>
%)
3
%
m

ALGEBRAIC COMPILER STATEMENT

0=

NUMBER|

o~ Z——Z00

1l 23 38 52 66 72§ 80

NP A I N I | rTrrrrrrrvrrrrrryvryrrrrryrrryrrrryyrrrrrrryrryrvyvrrryvroad rerred

! ScPROD = 0.0

2 p0 50 I =1,3

3 50] |5cPRIOD = scPrOD [H XVECT(1) % YVECT(1)

As a matter of fact, the execution of this DO loop is almost exactly the same as the execution
of the earlier example. Before, we set SCPROD = 0.0 and I = 41, and carried out SCPROD =
SCPROD + XVECT(I) * YVECT(I). Then we set I = 2, and carried out the same statement,
although we had to write it a second time, and then did it again with I = 3. This is exactly
what the DO loop above does. With the statement DO 50 I = 1, 3 we have said, ''carry out the
statements down through the one with statement number 50 (in this case it is the next state-

ment), first with I = 4, then add 1 to I (since n, was not stated, it is assumed to be 1) and do

3
it again, etc., until the range has been executed with I = 3",

For another simple example of the use of the DO statement in manipulating arrays, sup-
pose that there are two one-dimensional arrays named X and Y which are each of maximum

length 100, but that the number of elements in each, for any particular set of data, is variable.

The number of elements in each array is given for a particular problem by the value of the
fixed-point variable M. It is required to add the two arrays, element by element, and place
the elements of the sum in an array named Z. Assuming that the variable M is defined else-

where, the following statements will carry out the required computation:

36

SECTION V. CONTROL STATEMENTS

ALGEBRAIC COMPILER STATEMENT

mre Ll T T T T T T] wrirreN sy CHECKED BY ____________ DATE PAGE —_ OF ——
8] ST ; ILER STATEMENT
'} MENT
N ALGEBRAIC COMPILER
§ ol
1 [1] 23 38 52 66 7 80
T 17T TrrorrirrrrrrrTr rrrrryrJrrrrrryfvyvrrryrrgrrrrrr

LEN B § T V1T rrrrrrr ryrrvqrrrrrivTorT

DIMENSION x(100)|,| Y(l00), 2(l00)
00 7|89 T =1 M
789 |2(T)| = x(1) + v(I|)

The DIMENSION statement specifies, for each array, that it contains at most 100 elements

and, by the fact of having only one subscript, that it is a one-dimensional array. Note that it
is not necessary to know how many elements there are in the arrays (as long as all three have
the same number of elements), but rather the variable M is used to control the number of re-
petitions of the DO. M must be greater than zero, and not greater than the maximum size of

the arrays. If these rules are violated, the computer's action is not predicted.

Suppose now that R and S are two-dimensional arrays of the same maximum sizel. Let
the number of rows for this problem be specified by the fixed-point constant LROWS and the
number of columns for this problem be specified by LCOLS., It is required to add the two
arrays, which may be thought of as matrices, element by element, and place the elements of
the sum in an array named T, which naturally has the same dimensions as R and S. The

techniques here are very similar to the previous problem, except that there are two DO state-

ments.
ALGEBRAIC COMPILER STATEMENT
Tree LT T T T T T) wretensy___ CHECKEDBY —_ DATE— PAGE —m OF —
) e 6 ALGEBRAIC COMPILER STATEMENT
ClnumBER]]
1 2 i} 23 38 52 66 72 80
T T T T T T T T T T T rrrr1rrrJ[VryrrrrrvrryoJrrrrfrrrerrTrTyirr T r Tyt rirrrrrrT
DIMEWSION R(io,ilo)), sC10,10),1(10,710)
po #oo 1 = 1. LRows
Do 400 J = 1, Lclojls
L 200} Ir¢r,l0) = R(1,4) |# s(z1,4) |

Note that the subscript controlled by the inner loop (the second DO) is varying more rapidly
than the subscript controlled by the outer DO. Here, the first DO establishes that the first
subscript should start at 1 and run up to the value of LROWS. With I set at 1 to start, the
second DO causes the second subscript to run through the values from 1 up to the value of

LCOLS. When the second DO has been satisfied, the first subscript is increased to 2, and

1 Where the row number is given by the first subscript, and the column number is given by the
second subscript.

37

SECTION IV. CONTROL STATEMENTS

the second DO carried out in its entirety again. In short, the second DO is carried out once for
each value of the index of the first DO. Stated in matrix terms, we handle all the elements of

the first row, then all the elements of the second row, etc., up to all of the elements of the last

row.

In this example, it actually does not matter what order is followed in adding the elements
(in most problems it does). If we were to reverse the order of the two DO's, the net result in
this case would be the same, but the order of handling the elements would be different; we

would handle all the elements of the first column, than all the elements of the second column, etc.

The next example shows how an IF statement can be used within the range of a DO. Sup-
pose there is a one-dimensional array named DATA; we are required to find the largest
(algebraically) of the odd-numbered elements of the array and put it in BIG. We shall put the
first element of the array in BIG to begin, then successively compare it with all the other odd-
numbered elements and replace the contents of BIG with any element we find which is larger
than the current contents. To consider only the odd-numbered elements we make n, = 2.

) 3
Suppose the array has 100 elements:

ALGEBRAIC COMPILER STATEMENT

el T T T T T T T) writeNBY__ CHECKED BY DATE PAGE — _OF —
Q- STATE- ‘
ClpMENT | ALGEBRAIC COMPILER STATEMENT

k4
m
z
S5
> 2—ZO0O0

1l 23 38 52 66 72 80
T T T T T T T T I T T r T rrrrrrJjryrrrrrrrrrrrryrrrrrrrrrrryr ettty rgrrrrere
DIMENSTON DATA (1|0|0)

816 |= bAaTAlt)
Do J|2 kK = 3,100,
IF(0|ATA(K) -BIaG) |12, 12,3
13] |81¢ |= PATA(K)
12} |CONTIINUE

N

—

— e p——,

On each execution of the range, if the current odd-numbered element from the array is less
than or equal to the current contents of BIG, we transfer down to the CONTINUE statement,
but if it is larger than the current contents of BIG we replace the contents of BIG with it. The
CONTINUE is required here because we do not want to execute statement 13 every time, and a

transfer of control cannot return to the beginning of the range to begin a new cycle.

PAUSE Statement PAUSE or PAUSE n

This statement is used when it is desired to interrupt the execution of statements in
order to allow the computer operator to take some action. If the second form of the statement
is used, n must be an unsigned fixed-point octal constant. When the statement is encountered

in the object program, the following are typed out on the console typewriter:

38

SECTION IV. CONTROL STATEMENTS

1. The title of the main program, which appeared in the TITLE statement, which
must be on the first card of every program deck;

2. The word PAUSE;

3. The octal constant n (containing as many as five digits), or nothing if the first
form of the statement is used;

4. The status of the simulated sense lights and sense switches.

The machine then waits for the operator to take some action. He might remove the program
from the machine, he might change the status of the simulated sense switches and continue
execution of the program, or he might simply make note of a prior typewriter message and
continue execution of the program without making any changes. In any case, continuing execu-
tion of the program begins with the next executable statement after the PAUSE. These actions,
if done properly, will have no effect on any programs being parallel processed with this one.
The optional octal constant makes it possible for the programmer to set up a message key by
means of which the operator can tell what action to take based on what number is typed out.
Alternatively, the programmer may type out English instructions to the operator through the
use of appropriate ARGUS instructions (see Section III). The constant n is specified as octal

in order to provide compatibility with systems similar to the Honeywell Algebraic Compiler.

STOP Statement STOP or STOP n

This statement is used when it is desired to stop execution of the program, without any
provision for continuation, in short, when the problem is finished or when errors in input
have occurred from which there is no way to recover without starting all over again. If the
second form of the statement is used, n must be an unsigned fixed-point p_c_tg_l constant. When
the statement is encountered in the object program, the following are typed out on the console
typewriter:

1. The title of the main program, which appeared in the TITLE statement, which
must be on the first card of every program deck;

2. The word STOP;

3. The octal constant n (containing as many as five digits), or nothing if the first
form of the statement is used;

4, The status of the simulated sense lights,
Once this intormation has been typed, control is automatically returned to the Executive Routine.
Nothing carried out in connection with the STOP statement has any effect on any other programs

being parallel processed with this one.

The octal number n can be used to give information to the computer operator, if he has
been provided with a list of the possible stops and the meaning of each, including a description
of action he should take for each. Alternatively, an ARGUS instruction (see Section III) may

be used to type out information to the operator. .

39

SECTION IV. CONTROL STATEMENTS

SENSE LIGHT Statementl SENSE LIGHT i

This statement provides a means of indicating conditions in a problem both to the opera-
tor and to other portions of the program. The value of i must lie in the range of zero through
4. Ifiis zero, all sense lights (1 through 4) will be turned off, i.e., SENSE LIGHT 0 in effect
clears all sense lights. If i has any other value, i.e., 1 through 4, that particular sense light
will be turned on. For example, SENSE LIGHT 3 turns on sense light 3. For a discussion of

sense lights and sense switches, see Appendix B,

IF (SENSE LIGHT) Statement ! IF (SENSE LIGHT i) n,n

2
This statement is used to alter conditionally the sequence of the execution of statements

dependent upon the status of one of the sense lights., In the statement, n, and n, are state-

ment numbers and i is the number of a sense light, 1 through 4. If sense light i is in the on

condition, control is transferred to statement number n,, otherwise control is transferred to

1

statement number n,. If the sense light is on at the time of execution of this statement, it will

be turned off. In other words, sense light i is always left in the off condition as the result of

the execution of this statement.

IF (SENSE SWITCH) Statement? IF (SENSE SWITCH i) n;, n,

This statement is similar to the IF SENSE LIGHT statement except that the sense switches

(see Appendix B) are interrogated rather than the sense lights. n; and n, are statement numbers
and i identifies the sense switch used. The value of i may range from 1 through 6. Control is

transferred to statement n; if sense switch i is down and to statement n, if sense switch i is up.

2

IF ACCUMULATOR OVERFLOW Statement IF ACCUMULATOR OVERFLOW n, n,

This statement is used to control the program sequence depending on the setting of a

switch which is set by an addition or subtraction overflow unprogrammed transfer. Control is
transferred to statement number n, if an accumulator overflow has occurred or to statement
number n, if overflow has not occurred since the previous IF ACCUMULATOR OVERFLOW

statement. The use of this statement resets the internal indicator tested.

IF QUOTIENT OVERFLOW Statement IF QUOTIENT OVERFLOW n, n2
This statement is used to test the status of a switch set by an exponential overflow or

underflow unprogrammed transfer. Control is transferred to statement n1 if an exponent has

1SENSE BIT and IF (SENSE BIT) Statements may be used interchangeably with the SENSE LIGHT
and IF (SENSE LIGHT) Statements respectively.

2
The IF (SENSE FLAG) Statement may be used interchangeably with the IF (SENSE SWITCH)
Statement,

40

SECTION IV. CONTROL STATEMENTS

been created by any of the floating-point operations that is greater than +63 or less than -64 or

to statement n, if these exponent limits have not been exceeded since the previous IF QUOTIENT

OVERFLOW statement. The use of this statement resets the internal indicator tested,

IF DIVIDE CHECK Statement IF DIVIDE CHECK n,n,

This statement is used to test a switch set by a division overcapacity unprogrammed

transfer. Control is transferred to statement n, if a division instruction has been attempted

1

that cannot be performed or to statement n_ if no illegal divisions have been attempted since

2
the previous IF DIVIDE CHECK statement. The use of this statement resets the internal in-

dicator tested.

TITLE Statement TITLE Name

This statement is used to provide each program with a name by which it may be referred
to in connection with the collector tape, discussed in Section VI. This statement must be on
the first card of every program. The word TITLE must be punched in columns 2 through 6 of
the statement card, and the desired title in columns 7 through 14. The name used should not
duplicate any already on the collector tape. If no TITLE statement is provided, a dummy
name will be supplied by the Compiler; it will ordinarily be desirable to correct the omission,
and the dummy name makes it at least possible to make reference to the compiled program in
order to change the name. A TITLE statement is not required for FUNCTION and
SUBROUTINE subprograms (see Section VI), and in fact is irrelevant; the name of the sub-
program becomes its name on the collector and any TITLE card is ignored. A TITLE card

must not be preceded by a blank card.

END Statement END

This is a non-executable statement which must appear at the end of every program or
subprogram deck. It is »required in order to separate programs in batch compilation, but it is
nevertheless required in every program, éven if the '""batch' consists of only one program.
The word END must be punched in columns 7 through 9 of the statement card; anything else on

the card is ignored. An END card must not be followed by a blank card.

FINIS Statement FINIS

This is a non-executable statement which must appear at the end of the deck of programs
being batch compiled. It is required even if the batch consists of only one program. The
word FINIS must be punched in columns 2 through 6 of the card, and the remainder of the card
must be blank. It may help to note that a FINIS staterment is always preceded by an END state-
ment, although an END statement is not always followed by a FINIS statement; if several pro-

grams are being batch .compiled, a FINIS appears only at the end of the entire batch.

41

SECTION V

INPUT AND OUTPUT STATEMENTS

There are a number of considerations which must be included in planning and writing
input and output statements. Some or all of the following factors are involved in these
statements:

1. The choice of input or output device. This is handled by choosing the
appropriate statement from: READ; READONE; READTWO; PRINT;
PRINTONE; PRINTTWO; PUNCH; PUNCHONE; PUNCHTWO; READ
TAPE; READ INPUT TAPE; WRITE TAPE; and WRITE OUTPUT TAPE,

Four other statements are classified as input-output statements on the
basis that they involve input-output devices or have a form similar to

input-output statements but they do not actually transmit any informa-
tion. These are: ERASE; END FILE; REWIND; and BACKSPACE,

2. The determination of what information is to be transmitted. This is
handled by the use of a list. This list specifies the names of the
variables to be read in or written out. (The word 'list" is used here
in a specialized sense which is discussed at length below.)

3. The arrangement of the information on the input medium (cards,
magnetic tape), or the arrangement on the output medium (cards,
printer, tape). This is handled by providing suitable information
in a FORMAT statement. A number of the input-output statements
are not required to reference a FORMAT statement, either because
they do not transmit information or because the format of the informa-
tion is fixed.

4, The type of conversion to be applied between the external and internal
information. This is handled by writing an appropriate field specification
in a FORMAT statement.

In this section we shall first discuss what is meant by a list, then the FORMAT statement
and how it operates in conjunction with a list, then the field specifications (which covers both
format control and conversion type), and finally each of the input and output statements will

be discussed in turn.

Definition of a List

Any input or output statement which actually transmits variables requires a list, in
order to specify the variables to be transferred between storage and the input or output
device, and to specify the sequence in which they are to be transferred. The simplest
type of list consists simply of the names of the variables to be transferred. For instance,
if to read a card we write: ‘

READ 200, A, B, C(1), C(2), K78

43

SECTION V. [INPUT AND OUTPUT STATEMENTS

where 200 would be the statement number of a FORMAT statement, then the list consists of
the names of the variables A, B, C(1), C(2), K78. The first five fields on the card, as
defined in the FORMAT statement, would be read into the storage locations assigned to the
variables named, with the first field being taken as A, the second as B, etc. As we shall
see, the FORMAT statement, in addition to specifying the length of each field, would in effect

state how to expect to find the numbers punched in the fields.

It is permissible to use fixed-point variables which appear in a list as subscripts
elsewhere in the same list. One way in which this flexibility might be useful would be in
reading elements of an array which appear in a deck of cards in random order. Suppose,
for instance, that the elements of a two-dimensional array (matrix) are punched one to a
card, with the row and column number of eaich element punched on the same card with it,
in the order I, J, DATA(I, J). The list is I, J, DATA(I, J). Assuming that 300 refers to
a FORMAT statement which specifies that the first two numbers on the card are to be taken
as fixed point and the third as floating point, the READ statement is:

READ 300, I, J, DATA(I, J).

When this is done with input, however, the variables used as subscripts must appear in the
list as input variables before they ﬁppear as subscripts. We shall see immediately below
that there is another way in which fixed-point variables can be used in a list which is some-

what similar to this technique.

When parts of arrays or entire arrays are to be transferred, it is often not necessary
to name each element explicitly. To transfer an entire array, it is only necessary to name
the array in a list without any subscripts. The name of the array must, of course, appear

in a DIMENSION statement, but in the list it need not carry any subscripting information,

When only certain elements of an array are to be transferred, it is often possible to
specify them in the list by giving indexing information in a way which parallels a DO loop,
although it is not literally a DO loop. This is done by enclosing the indexed variables in
parentheses and giving the indexing information just before the closing parenthesis. For
instance, the statement:

READ 400, (DATA(L, 1), I=1, 10)
would call for 10 numbers to be read from cards and stored as the first 10 elements in the
first row of the matrix DATA, The same 10 elements could be read in as main diagonal
elements by the statement:

READ 400, (DATA(I, I), I=1, 10).

Just as it is possible to have nests of DO's, it is possible to have nests of up to a maximum
of three indexed variables in a list. Suppose, for an example, that we wanted to read 50

44

SECTION V. INPUT AND OUTPUT STATEMENTS

numbers from cards, taking the first 10 as the first 10 elements of the first row of DATA, the
second 10 as the first 10 elements of the third row of DATA, the next 10 as the first 10 elements
of the fifth row of DATA, etc. It could be done with the statement:
READ 400, ((DATA(L J), J=1, 10), I=1, 9, 2).
In a certain sense, this statement may be thought of as equivalent to the DO loop:
DO 10 I=1, 9, 2
DO 10 J=1, 10
10 DATA(I J)
In this example, statement 10 is to be understood in the sense: '"The next number read is to
be taken as DATA(I, J)." Thus it is seen that the idea of 'inner"' and 'outer' DO's corres-

ponds to the inner and outer indexing information in the list.

It has been noted earlier that fixed-point variables which appear in the list may be used
elsewhere in the list as indices; on input, the appearance must be earlier in the list than

their use as indices.

To illustrate some of these ideas, suppose that the following list is specified with an
input statement, and that the value of the integer N which is read in is 2:

A, N, B(N), (C(I), DI, 2), I=1, N),

((E(I, J), I=1, 2), F(J), J=1, 5, 2).

The variables read in would be in the following sequence:
A, N, B(2), C(1), D(1, 2), C(2), D(2, 2),

E(1, 1), E(2, 1), F(1), E(1, 3), E(2, 3), F(3),

E(1, 5), E(2, 5), F(5).

The effect of the list would be that of the following implicit DO loop, again assuming
that the value of N read in is 2:

1. A
2. N (=2 by assumption)
3. B(2)
4. DO6I=1, N
5 C(I)
6. D(I, 2)
7. DO10J=1, 5, 2
8. DO9I=1, 2
9. E(I, J)
10. F(J)

45

SECTION V, INPUT AND OUTPUT STATEMENTS

FORMAT Statement FORMAT (Field Specifications)

All of the input and output statements which require a list, with the exception of READ
TAPE and WRITE TAPE, require, in addition, the statement number of a FORMAT statement
which describes the information format to be used. The FORMAT statement also describes,
in some cases, the kind of conversion to be performed between the internal and external
representation of the information to be transferred. A FORMAT statement is not executable,
i. e., does not by itself cause any action in the object program, and may be placed anywhere

in the source program.

In the discussions which follow, the term unit record is used for generality. Depending

on which input or output statement is used, a unit record may consist of:

1. A line to be printed on an on-line printer, with a maximum of 120 characters;

2. A punched card to be read from an on-line card reader or punched on a directly-
connected punch, with up to 80 characters;

3. Analphabetic tape record to be read or written, with a maximum of 120
characters;

4, A binary type record to be read or written, with any number of words; a unit

record may be any number of physical records on tape; this is handled automatically.

The field specification in a FORMAT statement describes the unit record(s) involved

by giving, for each field in the record, beginning with the first character of the record:

1. The type of information and/or the type of conversion to be used; this is
done with the seven field specification characters discussed in detail
below;

2. The number of characters in the field;

3. For some of the field specifications certain other information is required or

may optionally be given; these cases are discussed below, in connection with
the field specifications.

To give some short examples before proceeding to the details:

1. If the statement FORMAT(F10.4) were used in connection with input,
the "F10. 4" would mean that a 10-column field consists of a decimal
number punched without an exponent, with four places after an under-
stood decimal point, and is to be converted to a floating-point variable;

2. If the statement FORMAT(15) were used in connection with output, the
"I5'" would mean that a fixed-point (i. e., integer) variable is to be writ-
ten out into a five-character field in the external medium, with the
integer placed in the right side of the field, and with a minus sign
immediately to the left of the number if it is negative.

If a number of consecutive fields are to be treated under the same field specification,

it is permissible to write the number of such fields before the field specification characters.

46

SECTION V. INPUT AND OUTPUT STATEMENTS

Thus, ''5F10.4'" would mean that there are five fields of the type described in the first example
above. It is also possible to call for the repetition of groups of fields, by enclosing the group
of field specifications within parentheses and writing the desired number of repetitions‘in

front of the opening parenthesis. For example, suppose that a unit record consists of fields
described by I3 and F10. 4 alternately, with eight such pairs. The easy way to define such a
situation would be 8(I3, F10.4). Note that this is not equivalent to 813, 8F10.4; the latter
would mean eight consecutive I3 fields, then eight consecutive F10. 4 fields, instead of the
intended alternation of the two types. Only one level of such grouping is permitted, i. e.,

parentheses within parentheses are not permitted for this purpose.

When the list of an input or output statement is used to transfer more than one unit
record, with the different records having different formats, a slash (/) is used to separate
the format specification of each record. If for example the statement:

FORMAT (10I3/8F10.6)
were used with a READ statement, the effect would be to read one card under control of the
10I3, and a second under control of 8F10.6. It is possible to specify that the first one or
more records have a special format, and that all following records have the same format;
this is done by enclosing the last record specification-in a second set of parentheses., A
slash always indicates the end of one record and beginning of a new one; the closing paren-
thesis of the FORMAT statement always indicates the end of a record. The skipping of
entire records, which in practice usually means the skipping of lines on a printer, is called
for by writing successive slashes. The skipping of n records is called for by writing n + 1

slashes.

With the exceptions of a FORMAT statement which consists entirely of Hollerith fields
and of the case of the ''blank' field specification (see below), a FORMAT statement is always
used in conjunction with the list of an input or output statement. The list specifies the vari-
ables to be transferred and in what sequence, and the associated FORMAT statement specifies
the format of each variable as well as the length of each record, if there is more than one.
As the object program transmits the variables named in the list, it scans the FORMAT state-
ment, from left to right, to find the proper field specification for each variable, taking into
account any repetition of field specifications or groups of field specifications. Whenever
Hollerith field specifications are encountered in scanning the FORMAT statement, they are
dealt with in the proper place, without any transmission of variables from the list. The
transmission of variables is terminated only when all items in the list have been transmitted,
but any remaining Hollerith fields will be dealt with even after the transmission of the last

variable specified in the list. If the last field specification in the FORMAT statement has

47

SECTION V. INPUT AND OUTPUT STATEMENTS

been used and items named in the list remain to be transmitted, the closing parenthesis indi-
cates the end of unit record, and scanning of the FORMAT statement begins again with the first

field specification after the last open parenthesis in the statement.

To illustrate a simple case of scanning the FORMAT statement to find the field specifi~

cation corresponding to each variable, consider the following:

ALGEBRAIC COMPILER STATEMENT

e L TP P T T T wriTteN By CHECKED BY DATE PAGE —— OF ——
B et f
< v ALGEBRAIC COMPILER STATEMENT
N
| [1] 23 38 . 52 &6 72 80

rrrrryrrrorr LANAE N BN N IR B N B BN B A rrrrrrrvryrorrry Trrrryrrrrvreor rrrryrryrrrrrrroT

' FRIMT 25, A, 8, ¢
*1125 | |FORMIAT(FIZ.4, F1|3.4, F14-4)

‘.—/

The variable A would be associated with F12.4, B with F13,4, and C with F14.4., On the

other hand, the following situation is also called scanning:

ALGEBRAIC COMPILER STATEMENT

mree LT VT T LT 1) wromenBY______ CHECKED BY DATE PAGE —— OF ——
Al state- [S
B, MENT N ALGEBRAIC COMPILER STATEMENT
CINUMBER]]
N 4
1 5 " 23 38 52 (5] 7 80

rvrtroryrrr oty rrrrrrvrrryrrrryprrrvryrrryrryTT Trrrrrryrrrrrrrvyvevryrgytrrrrayd

[PRIN]T 125, A,B,C
2{/lzs ||roeMat(sFi6.6)
i

L -l —

In other words, if in the scanning of the FORMAT statement a repeated field is found, it is used
as many times as the repetition number. In the above case, the printed output would appear on
one line. If the repetition number were not included, three separate lines would occur, and the

FORMAT statement would appear as:

ALGEBRAIC COMPILER STATEMENT

el L T T T I T ') WwRTTENBY ____________ CHECKED BY DATE PAGE — OF ——
Al state- |8
(B;' MENT N ALGEBRAIC COMPILER STATEMENT
Numasnﬁ
| 3 1 23) 38 52 66 724 80
LI AN . ¢ LB S B B S S B R B N | T TrTrrrrrrrorr T TVt 1 T yr v trrry rrrrrirrrrrrrr LR L | rerruory
! PRIN|T 225, p,8B,d
2] 1225 | |FORMAT(Fl16.6) -
— — —- S———sm

In this case there remain items to be transmitted when the last field specification has been used,
and scanning will begin again with the first (and in this case only) field specification after the last
open parenthesis in the statement. Each number will appear on a separate line since the closing
parenthesis indicates the end of unit record. The F16.6 is used for all variables transmitted,

no matter how many there are.

48

SECTION V. INPUT AND OUTPUT STATEMENTS

Here is an example of a case where the repetition number is required:

ALGEBRAIC COMPILER STATEMENT

el LT LT T T T) wroveney_____ CHECKEDBY _~ DATEe—e PAGE ____OF—

G MENT § ALGEBRAIC COMPILER STATEMENT

CINumeEr]]

| 2 I 23 38 52 86 724 80
T PRIy 525,70, A [[(oata sy, =1 Jay, ™ [TprrrTrrhprrTeery
2| | 325 [FORMIAT (15, F102,| 4F15.5, 17)

Here, I5 is associated with L, F10. 2 with A, F15.5 with the four values of DATA(I), and
17 with M. Since the four field specifications are different, there would be no way to make

use of repeated scanning,

The following is a case where repeated scanning can be used. Suppose that we are
reading a deck of cards which consists mostly of elements of a one-dimensional array punched
one to a card, but where the first card contains a fixed-point number N which specifies how
many elements there are. Suppose the first card has N punched in the first three columns,
and that on the element cards the element number is punched in the first three columns and
the element in the next 12 columns. The following two statements would call for the entire

deck to be read and each element stored in the proper place:

ALGEBRAIC COMPILER STATEMENT

el L 1T I'T T T T3] wrrrensy______ CHECKEDBY . DATE—— PAGE_— _OF—

>
a
>
m

ALGEBRAIC COMPILER STATEMENT

o>]

NUMBER,

<
m
z
5
o £=—ZO00

1] 23 38 52 66 7. 80,
| erlﬂfp]"4| zI5II| l~|II I(lJll A‘RIR'A'¢(IJ|)I'I III=I’I/ Nl)l rr7rrrrrerrrTrT rvrrirrrrrrrrT TETTET Trrruria
2| | 425| |FormaT (13 /23, Fli]2.6))

This illustrates a number of points. The READ statement first gets N, which is associated
with the first I3; the slash in the FORMAT statement indicates that after N there is nothing
more on that card. In the READ statement the parentheses indicate variables with indexing
information supplied. On each card after the first, the READ statement expects to find a
fixed-point number and a floating-point number, and expects to find N such cards because

of the indexing information. The indexing information here is a little different from what

we have had before; here, J is read from the card and then used immediately to determine
where in the array to store the floating-point number. The indexing parameter I is used
only to control the total number of times the process should be repeated, and is not employed
as a subscript. In the FORMAT statement, when the last field specification (F12.6) has

been used, scanning begins again with the second I3, not the first, because of the rule about

49

SECTION V. INPUT AND OUTPUT STATEMENTS

parentheses in the FORMAT statement. This is how we want it, because otherwise we would
always be expecting to find two fixed-point and then one floating-point number, which is the
case only at the beginning of the deck., To review: the slash in the FORMAT statement is
necessary to indicate that the first record ends after the one number; a slash is not necessary
after the F12.6, because the closing parenthesis of the FORMAT statement always indicates

the end of a record.

Another example of FORMAT statement scanning appears after the discussion of the

Hollerith field specification.

Scale Factor

Before investigating the various field specification types in detail, we must mention
a matter which applies to two of them. That is the optional use of a scale factor with the "E'’
and "F' field specifications. This is done by writing '"sP" before the field specification,
where s is the scale factor. Examples of their use appear below; here we state only a few

general considerations in order to avoid repeating them with the two discussions to which

they apply.

1. Once a scale factor has been given, it applies to all "E' and "F'' field
specifications in the same FORMAT statement, until another scale
factor appears in the scanning of the statement;

2. If no scale factor is given, it is taken to be zero. Once a non-zero scale

factor has been given, a scale factor of zero must be given in order to
return to the '"mormal' mode;

3. Scale factors apply only to the "E'" and "F'' field specifications, and
with the "E'' type only to output. Use of the scale factor with any other
field specification or with input on the "E' type has no effect;

4. When a scale factor is written with a field specification which includes
a repetition number, the repetition number is written between the scale
factor and the E or the F. If there is no repetition number, i. e., if
it is understood to be 1, then it may be written or not, Thus, with the
"F' field specification, for instance, the following are all permissible:

3P4F12.4, 3PF12.4, 3P1F12.4,

the last two are equivalent.

Field Specification ""E'' (Floating Point) Ew.d

The "E'" field specification is used to indicate conversion between an internal floating-
point number and an external floating-point number, i. e., one written with an explicit
exponent., The total number of characters in the field in the external medium, including
sign, decimal point, exponent, and any blanks, is specified by w. The number of decimal
places after the decimal point (not counting the exponent) is specified by d; d is treated

modulo 10, i. e., only the last digit is used if more than one digit is written. The field

50

SECTION V. INPUT AND OUTPUT STATEMENTS

specification applies both to input and output, of course, but since the usage is somewhat

different between input and output, we shall describe them separately.

Input Data Preparation

A sign, if it appears, must be the first non-blank character of the field.
The use of a + is optional; i.e., if no sign is punched, the number is taken to
be positive. The use of a decimal point is optional; if it is not supplied, then
the position of the assumed decimal point, counted from the right, is given by
d, but if a decimal point is supplied, then its position overrides d. Blanks
embedded in the number are taken to be zeros. The "number'" part of the
field must not exceed 12 digits, not counting sign or decimal point. The
exponent part of the field is of the general form E+ee, where ee is the nu-
meric exponent, but several simplifications for convenience in punching

cards are permitted.

A positive exponent may appear with the + omitted or replaced with a
blank, i. e., in the forms E ee or Eee. If the first digit of the exponent is
zero, it may be omitted. If the exponent appears with a sign, the E may
be omitted. Thus, the following are all permissible (and equivalent) forms
for the exponent plus 2:

E + 02, E 02, E02, E + 2, E2, +02, +2.

A scale factor has no effect on input with the "E' field specification.

For a first illustration, observe that the following numbers all
convert to the same floating-point number if read in under the control of
E14.0 (remember that a decimal point in the field overrides d in the field
specification):

+1234.5678E04, 1.2345678+7, 12345678.E0, 123456780.-1
With the same reminder, the following numbers all convert to the same
floating-point number under control of E14.7:

-12345678+0, -1,23456784+0, -1234,5678E-03, -0.12345678+01

Qutput Data Presentation

The number will appear at the right of the field if w is larger than the
number of characters in the field. If w is not large enough to contain the
converted internal number, leading characters will be lost and no indication

of the fact given. There will be no embedded blanks in the field, with the

51

SECTION V. INPUT AND OUTPUT STATEMENTS

exception that + signs are not entered but are replaced with blanks. In the absence
of a scale factor, the field will appear in the form #0.nn...Etee (except that any
+ signs do not appear), where the number of places after the decimal point is speci-

fied by d.

A positive scale factor may be used, by writing the field specification in
the form sPnEw.d, where s is the scale factor, and n is the repetition number.
The effect of the use of the scale factor in this case is to move the decimal
point s places to the right and to decrease the exponent by s. (The effect of a
scale factor when used with the "F' field specification is different), Recall
also that once a scale factor is given it continues to apply to all succeeding
"E'" and "F'" field specifications in the same FORMAT statement until another

scale factor appears.

To illustrate, suppose that we have in storage three numbers which if

printed under control of 3E17. 8 would appear as:

0.12345678E 03 -0,44444444E 00 0.87654321E-04
The same numbers printed under control of 3E13,4 would appear as:

0.1234E 03 -0.4444E 00 0.8765E-04
The same numbers printed under control of 1P3E9, 2 would appear as:

1.23E 02-4.44E-01 8.76E-05

Note that by allowing only the minimum number of places in the field, we
have crowded the numbers together, The numbers are not rounded. The
same numbers printed under control of 7P3E20.1 would appear as:

1234567. 8E-04 -4444444.4E-07 8765432.1E-11

Field Specification "F'! (External Fixed Point) Fw.d

The "F' field specification is used to indicate conversion between an internal floating-

point number and an external fixed-point number, i, e., one written without an exponent.

The total number of characters in the field, including sign, decimal point, and any blanks,

is specified by w. The number of decimal places after the decimal point is specified by d;

d is treated modulo 10, i, e., only the right-hand digit is used if more than one digit is

written.

52

Input Data Preparation

A sign, if it appears, must be the first non-blank character of the field.

The use of a + sign is optional; a number written without a sign is taken to be

SECTION V. INPUT AND OUTPUT STATEMENTS

positive. The use of a decimal point is optional; if it is not supplied, then the
position of the assumed decimal point, in terms of the number of digits to its
right, is given by d, but if it is supplied its position overrides d. Blanks
embedded in the number are taken to be zeros. The number must not exceed
12 digits, not counting sign, blanks, or decimal point, Shown below are some
sample numbers, and in parentheses the number to which they would convert

if read in under control of F10. 4:

+12345678 (+1234.5678)
1234.5678 (+1234.5678)
-1.2345678 (-1.2345678)
.012345678 (+.012345678)
-1.2 (-1.2)
+123456 (+12.3456)

A scale factor may be used with the "F' field specification for input.
The effect of a scale factor in this case is to multiply the external number
by 10 to the negative of the scale factor:
Internal number = External number + 10 °
A scale factor in this case may be positive or negative, To illustrate, the

specification 2PF10. 4 would convert some of the numbers displayed above,

as shown in parentheses:

+12345678 (+12.345678)
+123456 (+0.123456)

With the specification -2PF10. 4:
+12345678 (+123456.78)
+123456 (+1234.56)

Output Data Presentation

The number will appear at the right of the field, if w is larger than the number
of characters in the field. If w is not large enough to contain the converted internal
number, characters at the left will be lost and no indication given. Positive numbers
appear without a + sign. A positive or negative scale factor may be used by writing
the field specification in the form *sPnFw.d, where a + sign is optional, s is the
scale factor, and n is the number of repetitiohs of the field specification, The effect
of the use of the scale factor in this case is to move the decimal point of the external
number s places to the right if s is positive, or the left if s is negative. As a formula,
s is a number such that: '

External number = Internal number . 10S

53

SECTION V. INPUT AND OUTPUT STATEMENTS

For examples, consider the numbers 3,14159265, 2.7182818, and -39.478418

all assumed to be in storage as floating-point variables. With the field specification

3F15.5, they would appear on output as:
3.14159 2.71828 -39.47841
With the field specification 3F 8.2, they would appear as:
3.14 2,71 -39.47

If we used 3F 8.6, we would be in trouble, because there would not be enough room

for the third number. What would appear would be:
3.1415922.7182819.478418
This illustrates that in using the ""F'' field specification it is essential to know
the maximum size of the numbers which will be written out, and allow enough
space for them. With the field specification 4P3F10.0, the numbers would
appear as:

31415, 27182. -394784.
With the field specification -2P3F6.1, the numbers would appear as:

.0 .0 -.3
This illustrates that by making the number of decimal places too small, all

significant figures can be lost.

Field Specification '"I'" (Integer) Iw

integer and an external decimal integer.

The '"I" field specification is used to indicate conversion between an internal fixed-point

sign and any blanks, is w.

54

Input Data Preparation

A sign, if it appears, must be the first non-blank character in the field. The

use of a + sign is optional; if no sign appears, the integer is taken to be positive.

The use of a decimal point is, of course, not permitted. Embedded blanks are
44
taken to be zeros. The number, not counting sign, must not exceed 2 , which
3 15
is approximately 101 . For many purposes, the practical limit is 2", i. e.,

for purposes of subscripting or indexing in a DO loop.

Output Data Presentation

The integer will appear at the right of the field if w is larger than the
number of characters in the field. If w is not large enough to contain the con-
verted internal number, the sign and high-order digits will be lost and no

indication given. Positive integers appear without the + sign.

The total number of characters in the field, including

SECTION V. [INPUT AND OUTPUT STATEMENTS

Field Specification ""H'" (Hollerith) wH

The w characters immediately following the letter H, where w may be any integer not
exceeding the size of the unit record, are placed in the record in the position indicated by
the position of the Hollerith field specification in the FORMAT statement. The Hollerith
field specification does not call for the output of any variables, but the output of the fol-
lowing text itself. Any Honeywell 800 character may be used, including the character
blank; this is the only instance in which a blank in a statement is not simply ignored. Indi-
cation of the presence of Hollerith text is not required in the list of the output statement
which refers to the FORMAT statement containing the Hollerith field specification. When-
ever a Hollerith field specification is encountered in the scanning of the FORMAT statement,
the following text is written out and scanning continues without any variable having been trans-
mitted, The Hollerith text is not available to the programmer for use in any other way than

for input and output.

The characters printed by the high-speed and standard-speed printers available for the
Honeywell 800 are different in a few cases. Reference should be made to the character-
configuration table in Appendix A to determine what the differences are and what characters

are printed by the two printers.

It is possible to write a record consisting entirely of Hollerith text by putting nothing

but Hollerith text in a FORMAT statement and by giving no list with the output statement.

For all output statements that result in printing, e. g., PRINT and WRITE OUTPUT
TAPE, single spacing of the printed lines will result unless specific control is given other-
wise. This is accomplished through the use of the Hollerith field specification in a FORMAT
statement. If a field specification 1H is used as the first field specification in a FORMAT
statement associated with an output statement, no data per se is transmitted, but rather the
one Hollerith character is interpreted as a control character., The permissible characters
and their interpretation are:

Blank - single space after the current line is printed

+ - suppress spacing after the current line is printed
0 - double space after the current line is printed
1 - space to head of form after the current line is printed

2-9 - this number of lines are to be spaced after the current line is printed
If any other character is used in this connection, it will be placed in the output area. If this
Hollerith field specification is used in connection with punching, this control character will

not be punched.

55

SECTION V. INPUT AND OUTPUT STATEMENTS

In every case, the spacing information applies only to the spacing between the current

line and the next one and does not carry over to any subsequent lines.

To illustrate this specialized usage, consider the following:

ALGEBRAIC COMPILER STATEMENT

e L L T T T T T T] wriTten BY CHECKED BY DATE PAGE — — OF —
o MENT § STATEMENT

'} ME

Cinuea]l ALGEBRAIC COMPILER

! [3 I 23 38 52 66 724 80

L LENLEN [S I A | T T r1rrrrrryrryrrer~ 1 rrrrrrrrrrrrrrryyrrrrrrvrrrrrprryiTroeord

ANLIRR v T
' PRINT 56, A,B,C

2| s¢| |rormaT (141, 3F1l¢].6)
e ————

The effect of this statement pair is to print the line containing the three fields A, B and C

and then space to the head of the next form or page.

When a FORMAT statement containing Hollerith text is referenced by an input statement,
the listed text is replaced by whatever text appears in the corresponding field of the input
record. If the same FORMAT statement is later used with an output statement, the text
which has been ''read into' the FORMAT statement will then be transferred to the output
record. The text thus originated is still not available to the programmer for use in any
other way than for input and output. (The "A'' field specification described below is available

for use in entering alphabetic data which can then be manipulated by the program.)

To illustrate the scanning of FORMAT statements containing Hollerith fields, consider

the following:

ALGEBRAIC COMPILER STATEMENT

el L L I T T T T) werorensYy_____ CHECKED BY DATE PAGE — OF —
s MenT § ALGEBRAIC COMPILER . STATEMENT
CINUMBER]] : ‘
1 : 1] 23 38 .52 66 72| 80
I LA p‘k'IINi'élolo"lrlll rrrryrrrrrrroreirorda l:lll‘ll||lll rrrrrrrrrrrrror o T 1rrirT 'll'l'l]
2 600| |[FORMAT(33r WING [FLUTTER CALCUUATION TYPE 3///)
3 PRINIT o, IcASE|l| (X(J), Y(WJ), K 12¢)), J=1,3)
+|, 6ol|lrormaT(awc ase 13[/(4 x= F12.3|4H Y= F12.3,| 44 z= Frz.3))
- — I - .

The first FORMAT statement and PRINT statement pair will print a page heading, and
space three lines, two of which occur because of the three slashes, and the third, be-
cause of the closing parenthesis. The second pair calls for an identifying number to be
printed on the first body line, with the data going on following body lines with identifying

information to be printed before each number. The first lines printed on a page by this

56

SECTION V. INPUT AND OUTPUT STATEMENTS

short program might look like:
WING FLUTTER CALCULATION TYPE 3

CASE 24
X= 5630.818 Y= -78.903 Z= 889.654
X= 6793.073 Y= -79.005 Z= 1009. 462
X= 5571.794 Y= -77.238 Z= 850.670

Notice that "CASE 24" prints on a separate line because of the slash in the second FORMAT
statement. The blanks in the text following the 4H field specifications are deliberate, and
results in the two spaces which separate the text from the previous number. Note that the
parentheses in the second FORMAT statement cause the field specifications enclosed in the

parentheses to be scanned repeatedly, until all the variables in the list have been transmitted,

Field Specification "O'" (Octal) Ow

The "O" field specification is used to indicate conversion between an internal 48-bit
Honeywell 800 word and an external fixed-point octal integer. The total number of charac-

ters in the field, including sign and any blanks, is w, which must not exceed 16,

Input Data Preparation

If the field consists of 16 digits, it must not have a sign; it is then converted
to the 48-bit representation of the number and stored as such, i. e., with the four
bit positions of the sign of the word not handled any differently from the other 44
bit positions of the word. If the field has fewer than 16 characters and appears
without a sign, the conversion is handled as though enough zeros were appended
at the right of the field to make a total of 16 digits. If the field has fewer than 16
characters and appears with a - sign, then the converted number is placed at
the right-hand end of the word and all four sign bits are set to zero; if the field
consists of a - sign and 15 digits, the leading digit must not exceed 3. If the
field has fewer than 16 characters and appears with a + sign, then the converted
number is placed at the right-hand end of the word and all four sign bits are set
to 1; if the field consists of a + sign and 15 digits, the leading digit must not
exceed 3. If an 8 or 9 or any other illegal character appears, it will be con-
verted to its alphanumeric representation, the low-order three bits stored for

that character, and no error indication given.

57

SECTION V. INPUT AND OUTPUT STATEMENTS

Output Data Presentation

If w is 16 or less, the right w octal digits of the converted 48-bit number
will be written without sign. If w is greater than 16, the sign bits will be treated
as sign bits, the number being written with a plus sign if any one or more of the
sign bits is 1, and with a minus sign if the sign bits are all zero; the number will

be written into the right side of the field.

For an example, suppose that there is in storage a number which in binary
would appear as:

110 100 000 001 010 011 100 101 110 111 101 010 111 000 110 101
The four leftmost bits (binary digits) are called the sign bits of the word; in our
case they are sometimes treated as sign bits and sometimes not. The following
list shows several '""O'" formats and how they would cause the number above to

be written out:

Ol6 6401234567527065
O17 +001234567527065
010 4567527065

O3 065

Suppose that there is another number which in binary is:
000 011 111 110 101 100 O1l1 010 001 000 OI1 101 100 010 010 010

The same field specifications would produce:

016 0376543210354222
0o17 -376543210354222
o10 3210354222
03 222
Field Specification ""A'" (Alphabetic) Aw

The "A' field specification is used to indicate conversion between an internal 48-bit
Honeywell 800 word, considered as the alphanumeric representation of eight Honeywell 800

characters, and an external field consisting of any combination of eight or fewer Honeywell

v 800 characters

Input Data Preparation

If w is less than 8, the field will be stored in left-justified form, i. e.,
the first character of the field will appear in the leftmost character position
of the computer word, and the extra characters at the right end of the computer

word will be filled with blanks.

58

SECTION V. INPUT AND OUTPUT STATEMENTS

Output Data Presentation

* If w is less than 8, the w characters at the left end of the computer word

will be written.

To illustrate one possible usage of this field specification, suppose that
12 five-character identification words have been punched on a card, and are
to be read in as the 12 elements of a one-dimensional array named TYPE, It
is desired later, on output, to print one of these identifying words with each
element of another array named DATA; if the first element of DATA is printed,
then the first element of TYPE is to be printed following it, etc. The five-

character identifying word is to be printed in parentheses. The 12 five-character

groups could be read in with:

ALGEBRAIC COMPILER STATEMENT

: mrel LT P LTI T] wrrrensy CHECKED BY ______ DATE—— PAGE__OF——
[of STATE. S
CINUnBER|T ALGEBRAIC COMPILER ~ STATEMENT
N
i [1] 23 38 52 66 1z 80
\ L ¢ g‘f‘h‘p'7‘o|o‘ll"r'\f';;é| rrrrrrTrrTrrTreryTrrrvrrrrryrrrr Ty rrr e ey T rrrr T YTy Trrynrg
21 | 700| \FORMAT (1245)
The READ statement could have been READ 700, (TYPE(I), I=1, 12), but
this is not necessary; recall that an entire array may be moved simply by
giving its name without subscripting information. Now, to print out an
element of DATA and the corresponding element of TYPE in parentheses,
we could write:
el L L P T I T T] wrimen sy ____ CHECKED BY _ DATE ———_ PAGE __OF——
\ A STATE. [S
CN%TER? ALGEBRAIC COMPILER STATEMENT
! Z H 23 38 52 66 724 80|

™r T ™ AL VL L A L O G | rrrrrryryrrrrrryrsryrrryrryrrrryryryrrrerrrryyrrrryryryeryrryrrriroad
i PRINT 701, pATA(L]), TYPECT
21| 201 [FormaT (E20.8, 3|0 (a5, 14))
. = g SR I R i

This must be read very carefully. In the FORMAT statement, the two blanks
after the 3H are deliberate, being intended to separate the left parenthesis
from the number. The left parenthesis then is text, not a controlling paren-
thesis in the FORMAT statement. The same comment applies to the first

right parenthesis after the 1H which could easily be misread. A typical line

59

SECTION V. INPUT AND OUTPUT STATEMENTS

printed by these statements might be:
-0.80402197E-04 (GASO038)

Field Specification '"B'" (Blank) 1 wB

Input Data Preparation

On input, the "B' field specification calls for the next w character positions
in the input record to be skipped over. No indication is required in the list of the

input statement referencing the FORMAT statement.

Output Data Presentation

On output, the '"B' field specification calls for w blanks to be inserted into
the output record. No indication is required in the list of the output statement

referencing the FORMAT statement.

This field specification does nothing that cannot be done in other ways, but
it is often a considerable convenience. One common use is in avoiding long

Hollerith field speciﬁcations to introduce long strings of blanks.

READ Statement READ n, List

In this statement, n is the statement number of a FORMAT statement, and the list is as

described previously. The READ statement calls for the reading of cards from the on-line
card reader designated as number 1. As many cards are read as are required to supply the
amount of information specified in the list and the FORMAT statement. The arrangement of
information on the cards is defined in the FORMAT statement; each field is converted, also
as defined in the FORMAT statement, and placed in the computer storage location assigned

to the corresponding variable named in the list.

If, when the READ statement is executed, the card in the card reader has the word
FINIS punched in columns 2 through 6, the program will expect to find an IF END OF FILE
statement immediately following the READ. This provides a simple way to signal the end
of a deck which consists of a variable number of cards, becaiuse the IF END OF FILE state-
ment allows one to alter the flow of control upon detection of the end-of-file condition, If

this condition arises and there is no IF END OF FILE statement immediately following the

! The field specification "X" may be used interchangeably with field specification "B''.

60

SECTION V. INPUT AND OUTPUT STATEMENTS

READ, the object program will give an error indication and stop. It is permissible to have
more cards following the one with FINIS in columns 2 through 6, so that the FINIS card may

be used to separate groups of data cards into files.

READ ONE Statement READ ONE n, List

This statement is exactly equivalent to the READ statement.

READ TWO Statement READ TWO n, List

This statement is equivalent to the READ and READ ONE statements, except that

cards are read from the on-line card reader designated as number 2.

PRINT Statement PRINT n, List

In this statement, n is the statement number of a FORMAT statement, and the list
is as described previously. The PRINT statement causes lines to be printed on the on-line
printer designated as number 1. As many lines are printed as are necessary to use the amount
of information specified in the list and contained in the FORMAT statement. The arrangement
of information in the lines is defined in the FORMAT statement; each variable in the list is
converted, also as defined in the FORMAT statement, and written on the printer. Up to 120

characters may be printed on one line.

PRINT ONE Statement PRINT ONE n, List

This statement is exactly equivalent to the PRINT statement,

PRINT TWO Statement PRINT TWO n, List

This statement is equivalent to the PRINT and PRINT ONE statements, except that

lines are printed on the on-line printer designated as number 2.

PUNCH Statement PUNCH n, List

This statement operates the same way as the PRINT statement, except, of course,
that cards are punched on an on-line card punch instead of lines being printed. Up to 80

columns may be punched in one card.

PUNCH ONE Statement PUNCH ONE n, List

This statement is exactly equivalent to the PUNCH statement.

PUNCH TWO Statement PUNCH TWO n, List

This statement is equivalent to the PUNCH and PUNCH ONE statements, except that
cards are punched on the on-line card punch designated as number 2.

61

SECTION V. INPUT AND OUTPUT STATEMENTS

READ INPUT TAPE Statement READ INPUT TAPE i, n, List

This statement is used to read a magnetic tape which contains records of up to 80
Honeywell 800 characters in alphanumeric form. Such a tape may be produced in either-

of the following ways:

1. By the computer, operating in the parallel processing mode., A special
program reads cards from an on-line card reader and writes the informa-
tion onto a tape; no other parallel-processed program is affected nor
slowed significantly. The tape so produced may later be read by an
Algebraic Compiler program without ever removing the tape from the
computer, or more often dismounted for use at a later time.

2. By an off-line card-to-tape converter.
These methods are often preferable to reading cards directly with a READ statement, because
tape can be read much more rapidly than cards; if there is voluminous data, the difference in

time can be appreciable.

In this statement, i is an unsigned fixed-point constant in the range of zero through 63,
and must be the number of a magnetic tape unit which is available on the computer system
to be used by the object program. Symbolic tape addresses are not permitted. The statement

number of a FORMAT statement is given by n, and the list is as discussed previously.

With regard to end-of-file conditions, this statement operates much as the READ
statement does, although the conditions detected are somewhat different. Either of the
following is an end-of-file condition for the READ INPUT TAPE statement:

1. Detection of the physical end of-the tape during the reading of a record.
In this case, the reading of the record involved was completed, but
there should not be any more valid information on the tape;

2. Detection of a record produced by a card which had the word FINIS
punched in columns 2 through 6.

WRITE OUTPUT TAPE Statement WRITE OUTPUT TAPE i, n, List

This statement is used to write a magnetic tape record containing up to 120 alphanumeric
Honeywell 800 characters. Sucha tape can then be printed by a parallel-processed program

or an off-line tape-to-printer converter.

In this statement, i is an unsigned fixed-point constant in the range of zero through 63,
and must be the number of a magnetic tape unit which is available on the computer system
to be used by the object program. Symbolic tape addresses are not permitted. The statement

number of a FORMAT statement is given by n, and the list is as discussed previously.

62

SECTION V. [INPUT AND OUTPUT STATEMENTS

As many records are written as are required to exhaust the list, The FORMAT state-

ment determines the type of conversion applied to each variable in the list. An END FILE

statement should be given after writing the last record.

It may be noted that a tape to be printed, either by a parallel-processed program or by

an off-line converter, must have information in each record to control the page spacing. See

the discussion of the Hollerith field specification for a discussion of this topic.
With the WRITE OUTPUT TAPE statement, an end-of-file indication is given only by

reaching the physical end of tape during the writing of the record. There is enough tape

beyond the end-of-tape marker to allow continued writing of as many as 2, 048 words.

READ TAPE Statement READ TAPE i, List

This statement is used to read tapes produced by a WRITE TAPE statement, and is

similar to that statement in all respects.

It is important to realize that the numbers read from tape are in no way associated
with the names of the variables that were originally placed on the tape. Once the tape has
been written with a WRITE TAPE statement, the only information on the tape consists of
the variables themselves, not their names. Thus, if the list associated with the WRITE
TAPE statement is A, B, C, and the list associated with the READ TAPE statement is

C, A, B, the information formerly in A will be read back into C, etc.

The end-of-file condition for the READ TAPE statement consists of detecting the end-

of-file indication written on a tape by an END FILE statement. Note that it is necessary to

read the record produced by the END FILE statement in order to get the end-of-file indication;

it is not given on reading the last record before the indication written by the END FILE state-

ment.

WRITE TAPE Statement WRITE TAPE i, List

This statement is used to write a magnetic tape which is to contain Honeywell 800
words exactly as they appear in storage, without any type of conversion; note that no
FORMAT statement is referenced by the WRITE TAPE statement. It is used in prob-
lems where there is tao much intermediate data to be stored within the computer; inter-

mediate results can be written onto tape, then brought back in later with a READ TAPE

63

SECTION V. INPUT AND OUTPUT STATEMENTS

statement. A tape prepared by a WRITE TAPE statement cannot ordinarily be meaning-
fully printed on an off-line printer. In the statement, i is an unsigned fixed-point constant

in the range of zero through 63, and must be the number of a magnetic tape unit which is
available on the computer system to be used by the object program. Symbolic tape addresses

are not permitted.

With any of the four preceding tape statements, there exists the possibility that there
could be an error on the tape. It is expected that the incidence of tape errors with the
Honeywell 800 System will be very small, and that most of the errors which do occur can
be eliminated by re-reading the tape record or by use of Orthotronic correction. If, how-
ever, an uncorrectable error does occur, it is desirable to be able to alter the flow of
control in the program. In such a rare case, it may be possible to go on to the next set
of data after printing an indication of the bad tape record; perhaps it is necessary to stop
the program if an uncorrectable error occurs. The alteration of the normal statement
processing sequence in the event of such an error can be effected by use of the IF PARITY
statement. This statement, which was discussed in Section IV on control statements, must
be the next executable statement after the tape statement, if it is used. If the statements
IF PARITY and IF END OF FILE are both used, as they often will be, the IF PARITY must
be first.

END FILE Statement END FILE i

This statement is used to write, onto magnetic tape number i, a signal which can be-
recoghized by the IF END OF FILE statement for binary tapes and by the off-line printer for
alphanumeric tapes. It is ordinarily used to indicate that there is no more valid information
on the tape, but it may also be used to separate groups of records into files, for any purpose

that may be convenient.

REWIND Statement REWIND i

This statement is used to rewind, to the beginning of the tape, the magnetic tape reel

mounted on tape unit number i.

BACKSPACE Statement BACKSPACE i

This statement is used to backspace, by one logical record, the tape mounted on tape
unit number i. In the case of a tape written by the WRITE OUTPUT TAPE statement, a
logical record is the same as a physical record. In the case of a tape written by a WRITE

TAPE statement, a logical record may be one or more physical records, depending on the

SECTION V. INPUT AND OUTPUT STATEMENTS

size of the logical record. If the tape is already at the beginning of the tape when this state-

ment is executed, the tape will not move and no indication will be given.

BUFFER Statement BUFFER (nl, n_, n3), (ml, m._, m3), .o

2 2
The BUFFER statement makes it possible to shorten considerably the execution time

of a program involving the reading and writing of large arrays with the READ TAPE and
WRITE TAPE statements. When such a statement is buffered, the reading or writing is
carried on simultaneously with computation, so that there is very little time added to the

program by the tape operations,

The statement may only be used in connection with the READ TAPE and WRITE TAPE
statements, and the list in each case must consist of the name of exactly one array shown
in non-subscripted form. The name of the array must naturally appear elsewhere in a
DIMENSION statement. The symbols used in the specimen statement above are to be inter-

preted as follows:

n1 = IN for reading, OUT for writing
n, = number of the tape unit involved
n, = number of words in the longest record to be read or written with this tape

As many buffers as required may be set up with one BUFFER statement, or separate state-

ments may be used.

For input, a buffer area of the size specified (n3) will be set up for each buffered tape,
plus a transfer buffer of approximately 105 words. For output, there will again be a 105-
word transfer buffer, plus one buffer area (no matter how many tapes are buffered) of a
size equal to the largest buffer requested. Input buffering, if used, will result in the com-
pilation of an object routine for handling the buffering of approximately 150 instructions,
as will output buffering if used, Several additional special register groups in the Honeywell

800 are required for buffering.

The READ INPUT TAPE and WRITE OUTPUT TAPE statements may not be buffered.

ERASE Statement ERASE (List)

' This statement may be used to clear to zero the locations corresponding to the vari-
ables specified in the list. It is not, strictly speaking, an input or output statement, since
it does not involve any input or output device. It is discussed here because it resembles an
input or output statement to the extent that it does require a list. This is an executable

statement, i. e., the locations mentioned are cleared to zero every time the statement

is encountered in the object program.

65

SECTION V. [INPUT AND OUTPUT STATEMENTS

As an example, an acceptable ERASE statement would be:

ERASE (TEMP, ALINE, NZERO, (BLINE(I), I=1, 9, 2))

As an illustration of several of the input and output statements, we shall show a

complete program to read two matrices from tape, multiply them, and prepare an output

tape containing the product matrix.

Suppose that matrix A is to be multiplied by matrix B to give the product matrix C,
Suppose that matrix A has L rows and M columns, B has M rows and N columns; matrix C

will then have L rows and N columns. If <, is a typical element of the C matrix, it is
3

k
defined by the summation formula:

This formula must then be evaluated for every combination of i and k, where i is between

1 and L, and k is between 1 and N.

Suppose now that the input tape has been prepared from cards which were punched as
follows. On the first card, L is punched in columns 1 and 2, without a sign; similarly, M
is punched in columns 11 and 12, and N in 21 and 22. The columns between the numbers
are blank. The elements of matrix A then follow on the second and succeeding cards, as
many as are required, in correct order, i. e., with the first subscript varying most
rapidly. Each element is punched in 10 columns, with no space between elements, in the
general form znn,nnnEee. That is, the numbers are punched with a decimal point (which
actually may be anywhere in the number), and with an exponent. The first element of
matrix B appears immediately after the last element of matrix A, This is not necessarily
the best way to set up the input cards, especially if the matrices are very large, because
of the possibility of error in punching the numbers or of getting the cards out of sequence,
and because of the inflexibility of the scheme. For these reasons, one might prefer to
punch one element on each card, with an identification of which element each one is, as was

done in a previous example.

After the two matrices have been multiplied, the matrix C is to be written out on an
output tape for subsequent printing, with the following page format. At the top of the page
there is to be a heading line which identifies the output as being the product matrix C, and

the values of L, M and N, The elements are then to be printed, in normal array order, one

to a line., Each number is to be converted by the "E' field specification, in the same form

as the input elements except that they are printed one to a line for ease of readability.

66

SECTION V. INPUT AND OUTPUT STATEMENTS

Furthermore, each element is to be preceded by an identification of which element it is,
so that a typical element would appear as:

Cc(12, 19)= -78.914E 02

A scale factor of 2 will be required to move the decimal point of the number two places

to the right of its normal position with the "E' field specification.

No IF END OF FILE statement is used, since it is assumed that the tape is long
enough to hold all the elements and there would be no end-of-file indication otherwise.
The IF PARITY statement transfers control to a STOP statement if an uncorrectable

error is found.

The DO loop below which performs the matrix multiplication contains three DO's.
The innermost DO performs the summation shown in the formula. The middle DO moves
through the columns of the B matrix, and the outer DO moves through the rows of the A
matrix, Notice that since we accumulate the C element in the location assigned to the
element, it is necessary to set the location to zero initially., The DIMENSION statement
establishes storage space for the three matrices, and sets the maximum size of the

matrices which can be handled, which is assumed to be 30 x 30 here.

ALGEBRAIC COMPILER STATEMENT

e (L T LT T T T) writreN By — CHECKED BY _______ DATE— _ PAGE___OF—
Ql S}I»E\Lﬁ-é ALGEBRAIC COMPILER STATEMENT
NUMBER}]
i Nb] 23 38 52 66 724 80
| T‘I‘;LE»;;XYM'p‘Y'“’I'I" Trrrprrorrvrrryrrrrryryrrrrrryrrryrrr1rrrrrrrryrrrrr1 LI
2 DIMANSTON A(30,30) B(30,30) d(30,30)
3 READ INPuT TAPE |6, 10, L, M _N| ((ACI,J), T=/ L), J=1,M)
4 ccsdo, k), v-1, ml| k=1,8) i ' i
5 IF AARITY 8,9
3 8| [570~A
7 1O |ForMAaT (12, 88, |t|2, 88, 12/@BE10.0))
8 9 o |t =1L
9 o Il k=1 ,N
10 c(r k) = 0.0
1l bo I dJ=1I,M
1 il le¢r,lk) = e(z,k) |H A(r,J) % B(J, k)
13 WRITIE ouTPUT TARAAE 71, 12 L M N
1 12| |FoRMAT (z5HPRooulc|lT MATRIX ¢, wWIThH L= 12 4R M- Iz 4H A= |12///D
15 WRLT|E ourear TAAEl 7. 13 (((1, Kk, c(1,K) . I=1. L), k=1,N)
el 13| |roeMar (zac(12| |in, 13, 28) - |2PEi53) |
17 REWIND &
ol Nlewolrzee 7 11 L e
19 REWIND 7
P STOP
21 END

L1 IR VU U S U N VY YO WO T SO O TG I | T SN SN TN TN WO Y T NN WA O N T YO Y W NN Y W S I O O N |

S TN N TN O N O T T WO B
STAT. NO.|
>
Al DATA NAME COMMAND CODE A ADDRESS B ADDRESS C ADDRESS E///%

67

\\\

SECTION Vi

FUNCTIONS

General Considerations

The techniques described in this section are designed to provide a number of conven-

iences to the programmer.

1. Open functions and library functions to provide an easy way to obtain certain
commonly-used operations without actually writing a set of statements to compute
them.

2. All of the methods of this section, except open functions, provide a means to put a

program in memory, in one place, then call it into operation from many other
places in the program. This saves both programming effort and storage space.

3. The FUNCTION and SUBROUTINE statements provide a way to break a program
into subprograms which may be compiled independently if desired. This makes it
possible to compile and check out a complete program in sections, as it is written,
and to recompile only the affected parts when corrections must be made.

Before examining each of the techniques in detail, a little must be said about the mechan-
ics of compilation of a program written for the Honeywell Algebraic Compiler. It is not neces-
sary to go into all the intricacies of operation of the Compiler, but in order to understand the

various functions it is necessary to know something about the idea of the Collector Tape. The

collector is a tape on which are ''collected' all the compiled programs which are available

for operation on the computer at an installation. The output of a compilation is a set of rec-
ords added to the collector tape, plus an optional listing which shows the storage requirements
of the program and certain other information. The output of a compilation, however, is not in
final form on the collector tape, but rather is on the tape in sections, ready to be 'collected"
together to form a running program. The final collection is initiated by the computer operator,
using control cards which specify what sections to collect to form a program and other im-

portant information which is described later.
The point of this apparent digression will become clear in the discussion of the form in
which the various types of functions appear on the collector tape; it will also become clearer

then why it is advantageous that the collector tape be set up as it is.

Open Functions

There are a number of operations, all of which could be programmed by writing suitable

combinations of ordinary statements, which are required so commonly that they have been

69

SECTION VI. FUNCTIONS

provided as built-in functions in the Algebraic Compiler system. These open functions, as

they are called, are compiled into the object program wherever their names appear. To
emphasize: if an open function is used many times, it appears in the object program many
times, and there is no question of setting up a mechanism for going to the function and then
returning to the section of the program which called it into operation. This is the essence of
an open function, that it is inserted wherever needed and as many times as needed. None of

the other types of functions have this characteristic.

The Honeywell Algebraic Compiler, as supplied, contains 13 such open functions, with
provision for adding several more, as described in the Operations Manual, The standard

functions are shown in Figure 6.

NOTES: 4. The function MODF(Arg,, Arg.) is defined as Arg, - [Arg, / Arg. | Arg._,
1 2 &4 1 2 2

where[x] = integral part of x.

Mode of
Name Argument Function Type of Function Definition
ABSF Floating Floating Absolute Value |Arg|
XABSF Fixed Fixed
INTF Floating Floating Truncation Sign of Arg times
XINTF Floating Fixed Largest Integer
s|axg
MODF Floating Floating Remaindering Arg1 (mod Argz)
XMODF Fixed Fixed (see note 1 below)
FLOATF Fixed Floating Float Float Fixed Number
XFIXF Floating Fixed Fix Same as XINTF
SIGNF Floating Floating Transfer of Sign Sign of Arg2 times IArgi’
XSIGNF Fixed Fixed
DIMF Floating Floating Diminishing IArg'1 - Arg, |
XDIMF Fixed Fixed
EXCLORF Boolean Boolean Exclusive OR (Arg'1 + Argz) * (-(Arg1 * Argz))

Figure 6. Open Functions of Honeywell Algebraic Compiler

The name of an open function consists of four to seven alphabetic or numeric characters

(but no special characters), of which the first must be alphabetic and the last F. The first
character must be X if and only if the value of the function is to be fixed point. The name of

the function is followed by parentheses enclosing the argument(s), which are separated by

70

SECTION VI. FUNCTIONS

commas if there is more than one. Each open function has a prescribed mode (fixed or float-
ing point) for its argument(s) and for its value; different functions must be used for each com-
bination of modes of argument(s) and function value. The output of an open function always
consists of one value. Any expression (of the correct mode) including another function, may

be used as an argument of an open function.

The absolute value function is a good example of an operation which could easily enough
be programmed explicitly (using an IF statement). However, since it is required so frequently
it is much more convenient for the programmer to use it as an open function. One common
use for the absolute value function is in testing for completion of an iterative process which is
to be done repeatedly until two successive results are the same to within some pre-established
tolerance. Suppose that a loop has been set up to compute a value, that the current value is
named CURRNT, that the previous value is named PREYV, and that the tolerance has been read
in from cards into TOLER. If the absolute value of the difference between CURRNT and PREV
is less than TOLER, we want to go to statement 112, but if it is greater than or equal to
TOLER, we want to go back to statement 77. One statement will do this:

IF(ABSF(CURRNT - PREV) - TOLER) 112, 77, 77

An alternative method would be to use the DIMF function, which gives the absolute value
of the difference between its two arguments:
IF(DIMF(CURRNT, PREV) - TOLER) 1412, 77, 77

There is little to choose between the two, in this case.

Library Functions

One of the characteristics of an open function is that it requires only a few instructions
in the object program. The library functions are provided for the computation of functions
which are also commonly used, but which require more instructions. These are used by the
programmer in exactly the same way as open functions, but are treated differently by the
Compiler. The most important difference is that a library function is inserted into the object
program only once, no matter how many times the programmer uses it, even if it is used in
different subprograms (see below). Thus, if the square root function (see Figure 7) is used
10 times in five different subprograms, it will still appear in the object program only once,

for the use of all subprograms.
The mechanism by which this is done involves the collector tape. The library functions

are on the collector tape, ready to be inserted when the object program is finally collected

and run, When a compiled program is collected, the collection program in effect scans a

71

SECTION VI. FUNCTIONS

table which has been set up for each subprogram involved, and places in the final program all
library functions which appear in any subprogram. No extra effort is required to be sure that

library functions do not appear more than once in the object program.

The Honeywell Algebraic Compiler, as supplied, contains 15 library functions, which
are listed in Figure 7. No provision is made for adding others, but the FUNCTION subpro-
gram method is available for adding functions to the collector tape; such functions can then be

used in much the same way as library functions.

Wherever the name of a library function appears in a program, control is transferred to
the function program; at the end of the functioh program, there is a return linkage to get back
to the place from which control was transferred. All of this is automatic, so far as the pro-
grammer is concerned; it is only necessary to write the name of the function for everything

described above to happen.

Name Type of Function

LOGF Logarithm to the base e)
*SINF Sine
*COSF Cosine

EXPF Exponential (e 2¥8)

SQRTF Square Root Floating
*ATANF Arctangent > Point
*TANHF Hyperbolic Tangent Functions

*HMAXOF Choosing Largest Value (fixed argument)

MAXAF Choosing Largest Value (floating argument)

#%EMINOF Choosing Smallest Value (fixed argument)
MIN1F Choosing Smallest Value (floating argument)}

The MAX and MIN functions may be preceded by an X to indicate
that the resultant value is to be fixed point.

*All trigonometric functions deal with angles in radians.
*EMAX (Argl’ Argz, ceee)
FEMIN (Argl, Argz, R

Figure 7. Library Functions of Honeywell Algebraic Compiler

The nameof a library function consists of four to seven alphabetic or numeric char-
acters (but no special characters), of which the first must be alphabetic and the last F¥. The
first characte_r is X if and only if the value of the function is fixed point., The name of the
function is followed by parentheses enclosing the argument(s), which are separated by commas

if there is more than one. Each library function has a prescribed mode (floating point) for its

72

SECTION VI. FUNCTIONS

argument(s) and for its value; floating-point functions require floating- point arguments except
for MAX and MIN functions which are defined by combinations. Any expression (of the correct
mode), including another function, may be used as an argument of a library function. The out-

put of a library function is always one value.

As an elementary example, a computation done before may now be carried out using the
square root function. The problem was to compute:

D =\|(xz -x1)% 4 (v2 - 1)°

This can be done with the statement:
D = SQRTF((X2 - X1) *% 2 + (Y2 - Y1) %% 2)
Incidentally, the use of the square root function is somewhat to be preferred over raising to

the 0.5 power, since the square root function operates a little more rapidly.

As another example, suppose that it is required to compute, for a given value of X
already in storage, the value of the following function:

Z = -X ctn X + log |sinX|
The logarithm here is the natural logarithm, which is what is supplied with the system. The
system does not include the cotangent function, so we shall compute it from:

ctn X = cos X / sin X
The following statement will compute the value of Z:

= -X * COSF(X) / SINF(X) + LOGF(ABSF(SINF(X)))

It may be noted in passing that this statement contains the minimum possible number of

parentheses.

Another example of the same general nature but illustrating how expressions may be

used as arguments, is the evaluation of the following formula:

B 1 CX |A
ZINT = C\lm arctan Qa \J?)

This may be computed by use of the following statement:

ALGEBRAIC COMPILER STATEMENT

Tme[T T T TTTT])] WRTENBY________ CHECKEDBY __ _____ DATE —— . PAGE —— OF—
A, C
5| Sieny |8 ALGEBRAIC COMPILER STATEMENT
CINuMBER)]
| 2 " 23 38 52 [72 80
™Tr T ™ T T Y T 77T T Tl - T 1TV T.1T 7T T, Thin] ¥ Trid TTr1 1 U vT
"zInT] = (1.o/Ic ¥ [s|QRTF(AXB))) ¥ [ATANF(EXPFERX)| % s'Q'R'fF‘('A/e)l '

This statement contains one extra set of parentheses: those enclosing the multiplier of the

arctangent were added for clarity. Incidentally, the formula might have been written as:

73

SECTION VI. FUNCTIONS

arctan Q}CXF)
ZINT = B

C\A- B

and the statement written as:
ZINT = ATANF(EXPF(C * X) * SQRTF(A / B)) / (C * SQRTF(A * B))

The result is, of course, the same. (All the parentheses here are necessary.)

Defined Functions

The open and library functions discussed so far are both available in the system as sup-
plied, and are brought into the object program simply by writing their names. It frequently
happens that the programmer finds some computation occurring many times in a program, so
that it would be convenient to be able to define the computation as a function for the purpose of
the one program alone, and then use it as often as required in that program. This is how a

defined function is used.

A defined function, also called an arithmetic statement function, is defined with a single
statement and then brought into operation elsewhere in the source program, wherever its
name appears. A defined function applies only to the program or subprogram in which it

appears.

A defined function is defined to the Compiler by a statement of the form a = b, where a
is the function name and b is an expression. The name of a defined function consists of from
four to seven alphabetic or numeric characters (but no special characters), of which the first
must be alphabetic and the last F. The first character must be X if and only if the value of the
function is to be fixed point. The name of the function is followed by parentheses enclosing the
argument(s), which are separated by commas if there is more than one. In the definition
statement, the arguments must be distinct non~subscripted variables; there may be any num-
ber of them from one to 40, The right-hand side of the definition statement may be any ex-
pression which does not involve subscripted variables; it may involve variables not specified
as arguments, and may make free use of other functions. The arguments which appear in the
definition statement are only dummies which specify to the Compiler how to substitute into the
defined function the arguments which are written when the defined function is later used.
Therefore, the variable names used in the function definition are unimportant, except as they
indicate fixed or floating point, and may be the same as the names of variables appearing

elsewhere in the program.

74

SECTION VI. FUNCTIONS

So far we have spoken only of the definition of a defined function. In order to use a de~-
fined function, one merely writes the name of the function whenever its value is wanted, writ-
ing for arguments any expressions which agree in number, order, and mode, with the argu-
ments as stated in the definition of the function. These (actual) arguments may be subscript-
ed, whereas in the definition the dummy arguments cannot. The output of a defined function

always consists of one value.

The program which is compiled to carry out the operations specified in the function de-
finition statement appears once in the object program, at the end of the program in which it
appears (but recall that the definition applies only to the program or subprogram in which it
appears). Each time the defined function is used (by writing its name with suitable argu-
ments), the object program then refers to the one place where the defined function appears.

A defined function is thus compiled as a closed subroutine.

For a typical example, suppose that in a certain problem it is frequently necessary to
evaluate the formula:

(-B + SQRTF(B *% 2 - 4, * A * C)) / (2. * A)
Each time this formula is evaluated, it is necessary to use different expressions for A, B,
and C. The function could be defined by the statement:

ROOTF(A, B, C) = (-B + SQRTF(B #*% 2 - 4, * A * C)) / (2. * A)
Now suppose that it is necessary to evaluate this formula with A equal to DATA (6), B equal
to 12.8, and C equal to the absolute value of X minus Y. The result is to be added to Z3 and
the sum stored as VALUE. The following statement accomplishes this:

VALUE = ROOTF(DATA(6), 12.8, ABSF(X - Y)) + Z ** 3

It would have been possible, although pointless, to do the same thing with these four state-

ments:
ALGEBRAIC COMPILER STATEMENT

e L] T I T T T T} writren By CHECKED BY ____ DATEe— PAGE__ OF——
*;‘- STATE- [S)

5&3&? ALGEBRAIC COMPILER STATEMENT

I 'Z i 23 38 52 1] 72¢ 80
. ™7 ,4“-'—'0'9“['/-)‘(‘6‘)“'" T T T T T T Tt 1T r T rrrfyrrrvrrryrrrrrrrrrrrr i rrrer 7y yryrrrrfrrrriorrr
2 8 = |12.8
3 C = |#BSF(x-Y)
41, VALUE = ROOTF(A,|8l,C) + Z%%3

This alternative is shown to try to bring out the point that the variables used in defining the
function and the variables used for arguments in using the function are unrelated and inde-

pendent., This point is seen even more clearly if we write the program in the following way,

75

SECTION VI. FUNCTIONS

which gives exactly the same result as the previous two:

ALGEBRAIC COMPILER STATEMENT

TITLE I T11 D D WRITTENBY ______ _~ CHECKED BY DATE PAGE — OF —
] et £
CINUMBeR}T ALGEBRAIC COMPILER STATEMENT
! I3 1] 23 38 52 [72) 80
™1 T -t 7Ty rrrr Tt T rrrrrrrirrrJjtrrrrfryrrrrrryrrrryrrryrorg1r1r1r1J1rrrryyryreyr 0prrorveraey
! A = |/2.8
2 3 = WBSF(X-Y)
3 C = 1pATACG)
o, ALUIE = ROOTF(c,|A|,B) + z%%3
- — ' ¢ 1 o v —

Suppose that at some other point in the program we need to evaluate the formula with A
equal to the square root of X2 plus Y3, B equal to 12.8, and C equal to X + Y + Z all divided
by 6; the result is to be raised to the 1,789 power and stored as the new value of HEAT:

HEAT = (ROOTF(SQRTF(X %% 2 + Y #% 3), 412.8, (X + Y + Z) / 6.)) %% 1,789

Two defined functions are involved in the following example, both involving only the one
variable X; the other variables are defined elsewhere in the program. The indefinite integral

of the function:

1
2 3/2
(AX + BX + C) /
is given by:
4AX + 2B

2 2
(4AC - B) \[AX +BX +C
This expression is to be evaluated; this could be done with one defined function. Here, how-
ever, we shall use two defined functions in order to make the first one available for use by it~

self elsewhere in the program. The definitions:

ALGEBRAIC COMPILER STATEMENT

el L1 1V 1 T 1) wrerensy___ CHECKED BY DATE PAGE —— OF —_
i Sﬁ?ﬁf% ALGEBRAIC COMPILER STATEMENT

CINUMBERET

I . 2 1] 23 38 52 66 72 80|
L TexxA(x)” = serTEdalk xexz '+ BxxX v [cy [T TTTTTTTTTTRI TR TN
2 PNTE[(X) = (4.%A]x + 2.%B)/((4.4{A%C - BH*2) % [FxXXF (X))

If now we want to obtain the value of the integral evaluated between the lower limit 4.0 and the
upper limit X, this value to be named FCTN, we can write:

FCTN = PNTF(X) - PNTF(1.0)
The X here must of course be defined elsewhere in the program; it has nothing to do with the

X used in the definitions.

76

SECTION VI. FUNCTIONS

FUNCTION Subprograms

The FUNCTION statement described below may be viewed in two rather different ways.
One is to regard it as a convenient way to set up a function to carry out some often-used seg-
ment of a program (similar to a defined function) using as many statements as may be re-
quired, however, instead of the one statement to which a defined function definition is limited.
The other is to regard a FUNCTION subprogram as an alternative way to do approximately the
same thing that a SUBROUTINE subprogram (see below) does, i.e., allow one to partition a

complete program into pieces which may be compiled independently.

A FUNCTION subprogram is one which is defined by the use of a FUNCTION statement
followed by any number of statements, and then activated elsewhere in the program by writing
the name of the function with suitable arguments. A FUNCTION subprogram is an independent
part of a total program. Its variable names may be the same as names which appear in the
main program or in other subprograms. It may have its own DIMENSION and EQUIVALENCE
statements. Any defined functions appearing in a FUNCTION subprogram apply only to that
subprogram, The arguments in a FUNCTION statement may be the names of arrays as well
as the names of single variables. The output of a FUNCTION subprogram always consists of
a single value. A FUNCTION subprogram may be batch compiled with a main program and/or

other subprograms, or it may be compiled independently.

The name of the FUNCTION subprogram must not be one that is already on the collector
tape. FUNCTIONs on the collector include the names of the library functions, and in some
cases these same names preceded by a Q. The user is urged to check against the list of func-

tions already on the collector tape at his installation.

FUNCTION Statement FUNCTION Name (ai, 3y a.n)

The name of a FUNCTION subprogram consists of from one to six alphabetic or numeric
characters (but no special characters), the first of which must be alphabetic; the first char-
acter must be I, J, K, L, M, or N if and only if the value of the function is to be fixed point,
and the last character must not be F if the name is more than three characters long. (Notice
the contrast in naming between this and the functions above.) The name must not appear in a
DIMENSION statement in the FUNCTION subprogram, nor in a DIMENSION statement in any
program which uses the subprogram. (Otherwise the FUNCTION will be mistaken for a sub-
scripted variable.) The name must appear at least once in the FUNCTION subprogram as a
variable on the left-hand side of an arithmetic statement, or alternatively in an input state-
ment list. The name of the FUNCTION subprogram is followed by parentheses enclosing the

argument(s), which are separated by commas if there is more than one. In the FUNCTION

77

SECTION VI. FUNCTIONS

statement, the arguments must be distinct non-subscripted variables appearing on the right-
hand sides of executable statements of the subprogram. There may be any number of argu-

ments from one to 48 (see Appendix C).

As with a defined function, the variables appearing as arguments in the FUNCTION
statement are only dummies, and the remarks about dummy variables made above also apply
here. In addition, none of the dummy variables of a FUNCTION subprogram may appear in
EQUIVALENCE or COMMON statements in the subprogram.

The FUNCTION statement must be the first statement of the subprogram; all statements
which follow, up to the END statement which must appear at the physical end of the subpro-
gram, are taken to be part of the FUNCTION subprogram. The FUNCTION subprogram may
use any type of statement except SUBROUTINE or another FUNCTION. Although FUNCTION
and SUBROUTINE statements may not appear in a SUBROUTINE subprogram, i.e., it is not
possible to define other subprograms within a subprogram, there is no restriction against
using other subprograms within a subprogram, except that a subprogram may not use another
subprogram of a higher level and may not use itself. If a COMMON statement is used in the
subprogram, it naturally refers to the one common storage area which is the same for all
programs collected together. This provides a means of establishing the correspondence be-
tween variables in the subprogram and variables in the main program or in other sub-
programs., This correspondence does not exist otherwise; remember that every subprogram
is an independent entity, The dummy variables used as arguments in the FUNCTION state-
ment must appear in non-subscripted form in the FUNCTION statement, but there is no such
restriction on any variables in the subprogram., A FUNCTION subprogram must contain at

least one RETURN statement, in order to set up the linkage back to the calling program.

All of the above applies only to the definition of a FUNCTION subprogram. To use such
a subprogram, it is only necessary to write the name of the function with arguments which

agree in number, order, and mode, with those in the FUNCTION statement. Furthermore,

when a dummy argument is the name of an array, the corresponding actual argument must also

be an array. The dummy array name must appear in a DIMENSION statement in the sub-
program, and the actual array name must appear in a DIMENSION statement in the program
requesting the FUNCTION subprogram. The dimensions for each must be the same, Dummy
variables which represent single variables may be replaced with any expressions of the cor-

rect mode, including subscripted variables, constants, other functions, etc.

The object program which is compiled to carry out the operations specified in a

FUNCTION subprogram will appear in the object program once, no matter how many times the

subprogram is used.

78

SECTION VI. FUNCTIONS

9 |F ND

ES

For a first example, assume a number of two-dimensional arrays with maximum dimen-
sion of 40 in each direction. Find the largest element (in absolute value) in a specified row of
the array. The row number is identified by the dummy variable I, the actual number of rows
and columns is N (which might be less than the maximum of 10, of course), and the dummy
name of the array is A. The following FUNCTION subprogram would find the absolute value
of the largest of the N elements in the Ith row of A;

ALGEBRAIC COMPILER STATEMENT

mmee LT L LT T T T] wrirren sy CHECKED BY __ DATE . PAGE__OF—
o| STATE. 5
MENT N ALGEBRAIC COMPILER STATEMENT
NUMBER])
N
| b 1] 23 38 52 65 72L 80
v Trrrrrrrrrrrrrrrrrrrrrrrorrr Ttrrtrgyrrrrrrrrqygryryvrreyrrrrirretd

FundTION BI6I N (Al
DIMENSION AC12 o)
BIGIN = 0.0
Do 90 J=1/,N
IF(ABSF(ACI,J)) -| BI¢In) 90, 90,| 89
89 lersiw = aBsF(acall)) ’
90| |CONTINUE
R ET RN

2
7

Now, whenever, the element with the largest absolute value in a given row of a matrix of
maximum dimension 10 x 410 is needed, it can be obtained simply by writing BIGIN with suit-

able arguments.

As an example, suppose that we want to divide every element of the first row of the
matrix DATA by the absolute value of the largest element in the first row (largest in absolute

value), this can be done.

ALGEBRAIC COMPILER STATEMENT

e L T T P T T T 1 wrirren By CHECKED BY _____ DATE e PAGE.__OF —
) et B
CluUnteerft ALGEBRAIC COMPILER STATEMENT
N
1 3 1] 23 38 52 [13 724 80

D‘I‘VM‘EN'S'I'OIN"D'A‘T!A|l(’o‘/"l’o’)lIfT‘[I' l|vl|Il|I||lI1IIIII1_|'III'1‘1IIIII LILELLEL B

BIG [=1.0/(BIGIN (D|A|TA, 1,N))
Do 1100 J = 1, N
, 700| lpATAIC1,J) = PATAI(/, J) ** BIG

]

79

SECTION VI. FUNCTIONS

We would sometimes like to know the column number of the largest element, in order
to do some interchanging of columns; this would require the FUNCTION subprogram to return
to us a fixed-point variable as well as a floating-point variable. If we needed only the column
number and not the element itself, the FUNCTION subprogram could easily be modified to give
this result, but if we needb_otg the largest element and the column number, we cannot use the
FUNCTION method since there is no way to get more than one value as an output. This, how-
ever, can be done with the SUBROUTINE subprogram, although in a slightly different way, as

we shall see below.

The example demonstrated the use of the FUNCTION subprogram to do something that
cannot be done with a defined function, because it required more than one statement and be-
cause it involved an array. The next example is based on a situation involving no arrays, but
requiring more than one statement. The function shown below has three different formulas for
its indefinite integral, depending on the relative sizes of the parameters A and B. If we had to
calculate this integral very often, we would want very much to make a function out of it, but it

would require the use of something other than a defined function since it cannot be done in one

statement.

2 2
A% - B% sin’x AA® - B A

_ 1 \JBZ-AZta.nX+A 2 2
—'——2—-—-—2 log = > , B > A
ZA\‘B - A dB -A tanX - A

This will also give some further practice in writing moderately complex statements involving

open and library functions, as well as in the use of the FUNCTION statement and subprogram,

80

SECTION VI. FUNCTIONS

ALGEBRAIC COMPILER STATEMENT

\ TE[T T TTTTT]) wrreNnsy_____ CHECKED BY DATE PAGE —— OF —
p Shmﬁfé ALGEBRAIC COMPILER STATEMENT
CINuMBER]T
! Ns " 23 38 52 88 s 8
=TT AULEUUR BRI B L B TT T r 1T rT1rerrrJyrrrrryJrrrrrrryrrrrrryqrrrrrrrrryrryyrrrfprrrrrrta
i FUNJTION SININT |(A, B, X)
2 RooT| = SQRTF(ABS|\F|(Axk2 - BaH2))
3 TANX| = sINE(x) A lcosr(x)
4 IFCBR%2 - A¥KZ) |4loo, 500, 600
s| | 400l IsININT = (1./(A¥RoOT)) % ATANF(RooT%TANX/A)
6 IRE TUIRN
1| s500| sININT = Tawx/ ada2
8 RETURN
o | sool ISININT = ()./(2 [MAaxRooT) Y%L 06 F(pBsF ((RoOTHATANX+A)/ (RooTXTANK-A)))
10 RETURN *
1 END
‘ [e — : i

The shortcuts taken here are worth noticing. Since the square root of A2 - B2 or
B2 - AZ occurred several times, the square root of AZ - B2 was computed before going into
the test to determine the relative size of A2 and BZ, so that the instructions for the com-~
putation would only have to appear once; this saves Compiler time, programming time, and
object program memory space. The same type of precomputation was used to get the tangent
of X. There are three RETURN statements above; it would have been acceptable, although a
trifle longer, to place one RETURN at the end and transfer to it from the other places with

GO TO's.

Now if it should be desired to find the value of this integral for A equal to # and B
equal to B(5), evaluated between the lower limit of X1 and the upper limit of X2, and store the
integral as VALUE, it could be dohe with:

VALUE = SININT(3. 144159, B(5), X2) - SININT(3. 14159, B(5), X1)

! SUBROUTINE Subprograms

As with FUNCTION subprograms, SUBROUTINE subprograms may be regarded in two
different ways: either as a way to do certain things that cannot be done with defined functions
or with FUNCTION subprograms; or as a way to break a complete program into parts which
can be compiled and checked out separately if desired. As before, both interpretations lead

to exactly the same statements in the source program, but once again it may clarify matters

81

SECTION VI. FUNCTIONS

to have the two different aspects in mind in reading the descriptions below. Whenever it is
necessary for a subprogram to have more than one variable as output, the SUBROUTINE
method must be used, because all of the other techniques permit only one output value. As a
matter of actual usage, the SUBROUTINE subprogram is used more often for the purpose of
partitioning a program, One reason for doing so is to allow for easy recompilation of parts
that must later be modified or corrected. This saves the computer time of recompiling the

parts that do not require changes.

A most important aspecf of the SUBROUTINE method is that it is possible for a very
large project to be divided into convenient parts which can be programmed, compiled, and
checked out independently by different programmers. After all the parts have been finished,

they can be compiled into a complete program and used.

Finally, there is another important usage of the SUBROUTINE technique. That is in the
case where a program is too large to fit in storage at one time. It is possible, by use of con-
trol cards, to specify that two or more subprograms are to occupy the same locations in
storage; this is called overlaying. When this is done, the effect of the CALL statement (see
below) is to transfer control to the subprogram if it is already in storage, or to bring it in

from tape and then transfer control to it if it is not already in storage.

In order to do all of this, it is neceésary for the SUBROUTINE subprogram to have,
when applicable, its own DIMENSION, EQUIVALENCE, and COMMON statements. And to
emphasize the point once again, a SUBROUTINE subprogram must be regarded as an in-

dependent entity, regardless of whether it is being used for the purpose of partitioning or not.

SUBROUTINE Statement SUBROUTINE Name (ai, Bys ey an)

The name of a SUBROUTINE subprogram consists of one to six alphabetic or numeric
characters (but no special characters), the first of which must be alphabetic and the last
must not be F if the name is more than three characters long. (Note that there is no require-
ment about the first character being I, J, K, L, M, or N to specify fixed point, since the
mode of the arguments determines whether the results are fixed or floating-point variables.)
The name must not appear in a DIMENSION statement in the SUBROUTINE subprogram, nor
in a DIMENSION statement in any program which uses the subprogram. The name of the sub-
routine must not duplicate any name already on the collector tape. The name of the sub-
program is followed by parentheses enclosing the argument(s), if any, which are separated by

commas if there is more than one; if there are no arguments, parentheses are not required.

82

SECTION VI. FUNCTIONS

In the SUBROUTINE statement, the arguments must be distinct non-subscripted variables
appearing in executable statements in the subprogram; input arguments must appear in the
right-hand sides of statements or in lists of input statements, and output arguments in the
left-hand sides of statements or in the lists of output statements. There may be any number
of arguments up to 48, or none; in the latter case, COMMON statements would be used to
establish correspondence between variables in this subprogram and in other subprograms or

in the main program.

As with defined functions and FUNCTION subprograms, the arguments appearing in the
SUBROUTINE statement are only dummies which, in this case, specify to the Compiler how to
substitute into the subprogram the arguments which are written in the CALL statement when
the subprogram is used elsewhere in the program. As usual, then, the variable and array
names used as arguments in the SUBROUTINE statements are unimportant, except as they
specify fixed or floating point, and may be the same as names appearing in the main program
or in other subprograms, However, none of the dummy variables of a SUBROUTINE sub-

program may appear in EQUIVALENCE or COMMON statements in the subprogram.

The SUBROUTINE statement must be the first statement of the subprogram. All state~-
ments from there to the END statement, which must be physically the last statement of the
subprogram, are taken to comprise the subprogram. The SUBROUTINE subprogram may use
any type of statement except a FUNCTION statement or another SUBROUTINE statement. (A
SUBROUTINE subprogram may, however, call other subprograms and use FUNCTIONS.) If
a COMMON statement is used in the subprogram, it of course refers to the one common
storage area which is the same for all programs which are collected together. As noted
above, this provides a way to establish correspondence between the names of variables in
different subprograms and the main program. It must always be kept clearly in mind that
such a correspondence does not exist otherwise; the name DATA in a subprogram is totally
unrelated to the name DATA in the main program, unless a correspondence has been establish-
ed by COMMON statements in both places. (See the complete discussion of the COMMON

statement in Section VIL.)

The dummy variables which are used in the SUBROUTINE statement must appear in
non-subscripted form, but there is no such restriction on any of the variables in the sub-
program itself, dummy or otherwise, nor on the arguments in the CALL statement. Free use
may be made of expressions, including any type of function. A SUBROUTINE subprogram

must contain at least one RETURN statement.

83

SECTION VI. FUNCTIONS

The object program which is compiled to carry out the operations specified in the
SUBROUTINE subprogram will appear only once in the object program which calls the
SUBROUTINE, regardless of how many times the subprogram is called. Each time the sub-
program is used (by calling it with a CALL statement), the object program transfers control
to the subprogram; the RETURN statement then transfers control back to wherever the sub-
program was called from. A SUBROUTINE subprogram is thus compiled as a closed sub-
routine, A SUBROUTINE subprogram must not be written between two statements of another
program. A SUBROUTINE subprogram may be batch compiled with a main program and/or

other subprograms, or it may be compiled independently.

CALL Statement CALL Name (ai, aZ, e an)

All of the above has to do with the SUBROUTINE statement and the statements which fol-
low it, i.e., with the definition of the subprogram. In order to call the subprogram into
operation, it is necessary to use the CALL statement, which transfers control to the sub-
program and transmits the input arguments to it, and then transmits the output variables back
to the calling program when the subprogram has been executed. It should be noted that a
CALL statement may appear in a subprogram, i.e., one subprogram may call another, to any
depth; this applies equally to FUNCTION and SUBROUTINE subprograms. A program may not

call another program of a higher level, and a program may not call itself.

The arguments in the CALL statement must agree with those in the SUBROU TINE state-
ment in number, order, and mode. Furthermore, if an argument in the SUBROUTINE state-
ment is an array name, the corresponding argument in the CALL statement must be an array
name. The dummy array name in the SUBROUTINE statement must appear in a DIMENSION
statement in the subprogram, the array name in the CALL statement must appear in a
DIMENSION statement in the calling program, and the dimensions must be the same. Dummy
variables which represent single variables may be replaced with any expressions, including
subscripted or non-subscripted variables, constants, other functions, etc. Literal alpha-
betic or numeric characters may not be used but, of course, alphanumeric variables may be

used to carry alphabetic information to the subprogram.

When it is desired to use overlaying, i.e., to have two or more subprograms occupy the
same locations in memory, the subprograms must be designated for overlaying at collection
time., This is done with an OVERLAY control card, the details of which are described in the
Operations Manual; when a subprogram is named on an OVERLAY card, its object program is
set up a little differently and provision is made for feading it from the program tape when it

is called. Then, the operation of the CALL statement is: transfer to the named subprogram

84

SECTION VI. FUNCTIONS

if it is already in storage; if not, bring it in from tape and then transfer to it. The program-
mer designates at collection time the subprograms which are to be overlayed; all the rest is

automatic with the CALL statement.

When different people are working on parts of a very large program, it often happens
that one person needs to compile his section without compiling all the other parts. This leads
to a problem; in the section being compiled, there may be statements referring to other sec-
tions not being compiled at the time. Ordinarily, this leads to a diagnostic error indication
and the compilation is not completed. Here, however, it is necessary to go ahead; pre-
sumably the programmer has made plans to get around the missing sections. In such a case,
the missing subprograms must be named on NEGLECT control cards at collection time; the
Compiler will then insert dummy RETURN statements, and the compilation and checkout can

proceed.

RETURN Statement RETURN

This statement terminates the execution of any FUNCTION or SUBROUTINE subprogram,
and returns control to the calling program. A RETURN statement must, therefore, be the
last-executed statement of every subprogram. It need not, however, be physically the last
statement of a subprogram (or rather, next to the last; the END statement must be the last).

A RETURN statement may appear at any point in a subprogram, and there may be any num-

ber of RETURN statements.

As a simple example of how a SUBROUTINE statement can be used as a more powerful
version of a defined function, consider the example discussed in connection with the FUNCTION
subprogram, in which the largest element of the Ith row of a matrix (largest in absolute value)
and its column number is needed. This makes two output numbers, which means that a

SUBROUTINE subprogram must be used, which could be as follows:

ALGEBRAIC COMPILER STATEMENT

mree LT T T T T T T] werirren sy CHECKED BY DATE PAGE — _OF —
0 MENT § ALGEBRAIC COMPILER STATEMENT

CiNuMBER]]

[. i 1l 23 38 52 86 724 80

" ||susklour ine b1 co
pImewsIon A0, 10)
s167|= 0.0

Tcoe| = |

o oo v =1, N
IF (aBsF(Aa(z1,J)) |- BIg) 900, 900, 1000
JooolBra |- a8sF (Ar3,W))

~

rrrryrrrrvrr1rrrrvyrrrriygrrrryrze rrrvrrryrrrrrrryryorrra rrrr ol
<)

(A, T, N _BId

L

85

SECTION VI. FUNCTIONS

8 I IcloILI:\|l'III\I1 T T B O S W R Y | IO R N L A I O TN T Y B Lt [R B
M I9|0|0 CID|”I7Z|’/|£/IELL | T I S N O Y O Y T | L S T N T Iy | NN N N O S I O O e | I BN I T T B |
10 L1 8/1671 A |(1‘I\’|I|C\o|(‘\) Ly T S Y S T O MY B A BN S T T RO B M B R IS Lt 1))
" 111 @Elzaglﬂ/{ N T O I T) Y Y I B 2 N N I Y T T O I T SO T T O Y Y | L4 4 11 R T T G |
'2—’ L1 E\”pl I T Y T A U R o Y O A I U S S O O O I U T T N O OU O JO § | I § S N

Now suppose that we have a matrix PROBD, that we want to find the largest element in the
first row and store it as AMAX, then interchange the first column with whichever column con-

tains the largest element in the first row. This can now be done with a few statements, as

follows:
ALGEBRAIC COMPILER STATEMENT
e L L LT T T T T] wriemen sy CHECKED BY DATE PAGE — OF —
i
S A ALGEBRAIC COMPILER STATEMENT
1 2 1] 23 38 52 66 72 80
| T ™1 AL LA B | T T 11T rrT1Ttrrretr 1yt grrrrrrrrrrfrrrrryrrrrrrrrfryyvetrqvgprrrrityd
cALl BIccoL (FRABO, 1, A, amax,| /)
2 b7 mews 10x ProBO(|1]0 10) '
3 o /200 r=1,N '
4 TEMP| = PRo8BD(I,1|)
5} PRABD(1,1) = PRABD(L,J)
s |1z00 /’ROB!D (,J) = TEMA

The CALL statement calls into operation the subprogram, and stores the values of
AMAX and J which it computes. This is done only when the CALL statement is executed, not
when the variables AMAX and J are used. There can be no ambiguity between the use of the
J as a CALL argument and its use in the SUBROUTINE subprogram; recall that there is no
correspondence between variables unless we establish it. We need do nothing more about the
AMAX in order to get it stored; that is part of the combined operation of the CALL statement
and the subprogram. The DO loop takes one row at a time, first moving the element in the
first column to temporary storage, then moving the element in the Jth column to the first
column, then moving the element in temporary storage to the Jth column. Note that this
works properly even if the largest element should happen to be in the first column already; an

IF statement at the start could be used to save the waste motions in this event,

Another example of the use of the SUBROUTINE subprogram appears in the next section,

where we present a complete example, showing how to segment a program.

Summary of the Differences Between the Five Types of Functions

The Honeywell Algebraic Compiler has provision for five types of functions: open,

library, defined, and those established by FUNCTION and SUBROUTINE statements. The

86

SECTION VI. FUNCTIONS

following summary shows the major differences between the five types.

Naming

The names of open, library, and defined functions are: four to seven alphabetic or
numeric characters (but no special characters), the first of which must be alphabetic and the
last F; the first character must be X if and only if the value of the function is to be fixed point.
The name of a FUNCTION subprogram is: one to six alphabetic or numeric characters (but no
special characters), the first of which must be alphabetic; the first character must be I, J, K,
L, M, or N if and only if the value of the function is to be fixed point, and the last character
must not be F if the name is more than three characters in length. The name of a
SUBROUTINE subprogram is: one to six alphabetic or numeric characters (but no special
characters), the first of which must be alphabetic and the last of which must not be F if the

name is more than three characters in length.

Definition

Open and library functions are provided with the system, although the system as supplied
may be expanded with other open functions, as described in the Operations Manual. Defined
functions are defined by writing a single definition statement. A FUNCTION subprogram is
defined by any number of statements following a FUNCTION statement. A SUBROUTINE sub-

program is defined by any number of statements following 2 SUBROUTINE statement.

How Requested

Open, library, defined, and FUNCTION functions are brought into operation by writing
the name of the function in an expression where its value is desired. SUBROUTINE sub-

programs are requested with a CALL statement.

Open vs. Closed

Open functions are compiled as open subroutines, i.e., they are compiled into the pro-
gram once for every time they are requested by name. All of the others are compiled as
closed subroutines, i.e., they are compiled into the program only once, regardless of how
many times they are requested; control is transferred to them and then back to the requesting

program.

How Control is Returned to Calling Program

Not applicable to open functions. Control is automatically returned to the calling pro-
gram from a library or defined function. Control is returned to the calling program from a

FUNCTION or SUBROUTINE subprogram by a RETURN statement in the subprogram.

87

SECTION VI. FUNCTIONS

Number of Arguments

The number of arguments for open and library functions are specified for each function.
Defined functions may have any number of arguments from one to 40. A FUNCTION statement
may have any number of arguments from one to 48. A SUBROUTINE statement may have any

number of arguments from none to 48.

Number of Outputs

A SUBROUTINE subprogram may have any number of outputs; all of the others give only

one output value.

Separate Compilation

FUNCTION and SUBROUTINE subprograms may either be batch compiled with a main
program and/or other subprograms, or they may be compiled independently. Open and de-
fined functions are always compiled as parts of some larger program. Library functions are

stored on the collector tape in pre-assembled form.

Dummy Variables in Definition

Variable names in the definition of a defined function, and in FUNCTION and
SUBROUTINE statements, are dummies. The variable names used in requesting or calling
any function must, of course, be the names of actual variables. In the case of these three
functions, the variables must agree in number, order, and mode, with the dummy variables
used in the definitions. Since no definition statement is required in the case of open and

library functions, the discussion of dummy variables in such statements is not applicable.

88

SECTION ViI

SPECIFICATION STATEMENTS

General Considerations

There are three statements in the Honeywell Algebraic Compiler which are used only to
provide the Compiler with necessary information about the program being compiled, all hav-
ing to do with the assignment of storage locations to variables, although in three rather dif-

ferent ways.

DIMENSION Statement DIMENSION v, v, Vv, ...

The DIMENSION statement is used to specify to the Compiler the dimensions of arrays;
every variable in a program which appears in subscripted form must appear in a DIMENSION
statement., In the general form of the statement given above, v is the name of a variable with
one, two, or three unsigned fixed-point constants in parentheses. For each variable, the sub-
scripts in parentheses give the maximum size of the array, and storage space is set aside
accordingly. The number of subscripts written also indicates to the Compiler whether the
array is one, two, or three dimensional. Any number of subscripted variables may appear in
one DIMENSION statement, separated by commas; there may be any number of DIMENSION
statements in a program or subprogram. A DIMENSION statement applies only to the pro-
gram or subprogram in which it appears, even if the names of two arrays in different sub-

programs are the same.

As a simple example, consider the following DIMENSION statement:

DIMENSION DATA(20, 15), IJK(60), DATAR(2, 10, 30)
This specifies that DATA is a two~-dimensional array of floating~point numbers, with the max-
imum size of the first subscript being 20 and of the second being 15; IJK is a one-dimensional
array of 60 fixed-point numbers; DATAR is a three-dimensional array of floating-point num-
bers, the maximum subscripts sizes being 2, 10, and 30. In the case of the array DATA,
storage space is set aside for a two-dimensional array consisting of a total of 300 locations.
In the program which uses DATA, one must never specify a first subscript for DATA larger
than 20 nor a second subscript larger than 15. It should be emphasized that a specific mem-
ory location is reserved for each element of each array. It must not be argued that the 300
locations can be used to make up any array totalling 300 elements, such as 6 x 50 or 3 x 100.
Each dimension applies strictly to the subscript in its position, and the memory assignments

apply specifically to each individual element of an array of just the maximum size indicated.

89

SECTION VII. SPECIFICATION STATEMENTS

It is still permissible, of course, to use arrays of less than the maximum size in any dimen-
sion, but this amounts only to not using some of the assigned locations, not to reassigning any

of them.

A DIMENSION statement must not include the name of the program in which it appears,
nor the name of any FUNCTION or SUBROUTINE subprogram which the program uses,

EQUIVALENCE Statement EQUIVALENCE (a,b,c,....), {(d,e,f,....),.

This statement makes it possible to do two things which on occasion are very useful:

1. Assign two or more variables to the same storage location, where the logic of the
program permits it, thus making possible significant reductions in storage space
required;

2. Establish two or more names as synonyms for the same variable.

An EQUIVALENCE statement applies only to the program or subprogram in which it

appears. It may be placed anywhere in a program or subprogram.

The variables within a set of parentheses, which may be subscripted with a single un-
signed fixed-point constant, are assigned to the same location. There may be any number of
variables within one set of parentheses, and any number of pa.fentheses. Variables and
arrays which are not mentioned in EQUIVALENCE statements are assigned to unique locations.

Locations can be shared only among variables, not constants.

The meaning of a subscript in an EQUIVALENCE statement is different from its mean-
ing in other statements. The meaning of C(p) in an EQUIVALENCE statement is: the (p - 1)th
location after the one containing C, or, if C is an array, the (p - 1)th location after the one
containing C(1), C(i, 1), or C(41, 1, 1). Since there is no zeroth element in an array, p rmust

be greater than zero.

The simplest example is an EQUIVALENCE statement not involving arrays or subscripts.
EQUIVALENCE (DATA, X, Z), where none of the variables is an array, would mean to as-
sign the variables DATA, X, and Z to the same storage location. In order to do this, itis, of
course, necessary to know that the program never stores a new value of any of these variables
unless the old value in the location is no longer needed. This is the programmer's respon-
sibility; if a new value of DATA is stored in the one location at a time when it contains a value
of X which will be needed later, the program will give incorrect results. Neither the Com-

piler nor the object program has any way of checking for this sort of error.

90

R

SECTION VII. SPECIFICATION STATEMENTS

If, however, the reason for using the EQUIVALENCE statement is to establish two or
i more names as synonyms, then there is no question of avoiding overlapping usage; the var-
i iables named are all the same one, and the intention is to be sure they are all assigned to the

I same location., For instance, inexperienced programmers often do not realize how much care

must be exercised in writing the letters I and O, in order to be able to distinguish them from
the digits 1 and 0, Suppose that in a certain program heavy use has been made of the symbol
PILOT, but that the programmer was very careless in his writing and is afraid the names
may not all have been punched correctly. His problems can be solved, in this case, by
writing:

EQUIVALENCE (PILOT, P1LOT, PILOT, P1L0T)

Suppose now that three arrays are to be assigned to the same set of storage locations

and, for simplicity, that they all have the same number of elements. If we write

‘ EQUIVALENCE (A, B, C), the result will be as desired. Note that it is not necessary to show
i subscripts in order to do this, although the same result would be obtained by writing

£ EQUIVALENCE (A(1), B(4), C(1)). Two things about this example should be noted. First, it

| does not matter how many dimensions these arrays have. A corollary to this is that there is

<‘ no requirement of any sort that the arrays have the same maximum dimensions or any other
type of correspondence between elements. It would be perfectly acceptable for A to be a one-
dimensional array with 300 elements, B to be a 20 x 15 two-dimensional array, and C to be a
10 x 3 x 10 three-dimensional array. Or, if all were two-dimensional arrays, one could be

3 x 50, a second 50 x 3, and a third 5 x 30. Neither is there any requirement that the arrays
all have the same total number of elements. The EQUIVALENCE statement only places the

starting points in correspondence.

The second thing to note is that only one subscript is given in an EQUIVALENCE state-
ment, even when referring to two- and three-dimensional arrays. This is the point of the
statement that C(p) refers to the (p - 1)th location after the location for C. Suppose for an ex-
ample that there are three one-dimensional arrays E, F, and G of maximum size 20 each,
and that they are to be assigned the same space as a 3 x 4 x 5 three-dimensional array.
Specifically, it is desired to assign the first one-dimensional array, E, to the space occupied
by the first 20 locations of the three-dimensional array, called Z; the second 20 locations of
Z are to be the same as the locations for ¥, and the last 20 locations of Z are to be the same
as the locations for G. The following statement establishes these equivalences:

EQUIVALENCE (E, Z), (F, Z(21)), (G, Z(41))

91

SECTION VII. SPECIFICATION STATEMENTS

If it is desired to establish equivalences involving specific elements of arrays, it is nec-
essary to know exactly how arrays are stored. This information has been given before, but
may be reviewed here. The first element of an array, the one corresponding to C(1), C(1, 1),
or C(4, 1, 1), is stored first, with other elements being stored in order after it (in success-
ively higher numbered locations, incidentally). The elements are stored in such a way that
the first subscript varies most rapidly and the last least rapidly. Thus, a 3 x 3 matrix A
would be stored in the order A(1, 1), A(2, 1), A(3, 1), A(4, 2), A(2, 2), A(3, 2), A(1, 3),
A(2, 3), A(3, 3).

If it is now desired to make the main diagonal elements of A correspond to the single
variables R, S, and T, it can be done with:

EQUIVALENCE (A, R), (A(5), S), (A(9), T)
For this to work, A must appear in a DIMENSION statement as DIMENSION A(3, 3); otherwise,
the diagonal elements are not the first, fifth, and ninth elements of the matrix. If A appears
as DIMENSION A(4, 4) and the diagonal elements are to correspond to W, ’x, Y, and Z, the
statement should be:

EQUIVALENCE (A, W), (A(6), X), (A(11), Y), (A(16), Z)
No attempt should be made to do anything which amounts to changing the way an array is
stored. For instance, it is not possible to make the elements of a vector V correspond to the
main diagonal elements of a 3 x 3 matrix by writing:

EQUIVALENCE (A, V), (A(5), V{(2)), (A(9), V(3))
Such a statement, which gives impossible instructions to the Compiler, will produce a di-
agnostic statement and stop the compilation. In order for it to be accomplished, the elements

of the vector would have to be stored in non-consecutive locations, which cannot be done.

In order to use the EQUIVALENCE statement, it is obviously necessary to arrange the
program and the EQUIVALENCE entries so that no data is destroyed until it is no longer need-
ed and, to do the planning properly, it is necessary to know which statements can cause new
values of variables to be stored. Statements which store new values:

1. Arithmetic statements store a new value of the variable on the left-hand side of
the statement;

2. Execution of ASSIGN i TO n stores a new value of n;
3. Execution of a DO always changes the value of the index of the DO;

4, Any input statement stores new values of the variables in the list; the ERASE
statement should be considered as an input statement for this purpose;

5. Certain ARGUS statements;

6. A CALL statement with output arguments,

92

RS

SECTION Vil. SPECIFICATION STATEMENTS

COMMON Statement COMMON A, B, C,....

Ordinarily, i.e., in the absence of a COMMON statement, variables are assigned mem-
ory locations separately for each subprogram. If the main program has a variable named X
and a subprogram has a variable named X, the two X's are essentially different and two sep-
arate memory locations are set up for the two of them. This is generally what is desired, but
there are times when it is very convenient to be able to specify to the Compiler that a variable
in one subprogram is the same as a variable in another subprogram (whether or not the two

variables have the same name). This can be done by proper use of COMMON statements.

Variables which are named in COMMON statements are stored in a special section of
storage which is set aside for storing COMMON variables, and this is the COMMON area
which is the same for all subprograms which are to be collected to be run together. The
variables named in COMMON statements are then assigned to the COMMON area in the order
in which they appear. There are two different ways in which the COMMON statement may be
viewed. For instance, if the statément:

COMMON X, Y, Z
appears in both the main program and in a subprogram, then X, Y, and Z in both programs
would be assigned to the same locations in COMMON, and the variables would be the same for
both programs. If, on the other hand, the main program has the statement:

COMMON X, Y, Z
and a subprogram has the statement:

COMMON A, B, C
then X and A are assigned to the first location in COMMON and become equivalent, B and Y
are assigned to the second location in COMMON, and similarly for Z and C. The implication
is that the two sets are not the same, but that both sets are never needed at the same time and

therefore sharing of storage locations is feasible.

The EQUIVALENCE statement is capable of the same two interpretations, although
ordinarily it is the second which is used. One way to view these two statements is that
EQUIVALENCE establishes either identity or storage sharing of variables within a main
program or subprogram, whereas COMMON establishes identity or storage sharing of var-
iables among a main program and subprograms. The difference in the mechanism of the
two, viz., the setting aside of a separate COMMON area, is dictated by considerations

involving the internal opération of the compiler.

93

SECTION VII. SPECIFICATION STATEMENTS

Internal operating considerations also dictate the following: the COMMON area is in
actuality composed of one aréa for arrays and another area for single variables. This fact is
of importance to the programmer when setting up COMMON statements involving both arrays
and single variables., The operation of the Compiler is best illustrated with an example.
Suppose a program contains the statement:

COMMON ARRAY1, X, Y, ARRAYZ, Z
The array ARRAY1 will be assigned to the array part of the COMMON area, using as many
locations as required by the dimensions in the DIMENSION statement which mentions ARRAY1.
X and Y will be assigned to the first and second locations of the single variable area (if they
are indeed single variables), ARRAYZ2 to the array area following the locations assigned to
ARRAY1, and Z to the third location of the single variable area. Now suppose that in a sub-
program there appears the statement:

COMMON ARRAY3, A, B, ARRAY4, C
These arrays and single variables will be assigned to the two COMMON areas in exactly the
same way as in the previous statement. If ARRAY3 has the same total number of locations
(from its DIMENSION statement) as ARRAY4, then the first element of ARRAY4 and the first
element of ARRAY2 will be assigned to the same location in the array part of the COMMON
area. Since the arrays and single variables ére handled separately in COMMON, the relative
order of arrays vs. single variables does not matter. The following statement would be equiv-~
alent to the second statement above:

COMMON A, ARRAY3, B, ARRAY4, C

The separate handling of arrays and single variables also leads to the need for a pre-
caution. Suppose that in the main program there is the statement:

COMMON A, B, C, D, E, F
and that we need to make A in the main program correspond to X in a subprogram, and to
make F correspond to Y. Since variables are assigned to locations in COMMON on a basis of
the order in which they appear in the COMMON statement, it is necessary somehow to 'fill out"
the COMMON statement in the subprogram, so that Y is the sixth variable. The only way to do
this is to make up the names of variables which do not really exist in the subprogram:

COMMON X, D1, D2, D3, D4, Y
One might be tempted to make up a one-dimensional array, give it dimension 4 in the sub-
program's DIMENSION statement, and write:

COMMON X, DA, Y
where DA is the name of the fake array. This will not work, because of the separate handling
of arrays and single variables. The effect of such a statement would be to make X and A

correspond, and Y and B correspond.

94

SECTION VIi. SPECIFICATION STATEMENTS

It is allowable for a variable to appear both in a COMMON statement and in an
EQUIVALENCE statement, When a variable not appearing in a COMMON statement is made
equivalent (by an EQUIVALENCE statement) to a variable which does appear in a COMMON
statement, then both of the variables will be assigned to the COMMON area; no other action
would make any sense. Doing this, however, may change the order in which variables are
assigned to the COMMON area, according to the following rule. When COMMON variables
also appear in EQUIVALENCE statements, the ordinary sequence of COMMON variables is
changed and priority is given to those variables in EQUIVALENCE statements, in the order in
which they appear in EQUIVALENCE statements, For example, the combination:

COMMON A, B, C, D

EQUIVALENCE (C, X), (Y, B)
will cause variables to be assigned to the COMMON area as follows:

1st: Cand X

2nd: Band Y

3rd: A

4th: D

One of the most frequent uses for the COMMON statement is in supplying "implicit"
arguments to FUNCTION or SUBROUTINE subprograms, Instead of setting up a SUBROUTINE
subprogram, for instance, to require arguments stating all the input and output variables, the
variables can be mentioned in COMMON statements in both the calling program and the sub-
program. Then no arguments at all need be written in either the SUBROUTINE or the CALL

statement. With the FUNCTION statement, it is necessary to have at least one argument.

For example, the COMMON statement may be used with the SUBROUTINE subprogram
to segment a program systematically and completely, in the followihg manner. After writing
the complete program, group the statements into reasonable segments according to their usage
in the program. That is, find sets of statements which generally operate together. Write a
SUBROUTINE statement at the beginning of each segment (except the first, which becomes the
"main'' program), an END statement at the end of each segment, and enough RETURN state-
ments to allow for proper exit from each subprogram. Write a COMMON statement containing
the names of all variables, both single and arrays, which appear anywhere in any part of the
program; insert this statement in the main program and every subprogram (possibly punching
the cards once and reproducing them, to save writing). Similarly, make up a DIMENSION

statement containing the name of every array in the entire program, and insert it into the main

95

SECTION VII. SPECIFICATION STATEMENTS

‘program and every subprogram. The programs may now be batch compiled. Later, if it is
necessary to recompile one subprogram or the main program, it may be done independently

(unless, of course, something in the COMMON or DIMENSION statements is to be changed).
This approach will result in putting some things in COMMON which do not actually need
to be there, but this is immaterial., The method outlined here is somewhat of a "brute force"

approach.

Use of COMMON statements in connection with the partitioning of a program is illustrat-

ed in the complete example shown next in Section VIII,

9

SECTION VIII
SAMPLE ALGEBRAIC COMPILER PROGRAM

General Description

Suppose that for given values of x and n, it is desired to compute the quantities pl, p2,

p3, p4 and p5 defined below.

pl = .1 (1-x)**1(1-(1-y)™(1+ny)),
p2 = (n+1)(1-x)%(1-(1-y)2)x+pl,
p3 = (1(1-x)2l(1-y)ntl)_p1,
pd = (1= (1-x)"H - (1) (1-x) P (1-x) 2 (1= (1-y)P*))-p1,
p5 = (n+l)(1-x)*(1-y)™x,
where Y=X2.

The program written for this problem is partitioned into several subprograms to facili-
tate checkout. As one may readily see, the main program TABLE simply loops through the
series of calls to the subprograms. The subroutines TABIN, TABCMP, TABOUT, and TABEX
are the input, computation, output, and exit routines, respectively. Communication of data
between subprograms is achieved via the variables in COMMON. The program goes to the exit
routine when an end of file card (FINIS punched in columns 2-6) has been detected by the input
routine. By utilizing sense switches, the program will permit both reading and printing to be

either on-line or off-line.

The plan of execution is very simple--read a card, compute the results, write them out,
and repeat the cycle until the "FINIS" card. A data card is punched with ten values of x and
three values of n, to be stored into the arrays P and N respectively. In TABCMP, for each
value of x and n, the quantities p;(i=1, 5) are evaluated and stored as elements in corresponding
arrays. When this process is completed for each set of input, the output routine simply writes

out the required information in an intelligible fashion.

ALGEBRAIC COMPILER STATEMENT

e[T T T T T T TI1 wrireN sy CHECKED BY. DATE PAGE___OF ___
'; STATE- |§
|\ MENT [¥ ALGEBRAIC COMPILER STATEMENT
NUMBER] |
N
[3 1] 23 38 52 13 7 80
! rI'ITILETAVBILENIIli]lllll N N S Y T T I | 1 O N T T 1 T O T I O I | | O T T N T T I | S | | T OO o
z L1l clo\MluotNl IPI/IM]'IFI II’IPIZ 14 ’lflllpljl’lplq-l | N S Y Y I T I | | N T T T N O O s | | T | | SN T I I ')
3 11y DIIIMIE NI’KJIOINI |p1(|11¢|)|’ N [13;)|’|p|1|(|3|'|1|¢|)|'>p2|(|31'|"|ﬂ|)1/|P|3|(|3|’|1 ¢|)|‘|P14"| (nsu’ljlﬂl)|'|P|5(|"1':j|‘|) TR B B B |
4clll L I e e e e L I R R O O I e | L T e R R T T R I A I | [T T R) LT T Y T A Y LN R R |

97

SECTION VI,

SAMPLE ALGEBRAIC COMPILER PROGRAM

4 Loy MATN FROGRAM (-7 CALLS oM THIREE SUBPROGRAMS: | | |\ 1y i i Ll La)
6 C [111 L O O S T O 7’!A]’|I|~! l-l lllﬂlplultl BN W T T Y T W ¥ S YOO TN T T OO T T T T LT T T T) K T S
4 NI A A S AR ! TABCMP- COMPUTIATION, |\ luus il i, I,
8|c M| L1l) T T T T N O | TIAIBIOIUITI~I Iolulrlplal-r'l | N O S N I O T T T A 1 Y O O T T O I Tt I I | N A T T |
fle [L1l | - IPIRIOIGIklAM 5l.l-latpl.sl IwI"IEINI ITI‘IbIINI IRIEIAIDISI IEJNIDI-IOF-IFlllLlel 1CIAIRIDI IAIN DI | N T S
olel, T T O OO O 0 0 O 0 A GeES 19 I%xl[lrl IQDPITIZINIEI.J T O AU S O S U0 O S O O Lty AR
e Lol 11| | 0 OO O O N | {1 Y Y S O O O A VI IO O O N T I I | SNSRI b T T | I O IO L
2 il Iz CIAILIL |TIA\BI}-INI | IO T N T T Y O D O T O R O N O T DU Y RO OO S N T N T VI I O S N |
B L1l CI»ILIL IT|AIBICI/“IPI | I -} I T N YOO S T O O | 1 S O U A Y O T Tt o 1 I N T N Y O T T | I | I T T |
4 Lol CYAILIL I.rIAlBlolulTI Pl N T T O Y I)N SN T T I O O A v N N N Y O T I I T | I N I |
8 L4 GIo| ITOI I‘I I O T O O O I | | T Y O Y Y § WY DR S U I T S U O JORU TR N N T N T OO | YIS I | I T T |
6 | £|~|p||||1|1||1|| IO S 0 T 0 T N G T YO OO N N VO T O T TR YT O W SO T A L1ty
17 - L)) N O TOU N T N I | TN TN T Y T S T T O O I TN I W I N NS IOV OO S I | B N SN Y SN N T N N T) Y I I] F IO OO N I}
8 1 | |suBRloyTINETABIN T T R W A XA I
o Lol c!oIMIMlONJ |p|’|Nr’|P|1|I|P|2/ P, P2 P4 v e e Liig
2 Ll.d pnl‘MENFlIuaan |P|(|1|¢|) U N(xan)\'lpr‘q(lswflq |'.Pzn(|3l/|1|¢|)|'|’[31(13|/|1¢|)|'|Pn47|(|3|'|11g|)|l|P|'5 COSIN"P@I) L1t
|C|I1 TV O T 0 T B WL R L I OO TN T O N YT O N TN S O N T 0 S T WO P O S 0 OO0 OO0 O GRS N L1liy
2 Ll I}Nlplu TI Iklolulr‘lthIEI L | 3 TN SO N O Y O 6 S T O IO | {1 T N Y Y O O | § I | I T T |
3 | 11 111 | N O N A T | {1 T T (SO R U T O B S N N N S Y B | AN T O Y OO0 OO O Y I I | [| 1L L L1}
4 1. 1! ;FI(I5 EINISIEJ lslwlllrlclﬂl 2)I1I¢I'I't|2| | S T T Y S O S I O} [T T N T O S N I | I I T | B T T T
5 L Ilﬂ @IEIA|D IIINIPIUIT’I ITl‘lPlE(2 /|4I¢|l|/>llJN] I I | Y O T o '} § R OO N T N TN A O O 1 | O T |
s 11 llFl lENIDI IoJfl IFIIILPEI { ¢’13I¢| N I IO o Y I A T O N N O T T IR TN T T O T | | | 1.t 1)i
7 11 lllz %EIAID l4'l¢lll’i'|Nl | R U T T T VO O O Y O |) N N T 00 O I NN TR DU T T T S S N O | [| T T
8 Lol IIFI IENIDI IoIFI IFIIILIEI é—¢ lI3I¢I | SO T T S I A 1 R RN N O S Y O S s o | S T O T T Y T T | | T '
7 i I3|¢I e’%’;UKIMI {1 O O O T I A) O Y T O Y Y SN N N S U Y T O T o | | N Y TN S O N | | Lt I 1.
of | ag| |ForMaT (18FS5-4,373) ool b e i
" | |5| C.IAILIL |ﬂA|ﬁ%x | WU T N S O T VR N N N T U I F N TN U TN U JU O N O T N E|xlIITI L
2 Lol 1 El”IDl | N AT S Y O OO OO A T T T T Y Tt Y) N O O O O OO T I S T T I T T T OO T Y A I) I | I 1
B i i1l | S S S T T | T OO O I O I I | |/ N Y S O Y O (N N N O T O Y T I | O T T |
. L1 1 slulﬁlko|uITIZlNI£I..rIAI8ICMIP | Y OO O O Y T Y | O U T N O T T A I |)N TN T N T Y I Y F I | 111 111
'8 Ll ‘olh‘al”:u”m”l’upllnupuzlP1$|/|P|31'1P14'|||||| T T RO T SN0 T T T T S Y A RO WO R Ly
Bt | FDIMKEle'II\olNI |plcl‘1|¢|)\’N(st)nh'p«11(13";1|¢\)|l|pz\(13\’111¢|)111P|3\(|31'11 ¢:)|'1€41(|3|/|j|¢1)|'1&5 (lal’lvllal) L1l
7lep ce e T T T Ll
4 - _, |lcomPurTATIONAL| ROUTINE FOR TIHE PROBABILITY| FUNCTIONS = | | i
¥e L1 FIRVIOON N O N O S S T O PIII’|PI2IIIP13IIIPI‘-I’IPIS’I |4|T| |P|(|'z;)| IFIoiel A: |G|I|V|£|~| INI'I [B A B O [N
zocIII 1 1.1 IIIYII-IIIllI NS OO I T O T N T Y L1 11y 111 11 .t | T N VN I W U S 2 s | S | | T
! L1t D|o| II ¢|¢I IKJ_ngl’lsl L1l | O SO T T O O I e I O O O G o | B N Y N OO T O O O | | T T
z | Dlol IJ ¢I¢I lzl:lzlllipl L1 | N O S N O O T A T O JOUO SO N Y T | N TN I T O T | | - | T T |
3 1 11 QI=IPI(II)I‘*I*I2I 'l | T | OO SO T TS T O S O I I} L TS T I N O N A T v | NN A T O N O O T OO OO N | [S I .
‘4 | - L I‘)ll =Icl1|.J;¢j“IPI (l'll)l)l**(lNl (lxl)l*LfL)l |) VUSROS TS U S U N o B | | T T N T O O T O O | N O | { I S A T |
5 L1l] ID|2 =I~!(!k|)|*lll Lt 11 N O Y U T O O O T R N NSO O I T v | | N TN N T T O T Y Y | T 1S T |
& L1l I Ipl3 :I(IJ|.I¢I-IQI)I*EKM(K)I LI W SN T T N I Y S S Y s e | | N OSSN T N T T O OO O Y | | § I T T |
7 L1l i IDI4-:ID13]*I(11|.I¢1 -I¢I)I N SO OO O N T T O U | N N A Y OO O O o | N O N S T Y OO A W A | | I
8 I lel(l‘('|I|)|‘J‘111*1D|1|*1(11 d ¢|.JDI4'I—IDIZI*)QI*IDI3I)|*111¢I'IElsl I OO0 U O N N S T O T T R
i L1 L Iplsrlcljl'IQ—IPI(Iq)I)I**Nl(IkI)I I T T O I 1 T O O T Y | U Y TN T U O OO O % o e | L1) Ll i1t)
ol) [|p2(k T) =D2%P (1) MDSKk(L.#-D3) X 1P ESHPICK, TN e e L
ol [P80k, 2)=P2XP(T)¥DISKDIXIPES | o b by b
1 (- P31(1K711|)|:|(111'1¢1-|D|1| D4‘1)|*|1| |'J5151'|P|1|(|k|’ Ix)x PN O T I Y TN TN O R O O T T Ll 1) R A §
" Lo | [PACK, 1) =CY. B P 1 -2 %P T) *DSHDE X (|1 .8 '|D|4F)|>l*tllﬂ|‘|fxs SPACK I L Ly
" 111¢|a CIolNJTIINIa|E'I) O T T T O N T Y Y |1 TN O O SO O N A T S | U S N O T N T Y I I W § I I TIAIBICIMIPI
8 L g £|E|Tfa Nl N U T I T Y I (NS OO U T O Y T W ¥ | S OO OIS Y S S O N O T Y N YOO O IO I A Y S | Lol 1 4 ¢ 1
16 ol E|~IDI | S T S A T A O A | L T T A A O A A A O L T T I AR I A | LI O T O A R A A [I B L B T

SECTION ViII.

SAMPLE ALGEBRAIC COMPILER PROGRAM

7 Ll 111) N I T T T T Ot T | BN N N T U N O T T VO T | IR VRN TN Y O SN U O A I I S U TR R T O N B 3) |) T W | 17
18 L IsusRouTINETABOUT | e s b by (TABo YT | s
19 L | fcommon P N, P PRLIPSPBAPE e e T
2 L pl'{”leulslzlolul IPI(I1I¢I)1’ ”(|3|)|’|P|11(|3|'|1|¢|)1’|p21(13|’11|¢|)|7|P|31(|"1’1l ¢|)1:|Pn4‘|g"|’11|¢|)1np|$ <|3|’|1|¢|) TN
' Lt I N T T Y I N OO T 0 T N T O T O N Y 0 T 0 T T T T SO T B B |||||1|[
z Ll 01”17|P”|T||k|o|”|TII|N|E|\ N O T N S U T O O N WO B A O O B A I] ?
: L1 TN N T WO O B IO 0 TV T T YO Y YO0 O G ST T N S N VSO0 YO W Y T T A WO B Ll 3
4 | L FCSENSE SwETeH 2D 2.4 | i e b e e T
5 L2 w|%I|TE||01u|T|P|U|TlIT|‘|PE|4'|‘|1|¢||||||||| OO YWD YU YN O 0V O O O T O O N U Y O OO0 Y Ll Lt 1) §
6 1l Glollrllilslllll$ll N N N T T T v | N N Y Y T O Y| [T O N T OO OO NN T O VO S O | I K W S | 6
7 Iﬂ. PI&IIIII1|¢II|[IIII) S U T TS T S I A ot RO I T A T T T [T T N N T O Y O Ll R I O T T 7
8 |1l¢ Flalklm"T.l Icljlﬁljl/l.slel/ISHTIJPILI£1/|/|/1/|/141 Ial, N N T TN S O T O | N T I T T O I O A | I -l T T ' 8
9 L |X|26 %A1 4 10|U17|P|”|7T5| |ARE| i)|’|¢x¢|¢|’1¢|¢|¢1x/|//|3|6|B|’|4'1I'4Pw I |6|8|’ 6|”| Lif3 6864 |Pn4¢ 1y L)1 !
10 L Y68 6 P2 6B8,6H | P2 68s4K PSI//D L i T
" Ll 1t N T | | I S) T B N T N N T T O A T o | N N NS N T Y T Y T | i1 i1) ||II||I|I
" 2.5 D|0|15¢||N=|]|’|3||[|| PN T T T TN TN T T U O N 1O I T IO N N WU O O S N O 0 10 AN IO IO AN T
. L J]Fx(t's£|~|s|5||s|w|[|TJc1”|1)|3|2|’13|4|||||r||- TR O TN O O Y N T T TN YNV T T O O O B S B
" |3|z ‘M&IF’ EI |o|u|T|P|u|T| IT/}IPE ﬂ'lllﬁpl’lﬂlaﬁ)l't(lplcIl)|’IPISI(I«MII)I’I;’ﬂ-I(KI’III)I’lplzl(I&’III)KHPZI(I&hII)’ TR A B 1
) ' Ilxplsl(lk’IJI)I’II;=I1I’III¢I)[T N T O O AUV T T O T T S T T O NG A M U DO PO S 1 T
J‘} ¢ | 6|01|Ta||5|¢|||||||| I T T T T T O T O I S OO T 00 0 O N 0 0 O RO O I B
; T 34 [PRINT, 46y M (KD (L) ABC K 1) s PA (K 2Dy P LK T) P2 (K5 T AECKY T 20,28 0y | T
18 NV T T T T L - A L
m 9 |4'ﬁ Flalkmqlrl |(|1|H|+|21¢ﬂB|I|3”N1 ;=1143|/|1|¢| (12|8|B|’|F1|2|'15|)|€FTI|2|'|3|/.)|//|)| [T S T T T B W T B T
2 |s|¢|c|°|MTI|N|U|E||o||||1 PN T T T T N O U T T YT T U T A N T S O O MO TIIRINEITE
! [qEITIUKINlIIF\IIIII T T O T N N O O 0 N N YO A O S O I |||||||I
z [ENIDI I O O B I U T O S T N N N O T O N A B A !
: [TN T N T O B A PN T T TS T Y T S TS Y P T 0 T W Y T Y O O L :
4 L1 5|U|B|R°#|T!N|€rlp'|3|51x| AU T T O T T T ST T T O T T O O T N R 0 B A E|X|‘Z:7:|li *
s L1 C|°1M|M0f\l||P|’|N|’|,’|1‘|’|",1z7/’lsl’lpl‘?1’1P|"'|||||| TN K T T T U OO0 T N T 0 W U O A B eloquIIIMEI 5
6 L DIIIMIENISIIIOINI |P|(|11¢|)|’ o (|3|)l’lPu1n(|3|’|1|dl)l’lp2|(13|’|1|¢|)|’|P|31(13|’11¢|)x’|P|4|(|3|’11|¢|)|’|P|S (|3|'|1|¢|) P
1], | [IECsENsE SwITCH (1) 18,28 Lo Lo e b i 7
8 |1|¢ wng|TE||O|u|T|ﬁul7:|T|A|PE|41’|3|¢|||||||1s TSN I TN T T N T S N T O T T B B IO A B 8
! [é”\DIFIIFIEI|4['IIII{ 000 O TS VOO N T T T T T T T OO T B O L)y !
10 L STOPL 777\ i PR W ST T OO YOO N T T TN T T O Y S T TS O O T T T OO T AT
" |21¢| PlkrthT|131¢1||||||| T T TN T O T T S T T T T T U OO T B O T I T B A
" L1 517;0'?1717‘7'””'” PN T O T U N T OO OO T O OO U T S S OO0 TS T N O S SO O O B NI
B |3|¢ Flo|<MA1T1 |(|1|”|5| ISVBI’IIS”IE?NIDIIOIFI |T.‘°.3.’-.5|5)||.11.1|.|..| TR O T T T W VO O A R O TR B
" Ll qurM\MYH‘Q.EIqqh{Hl PN T T T T T T T T O N O TN O N Y B SO TTITIT
8 1l KIEI‘r[uKINlIIIIIIIII R U U Y T N O | I T N N NS TN T U N N e | N N PO OO O N T S B N I O I S | j I T T T | 15
e L EIMDI [T W S B SR I U U WO W T T S S T T N O ST T O 0 T T [B I
= E— F—

99

SECTION VIII. SAMPLE ALGEBRAIC COMPILER PROGRAM

Sample Input Data

The following three cards represent two sets of sample input data in the form required

by the above program, followed by a FINIS card.

100

]
00000§00000000000000000000060000000000000000000050000000000000000000000000000000
91 6

"1 2 %

0o60000000foocogoooogoooofoocofoooRNoooFBoooRBooEREooRooBoBB000000000000008000000

ooogmooREEoogEEooo RooRNEooomRooRENooNENoooNNoooER00000B00B000000000000000000000
12345678 91011120914151617181920212223242526272829303132333435363738394041424344454647484350515253545556575859606162636465666768637071727374 757677787980
RERER] RERRRREERRRERRRRRRERRRERR R EERRRRERRRRR R RRRRERER! REREEREERRRRRRRREEERRRERE

222222222220222202202222222222222222222222

33433333333333333333
444444444448 444440484444444044080444484484048444444444444444444444424404444444848444
5505555555555555505550555550555555555555550555555555555555555555555555555555555

Gh6660666666666666666

(111117117171771111711117 01 1111771111711 11711901771171171971711711719171111111117
808858808888888880888888888308838308806880888808880880888848808888888383888888838888888
999999999999999999999999999999999399F5999B9990l99999999999999999999999999999999
12345678 2B8B%20

910111213 141516 17181920 21 2 282930313233343536 37303040 41 4243 44 4546 47 4849 50 5152 53 54 55 5 57 58 59 80 61 62 63 846566676663 7071 7273 74 I576 7778 19 80

SECTION IX
SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

General Properties of a Source Program

An Algebraic Compiler source program consists of a sequence of source statements,
of which there are 42 different types. Each statement of a source program is punched
beginning on a separate card, with up to nine continuation cards allowed for statements
which are too long to fit on one card. The sequence of source program statements is
determined only by the sequence of cards in the source program deck. In particular, the
sequence is not affected by the use of statement numbers or numbers in the continuation

column (see below).

Cards containing a '""C'" in column 1 are not processed by the Compiler and may
contain any desired comments which will appear in a listing of the source program deck.
Cards containing a "B'" in column 1 are treated by the Compiler as Boolean statement
cards, as described below. Cards containing an "A'" in column 1 are treated as ARGUS

statement cards, as described below.

Any number less then 32, 768 may be punched anywhere in columns 1 through 5 of
the first card of a statement, which then becomes the statement number. Statement
numbers of Boolean and ARGUS cards must be four or fewer digits in length, and may be
punched anywhere in columns 2 through 5. Blanks anywhere in a statement number are
ignored; leading zeros in a statement number are also ignored. Statement numbers may
be written in any sequence, but may not be duplicated within one program. It is not neces-

sary for all statements to have statement numbers.

Column 6 of the first card of a statement must be left blank or punched with zero.
Continuation cards, other than for comment cards, must have column 6 punched with some
character other than zero. A comment card may not be thought of as being continuable;
every comment card must have a ""C' punched in column 1. ARGUS statements are not
continuable by the nature of the statements. Continuation cards for Boolean statements

must have both the '""B" in column 1 and the non-zero punch in column 6.

The statements themselves are punched in columns 7 through 72, both on the first
and continuation cards. A table of the admissible Honeywell 800 characters and their use

in Algebraic Compiler statements appears in Appendix A. Except for the '"blank' and

101

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

"Hollerith'" field specifications in a FORMAT statement, blank columns in statement cards are

ignored.

CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

Fixed-Point Constants

A fixed-point constant is written as one to five decimal digits. It is characterized as
fixed point by being written without a decimal point and without an "E' to indicate an exponent,
and is thus restricted to integer values and zero. A preceding plus or minus sign1 is optional;
if no sign is written, the number is assumed to be positive, A fixed-point constant must always

be less in absolute value than 215 = 32,768,

Floating-Point Constants

A floating-point constant is written as not more than 16 characters, including sign, dec-
imal point, and the letter E. It is characterized by having a decimal point, or the letter E to
indicate an exponent, or both. The decimal point, if used, may appear at the beginning, at the
end, or between any two digits. A preceding sign1 is optional; if the number is written without
a sign, it is assumed to be positive. A floating-point constant may optionally be written with a
decimal exponent to indicate the power of 10 by which the number is multiplied; this is done by
writing an "E" after the number, followed by the exponent. A negative exponent is indicated by
a - sign; a positive exponent may be written with or without a + sign. The value of the floating-

- - 256
point constant must either lie between the approximate limits of 10 o and 10+76 (2 a

+252
2) in absolute value, or be zero.

nd

Variables and the Names of Variables

Four kinds of variables are permitted: fixed point, floating point, alphanumeric, and
Boolean. Fixed-point variables can only be integers and are named in a different way than
the others. Floating-point variables can only be values expressible as normalized floating-
point numbers. Alphanumeric variables may be composed of any Honeywell 800 characters,
including letters and special characters. Boolean variables, in the broadest sense, include

all of the other types; the term is used primarily to describe variables appearing in Boolean

statements.

Since in most problems fixed- and floating-point variables will be used much more heav-
ily than alphanumeric and Boolean variables, and since there is no question of ambiguity in-
volved, only two types of names are provided for the four types of variables. As prescribed
below, the name of a fixed-point variable distinguishes it from the other three; the rules for

1

Although the effect of a negative constant is easily achieved by prefixing the constant with a
minus sign, negative constants as such are not generated by the Compiler.

102

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

naming floating-point variables also cover alphanumeric and Boolean variables.

In order to avoid ambiguity in the naming of variables and functions, it is necessary

to observe the following two rules.

Rule 1. A variable must not be given a name which is the same as the name

of a function without the final F,

Rule 2. The name of a subscripted variable must not end in F unless it is

less than four characters long.

Fixed-Point Variables

The name of a fixed-point variable is one to six letters or digits, of which the first

is I, J, K, L, M, or N. Punctuation marks or other special characters may not be used,
and the two rules above must be observed. A fixed-point variable may take on any posi-
h tive or negative integral value which is less in absolute value than 244, which is approxi-
mately 1013. If it is to be used as a subscript, or as an indexing parameter in a DO
statement, it must be less in absolute value than 2.15 = 32,768. If a fixed-point variable
larger than 215 is used in these latter cases, it will be reduced modulo 215, i, e., only

the rightmost 15 bits will be used.

Floating-Point Variables

The name of a floating-point variable is one to six letters or digits, of which the
first is alphabetic but not I, J, K, L, M, or N, Punctuation marks or other special
characters may not be used, and the two rules stated under '"Variables and the Names of
Variables' must be observed. A floating-point variable may take on any value which is
i expressible as a normalized floating-point number, i. e., its absolute value must lie

; between the approximate limits of 10"'77 and 10-'-76 (2_256 and Z+252) or be zero.

Alphanumeric Variables

Alphanumeric variables are named in the same way as floating-point variables. An
alphanumeric variable (note: not the name) consists of eight characters, and there is no
F restriction on the use of the characters. An alphanumeric variable can be entered into
the computer as input, using the "A' field specification in a FORMAT statement; an alpha-
; numeric variable may also be defined as an ARGUS constant, using the ALF pseudo operation.
" These are the only ways to define alphanumeric quantities; there is no way to write a com-

bination of arbitrary characters and have it regarded as a constant, i. e., a literal value,

103

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

as with fixed- and floating-point constants, Alphanumeric variables are ordinarily used only
in ARGUS statements, as arguments in CALL statements, in IF statements, in a list, in

Boolean statements, and in statements of the form a = b.

Boolean Variables

Boolean variables are named in the same way as floating-point variables. A Boolean
variable consists of 48 binary digits, which are often written for convenience as 16 octal
digits. A Boolean variable may be entered into the computer as input, using the ""O'" field
specification in a FORMAT statement; a Boolean variable may also be defined as an ARGUS
constant using the OCT pseudo operation. However, Boolean variables are not restricted to
quantities so entered. In fact, any variable may be regarded as a Boolean variable if properly
handled. Boolean variables are used only in Boolean statements. There is no way to write
an octal number and have it regarded as a Boolean constant, i. e,, as an octal number

instead of a fixed-point number.

Subscripted Variables

A subscripted variable has the name of a fixed- or floating-point variable, followed
by parentheses enclosing one, two, or three subscripts separated by comnmas, the variable
then represents an element of a one-, two-, or three-dimensional array. A subscriptin a
subscripted variable is a fixed-point quantity, the value of which determines the element
in the array to which reference is made. A subscript may be an expression in any of the

following five forms:

1. A fixed-point constant;

2. A fixed-point variable;

3. A fixed-point variable plus or minus a fixed-point constant;

4. A fixed-point constant times a fixed-point variable;

5. A fixed-point constant times a fixed-point variable, plus or minus

a fixed-point constant.
A variable in a subscript must not itself be subscripted. A variable which appears in sub-
scripted form must appear in a DIMENSION statement somewhere in the program. The
value of a subscript must be greater than zero and not greater than the corresponding maxi-
mum size given in the DIMENSION statement, A subscripted variable must always be

written with the same number of subscripts as appear in its DIMENSION statement.

An array is stored with the element corresponding to the subscript (1), (1, 1), or

(1, 1, 1) in the lowest—numbered location and the others in consecutive ascending locations.

104

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

Two- and three-dimensional arrays are stored in consecutive locations in such a way that their

first subscript (from the left) varies most rapidly and their last subscript varies least rapidly.

Eeressions

An expression is a sequence of constants, subscripted or non-subscripted variables,
and functions, separated by operation symbols, commas, and parentheses, and obeying the
rules given below. Several of these rules have to do with the mode of an expression; every
expression is of the fixed-point or floating-point mode, depending on whether the value of the
expression is a fixed-point or a floating-point number. Boolean expressions are not con-

w sidered in these rules (see below for a discussion of Boolean expressions). The rules are

stated in such a way that all expressions may be derived from combinations of constants,

: variables, and functions.

Rule 1. Any fixed-point or floating-point constant, variable, or subscripted

variable, is itself considered to be an expression.

Rule 2. In forming an expression, fixed-point and floating-point quantities

can be mixed only in the following two ways:

a. A floating-point quantity can appear in a fixed-point expression
only as an argument of a function;

b. A fixed-point quantity can appear in a floating-point expression
only as an argument of a function, or as an exponent, or as a
subscript.

Rule 3. A function is an expression, if expressions of the correct modes are
written as its arguments. The mode of the function considered as an expres-

sion is the same as the mode of the value determined by the function.

Rule 4. If E is an expression, and if its first character is not + or -, then

+E and -E are expressions of the same mode as E,

Rule 5. If E is an expression, then (E) is an expression of the same mode

as E,

Rule 6, If E and F are expressions of the same mode, and if the first

character of F is not + or -, then the following are all expressions of the

e

105

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

same mode as E and F:
E+F
E-F i
E * |
E/F \

The characters +, -, *, and / are used to denote addition, subtraction, multi- |

plication, and division, respectively. |

i
|
Rule 7. If E and F are expressions, and F is a floating-point expression only !
if E is, and if the first character of F is not + or -, and neither E nor F is of “

the form A *¥%* B, then E *% F is an expression of the same mode as E. The

character combination ** is used to denote exponentiation.

|

Hierarchy of Operations i
|

Three rules govern the order in which operations are carried out: i

Rule 1. Where parentheses are used, they override the following two rules.

Rule 2. If the hierarchy of operations is not explicitly specified by paren-
theses, it is taken in the following order, from innermost to outermost: “
Exponentiation
Multiplication and division i
Addition and subtraction ‘
Stated otherwise, in the absence of parentheses all exponentiations are carried
out first, then all multiplications and divisions, and finally all additions and

subtractions.

Rule 3. Expressions in which parentheses are omitted from a sequence of
consecutive multiplications and divisions, or a sequence of consecutive
additions and subtractions, are treated as though there were parentheses
grouped from the left, Thus, if zero represents either * or /, or separately, !

+ or -, then AOBOCOD will be taken to mean (((A0OB)0C)0D).

Arithmetic Statements

An arithmetic statement is of the general form a = b, where a is a subscripted or

non-subscripted variable, and b is an expression. as defined previously. The = sign is not

— ——

used here in the sense of ''is equivalent to', but rather is used to mean 'the value defined

by the expression b replaces the previous value of a''. r

106 |

SECTION [X. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

The result of a calculation defined by an arithmetic formula is in floating-point form

if the variable on the left side of the = sign has the name of a floating-point variable, and
in fixed-point form if the variable on the left has the name of a fixed-point variable., If

the variable on the left is fixed point and the expression on the right is floating point, the

result is first computed with floating-point arithmetic, then truncated and converted to a

fixed-point integer. (Truncate, as used here, means to discard any fractional part of the

result without rounding). If the variable on the left is floating point and the expression on

the right is fixed point, the result is computed using fixed-point arithemtic, then converted

to floating-point form.

‘ Boolean Statements
i Any statement card which has '"B' punched in column 1 will result in the compilation
\

of instructions in the object program to do Boolean Algebra. This may apply to arithmetic
A} expressions, to expressions inIF statements, in function definitions, and in the arguments
U of a CALL statement. In every case, Boolean algebra will be performed on ﬁvariables;

X Boolean and '"ordinary' algebra cannot be mixed. The elements of which Boolean algebra

k is to be performed must have the names of floating-point variables; these may have been
defined as ARGUS constants or entered with an ""O" field definition in a FORMAT statement.

The three allowable operations and the symbols used for them are:

1. Logical addition (inclusive OR) +
2. Logical multiplication (AND) *
3. Complementation -

The exclusive OR function of two variables may be obtained by making them the
arguments of the function EXCLORF. The hierarchy of operations in a Boolean expression
is as in ordinary algebra, except that there is no subtraction, division, or exponentiation;
i. e., multiplication is done before addition. Complementation is a unary operation, and
enough parentheses must be used to completely define which one expression is to be

complemented,

ARGUS Statements

It is possible to intersperse Honeywell 800 instructions, written in the ARGUS language,
into an Algebraic Compiler program. The ARGUS instructions may be written on the Com-
piler coding form as desired in the compiled program, by placing an "A'" in column 1 of the

statement line of the Compiler coding form.

107

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

The rest of the ARGUS instruction format is:
Columns 2-5: Statement Number or Blank
Columns 11-22: Operation Code

Columns 24-37: A Address

Columns 38-51: B Address

Columns 52-65: C Address

The discussion which follows assumes a rudimentary knowledge of the ARGUS system.

The allowable types of addresses used in ARGUS statements are limited to names of

floating-point variables, ARGUS constants, literal floating-point constants without a sign,

statement numbers or binary counts according to the following table:

Type of Operation A Address B Address C Address
Arithmetic (floating binary) General General Variable

Logical Symbol Symbol Variable
Comparison v General General Statement Number
TS General or Variable or Statement Number

Inactive Inactive

TX General Variable

Shift Symbol Binary Count Variable

Print General . Inactive Statement Number

or Inactive
In the above table the following definitions apply:
Variable - name of a floating-point variable.

General - includes name of floating-point variable and ARGUS constant, and
literal floating-point constants.

Symbol - Includes name of floating-point variable and ARGUS constant.

The portions of the ARGUS vocabulary which may be used include the three ARGUS
constant pseudo instructions ALF, OCT, and FLBIN, with the restriction that these must
appear with only one entry per statement line. In addition to these data entry instructions,
the Algebraic Compiler permits the use of: BA, BS, BM, BD, WA, WD, HA, SM, SS, EX,
TX, TS, NN, NA, LN, LA, SPS, SPE, SWS, SWE, PRA, PRD, PRO, FBA, FBS, FBM, FBD,
FLN, FFN, and FNN.

All other ARGUS instructions are specifically excluded from the set of permissible
instructions in the Algebraic Compiler. Further, ARGUS instructions may not use the
cosequence mode, simulator instructions, or masking. No Compiler functions may be

addressed.

108

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

! CONTROL STATEMENTS

Unconditional GO TO Statement GO TOn

Control is transferred to the statement with the statement number n.

Computed GO TO Statement GO TO (nl, Doseees nm), i

In this statement, i must be a non-subscripted fixed-point variable and Dy N, e.., D
m

must be statement numbers. If the value of the variable i at the time this statement is executed

is j, control is transferred to the statement with the statement number n,. The value of i must

never be outside the range 1 to m.

Assigned GO TO Statement GO TO n, (nl, nZ, cees nm)

In this statement, n must be a non-subscripted fixed-point variable which appears in a

previously-executed ASSIGN statement andn_, n_,... T must be statement numbers. Con-

1" 72
}l\ trol is transferred to the statement having for its statement number whichever one of the values

, Dy Moseen, D was most recently assigned to n by an ASSIGN statement.
: m

ASSIGN Statement ASSIGN ni TO n

In this statement, n must be a non-subscripted fixed-point variable which appears in an
assigned GO TO statement, and n, must be one of the statement numbers appearing in paren-
theses in the same assigned GO TO. When the assigned GO TO is next executed, control is
transferred to the statement with the statement number n., unless another applicable ASSIGN

intervenes.

CONTINUE Statement CONTINUE

\ This is a dummy statement which does not result in any instructions in the object
program. It is used primarily as the last statement in the range of a DO, when needed to
satisfy the requirement that the range of a DO must not end with any statement which can

! cause a transfer of control.

IF Statement IF (e) nl, nz, n3
’ In this statement, e is an expression and n,, n,, njare statement numbers. Control
is transferred to the statement with the statement number ny, 0, OF N, depending on whether

the value of e is less than zero, equal to zero, or greater than zero, respectively.

109

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

IF PARITY Statement IF PARITY nl, n2

This statement may be used to alter the course of a computation upon detection of an

uncorrectable parity error on a magnetic tape. In the statement, n,. and n, must be state-
ment numbers. If there was a parity error on the preceding statement and the parity rou-
tines were not able to correct it, the statement number n1 is executed next; if there was no
error or if it was corrected, the statement with the statement number n, is executed next.
The IF PARITY statement may optionally follow any of the statements READ TAPE, WRITE
TAPE, READ INPUT TAPE, or WRITE OUTPUT TAPE; if so, it must be the next executable
statement. If the statements IF PARITY and IF END OF FILE are both used, the IF PARITY
should be first. If an uncorrectable error is detected and there is no IF PARITY statement
following the input or output statement, the object program will print an error indication and

stop.

IF END OF FILE Statement IF END OF FILE nl, n2
This statement may be used to alter the course of a computation under any of the fol-
lowing conditions:

1. In connection with a READ TAPE statement, upon detection of the indication
written on a magnetic tape by the END FILE statement;

2. In connection with a READ, READONE, or READTWO statement, upon
detection of a card with the word FINIS punched in columns 2 through 6;

3. In connection with a READ INPUT TAPE statement, upon detection of a
record produced by a card with the word FINIS punched in columns 2
through 6.

2
detected in connection with the preceding input or output statement, the statement with

In the statement, n, and n, must be statement numbers. If the relevant condition was

the statement number nl is executed next; if the condition was not detected, the statement
with the statement number n, is executed next. The IF END OF FILE statement must be
the next executable statement after the input or output statement to which it refers, except
that an IF PARITY statement may intervene. If any of the conditions listed above are de-
tected and there is no IF END OF FILE statement following the input or output statement,

the object program will produce an error indication and stop.

DO Statement DOni= ni, nz, n3

or D0n1=n1, nz

In this statement, n must be a statement number, i must be a non-subscripted fixed-

, n., and n_ must each be either an unsigned fixed-point constant or

pointk variable, and n;, 0, 3

i10

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

a non-subscripted fixed-point variable. If n, is not written, as in the second form of the

statement, it is assumed to be 1.

’ The statements following the DO, up to and including the statement with the statement

number n, are executed repeatedly. They are executed first with i = n ; on each following

execution i is increased by n Repeated execution is continued until the statements have

3
been executed with i equal to the largest value which does not exceed n,.

The range of a DO is the set of repeatedly executed statements. Stated otherwise, it
is the set of statements beginning with the statement immediately following the DO and

continuing up to and including the statement with the statement number n.

The index of a DO is the fixed-point variable i. Throughout the execution of the range,

i is available for use in computation, either as a fixed-point variable or as the variable of
'i[a subscript. The value of i is also available for use in computation if control passes to

| statements outside of the range. This may happen either by the execution of control state-
r ments which cause a transfer of control outside of the range of the DO, or by the normal
completion of the number of executions of the range as specified by D, D, and n,. In the

latter case, the DO is said to be satisfied. The following rules must be observed in writing

DO statements:

Rule 1. If the range of one DO (the "outer' DO) contains statements in the range
of another DO (the 'inner' DO), then all the statements in the range of the inner
DO must also be in the range of the outer DO, (This does not prohibit having

the ranges of two or more DO's end with the same statement.)

Rule 2. The last statement in the range of a DO must not be a statement that

can cause a transfer of control.

Rule 3. No statement may be executed within the range of a DO, which re-
defines or otherwise alters the value of the index of the DO or of n;, n,, ormn,.
Rule 4. Control must not transfer into the range of a DO from a statement out-
side its range, with one exception: it is permissible to transfer control out of

1 the ‘range of a DO, perform a series of calculations, and then transfer control
back to the same section of the range of the DO from which exit was made.
When this is done, the statements to which control is transferred are called

the extended range of the DO. It is still necessary to observe Rule 3 in the

111

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

extended range. Furthermore, if there are any DO's in the extended range, the

transfer is only permitted from the innermost DO of a completely-nested set of

DO's, i.e., every pair of DO's in the '"nest' is such that one contains the other.

PAUSE Statement PAUSE or PAUSE n

If the second form of the statement is used, n must be an unsigned octal constant which
may contain as many as five digits. When the statement is encountered in the object program,
the following are typed out on a console typewriter:

1. The title of the main program, which appeared in the TITLE statement;

2. The word PAUSE;

3. The constant n, or nothing if the first form of the statement is used;

4. The status of the simulated sense lights and sense switches.

The machine then waits for the operator to take some action. If a restart at the sequence
register is initiated, the program will continue execution, beginning with the next executable
statemerit after the PAUSE, It is possible to change the status of the simulated sense switches

before continuing. Any programs being parallel processed will not be affected by these actions.

STOP Statement STOP or STOP n

If the second form of the statement is used, n must be an unsigned octal constant which
may contain as many as five digits. When the statement is encountered in the object program,
the following are typed on a console typewriter:

1. The title of the main program, which appeared in the TITLE statement;

2. The word STOP;

3. The constant n, or nothing if the first form of the statement is used;

4. The status of the simulated sense lights.

The execution of this program is then halted and control is returned to the Executive Routine.
Manually starting this program again at the sequence register will have unpredicted results,
since it is not anticipated that the programmer will want to continue execution of a program
after encountering a STOP. The execution of this statement will not affect any programs

being parallel processed with this one.

SENSE LIGHT Sta,tement1 SENSE LIGHT i

This statement provides a means of indicating conditions in a problem both to the opera-
tor and to other portions of the program. The value of i must lie in the range of zero through
4. If iis zero, all sense lights (1 through 4) will be turned off, i.e., SENSE LIGHT 0 in effect
clears all sense lights. If i has any other value, i.e., 1 through 4, that particular sense light

1The SENSE BIT Statement may be used interchangeably with the SENSE LIGHT Statement.

12

I—

s —

SECTION IX., SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

will be turned on. For example, SENSE LIGHT 3 turns on sense light 3. For a discussion

of sense lights and sense switches, see Appendix B.

1

IF (SENSE LIGHT) Statement IF (SENSE LIGHT i) n,y, n,

This statement is used to alter conditionally the sequence of the execution of statements

dependent upon the status of one of the sense lights. In the statement, n, and n, are statement

numbers and i is the number of a sense light, 1 through 4. If sense light i is in the on condition,
control is transferred to statement number ni, otherwise control is transferred to statement

number n,. If the sense light is on at the time of execution of this statement, it will be turned

off. In other words, sense light i is always left in the off condition as the result of the execu~

tion of this statement.

IF (SENSE SWITCH) Statement® IF (SENSE SWITCH i) n;, n

2

This statement is similar to the IF SENSE LIGHT statement except that the sense switches
(see Appendix B) are interrogated rather than the sense lights. n, and n, are statement num-
bers and i identifies the sense switch used. The value of i may range from 1 through 6. Control

is transferred to statement n1 if sense switch i is down and to statement n, if sense switch i is

up.

IF ACCUMULATOR OVERFLOW Statement IF ACCUMULATOR OVERFILOW n_, n

- 1" 72
This statement is used to control the program sequence depending on the setting of a

switch which is set by an addition or subtraction overflow unprogrammed transfer. Control
is transferred to statement number n, if an accumulator overflow has occurred or to state-
ment number n, if overflow has not occurred since the previous IF ACCUMULATOR OVERFLOW

statement. The use of this statement resets the internal indicator tested.

IF QUOTIENT OVERFLOW Statement IF QUOTIENT OVERFLOW n;, n

2
This statement is used to test the status of a switch set by an exponential overflow or

underflow unprogrammed transfer. Control is transferred to statement n; if an exponent has
been created by any of the floating-point operations that is greater than 463 or less than -64,
or to statement n, if these exponent limits have not been exceeded since the previous IF
QUOTIENT OVERFLOW statement. The use of this statement resets the internal indicator

tested.

1

The IF (SENSE BIT) Statement may be used interchangeably with the IF (SENSE LIGHT)
Statement. .
2The IF (SENSE FLAG) Statement may be used interchangeably with the IF (SENSE SWITCH)
Statement,

113

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

IF DIVIDE CHECK Statement IF DIVIDE CHECK n,, n,

This statement is used to test a switch set by a division overcapacity unprogrammed

transfer, Control is transferred to statement n, if a division instruction has been attempted
that cannot be performed, or to statement n, if no illegal divisions have been attempted since
the previous IF DIVIDE CHECK statement. The use of this statement resets the internal in-

dicator tested.

TITLE Statement TITLE Name

This statement must be on the first card of every program. The word TITLE must
be punched in columns 2 through 6 of the statement card, and the desired title in columns
7 through 14. The name used should not duplicate any already on the collector tape. If
no TITLE statement is provided, a dummy name will be supplied by the Compiler. A
TITLE statement is not required by FUNCTION and SUBROUTINE subprograms, and is
ignored if present; the name of the subprogram becomes its name on the collector tape. A
TITLE card must not be preceded by a blank card. A TITLE may not begin with an asterisk

as it might otherwise be confused with principle subroutines.

END Statement END

This is-a non-executable statement which must be on the last card of every program
or subprogram deck. It is required in order to separate programs in batch program com-
pilation, but it is nevertheless required even though only one program is being compiled,
The word END must be punched in columns 7 through 9 of the statement; any other punches

on the card are ignored. An END card must not be followed by a blank card.

FINIS Statement FINIS

This is a non-executable statement which must be on the last card of the batch of
program decks being compiled together. It is required even if the batch consists of only
one program. No other characters may be written in this statement, besides the word

FINIS, which must appear in columns 2 through 6 of the statement card.

INPUT AND OUTPUT STATEMENTS

Definition of a List

All of the input and output statements which transmit information require a list in
order to specify the variables to be transferred between storage and an input or output
device, and to specify the sequence in which they are to be transferred. A list cc;nsists
of the names of the variables to be transferred, together with parenthesized indexing

information to specify how the subscripted variables (if any) are to be treated. The variables

114

SECTION IX, SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

are transferred in the order in which they are named, from left to right, with repetition of any
variables for which indexing information is supplied. Parenthesized variables with indexing
information may be thought of as being equivalent to implicit DO loops, where each opening
parenthesis (except subscripting parentheses) corresponds to a DO, with its indexing informa-
tion written just before the matching closing parenthesis, and with its range ending with the
indexing information. As in a DO statement, the indexing information consists of three fixed-
point constants or fixed-point variables; if the last of these is omitted, it is assumed to be 1.
'""Nests'' of indexing information may be be at most three levels deep. If the list of an input
statement is written in the form I, A(I), or the form J, (A(I), I =1, J), or in any other form

in which a subscript or an indexing parameter itself appears earlier in the list, the subscripting

or indexing will be carried out using the new value.

If it is desired to transfer an entire array, the name of which must of course appear in
a DIMENSION statement, it is permissible to omit the indexing information. When this is done,
the elements of the array are understood to be ordered in the same way that the elements of
an array are ordered in storage, i. e., with the first subscript from the left varying most

rapidly and the last subscript varying least rapidly.

FORMAT Statement FORMAT (Field Specifications)

All of the input and output statements which require a list, with the exception of READ
TAPE and WRITE TAPE, require, in addition, the statement number of a FORMAT statement
which describes the information format to be used. The FORMAT statement also describes,
in some cases, the kind of conversion to be performed between the internal and external rep-
resentation of the information to be transferred. A FORMAT statement is not executable, and

may be placed anywhere in the source program.

In the discussions below, the term ''unit record'" is used. Depending on which input or

output statement is used, a unit record may consist of:

1. A line to be printed on an on-line printer, with a maximum of 120
characters;
2. A punched card to be read from an on-line card reader or punched

on a directly-connected punch, with a maximum of 80 characters;

3. An alphabetic tape record to be read or written, with a maximum
of 120 characters;

4, A binary tape record to be read or written, with any number of
words. The number of physical tape blocks in such a record is
determined by considerations in the object program and is of
no concern to the programmer.

115

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

The field specification in a FORMAT statement describes the unit record(s) involved by

giving, for each field in the record, from left to right beginning with the first character of
the record:

1. The type of information and/or the type of conversion to be used; this is
done with the seven field specification characters discussed below;

2. The number of characters in the field;

3. For some of the field specifications certain other information is required
and/or may optionally be given; these cases are discussed in connection
with the description of the field specifications below.

If a number of consecutive fields, say n, have the same format and type of conversion,
n may be written before the field-specification character to so indicate. This repetition of
groups of field specifications may be called for by enclosing the group of field specifications
within parentheses and writing the desired number of repetitions in front of the opening paren-
thesis. Only one level of grouping is permitted, i. e., parentheses within parentheses are

not permitted for this purpose,

When the list of an input or output statement is used to transfer more than one unit
record, with the different records having different formats, a slash is used to separate the
format specification of each record. It is possible to specify that the first one or more
records have a special format, and that all following records have the same format; this is
done by enclosing the last record specification in a second set of parentheses, A slash
always indicates the end of one record and the beginning of a new one; the closing parenthesis
of the FORMAT statement always indicates the end of a record. The skipping of entire records,
which in practice usually means the printing of blank lines, is called for by writing consecutive

slashes. The skipping of n records is called for by writing n + 1 slashes,

With the exceptions of a FORMAT statement which consists entirely of Hollerith fields
and of the ""B' (blank) field specification (see below), a FORMAT statement is always used in
conjunction with the list of an input or output statement. The list specifies the variables to
be transferred and in what order, and the associated FORMAT statement, the format of each
variable as well as the length of each record if there is more than one. As the object program
transmits the variables named in the list, it scans the FORMAT statement, from left to right,
to find the proper field specification for each variable; any repetition of field specification or
of groups of field specifications is, of course, taken into account. Whenever Hollerith field
specifications (see below) are encountered in scanning the FORMAT statement, they are dealt
with in the proper place, without any transmission of variables from the list. The transmis-

sion of variables is terminated only when all items in the list have been transmitted, but any

116

SECTION [X. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

remaining Hollerith field specifications in the FORMAT statement will be dealt with even after
the transmission of the last variable. If the last field specification in the FORMAT statement
has been used and items named in the list remain to be transmitted, scanning of the FORMAT
statement begins again with the first field specification in the last set of parentheses in the

statement.

Scale Factor

A scale factor is optional with the "E' and "F' field specifications. It is written as
n P s where n is the scale factor, s is the field specification and P is used only as a separation
character, Its usage is different for the two types; details are discussed below. Four con-
ventions which apply to both types may be mentioned here:

1. Once a scale factor has been given, it applies to all "E' and "F"
field specifications in the same FORMAT statement, until another
scale factor appears in the scanning of the FORMAT statement;

2. If no scale factor is given, it is taken to be zero. Once a scale
factor has been given, a scale factor of zero must be given in
order to return to the normal mode;

3. Scale factors apply only to the "E'" and "F' field specifications,
and with the "E'" type only to output. Use of a scale factor with
any other type of field specification has no effect; use of a scale
factor for input of "E' fields produces unpredicted results and no
error indication is given;

4. When a scale factor is written with a field specification which
includes a repetition number, the repetition number is written
between the scale factor and the E or F. If there is no repe-
tition number given, i. e., if it is understood as 1, then it
may be written or not. Thus, in the case of the "F' field
specification, for instance (see below), the following are all
permissible: 3P4F12.4, 3PF12.4, 3P1F12.4; the last two
are equivalent.

Field Specification "E' (Floating Point) Ew.d

The "E'" field specification is used to indicate conversion between an internal floating-
point variable and an external floating-point decimal number, i. e., one written with an explicit
exponent. The total number of characters in the field, including sign, decimal point, exponent,
and any blanks, is specified by w. The number of decimal places after the decimal point is

specified by d; d is treated modulo 10.

On input, a sign, if it appears, must be the first non-blank character of the field. The
use of a + is always optional. The use of a decimal point is optional; if it is not supplied, then
the position of the assumed decimal point is given by d, but if it is supplied its position over-

rides d. Blanks embedded in the number are to be zeros. The 'mumber' part of the field must

117

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

not exceed 14 digits, not counting sign, blanks, or decimal point. The exponent part of the
field is of the general form Exee, where ee is the numeric exponent, but several simplifica-
tions are permitted. A positive exponent may appear with the + omitted or replaced by a
blank, i. e., in the forms E ee or Eee. If the most significant digit of the exponent is zero,
it may be omitted. If the exponent appears with a sign, the E may be omitted. Thus, the
following are all permissible (and equivalent) forms for the exponent plus two: E + 02, E 02
E02, E+ 2, E 2, E2, +02, +2. A scale factor has no effect on input with the "E' field

specification.

On output, the number will appear at the right of the field, if w is larger than the number
of characters in the field. If w is not large enough to contain the converted internal number,
leading characters will be lost. There will be no embedded blanks in the field, with the excep-
tion that + signs are not entered but are replaced by blanks. In the absence of a scale factor
(see below), the field will appear in the form +0.nn.....E+ee (except that any + signs do not

actually appear) where the number of places after the decimal point is specified by d.

A positive scale factor may be used by writing the field specification in the form sPnEw. d,
where s is the scale factor, and n is the number of repetitions for the field specification (see the
discussion of scale factor conventions under the general discussion of the FORMAT Statement).
The effect of the use of a scale factor in this case is to move the decimal point s places to the

right and to decrease the exponent by s.

Field Specification "F' (External Fixed Point) Fw.d

The "F' field specification is used to indicate conversion between an internal floating-point
variable and an external fixed-point number, i. e., one written without an exponent. The total
number of characters in the field, including sign, decimal point, and any blanks, is specified by

w. The number of decimal places after the decimal point is specified by d; d is treated modulo 10.

On input, a sign, if it appears, must be the first non-blank character of the field. The
use of a + is always optional. The use of a decimal point is optional; if it is not supplied, then
the position of the assumed decimal point is given by d, but if it is supplied its position over-
rides d. Blanks embedded in the number are to be zeros. The number must not exceed 12

digits, not counting sign, blanks, or decimal point.

A positive or negative scale factor may be used for input with the "F'" field specification;
the effect is to multiply the external number by 10 to the negative of the scale factor. If the
scale factor is s, the formula is:

Internal number = External number . IO_S

118

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

On output, the number will appear at the right of the field, if w is larger than the number
of characters in the field. If w is not large enough to contain the converted internal number,
leading characters will be lost. There will be no embedded blanks in the field. Positive

numbers appear without a + sign.

A positive or negative scale factor may be used, by writing the field specification in the
form £sPnFw.d, where the + sign is optional, s is the scale factor, and n is the number of
repetitions of the field specification (see the discussion of scale factor conventions under the

general discussion of the FORMAT Statement). The effect of the use of the scale factor in

this case is to move the decimal point of the external number s places to the right if s is posi-

tive, or to the left if s is negative. Stated otherwise, s is a number sﬁch that:

External number = Internal number - 10s

Field Specification '"I" (Integer) Iw

The "I" field specification is used to indicate conversion between an internal fixed-point
variable and an external decimal integer. The total number of characters in the field, including

sign and any blanks, is w.

On input, a sign is optional; if it appears, it must be the first non-blank character in the
field. The use of a + sign is always optional. The use of a decimal point is, of course, not
permitted. Blanks embedded in the number are assumed to be zeros. The number must not
exceed 14 digits, not counting sign or blanks; for use as a subscript or index the limit is in

fact 32,767.
On output, the number will appear at the right of the field, if w is larger than the number
of characters in the field. If w is not large enough to contain the converted internal number,

leading characters will be lost. Positive integers appear without the + sign.

Field Specification '"H'' (Hollerith) wH

The Hollerith field specification does not call for the output of a variable, but the output
of the following text itself. The w characters immediately following the letter H, where w
may be any integer not exceeding the size of the record, are placed in the record in the posi-
tion indicated by the position of the Hollerith field specification in the FORMAT statement.
Any Honeywell 800 character may be used, including the character blank; this is the only
instance in which a blank in a statement is not ignored. The characters printed by the high-
and standard-speed printers available with the Honeywell 800 are different in a few cases;

reference should be made to the character configuration table in Appendix A to determine

119

SECTION IX, SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

what characters will be printed.

Indication of the presence of Hollerith text is not required in the list of the output state-
ment which refers to the FORMAT statement. Whenever a Hollerith field specification is
encountered in the scanning of the FORMAT statement, the following text is written out and
scanning continues without any variables having been transmitted. It is possible to write a
line consisting entirely of Hollerith text, by using an output statement with no list, and which
refers to a FORMAT statement with only the "H' field specification., The Hollerith text is

not available to the programmer for use in any way other than for input or output.

When a FORMAT statement containing Hollerith text is referenced by an input statement,
the listed text is replaced by whatever text appears in the corresponding field of the input
record. When the same FORMAT statement is later used with an output statement, the text
which has been ''read into'" the FORMAT statement will then be transferred to the output
record. The text thus entered is still not available to the programmer for use in any other
way than for input or output. (The "A'" field specification, described below, is available for

use in entering alphabetic data, which can then be manipulated by the program.)

For all output statements that result in printing, e.g., PRINT and WRITE OUTPUT
TAPE, single spacing of the printed lines will result unless specific control is given other-
wise. This is accomplished through the use of the Hollerith field specification in a FORMAT
statement. If a field specification 1H is used as the first field specification in a FORMAT
statement associated with an output statement, no data per se is transmitted, but rather the
one Hollerith character is interpreted as a control character. The permissible characters
and their interpretation are:

Blank - single space after the current line is printed

+ - suppress spacing after the current line is printed
0 - double space after the current line is printed
1 - space to head of form after the current line is printed
2-9 - this number of lines are to be spaced after the current line is printed

If any other character is used in this connection, it will be placed in the output area. If this
Hollerith field specification is used in connection with punching, this control character will

not be punched.

Field Specification ""O" (Octal) Ow

' The "O" field specification is used to indicate conversion between an internal 48-bit
Honeywell 800 word and an external fixed-point octal integer. The total number of characters

in the field, including sign and any blanks, is w, which must be 16 or less.

120

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

On input, if 8, 9 or any other illegal character appears in the field, it will be converted

to alphanumeric form and the right three bits stored; no error indication will be given. Blanks

embedded in the field are assumed to be zeros.

For signed fields, the sign must be the first non-blank character of the field. If w is 16,
the leftmost digit must not exceed 3. If w is less than 16, the converted number will be placed
in the right side of the storage location. If the sign is +, all four sign bits of the Honeywell 800

word will be set to 1; if the sign is -, all four sign bits will be set to zero.

If the field appears without a sign, the characters of the field are stored in the left side
of the storage location, with no special handling of the sign bits of the Honeywell 800 word.
The leading digit may be any octal digit.

On output, the number will appear at the right of the field, if w is larger than the
number of characters in the field. If the field defined by w is not large enough to contain
the converted internal number, leading characters will be lost. Positive integers appear

without a + sign.

Field Specification "A'" (Alphabetic) Aw

The "A' field specification is used to indicate conversion between an internal 48-bit
Honeywell 800 word, considered as eight alphanumeric characters, and an external field
consisting of any combination of Honeywell 800 characters. The number of characters in

the field, w, may not exceed eight.

On input, if w is less than eight, the field will be stored in left-justified form, i. e.,
the first character of the field will appear in the leftmost character of the computer word,

and the extra characters at the right end of the computer word will be filled with blanks.

On output, if w is less than eight, the w characters at the left end of the computer word

will be moved to the output record.

Field Specification "B" (Blank)l wB

On input, the '"B' field specification calls for the next w character positions in the input
record to be skipped over. No indication in the list of the input statement referencing the

FORMAT statement is required.

On output, the "B'' field specification calls for w blanks to be inserted into the output

The field specification '"X'" may be used interchangeably with specification "B

121

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

record. No indication in the list of the output statement referencing the FORMAT statement

is required.

READ Statement READ n, List

In this statement, n is the statement number of a FORMAT statement, and the list is
as described above. The READ statement calls for the reading of cards from the on-line
card reader designated as number 1. As many cards are read as are required to supply the
number of variables specified in the list. The arrangement of information on the cards is
defined in the FORMAT statement; each field is converted, also as defined in the FORMAT
statement, and placed in the computer storage location assigned to the corresponding variable

named in the list.
The detection of a card with the word FINIS punched in columns 2 through 6 constitutes
an end-of-file condition for this statement. If the statement is executed when there are no

cards in the card reader ready to be read, the program will wait for cards to be made ready.

READ ONE Statement READ ONE n, List

This statement is exactly equivalent to the READ statement.

READ TWO Statement READ TWO n, List

This statement is equivalent to the READ and READ ONE statements, except that cards

are read from the on-line card reader designated as number 2.

PRINT Statement PRINT n, List

In this statement, n is the statement number of a FORMAT statement, and the list is
as described above. The PRINT statement calls for lines to be printed on the on-line printer
designated as number 1. As many lines are printed as are required to exhaust the list. The
arrangement of information in the lines is defined in the FORMAT statement; each variable in
the list is converted, also as defined in the FORMAT statement, and printed, one line at

a time.

PRINT ONE Statement PRINT ONE n, List

This statement is exactly equivalent to the PRINT statement.

PRINT TWO Statement PRINT TWO n, List

This statement is equivalent to the PRINT and PRINT ONE statements, except that

lines are printed on the on-line printer designated as number 2.

122

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

e

PUNCH Statement PUNCH n, List

In this statement, n is the statement number of a FORMAT statement, and the list is

i as described above. The PUNCH statement calls for Hollerith cards to be punched on the
on-line punch designated as number 1. As many cards are punched as are required to exhaust

/ the list, The arrangement of information on the cards is defined in the FORMAT statement;

each variable in the list is converted, also as defined in the FORMAT statement, and punched,

one card at a time.

PUNCH ONE Statement PUNCH ONE n, List

This statement is exactly equivalent to the PUNCH statement.

& PUNCH TWO Statement PUNCH TWO n, List
I This statement is equivalent to the PUNCH and PUNCH ONE statements, except that

cards are punched on the on-line punch designated as number 2.

;‘ READ INPUT TAPE Statement READ INPUT TAPE i, n, List

This statement is used to read a magnetic tape which contains up to 80 Honeywell 800
characters in alphanumeric form. In the statement, i is an unsigned fixed-point constant in
the range of zero through 63, and must be the number of a magnetic tape unit which is avail-
able on the computer system to be used by the object program. Symbolic tape addresses are
not permitted. The statement number of a FORMAT statement is given by n, and the list is
as described previously. As many records are read as are required to exhaust the list; the
length of each record is determined by the FORMAT statement, which also determines the

type of conversion applied to each variable in the list.

Detection of the record produced by a card with the word FINIS punched in columns
2 through 6 constitutes an end-of-file condition for this statement, along with detection of

the physical end of tape.

WRITE OUTPUT TAPE Statement WRITE OUTPUT TAPE i, n, List

This statement is used to write a magnetic tape containing records of up to 120
Honeywell 800 characters in alphanumeric form. In the statement, i is an unsigned fixed-
point constant in the range of zero through 63, and must be the number of a magnetic tape unit
which is available on the computer system to be used by the object program. Symbolic
tape addresses are not permitted. The statement number of a FORMAT statement is given
by n, and the list is as described previously. As many records are written as are required

to exhaust the list; the length of each record is determined by the FORMAT statement, which

123

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

also determines the type of conversion applied to each variable in the list. An END FILE

statement should be given after writing the last record.

READ TAPE Statement READ TAPE i, List

This statement is used to read magnetic tapes produced by a WRITE TAPE statement,
without any type of conversion; note that no FORMAT statement is referenced by a READ
TAPE statement. In the statement, i is an unsigned fixed-point constant in the range of
zero through 63, and must be the number of a magnetic tape unit which is available on the
computer system to be used by the object program. 5ymbolic tape addresses are not per-
mitted. The list is as described previously. As many records are read as are required’

to exhaust the list. A READ TAPE statement can read any tape produced by a WRITE
TAPE statement.

End-of-file conditions are initiated by detection of the indication written by an END

FILE statement.

WRITE TAPE Statement ¢ WRITE TAPE i, List

This statement is used to write a magnetic tape which contains Honeywell 800 words
exactly as they appear in storage, without any type of conversion; note that no FORMAT
statement is referenced by the WRITE TAPE statement. In the statement, i is an unsigned
fixed-point constant in the range of zero through 63, and must be the number of a magnetic
tape unit which is available on the computer system to be used by the object program. Sym-

bolic tape addresses are not permitted. The list is as described previously.

END FILE Statement END FILE i

This statement is used to write on a magnetic tape a signal which can be recognized
by the IFF END OF FILE statement for binary tapes and by the off-line printer for alpha-
numeric tapes. In the statement, i is an unsigned fixed-point constant in the range of zero
through 63, and must be the number of a magnetic tape unit which is available on the com-

puter system to be used by the object program.

REWIND Statement REWIND i

This statement is used to rewind a magnetic tape to the beginning of the tape. In the
statement, i is an unsigned fixed-point constant in the range of zero through 63, and must be

the number of a magnetic tape unit which is available on the computer system to be used by

the object program.

124

SECTION 1X. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

BACKSPACE Statement BACKSPACE i

This statement is used to backspace a magnetic tape by one record. It applies equally
to tapes produced by the WRITE TAPE and WRITE OUTPUT TAPE statements and to tapes
prepared by an off-line card reader. In the statement, i is an unsigned fixed-point constant
in the range of zero through 63, and must be the number of a magnetic tape unit available on

the computer system to be used by the object program.

BUFFER Statement BUFFER (nl, n_, n3), (mi, m m3). ..

2
The BUFFER statement makes it possible to overlap readizng and computation, writing
and computation, or reading, writing, and cémputation, | in the case of the READ TAPE and
WRITE TAPE statements. The list of such a statement must consist of the name of exactly
one array, shown in non-subscripted form. Each buffer assigned must be large enough to

hold the largest array which it will have to handle. All buffer areas may be set up with one

BUFFER statement, if desired, or a separate statement may be used for each. Use of input

buffering requires an additional special register group, as does output buffering.

The number of additional memory words used by buffering is, approximately:
Reading: 150 + sum of lengths of input buffers + 105
Writing: 150 + length of longest buffer + 105

The symbols used in the specimen statement above are to be interpreted as follows:

n, = IN for reading, OUT for writing

n, = number of the tape unit involved

n, = number of words in the longest record to be read or written with this tape
ERASE Statement ERASE (List)

| This executable statement clears to zero the locations corresponding to the variables

r specified in the list.

FUNCTIONS

General Considerations

Some of the material below requires a basic understanding of the concept of the Collector.

The collector is a magnetic tape on which are ''collected' all the compiled programs which

are available for operation on the computer at an installation. The output of a compilation is

a set of records added to the collector tape, along with certain optional listings. The output »

125

SECTION 1X. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM ‘

of a compilation, however, is not in the final form on the collector tape, but rather is on the

tape in sections, ready to be ''collected' together to form a running program. This final col-
lection is done prior to run time; it may be done immediately at the completion of compilation
or at any later time. Certain control cards may optionally be used to alter the collection proc- |

ess; these are discussed in connection with FUNCTION and SUBROUTINE subprograms, I

Open Functions

An open function is one which is compiled into the object program each time it is used

at the point where it is brought into operation in the source program. It is the only one of

the five types of functions with this characteristic. The Honeywell Algebraic Compiler, as

supplied, contains 13 such functions. ;”

The name of an open function consists of four to seven alphabetic or numeric characters

(but no special characters), of which the first must be alphabetic and the last F. The first

character must be X if, and only if, the value of the function is to be fixed point. The name
of the function is followed by parentheses enclosing the argument(s), which are separated by
commas if there is more than one. Each open function has a prescribed mode (fixed or j
floating point) for its argument(s) and for its value; different functions must be used for

each combination of modes of argument(s) and function value. The output of an open function

always consists of one value. Any expression, including another function, may be used as

an argument of an open function.

The 13 open functions which are supplied with the Honeywell Algebraic Compiler are }1

shown in Figure 6.

Library Functions

A library function is compiled into the object program only once, regardless of how
many times it is used. The Honeywell Algebraic Compiler, as supplied, contains 15 such

functions.

Any appearance of the name of a library function causes the compilation of the function

into the object program. Every appearance of the name brings the function program into

operation,

126

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

The name of a library function consists of four to seven alphabetic or numeric charac-
ters (but no special characters), of which the first must be alphabetic and the last F. The
first character is X if, and only if, the value of the function is fixed-point. The name of the
function is followed by parentheses enclosing the argument(s), which are separated by commas
if there is more than one. Each library function has a prescribed mode (fixed or floating point)
for its argument(s) and for its value; different functions must be used for each combination of
modes of argument(s) and function value. The output of a library function always consists of
one value. Any expression, including another function, may be used as an argument of a li-

brary function.

The 15 library functions which are supplied with the Honeywell Algebraic Compiler are

shown in Figure 7.

Defined Functions

A defined function (which is also called an arithmetic statement function) is one which
is defined with a single statement and then brought into operation elsewhere in the source
program wherever its name appears. The definition and use of defined functions are at
the discretion of the source programmer and are independent of any open or library functions.

A defined function applies only to the program or subprogram in which it appears.

A defined function is defined to the Compiler by a statement of the form a = b, where
a is the function name and b is an expression. The name of a defined function is four to
seven alphabetic or numeric characters (but no special characters), of which the first must
be alphabetic and the last . The first character must be X if, and only if, the value of the
function is to be fixed point. The name of the function is followed by parentheses enclosing
the argument(s), which are separated by commas if there is more than one. In the definition
statement, the arguments must be distinct non-subscripted variables. The right-hand side
of the definition statement may be any expression which does not involve subscripted vari-
ables. The right-hand side may involve variables not specified as arguments, and may

make free use of other functions.

The variables appearing as arguments in the definition of a defined function are only

dummies which, in effect, specify to the Compiler how to substitute into the defined function

127

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

the arguments which are written when the defined function is later used. Therefore, the variable
names used in the function definition are unimportant, except as they indicate fixed- or floating-
point variables, and may be the same as the names of actual variables appearing elsewhere in

the program.

The program which is compiled to carry out the operations specified in the function
definition statement appears once in the object program. Each time the defined function is
used, the object program then refers to the one place where the defined function appears. A

defined function is thus compiled as a closed subroutine.

A defined function may be used anywhere in a program, by writing the name of the
function and writing for arguments any expressions which agree in number, order, and mode,
with the arguments as stated in the definition of the function. In particular, the arguments
may be subscripted variables, constants, or functions. The output of a defined function

always consists of one value.

FUNCTION Subprograms

A FUNCTION subprogram is one which is defined by the use of a FUNCTION statement
followed by any number of Algebraic Compiler statements, and then brought into operation
elsewhere in the program by writing the name of the function. A FUNCTION subprogram is
an independent part of a total program. Its variable names may be the same as names which
appear in the main program or in other subprograms or it may have its own DIMENSION and
EQUIVALENCE statements; any defined functions appearing in a FUNCTION subprogram apply
only to that subprogram. The arguments in a FUNCTION statement may be the names of
arrays as well as the names of single variables. The output of a FUNCTION subprogram
always consists of one value. A FUNCTION subprogram may be compiled with a main pro-

gram and/or other subprograms, or it may be compiled independently.

FUNCTION Statement FUNCTION Name (al, ays eees a.n)

The name of a FUNCTION subprogram consists of one to six alphabetic or numeric
characters, the first of which must be alphabetic; the first character must be I, J, K, L,
M, or N if, and only if, the value of the function is to be fixed point, and the last character
must not be F if the name is more than three characters in length. The name must not
appear in a DIMENSION statement in the FUNCTION subprogram, nor in a DIMENSION
statement in any program which uses the subprogram. The name of the function must
appear at least once in the FUNCTION subprogram as a variable on the left-hand side of

an arithmetic statement, or, alternatively, in an input statement list. The name of the

128

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

function is followed by parentheses enclosing the argument(s), which are separated by commas

if there is more than one. In the FUNCTION statement, the arguments must be distinct non-
subscripted variables appearing on the right-hand sides of executable statements of the sub-

program. There may be any number of arguments as long as there is at least one.

The variables appearing as arguments in the FUNCTION statement are only dummies
which, in effect, specify to the Compiler how to substitute into the subprogram the argu-

ments which are written when the subprogram is used elsewhere in the program. Therefore,

the variable and array names used as arguments are unimportant, except as specifying fixed-

or floating-point variables, and may be the same as names appearing in the main program

or in other subprograms. However, none of the dummy variables of a FUNCTION subprogram

may appear in EQUIVALENCE or COMMON statements in the subprogram. The dummy

arguments must not be subscripted.

The FUNCTION statement must be the first statement of the subprogram. An END
statement must be the last (physically) statement of the subprogram., The appearance of the
FUNCTION statement indicates that all up to the END statements are the subprogram. The
FUNCTION subprogram may use any type of statement, except other FUNCTION statements
or SUBROUTINE statements. If a COMMON statement is used in the subprogram, it of
course refers to the one common storage area which is the same for all programs which
are collected together. This provides a means of establishing correspondence between
variables in the subprogram and variables in the main program or in other subprograms,

a correspondence which does not exist otherwise (even between variables having the same
name). The dummy variables which are used as arguments in the FUNCTION subprogram
are in non-subscripted form, but there is no such restriction on variables not used as
‘dummy variables. Free use may be made of all types of expressions, including all of the
five types of functions. A FUNCTION subprogram must contain at least one RETURN state-

ment which must be the last statement in the sequence of execution.

The object program which is compiled to carry out the operations specified in a
FUNCTION subprogram will appear in the object program once, regardless of how many
times the subprogram is used. Each time the subprogram is used, the object program
refers to the one place where the subprogram appears in storage; it is thus compiled as

a closed subroutine.

A FUNCTION subprogram must not be written between two statements of another
program. A FUNCTION subprogram may be compiled independently or batch compiled

129

SECTION IX., SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

with a main program and/or other subprograms.

A FUNCTION subprogram may be brought into operation by writing the name with
arguments which agree in number, order, and mode with those in the FUNCTION statement.
Furthermore, when a dummy argument is the name of an array, the corresponding real
argument must also be an array name. The dummy array name must appear in a DIMEN-
SION statement in the subprogram, and the actual array name must appear in a DIMENSION
statement in the calling program, and both must have the same dimensions. Dummy variables
which represent single variables may be replaced with any expressions, including subscripted

variables, constants, other functions, etc.

SUBROUTINE Subprograms
A SUBROUTINE subprogram is one which is defined by the use of a SUBROUTINE

statement followed by any number of Algebraic Compiler statements, and then called into
operation elsewhere in the program by the use of the CALL statement. A SUBROUTINE
subprogram is an independent part of a total program. Its variable names may be the

same as names which appear in the main program or in other subprograms; it may have

its own DIMENSION and EQUIVALENCE statements; any defined functions appearing in a
SUBROUTINE subprogram apply only to that subprogram. The arguments in a SUBROUTINE
statement may be the names of arrays as well as the names of single variables. The argu-
ments may represent input to the SUBROUTINE subprogram or output from it, and the out-
put may consist of any number of values, including arrays. A SUBROUTINE subprogram
may be batch compiled with a main program and/or other subprograms, or it may be com-

piled independently.

PYRERRTILN

The name of a SUBROUTINE subprogram consists of one to six alphabetic or numeric

SUBROUTINE Statement SUBROUTINE Name (al, a

characters (but no special characters), the first of which must be alphabetic and the last
must not be F if the name is more than three characters in length. The name must not
appear in a DIMENSION statement in the SUBROUTINE subprogram, nor in a DIMENSION
statement in any program which uses the subprogram. The name of the subprogram is
followed by parentheses enclosing the argument(s), which are separated by commas if there
is more than one. In the SUBROUTINE statement, the arguments must be distinct non-
subscripted variables appearing in executable statements in the subprogram; input argu-
ments must appear in the right-hand sides of statements, and output arguments in the left-
hand sides of statements. There may be any number of arguments, or none. If there are

no arguments, no parentheses are required.

130

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

The variables appearing as arguments in the SUBROUTINE statement are only dummies
which, in effect, specify to the Compiler how to substitute into the subprogram the arguments
which are written in CALL statement(s) when the subprogram is used elsewhere in the pro-
gram. Therefore, the variable and array names used as arguments are unimportant, except
as specifying fixed- or floating-point variables, and may be the same as names appearing
in the main program or in other subprograms. However, none of the dummy variables of a
SUBROUTINE subprogram may appear in EQUIVALENCE or COMMON statements in the

subprogram.

The SUBROUTINE statement must be the first statement of the subprogram. An END
statement must be the last statement physically of the subprogram. The appearance of the
SUBROUTINE statement indicates that all subsequent statements, up to the END statement,

are in the subprogram.

The SUBROUTINE subprogram may use any type of statement except FUNCTION or
another SUBROUTINE statement. If a COMMON statement is used in the subprogram, it
refers to the one common storage which is the same for all programs which are collected
to be run together., This provides a means of establishing correspondence between vari-
ables in the subprogram and variables in the main program or in other subprograms, a
correspondence which does not exist otherwise (even between variables having the same
name). The dummy variables which are used in the SUBROUTINE statement must appear
in the SUBROUTINE subprogram in non-subscripted form, but there is no such restriction
on variables not used as dummy variables. Free use may be made of expressions, including
all of the five types of functions. A SUBROUTINE subprogram must contain at least one

RETURN statement which must be the last executed statement.

The object program which is compiled to carry out the operations specified in a
SUBROUTINE subprogram will appear once in the object program, regardless of how
many times the subprogram is used. Each time the subprogram is used (by calling it
with a CALL statement), the object program refers to the one place where the subprogram
appears in storage; it is thus compiled as a closed subroutine. A SUBROUTINE subprogram
must not be written between two statements of another program. A SUBROUTINE subprogram
may be batch compiled with a main program and/or other subprograms, or it may be com-
piled independently.

CALL Statement CALL Name (al, A, vaes an)

2’

This statement is used to call into operation the SUBROUTINE subprogram specified

131

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

by the name in the CALL statement. Control is transferred to the named subprogram, and

the parenthesized arguments replace the corresponding dummy arguments of the SUBROUTINE
statement. The arguments in the CALL statement must agree in number, order, and mode with
those in the SUBROUTINE statement. Furthermore, when an argument in the SUBROUTINE
statement is an array name; the corresponding argument in the CALL statement must also

be an array name. The array name in the SUBROUTINE statement must appear in a DIMEN-
SION statement in the subprogram, and the array name in the CALL statement must appear

in a DIMENSION statement in the calling program, and the dimensions must be the same,
Dummy variables which represent single variables may be replaced with any expressions,
including subscripted or non-subscripted variables, constants, other functions, etc., but

not with literal alphabetic or numeric characters.

If a CALL statement refers to a SUBROUTINE which has been designated for overlaying
(see below) and the routine is not in memory when the CALL is executed, then the object

program automatically brings the subprogram into memory and then transfers control to it.

RETURN Statement RETURN

This statement terminates any FUNCTION or SUBROUTINE subprogram, and returns
control to the calling program. A RETURN statement must therefore be the last-executed
statement of a subprogram. It need not, however, be physically the last statement of a
subprogram; it may appear at any point in a subprogram, and there may be any number of

RETURN statements in a subprogram.

Overlaying may be used with SUBROUTINE subprograms only. All subprograms to
occupy the same area of memory must be named on OVERLAY control cards at collection
time. When this is done, the operation of the CALL statement is modified so that if the

subprogram is not in memory when called, it will be brought it.

The NEGLECT control card may be used at collection time when parts of a program
have not yet been completed and it is desired to test other parts, Any FUNCTION or SUB-
ROUTINE subprograms which have not been completed, and which are mentioned in the
parts which are to be tested, should be named on NEGLECT control cards.

SPECIFICATION STATEMENTS

DIMENSION Statement DIMENSION v, v, Vv, ...

The DIMENSION statement is used to specify the maximum sizes of arrays; every

132

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

variable in a program which appears in subscripted form must appear in a DIMENSION
statement. In the general form of the statement shown above, v is the name of a variable
with one, two, or three subscripts (unsigned fixed-point constants) in parentheses. The
number of subscripts determines the number of dimensions of the array; the value of each
subscript in the DIMENSION statement determines the maximum value of the corresponding
subscript anywhere else in the program. The appearance of a variable in a DIMENSION
statement causes space to be reserved for the array, and indirectly causes the assignment

of a specific storage location for each element of the array,

Any number of subscripted variables separated by commas may appear in one
DIMENSION statement, and there may be any number of DIMENSION statements in a
program. A DIMENSION statement applies only to the main program or subprogram in
which it appears. A DIMENSION statement may appear anywhere in a program. A
DIMENSION statement must not include the name of the program in which it appears, nor

the name of any FUNCTION or SUBROUTINE subprogram which the program uses.

EQUIVALENCE Statement EQUIVALENCE (a, b, c,...), (d, e, f,...),...

The EQUIVALENCE statement makes it possible to assign two or more variables to the
same storage locations, where the logic of the problem permits it, thus making possible signi-
ficant reductions in storage space. In an alternative interpretation, the statement may be used

to establish two different symbols as standing for the same variable.

The variables within a set of parentheses, which may be subscripted with a single
unsigned fixed-point constant, are assigned to the same location. There may be any num-
ber of variables within one set of parentheses, any number of parentheses, and any number
of EQUIVALENCE statements. Quantities which are not mentioned in EQUIVALENCE
statements are assigned to unique locations. Locations can only be shared among variables,

not constants.

The meaning of a subscript of a variable in an EQUIVALENCE statement is defined
as follows. For a subscript greater than zero, the meaning of C(p) is: The (p - 1)th loca-
tion after the one containing C, or if C is an array, the (p - 1)th location after the one con-
taining C(1), C(l, 1), or C(1l, 1, 1). Subscripting of variables in an EQUIVALENCE statement

cannot be used to change the standard way in which arrays are stored. It must be emphasized

that a variable may have only one subscript in an EQUIVALENCE statement, regardless of

133

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

how many dimensions it has. For two- and three-dimensional arrays, it is necessary to take
into account the manner in which arrays are stored in order to compute the subscript required
in an EQUIVALENCE statement to establish equivalence between some single variable(s) and
a specific element of an array. If it is desired to establish an equivalence involving the first
element of an array, the array name may be written in either of the forms A or A(l). In
order to establish equivalence between the first locations of a number of arrays, which need
not have the same dimensions or total number of locations, it is satisfactory to write the

names of the arrays in non-subscripted form.

An EQUIVALENCE statement applies only to the program or subprogram in which

it appears.

COMMON Statement COMMON A, B, C,...

The COMMON statement makes it possible to establish correspondence between
variables in different subprograms. Variables which are not mentioned in a COMMON
statement are assigned to locations in the same general section of storage as the instruc-
tions of the program in which they appear; variables named in a COMMON statement are
assigned to a special COMMON area which is separate from all programs. The variables
named in a COMMON statement apply only to the program or subprogram in which they
appear, but the COMMON area is the same for all programs and subprograms which are

collected together.

In a COMMON statement, single variables and arrays are treated separately, and
there is a part of the COMMON area for each. The single variables are assigned to succes-
sive locations in the single-variable part of the COMMON area, in the order in which they
appear in COMMON statements, regardless of how they may be interspersed among the
names of arrays. (However, this sequence may be altered if variables appear both in
COMMON and EQUIVALENCE statements.) Similarly, arrays are assigned to the array
part of the COMMON area, in the order in which they appear in the statement, with enough
space being assigned to contain each array. This process is applied to all COMMON state-
ments in a program. Therefore, the first single variable appearing in a COMMON statement
in a program is assigned to the first single-variable location in the COMMON area. In this
way, correspondence is established between variables in different subprograms, whether or
not they have the same names. It would be pointless, although not damaging, to have a
COMMON statement in one subprogram or in the main program, without having another

COMMON statement elsewhere in the program.

134

I

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

When COMMON variables also appear in EQUIVALENCE statements, the ordinary
sequence of COMMON variables is changed and priority is given to those variables in

EQUIVALENCE statements, in the order in which they appear in EQUIVALENCE statements.

When it is necessary to put variables into corresponding positions in two COMMON
statements, it is permissible to make up variable or array names which do not actually
appear in the subprogram in question. Because of the separate treatment of single variables
and arrays, however, made-up arrays must not be used to force correspondence between

single variables.

135

9¢€l

High High
Key Card Honeywell Standard Speed Key Card Honeywell Standard | Speed
Punch Code 800 Code |Octal | Printer Printer | Console Punch | Code 800 Code | Octal Printer Printer Console
0 0 000000 00 0 (zero) 0 0 - X 100000 40 - (minus) - -
1 1 000004 01 1 1 1 J X, 1 100004 41 J J J
2 2 0000140 02 2 2 2 X X, 2 100040 42 K K K
3 3 000011 03 3 3 3 L X,3 100011 43 L L L
4 4 000100 04 4 4 4 M X, 4 100100 44 M M M
5 5 000104 05 5 5 5 N X,5 1001041 45 N N N
6 6 000110 06 6 6 6 o X, 6 100110 46 (o] (o) [e]
7 7 000111 07 7 7 7 P X,7 100111 47 P P P
8 8 001000 10 8 8 8 Q X,8 1041000 50 Q Q Q
9 9 001001 11 9 9 9 R X,9 1041001 51 R R R
8, 2% 001010 12 9% ! ! X,8,2% 104040 52 R* # #
8,3 001011 13 = = = $ X,8,3 104011 53 $ $ $
@ 8,4 001100 14 - (minus) : : * X,8,4 101400 54 % * *
Space Blank 001101 15 Blank Blank Blank X,8,5% 101101 55 Ak " "
8, 6% 004410 16 =% Blank* ¢ X,8,6% 101110 56 $* Blank* v
8, 7% 001111 17 - (minus} & & X,0 104444 57 0% Blank* 2
& R 040000 20 + + + 8, 5% 110000 60 ~(minusy [Blank* *
A R,1 010001 21 A A A / 0,1 110001 61 / / /
B R,2 010010 22 B B B S 0,2 410040 62 S S S
C R,3 010011 23 C C C T 0,3 110044 63 T T T
D R,4 040100 24 D D D U 0,4 110100 64 U U U
E R,5 040101 25 E E E v 0,5 140104 65 v A\ A%
F R, 6 010110 26 F F F w 0,6 140140 66 w w w
G R,7 0104114 27 G G G X 0,7 110111 67 X X X
H R, 8 011000 30 H H H Y 0,8 1141000 70 Y Y Y
I R,9 041001 31 I I I Z 0,9 114004 71 Z z zZ
R,8,2%| 0141010 32 Ix H H 0,8,2% 111040 72 Z% @ @
R,8,3 011011 33 . . . , 0,8,3 111014 73 R . N
(] R,8,4 011100 34))) % 0,8,4 1441400 74 (((
R,8,5% | 041401 35)* % % 0,8,5% 1114101 75 (% Cr CRr
R,8,6%| 011110 36 Lk [| a 0,8,6% 114440 76 ¥ Blank a
R, 0 011114 37 O Blank A2 0,8,7* 1444144 77 (* Blank* ®
Notes: Key Punch: Use MLT PCH key to overpunch omitted characters.
Card Code: % legal in illegal punch check Mode 2 only for card readers.
Printer: % indicates symbol which will be printed by otherwise non~standard printer bit configuration.

SINITVAINDOI GILNIYd 4O dIHDONNd ANV ONIAOD 008 TTIMAINOH

V XIAN3IddV

APPENDIX B
SENSE LIGHTS AND SENSE SWITCHES

Some computing equipment is constructed with lights and switches as part of the console
or control panel. The Honeywell 800, however, uses a typewriter and keyboard so that all
communication between the operator and the hardware and vice versa results in printed copy
for semi-permanent or permanent records. In the interest of compatibility with other com-
puting systems, however, sense lights and sense switches are simulated by the Algebraic
Compiler and hence the Compiler statements which refer to them are valid. When they occur
in hardware form, both sense lights and sense switches are bi-stable devices whose state may
be interrogated by the program. The major difference between them is that sense switches
are manually set by the operator under instructions from the programmer, while sense lights

are set and cleared by the program itself.

A sense switch may be thought of as a toggle switch something akin to the switch we use
to turn on the light in our homes. As such it is either in an up or down condition and its con~

dition may be altered only by the operator.

A sense light is a light which the program turns on and off as an indicator to itself. One
use made of these lights is a test for overflow. In case of overflow, we may wish to continue
our program, yet be cognizant of the fact that overflow has occurred. This may be accom-
plished by having a sense light turned on, once overflow occurs. At the conclusion of the pro-

gram, the status of the sense light may be tested to ascertain whether or not overflow did occur.

137

APPENDIX C

LIMITS ON SOURCE PROGRAM IMPOSED BY TABLE SIZES

The following are maximum quantities for an entire source program unless otherwise

specified:

Table

ARGUS Constants

Fixed-Point Variables

Floating-Point Variables

Fixed-Point Constants (other than 0-7)
Floating-Point Constants (other than 0.0 and 1.0)
Variables in Common

Dimensioned Vafiables

Equivalenced Variables

Sets of Equivalences

Non-Executable Statements

DO Statements

Statements Controlling Flow

Statement Numbers in All Computed GO TO's
Statement Numbers in All Assign GO TO's
Assigned GO TO Statements

where: a = number of Dimensioned Variables

number of Equivalenced, Non
Dimensioned Variables

then: 2a + b=

Sigma Tau Table (number of unique subscript
combinations used in the pro-
gram)

Subprogram Dummy Variable Table Space

Algebraic Restriction (see below)

3L+ 6m+ 4n+ 3p =

2 Bank

50
100
300

42
146
200
100
250
125

49

65
199

99

99

49

250

300

50

250

The following restrictions apply to the 2 - bank system only.

138

4 Bank

150
300
1000
192
296
750
300
750
275
199
149
499
199
199
99

750

900

100

750

APPENDIX C, LIMITS ON SOURCE PROGRAM IMPOSED BY TABLE SIZES

if:
¢ = number of unique three-dimensional subscript combinations in a program
d = number of unique two-dimensional subscript combinations in a program
e = number of one-dimensional subscript combinations in a program
f = number of subscript combinations included in c, d and e above in which the first
subscript in the combination is a non-complex expression of the form (i), where
iis a fixed-point variable (e.g., type c: (3I, J+ 2,1) type c and f: (I, J + 2, 1))
then:
6c + 4d + 2e - ££300
if:
g = the number of dimensioned dummy variables of a subroutine or function program
= the number of non-dimensioned dummy variables
then:
2g + h<49, and h + g <48
if:
j = the number of variables in an equivalence with a position given (e.g., A(1))
k = the number of variables in the equivalence without a position given (e.g., A)
then:

2j + k (for any single set) <20

Algebraic Expressions

The following are limits on any single expression found in an IF statement, as a CALL

argument, as a function definition or the right-hand side of an algebraic statement:

2 Bank

Let n be the number of elements and operators
in an expression, then n <80
If the expression is a defined function, let f be
the number of dummy variables ££20
If L. is the number of left parentheses to a point
and R is the number of right parentheses, then
at any point (L-R)<14
Let C be the number of commas other than
those appearing in a subscript, and n is defined
as above,

then cs2 [84—11] -2
then:

31 + ém + 4n + 3p < 250
and:

n <14 deep (this cannot exceed 47 in any size machine)

4 Bank
596

100

47

s [600—n] -2

139

APPENDIX C. LIMITS ON SOURCE PROGRAM IMPOSED BY TABLE SIZES

The number of dummy variables in a defined function definition is further limited by the com-
plexity of the expression defining the funtion. Assuming no other rule is violated, if d = the

number of dummy variables then 1 + 2m + n + d + p < 101.

Input- Output Restrictions

2 Bank 4 Bank

Defined Functions 50 125
Subroutine or Function References 300 600
Backspace Tape Statements 50 100
I- 0 Statements 300 500
END FILE Statements 50 100
IF END OF FILE Statements 50 100
IF PARITY Statements 50 100
Buffered Writes 25 25
Buffered Reads 25 25
DO's In a Nest 50 150
Register Variables In a Nest 100 (Appearances) 250
Control Variables, Relative

Constants and DO Parameters

(which are Register variables)

In a Nest 75 (Unique) 200
IFNTAB 1000 2292
SUFIXTAB 200 ‘ 200

Supplementary Internal Table Restrictions

The limit of IFNTAB is 1000 entries.

In a main program:

let:

the number of DO's in the program

defined functions in a program

c = the number of arguments of CALL statements or of function references which
are dimensioned and subscripted. Note, if the argument is of a function ref-
erence which is an argument of a CALL, it need only be counted once.

In a subprogram:

let:
d = the number of arguments of CALL statements or of function references which
are arguments of the subprogram but which are not dimensioned.
e = the number of return statements in a subroutine,

140

R S

i

APPENDIX C. LIMITS ON SOURCE PROGRAM IMPOSED BY TABLE SIZES

then:

IFNTAB = a + b + c in a main program
IFNTAB=a +b +c +d + e in a subprogram

The limit of SUFIXTAB is 200 entries.
let:

c and d are defined as for IFNTAB above but computed for a single source
statement.

then:

the maximum number of the SUFIXTAB entries required by this statement
will be

1 + ¢ in a main program

l+c+dina subprogram

141

APPENDIX D
SOURCE PROGRAM STATEMENTS AND SEQUENCING

The rules governing the sequence of execution of source program statements are as

follows:
1. The first executable statement in the deck as compiled is executed first;
2. If statement S has just been executed, then the next statement executed is dictated

by the normal sequencing properties of statement S, as shown in the table below.
If, however, S is the last statement in the range of one or more DO's which are
not yet satisfied, then DO sequencing takes precedence.

The statements FORMAT, DIMENSION, EQUIVALENCE, COMMON, TITLE, END,
FINIS, and BUFFER are non-executable statements. In questions of sequencing, they may be

ignored.

The last statement in every source program deck must be an END statement, and the
last statement in every batch of program decks must be a FINIS statement. The statement
preceding the END statement should be a STOP, RETURN, IF, or GO TO. If this require-
ment is not met, the Compiler will give a diagnostic error indication and the compilation will

not be completed.

Every executable statement in an Algebraic Compiler source program, except the first,

must have some path of control leading to it.

TABLE OF SOURCE PROGRAM STATEMENT SEQUENCING

Statement Normal Sequencing
a=b Next executable statement
GO TO n Statement n
GOTO(n,, n,, veo, n_), 1 Statement n,
1 2 m i
IF (e) ni, n,, n, Statement ni, n,,0r N, if (e)is <, =, or >,
zero respectively.
GO TO n, (ni, Doy vens nm) Statement number last assigned to n
ASSIGN ni TO n Next executable statement
IF PARITY ni, n2 Statement ni if there was an uncorrectable error

on the preceding tape operation, otherwise n,

142

APPENDIX D. SOURCE PROGRAM STATEMENTS AND SEQUENCING

TABLE OF SOURCE PROGRAM STATEMENT SEQUENCING (cont)

Statement

IF END OF FILE n,, n,

CONTINUE

DOni:ni, n2
or

DOni=n1, nz, ng

PAUSE or PAUSE n
STOP or STOP n

SENSE LIGHT i

IF(SENSE LIGHT i) n,, n,

IF(SENSE SWITCH i) ng, n,

IF ACCUMULATOR OVERFLOW n, n,

IF QUOTIENT OVERFLOW n, n,

IF DIVIDE CHECK n,, n,

TITLE
END

FINIS

FORMAT (Field Specification)
READ n, List

READ ONE n, List

READ TWO n, List

PRINT n, List

PRINT ONE n, List

PRINT TWO n, List

PUNCH n, List

Normal Sequencing

Statement n, if there was an end~of-file condi~-

1
tion encountered on the preceding input or out-
put operation, otherwise n2

Next executable statement

DO-sequencing, then next executable statement

Next executable statement
Terminates program execution
Next executable statement

Statement n'1 if sense light i is on, otherwise nz

Statement n1 if sense switch i is down, other-

wise n
2

Statement n, if an overflow condition is present,

1

otherwise n2

Statement n, if an overflow condition is present,

otherwise n2
Statement ni, if the divisor is less than the

dividend, otherwise n,

Not executed

This statement terminates compilation of the
program

No sequencing; the statement terminates all
compilation of the batch

Not executed

Next executable statement

Next
Next
Next
Next
Next
Next

executable
executable
executable
executable
executable

executable

statement
statement
statement
statement
statement

statement

APPENDIX D, SOURCE PROGRAM STATEMENTS AND SEQUENCING

Statement

TABLE OF SOURCE PROGRAM STATEMENT SEQUENCING (cont)

PUNCH ONE n, List
PUNCH TWO n, List
READ INPUT TAPE i, n, List

WRITE OUTPUT TAPE i, n, List

WRITE TAPE i, List
READ TAPE i, List

END FILE i

REWIND i

BACKSPACE i
BUFFER (ni, n,, n3),

(m

ERASE (List)
FUNCTION Name (a,, a_, ++., a)
1 2 n

SUBROUTINE Name (a1, aZ, cees an)

1

s mz, m3), s

CALL Name (a1, 3y eees an)

RETURN

DIMENSION v, v, V, «..
EQUIVALENCE (a, b, ¢, ...),

(d, e, £, v..)y ve.

COMMON A, B, ...

Normal Sequencing

Next
Next
Next
Next
Next
Next
Next
Next
Next

executable
executable
executable
executable
executable
executable
executable
executable

executable

Not executed

Next executable

Not executed

Not executed

First executable statement of the named

SUBROUTINE

The statement in the main program following
the statement which caused the transfer of con-

statement
statement
statement
statement
statement
statement
statement
statement

statement

statement

trol to the subprogram

Not executed

Not executed

Not executed

Honeywell
Elitrowie Data, Phocosing

