SUINNVIOONd

HONEYWELL

HONEYWELL 80O

Transistorized Data Processing Systém'

A
m
M
m
A
m
Z
2
m
S
>
4
c
>
r

DSI-31
2460
2660
1361

Litho in U. S. A.

PROGRAMMERS’
REFERENCE MANUAL

Honeywell
. Eledtrowie Dita chmm%

HONEYWELL
_

Copyright 1960
Minneapolis-Honeywell
DATAmatic Division
Wellesley Hills 81, Massachusetts

Section I.

Section II.

Section III.

Section IV.

TABLE OF CONTENTS

Introduction . . . « . . ¢ v ¢ v ittt e e e e e e e e e

Numbering Systems
Decimal System

.

.....

Binary System 0000000 e . “ e e e e s
Binary Codes ¢ v v v v v bt e e e e e e ..
Octal and Hexadecimal Systems. e e e e

The Honeywell 800 System ,
The Equipment

1. The Central Processor , ., e e e e e

2. The Tape Unit and Tape Control Unit e e e e e e

3. The Card Equipment e e e e e e e
a. Card Readers . . « « « « « « « & . e e e

b. Card Punches . . . ¢ ¢ ¢ ¢ ¢ o v v v o o 0 o o o o o

4, The Printers v e e e e e e e e s
a. Standard-Speed Printers e e e e e s ..

b. High-Speed Printer « o0 e e e e e e e

5. The Console. . « ¢« ¢« v « o« + & s e s e o s e s o s .

6. Off-Tiine Controls. « « o + « o o o o o o o« o o o o o o s

Traffic Control & ¢ ¢ v ¢ ¢ 4 ¢t o o o o o« o o & I

System Configurations, , ., e e e e e e

Multiprogram Control o« e e e e e e

Orthotronic Control and Checking,

The Honeywell 800 Word

Data Words .« ¢ ¢« o « o o o o o o &

Special Register Words

Instruction Words « « « o & o & « &
General Instructions. . « « « « « .
Unmasked General Instructions . .
Masked General Instructions . . .

Inherent Mask Instructions

Peripheral and Print Instructions .

Simulator Instructions

Special Words . + . « v ¢ ¢« o o . &

Addressing « ¢« ¢« ¢ ¢ ¢ o 0 0 0 00 o0
Direct Memory Location Address.
Direct Special Register Address .
Indexed Memory Location Address
Indexed Special Register Address.
Indirect Memory Location Address

Indexed Indirect Memory Location Address e e e s s e s

Summary of Address Forms

Significant Main Memory Addresses

Stopper Address « « « « ¢« 4 s+ ¢ o o 0 o s

Inactive Addresses . . « « ¢« « « «

* o o e o e o s o

Page

NN UG R R W W W NN e

iii

Section V,

Section VI.

Section VII.

Section VIII.

Section IX,

Section X.

iv

TABLE OF CONTENTS (cont.)

Special Registers . . .
Sequencing Counters .

History Registers . . « + e . .

Index Registers ., .
Mask Index Register ,

Read-Write Counters
Arithmetic Control Counters

General Purpose Registers o« e e e

Unprogrammed Transfer Register

Arithmetic Instructions.
The Accumulator

The Low-Order Product Reglster

Binary Add, BA
Decimal Add, DA

Binary Subtract, BS.

Decimal Subtract, DS

Word Add, WA

Word Difference, WD . . .
Binary Accumulate, BT
Decimal Accumulate, DT
Binary Multiply, BM
Decimal Multiply, DM

Logical Instructions
Extract, EX
Substitute, SS .
Half Add, HA
Superimpose, SM

Transfer Instructions
Transfer A to C, TX

oooooo

Transfer A to B and Go to C, TS .

N-Word Transfer, TN.
Multiple Transfer, MT
Record Transfer, RT .
Item Transfer, IT .

Decision Instructions . . .

Inequality Comparison, Alphabetlc, NA e e e e e e e
Less Than or Equal Comparison, Alphabetic, LA . .
Inequality Comparison, Numeric, NN .. .
Less Than or Equal Comparison, Numeric, LN . . .

Shift Instructions . .

Shift Preserving Slgn and Subst1tute, SPS e e e e -

Shift Preserving Sign and Extract, SPE , ,
Shift Word and Substitute, SWS .

Shift Word and Extract, SWE
Shift Word and Select, SSL

. .

Section XI.

Section XII.

Section XIII.

Appendix A.
Appendix B,
Appendix C.
Appendix D.

TABLE OF CONTENTS (cont.)

Peripheral Instructions . . .
Read Forward, RF ., . .

Read Backward, RB

Write Forward, WF ., . .
Rewind, RW

Miscellaneous Instructions
Print, PRA, PRD, PRO ,

Control Program, MPC . . .

Proceed, PR.

Simulator, S .

e o o o

Compute Orthocount, C
Check Parity, CP

Summary of Instructions . .
General Instructions, Unmasked or Masked
General Instructions, Unmasked ¢« v v v v o o o « .

Inherent Mask Instructions

¢« o o & e s s e s e o s s+ 4 e e e

¢ o o o & s o » ® s s s e e s e »

Peripheral and Print Instructions “ e e e

Simulator Instructions . ., . . .« . . v 4 0 e e
Addition in the Honeywell 800 ., ., e . e
Orthotronic Control e e .. . o s e o o e

Timing Summary

Tables . .

Page

92
94
98
99
103

105
105
108
112
113
114
116

119
119
120
122
123
124

125
130
136
143

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure

Table
Table

II-1.

II-2.

II-3.
III-1.
III-2.
Iv-1.
Iv-2.
Iv-3.
v-4.
IvV-5.
Iv-6.
Iv-17.
Iv-8.

v-1.

V-2.
V-3.
V-4.
V-5,
XIIi-1.

XII-2.

XII-3.

A-1,
B-1.
B-2.
B-3.
B-4.
B-5,
B-6.

II.

LIST OF ILLUSTRATIONS

Conversion of Punch Positions to Honeywell 800
Character Positions « v o v v o v o v 0 e e e e

Card Reader Control Word « ¢ o v v o o o v o &
Stages of Traffic Control. o o o o ..
Honeywell 800 Word Structure « « ¢« o v o o« & o« &
Honeywell 800 Major Instruction Types ,
Main Memory Address . . . v v ¢ ot « s 4 e e e e e e e s
Special Register Address , « ¢ « ¢ v o ¢« o o s .
Direct Memory Location Address

Direct Special Register Address., «« .
Indexed Memory Location Address

Indexed Special Register Address « + « & « & « .
Indirect Memory Location Address« .« .+ o« .

Interpretation of Address Bit Structure ., «

Special Register Names, Subaddresses, and
Mnemonic Addresses . « « « . v v v v e e e e e e e e e ..

Mask Index Register . . . ¢ ¢ v v v v v v v v v v 0 0 o 0 a0
Generated Mask Address in Shift Instructions. o ..

Generated Mask Address in Field Instructibns e e e e e e
Unprogrammed Transfers of Control

Honeywell 800 Special Register Group
Indicator Relationships ¢ ¢« ¢« ¢ v o o . e e e

B Address Group Function in Control Program
Instruction. e s e e e e e e e e e e e e e e e e e

Bit Layout -- Memoryand Tape « « « .« . ..

Schematic Representation of Bus and Accumulator
Relation of Data Words to Orthowords, C e e e e e
Computation of Orthowords . . « .« « « ¢« + ¢ o ¢« o o o o o . .
Orthotronic Check of Tape Error e e e e e e
Orthocount of Error Record v ¢ v v v v o o o o o o o
Correction of Tape Error -- First Method

Correction of Tape Error -~ Second Method

Honeywell 800 Coding and Punched or Printed Equivalents . .
Honeywell 800 Command Codes ., .,, e e e e

Page

14
25
28
33
33
35
36
38
39
414
44

SECTION |
INTRODUCTION

The purpose of the Programmers' Reference Manual is to define the internal ma-

chine language of the Honeywell 800 Electronic Data Processing System and the man-
ner in which that language is interpreted and manipulated by the system. This manual
is not intended to be either an introduction to programming or an introduction to the
Honeywell, 800. Instead, it is written as a handbook for the experienced programmer

who has completed the Honeywell 800 programming course.

Every Honeywell 800 user is furnished with a complete automatic programming
‘package which eliminates many of the routine human tasks involved in program prepa-
ration, checkout, and execution. The Honeywell automatic programming package in-
cludes the following compatible elements:

1. ARGUS (Automatic Routine Generating and Updating System). ARGUS
+ consists of a mnemonic and symbolic language for program prepara-
tion, an assembly routine which translates this notation into the in-

ternal language of the Honeywell 800 and inserts existing subroutines
at points specified by the programmer, sort generators capable of
tailoring a sort routine to a specific set of input data, and a program
test system which automatically executes a series of programs to pro-
vide extensive information about their operation.

2. FACT (Fully Automatic Compiling Technique). FACT interprets a
narrative English description of a data handling procedure and pro-
duces (or compiles) a complete machine-language program capable
of handling all aspects of the business-oriented process, such as in-
put editing, data sorting, file updating, and generation of printed
reports.

3. Algebraic Compiler, the scientific counterpart of FACT. The Alge-
braic Compiler interprets a series of problem statements in a com-
bined arithmetic and logical notation closely approximating the stan-
dard symbols of mathematics, and produces a complete machine-
language program specifically directed to the solution of a problem
in the scientific area.

4. A library of thoroughly tested subroutines for inclusion in compiled
or assembled programs.

5. The Executive Routine, which directs the scheduling and operation
of a multi-program run to facilitate maximum usage of the benefits
of Honeywell parallel processing.

SECTION I. INTRODUCTION

The extent and power of this automatic programming package means that Honeywell

800 programs can normally be prepared without reference to the language set forth in

the Programmers' Reference Manual. In other words, the ARGUS Manual of Assembly

Language and the FACT and Algebraic Compiler Manuals are the standard program-
ming documents for the Honeywell 800. Nevertheless, this manual is offered in recog-
nition of the fact that the sophisticated programmer is naturally eager to consider
subtle ways in which he can take advantage of the unusual and powerful features of the
machine. When this level of experience is reached, an understanding of the internal
configurations of instructions and data, as presented in the following sections, will

prove invaluable.

Throughout the manual, the binary-digit structure of instructions and addresses
is presented wherever it can enhance the explanation. Moreover, other numbering
systems, such as octal and hexadecimal, are utilized wherever the subject matter re-

quires them. For comparative purposes, the ARGUS format of many examples is also

shown.

Numbering Systems

Modern numbering systems, including all systems used in this manual, are based
on positional notation. This means that each system is based upon a root number, or
"radix, ' and that each position within a number represents a specific power of the ra-
dix of the particular system being used. Positive and negative powers of the radixare
separated by an indicator point, with the zeroth power of the radix appearing immedi-
ately to the left of the indicator point. Positive powers of the radix appear in succes~
sive positions to the left and negative powers in successive positions to the right ofthe
indicator point. The radix of a numbering system is equal to the number of digits com-

prising that system; these digits cover the range from 0 to one less than the radix.

Decimal System

The familiar decimal system is based on a radix of 10 and uses 10 digits from
0 to 9. Each position in a decimal number represents a specific power of 10 and can
have any of 10 values. The total value of a decimal number is computed by multiply-
ing the value of each digit by the positional value (power of 10) of its position within
the number and then summing all of these products. For example, the decimal num-

2 1
ber 356. has the value 3 x 10 plus 5 x 10" plus 6 x 100, or 300 + 50 + 6. The number

SECTION I, INTRODUCTION

3.56 has the value 3 x 100 plus 5 x 1071 plus 6 x 10-2, or 3 +i% + _1%6 When posi-

tional notation is understood in the familiar decimal context, the interpretation ofany

other positional system becomes clear.

Binary System

This system is based on a radix of 2 and uses the two binary digits (or bits) 0
and 1. Binary numbers are the common internal system for digital computation due
to the relative simplicity of recording, storing, and recognizing variables of only two
values. The value of a binary number is computed by multiplying the value of each
digit byéthe corresponding power of 2 and summing all of the products. For example,
the binary number 1001 has the value 1 x 23 plus 0 x 22 plus 0 x 21 plus 1 x 20, or
8+ 0+ 0+ 1, which equals 9. Where the system inuseis not made clear by the context,
its radix may be appended to the number as a subscript as, for example, to distinguish

the binary number '10012 from the decimal number 100110.

Binary Codes

In addition to the use of "pure binary'' numbers, as described in the preceding
paragzaph, binary digits may be grouped so that each group represents a decimal digit,
alphabetic character, or other symbol. For example, bits may be manipulated in
groups of four with each group representing a decimal digit (from 0000Z to 10012).
Similarly, groups of six bits may represent up to 64 digits, characters, or symbols.
Such 4-bit and 6-bit codes are called "binary-coded decimal' and 'alphanumeric, '"re-
spectively. They facilitate the handling of the external decimal and alphabetic symbols

by machine elements which recognize only variables of two values.

Octal and Hexadecimal Systems

These two systems, based on radices of 8 and 16, respectively, are useful as
shorthand methods of writing pure binary numbers. If a binary number is divided into
groups of three bits, proceeding in either direction from the indicator point, each
group may be replaced directly by its octal equivalent, since a 3-bit group has a total
of eight possible values. If the same number is divided into 4-bit groups in the same
manner, each group may be replaced directly by its hexadecimal equivalent, since a
4-bit group has a total of 16 possible values. The 16 hex digits are represented in this

manual by the symbols 0 ~ 9 and B - G, respectively.

SECTION 1l
THE HONEYWELL 800 SYSTEM

The Equipment

A Honeywell 800 Data Processing System consists of a central processor to which
varying types and numbers of input and output units are attached. The programmer
must know the system configuration with which he is to work, and an understanding of
the function of each component and its relation to the system as a whole will make his

task easier.

1. The Central Processor (801])

The basic central processor consists of a control unit, a control or special-
register memory, an arithmetic unit, and two banks of main (or high~-speed)
memory, each capable of storing 2048 Honeywell 800 words. (A Honeywell 800
word is composed of 48 information bits and six checking bits.) To this basic
unit, additional memory banks may be added in amounts of 4096 words up to a
maximum of 32,768 words. Also available is an optional floating-point unit

(801B) which adds floating-point instructions to the command repertoire.

The control unit with its control memory is the nerve center of the central
processor. As the site of traffic control and multiprogram control, it monitors
the time sharing of the entire system to achieve maximum efficiency. In addition
to its multiplexing function, it is also the unit which selects, interprets, and
directs the execution of instructions, and governs address selection in both con-

trol memory and main memory.

The control memory is a magnetic-core storage array providing storage for
256, 18-bit words. The read-restore cycle of the control memory is out of phase
with that of the main memory in such a way that if reference must be made to the
control memory between references to main memory, it is usually possible to
make such reference without loss of a main-memory cycle. As discussed more

fully in Section V, the control memory contains eight identical groups of special

SECTION I, THE HONEYWELL 800 SYSTEM

registers such as sequencing counters, index registers, registers used for in-
direct addressing, etc., the contents of which are used to select a full Honeywell
800 word from the main memory. The offset cycle of control memory makes it
possible to anticipate an address selection involving the contents of a special re-
gister and to prepare the address of a second operand while another unit is using
the first operand. Because of this anticipatory technique, it is unnecessary in
many cases to add memory cycles to an instruction for indexed or indirect address-
ing. Even when the contents of a special register are modified before they are re-
stored, no extra memory cycle need be added, since the special register circuitry
includes a separate adder, with complete and independent checking, used only for
special register modification. This applies to both automatic modification, as
when a sequencing counter is incremented after use, and program-controlled modi-
fication, as when an increment is specified in an address. However, while the two
memory units are sufficiently out of phase to allow reading from the control mem-
ory prior to the start of a main memory cycle, a read-restore operation in which
the result of an instruction is returned to a special register cannot overlap a main

memory cycle; in this case, an extra cycle must be added to the instruction time.

The arithmetic unit is the portion of the central processor in which digits are
combined to form new arrays in accordance with the logical rules of the command
codes, The Honeywell 800 central processor has provision for both binary and
decimal arithmetic, complete logical abilities, and competent internal checking.
For the interested reader, a complete description of the addition legic can be

found in Appendix A,
The optional floating-point unit is essentially a secondary control and arith-
metic unit which manipulates Honeywell 800 words in floating-point form. A com-

plete description of the operation of this unit will be found in a separate manual.

2. The Tape Unit (804) and Tape Control Unit (803)

The Honeywell 800 tape unit has been designed for reliability and accuracy.
The recording surface of the tape is not touched except by the read-record head so
that wear and damage to the surface are reduced to an absolute minimum. Vacuum
is used to seat the reels on the hubs, to maintain loops in the loop chambers, and

to provide contact with the capstans which cause the tape to move under the head,

SECTION Il, THE HONEYWELL 800 SYSTEM

giving accurate control without the dangers inherent in mechanical techniques.
The tape is edge guided along its entire path to protect the tape edges from damage,

and avoid skew.

The system uses a 3/4-inch-wide tape with Mylar base and oxide coating. A
full reel of tape consists of 2400 feet of oxide-coated tape plus two 50-foot, clear
leaders used for control. Information is written on the tape in 10 longitudinal
channels, eight for information bits from the word, one for a parity checking bit,
and one for a clocking indicator. One array of bits across the tape is called a
frame. Information from six frames makes up the 54-bit word (including six
parity bits). The clocking channel is used to give positive indication of the frame

location on tape.

Variable-length recording is a basic feature of the Honeywell 800, and records
of any size may be read or written from tape, although for control purposes, a
maximum size limit may be placed on records at the beginning or end of tape.
Gaps between records are 0.67 inches long. Frames are recorded on tape at a
nominal density of 400 per inch. During reading and writing operations, the tape
is moved at 120 inches per second, giving instantaneous transfer rates of 8000

words or 96,000 decimal digits per second.

When rewinding, the tape moves at a speed of 360 inches per second. A small
photoelectric device in the tape unit senses the presence of edge ''windows'' (clear
Mylar) in the tape to provide beginning-of-tape and end-of-tape indications for the
programmer. A physical slot in each clear leader is used to negate the vacuum

and provide positive protection against pulling the tape off the reel.

When a metal ring is inserted in the front of a tape reel, writing is allowed
to take place on the tape. When this ring is removed, the tape is protected and
cannot be written upon. The ring may be installed or removed without rewinding
the tape or removing the reel. There is, in addition, a manual switch on the tape

unit panel which can be set to prohibit writing.

A tape control unit can control up to eight tapes. Each control uvnit has an in-
put and an output channel so that one of the tape units attached to the control unit

may be reading and another writing simultaneously.

6

SECTION I, THE HONEYWELL 800 SYSTEM

The Card Equipment

a. Card Readers (823)

Two 80-column card readers are available with the Honeywell 800 System.
From the programmer's point of view, these two readers differ only in that
the 823-1 reads 240 cards per minute, while the 823-2 reads 650 cards per
minute. In the manner in which they respond to instructions and transmit in-

formation to the central processor, they are identical.

The card reader with its control unit reads the card, converts the punch
configurations to Honeywell 800 notation, and transmits the information to the
main memory. Two modes of conversion may be selected by the operator by
means of an external switch. The first is called the normal or alphanumeric
mode. Conversion of a card in this mode results in the transmission of 10
Honeywell 800 words of eight characters each, where the high-order charac-
ter of the first word corresponds to column 1 of the card and each succes-
sive 6-bit character in the next lower-order position corresponds to the
next higher-numbered column. The correspondence between punched-card
codes and Honeywell 800 codes is shown in Table I, page143. In the
normal conversion mode, an illegal punch check switch is set by the opera-
tor to define as legal either the entire 64-code set listed in Table I or a

special 50-code subset, excluding the asterisked codes.

The second mode is called the transcription mode, in which the informa-
tion from each card read is transmitted to the main memory in 20 Honeywell
800 words. The value of each of the 960 bits indicates the presence or ab-
sence of a punch in a specific punching position. Figure II-1 shows the cor=-

respondence between card format and memory format in these two modes.

Each of the card readers has two reading stations. The results of the
two readings of each card are compared, and any discrepancy is noted, As
the 80 columns of information are converted in the control unit, additional

checking is done to insure correct conversion,

One extra word is appended to each card record as it is sent to memory,

indicating the status of the error indicators at the completion of the reading

SECTION Il. THE HONEYWELL 800 SYSTEM
ALPHABETIC MODE
Word 1 Column | Column | Column | Column | Column | Column | Column| Column
1 2 3 4 5 6 7 8
Word 2 Column | Column | Column | Column | Column | Column | Column| Column
9 10 11 12 13 14 15 16
Word 10 Column | Column |Column | Column | Column | Column { Column| Column
73 74 75 76 77 78 79 80
TRANSCRIPTION MODE
Column 1 Column 2 Columns 3-4—?\—6—7 Column 8
Word 1 +—Row —» | «=—Row—> Row - - Row —=
9!8"?'6'5]4 9]8]7'6[5'4 9'8' oooooooooooooooooooooooo 9‘8‘7'615‘4
. Columns 73..7’%-75-76_77 Colu,{nn 78 Column 79 Cohgx\qn 80
Vs \ / \ 7 \ 7/ N\
Word 10 = Row — | Row > |«—Row——o | e«—Row———m»
... | 98] Tel5]4] 9] 8l7]e]5[4[9]8]7]6]5 4
Colurﬁn 1 Column 2 Columns 3—4;5—6-7 Column 8
Word 11 ~—— Row—m | «—Row—= Row Row -
s[2] 1o X[R[3[2]1]oX[RI3]2f "~ IBlelilo]x]r
Columns 73-74-75-76-77 Column 78 Column 79 Column 80
r \ A \ / —\- \ / A ~
Word 20 Row »|+—Row — | +—Row > |«+—Row >
3IZI...................--....3|lelOlX|R 3|2I1|OIX[R 3I211|£[XIR

Figure II-1.

Conversion of Punch Positions to Honeywell 800 Character Positions

SECTION [I. THE HONEYWELL 800 SYSTEM

and conversion operation for that card. The control word (see Figure II-2)
may indicate:

1. that the card was punched, read and converted correctly;

2. that the card contained a punch combination defined as illegal;

3. that an error occurred on reading or conversion.
Thus, a standard card record is either 11 words (alphanumeric mode) or

21 words (transcription mode).

Since an anticipatory card reading technique is used (actually the card
has been read and converted before the read instruction is received by the
card reader), all errors except detection of a parity failure on transmission
to the central processor must be indicated by the control word. Parity fail-
ure on transmission is indicated by an automatic transfer of control at the

time of the next read instruction (see Section XI).

The operator may, by setting switches on the card reader control unit,
specify the following options in the event of a reading error:

1. NORMAL - Do not eject card; do not stop reader.

2. EJECT - Eject card to reject stacker; do not stop reader.

3. STOP - Eject card to reject stacker; stop reader.

In these three options, the information from the card, properly tagged in

the control word, is transferred to the central processor.

4. DISCARD - Eject card to reject stacker; do not stop reader; do not
transfer information to central processor.

Bits Definition
15-16 11 - Card was correctly punched, read and converted.

01l - Card was illegally punched. Reading and conversion,
however, were correct.

10 - Card was either incorrectly reaa or converted.

-

All other bits of any card reader control word are zero.

Note: In the event of both an illegal punch and an incorrect read or conversion,
the latter signal takes precedence.

Figure II-2, Card Reader Control Word

SECTION Il, THE HONEYWELL 800 SYSTEM

10

b. Card Punches (824)

The two card punches available with the Honeywell 800 Systermn also appear
identical to the programmer, differing only in speed. The 824-1 punches 100
cards per minute; the 824-2 punches 250 cards per minute. The punch is
capable of punching in the same two modes in which the card reader may
operate, and the relationship between the card format and the format of in-
formation within the Honeywell 800 is identical. (see Figure II-1). The selec-
tion of the mode to be used in punching an individual card, however, is made
by the program. A control word precedes the actual information to be punched,
sets the punch to accept either 10 or 20 additional words, and informs the punch
control unit as to which conversion mode is desired. Only four bits of the
punch control word are used by the punch control unit. The values of bits 16
and 17 specify the desired conversion mode and hence the number of words to
be accepted. Bits 13 and 14, called the End-of-Run bits, can cause an indica-
tor light on the punch control unit to glow, indicating to the operator that the

program has completed the punching of a file.

The Printers (822)

a. Standard-Speed Printers

The standard-speed printers, models 822-1 and 822-2, are 407 and 408
tabulating machines, printing 150 lines per minute. There are 120 printing
positions, and 47 characters are available. A l12-channel, punched paper
carriage tape is used for vertical format control. When executing a write in-
struction which addresses a standard printer, the Honeywell 800 transmits a
l16-word record to the printer control unit. The first word contains vertical-
format information. The remaining 15 are considered as 120 alphabetic char-
acters of which the high-order character of word 1 corresponds to the left-
most printing position. The vertical-format word contains 12 bits (bits 19-30)
which correspond with the 12 channels of the tabulator carriage tape. A
one in any of these bit positions designates a controlling carriage-tape channel
and the carriage is advanced until the next punch is sensed in the designated

channel. Values of bit positions other than those specified above are ignored.

The tabulators retain most of the abilities normally provided through
control panel wiring; in particular, the comparison abilities of the 408 are

retained.

SECTION I, THE HONEYWELL 800 SYSTEM

b, High-Speed Printer

The high-speed printer, model 822-3, has a rated speed of 900 lines per
minute for continuous single-space printing and approximately 800 lines per
minute for continuous double-space printing. There are 160 print positions
of which any prescribed array of 120 may be made active during a given run.
A total of 56 characters is available at each print position, including 26 alpha-
betic, 10 numeric, and 20 special symbols. The numeric font used on the

printer is designed for automatic reading by optical scanning equipment,

Horizontal spacing is 10 characters to the inch. Vertical spacing is six
lines to the inch with eight lines per inch available as a special option. Skip-
ping speed in the non-printing mode is approximately 20 inches per second.
Vertical format control is accomplished under program control in conjunction
with a pre-punched, 6-channel, paper carriage tape. Both horizontal and

vertical vernier adjustment of form position is standard.

Stock ranging from 8-pound single-part forms to 6 1/2-mil continuous card
stock can be printed. Conversion adjustment for stock thickness is provided.
With light-weight 8-pound stock, an original and up to four highly legible
copies can be produced. Two-part heat transfer forms and Multilith master
forms can be accepted. The width of the stock to be printed may vary from
4-3/4 inches minimum to 22 inches maximurn, measured paper edge to paper

edge.

For each printed line, 16 words are sent to the printer control unit, The
first word contains vertical-format information, while the remaining 15 words
are interpreted as 120 characters to be printed. The high-order character in
the first information word corresponds to the first of the 120 print positions
selected to be active. Line spacing is specified in the vertical-format word
as follows:

Bit 1 - Position at head-of-form, as indicated by a punch in
channel 1 of carriage tape.

Bit 6 - Inspect channel 6 of carriage tape for punch indicating
end-of-form.

If bit 6 is a one, the machine senses for end-of-form as
determined by a punch in channel 6 of the paper tape.
When the punch is sensed, the carriage is advanced to

11

SECTION Il. THE HONEYWELL 800 SYSTEM

12

beginning-of-form. Normally, in a listing, bit 6 always
has the value of one, so that the end-of-form channel is
continually examined.

Bits 7-12 - Line Count - Specify a number of lines (0-63) to be spaced
after the accompanying line has been printed.

Bits 13-14 - End-of-Run - Cause end-of-run light to glow on printer
control unit to signal operator that run is complete.

Values of bit positions other than those specified above are ignored, so
that it is possible to edit a record for listing on either standard-speed or high-

speed printer.

5. The Console

The Honeywell 800 console is basically a part of the central processor and is
multiplexed into the system via the multiprogram control unit, A monitor type-
writer is used by the operator to communicate directly with the central processor,
Manual operations on this typewriter can start and stop individual programs and in-
terrogate Honeywell 800 storage. Under program control, the console typewriter
can also print information useful to the operator. An additional typewriter, called
a console slave typewriter, may be added to the system. No manual operations
may be performed from the slave typewriter, but printing may be programmed to
occur on either the slave typewriter or the console monitor typewriter. In addi-
tion to the typewriter(s), the console includes display lights to give the operator
an at-a-glance summary of the number of active programs, their control centers,
and their progress. An auxiliary board may be installed with indicators and dis-
plays for monitoring the status of tape units and peripheral devices. From 1 to 45
remote inquiry stations may be included in the system for direct interrogation of

stored information and printout of results.

6. Off-Line Controls (815, 816, 817)

When a terminal unit is to be used with a tape unit independently of the central
processor, as in a card-to-tape or tape-to-printer operation, an off-line auxiliary
control must be placed between the peripheral control unit and the tape unit to pro-
vide control signals and power normally supplied by the central processor. If the
terminal unit is an input device, then an off-line input auxiliary control (816) must
be used. In like manner, an output device requires an off-line output auxiliary
control (815) and a multiple-unit control calls for an off-line input-output auxiliary

control (817).

SECTION Il, THE HONEYWELL 800 SYSTEM

When terminal units are used off-line, information is written on or read from
tape in units corresponding to the record size of the device. In a card-to-tape
operation, each tape record consists of one card's worth of information (10 or 20
data words) plus a control word, two orthotronic correction words, and an end-of-
record word automatically generated within the off-line input control unit. Records
read from tape for printing must each be 19 words in length (one vertical for-
mat word, 15 words of characters to be printed, two orthotronic words, and
an end-of-record word), and each record for punching must contain 14 or 24

words as described for the card reader.

Traffic Control

Traffic control is the Honeywell 800 element which directs the time sharing of
memory by the tape and peripheral units and the central processor. Multiprogram con-
trol is the element which directs the time sharing of the central processor by the active
program control centers. A clear concept of both of these elements is basic to the un-
derstanding of parallel processing and allowable system configurations and is the key

to a thorough knowledge of the Honeywell 800,

Traffic control has as its main object the efficient use of the entire system accord-
ing to a set of priorities which derive directly from the nature of the equipment and are
independent of the programs. For example, a tape unit reading at full speed assembles
one Honeywell 800 word in a one-word buffer every 125 microseconds. If instant access
is not provided to memory, a second word of buffer storage must be provided to retain
this word. At the end of the next 125 microseconds, another word will have been read.
If the first word has not yet been placed in main memory, another word of buffer stor-
age must be provided. Since eventually one access to memory must be made for each
word to be stored, it is obviously economic to store each word as it is assembled from
tape and thus reduce the required buffer storage to a minimum. However, to keep the
memory continuously available to the tape buffer during a read operation would be to
introduce inefficiencies in the system, for only one memory cycle (six microseconds)
is needed to store each v»llord,rand durin‘g the remaining 119 microseconds the entire

system would lie idle,

13

SECTION I, THE HONEYWELL 800 SYSTEM

In the Honeywell 800, one access to memory every 125 microseconds is guaranteed
each tape unit. When a word is assembled from six frames for storage, a demand
signal is generated by the buffer for one access to memory and is honored within 125
microseconds, clearing the buffer. In this case, only two words of storage are needed
for each active tape unit, and the memory is utilized by the input-output operation only
6n microseconds out of each 125 microseconds, where n squals the number of active
units. To achieve this time-sharing, traffic control monitors the demand signals from

the buffers and arranges access to the memory within the prescribed time for each

buffer demand.

As its name implies, traffic control monitors the transmission of information to
and from the main memory. Its operation is represented schematically in Figure II-3.
The 17 divisions of the band are called ''stages'' and one stage is assigned to each of

the eight output channels, each of the eight input channels, and the central processor.

/-——demands
A AT AR AT T

7 8] o9

T\
/| A

1 [2] 3 12| 13 15
0
o
3]
A
- o
e O T R T R IO B
LBl S BB a2l lslslslalelalalslsd
Bl B exll I ool B o B ou i B el B B 3 |3 |3 [3 |33 1%
z:ss:pss%ggggg%go
A
\ Direction
T
of Scan

Figure II-3., Stages of Traffic Control

14

SECTION II, THE HONEYWELL 800 SYSTEM

The creation of a demand signal by any device is represented in Figure II-3 by the
closing of the switch shown in the corresponding control stage. When any program has
been turned on in the central processor, the switch corresponding to the central pro-
cessor stage is continuously closed. Traffic control begins each scan at the left end
of the band. It proceeds to the right, ignoring all stages which show no demand signal,
until a demand stage is reached. This stage is allowed access to the main memory for
one memory cycle only‘. Traffic control then returns to the left end of the band to begin
the next scan. Because the control search is anticipatory, no system time is consumed

in bypassing stages in which no demand exists.

If no input-output units are active but a program is running, the central processor
stage will have complete use of the memory since each scan of the band will find no
other demand signals. If a tape unit attached to channel 2 is reading, then once every
125 microseconds a demand signalwill halt traffic controlat the stage marked "input 10"
for one memory cycle to allow transfer of the assembled word from buffer storage to
memory. Thus, between each memory cycle of instruction execution in the central pro-
cessor, 0 to 16 memory cycles may intervene, depending on the number of tapes and

peripheral devices which require access to memory.

Since, in normal read-write operations, only one memory cycle may be allowed
any stage before the next scan of the band, a maximum of 16 memory cycles or 96
microseconds will elapse between successive interrogations of any stage. As this is
within the 125-microsecond maximum, eight input units and eight output units may be
active simultaneously with the central processor without conflict in demands for access
to memory. Furthermore, since the memory is made available to the central proces-
sor for any cycle in which it cannot be utilized by an input-output stage, no idle time is
introduced as long as any program is active. Thus, traffic control insures that the
system responds to input-output device demands as required without introducing idle

cycles, and that as long as any program can proceed, useful work is being done,

15

SECTION I, THE HONEYWELL 800 SYSTEM

The rule of operation which states that only one memory cycle may be allowed any
stage before the next scan has one exception. When a tape unit is executing a distri-
buted read or distributed write operation, two consecutive memory cycles are allowed
a stage for modifying the appropriate address counter on recognition of the demand
signal accompanying an end-of-item word. Distributed read and write instructions are
more fully discussed in Section XI. Two points in connection with this exception bear
mentioning here. First, the difference between the normal 96-microsecond cycle and
the maximum allowable 125-microsecond cycle allows servicing of four such demands
without timing conflicts. Secondly, in the improbable case that all system channels are
active and five or more channels are being used in distributed tape operations, and at
least five of these each assemble an end-of-item word and create a demand signal with-
in 125 microseconds of each other, an error signal will be generated for any unit whose
demand is not serviced within the required time limit. This signal will appear to the
program as a normal reading error signal indicating the need for a reread from the
specified unit. Complete information is available to the program so that intelligent

action can be taken under program control.

System Configurations

The central processor is the heart of any Honeywell 800 installation. Peripheral
and tape units are attached to the eight input and eight output channels of the central
processor. Input and output channels alike are numbered 1, 2, 3,4,5,6,7 and 0. The out-
put channels are associated with stages 1-8 of traffic control; the input channels are
associated with stages 9-16. Each channel has a priority according to the sequence in
which the corresponding stage of traffic control is interrogated. In other words, output
channel 1 has the highest priority and input channel 0 the lowest. Each special register
group includes an input buffer counter and an output buffer counter associated, respec-
tively, with an input and an output channel. Thus output and input channels 1 are asso-
ciated with the buffer counters of special register group 1, while output and input chan-
nels 0 are associated with the buffer counters of special register group 0. There exists
no relationship between the special register group whose buffer counters are associated
with a particular device and the special register group controlling the program which

uses that device.

Any device requiring both an input and an output channel, such as a tape control

unit, must be assigned to channels whose associated buffer counters reside in the same

16

SECTION Il, THE HONEYWELL 800 SYSTEM

special register group. Otherwise, any input device may be assigned to any input chan-
nel and any output device to any output channel, subject only to the restriction that tape
control units must be assigned to channels of higher priority than peripheral control
units, Specifically, if an installation includes two tape control units, a card reader,

and two printers, the first tape control unit is assigned to output and input channels 1

and the second tape control unit to output and input channels 2. The card reader may

be assigned to any remaining input channel and the printers to any remaining output chan-

nels.

Each tape control unit may control up to eight tapes. The tape units connected to a
tape control unit are normally assigned consecutive positions starting with position 1,
However, since tape addresses are assignable by patchboard, the programmer will find

this no restriction,

In most systems each terminal unit will have its own control unit. The exception
is the use of a Model 811 Multiple Terminal Unit Control to control a card reader, a
card punch, and a printer (or any two of these devices). The multiple control unit has
one buffer to handle traffic in either direction. Thus, only one device, either input or
output, may be used at a time. Selection of the device to be used is made by a manual
switch on the Multiple Terminal Unit Control. If the multiple control unit has both a
card reader and an output device attached, it must be assigned both an input and an out-
put channel. Since only one device may be used at a time, however, the channels

assigned need not be a corresponding pair.

Multiprogram Control

Multiprogram control directs the time sharing of the central processor by the active
programs. Each of the eight groups of special registers may direct the execution of an
independent program. After a program is loaded, one of the special register groups is
activated to direct the selection of instructions. This special register group, and the
program it directs, is said to be ''on." When the program is completed, the directing
special register group is inactivated (turned '"off'). Special register groups may be
turned on and off independently of each other, either from the console or by program

control,

17

SECTION I, THE HONEYWELL 800 SYSTEM

Each time traffic control allows the central processor access to main memory, one
memory cycle of one instruction is performed. If only one special register group is
active, all cycles allowed the central processor are used in executing instructions from
the active program. Since traffic control allows the central processor all available
cycles except those needed to honor the intermittent demands of tape and peripheral de-
vices, this case represents that of the conventional single-program computing machine

with the ability to implement input-output operations simultaneously with computing.

When more than one special register group becomes active, central processor
cycles must be shared between the several programs. The rules under which multipro-
gram control operates are as follows:

1. When an active special register group is selected, the next cycle
allowed the central processor must be used to select the next in-
struction to be executed in the program controlled by that group.

2. All succeeding central processor cycles must be devoted to the
execution of this instruction until it is completed. (This may
range from two cycles upward.)

3, If the instruction is one which does not leave unstored information
in the arithmetic or control units, its completion causes multi-
program control to scan or "hunt' for the next active special
register group in sequence.

4, If the instruction does leave unstored information in the arith-
metic or control unit, scanning or hunting is inhibited and the
next instruction is selected from the same program. Hunting
is not allowed if:

a. the instruction generates a 2-word result, of which only
one word is stored in memory as the result of the instruc-
tion execution, e.g. multiply;

b. the execution of the instruction results in a sequence change;
in the case of a conditional change, hunting is inhibited only
if the condition is satisfied;

c. the instruction has an inactive C address;

d. an unprogrammed transfer takes place as the result of exe-
cuting the instruction;

e. the instruction is capable of specifying that hunting shall not
take place, and does so specify.
For example, if three programs are active, then one instruction is performed in
turn from program 1, then 2, then 3, then 1, and so on, as long as all instructions
selected allow hunting. Suchalternationistemporarily heldupifaninstructionis selected

which does not allow hunting, but it is resumed as soon as an instruction is selected

18

SECTION Il. THE HONEYWELL 800 SYSTEM

which does allow hunting. Thus, the central processor cycles are shared on a fairly

equal basis between all active programs.

The true power of multiprogram control appears when an active program at-
tempts to execute an instruction which cannot be implemented because of the unavail-
ability of a system component. Suppose, for example, that a write instruction calling
for tape 4 is selected from an active program. The central processor, in attempting
to execute this instruction, finds that either tape 4 or its associated output channel is
involved in completing the execution of another instruction from the same or some
other program. Seeing that the instruction cannot be executed immediately and recog-
nizing the reason therefor, multiprogram control places the special register group in
a ''stall" condition. This condition indicates to multiprogram control that a) this pro-
gram, although still active, shall not be allowed any central processor cycles as long
as the '"'stall" indication remains, and b) when the channel and/or the device involved
completes its present task, the stall condition shall be automatically removed and the

program restored to its full active status.

Thus, when an instruction cannot proceed because of input-output conflicts with
either the same or another program, the central processor cycles which it would
have used are used instead for the other active programs, causing them to proceed
faster. The result of the operation of multiprogram control is that there is never an
idle memory cycle in a Honeywell 800 system as long as there is any active program

in which an instruction can be executed.

If more than one active program is stalled because of input-output conflict, multi-
program control remembers the sequence in which the programs were stalled and
operates on a 'first off - first on" basis, so that no one program can monopolize an

input or an output channel in case of conflict.

Although it need not concern the programmer, the reader may be interested in a
short discussion of the actual machine procedure in cases of program ''stalls.! The
computer will have selected the instruction and entered the second cycle of execution
before the unavailability of the input or output channel and/or device is discovered.
No memory alteration will have been made, but the sequencing counter will have been
advanced by one. When the stall condition is ascertained, the computer will subtract

one from the sequencing counter and deactivate the program from multiprogram con-

19

SECTION II. THE HONEYWELL 800 SYSTEM

trol. FEach time that any input-output channel or device terminates an operation, all
programs in a stalled state are reactivated. Multiprogram control looks again at each
reactivated program in the order that they were originally stalled, replacing in a

stalled condition those programs whose input-output demands still conflict,

Multiprogram control also receives demand signals generated by the console and
by inquiry stations. The console is regarded by multiprogram control as a ninth
group of special registers, except that it takes precedence over any active program in
the assignment of available central processor time. A demand signal from the console
is serviced at the time of the next hunt, although a non-hunting sequence of instructions

will not be interrupted.

When a console demand is recognized, the computer generates an instruction to
implement the activity indicated by the console command. Sufficient memory cycles
are then assigned to execute this generated instruction in the same fashion as if it had
been selected from memory. When the instruction has been executed, the normal
hunting process is resumed. If the system includes one or more remote inquiry sta-
tions, demand signals from these stations are recognized and implemented in a similar
fashion. This technique allows the operator to communicate manually with the central
processor without stopping the computer, and thus allows the system full-efficiency

operation even during manual manipulation on one program.

Orthotronic Control and Checking

Orthotronic control is a powerful technique, exclusive with Honeywell-DAT Amatic,
which insures against loss of information from tape during writing, storage, or subse-
quent reading. Experienced data processing personnel know that long storage periods
or inept operator handling can cause information to disappear from a tape even though
the accuracy of the record was checked at the time the record was written. Even in-
frequent occurrences of this type can result in many man-hours and machine-hours
spent in re-creation of the records. While no technique will ever completely elimi-
nate information loss, the high reliability and accuracy of the Honeywell 800 tape unit,
plus the presence of orthotronic control as a standard feature of every Honeywell 800

system, insures that such loss is eliminated as a practical problem,

20

SECTION IlI, THE HONEYWELL 800 SYSTEM

Orthotronic control is based on studies of the types and extent of information
losses which have occurred on tape systems. It is partly automatic and partly program-
controlled. An instruction is provided which automatically creates two orthotronic
words for a specified record. These words are a logical combination of all the words
in the record such that only a highly unlikely periodicity of error can go undetected
and uncorrected. The orthotronic words are automatically positioned to accompany the
record as it is written. Read and write instructions assume the presence of the ortho-
words and automaticallgy include them in the record, using them in an automatic first-
level check of the correctness of the information handled. The instruction which gener-
ates the original orthowords may also be used to reconstruct missing information if

loss is detected. A full discussion of orthotronic control can be found in Appendix B.

Orthotronic control is a checking device peculiar to the tape units., In the on-line
mode of operation, the central processor must be programmed to reconstruct lost data
from a garbled record. When tapes are read or written in an off-line configuration,
however, the off-line control unit provides, in part, the central processor function.
The off-line input control unit automatically generates the two orthowords which must
accompany each record when it is read by the central processor, and performs the
first-level check on the information which involves these two words. The output off-
line control performs a check of every record read exactly as the central processor
does, and is capable not only of detecting an error in the record but, in the majority
of cases, of reconstructing the garbled information. The corrected information can
then be printed or punched without stopping or repositioning the output device as would

be necessary without such automatic error correction.

In addition to orthotronic control, and in some ways complementing it, a parity
bit is written on tape accompanying each frame. The parity bit is read from tape to-
gether with the eight information bits of the frame and remains with these bits as
frames are collected to form words. As each word of six frames is transmitted to
memory, the accompanying parity bits are monitored to insure an error-free trans-
mission. Each time a word is sent to or from main memory, a transmission check is
performed using these six parity bits, and when the word is again written on tape, each

bit accompanies its corresponding frame.

When a word is brought to the arithmetic unit, the computer generates a modulo-3
check on each frame pair (16 information bits) for use in checking arithmetic opera-

21

SECTION Il, THE HONEYWELL 800 SYSTEM

tions, 'The value of the 2-bit mod-3 check digit is the remainder (a value from 0 to 3,
where either 0 or 3 may represent no remainder) which results when the decimal equi-
valent of the 16 bits is divided by 3. After the mod-3 check is generated, the parity
bits are checked and then replaced by the six mod-3 checking bits. When arithmetic
operations have been completed and the mod-3 check has been performed to insure
that they have been completed correctly, the parity bits are again generated, replac-

ing the mod-3 bits, and used to check the correct transmission of the result to memory.

The control unit of the central processox checks the interpretation and execution
of the program instructions. Selection of instructions and operand locations is checked.
The checking process of an add instruction illustrates the thoroughness of the Honey-
well 800 checking system.

1. The selection of the instruction location is verified.

2. The instruction itself is verified for proper parity.

3. During the processing of the A address:

a. a mod-3 check group is attached to the address, then
independently recalculated and compared with the
original when this information is transferred to the
memory selection circuits;

b. the selection operation is verified by comparing with
the mod-3 check for the original address the special
check digits delivered with the operand;

c. the operand itself is checked for proper parity when
read from memory;

d. three mod-3 check digits associated with the operand
are generated and stored.

4., During the processing of the B address (when the contents of the
B address are added to those of the A address), steps a,b, and ¢
are repeated for the B address. Also, three mod-3 check digits
are generated as in 3d, but are added (mod-3) to the check
digits previously stored.

5. As the result of the addition is transferred to memory, the C
address memory selection is verified as in 3a, b, and ¢, and a
new set of mod-3 check digits is formed from the computed
sum and compared for equality with the check digits sum formed
in (4) above., If the two sets of digits are equal, then the add
instruction has been processed properly.

22

SECTION ll. THE HONEYWELL 800 SYSTEM

6. An example of the mod-3 arithmetic follows:
Number in A address 8426 9721 4075
The associated mod-3 check digits 2 1 1
Number in B address 1276 0216 4925
The mod-3 check digits 1 0 2
The sum of A and B is 9702 9937 9000
The mod-3 check digit 0 1 0
The mod-3 sum of the check digits is 0 1 0

In the general case where carries might occur between the operand groups, cor-
rections of +1 and +2 are added to the appropriate check digits. Since two groups
are simultaneously affected by a carry correction, any error in the addition, in-

cluding the carry generation or correction process, is automatically detected.

Each of the special registers retains a mod-3 check on the 16 information bits it
contains, which is used to check transmissions and arithmetic operations within the
control unit. When the contents of a special register are transferred to the arithmetic
unit or to main memory, they are expanded to full-word form and the mod-3 check is

replaced by parity bits.

Card reading is checked not only for correct reading by the equipment, but, in the
alphanumeric mode, for correctness of conversion and proper keypunching also. Card
punching is checked by echo pulses sent from the punch to be compared with the panch-
ing image. Printing is also checked by comparison of echo pulses generated by the
printer with the print image. Up to 30 columns of double-punch, blank-column de-

tection is also available as an option on the punch.

23

SECTION 1l
THE HONEYWELL 800 WORD

The basic unit of information in the Honeywell 800 System is a fixed-length word
consisting of 54 binary digits, of which six are paritybits usedby the automatic check-
ing circuitry and 48 are information bits. Each main memory location is capable of
storing one such word, and each arithmetic register is one word in length. A main
memory word may represent a machine instruction or one or more pieces of data. In
addition to the main memory, the central processor includes the control memory of
256 special registers, used primarily for control purposes and address modification.
A special register has the capacity to store a partial word consisting of 16 informa-

tion bits and two checking bits.

The check bits of the main memory and special register words are not directly
available to the programmer, nor are their values subject to program control. Sub-
sequent discussions of the Honeywell 800 word, therefore, will refer only to the in-

formation bits, unless otherwise noted.

Data Words

A computer program generally manipulates data in one or more different forms:
decimal, alphanumeric, binary, or a combination of these. The Honeywell 800 is cap-
able of handling all these types of information. It may interpret the 48 bits of a word
in groups of four for the purpose of binary-coded-decimal operation, in groups of six
for alphanumeric operation, or as individual units of information for pure binary oper-

ation. Figure III-1 illustrates the structures of these different words.

A decimal word in the Honeywell 800 contains either 11 decimal digits with a sign,
or 12 decimal digits without sign. The decimal arithmetic instructions interpret all
operands as a sign and 11 digits. The sign consists of four bits which may represent
either the sign of the entire word or individual, 1-bit signs for as many as four differ-
ent pieces of information within the word. Although a positive sign is normally rep-

resented by four binary ones and a negative sign by four binary zeros, a non-standard

24

SECTION Ill, THE HONEYWELL 800 WORD

BIT POSITION | 5 9 i3 17 21 25 29 33 37 4 45
DECIMAL = 111234567 |8 |90l
ALPHANUMERIC R o B I N S o) N
ALPHANUMERIC
COMPRESSED C . \ E B B | 1|74
BINARY * (44 Binary Digits)
OPERATION ADDRESS | ADDRESS | ADDRESS

INSTRUCTIO

CTION - CODE A B c
SPECIAL | (15 Binary
REGISTER - Digits)

Figure III-1. Honeywell 800 Word Structure

configuration is perfectly acceptable as input to the arithmetic unit, which interprets
any combination of bits except four binary zeros as a positive sign. The sign supplied
with the result of an arithmetic operation, however, is always one of the two standard
conventions, either four binary ones or four binary zeros. A more detailed discussion

of sign conventions can be found in Section VI.

An alphanumeric word in the Honeywell 800 consists of eight 6-bit groups. Each
6-bit configuration may represent any one of 26 alphabetic characters, 10 decimal di-
gits, or 20 special symbols, such as punctuation marks (see Table I, page 143). The
alphanumeric mode is always used for communication between the central processor
and card readers, card punches, or printers. Although a number may be stored in
alphanumeric form, the arithmetic unit is not designed to handle information storedas

6-bit alphanumeric codes.

The 48 binary digits of a word may also represent a pure binary number, which
may be stored as a sign and 44 bits, or as 48 unsigned bits. With the exception of the
instructions word add and word difference, which treat their operands as 48-bit un-
signed numbers, the binary arithmetic instructions interpret operands as signed 44-bit
numbers. The (sign convention in binary arithmetic is identical to that described for

decimal words.

25

SECTION I, THE HONEYWELL 800 WORD

The data words described above are identified in ARGUS language by the following
constant codes: DEC, decimal number, signed or unsigned; ALF, alphanumeric word;
FXBIN, pure binary number; and M (mixed constant), compressed alphanumeric word.
In addition, ARGUS recognizes an octal word identified by the constant code OCT.

This word contains 16 unsigned or 15 signed octal digits. If 15 signed digits are spec-
ified, the most significant digit must be less than four, since a sign is represented by

four bits, leaving only two bits for the high-order octal digit.

Several differences should be noted between ARGUS notation for data words and
the format shown in Figure III-1. When ARGUS notation is used for decimal words,
high-order zeros in signed decimal numbers and low-order zeros in unsigned decimal
numbers need not be expressed. For example, ARGUS converts the number +125 to
the signed 11-digit number +00000000125 and the unsigned number 32 to the 12-digit
number 320000000000. A binary word in ARGUS notation is not expressed as a 44- or
48-bit binary number, but as the decimal equivalent of the desired binary information
bits. As such, a binary word in ARGUS may contain up to 14 decimal digits and a sign.
For complete details on the specification of data words in ARGUS language, reference

should be made to Section IX of the ARGUS Manual of Assembly Language.

Special Register Words

As previously noted, a special register can store 16 information bits, or one-
third of a full Honeywell 800 word. When these bits are manipulated within the special
register circuitry, the high-order bit is interpreted as a sign (1 = plus, 0 = minus).
Depending upon the type of addressing used, the remaining 15 bits of a special register
word may be interpreted as a main memory address, consisting of a bank indicator and
subaddress, or as a special register address, consisting of a group indicator and sub-
address (see Figures IV-1 and IV-2). When a special register word is modified arith-
metically within the special register circuitry, the value of the sign bit determines
whether it is incremented or decremented. A special register word is identified in

ARGUS language by the constant code SPEC.

Instruction Words

The 48 bits of a Honeywell 800 instruction word are interpreted as four groups of

12 bits each. Bits 1-12 represent the command code; bits 13-24, 25-36, and 37-48

26

SECTION [, THE HONEYWELL 800 WORD

are designated as the A address group, B address group, and C address group, re-
spectively. The address portions of instructions normally are used to designate the
locations of operands and results, but in certain instructions they may contain special
information such as the number of words to be moved, the number of bits to be shifted,
a change of sequence counter, and so forth. A detailed discussion of addressing inthe

Honeywell 800 will be found in Section IV.

Excluding the scientific instructions, to be found in another manual, machine in-
structions fall into four major categories: general instructions, unmasked and masked;
inherent mask instructions; peripheral and print instructions, and simulator instruc-
tions. The masked general instructions and the peripheral and print instructions are
uniquely designated by six bits -- bits 7 through 12 of the instruction word. The un-
masked general instructions and the inherent mask instructions are uniquely designa-
ted by eight bits --bits 7 through 12, plus bits 2 and 3. The simulator instructions are
uniquely defined by only three bits --bits 10 through 12. These groups of bits which
uniquely specify the operation to be performed are called the operation code. The bits
of the command code which are not used for the operation code serve various other
purposes which will be described as the instruction types are discussed. A graphic
summary of the format of the major command code types appears in Figure III-2. The
command codes for the individual instructions, together with their mnemonic operation

codes in ARGUS language, are set forth by major instruction type in Table II, page 144.

General Instructions

General instructions include the arithmetic operations, logical operations, deci~-
sions, and information transfers. As noted in Table II, certain of these instructions
may only be performed without masks; others may be performed either with or without
masks. Regardless of masking, bit 1 of a general instruction command code, called
the bisequence bit, always specifies the source of the next instruction (see Figure III-2).
If bit 1 is a zero, the next instruction will be taken from the sequence counter; if bit
1 is a one, the next instruction will be selected from the cosequence counter. In
ARGUS language, the source of the next instruction is specified in column 23 of the
ARGUS input card by an ''S'" or blank for sequence counter or by a ""C'" for cosequence

counter.

27

SECTION Ill, THE HONEYWELL 800 WORD

BITS | 2 3 4 5 6 7 8 9 10 1l 12
Memory .
General Instructions S/ Op Designator Operation Code
Unmasked C| Code A I B C
General Instructions S/ Partial Mask Operation Code
Masked C Address
Inherent Mask S, Op Memory
Instructions ‘cl Code Designator Operation Code
AlB]|cC
Peripheral Peripheral Address
Instructions 1/0 Device Operation Code
Channel
Simulator D/
Instructions 1 Remainder of Address . . .
/
\ \V
Notes: S/C = Sequence or Cosequence Counter Address Used

I/O = Input or Output
D/I = Direct or Indexed

Figure III-2. Honeywell 800 Major Instruction Types

Unmasked General Instructions

Unmasked general operation codes are specified by command code bits 2, 3, and
7 through 12, Bits 4,5, and 6 designate whether the A,B, and C addresses, respec-
tively, refer to a main memory or a control memory location. If a memory designa-
tor bit is zero, then the corresponding address refers to main memory; a designator
bit of one denotes a control memory address. In ARGUS language, the memory desig-
nator bit is not explicitly stated but is implied by the type of addressing used (see
Section IV),

Masked General Instructions

When general instructipns are performed under the control of masks, they usually
designate partial words as operands and results. For this reason, they are frequently
referred to as ''field' instructions. When a field instruction is performed, -the same
mask is applied to operands and result. Only those bit positions of the operands which
correspond to binary ones in the mask word are used in the operation. The positions
of the result location which do not correspond to binary ones in the mask are not al-

tered by the operation. The location of the mask used in a field instruction is speci-

28

SECTION (I, THE HONEYWELL 800 WORD

fied by bits 2 through 6 of the command code, in conjunction with bits 2 through 5 and
11 through 16 of a special register called the mask index register (MXR). A complete
description of the way in which the five command code bits, called the partial mask

address, are united with the ten bits of the MXR to designate the location of the mask

will be found in Section V under the discussion of the mask index register,

In ARGUS language the location of the mask is specified by writing its symbolic
tag in the command code field, following the operation code and separated from it by

a comma. Thus, the instruction

DS, MASK2 WAGES DEDUCTNS WEEKSPAY

is performed under control of the mask stored in the memory location assigned by
ARGUS to the symbolic tag MASK2. Since field instructions use the memory desig-
nator bit positions in the partial mask address, it is impossible for these instructions

to address control memory.

Inherent Mask Instructions

The use of masks is not restricted tofield instructions, but extends to the inherent
mask instructions. These instructions, which have the same command code format as
the unmasked general category, include five shift instructions, a substitute, and an ex-
tract instruction, The chief distinction between the two types of masked instruction
lies in the fact that the inherent mask instructions use bits from the B address group
rather than from the command code to specify the location of the mask. For the shift
instructions, the low-order six bits of the B address group are used in conjunction with
bits 2 through 5 and 6 through 10 of the mask index register to locate the mask. In
the substitute and extract instructions, the entire B address group is used to specify

the location of the mask, without reference to the MXR.

A further difference between inherent mask and field instructions is that the latter
always operate in the ''protected'" mode; in other words, the portions of the result lo-
cation corresponding to binary zeros in the mask are preserved during the operation.
The inherent mask group, on the other hand, includes three instructions which operate
in the "unprotected" n{ode, in which the unmasked portions of the result location are

cleared to zeros. In ARGUS language, the location of the mask for a shift instruction

29

SECTION Iil, THE HONEYWELL 800 WORD

is specified in the same way as for field instructions: by writing its symbolic tag in the

command code field following the operation code.

Peripheral and Print Instructions

Every instruction in the peripheral group performs some function involving a mag-
netic tape unit or a peripheral device. The high-order six bits of the peripheral in-
struction command codes are used to specify a magnetic tape or peripheral address.
Thus, these instructions cannot specify the source of the next instruction or address
the control memory. The peripheral address bits are divided into two groups of three
bits each. Bits 1 through 3 specify one of eight input or output channels (the operation
code itself defines whether the channel is input or output) and bits 4 through 6 specify
one of the devices attached to this channel. A more detailed explanation of the assign-

ment of peripheral address bits will be found in Section XI.

The print instruction involves the use of a console or inquiry station typewriter.
In this instruction, the high-order six bits of the command code are used as follows:
bit 1 designates the sequence or cosequence counter as the source of the next instruc-
tion; bits 2 and 3 are irrelevant; and bits 4, 5, and 6 serve as A, B, and C address
memory designators, respectively. Thus, this instruction can specify the source of

the next instruction and address the control memeory.

Several differences should be noted between the machine command codes and
ARGUS notation for these instructions. First, the peripheral command codes in
ARGUS language are reversed in terms of machine language. In other words the mne-
monic operation code is written first, followed by the device address expressed as an
alphabetic code from AA to HH. Secondly, although there is but one machine instruc-
tion for the print function, ARGUS recognizes three distinct mnemonic codes to indi-
cate alphanumeric (PRA), hexadecimal (PRD), or octal (PRO) print format. In ma-
chine language, the type of print format is specified by bits 5 and 6 of the B address

group.

Simulator Instructions

Any instruction in which command code bits 10 through 12 are all ones is called a
simulator instruction, since it permits the programmer to represent with a single in-

struction any function not built into the equipment logic, such as a machine instruction

30

SECTION [, THE HONEYWELL 800 WORD

for some other data processing system. Each such instruction provides an entry to a
simulator routine which is coded by the programmer and storedbeginning with the next
memory location after the address specified by command code bits 2 through 12. When
the instruction is performed, it is transferred to the memory location specified by
command code bits+2 through 12, the cosequence counter is set to the next higher ad-
dress, and the next instruction is taken from the cosequence counter. If bit 1 of the
command code is zero,bits 2 through 12 are interpreted as a main memory subaddress.
If bit 1 is one, bits 2 through 12 are interpreted as a 3-bit index register designator,
and an 8-bit augrﬁenter (see Section IV). The address portions of a simulator instruc-
tion have no assigned function and may be used to store parameters used by the simu-
lator routine. The command code for an ARGUS simulator instruction is S, followed
by a comma and an address designated by a symbolic tag or by an index register des-

ignator with an augmenter of seven.

Special Words

Two special Honeywell 800 words ~- the end-of-record word and the end-of-item
word ~- deserve separate mention in this section. The end-of-record word is a word

whose 48 information bits are:
1010 10410 0000 0000 14410 1410 44410 41410 1401 1101 1101 4101

This word is used to designate the end of a group of words constituting a single record.
When records are being written on tape, the write operation stops only when an end-~
of-record word is sensed in memory. End-of-record words are automatically gener-
ated in the central processor during execution of compute orthocount and record trans-
fer instructions. Their function will be detailed further as these instructions are dis-

cussed,

The end-of-item word is a word whose high-order 32 bits are identical to the high-
order 32 bits of the end-of-record word. The low~-order 16 bits are irrelevant for pur-
poses of identification. As the name implies, an end-of-item word is used to desig-
nate the end of a group of words constituting a single item within a record. A record
may contain an unspecified number of items, each of which is followed by an end-of~

item word. (The end-of-record word is also an end-of-~item word.) End-of-item words

31

SECTION [lI, THE HONEYWELL 800 WORD

are automatically generated in the central processor during execution of an item
transfer instruction, while certain other instructions sense for these words during

execution. Their function will be highlighted in the discussion of these instructions.

32

SECTION IV
ADDRESSING

The Honeywell 800 main memory consists of two, four, six, or eight banks of
2048 words each, providing up to 16,384 words, and may be increased by an addi-
tional 16, 384 to provide a maximum of 32,768 words. Each main memory location is
directly addressable and is uniquely designated by a 15-bit configuration. This array
of bits may also be thought of as an 11-bit subaddress to specify, in binary, one of
the 2048 locations in a bank and a 4-bit bank indicator to specify a memory bank.
Since the more typical systems do not include the additional 16, 384 words of main
mermory, discussions of addressing in this manual assume a system with no more than
eight banks, unless otherwise noted. In such a system, the high-order bit of the bank
indicator is always zero. The bit structure of a main memory address is shown in
Figure IV-1. (It is sometimes convenient to express the value of such a 15-bit array
as five octal digits. In this notation, the memory addresses of a 16, 384-word system

range from 00000 to 37777.)

Bit Position — =1 2 3 4 5 6 7 8 9 10 411 12 13 14 15
Bank Ind. 11-bit Subaddress J
Banks 0-7 L.ocations 0000-2047

Figure IV-1. Main Memory Address

The control memory consists of 256 special registers divided into eight groups of
32 registers each. Every special registér is directly addressable by a unique 8-bit
configuration. This array of bits may also be thought of as a 3-bit group indicator
designating one of the eight special register groups and a 5-bit subaddress specifying

one of the 32 registers in a group (see Figure IV-2).

Bit Position————=1 2 3 4 5 6 7 8
3-bit 5-bit
Group Ind. Subaddress
Groups 0-7 Registers 00-31

Figure IV-2. Special Register Address
33

SECTION IV, ADDRESSING

Since both the main and control memories are directly addressable, some means
must be provided to specify which memory is being addressed in each of the three ad-
dress groups of an instruction. This is accomplished by defining one memory desig-
nator bit position in the command code of the instruction for each of the three address
groups. A zero designator bit indicates that the respective address refers to main
memory; a designator bit of one indicates that the address refers to a control memory
location (special register). For those command codes which do not provide the mem-
ory designator bit positions, designators of zero are always implied and the respec-
tive addresses are always interpreted as main memory addresses. During the execu-
tion of an instruction, the designator bit does not appear in the address selectors, but

is stored in a separate unit of the control circuitry.

Since an instruction address includes 13 bits (12 bits in the address group plus a
memory designator bit, explicit or implied), it does not precisely specify a complete
main memory address (15 bits) or a complete control memory address (8 bits). The
instruction address bits may be interpreted by the central processor in a number of
different ways to form a complete main or control memory address. For example, di-
rect addressing is the explicit statement of the desired main or control memory sub-
address in the instruction address. Indexed addressing refers to the technique of aug-
menting a main or control memory address stored in an index register to form the de-
sired address. Indirect addressing refers to the technique of stating the address of a
special register in which the desired main memory address is stored. Main memory
locations can be addressed in any of these ways; special registers are addressed either

directly or by indexing.

As noted in Section III, the main memory may be addressed by all instructions in
any of the four major categories. Special registers, on the other hand, may be ad-
dressed only by general unmasked instructions, inherent mask instructions and the
print instruction, since these are the only types of instruction which provide for the

memory designator bits in the command code.

Direct Memory Location Address

Each address group in a Honeywell 800 instruction word consists of 12 binary
digits. Bit 1 of this 12-bit configuration specifies whether the address is direct or

indexed. If bit 1 is zero, the address is direct, if bit 1 is one, the address is indexed.

34

SECTION IV. ADDRESSING

If bit 1 of an address group is zero (direct) and the corresponding memory desig-
nator bit is zero (main memory), then the remaining 11 bits of the address group are
interpreted as a subaddress designating one of the 2048 locations in a bank of mem-
ory. The bank indicator stored in the sequencing counter which selected the instruc-
tion is appended to this subaddress to form a complete 15-bit address (see Figure
IV-3). Thus, every direct memory location address in an instruction always refers

to the bank in which the instruction was stored.

Memory Designator Address Group
(Explicit or Implied)

123456789 410 11 12

fstruction I 0 ’ , 0 , 11-bit Subaddress !
Form ;

Complete)

Address I Bank Ind. l 11-bit Subaddress l

From Sequencing
Counter

Figure IV-3. Direct Memory Location Address

In an ARGUS instruction, a direct memory location address is specified by a sym-
bolic tag or by address arithmetic, in which the address is designated according toits
relative position with reference to the instruction in which it appears or with reference
to a symbolic tag. These three types of direct memory location addressing are illus-

trated in the ARGUS instruction:

DS SALARY C, +20 SALARY - 2.
SALARY is the symbolic tag of a main memory location; C, + 20 represents the loca-
tion 20 after the location of the instruction itself; and SALARY - 2 represents the lo-

cation two before that tagged SALARY.

Direct Special Register Address

If bit 1 of the address group is zero (direct) and the memory designator bit is one
(control memory), bits 8-12 of the address group are interpreted as the subaddress of
one of the 32 special registers in the group which includes the sequencing counter that
selected the instruction. The central processor attaches to this subaddress the group

indicator associated with the sequencing counter to form a complete 8-bit special reg-

35

SECTION IV, ADDRESSING

ister address (see Figure IV-2). If bit 7 of the address group (called the tabular bit)
is zero, then the 8-bit array is interpreted as a direct special register address;that
is, the specified register is used as an operand location or as a result location. Bits
2 through 6 of the address group specify an increment in the range 0 through 31 (in
binary), which may be added, under control of the special register sign bit, to the
low-order bits of the special register after use, thereby altering them permanently.
If the special register sign bit is positive, the value of the increment is added to the
contents of the special register, and the contents are said to be incremented. If the
sign is negative, the value of the increment is subtracted from the contents of the spe-
cial register and the contents are said to be decremented. Incrementing (or decre-
menting) always occurs when the special register is addressed as the source of anop-
erand, never when the special register is addressed as a result location. The forma-

tion of a direct special register address is illustrated in Figure IV -4.

Mermnory Designator Address Group
(Explicit) L 2 3 45 67 8 9 10 11 12
Inst ti 5-bit 5-bit S.R.
nstruction l__l_‘ 0 Increment Subaddress
Form < -
Tab
Bit
3-bit 5-bit S.R.
Complete Group Ind. Subaddress
Address Generated
by Seq.
Counter

Figure IV-4. Direct Special Register Address

Since the group indicator attached to the special register subaddress is always
that of the sequencing counter which selected the instruction, a direct special register
address always refers to the special register group containing the sequencing counter

which selected the instruction.
In ARGUS language, the direct address of a special register is indicated by the

letter Z, followed by a special register designation and an unsigned increment from

0 to 34, all separated by commas. The letter Z, in effect, represents a one in the

36

SECTION IV. ADDRESSING

memory designator bit position of the command code, a zero in the first bit position
of the address group, and a zero in the tabular bit position of the address group. The
special register designation may be either the numeric subaddress or the mnemonic
subaddress of the desired register, as shown in Figure V-1 (page 50). If the contents
of the special register are not to be altered, the programmer may specify an incre-

ment of zero or may omit the increment entirely. The ARGUS address

z, R1, 10

indicates that general purpose register 1 is addressed directly as the source of an op-
erand or as a result location; if addressed as an operand source, its contents are to

be incremented (or decremented) by 10 after use. The address

Z, XO

indicates that index register 0 is directly addressed and that no incrementing is to

take place.

It should be noted that the relative positions of the special register subaddress
and the increment are reversed in ARGUS language from their machine language ar-
rangement. In other words, the increment appears in the low-order position of the

ARGUS address, but in the high-order bits of the machine address group.

Indexed Memory Location Address

Each special register group includes eight index registers. An indexed address
refers to one of these rfegisters in the special register group of the sequencing coun-
ter which selected the insti'uction and is defined by a one in bit 1 of the address group.
The remaining 14 bits of the address group are interpreted as an index register num-
ber and an augmenter to be added to the contents of that index register before use.

Bits 2 through 4 designate one of the eight registers in the group, while bits 5

through 12 specify, in binary, a number from 0 to 255 which augments the low-order
bits of the contents of the index register. (Note that an indexed address specifying in-
dex register 7 with an augmenter of 255 is interpreted as an inactive address, see
page 46). It should be emphasized that in indexed addressing the index register is not

identified by its 5-bit subaddress, but by only three bits which designate its position

37

SECTION IV, ADDRESSING

within the group of eight index registers. Whenever a special register is addressed
in an instruction by ite full 5-bit subaddress, it is said to be explicitly addressed.
When it is referenced in any other way, it is said to be implicitly addressed or refer-
enced. Since the index regis*sr in an indexed address is denoted by only three bits,

an index register is always referenced implicitly in indexed addressing.

Like all special registers, an index register has the capacity to store 16 informa-
tion bits of which bit1 is a sign bit. If the memory designator bit in the command code
of the instruction is zero (either explicit or implied), the low-order 15 bits stored in
the referenced index register are interpreted as a bank indicator and an 11-bit main
memory subaddress. When the instruction is performed, the 8-bit augmenter is added
to the stored 15-bit address, under control of the index register sign, to form the de~
sired main memory address. This process has no effect upon the contents of the index
register, which retains the unaugmented address. The interpretation of an indexed

memory location address is shown in Figure IV-5.

Memory Designator Address Group
(Explicit or Implied)
Instruction l 0 1 3-bit I.R.
Form I ‘ Number 8-bit Augmenter |
7/ \— -t
De31gnates Ada,ed to
Index Register (1 of 8) |:l: lBank Ind. | 11—bitMemorySubaddresﬂ
Containing / < " < T 7
Complete
Address I Bank Ind. l 11-bit Modified Memory SubaddresEJ
Banks 0-7 Locations 0000-2047

Figure IV-5. Indexed Memory Location Address

Since the index register contains a full 15-bit memory address, indexed address-
ing, unlike direct addressing, permits the programmer to address locations in any
main memory bank, regardless of the bank indicator stored in the controlling sequenc-
ing counter. This type of addressing is also useful in processing multi-word items
or in referring to a stored table, where the address of the first word of the item or
table is stored in an index register and all references to the item or table are made
using the index register with appropriate augmenter. It must be remembered, how-

ever, that positive augmentation occurs only if the index register sign is positive. If

38

SECTION IV, ADDRESSING

the sum of the augmenter plus the stored subaddress exceeds 2047, a carry occurs
into the bank indicator, and the resulting address designates a location in a different

bank from the address stored in the index register,

In ARGUS language, an indexed memory location address is indicated by writing
an index register number (from 0 to 7) followed by a comma and a number from 0 to

255 or a symbolic tag to represent the augmenter. Thus the address

5, 10

specifies that the contents of index register 5 in the related special register groupare

to be augmented by 10 to form the complete memory address of an operand or result

location. Reference should be made to Section VI of the ARGUS Manual of Assembly

Language for details on the use of symbolic tags to represent the augmenter.

Indexed Special Register Address

If bit 1 of the address group is one (indexed) and the memory designator bit is one
(control memory), the address group is interpreted as an index register number and
an augmenter, but the augmented contents of the referenced index register are inter-
preted as a special register address rather than a main memory address. When the
augmenter has been added to the low-order eight bits of the index register, the result-

ing configuration is interpreted as shown in Figure IV-6,

Memory Designator Address Group
(Explicit)
Instruction 3-bit I.R.)
Form 1 1 | Number 8-bit Augmenter
Desilg;xa.tes Adc?éd to
v
i 10£8) | = 3-bit G
Index R.eg"lster () b%t(.zroup 5-bit Increment 5-bit 5.R. Subaddress
Containing—— o Indicator
[y
Nc’>t Tab
Used Bit
dified I.R ' 3 -bit C '
Modified I.R. ~-bit Group . .
5- -
Contents , + Indicator bit Increment 0 5-bitS.R. Subaddress
Comiplete 3-IE'Group .
Address Indicator 5-bit S.R. Subaddress

Groups 0-7 Registers 00-31

Figure IV-6. Indexed Special Register Address
39

SECTION IV, ADDRESSING

Two facts illustrated by Figure IV-6 should be particularly noted. Since theaug-
mented contents of the index register are interpreted as a special register address
complete with group indicator, this type of addressing, unlike direct special register
addressing, permits the programmer to address special registers in any group. As
noted in Section V, this facility has particular significance in connection with access

to certain special registers involved in reading and writing operations.

The second point involves the value of the tabular bit. Depending upon the origi-
nal contents of the index register and the value of the augmenter, the tabular bit in the
modified index register contents may be zero or one. If this bit is zero, then the spe-
cial register is directly addressed, as defined under the discussion of direct special
register addressing. If the tab bit is one, on the other hand, the type of addressingis
indirect, as described below under the discussion of indirect addressing. Regardless
of the value of the tabular bit, the contents of the special register will be permanently
modified, 9&?_1: use, by the value of the 5-bit increment, under control of the sign of
the special register itself, provided that the special register is not addressed as a re-
sult location. As always, the contents of the index register are not altered by the in-

dexing process,

In ARGUS language, an indexed special register address takes the form

Index Register Designator, Z, Special Register Designator, Increment.

The index register designator is a number from 0 to 7 which specifies one of the
eight index registers related to the controlling sequencing counter. The special reg-
ister designator may be a number from 0 to 31 or it may be mnemonic (see Figure V-1,
page 50). The increment may be a number from 0 to 3 or it may be omitted. The
manner in which these numbers are used to modify the index register contents and
form a special register address is discussed in detail in Section VI of the ARGUS

Manual of Assembly Language.

Indirect Memory Location Address

In some instances, it is useful to be able to specify in the address group of the
instruction the address of a special register where the main mer:nory address of the
desired operand is stored, rather than to specify the location of the operand directly.
This method of locating an operand is called indirect memory location addressing.

40

SECTION IV, ADDRESSING

In this type of addressing, the bit configuration of the address group is identical
to that described under direct special register addressing with the exception that the
tabular bit (bit 7) in the address group has the value of one rather than zero. Since
the memory designator bit must also have the value of one (control memory), this
type of addressing may be used only in unmasked general instructions, inherent mask
instructions, or print instructions. The special register whose address is generated,
as shown in Figure IV-7, contains not the operand for the instruction, but the address

of the operand.in main memory.

Memory Designator Address Group
(Explicit)
fstruction l 1 ’ l 0 l 5-bit Increment | 1 | 5-bitS.R. Subaddress
Form
Generated 3-bit
5-bit S.R.
Address l Group Ind. it S.R. Subaddress
Generated by
Sequencing
Counter’

Figure IV-7. Indirect Memory Location Address

The address generated is that of a special register in the same group as the se-~
quencing counter which selected the instruction. The contents of this special register
are interpreted as a sign, followed by a 4-bit bahk indicator and an 11-bit subaddress
designating the main memory location (in any bank) where the operand will be found.
Thus, indirect memory location addressing, like indexed memory location addressing,
provides access to operands in any bank of memory regardless of the bank indicator
stored in the sequencing counter. After the contents of the special register have been
used to locate the desired operand, the low-order bits of the stored contents are per-
manently modified by the increment specified in the address group of the instruction,
under control of the special register sign. This incrementing (or decrementing) takes
place regardless of whether the memory location addressed is an operand or a result

.

location.

Indirect addressing is a useful tool for stepping sequentially through an array of
items, processing the Nth word of each item. The location of word N of the first item

is stored in a special register. When this location is addressed indirectly, the use of

41

SECTION IV. ADDRESSING

the proper increment (equal to the item size) sets the contents of the special register
to the location of word N of the second item, and so forth, until word N of each item

has been processed.

ARGUS recognizes the use of indirect memory location addressing by the notation

N, Special Register Designator, Increment

where N represents a memory designator bit of one in the command code, a zero in
the first bit position of the address group, and a one in the tabular bit position of the
address group. The special register designator specifies one of the registers in the
related group, either numerically or mnemonically (see Figure V-1, page 50), and
the increment is a number from O to 31. The computer interprets the contents of the
specified register as the bank indicator and subaddress of a memory location in any
bank. The increment is added to the low-order bits of the contents of the special reg-

ister after use, permanently altering them., Thus, the address

N, R1, 10
designates the contents of the related special register R1, which are interpreted as
the location of an operand in main memory. After use, the contents of R4 are incre-

mented by 10.

Indexed Indirect Memory Location Address

As noted in the discussion of indexed special register addressing, the contents of
an index register may be interpreted as a special register group indicator and subad-
dress, a tabular bit, and an increment. If the tabular bit position of the augmented
index register contents has the value of one, then the contents of the special register
(designated by the augmented index register contents) are used to locate the operand
in main memory. This type of addressing is called indexed indirect memory location
addressing. The generation of an indexed indirect memory location address is iden-
tical to that shown in Figure IV-6. However, the tabular bit position in the augmented
contents of the index register has the value of one for an indexed indirect memory lo-

cation address whereas it has the value of zero for indexed special register addressing.

42

SECTION IV. ADDRESSING

Indexed indirect memory location addressing makes it possible to use any of the
256 special registers in the system to address any available memory location indi-
rectly. The retained contents of the special register are always modified after use by

the amount of the increment, under control of the special register sign bit.

ARGUS notation for an indexed indirect memory location address resembles that

for an indexed special register address, taking the form
Index Register Designator, N, Special Register Designator, Increment.
The comments made with respect to ARGUS notation for an indexed special reg-
ister address are also applicable to an ARGUS indexed indirect memory location ad-

dress.,

Summary of Address Forms

The binary forms of six different address types are described in the preceding
pages and illustrated in Figures IV-3 through IV-7. Figure IV-8 suggests a method
with which the reader may determine by inspection the address type of any binaryad-
dress configuration. This figure is not illustrative of the steps taken by the machine

in interpreting addresses.

Significant Main Memory Addresses

Regardless of the amount of main memory available, the first memory bank of
every Honeywell 800 system includes certain locations whose use by the programmer
is restricted. These locations are automatically involved in certain central proces-
sor functions described below. Although reserved for these functions, they arenever-
theless directly addressable by the programmer and may be used with caution by a
person familiar with the situations in which the central processor uses them automat-
ically. (It is recommended that they not be used when processing is done in parallel.)

The complete addresses, in octal notation, for these ''reserved' locations are as

follows:
00000-00017: Used for automatic access in the multiply instructions
00021 : Main console typewriter buffer
and
Console slave typewriter buffer
00023-00077: Buffers for inquiry station typewriters,

43

SECTION IV, ADDRESSING

Check Memory
Designator Bit
(If none, assume 0)

Check Bit 4
0 of Address Grou

y i

Augment Index
Register Array

Check Bit 1

4

f Address Group_1

Check Bit 7
of Address Group

0 \ (tab bit)

Augment

Array

Index Register

Check Bit 11 of
0 [Augmented Index

Register Array
tab bit)
1
Y A
Direct Indexed Direct Indirect Indexed Indexed
Memory Memory Special Memory Special Indirect
Location Location Register Location Register Memory
Address Address Address Address Address Location
Address
Figure IV-8. Interpretation of Address Bit Structure

44

SECTION IV, ADDRESSING

The multiply instructions (see Section VI) in the Honeywell 800 generate a set ot
multiples of the multiplicand which are stored in locations 00000-00017, destroying
any information previously stored in these locations by the programmer. Since 16
multiples of the multiplicand are generated during execution of a binary multiply, this
instruction involves all 16 locations. The decimal multiply instruction, however, re-
quires only 10 partial products, so that only locations 00000-00011 inclusive are af-
fected by this instruction. It must be remembered that every program running in
parallel uses these same locations whenever a multiply instruction is executed. Thus,
a programmer who hopes to use these locations with impunity must consider the re-
quirements of other programs which may be run at the same time as his own. It
should also be noted that the multiples stored in these locations include modulo -3
check bits stored in the parity bit positions, with the result that these locations will

generally contain words which the parity checking circuits will find invalid.

Since the console typewriter is used at least to a limited degree in every system,
its buffer location should not be used by the programmer for storage. The buffer lo-
cations for inquiry station typewriters not included in a particular system, however,

may be used freely.

Stopper Address

When the contents of a special register, interpreted as a main memory address,
are modified by incrementing or augmenting, a carry may occur from the 11-bit sub-
address into the bank indicator bits. Thus, a sequencing counter can be stepped
through successive memory banks, and a single peripheral or transfer instruction
can handle a record which is not stored entirely within one memory bank. There is
one address, however, which by definition is neither incremented nor decremented
when it appears in a special register. This address, called a stopper address, rep-
resents the highest-numbered location in the memory of a given Honeywell 800 system,
regardless of the number of banks in the system. Its 11-bit subaddress, therefore,
représents location 2047 in some memory bank. Its bank indicator is the highest such
indicator in the particular system and varies from installation to installation. The
largest possible value, in octal, for a complete stopper address is 77777 (15 binary

ones). This occurs only in a system having 32, 768 words of main memory.

45

SECTION IV, ADDRESSING

The stopper location can be addressed directly only by a program controlled by a
sequencing counter which contains the highest bank indicator in the system. Other
programs must address the stopper either by indexing or indirectly through a special
register containing the highest bank indicator and a subaddress consisting of 11 bi-~
nary ones. By addressing the stopper in the Aaddress group of a read instruction, it
is possible to move tape without disturbing any memory locations except the stopper.
Similarly, it is possible to read only part of a record into memory and discard the

balance by causing the first unwanted word to fall in the stopper location.

Although the stopper address cannot be incremented or augmented, it is possible
for an address in a special register to receive an increment or augmenter greater
than the difference between its initial value and the stopper or to be decremented by
an amount greater than its initial value. The effects of such operations, however,
should be carefully noted. These are summarized below:

1. If a word in the control memory receives an increment greater than
the difference between its initial value and 77777 or a decrement
greater than its initial value, the result restored to the special reg-
ister contains invalid parity bits. The next attempt to read out this
special register will result in a control error in the system. How-
ever, it is possible to write into this special register without error.

2. Whenever the stopper address for a given installation is less than
77777, and a word in the control memory receives an increment
greater than the difference between its initial value and the stopper
(but not greater than the difference between its initial value and
77777), a legal special register word is created and direct addressing
of this special register may take place without error. The resulting
special register word, however, represents the address of a non-
existent main memory location for this installation. Thus, if this
special register is referenced as the source of a main memory ad-
dress (indirect memory location addressing), a control error will
result.

3. If a legal special register word representing a memory location with
an address greater than the stopper and having a negative sign bit ap-
pears in an index register, this index register may be used for in-
dexed addressing without error, provided that the result of indexing
is the address of an existing memory location.

Inactive Addresses

The Honeywell 800 central processor contains three arithmetic registers which
have no addresses: the accumulator, the mask register, and the low-order product

register. Programmer access to these registers is provided by the technique of in-

46

SECTION IV, ADDRESSING

active addressing with certain specified instructions. Whenever an address group in
an instruction has the octal value 7777 (12 binary ones), that address is said to be in-
active. This definition is independent of the value of the corresponding memory des-

ignator bit in the command code.

Access to the accumulator is provided by the proper use of inactive addressing
in conjunction with the add instructions. Inactive addressing with the extract instruc-
tion provides actess to the mask register. Access to the low-order product register
is made possible by inactive addressing with the instruction "transfer A to B, go to C"

(TS in ARGUS language).

The behavior of the accumulator when inactive addressing is used in the binary
add, decimal add, or word add is specified as follows:

1. If address A is inactive, the previous contents of the accumulator
are used as if they were the contents of A. However, if the contents
of the accumulator have already been delivered to a memory loca-
tion by a previous instruction, a control error will result.

2. If address B is inactive, the accumulator (which contains the con-
tents of A if A is active or the previous contents of the accumula -
tor if A is inactive) is left undisturbed.

3. If address C is inactive, the normal process of hunting for the
next sequence counter in demand is inhibited, and the result re-
mains in the accumulator at the conclusion of the instruction.

Thus, if the B and C addresses are inactive, the effect of the instruction is to
transfer the contents of address A to the accumulator. If the A and B addresses are
inactive, on the other hand, the effect is to transfer the contents of the accumulator
to the location specified in the C address. Certain restrictions should be noted with
respect to the sequencing of these instructions when they contain inactive addresses.
If a decimal or binary add instruction is used to place a word in the accumulator, the
same type of instruction should be used to transfer the contents of the accumulator,
with proper sign, to memory. Similarly,if a word has been placed in the accumulator
by a word add instruction, the word add instruction mustbe usedto deliver the contents
of the accumulator to memory. The explanation for this restriction is reserved for

the section discussing the arithmetic instructions in detail (Section VI).

The mask register, not to be confused with the mask index registers in the con-

47

SECTION IV, ADDRESSING

trol memory, is a full-word register in the central processor which stores the mask
during the execution of a masked instruction. In the extract instruction, the location

of the mask is specified in the B address. At the conclusion of the execution of an ex-
tract instruction with all addresses active, the original contents of the B address are
left in the mask register. Thus, a word may be loaded into the mask register, without
disturbing memory, by using an extract instruction with an inactive C address. If ad-
dress B is inactive, the previous contents of the mask register will be used as the mask.
The contents of the mask register are transferred to the location specified in address

C of an extract instruction if address B is inactive and the contents of address A con-

sist of all (48) binary ones.

The low-order product register is of interest to the programmer primarily be-
cause it stores the low-order portion of the result of a multiply instruction. In order
to obtain this result, the programmer may use the instruction "transfer A to B, go to
C' (TS) with an inactive A address, which transfers the contents of the low-order pro-
duct register to the location specified by the B address. If address A of this instruc-
tion is active and address B is inactive, the contents of A are transferred to the low-

order product register and to the accumulator.

In addition to its use in providing access to these three arithmetic registers, the
technique of inactive addressing has special significance in the peripheral read, write,
and rewind instructions. Discussion of these features, however, is postponed until the

discussion of the instructions themselves (Section XI).

Two other general situations in which the effect of inactive addressing has been
specified should be noted:

1. After execution of any instruction whose C address normally calls
for a change in the sequencing counter, the counter will not be
changed if the C address is inactive.

2. Whenever an inactive C address occurs in any instruction for
which an inactive C address is allowed, the normal process of
hunting for the next sequencing counter in demand is omitted.

In all cases of inactive addressing not specifically mentioned in this section, the

behavior of the Honeywell 800 is presently unspecified.

In ARGUS language, an inactive address is specified by a hyphen (-) in the address

field.
48

SECTION V
SPECIAL REGISTERS

Each of the 256 special registers in the Honeywell 800 control memory is uniquely
designated by eight bits, consisting of a 3-bit group indicator to specify one of eight
special register groups and a 5-bit subaddress to designate one of 32 special registers
in a group. Figure V-1 lists the 32 registers associated with each group, together
with their numerical subaddresses from 0 to 31 and their mnemonic designations in

ARGUS language. The function of each of these registers is detailed in this section.

Each special register has the capacity to store 16 bits of information, plus two
checking bits. The information bits consist of a sign bit (''one'" for plus, ''zero' for
minus) and 15 bits which usually represent the bank indicator and subaddress of a main
memory location. When the contents of a special register are modified arithmetically
within the special register addition circuitry, the sign bit determines whether theyare
incremented or decremented. When a 16-bit special register word is transferred to
the accumulator or to a main memory location, it is stored in the low-order 16 bits
(bit positions 33 to 48) of the specified location. The high-order 32 bit positions of
the location are all cleared to zero. Thus, when a special register word is manipu-
lated within the arithmetic unit by an instruction which treats its operands as full-word
signed numbers (see Section VI), the word appears to be negative, since it contains four
zeros in the sign bit positions. When information is transferred from the accumulator
or from a main memory location to control memory, only the low-order 16 bits of the

word are stored in the special register; the high-order 32 bits are discarded.

The discussion of indexed memory location addressing in Section IV states that
whenever a special register is addressed by its full 5-bit subaddress in an instruction
address group, it is said to be explicitly addressed; whenever a special register is
referenced in any other way, it is said to be implicitly addressed or referenced. It is
also stated that an index register is implicitly referenced when designated by the 3-bit
index register number in an indexed address. Implicit addressing is further illustra-

ted by the following examples:

49

SECTION V., SPECIAL REGISTERS

A sequencing counter is referenced implicitly every time an

instruction is selected and executed;

A read address or write address counter is referenced im-
plicitly whenever a peripheral read or write instruction is

executed;

Two AU-CU counters are implicitly referenced whenever an
N-word transfer instruction is executed.

It will be noted that in each of these examples the implicitly referenced special

register is called a counter.

The following rule may be stated:

those special regis-

ters designated in Figure V-1 as counters are always automatically incremented (if

the special register sign is positive) or decremented (if the special register sign is

negative) by one each time they are referenced implicitly. When these counters are

Subaddress Mnemonic Address
00 AU1
01 AU2
02 SC

03 CSC
04 SH

05 CSH
06 UTR
07 MXR
08-15 X0-X7
16-23 RO-R7
24-31 S0-S7%
28 RAC
29 DRAC
30 WAC
34 DWAC

Name

AU-CU Counter No. 1

AU-CU Counter No. 2

Sequence Counter

Cosequence Counter

Sequence History Register
Cosequence History Register
Unprogrammed Transfer Register
Mask Index Register

Index Registers

General Purpose Registers
General Purpose Registers

Read Address Counter
Distributed Read Address Counter
Write Address Counter
Distributed Write Address Counter

In those special register groups associated with active input and/or output

channels, S4-S7 are replaced by RAC, DRAC, and/or WAC, and DWAC.

Figure V-1. Special Register Names, Subaddresses, and Mnemonic Addresses

50

SECTION V., SPECIAL REGISTERS

addressed explicitly in an instruction address group, however, incrementing is not
automatic but occurs only under program control, if specified in the address group.
The value of the sign bit of a special register is never changed except through explicit

addressing.

Under program control, the contents of a special register may be arithmetically
modified within the special register circuitry in one of two ways: by augmenting an
index register or by incrementing an explicitly addressed special register. Augment-
ing an index register does not alter the retained contenis of the register, since the
augmenter is actually added to the contents of the index register after they have been
read out. One and only one address selection occurs each time the index register
contents are augmented. Thus, even if the same index register is referenced in two
successive instructions or twice within the same instruction, the same base address
is used for each address selection. Incrementing, on the other hand, alters the re-
tained contents of the special register. After the special register has been selected
and its contents used, the increment specified in the address group is actually added
to those contents, and the result is returned to the special register before the next
address is selected. Thus, when the same special register is addressed twice within
an instruction, the contents of the register at the second addressing are different from
the contents at the first addressing, unless, of course, a zero increment is specified
in the first instance. Whether done automatically or controlled by the programmer,
incrementing (and augmenting) is a checked operation which takes place in addition

circuitry peculiar to the special registers.

It is important to emphasize a few basic rules which govern programmed incre-
menting of explicitly addressed special registers. If a special register is addressed
directly as the source of an operand, incrementing takes place. If a special register
is addressed directly as a result location, on the other hand, no incrementing takes
place even if programmed. Whenever the contents of a special register are used to
locate either a source or result location in mernory (indirect memory location ad -
dress), incrementing always takes place except for the unusual case in which the reg-
ister so used is the sequencing counter from which the next instruction will be selec -

ted. More specifically, if a sequencing counter is used to address a memory location

51

SECTION V. SPECIAL REGISTERS

indirectly in the C address and the instruction is one which would normally change the
contents of that counter to the memory location address specified by C, the contents of
the sequencing counter will not be incremented even though an increment is specified

in the address group.

The rules of incrementing which apply under indirect memory location addressing
are illustrated by the instruction 'transfer A to B, go to C'" shown below (in ARGUS

format):
TS ITEMA N, R1, 1 N, SC, 5

When this instruction is executed, the word at ITEMA is transferred to the memory
location designated by the address stored in special register R1. The contents of R1
are incremented by one after use and replaced in Ri. Since the increment of five is
not added to the contents of the sequence counter, the result is the same as if the C

address had been inactive.

Any instruction which can explicitly address a special register may operate on its
contents. This means that a special register word may be shifted, may be operated
upon arithmetically, may be compared, and may be moved around in either main or
control memory. When a special register word is brought into the accumulator, bits
1 through 32 are filled with zeros. Since four zero bits in the sign position define a
negative number, a control memory word is always negative when manipulated in the
accumulator, regardless of the value of the special register sign bit.

The peripheral read and write command codes do not provide memory designator
bits for explicit addressing of the control memory. It is therefore impossible to read
directly into a special register from a peripheral device or to deliver the contents of
a special register directly to a peripheral device. For the same reason, it is also

impossible to address a special register in a masked general instruction.

Each group of special registers forms a control center for a single program.
Thus, as many as eight independent programs may be active at the same time. Each
program proceeds under control of the sequence or cosequence counter in its own spe-

cial register group and references the other special registers (index registers, mask

52

SECTION V, SPECIAL REGISTERS

index register, and so forth) in this group. Direct memory location addressing allows
the programmer to address only those 2048 memory locations within the bank speci-
fied by the bank indicator of the sequencing counter which referenced the instruction.
When the main memory is addressed through the special registers, however, the pro-
gram may have access to a location in any bank. Furthermore, when any of the coun-
ters in the controlmemory is incremented, any resulting carry may propagate through-
out the full 15-bit address, with the result that the main memory is completely con-
tinuous when referenced through these counters. Thus, sequencing of control, reading,

writing, and transfer of information may all proceed without regard tobank designation.

Sequencing Counters

Each special register group contains two sequencing counters called the sequence
counter (SC) and the cosequence counter (CSC), Except in the case of simulator in-
structions, the programmer may use either of these counters to sequence his pro-
gram. Furthermore, in any instruction except the simulator, proceed, and peripheral
instructions, he may specify which counter will select the next instruction, ~with the
result that he may change control between the two with complete freedom. The use of
two counters in this way is called the bisequence operation mode. Since the behavior
"of the two counters is identical, the following description of the sequence counter is

also applicable to the cosequence counter.

The sequence counter contains a sign and 415 bits which are interpreted by the con-
trol circuitry as a bank indicator and a subaddress. These 15 bits represent the com-
plete address of a main memory location from which an instruction is to be selected.
Fach time the sequence counter is implicitly referenced for the selection of an instruc-
tion, its contents are automatically incremented or decremented by one (according to
the value of the sign bit) and immediately replaced in the counter. During the execu-
tion of an instruction selected from location N, for example, the sequence counter con-
tains the quantity N + 1 if the sign bit is positive. In this case, therefore, instructions
are taken from successively higher memory 10<:ations. If the sign bit is negative, on
the other hand, the instructions will be selected from successively lower memory

locations.

As previously noted, carries may propagate across the entire 15 bits of a sequenc-

ing counter during ‘incrementation. Instruction sequences can therefore pass freely

53

SECTION V. SPECIAL REGISTERS

from one memory bank to another. If an attempt is made to sequence the counter be-
yond the highest memory address included in a particular system, however, a control
error will result and the machine will stop. The same result will occur if a sequenc-

ing counter containing a negative sign and 15 binary zeros is implicitly referenced.

The initial setting of the sequence counter is normally made by transferring a
word from main memory whose low-order 16 bits represent the desired sign and the
memory address from which the first instruction is to be selected. Alternatively,the
starting address may be entered directly into the counter from the console typewriter.
Once the sequence counter is set and referenced, it continues to select instructions
from successive locations until an instruction is executed which specifies the alternate
counter as the source of the next instruction or which changes the contents of the coun-
ter itself through explicit or implicit addressing. When an instruction specifies a
change of counter but not a change in the contents of a counter, the only change which
occurs in the two sequencing counters is the normal incrementation of the counter
which selected the instruction. An instruction which explicitly addresses a sequencing
counter as a result location simply causes the contents of that counter to be replaced.

For example, the instruction

TX AU1 - Z, SC

merely replaces the contents of the sequence counter with the contents of AU4, so that
the next instruction is selected from the location whose address is stored in AU1. No
record of such a sequence change is retained by the machine. An instruction which
changes the contents of a counter by implicit reference, on the other hand, alters the
contents of the counter specified as the source of the next instruction and stores the con-
tents of the counter which selected this instruction in the history register (see below)
associated with the counter whose contents are changed. Thus a record is always avail-
able internally of the last implicit sequence change which affected the contents of either
counter. For example, an instruction selected under control of the sequence counter
specifies the cosequence counter as the source of the next instruction and directs the
program to transfer a word from A to B and select the next instruction from the location

specified by C:

TS C RECORD ouTPUT SECTIONA

54

SECTION V, SPECIAL REGISTERS

This instruction puts the address tagged SECTIONA in the cosequence counter, where
it is selected as the address of the next instruction, and stores the incremented con-

tents of the sequence counter in the cosequence history register.

History Registers

For each sequencing counter in the system, there is a corresponding history reg-
ister called the sequence history register (SH) or the cosequence history register
(CSH). These registers are used to store the contents of a sequencing counter when-
ever the counter is implicitly addressed by an instruction specifying a change in its
contents. If an instruction selected by the sequence counter from location M specifies
a sequence change to location N, and the next instruction is also to be selected by this
counter, then the address M + 1 is stored in the sequence history register and the se-
quence counter itself is set to the address N. If, however, the alternate counter is
specified as the source of the next instruction, then the cosequence counter is set to
N and M + 1 is stored in the cosequence history register. In other words, the con-
tents of a history register always represent the incremented address of the instruction
which last changed the contents of the associated sequencing counter by implicit ref-
erence. As previously noted, no change in the history register occurs if the contents

of a sequencing counter are changed by explicit addressing.

Index Registers

The Honeywell 800 contains a total of 64 index registers, of which eight (designa-
ted X0-X7) are located in each special register group. Like the other special regis-
ters, they contain 16 bits normally interpreted as a sign and a main memory or spe-
cial register address. Although the index registers must always be loaded and un-
loaded by the use of an explicit address, they are always implicitly addressed by a
3-bit number when used for their intended purpose in indexed addressing. As ex-
plained in Section IV, an indexed address group includes a 3-bit index register num-
ber and an 8-bit augmenter to be added to the low-order contents of this register. The
retained contents themselves are not modified; the special register addition circuitry
merely uses the contents, together with the augmenter, to generate the main memory
or special register address of an operand or result location. Since the sign of ‘the
register may be positive or negative, at the programmer's option, the generated ad-
dress may be higher or lower than the base address stored in the register. The cen-

tral processor accepts augmenters valued from 0 to 255.

55

SECTION V. SPECIAL REGISTERS

Mask Index Register

Each special register group contains a mask index register (MXR) which is im-
plicitly referenced whenever a field instruction or a shift instruction is executed. The
16 bits of this register are interpreted as a sign, a bank indicator, and the high-order
portions of two different subaddresses. Bits 6 through 10 specify a partial address for
masks used with the shift instructions; bits 14 through 16 serve the same purpose for

masks used in field instructions (see Figure V-2).

Bit Position——— 4 2 3 4 5 6 7 8 9 410 41 12 13 14 15 16
|+ | Bankind. | ShiftInstr. Field Instr.

WV
Partial Addresses

Figure V-2. Mask Index Register

The low-order portions of the mask addresses are found in the instructions them-
selves, as explained in Section III (see pages 28 and 29). When a shift instruction
is executed, the central processor unites the low-order six bits of the B address group
with the bank indicator and bits 6 through 10 from the mask index register to formthe

complete main memory address of the mask. This process is illustrated in Figure V-3,

Mask Index Register B Address Group
Bank Shift Field No. Shift Positions Partial Mask Address
[:hIB. 1. l 5 bits .] 6 bits I | 6 bits 6 bits
{ b *]
L] \J

| 4 bits | 5 bits | 6 bits |

Complete Address of Shift Mask

Figure V-3. Generated Mask Address in Shift Instructions

When a field instruction is executed, the central processor attaches the 5-bit par-
tial mask address from the instruction command code to the bank indicator and bits
11 through i6 from the mask index register to form the complete main memory ad-

dress of the mask. This process is illustrated in Figure V-4,

56

SECTION V. SPECIAL REGISTERS

Mask Index Register Instruction Command Code
Partial
. hif ield i
Bank Shift Fie Mask Address Operation Code
| +|B.1. | 5 bits | 6 bits | | s/c | 5 bits [6 bits
. 1

¥ v —
| 4 bits | 6 bits | 5 bits |
Complete Address of Field Mask

Figure V-4. Generated Mask Address in Field Instructions

Since the mask index register contains a single bank indicator, both shift masks
and field masks are stored in the same memory bank. The value of the sign bit isnot

relevant in locating masks.

The mask index register is set by explicit addressing. Each time the program-
mer loads the register, he designates 96 memory locations as mask addresses, 64
{or shift masks and 32 for field masks. Since the programmer may change the con-
tents of the mask index register whenever he wishes, the number of masks available

for his use is virtually unlimited.

General Purpose Registers

Each special register group contains a minimum of 12 general purpose registers
(RO-R7, S0-S3), and some groups may contain 14 or 16, depending upon the assign-
ment of input-output channels (see Read-Write Counters below). Like the index reg-
isters, general purpose registers are used primarily for address modification. Their
use differs from that of index registers, however, in several respects. First, they
are always addressed explicitly. Secondly, the specified increment, which has an up-
per limit of 31, alters the retained contents of the register after use. As in the case
of index registers, the address of a memory location generated by adding the incre-
ment to the original contents of the register may be higher or lower than the address
originally contained in the register, according to the value of the sign bit. These reg-
isters are used mainly in the indirect addressing mode to address an operand or a re-
sult location in any bank of memory, but they may also be used as programmed coun-
ters, as temporary storage for the contents of other special registers, and for any

other purpose the programmer may devise.

57

SECTION V. SPECIAL REGISTERS

Read-Write Counters

Every Honeywell 800 system includes eight channels for entry of information into
the central processor from peripheral units and eight channels for output of informa-
tion from the central processor to peripheral units. Two special registers known as
the read address counter (RAC) and the distributed read address counter (DRAC) are
associated with each input channel. For each output channel there are two similar
counters known as the write address counter (WAC) and the distributed write address

counter (DWAC).

Each of the eight special register groups contains a pair of read counters and a
pair of write counters. The counters corresponding to the first input and output chan-
nels are located in special register group 1; those corresponding to the second input
and output channels are located in special register group 2, and so forth up to the
counters corresponding to the last channels, which are located in special register
group 0. The read-write counters are, therefore, exceptions to the rule that an
implicitly addressed special register always belongs to the group associated with the
sequencing counter which selected the instruction. An implicitly addressed read or
write counter is always one of the pair corresponding to the input or output channel
connected to the device addressed. For example, if a program controlled by special
register group 3 addresses a peripheral device attached to the first input channel,
then the read or write counters in special register group 1 are activated, rather

than the counters in special register group 3.

When peripheral equipment is attached to a given channel, the read or write ad-
dress counter corresponding to that channel is implicitly referenced whenever the
peripheral devices are addressed or are operative. In certain cases, the distributed
read-write counters are also implicitly referenced. When no hardware is attached to
a specific channel, or when the hardware is not being used by any active program, the
associated read-write counters may be used as general purpose registers. Whenever
these special registers are addressed explicitly, they lose their identity as automat-

ically incremented counters.

When used to control input-output functions, those read-write counters used by a
peripheral instruction are automatically loaded during execution of the instruction.

The 16 bits initially loaded into the read or write address counter (RAC or WAC)

58

SECTION V. SPECIAL REGISTERS

always represent a sign bit, plus 15 bits {generated from the A address group) which
specify the main memory location into which the first word will be read or from which
the first word will be written. When a tape is read in the forward direction or written,
the sign of the counter is automatically made positive. When a tape is read backward,
the sign bit is automatically made negative. The distributed read or write counter
(DRAC or DWAC) is automatically loaded during execution of a tape instruction which
senses for end-of-item words. Their initial setting represents the address (generated
from the B address group) of a main memory location which contains the first entry

in a table of addresses used to specify the starting location for each item to be reador
written, beginning with the second item. (The starting address for the first item is
obtained from the A address group and stored in RAC or WAC.) The sign bit in the
distributed counters follows the same convention as that of the read and write address
counters. Further details on the functions of the read-write counters are found in

Section XI under the discussion of peripheral instructions.

Arithmetic Control Counters

Each special register group contains two arithmetic control counters known mne -
monically as AU1 and AU2. One or both of these counters are implicitly referenced,
loaded, and automatically incremented during execution of an N-word transfer, item
transfer, record transfer, binary or decimal multiply, compute orthocount, or sim-
ulator instruction. As an example, during execution of an N-word transfer of 10 words,
the initial setting of AU1 represents the main memory or special register address
from which the first word is to be transferred, while the initial contents of AU2 rep-
resent-the location to which this word will be delivered. As successive words are
transferred, the counters are automatically incremented to specify a source and re-
sult address for each word transferred. At the completion of the instruction, the

counters contain addresses equal to their initial settings plus ten.

Since carries may propagate across the low-order 15 bits of the counter, a re-
cord which is divided between two memory banks may be transferred as easily as one
contained entirely in one bank. It should be noted, however, that when the contents of
an arithmetic control counter are interpreted as a special register address, a subad-
dress overflow will not change the group indicator but instead will change the value of

the tabular bit (bit 11) from zero to one.

59

SECTION V. SPECIAL REGISTERS

Like other special registers, the arithmetic control counters may be addressed
explicitly in order to transfer their contents to main memory or to use them as gen-
eral purpose registers. The programmer who uses them thus, of éourse, must re-
member that information stored in one or both of these registers will be destroyedby
the execution of certain instructions. Whenever these special registers are addressed
explicitly, they lose their identity as automatically incremented counters. The arith-
metic control counters are described more fully in connection with the instructions

which use them.

Unprogrammed Transfer Register

The Honeywell 800 is so designed that the occurrence of certain unusual events
during execution of a program does not stop the machine but rather effects a transfer
of control out of the normal sequence of the program to initiate appropriate actionas
specified in a programmed subroutine. The unprogrammed transfer register (UTR)
in the special register group controlling the program is the key to the location ofthese
subroutines designed to handle the seven different types of conditions which may cause

an unprogrammed transfer.

The unprogrammed transfer register is initially loaded, by direct addressing,
with 16 bits which represent a sign, a bank indicator, and an 11-bit main memory sub-
address. The address thus loaded, called U, must be even or a control error willre-
sult when an unprogrammed transfer is attempted. When an unprogrammed transfer
situation arises, the control circuitry reads out the contents of the UTR and inserts a
one into bit 16 if the instruction causing the unprogrammed transfer was selected from
the cosequence counter. The instruction itself is stored in the address thus generated.
Thus, the instruction causing the transfer will be stored in U if it was selected by the

sequence counter or in U + 1 if it was selected by the cosequence counter.

The conditions which result in unprogrammed transfers are listed in Figure V-5,
Each of these events causes the execution of one instruction whose address is formed
by adding a constant to the contents of the UTR, under control of the UTR sign bit. If
the instruction causing the transfer was selected by the sequence counter, the constant
is an even number from 2 to 14; if by the cosequence counter, the constant is an odd
number from 3 to 15. The value of the constant depends upon the event which caused

the transfer and the counter which selected the instruction, as listed in Figure V-5,

60

SECTION V. SPECIAL REGISTERS

The execution of an unprogrammed transfer does not alter the contents of either
sequencing counter. Thus, control returns immediately to the normal sequencing of
the program unless the unprogrammed transfer instruction itself changes the contents
of the sequencing counter from which the next instruction is selected. Note, however,

1

that the bi-sequence bit in the instruction causing the transfer is ignored.

By inserting the appropriate address into the unprogrammed transfer register, the
programmer may select any area of memory for use as a corrective routine selection
table. He may also change the contents of the UTR at any point in the program or he
may change the contents of any entry in the table to correspond with the particular
portion of the program being executed at the time. Finally, the unprogrammed trans -
fer register may also be used in connection with fixed starts from the peripheral equip-
ment under conditions which will be discussed with the peripheral equipment in a sep-

arate manual.

Event Causing Instruction Next Instruction
Unprogrammed Transfer Stored In From

Parity Failure

Sequence Counter U U+2

Cosequence Counter U+1 U=+x3
Beginning or End of Tape

Sequence Counter U U+ 4

Cosequence Counter U+1 Uu=zxb
Read or Write Error

Sequence Counter U U6

Cosequence Counter U+ 1 Ux7
Addition or Subtraction Overflow

Sequence Counter U U+8

Cosequence Counter U+1 Uu=zx9
*Division Overcapacity’

Sequence Counter 8) U=+ 10

Cosequence Counter U+1 U+ 11
*Exponential Underflow

Sequence Counter 8] U=x12

Cosequence Counter U+ 1 _ U+13
*Exponential Overflow

Sequence Counter U U+ 14

Cosequence Counter U+1 U + 15

* These unprogrammed transfers apply only to the scientific instructions, to be
found in another manual.

Figure V-5. Unprogrammed Transfers of Control

61

SECTION VI
ARITHMETIC INSTRUCTIONS

Arithmetic instructions in the Honeywell 800 involve the use of two arithmetic
registers called the accumulator (AC) and the low-order product register (LOP). As
discussed in Section IV, these registers are accessible to the programmer by the
technique of inactive addressing with certain specified instructions. The accumulator
is used in all the instructions described below. The low-order product register is

used in the multiply instructions and in the masked arithmetic instructions.

The Accurmulator

The accumulator consists of 48 flip-flops, each capable of storing a single binary
digit. Used in conjunction with the accumulator is a single flip-flop called the sign
flip-flop. Since the operands handled in most arithmetic operations are treated as 44-
bit numbers with 4-bit signs, most arithmetic instructions use the sign flip-flop to-
gether with the low-order 44 bits of the accumulator. The exceptional instructions

which handle unsigned 48-bit numbers are so noted as they are described.

For all arithmetic operations on signed numbers, the sign flip-flop, originally set
to the value of zero, is changed to the value of one if any of the four sign bits in the A
operand is a one. (This is the logical OR function.) The setting of the sign flip-flop,
the sign of the B operand, and the operation code determine the sign of the result.
When the result is read out of the accumulator, a sign consisting of four bits identical
in value (zero or one) to the final setting of the sign flip-flop is attached to the low-
order 44 bits of the accumulator. Thus only two sign configurations may be obtained
as the result of an arithmetic operation: four binary zeros indicating a negative result
or four binary ones indicating a positive result. If the result of an add or subtract in-

struction is zero, the result takes a sign based on the sign of the A operand.
When addition is performed on signed numbers, bits 1 through 4 of the accumula-

torare automatically filled with binary ones sothat if overflow occurs it maybe sensed

in bit 1, the same position in which it is sensed during the addition of unsigned 48-bit

62

SECTION VI. ARITHMETIC INSTRUCTIONS

operands. Similarly, bits 1 through 4 are filled with binary zeros when subtracting
signed numbers in order that borrows may be sensed at the same position for both
signed and unsigned numbers. If overflow occurs, the instruction is completed and the
low-order 44 bits of the accumulator, plus a 4-bit sign based on the value of the sign
flip-flop, are stored in the location specified by the C address. An unprogrammed
transfer is then made to U + 8 or U + 9, where the programmer should have stored
the entry to a subroutine to handle this condition. The instruction which resulted in

the overflow is stored in U or U + 1 (see Figure V-5, page 61).

The arithmetic operations are not actually performed in the accumulator but in
an adder consisting of 12 gate buffer amplifiers. Both binary and decimal arithmetic
are performed in the same adder, which handles three 4-bit groups at a time. For
binary instructions, these 4-bit groups are considered as hexadecimal digits, with car-
ry occuring after a group reaches the value of 15. This results in a pure binary op-
eration. For decimal instructions, the adder is made to carry when a 4-bit group
reaches the value of nine, so that degimal arithmetic is performed. However, if a
decimal addition instruction involves an operand which contains hexadecimal digits,
a variant on normal addition occurs in accordance with the following rules:

1. If the hexadecimal digit appears in the A operand, the corres-
ponding digit in the B operand is added in hexadecimal fashion.
In other words, 14 + 1 becomes 15, 14 + 3 becomes 1 with a
carry of 1.

2, If the A operand contains decimal information and a hexadecimal
digit occurs in the B operand, then the result is decimalized, as
follows: 3 + 14 becomes 7 with a carry of 1. However, if the
result is greater than 19, a control error may occur.

The contents of the operands are inspected digit by digit. Therefore, the result to be
obtained by adding two words having both hexadecimal and decimal digits must be
ascertained on a digit-by-~-digit basis. Since this condition is not considered an error
by the central processor, except in the circumstance noted above, the programmer
will receive no indication of the existence of a hexadecimal digit in an operand handled

by a decimal instruction.
Addition and subtraction of signed numbers conforms to normal algebraic rules.

Thus, an add instruction causes operands with like signs to be added and operands

with unlike signs to be subtracted. A subtract instruction causes operands with un-

63

SECTION VI, ARITHMETIC INSTRUCTIONS

like signs to be added and operands with like signs to be subtracted. A more detailed

discussion of addition in the Honeywell 800 will be found in Appendix A.

Several precautions must be observed in working with the accumulator. In the
discussion of inactive addressing (SectionIV, page 46ff), it is pointed out that the re-
sult of an addition may be left in the accumulator by using an add instruction with an
inactive C address and that the contents of the accumulator may be stored in memory
by using an add instruction with inactive A and B addresses. It should also be noted
that if the contents of the accumulator were formed by an instruction which treatedthe
operands as signed 44-bit numbers, such an instruction must be used to store the con-
tents of the accumulator in order to guarantee them the proper sign. Otherwise, the
entire 48-bit contents will be stored rather than the low-order 44 bits with a 4-bit sign
determined from the value of the sign flip-flop. Similarly, if the contents of the ac-
cumulator were created by an instruction which treated the operands as unsigned 48~
bit words, such an instruction must be used to transfer the entire contents of the ac-

cumulator to memory without reference to the sign flip-flop.

Another precaution involves the condition of the accumulator after its contents
have been delivered to memory. After a result formed in the accumulator has been
transferred to memory, the contents of tlre accumulator are invalid. A second attempt
to transfer the result, therefore, will cause a control error and the machine will stop.
Since a hunt for the next program demand will have occurred immediately after the

first transfer, this behavior imposes no real restriction on the use of the accumulator.

The Low-~Order Product Register

The low-order product register is a 48-bit register similar to the accumulator.
As its name implies, the register is used to store the low-order portion of the result
of a multiply instruction. The contents of the register are interpreted as a sign and

a 44-bit number.

Binary Add, BA

The binary add instruction causes the contents of the location specified by A to be
added algebraically to the contents of the location specified by B and the result of the
operation to be stored in the location specified by C. The contents of both A and B

are regarded as 44-bit numbers with 4-bit signs. If any sign bit for the A or B oper-

64

SECTION VI, ARITHMETIC INSTRUCTIONS

and is a one, then the corresponding operand is considered positive. After the addi-
tion is complete, the low-order 44 bits of the accumulator, plus a 4-bit sign (1111 or
0000) corresponding to the value (1 or 0) of the sign flip-flop, are stored in the loca-
tion specified by C. If overflow occurs, the instruction is stored in U if the sequence
counter selected it or in U + 1 if the cosequence counter selected it, and the next in-

struction is taken from U + 8 oxr U + 9.

As an illustration, assume that the following information bits are stored in mem-

ory locations tagged MONTHDAY and CONSTNT4:

MONTHDAY 00110........... 01110000
CONSTNT1 10000........... 00011001

When the instruction
BA MONTHDAY CONSTNT1 TESTAREA
is executed, the following result will be stored in TESTAREA:
TESTAREA 11440,ot L L 010001001

In the unmasked version of the binary add, all three addresses may be direct, indexed,
or indirect and may refer to main memory locations or special registers. When the
instruction is masked to permit operations on partial words, however, the A, B, and

C addresses may refer only to the main memory in the direct or the indexed mode.

If the A address of the instruction is active and B and C are inactive, the contents
of A are placed in the accumulator. If the B address is active and A and C are inac-
tive, then the contents of B are added to the contents of the accumulator. If the C ad-
dress is active and A and B are inactive, the low-order 44 bits of the accumulator are
stored in C with the sign bits 1111 or 0000, depending upon the value of the sign flip-
flop. '

The timerequired to execute an unmasked binary add instruction whose A, B, and

65

SECTION VI. ARITHMETIC INSTRUCTIONS

Caddresses directly specify main memory locations is generally four memorycycles.
Occasionally, one or two extra memory cycles may be required, as explained in Appen-
dix A. The effect on timing when the instruction is masked or when it uses indexed

operands or special registers is summarized in Appendix C.

Decimal Add, DA

The decimal add instruction causes the contents of A to be added algebraicallyto
the contents of B and the result of the operation to be stored in C. The instruction
differs from binary add only in the fact that the contents of each operand are handled
as eleven 4-bit groups with a 4-bit sign. The sign conventions are identical, and the
result stored in memory consists of the low-order 44 bits of the accumulator and a

4-bit sign corresponding to the value of the sign flip-flop.

If memory locations tagged REGPAY and OVERTIME contain the following infor-

mation

REGPAY +00000012500
OVERTIME +00000004750

and the instruction

DA REGPAY OVERTIME WEEKPAY

is executed, then the following result will be stored in WEEKPAY:

WEEKPAY +00000014250

The comments on the binary add instruction with respect to overflow, addressing,

masking, and timing are equally applicable to the decimal add instruction.

Binary Subtract, BS

This instruction causes the contents of B to be subtracted algebraically from the
contents of A and the result to be stored in C. The contents of both A and B are re-
garded as 44-bit numbers with 4-bit signs. The sign and overflow conventions fol-

lowed are the same as those described for the binary add instruction.

66

SECTION VI, ARITHMETIC INSTRUCTIONS

The remarks about addressing and masking with reference to the binary add in-
struction also apply to binary subtract. The time required to execute an unmasked
binary subtract instruction whose A, B, and C addresses directly specify main mem-
ory locations is ordinarily four memory cycles. Under certain unusual conditions
described in Appendix A, however, one or two additional memory cycles may be re-
quired. The tifning effect of masking, indexing, and the use of special registers is

summarized in Appendix C.

Decimal Subtract, DS

The decimal subtract instruction differs from binary subtract only in the fact that
both operands are regarded as eleven 4-bit groups with 4-bit signs. In all other re-

spects, the description of binary subtract is completely applicable to decimal subtract.

Word Add, WA

Word add is one of the two arithmetic instructions which regard operands as un-
signed 48-bit numbers. The instruction adds the absolute values of the entire 48-bit
contents of A and B in binary and stores the entire 48 bits of the accumulator in C,
making no reference to the sign flip-flop. In contrast to the example cited under the

discussion of binary add, when the instruction

WA MONTHDAY CONSTNT4 TESTAREA

is executed with the same operands:

MONTHDAY 00110......... 01110000
CONSTNTA1 10000........... 011001

then the following result will be stored in location TESTAREA:
TESTAREA 10110........ 010001001
Although the low-order 44 bits of the resultstored in TESTAREA are identical for the

two instructions, the high-order four bits are different since binary add inserts in

these four positions a sign based on the value of the sign flip-flop whereas word add

67

SECTION VI. ARITHMETIC INSTRUCTIONS

stores the entire contents of the accumulator, without regard for the sign flip-flop.

Overflow is sensed in bit 1. If overflow occurs, the instruction is completed, and
the overflow conventions set forth under the description of binary add are followed.
With respect to addressing, masking, and timing, the word add instruction is identical

to binary add.

Word Difference, WD

The second arithmetic instruction which treats its operands as unsigned 48-bit
numbers, word difference, causes the entire 48-bit contents of B to be subtracted in
binary from the entire 48-bit contents of A. The entire 48 bits of the accumulator are
stored in C. If the absolute value of the contents of B is greater than the absolute
value of the contents of A, then overflow occurs, and the result stored in C is the
difference of the absolute values of the words. In all other respects, the word dif-

ference instruction is identical to word add.

Binary Accumulate, BT

The binary accumulate instruction totals the absolute value of the contents of A
the number of times specified by the high-order six bits of the B address group, a
number which ranges from 0 through 63. Although the words added are treated as
signed 44-bit numbers, only their absolute values are added. The accumulator is not
cleared between successive additions except for the high-order four bits. At the con-
clusion of the series of additions, the 44 low-order bits of the accumulator are stored
in C, together with a sign (four binary ones or four binary zeros) based on the value
of the sign flip-flop. This value represents the sign of the first word added (the con-

tents of the location originally specified by the A address group).

Step by step, the instruction functions as follows. The low-order 44 bits of the
A operand are transferred to the accumulator and the high-order four bits of the ac-
cumulator are set to one. If A contains a special register subaddress, incrementing
is performed as specified. The high-order four bits of the accumulator are again re-
placed with ones, and the low-order 44 bits of A are added in binary to the contents of
the accumulator. (Note well that the location now specified by A will be different from

the original A if incrementing took place.) The specified incrementing is again per-

68

SECTION VI, ARITHMETIC INSTRUCTIONS

formed (if A contains a special register subaddress), the high-order four bits of the
accumulator are replaced by ones and the low-order 44 bits of A are again added to
the accumulator. This process is performed the number of times specified by the
high-order six bits of the B address group. If the value of these bits is zero, no in-
formation is transferred to the accumulator, the instruction is not executed, and the
next instruction is selected from the sequencing counter specified by bit 1 of the com-

mand code. The low-order six bits of the B address group are ignored.
As an example, consider the instruction
BT N, R1, 1 4 TOTAL

in' the case where R1 contains a main memory address tagged OPERAND. The high-
order four bits of the accumulator are set to ones, and the low-order 44 bits of
OPERAND are transferred to the accumulator. R4 is incremented by one, the high or~
der foﬁr bits of the accumulator are replaced by ones, and the low-order 44 bits of
OPERAND + 1 are added in binary to the contents of the accumulator. This process

is repeated until the contents of OPERAND + 3 have been added to the total in the ac-
cumulator. The accumulator now contains the sum of the absolute values of the low-
order 44 bits of OPERAND, OPERAND + 1, OPERAND + 2, and OPERAND + 3. This
sum, with a sign based on the sign of OPERAND), is then étored in the location

tagged TOTAL. Register R1 contains the address of location OPERAND + 4 at the

conclusion of the instruction.

Overflow in the accumulator is sensed out of bit 1. If overflow is sensed, the in-
struction is completed, and the normal overflow procedure (described under the
binary add instruction) is performed. Since the high-order four bits of the accumu-
lator are replaced by ones between successive additions, the contents of these four
positions are not available to indicate the number of overflows. Thus, unless the
programmer knows from the logic of his problem precisely how many overflows may
have occurred and at which points, he must repeat the addition process in pairs.

The time required to execute a binary accumulate instruction with direct and/or
indirect memory locationaddresses is three memory cycles plus one memory cycle for

each word accumulated. Masking is not permitted with the accumulate instructions.

69

SECTION VI. ARITHMETIC INSTRUCTIONS

Decimal Accumulate, DT

This instruction is implemented in precisely the same way as binary accumulate,
with the exception that the words added are regarded as 141 -digit decimal numbers and
are added according to the rules of decimal arithmetic. If hexadecimal digits appear
in the operands, they are added in the same fashion described under the decimal add
instruction. The remarks on overflow, timing, and masking made with reference to

binary accumulate also apply to decimal accumulate.

Binary Multiply, BM

The binary multiplication instruction in the Honeywell 800 stores a set of 16 mul-
tiples of the multiplicand (or A operand) in the first 16 locations of memory bank 0
(see page 43ff). Any information previously stored in these 16 locations by the pro-
grammer will be destroyed during execution of a multiply instruction. Since the mul-
tiples stored in these locations use the parity bit positions for modulo -3 check digits,
these locations, in general, will contain words which the parity checking circuits will

find invalid.

At the beginning of the instruction, the address 00000 (in octal) is placed, with a
positive sign bit, in AU-CU counter 1 (AU1). The number zero (zero times the A
operand) is stored in location 00000, and AU1 is incremented by one to specify the
storage location of the n(;:xt partial product. The A operand is then placed in location
00004; AU1 is stepped and twice the A operand is placed in location 00002; the counter
is stepped again and three times the A operand is placed in location 00003; and so
forth until the 16 multiples possible in the hexadecimal system are stored. These
multiples are then selected and added in accordance with the value of the digits of the
multiplier (or B operand). At the conclusion of the instruction the high-order pro-
duct found in the low-order 44 bits of the accumulator is stored, together with a sign
corresponding to the value of the sign flip-flop, in the location specified by the C ad-
dress group. The low-order product remains in the low-order product register. AU1

contains the address 00020 (in octal).

Since hunting for the next sequencing counter in demand is not allowed at the con-
clusion of a multiply instruction, the programmer has the opportunity to store the
contents of the low-order product register before an instruction from another program

destroys them. As explained under the discussion of inactive addressing (Section IV,

70

SECTION VI, ARITHMETIC INSTRUCTIONS

page 46ff), this may be accomplished by performing a "transfer A to B, go to C'" in-
struction with an inactive A address. If both halves of the product are stored, they
will have the same sign. It should be noted that the high-order product stored in C is

unrounded.

Several properties of the multiply instructions deserve particular attention. The
contents of the mask register are destroyed, together with the contents of those loca-
tions used to store the partial products. Furthermore, if the G address of a multiply
instruction is a direct or indexed special register address, a control error will occur

and the machine will stop.

Masking is not permitted with the multiply instructions. Except for the restric-
tion already stated with respect to the C address, the A, B, and C addresses may be
direct, indexed or indirect. The time required to execute a binary multiply with di-

rect memory location addresses is 33 memory cycles.

Decimal Multiply, DM

Decimal multiply is implemented exactly as the binary multiply instruction, with
the exception that only 10 partial products are generated instead of 16. After the mul-
tiples of the A operand are generated, the proper multiples are selected and added in
accordance with a digit-by-digit inspection of the multiplier, or B operand. If hexa-
decimal digits appear in the operands, an erroneous product will be generated, and a

control error may be indicated.

Like binary multiply, the decimal multiply instruction produces a 2-word re-
sult. The high-order product, consisting of 11 decimal digits, is stored in the loca-
tion specified by the C address group with a sign determined by the value of the sign
flip~flop. The low-order result appears in the low-order product register and maybe
stored by the programmer in the manner described for binary multiply. At the con-

clusion of the instruction, AU1 contains the address 00012 (in octal).

Since only 10 multiples of the multiplicand are stored in a decimal multiply, com-
pared with 16 multiples for a binary multiply, only memory locations 00000 through
00011 will be affected, and the time required to execute the decimal instruction with
direct memory location addresses is six memory cycles less than for the binary in-

struction, or 27 memory cycles. 71

SECTION VI
LOGICAL INSTRUCTIONS

The four instructions which make up the logical group manipulate words on an in-
dividual-bit basis, combining bits from two words to form a third. The rules by which
the bits are combined are similar to the rules under which the logical elements of a
computer operate; hence the name logical instructions. All operands are regardedas
48 -bit words in which each bit is an individual unit of information unrelated to any

other bit.

The four logical instructions are extract, substitute, half add, and superimpose.
Extract and substitute have command codes of the "inherent mask' format (see
Section III) and utilize the entire B address group to specify the location of a mask.
Half add and superimpose have command codes of the ''general, masked or unmasked"
format. The time required to execute an extract or substitute instruction with direct
memory location addresses is five memory cycles; for an unmasked half add or super-

impose instruction with direct memory location addresses, it is four memorycycles.

The logical instructions may address special registers in one or more address
groups. The result of such an operation may be determined by applying the rules
governing the transfer of a special register word to a 48-bit register and the transfer

of a 48-bit word to a special register.

Extract, EX

The extract instruction places the A operand in the location specified by the C
address group, using the B operand as a mask and not protecting the unmasked por-
tions of C. (The mask index register is not used in locating the mask.) This is equi-
valent to combining the corresponding bits of the A and B operands in accordance with
the following rule:

If corresponding bit positions in the word at A and the word at B both con-
tain ones, the result shall contain a one in this positioan. In all other cases,
the result shall contain a zero. This is the "logical AND" function.

72

SECTION VII, LOGICAL INSTRUCTIONS

The execution of an extract (or logical AND) instruction utilizes the accumulator,

the mask register, and the low-order product register, and takes place in the follow-~

ing steps:

1.

The 48-bit A operand is placed in the accumulator and the 48-bit
B operand is placed in the mask register.

The contents of these two registers are then shifted right one bit
position. The value of the bit shifted from the mask register is
examined by a logical computer element called a ''gate.' If this
bit is a one, the gate allows the value of the bit shifted from the
accumulator to be placed in the high-order bit position of the low-
order product register. If the bit from the mask register is zero,
a generated zero bit is introduced into the corresponding position
of the low-~order product register. Actually, both the value ofthe
accumulator bit and the generated zero bit are brought to the gate,
which has been set according to the value of the mask register bit
to allow one or the other of these two values to reach the low-order
product register.

Step 2 is repeated 47 times, shifting the contents of the low-order
product register as well. At the conclusion of 48 one-bit shifts,
each of the 48 pairs of operand bits has been examined and eachbit
position in the low-order product register contains one or the other
of the corresponding pair of bit values.

The 48-bit result generated in the low-order product register is
then placed in the location specified by the C address group.

Whenever a masking operation is performed, whether in a logical, a general, or

a shift instruction, a logical gate is set by the value of each bit from the mask regis-

ter to open one transmission path and close another. In unprotected masking, one of

the paths transmits the word to be masked while the other transmits generated zero

bits.

In protected masking, the generated zeros are replaced by the contents of the

location specified by the C address group.

For example, the following locations contain the words shown:

OPERAND 1410100400040 ------------
EXMASK 000011110000------------

RESULT 1010041410440 ------------

when the instruction

EX OPERAND EXMASK RESULT

73

SECTION VII, LOGICAL INSTRUCTIONS

is executed. As a result of the instruction, the contents of location RESULT will be:

RESULT 000000100000 ~-~--=----=-~--~

As discussed inSectionIV (see page 46ff), the use of inactive addressing with the
extract instruction provides access to the 48-bit arithmetic register called the mask
register. When a mask is specified in an instruction, either in the command code or
in the B address group, the contents of the specified location are placed in the mask
register, where they remain until a subsequent instruction calls for a mask (or until
they are destroyed by the execution of a multiply instruction). Therefore, the con-
tents of the mask register are unrelated to the instruction being performed if this in-
struction does not specify a mask. Since the mask register has no address, the pro-
grammer cannot transfer its contents directly to memory. However, by executing an
extract instruction which specifies the address of a word of 48 binary ones in the A
address group and an inactive address in B, the programmer can store in the location
specified by C a word guaranteed to be identical to the contents of the mask register.
This guarantee can be verified by an inspection of the above rule of operation. If the
programmer wishes to insert a full word into the mask register without disturbing any

memory location, he may perform an extract instruction with an inactive C address.

Substitute, SS

The substitute instruction performs the same general function as extract except
that the contents of the location specified by the C address group are protected. When
this instruction is executed, therefore, the computer places the 48-bit contents of A
in the accumulator and the 48-bit contents of B in the mask register and then forms a
new word in the low-order product register according to the following rule:

Wherever the B operand contains a one bit, the corresponding bit of the A
operand is stored in the corresponding position of the low-order product
register. Wherever the B operand contains a zero bit, the corresponding
bit of the word at C is stored in the corresponding position of the low-order
product register.

Finally, the word formed in the low-order product register is stored in the location
specified by the C address group. The result of the operation may differ from the re-
sult of an extract having the same operands only in those bit positions for which the
B operand has a value of zero. The behavior of this instruction with one or more in-

active addresses is unspecified.

74

SECTION VIl, LOGICAL INSTRUCTIONS

For example, if the instruction

SS OPERAND EXMASK RESULT

is executed where the contents of the three locations specified are as shown under the

discussion of extract, the contents of location RESULT will be:

RESULT 101000100110 ~=-~~---~--~=-

Half Add, HA

The half add instruction performs a binary addition of the 48-bit A and B oper-
ands in the accumulator, discarding all carries, and stores the result in the location
specified by the C address group. This is equivalent to combining the corresponding
bits of the A and B operands in accordance with the following rule:

If the corresponding bit positions in the A and B operands have the same
value, the result shall contain a zero in this position. In all other cases,
the result shall contain a one. This is the "logical exclusive OR' function.

The behavior of this instruction with one or more inactive addresses is unspecified.

The half add instruction is illustrated in terms of the same example used to ex-

plain extract. If the instruction

HA OPERAND EXMASK RESULT

is executed and the operands are the same as in the preceding examples, the contents

of location RESULT will be:

RESULT 110111010010

Superimpose, SM

The superimpose instruction performs a superposition of the 48-bit A and B oper-
ands in such a way that the result contains a one in every position in which a one ex-
isted in either A or B or both, and stores the result in the location specified by the C
address group. This is equivalent to combining the corresponding bits of the A and B

operands in accordance with the following rule:

75

SECTION VII, LOGICAL INSTRUCTIONS

If corresponding bit positions of the A and B operands are both zero,
the result shall contain a zero in this position. In all other cases, the
result shall contain a one. This is the ''logical inclusive OR'" function.

The behavior of this instruction with one or more inactive addresses is unspecified.
For example, if the above operands are manipulated by the instruction
SM OPERAND EXMASK RESULT

the contents of location RESULT will be:

RESULT 110114110040---~--------

76

SECTION VIl
TRANSFER INSTRUCTIONS

The logic of the Honeywell 800 includes six instructions designed to transfer data
within the main memory, within the control memory, or from one memory to another.
Using these instructions, called transfer instructions, the programmer may move any
desired quantity of information, from a single bit to an entire record. Two of the'in-
structions move single words only, or, when masked, fields within single words. The

other four instructions move groups of words and cannot be masked,

The command codes for all six instructions provide the ability to address special
registers and to designate either sequencing counter as the source of the next instruc-
tion. In instructions which transfer groups of words, the A address group indi‘cates the
location of the first word to be transferred, while the C address designates the location
to which this word is delivered. Except for the multiple transfer (MT) instruction,
transfers involving groups of words occur under control of special registers AU1 and
AU2, which initially contain one of the following bit configurations, depending uponthe
type of addressing used in the A and C address groups, respectively.

1. Direct Memory Location Address: A positive sign bit, the bank
indicator taken from the sequencing counter which selected the
instruction, and the low-order 14 bits of the address group.

2. Direct Special Register Address: A positive sign bit, the group
indicator associated with the sequencing counter which selected
the instruction, and the low-order 11 bits of the address group.

3. Indexed Memory Location Address: A positive sign bit and the
augmented low-order 15 bits of the index register referenced in
the address group.

4. Indexed Special Register Address: A positive sign bit and the
augmented low-order 15 bits of the index register referenced
in the address group.

5. Indirect Memory Location Address: The sign bit (positive or
negative) and 15-bit main memory address stored in the special
register designated in the address group.

6. Indexed Indirect Memory Location Address: The sign bit (posi-
tive or negative) and 15-bit main memory address stored in the
special register whose address is obtained by augmenting the

77

SECTION VIII. TRANSFER INSTRUCTIONS

contents of the index register referenced in the address group.

As successive words are transferred, the AU counters are automatically incre-
mented (or decremented if the sign bit is negative) by one to specify a source and a
result address for each word transferred. At the completion of the instruction, the
counters contain addresses equal to their initial settings plus (or minus) the number

of words transferred, i.e., the address of the last word transferred plus (or minus) one.

Transfer A to C, TX

This instruction transfers one word from the location specified by the A address
group to the location specified by the C address group. The B address group isignored.
Any of the six types of addressing previously discussed may be used in either the A or
C address group, provided the instruction is used in its unmasked version. When the
instruction is used with a mask, partial words (or fields) may be transferred from
one memory location to another, protecting the unmasked portion of the result location.

The masked version of the instruction, of course, cannot address special registers.
The time required to execute an unmasked instruction with direct memory loca-
tion addresses is three memory cycles. The timing effect of masking, indexing, and

the use of special registers is summarized in Appendix C.

Transfer A to B and Go to C, TS

This instruction transfers one word from the location specified by the A address
group to the location designated by the B address group and changes the setting of the
specified sequencing counter so that the next instruction is selected from the main
memory location designated by the C address group. It is also used, with inactive ad-
dressing, to provide access to the low-order product register (see Inactive Addressing,

Section IV). The instruction is identical to the TX instruction with respect to masking.

The A and B addresses may use any of the six types of addressing previously dis-
cussed. If the C address is active, it may specify a direct memory location address,
an indirect memory location address, an indexed memory location address, or an in-
dexed indirect memory location address. The behavior of the system for each ofthese

cases is described below.

78

SECTION VI, TRANSFER INSTRUCTIONS

1. Direct Memory Location Address. The low-order 11 bits of the
C address group are placed in the specified sequencing counter,
protecting the bank indicator in that counter.

2. Indirect Memory Location Address. The complete contents of
the addressed special register, including the sign and bank in-
dicator, are transferred to the specified sequencing counter.
The contents of the addressed special register are incremented
in the usual fashion after use, unless the special register ad-
dressed is the counter to be changed (either sequence or cose-
quence counter), in which case incrementing does not take place.
The tabular bit in the address group is ignored.

3. Indexed Memory Location Address. The contents of the refer-
enced index register are augmented, and the complete 15-bit
address thus formed is inserted, with a positive sign, into the
specified sequencing counter,

4. Indexed Indirect Memory Location Address. A complete special
register address is generated by augmenting the contents of the
referenced index register in the usual fashion. The generated
address specifies a special register whose entire 16-bit contents
are transferred to the specified sequencing counter. The con-
tents of the addressed special register are incremented in the
usual fashion after use, unless this special register is the coun-
ter to be changed (either sequence or cosequence counter). The
tabular bit position in the address group is ignored.

The time required to execute an unmasked TS instruction with three direct memory

location addresses is four memory cycles.

N-Word Transfer, TN

This instruction transfers the number of words specified by the high-order six
bits of the B address vgroup from consecutive locations starting at A to consecutive
locations starting at C. The number of words to be transferred can range from 0 to
63. If the B address group is zero, no information is transferred. The low-order
six bits of B are ignored. The transfer of information occurs under control of special
registers AU1 and AUZ, according to the conventions outlined at the beginning of this

section.,

It should be noted that if a special register is directly addressed in the A address
of an N-word transfer instruction and an increment other than zero appears in the ad-
dress group, then this increment is applied after transfer to the contents of each spe-

cial register thus addressed. For example, consider the instruction

79

SECTION VIII. TRANSFER INSTRUCTIONS

TN 2,X0,10 5 Z,R0

This instruction causes the contents of index registers X0 through X4to be transferred
to special registers RO through R4. At the conclusion of the instruction, the contents
of index registers X0 through X4 will have been incremented by 10, and the low-order

five bits of AU1 and AU2 will contain the subaddresses of X5 and R5, respectively.

When the instruction

TN N, X0, 10 5 N,RO

is executed, on the other hand, only the contents of X0 are incremented by 10 after
use, since no other special register is referenced by the A address group. If X0 in-
itially contained the main memory address tagged TRANS1 and RO contained the main
memory address tagged LLOC1, then at the conclusion of the instruction AU1 will con-

tain the address TRANS1 + 5 and AU2 will contain the address LOC1 + 5.

The time required to execute an N-word transfer with either direct or indirect
memory location addresses is 5 + 2n memory cycles, where n equals the number of

words transferred.

Multiple Transfer, MT

The multiple transfer instruction transfers the contents of the location specified
by the A address group to the location specified by the C address group, repeatingthe
transfer the number of times specified by the high-order six bits of the B address
group. This number may range from 0 to 63. If B is zero, no transfer of information

takes place. The low-order six bits of B are ignored.

Although all types of addressing are permitted with this instruction, the instruc-
tion is most meaningful when used with indirect addressing. For example, an area of
20 words in memory may be cleared to zeros by storing a constant of zeros in the lo-
cation tagged ALLZEROS, setting general purpose register RO to the address of the

first location to be cleared, and executing the instruction

MT ALLZEROS 20 N,RO,1

80

SECTION VIll, TRANSFER INSTRUCTIONS

Zeros will be transferred to the 20 main memory locations starting with the address
initially contained in RO, and the contents of RO at the completion of the instruction
will be equal to the initial contents plus 20. The AU counters are not involved in the

execution of this instruction.

As a second example, consider the instruction

MT N, X0, 10 5 N, RO, 1

If X0 initially contains a memory address tagged ONESTORE and RO contains a main
memory address tagged WORKAREA, execution of this instruction causes the words
from locations ONESTORE, ONESTORE + 10, OCNESTORE + 20, etc. to be transferred
to WORKAREA, WORKAREA + 1, etc. At the conclusion of the instruction, X0 con-
tains the address ONESTORE + 50, while RO contains the address WORKAREA + 5.

The time required to execute a multiple transfer instruction with either director
indirect memory location addresses is 1 + 2n memory cycles, where n equals the

number of times the transfer is performed.

Record Transfer, RT

The record transfer instruction is used to move a group of related words from
one location to another. Such a group does not neces sarily constitute a record. Al-
though the record transfer instruction is most frequently used to manipulate ”recbrds,"
it may also be used to advantage whenever the number of words to be transferred is
greater than 63, the maximum number which can be moved with the N-word transfer.
In fact, the only restriction on the number of words which can be transferred is the

practical limitation of available storage space in the memory,

When a record transfer instruction is executed, an end-of-record Word1 is stored
in the location specified by the B address group. Consecutive words are then trans-
ferred from the location starting with A to consecutive locations starting with C, until
an end-of-record word is transferred. The behavior of the system is unspecified when

the A address is a direct or indexed special register address.

1. As previously stated,an end-of-record word is a word whose 48 information bits are:
1040 1010 0000 0000 1410 414110 4110 1410 1101 11041 4404 1404

81

SECTION VIlI, TRANSFER INSTRUCTIONS

Note that the transfer of information is stopped whenever an end-of-record word
is transferred, regardless of where this word was stored. In other words, the word
stopping the transfer is not necessarily the same word which the instruction has stored
in the location specified by the B address. At the completion of the instruction AU4
will contain the complete address generated from the A address group plus the num-
ber of words actually transferred; AU2 will contain the complete address generated

from the C address group plus the number of words transferred.
The time required to execute a record transfer instruction with direct or indirect
memory location addresses is 7 + 2n memory cycles, where n is the number of words

transferred.

Item Transfer, IT

The item transfer instruction operates exactly as the record transfer, with the
exception that instead of storing an end-of-record word, an end-of-item symbol is
substituted for the high-order 32 bits of the contents of B, protecting the low-order 16

bits. The transfer stops with the transfer of an end-of-item or an end-of-record word.

As described in Section III, an end-of-item word is any word whose high-order 32
bits are identical to those of an end-of-record word. The comments made with respect
to the record transfer instruction are equally applicable to item transfer. The time

required to execute the instruction is also the same.

82

SECTION IX
DECISION INSTRUCTIONS

The Honeywell 800 logic includes four decision instructions which are used to
branch to an alternate path of control in response to a precisely defined condition.
Each of these instructions looks for a special condition based upon the relationship
between the contents of the location specified by the A address group and the contents
of the location specified by the B address group. If the condition is met, the sequencing
counter designated as the source of the next instruction is changed so that the next in-
struction is selected from the main memory location specified by the C address group.
If the condition fails, the current setting of the designated sequencing counter selects

the next instruction.

Any type of addressing may be used in the A and B address groups of these in-
structions unless they are masked. The C address group may contain a direct mem-
ory location address, an indirect memory location address, an indexed memory loca-
tion address, or an indexed indirect memory location address. If the condition is met
and the sequencing counter is changed, the behavior of the system for each of the four
possible types of C address is the same as that described for the instruction ''trans-
fer A to B, go to C'" (see Section VIII, pages 78 and 79). If the C address is inactive,
no change is made in either sequencing counter and hunting for the next program in de-
mand is inhibited. If the C address is active and the condition is met, hunting is also
inhibited. If the condition is not met, a normal hunt is made for the next program in

demand.

The accumulator is used in executing the decision instructions. Following the
conﬁpletion of such an instruction, the word in the accumulator is invalid. Any attempt

to deliver this word to the memory will therefore cause a control error.
Two of the four decision instructions are inequality comparisons (one alphabetic,

one numeric) in which the two operands are examined for inequality (#). If they are

not equal, the next instruction is selected from the location specified by the C address

83

SECTION IX. DECISION INSTRUCTIONS

group. The other two instructions (one alphabetic, one numeric) are called 'less than"
comparisons, since the two operands are inspected to determine whether the contents
of A are less than or equal to the contents of B (<). If so, the next instruction is se-
lected from the location specified by C. All four instructions may compare either the
entire contents of both words (unmasked version) or respective fields of the words, as
defined by a mask. The location of the mask, if any, is partially specified by bits of

the command code.

The alphabetic comparisons make a bit-by-~bit comparison of all 48 information
bits of the words at locations A and B. If the word at A has a zero bit in the first po-
sition where they differ, reading from left to right, it is considered ''alphabetically
less' than the word at B. The order of the alphanumeric characters is shown in Table
I, page 143. When the instructions are masked, the decision is based upon a bit-by-

bit comparison of the selected fields of the operands.

The numeric comparisons treat both operands as signed 11-digit numbers and
make a bit-by-bit comparison of information bits 5 through 48 of the contents of A and
B. Thus, the 11 digits of the signed numeric words are compared as in the alphabetic
comparisons. However, the sign bits (bits 1 through 4) of both words are checked be-
fore a final decision is made. If any of the four bits is a one, the sign is considered
to be positive; if all four bits are zeros, the sign is negative. Any positive number is
larger than any negative number, with the exception that two words with 11 low-order
zero digits are considered equal regardless of sign. When two negative numbers are
compared, the one with absolute value closer to zero is considered greater. Thus,

the numeric comparisons are true algebraic comparisons of signed 11-digit numbers,.

The time required to execute an unmasked decision instruction with direct mem-
ory location addresses is four memory cycles, regardless of whether or not the con-
dition is met. Reference should be made to the notes in Appendix C for the effect on

timing of masking, indexing, and special register addressing.

Inequality Comparison, Alphabetic, NA

This instruction compares for inequality the 48-bit contents of the word at A and
the 48-bit contents of the word at B. If the two words are not identical, the sequencing

counter specified as the source of the next instruction is changed so that the next in-

84

SECTION IX. DECISION INSTRUCTIONS

struction is selected from the location designated by the C address group. If they are
equal, the next instruction is selected from the location specified by the current con-

. tents of the designated sequencing counter. Plus zero is not equal to minus zero.

Less Than or Equal Comparison, Alphabetic, LA

This instruction also makes a bit-by-bit comparison of the 48-bit word at A and
the 48-bit word at B. If the contents of the location specified by the A address are
less than or equal to the contents of the location specified by B, the designated sequenc-
ing counter is changed so that the next instruction is selected from the location spec-
ified by the C address group. If the word at address A is greater than the word atad-
dress B, the next instruction is taken from the location specified by the current con-

tents of the designated sequencing counter. Plus zero is greater than minus zero.

Inequality Comparison, Numeric, NN

The numeric inequality comparison examines the contents of the locations speci-
fied by A and B, regarded as signed words, to determine whether they are algebra-
ically unequal. If they are unequal, the designated sequencing counter is changed to
select the next instruction from the location specified by the C address group. If the
words are equal, the address of the next instruction is selected from the location spec-
ified by the current contents of the designated sequencing counter. In a numeric ine-

quality comparison, plus zero equals minus zero.

Less Than or Equal Comparison, Numeric, LN

When this instruction is executed, the contents of the locations specified by the A
and B address groups are regarded as signed words and compared to determine whe-
ther the word at A is algebraically less than or equal to the word at B. If the A oper-
and is less than or equal to the B operand, the designated sequencing counter is changed
to select the next instruction from the location specified by the C address group. If
the contents of A are algebraically greater than the contents of B, the next instruction
is selected from the location specified by the current contents of the designated se-~
quencing counter. Plus zero equals minus zero in a numeric less than or equal

comparison.

85

SECTION X
SHIFT INSTRUCTIONS

The ability to pack as many as four separate pieces of signed information (or a
greater number of pieces of unsigned information) into a single Honeywell 800 word
would have little practical value without the facility for manipulating each piece of in-
formation (or field) independently. In part, this facility is provided by the masking
feature of the system, which permits certain instructions to operate on fields in pre-
assigned positions within words. In order to achieve maximum flexibility in handling
packed words, however, it is also necessary to provide the means for rearrangingthe
positions of fields within woxrds. This flexibility has been achieved in the Honeywell
800 by the inclusion of five shift instructions. Two of these instructions shift the low-
order 44 bits of a word, preserving sign bit positions 1 through 4, The remainingthree

shift the entire 48 bits of the word.

The shift instructions cause the contents of the location specified by the A address
group to be placed in the accumulator, where they are shifted right the number of bit
positions specified by the high-order six bits of the B address group. The direction of
the shift is always right end around, with the result that bits shifted out of the low-
order position recirculate to the high-order position of the word. A 48-bit full word
shift, therefore, produces the same result as a 0-bit shift. The effective number of
bit positions by which a word may be shifted ranges from 0 to 44 for shifts protecting
the sign of the operand, and from Oto48for shifts of the entire word. If the number of
bit positions specified to be shifted exceeds the maximum effective shift (it is possible
to specify a 63-bit shift in the high-order six bits of B), the machine will actually per-
form the specified shift. The net number of places shifted as a result of the operation,
however, will be the number specified minus 44 in the case of shifts protecting sign or

the number specified minus 48 in the case of shifts not protecting sign.
The shift instructions are inherent mask instructions; that is, they are always per-

formed with a mask. The mask is applied to the shifted operand before delivery to

the result location (specified by the C address group). If the programmer wishes to

86

SECTION X, SHIFT INSTRUCTIONS

deliver the entire word, therefore, he must specify a mask consisting of 48 binary
ones. The location of the mask is designated by the low-order six bits of the B address
group, in conjunction with bits 2 through 5 and 6 through 10 of the mask index register
(see Figure V-3, page 56). The two shift and substitute instructions and the shift and
select instruction perform protected masking. This means that the values of the un-
masked bit positions in the result location (those which do not correspond to binary
ones in the mask) are preserved during the operation. The two shift and extract in-
structions perform unprotected masking; that is, the positions in the result location
which do not correspond to binary ones in the mask are cleared to zeros. Protected
masking is accomplished by gating the shifted contents of the accumulator and the
original contents of the location specified by the C address group into the low-order
product register under control of the mask in the mask registeri. Unprotected mask-
ing is accomplished by gating the contents of the accumulator and a generated wordof
all zeros into the low-order product register under control of the mask in the mask
register. In either case, the contents of the low-order product register are then de-

livered to the location specified by the C address group.

Any type of addressing may be used in the A and C address groups of the shiftin-
structions, with the exception that certain restrictions apply to the C address of a
shift and select instruction. These will be discussed under the description of that in-
struction. If the B address group of a shift instruction is all zeros, then no shifting
is performed and the word at A is transferred to the location specified by C under con-
trol of a mask located by attaching six low-order zero bits to the partial address
stored in the mask index register. If the B address group is inactive, the behavior

of the system is unspecified.

ARGUS notation for the shift instructions is designed to simplify the specification
of masks and shifts. If the mask is designated by the programmer, its symbolic tagis
written in the command code field (rather than in the B address field), separated from
the operation code by a comma. Reference should be made to Section VII of the ARGUS

Manual of Assembly Language for details on the generation of masks by ARGUS. The

nature and extent of the shift is specified by three items of information in the B ad-

dress field, all separated by commas:

1. This process is described more fully in Section VII, see page 73.

87

SECTION X. SHIFT INSTRUCTIONS

4. A character to designate the type of characters shifted, i.e.,
A, alphanumeric; D, hexadecimal; B or blank, binary.

2. A number to indicate the number of positions to be shifted
(0 to 8, alphanumeric; 0 to 12 hexadecimal; 0 to 48 binary).

3. A character to designate the direction of the shift as left, L,
or right, R or blank,

Any valid ARGUS address format may be used in the A or C address of a shift
instruction, subject only to the restrictions noted in connection with the C address of

a shift and select instruction.

Shift and substitute and shift and extract instructions with direct and/or indirect
memory location A and C addresses require a basic execution time of five memory
cycles plus a variable number of memory cycles required for the actual shifting oper-
ation. The shift logic in the system is so designed that the machine shifts a word in
multiples of 1, 4, or 16 bits. Each of these shifts requires the same amount of time;
i.e., a 16-bit shift takes no longer than a 1-bit shift. Two such shifts may be per-
formed in a memory cycle. Thus, a 32-bit shift requires a single memory cycle, as
does a 20-bit shift or a 5-bit shift. The total time required to shift the operand the
specified number of bits, therefore, is a function of the number of individual shifts
which the machine must perform. On this basis, the number of memory cycles re-
quired for actual shifting of an operand ranges from 0 to 4, so that the time required
for complete execution of the instruction varies from a minimum of five to a maxi-

mum of nine memory cycles.

The shift and select instruction requires a basic execution time of six memory
cycles plus the number of cycles required for the shift itself. The total time to ex-

ecute the instruction, therefore, varies from six to ten memory cycles.
The exact times required for each number of positions shifted, as well as varia-
tions resulting from indexing or direct special register addressing, are listed in

Appendix C.

Shift Preserving Sign and Substitute, SPS

This instruction directs the machine to shift the word at A, excluding sign bits

88

SECTION X, SHIFT INSTRUCTIONS

1 through 4, right end around, the number of bit positions specified by the high-order
six bits of the B address group. Bits shifted out of position 48 recirculate to bit posi-
tion 5. The result is masked using a mask whose address is generated from the low-
order six bits of B and the partial address stored in the mask index regisfer, as illus-
trated in Figure V-3, The masked result is delivered to the location specified by C,
protecting the bit positions of the contents of C which do not correspond to binary ones

in the mask.

A shift of n bits to the left is specified in machine language by setting the high-
order six bits of B equal to 44-n (in binary). Thus, a 12-bit shift to the left is effected
by specifying a 32-bit shift (44 minus 12) to the right. In ARGUS language, as previ-

ously noted, the programmer may specify a left shift directly.

Shift Preserving Sign and Extract, SPE

This instruction is identical to shift preserving sign and substitute, with the ex-
ception that the bit positions in the location specified by C which do not correspond to
binary ones in the mask are not protected but are cleared to zeros when the result is

stored.

Shift Word and Substitute, SWS

This instruction directs the machine to shift the entire word at A, including sign,
right end around, the number of bit positions specified by the high-order six bits of B.
The result is masked using a mask whose address is generated as in shift preserving
sign and substitute. The masked result is delivered to the location specified by C,
protecting the bit positions of the contents of C which do not correspond to binary ones

in the mask.

A shift of n bits to the left is specified in machine language by setting the high-
order six bits of B equal to 48-n (in binary). Again, a left shift may be specified di-

rectly in ARGUS language.

Shift Word and Extract, SWE

This instruction is identical to shift word and substitute, with the exception that

the bit positions in the location specified by C which do not correspond to binary ones

89

SECTION X. SHIFT INSTRUCTIONS

in the mask are not protected but are cleared to zeros when the result is stored.

Shift Word and Select, SSL

The shift word and select instruction causes the machine to shift the entire word
at A, right end around, the number of bits specified by the high-order six bits of B.
The result of the shift is masked, using a mask whose address is generated as in
shift preserving sign and substitute, and this masked result, with a positive sign im-
plied, is added in binary to the address specified in C to form a new address. These-~
quencing counter designated as the source of the next instruction is then changed so
that the next instruction is selected from the location specified by the modified C ad-
dress group. Regardless of the mask used, the machine never adds more than 11

low~order bits to the C address.

The C address of a shift and select instruction may be a direct memory location
address, an indirect memory location address, an indexed memory location address,
or an indexed indirect memory location address. For these four types of address, the
masked result, called C', is used with the C address as described below:

1. Direct Memory Location Address. C'is added to the low-order
11 bits of C, discarding the end carry, if any. The resulting 11 7
bits are placed in the specified sequeicmg counte? p-x-e-tee.tmg.. t*fh’g 4 o
the bank indicator im—that-counter. FLAL. [.. Atg Cowr u(':k '{}'W f/il-/k"‘“e"""gf

(AR Dyl Tarend les |

2. Indirect Memory Location Address. C'is added to the low-order
11 bits of C, discarding the end carry, if any. The result is used
to select a special register whose contents, including the sign and
bank indicator, are transferred to the specified sequencing counter.
The tab bit of the modified C address is ignored. The contents of
the addressed special register are incremented in the usual fashion
after use, unless the special register addressed is the counter to be
changed (either sequence or cosequence counter), in which case in-
crementing does not take place.

3. Indexed Memory Location Address. The contents of the referenced
index register are augmented in the usual fashion to form a com-
plete 15-bit address. C'is then added to the low-order 11 bits of
this complete address, discarding the end carry, if any. The re-
sulting complete 15-bit address is transferred, with a positive sign,
to the specified sequencing counter.

4, Indexed Indirect Memory Location Address. A complete special reg-
ister address is generated by augmenting the contents of the refer-
enced index register in the usual fashion. C' is added to the low-order
11 bits of this generated address, discarding the end carry, if any.
The result of this addition is used to select a special register whose

90

SECTION X. SHIFT INSTRUCTIONS

contents, including the sign and bank indicator, are transferred
to the specified sequencing counter. The tab bit in the generated
special register address is ignored. The contents of the special
register selected are incremented in the usual fashion after use,
unless this special register is the counter to be changed (either

sequence or cosequence counter),

Since the shift and select instruction permits the addition of as many as 11 bits

to the low-order bits of the C address, it provides the ability to transfer control to

any one of 2048 memory locations.

91

SECTION XI
PERIPHERAL INSTRUCTIONS

One of the unusual features of the Honeywell 800 is that all types of peripheral de-
vices -- magnetic tape units, card readers, punches, and printers -- look the same
to the central processor. Thus, the same 6-bit operation code is used to read from
either a tape or a card reader, and another 6-bit operation code defines the instruc-
tion to write on a tape, to print, or to punch. These two instructions are calledread
forward (RF) and write forward (WF), respectively. The two remaining peripheralin-
structions are the read backward (RB) and rewind (RW) instructions, which are mean-

ingful with tape units only.

In machine language, a peripheral operation code is specified by the low-order
six bits of the command code, while the high-order six bits designate one of 64 pos-
sible devices to be addressed. More exactly, the high-order three bits designate a
channel through which the information will travel (one of eight input or eight output
channels, the direction determined by the operation code), while the following three
bits specify a particular device attached to this channel from which information will
be read or upon which it will be written. The assignment of peripheral codes to mag-
netic tape units and other input-output devices is established individually at each
Honeywell 800 installation, subject to the restrictions discussed under System Config-
urations in Section II. From the table of peripheral assignments, .the programmer
must select a device which can perform the specified operation. For example, a write
instruction cannot be executed by a card reader. Neither can a printer read backward

nor a punch execute a rewind.

The peripheral commands, in ARGUS language, are reversed in terms of machine
language. In other words, the operation code is written first, followed by the device
address. This address is expressed as an alphabetic code from AA to HH. Thus the

instruction

WF, CD OUTPUT - -

92

SECTION XI, PERIPHERAL INSTRUCTIONS

instructs the machine to write one record, stored in memory beginning at location
OUTPUT, on device CD, which may be a magnetic tape unit, a printer,or a card punch,

depending upon the assignment of the code CD at the particular installation.

Since the entire 12 bits of the command code are used to specify the operation
code and the device address, a peripheral instruction cannot address a special regis-
ter explicitly or specify an alternate sequencing counter as the source of the next in-
struction. A peripheral instruction, therefore, is always followed by an instruction
from the same sequencing counter which selected the peripheral instruction. The A
address group of a read or write instruction specifies the memory location into which
the first word of a record is to be read or from which the first word of a record is to
be written. The B address group is used only when the instruction is to sense for end-
of-item words in a tape operation and read the separate items into or write them from
non-sequential areas in memory. In this case, called distributed reading or writing,
the B address group specifies the memory location of the first entry in a table of ad-
dresses which denotes the starting locations for the second item and all subsequent
items to be read or written. Finally, the C address group may be used, at the pro-
grammer's option, to specify a new setting for the sequencing counter which selected
the current instruction. All three address groups may specify either direct or in-
dexed main memory addresses. If the C address is active, the behavior of the system
follows that described for direct memory location or indexed memory location address-
ing with the C address of the instruction "transfer A to B and go to C'' (see Section VIII,

page 79).

If address A of a read or write instruction is inactive, the addressed device is
tested for interlocks and errors (see below), but the device is not activated nor does
any transfer of information take place. If address B is inactive, end-of-item words
are not sensed and the record is read into or written from successive memory loca-
tions. If the C address is inactive, the contents of the sequencing counter are not
changed, and no hunt is made for another active special register group. Since a hunt
for another program demand is never made after an instruction which implicitly chang-
es the contents of the sequencing counter, it follows that under no condition does a hunt

occur after execution of a peripheral read or write.

93

SECTION XI. PERIPHERAL INSTRUCTIONS

The time required by the central processor to handle a read or write instruction
to any device is determined in the following fashion. Three memory cycles are re-
quired to interpret a peripheral instruction whose A and B addresses are not indexed
and whose C address is inactive. If the C address is active but not indexed, two ad-
ditional memory cycles are required. Thus, interpretation of a peripheral instruction
with direct memory location A, B, and C addresses requires five memory cycles.
Complete details of the interpretation times for peripheral instructions are shown in
Appendix C. In addition to the time required to interpret the instruction, one memory
cycle is used for each word transferred from device to storage or from storage to de -
vice and an additional cycle is required for each item handled in distributed item read-
ing or writing. The memory cycles used for information transfer are not consecutive

but are allotted one at a time by traffic control, as described in Section II,

Read Forward, RF

When a read forward instruction is interpreted by the central processor, the main
memory address generated from the A address group is sent, with a positive sign, to
the read address counter associated with the input channel to which the addressed de-
vice is attached. The unit itself is signalled in order to initiate the mechanical opera-
tions, and then the buffer in the tape control unit or the peripheral control unit starts to
receive information. From the time the unit is signalled until all the information in
the record or card has been transferred to memory, the corresponding input buffer in-
terlock bit in the program control register is set to one (see Section XII, page 108).
When a word in the buffer is ready to be transmitted to memory, the appropriate traf-
fic control demand is turned on to indicate that a word may be brought in through this
channel. As successive words are transmitted to memory, the read address counter

is stepped after each transfer so that it always specifies the location of the next word.

Once a read instruction is started, nothing will stop it except sensing a record gap
on magnetic tape or the end of a card's worth of information from the card reader.
There are several conditions, however, which will inhibit the instruction so that it is
not executed. If for any reason the device is not available to the machine, including
the condition in which either the device or the buffer is busy, or if an error occurred
on the preceding read from that device, no part of the read instruction is executed.

In other words, neither tape nor card is moved, no information is transferred, andif

94

SECTION XI. PERIPHERAL INSTRUCTIONS

the instruction calls for a change of sequence, this change is not made.

The first of these conditions requires no further elaboration. Sensing an error
during reading will not prevent completion of the instruction (except during a distribu-
ted read, as explained later). Instead, when an error is sensed in information coming
from either a card or a tape record, a parity error flip-flop is set and the read contin-
ues normally until all the words of the record have been stored in memory. When the
next read instruction directed to this device tests the setting of the flip-flop and finds
that an error was sensed during the previous read, the flip-flop is reset and execution
of the instruction is inhibited. The instruction is stored in U or U + 1, and an unpro-
grammed transfer is made to U + 6 or U + 7, depending upon whether the instruction
was selected from the sequence or cosequence counter (see Figure V-5, page 61).

The instructions stored in U + 6 and U + 7 serve as entries to a subroutine designedby
the programmer to handle the error condition. Since the location to which the unpro-
grammed transfer is made reflects the sequencing counter which selected the instruc-
tion and since the instruction itself is stored (in U or U + 1), the programmer can de-
termine where he is in his program and on which device the error was detected. From
this information he may determine how to proceed, in accordance with the various tech-
niques discussed under the instructions compute orthocount and check parity in Section

XIl and in Appendix B.

Another type of unprogrammed transfer occurs as the result of reading the first
end-of-tape record. The end of tape is physically marked by two optical windows, 32
inches apart. When the first window is sensed during tape recording, the record being
written is completed. The beginning of the next record, called the first end-of-tape
record, is written only after the second window has been sensed. When the tape is read
forward, an unprogrammed transfer to U + 4 or U + 5 occurs on the instruction which
reads the first end-of~tape record. The instruction itself is correctly executed and
stored in U or U + 1. Every read forward instruction occurring beyond the first end-
of-tape record also creates an unprogrammed transfer to U + 4 or U + 5. Each such

instruction is also executed correctly and stored in U or U + 1.

If any record in the neighborhood of the first end-of-tape record contains more

than 2048 words or fewer than seven words, an unprogrammed transfer may occur

95

SECTION XI. PERIPHERAL INSTRUCTIONS

one record earlier or one record later than the first end-of-tape record. The number
of end-of-tape records which may be written, and hence read, after the first end-of-
tape record is limited only by the length of the oxide trailer (see description of write
forward instruction). If an error is sensed while reading any of these records, the
next read instruction is inhibited and an error unprogrammed transfer occurs instead

of a transfer to U+ 4 0or U + 5.

The preceding discussion is based on a normal read instruction in which the B ad-
dress is inactive and a card or a tape record is read into successive locations in mem-
ory. When tape is being read, an active B address specifies a distributed read, inwhich
case individual items of a record are read into non-sequential areas of memory. The
central processor performs an additional operation in setting up such an instruction.
As usual, the appropriate read address counter (RAC) is set to the main memory ad-
dress generated from the A address group. The main memory address generated from
the B address group is then sent, with a positive sign, to the corresponding distributed
read address counter (DRAC). As the information is transmitted to memory, each suc-
cessive word is placed in the next higher memory location. During this transmission,
the central processor senses the input for an end-of-item word -- a special symbol
having the high-order 32 bits identical to the high-order 32 bits of an end-of-record
word. When such a word is sensed, it is placed in proper sequence relative to the
words which preceded it. The contents of the RAC are then replaced with the contents
of the memory location specified by the DRAC, the contents of the DRAC are incre-
mented by one, and transmission of information proceeds with the first word of the
next item placed in the location specified by the new contents of the RAC. It is the
programmer's responsibility to see that each of the memory locations whose addresses
appear successively in the DRAC is loaded with a constant whose low-order 16 bits

represent the desired sign and main memory address.

As an example, a record on tape CD consists of five items to be loaded into dis-

crete sections of the memory, using the following instruction:

R¥, CD ITEMA TABLE -

The locations specified by TABLE, TABLE + 4, TABLE + 2, and TABLE + 3 contain

96

SECTION X1, PERIPHERAL INSTRUCTIONS

a series of addresses (tagged ITEMB, ITEMC, ITEMD, and ITEME), each with a pos-~
itive sign bit, which designate the starting location in memory for each of the last four
items. When the instruction is interpreted, the RAC is set initially to the memory lo-
cation tagged ITEMA and the DRAC is set to the address tagged TABLE. The first item,
including the end-of-item word, is read into the successive locations ITEMA, ITEMA

+ 1, ITEMA +2, etc., When the end-of-item word is sensed, the contents of TABLE are
placed in the RAC and the DRAC is stepped to TABLE + 1. The next item is thenloaded
into ITEMB, ITEMB + 1, etc. When the end-of-item word is sensed, the contents of
TABLE + 1 are transferred to the RAC and the DRAC is incremented to TABLE + 2.
This process continues until the entire record has been read into memory. Thus, the
third item is stored in successive locations starting with ITEMC while the last item is

stored in successive locations starting with ITEME.

When an error is detected during a normal read, the read is completed before the
parity error flip-flop is set. In a distributed read operation, however, no further in-
formation is transmitted to memory after an error is sensed, although the tape is al-
lowed to move to the end of the record. As with the normal read, the next _1;(_3_8;9 instruc-
tion to the tape results in an unprogrammed transfer. If the programmer then wishes
to reconstruct the record using the orthocorrection technique, he must reread it by

means of a normal (non-distributed) read.

Whether the programmer uses a normal or a distributed read, he must remember
that reading from any peripheral device proceeds concurrently with computation. This
means that he must be certain a record has indeed been read into memory before he be-
gins to operate upon the information. Several techniques are available for ascertaining
that a read operation has been completed. The most obvious, perhaps, is ta read
records alternately into one of two buffer areas in memory. Thus, while information

is being read into one area, information in the other area may be processed.

A shortcoming of this technique, especially if records are lengthy or if several
tapes are being handled (as in a sort routine), may be the amount of memory required.
If memory must be conserved, other options ére available for checking the completic
of a read operation. One of these is to give a read instruction with an inactive A ad-
dress. This technique, which results in no tape movement and no transfer of informa-

tion, not only insures completion of the previous read instruction but also guarantees

97

SECTION XI, PERIPHERAL INSTRUCTIONS

(if no unprogrammed transfer occurs) that the information has been correctly read.
Another technique by which the programmer may test the status of a peripheral oper-
ation is by sensing the interlock bit in the program control register to see whether the
corresponding buffer is busy. This technique is safe, however, only if the pertinent
buffer is handling a single device during the current run. A third approach involves the
use of the read address counter. If the programmer is working with fixed~length records,
he knows what address should be found in the RAC when the entire record has been
brought into memory. By addressing the RAC explicitly, he can compare its contents
repeatedly with a constant representing its final contents to determine when the instruc-
tion has been completed. These techniques are not equally appropriate for all situations.
The nature of the problem and the ingenuity of the programmer, therefore, determine

which approach will be most satisfactory.

Read Backward, RB

The read backward instruction, as its name implies, causes a tape to be read in
the reverse direction. The instruction is very similar to the read forward instruction,

hence this discussion is limited to the dissimilar features.

The normal read backward instruction is implemented so that a record read in the
reverse direction is stored in memory exactly as if it had been read forward, provided
the A address group of the instruction specifies the memory location into which the last
word of the record would have been placed by the read forward. This is accomplished
as follows. When the instruction is interpreted, the main memory address generated
from the A address group is inserted, with a negative sign, into the read address coun-
ter. As the counter is stepped with each successive word transfer, the effect is to
decrement the counter so that each word is read into the next lower memory location

until the record gap is reached.

When a distributed read backward instruction is executed, the main memory ad-
dress generated from the B address group is placed in the distributed read address
counter with a negative sign, so that this counter too is effectively decremented as
successive items are handled. Thus, the machine not only stores successive words of
an item in reverse order, but also sequences backward through the table set up for the

distributed read. Since the contents of the locations listed in the table are transferred

98

SECTION XI. PERIPHERAL INSTRUCTIONS

to the RAC, the addresses stored in these locations must contain negative sign bits if
the words of each successive item are to be placed in memory in reverse order. It
should be noted that the end-of-record word, the first word to be brought into mem-
ory by a read backward instruction, does not effect a change in the contents of the RAC
despite the fact that its high-order 32 bits have the same configuration as an end-of-
item word. Instead, the end-of-record word, the two orthotronic words, and the last
item of the record (through the end-of-item word for the penultimate item) are stored

as one item.

When an error is sensed during a read backward (normal or distributed), the un-
programmed transfer conditions are identical to those described for the read forward
instruction. The unprogrammed transfer convention associated with the beginning-of-
tape condition, however, is slightly different from the end-of-tape convention which
applies when tapes are read forward. When a tape is read backward, a beginning-of-
tape unprogrammed transfer to U + 4 or U + 5 occurs on the instruction which reads
the first record written on the tape, and the instruction is correctly executed. Any
subsequent read backward instruction to this tape neither moves the tape nor alters
the contents of main memory, and no unprogrammed transfer takes place. The actions

corresponding to the B and C address groups, however, are carried out,

When a write instruction is given to a tape in rewound condition, the first record
is written immediately following the clear leader. The beginning of the second record
is not written until the head has reached an optical mark a fixed distance from the lead-
er. If the first record written contains more than 2048 words, the beginning of tape
unprogrammed transfer to U + 4 or U + 5 may fail to occur when this record is read
backward. Furthermore, if the second record contains fewer than seven words, the
unprogrammed transfer may occur upon reading the second record backward rather

than the first.

Write Forward, WF

When a write forward instruction is interpreted by the central processor, the
main memory address generated from the A address group is inserted, with a positive
sign, in the write address counter (WAC) associated with the output channel to which

the addressed device is attached. The unit is signalled, the output buffer interlock

99

SECTION XI. PERIPHERAL INSTRUCTIONS

bit is set to one, and the first word is selected from the location specified by the WAC
and sent to the buffer area in the tape control unit or the peripheral control unit. The
contents of the WAC are incremented, and when the buffer is empty, the traffic con~
trol demand for this channel is turned on so that the next word may be transmitted to

the buffer.

Once the write instruction gets under way, it is stopped by one of three conditions
only. If the instruction is directed to a tape unit, the write operation stops when an
end-of-record word is sensed by the central processor. In other words, an instruc-
tion to write on tape starts with the word in the location specified by the A address
group and continues through successively higher memory locations until an end-of-
record word is encountered. If the write instruction addresses a printer or punch,
on the other hand, the writing stops when 16 words have been delivered to the printer
or when 11 words or 21 words (in transcription mode) have been sent .o the punch, re-

gardless of the presence or absence of an end-of-record word.

A continuous initial segment of tape is formed or extended by writing a sequence
of records, uninterrupted by read or rewind instructions to the tape being written, and
starting from a proper initial condition. A proper initial condition is defined as:

1. Following a rewind instruction, or;

2. Following a read backward instruction over a record which is
already part of a continuous initial segment.

Thus, a continuous initial segment always consists of an unbroken sequence of records,
beginning with the first record on tape. Information on a continuous initial segmentof

tape may be freely read forward or backward, without restriction.

Information previously recorded beyond the continuous initial segment of a tape is
not necessarily recoverable. In particular, any attempt to read the first record fol-
lowing a continuous initial segment is likely to result in an error. One or more records
of information previously recorded in the region beyond the continuous initial segment
may have been destroyed, and spurious information may have been recorded. However,
once the region of erroneous information adjacent to the continuous initial segment has
been passed, information is recoverable up to the end point of the previously existing

continuous initial segment.

100

SECTION XI, PERIPHERAL INSTRUCTIONS

Part of the checking process which occurs during tape reading and writing involves
a longitudinal or channel check predicated on the assumption that two correct ortho-
words are included in every record read or written, If these words are not included
with the record, the machine will in most cases indicate an error when the record is
read or written. Before writing a record on tape, therefore, it is customary to com-
pute the two orthowords to be included with the record, using the compute orthocount
instruction described in Section XII. This computation is omitted at the risk of an
error indication, unless the programmer is certain that the record was read into mem-
ory with correct orthocount and has not since been altered in any way. When a record
is printed or punched on line, however, the question of orthowords is irrelevant, since

no orthocheck is performed.

The same conditions which prevent execution of a read instruction also inhibit the
write instruction. If either the device or the buffer is busy, or if an error occurred
on the previous write instruction to that device, no part of the write instruction is per-
formed. When an error is detected in information going from memory to tape, ‘printer,
or punch, a parity error flip-flop is set and the write is completed. The next write
instruction to the same device is stored in U or U + 1 and initiates an unprogrammed
transfer to U + 6 or U + 7. Since the instruction itself is stored, the programmer will
have no difficulty in distinguishing between a write error and a read error, eventhough
the unprogrammed transfer is made to the same location for both types of error. Note
that because of the timing of the punch operation, an additional card will have been
punched after the erroneously punched card before this unprogrammed transfer is
made. A corrective error routine for punched output, therefore, should insure that

two cards are repunched.

A special condition may result in an unprogrammed transfer to U+ 6 or U + 7
during an instruction to write on tape. Each reel of tape has provision for manually
inserting a ring in the hub; unless this ring is in place, the tape is protected fromany
attempt to write on it. The tape may also be protected, even when the ring is inplace,
by setting a switch on the tape drive to the position "Run Protected." If an attempt is
made to write on a tape protected in either of these ways, the instruction is completely
executed, the tape is moved normally, but no writing occurs. An unprogrammed trans-

fer to U + 6 or U + 7 results on the following write instruction to this tape.

101

SECTION XI. PERIPHERAL INSTRUCTIONS

The end-of-tape unprogrammed transfer which occurs when writing is the same
as when reading forward. The instruction which causes the first end-of-tape record
to be written also causes an unprogrammed transfer to U + 4 or U + 5. A write instruc-
tion occurring beyond this record is executed correctly and also results in an unpro-
grammed transfer of control to U + 4 or U + 5. The number of records which may be
correctly written is limited only by the length of the oxide trailer. If writing is at-
tempted beyond the end of the trailer, the write instructions are executed in the same
fashion, but the information is lost. A hardware interlock makes it impossible to pull
the tape off the reel. When this interlock is activated, the tape unit presents a busy
signal to the central processor so that any attempt to write beyond this point causes

the program to stall.

If the B address group of a write forward instruction to tape is active, a distributed
write operation is performed. Whereas the distributed read places in noncontiguous
areas of the memory items which are part of a single tape record, the distributed write
gathers up items scattered in the memory and writes them consecutively on tape as
part of the same record. When the instruction is interpreted, the main memory ad-
dress generated from the A address group is placed, with a positive sign, in the write
address counter (WAC) and the main memory address generated from the B address
group is inserted, with a positive sign, in the distributed write address counter (DWAC).
As each word of an item is written out, the WAC is incremented by one to represent the
location from which the next word will be written. When an end-of-item word is sensed,
it is written on tape, the contents of the location specified by the DWAC are transferred
to the WAC, and the contents of the DWAC are incremented by one. This process con-
tinues until an end-of-record word is sensed and the entire record has been written on
tape. Since the compute orthocount instruction (see Section XII) can sense for end-of-
item words and change control for distributed item handling, it is possible to provide
the orthotronic control words required for file protection without disturbing the arrange-
ment of distributed items in memory. If an error is sensed while performing a distrib-
uted write, the record is completely written and the next write instruction to this tape

results in an unprogrammed transfer to U + 6 or U + 7.

Since writing on any peripheral device may proceed concurrently with computation,

the programmer must take care that he does not begin to obliterate a stored recordafter

102

SECTION X1, PERIPHERAL INSTRUCTIONS

a write instruction until the record has been completely written. The techniques dis-~
cussed under the read forward instruction for insuring that a read operation has been
completed are equally useful, with appropriate modification, in guaranteeing the com-

pletion of a write instruction.

Rewind, RW

Tape rewind instructions are executed at three times normal tape speed, or 360
inches per second. The tape starts to accelerate to full rewinding speed immediately
upon receiving the command; retraction of the head takes place during the acceleration
period. Rewinding continues at high speed until the leader is reached, when the tape
is stopped and the head restored to operating position. The device interlock is re-
moved when the head has reached operating position. Including the acceleration-

deceleration factor, the time to rewind a full reel of tape is 1-1/2 minutes.

Like the other peripheral instructions, the rewind instruction specifies in the
high-order six bits of its command code the device to be rewound. If the specifiedde-
vice is not a tape unit, the instruction is recognized as a proceed instruction (see
Section XII). If address A is active, an interlock is set after the tape is rewound. Un-
til this interlock has been removed manually at the tape unit, the central processor
cannot activate the device. This feature is particularly useful in file maintenance op-
erations when a new file tape has been written and it is desired to insure that the tape
is removed and replaced before another instruction with this tape address is processed.
If the A address is inactive, no interlock is set. The contents of the B and C address
groups are irrelevant to the execution of the instruction. The programmer may there-
fore use these address groups for the storage of information. Whether the C address
is active or inactive, a hunt for the next sequencing counter in demand always occurs

after implementation of the instruction.

Only two conditions inhibit execution of a rewind instruction. If the tape is al-
ready rewound at the time the instruction is given, the tape is not moved and the in-
struction is treated as a proceed. If the instruction is directed to a device upon which
anerror was detected during the previous read or write, the instructionis not executed,
and an unprogrammed transfer to U + 6 or U + 7 occurs. It should be emphasized that

the rewind instruction is unique in this ability to detect either a read or a write error,

103

SECTION XI. PERIPHERAL INSTRUCTIONS

since a peripheral read instruction checks a previous read only and a peripheral
write instruction checks a previous write only. However, any instruction to a peri-

pheral device resets the error flip-flop for this device.

The time required to execute a rewind instruction is two memory cycles.

104

SECTION XII
MISCELLANEOUS INSTRUCTIONS

Print, PRA, PRD, PRO

A Honeywell 800 system may include as many as 47 automatic typewriters. The
standard unit, located at the central console, is known as the console typewriter. An
optional unit, called the slave typewriter, may also be located near the console. Pro-
vision of a slave typewriter allows program printouts to be physically separated from
the console input information or permits two programs operating in parallel to produce

printout information on separate typewriters.

In addition to the console and slave typewriters, a system may contain up to 45 in-
quiry station typewriters for direct interrogation of information in the central proces-
sor and for direct printing of results. Interrogation information entered into the cen-
tral processor through the inquiry station keyboard activates a stored inquiry program
which performs the search of memory, magnetic files, or other connected units and
controls the editing and delivery of the information to the inquiry station typewriter.
Standard inquiry station typewriters can be located up to 1000 feet from the central

processor.

Programmed communication between the central processor and the various type-
writers is made possible by the print instruction, which is defined as follows: print
the contents of the location specified by the A address group on the typewriter and in
the format specified by the B address, and change the designated sequencing counter
so that the next instruction is selected from the location specified by the C address.
The command code for the print instruction permits special register addressing and

change of sequencing counter. Masking is not possible with this instruction.

The B address group of the print instruction contains special information designa-
ting the mode and format of the printout and the typewriter to be used. Memory desig-
nator bit B is ignored. The significance of each of the 12 bits in the address group is

described below:

105

SECTION XlII. MISCELLANEOUS INSTRUCTIONS

Bit 1: This bit must always be zero.
Bit 2: Unspecified.
Bit 3: This bit, called the carriage-return bit, is zero to specify

carriage return after the word has been printed, one to
specify no carriage return. However, if bit 4 is zero, the
carriage will be returned regardless of the value of bit 3.

Bit 4: This bit, called the more~to-follow bit, is zero to specify
that no more information is to follow from this program,
one to specify that more information is to follow. The
programmer must set this bit to one whenever he wishes
to insure that a message of more than one word will not
be interrupted by printouts from other programs. When-
ever this bit is one, the designated typewriter is inter-
locked against all other programs until another word is
printed from the same program.

Bits 5-6: These two bits specify the mode in which the information
is to be printed, i.e.,
01 octal
11 hexadecimal
10 alphanumeric
00 this combination is not defined.

Bits 7-12: These bits designate one of 47 typewriters on which the
information is to be printed. Consider as octal numbers,
these bits must lie in the range 00-56. Address 00 desig-
nates the console typewriter, address 01 represents the
slave typewriter, and addresses 02-56 are available for
inquiry station typewriters. If the typewriter address is
greater than 56 or does not specify a typewriter included
in the system, the instruction is not defined.

Associated with the automatic typewriters are a group of
typewriter buffer locations in main memory bank 0 (see
Section IV, page 43). With one exception, the address of
any typewriter buffer is generated from the corresponding
typewriter address by adding the octal number 21. The
exception is the slave typewriter which uses the same mem-
ory buffer (location 000241) as the console typewriter. Buffer
addresses for the inquiry station typewriters lie in the range
00023-00077. Address 00022 has no special function.

If the A address of a print instruction is inactive, the contents of the accurhulator
are printed as specified by the B address. In this one case, a control error does not
occur if the contents of the accumulator have already been delivered to a result loca-
tion. If the B address is inactive, none of the typewriters is active. If the C address
is inactive, no sequence change is made. If the C address is active, the specified se-

quence counter is set in the same manner as described for a 'transfer A to B, go to

106

SECTION XlI., MISCELLANEOUS INSTRUCTIONS

C'' instruction having an active C address (see Section VIII, pages 78 and 79). Hunting

for the next program in demand is always inhibited.

When printing under program control, the typewriter prints each word specified
in the indicated mode. In the alphabetic mode, if the code for carriage return or
tabulate is encountered, the corresponding symbol is printed but the function is not
performed. When printing hexadecimal words, a space is inserted after every three
characters, while a space appears between every four characters in an octal printout.
Spaces appear in the alphabetic print mode only where they occur as part of the data.
Under program control, the carriage return function is activated only by reaching the
physical end of the carriage or by specifying ''carriage return' or ''no more to follow"

in the B address group of the print instruction.

Whenever the preceding print instruction did not establish the '""more to follow"
condition, the group indicator associated with the program causing the current print-
out appears to the left of the printed data, separated by spaces from the information.

The values printed for the group indicator are 0 through 7.

If a parity error is detected in a word being printed on the typewriter, the word is
followed by a space and two octal check characters. Each bit of the check characters
represents one of the parity bits of the erroneous word, being a one if the correspond-

ing parity bit is in error and a zero otherwise.

Although there is but one machine instruction for the print function, ARGUS recog-

nizes three separate print instructions having the following mnemonic operation codes:

PRA alphanumeric print
PRD hexadecimal print
PRO octal print

‘The operation code may be followed in the command code field by a comma and
the letter M (denoting more information to follow before carriage return) or the letters
MR (denoting more information to follow after carraige return). If neither appears,
the carriage is returned after printing, and the typewriter is released to print from

another program.

107

SECTION XIl. MISCELLANEOUS INSTRUCTIONS

The A and C address fields may contain any valid address format. The B address
field, which is used only to specify the active typewriter, contains a C, an S, or a 2-
digit number specifying the typewriter which is to print. Either C or 00 indicates the

console typewriter; S or 01 indicates the slave.

The time required to select and execute a print instruction with a direct memory
location A address and an inactive C address is four memory cycles. One additional
cycle is required if C is a direct memory location address. When the contents of A
have been transferred to the appropriate buffer register and the sequence change, if
any, has been effected, the central processor proceeds with the next instruction from
the same program. When a character is printed (approximately once every 100 milli-
seconds), seven memory cycles are required to transfer the buffer contents to the ac-
cumulator, shift the next character into printing position, and return the result to the

buffer.

Control Program, MPC

To facilitate parallel processing, the Honeywell 800 central processor contains a
non-addressable 48-bit register which is used to store information required for effi-
cient control of a multi-program operation. Access to this register, called the pro-
gram control register, is provided by the machine instruction control program. A
description of the information stored in the program control register is shown below:

Bits 1-3: Peripheral Fixed-Start Bits. The values of these bits are
generated manually by setting a switch on an on-line pe-
ripheral control unit. They are written into the program
control register during the execution of the first peripheral
read or write instruction addressed to the peripheral unit
after the above mentioned manual control has been activated.
The same instruction creates an unprogrammed transfer of
control to U + 6 or U + 7 (see Figure V-5, page 61). The
bits in the program control register retain their values until
the beginning of another peripheral instruction, at which
time they are cleared to zeros.

Bits 4-8: Unassigned.

Bits 9-16: Input Buffer Interlock Bits (one for each input channel).
Each such bit is a one if the corresponding input buffer is
interlocked and a zero otherwise.

Bit 17: Unassigned.

Bits 18-20: Control Group Indicator. These bits store an octal value O
through 7 denoting the special register group under whose
control the current instruction was selected.

108

SECTION XII, MISCELLANEOUS INSTRUCTIONS

Bits 21-28: Bisequence Bits (one per special register group). Each such
bit is a one if the next instruction to be executed under con-
trol of the respective special register group is to be selected
by the cosequence counter or a zero if the next such instruc-
tion is to be selected by the sequence counter.

Bits 29-36: Program Demand Bits (one per special register group).
Each such bit is a one if the corresponding sequence counter
or cosequence counter is in demand and a zero otherwise.
By "in demand'" is meant program running, including the
case in which the instruction is stalled to await availability
of a peripheral device. :

Bits 37-40: Console Fixed-Start Bits. The values of these four bits are
determined by striking a hexadecimal key at the time a con-
sole fixed-start command is entered. They retain the same
values until another console fixed-start command is entered.

Bits 41-48: Output Buffer Interlock Bits (one for each output channel).
Each such bit is a one if the corresponding output buffer is
interlocked and a zero otherwise.

For any group of eight bits which represent the eight special register groups (in-
put buffer interlock bits, bisequence bits, program demand bits, output buffer inter-~
lock bits), the highest-oi-der bit corresponds to special register group 0, and the suc-
ceeding bits correspond to group 1, 2, 3, etc. For example, bit 29 is the program de-
mand bit for group 0, bit 30 represents group 1 and so forth up to bit 36, which repre-
sents group 7. It should be noted particularly that this assignment differs from the or-
der of priority for traffic control. Figure XII-1 summarizes the relationship of each

group to priority in traffic control and to the program control register,

The instruction, control program, is defined as follows. Ignore the A address
group. Place the contents of the program control register in the location specified by
the C address group. Then alter the bits of the program control register specified by
bits 5 through 12 of the B address group of this instruction. Bits + through 4 of the B
address define the manner in which the bits of the program control register are altered.
Hunt for the next program in demand if the memory designator for the B address (bit
5 of the command code) is one; otherwise do not hunt. Figure XII-2 shows the manner
in which B1—4 (the high-order four bits of B) determine the interpretation of B

5-12
(the low-order eight bits of B).

The command code for the control program instruction allows the programmer to

specify whether the next instruction shall be selected by the sequence or cosequence

109

SECTION XIl. MISCELLANEOUS INSTRUCTIONS

sdiysuorjerey rojed1pul dnoxn x93sidoy [erd2dS 008 T1omAauocH

*}-1IX 2an31q

av
14
1A
(4
12
ot
6

91
“ndug

Ajtaiotag 10Ijuod OTFFeL]

L L 91 3% 87 9¢ L
9 9 ST Ly L2 G¢ 9
g S 4’ 9% .92 143 g
% ¥ €7 4 o4 €€ ¥
€ € 71 %44 $2 r43 9
4 Z 12 %4 €2 113 v4
2 1 ov 44 z2 0¢€ 7
8 0 6 154 12 62 0
mdinQ (¢-7 s31d | uontsod UDd | uontsod ¥YDd | UOTIS0d dDd | ¥OKISod ¥Dd {0Z-87 s31g ¥Dd)
9poD purWILIO)) | s31¢ MO0TI93U] | $3Td {20TI93U] si1g | sitg puewe(g I03eoTpul dnoin
SS2IPPVY zoymg jnduj | aayyngd ndinQ oouanbasig weidoxd 19315189y Terdeds
TouuRyD
Texsydiisg

110

SECTION Xll, MISCELLANEOUS INSTRUCTIONS

Interpretation of B5_12*

These four combinations

do not affect the
bisequence bits

0000

Turn off the program which initiated this instruction.

0001

Turn off all program demand bits corresponding to
zeros in B 12’ do not alter program demand bits
correspondr.’ing to ones.

0010

Turn on all program demand bits corresponding to
ones in B5 2 do not alter program demand bits cor -
responding go zeros.

0011

Turn on all program demand bits corresponding to ones
in B 12° turn off all program demand bits corres-
pondslng to zeros.

These four combinations

may affect the

bisequence bits.

0100

Do not alter the contents of the program control reg-
ister.

0101

Turn on the program demand bits and set to SC the
bisequence bits corresponding to zeros in B ; do
not alter the program demand bits or the bisequence
bits corresponding to ones in B5_12.

0110

Turn on the program demand bits and set to CSC the
bisequence bits corresponding to ones in B ; do
not alter the program demand bits or the bls_equence
bits corresponding to zeros in B5_12.

0111

Do not alter any program demand bits; set to SC the
bisequence bits corresponding to zeros in B 2 set
to CSC the bisequence bits corresponding to ones in

B5-12'

* Bits 5 through 12 of the B address bear a one-to-one cor-
respondence with the bisequence bits (21 through 28) and the
program demand bits (29 through 36) of the program con-
trol register. In other words, B_ controls special register
group O, B6 controls special register group 1, etc.

Figure XII-2. B Address Group Function in Control Program Instruction

counter. However, if a conflict exists between the value assigned to a bisequence
bit by the B address of a control program instruction and the value assigned to the
same bit by command code bit 1 of the same instruction, the value éorresponding to
bit 1 takes precedence. The affected bisequence bit in the PCR is set according to

the value of bit 1, but not until the PCR contents have been stored in the memory,

111

SECTION Xlil. MISCELLANEOUS INSTRUCTIONS

Since the A address of the instruction is ignored, it may be used to store 12

bits of data if the programmer desires. The C address of the instruction may

be a direct, indexed, or indirect memory location address. If the C address is in-
active, the contents of the program control register are not stored. From the stand-
point of hunting for the next program in demand, it is irrelevant for this one instruc-
tion whether the C address is active or inactive; hunting is unconditionally controlled
by the B address memory designator bit in the command code. If a control program
instruction which does not permit hunting turns off the demand of the program which
selected it, this program remains in control until it encounters an instruction which

allows hunting.

Six of the eight operations which can be performed by the control program in-
struction are represented in ARGUS notation by a group of program control instruc-
tions, each designated by a unique mnemonic operation code. These six instructions,
which perform most of the control operations normally required, are explained in de-

tail in Figure 9, Section VII of the ARGUS Manual of Assembly Language. In order

to perform the other two functions, ARGUS also recognizes a control program in-
struction written in machine language with the mnemonic operation code MPC. In

this case, the 12 bits of the B address group are written as three hexadecimal digits.

The time required to execute the control program instruction is always four

memory cycles, without exception.

Proceed, PR

This instruction, whose 8-bit operation code consists entirely of zeros, results
in no operation other than the normal incrementation of the sequencing counter which
selected it. Bits 1 and 4 through 6 of the command code are irrelevant; thus, pro-
ceed cannot specify the source of the next instruction and is always followed by an
instruction selected by the same sequencing counter. Since the A, B, and C address
groups are irrelevant, they may be used to store information. However, if the in-
formation stored in the C address consists of 12 binary ones (inactive addres s),

hunting for the next program in demand is inhibited.

The time required to execute the proceed instruction is two memory cycles.

112

SECTION XII, MISCELLANEOUS INSTRUCTIONS

Simulator, S

Simulator instructions permit the programmer to represent a subroutine with a
single instruction in his program. For'each simulator instruction used, he codes a ,
subroutine which is stored elsewhere in memory, beginning with the next memorylo-
cation higher than the address specified by the command code. The simulator instruc-
tion sets the cosequence counter to the starting address of the subroutine and then

gives control to this counter.

A simulator instruction is specified bya machine command code in which the low-
order three bits are ones. If the high-order bit of the command code is a zero, the low-
order 11 bits are interpreted as a main memory subaddress ending in octal seven. If
the high-order bit is a one, the low-order 11 bits are interpreted as a 3-bit index reg-
ister number and an 8-bit augmenter ending in octal seven. Since the high-order bit
of the command code is used to indicate the type of addressing, the programmer does
not have the option of specifying the source of the next instruction. In fact, the next
instruction is automatically taken from the cosequence counter. This is the only in-
stance in which the machine makes a functional distinction between the sequence coun-

ter and the cosequence counter.

When a simulator instruction is executed, the instruction itself is stored in the
location specified by the command code. If this address refers directly to a memory
location, then the instruction is stored in the same bank of memory from which it was
executed; if the address is indexed, the instruction may be stored in any bank, ac-
cording to the value of the bank indicator bits in the referenced index register. The
cosequence counter is set to the next higher address and the next instruction is taken
from the cosequence counter. The contents of the source counter, after normal in-
crementing, are stored in the cosequence history register to provide a return to the

main program.

Since the address portions of a simulator instruction have no assigned functions,
they may be used to store subroutine parameters such as the sources of operands,
the location in which a result is to be stored, the number of words to be manipulated,
and so forth. Since the machine automatically stores in special register AUl an ad-
dress generated from the A address group and in AU2 an address generated from the

C address group, it is advantageous to use these address groups for operand or re-

113

SECTION XII, MISCELLANEOUS INSTRUCTIONS

sult locations. The A and C address groups may contain direct memory location ad-
dresses (bit 4 = zero) or indexed memory location addresses (bit 1 = one). If bit 1 is
zero, the low-order 11 bits of the address group and the 4-bit bank indicator from the
sequencing counter which selected the instruction are placed in the AU-CU counter to
form a 15-bit address. If bit 1 is one, the augmented contents of the referenced index
register are placed in the counter. The contents of the two counters may then be

referenced easily through the technique of indirect memory location addressing.

The command code for an ARGUS simulator instruction is S, followed by a comma
and an address designated by a symbolic tag or by an index register number with aug-
menter equal to seven. The A and C address fields may contain symbolic tags, with

or without address modifiers, or index register numbers with augmenters.

The time required to execute the simulator instruction is seven or nine memory

cycles, as indicated in Appendix C.

Compute Orthocount, CC

The technique of orthotronic control incorporated in the Honeywell 800 assumes
that every record written on tape will include two orthowords, one associated with the
odd-numbered data words in the record, the other associated with the even-numbered
words. If the record contains an even number of data words, then orthoword 1 repre-
sents the orthocount of the odd words (words 1, 3,5 etc.) and orthoword 2 represents
the orthocount of the even words. If an odd number of words is orthocounted, then
orthoword 1 contains the orthocount of the even words (words 2, 4, 6 etc.) and ortho-
word 2 contains the count of the odd words. Each orthoword is the complement of the

binary half add of the words associated with it.

The machine instruction which performs the orthocount of a record and generates
the two orthowords is called compute orthocount. When this instruction is executed,
the machine first generates an end-of-record word which is placed in the location
specified by the C address group. It then orthocounts the record, starting with the
location specified by the A address group and ending when an end-of-record word is
reached. The first end-of-record word sensed will terminate the operation, regard-
less of whether the location specified in C has been reached. Ozrthoword 1 is stored

in the location specified by C; orthoword 2 is stored in C + 1; and an end-of-record

114

SECTION XII. MISCELLANEQUS INSTRUCTIONS

word is placed in C + 2. If address B is inactive, control is not changed for distri-
buted item handling. If the B address is active, distributed item control is exercised,
using a memory location table stored in consecutive words beginning with the location

specified by 3.

The behavior of the system is unspecified if either the A or C address group of
the compute orthocount instruction contains a direct or indexed special register ad-
dress. If C is an indirect memory location address with a non-zero increment, the

behavior of the system is also unspecified.

At the beginning of the instruction, special register AU1 is set to the location
designated by the A address group. As each word is orthocounted, the counter is
automatically incremented by one to specify the location of the next word to be ortho-
counted. At the conclusion of the instruction, AU1 contains the address of the end-of-
record word which terminated the instruction, plus one. If the B address of the in-
struction is active, special register AU2 is initially set to the location specified by
the B address group. This counter performs the same function for the distributed
orthocount as the distributed read address and distributed write address counters per-
form for the distributed read and write instructions (see Section XI, pages 96 and 102).
As each item is handled, the counter is automatically incremented by one to reference
the entry in the address table where the starting address of the next item is found. At
the conclusion of the instruction, special register AU2 always contains the address of
the location specified in the C address of the instruction plus three, regardless of

whether the instruction was normal or distributed.

The provision for generating an end-of-record word and storing it in the location
designated by the C address guarantees the programmer that the record being ortho-
counted has a valid end-of-record word. This is a necessary precaution, since the
compute orthocount instruction is terminated only when an end-of-record word is
sensed. During execution of the instruction, every other word is half-added, in binary,
to form orthoword 41, and the alternate words are similarly added to form orthoword
2. The accumulator is set to all binary ones before performing the first half-add for
each orthoword. The inclusion of a word of binary ones in the half add assures that
each orthobit is an '"odd" parity check on the identical bit positions of all the associ-

ated words. The accumulator and mask register are used to store partial results as

115

SECTION XIl. MISCELLANEOUS INSTRUCTIONS

the successive alternate words are half-added. When the orthocount is terminated

by an end-of-record word, which is not included in the orthocount, the contents of the
accumulator are transferred as orthoword 1 to the location specified by the C address,
and the contents of the mask register are transferred as orthoword 2 to C + 1. If
distributed item control is executed, the end-of-item words are included in the ortho-

count.

The compute orthocount instruction is used in conjunction with the check parity
instruction (see below) to reconstruct data in which an error has been detected. The
channel in which the parity failure occurred may be identified by computing new ortho-
words for the record in error and comparing them with the orthowords accompanying
the record. The check parity instruction may then serve to identify the erroneous
word or frame. The formation and use of orthowords is described in greater detail

in Appendix B.

The time required to execute a compute orthocount instruction with inactive B
address and direct memory location A and C addresses is 11 + n memory cycles,
where n equals the number of words orthocounted. Variations in timing for distri-

buted item handling are shown in Appendix C.

Check Parity

When an error is detected during a read from tape, the check parity instruction
is used to pinpoint the incorrect word(s) or frame(s). The instruction may be per-
formed without a mask to check the parity of the entire word, or it may be used with
a frame mask to test parity on one or more frames. The checking is accomplished
by transferring the word to be checked (stored in the location specified by the A ad-
dress group) to the location specified by the B address group. During this transfer,
parity is automatically checked by the parity-check circuits, and an indicator is set
if parity is incorrect. The correct parity bits from the parity-check circuits are de-
livered to B, together with the information bits contained in A, thus guaranteeing that
the word stored in B has proper parity so that it can be manipulated in the machine
without causing a control error. The parity-error indicator is then sampled, and if
the parity of the word at address A was incorrect, the sequencing counter specified
as the source of the next instruction is changed to select the next instruction from the

memory address designated by C. The C address group may contain a direct memory

116

SECTION XIl. MISCELLANEOUS INSTRUCTIONS

location address, an indexed memory location address, an indirect memory location
address, or an indexed indirect memory location address, as described under the

instruction 'transfer A to B, go to C'' (see Section VIII, pages 78 and 79).

When the check parity instruction is used with a mask, only those information
bits corresponding to binary ones in the mask are checked for parity. If the mask
defines one or more complete frames, the sequencing counter will be changed if a;,ny
frame in the masked operand has incorrect parity. The instruction is undefined for

any other type of mask.

In order to test parity on an individual frame basis, the programmer must be
aware of the relationship between the information bits of a word on tape and their

positions in memory. This relationship is shown in Figure XII-3.

Word in Memory

FiP2P3P4PSP9 \12345........464748/
vV A ~\/
Parity Bits Information Bits

Word on Tape

FRAME 1 1 2 5 6 9 10 13 14 P4
2 3 4 7 8 11 12 15 16 P2
3 |17 18 21 22 25 26 29 30 P3
4 |19 20 23 24 27 28 34 32 P4
5 |33 34 37 38 41 42 45 46 P5
6 |35 36 39 40 43 44 47 48 Péb
Channel 1 2 3 4 5 6 7 8 9

Figure XII-3. Bit Layout -- Memory and Tape

From this figure it will be seen that the mask used to check the parity of frame 1

must have the following bit configuration:

117

SECTION XII. MISCELLANEOUS INSTRUCTIONS

1100 1100 1100 414100 0000 0000 0000 0000 0000 0000 0000 0000,

while the mask required to check the parity of frame 2 would have the configuration:

00114 0014 0011 0011 0000 0000 0000 0000 0000 0000 0000 0000.

The time required to execute an unmasked check parity instruction with direct

memory location addresses is four memory cycles.

118

SECTION X
SUMMARY OF INSTRUCTIONS

General Instructions - Unmasked or Masked

MNEMONIC
OPERATION
CODE

DESCRIPTION

TIME IN1

MEMORY
CYCLES

4
BA

DA

WA

BS5

DS

NA

NN

Binary Add algebraically (A) to (B). Store sum in C. If
overflow occurs, take next instruction from U + 8 if the
sequence counter selected this instruction, or from U +
9 if the cosequence counter selected this instruction.

The sign of either operand is positive if any of its four
sign bits is one. The sign of the sum is 0000 if negative,
1111 if positive.

Decimal Add algebraically (A) to (B). Store sum in C.
Otherwise same as Binary Add.

Word Add. Binary add (A) to (B), considered as unsigned
48-bit numbers. Store 48-bit result in C. If overflow oc -
curs, observe same conventions as in Binary Add.

Binary Subtract algebraically (B) from (A). Store re-
sult in C. Observe same overflow and sign conventions
as in Binary Add.

Decimal Subtract algebraically (B) from (A). Store re-
sult in C. Observe same overflow and sign conventions
as in Binary Add.

Word Difference. Binary subtract (B) from (A). Other-~
wise identical to Word Add.

Inequality Comparison, Alphabetic. Compare (A) and
(B) including sign positions. If (A) # (B), change se-
quencing counter to select next instruction from location
specified by C. Plus zero is not equal to minus zero.

Inequality Comparison, Numeric. Compare algebraically
(A) and (B). If (A) # (B), follow procedure for NA. Plus
zero equals minus zero,

119

SECTION XI1I. SUMMARY OF INSTRUCTIONS

General Instructions - Unmasked or Masked (cont.)

MNEMONIC
OPERATION
CODE

DESCRIPTION

TIME IN/1
MEMORY
CYCLES

LA

LN

TX

TS

SM

CP

Less Than Or Equal Comparison, Alphabetic. Compare

(A) and (B) including sign positions. If (A) € (B), change

sequencing counter to select next instruction from loca-

tion specified by C. Plus zero is not equal to minus zero.

Less Than Or Equal Comparison, Numeric. Compare
algebraically (A) and (B). If (A) £ (B), follow procedure
for LLA. Plus zero equals minus zero.

Transfer (A) to C. Ignore B.

Transfer (A) to B. If C is active, change sequencing
counter to select next instruction from location speci-
fied by C.

Half Add. Binary add without carry (A) to (B), con~
sidered as unsigned 48-bit numbers. Store 48-bit
result in C. Result is zero wherever corresponding
bits of (A) and (B) are identical, one wherever cor-
responding bits of (A) and (B) are different. This is
"ogical exclusive OR."

Superimpose (A) and (B). Store result in C. Result
is zero wherever bits of (A) and (B) are both zero, one
everywhere else. This is '"logical inclusive OR."

Check Parity. Test (A) for correct parity. Place (A)
with correct check bits in B. If (B) differs from (A),
change sequencing counter to select next instruction

from location specified by C.

4

General Instructions - Unmasked

BM

DM

Binary Multiply (A) by (B). Store high-order product
with proper sign in C and accumulator, low-order
product with proper sign in low-order productregister.
Product signs are 0000 if negative or 1111 ifpositive.

Decimal Multiply (A) by (B). Store high-order and
low-order products as in Binary Multiply with same
sign conventions.

33

27

120

SECTION XIll. SUMMARY OF INSTRUCTIONS

General Instructions - Unmasked {cont.)

MNEMONIC
OPERATION
CODE

DESCRIPTION

TIME IN1
MEMORY
CYCLES

B’I‘2

DT

2
MT

TN

2,5

IT

RT

Binary Accumulate. Place low-order 44 bits of (A)
in accumulator. Perform this transfer B' times,
adding in binary (with positive sign implied) the suc-
cessive 44-bit words transferred. B' (high-order 6
bits of B) = 0 to 63. Store 44-bit result, with sign of
first word transferred, in C. Observe same over-
flow conventions as in Binary Add. Note that if A is
an indirect address with non-zero increment, B dif-
ferent numbers are accumulated.

Decimal Accumulate. Same as Binary Accumulate
except that transferred words are added as 11 -digit
decimal numbers,

Multiple Transfer. Transfer (A) to C. Perform this
instruction B' times. B' (high-order 6 bits of B) = 0
to 63. Note that if A and C are indirect addresses
with non-zero increments, B' different transfers are
performed.

N-Word Transfer. Transfer B' words from con-
secutive locations starting at A to consecutive loca-
tions starting at C. B' = 0 to 63.

Compute Orthocount. Write a generated end-of-
record word in the location specified by C. Ortho-
count the record starting at A to the end-of-record
word. Store orthoword 4 in C and orthoword 2 in

C + 1. Place end~of-record word in C + 2. If B is
inactive, control is not changed for distributed item
handling. If B is active, end-of-item words are
sensed and control is changed for distributed item
handling.

Item Transfer. Substitute an end-of-item symbol
for the high-order 32 bits of (B), protecting the low-
order 16 bits of (B). Transfer words from con-
secutive memory locations starting with A to con-
secutive memory locations starting with C until an
end-of-item word is transferred.

Record Transfer. Store an end-of-record word in B.
Transfer words from consecutive memory locations
starting with A to consecutive memory locations start-
ing with C until an end-of~record word is transferred.

3+n

3+n

1+ 2n

5+ 2n

11 + n

7 + 2n

7 + 2n

121

SECTION XIil. SUMMARY OF INSTRUCTIONS

General Instructions - Unmasked (cont.)

MNEMONIC
OPERATION
CODE

DESCRIPTION

TIME IN1
MEMORY
CYCLES

MPC

PR

Control Program. Ignore A. Place (PCR) in the lo-
cation specified by C. Then alter the bits of PCR
specified by bits 5-12 of B, using bits 1-4 of B to
define how the bits are altered. If B address mem-
ory designator bit is 4, hunt for next program in
demand. Otherwise, do not hunt.

Proceed. If C is inactive, do not hunt for next pro-
gram in demand.

4

Inherent Mask Instructions

S‘WS3

SPS

SWE

SPE3

SSL

SS

EX

Shift Word and Substitute. Shift right end around in-
cluding sign (A) as directed by B'. Mask result and
store in C (protected). B' (high-order 6 bits of B)
specifies the number of 1-bit shifts.

Shift Preserving Sign and Substitute. Shift right end
around excluding sign (A) as directed by B'. Other-~
wise same as SWS.

Shift Word and Extract. Same as SWS except that the
unmasked portions of (C) are unprotected.

Shift Preserving Sign and Extract. Same as SPS
except that the unmasked portions of (C) are un-
protected.

Shift and Select. Shift right end around including
sign (A) as directed by B!, Binary add to C under
mask control no more than 411 low-order bits of

the shifted word, with positive sign implied. Change
the sequencing counter to select the next instruction
from the location specified by the modified C ad-
dress. B' is interpreted as in the SWS instruction.

Substitute. Using (B) as a mask, transfer (A) to C
and protect unmasked portions of (C).

Extract or Logical AND. Using (B) as a mask, trans -
fer (A) to C without protecting unmasked portions of
(C). Result is one wherever bits of (A) and (B) are
both one, zero everywhere else.

5 +k

5 +k

5+k

5+k

6 +k

122

SECTION Xill. SUMMARY OF INSTRUCTIONS

Peripheral and Print Instructions

MNEMONIC
OPERATION
CODE

DESCRIPTION

TIME IN1
MEMORY
CYCLES

RF

RB

WF

RW

Read Forward from peripheral device XX into consecu-
tive memory locations starting with A. XX represents
command code bits 1-6. Set the RAC to +A. If B is in-
active, do not change control for distributed item han-
dling. If B is active, set the DRAC to +B and sense for
end-of-item words. Change sequencing counter to se-
lect next instruction from location specified by C.

If end of tape is sensed, take next instruction from U +
4 if the sequence counter selected this instruction or
from U + 5 if the cosequence counter selected this in~
struction. If a parity error was detected during the last
previous read from this device, reset the parity error
flip-flop, do not perform the read. Instead, take next in-
struction from U + 6 or U + 7. This instruction is in-
terlocked against device XX and the associated buffer.

Read Backward from magnetic tape unit XX into con-
secutive memory locations starting with A. This in-
struction is otherwise identical with RF except that
the RAC is set to -A and if B is active the DRAC is
set to ~-B,

Write Forward on peripheral device XX the contents of
consecutive memory locations from A through the end-
of-record word. Set the WAC to +A. If B is inactive, do
not change control for distributed item handling. If B is
active, set the DWAC to +B and sense for end-of-item
words. Change sequencing counter to select next instruc-
tion from location specified by C.

If an error was detected during the last previous write to
peripheral device XX, reset the parity error flip-flop, do
not perform the write, Instead, take next instruction from
U + 6 or U + 7. This instruction is interlocked against
device XX and the associated buffer. End-of-tape conven-
tion is identical with Read Forward.

Rewind tape on rmagnetic tape unit XX to end. If tape is
already rewound, proceed. If A is active, set manually
removable interlock after tape is rewound, BandC are
ignored, If an error was detected during the last pre-
vious read or write for this tape, reset the parity error
flip~flop, do not perform the rewind. Instead, take next
instruction from U + 6 or U + 7.

5

123

SECTION XIlI, SUMMARY OF INSTRUCTIONS

Peripheral and Print Instructions (cont.)

specified by B. If C is active, change the se-
quencing counter to select the next instruction
from the location specified by C. In an alpha~
betic print, eight 6-bit characters are printed.
In a decimal print, 12 hexadecimal digits are
printed. In an octal print, 16 octal numbers
are printed.

MNEMONIC TIME INi
OPERATION MEMORY
CODE DESCRIPTION CYCLES

PRA,PRD, PRO Print (A) on the typewriter and in the format

Simulator Instructions

S

Simulator. Form a memory location address
(direct or indexed) from the low-order 11 bits
of the command code and store this instruction
in the location thus specified. Cha;nge the cose~
quence counter to select the next instruction
from the next higher address.

NOTES:

124

One memory cycle equals six microseconds. All addresses
considered active. For variations in time, see Appendix C.

n = number of words accumulated, transferred, or ortho-
counted.

Values of k are based on number of 16~, 4~, and 1-bit shifts
required. See Appendix C for table of values.

Under certain conditions, as explained in Appendix A, an
additional one or two memory cycles may be required.

B address considered inactive (sole exception to note 1 above).

APPENDIX A
ADDITION IN THE HONEYWELL 800

Two registers are involved in the addition function of the Honeywell 800: the ac-
cumulator and the bus. A symbolic representation of these registers is shown in
Figure A-1. The accumulator is used in the performance of addition, subtraction,

multiplication, shifting, comparison, transfer, and print instructions.

Since the Honeywell 800 word contains 48 information bits, the accumulator re-
quires 48 flip-flops, each capable of storing a single binary digit. These 48 flip-flops
are arranged in three 4 x 4 arrays, called ""major characters.' Each major charac-
ter contains four ''minor characters.! For example, minor character No. 1 contains
bits 1, 2, 3,41; minor character No. 2 contains bits 5, 6,7, 8; minor character No. 5

contains bits 17, 18, 19, 20; etc. (see Figure A-1).

The accumulator has 24 additional flip-flops and amplifiers called ""carry func-
tions' which permit carries or borrows generated during arithmetic operations to
propagate through the arrays without interfering with the information bits. These car-

ry functions are used to implement the anticipating techniques discussed below.

All the operations and manipulations accomplished by the accumulator are based
on its ability to recirculate bits between rows. In other words, the information stored
in the 48 flip-flops is not stationary. For example, the information stored in the 12
flip-flops of the first row remains static for less than one microsecond and is then
transferred to the flip-flops in the fourth row. The information in the fourth row is
fed in turn to the third row, the third to the second row, and the second to the first.

By this recirculation process the accumulator stores information.

1. In this Appendix only, bits are numbered from right to left, conforming to
standard engineering usage. Thisis in contrast to the programmers' left-
to-right numbering convention which is followed elsewhere in the manual.

125

APPENDIX A, ADDITION IN THE HONEYWELL 800

ACCU-

MULATOR 4

FROM MEMORY
A

o

B48 B47 B46 B45 B32 B31 B30 B29 Bi6 Bi5 Bi4 Bi3

B44 B43 B42 B441 B28 B27 B26 BTS B12 Bi4 B1G BO09

|

B40 B39 B38 B37 B24 B23 B22 B2i B08 B07 BO06 BOS

ROW

ROW

ROW

ROW

104

llB

BAAGBAANGB

48 47 4 45 3 3 3 29 1 1 1 1
4 4 4 4 2 2 2 2 1 4 1 0
4 3 3 3 2 2 2 2 0 0 0 0
Minor Character 10 Minor Character 6 Minor Character 2

@‘ 4@,

Minor Character 9 Minor Character 5 Minor Character 1

JuUuuJyuuvuuudJduuu

MAJOR 3 I MAJOR | MAJOR _,'
CHARACTER CHARACTER CHARACTER

Note: Carry Logic not shown.

126

Figure A-41. Schematic Representation of Bus and Accumulatoer

APPENDIX A, ADDITION IN THE HONEYWELL 800

Each operand is delivered from the memory to the accumulator via the bus. In

the accumulator, the least significant binary digit is stored in flip-flop 1, the next
higher~-order digit is stored in 2, and so on. The most significant binary digit of a
signed number is stored in flip-flop 44; the most significant binary digit of an unsigned
number (such as an operand of the word add instruction) is stored in 48. Since four
binary digits are required to represent a decimal digit in the Honeywell 800, the least
significant decimal digit is stored in the first row of major character No, 41, the next
higher-order decimal digit in the second row of major character No. 1, etc. The
most significant decimal digit of a signed number is represented by the four bits in

the third row of major character No. 3. In the accumulator, bits 45 through 48 are
used to store either the high~order four bits of an unsigned number, or an arbitrary

binary configuration when signed numbers are being operated upon.

The sign of the A operand is stored in a single flip-flop designated sign control
(SGA). The content of SGA, the sign of the B operand, and the operation code deter -~
mine the sign of the result, and also the nature of the operation to be performed. For
example, if SGA contains a plus sign, the B operand is negative, and the operation
code specifies subtraction, the operation to be performed logically is addition. When
addition is performed on signed numbers, bits 45 through 48 of the accumulator are
filled with binary ones so that a carry out of bit 44 is reflected by a carry out of bit
48. Thus overflow may be determined by the presence of a carry out of bit 48 in ad-
dition of either signed 44-bit operands or unsigned 48-bit operands. In like manner,
bits 45 through 48 are filled with binary zeros when subtracting signed numbers in
order that borrows may be sensed at the same point for both signed and unsigned num-
bers. For addition of numbers with unlike signs, subtraction of numbers with like
signs, or multiplication, the contents of SGA may change to correspond with the sign

of the result generated in the accumulator.

As information is transferred from the bus to the accumulator, the four bits in
each minor character receive the information simultaneously (in parallel) and the
minor characters within a major character receive information serially. However,
a group of three minor characters in the same row (4,5, and 9, or 2, 6, and 10 --
see Figure A-1) receive their information in parallel. This method of receiving and
processing data characterizes the Honeywell 800 as a parallel-serial-parallel

machine.

127

APPENDIX A, ADDITION IN THE HONEYWELL 800

The following detail steps are performed in executing an addition instruction,
First, the A operand is transferred from the memory to the bus and then is received
by the accumulator in parallel-serial-parallel fashion. The B operand is then trans-
ferred from memory to the bus. As the first row of information is transmitted via the
bus to the accumulator, each corresponding pair of bits, one from the bus and one from
row 1 of the accumulator, is input to a gate buffer amplifier (GBA), a logical element
in which the addition of the two binary digits takes place. The sum of the two digits is
then transmitted to the fourth row. If a carry will occur within a minor character from
this addition, it is anticipated and introduced as an input into the next higher-order GBA
to be added to the bit from the accumulator (A operand) and the bit from the bus (B
operand)., If a carry occurs from the high-order binary digit of a minor character dur -
ing the arrival time of rows 1, 2 or 3 at the GBA's, the carry is brought to the low-
order GBA associated with the same major character at the time of arrival of the fol-
lowing row. Therefore, carries within a minor character or within a major character

require no extra processing time.

If a carry occurs from the high-order bit position of a minor character in row 4
(in other words, from one major character to another), a second cycling of the accumu-
lator is required. The carry is brought as input to the low-order GBA associated with
the next major character as row 1 is again transmitted to row 4. (On this cycle, of

course, there is no input to the GBA from the bus.,)

A second cycle of the accumulator does not necessarily mean an extra memory
cycle each time a carry occurs from a major character. The content of the accumula-
tor is read from the output of the flip-flops of row 2 to storage and thus a ""half cycle, "
to place the original contents of row 1 in row 2, is required before the contents of the
accumulator are transferred to the bus and thence to memory. Therefore, if the carry

from a major character propagates through no more than two minor characters, no

additional memory cycle is needed. If the carry propagates further (including the

worst case of a carry from major character No. 1 which propagates through major
character Nos. 2 and 3 in turn), a maximum of one extra cycle is needed. Because
the "borrow'' logic includes the possibility of a carry from major character 3 end-
around to major character 1, the addition of two words with unlike signs could require

two extra memory cycles.

128

APPENDIX A, ADDITION IN THE HONEYWELL 800

The above discussion is applicable to both binary and decimal arithmetic. In the

case of decimal operations, however, an additional operation takes place. As each
minor character in the sum proceeds from row 4 to row 3, the 4-bit configuration is
tested to see if it represents a decimal digit (0 through 9). If so, it proceeds as de-
scribed above. If not, the 4-bit configuration is reduced by 10 (binary 1010) and a
carry of one is introduced into the low-order bit of the next higher-order minor char-
acter. This discussion assumes that operands in decimal operations are made up of

decimal numbers.

129

APPENDIX B
ORTHOTRONIC CONTROL

Orthotronic control is the technique incorporated in the Honeywell 800 for the
automatic detection and correction of errors that may occur with the use of magnetic
tape. This file protection feature accomplishes error correction without the manual
intervention and lost computer time so frequently associated with ordinary restart or
rerun procedures. In other systems, the problem of restart and rerun hecomes
most serious when the record in error was properly recorded during a previous run
but is now incapable of being read. It is to this type of error, the most costly in
time and effort, that orthotronic control is applied most advantageously in the Honey-~

well 800 system.

The basic principle of orthotronics may be compared to the accountant's practice
of crossfooting. In crossfooting, a zero balance of rows and columns is obtained to
insure accuracy. If a zero balance is not obtained, the crossfooting technique has
accomplished its singular function of error detection. Orthotronic control not only
performs this function of errér detection but also provides a unique means of error

correction.

The orthotronic technique involves three interdependent elements: frame parity,
orthotronic control words, and channel parity. Frame parity is recorded in the ninth
channel on tape. An ''odd' parity system is used in the generation of the parity bit.
The parity bit is the complement of the binary half adds of the bits in each frame.
Thus, the parity bit is a one if there is an even number of ones in a frame (0, 2, 4,
6, 8 ones), and the parity bit is zero if there is an odd number of ones in a frame

(4, 3, 5, 7 ones).

Before a new or altered record is written on tape, the machine instruction com-
pute orthocount is used to compute two orthowords: one associated with the odd-
numbered data words in the record, the other associated with the even-numbered

words. These orthowords become part of the record written on tape. Orthoword 1

130

APPENDIX B, ORTHOTRONIC CONTROL

may be the orthocount of either the odd words or even words of a record. This is
determined by the number of words to be orthocounted in the record (see Figure B-1).
If the record contains an even number of data words, then orthoword 1 represents the
orthocount of the odd words. If an odd number of data words is orthocounted, then
orthoword 4 contains the orthocount of the even words. However, it should be noted
that by working back from the orthoword, the relationship is invariant, regardless of
the number of words. Each orthobit is an "odd' parity bit checking the corresponding

bit positions of all the associated words.

Even Number of Odd Number of
Words in Record Words in Record
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 ORTHO 1
ORTHO 1 ORTHO 2
ORTHO 2
ORTHO 1 = Orthocount CRTHO 1 = Orthocount
of Words 1, 3, 5, 7 of Words 2, 4, 6

Figure B-1. Relation of Data Words to Orthowords

Consider a record in memory (for the sake of simplicity, 16-bit words are
shown). Figure B-2 shows the method used to compute the orthowords. Each ortho-

word is the complement of the binary half add of the words associated with it.
Channel parity checking is automatically performed in the buffer to provide a

longitudinal check of information being read or written. The generated orthotronic

words guarantee an even channel parity up to the end-of-record word. The end-of-

131

APPENDIX B, ORTHOTRONIC CONTROL

Odd Words Even Words
(1144 4444 1444 4414 1114 1441 1441 1414) Complement
Word 1| 1647 0001 0440 0400 0441 Bits
2| 3018 0041 0000 0004 41000
3| 8390 1000 0014 4004 0000
4| 3764 0011 0441 04140 0400
5| 0519 0000 0104 0004 4004
6| AB4 0100 0404 0010 0400
7| 2613 0010 0440 0001 0044
8| 7¢cD 0441 0400 1401 0400
ORTHO 1| 4922 0100 4001 0040 0040
ORTHO 22973 1100 1001 0111 0011
END OF
RECORD

Figure B-2. Computation of Orthowords

record word is such that its inclusion guarantees an odd channel parity. Thus, double
errors in a frame, which will escape detection by frame parity, will be picked up by

the channel parity check.

Using the example shown in Figure B-2, assume that a bit was altered in the
high-order decimal digit of word 7 to make it 4040 instead of 0040, Figure B-3
shows the words in memory and a simplified, hypothetical representation of the same

words on tape, with frame parity bits.

When this record is read, the error is automatically detected by the frame parity
check. The automatic channel parity check also shows up the error, since a binary
half add of the bits in the left-most channel produces a one bit instead of a zero bit.
If, in addition, a bit in the second high-order digit of word 7 were altered so that it

became 0111 instead of 0110, this frame would now appear as follows on tape:

Error Parity
Bit SN 1010 011; U S
Error Bit

132

APPENDIX B, ORTHOTRONIC CONTROL

This combination of errors would escape the frame parity check only to be caught by

the channel parity computation.

Regardless of the means of error detection, the result is the same: an unpro-
grammed transfer of control is initiated when the next read or write instruction to the

1
same device is executed. The procedure to be followed when the error occurs on

Memory Tape
~~~~ Frame Parity
Word 1] 1647 Word 110004 0110 (
2] 3018 0100 0111 1
31 8390 2 (0041 0000 1
4| 3764 0004 1000 14
5| 0519 3 11000 0041 O
6] AB4 1001 0000 1
7| @613 4 {0014 0111 0
8] 7CD 0140 0100 O
ORTHO 1| 4922 5 (0000 04101 1
ORTHO 2 @973 0001 1001 O
iggO%FD Error 610100 0101 0 Frame Parity

Bit 0010 0100 1/—Error
7 {1010 0110 O
0004 0014 O
8 101441 0400 1
1101 0400 1
ORTHO 1 |0100 1001 O
0010 00410 1
ORTHO 2 {1100 1001 14
0111 0011 O
&Channel Error

Figure B-3. Orthotronic Check of Tape Error

1. As noted in Section XI, a read instruction checks the previous read while a
write instruction checks the previous write.

133



APPE

NDIX B, ORTHOTRONIC CONTROL

writing is to read backward over the erroneous record and then rewrite it. The pro-
cedure to be followed when the error occurs on reading is to orthocount the entire
record again (including the bad word and the orthowords), using the compute ortho-
count instruction. The result of this procedure is illustrated in Figure B-4, using

the example in which a bit was altered in the high-order digit of word 7.

Odd Words Even Words
(1441 4441 1444 1144 41441 4414 1414 1444) Complement
Word 1 1647 00041 0110 0400 0441 Bits

2 3018 0011 0000 0001 1000
3 8390 1000 0011 1001 0000

4 3764 0011 0111 0140 0400
5 0519 0000 04041 0001 4004

6 AB4 0100 0401 0010 0400
7 @613 1010 0140 0001 00411

8 7CD 0111 0100 1101 0400
ORTHO 1 4922 0400 1004 0010 0040

ORTHO 2 {2973 1100 1004 0414 0044
NEWORTHO 4 8000 4000 0000 0000 0000

NEWORTHO 2 0000 0000 0000 0000 0000

134

Figure B-4. Orthocount of Error Record

This computation shows that the error lies in one of the odd words (1, 3, 5, or 7).
The check parity instruction is then used to isolate the bad word (and/or the bad frame
within the word, by masking the instruction). The check parity instruction also as-
signs correct parity to the word. If correction is to be made on a word basis, a
binary half add is used to add the new orthoword and the bad word (with adjusted par-
ity) to restore the correct word. If correction is to be made on a frame basis, a
properly masked half add is used to restore the frame, If correction is made on a

word basis, the binary half add produces the result shown in Figure B-5.



APPENDIX B, ORTHOTRONIC CONTROL

Bad Word 7 1040 0440 0001 0011
New Ortho 1 4000 0000 0000 0000
Restored Word 7 0010 0110 0004 0044 (cf. Figure B-2)

Figure B-5. Correction of Tape Error -- First Method

A different procedure for reconstructing the bad word would be first to locate it
by the check parity instruction and then to cancel it by substituting a word of all binary
zeros. Next, orthocount the entire record including the cancelled word and the ortho-

words, as shown in Figure B-6.

Odd Wozrds

(1114 1141 1111 1114) Complement

Word 1 0004 0110 0400 0414  Dits
3 1000 0044 1001 0000
5 0000 0101 0001 4001
(Bad Word) 7 0000 0000 0000 0000 (Binary Zeros
Old ORTHO 0100 1001 0010 o001p Substituted)
New ORTHO 0010 0140 0004 0044

Figure B-6, Correction of Tape Error -- Second Method

The new orthoword equals the reconstructed word (cf. Figure B-2) and may now be
substituted for the word of binary zeros. This second technique can be used only when
errors are detected in a single word associated with each orthoword. For example,
this method can be used to correct an error in one even word and one odd word in the
record, but not to reconstruct two odd or two even words. The technique illustrated
by Figure B-5, on the other hand, may be used to reconstruct errors in several words
or frames, as long as there is not more than one frame parity or ortho error associ-

ated with each of the twelve frames comprising the two orthowords.

135



APPENDIX C
TIMING SUMMARY

Basic Time
in Mempry
Instruction Cycles Modifications of Basic Time
5 5 5 5
BA ,DA ,WA,BS,DS,WD, HA,SM
A. Unmasked
1. If B is inactive, and
a. A is active, C inactive 3 Add: 1 mc if A is indexed
b. A is inactive, C active 4
c. A and C are both active 5 Add: 1 mc if A is indexed
2, If B is active 4 Add: 1 mc if A is inactive
1 mc if A or B is indexed
*41 mc if A is a direct special
register or indirect memory
location address and B is
indexed
*4 mc if B is a direct special
register or indirect memory
location address and C is
indexed
*2 mc if A and B are direct
special register or indirect
memory location addresses
and C is indexed
B. Masked
1. If B is inactive, and
a. A is active, C inactive 4 Add: 41 mc if A is indexed
b. A is inactive, C active 6
c. A and C are both active 7 Add: 1 mc if A is indexed
2. If B is active 6 Add: 1 mc if A is inactive
1 mc if A or B is indexed
Sub: 1 mc if C is inactive
BTZ, DT2
A. If B address (n) =0 2
B. If B address (n)>» 0 34n Add: 1 mc if A is indexed
BM 33 Add: 1 mc for each indexed
address

136



APPENDIX C, TIMING SUMMARY

Instruction

Basic Time
in Mempory
Cyclezq

Modifications of Basic Time

DM

27

Add: 1 mc for each indexed
address

NA,NN, LA, LN

A. Unmasked

B. Masked

Add: 1 mc if A or B (or both) is
indexed
1 mc if A is direct special
register or indirect memory
location address and B is
indexed -
1 mc if B is direct special
register or indirect memory
location address

Add: 1 mc if A or B (or both) is
indexed

TX

A. Unmasked

B. Masked

Add:*4 mc if A is indexed

%4 mc if A is direct special
register or indirect memory
location address and C is
indexed

%2 mc if A is indexed special
register or indirect memory
location address and C is
indexed

Add: 1 mc if A or C (or both) is
indexed

TS

A. Unmasked
1, If B is inactive, and
a. A is inactive
b. A is active
2. If B is active

Add: 1 mc if A is indexed
Sub: 2 mc if C is inactive
Add#*1 mc if A is inactive
%4 mc if A is inactive and B
is indexed
%1 mc if A or B is indexed
4 mc if A is direct special
register or indirect memory
location address and B is
indexed -
%2 mc if A is indexed special
register or indirect memory

137




APPENDIX C. TIMING SUMMARY

Instruction

Basic Time
in Mempory
Cycles

Modifications of Basic Time

TS (cont.)

B. Masked
1. If B is inactive, and
a. A is inactive
b. A is active

2. If B is active

location address and B is
indexed —

1 mc if B is direct special
register or indirect memory
location address

1 mc if C is direct special
register or indirect memory
location address

1 mc if C is indexed

Add: 1 mc if A is indexed
1 mc if C is indexed
Sub: 2 mc if C is inactive
Add#*1 mc if A is inactive
*1 mc if A is inactive and B
is indexed
*1 mc if A or B is indexed
1 mc if C is indexed

MT2

A. If B address (n) = 0
B. If B address (n) » 0

1+ 2n

Add#n if A is indexed

#*n if A and C are both indexed

*1 mc if C is indexed

*n + 1 if A is a direct special
register or indirect memory
location address and C is
indexed

*2n if A is indexed special
register or indirect memory
location address and C is
indexed

2
TN

A, If B address (n) = 0
B. If B address (n) >0

5+ 2n

Add: 1 mc if A is indexed indirect
memory location address
n if A is direct or indexed
special register address
Add: 1 mc if C is indexed indirect
memory location address
n if C is direct or indexed
special register address

138




APPENDIX C. TIMING SUMMARY

Instruction

Basic Time
in Mempory
Cycles

Modifications of Basic Time

2
ITZ,RT

7 + 2n

Add: 1 mc if A is indexed indirect
memory location address
1 mc if C is indexed indirect
memory location address

SWS, SPS,SWE,SPE

5 +k

Totalno. 16-, 4~, 1-bit shifts

0

WO UL ih WN P~
AR wwivNn s » O O O|F

9
Add: 41 mc if A is indexed
1 mc if C is indexed
2 mc if C is direct special
register address

SSL

6 +k

For values of k, see table for
SWS, etc.
Add: 1 mc if A is indexed
1 mc if C is indexed
1 mc if C is direct special
register or indirect memory
location address

SS

Add: 1 mc if A or B is indexed
1 mc if A is direct special
register or indirect memory
location address and B is
indexed -
1 mc if B is direct special
register or indirect memory
location address and C is
indexed ——-—
2 mc if C is direct special
register address

EX

A. If C is inactive, and B is
active

Add: 1 mc if A or B is indexed
1 mc if A is direct special
register or indirect memory
location address and B is
indexed -

139




140

APPENDIX C, TIMING SUMMARY

Basic Time
in Memgpry

Instruction Cycles Modifications of Basic Time
EX (cont.)
B. If C is active 5 Add: 1 mc if A or B is indexed
1 mc if A is direct special
register or indirect memory
location address and B is
indexed
1 mc if B is direct special
register or indirect memory
location address and C is
indexed
2 mc if C is direct special
register address
3 3 3
RF ,RB,WF
A. If C is inactive 3 Add: 1 mc for each indexed
address
B. If C is active 5 Add: 1 mc for each indexed
address
RW3. 2
PRA,PRD,PRO
A, If C is inactive 4 Add: 1 mc if A or B (or both) is
indexed
B. If C is active 5 Add: 1 mc if A or B (or both) is
indexed
1 mc if C is indexed
1 mc if C is indirect memory
location address
In addition, 7 mc are required to
print each character, at the rate
of 1 character every 100ms
(approximately)
CC
A, If B is in.':a,ct:ive2 11 +n Add: 4 mc if C is indexed
B. If B is a.ctive4 9+Zj+n1 Add: 1 mc if A is direct special
+n2+. .nj register or indirect memory

location address and B is
indexed T

1 mc if B is indexed special
register or indirect memory
location address

1 mc if C is indexed




APPENDIX C. TIMING SUMMARY

Instruction

Basic Time
in Memory
Cycles

Modifications of Basic Time

CP

A. Unmasked

B. Masked

Add: *#1 mc if A or B (or both) is

Add:

indexed

*4 mc if A is direct special

register or indirect memory
location address and B is
indexed

%2 mc if A is indexed special

register or indirect memorylo-
cationaddress and B is indexed
1 mc if B is direct special
register or indirect memory
location address

1 mc if C is direct special
register or indirect memory
location address

1 mc if C is indexed

1 mc if A or B (or both) is
indexed
1 mc if C is indexed

MPC

PR

Add:

1 mc if D/I bit = 1
1 mc if C is indexed

141




APPENDIX C. TIMING SUMMARY

NOTES:

142

£

One memory cycle equals 6 microseconds.

All addresses assumed active except as otherwise specified.
Address configurations for which the behavior of the system is
unspecified have not been considered.

n = number of words accumulated, transferred, or orthocounted.

If the instruction is delayed by an interlock, 3 (if A is not indexed) or
4 (if A is indexed) memory cycles are required for the first attempt
to perform it, and an additional 3 (or 4) cycles are required each time
that any buffer completes a read or write instruction before this in-
struction proceeds.

j = number of items in record.

ni,nz, ...n. = number words in item 41, number words in item 2, etc.,
up to n., number words in last item.
J

Under certain conditions, as explained in Appendix A, one or two
additional memory cycles will be needed in excess of those computed
from this summary.

Conditions so marked are mutually exclusive.



TABLES

APPENDIX D.

sjus(eaTbry pojulid I0 paydundg pue SUIpod (08 [[oMA9UOH

‘T ?19elL

.ﬁOwudHﬂMﬂﬁOU uwﬁ kuﬁm.ﬂ& @H.m@ﬁ.mumlGOG wm..nkaOﬁ_.uO %Q VOaﬁ.mHnm 0@ TITm £0.m£s> _”0£E%m mouﬁmu%ﬁm % “HOuSmHnﬁ
.whOUdOH @H.NU 103 >ﬁﬂ0 Z 0@02 MU&QU QUS.D& M\mmoﬂﬁw ut ,m.mww._” F3 “0@00 UH.NU
.mhvuo‘mudﬂo ﬂvuumdﬂo &Ugmhos.o (o] %0& HIHUnH _H\HE Ow.D. nﬂugn.m NﬁOVm 1S33I0N
® souerg 1) LL 1222225 %L°8°0 A4 sofuerg sl LE 122227 0y
O souerd o 9L 1122227 %9°8°0 [ ] [ ] 9¢ 0TFIT0 | %9°8°Y¥
Z/v /v ) Gl 12012221 #G°8°0 % % * <13 TOFFI0 | %6°8°¥°
) ) ) L 12227 80 % ( ( ( 43 007170 pgya O
‘ ¢ ‘ €L 121122 €80 ¢ : : : €€ 110110 €£‘g‘y
® ® %7 ZL 0TO0TTT %2°8°0 ! | #I r43 0T0%F0 | xZ°‘8‘¥
Z Zz Z 172 T00TTY 6°0 Z I 1 I 127 100770 6°‘Y I
X X A 0L 000FT7 8°0 X H H H o€ 0007170 8y H
X X X L9 123012 Lo X D D ) Lz 12271170 Ly D
M M M 99 1271127 90 m a I I 92 0T1070 99 I
A A A S9 1. 107077 ) A co lc c§ 52 101010 s‘"g o
n n n 9 00T0T¥ ‘0 n a a a 44 007010 4 a
I e I €9 11001V €°0 I o) o) o} 54 170070 ¢ o)
S S S 29 070077 Z°0 S d = ~ < 22 070070 FAR®S g
/ / / 19 $1000T7 10 / v v v 12 100070 1y v
i to) solueld | o snurw)- 09 0000%%" %618 _ + o+ + 02 000070 . 3
é suerg ek X E 13 375) “0‘X " b % «{ snurwr) - A 111100 fyr
4 suerg * 9¢ 122707 %9°8‘X ? souerd %= 97 071100 %9 ‘8
" " o 1 01107 #G°8‘X Suerg suelg Sueig | ST 107700 Suerd aoedg
% * % ¥s 007701 78X * : : (snutur) - 4 0077100 ‘g ®
$ $ $ €5 }10707 £8'X $ = & = €1 (700D €8 #
# 4 *¥ 75 BY016% | %2°8'X : : %6 7v 070700 %7°8
a a a 1S 10070F 6°X q 6 6 6 12 100100 6 6
(o} (o] (o} 09 00070T 8‘X o] 8 8 8 ov 000700 8 8
d d d Ly 17007 LX d L L L L0 117000 L L
o} o (o) 9% ‘0FF00% 94X o) 9 9 9 90 077000 9 9
N N N 4 TOT00F ‘X N g g S S0 107000 g g
W W nW 44 007007 X W 2 ¥ ¥ $0 007000 4 ¥
T T T 154 110007 € ‘X T € € € €0 110000 € €
pS o i a4 07T000% Z ‘X > 2z 4 Z 20 070000 Z Z
r r r 154 100007 X r 1 T ¥ 10 100000 T T
- - (snurwr) - ov 000007 X - 0 0 (ox2z} 0 00 000000 0 0
OHOmQOU JI2jutr g IUTIg Hduoo 0@00 008 O.vaU ﬂoﬁ.ﬂnﬂ DAOMGOU HOuﬁﬁHn._” I23UTIg H.N@UO G@OU Oow UUOU QUE
poadg paiwpueig 11oMmAsuon] pIeD Ko paadg pIEpURIS TTomAauoH pIe)d Ko
y31H y31H

143



APPENDIX D, TABLES

12 3 45 6 7 8910 11 1z

BA BINARY ADD ro 1
DA DECIMAL ADD

o

WA WORD ADD

0 0 1
00.0 1
0114 0 1
A BS BINARY SUBTRAGT 110 0 1
| DS DECIMAL SUBTRACT MASKED 100 0 1
a5 WD  WORD DIFFERENCE ( 111 0 1
< § NA  INEQUALITY COMPARISON, ALPHABETIC SMMMMM1 Q 011 0 0
5 NN  INEQUALITY COMPARISON, NUMERIC S1 0ABCO 040 0 0
Z g LA LESS THAN OR EQUAL COMPARISON, ALPHABETIC ( 111 0 0
50 LN LESS THAN OR EQUAL COMPARISON, NUMERIC UNMASKED 110 0 0
§ TX TRANSFER (A) TO C _ 100 0 0
@ TS TRANSFER (A) TO B AND GO TO G 001 0 0
3 HA  HALF ADD (MOD. 2) 104 0 1
= SM  SUPERIMPOSE 001 0 1
o cP CHECK PARITY (101 0 0
BM  BINARY MULTIPLY 010 1 1
DM  DEGIMAL MULTIPLY S00 ABCO {0 00 1 1
BT BINARY ACCUMULATE S10ABCoO {o 10 1 1
a DT DECIMAL ACCUMULATE 000 1 1
24 MT  MULTIPLE TRANSFER S00ABCO 4100 0 0
R TN  N-WORD TRANSFER , 100 0 0
2 § CC  COMPUTE ORTHOCOUNT S0 1 ABCO {o 10 0 0
4z IT ITEM TRANSFER 110 0 0
oo RT  RECORD TRANSFER S11ABCO 4140 0 0
MPC CONTROL PROGRAM S10ABCO 000 0 0
PR PROCEED X0 0 XXX0 000 0 0
- SWS  SHIFT WORD ANDSUBSTITUTE (PROTECTED) 001 1 0
5 SPS  SHIFT PRESERVING SIGN AND SUBSTITUTE (PROTEGTED) 000 1 0
i SWE SHIFT WORDAND EXTRACT (UNPROTECTED) S1 0ABCO<O014 1 0
& X SPE  SHIFT PRESERVING SIGN AND EXTRAGT (UNPROTEGTED) 010 1 0
£g SSL  SHIFT ANDSELECT (PROTECTED) 101 1 ¢
== ss SUBSTITUTE (PROTECTED) 001 1 0
EX  EXTRACT (UNPROTECTED) §00ABCO {o 11 1 0
A RF  READ FORWARD 110 1 0
é £ RB READ BACKWARD 040 1 0
62 WF  WRITE FORWARD PPPPPP1N041 1 0
E & RW  REWIND 000 1 0
RS PRA PRINT ALPHA
| Z PRD PRINT DECIMAL SXXABC1 001 1 0
Ao PRO PRINT OCTAL
S SIMULATOR
, Direct OX XX XXX XX1 11
gg Indexed IXXXXXX XX1 11
g3 Notes: PPPPPP = PERIPHERAL ADDRESS MMMMM = MASK ADDRESS
S = SEQUENCE, COSEQUENCE CODE X = IRRELEVANT

MEMORY DESIGNATOR

A,B,C,

Table II. Honeywell 800 Command Codes

144



INDEX

ACCUULALOT « o o o o o o o o o o s o o o o s o o oo« «46,49,62,73,83,106,115,425
Addressing e e e e e e e e e e s e e e eeee s w e e s22,27,29,33
Direct Memory Location Address « « « « « o « o o o 34, 44,53,77,79, 90, 113, 116
35,44,77,136
- Inactive Address . . 46,62,64,74, 78 83 93 96 97,403, 106,112,115, 121,123,136
Indexed Indirect Memory Location Address . « » « . . . 42,44,77,79,90,417,136
Indexed Memory Location Address « « « « « « » - « 37,44,77,79,90,113, 447, 136
39, 44,77, 136
Indirect Memory Location Address « « « « « « » « « « . 40,44,77,79,90, 117, 136
StoppPer AQAYeSS « o o o o o o o o o o s 0 o o = 5 o o o s o o s o o o e s s a s s 45
.AlgebraicCompiler................‘..................1
ARGUS (Automatic Routine Generating and Updating System) . . . 1, 26,30, 35,39, 42
47,50, 87,92,107,112, 114

Arithimnetic UNIL o « o « o o « o o o o o o o o o s o s o s s s s s s o s s o0 s s 00 5

Direct Special Register Address. . e e a e e e e e e e e e

Indexed Special Register Address « « « o ¢« ¢ ¢ o o s o ¢ ¢ o o o o«

AU~CU Counters Numbers 1, 2 (see Special Registers)

Binary Accumulate, BT ¢ ¢« o o ¢ ¢ ¢ ¢ o v o 0 o ¢ ¢ = o o o o o o .
Binary Add, BA « ¢ ¢ ¢ ¢ o o ¢ ¢ o o o o o s s o o o s s s s s e 0 s s
Binary~-Coded Decimal « « o ¢ ¢ ¢ ¢ o« o o o o o o o s o o o s o o s o s

Binary Multiply, BM « ¢ ¢ ¢ ¢« ¢ 4 o ¢ o o o s o o o o o s o o o o . .
Binary Subtract, BS « « ¢ ¢ 4 4 ¢« s s o e o o o o s 0 0 e s e s e
Binary SYStem « v v ¢ ¢ « o o o o s o s s o o s e e s e a0 e s ..o

Bisequence Bits « ¢« o ¢ ¢ v ¢ o o 0 s s o s o 0 e 0 o s 0 e s e a0

68,121,136
64,119, 136
B
70,120,136
66,119, 136
e e s . 3
.. .. 109

BUS « o o o o o o o o o = s 8 o o o s o o o o o e o s e st e e o e e e e e . 125
Card Conversion Modes .+ o ¢ o o o « o o = s o s s o o o« « e o e s e st e s e e e 7
Card Punches (824~1) (824-2) ¢ « « « ¢ o o o « s s+ o s o o s s s s s oo oo+ 10
CardReaders(823—1)(823-2)..........................7,9,23
Card Reader Control Word + « ¢ o o v o ¢ o o « o o s o s s s s o s o s s s e 00+ 9
Card Reading Error Options . . « « ¢« v o o = « o « « e e b e e e s e e e e 9
Central Processor (804) « v ¢« v v ¢ o o o e o o o o v o o o v o oo . 4,16,18,24,43
Check Parity, CP . « « « + ¢ ¢ v o v o s o o 6 o o s o o o o o o o 116,120, 134,141
Codes (Internal, Punch, Printer, Console). « « « ¢ ¢ ¢ v ¢ s o ¢ o o ¢ v v o o & . 143
Command Code. +. v ¢ ¢ o o o o o s ¢ o s s s o s s s o o o o s s o s o s . . . 27,144
Compute Orthocount, CC v & « « o L ¢ o o o v o o o o o o+ o o o . 114,121,130,140
Console . v o ¢« o ¢ o o s o o s o o 8 o e e e e e e e e e s s e e e e e e e e 12, 20
Console Fixed - Start BitS '« v v v o v o ¢ o o o o o o o s s s o s o o o« o s oo+ 109
Continuous Initial Segment . . . . . et e s e e s e e e e c e s s e s ... 100
Control Group Indicator Bits . ¢« « ¢ ¢ ¢ ¢ « v o v o o o & e v e e e e e e e e .. 108
Control Memory (see Special Registers)

Control Program, MPC . . . ¢« ¢« v ¢ ¢« ¢ o s o« o e e e e e e e e e e e e 122,141
ControlUnit e e e e e e e e e e e e e e e e e e v s e e w e s s s e w e e s e 4,22

Casequence Counter (see Special Registers)
Cosequence History Register (see Special Registers)

145



INDEX (cont.)

146

Data Words « ¢ v o o v s v o v o o 0 o s o o o o v o o o o . e e e e e e e e 24
Decimal Accumulate, DT . & v v ¢ v v s o o o o o o o « e e e e e e e .. 70,121,136
Decimal Add, DA . . . . . v v v v v v v o C e e e e e e e e ... 66,119,136
Decimal Multiply, DM . . . . ¢ ¢ 4 4 4 4 4 4 v e v v o o o o o o« o o o . 71,120,137
Decimal Subtract, DS. .. .. .. e e e e s e e e e e e e e e e e ... 67,119,136
Decimal System . . . . . e e e e e e e e e e e e e e e e e e e e e e e e e e e e 2
Direct Memory Location Address (see Addres sing)

Direct Special Register Address (see Addressing)

Distributed Read Address Counter (see Special Registers)

Distributed Write Address Counter (see Special Registers)

End-of-Item Word ., . .. ...... C e e e e e e e e e e e ... 31,82,96,116,124
End-~-of-Record Word © o 4 o e e e o s s o e e o s ¢« o e o e 31’ 81: 99; 114’ 121) 131
EndofTape « « « v v o v v e v v v o e e e e e e e e e e e e e e e 95,123
Executive ROUING « o v v 4w v v v v 4 v v v n v v e e e e e e e e e e e . 1
Extract, EX . . .. ... ... ... e e e e e e e e e e e e e e 72, 122 139
FACT (Fully Automatic Compiling Technique) . . . v v v v v o v o o o o o v . R |
Floating-Point Option . . « . « . « + « « . . e e e e e e e e e e e e e e e e 5
Gate . . . . . .. ... e e e e e e e e e e e C e e e e e e ... 63,73,87,128
General Purpose Registers (see Special Registers)

Half Add, HA . . . ... ... ... S e e e e e e e e e e e e e e e 75,120,136
Hexadecimal System . .. . . e e e e e e e e e e e e e e e e e e . 3
Hex Digits (In Decimal NumberS) e e e e e e e e e e e e e e e e e e e e 63
High-Speed Printer (822-3) . . . . v v v v v ¢ o o o o o « e e e e e e e e e e .1t
Hunting for Program Demands (see Multiprogram Control)

. Inactive Address (see Addressing)

Indexed Indirect Memory Location Address (see Addressing)

Indexed Memory Location Address (see Addressing)

Indexed Special Register Address (see Addressing)

Index Registers (see Special Registers)

Indirect Memory Location Address (see Addressing)

Inequality Comparison, Alphabetic, NA ., . .. .. ... e e e v e e . . 84,119,137
Inequality Comparison, Numeric, NN . . . . ... ... ... .... . 85,119,137
‘Input Buffer Interlock Bits . . . . v v v v v v v v v . . e e e e e e e e e 94, 108
Instruction Words . . . + . v v v v v v v u . . e e e e e e e e e e e e e e e 26
Item Transfer, IT . . . . v v v v v v v v v e e e e e e e e e e e e 82,121,139
Less Than or Equal Comparison, Alphabetic, LA . . . . . « . « + « . . 85,120, 137
Less Than or Equal Comparison, Numeric, LN . . . . . . . e «+ « .+ . . 85,120,137
"Logical AND" Function (see Extract)

"Logical Exclusive OR'" Function (see Half Add)

"Liogical Inclusive OR' Function (see Superimpose)

Low-Order Product Register . . . + « v +« « + o . . e s e e e e .. . 46,62,64,73,87



INDEX (cont.)

Main Memory Address = + ¢ + + o o o o 0 o o o 0w
Mask Index Register (see Special Registers)

MaskRegister-ooo--o--o.o--ooco-oo
Modulo-3 Check « ¢ ¢ ¢ « o « « & s v e e s e o s s e o
Multiple Transfer, MT=. « ¢ ¢ ¢ o ¢ o o o o o o o o o
Multiprogram Control (Hunting) « « « « » « « . 13,17,

N-Word Transfer, TN ¢« ¢« ¢« « ¢ ¢ o o o s s o o o o

octalsystem e & 6 o o e e © e e e s o e ® 2 e e 2 s e & .

Off-Line Auxiliary Control (815,816,847}« « « « + « «
OperationCode................ .....
Orthotronic Control « ¢ « ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o s o o
Orthowords =« + + = « o o « « o o o o« + o o o e e e
Output Buffer Interlock Bits . . . .« .« « ¢ ¢« ¢« ¢ o o o
OVETTIOW .6 o o « o o o o o o o o o o s o o o s o s o o

Parity Bit ¢ o ¢ v v ¢ 0 6 6 s 0 o o o 0 s o 0 e e 0 0o
Parity Error Flip-Flop . . . « v ¢ ¢ v ¢« v o ¢ v v o
Partial-Product Locations (Multiplication), . . . . . .
Peripheral Control Units + « « « ¢« « ¢ ¢ ¢ ¢ o o ¢« ¢ o
Peripheral Fixed-Start Bits . . . + ¢ v ¢ ¢ o v o v & &

Positional Notation . . . . . . . . e e e e e e e e e e
Print, PRA,PRD,PRO , . . . ¢« ¢ ¢ ¢ ¢« ¢ ¢ o ¢« s s o s
Proceed, PR . . ... . .. e v s e e e e e e

Program Control Register . . . . . « . ¢« o ¢ ¢ ¢ o .

Program Demand Bits . . . ¢ ¢« ¢ ¢« o ¢ ¢« o o 0 ¢ 0 0 o

Punch Control Unit . . . ¢ ¢« ¢« ¢ o « o o o o s o o o
Punch Control Word . . . . . e e e e e e e e e e e e

Read Address Counter (see Special Registers)

Read Backward, RB . .. .. .. ... e e e e e e e
Read Forward, RF . . . . .. e e e e s e s s e e e e
Record Transfer, RT . ¢« ¢ ¢ v ¢ ¢ ¢ ¢ ¢ o o« o o o « o &
Rewind, RW . .+ ¢+ v v ¢« o o o o & e e e e e e e e

Sequence Counter (see Special Registers)

Sequence History Register (see Special Registers)
Shift Preserving Sign and Extract, SPE . . . . . . ..
Shift Preserving Sign and Substitute, SPS . . . . . . .
Shift Word and Extract, SWE . . . . ¢« ¢ ¢ ¢ ¢ ¢ ¢ o &
Shift Word and Select, SSL.. . . . . . . . e e e e e
Shift Word and Substitute, SWS . . . ... ... ...
Sign Flip-Flop (SGA) . « ¢ v ¢ v ¢ v v o v o o o o o o &
Simulator, S « ¢ ¢ ¢ ¢t v e e e e v e e e e e e e e s 4

P K

C e e e e e e v .. 46,773,115
C e e e e e e e .. 21,45,70
C e e e e e e ... 80,121,138
64,70, 83,93,107, 109, 112, 122

t e e e e s e e s . 79,121,138

e e e e e e s e e e e e 3
o« f e e e s . oo 42,21
e e e e e e e e 27,119,144

e e e e e e e .. 20,114,130
e e e e e e« +21,101,114,130
e e e e e e e e e e . 99,109

...... 63, 65, 68,119, 127
. .. .9,21,107,1416,120,130
e e s s s e s o . 95,101,123
e e e e e e e e e e e e 43
17,94, 100
.o e e . 108
e e e e e e e e e e e e 2
..... .+ .. 105,122,140
e e e e e e .. 112,122,141

e e e e e e e e w . 94,98,108
B 10
.............. 10

e e e e e e s 98,122,140
......... 94,122,140
....... .. 81,121,139
e e e s s e .. . 103,123,140

...... .. . 89,122,139
......... 88,122,139
......... 89,122,139
o v e e e s e e 90,122,139
- e e e e e e 89,122,139
e e e e e e . 62,127
..... 27,30,113,122, 141

147



INDEX (cont.)

Specia]_ Registers e & o s s s s & e s s e = e e e 8 o & e e e e e s e 5, 16, 23,33,49
AU-CU Counters, Numbers 4,2 « + + « . e s 4 4 e e e e e s e 50,70,77,113, 145
Cosequence Counter « « + « « « « « ¢« o « ¢« « s « « « « .50,53,61,77,109,113,124
Cosequence History Register « « « « « « « . . . . . e s+ s s+ s+« . . . 50,55,413
Distributed Read Address Counter =« « « s « « o« « « « « « . .... 50,58,96,123
Distributed Write Address Counter « - + « « + « + « v o « = « . . .50,58,102, 123
General Purpose Registers - + « ¢« ¢ ¢ o v o ¢ v ¢ ¢ s o o o o o o o 50, 58,94, 96
Index Registers . . . . ... ... ..., ... e e e e o o o s 4 s e e 37,49, 55
Mask Index Register « = « « + - « - f e e e e e e e e e e e e e e e . +29,50,56
Read Address Counter « « « v « « o o o o « o o o o o o o « . .50,58,94,96,98,123
Sequence Counter . « « = « « « « + « « o« « « » » 50,53,64,77,83,93,105,109, 116
Sequence History Register .« « « v o & & 4 o v v ¢ ¢ s o o o o o o o « o o . 50,55
Unprogrammed Transfer Register . . . . . .. . . .. . ... .« . . . 50,60,95
Write Address Counter . . « « « « « « + o o . e+« 4 v+ ... 50,58,99,102,123

Special Register Address . . « + ¢« v ¢ ¢« ¢ v 4 4 o« o e et e e e e e e e e e 33

Special Register Words . . . . . . e e e e e e e e e e e e e e e e e e 26

Standard-Speed Printers (822-1) (822 7) ..... e e e e e e e e e e e e e 10

Stopper Address (see Addressing)

Subroutine Library .« « ¢ « ¢« ¢ ¢ 4 4t 0 e i e e e e e e e e e . ¢ e v e e e e 1

"Substitute, SS . ¢ . 4 o 0 4 e o e e e e e e e e e e e e e e e e e e e e .. T4,122,139

Superimpose, SM . . & ¢ v 4 4 s o 4 4 4 s b s e e e et e e e e e e 75,120,136

Tape Control Unit (803) . . . & & & 4 v v 4 v ¢ 4 e o v v v o s v o s o o 5,16,94,100

Tape Protection « « « « v s o ¢ o o « ¢ o o o o & e e e e e e e e e e e e e . 6,101

Tape Unit (804) .+ ¢« v ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o o © e e e e e e e s e e e e e e 5,92

Traffic Control .+ 4 v v 4 o 4 4t 4 6 6 4 o v o o o s o o e e e e . . 13,18,94,100

Transfer Ato BandGoto C, TS. .. . . e e e e e e ... 78,93,106,147,120, 137

Transfer A to C, TX & v v v vt 6 6 v o o v o o o o o o o o o o v v o . .78,120, 137

Typewriter Buffers . . . . .. e e e e e e e e et e e s e e e e e e . . 43,106

Typewriter, Console . . ¢ . v 4t v 4 4 o o o o o o o o o o o o o o o o o o o u 12, 105

Typewriter, Inquiry Station. . . . . . .. T 12,105

Typewriter, Slave . . . « . « . . . . e e e e e e e e e e e e e e e 12,105

Unprogrammed Transfer Register (see Special Registers)
Unprogrammed Transfers .. . . ... .. . . 60,63,65,95,98,104,103,108, 119, 123

Variable-Length Recording . . . .. ... ... e e e e e e e e e e e e e e 6
Vertical-Format Word . . . ... ... .t e e e e e e s e e e e s e e s e 10
Word Add, WA . . . . ¢ i i e e e e e e e e e e e e e e e e e e 67,119,136
Word Difference, WD . .. . .. . ... e e e e e e e e e e e e e 68,119,136
Word Structure . . . . . . . i v e e e e e e e e e e e e e e e e e e 24, 31
Write Address Counter (see Special Registers)

Write Forward, WE . . . . . . . v ¢ v v v v v v oo C h e e e e e e 99,122,140

148



Hore7 wvell
H| Eltiie Data, Procsiug



	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	xBack

