MISSION DESCRIPTION
INTEGRITY CONTROL

CLASS: CC CONCURRENCY CONTROL

Mission Description Runoffs: 12/08/78

- —— - —— = . - = G r s E— . G e e W - — .- AR S GS e A e e e G e -

Functional Description of (C
functional Description
Concurrency control

Concurrency <control exists as a function of integrity control to
control the sharina of resources between terants.

Control will be exerted at two logical levels. The coarse level,
or resource level, 1s for the control of individual resources, or
groups of rescurces to oe controlled as an individual resource,
An example of the first woulo be the control of the sharing of a
file. An example of the second would be the control of a group
of files under one database rame. The fine level, or sutresource
Level, 7s for the control of subsets of the <coarse level
resources, A standard use of this level is the treating of file
control intervals as subresources of the file.

Whenever users wish to cooperatively share resources., they must
express their intent to concurrency control prior to accessing
the resource. This expression of intent 1is wvia the "engueue"
command which identifies the particular resource or subresource

desired and the type of reservation desired. The type of
reservation 1s a statement of the degree to which this user is
willing to share this (sut)resource. The wuser may require

EXCLUSIVE wuse of the resource, in which case he is unwilling to
share the resource with anyone else, or the user may require
SHARED wuse, which means that he is willing to share the resource
with any other user requesting SHARED use. For the coarse Level
of resources, the user may also specify SUBRESOURCE, which means
that he wishes the right to reguest individual subresources of
this resource and 1is willing to share the resource only with
other users making requests in the SUBRESOURCE mode.

Enqueue commands establish resource ™"ownership™”. I1f a user
requests EXCLUSIVE and there is any current owner, a "conflict"”
is detected. 1f 3 user requests SHARED and the current owner(s)
have specified SHARED, or there are no current owners, then the
requestor may be placed on the ownership Llist, Otherwise, a
conflict 1is detected again. I1f a user requests SUBRESOURCE.,
tonflict will result unless there are no current owners, or all
turrent owners have SUBRESOURCE type reservations, In all cases

" of conflict, the requestor is marked on a waiting list for that

resourcer, and his process 1s suspended via the WAIT command,
Resource requests are handled FIFO, so prior waiters will also
cause new requestors to be delayede The process mill wait until
the resource becomes free, a deadlock s detected (see next

68

CLASS: CC
Mission Description Runoff: 12/08/78

paragraph), or until the wait time exceeds a value designated by
the tenant in the recguesting command,

Some subset of the waiting processes can possibly be in a deadly
embrace situation, which <could result in none of the involved
processes ever being awakenec. This can occur in a simple case
if process "A'" holds resource "x" while requesting resource "y"
and simul taneously, process '"B" holds resource "y" while
requesting resource "x", It can Le seen that neither resource
"x" nor "y" will become available until either process "A" or "BR"
is forced to relinquish the resources that they <currently hold,
This particular situation 1is commonly called a "deadlock".
Deadlocks do not occur fregquently in sys tems observed to date.,
and they are ratker expensive to detecte. For these reasons,
concurrency control will perform deadlock detection 1in the
background. That 1s to say, 1t will guarantee that deadlocks
will be eventually detected., but possibly after some set
increment of time has elapsea.

The deadlock cetection mechanism will name the Llist of processes
which are involved in the dee dlock. A distinct procedure will
pick the process(es) which will receive the deadlock status.
when the deadlock is broken, the other processes will proceed.
The process(es) receiving the deadlock status will be required to
either abort or rollback to & commitment point and retry.

At each enqueue, the user supplies a phase number from his P(B.
This number becomes the phase identification of the reservation
for its duration. The gphase number in the PCB will be
initialized to zero at the start of each commitment_unit and will
be incremented by integrity_control as the wuser establishes
intermediate checkpoints to which he wishes to recover. Once a
new phase is initiated, no user dequeue command will be able to
alter a reservation from a prior phase, and all reservation
updates will be to more restrictive reservation types (eg. SHARED
to EXCLUSIVE) with the original phase 1identification of the
reservation remaining unaltered. These policies will insure the
integrity of the user's intermediate checkpoints.

The first time a user updates a shared resource, he must set the
update lock on the associated EXECLUSIVE reservation. This may

be done at the same time the EXCLUSIVE reservation 1is made by

setting the update lock bit in the command block. Once this lock

s sets, only integrity_control is allowed to dequeue the
reservation. Integrity_control will use the Dequeue_all command

available through a restricted entry point. All user accessible
dequeue commands will ignore requests to dequeue update_locked
resources.

69

~

CLASS: CC

¥Mission Description Runoffs: 12/08/78

Ownership of a resource by a tenant will be maintained until the
resource i1s explicitly released by means of a dequeue command,
Dequeue commands available to the tenant will allow him to
dequeue named resources subject to the phase number and
update_lock restrictions described in the preceeding paragraphs,
The tenant may also ceclare a set of current files (resources)
and a set of current sub-resources over those files so that all
non—upaoate locked sub-resources of the <current phase, Which
celong to the current files tut which are not on the current

subresource Liste, are dequeued. This command,
Dequeue_non-current, will allow a database manager to declare to
concurrency_control a set of "current" subresources. The

implicit assumption 1s that allt reservations wWwhich are not
current and not update_locked are not necessary in order to
maintain the <consistency of the database. for example, when
walking an ordered data set, the control intervals searched which
do not contain the prior or current data elements usually do not
have to remain reserved once the target data element is found.

70

CLASS: CC

Mission Description Runoffs: 12/08/78

ALl <changes and references to concurrency control tables will be
mace by concurrency control procedure through the wuse of the
defined command interface.

The basic data structure is illustrated in FIGURE 1. Each data
entry in the structure 1s described telow.

o] Process_entry = PE

one entry for each process holginag resources or wailting
on a resource on behalf of a tenant, points to lists of
reservation ancd waiting entries; located in a Llinear
table indexed by process numter,

o} Resource_control_btlock = RB

one entry per resource known to concurrency_control:’
points to lists of owners and waiters on this resource;,
points to Llists of subresources; {ocated by the RB_ID
token held by the user.

o) Subresource_control_block - S3

one entry per named subresource in use; points to Llists
of owners and waiters on this subresource; located as
uniguely named subresource of designated resource or from
subresource_reservation_entry,

.

o) Resource_reservation_entry - RR
one entry per ownership of resource’ identifies owner
and RB; identifies ownership type, located from the

RR_ID token held by the user.

] Subresource_reservation_entry - SR

one entry per ownetship of a subresource; 1identifies the
owner and the RBs identifies the ownership type:; holds
the wupdate lock: located by the SR_ID token held by the
user,

o EE

71

N S)

L

CLASS: CC
Mission Description Runoff: 12/08/78

e} Resource_waiting_entry - RW

one entry per process waiting for a resource; 1identifies
the waiting process and the reservation type, the entry
is in a FIFO queue pointed to by the RB.

o} Subresource_waiting_entry - SW

one entry per process waiting for a subresource;
identifies the waiting process and the reservation type;
the entry is in a FIFO queue pointed to by the SB.

These data entries will be manipulated from the command interface
through two entry points. Thte first entry point is available to
the buffer manager, the access method, the database manager, and
the batch interface:

o Allocate_RB = EP1

declares a resource to concurrency control; physically
allocates an RB; returns an RB identifying token to be
supplied by the user when referencing this resource 1in
subsequent callss this command never results in a wait.

o Release_RB - EPI1

physically deallocates the RB 1identified by the RB_ID
token, the RB_ID token becomes invalid;, this call never
results in a wait. '

0 Enq_resource - EP1

enqueéues a process on an RB specified by the RB_ID token
returned from the Allocate_RB command, or updates an
existing reservation identified by the RB_1ID and,
optionally, the RR_I1D from the prior enqueue’ the
process also supplies the reservation type, the phase
number, and a maximum wait times concurrency control
will immediately return if the resource ;48 available.,
otherwise, the process will be forced to wait; waits can
result in a time-out, a deadlocks, or a reservation

72

CLASS: CC

Mission Description Runoffs: 12/08/78

.

completed status, an RR_ID token is returned for further
efficient reference to this reservation; when updating a
current reservation, a transition from SHARED to
EXCLUSIVE or from SUBRESOURCE to EXCLUSIVE will cause a
dequeue and an engueue at the head of any existing queue,

o] Eng_subresource - EP1

enqueues a process on an S8 which 1s specified by a
unigue subresource name (SR_name) ., the RR_ID token
returned by the Enqg_resource command, and optionally, the
SE_ID returned from a prior enqueue of this sub-resource
(for updates); the process should also supply the
reservation type., the phase numher, the update lock
setting, and a maximum wait time, concurrency control
will immediately return if the resource s available,
otherwise, the process will be forced to wait; a wait
can result in a3 time-outs, a8 deadlockes or a reservation
completed status;, an SR_ID token is returned for further
efficient refererce to this reservation; multiple calls
for the same resource to update the reservation type and
the wupdate lock setting are allowed, when updating an
existing reservation, a transition from SHARED to
EXCLUSIVE will cause a dequeue and an enqueue at the head
of any existing queue.

(o} Peq_resource - EP1

for all SB's which are children of the RB identified by
the supplied RR_IC token, delete all ownership
reservations of this processs then delete the ownership
reservation of this process on this RB; the RR_ID token
becomes .invalid as well as all SR_ID tokens of all SB
reservations; this command never results in a wait.

o Deq_subresource - EPT

dequeues a process from the SB which is specified by a

unique subresource name (SR_name), the RR_ID token
- returned by the Enqg_resource command, and optionally, the
TR SR_ID returned from t he prior enqueue of this
‘ sub-resource’ the SR_ID token becomes 4dnvalid’ this
command never results in a wait.

73

Mission

CLASS: CC

Description Runoff: 12/08/78

0 Update_lock - EP1

o] Deqg_

the update Llock for the specified SR will be set; the
command will never result Iin a wait,

non-current - EP1

the wuser will supply a list of of RB_ID's and a list of
SR_ID's> for the given Llist of RB_ID's, all SR_ID's not
on the given SR_ID list and whose update locks are not
set, will be deleted:, this command will only affect
entries wWwith the current phase number; the command will
not result in a wait.

The second of these entry points will be available only to

0 Deq_

integrity_control and the batch interface. It will only
need to be used at rollbackss, commits, and process
aborts.,

alt - EPZ

the process will identify itself and a phase number’; all
reservations for the process with a phase greater to or
equal to the supplied phase number will be deleted’
update lLocks will be overridden; this command will never
result in a wait.

- —— - ———— - — - — - - ————— - - — —— — ——— -

Jsage Information of CC

Usage Information

Concurrency control

A. General Description

The wuse

of <concurrency control entails first making the shared

resource known to the function. Each resource must be associated
-with a resource_control_block.

,gfach resources's RB will be explicitly <created and deleted by

=~ FEcommand

from one process on behalf of alt other sharing

processes, A token will be returned from concurrency control by
the Allocate_RB command which will wuniquely ‘identify the RB
aliocated. All subsequent users referring to that *RB -will be

N required

to produce that RB_ID token, All sharers of the

74

S e o —— i . i, v o 2 e o R T P TR e TE WL WB A W e £e vt e g o e = e o -

CLASS: CC

Mission Description Runoff: 12/08/78

resource(s) represented by that RB must therefore have
addressability to that token. After a command to release an RB
has been receiveds, it will be assumed that no subsequent wuser
will produce that RB_ID token, i.e. it must be destroyed by the
Jsera.

Resource reservation commands can be of three mutually exclusive
types:

EXCLUSIVE: request for exclusive use of all subresources’
SHAPED: request for shared use of all subresources:

SUBRESOURCE: request for right to make subresource reservations.

An EXCLUSIVE enqueue will prevent all other enqueue requests for
this resource from being serviced until this process dequeues it.
The process will share the resource with no one., A data manager
would probably want EXCLUSIVE use of a file extent which was to
5e written,

A SHARED engueue will prevent all other EXCLUSIVE and SUBRESOURCE
requests from being honored for this resource until this process
jJequeues it. A process requesting this mode is willing to share
the resource, but only with other users who specify SHARED. An
example of this mode would be the batch allocation of a file with
READ disposition.

A SUBRESOURCE enqueue will prevent all other EXCLUSIVE and SHARED
requests for this resource from being honored until this process
Jequeues it. A process requesting this mode is willing to share
this resource with any other process who has specified
SUBRESOURCE., This enqueue command gives the process the ability
to make EXCLUSIVE and SHARED enqueue requests on subsets of the
resource, These subsets must be agreed upon by all users, the
nembers must have unique names, and the members must be disjoint.
For a database manager, this would mean the ability to control
access at the control interval level. One user may hold control
interval S for update by himself while a group of wusers are
simultaneously sharing control interval 7 for reading.

R

e

A reservation entry token 1is returned to the tenant by each
reservation command., This token should be used by the tenant in
#ll subsequent explicit references to this gseservation. B8y
convention, a zero token will be dinvalid. ““By wusing this
convention both the user and concurrency control will be able to

75

CLASS: CC
Mission Description Runoff: 12/08/78

tell whether a given entry is a valid token,

Once a tenant has secured permission to make subresource
requests, 1t enqgueues on subresources of the parent RB by
identifying the parent via the reservation entry token and
specifying the subresource by a unigue name agreed upon by all
sharing tenants. Allowable subresource reservation requests are
EXCLUSIVE and SHARED, where these requests have the same meanings
as reguests for RB's.,

Subresource_control_blocks will be physically allocated and
released as neeced by concurrency control. SR_ID tokens,
returned to the tenant at enqueue time, can be used only for
subsequent dequeues or update lock handling by that tenant.

A reservation request will be honored immediately if the resource
is available. I1f the requested resource is busy and cannot be
shared due to incompatibility between the current reservation and
the request, then the requestor will be delayed. Tenants will be
delayed by a WAIT on a run-time defined RB_Ffree condition. The
corresponding condition will be met when <concurrency <control
jequeues the last owner of an RB and signals the waiting tenant.
The tenant will wait until a deadlock is detected, the RB becomes
free, or the wait time exceeds a value designated by the tenant
in the requesting comrmand. ‘

Deadlock detection will be done at the discretion of concurrency
control to promote system-wide efficiency. When a deadlock is
detected, the PCU_sequence numbers of the processes involved will
be inspected. The process with the largest PCU_sequence number,
i.e. the youngest PCU, will be selected to recieve the deadlock
status. This process wWwill have one reservation that will be
detected as being involved in the deadlock. The phase number of
that reservation will be passed to integrity control. This will
inform integrity control how far the process must be rolled back
to effectively break the deadlock.

All reservation requests will ©be serviced FIFO. A pending
request for EXCLUSIVE usage will prevent a subsequent request for
SHARED usage from being 1immediately granted even though all
current owners have SHARED usage specified. This policy prevents

a tenant from being indefinitely blocked while waiting as long as

_the current owners eventually terminate.

““Any reservation may be altered by issuing another enqueue command
for the resource. If the reservation type is to be changed, the
user must be prepared to wait and must supply a wait time. The

N phase number obtained from the user's PCB during the original

g\ enqueue will not be updated. It is expected that most use of

/
&

'Jg’f Sy, ;“‘y’ ¥

76

B it S s e it e e I B I 1

\‘\4/.:\

et

CLASS: CC

Mission Description Runoff: 12/08/78

this function will be to effect a transition from SHARED to
EXCLUSIVE on resources and subresources. One exception to the
FIFC policy mentioned in the preceding paragraph will be when an
owner who has specified SHARED, requests EXCLUSIVE, The first
such request which <cannot be immediately granted due to the
existence of concurrent owners, will be placed waiting at t he
head of the reservation List with an EXCLUSIVE request,
Subsequent EXCLUSIVE requests from concurrent owners will be
recognized as a deadlock condition. This exception to the FIFOQ
policy facilitates the standard practice of reading a datatbase
entity, then writing it Later. Any enqueue wWwith the same
reservation type and update Llock setting as the current
reservation will result 1ir no change to the reservation and an
immediate return.

Periodically, for efficiency, a user may wish to release all
subresources which he has reserved which have no currencies. A
command is provided which allows a user to specify a Llist of
resources andg a subset of the subresources of those resources.
ALl subresources of the named resources not listed and whose
update locks are not set (see next paragraph) will be released.
This will apply only to reservations initially made 1in the
current phase, The Last established currencies in prior phases
will not be affected in order that a rolltack can be supported to
a prior phase boundary.

The subresource reservation commands will also support a
mechanism referred to as an update lock. Its primary purpose 1is
to give the user the ability to specify a subresource which s
needed 1in order to recover the PCU. The initial setting of the
lock is specified in the reservation request word. The lock may
be set later by wusing the Update_lock command or by issuing

another engueue command with the lock bit set. Note that an
update Ulock may never be reset. An update locked resource will
"ot released by the Release_non-current command. Updated file

extents should be marked as update locked by the data manager so
that they will be available for possible roliback even though
they may become non-current.

A command 1is provided to dequeue all resources of a process.
Resources and subresources can also be dequeued 1individually by
identifying them explicitly 1in the dequeue commands. These
commands override update locks, but are honored only if the phase
number in the PCB is less than or equal to the .phase when the
reservation was originally established. Once @ phase number is
written in a reservation blocks subsequent references to that

reservation will never cause the phase number to be reuwritten.
' Feiri -

77

i Y VPR T Y VY G- I WY NI e " T Cee vmae e oy o we g o s

)

- .t .- v w.- - - - — . - Y W - B WP W g AL e O g R e £ L oKE B

CLASS: CC

Mission Jdescription Runoff: 12/08/78

B. Parameter Stack & Command Block Descriptions

The first descriptcr on the parameter stack will define the six
word command block described below. The first two words of the
blocx are the return words as definec by system conventions, The
lower 12 bits of the first word will contain the status from each
commanc., The parameters in the block will always have the same
positions in the block for all commands, but only the wvariables
callexs out in the <command descriptions will be used for a
particular command,

The last descriptor on the parameter stack should only be
supplied for the Deq_non-current command. It will define a
subordinate descriptor segrent. This segment contains a
variacle-size array of descriptors pointing to currency and keep
lists,

- - - - - —— - ————— - = = -~

- - - - ——— e TR NP W W TR W M W W R TE WS AR e T MR R M a4 3w A

| Original_return |
V/ITRESIUICur_List_1 Rs_1p I
L/771TYPlLl number | |
o seeto 1 Rt 0
visriin Timer
v skName

- - - A Gy R Gr P s e G S P W e A . - - W A -

Command_block

o) Cur_Llist_number

an 18-bit parameter which is an wunsigned integer
describing the number of currency lists supplied by the
user; there 1is one descriptor for each lists, so this
identifies the number of descriptors to be wused from
the Currency_list_d subordinate descriptor segment.

LA R T

78

P

i

CLASS: CC

Mission Description Runoff: 12/08/78

o]

(]

o]

(@)

o B

RB_1ID

RR_1D

SR_ID

Reserv

an 18-bit token identifying a particular RB, the user
obtains it on the return from the Allocate_RB command.,
the user supplies it for the subsequent Eng_resource
anc Deg_non-current commancs referencing this resource;
it is up tc the user to maintain a mapping of RB's to
particular resources,

an 186=-bit tok en identifying a particular
resource_reservation_entry (RR); the user obtains it
on the return fror the Eng_resource command, the wuser
supplies it for the subseguent Enqg_resource_update,
Deg_resource, and Eng_subresource commands,

an 18-bit token identifying a particular
subresource_reservation_entry (SR)’ the wuser obtains
it on the return from the Eng_subresource command: the
user supplies it for subsequent Enq_subresource_update,
Degq_non-currents, Deqg_subresource_token, and Update_lock
commands/ a zero token is invalid.

ation_type
a 2-bit parameter designating the reservation type
requested, reservation types are explained above’
aliowable values are:

0 - Invalid

1 - EXCLUSIVE

2 - SHARED

3 - SUBRESOURCE.

Update_lock

a 1-bit parameter which is a lock on _the reservation’
once set, the lock cannot be reset and the reservation
will not be dequeued by a Deq_non-current command, the

79

CLASS: CC
BA Mission Description Runoff: 12/08/78

recognized settings are:
0 - reset

1 - set,

o] Timer
a 30-bit parameter specifying the maximum time to wait
while performing this request; the wunits are in
milliseconcs’ a wait time exhausted status will be
returned if this amount of time elapses while waiting
en an enqueue request; specification of 0 time will
result in an immediate return with no wait performed,
out a8 possible status of wait time exhausted.

o] SR_name

a 36-bit Subresource_name which uniquely identifies a
subresource of a named resource;, the user supplies
this name on Eng_subresource and Deqg_subresource_name
commands a name of zero is valid.

N

CLASS: CC

Mission Description Runoff: 12/08/78
| SR_ID_number | RB_ID_number |
V1717070717771 71771 REB_ID |
V1111010777017 77771 RR=-10 |
| o |
| o |
| o |
V1117070000000 0777) RB8_ID |
| SR_ID V7707700107000 707117171
[SR_ID V7727717401000 0771101717)
| o) i
| o) |
| o) |
| SR_ID V17117171111 17117001171

o SR_ID_
o RB_ID_
(o] RB_ID
] SR_ID

-—— - - - —————— = e > - - -

Currency_Llist

number

an 18-bit integer specifying the number of SR_ID's on
the end of the list,

number

an 18-bit integer specifying the number of RB_ID's on
the beginning of the list.

an 18-bit RB_ID previously obtained from an Allocate_RB
commands this list defines the resources whose
reservations will be dequeued.

81

CLASS: CC

Mission Description

an 18-bit SR_ID
command, this Llist,

returned
along with

Runoff: 12/08/78

by the Eng_subresource
the update locks, will

define whici reservations will be kept.

82

T et me B om oo v e Y M orew 2 oM > ows v W

CLASS: CC

Mission Description

C. Command Descriptions

Al locate_RSB
Release_RB
Eng_resource
Eng_subresource
Leg_resource
Deq_subresource
Update_Llock
Deg_non-current

Deg_all

83

Runoff:

12/0¢8/78

T

L

CLASS: CC

Mission Description Runoff: 12/08/78

1. Allocate_RB

use:

output:

input
arguments:

2. Release_RB

use:

output:

input
arguments:

cdeclares a resource to concurrency control;
physically allocates an RB; returns an RB
identifying token to be supplied by the user
when referencing this resource 1in subsequent
calls;, this command never results in a wait.

Status
J - normral return
1 - reguest denied., space is temporarily
exhausted
RB_1D
none

physically deallocates the RB identified by the
RB_ID token; the RB_ID token becomes invalid’
this call never results in a waite.

"Status

0 - normal return
4 - request denied; invalid token supplied

by user
7 - request denied; tenants are enqueued oOn
this RB
RB_ID -

84

CLAass: CC

Mission Description Runoffs:s 12/08/78

3. Eng_resource

use;

output:

input
arguments:

gt

(%7f

engueues a process on an RB specified by the
RR_ID token returned from the Allocate_RB
command, or updates an existing reservation
identified bty the RB_ID and, optionally, the
RR_ID from the prior enqueue;, the process also
supplies the reservation types, the phase numter,
and a maximum wait time, concurrency control
will immediately return if the resource 1is
available, otherwise, the process will be forced
to wait, waits can result in a time-out, a
deaclocks or a reservation completed status/ an
RR_ID token 1s returned for further efficient
reference to this reservation, when updating a
cturrent reservation, a transition from SHARED to
EXCLUSIVE or from SUBRESOURCE to EXCLUSIVE will
cause a dequeue and an engqueue at the head of
any existing qgueue.

Status
0 - normal return
1 - request denied;, space is temporarily

exhausted

2 - request denied; allowing the tenant to
wait would result in deadlock

3 - request denied; Timer elapsed

4 - request denied; invalid token supplied

by user
S - request denied; invalid Reservation_type
RR_1ID
RB_ID

Reservation_type
Timer

RR_1ID (optional)

85

CLASS: CC
Mission Description Runoff: 12/08/78

4, Eng_subresource

use:

enqueues a process on an SB which is specified
LY @8 wunique subresource name (SR_name), the
RR_ID token returned by the Enq_resource
command, and optionally, the SR_ID returned from
a prior enqueue of this sub-resource (for
updates): the process should also supply the
reservation type, the phase number, the update
lock setting., and a maximum wait time;
concurrency control will immediately return if
the resource is available, otherwise., the
process will be forced to wait; a wait can
result in a time-out., a deadlock, or a
reservation completed status; an SR_ID token 1s
returned for further efficient reference to this
reservation, multiple calls for the same
resource to update the reservation type and the
update lock setting are allowed; when updating
an existing reservation, a transition from
SHARED to EXCLUSIVE will ctause a dequeue and an
enqueue at the head of any existing queue.

output:
Status

0 - normal return

1 - request denied:’ space temporarily
exhausted

2 - request denied; deadlock detected

3 - request denieds time-out

4 - request denieds invalid token supplied
by user

S - request denied; invalid reservation_type

"SR_ID
input
arguments:
RR_ID
SR_name

Reservation_type

Update_Llock

PO

Timer e

86

CLASS:
Yission Description

SR_ID (optional)

87

cc

Runoff:

12/08/78

Rt

CLASS: C(C

Mission Description Runoff: 12/08/78

6'

Deg_resource

uses

output:

input
arguments:

for all SB's which are children of the RB
identified bty the supplied RR_ID token, delete
all ownership reservations of this process:; then
delete the ownership reservation of this process
on this RE., the RR_ID token becomes invalid as
well as all SR_ID tokens of all SB reservations:;
this command never results in a wait.

Status
0 - normal return
6 - request denied;, the specified resource
was not reserved by this tenant

RB_ID

RR_ID (optional)

88

CLASS: CC

Mission Description Runoff: 12/08/78

8.

Deq_sutresource

use:

output:

input
arguments:

dequeues 2 process from the SB which s
specified by a unique subresource name
(SR_name), the RR_ID token returned by the
Enq_resource commands, and optionally, the SF_ID
returned from t he prior enqueue of this
sub-resource s the SR_ID token becomes invalid;
this command never results in a wait.

Status
J - normal return
4L - request denied; invalid token supp lied

by user
6 - request denied:; the specified resource
was not reserved by the tenant

RR_ID
SR_name

SR_ID (optional)

89

?.

Update_Llock

use:

output:

input
arguments:

CLASS: CC

Mission Description Runoff: 12/08/78

the wupdate Llock for the specified SR will be
set; the command will never resutlt in a wait,

Status
0 - normal return
4 - request denieds; invalid token supplied
by user

SR_ID

90

Mission Description

CLASS: CC

Runoff: 12/08/78

8. Deg_non-current

uses

output:

input
arguments:

the wuser will supply a Llist of of RB_ID's and a
list of SR_ID's; for the given list of RB_ID's,
all SR_ID's not on the given SR_ID Llist and
whose update locks are not sets, will be deleted’
this command wWwill only affect entries with the
current phase number, the command will not
result in a weit,

Status
0 - normal return
4 - request deniec, invalid token supplied

by user
8 - request denied’ invalid
structure in command blocks

descriptor

Cur_tist_number

Currency_Llist
SR_ID_number
RB_ID_number
RB_ID (RB_ID_number)
SR_ID (SR_ID_number)

bl
S

91

Mission Description

9.

Deqg_all

use:

output:

input
arguments:

CLASS: CC

Runoffs: 12/08/78

the process will identify itself and a phase
number; all reservations for the process
with a phase greater to or equal to the
suppliecd phase number will be deleted’
update locks will be overridden: this
comrand will never result in a wait,

Status
0 - normal return

none

Fa

92

