— D wd e D LD

wv SN0

Mission Description
Process Management
Process Synchronization
CLASS: ps
Table of Contents

2
wait 30
signal 34
reqgcid 38
retcid 41
sfwint IAA



CLASS: ps

Mission Description Runoff: 03/05/79

- .= G S - - - - D A S D S R WS S P R Eh MR GE h AP NP WP DGR GRS W R NP PGP WS Uh D S A A s we > w

Functional Description of ps

Process synchronization exists as a monitor of process management
to do the following two tasks:

0 maintain the integrity of shared data
o synchronize the execution of parallel processes

The basic building block of process synchronization is the notion
of WAIT and SIGNAL. These two constructs are the mechanism by
which one process may communicate with another, Moreover, these
constructs are very useful if a8 process must wait for a
communication from another process without being in execution.
This need for inter-process communication has given rise to the
abstract notion of a condition. A ¢gonditign can be thought of as
a8 queue, TwWwO Operations may be performec on a condition, namely.,
"wWAIT" and "SIGNAL". When a process exacutes a SIGNAL function,
the process enqgueued at the head of the queue 1is again made
eligible for execution (i.e.,, the process is enabled). If there
are no processes enqueued on the condition when the SIGNAL
function is executeds no action is taken (i.e.srthe signal is
forgotten)., Another wuse for these <conditions is in the
notification o0f events. for exampler if a process has reached a
point in its execution where it cannot continue until sonme
subsequent event occurse it can execute a WAIT function on a
condition that has been associated with that event. When the
event occurss, another process SIGNALS the same condition to let
the first process know that the event has occurred.

I1f the important thing is not that some event occurred after a
process WAITed on the associated condition but that it occurred
at all, then this mechanism is not sufficient. To handle this
case a semaphore facility was implemented. A semaphore is a
specialized condition that has a count associated with it, This
count is used to remember the SIGNALS that occur when no process
is enqueued on the condition. Three operations may be performed
on a semaphore: P-gpes V-0opr, and I-gp. When a process executes a
P-pp function the count is looked at and if it s greater than
zZeros this indicates that there have been more SIGNALS than WAITS
performed. In this case the count is decremented by one and the
process continues in execution., If the count is Lless than one.,
then there are no events being remembered and the count is
decremented by one and the process is taken out of execution and
enqueued on the condition,

When a process executes a V-gp function the count is looked at
and if it is negative it is incremented by one and a SIGNAL
operation 1is executed on the condtion. If the count is not
negative it is simply incremented by one and no further action

-2~



CLASS: ps

Mission Description Runoff: 03/05/79

takes place.

When a process execCutes a J-gp function the count is lOOked at
and 1f it is yreater than zero, it is decremented by one and the
process continues executing knowing the event had occurred. If
the count is not greater than zeror, no action is taken and the
process continues in execution knowing that the event has not yet
occurred,

Note that to prevent unauthorized WAITS and SIGNALS on any
arbitrary condition, some process must initiate (request) a
condition, The 1initiating (requestirg) process is returnecd a
condition identifier (CID) which is @ secure token(which really
is an illegal T=15 descriptor). The C(CID must be presented
whenever a P-gp, V-gp or I-gp function is to be performed on the
condition.

desides the abstract concepts of a condition and a semaphore,
several others have been developed, namely, monitor, critical
section, software interrupt, and message semaphore., A mgpitor 1is
a set of data shared among multiple processes and a set of
procedures .which are the only procedures permitted to access
these shared data. The procedures of the monitor may each have
their own private data. The only other data they may access are
the parameters passed when the procedure i1s called.

Only one procedure of a monitor may be executed at a time, If a
subsequent call to a monitor occurs while one of its procedures
is in execution (pby any process), that request must be delayed
until the <current executing process exits the monitor. In this
way potential conflicts resulting frcm multiple accesses to
monitor data are avoided.

€Each procedure of a monitor is designed and implemented so as to
maintain the data invariant of the monitor. In addition, every
monitor has an initialization procedure executed on every monitor
start or restart (monitor <creation) which establishes the
invariant before any calls are performed in normal usage.

Two types of monitors have been defined:

Loop-type o access to the monitor prccedures in this type of
monitor is <controlled by a Lloop gate. When two
processes attempt to call a monitor procedures, one
of the processes Loop on the monitor gate until
the other process exits the monitor, This monitor
must also be in a type-1 critical section (defined
below).



CLASS: ps

Mission Descripticn Runoff: 03705779

queue-type o0 access to the monitor procedures in this type of
monitor is <controlled by a Lloop gate and a
non-message semaphore. When two processes attempt
to <call the same monitor, one of the processes is
enqueued on the semaphore until the other process
exits the monitor, This monitor must also be at
least 1in a type-2 <critical section (definecd
below) .

Both loop-type and queue-type monitors may execute a WAIT, For a
loop-type monitor the monitor is exited and the process is
enqueued on thespecified condition. For 3 gqueue-type monitor the
process is engueued on the specified conditon and the monitor s
exited by that process., If there is another process waiting on
the monitor, it is signalled.

A critical sectign is a3 state that a grocess can enter wWwhich
defines <certain Llimits to the conditions under which the process
will give up control of the processor on which it is executing.

Two types of critical sections have been defined:

type-1 o the process cannot give up cortrol of the processor to
another process nor can it allow software interrupts to
occur for this process. The process can only give up
the processor by executing a wWAIT function. A type-1
critical section is 1implemented by using the inhibit
interrupt feature of the hardware,.

type-2 o the process <can relinquish the processor to other
processes but re-dispatch to the process must be to the
point of interruption within the type-2 <critical
section. That i1s, the process cannot be aborted or have
software interrupts or courtesy calls paid to 1it, or
allow any other exception processing to occur until it
has exited the type-2 critical section.

A softiware ipnterrupt is a mechanism by which a process can be
interrupted by another process, When performed a software
interrupt forces the execution of the target (to be 1interrupted)
process to be continued at the specified "interrupt handling
routine”. The process number (KPX) of the target process and the
entry descriptor to the interrupt handling routine must be’
supplied by the user. The software 1interrupt 1is paid wvia the
courtesy call mechanism from within the dispatcher. The user
should note that a software interrupt for a swapped process or
one within a type-2 critical section will be queued and not paid
until the process is swapped back into core or the process has
exited the type=2 critical section. .



CLASS: ps

Mission Description Runoffs: 03705779

A message semaphore is a semaphore which has associated with it a
two-word message, The message 1is passed 1in the AQ with the
invoked VMSEM macro and it is returned in the AQ from the invoked
PMSEM or TMSEM macro if an event has occurred.

The monitor maintains several lists in order to keep track of
processes. At node 1initialization time there are three lists
which have entries on themn:

o Free Conditions (CON)
o Free Entry Definitions (ENT)
o Assigned Process Definitions (PRD)

In addition there exists two empty lists:

0 Assigned CON's
o Assigned ENT's

——— e En - —n E E En Y R e W W G e e e T - - = e e S R R S - Ye GE S W P TS G G W M M - W - e n e . e -

Usage Information of ps
I. Overview and Introduction

There are a number of macros which when used in conjunction with
process synchronization provide users Jith an easy way of using
both loop-type and queue-type monitors. These macros can be
executed in either slave or master mode. The following pages will
describe each wmacro Dby giving a brief description of the macro
fol lowed by its argument reguirements and any other notes the
user of the macro should be cognizant of. Note, that only the
argument names are given when the macro 1is described below.
However, a glossary containing the meaning of each argument 1is
included following the last macro description,

I11. ICOND - Initialize Condition
A. Description

This macro is providied to initialize conditions for the wuser,
The condition identifer (CID) returned tc the wuser (in the
descriptor space provided by the user) 1is a secure token, This
token takes the form of a T=15 descriptor (an illegal type) which
contains 1in the descriptor base field the protected data., This
descriptor cannot be shrunk and therefore cannot be modified.
This descriptor can be wused by other macros to coordinate
processes by doing WAITs and SIGNALs.

B. Argument List



Mission Description

NAME
ARGD
ARGBD
QTYPE
FLAGS
COUNT
CIDOFF

C. Notes

Index register zero (X0)

NUMBER

CLASS:

- -

Required
Optional
Optional
Reserved
Optional
Optional

ps

is destroyec.

Runoff:

03/05/779



CLASS: ps

tiission Description Runoff: 03/05/79

III. SIGNL - Signal Condition
A. Description

This macro is provided to allow a prccess to notify another
process(es) that some event has occurred. If there are no
process(es) waiting on the conditions, the signal is lost (i.€.r
the event is not rembered). If desired, a process may signal a
condition anu specify that all processes waiting on the condition
are to be signalled rather than just the one on top of the
waiting queue.

B. Argument List

NAME NUMBER USAGE

ARGD 1 Required

ARGBD 2 Optional

REASON 3 Optional

BRDCST 4 " Optional

CIDOFF 5 Cptional
C. Notes

Accumulator register (AR) is Ggestroyec. This function should be
invoked from within a monitor.

-7



CLASS: ps

Mission Description Runoff: 03/05/79

IVe NTRLM - Enter Loop Monitor
A. Description

This macro is used to enter @ loop-type monitor. It shuts the
gate specified by the 'user and increments the loop monitor count
in the Process Control Block (PCB). The wuser must insure that
interrupts are inhibited while executing within a loop-type
monitor.

B. Argument List

NAME NUMBER USAGE

GATOFF 1 Optional
IRNKOD 2 Optional
GATSEG 3 Required
PCBSEG 4 Réquired

C. Notes

Index register zero (X0) is destroyed.



CLASS: ps

Mission Description Runoff: 03/05/79

V. XITLM - Exit Loop Monitor

A, Description

This macro is used to exit a loop-type monitor. It opens the gate
specified by the user and decrements the Loop monitor count in
the P(CB.

B. Argument List

NAME NUMBER USAGE

GATOFF 1 Optional
IRMOD 2 Optional
GATSEG 3 Required
PCBSEG 4 Required

C. Notes

Index register zero (X0) is destroyed.



CLASS: ps

Mission Description Runoff: 03/05779

VI. WAITLM - Wait From Loop Monitor
A. Description

This macro is provided to allow the wuser to perform a WAIT
function on a condition from inside a Lcop-type monitor. If the
condition was initiated with a priority queue the priority may be
specified by the user, A timer may also be specified which will
cause the process to be placed into execution if it has not been
signalled within that time. The WAIT function will open the Lloop
monitor gate specified by the user so that the process will no
longer be in the loop monitor when it resumes execution,

B. Argument List

NAME NUMBER USAGE

ARGD 1 Reyuired
ARGBD 2 Optional
PRIOL 3 Optional
TIMER 4 Optional
CIDOFF b) Optional
GATOFF 6 Optional

C. Notes

Accumulator and quotient registers (AQ) are destroyed. This
function should be invoked only within a Loop monitor.

-10-



CLASS: ps

Mission Description Runoff: 03/05/79

VII., ISEM - Initialize Semaphore
A. Description

This macro is provided to initialize a semaphore. Arguments can
be provided which specify the attributes of the condition and the
initial value of the count can be specitfied. Since the count is a
shared data item it must be in a loop monitor and the gate for
this monitor is in the word before the count. The gate word must
be on an even word boundary.

B. Argument List

NAME NUMBER USAGE

ARGD 1 Required
ARGBD 2 Optional
SEMSEG 3 ‘("Required
ICOUNT 4 Optional
QTYPE 5 Optional
FLAGS 6 Reserved
CIDOFF 7 Optional
GATOFF 8 Optional

Accumulator and gquotient registers (AQ) and index register zero
(x0) are destroyed.

-11-



CLASS: ps

Mission Description k Runoffs: 03/05/79

VII1. TSEM - Terminate Semaphore
A. Description

This macro is used to delete a sSemaphore. The CID must be
returned to the system and the CID is made invalid.

B. Argument List

NAME NUMBER "USAGE

ARGD 1 Required

ARGBD 2 Optional

CIDOFF 3 Optional
C. Notes

Accumulator register (AR) is destroyed.

-12-



CLASS: ps

Mission Description Runoff: 03/05/79

IX. PSEM - P-op Semaphore
A. Description

This macro performs a P-operation on the semaphore specified by
the user. 1f an event has occurred the count is decremented and
the process will continue 1in execution, If an event has not
occurreds, the process will be taken out of execution and enqueued
on the condition wuntil it s signalled or wuntil the timer
specified by the user has elapsed.,

8. Argument List

NAME NUMBER USAGE

PCBSESG 1 Required
ARGD 2 Required
ARGBD 3 Optional
SEMSEG 4 Optional
PRIOL 5 Optional
TIMER 6 Optional
CIDOFF 7 Optional
GATOFF & Optional

C. Hotes

Accumulator and guotient registers (AG) and index register zero
{(X0) are destroved. There are two exits from this macro, EXIT #0
and EXIT #1 (defined below).

-13-



CLASS: ps

Mission Description Runofts: 03/05/79

Xe VSEM - V-0op Semaphore
A, Description

This macro performs a Y-operation on the semaphore specified by
the user. If any process(es) are enqueued on the condition., the
one at the front of the queue will be signalled. If tnere are no
process(es) enqueued, t he event will be remembered by
incrementing the count field,

B. Argument List

NAME NUMBER USAGE

PCBSEG 1 Required
ARGD 2 Required
ARGBD 3 Optional
SEMSEG 4 Optional
REASCN ) " Optional
CIDOFF 6 Optional
CLTOFF 7 Optional

C. Notes

Accumulator and quotient registers (AG) and index register zero
(X0) are destroved. There are two exits from this macro, EXIT #O
and EXIT #1 (defined below).

-14=-



CLASS: ps

Mission Description Runoff: 03/05/79

X1, TSTSEM - Test Semaphore

A. Description

This macro provides the user with the atility to test if an event
has occured, If so, the count field is decremented by one. If no
events occurred, the process doves not wait but continue in

execution,

B. Argument List

NAME NUMBER USAGE
GATOFF 1 Optional
IRMOD 2 Optional
GATSEG 3 Requireo
PCBSEG 4

Required
C. Notes
Accumulator register (AR) and index register zero (X0) are

gestroyed. There are two exits from this macros, EXIT #0 and EXIT
#1 (defined below).

-15-



. CLASS: ps

Mission Description Runoff: 03/05/79

xII. INITQ@M - Initialize Queue Monitor
- A. Description

This macro 1initializes a queue-type monitor. Since a queue
monitor is realized with a semaphore, this macro simply
initializes a semaphore with an initial count of one. This
semaphore can then be used for queue monitor operations.

B. Argument List

NAME NUMBER USAGE

ARGD 1 Required
ARGBD 2 Optional
SEMSEG 3 Required
QTYPE 4 Optional
FLAGS 5 Reserved
CIDOFF 6 Optional
GATOFF 4 Optional

Ce Notes

Accumulator and quotient registers (AQ) and index register zero
(XC) are destroyed,



CLASS: ps

Mission Description Runoff: 03/05/79

XIIl. TERMQGM - Terminate Queue Monitor

A. Description

This macro terminates a queue-type monitor, This is simply a
termination of the semaphore used by the monitor. After this 1is
executedr, No more queue monitor operaticns may take place using

this semaphore,

B. Argument List

NAME NUMBER USAGE

ARGD 1 Requireg

ARGBD l Optionaltl

CIDOFF 3 Optional
C. Notes

Accumulator register (AR) is destroyed.

-17-



CLASS: ps

Mission Description Runoff: 03/05/79

XIVe NTRQM - Enter Queue Monitor
A. Description

This macro allows the user to enter a gqgueue-type monitor. If the
monitor is busye., the process will be taken out of execution and
engueued on the <condition associated with the qQqueue monitor
semaphore. When the monitor becomes available (via XITQam) the
condition will be signalled and the process will be placed into
execution., This macro also places the process into a type-=¢
critical section and increments the count field in the P(CB.

B. Argument List

NAME NUMBER USAGE

PCBSEG 1 Required

ARGD 2 . Reaquired

ARGBD 3 Optional

SEMSEG 4 Required

PRIOL 5 Optional ‘
TIMER 6 Optional

CIDOFF 7 Optional

GATOFF 8 Optional

C. Notes"

Accumulator and guotient registers (AQ) and index register zero
(XU) are destroyed. Because this macro invokes the PSEM macro its
exits are the same as those for the PSEVM macro.

-18-



CLASS: ps

Mission Description Runoff: 03/05/79

XV. XITQM - Exit Queue Monitor

A. Description

This macro allows the user to exit a queue-type monitor. A
V-operation is performed on the monitor semaphore and if some
process(es) are engueueds, the one at the front of the queue Le
signalled. The uSer process exits the type-2 critical section,

B. Argument List

NAME NUMEBER USAGE

PCBSEG 1 Requirec
ARGD 2 Required
ARGBD 3 Optional
SEMSEG 4 Optional
REASON 5 Optional
CIDOFF 6 Optional
GATOQFF 7 Optional

C. Notes

Accumulator and quotient registers (AQ) and index register zero
(X0) are destroyed. Because this macro invokes tne VSEM maCro 1ts
exits are the same as those for the VSEM macro.

-19-



CLASS: ps

Mission Description Runoff: 03/05/79

XVl. WAITQM - Wait From Queue MoOnitor
A. Description

This macro allows a8 user to wait on some event from a queue-type
monitor. A V-operation is performed on the monitor semaphore and
if some process(es) are -engueued, the one at the head of the
Queue is signalled. The wuser process then performs a WAIT
function on the condition specified for the event., It s
important to note that the type-2 critical section is not exited
until the process is placed back intc execution after the WAIT
has been broken,., Therefore, the process cannot be interrupted by
a software interrupt while waiting in this situation, After this
macro is finished, the process is no tonger within the qQqueue
monitor.

B. Argument List

NAME NUMBER - USAGE

PCBSEG 1 Required
SARGD 2 Optional
SARGBD 3 Optional
SEMSEG 4 Optional
REASON 5 Optional
WARGD 6 Required
WARGUD 7 Optional
PRIOL 8 Optional
TIMER 9 Optional
SCIDOF 10 Optional
WCIDOF 11 Optional
SGATOF 12 Optional
WGATOF 13 Optional

C. Notes

Accumulator and quotient registers (AQ) and index register zero
(X0) are destroyed.

-20~-



CLASS: ps

Mission Description Runoff: 03/05/79

XVII. NTR2CS - Enter Type-2 Critical Section
A, Description

This macro enters a type=2 critical Section. A nesting count of
type-2 critical sections is kept in the P(CB and is incremented.
while in a type-2 critical section, a process will ©be
re-dispatched only at the point of interruption. Thus, all other
events, (such as, termination, exception processings, software
interruptse courtesy calls, etce.) are delayed until the process
is no lLonger within the type=-2 critical section,

B. Argument List

NAME NUMBER USAGE
PCBSEG 1 Required
C. Notes

Accumulator register (AR) is destroyed.

-21-



CLASS: ps

Mission Description Runoff: 03/035/79

XVIII. XIT2CS - Exit Type=2 Critical Section
A. Description

This macro exits a type-2 critical section. The nesting count of
type-2 critical sections in the PCB 1is cecremented.

B. Argument List

NAME NUMBER USAGE
PCBSEG 1 Required
C. Notes

Accumulator register (AR) i1s destroyed.

-22-



CLASS: ps

Mission Description Runoff: 03/05/79

XIX, IMSEM - Initialize Message Semaphore
A. Description

This macro is provided to initialize message semaphores for the
user. A condition is requested and the semaphore gate is opened.
The wuser is allowed to define the queueing strategies for the
process and the messages, where either can be queued FIFO, LIFO
or based On some priority.

B. Argument List

NAME NUMBER USAGE

ARGD 1 Required
ARGBD 2 Optional
SEMSEG 3 Required
FLAGS 4 Reserved
PRTYPE 5 Optional
MQATYPE 6 Optional

C. Notes

Accumulator and qguotient registers (AQ), operand descriptor
register zero (0ODR0O) and index regiter zero (XU) are destroyed.

-23-



CLASS: ps

Mission Description Runoff: 03/05/79

XX. PMSEM - P-0op Message Semaphore
A. Description

This function performs a P-operation on the message semaphore
specified by the user. If an event has occurred the two-word
semaphore message 1is put into the AQ for the user., If no event
occurreds, a WAIT is performed. If the WAIT is broken by a reason
cther than a SIGNAL no semaphore message is returned in the AQ.

B. Argument List

NAME NUMBER USAGE

PCBSEG 1 Required
ARGD 2 Required
ARGBD 3 Optional
SEMSEG 4 ‘,'Required
PRIOL 5 Optional
TIMER 6 Optional

C. Notes

Accumulator and quotient registers (AQ), operand descriptor
register zero (0ODR0O) and index regiter zero (X(3) are destroyed.
The message queue 1index registers LPRIOR, LNEXT and LCURR
(defined below) are updated.

-24-



CLASS: ps

Mission Description Runoff: 03/05/79

e
XX1. TMSEM - Test Message Semaphore

A. Description

This function performs a test on the message semaphore specified
by the user. If an event has occurred the two-word semaphore
message is put into the AQ for the user and the semaphore count
is decremented bty one. 1f no event occurred, no mesage is
returned and the process does not wait but continue its
execution,

B. Argument List

NAME NUMBER USAGE

PCBSEG 1 Required

SEMSEG 2 Regquired
C. Notes

Accumulator and quotient registers (AQ), ©operand descriptor
register 2ero (ODR(C) and index regiter zero (X0) are destroyed.
The message queue index registers LPRIOR, LNEXT and LCURR
(defined below) are updated. '



CLASS: ps

Mission Description Runoff: 03/05/79

XXII. VMSEM - V-op Message Semaphore
A. Description

This function pertorms a V-operation on the message semaphore
specified by by the user, If any process(es) are enqueued on the
condition, the one at the front of the cueue 1is signalled and tnhe
two-word semaphore message is passed to the waiting process. If
no process 1s waitings the event is remembered and the two-word
message is stored into the next available message qgueue.

8. Argument List

NAME NUMBER USAGE

PCBSEG 1 Required

ARGD 2 Required

ARGBD 3 Optional

SEMSEG 4 Required

MFRIO 5 Optional
C. Notes

Accumulator and quotient registers (AQ), operand descriptor
register zero (0DR0O) and index regiter zero (xJ) are destroyed.
The message gqueue index registers LPRIOR, LNEXT and LCURR
(defined below) are updated.

glossary of ps

This section gives a brief description of the terms contained in
the argument lists for the preceding macros.

EXIT #0 o this is the first instruction following the macro call.,
Return to this lLocation implies that the invoked PMME
was executed successfully.

EXIT #1 o this is the second instruction following the macro
call. Return to this Location implies that the invoked
PMME was not executed successfully. It is the
responsibility of the macrc user to interpret the
meaning of the return code as returned from the invoked
PMME.

.ARGD o this operand descriptor register (ODR) frames the
arguments for the invoked PMME. This argument must not
be in ODRO if ARGBD is not specified and any other
optional arguments are specified. ARGD will frames two
or three descriptors/vectors depending upon the invoked
PMME, the first of which must be ARGBD.

-26~-



CLASS: ps

Mission Description Runoff: 03/05/79

ARGBD

QTYPE

FLAGS

COUNT

CIDOFF

REASON

BRDCST

GATOFF

IRMOD

this ODR <contains the descriptor which frames the
argument block for the invoked PMME. If this argument
is not specified it will be loaded into ODRO from the
first descriptor/vector framed by ARGD if any other
optional argument is specified, If none of those
arguments are given and ARGBD is not specifieds, it is
assumed that the user has already 1initialized the
argument block. Depending wupon the function, the
argument block can be either 3, 4 or 5 words with the
first two words containing return codes, The remaining
words contain the request data for the invoked PMME.

a literal which describes the queueing strategy to be
maintained for processes waiting on a condition. The
possible literal argument can be *'F*', 'L' or 'P', which
respectively indicates a First=in,First-out (FIFO).,
Last=in,First-out (LIFO) or priority gueueing strategy
to oe use%.‘lf not specifieds, FIFO 1is assumed.,

this argument is reserved for compatability and 1is no
lLonger relevant to the usSer,

this is the number of CID's being requosted and 1if not
specified will be set to one.

this is the offset which specifies where in the segment
the CID can be found/saved. If not specified it 1is
assumed to be zero. If specified this argument can have
the form <constant> or the form (<constant>,<IRmod>)
where either part is optional.

this is the code that can be passed to a signalled
process to let it know why it was signalled. The range
for the reason code is 0 <= REASON <= 2047. 1f not
specified it is set to zero. If specified the argument
can be of the form <constant> of the form
(<constant>,<IRmod>) where either part is optional.

if specified this argument must be the literal 'B'. If
given all processes currently waiting on the specified
cocndition will be signalled.

this is the offset which specifies where in the segment
the semaphore gate is found. If not specified it s
assumed to be zero.

this is the index register modification to be applied
during address development of the semaphore gate., If
not specified no index register modification is
applied.

-2?-



CLASS: ps

Mission Description ' Runoff: 03/05/79

GATSEG o

PCBSEG o

PRIOL o

TIMER o

SEMSEG o

ICOUNT o

SARGD o

SARGBD o

WARGD o

WARGBD o

P
this i1is the ODR modification that is used to reference
the semaphore gate.

this is the ODR modification that is used to reference
items within the Process Control Block (PCB).

this is the priority Llevel (0-63) with Wwhich the
process will wait on the specified condition. This
argument is assumed to be zeroc if it is not specified.
If the condition was not requested with a priority, it
will be ignored.

this is the time Limit (in milliseconds) beyond which
the process is wunwiiling to wait for a SIGNAL. This
argument can take either of three forms: (1) null., in
which a default timer is used, (ii) "MAX", in which a
timer of 30 bits all set to one (the largest allowable
value) i1s used, and (iii) a symbolic location/constant.
(I1I) <can further be specified 1in either of the
following forms: <constant>s, (<constant>,<IRmod>) or
(<constant>,<IRmod>,<0DRmod>) where either part s
optional.

this ODR frames the segment containiny the gate and
count field to be used by the semaphore. The gate is at
the location specified by GATUFF and the count field 1is
at the location plus one., This argument must not be 1in
ODRO 1f ARGBD 1is not specified.

the value with which tne count field in SEMSEG will be
initialized. This argument is assumed to be zero if
not specified.

this ODR 1is exactly as ARGD in its nature except that
it specifically frames the arguments for PMME SIGNAL
for the WAITQM macro.

this ODR is exactly as ARGHBD in its nature except that
it specifically frames the argument block for PMME
SIGNAL for the WAITQM macro.

this ODR is exactly as ARGD in its nature except that
it specifically frames the arguments for PMME WAIT for
the WAITQM macro.

this ODR is exactly as ARGBD in its nature except that

it specifically frames the argument block for PMME WAIT
for the WAITQGM macro.

-28-



CLASS: ps

Mission Description Runoff: 03/7/05/79

SCIDOF o

WCIDOF o

SGATOF o

WGATOF o

PQTYPE o

MQTYPE o

MPR1O o

LPRIOR o

LNEXT o

LCURR o

this offset is exactly as CIDOFF in its nature except
that it specifically is used as the offset to the CID
for PMME SIGNAL for the WAITQM macro.

this offset is exactly as CIDOFF in its nature except
that it specifically 1s used as the offset to the CID
for PMME WAIT for the WAITQM macroe.

this offset is exactly as GATOFF in its nature except
that it specifically is used as the offset to the gate
for PMME SIGNAL for the WAITQM macro.

this offset is exactly as GATOFF in its nature except
that it specifically is used as the offset to the gate
for PMME WAIT for the WAITQM macro.

this is the process gueueing strategy. It has the same
function and conventions as QTYPE.

this is the message qQqueueing strategy. It has the same
function and <conventions as QTYPE. The default 1is
'priority’',

an integer indicating the index register containing the
priotity (0-63) associated with the V-operation used 1in
the VMSEM macro. This argument is relevant only if the
Queue ing strategy was defined as ‘'priority' at
semaphore initialization (via IMSEM), The default value
of priority is zero., Index register zero (X0) may not
be used.

this index register contains the pointer to the prior
message (gueue entry, Index register four (X4) is the
detault register if LPRIOR is not set by the user.

this index register contains the pointer to the next
message qQqueue entry, Index register two (X2) is the
default register if LNEXT is not set by the user.

this index register contains the pointer to the current

message queue entry, Index register three (X3) 1is the
default register if LCURR is not set by the user,

-2G-



CLASS: ps
FUNCTION: wait

Mission Description Runoff: 03/05/79

Functional Description of wait

This function provides the user with the ability to suspend the
execution of a processe. If a process has reached a point in its
execution where it cannot continue until some subsequent event
occurs, then this function should be wused. A time value (in
milliseconds) may be specified which will cause the suspended
process to resume execution 1f it has nct been signalled within
that time, This function will open the Lloop monitor gate
specified by the user so that the process will no Llonger be in
the loop monitor when execution i1s resumed.

- W - - - T e e EE G W S G G T T G A N T AR W e G W e W T WA G SRR GE TR P TR P E R Gr s W S W W S e

Usage Information of wait

The wait function has two externally visible interfaces, one for
privileged programs executing in master mode (.CALL) and one for
slave mode users (PMME). The .CALL interface will be described
first followed by the PMME interface.

-- .CALL Interface =--
Coding Format: «CALL MSYNC.I

lnput State:
Condition Identifier (X1)
Gate Pointer (ODRZ2)
Time Limit (QR)

Qutput State:
Return Code (X0)
Reason Code (X2)

Argument Declaration:

dcl 01 Return_Code,
02 Fill Bit (2).
02 Result Bit (16); /* O
3
4

Successful
Timer Runout
Software Interrupt */

-30-



CLASS: ps
FUNCTION: wait

Mission Description Runoff: 03/05/79

dcl 01 Reason_Code,

dcl 01

dcl 01

del O

02 Fill Bit (6).,

02 Reason Fixed Bit (12); /* 0 = Null
-1 = Timer Runout
>0 = Via SIGNAL =/

Condition_Ildentifier,
02 CI1D Bit (18)7; /* This is the CID pointer
returned by a call to REQCID =/

Gate_ptr,

0¢ Address 81t (18), /* Gate offset =*/

02 Gate_Seg DESC (0),; /* This segment must contain
the monitor gate which will
be opened x/

Time_Limit, 4

02 Priority_tevel Bit (6), /* This is the priority
level with which the
process will wait on
the condition 1f the
condition was reqgquested
with priority =*/

02 Time Bit (30); /* Time (msecs) (0 = Default) =/

-31-



CLASS: ps
FUNCTION: wait

Mission Description Runoff: 03/05/79

Coding format

-- PMME Interface =--

PMME WAIT

Input Variables:

Argument Block (.PS+0)
Condition Identifier (.,PS+1)
Gate Segment (.PS+2)

Argument Declaration:

dcl 01 Argument_8lock.,

02

02

02

02

02

Immediate_Return_Code,

03 Mocdule_Number Bit (12),
03 Entry_Point Bit (6),
03 FiLll Bit (2). :
03 Return Bit (18), /= Successful

Illegal CID

Timer Runout

Software Interrupt =/

N s O
wononu

Original_Return_Code.,

03 Module_Number Bit (12),
03 Entry_Point Bit (6),
U3 Fill Bit (2),

03 rReturn Bit (18), /* O Successful
Illegal CID
Timer Runout

Software Interrupt */

1
3
4
Offset_Liste,

03 CID_offset Bit (18), /*x CID offset */
03 Gate_offset Bit (18), /* Gate offset =x/

Reason_Coder
D3 Fill Bit (24),

03 Reason Fixed Bit (12), /* 0 = Null
-1 = Timer Runout
>0 = Via SIGNAL */

Time_Limit,

03 Priority_Level Bit (6), /*x This is the priority
tevel with which the
process will wait on
the condition if the
condition was made
with priority =/

03 Time Bit (30), /* Time (msecs) (0 = pefault) =*/

-32-



Mission Description

CLASS: ps
FUNCTION: wait

Runoff: 03/05/79

dcl 01 Condition_Identifier DESC (1);

This frames the token provided by the call to PMME REQCID
and is used to identify the condition being waited on.

The token is an illegal descriptor (T7T=15) with bits 0-35 of
word 1 peing the condition identifier anc bits 0-17 of

word 0 being the key and is locatec at the offset specified
by CID_cffset, +/

del 01 Gate_Segment DESC (O0);
This descriptor frames the segment in which the gate
resides at the offset specified by Gate_offset, */

-33-



CLASS: ps
FUNCTION: signal

Mission Description Runoff: 03/05/779

Functional Description of signal

This function permits a process to notify (signal) another
process(es) that some event has occurred. If there is some
process queued waiting on a condition, then the process is
re-entered 1into the dispatch queue. If there are no process
waiting, the signal is ignored. If the broadcast option of this
function 1is used, then all processes waiting on the specified
condition are signalled rather than just the one on top of the
waiting queue.

e G e A . G e - S e S W - - P G h - S wP W U e M WS GE GA WS GR WL N R S S S S W S W R R S w E w w w -—

Usage Information of signal

The signal function has two externally visible interfaces, one
for privileged programs executing in master mode (.,CALL) and one
for slave mode wusers (PMME) ., The +CALL interface will be
described first followed by the PMME interface.

-- +CALL Interface --

Coding Format: JCALL JMSYNC,2

Input State:
Condition Identifier (X1)
Reason (Code (X2)

Output State:
Return Code (X0)

Argument Declaration:

dcl 01 Return_Code,
02 Fill Bit (2).,
02 Return Bit (16); /*x
2
3

Successful
Queue Empty
Program Not Enabled =*/

nnn

dcl 01 Reason_Code.,
02 Broadcast Bit (1), /x If this bit is on, all
. processes currently waiting
on the condition Wwill be

-34-



Process Synchronization

CLASS: ps
FUNCTION: signal

Mission Description Runoff: 03705779

signalled */
2 Fill Bit (5),
02 Reason Fixed Bit (12), /* This code will be passed
to the signalled process
via its reason code «x/

dcl 01 Condition_Identifiers
02 CID Bit (18); /* This is the CID pointer
returned by a call to REQCID =*/

-35-



CLASS: ps
FUNCTION: signal

Mission Description : Runotf: 03/05/79
\

-- PMME Interface --
Coding Format: PMME SIGNAL

Input variables:
Argument Block (.PS+0)
Condition Identifier (,PS+1)

Argument Declaration:

decl 01 Argument_Blockes
C2 Immediate_Return_C(Code.,
03 Module_Number 8Bit (12).,
03 Entry_Point Bit (6),
C3 Fill Bit (2),
03 Return Bit (16), /* O Successful
Illegal CID
Queue Empty
Program Not Enabled =/

1
2
3
02 Original_Return_Cocde,
C3 Module_Number B1t (12),
03 Entry_Point B8it (6),
33 Fill Bit (2),
03 Return Bit (16, [+ Successful
Ittegal CID
Queue Empty
Program Not Enabled =/

wWnNn - O
W nu

U2 Reason_Code.,

03 CID_offset Bit (18), /* CID offset */

03 Broadcast Bit (1), /* If this bit is ons all
processes currently
waiting on the condition
will be signalled =/

03 Fill Bit (S),

03 Reason Fixed Bit (12), /* O

-1
>0

Null
Timer Runout
Via SIGNAL =*/

nnunn

dcl 01 Condition_Identifier DESC (1),

/* This frames the token provided by the call to PMME REGCID
and is used to identify the condition being waited on.
The token is an illegal descriptor (T=15) with bits 0-35 of
word 1 being the condition identifier and bits 0-17 of
word O being the key and is located at the offset specified

-36-



CLASS: ps
FUNCTION: signal
Mission Description Runoff: 03/05/79

by CID_offset. */

-37-



CLASS: ps
FUNCTION: reqcid

Mission Description Runoff: 03/05/79

- - - - - SR S =S AR R R S WS G WS WS AR R S S R S S S G S G SR S G EP GP S EE NS R S G D R W P S An W W W e

functional Description of reqgcid

This function returns upon request one or more condition
identifiers (CIDs) inn the form of secure tokens., These tokens,
which really are illegal T=15 descriptors, provide protected data
that <cannot be modified. These descriptors are the basic
constructs wused to coordinate WAITs and SIGNALS among processes.

- - - e - - - W W S T Eh R G S W W S e e W N G W E GE WS G E G EE P GE WS GE W W R P WP W W e G e W e W

Usage Information of reqcid

The reqcid function has two externally visible interfaces, one
for privileged programs executing in master mode (.CALL) and one
for slave .mode wusers (PMME)., The CALL interface will be
descrived first followed by the PMME interface,

-=- .CALL ;nterface --
Coding Format: «CALL .MSYNC.,3

Input State:
Request Data (X1)
Block Pointer (P2)

Qutput State:
Return Code (Xx0)
Request Data (X1)

Argument Declaration:

dcl 01 Return_Code,
02 FiLl Bit (2).,
02 Return Bit (16); /+ O Successful
Request Not Fulfilled

Count Was Zero *x/

-
" un

del 01 Request_bDatar

02 Fill Bit (&),

02 Queue_Type Bit (2), /% FIFO
LIFO
Priority
Undefined =/

WM =20
wauwuwun

-38-



CLASS: ps
fFUNCTION: regcic

Mission Description Runoff: 03/05/79

02 Return_Count Bit (6), /* Output */
02 Reguest_Count Bit (6); /* Input =*/

dcl 01 Block_Pointer,
02 Address Bit (18),
02 Block_Seyment DESC (0)7 /% The CIDs returned are
18 bit entities and
each one is returned
in the upper half =x/

-39-



CLASS: ps
FUNCTION: reqcid

Mission Description Runoffs: 03/05/79

Coding Format:

PMME Interface --

PMME REQCID

Input Variables:

Argument Block (.PS+0)
Block Segment (.,PS+1)

Argument Declaration:

dclt 01

Arg
02

02

02

ument_Blocke

Immediate_Return_Code,

03 Module_Number B3t (12),

03 Entry_Point Bit (6).,

03 FilL Bit (2),

03 Return Bit (16)s, /* O
1
2

Successful
Request Not Fulfilled
Count Was Zero */

Original _Return_Code,

03 Module_Number 3it (12),

03 Entry_Point Bit (6),

03 Filt Bit (2),

03 Return B8it (16), /* O
1
2

Successful
Request Not Fulfilled
Count Was Zero */

Request_Data.,
03 start_offset Bit (18), /* Starting offset =*/
03 Fill Bit (&)

03 Queue_Type Bit (2), /*x 0 = FIFO
1 = LIFO
2 = Priority
3 = Undefined */

03 Return_Count Bit (6), /* Output =/
03 Request_Count Bit (6); /* Input =*/

dcl 01 Block_Segment DESC (1); /* The CIDS returned are

illegal descriptors

(T = 15) and each one is
returned in the two-word

pair starting at the
location specified by
Start_offset «/

-40-



CLASS: ps
FUNCTION: retcid

Mission Description Runoff: 03/05/79

- D S D TP ey e W W S S AR W R D e ae W G R WS NP G R WE W WE EE R G e WS G W WP S WR AP WS W AP W We W e -

Functional Description of retcid

This function deletes one or more condition identifiers (CIDs) as
requested by the user. Once made invalid the returned CIDs can no
longer be used to cooridnate WAITs and SIGNALs between processes,

- e = S G S S W S A s e e e P O TR G G Y G W W G TS W G W e T T S W e - -

Usage Information of retcid

The retcid function has two externally visible interfaces, one
for privileged programs executing in master mode (.CALL) and one
for slave mode wusers (PMME). The .CALL 1interface will be
described first followed by the PMME interface.

-- «CALL -Interface --
tt

Coding fFormat: «CALL MSYNC,4

Input State:
Request Data (X1)
3lock Pointer (PZ)

Output State:
Return Code (Xx0)
Request Data (X1)

Argument Declaration:

decl 01 Return_Code.,

02 Fill Bit (2).,

02 Return Bit (16); /* 0 Successful
Someone Waiting

Count Was Zero */

—
wonoan

dcl 01 Request_Data,
02 Fill Bit (&),

02 Queue_Type Bit (2), /* (0 = FIFO
1 = LIFO
2 = Priority
3 = Undefined =/

02 Return_Count Bit (6), /* Jutput =*/
02 Request_Count Bit (6)7; /* Input */

-4 -



CLASS: ps
FUNCTION: retcid

Mission Description Runoff: 03/05/79

dcl 01 Block_Pointer,
02 Address Bit (18),
02 3lock_Segment DESC (0>, /* The CIDs returned are
: 18 bit entities and
each one is returned
in the upper half =/

42~



CLASS:
FUNCTION:

ps
retcid

Missjion Description

Coding Format:

- PMME Interface --

PMME RETCID

Input Variables:

Argument Block (.PS+0)
Block Segment (,PS+1)

Argument Declaration:

dcl 01

decl 01 Block_Segment DESC (1);

Argument_Blocks

0¢

02

02

Immediate_Return_Code.,

03 Module_Number Bit (12)

03 Entry_Point Bit (6),

03 Fitl Byt (2),

0% Return Bit (16), /* 0
1

2

3

Orioinal_Return_Code,

03 Module_Number Bit (12)

N3 Entry_Point Bit (6),

03 Fill Bit (2),

03 Return Bit (16), /% 0
1

2

3

Request_Data.,

03 Start_offset Bit

03 Fill Bit (4),

03 Queue_Type Bit (2),

(18).,

/ *

03 Return_Count Bit (6),
03 Request_Count Bit (6),

-43-

’

Wouonou

’

/

Runoffs: 03/05/79

Successful
Someone wWaiting
Count Was Zero

Request Not Fulfilled »/

Successful

Someone Waiting

Count Was Zero
Request Not Fulfilled =/

/* Starting offset =x/
FIFO

LIFO
Priority
Undefined
* OQutput =*/

/* Input */

0
1
2
3 */

/* The CIDs returned are

illegal descriptors

(T 15) and each one is
returned in the two-word
pair starting at the
location specified by
Start_offset =*/



CLASS: ps
FUNCTION: sfwint

Mission Description Runoff: 03/05/79

- - - - T e - S G h G EE L S G S S GRS G N S GEEE TH e T TR U GRS W D WS e W A e e e

Functional Description of sfwint

This function allows a process to interrupt another process.
Specifically, the execution of the target (to be interrupted)
process is forced to a specific "interrupt handling routine" at
the next dispatch to the target process.

- P T S " W W W W e e S D W D A D SR G D S R G T e e arer W S AP W AEEE W A W W WP P e G Eh Ee s e W En e

Usaze Information of sfwint

The sfwint function has two externally visible interfaces, one
for privileged programs executing in master mode (,CALL) and one
for slave moce users (PMME), The JCALL interface will be
described first followed by the PMME interface,

-- <CALL Interface --
Coding Format: «CALL JMSYNC,5S

Input State: '
Target Process (AU)
User Entry Descriptor (ODRZ2)

Qutput State:
Return Code (x0)

Argument Declaration:

dcl 01 Return_Cocde,
02 Fill Bit (2).
02 Result Bit (16);, /* 0
1

Successful
Interrupt Not Paid =/

dcl 01 User_Entry_Desc DESC (11);
/* Descriptor to segment where control is to be passed
after the software interrupt has been paid =*/

-44-



CLASS: ps
FUNCTION: sfwint

Mission Description Runoff: 03/05/79

-- PMME Interface =--

Coding Format: PMME SFWINT

Input Variables:
Argument Block (.PS+0)
User Entry Descriptor (.PS+1)

Argument Declaration:

dcl 01 Argument_Block,
02 Immediate_Return_Code,
03 Module_Number Bit (12),
02 Entry_Point Bit (6),
U3 Return Bit (18), /*x O
1

Succgssful
Interrupt Not paid =/

02 Original_Return_Code.,
03 module_Number Bit (12).,
03 Entry_Point 81t (6),
03 Return Bit (18), /* O
1

Successful
Interrupt Not paid =*/

02 Request_Data.,
03 Target_KPX Bit (13),
03 Fill Bit (186)7

dcl 01 User_Entry_Desc DESC (11);
/* Descriptor to segment where control is to be passed
after the software interrupt has been paid */

-45-



