
, .. - ,'. ~ . , "'.

'1.:,·

CP·6
CONCEPTS AND
FACILITIES

SUBJECT

CP-6

CONCEPTS & FACILITIES

Defines the Projected Implementation of the Honeywell Control Program-Six
(CP-6) Operating System

SOFTWARE SUPPORTED

Software Release BOO and beyond

ORDER NUMBER

CE26-01 September 1980

Honeywell

File Function and
Disposition •••••••••••••••

File Organization ••••••••••••
Keyed Files •• ~ ••••••• ~ •••••
Indexed Files ••••••••••••••
Consecutive Files ••••••••••
Relative Files •••••••••••••
Random Files •••••••••••••••
Unit-Record Files ••••••••••

File Access ••••••• j •••• ~ •••• ~

Record Blocking ••••••••••••••
Efficient File Transfer

(EFT) •••••••••••••••••• • ' ••
Backup on Tape or Disk

Dua 1 s •••••••••••••••••••
Restoring from Backup ••••••
Archive ..••................

Pack Sets ••••••••••••••••••••
Labeled Tape •••••••••••••••••

Protection and Security •• ~.
Tape Formats •••••••••••••••

Input/Output •••••••••••••••••
Device Input/Output ••••••••••

Interactive Terminals ••••••
Unit Record Peripherals ••••
Unformatted Devices ••••••••
Formatted Devices ••••••••••

Logical Devices ••••••••••••••
Features of the File System ••

SECTION 8; CP-6 SCHEDULING AND
MEMORY MANAGEMENT

Schedul ing ••••••••••••• ~ •••••
Virutal Memory and· Security ••
User Vi rtual· Memory Layout •••
Shared Processor Facilities ••

Standard Shared Processors.
Shared Ruh-Time Libraries ••
Special Shared Processors •• -

Al ternate Shared
Libraries •••••••••••••

Debuggers ••••••••••••••••••
Command Proces~ors •••••••••

SECTION 9. - CP-6 COMMUNICATIONS
MANAGEMENT

Communication Processing •••••
Connecting Terminals to

Programs ••••••••••••••••••
Configuring, Attaching and

Accessing Communications
Devices ••••••••• ; •••••••••

Communica~ion Protocol~ ••••••
Communication Groups •••••••••
Recovery •••• ~ ••••••••••••••••

CE26-01

7-1
7-2
7-2
7-2
7-2
7-3
7-3
7-3
7-3
7-4

7-4

7-4
7-5
7-5
7-5
7-6
7-6
7-6
7-7
7-8
7-9
7-9
7-9
7-10
7-10
7-10

8-1
8-2
8-6
8-6
8-7
8-8
8-8

8-8
8-9
8-9

9-1

9-2

9-3
9-5
9-6
9-6

iv

Contents (cont)

SECTION 10. CP-6 RELIABILITY
AND SECURITY

Reliability ••••••••••••••••••
Error Threshold Reports ••••
On-Line Peripheral

Diagnostics •••••••••••••
Recovery •••••••••••••••••••
Automatic Dump Analysis ••••

Security •••••••••••••••••••••
System Access Security •••.•
Memory Security ••••••••••••
File Security ••••••••••••••

Granule Access Controls ••
File Access Control ••••••
Data Access Controls •••••

SECTION 11. TRANSACTION
PROCESSING

Overview •••••••••••••••••••••
Co-operating Application

Programs ••••••••••••••••••
Minimizing Use of Host

Resources ••.••••••••••••• ~ .•
F PL ••••••••••••••••••••••••••
COMGROUPS ••••••••••••••••••••
Device Independence ••• ; ••••••
Features •••••••••••••••••••••

SECTION 12. CP-6
T·IME-SHARING

Overview •••••••••••••••••••••
Time-Sharing Features ••••••••

Typeahead ••.•••••••• ; ••••••••
Terminal Profiles ••••••••••
Output Efficiency ••••• ~ ••••
Transparent Mode •••••••••••
Pagination and Formatting ••
Terminal Input Functions •••

Editing Terminal Input •••
Controls Over Input '

Conversion ••••••••••••
Tab Simulation •••••••••••

User Input Functions •••••••
Automatic Processor

Association •••••••••••••••
Files of Terminal Commands •••
Automatic Save for

Disconnect ••••••• .; ••••••••
Speed and Format Detection •••
Terminal Tape Input ••••••••••

10-1
10-1

10-1
10-2
10-2
10-2
10-2
10-3
10-3
10-3
10-3
10-3

11-1

11-1

11-3
11-3
11-3
11-3
11-4

12-1
12-2
12-2
12-2
12-2

. 12-3
12-3
12-3
12-3

12-4
12-4
12-4

12-7
12-7

12-8
12-8
12-8

SECTION 13. CP-6 BATCH
PROCESSING

Overview •••••••••••••••••••••
Resource Controls and

Sc hed u 1 i ng ••••••••••••••••
Workstations •••••••••••••••••
Cataloged Procedures •••••••••
Spo61ing •••••••••••••••••••••

SECTION 14. CP-6 REMOTE
PROCESSING

Overview •••••••••••••••••••••
The Environment ••••••••••••••
User Interface •••••••••••••••
Terminal Support •••••••••••••
Inter-System File Transfer •••

SECTION 15. CP-6 DISTRIBUTED
REAL-TIME
PROCESSING

13-1

13-1
13-2
13-2
13-2

14-1
14-1
14-3
14-3
14-3

Overview ••••••••••••••••••••• 15-1
Real-Time Software

Development ••••••••••••••• 15-2
Real-Time Services ••••••••••• 15-2
Performance •••••••••••••••••• 15-2

SECTION 16. CP-6 SYSTEM
PROGRAMMING

Shared Entities •••••••••••••• 16-1
Interfaces ••••••••••••••••••• 16-2
Exceptional Condition

Handling •••••••••••••••••• 16-3
Accessing Shared Entities.... 16-3
Initialization and Data •••••• 16-3
Star Files ••••••••••••••••••• 16-3
Standard DCBs •••••••••••••••• 16-4

SECTION 17. CP-6 SYSTEM
MANAGEMENT

System Definition •••••••••••• 17-1
System Performance Control... 17-2
System Tuning and

Measurement ••••••••••••••• 17-2
Resource Management •••••••••• 17-3
User Authorization ••••••••••• 17-4
Project Administration ••••••• 17-4
Use Accounting ••••••••••••••• 17-4

v

Contents (cont)

SECTION 18. CP-6 COMPUTER
OPERATIONS

Installing, Reconfiguring,
and Patching the System •••

Unattended System Operation ••
Initialization •••••••••••••••
Job and System Controls ••••••
Removable Storage

Initialization ••••••••••••
Peripheral Device Error

18-1
18-1
18-2
18-2

18-2

Procedures •••••••••••••••• 18-2

APPENDIX A. IBEXCOMMAND
SUMMARy ••••••••••• A-I

APPENDIX B. DELTA DIRECTIVE
SUMMARy ••••••••••• B-1

APPENDIX C. EDIT COMMAND
SUMMARy ••••••••••• C-l

APPENDIX D. PCL COMMAND
SUMMARy ••••••••••• D-l

APPENDIX E. SUMMARY OF MONITOR
SERVICES •••••••••• E-l

GLOSSARy ••••••••••••••••••••••• g-l

INDEX. ••• ••• •• ••••• •••• • •••••• • i-I

TABLES

5-1 CP-6 Manual Se t .•..•••••• 5-4

12-5 CP-6 Terminal Input
Functions •••••••••••••••• 12-5

A-I IBEX Commands •••••••••••• A-I

B-1 Housekeeping Directives •• B-1

B-2 Execution Control
Directive •••••••••••••••• B-3

B-3 Execution Tracing
Directives ••••••••••••••• B-3

B-4 Memory Display and
Mo d i f i cat ion Directives •• B-4

B-5 Mode Control Directives •• B-4

B-6 Miscellaneous Directives. B-5

CE26-01

C-l EDIT File Commands ••••••• C-l

C-2 EDIT Record Commands ••••• C-2

C-3

D-l

E-l

3-1

4-1

EDIT Intra-Record
Commands ••••••••••••••••• C-3

PCL Commands ••••••••••••• D-l

CP-6 Monitor Services.... E-l

FIGURES

Generalized CP-6 DPS
Configuration •••••••••••• 3-3

CP-6 Software Processors. 4-1

5-1 The CP-6 Documentation
Set...................... 5-2

7-1 Connection Established
for Performing I/O....... 7-8

8-1 Memory Mapping ••••••••••• 8-4

CE26-01 vi

8-2

8-3

8-4

9-1

Contents (cont~

CP-6 Domains 0 f
Reference................ 8-4

Control Paths Between
CP-6 Working Space ••••••• 8-5

User's Virtual Memory -
Megaword Working Spaces.. 8-7

Sample CP-6 Communication
Configuration •••••••••••• 9-2

11-1 The TP Environment ••••••• 11-2

13-1 CP-6 Spooling •••••••••••• 13-3

14-1 CP-6 Remote Processing
Example •••••••••••••••••• 14-2

14-2 CP-6 Remote Processing
Communications ••••••••••• 14-2

15-1 CP-6 Distributed
Real-Time System ••••••••• 15-1

16-1 CP-6 Context for Sharing. 16-2

About This Manual

This general purpose manual introduces the reader with some technical
awareness of software systems to the capabilities of the CP-6 system. This
manual is intended for application and system programmers; transaction
processing, word processing and I-D-S/II administrators; and system and EDP
managers. The document includes both an overview of the CP-6 system and more
detailed introductions to the CP-6 hardware configuration, software processors
and operational modes.

Sections 1 through 6 of this manual contain an overview of the CP-6 hardware
configuration, software processors and operational modes. Sections 7 through
18 examine the CP-6 system and operational modes in more detail. A set of
appendices summarizing the major CP-6 utility processors, an appendix of CP-6
monitor services and a glossary of terminology are included at the end of the
manual.

There is no prerequisite documentation to reading this manual. For the
management-oriented reader interested in a limited overview of the CP-6 system,
it is suggested that reading be limited to sections 1 through 6 and the first
paragraph in each of the sections 7 through 18.

vii CE26-01

Section 1

Introducing the Honeywell CP-6 System

The Honeywell Control Program-Six (CP-6) System is a comprehensive,
multi-use, distributed processing operating system designed to perform on
Honeywell mainframes configured with Honeywell minicomputers.

The CP-6 system provides centralized services via five operational modes of
access:

• Transaction processing

• Time sha ring

• Batch processing

• Remote processing

• Distributed real-time processing

CP-6 access modes are supported with balanced service and no inherent
emphasis on any single mode. Programs do not require alteration to run in any
particular access mode.

These modes are designed to operate concurrently. Several programs utilizing
different modes can be simultaneously resident in memory. The system design
allows the user to select only the mode or modes required for a given task.
The CP-6 system performs equally well whether a single mode or multiple modes
are used. CP-6 functional elements are essentially the same for all programs
regardless of the access mode.

CP-6 Transaction Processing allows multiprogramming depth for multiple
queues, with processing divided into separately administered groups of
terminals. Features include:

• Assurance of transaction completion.

• Administrative control over access and transaction prioritization.

• Larger amounts of processing time dedicated to each program in response to
increased loads.

• Communication between transaction processing applications modules.

• Automatic journalization and recovery services.

• Advanced data base management provided through the CP-6 data management
system, Integrated Data Store II (I-D-S/II).

CP-6 Time Sharing provides a highly productive environment designed to
promote on-line program development and debugging. Features include:

• Up to 500 interactive terminals connected to the system.

• Rapid access to and response from the CP-6 system so that each
time-sharing user appears to have the entire system dedicated to his task.

1-1 CE26-01

• Highly interactive response that is practically independent of system
load.

• Access to all types of peripheral devices.

• Support of a wide variety of terminals.

• User definition of terminal characteristics (e.g., character code set,
timing information, terminal features and cursor positioning) through the
CP-6 terminal profile feature.

• Terminal access without translation, providing transparent control for
special purpose devices.

CP-6 Batch Processing provides maximum utilization of system resources by
minimizing conflicts in resource use. Features include:

• Concurrent processing of up to ~OO batch jobs.

• Submission of batch jobs from on-line terminals or remote workstations.

• Channeling of batch jobs into the stream best able to handle the
individual requirements of the job, consistent with throughput and
resource constraints determined by installation management.

• Preservation of the batch queue during system recovery, and the recovery
of jobs being processed at the time of system failure.

CP-6 Remote Processing provides flexible communication between the CP-6
system and a variety of remote terminals using synchronous protocols. Features
incl ude:

• Remote terminals and associated stations.

• HASP and 2780/3780 protocol support.

• Terminals can range from a simple card reader/line printer combination to
a complete large-scale computer system with an assortment of peripheral
devices.

• Time-sharing terminals, can be used as peripheral devices (line printers,
etc.) •

• Communication with any supported device at one or several remote sites.

• The ability to use any time-sharing terminal as the operator's console for
a CP-6 workstation.

• The ability of a CP-6 system to act as a central site to several remote
terminals and as a .remote terminal to other computers simultaneously.

• Dynamic modification of terminal definition during system operation.

CP-6 Distributed Real-Time Processing allows the implementation of multiple
sensor-based, real-time applications. Features include:

• Distribution of portions of real-time capability to real-time processors.

• Performance of data reduction and analysis by the host system.

• Performance of sensor-based applications on real-time processors, allowing
a wide range of event-driven applications.

CE26-01 ·1-2

cp-e SYSTEM FEATURES

The CP-6 system equals and exceeds the industry standards for performance,
convenience, and cost-efficiency.

EASE OF USE

• A simple, yet comprehensive execution control language that is common to
all access modes.

• An extensive HELP facility that provides information about the system and
its processo rs.

• System default conventions that minimize the need for execution control
commands.

• Terminal personality that includes type-ahead, echoplex, and a variety of
escape and control keyins, providing an unparalleled interactive
interface.

• Quick terminal response.

• Program and data file compatibility in all modes of access.

• A comprehensive remote batch system that allows entry of jobs from a
variety of terminals.

• The ability to use installation-supplied command processors or data base
managers to tailor system use to specific applications.

OPTIMIZED FILE MANAGEMENT

• A single central file management system.

• Files are compatible across operating modes and language processors.

• Device independent file access.

• Graduated levels of file access security._

• A comprehensive file backup system.

• File integrity assured by system recovery.

• Self-contained 'sets' of disk packs provided removable public file
segments.

• Keyed, indexed, consecutive and relative file organizations.

• ANS standard tape management for both labels and standard blocking modes.

AN EFFICIENT MONITOR

• An event-driven, priority-adjustable scheduler.

• Full utilization of hardware addressing and security features.

• Shared re-entrant programs and system processors.

1-3 CE26-01

• Automatic sharing of user programs.

• A comprehensive, easily-accessed set of monitor services provided via a
strong standard interface that ensures program independence from monitor
version.

• High I/O performance via tree-structure file indexes with several forms of
I/O caches and program-disassociated bufferings.

• Multiprogramming and mUltiprocessing.

MINIMAL OPERATIONS COST

• Small staff requirements for installation and system support.

• Easily maintained.

• System recovery which does not require operator intervention and
automatically determines the appropriate level of recovery.

• System can be run without an operator in attendance.

• Availability of on-line hardware diagnostics at time-sharing terminals at
both local and remote sites.

• Availability of on-line remote access software debugging and patching
facilities.

• Full system use accounting.

SYSTEM HIGHLIGHTS

• An integrated performance monitor that measures system performance
simultaneously with normal operation.

• Majority of operating system and processing code is written in a
high-level structured language (PL-6).

• A modern, extensive data base management system that is interfaced with
COBOL, APL, FORTRAN, PL-6, IDP, and assembly language.

• Communication with other operating systems through ANS labeled tape and
the HASP and 2780 communications protocols.

• A sophisticated debugger that can be run in either the interactive or
batch environment, and which possesses a comprehensive set of functions
suitable for debugging FORTR~N, PL-6, COBOL, GMAP-6, and other language
processors.

• Common calling sequences generated by all languages, allowing programs
written in sevetal languages to be loaded and run together.

• Up to 256K (one million bytes) of program procedure and data with up to
384K words (one and one-half million bytes) of additional data segments.

• Superior hardware, ensuring a secure environment.

• The ability to define many concurrent batch streams with priority, class,
and dependent job scheduling.

• A common command language for both on-line and batch jobs.

CE26-01 1-4

o The ability to define any standard remote or local terminal as an operator
console.

o APL, BASIC, COBOL, FORTRAN, and RPG II match or exceed current commercial
state-of-the-art industry standards.

• Hierarchical budget accounting for control of system changes and usage.

• Remote communications concentrators provide fast local response, error
control over long lines, and economical use of lines via full-duplex
protocols.

• Communication groups (comgroups) provide communications between terminals
and transaction processing user jobs, and between one or more user jobs.

• Comprehensive user documentation.

1-5 CE26-01

Section 2

The CP-6 System

This section contains a general overview of the CP-6 system, and references
the section of this manual where each feature is described in more detail.

THE MONITOR

The CP-6 monitor functions as the major control element in the operating
system. The monitor governs the order in which programs are executed and
provides common services to all programs. The number and types of the programs
in an operating system vary according to the user requirements at a particular
installation. Each individual operating system consists of a selection of
monitor routines and processing programs that are closely integrated for a
given set of applications.

The monitor controls and schedules the use of the system resources including
CPUs, main memory, secondary storage devices, spooled unit record devices, and
terminals of all types. The monitor provides extensive services to the users,
the system manager, the computer operator, and the hardware and software
support engineers.

Because the monitor is central to the operation of the CP-6 system,
references are made to its functions throughout this document.

THE HARDWARE

The CP-6 system is designed to run on Honeywell mainframes with minicomputers
functioning as local real-time and communications processors. CP-6 hardware
provides a flexible yet secure computing environment.

The CP-6 hardware is described in Section 3.

THE SOFTWARE PROCESSORS

The CP-6 system supports a set of software processors that satisfy a variety
of computing requirements. These processors are categorized into four groups:

• Command and Control Processors

• Language Processors

• Utility Processors

• System Management Processors.

The CP-6 software processors are described in Section 4.

2-1 CE26-01

Each unit of work is packaged together as a 'job', regardless of the access
mode used to enter the system. Jobs are also referred to as 'users', and are
the CP-6 execution scheduling unit. (In most respects, a CP-6 user is
equivalent to a "process" in other systems.) There are four types of CP-6
jobs: batch jobs, on-line jobs, transaction processing jobs, and ghost jobs.

With a batch job, the. monitor knows the entire control stream and resource
requirements before the job is put into execution. The monitor schedules batch
jobs to optimize the use of resources. As a general rule, batch jobs are
disconnected from human interaction as output is not delivered until the
completion of the job. Errors or abnormal conditions occurring within a job
cause the remainder of the job to be discarded unless the user program or job
control commands initiate exceptional condition processing. Batch jobs can be
submitted from a central site card reader, through an on-line terminal, or
through a remote processing terminal.

An on-line job receives its control stream directly from the user at a
time-sharing terminal. Resource requirements are not known to the monitor in
advance, and are acquired as needed and when available. The user interactively
handles unexpected occurrences. An on-line job can do everything a batch job
can do, including executing cataloged procedures and accessing peripherals.

In a transaction processing job, each terminal interaction or transaction is
formalized by the monitor in much the same way as a compiete batch job step.
This means that full system protection is provided for all elements of the
transaction: input, output, and data base access. The installation may choose
several levels of protection as required by the importance of each transaction.

Ghost jobs have a command stream, which is usually contained in a file, and
can consist of multiple job steps. Ghost jobs are initiated at the request of
the system, the operator (via a log-on process), or a privileged job (via a
monitor service request).

All jobs, regardless of job type, enter the system through one or more modes
of access. These modes are:

• CP-6 Transaction Processing, described in Section 11.

• CP-6 Time-Sharing, described in Section 12.

• CP-6 Batch Processing, described in Section 13.

• CP-6 Remote Processing, described in Section 14.

• CP-6 Distributed Real-Time Processing, described in Section 15.

SUPPORT SERVICES

A flexible system initialization procedure allows the system manager to
define the system to reflect the hardware configuration, the number of users,
the system features, and the processors to be included.

Operator communications inform the operator about set-up requirements, device
errors that need attention, and the current batch queue. Users can send and
receive operator messages. Several different interactive terminals can be used
as operator consoles simultaneously, and different types of messages can be
routed to the appropriate consoles. An operator's console can be used
simultaneously as a time-sharing terminal.

On-line diagnostics and hardware exercisers are available to the support
engineers.

Accounting information is maintained for users and several processors are
provided for accessing this information. Interfaces are provided to allow the
system manager to include his own accounting routines in the system.

CE26-01 2-4

Accounting may cover an entire job or an individual job step. Processors are
available that allow the system manager to charge for the job. Rates can be
changed dynamically and applied to a variety of classes of users.

Performance tuning parameters exist throughout the system and are used
extensively in scheduling jobs. Most parameters can be modified dynamically by
the system manager to tune the system to his requirements. Statistics
gathering and analysis processors are included with the system as an aid in the
tuning efforts.

CP-6 support services are described in Section 16 through 18.

2-5 CE26-01

Section 3

The CP-6 Hardware

CP-6 hardware provides many enhancements over previously available computer
systems. The hardware features expanded virtual mapped memory and shared
program facilities, and permits distribution of processing to multiple host and
minicomputer systems. Hardware security features, fully utilized by the
operating system, provide a secure, yet flexible, environment. The virtual
mapping facilities and the security features are implemented in the I/O
processors, resulting in faster throughput and reduced overhead.

THE CENTRAL PROCESSOR

The CP-6 system is designed to use Honeywell Series 60 and DPS 8 central
processing mainframe systems, which provide extensive instruction sets,
including packed decimal ~nd floating point arithmetic, bit and byte string
operations, and many powerful instruction addressing modes. Up to 16 million
words (64 megabytes) of solid state memory can be supported on each host
system. A combination of Input/Output Multiplexers (IOMs) and Micro-Programmed
Controllers (MPCs) provide access to memory from peripheral devices. Up to
four IOMs may be configured on a CP-6 system. Each 10M will support a number
of MPCs.

Available host peripherals include:

• Card readers: 300/500/1050 CPM.

• Card punch: 100/400 CPM.

• Line printers: 1100/1600 LPM, 64 or 96 character set.

• Magnetic tape drives: dual density 9-track 800/1600 and 1600/6250 BPI,
75/125/200 IPS; and dual density 7-track 556/800 BPI (device support only
- no managed tapes).

• Disk drives: Removable 402s and 451s, and nonremoveable 501s are
supported, with the following available storage:

Disk

402 (100 MB)
451 (200 MB)
50 IN (600 MB)

Available Storage

88 million 8-bit bytes/disk
177 million 8-bit bytes/disk
618 million 8-bit bytes/head-disk assembly.

THE FRONT-END PROCESSOR

The CP-6 system uses Level 6 minicomputers as communication and real-time
processors. Up to 12 minicomputers use firmware-driven microprocessors to
achieve modularity with optimum configurability.

3-1 CE26-01

MUL TIPROCESSING

The CP-6 multiprocessing facility enables from one to six central processors
to be incorporated as part of the basic system in order to achieve greater
processing power and/or greater reliability. All central processors have
access to all physical memory and are capable of simultaneously executing
programs residing in sharable domains. Only one copy of the operating system
is employed to manage the central processor complex.

Only one processor (considered the primary) in the processor complex is
permitted to perform system initiation and execute I/O response monitor
procedures. The other processors (considered secondary) in the processor
complex are prevented from executing seldom used but critical internal
procedures, such as the monitor's allocation segment routines. Frequently used
procedures, however, may be executed by any processor in the complex, and both
primary and secondary processor procedures include file management (including
I/O start) and CPU scheduling of users. Efficient processor gating techniques
prevent the simultaneous access of critical system tables and the simultaneous
execution of critical procedures.

CPUs may be dynamically reconfigured during system operation without shutting
down the system. Secondary CPUs may be added or removed, and the CPU
designated as primary may be changed via simple operator-initiated commands.

CONFIGURATION

Figure 3-1 shows a generalized CP-6 DPS configuration. In this figure, the
components contained within the broken lines constitute the central system.
For the most current information concerning available configurations, contact
your local Honeywell CP-6 Marketing Representative.

CE26-01 3-2

r---- - ------------ --- - --- - -- ---I

COMLlNES

FRONT-END
PROCESSOR(S)

SYSTEM AND USER MEMORY
UP TO 16 MEGAWORDS OF 16K RAM

INPUT! OUTPUT
MUL TlPLEXOR(S)

FRONT-END
PROCESSOR(S)

I
I
I
I

MEMORY
BATIERY
BACKUP

L _____ ,

I
I
I
I
I

COMLlNES I
~ ________ ~~~ I

___________________________________ J

UNIT
RECORD

PROCESSOR(S)

Figure 3-1. Generalized CP-6 DPS Configuration

3-3 CE26-01

Sec.tion 4

The CP-6 Software Processors

The CP-6 system supports a complete set of software processors that satisfies
a variety of computing requirements:

• CP-6 command and control processors create an efficient user environment.

• CP-6 language processors feature compatibility with ANS standards.

• CP-6 utility processors offer a wide range of user services designed to
increase programmer productivity.

• CP-6 system management processors help to reduce operations costs and
promote efficient utilization of the entire CP-6 system.

Because the processors exist together in a self-consistent environment, the
programmer is free to choose the right tool for the right job.

The CP-6 software processors are listed in Figure 4-1 in the order in which
they are described in this section. In addition to these processors,
user-developed processors and the following programs generally available in the
CP-6 community are supported on the CP-6 system: GASP, IMSL, PASCAL, SLAM,
SNOBOL, and SPSS.

MONITOR

T
I I I I

Command Language Utility System
and Control Management

Processors Processors Processors Processors

LOGON FORTRAN EDIT SUPER

IBEX COBOL PCL CONTROL

DELTA BASIC LINK RATES

TPA APL F EPLlNK EFT

TPCP PL- 6 LEMUR PIG

GMAP-6 SORT/MERGE VOLINIT

DUAL ANLZ LABEL

RPG II FEPANLZ STATS

TEXT GOOSE ELAN

I-D-SjII IMP TOLTS

lOP TRADER'

FPL

Figure 4-1. CP-6 Software Processors

4-1 CE26-01

COMMAND AND CONTROL PROCESSORS

LOGON

The LOGON processor controls access to the system by requiring the user to
supply authorized identification information. Once this access is obtained,
control is passed to IBEX.

IBEX

The Interactive and Batch Executive (IBEX) processor is the CP-6 execution
control processor. The execution control commands that are interpreted by IBEX
identify the user job, the tasks to be performed by the job,

and the resources required by the job. Other IBEX commands control interactive
terminal operations. All 'batch jobs and interactive sessions require the use
of execution control commands. The language is the same for both modes of
processing (however, not all commands apply to both modes of processing).
Appendix A is a summary of IBEX commands.

DELTA

The DELTA debugging processor is used to debug run units. The source code
may have been written in any CP-6 assembler or high-level language. The
language processors, in cooperation with the LINK loader, supply symbolic
information to DELTA. The user describes the debugging requirements to DELTA
in terms similar to the language in which the source program is written.

DELTA operates in both the batch and on-line modes. If the user is running
in the time-sharing mode, conditions that occur in the user program are
reported directly at the terminal. The user can then take immediate action to
correct an error. In the batch mode, the user is restricted only to actions
that can be preplanned.

DELTA allows the user to:

o Examine, insert, and modify program elements such as instructions, numeric
values, and coded information (i.e., data in all its representations and
fo rmats) •

• Control execution (including the insertion of break-points into a program)
and requests for breaks on data changes within elements.

• Trace execution by displaying information at designated points in a
program.

• Search programs and data for specific elements and subelements.

DELTA is designed and interfaced to the system in such a way that it may be
called to aid debugging at any time, even after a program has been loaded and
execution has begun. Appendix B is a summary of DELTA directives.

CE26-01 4-2

TPA

The Transaction Processing Administrator (TPA) is a privileged shared
processor that is the Transaction Processing (TP) control processor. The TPA
is responsible for monitoring the operation of an instance of TP. This
processor is the administrative user of the TP comgroups (see section 9), and
receives all commands for the TPsystem. TheTPA opens TP instance files and
initializes instance tables. Thereafter, the processor checks the log-on id of
each TP terminal, verifies passwords, keeps statistics, sends messages to the
master control terminal or operator's console, and responds to commands from
these devices.

TPCP

The Transaction Processing Command Processor (TPCP) is the shared command
processor for TP applications. TPCP is associated with each Transaction
Processing Application Program (TPAP) executing in an instance of TP. The TPCP
invokes the TPAPs and supervises exit control for them. The actual processing
of transactions and the creation of reports occurs in the TPAPs.

LANGUAGE,PROCESSORS

FORTRAN

The CP-6 FORTRAN-77 compiler is compatible with essentially all the features
of the American National Standards (ANS) FORTRAN 1978 X3.9, and includes
extensions to that standard. Features of the CP-6 FORTRAN compiler include:

• CHARACTER variables.

Q Addition of INCLUDE (system) capability.

• Line-by-line syntax-checking capability for time sharing.

• Expanded READ/WRITE capabilities.

• OPEN and CLOSE statements.

• I-D-S/II CALL interface.

• Conditional compilation capabilities.

COBOL

CP-6 COBOL offers a powerful and convenient programming language for
implementation of business or commerical applications. COBOL is a standard
compiler that conforms to American National Standards (ANS) COBOL X3.23-1974.
I-D-S/II DML (Data Manipulation Language) capabilities are integral features of
the compiler. The compiler accepts source program input from cards, remote
terminals, user files, and the user copy library files. The compiler produces
object-code compilation units from programs written in COBOL to form an
executable run unit.

4-3 CE26-01

BASIC

CP-6 BASIC is a powerful compiler and programming language that is easy to
teach, learn, and use, and is useful for a wide range of applications. CP-6
BASIC provides many significant enhancements over ANS minimal BASIC, including:

• A comprehensive set of statements, commands, and supplied functions; an
extended MAT package, extensive character string manipulation facilities,
and both ASCII and binary file I/O.

• The ability to share named data and data files between successively
executed programs, and to access these files by direct statements.

• The ability to save and recall the complete working storage environment
(including program, named data, and current status). This feature permits
programs to be executed without forcing a recompile.

• The ability to carry out debugging operations at any time. The user can
control BASIC's response to run-time errors.

• The ability to automatically trace program-flow and to specify breakpoints
that interrupt execution, permitting immediate on-line debugging.

• Similarity in on-line and batch operations, which differ only in default
device assignments and error response.

• The ability to execute most statements directly, allowing the on-line
terminal to be used as a 'super' calculator.

• Conformity to CP-6 file conventions, allowing BASIC to access files
created by other CP-6 processors and to create files that can be used by
other CP-6 processors.

• The ability to seal programs, permitting the user to execute (but not
modify, copy, or view) the programs and associated data.

• Structured programming statements.

• 31 character variable names.

APL

APL is a powerful and concise interpretive language, widely used by
universities, engineers, and statisticians. APL also possesses features that
make it particularly attractive for business applications, where user
interaction and rapid feedback are key issues. CP-6 APL provides some special
features, many of which are unavailable in other versions of APL:

• A compatible superset of IBM's APL/SV.

• On-line or batch operation.

• Increased I/O control facilities, providing easy access to standard CP-6
files.

• Shared access to files.

• Error and break control.

• Increased sub-string manipulation facilities.

• The ability to seal a workspace so that unauthorized users can load and
execute, but not display or modify, the workspace contents.

CE26-01 4-4

• Accessibility by terminals without an APL character set.

• A fast formatter that facilitates report generation.

• An I-D-S/II interface.

• A comprehensive set of debugging aids.

PL-6

The PL-6 processor was designed specifically for the implementation of the
CP-6 operating system. PL-6 combines the simplicity and directness of assembly
language with the power and convenience of a higher-level language. Some of
the outstanding features of this innovative and flexible language are:

• Provides a direct interface to the operating system.

• Uses a small run-time library.

• Produces a minimum of automatic storage.

• Provides handling of system-reported conditions via the ALTRETURN feature
and asynchronous procedures.

• Adapts well to (but is not limited to) structured programming.

• Provides program control of register usage and calling sequences.

• Is geared for efficient use under the CP-6 system.

GMAP-6

GMAP-6 is a two-pass symbolic language assembler that translates symbolic
machine language into relocatable binary machine instructions. GMAP-6 provides
the convenience of a compiler with the flexibility of an assembler. GMAP-6
provides the programmer with ~ powerful programming tool that includes a
complete set of pseudo-operations. GMAP-6 enables the programmer to use all
machine instructions to design macros that provide convenient shorthand
notations.

DUAL

The Dynamic Universal Assembly Language (DUAL) is an assembler that includes
meta-language facilities. DUAL provides both system and application
programmers with a powerful set of directives to reduce programming time,
improve program checkout and develop languages to meet the needs of a specific
application. In addition, through DUAL's special set of META directives, the
programmer can extend DUAL so that it can translate a single phrase into a
sequence of computer instructions.

4-5 CE26-01

renumbering of records, and context editing operations of matching, moving, and
substituting for records selected by a range of line numbers and the presence
or absence of specified character strings. File maintenance commands allow the
user to build, copy, merge, and delete entire files. Appendix C is a summary
of EDIT commands.

pel

Peripheral Conversion Language (PCL) is a utility subsystem that provides
information movement among card devices, line printers, tape devices, disk
packs, terminals, and other peripherals. The flexible and powerful command
language provides single and multiple file transfers with options for
selecting, sequencing, formatting, encrypting, and converting data records.
Additional file maintenance and utility commands are also included. Appendix D
is a summary of PCL commands.

liNK

The LINK processor controls loading and linking of programs. LINK accepts
object units (which are the output of compilers or assemblers) as input,
resolves any linkages between them, and produces run units as its output. The
processor may be directed to include object units from library files in the run
unit and may also be directed to produce overlaid programs. LINK is available
in both the batch and time-sharing modes.

FEPllNK

The FEPLINK processor controls loading and linking of all front-end resident
programs. FEPLINK processing is performed in the host. FEPLINK accepts
front-end object units (which are the output of front-end oriented processors
such as FPL and DUAL) as input, resolves any linkage between them, and produces
executables to be booted into the front-end processor as its output.

lEMUR

The LEMUR (Library Editor and Maintenance Utility Routines) processor builds
library files from object files. LEMUR also edits existing library files and
object files by performing insertion, deletion, and replacement of object units
within these files. Library files built by LEMUR are accessed by LINK when
constructing run files.

SORT/MERGE

SORT and MERGE are processors that provide a method of performing fundamental
data manipulation processing:

1. Rearranging (sorting) records of multiple unordered files to a single
specifically ordered file.

2. Combining (merging) records of multiple ordered files to a single ordered
file.

CE26-01 4-8

SORT and MERGE may be run as a stand-alone processor, linked from a user
program, or called directly from the system shared library.

ANLZ

The ANLZ processor allows the system programmer to analyze dumps. ANLZ
displays relevant system information in an easily readable format.

FEPANLZ

The FEPANLZ processor performs boot and dump operations for front end
processors, and is used to debug code that resides in the front end processors.

GOOSE

The GOOSE processor starts user-requested ghost jobs. A user with
appropriate privileges can request that a ghost job be started immediately or
can specify when a ghost job is to be started -- either at system startup or at
a particular time of day.

IMP

IMP defines sequences and special characters that will be generated as a
result of specified keystrokes at the terminal. These user-defined sequences
or characters may be unique combinations of system escape sequences and special
characters, or new special purpose functions suited to the individual user. IMP
can be used to:

1. Redefine the keys on the keyboard of one terminal so that it looks like
the keyboard of another terminal.

2. Define function keys to perform commonly used functions such as checking
on jobs.

3. Define keys to generate often-used strings (such as lengthy variable
names in a program) •

TRADER

The Transaction to Application Definition Routine (TRADER), is a TP utility
that defines the parameters necessary to associate transactions with
Transaction Processing Application Programs (TPAPs) and Forms Programs (FPs).
Information submitted to TRADER includes transaction names and types, TPAP and
FP identification, and TPAP DCB assignments.

The TPCP command processor uses TRADER information to start TPAPs processing
of transactions. The TPA uses TRADER information to invoke appropriate FPs to
process transactions.

4-9 CE26-01

SYSTEM MANAGEMENT PROCESSORS

SUPER

The SUPER processor gives the system manager and authorized project managers
control over access to the CP-6 system and the privileges extended to users.
Through SUPER, the system manager and authorized project managers may add and
delete users, specify how much main memory and disk storage space a user may
have, specify how many central site magnetic tape units a user may use, grant
certain users special privileges, (e.g~, grant system programmers the privilege
of examining, accessing, and changing the monitor), and individually authorize
or deny access to the various processors for each user. SUPER is also the
vehicle used to define the communications configuration of a CP-6 system.

CONTROL

The CONTROL processor allows the user to dynamically modify the system
performance and control parameters.

RATES

The RATES processor allows the system manager to set relative charge weights
on the utilization of system services and interactions.

EFT

The EFT processor allows the operations staff to back-up and restore files.

PIG

The Pack Set Initializer authorizes accounts on pack sets, mounts and
dismounts pack sets, and reconstructs the available extent tables.

VOLINIT

The VOLINIT processor allows the operations staff to initialize CP-6 disk
packs and to surface-check the devices to minimize errors.

LABEL

The LABEL processor writes ANS standard labels on tapes.

CE26-01 4-10

STATS

The STATS processor displays and collects performance data on a running
system and produces snapshot files to be displayed later. Several forms of
statistical summaries and history traces are available.

ELAN

The ELAN processor aids in the analysis of previously logged hardware and
software failures.

TOLTS

The TOLTS processor allows the field engineers to run hardware tests and
diagnostics on demand, while the remainder of the system continues operation.
TOLTS is frequently used in conjunction with ELAN.

MONITOR SERVICES

The CP-6 monitor includes standard services that are available to user
programs, regardless of the languages in which the programs are written.
(Callable PL-6 routines may be required in certain cases.) Appendix E lists
the CP-6 monitor services.

4-11 CE26-01

Section 5

CP-6 Documentation

Honeywell CP-6 documentation consists of two elements: the CP-6 manual set
and CP-6 on-line documentation.

THE CP-& MANUAL SET

The CP-6 manual library consists of a complete set of manuals that fully
documents CP-6 software for the user. Figure 5-1 illustrates the CP-6 manual
set, which is designed to meet the needs of different kinds of users working in
each of the CP-6 environments.

The CP-6 manual set contains two types of manuals: references and guides.
Designing the manual set to include these two types of manuals provides the
user with both complete and tutorial information.

REFERENCES

A reference manual provides a detailed description of software.
Concentrating on completeness and easy look up, a reference is organized in
encyclopedic fashion -- usually alphabetically. As a result, it provides an
in-depth description of a product for reference purposes, but is not intended
as a stand-alone learning tool.

Reference manuals document each of the CP-6 environments. There are a total
of 21 references in the CP-6 manual set. Within each environment, reference
volumes are designed to both maximize document utility for the user and to
minimize the number of manuals in the set. Where appropriate, utility is
maximized by documenting processors in separate volumes. However, where
functionality so indicates, documentation of processors is combined into a
single volume to limit proliferation of manuals.

5-1 CE26-01

I ,. I

CO
:r>
VI

n

~­
(t) I
-nO
(t) I
-'VI
(t)
:::I_
n_
(t)

n
0
CO
0
r

I
G'>O
C I
-. VI
a.
(t)-

VI
0
~
-I
.........
3:
ITI
~
G'>
ITI

~
(t)

" 0

~
~
:r> z

~-
-,0
(t) -0
::J
n
(t)

~
-c
G'>

Figure 5-1. The CP-6 Documentation Set

CE26-01 5-2

For example, in the system programming and support environment, a single
volume, the CP-6 System Support Reference, documents all the system processors
of interest to the system manager. Likewise, in the application programming
environment, a single volume, the CP-6 Programmer Reference, documents the
several utility processors (EDIT, PCL, LINK and LEMUR) of interest to the
application programming user. But, in the application programming environment,
separate references document each of the language processors.

GUIDES

A guide provides tutorial information on a product. Concentrating on
teaching how to use a product and ease of understanding, a guide is organized
functionally, usually around examples. As a result, it serves as a textbook to
be read as a learning document, but is not intended as a complete reference
covering all aspects of a product.

The CP-6 manual set includes guides for APL, BASIC, COBOL, FORTRAN, and
I-D-S/II programmers, as well as TP and Text Processing administrators.

Note that a subcategory of guides -- primers -- is included in the manual
set. A primer introduces a non-sophisticated user to a CP-6 feature (or
features). CP-6 primers introduce new, non-programming users to CP-6 (the CP-6
Primer) and to word processing (the CP-6 Text Processing Primer).

CATALOG OF DOCUMENTS

Table 5-1 is a list of the current CP-6 manual set divided into different
user areas. Note that assignment of manuals to an area is not exclusive. Each
user will tailor his or her library of documents to reflect his or her needs.
Thus, a system programmer will make use of the CP-6 Programmer Reference, and
an application programmer may need to refer to the CP-6 DELTA Reference.

This subsection contains descriptions of the manuals in the CP-6 user manual
set.

5-3 CE26-01

Table 5-1. CP-6 Manual Set

User Area

Application Programming

Data Base Management

System Programming and
Support

Transaction Processing

Tex t Process ing

General Purpose

Manual

Programmer Reference
Pocket Reference
COBOL Refe rence
COBOL Programmer Guide
FORTRAN Reference
FORTRAN Programmer Guide
SORT/MERGE Reference
BASIC Reference
APL Reference
Programmer Guide
RPG II Reference

I-D-S/II Reference
I-D-S/II Guide
I-D-S/II Data Base Administrator Reference
IDP Reference

Monitor Services Reference
DELTA Reference
PL-6 Reference
Assembly Instruction Reference
System Support Reference
Operations Reference

FPL Reference
TP Applications Programming Guide
TP Administrator Guide

Text Processing Primer
Text Processing Reference
Text Processing Administrator Guide

Common Index
Concepts and Facilities
CP-6 Primer

APPLICATIONS PROGRAMMING MANUALS

CP-6 APL REFERENCE (CE38) describes CP-6 APL language elements, statements,
functions and system commands for application programmers already familiar with
the lang uag e.

CP-6 BASIC REFERENCE (CE32) describes the formats and uses of CP-6 BASIC
commands, statements and functions for intermediate and advanced users of the
language.

CP-6 PROGRAMMER GUIDE (CESS) contains numerous examples that illustrate the
environment of APL and BASIC programmers. Discussions are included on how to
read and write data files, debug programs, interface with other language
modules, use run time error control features, and use the CP-6 PCL and EDIT
processors to aid in the support and maintenance of programs and working space
files. In addition, this guide describes language extensions and enhancements
(e.g., multi-line function definition capabilities).

CE26-01 5-4

CP-6 COBOL REFERENCE (CE29) describes the formats, syntax rules, and
general rules of CP-6 COBOL (an enhanced version of ANS COBOL X3.23-1974) for
application programmers already familiar with the language. In addition to
detailing the language, this manual contains information on compiling a COBOL
program under the CP-6 operating system; using DELTA to debug a COBOL program;
linking modules created outside COBOL; and interfacing COBOL with I-D-S/II.

CP-6 COBOL PROGRAMMER GUIDE (CE46) contains a number of examples that
illustrate the COBOL programmer's environment from creation of a source file
through the development and production phases of a COBOL program. COBOL
extensions and enhancements are described as well as newer COBOL ANS
capabilities (e.g., table handling and the report writer feature). Discussions
are included on debugging COBOL programs through DELTA, using compilation
options, interfacing with other language modules, and using COBOL library
facilities. In addition, this guide describes data formats and data
manipulation, as well as interfaces between COBOL and CP-6 file management.

CP-6 FORTRAN REFERENCE (CE31) describes the language elements, statements
and features of CP-6 FORTRAN-77 (an enhanced version of ANS FORTRAN 1978 X3.9)
for application programmers already familiar with the language. In addition to
detailing the language, the manual contains information on compiling a FORTRAN
program under the CP-6operating system, and using DELTA to debug ,a FORTRAN
program.

CP-6 FORTRAN PROGRAMMER GUIDE (CE47) contains a number of examples that
illustrate the FORTRAN programmer's environment from creation of a source file
through the development and production phases of a FORTRAN program. In
addition, FORTRAN extensions and enhancements are described as well as newer
FORTRAN ANS capabilities (e.g., character data manipulation capabilities) •
Discussions are included on debugging FORTRAN programs through DELTA, using
compilation options, interfacing with other language modules, and using run
time error control features (IOSTAT and ERRSTAT).

CP-6 POCKET REFERENCE (CE42) lists the syntax of the commands or directives
of the following CP-6 utility processors: DELTA, EDIT, IBEX, LEMUR, PCL and
SORT/MERGE. This pocket-sized book is intended as a quick reference to command
and directive formats for application and system programmers. This command and
directive summary includes a brief description of each of the CP-6 utility
processors.

CP-6 PROGRAMMER REFERENCE (CE40) describes the IBEX (Interactive and Batch
Executive) commands used by application and system programmers to interface
with the operating system. In addition to detailing IBEX commands, this manual
includes an introduction to file and I/O management concepts, and details four
CP-6 utility processors: EDIT, PCL, LINK and LEMUR.

CP-6 RPG II REFERENCE (CE37) details the RPG II formats used to specify
reports, describes the calculation operations available, and defines the
procedures to compile and execute an RPG II program for readers who have some

tfamiliarity with programming and RPG. This manual includes examples and
tutorial material to help new RPG users.

CP-6 SORT/MERGE REFERENCE (CE28) describes for application and system
programmers the SORT and MERGE processors and their directives. This manual
includes examples and tutorial material to help new SORT/MERGE users.

5-5 CE26-01

DATA BASE MANAGEMENT MANUALS

CP-6 I-O-S/II REFERENCE (CE35) describes for the programmer the data
manipulation language used to access an I-O-S/II data base application. This
manual also summarizes the I-O-S/II subschema data description language and
discusses CP-6 environment features, including I-O-S/II program execution, file
assignments and access, journaling, recovery, and the subroutine library.

CP-6 I-O-S/II GUIOE (CE54) describes how to create an I-O-S/II data base.
This manual helps the implementor of an I-O-S/II data base select the features
that will best accomplish his goals and describes mechanical and operational
aspects of defining, creating, loading, retrieving and maintaining data bases.

CP-6 I-O-S/II OATA BASE AOMINISTRATOR REFERENCE (CE36) describes the data
base management environment from the perspective of those who control the
design, creation, access controls and the use of a schema file, subschema file,
and data base files. This manual describes the schema OOL, schema device media
control OMCL, and subschema OOL used by the data base administrator. In
addition to detailing the languages, the manual defines I-O-S/II data base
concepts and design considerations, describes I-O-S/II data base privacy
features, and details use of the DBUTIL processor to initialize, load, print
and dump a data base.

CP-6 lOP REFERENCE (CE30) describes the CP-6 Interactive Oata Base Processor
(lOP) used to retrieve and display information contained in an I-O-S/II data
base or on a data file. This manual is intended for anyone who wishes to use
this processor to access data contained in a data base or on a data file. The
manual describes the punctuation rules and syntax of lOP commands, and details
the lOP Query language. In addition, the reference illustrates use of lOP and
discusses retrieval strategy.

SYSTEM PROGRAMMING AND SUPPORT MANUALS

ASSEMBLY INSTRUCTIONS REFERENCE (OH03) defines the capabilities of GMAP-6, a
set of machine instructions common to the Honeywell CP-6 and GCOS 8 operating
systems used by system programmers. This manual describes the language's
machine instructions, and discusses modes of operation, virtual memory
addressing, and the representation of data.

CP-6 OELTA REFERENCE (CE39) describes for the programmer in any language the
directives available to debug object code through the system's multilingual
debug processor DELTA, and the debug facilities RUM and ANLZ. The parts of
OELTA applicable to FORTRAN and COBOL are available in appendices to the
respective reference manuals.

CP-6 MONITOR SERVICES REFERENCE (CE33) describes all the monitor services
and some of the library services available with the CP-6 operating system used
by programmers as well as those application programmers interested in accessing
monitor services directly. The library services documented in this manual
include the syntax parser, object unit generation services and source update
services.

CP-6 OPERATIONS REFERENCE (CE34) describes system error codes and the system
activities performed by the system operator to back up and recover files and to
perform preventive maintenance. In addition, this manual describes operator
communications (console attributes, usage and keyins), and the system
processors used to manage packsets and tapes and to perform file backup and
recovery: EFT, LABEL, PIG and VOLINIT.

CE26-01 5-6

CP-6 PL-6 REFERENCE (CE44) describes the PL-6 syntactic elements, statements
and pre-processor facilities available to the system programmer interested in
using this high level language in which the CP-6 operating system is
prog rammed.

CP-6 SYSTEM SUPPORT REFERENCE (CE41) describes the processors used to
perform system support activities at a customer's installation. This
reference, intended for the system manager, details the following 11 system
processors:

CONTROL
EFT
FEPANLZ

FEPCON
GOOSE
PIG

RATES
STATS
SUPER

TIGR
VOLINIT

TRANSACTION PROCESSING MANUALS

CP-6 FPL REFERENCE (CE51) describes for the Forms programmer the Forms
Processing Language used to build Forms Processing applications. This manual
has separate sections for each of the divisions (i.e., identification,
environment, data and procedure), each of which contains syntax rules and
descriptions of statements and phrases.

CP-6 TP APPLICATIONS PROGRAMMING GUIDE (CE49) describes the TP environment
and the interface between Transaction Processing Application Programs (TPAPs)
and Forms Processing (FP) programs. This guide, directed to both the TPAPs and
FP programmers, contains separate programming notes and examples for each kind
of program, as well as discussions of data base and recovery considerations.
The guide also contains a typical scenario and complete example of an instance
of TP.

CP-6 TP ADMINISTRATOR GUIDE (CE50) describes the transaction processing
environment from the perspective of the creator and monitor of an instance of
TP. This guide details how to create and schedule an instance of TP, discusses
TP accounting options and data, details TP and related security features,
defines catastrophic recovery procedures and disdusses performance criteria.

TEXT PROCESSING MANUALS

CP-6 TEXT PROCESSING PRIMER (CE53) introduces the non-programming reader to
the basic features of CP-6 text processing. Through a ,series of examples, the
reader learns how to log on and off the CP-6 operating system, initiate CP-6
word processing, and build, correct, format, and print a standard business
letter·.

CP-6 TEXT PROCESSING REFERENCE (CE48) describes.the IMP, TEXT, EDIT, and PCL
processors. This reference, which re~laces the ADO release CP-6 TEXT
Reference, is intended for the advanced text processing user, as well as the
system analyst or text processing administrator who defines the text processing
env i ronmen t.

CP-6 TEXT PROCESSING ADMINISTRATOR GUIDE (CE52) describes the text
processing environment from the perspective of those who set up one. This
guide includes discussions of input terminal and output printer definition,
effective use of the IMP processor, implementation of efficient file bulk
storage, and selection of text processing features for various production
tasks. In addition, the guide describes global file editing and other advanced
applications.

5-7 CE26-01

GENERAL PURPOSE MANUALS

CP-6 COMMON INDEX (CE43) collates all CP-6 manual indexes into a single
volume. This manual contains a section-by-section description of each manual
in the CP-6 manual set, as well as the collated master index of all CP-6
manuals. Note that the Assembly Instructions Reference (DH03) is not included.

CP-6 CONCEPTS AND FACILITIES (CE26) introduces the reader with some
technical awareness of software systems to the capabilities of the CP-6 system.
This manual is intended for application and system programmers; transaction
processing, text processing and I-D-S/II administrators, and system and EDP
managers. The document includes both an overview of the CP-6 system and more
detailed introductions to the CP-6 hardware c~nfiguration, software processors
and operational modes.

CP-6 PRIMER (CE45) introduces the non-programming user to CP-6 system
features. Through a series of sample sessions, the reader learns how to
perform common system operations, including logging on and off the CP-6 system;
building and modifying files; listing and copying files to the terminal and the
line printer; and building and executing a simple program.

CP-6 ON-LINE DOCUMENTATION

The Honeywell CP-6 system includes a form of on-line documentation that
contains enough information to properly document an entire software product,
yet is organized in a way that any desired item of information is easy to
obtain.

The information in the CP-6 HELP facility is arranged in a tree-structure,
based around a group of central messages that provide gateways into the various
items of available documentation. When information about a specific item is
requested (e.g., a command), only the briefest summary is printed (in this case
the syntax of the command). Typing question marks causes successive layers to
be printed containing parameter descriptions, conceptual descriptions,
examples, related commands and concepts, down to the final level which points
the user to the hard-copy manual where the feature is described in detail.

This querying process is not mandatory, as all layers can be displayed at
once if so desired. Because all messages are structuted in these· layers, the
end user obtains only the level of information that he or she requires and, in
effect, constructs a manual that uniquely addresses his or her personal needs.
For unsophisticated users, the system analyzes and identifies· key-entiy errors
and then displays the correct format.

The on-line information is contained within a data base available throughout
the system, capable of being utilized to produce other forms of documentation.
Users can add messages to tailor the available information to their individual
environment. By executing HELP requests as a file, interspersed with sample
programs, a new form of documentation can be created where the information
about a feature is printed and then verified by the actual execution of that
feature.

CP-6 on-line documentation embraces the entire CP-6 system, dispensing
reference and tutorial information according to the need of each individual
user.

CE26-01 5-8

Section 6

CP-6 Programming Environment

CP-6 program development facilities are designed to promote the efficient
creation of application programs through the use of a,comprehensive set of
utility and control processors.

OVERVIEW

A user creates, compiles, loads, and executes a program in the following
manner:

1. The source language program is built as a file via the EDIT processor or
is punched on cards.

2. The program is assembled or compiled by calling the appropriate
processor. The command for calling this processor is the same in batch
and time-sharing modes. The output of the assembly or compilation is a
relocatable object unit, or, in languages such as BASIC or APL, a
workspace.

3. The object unit or a set of associated object units is loaded by the LINK
processor. The LINK processor combines object units into a single entity
called a run unit. The user may specify that LINK is to produce an
overlaid (tree-structured) program.

4. Program execution is initiated via an IBEX command (START), or by
specifying (as a control command) the file identification of the file
that contains the run unit.

5. Program debugging is aided by the DELTA processor, a multi-function
debugger used to locate and correct program errors.

During these steps, the HELP facility can be used to obtain command syntax
and other information about CP-6 and its processors.

SAMPLE CP-6 SESSION

Figure 6-1 shows a sample CP-6 session. The left hand pages show annotations
tthat match the letters on the right or sample program.

Although Figure 6-1 does not illustrate all the CP-6 program development
facilities, it does build, compile, link, execute and debug a program.

6-1 CE26-01

Figure 6-1: Annotation

A. The user initiates communication by connecting the terminal to the CP-6
system. If the user's terminal is hardwired, the connection is made by
turning on the terminal. If the user's terminal is linked via an
interface, the user follows local dial-up procedures. When the user makes
connection with the CP-6 system, the system requests that the user enter a
recognition character. The user enters the recognition character which is
not echoed (displayed) on the terminal.

B. The system identifies itself in a way that is standard for the
installation. Identification information will normally include time and
date of connection, as well as logical and physical connection information.

C. system requests that the user log on and the user enter the account, name
and password. As a security aid, this log-on information is not echoed on
the terminal.

D. The system confirms the log on. This installation standard message will
normally include time and date of the log on.

E. The IBEX command processor prompts the user to enter an IBEX command with
the exclamation point character. The user enters the TERMINAL command to
request terminal status information, which is output to the user's
terminal.

F. IBEX prompts for another command, and the user invokes the EDIT processor
used to build and manipulate source language and data files. The EDIT
processor acknowledges that it has been invoked.

G. The EDIT processor prompts the user to enter an EDIT command with an
asterisk. The user enters a command to set FORTRAN format tab stops.

H. The EDIT processor prompts the user for another command, and the user opens
a new file and assigns it the name SITRI.

I. The EDIT processor prompts the user to enter successive file lines (also
called records) with line numbers (also called record keys). In response
to the first line number, the user enters the first line of a FORTRAN
program. This process continues until the user responds to a line number
prompt with an immeditate RETURN (see line 11). In this example, the user
creates a program to read three variables, calculate their square roots,
add the resultant values and write out all calculated values. As it
appears at this point, the source .program contains errors so that data
manipulation features of the EDIT processor can be demonstrated.

J. The EDIT processor prompts for another EDIT command, and the user enters
three chained commands (linked together with the semi-colon character)
that:

• Identify a search record (SE6)

• Replace the first 2 blank characters in the record with the
value 50 (/ /S/50/)

• Request that the corrected line be echoed (TX).

The EDIT processor types the manipulated record as corrected.

CE26-01 6-2

A ?please type a left parenthesis

*** CP-6 AT YOUR SERVICE, LAOC L66A
13:44 08/14/80 FEP #0001 PATH#OOOB LINE#1700

C LOGON PLEASE:UACCT,UNAME,PSWRD

D *** SYSID# 126425 ON LAOC L66A AT 12:44:09.57 AUG 14 '80

TERMINAL ATTRIBurES:

1

!TERMINAL

E NODE-PORT = 1-1700 LINE SPEED = 1200 PROFILE NAME = XRX8S0

F

G
H

I

J

ON: TAB SIMUIATICN,RELATIVE TABBING,SPACE INSERTIOO,DISPLAY INPUT,
APL LCMER CASE,&:ROLL,PRINT HALT,RELATIVE PAGE,SAVED INPUT SIZE=3

{
!EDIT
EDIT HERE

{ *TA F
*BUILD SITRI

1.000
2.000 10
3.000
4.000 20
5.000
6.000
7.000 100
8.000 200
9.000 300

10.000
11.000

WRITE (6,100)
READ (5,200) X,Y,Z
IF (X) 20,50,20
D = SQRT(X**2+Y**2+Z**2)
WRITE (6,300) X,Y,Z,D
STOP
FORMAT(7X,lHX,11X,lHY,11X,lHZ,11X,lHD)
FORMAT (3E)
FORMAT (4(lX,Ell.3»
END

*SE6i/ /S/SO/iTX
6.000 50 STOP

Figure 6-1. Sample CP-6 Program

6-3 CE26-01

Figure 6-1: Annotation (cont)

K. The EDIT processor prompts for a command. The user enters an unrecognized
command. The EDIT processor responds with **Eh?, and prompts for another
command.

L. The user responds to the command prompt by entering a ? to obtain further
information about the error condition that caused the EDIT processor to
type **Eh?

M. The EDIT processor prompts for a command, and the user invokes the HELP
processor again to examine the syntax of the EDIT command IN. The HELP
processor displays the requested information.

N. The EDIT processor prompts for a command, and the user invokes the HELP
processor for the next level of HELP information -- parameter descriptions.
The HELP processor displays the requested information.

O. The EDIT processor prompts for a command and the user responds by entering
an IN command that is syntactically correct. The EDIT processor prompts
for the insert line by typing the line number, and the user enters the
record data (note that a table precedes the data) •

P. The user responds to the next EDIT prompt by entering the END command to
return control to IBEX.

Q. IBEX prompts for a command and the user invokes the EDIT processor to,open
another new file. This time, the user builds a 3-record data file called
CHANT.

R. The user responds to the next IBEX prompt by invoking the FORTRAN processor
to compile the source program in file SITRI and write the object code to
file DAEMON. (If file DAEMON already exists, the file will not be
replaced; instead, a diagnostic message will be produced.)

S. The FORTRAN compilation results are displayed at the terminal, indicating
an error-free compilation~

T. The user responds to the next IBEX prompt by opening another new file named
GOETIA. The user build an execute (XEQ) file; that is, a file of IBEX
commands. This file will subsequently be submitted as a job file for
execution. When executed, the commands (records) in this file will:

• Establish the file CHANT as the source of input.
• Establish the user's terminal (ME) as the output destination for

results of execution.
• Link and execute the object code contained in file DAEMON.

U. The user responds to the next IBEX prompt by executing the XEQ file.

v. The system displays the results of execution as follows:

• Each IBEX command in the XEQ file is echoed as it is executed.
• The results of the link and execute process are displayed on the

terminal as a result of establishing the user's terminal as the output
device.

CE26-01 6-4

K {*IN LINE 5.5
** Eh?

L

M

N

o

P

Q

R

{
*?
** A syntax error was detected at 4

{

*HELP IN

Syntax: IN[n] [,i]

[

*?

n = key of first insertion. Defaul t=highest key in record range + i.
i = increment for following insertions. Default=l or last-specified i.

{
*IN 5.5

5.500 GO TO 10

{
*END
! BUILD CHANT

1
EDIT HERE

1.000 1.0,2.0,3.0
2.000 1.0,1.0,1.0
3.000 0.0
4.000

{
! FCRTRAN S ITRI OVER Jla.EMCN
FCRTRAN 77 VERSIClJ A03 AU:; 14 '80

COMPILE UNIT 001 AUG 14 '80 13:53:56.51

S * 1.000> 1: WRITE (6,100)

1

FCRTRAN 77 VERSIClJ A03 SOURCE=SITRI

10.000> 11: END
ERRCRS FOUND: 0 TOrAL ERRCRS FOUND: 0
ERR SEVERITY LEVEL: 0 MAX SEVERITY LEVEL: 0

T 1.000 !SET F$5 CHANT,FUN=IN

1

!BUILD GOETIA
EDIT HERE

2.000 !SET F$6 ME
3.000 !RLN DAEMCN
4.000

U {!XEQ GOETIA

V

* :SHARED CG1MCN AOI. :SYS (SHARED LIBRARY) ASSOCIATED.
* "* ALLOCATION SUMMARY * *

PROTECT I ClJ LOCATIClJ PAGES

DATA 0 1
PROCEDURE 2000 1
READ ONLY 0 1

* NO LINKING ERRCRS.

X Y Z D
.100E+Ol .200E+Ol .300E+Ol .374E+Ol
.100E+Ol .100E+Ol .100E+Ol • 173E+Ol

STOP

Figure 6-1. CP-6 Sample Program (cont)

6-5

6

CE26-01

Figure 6-1: Annotation (cont)

W. The user responds to the next IBEX prompt by requesting a listing of the
files existing in the log on account. The four files created during this
session are listed as the only four files in the account.

X. The user responds to the next IBEX prompt by directing that a listing of
the source file be created for printing at the output destination
PR@DOCUMENT. The device identification is known to the system.

Y. Another COpy command directs that a listing of th~ object code be created
for printing at another output destination, LP@UPSTAIRS.

Z. The user responds to the next IBEX prompt by requesting that all queued
output files be printed.

AA. The user responds to the next IBEX prompt by submitting the XEQ file for
execution as a batch job. Note that no JOB command is required. The
system responds by displaying the job identification of the submitted job.

BB. The user responds to the next IBEX prompt by invoking the BASIC processor.
The BASIC processor acknowledges that it has been invoked.

CC. The BASIC processor prompts for input with the> character. The user
responds by :

• Invoking AUTO mode.
• Entering statements that will find the square roots of three variables,

and printing calculation results.
• Establishing the data file CHANT as an input file.
• Executing the contents of the work area.
• Sealing and saving the work area.
• Terminating use of the BASIC processor.

DO. The user responds to the next IBEX prompt by logging off the system.

EE. The system responds to the log off by printing terminating usage and
accounting information.

NOTE: This figure is a file image copy of an actual CP-6 programming
session.

6-6

w { !L
CHANT DAEMCN GOETIA SITRI

X { !COPY SITRI TO PR@DOCUMENT
•• COPYing

Y { !COPY DAEMCN TO LP@UPSTAIRS
•• COPYing

Z { !PRINT
M { ! BATCH GOETIA

Job 58825 Submitted
BB { !BASIC

BASIC AOI HERE

)AurO
10 DEF FND(X,Y,Z)=SQR«X**2)+(Y**2)+(Z**2»
20 PRINT" X"," Y"," Z"," D"
30 FOR A = 1 TO 2
40 INPUT #l;A,X,Y,Z
50 PRINT X,Y,Z,FND(X,Y,Z)
60 NEXT A
70 STOP
80 END

CC 90
)OPEN "CHANT" TO 1, INPUT
)RUN
X Y Z D
1 2 3 3.74166
1 1 1 1.73205

HALT AT LINE 70
)SEAL LEMffiETCN
LEMffiETCN SAVED AND SEALED
)SYS

DD { !OFF
EE { CON=OO:00:14:23 EX=OO:00:03.97 SRV=OO:00:10.10 PMME= 1238 CHG= 5.76

Figure 6-1. CP-6 Sample Program (cont)

6-7 CE26-01

BUILDING A PROGRAM

EDIT is a context edit for the creation, modification, and manipulation of
textual files. EDIT is desdigned for on-line use; batch users without access
to a time-sharing terminal generally punch programs on to cards.

All EDIT data is stored on disk in keyed files of variable length records.
Through EDIT, a user can:

• Create a sequenced text file.

• Insert, delete, reorder and replace lines or groups of records within a
file.

• Print and renumber file lines selectively.

• Merge part of one file into another.

• Select records for intra-record editing based on the presence or absence
of specified character strings.

• Perform context editing operations that delete, move, and substitute
character strings within a previously selected set of records.

• Maintain files. The user can build, copy and delete whole files of text
lines.

Appendix C is a summary of EDIT commands.

COMPILING A PROGRAM

IBEX (Interactive and Batch Executive) is the CP-6 command processor. IBEX
is an interface between the user and the operating system. IBEX interprets the
CP-6 execution control language, the repetoire of IBEX commands. These
commands control the construction and execution of programs and provide
communication between a program and its environment. CP-6 processors are
called by specifying the processor name in an IBEX control command. All jobs
require the use of execution control language.

Appendix A is a summary of IBEX control commands.

LINKING AND EXECUTING A PROGRAM

The LINK processor controls the linking of programs. LINK accepts as input
object units (which are the output of compilers or assemblers), resolves any
linkage, and produces run units as output.

An overlaid program is a tree-structured program that has only one node (the
root node) resident in main memory for the duration of the program execution.
The other nodes are called for by a resident node and brought in as needed.
They may reside (at different times) in the same main memory area, thus
reducing the amount of main storage required to contain the entire program.

If the program is to be overlaid, the overlay specification is given to the
LINK processor in the LINK command. It is the user's responsibility to plan
the relationship of the nodes within the program.

The example in Figure 6-2 consists of four paths, anyone of which may be
present in main storage at any given time. Node A is the root of the program
and is never overlaid by another node. Any path may be loaded into main
storage and overlaid as many times as required by the program. All nodes of
the run unit file are saved in disk storage. When a node that has been
overlaid is called again by the executing program, the original copy is loaded

CE26-01 6-8

from the disk. Therefore, any communication between two overlay segments
(e.g., D and E in Figure 6-2) must be done in a part of the backward path
common to both. Although Figure 6-2 illustrates a single tree structure, most
actual overlaid programs consist of two parallel trees: one for data and one
for programs. Both are fetched by a single node load call.

The user can direct IBEX to initiate execution of user programs that are in
run unit form in two ways:

1. Simply by specifying the file identification of the file that contains
the run un it.

2. Through the START command.

DEBUGGING A PROGRAM

DELTA is a universal debugger used for non-interpretive languages. Each
language processor produces a debug schema defining the location and
characteristics of each symbol defined within a program. This schema allows
the programmer to communicate with DELTA using the exact symbols that appear on
the program listing or the source program line numbers.

DELTA operates in both the batch and on-line access modes. In time-sharing,
conditions in the user program are reported directly to the user's terminal.
The user then interacts with DELTA to correct errors. In batch, the user must
pre-plan the debugging session, entering the desired commands to DELTA within
the IBEX command stream; the user is restricted only in that immediate
interaction with DELTA is not possible.

LINK A(C(D) (E» (B(G) (F) ON SAMPLETREE

E I
C

D I
I A

G I
B

F 1

Figure 6-2. Sample Tree Structure

6-9 CE26-01

Tracing ability is provided at several levels: on all entry points, on a
specific entry point, or on any condition which causes a break in the sequence
of instruction execution. Additionally, a history mode can be set to save
trace information for later examination. The DELTA user can:

• Interrupt the flow of program execution according to specified conditions.

• Examine, insert, and modify program elements such as instructions and
data.

• Trace the flow of program execution.

• Obtain snapshots of post-mortem dumps.

The user directs DELTA activities through directives. DELTA directives can
be catagorized into three groups:

1. Processor Directives that set parameters for the debugging session and
cause DELTA to perform functions not related to the program itself.

2. Execution Control Directives that set procedure, data, and event
breakpoints.

3. Memory Display and Modification Directives that print and/or modify
memory.

These directives are considered direct, stored, or attachable depending on
the time of activation. A direct directive is activated immediately. A stored
directive is activated when a specified condition occurs. An attachable
directive can either be invoked directly or as part of a stored command.

Appendix B is a summary of DELTA directives.

CE26-01 6-10

Section 7

CP-6 File and Device Management

CP-6 file and device management provides significant data organIzIng and
input/output services. CP-6 I/O is device independent, allowing programs to be
written without specific knowledge of the file or device at which I/O will
actually take place. Default device assignments make specific selection
necessary only when the programmer wishes to perform an unusual task. Pack
sets and the EFT (Efficient File Transfer) processor provide protection from
file destruction in the event of disaster. In addition, support of ANS tape
formats allows the programmer to transfer information to and from other
computer systems.

ORGANIZATION AND ACCESS METHODS

A file is an organized collection of information. This collection of
information may consist of one or more programs, one or more sets of data, or
some combination of programs and data. Under the CP-6 system, a user always
accesses files through the monitor -- never directly. An option does exist,
however, that allows a user to deal with a non-standard set of data on an
unlabeled magnetic tape as though it is being accessed directly.

The monitor maintains an Account Directory which consists of account numbers,
and for each account number, the address of a directory of files (termed a File
Directory) for that account. A File Directory consists of file names and, for
each file name, the address of a table containing file attributes and that
file's location. The File Directory also contains access information for the
accoun t.

The File Information Table (FIT) contains additional information on each
file. This information indicates who may access the file and how the file may
be accessed, and can also include a list of which accounts may perform certain
privileged operations. To access a file, a user must be running under an .
account that is authorized to access both the file's account and the file; the
user must provide .the proper password (if one exists). The FIT also contains
various file-associated dates, special installation information, and the file
type.

FILE FUNCTION AND DISPOSITION

A file can be opened for one of three functions: creation, input, and
update. There are two possible dispositions for a file --. either to save it or
to release it. Whether to save or release a file may be specified either .when
the file is opened or when the file is closed. If a file is opened in the save
mode, the user can close the fil~ in the release mode. However, a file opened
in the release modes cannot be closed in the save mode. If the disposition of
a file is ,not specified, the default (save or release), depends on whether ,or
not the file is cataloged.

7.-1 CE26-01

A user can request the opening of an existing file, the replacement of a file
with a file of the same name, an error return to the user indicating that a
file of the same name already exists, or the creation of a new file if no file
of the same name exists.

FILE ORGANIZATION

The information in a file is structured in one of six ways: keyed, indexed,
consecutive, relative, random, or unit-record. The type of structure is called
the organization of the file and is a file attribute. The information in a
file may be accessed in one of two ways: directly (by supplying the unique
identifier of the record) or sequentially (by using the ordering relationship
of the records).

KEYED FILES

In a keyed file, each record has an identifying key associated with it. A
key consists of a byte string, with the first byte stating the number of bytes
in the string. The contents of each byte may be a binary number or the binary
representation of some character. A key can consists of up to 255 bytes.

As the file is being created, a master index is also created with an entry
for each keyed record in the file. The keys are stored in collating sequence
so that the file can be accessed sequentially. The entry contains such
information as the key, the file-relative disk address of the record, the size
of the record, and the position of the record within the blocking buffer.

Keyed files have a multilevel index structure to provide fast direct access.
The higher level index block entry points to index blocks at the next lower
level (i.e., one entry per block) and the entries in the lowest level (called
level 0) point to data records.

The user has control over when and if the higher-level structure should be
rebuilt. The system, however, automatically manages the structure without
explicit user intervention.

INDEXED FILES

The indexed organization is implemented as a special case of the keyed file
organization. The keys must be fixed length, less than 256 characters, and
contained as a contiguous field within the data record.

CONSECUTIVE FILES

Consecutive files contain records that are organized in a consecutive manner,
i.e., there are no identifying keys. The records can only be accessed
sequentially.

The principal benefit of using consecutive files is a reduction in the amount
of disk space required for the files, and a consequent reduction in time
required to traverse the files.

CE26-01 7-2

RELATIVE FILES

A relative file consists of fixed-length records in a fixed-length file which
is pre-allocated and effectively initialized at creation time. It may be
accessed sequentially or directly by record number. Relative files can be
extended in size subsequent to their creation.

RANDOM FILES

Random files provide a basic organization for those users desiring to manage
their own files. Random organization differs from other file organizations as
follows:

1. A random file is simply a collection of logically contiguous blocks on a
pack set. The number of blocks is specified at the time the file is
created and may be expanded dynamically.

2. The user may specify a relative starting block number and a byte count
with each read or write.

3. Each write consumes the entire specified block. Bytes not specifically
written contain no useful information. The contents of the block include
no system information except the block stamp. The one-word block stamp
on each granule mayor may not be visible to the user (at the user's
option). Management of the user's data is the responsibility of that
user.

The monitor provides allocation of file space, security checks, and normal
I/O queueing service and clean-up. The user is responsible for record
management. I-D-S/II uses random files and manages the content.

UNIT-RECORD FILES

Unit-record files are consecutive files that contain unit-record type
formatting information such as page heading, vertical format control, and
horizontal tab information. These files may be copied to a unit record device
(such as a line printer or terminal) and the output will look as if originally
written to the device.

FILE ACCESS

When a consecutive file is read, the records are accessed in sequential
order. When any other type of file is read, the records can be accessed
sequentially or directly. The records are accessed sequentially if no record
identifier is specified. The records are accessed directly if an identifier is
specified.

A file can be created by writing records sequentially or directly (by
specifying an identifier). Existing records can be rewritten in files of any
organization. Record positioning operations are allowed in a file of any
organization. An error return is taken if the beginning or end of file is
encountered, or if a position by record identifier is requested and the record
does not exist.

7-3 CE26-01

The enqueue/dequeue facility permits simultaneous access to a file by
multiple readers or by multiple readers and a single updater. Several user
programs executing concurrently in separate jobs may be generating reports from
a data file while other user programs are concurrently modifying data items
within the file.

Responsibility for coordinating concurrent update activity is divided into
two parts, one controlled and provided by the operating system and the other
controlled by the application programs via the system's enqueue/dequeue
service. The operating system guarantees the physical integrity of the file so
that it remains properly connected, regardless of the update activity. It also
ensures that readers are provided with the most up-to-date information in
response to their requests.

Coordinating logical integrity of the file (primarly the data content) is the
responsibility of the application programs, since any connection of the data in
one record of a file with that in another record of the same or another file is
carried in the application program, not in the file itself.

Applications use the system's enqueue/dequeue facility to gain exclusive
access to the records. Enqueue/dequeue is a generalized service and guarantees
exclusive or shared access to named items as required and requested. The users
of the service must agree on the meaning of the names, e.g., the names of the
records containing inventory count.

CP-6 file management includes a type of file sharing which provides a journal
facility. Many output users may share a consecutive file (tape or disk) by
adding records to the end of the file. No other type of access to the file is
permitted as long as the file is open in journal mode. Once closed, the file
is no longer a journal and is accessed as any consecutive file is accessed.

RECORD BLOCKING

The system automatically blocks records for other than random files in
l024-word blocks to promote efficient use of disk space. The user does not
participate in this blocking and, when reading, will receive the appropriate
record within the block, rather than the entire block.

When updating a keyed or indexed file, the user may rewrite a record in a
size larger or smaller that the original record size. If necessary, the
monitor allocates additional disk space to accommodate a larger size. A record
can also be rewritten in a consecutive file but the original record size is
maintained. If the new record is larger, the end of the record is lost; if it
is smaller, old data remains in the record. Relative file records may be
rewritten with any size from zero to the maximum size initially defined for the
file.

EFFICIENT FILE TRANSFER (EFT)

The file maintenance processor is called Efficient File Transfer (EFT). EFT
provides file protection via disk or tape backup, restore, and archival
functions.

BACKUP ON TAPE OR DISK DUALS

User files are copied to some backup medium according to an installation
determined schedule. On an individual file basis, the user can specify that a
file should or should not be included in the regular backup scheme. Only files
thus qualified that also have recently been modified are considered for daily

CE26-01 7-4

backup. The installation manager can also specify which accounts are available
for backup. The backup medium may be either tape or a dual pack set. In
general, the installation updates the dual pack set when a set is dismounted.
Files may also be backed up on tape while the set is mounted in order to
protect active files.

RESTORING FROM BACKUP

The restore function has two applications: to restore an entire pack set
because of some major disaster, or to restore individual files which have been
damaged or accidentally deleted. If the installation is maintaining pack set
duals, the restore-all operation may be as simple as mounting the dual set and
creating a new dual. If the backup media include tapes, the process is more
complicated since restoration of several sets of tapes may be required to
ensure that the latest copies of all files are properly restored.

ARCHIVE

The user may specify that an individual file should be copied to the archive
medium ("stowed"). That file"is then frozen from updates until it has been
stowed. The user may further specify that the file should be put in inactive
status (the data is deleted) or active status (the data is retained). Either
way, the file remains cataloged and the stow tape identification is retained
with the file's information. At some later date, the user may request that the
stowed version be returned from the archive medium to the active file system.

PACK SETS

All CP-6 disks are organized into pack sets (i.e., a group of one or more
disk packs). All initialized random access devices, whether dismountable or
non-dismountable, belong to some pack set. A pack set is identified by its
pack set identifier, which is a one to six character name common to all disk
packs in the set.

Each member of the pack set also has a unique serial number, used by CP-6
file management when mounting a pack set. External usage of serial numbers is
restricted to the system manager or operator for communication with the CP-6
system while initializing, extending, or mounting the set. Users of a pack set
are unaw~re of its serial numbers, referring to the set by pack set name only.

Pack sets in regular use at an installation are normally cataloged by the
batch scheduler. Pack sets, cataloged or not, may be mounted as public,
private, or exclusive. The only difference is in the mode of mounting; there
is no difference in the format. A pack set may be private today and public
tomorrow.

Mounting a pack set as public causes the accounts it contains to be merged
into the system account directory. The files can b~ accessed by account: the
system automatically recognizes the intended pack set.

Mounting a pack set as private does not enter the accounts on. the pack set
into the account directory; the files can only be accessed by specifying the
pack set name as part of the file identifier. More than one user may reference
a private pack set concurrently.

Mounting a pack set as exclusive is similar to private mounting except that
only a single user may access the set.

7-5 CE26-01

LABELED TAPE

CP-6 supports ANS (American National Standard) labeled tapes. The ANS tape
format has two advantages: data protection (unexpired tapes cannot be
overwritten) and inter-system portability. Using ANS tapes, data can be
transported between the CP-6 system and all other systems which support ANS
tapes (other Honeywell systems, IBM systems, etc.).

PROTECTION AND SECURITY

For CP-6 format tape files, information within the header and data records
supplies the security features found in the file management system: password
and file access control.

Additionally, three mode options allow the system manager to specify how
rigidly the ANS protection features are to be applied:

1. Fully-Protected Mode. Only ANS expired tapes which have been initialized
by the LABEL processor may be written. No tape serial number
specification is allowed at the operator's console and specification of
an output serial number forces processing to be done only on a tape
already having that serial number.

2. Semi-Protected Mode. A warning is sent to the operator when output is
attempted on an unexpired ANS tape. Th~ operator can authorize the
overwriting of the tape or overriding of the input and output
specification through a key-in.

3. Unprotected Mode. Both unexpired and expired labeled tapes can be
overwritten without operator intervention.

TAPE FORMATS

CP-6 supports three groups of labeled tape file formats:

1. ANS Standard formats: F (fixed-length records), D (variable-length
records), S (variable-spanned records) and U (undefined). Records in F,
D or S format may be blocked on tape; i.e., several data records per
physical tape record. Also, the S format file may contain records that
span tape blocks. On a U format tape file, each physical record
represents a data record.

All ANS formats are defined to be ASCII data. Format D has 4-byte record
headers and Format S has 5-byte record headers that contain the record
size in decimal characters.

2. EBCDIC formats: V (variable record length), F (fixed) or U (undefined).

Records in F or V format may also be blocked. Format V records may also
span blocks, and have 4-byte record headers that contain the record size
in 8-bit binary.

Records of EBCDIC format tape files will be translated to ASCII for the
user if translation is requested at tape open.

3. All CP-6 file organizations.

All CP-6 formats are transportable between CP-6 sites. Each tape file
contains a File Information Table (FIT) to supply access and control
information similar to that contained in a FIT associated with files from
pack sets.

CE26-01 7-6

The tape file management system can be used to block and unblock, span,
and translate tape file records. The user can control volume switching,
or it can be done automatically by the system.

INPUT/OUTPUT

All requests for I/O services specify a data control block (DCB) that is used
in performing the I/O. The DCB is a data structure used for describing the
actual I/O connections and for maintainirig information such as the result of an
I/O operation. Figure 7-1 illustrates the various connections established for
performing I/O. The following points are keyed to the connections illustrated
in the figure:

1. The user program references a DCB via a monitor service call.

2. The DCB is connected to one of several types of I/O facilities via
monitor services (M$DCB or M$OPEN), or via the IBEX command !SET.

a. File. A file on a user-available pack set.

b. ANS Labeled Tape. A file on a labeled tape named as a resource.

c. Comgroup. A CP-6 logical communications network, commonly used to
connect terminals to programs, that connects devices and programs to
programs. Through this mechanism, terminals may be accessed by name.
(Refer to Section 9, CP-6 Communications Management, for more
info rmation.)

d. Special Name •. A name assigned to a logical device. (An example is
the destination for listings, e.g., a user terminal (for on-line) or
a line printer (for batch)).

e. Device Name. A name which is connected to a logical device or a
specific device (e.g., a specific tape drive with a foreign tape
mounted, which has been defined to be a resource).

3. The contents of a spooling file are copied to a local or remote output
device such as a line printer or card punch, or are built by a local or
remote input device such as a card reader.

For convenience, a number of available DCBs have default assignments to
special names. For example, LO (listing output) is the assignment of the M$LO
DCB, and CR (command stream read) is the assignment of the M$SI DCB.

These DCBs are set up for common system usage.

Each request for I/O service from the monitor is made by inclusion of an I/O
call in the user's program. This call references a Function Parameter Table
(FPT), which in turn refers to a Data Control Block (DeB). The com'bination of
the I/O call, the FPT, and the DeB provides the information that the monitor
needs to perform the requested operation.

7-7 CE26-01

User I/o
Procedure

DCB

..- !SET, MDCB, MOPEN Direct the I/o
One of Five Ways Shown Below

FILES r Content Managed by CP-6 1

File (Keyed
Consecutive,
or Random)

Public or Private
Fi Ie Storage

ANS
Label ed Tape

System
Establishes
Actual ____ 01011 J--l 2b

Physical
Addresses

Tape Drives
as Resources

DEVICES

Comgroup Special Name Device Name

System-Establ i shed
Correspondence ---t~--I 2c
(Different for On- -..",.

2d

Line and Batch)

I
User Terminal Spooling File

System-Established 1
Correspondence:~. Q
via Workstation ~
Definition File I

Local or Remote
Spooling Device

User Established
~.... Correspondence

via !LDEV or
!RESOURCE

Device
as Resource

System
Establishe
Actual
Physical
Addresses

-

Figure 7-1. Connection Established for Performing I/O

DEVICE INPUT/OUTPUT

The CP-6 system supports four classes of I/O devices in addition to files and
labeled tape:

1. Interactive terminals.

2. Comgroups.

3. Unit record peripherals (local or remote) •

4. Unfo rmatted devices.

5. Formatted devices.

A DCB used for I/O by a user program can become connected to these types of
devices by assigning a DCB to a special name or device name.

CE26-01 7-8

Special names are a set of convenient default assignments which are set up on
a system basis with one set of assignments for on-line jobs and one set for
batch jobs. These assignments are to logical devices or to the interactive
terminal.

A device name may be created and its output directed to unit record
peripherals by the LDEV command, or a name may be created and associated with a
formatted or unformatted device by the RESOURCE command. A third type of
connection to unit record peripherals may be made by specifying a device name
and work station directly in the DCB.

INTERACTIVE TERMINALS

Use of terminals as I/O devices is highly flexible. Terminals can be
operated in echoplex mode or with local printing. Input features include
sophisticated editing and tabbing capabilities. When operating in echoplex
mode, typeahead is allowed and proper sequencing of input and output is
guaranteed. Output features include tabbing, line breakup to fit the device,
pagination, and page headers. A wide variety of timing algorithms and code
sets are provided to fit the idiosyncracies of specific terminals.

UNIT RECORD PERIPHERALS

All I/O to unit record peripherals (e.g., card readers, card punches, line
printers, and plotters) is staged via spooling files whether the device is
local or remote. Spooling means that the entire input job from a card reader
is read to disk before processing, and that all of the job's output to these
devices is stored on disk and is normally not output until the job is complete.
(Spooling is discussed in more detail in Section 13.)

The benefits that accrue from processing of these devices symbiotically
incl ude:

• Program execution is disconnected from I/O devices.

• Smoothed peaks and valleys in I/O demand.

• Multiple programs can be output to the same device simultaneously.

o Output can be grouped by form type.

• A program can generate several 'streams' of output to one device.

• Several copies of output can be produced.

• Batch peripherals can be used on-line.

• Jobs can be submitted to the batch job queue from on-line terminals.

• Job requirements can be pre-scanned for efficient resource allocation in
batch scheduling.

UNFORMATTED DEVICES

An unformatted device (primarily foreign tape) is handled as a resource which
must be pre-allocated (contended for if on-line). When the device is allocated
to the user, he or she is responsible for the data read or written to the
device. No blocking or formatting services are provided.

7-9 CE26-01

FORMATTED DEVICES

If one of the labeled tape formats is specified when using a tape device,
record formatting will be done for the user by tape file management. A
formatted tape may contain blocked and spanned records, and may have data
translated from EBCDIC to ASCII and vice versa.

LOGICAL DEVICES

A logical device is an information stream through which a user may
conveniently perform I/O. A logical device may be associated with any physical
device that the user specifies, provided that the device is a spooling device.
(Spooling devices include unit record devices such as the line printer, card
reader, card punch, and all devices that are accessed via remote processing.)

Logical devices may be defined by the user by means of the LDEV command. Two
logical devices are available for use without specific -user definition; they
are used for line printer output and card punch output.

Logical devices perform three major services. First, they may be used to
merge (or separate) output from different user DCBs intended for the same
destination device. Second, their names may serve as a convenient shorthand
for an entire set of device characteristics (for example, device name, form
name for printer, number of copies, etc.). Third, the two predefined streams
allow users to run jobs with little concern for the physical location or
conriection of devices on the system.

One important use of logical devices is production of several separate
reports on a single program pass. Output for each distinct report is directed
to its own logical device. Each logical device is separately buffered on disk
file and, on completion, the reports are transferred to printer either serially
(if there is a single printer), or in parallel (if more than one appropriate
printer is available).

FEATURES OF THE FILE SYSTEM

In addition to the facilities of the file system outlined above, CP-6 file
management provides the following special features:

• Unique block stamps on disk storage blocks provide not only security but
maintainability by providing information to aid in the reconstruction of
file (s) in the event of a major disaster.

• Directory blocks are linked and the forward and backward links are checked
on access.

• At job step and during recovery, the user's open files are closed properly
and current updates are posted to the files.

• Pack sets provide a separation of files in such a manner that a disaster
is localized and may affect a file or an account but will not affect the
entire file system. Full system restores are not necessary and thus
availability of the system is high.

• A check-write feature for disk I/O is provided as an installation option
for file directories or all granules.

• A user may change the account used as a default by file management without
logging on or off.

CE26-01 7-10

• File space is allocated by extents (groups of blocks) rather than by
single block. This is beneficial in two ways. First, damage to several
blocks may be confined to damage of one file rather than several. Second,
a reconstruction of the directory or cataloging information is fast, since
only the FIT of each file needs to be read in order to reconstruct the
entire set.

• Each file extension is updated immediately in the FIT so that memory
failure cannot cause the loss of file blocks.

• Entire files and individual records can be encrypted and decrypted.

• File directory descriptors and dates are updated when the file is opened
so that no recovery action is required.

• If a file was opened and for some reason (e.g., a major disaster) was not
closed, the recovery process will reconstruct the necessary control
info rmation.

• An option is available to determine the next account in the account
directory and the next file in a file directory provided the user has
proper authorization.

• Data compression and automatic decompression may be requested by the user
as a file attribute.

• Write-ahead and I/O cache are implementation details that enhance
performance; the user need not worry about buffering efficiency.

• Data intended for a printing device may be sent to a file for the user's
inspection and later sent to the printing device with the device
information intact (e.g., forms and vertical format control).

• File attributes include a code which is used by programs to determine the
type: APL workspace, various FORTRAN output formats, BASIC programs, etc.

• In most cases, files are automatically extended in size as the file grows.
However, random and relative files are extended by specific request rather
than by automatic extension.

7-11 CE26-01

Section B

CP-6 Scheduling and Memory ~anagement

The CP-6 scheduler piovides rapid throughput and on-line response. CP-6
memory management provides a highly flexible and secure computing environment.
Shared processors and libraries save memory space by associating users with
common routines. The system automatically detects and shares concurrently used
programs. An installation can, by instituting its own shared entities, further
reduce over-all memory costs.

SCHEDULING

A vital part of the CP-6 operating system is the scheduler, a module
responsible for allocating the central processor {as a resource} to various
jobs. The scheduler provides fast terminal response to on-line users and rapid
throughput for all jobs. The degree of efficiency with which the scheduler
performs its role is the key to optimum utilization of a computer system -- and
the value of the computer to an organization.

The CP-6 scheduler performs two major functions in achieving this goal of
high performance:

• Selecting the highest priority job that is ready for execution.

• Ensuring that the remaining high priority jobs are ready to use the
processing resource when it becomes available.

The CP-6 scheduler accomplishes this by:

• Creating prioritized status queues in which every job has a single entry.

• Assigning a priority to every job in the system.

• Modifying a job's priority as requirements for access to the processing
resource change in response to events triggered during the programs
execution {such as I/O and terminal input}.

There are three fundamental classes into which the various status queues may
be segmen ted:

• Waiting to Execute. This group of queues contains those jobs requiring a
processing resource in order to proceed.

• Executing. This queue consists of a single entry for each central
processor: the job currently using the processing resource.

• Non-Executable. This group of queues contains jobs waiting for an 'event'
to occur before requiring access to the processing resources {e.g.,
completion of an I/O operation or availability of a system resource}.

A primary benefit of the priority queue structure is that it provides
complete service to I/O users while concurrently keeping the processing
resource busy with compute-bound jobs. This feature enables maximum
utilization of both I/O devices and the central processor.

8-1 CE26-01

Each job is assigned a base priority when first activated. The base priority
may be different depending upon the selected mode of operation - for example,
batch or on-line. This feature allows one class of jobs to gain preferential
service. Under normal operation, the priority of a job changes frequently
during processing. Conditions or events that cause the scheduler to modify a
job's priority include:

• Completion of an I/O operation.

• Completion of terminal input.

• Occurrence of an error during an execution program.

The executing programs and the environment continually notify the scheduler
of their requirements and of the availability of resources. As a result, the
scheduler can efficiently and effectively optimize the entire system. Dynamic
system tuning is a major factor in making the CP-6 system an efficient
mUlti-use operating system.

Another mechanism used by the CP-6 scheduler to increase the amount of time
spent in processing user jobs is the use of bounded time intervals. The
system-control parameters QUAN and QMIN are time intervals. They are set to
ensure that no user job receives more than its share of the processing and
memory resources, yet still gets enough to continue processing efficiently.

• QUAN is the maximum time-slice allowed a compute-bound user before another
job is given control of the system. This assures that no single
compute-bound job of a given priority can dominate the processor resource.
The QUAN value is separately specified for each batch stream and all
on-line users.

• QMIN is the amount of processor time guaranteed a job unless pre-empted by
a critical task. The processor will still respond to I/O interrupts and
perform other system tasks. But, the processor will not be given to
another user until the current user has received its QMIN quantum.

VIRTUAL MEMORY AND SECURITY

The Virtual Memory and Security feature provides virtual memory addressing
and protection capabilities at the hardware level. The virtual memory feature
is based on the concept of working spaces and segments within working spaces
rather than upon a 'demand page' basis. The security aspect is grounded in
this virtual memory management concept. The paragraphs that follow describe
the CP-6 system implementation of virtual memory and security.

The virtual memory concept allows a large virtual address space to be divided
into Working Spaces (WS). In the CP-6 system, these workspaces are limited to
one million words each. A WS is further divided into variable size independent
spaces called segments. A segment is defined by at least one descriptor which
locates that segment in virtual memory. The descriptor indicates the WS in
which a segment resides, the base address of the segment relative to the WS,
the size of the segment, and the access allowed to that segment.

To reference any portion of virtual memory, a procedure must have a segment
descriptor which frames the particular area and which gives the desired
permission (e.g., read, write and/or execute).

Effective addresses (the result of normal address arithmetic) are segment
relative. An effective address is converted to a WS relative address by adding
the base address of the segment, as defined by the segment descriptor, to the
effective address.

Each WS is divided into I024-word pages. Each WS has a Page Table that
identifies the physical pages allocated to the WS and the access allowed to
each page. The associated page table is located by using the working space

CE26-01 8-2

number as an index into the Working Space Page Table Directory (WSPTD). The
WSPTD is simply a table whose entries are pointers to each WS page table. The
WSPTD itself is located via the Page Directory Base Register (PDBR). This
mapping process is illustrated in Figure 8-1.

A domain is defined by the segments it may access and the access right of
those segments. The segments need not be contiguous and may encompass more
than one working space. A domain can reference only those areas of virtual
memory framed by the segment descriptors which are available to the domain.
The user cannot create a segment descriptor, or change the location or increase
the size of the area originally framed by the monitor-prepared segment
descriptors. Figure 8-2 shows two simple domains on a user's working space:
that of a user program and that of the operating system.

There are two types of segments: operand segments and descriptor segments.
Operand segments contain instructions, data, or a combination of both.
Descriptor segments contain only descriptors.

The Virtual Memory and Security feature provides several levels of isolation
and protection. At the first level, everything is accessed via a descriptor
which directly or indirectly (via a Work Space Register) addresses a WS and
provides a limited window into that WS. At the second level, the WSPTD
specifies whether or not the WS exists (by a flag which signifies presence or
absence of a page table). The third level is provided by the domain concept.
To reference a segment, a process must have a descriptor for the segment. The
reference must be within the virtual area framed by that descriptor and it must
be consistent with the permission granted by that descriptor. Figure 8-2
illustrates the relationships between descriptors and the WS.

Another major factor contributing to the protection mechanism is that a slave
mode user is prohibited from modifying any Work Space Register, the Linkage
Segment Register, and the contents of the linkage segment. The slave user is
also prohibited from addressing in the absolute mode or manipulating the page
tables.

CP-6 supports the following five levels of execution for each user, each with
an established priority and its own domains of reference (areas of memory to
which a process has access):

1. User (USR).

2. Alternate Shared Library (ASL).

3. Interactive Debugger (IDB).

4. Command Processor (CP).

5. Mo n i to r (MaN) •

Figure 8-3 illustrates these five domains together with the paths of control
transfer which exist between them.

Each level of execution has its own well-defined domain, which is granted by
the monitor. While many users will be resident at the same time, scattered
over the real memory available, the Virtual Memory and Security feature
prevents any user from accessing the memory of other users or special shared
processors.

The CLIMB instruction transfers control to another domain and saves the
environment of the calling domain on the Safe-Store Stack (SSS). The called
domain can then return to the domain from which it was called by execution of
the return form of the CLIMB instruction (which restores the environment from
the SSS).

8-3 CE26-01-

Figure

CE26-01

Figure 8-1. Y Mapping Memor

. I Shared Specla .
Domain Processor

8-2. 6 Domains CP-

8-4

Operating System
Working Space

. I Shared Specla .
Working Processor

Space

of Reference

User

~ .. ~

Command
Alternate

Debugger Processor
Shared

(DELTA) (IBEX)
Library

(l-D-S/II)

~
.n

/ ~, ~,

CP-6
Monitor'

Figure 8-3. Control Paths Between CP-6 Working Space

The basic approach to CP-6 memory allocation and execution control includes
the following technical features:

• The CP-6 system uses only one 64-word Safe-Store Stack frame per domain.

• A program may enter a domain at a higher level of privilege or priority
only via a CLIMB instruction using entry descriptors controlled by the
monitor.

• Exit from a higher level domain restores the privilege and priority to
those that existed prior to entry.

• The monitor resides in its own working space.

• The procedure of the monitor is protected by placing it on housekeeping
pages.

• Each user has a unique working space.

o Up to three special shared processors may be associated with any given
user: an alternate shared library, a debugger, and the command processor.
Each resides in a separate working space.

• Ordinary processors with shared procedures execute within the user's
working space. These include most language processors such as APL,
FORTRAN, BASIC, and RPG II.

• Working spaces are organized in the following manner:

Real addressing can only be referenced by monitor procedures running in
privileged master mode.

Interactive command processors, debuggers, and alternate shared
libraries are procedure only.

Each user's working space contains all pages that are assigned to him.

8-5 CE26-01

USER VIRTUAL MEMORY LAYOUT

The user's megaword of virtual space includes the following segments:

1. Job Information Table (JIT)

The JIT contains accounting information for the user's working space.

2. The automatic storage stack (TSTACK) used by the monitor when processing
on behalf of the user.

3. Housekeeping JIT (HJIT)

The HJIT includes the following segments:

• The Linkage Segments (LS), defining user domains of reference.

• The Safe-Store Stack (SSS), for saving interrupt environments.

• The Parameter Stack (PS), for passing parameters between routines.

4. File Buffers.

All file buffers are allocated from a common pool within this segment.

5. Special Shared Processor Data Segments.

Space for data required by a debugger, alternate shared library, or
interactive command processor is allocated from this area.

6. Data Control Blocks (DCB)

The DCB contains information used by the monitor to perform I/O
operations for the user.

7. The User's Instruction Segment (IS)

This area provides a 256K-word area for the user program (instructions
and compiled data) and dynamic data. If the program requires the use of
a run-time library, the user program is restricted to 224K words.

8. User Data Segment

This area can contain up to eight independent user data segments, the
first two of which are used for PL-6 automatic data and COMMON data. A
total of 384 words are available in this area.

Figure 8-4 illustrates the layout of the user's virtual space within his
working space. With the exception of a fixed minimum requirements for HJIT,
JIT, DCBs and buffers, user physical pages are demand allocated.

SHARED PROCESSOR FACILITIES

The CP-6 shared processor facilities share automatically all user-domain
procedure from non-overlaid run units. Libraries and overlaid progra-ms and
processors which do not execute in the user's domain (e.g., command language
processors, debuggers, and data base managers), may also be shared by
explicitly declaring them to the system, either at initialization time or while
the system is in operation. Each user of a shared processor has a private copy
of only the data and DCB portion of that program; the procedure (code) portion
is shared by all users associated with the program.

CE26-01 8-6

JIT, TSTACK, ACCOUNTING

HJIT, LINKAGE SEGMENTS, SAFE - STORE, PARAMETER STACK

FILE BUFFERS

TCB, ECCB, TREE, DeBs

LIBRARY AND USER DATA

USER PROCEDURE

DYNAMIC DATA

SHARED RUN - TIME LIBRARY

AUTOMATIC DATA, COMMON DATA, USER DATA SEGMENTS

SPECIAL SHARED PROCESSOR DATA SEGMENTS

Figure 8-4. User's Virtual Memory - Megaword Working Spaces
(not to scale)

The automatic sharing feature will make the best possible use of memory,
dynamically tailoring the system to maintain only one copy of a particular
program in memory, without prior knowledge of that program's probability of
common usage.

CP-6 supports the following three types of shared processors:

• Standard shared processors.

• Run-time libraries.

• Special shared processors.

STANDARD SHARED PROCESSORS

The term "standard shared processor" is nearly synonomous with "automatically
shared program". A standard shared processor is any user program created by
the LINK processor that has at most one level of overlaying and contains only
pure procedure. A standard shared processor resides in the user's working
space, and may have initial data and DCBs which will be unique for every user.
The procedure portion of the processor will be shared by all associated users
by mapping that procedure into each user's working space.

A non-overlaid program will be automatically shared when it is concurrently
accessed by more than one user, unless either the LINK processor has built an
unsharable program or a user starts the program under a debugger.

Overlaid standard shared processors must be explicitly declared, either at
system initialization time or while the system is running.

8-7 CE26-01

SHARED RUN-TIME LIBRARIES

A shared run-time library is a collection of frequently used subroutines
which is treated by the CP-6 system in such a way that multiple programs may
simultaneously use the same copy of the library, resulting in efficient use of
main memory. A number of public libraries are supplied with the CP-6 system
(e.g., the FORTRAN Run-Time Package and the COBOL library). User installations
may create additional public libraries which suit their specific requirements.

Run-time libraries are shared by all simultaneous users associated with the
library by having the library procedures mapped into the top 32K of each user's
instruction segment. Data required by the libraries is supplied individually
to each user.

A call to a run-time library does not cause a change of domains.

SPECIAL SHARED PROCESSORS

The CP-6 system recognizes three types of special shared processors:

• Alternate shared libraries.

• De b ug g e r s •

• Command processors.

The standard CP-6 system includes I-D-S/II as the supplied alternate shared
library, DELTA as the debugger for FORTRAN, COBOL, PL-6, and assembly language,
and IBEX as the interactive and batch command processor. Installations
commonly add to the standard CP-6 special shared processor other special shared
processors for their own use in any of the t,hree catagories.

The procedure portion of a special shared processor resides in it own working
space. The procedure portion is shared by all users associated with the
processor by referencing the processor's unique working space. A data area is
provided in each user's own working space for each special shared processor.

A call to a special shared processor causes a change of domain, thereby
changing the ar.eas of memory to which the processor has access. The areas of
memory to which the processor has access are determined by its type.

Special shared processors must employ dynamic data segments for all their
non-constant data. As with run-time libraries, special shared processors must
be self-contained.

ALTERNATE SHARED LIBRARIES

Th~ alternate shared library provides I-D-S/II with an environment that
allows file access protection, data protection, and greater control of buffers
during error recovery operations.

The procedure portion of an alternate shared library resides in its own
working space. By locating I-D-S/II outside of the user working space, it is
possible to identify its calls and thus allow file protection by excluding
access except by I-D-S/II. The context and buffers reside in the user's
working space because they are unique to the user.

A user program that calls an alternate shared library relinquishes control
until the library returns control to the user. User-established break control,
timer runout, and event reporting are deferred while the library is in control.

CE26-01

DEBUGGERS

The system-supplied debugger is known as DELTA. DELTA can access everything
that the user can, but is not allowed to access procedure and data for other
special shared processors. In addition, DELTA has its own working space and
thereby does not occupy any of the user's virtual memory. Descriptors in
DELTA's linkage segment provide full access to all segments within the user's
working space to which the user has access, to DELTA's procedure in its own
working space, and to the debugger data area.

COMMAND PROCESSORS

The CP-6 supplied command processor is called IBEX (Interactive and Batch
Executive). It consists of pure procedure that resides in the working space
reserved for command processors. It requires only limited access to user's
working space, JIT, DCBs, and command processor data segments. In addition to
processing execution control commands, IBEX recognizes and processes calls to
shared processors (e.g., FORTRAN, BASIC, APL, COBOL) and fields 'interrupts'
from time-sharing terminals, allowing the operator to quit, continue, or invoke
DELTA at the point of interrupt.

User-written command processors reside in the command processor working space
concurrently with IBEX and with one another. Only one command processor can be
associated with a given user at a given point in time.

8-9 CE26-01

Section 9

CP-6 Communications Management

CP-6 communications management provides cost-effective communications via
local and remote communications processors, each of which contains the software
required to interface all supported types of terminals to the network. CP-6
communication management allows the system manager to configure and attach
devices so that communications are tailored to installation requirements.
Devices are accessed as time-sharing and peripheral devices and via comgroups.
Comgroups provide a vital communication link between programs, and between
programs and devices. A unified set of virtual protocols support access to
time-sharing, CRT and graphic terminals; to unit records devices; via forms and
between user programs.

COMMUNICATION PROCESSING

Communications configurations may be geographically distributed and connected
to several CP-6 host processors as well as to a variety of terminals. Figure
9-1 shows a sample CP-6 communication configuration.

Communications capabilities on the CP-6 system are provided on Honeywell
mini-computers. There are two types of communications processors: local (CP)
and remote (RCP).

CPs are directly connected to a host processor via a direct I/O connection
which can transfer up to one million bytes per second between CP memory and
host memory. RCPs are connected via commercial carrier lines to CPs or to
other RCPs. These lines may be dial-up or private and may be any speed
required by the load (up to a maximum of 72K bits per second) ~ Higher capacity
connections may be obtained by using multiple parallel paths between CPs and
RCPs. Multiple paths can also be used to increase reliability of connection.
The CP-6 system uses a full-duplex bit-oriented protocol over these lines for
maximum throughput and control over errors. The line protocol is Honeywell's
HDLC which is similar to IBM's SDLC; X.2S protocols form the next higher level
of communication, enabling connection to (or via) many standard networks around
the wo rId.

~Each communications processor, whether local or remote, contains the software
required to interface all supported types of terminals to the network. The
supported types of terminals include asynchronous terminals (such-as CRTs) ,
synchronous terminals on either clustered or multi-dropped lines, remote batch
terminals, and HASP-protocol terminals. The interface software transforms the
characteristics of each of the supported terminals into the CP-6 standard
protocol, permitting freedom in programming from the characteristics of
individual devices.

The communications subsystems are logically independent of the hosts that
connect to them, but are physically dependent on one or more hosts for
initialization, log-on files, and many other services. Once initialized,
however, the communications capability continues to be provided during times
when one or all of its hosts are out of service, allowing the user to recover
from where he left off (within certain limits) when the host returns.

9-1 CE26':01

CP-6
HOST

Figure 9-1. Sample CP-6 Communication Configuration

CP-6
HOST

CP-6 hosts can connect together for purposes of remot~ job entry, job load
leveling, file transfer, and data record access.

CONNECTING TERMINALS TO PROGRAMS

In the CP-6 system, the terminal or device is the unit of allocation; that
is, each terminal is separately connected to a program even if the terminal is
one of many'on a multi-drop line. CP-6 communications processing, not the user
program, controls polling on such lines. This feature isolates applications
from device-specific characteristics and makes it possible, for example, 'to use
one of several multi-drop terminals on a single line for time-sharing while the
others are connected to a transaction processing application.

Similarly, each device associated with a remote processing terminal is
separately allocated. A CP-6 station is not a description of a single physical
device, but rather a logical collection of physical devices. This kind of
station extends to the local peripherals of the host so that a logical
workstation may be made up of a particular printer and a particular card reader
on the local I/O multiplexor (10M). Such a configuration is often useful for
student programmers, for example, whose output must be delivered to the printer
adjacent to the card reader used for the job.

CE26-01 9-2

Terminals log on to the CP-6 system in two stages:

1. Communications log-on.

2. Host log-on.

However, the two stages are usually not visible to the user.

Communications log-on is controlled by the contents of the SUPER file which
is maintained by the Communications Manager. When a terminal connects to the
configuration, the log-on identification is collected and supplied to the
communications log-on process over a previously defined path. Information
returned from communication log-on defines the characteristics of the caller
using previously stored information, such as the exact device complement of a
particular remote batch terminal (RBT) , and to which host connection should be
made. Connections are set up between each terminal device and the appropriate
host. The system can supply default log-ons by line number to permit log-on of
plotters and other devices which do not have transmission capability.

This log-on process dynamically establishes the proper parameters for the
terminal. Log-on information is created dynamically during system operation
and thus may be changed without any sort of system definition (SYSGEN) process.
The CP-6 communication configuration and capabilities are adjusted and
augmented during system operation rather than by an off-line reconfiguration
process. Terminals are connected to a particular host during the log-on
process, either automatically or at the user's explicit request.

Note that all connections are established dynamically at the time a terminal
calls and identifies itself and that these connections are under the control of
the Communication Manager via modifications to the contents of his SUPER file.
No 'SYSGEN' or initialization process is required except that which establishes
the path to communications log-on. Shifting activity from one host to another
is simply a matter of modifications to the SUPER file.

The connection process also connects programs in one host to programs in
another host. Both programs may be within CP-6 hosts, both may be within CP-6
real-time hosts, or they may be combined. Thus the needs of real-time programs
for communication with each other are served by the same facilities that
service terminal communication.

CONFIGURING, ATTACHING AND ACCESSING COMMUNICATIONS
DEVICES

Control over the devices connected to a CP-6 system is managed at three
levels.

1. Configuration of devices into groups called stations.

2. Attachment of the devices to the system via log-on.

3. Accessing those devices from user programs in one of several convenient
ways provided by CP-6.

Each of these levels is managed dynamically. Devices and terminals may be
configured, attached, and accessed while the system is in operation.
Furthermore,-the configuration, attachment and access is location and network
independent, allowing devices to be used in appropriate logical ways regardless
of physical location.

Configuration defines a set of devices which make geographic sense (such as
the printers and card equipment in a particular room or building). This
'station' is controlled by an operator terminal designated in the station
configuration.

9-3 CE26-01

Configuration is logical; that is, the grouping of devices is not constrained
by the physical association of devices (for example, the printers and card
readers on an RBT). The system disassociates each device on an RBT and then
permits the system manager to create logical stations from devices according to
need and usage rather than physical connection. Thus two output-only serial
printers, a plotter and a terminal, may be grouped into a station and addressed
as such.

Attachment defines how devices are connected to the system. There are three
ways to attach devices:

1. As a time-sharing terminal. This connection enables the control stream
of time-sharing jobs and the workstation-of-origin for time-sharing
users. It associates the user with the set of peripherals -- and thus,
usually, the physical location. The workstation-of-origin is associated
with a time-sharing user by log-on default or explicit command.
Typically, a set of time-sharing users will have nearby printers to which
their printed output is directed automatically by the associated
workstation-of-origin.

2. As a private resource attached directly and exclusively to a single
program. Tape units are the principal example of this kind of
connection.

3. As a member of a comgroup. Terminals associated with a particular
transaction processing application set are connected this way. Comgroup
attachment provides wide flexibility both in selecting the number of
terminals connected to a transaction processing program, and in the
number of processes serving a particular transaction type. Spooled
symbiont printers and unit record devices are also connected via
comgroups.

The CP-6 system provides three ways of dealing with devices or groups of
devices:

1. As time-sharing terminals.

2. Via workstations.

3. As comgroups.

The way the device is accessed is affected by the method of addressing the
device.

The time-shared terminal is addressed by default. The programmer need never
explicitly direct I/O to his or her terminal. The system puts reasonable
output on the terminal and receives input from the terminal unless directed
otherwise.

Workstation addressing provides an abstract addressing to a type of device at
a particular station, usually at a geographic place. Thus, the user may
address "a line printer at Boston" or "a plotter in Bermuda". This kind of
addressing is strongly associated with remote batch terminals. But, the CP-6
system has more flexibility of physical and logical configuration; access may
come from time-shared as well as batch programs.

Comgroups enable networks of devices (often terminals) in which the
addressing is direct. Programs communicate with te~minals on the. comgroup
network by naming the terminal desired just as one names the terminal desired
on a multi-drop communication line. Again, the CP-6 system has separated the
physical connection from the logical connection, permitting, for example, two
terminals connected to a single physical multi-drop line to appear on separate
comgroups, if desired.

CE26-01 9-4

Thus, access to the devices may be made in three ways:

1. As time-sharing devices. Time-sharing access provides the control access
path to time-sharing programs. These programs are logically associated
with the workstation-of-origin, but I/O may be explicitly directed to any
named workstation.

2. As peripheral devices, typically printers and card readers. Access may
be direct or spooled. All peripheral devices are grouped into logically
associated collections called workstations. I/O is directed by
workstation name, and no physical association of devices is implied or
required even though it may be typical.

3. As terminals or devices accessed via comgroups the private logical
association of programs, terminals, and devices.

COMMUNICATION PROTOCOLS

The CP-6 system includes a set of virtual protocols or access methods. Each
access method may be thought of as the description of the features of a
'virtual terminal' and how to use them. The access methods are unified so that
a user can either write programs which work correctly regardless of the access
method and end device, or can use an access method that takes full advantage of
the capabilities of a particular terminal class. The available CP-6 access
methods are: .

1. Terminal. The device looks like a time-sharing terminal. Operations are
available to set prompting strings, change the platen width, etc.
Minimal formatting is done. vertical format control and tabs apply. A
TRANSPARENT option is provided to send and receive byte strings to the
device without system intervention.

2. Unit Record. The device looks like a line printer, card punch, or card
reader. Printer page formatting and card sequencing apply. All output
data is translated into printable graphics unless this feature is
explicitly suppressed.

3. Forms. The device appears to accept the name of a form and formats all
data based on it. Input and output are simply character strings
interpreted and presented on the device by the named form. The user's
program has no presentation responsibility.

4. CRT. The device appears to be a modern CRT terminal with such features
as cursor control, highlight and blink.

5. Graphics. The device appears to be a modern graphics terminal.

6. Inter-user. Features unformatted conversation between user programs with
facilities to, for example, get the attention of the other programs.

Note that in choosing an access method the user does not change the
operations used to converse: READ, WRITE, OPEN, and CLOSE. Exactly what these
operations do varies by access method, just as they do by file type (e.g.,
keyed and consecutive files). But, programming can be done in such a way that
such variations are of no concern. Additional operations are available in some
access methods to control special terminal features. These, however, are
'device independent', in that the system always extracts the meaning
appropriate for a particular device even if the meaning is simply ignoring the
command.

All access methods are convertible to the needs of each type of terminal,
because every access method is interfaced to the common protocol. At the
destination terminal, this protocol is transformed for the needs of the

9-5 CE26-01

specific terminal, ensuring a standard method to provide interfaces for new
terminals as they are developed. This feature also permits connection to the
generalized protocols of other networks.

COMMUNICATION GROUPS

Certain teleprocessing applications require a gathering of terminals into
identifiable groups. These applications are particularly common in transaction
processing. For this purpose, the CP-6 system provides private networks of
terminals called Communication Groups (comgroups) which have the following
properties:

• A DCB can connect a program to many devices or terminals in a comgroup.

• Many separate programs (CP-6 jobs or processes) can connect to a comgroup
and each may have an address on the group. This provides
'multiprogramming depth' for processing of a single transaction type by
shared procedure programs.

• A speci~l read operation delivers the next message (arriving from any
terminal in the group) to the reading program.

• The normal write operation delivers a response to the terminal which
supplied the input without requiring the transaction program to .be aware
of terminal addresses or names.

• The group can be composed of devices or terminals from anywhere in the
CP-6 network, unrestricted by differing physical characteristics.

• Terminals can be dynamically joined to and removed from the group.

• An optional file-backed queue of messages is associated with each comgroup
in which messages awaiting processing may be stored.

• The group is controlled by an administrative user who permits access to
the group, directs transaction handling, sets priorities, and controls
multi-programming depth.

Communication groups are used by the CP-6 system for input and output
symbiont terminals and operator console terminals.

RECOVERY

When a host suffers a temporary system halt, the communications subsystem
(CPs and RCPs) sustain themselves and ride through the period, minimizing the
effect on connected users. The effect of such an interrupt as seen by the user
is dependent on the terminal type and the system options selected. For
example:

• Terminals connected to one host will not be affected if another host
crashes.

• A crash of a single machine in the system is automatically recovered.
Users of bther parts of the system are unaffected.

• Lines between network nodes may be added, deleted, or recalled without
loss of data when re-establishing reliable communications.

Diagnostics and dynamic verification programs can isolate faults in parts of
the system to the extent that the machine is 'well enough' to execute
diagnostics. Verification procedures may be run periodically to check and

CE26-01

report on the status of communication lines, thus making faulty lines visible
to customer engineers. Errors are reported to error logs where they form a
profile useful in predicting potential trouble areas or lines.

Terminal devices may be added to the system during system operation. No
communications shutdown is necessary to add the capability for an additional
terminal. Because the software is capable of adding programs dynamically by
down-line loading them from a host, the system may add handlers to accommodate
a new terminal type without interruption.

9-7 CE26-01

Section 10

CP-6 Reliability and Security

The CP-6 system is designed to be thoroughly reliable and secure. On-line
diagnostics, error-tracking, and an efficient recovery procedure result in a
system with a minimum of down-time. CP-6 security features promote an
environment suitable for the handling of several levels of classified
information.

RELIABILITY

Errors are logged into buffers in main memory, which are copied to the system
log file. In addition to error condition records, the system log file contains
a number of information-only records that include information on tape mounts
and dismounts, operator input, and firmware loads.

The system log' file is listed and summarized through the system log listing
processor (ELAN). ELAN lists and sorts the system log file. ELAN output
furnishes a meaningful, comprehensive diagnostic evaluation of the system and
its peripherals, aiding in the early detection of potential component failures
and thus increasing the reliability, maintainability, and availability of the
system.

The error file is also available for on-line preventive maintenance of the
system and for diagnosis and prediction of hardware malfunctions.

ERROR THRESHOLD REPORTS

The system accumulates hardware error rates over time (including those
successfully recovered) and issues reports to the field engineer when these
rates exceed a prespecified value. These reports direct the attention of the
field engineer to those portions of hardware which are failing at abnormally
high rates.

ON-LINE PERIPHERAL DIAGNOSTICS

Within the system, diagnostics are provided that may be used from either
local or remote terminals to analyze the performance of card readers, card
punches, line printers, magnetic tape drives, and disk drives. These
diagnostic programs run during system operation without disturbing on-line.
users or batch job throughput (except, of course, for jobs requiring the downed
device). Full direct access to the device is provided, and all hardware status
information for the specified operation is returned to the diagnostic program.

10-1 CE26-01

RECOVERY

CP-6 recovery features attempt to make the system available as much as
possible with minimal loss. of data when problems occur. A recovery package is
offered that takes actions based on the seriousness of any problem that occurs.
The resulting recovery is completely automatic, requiring operator intervention
only for the most serious problems (such as power interruption).

The various modules of the CP-6 system check the consistency of the resident
operating system tables and the important user context. If an inconsistency is
detected, or if a hardware error is reported which compromises the integrity of
the resident operating system, recovery is initiated and one of the following
actions is taken:

1. If the damage is judged to be isolated to the context of a single user, a
procedure called Single User Abort is peiformed. In this procedure,
selected areas of memory are written to secondary storage, updated file
buffers are written out for the user, and the user job is eliminated.
The system proceeds for all other users. The only affect for them is the
brief pause to capture the dump.

2. If the damage is not isolated to the context of a single user, but
certain key system tables are judged to be intact, a procedure called
recovery is performed. In this procedure, selected memory data is
written to secondary storage for subsequent analysis. The context for
each user is then examined. All open files are closed with default
options. Remaining input for batch jobs that are partially completed is
discarded unless the user has specified the rerun option in his job deck,
in which case the job is put back into the job queue. The accounting
information is saved and the resident operating system is restored from
the ~ystem device. Before resuming normal operatiori, accounting records
are written. At this point, system operation proceeds. Terminal users
must log on again. In-process transactions are automatically reprocessed.

AUTOMATIC DUMP ANALYSIS

After any recovery is performed, the monitor dump anaylsis program is
initiated to aid in determining the cause of the problem. The output produced
by this program consists of formatted displays of monitor and user tables, the
status of the system at the time of the problem, and other data useful in
problem identification.

SECURITY

CP-6 utilizes extensive security measures to prevent unauthorized use of the
system. Access to the system is controlled by user authorization performed by
the system manager or a designated project administrator. Memory security
protects the users from the monitor and vice versa. File security prevents
unauthorized access to files.

SYSTEM ACCESS SECURITY

Access to the system is controlled by user authorization, which in turn is
controlled by the system manager. To access the system, the user must have a
user identification. As part of the identification, the user may include a
password, which is stored in scrambled form. As an added protection,

CE26-01 10-2

identification information is not echoed at an on-line terminal during log on.
A user's authorization determines which monitor services and shared processors
are available to the user.

MEMORY SECURITY

Hardware protection features prevent unauthorized access to memory locations.
Memory management routines clear acquired memory to prevent access to data from
previous programs. A user suspected of attempting unauthorized actions may be
aborted by the operator, and his or her authorization to access the system can
be dynamically deleted.

FILE SECURITY

The CP-6 file system uses the four control techniques described in this
subsection to prevent unauthorized access.

GRANUAL ACCESS CONTROLS

Each granule which is active in the system (except any unwritten granules of
a random file) has an identification stamp in the first word of the granule.
Thus, no information from any source other than the file in question is
returned to the user or left in any of the user's monitor buffers unless the
stamp is verified. This technique provides a high level of information
security for both hardware and software error situations, and also prevents the
user from reading any granule that has not been written.

FILE ACCESS CONTROL

The CP-6 file system features eight types of access controls for files (e.g.,
read, write, update, delete records, knowledge of its existence, access only by
specified processors.) Each file may specify a combination of these accesses
to be permitted to ALL, NONE, or explicit lists of accounts. In addition, a
special convention permits the user to restrict access to accounts that contain
specified character strings. (File control information is included within
files stored on disk or on labeled tapes that have CP-6 formatted files.) Tape
file management allows tapes to be semi-protected or fully protected.

DATA ACCESS CONTROLS

Data access is controlled through two mechanisms: passwords and encryption.

A user may assign a password to a file. Access to the data is denied to any
user who cannot supply the password. When the password is first assigned, it
is passed through a non-reversible encoding mechanism and the encoded password
is entered into the File Information Table (FIT).

Encryption of data can be requested for any file organization except indexed.
The algorithm is derived from the data and a seed defined by the user. This
seed is not present within the file information, so even highly privileged
users cannot request decryption without knowledge of the seed.

The I-D-S/II processor provides additional levels of security for I-D-S/II
data bases.

10-3 CE26-01

Section 11

Transaction Processing

CP-6 Transaction Processing (TP) provides an on-line, interactive environment
designed for high-volume, fast-response processing. CP-6 TP provides efficient
data entry to and retrieval from a central data base using a variety of
terminal stations that may function simultaneously.

OVERVIEW

The TP operating environment consists of software processors which combine
with user application programs in both the host (the mainframe and associated
file devices) and in the front-end processor (FEP). Figure 11-1 illustrates
the TP operating environment.

As a fully integrated part of the operating system, TP offers the complete
capabilities of the CP-6 system and a protected environment which:

• Guarantees easy installation of a TP system.

• Co-ordinates co-operating application programs.

Minimizes use of host resources for TP.

• Assures fast, accurate data entry through the capabilities of the new
Forms Processing Language (FPL).

• Uses comgroups to facilitate program development by:

- Providing an easy-to-use READ/WRITE interface in application programs.

- Providing a useful debugging facility. Application programs can be
developed in time-sharing and batch modes and then run in TP mode.

• Provides device independence for application programs.

CO-OPERATING APPLICATION PROGRAMS

Transaction processing is performed in two separate, but co-operating
application programs: a Forms Program (FP) in the FEP and a TP Application
Program (TPAP) in the host. The FP interacts with an on-line terminal and its
clerk/user. The TPAP interacts with a data base and creates and formats
responses to requests from FPs.

Though co-operating, the FP and TPAP run independently. Execution of the
TPAP is detached from events at the TP station and in the FPs.

11-1 CE26-01

T'ERMINALS
(TP STATIONS)

F EP

HOST

Transaction
Processing

Appli cation
Program
(TPAP)

• • •

Forms Program

(FP)

COMGROUP

Transaction
Processing

Application
Program
(TPAP)

DATA BASE

• • •

• • •

T ransacti on
Processing

Application
Program
(TPAP)

Figure 11-1. The TP Environment

CE26-01 11-2

Data Entry
Transactions

~

Responses

MINIMIZING USE OF HOST RESOURCES

CP-6 TP funnels transactions from a large number of TP stations to relatively
few resources within the host. TP efficiency features in the use of host
resources include:

• Rather than applying the system resources for a single 'job' to each
clerk/user at a terminal, each TPAP may serve a large number of
clerk/users at a variety of terminals.

• With the exception of minimal memory allocation, the resources of the host
are allocated to transaction processing only for the period of time needed
to process transactions that arrive in the system.

• Input transaction formatting is accomplished in the FEP.

• Separation of invocation of TPAPs from events at the TP station decreases
the amount of time the TPAP need be resident in memory.

FPL

FPL is a new, flexible, powerful COBOL-like language developed by Honeywell
to simplify forms processing. The benefits of using FPL in TP include:

• An easy-to-use language in which to program the essential functions of
data input, validation, and automatic formatting.

• The ability to communicate with a number of stations simultaneously while
sharing a single copy of procedure.

• The ability to define the interactions between terminal clerk/users and
application programs.

COMGROUPS

All communication between the FP and TPAP is accomplished by means of a
simple READ/WRITE interface. To receive and transmit transactions, the FP
issues READ/WRITE statements, while the TPAP uses CP-6 file management
READ/WRITE services.

The large volume of transactions sent from a number of TP stations is handled
by the host through comgroups. Data entry transactions remain in the comgroups
prior to and during processing by TPAPs. Responses written by TPAPs are stored
in the comgroup, and remain in that queue until successfully transmitted to an
FP.

DEVICE INDEPENDENCE

Device independence relieves the programmer of concern for device
characteristics and allows a single FP to serve a range of different terminal
types. A single FP can communicate with a variety of terminal types, using the
same form and procedure.

The CP-6 forms processing system ensures that the various terminal features
\ of differing types of terminals are used to the fullest extent possible. For

example, for a video screen terminal, the forms processing system will adapt
communication so that all constants are displayed at once, cursor repositioning
occurs, and terminal features such as character validation are utilized; for an

11-3 CE26-01

interactive teleprinter, the forms processing system sees that the constants
are displayed field-by-field to suit the line-by-line operation characteristics
of the teleprinter, that validation of each field is performed, and that any
invalid entries are resolicited in a manner suited to the particular device.

FEATURES

The TP environment provides the structure and protection necessary for
efficient on-line transaction processing. In addition, the CP-6 Transaction
Processing offer these important features:

• Full CP-6 capabilities. The TP environment permits the TPAPs and TP
system to make use of all available CP-6 services •. For instance, file
management and security is performed in the same way as in other CP-6
env ironments.

• Data base integrity. The I-D-S/II Data Base Manager can playa critical
role in the TP environment. I-D-S/II detects and corrects deadlock on
file accesses. I-D-S/I1 also creates transient journals and allows TPAPs
to checkpoint file data for backup in case file recovery is required.

• Automatic recovery/restart. The TP system in conjunction with 1-D-S/1I
provides an option for automatic data base roll-back and re-run of
transactions which caused data base updates during system recovery (e.g.,
after a "soft" failure).

• Debug facilities. The sytem debugger, DELTA, is' available to debug TPAPs
in the TP mode as well as all other modes of access. In addition, a
special test mode is available in TP for protection of the data base
during debug sessions.

• Instance administration. A person designated as the administrator of an
instance of TP controls operations of its application(s). The
administator provides on-line control including:

- Privacy and security. Safeguards centralized at the host provide
authorization checks for TP operators and permit discretionary system
surveillance.

- Auto-logon. Special purpose TP stations such as stand-alone printers
can be logged on automatically.

Accounting. The TP system makes special provIsIons to account for TPAP
processing time. Options are available to account for each transaction
or for a series of transactions.

- Transaction processing timing. Options are available to control the
invocation of TPAPs. For example, a TPAP can be invoked to process
either one transaction at a time or a series of transactions.
Transactions of a, specified type may optionally be bypassed and
processed later.

- Performance evaluation and tuning. Statistics collected' for each
instance of TP are available to the instance administrator who may alter
operating characteristics to enhance performance.

CE26-01 11-4

Section 12

CP-6 Time-Sharing

The CP-6 system features a terminal 'personality' that is designed to
increase programmer productivity by creating a natural and powerful
time-sharing environment. Access to all types of peripheral devices and rapid
terminal response creates an atmosphere in which each time-sharing user appears
to have the entire system dedicated to his or her tasks. Dynamic timing
algorithms make the CP-6 system compatible with a wide varity of terminal
types. The CP-6 system also provides utility processors that aid in
accompl ish ing :

• Program Developmen t.

f) Program Compilation.

e Program Execution.

fl Prog ram Debugg ing.

." File Maintenance •

• Text Crea tion and Editing.

OVERVIEW

Programs to be executed via entry through the other access modes of operation
may be completely or partially developed in the time-sharing mode. Since there
is one common CP-6 file management facility, files used in the interactive mode
are identical to those of the batch and real-time modes.

The command language (IBEX) by which the terminal user directs the course of
a time-sharing session is identical to that used for a batch job (either local
or remote).

Up to 500 time-sharing terminals may be simultaneously active. Under the
CP-6 system, terminals can be connected to the system via dial-up communication
lines or permanent circuit lines. These lines may be interfaced either locally
or remotely, as described in section 9, CP-6 Communications Management.

Regardless of how a terminal is physically connected to the CP-6 system,
terminal protocol is the same. After connection has been established, users
identify themselves by entering log-on data: . their account, their name, and
(if required) a password. If the identification is valid and consistent with
information maintained by the monitor, the user's on-line session is initiated
and the system prompts the user for commands. If the identification is
invalid, the CP-6 system sends an error message and requests the user to
resupply the log-on data.

An on-line session is terminated by entering a simple command to log off.
The CP-6system then transmits selected accounting information and offers the
user the opportunity to log on again. Thus, separate accounting for separate
functions may be achieved by a change of account number and/or name.

12-1 CE26-01

TIME-SHARING FEATURES

The CP-6 system has an extensive set of commands which enable the terminal
user to edit terminal input, control terminal output, and control the course of
program execution. The most widely used features are summarized below.

TYPEAHEAD

CP-6 terminal I/O routines allow terminal users to type input during the time
computation is taking place or output is being typed at the terminal. Such
input is not echoed to the terminal immediately. Instead, the data is stored
until the proper time for its utilization; that is, the time following
programmatic requests for input. Thus, in the script typed at the terminal,
input appears following the query asking for it even if the input was typed
sometime previously.

TERMINAL PROFILES

CP-6 terminal profiles identify terminal types. Profiles contain a detailed
description of terminal characteristics, such as character code set, timing
information, a list of the terminal's features, and how to perform cursor
positioning. Profiles may be defined by the installation, using SUPER.
Definition files for most terminals normally used with CP-6 are included in the
installation materials provided by Honeywell.

The user may specify the name of the profile during or after logging on, or
may have a specific profile invoked automatically during log-on.

The CP-6 system provides character code conversion for the ASCII character
set, some variations of ASCII, and bit-paired and typewriter-paired ASCII APL.
The system can automatically adjust to the ASCII or ASCII APL character sets
during the connection process. The character set may also be changed during
the session via the ESC $ escape sequence, a PROFILE command" or
programmatically.

OUTPUT EFFICIENCY

Positioning functions directed to the terminals are optimized. The effects
of space, backspacei horizontal tab, carriage return, and line feed characters
(and combinations of these characters) are analyzed before sending positioning
information to the terminal. Then the optimal combination of the carriage
return, line feed, space, backspace, direct cursor position, absolute tab,
cursor forward, cursor back, cursor up, and cursor down functions is sent to
the terminal. This optimization process can result in greatly increased
terminal throughput~ This techinque also allows any program to take advantage
of advanced device features without knowing what device is being used, thereby
providing a high degree of device independence.

Several timing algorithms are supplied to determine when timing fill
characters are sent to the terminal. These characters provide delay for
positioning of the carriage before and/or after positioning functions (e.g.,
carriage return, line feed, absolute tab), and after erase and control
functions. The algorithms are further tailored to the device by way of timing
parameters specified in the profile, yieldirig optimal output efficiency.

The CP-6 system supports flow control for buffered devices using the DCl/DC3
(XON/XOFF), ETX/ACK, and CTS (Clear To Send) disciplines. This support means
data can be sent to the device at the maximum rate the device can accept data.

CE26-01 12-2

TRANSPARENT MODE

A program may request that no translation or other processing be performed by
CP-6 terminal I/O. In this case, characters are moved between program and
terminal without change in the bit structure. This mode is useful for
connecting to special equipment, tape cassettes, plotters, paper tape, or other
computers.

PAGINATION AND FORMATTING

The CP-6 system offers two types of pagination: logical and device.

Logical pagination is similar to line printer pagination. System service
calls, IBEX commands, or a line printer compatible forms description enable the
user to establish page parameters, including page width and length, top and
bottom margins, and the channel number to line number correspondence for skip
to channel operations. When the end of the logical page is reached, a page
break is performed, and a heading is issued. Headings generated include user
specified text and reflect any user-supplied indentation, page numbering, and
space-after parameter values. Input and output lines are folded to fit within
the page width. All VFC (Vertical Format Control) codes legal for a line
printer are also handled for terminals. Typing ESC L causes a page break.
Typing ESC - signifies the terminal is positioned at the perforation.
Simulated perforations may be printed on non-perforated paper to ease
fanfolding or cutting at page boundaries.

Device pagination allows the operator of a screen terminal to view output
before it is scrolled off or over-written. Output is halted after each
screenful of data. The operator then types a carriage return to continue. The
relative pagination mode computes the page position relative to the last read,
eliminating page halts when the user is interactive and not generating full
pages of contiguous output. Device pagination may be turned on or off at any
time by typing ESC A

TERMINAL INPUT FUNCTIONS

The CP-6 system supports a number of terminal input functions that allow the
user great flexibility in preparing terminal input. Terminal input functions
define special characters and escape sequences that allow the user to edit
terminal input, control input conversion, control tab simulation and perform
miscellaneous functions. Table 12-1 lists the CP-6 terminal input functions.

EDITING TERMINAL INPUT

Visual fidelity is maintained on most screen terminals. When character
insertion, replacement, and deletion is performed, the image on the screen is
constantly updated to the current contents of the input record. As this update
is performed in place, a minimum of space is consumed on the screen, thereby
minimizing the scrolling off o~ important information. Since characters cannot
be erased on hardcopy terminals, editing causes characters to be printed that
note the updates to the record. However, all editing functions work on both
screen and hardcopy terminals.

Terminal editing may also be used on program-supplied data. The user program
may pass a record to the CP-6 system, allow the operator to edit the data, and
send it back to the user program. The CP-6 EDIT and APL processors use this
feature to provide terminal editing for data in their files.

CE26-01

CONTROLS OVER INPUT CONVERSION

Character conversions are generally done automatically by the CP-6 system in
the proper way for each terminal type. However, the input conversion functions
allow the user to control upper and lower case conversions.

TAB SIMULATION

The tab simulation functions control the effect of simulated tab stops on the
terminal and on the program.

The user,may also establish the setting of the simulated tab stops using
either programmatic or execution control commands.

USER INPUT FUNCTIONS

Users may define their own input functions by using IMP. Input functions
define special characters and escape sequences that the CP-6 system is to
interpret. The interpretation yields character strings to be processed as
input text and/or system special characters and escape sequences, or as output
text. For example, the following IMP commaAd defines an input function that
generates a tab setting command when a # character is entered by the user:

ADD SPECIAL CHARACTER '#'
TEXT='TABS 10,20,30,40,50'
READ INPUT FUNCTION ECHO

IMP may be used to re-define keys on a keyboard, define function keys, and
define escape sequences and special characters to invoke commonly used
keystrokes.

CE26-01 12-4

Terminal
Function
Category

Ed i ting
Terminal
Input

Input
Conversion

Tab
Simulation

Table 12-1. CP-6 Terminal Input Functions

Input
Function
Command

BS

DC2

DEL

ESC CR

ESC D

ESC J

ESC K

ESC M

ESC N

ESC 0

ESC R

ESC V char

ESC X

HT

ESC U

ESC)

ESC (

ESC C

ESC S

Desc r i pt ion

Moves the cursor left one column (backspace).

Moves the cursor right one column (control-R).

Deletes either the last character typed or
the character at the cursor position.

positions to the beginning of the input record.

Recalls the last input record as if it has
just been re-typed. It may then be edited
and re-submitted.

Enables editing of the current line by
insertion of characters.
Deletes all characters from the cursor to the
end of the input record.

Resets the logical overstriking mode. Typing
on top of existing characters causes the new
character to replace the old character(s).

Positions to the end of the input record.

Sets the logical overstriking mode. Typing
on top of existing characters causes overstrikes
containing both the old and new characters
(separated by a backspace) to be formed. This
function is typically used for underscoring.

Retypes the current input record.

Positions to the specified character.

Deletes the current input record
(usually a line).

Positions to the next input tab stop
(horizontal tab) •

Reverses the setting of a mode in which
recei~ed lowei case letters areconver~ed
to uppe r case.

Causes subsequently received tipper'case
characters received to be converted to
lower case. Thus lower case characters
may be, input. on an upper-case-only terminal.

Removes the effect of ESC)

Reverses the ,setting. of tab relative
mode (ON to OFF or OFF to ON). If this mode
is ON, input tab stops are assumed to be
relative to the end of the prompt.

Reverses the setting of the space insertion
mode. If this mode is ON, spaces are
delivered to the reading program when tab
characters are received.

12-5 CE26-01

Terminal
Function
Category

Miscel­
laneous

Table·12-l. CP-6 Terminal Input Functions (cont)

Input
Function
Command

ESC T

CONTROL-Y

CONTROL-X

ESC B

ESC E

ESC F

ESC H

ESC I

ESC Q

ESC W

ESC Y
ESC ESC

Description

Reverses the setting of tab simulation mode.
If the mode is ON, spaces or other positional
characters are sent to properly position
terminal output when a tab character is
received from either the terminal or a program.

Returns control to the command processor
and deletes queued input and output.

Deletes queued input and output.

Gives control to the interrupt point
of a program associated with the
terminal, and deletes queued input
and output ..

Toggles echoplex mode. Echoplex may be
turned off to prevent the printing of
sensitive information (such as passwords)
entered from the terminal.

Signals an end of file.

Temporarily halts terminal output.

Simulates the entry of an HT (horizontal
tab) •

Requests an acknowledgment that the
communications processor and host are
alive, and obtains the current host
scheduler state.

Deletes all output until another ESC W
is typed or until a read is issued to the
terminal that is not satisified by
typeahead.

Returns control to the command processor,
and deletes queued input.

ENTRY OF JOBS TO THE BATCH QUEUE

When the on-line user does not·wish to sit at the terminal and attend the
execution of a long process or wait for resources such as tapes, the terminal
batch entry facility can be employed. This facility allows the user to enter a
job into the batch job queue for execution in the batch processing mode. The
user can then disconnect from the system or start another time-sharing task.

This service allows time-sharing users to create and edit a control command
file which will direct the execution of their jobs. At any time after
submitting a job control file, the user can request the status of the job.

CE26-01 12-6

CP-6 responds by telling the user that either:

0 the job is enqueued. The number of jobs ahead of his in the queue is
displayed.

0 the job is running.

0 the job is completed.

The user can also cancel the job from the on-line terminal. After the job
has completed, the user can examine files created by the job.

Even if the batch mode is not operating concurrently with the time-sharing
mode, jobs may be entered into the batch job queue for subsequent execution as
soon as the batch mode is activated by the operations staff.

COMMUNICATION WITH OPERATOR

Communication of control instructions to the CP-6 system is accomplished
through the IBEX processor. Since the on-line user is in direct control of the
computing tasks, the need for the vast majority of special instructions to the
computer operator is eliminated. However, the need for some communication
between the on-line user and the central operator still exists (for example, to
request the mounting of tapes and disks or to request information).

CP-6 provides facilities for the on-line user to transmit messages to the
central site operator. When the message appears on the operator's console, the
transmitting terminal and account is identified with the incoming message. The
central operator can then carryon a dialog with the individual on-line user.

For users not currently logged on, the central operator may issue a 'greeting
message'. This message is stored by the CP-6 system and is presented to the
user during the log-on process.

AUTOMATIC PROCESSOR ASSOCATION

The time-sharing mode allows the user to work at the terminal, interacting
'directly' with a CP-6 processor or with a user-written program, through
monitor routines that do not make themselves apparent to the user but which
facilitate the interaction taking place.

In general, a time-sharing user may interact with a varity of processors
during an on-line session. However, the system manager can restrict a user to
one selected processor. This feature is valuable when a user who is unfamiliar
with CP-6 is being introduced to the system or when a particular user requires
only limited services.

FILES OF TERMINAL COMMANDS

The CP-6 user may prepare a series of command in a file and later call for
their execution with a single command (XEQ). At the time each such file is
invoked for execution, field and string substitutions may be performed before
the execution begins. Execute files may contain any level of nesting.

12-7 CE26-01

AUTOMATIC SAVE FOR DISCONNECT·

CP-6 optionally preserves a user's program when a line disconnect occurs
before the user has logged off, and provides a method of reconnection of the
preserved program when the user calls back. Files remain open and properly
positioned so that the program can be continued as if an interrupt has not
occurred.

When a line disconnect occurs, the suspended program image is retained for a
fixed length of time. The retention period is established as a system
parameter and may be modified by the operator at any time. (The operator can
also abort a user when the user is in'the suspended state.)

When the disconnected user log s back on the system, the system recogni zes
that a program image exists for the account/name combination and issues the
following message:

PROGRAM HELD. RECONNECT(Y/N/D)?

The user then responds with either Y, N, or D. If Y is specified, the user is
reconnected to the suspended image and continues from the point of disconnect.
If D is specified, the user is not reconnected, and the suspended image is
discarded. If N is specified, the user is not reconnected, but the suspended
image is saved.

SPEED AND FORMAT DETECTION

CP-6 detects the speed and format of calling terminals by examInIng
characters typed by the user and sets the hardware line interface module
appropriately. Speed detection is supported at 110, 150, 200, 300, 600, 1200,
1800, 2400, 4800, 9600, and 19,200 baud. The character set (ASCII, or
bit-paired or typewriter-paired ASCII APL) and the parity (even, odd, space or
mark) is also sensed and adapted to. These features eliminate the need to
segregate lines by speed or format and result in a lower per-line cost.

TERMINAL TAPE INPUT

CP-6 provides facilities for terminal input from either paper tape, cassette,
or other compatible sources. Tape may be prepared on off-line terminals and
subsequently read on-line after the user has logged on and a prompt for data on
the tape has been issued.

CE26-01 12-8

Section 13

CP-6 Batch Processing

The CP-6 system offers full-service, multiprogrammed batch facilities, ideal
for the production data processing environment. Batch jobs can be conveniently
submitted from local card readers, remote sites, time-sharing terminals or from
running batch jobs. Since the execution control language is identical to that
used in time-sharing, batch facilities are made available to a larger class of
user. The CP-6 philosophy of commonality among the basic aspects of the system
allows the user to construct interdependent program systems, in which several
programs work together to accomplish a single task. In addition, a scanning
feature is available to check execution control syntax prior to execution, thus
significantly reducing total debug time.

OVERVIEW

In the CP-6 system, multiprogramming (the concurrent operation of several
jobs) significantly extends the throughput of the computer system because the
system is able to achieve several levels of overlap in the processing of jobs.
I/O of one job is overlapped with computation of another, and I/O of several
jobs is overlapped through the effective use of the hardware's multiple
channels to I/O devices. This overlap applies not only to jobs within the
batch mode but also to all other jobs. Thus use of CPU, disks, tapes, and
other system resources is maximized. As described in Section 14, Remote
Processing, a CP-6 system m~y itself act as remote workstations. Jobs may also
be received from any systems that support the HASP transmission protocol.
Commands for jobs, regardless of source, are stored temporarily while awaiting
execution in spooling files as described below.

RESOURCE·CONTROL AND SCHEDULING

Batch jobs are protected from execution-time resource conflicts or deadlock
situations by the CP-6 job scheduling algorithms. Each batch job contains a
command which specifies the required resources and the system ensures
availablity of all required resources before starting the job. In contrast,
time-sharing jobs may request resources dynamically, but must be prepared to
respond to a 'not available' message. .

The CP-6 system can concurrently run a large number of batch jobs. Each job
is run in a batch job class. (Batch job classes are described further in
Section 17.) The system manager can designate up to 16 batch job classes. In
this way, up to 500 jobs can be run concurrently, providing full resource use
and adaptability to such circumstances as evening, night, and weekend shifts.

Each of the batch job classes has a defined resource profile that the system
manager can change dynamically. The profile describes the ranges of job
resources which are allowed when running in each class, and the number of batch
jobs that can run concurrently in each class. In order to qualify for a given
class, the resource requirements of a job must match the class profile. A job
may fit in many classes.

13-1 CE26-01

Whenever a job class is available and an event (such as job termination,
resource released, or job submitted) occurs, the batch job scheduler selects
the first (highest priority) job with requirements matching the class profile.
Both the job and its required resources are assigned to the job class and the
job begins execution.

CP-6 optional job scheduling controls allow the job submitter to dictate
additional scheduling criteria to the system's batch job scheduler. Unlike
global controls, which are established by the system manager via the CONTROL
processor, these scheduling criteria are local to the submitter's authorized
account. They are specified on the job's control commands via the DEFER,
FOLLOW and ORDER options. The DEFER option defers scheduling of the job until
a particular date and time. The FOLLOW option orders execution by job name;
subsequent jobs submitted can run only after the completion of specific, named
jobs. The ORDER option indicates that execution of the job must follow
completion of any previously submitted job. Thus a series of jobs, each using
results from the previous job, can be submitted at once, but are forced to
execute serially.

WORKSTATIONS

The CP-6 workstation concept organizes the devices connected to the system
into manageable groups. Workstations may be remote or local to the central
site, and usually include unit record peripherals and tape devices.

The CP-6 system manager defines workstations tailored to the installation's
requirements. For example, one line printer in a university environment may be
defined via a workstation restricted to administrative work, -while a second
line printer intended for student use can be located in a less secure work
area. The CP-6 system then automatically routes the administrative or student
output to the appropriate workstation. An operator's console may be placed at
each workstation that is defined to send or receive only the messages that are
pertinent to the individual workstation.

A workstation name can also be used to address any device attached to the
CP-6 system. For example, a line printer at a workstation named BOSTON is
addressed as LP@BOSTON. All CP-6 users, however, are assigned a workstation of
origin and need only specify a device's generic name for the I/O to take place
via the assigned workstation.

CATALOGED PROCEDURES

The CP-6 system allows the programmer to create a file of execution control
commands and call for its execution as a job or portion of a job. This
facility is available to both batch and on~line CP-6 jobs. As the execution of
a cataloged command file is requested, parameters may be substituted in
previously defined fields of the file. A file may, within itself, call for
execution of other files, and programs may create files which are inserted in
the on-going command stream.

I

SPOOLING

A spooling facility is provided to help eliminate bottlenecks associated with
slow speed peripheral devices. This spooling facility consists of monitor
routines that transfer information between secondary (disk) storage and unit
record peripheral devices concurrently with jobs being run. To transfer
information between a user's program and this secondary storage, a
'cooperative' monitor routine is used.

CE26-01 13-2

The spooling system performs complete buffering between I/O devices and the
user's program. Also, the current job may be running while the output of a
previous job and the job file for a subsequent job are being handled by
spooling. The CP-6 spooling system is depicted in Figure 13-1.

Spooling files are normally written to disk before being output. However,
for certain long-running data processing programs, the 'concurrent output mode'
is provided. When in this mode, the spooling system begins printing a
program's output before the program has completed. Thus a 14-minute job which
produces 14 minutes of printing uniformly over the execution time of the job
will complete printing in about 14 minutes rather than 28 minutes.

Spooling files are standard CP-6 files and therefore may be moved
individually or collectively to tape or pack for removal from the system as
required in the day-to-day management of the installation.

Normally, one operator's console is defined to have control over all spooling
files in the system. However, a console assigned to a particular workstation
may be used to control only those files associated with its assigned
workstation.

Cards

Cards

Input
Spooling

Output
Spooling

Figure 13-1. CP-6 Spooling

13-3

Input
Cooperative

Output
Cooperative

User
Program

CE26-01-

Section 14

CP-6 Remote Processing

CP-6 remote processing brings the facilities of a central CP-6 site to the
actual work locations where that power is required. The extensive CP-6
communications features (described in Section 9) work together with the CP-6
remote processing facilities to provide a flexible and extensive communications
environment.

OVERVIEW

Important features of the remote processing system include:

• A remote site can be another larg~-scale computer, and files of data may
be transferred between user programs at the central and remote computers.

• Through monitor and user interfaces, .virtually any type of device (e.g.,
tape, disk, and plotter) can be accessed at a remote terminal.

• As illustrated in Figure 14-1, any user of a CP-6 system can communicate
with a variety of devices at one or several remote sites.

• As illustrated in Figure 14-2, a CP-6 system may act as the central site
to some remote terminals and as a remote terminal to other computers
simultaneously.

• Workstations need not be remote nor are they necessarily composed of
physically associated devices.

• Definitions of workstations can be added, deleted, or modified during
system operation.

THE ENVIRONMENT

CP-6 remote processing accesses remote facilities as sets of independent
devices indistinguishable from local devices, and defines workstations for
functi6nal purposes independent of physical relationships. These access and
definition technique~ provide both a flexible means of accessing -rem~te
facilities, and a consistent, configuration-independent means of accessing all
devices.

Access to remote facilities is provided through the standard CP-6 services
for managing logical devices and spooling. All details of both communications
line management and multiplexing of several apparently independent devices to a
single channel are transparent to the user of remote facilities.

Default device selection, including the allocation of an output device for a
spooling file, is made from the device of the appropriate type at a particular
workstation, rather than from the whole system. Each job has an associated
'workstation of origin', convenient to the owner of the job.

14-1 CE26-01

CP-6
Host

IRBT

Figure 14-1. CP-6 Remote Processing Example

HASP
Emulator

IBM
360/20,30

Unitech,
Harris, etc

CP-6

Other
Large-scale

Computer System

Figure 14-2. CP-6 Remote Processing Communications

CE26-01 14-2

A workstation can be defined independently of the physical connection of
devices; that is, a workstation may include all or only some of the devices at
several different locations. Additionally, devices can belong to more than one
workstation, providing more flexible grouping of devices for device selection,
access restriction, and assignment of operator consoles.

USER INTERFACE

CP-6 users access output devices at remote processing terminals by creating
spooling output files that are destined to be sent to a particular remote
device. The remote device may be:

• Selected by default. If not specified, the device will default to a
device of the specified type via a workstation established for the user.

• Explicitly specified. The user may specify both the device type and
workstation.

• Defined generally through a logical device. The user defines logical
devices through the LDEV command and the M$LDEV monitor service.

Remote devices are accessed in the same way as local output devices receiving
spool ing output.

CP-6 users transmit data from remote sites to the CP-6 system as streams of
consecutive records, which upon receipt at the CP-6 site are collected into
files. Such files can be 'job' files to be scheduled for batch processing, or
other files available directly to the user. Remote input capabilities are
equivalent to those available from local card readers.

TERMINAL SUPPORT

CP-6 remote processing supports the HASP II version 4 multileaving protocol
in non-transparent EBCDIC mode, and the IBM 3780 BSC protocol in
non-transparent EBCDIC mode with certain options. CP-6 will act as the master
or the slave station for the HASP protocol, and as the master only for 2780 and
3780 protocols. Support of these protocols allows the following interaction
with remote facilities:

• Devices can be accessed at, and jobs may be submitted from IBM 2780 and
3780 terminals, and terminals that emulate them.

• Devices can be accessed at, jobs may be received from, and sequential data
may be exchanged with Xerox 530 XSP system.

• Devices may be accessed at, and sequential data and jobs may be exchanged
between CP-V and CP-6 systems.

• Streams and jobs may be exchanged with systems supporting HASP terminals.

• Devices may be accessed at, and jobs may be submitted from a HASP
terminal.

INTER-SYSTEM FILE TRANSFER

When the remote site is another CP-6 system, Peripheral Conversion Language
(PCL) commands permit transfer of CP-6 managed files between machines. The
on-line or batch user may copy, create, list or delete files in another CP-6
system via the CP-6 communications network.

14-3 CE26-01

To use these special features of PCL, the user must be authorized at the
remote site as well as the local site.

A file may be renamed as defined in the COpy command. Appropriate messages
report errors, security violation attempts, and successful file transfers to
the users.

CE26-01 14-4

Section 15

CP-6 Distributed Real-Time Processing

The real-time processing facilities of the CP-6 system provide significant
enhancements over competitive systems. Real-time is an important access method
in the CP-6 mUlti-use environment, and is particularly powerful when utilizing
the filing, data base, and reporting capabilities of the CP-6 system. The
processing load is distributed over several local and remote computers that
work in coordination with the host computer.

OVERVIEW

All hardware connection to real-time external devices is provided through
separate real-time computers. These processors carry the parts of the
real-time task which are directly associated with data acquisition or process
control. The host system provides a high performance engine for the
computational and data base portions of the real-time task.

Figure 15-1 shows a CP-6 distributed real-time system, illustrating some of
the possible hardware connections. A single CP-6 host processor is connected
to five real-time and communications processors. Local processors for
real-time and communications, labeled RP and CP respectively, are connected to
the host through a special coupler. This coupler provides one megabyte
half-duplex data transfer over a 75-foot multiwire cable. Remote real-time and
communications processors, labeled RRP and RCP respectively, are connected over
communications facilities, either dedicated or switched. Individual
connections are limited by microcode processing time to 72K bytes/second (and
lower figures for complex line disciplines). However, multiple lines may
connect processors for both increased bandwidth and reliability.

Figure 15-1. CP-6 Distributed Real-Time System

15-1 CE26-01

Software in the host includes the less time-critical real-time programs of
the variousa~plications. Software in the RP consists of the more
time-critical real-time application programs plus the service routines of the
real-time system for interprogram communication,connection to interrupts and
I/Ogeari timer services, and program loading and startup.-

REAL-TIME SOFTWARE DEVELOPMENT

The CP-6 system includes a collection of programs that provide preparation
and check-out of user real-time programs designed to execute on the RPs and
RRPs of the CP-6 system. Compilers, assemblers, and associated programs are
provid~d for program preparation. Facilities are provide~ in both the host and
the RP for program debugging.

REAL-TIME SERVICES

All real-time services are entered through a common system interface. The
hardware protects programs from each other and prevents programs from ~amaging
the operating system. Those services include:

• Intertask signalling (within and between computers) •

• Intertask messa~e passing (within and between computers) •

• Type and priority searching of message queues.

• Connection toone of 60 hardware interrupts.

• Priori~yscheduling ot tasks.

• User control of hardware traps.

• Task creation, ~oading, initialization and terminalion.

• Clock service, measuring 'both program execution ti~e and elapsed time. ,­
(Several timing operations may run concurr~ntly.)

• Periodic task initiation.

• Memory and buffer management.

• Read/write _interface to supported peripheral devices and digital I/O
dev ices.-

• User" entries on s~~tem initializa~ion, recovery, cra~h~and power
fa il safe.

• Memory sb~ring between task~.

• Management of system resources.

PERFORMANCE

Response to interrupt signals in the real-time computer (i.e., the time from
signal until entry to the designated highest p~iority program) is in the under
1 millisecond range, including context switching time and monitor overhead.

CE26-01 15-2

Response in the host is in the under 10 millisecond range, including all
context switching and monitor overhead. This response is measured from the
acknowledgment by the CP-6 system of an interrupt signalling the arrival of a
message from a real-time program until the time the designated host program is
entered.

15-3 CE26-01

Section 16

CP-6 System Programming

The CP-6 system provides a set of convenient tools designed to aid in the
development and maintenance of shared entities, thus allowing the system
manager to tailor the system to the installation needs. Since a large portion
of the operating system is coded in PL-6, system programming can be
accomplished with speed and efficiency. These features result in more
effective support from a smaller support staff.

SHARED ENTITIES

The CP-6 system recognizes five types of shared entities:

• Shared libraries

• Shared (language) processors

• Command processors

• Alternate shared libraries
1

• Shared debuggers.

Shared libraries reside in the user's working space at a fixed origin within
the Instruction Segment Register (ISR) segment (see Figure 16-1) and are shared
via the page table. Library data is always at a second fixed origin within the
ISR segment. Standard linkage to shared libraries utilizes the direct
subroutine branch (TSX) instruction.

Shared processors that run as user programs in the user's working space
utilizing dynamic data and user data segment space as required are shared via
the page table. User programs may be shared in this way as an installation
option.

All command processors run in one working space which consists of procedure
and constants plus the page table for the working space. They obtain data
space from the user's working space data segments that are reserved for command
processors. Only one command processor may be associated with a given user at
a given point in time; therefore, the linkage segment for the command processor
is carried in the user working space. There is no direct linkage (CALL-RETURN)
between command processors and user programs; instead, the interface is in the
monitor.

All alternate shared libraries (ASL) run in one working space which consists
of procedure and constants plus the page table for the working space. Like
command processors, ASL obtain data space from those user's working space data
segments that are reserved for ASL use. The interface from the user to the ASL
is through the CALL form of CLIMB, while the ASL itself uses the RET form of
CLIMB to go back to the user program.

16-1 CE26-01

ISR SEGMENT

Bound
Data

ALTERNATE Procedure

OPERATING COMMAND SHARED
SYSTEM DEBUGGER PROCESSORS LIBRARIES USERS Dynamic

Data
DELTA IBEX I-D-SjII

Shared

DB-1 CP-1 ASL-1 library

DB-2 CP-2 ASL-2
Current

USER
Monitor User Data · · · Segment · · · · · ·

CP

H Data
Segment

ASL

H Data
Segment

DELTA Y Data
Segment

Figure 16-1. CP-6 Context for Sharing

The DELTA debugger's procedure resides in its own working space and does not
occupy any of the user's virtual memory. In addition, DELTA needs its own data
area within the user's working space. Descriptors in DELTA's linkage segment
provide full access to all segments within the user's working space, as well as
access to DELTA's procedure in its own working space and to the debugger data
area. DELTA does not have access to any other special shared processor data
area or procedure. DELTA is not entered directly by users; rather the monitor
enters DELTA for the user either as the result of a return to IBEX followed by
a DELTA command or on certain faults. (DELTA plants fault-causing instructions
at breakpoint locations.) Users may also use the RUM mode of DELTA to make
permanent patches to run unit files. Privileged users may use the ANLZ mode of
DELTA to examine/change the running monitor, or to examine system dump files.

INTERFACES

In the CP-6 system, all programs interfaces -- both intra- and inter-language
-- are defined via a set of standard calling sequences, which, for generality,
are defined at the assembly language level. All compilers adhere to these
calling sequences in the code that they generate. One of the standard calling
sequences is the set of monitor services calls. Part of the calling sequence
specifies the location of a Function Parameter Table (FPT) that contains
information pertinent to the service request, as well as information pertinent
to the returning of any result.

CE26-01 16-2

EXCEPTIONAL CONDITION HANDLING

Facilities are provided whereby programs can specify procedures that are
invoked on occurrence of exceptional conditions such as traps, break control
from a terminal, elapsed time run out, and event posting. Information relating
to the nature of the condition is conveyed in a frame on a stack devoted to
exceptional condition handling, thus permitting processing of multiple
simultaneous conditions or recursion on a given condition. Exit from condition
handling may be of three types: resume processing from wh-ere the trap
occurred, transfer to a previously specified label (unwinding automatic storage
in the process), or merely pop the frame on the condition stack. Debugging of
exceptional condition handling is completely supported by DELTA.

ACCESSING SHARED ENTITIES

Centralized enqueue/dequeue facilities are provided for general use in
controlling access to any phenomena (data, files, programs, etc.) that can be
shared by more than one program.

INITIALIZATION AND DATA

Of the five shared entities discussed above, only shared libraries and shared
processors have any data space in the Instruction Segment with which to work
when they are first entered. Command processors, debuggers, and alternate
shared libraries may have initialized data segments that are acquired at
initial association time.

STAR FILES

The names of one type of CP-6 file are guaranteed by the system to be unique
for a given batch job (or terminal user): the star file. A file is considered
a star file if, and only if,Jthe first character of its name is an asterisk
(*). The directory for star files is named *T and is itself cataloged in the
Job Informatibn Table (JIT). Star files exist only as long as the job (or
terminal session) exists, and they never appear in any of the system catalogs.
The following star files names are reserved:

Star File
Name

*A
*G
*I
*L
*N
*S
*X

Contents/Purpose

Assign/merge information
Object unit output from compilers
Reserved for I-D-S/II
Default run unit
Used by LDLNK
Step accounting, miscellaneous IBEX information
Reserved for the monitor.

All other names are available (e.g., for use as temporary files) and are not
restricted to two characters.

16-3 CE26-01

STANDARD DeBs

By convention, all processors are expected to use standard Data Control
Blocks (DCBs) for standard I/O functions. For example, source input is read
through the M$SI DCB. The important standard DCBs are:

DCB

M$SI
M$UI
M$DO
M$LO
M$SO
M$OU
M$ME

CE26-01

I/O Functions

Source input
Update input
Diagnostic output
Listing output
Source output
Object unit output
Command stream input

16-4

Section 17

CP-6 System Managment

The system management facilities of CP-6 are far more powerful than those of
competitive systems. Through a complete package of system management
processors, a CP-6 system and its associated resources can be dynamically tuned
for maximum performance and cost efficiency. In addition, the RATES processor
allows the system manager to define monetary charges for any level of activity.

SYSTEM DEFINITION

Cp-s system definition facilities include the program and procedures in the
system which accomplish configuration and reconfiguration. Some of this
process occurs during cold start, parts during warm start (or recovery), and
parts can be dynamically changed during system operation.

The startup process takes about 45 minutes and does not require user
interaction or the presence of specially trained personnel.

The start-up adaptation of the CP-6 system to its hardware includes generation
of tables for peripheral devices, I/O enqueuing, physical memory management,
and managing the CP-6 users. Certain tables grow and shrink dynamically,
adapting to the demands of load during system operation. This procedure
relieves the system manager or analyst of the difficult chore of 'pre-guessing'
requirements. Tables handled in this manner are:

• File access control tables (CFU).

• Enqueue/dequeue tables.

• I/O accelerator tables and buffers.

• Communication context (line) tables.

Network definition does not require a startup procedure. CP-6 carries
definitions of remote processing workstations in files that may be created and
altered during system operation.

17-1 CE26-01

SYSTEM PERFORMANCE CONTROL

The system manager can allocate the resources of the system to jobs with
certain attributes by defining a set of batch job classes under which diverse
categories of jobs may run. A batch job class is characterized by a set of job
attributes. Physical system resources such as memory, spindles, or tape drives
are not permanently allocated to a particular batch class. All jobs executing
in the various batch classes draw their physical resource requirements from a
common pool without regard to the class under which they qualified for
execution, except that the numeric limits that pertain to that class will
apply. Examples of attributes that comprise a batch job class profile are:

• Minimum and maximum job execution time.

• 'Minimum and maximum amount of main memory.

• Minimum and maximum number of disk drives.

• Minimum and maximum number of tape drives.

All jobs submitted for CP-6 batch execution share the same input queue (the
batch job queue). Jobs are selected from this queue for execution in the batch
job classes.

Scheduling is performed in the following manner:

1. Available resources are determined.

2. The highest priority job requiring only available resources is selected~

3. The batch job class tables are searched for a job class that fits the
requested resources and is currently available.

4. If no job class is available for th~ selected job, the next job is
considered as in step 1, 2,3.

In summary, batch job class definitions are a primary factor in the job
selection process. The system manager may direct processing of any particular
category of jobs by means of those definitions.

In a time-sharing/batch processing system, emphasis may ,be given to batch
processing by opening up more batch job classes. The CP-6 system is
queue-driven; tasks are selected from prioritized queues without regard to the
source of the request (i.e., on-line, batch, or remote batch). If there is a
heavy on-line user load and as the number of batch job classes increases, the
number of compute-bound tasks will increase. Batch jobs will get more CPU time
due to the large amount of time assigned to them. More attention can be given
to certain catego~ies of batch jobs by increasing the number of batch job
classes suitable for them. This procedure makes no significant difference in
on-line response time because interactive requests have a higher priority than
compute-bound jobs.

SYSTEM TUNING AND MEASUREMENT

The CP-6 system includes a comprehensive set of performance measurement and
system control facilities. These facilities allow the system manager to
determine how the system is performing and to adjust critical operational
parameters to achieve better performance. The CONTROL and STATS processors
provide these facilities.

CE26-01 17-2

The CONTROL processor provides a means of adjusting system performance.
CONTROL processor commands enable the system manager to display measurements
and to 'tune' the system as needed by setting new values for parameters that
affect system performance. CONTROL provides commands for:

• Display of system parameters.

• Modification of system control parameters.

• Display and modification of batch job class definitions.

The STATS processor performs two functions: displaying selected performance
data in real-time, and creating 'snapshot' records of performance data for
later processing. The STATS processor provides a global view of system
performance by formatting and displaying the statistical data collected as
snapshots. The processo r allows the system manager to:

• Request a chronological listing of snapshot data for one or more groups of
performance statistics.

• Specify a filter to remove out-of-range data from the sample for
subsequent reports.

RESOURCE MANAGEMENT

The term resource has a very specific meaning in the following discussion. A
resource is any portion of the CP-6 installation that is to be shared by the
users in such a manner that each user requiring the resource is allocated the
resource for its exclusive use. Private disk packs are an exception. Under
some circumstances, private disk packs may be shared even though they have been
defined to be resources. Tapes, disks, printers, the CPU(s), and main memory
are common types of resources. Spooled devices and public storage devices can
never be defined to be resources because they are non-allocatable devices; that
is, they are never reserved for the exclusive use of one user.

Special resource management routines within the monitor keep track of the
number of resources of each kind that are available for use. For a batch job,
the requirement for resources is compared with the available resources and the
job is not started unless sufficient resources are available. Furthermore, the
resources are. reserved for the exclusive use of the job. Thus availablity of
resources is guaranteed even if time elapses between job startup and actual use
of the resources.

The CP-6 system requires no correspondence between a physical device and a
managed resource. When there is no correspondence between a resource and an
actual physical device, the resource is called a pseudo-resource.
Pseudo-resources are used to achieve special job scheduling effects and for
other purposes.

The system manager must define the installation's resources, establish system
defaults and maximums for use of the resources, and set limits on the use of
the resources for the individual users.

During system definition, the system manager establishes which items are to
be considered as resources. For each resource, the system manager establishes
the system defaults and maximum values.

The CONTROL processor is used to dynamically modify the default and maximum
values associated with each resource. Resources are defined during system
definition, but a resource may be effectively removed from or returned to the
system by appropriate modification of the values associated with the resource.

17-3 CE26-01

The SUPER processor is used to establish the maximum amount of each resource
that is to be available to each particular user.

USER AUTHORIZATION

Before any user can perform any CP-6 processing, the user's account must be
created by the system manager. When the account is created, the system manager
must specify the user's name and account number. In addition to these items,
the system manager decides for each account:

1. The associated type and level of privilege granted the user. The user
may be authorized for use of many facilities. For example, the user may
be authorized to:

• Run diagnostic programs.

• Access and change the monitor.

• Read and write error files; request devices; invoke diagnostics, and
authorize enqueue/dequeue automatically.

• Examine (but not change) the monitor.

2. Whether an initial password is to be associated with the account. If
specified, log-on cannot be completed unless the password is provided.

3. Whether all files created under this account may be read, executed, or
modified by other users. A default is applied to files created by the
user unless the user explicitly gives overriding instructions.

4. Whether a security check is to be performed on newly allocated main
memory to be used by this account. If requested, all memory that the
user will access will be effectively erased before being accessed.

5. Whether the processors available to this account are to be restricted.

6. Whether to automatically connect a user of this account to a given
processo r.

Through these features, an installation has numerous security controls over
each and every user. These controls may, at the system manager's discretion,
be applied to users on an individual account basis.

PROJECT ADMINISTRATION

To ease the task of user account management, the system manager may delegate
authority to project administrators. The system manager defines the
constraints and maximum resources that a project of users may have. A project
administrator may then define each user within the project and, with
appropriate authorization, may create sub-projects within the project.

USE ACCOUNTING

During the operation of each job, the CP-6 system accumulates a wide
assortment of accounting information which collectively records the job's
activities. Accounting statistics gathered include counts of CPU use, memory
use, I/O operations, pages printed, cards punched, monitor service requests,
terminal I/O character rates, and many others. These accounting statistics are
written into a file which may be used by the installation to prepare charges

CE26-01 17-4

for its customers. Interfaces are provided so that installation-supplied
routines may augment or modify the records written to the accounting file.
Furthermore, extra counters are included for use by the installation in
preparing special charges of their own, either for unique programs or for
individual transactions within unique programs.

An option exists which will cause the system to write an accounting record
for each job step completed. This record includes the counter values
attributable to the step plus the name of the executing program. Use of this
option facilitates charging for proprietary program products.

The RATES processor allows the system manager to define monetary charges for
each of the system counted values. Given these values, the system will
automatically calculate the proper charges for the user session or job step.
Additional features include a currency conversion multiplier, different rate
structures to be applied to different classes of users and to the same users
under different circumstances such as time of day, and charge discounting.
Separate charging schedules are available for printed forms and for program
usage. Program interfaces within the charge calculating program permit the
addition of installation-specific routines into the charge calculation process.

The system provides summary information to batch and on-line users at the end
of each job, detailing the counter values accumulated. Charges are included if
the RATES processor is used, and details at each job step are optionally
available.

CP-6 budget accounting is also available. Budget accounting permits an
installation to establish a budget hierarchy and to control access to the
system depending on a user's remaining budget. Budget accounting controls
determine whether or not a user (or anyone else) will be denied access when the
budget is exhausted. The installation has the option of performing budget
calculation at step-time, providing very tight control on budget over-runs. A
job-step which exhausts the budget may be, at installation option, the last one
the user is allowed. Additional granule accounting is available to describe
inactive files and shelf life as well as mounted life of pack sets. The budget
accounting hierarchy follows the user project hierarchy in the user
authorization file.

17-5 CE26-01

Section 18

CP-6 Computer Operations

The CP-6 system is designed to function effectively with a minimum of
operator intervention. System support requirements are minimized during
initial installation. Reconfiguration and patching are simply and
inexpensively implemented. Since recovery is automatic, the system can be run
in unattended mode without an operator present when specific applications do
not demand the use of central site peripherals such as tape drives and line
printers. Any local or remote terminal can be designated as an operator's.
console, thereby eliminating problems caused by console failure. Operator
tasks can be divided into logical groups, each handled through a separate
terminal, thus reducing the training. required for an operations staff. Each of
these features result in significant operations cost reduction.

INSTALLING, RECONFIGURING, AND PATCHING THE SYSTEM
CP-6 installation, reconfiguration, and patch features' are designed to

minimize the time and staff required to install or modify the system. The
procedures have been standardized and simplified so that virtually no support
is required from Honeywell staff.

Any hardware or software configuration can be installed completely by the
customer's system support staff. After the hardware has been installed and
tested, a support staff of one can install the full set of CP-6 software within
two hours, including both central system and separately priced components.

The CP-6 operating system arrives at the site on a minimum number of system
tapes (four at most) that contain all the ordered components of the .system
including separately priced ones. If the system configuration 'is standard, the
support staff need only mount the tapes, push the boot buttons, and follow the
instructions provided by Honeywell. If the system is configured in a
non-standard way, the procedure is only slightly modified.

Using the CP-6 SPIDER and PCL processors, the system support staff can
install new or replacement processors in minutes, normally without creating new
system tapes and on a running system. Reconfiguration can be accomplished
without interrupting user service.

Honeywell-supplied system patches are likewise easily installed through patch
files (at sites with synchronous communication capabilities) or patch tapes.
Patches to processors may be installed on a running system without interrupting
user service.

UNATTENDED SYSTEM OPERATION
An important feature of the CP-6 system is that the computer operator may

leave the system alone and let it run itself. This feature allows an
installation to have selected periods of time (for example, graveyard shift) to
provide time-sharing or to run time-sharing concurrently with batch jobs which
require no peripheral device action on the part of the operator.

To allow unattended operation, the operator uses a system facility to
logically remove the peripheral devices which would require an operator's
attention (e.g., line printers and tape drives). These devices can then be

18-1 CE26-01

turned off so there need be no concern about a tape or printer device failure
in the operator's absence. Printer output will collect in the output spooling
files. When the operator returns, the devices can be turned on and returned to
the system and the collected output will be printed. If an on-line or batch
job req~ests the mount(ng of a tape, the request will be denied and only that
one job will be affected. The system continues operation in a normal mode.

INITIALIZATION

Several procedures combine to cover the general subject of system start-up,
initialization, and recovery from various levels of error situations. Each of
the procedures is tailored to restoration of the minimum amount of the system
required to regain operation. Further, recoveries proceed automatically,
generally requiring no operator intervention.

JOB AND SYSTEM CONTROLS

The operator controls system operation through the use of console keyins.
CP-6 operators may use any remote or local terminal to control system activity.
Operator activities may be separated into several groups with each group of
commands and their associated messages handled from a separate terminal (e.g.,
one for tape mounts, one for printer control).

A terminal that has been logged on as a console can simultaneously be used as
a time-sharing terminal via a special set of keyins provided by the console
ghost facility. The operator still receives messages and action requests, and
can respond with device and other keyins, while acting as a time-sharing user.
This feature assures maximum utilization of terminal resources.

REMOVABLE STORAGE INITIALIZATION

The Pack Set Initializer (PIG) program initializes pack sets for use with the
file management system. PIG is used to establish serial numbers, account
directories, and granule allocation and to write headers and other system
information on selected areas of the volumes.

PERIPHERAL DEVICE ERROR PROCEDURES

If the monitor encounters an abnormal condition during an I/O operation, it
will send a message to the operator. These messages are generated both for
errors that are irrecoverable and for errors that are recoverable with operator
assistance. The operator may respond with a device keyin of the form:

action device

The 'action' can be any of the following:

Action Meaning

CONTINUE Continue, the problem has been solved.

Continue, but inform the program of the error.

RETRY Retry the I/O operation.

In addition to logging errors on the operator's console, the system also
maintains a system error log file. This file contains a log of system and
peripheral device failures that were corrected, that were irrecoverable, or
that required operator assistance for recovery.

CE26-01 18-2

Appendix A

IBEX Command Summary

This appendix contains a table of the commands interpreted by the IBEX
processor. The commands are listed alphabetically, and a brief description of
command function is included for each command.

Command
Mnemonic

ACCEPT

ACQUIRE

ADJUST

ATITLE

BACKUP

BATCH

BUILD

BYE

CANCEL

CHECK

COMMENT

CONTINUE

COpy

DATE

DEFAULT

DELETE

DELTA

Table A-I. IBEX Commands

Func tion

Controls printing of operator originated messages at the
user's terminal.

Requests additional resources.

Modifies DCB assignments during a job step.

Inserts a title into the accounting record generated for a
job, or deletes a previously assigned title.

Qualifies a file to be saved on backup tape storage.

Submits one or more jobs for batch execution.

Invokes the EDIT processor to create a file.

Terminates an on-line session and disconnects the terminal.
The OFF command is a synonym.

Deletes a job from the batch job queue, aborts the
processing of an exeucting job, or deletes a job's output
from the output queue.

Shows the status of jobs in the batch queue, jobs executing
and jobs awaiting output.

Controls the listing of diagnostic output.

Resumes an interrupted activity, and terminates interrupt
mode. The GO and PROCEED commands are synonyms.

Transfers data between peripherals.

Requests a display of the time and date. The TIME
command is a synonym.

Establishes or rescinds default data replacement
specifications.

Deletes disk files.

Invokes DELTA after execution is interrupted.

A-I CE26-01

Command
Mnemonic

DIRECTORY

DISPLAY

DONT

E

ECHO

END

ERASE

GET

GLOBAL

GO

GOTO

IF

JOB

L

LDEV

LET

LIMIT

LINK

LIST

LOADILYNX

MAP

MESSAGE

MODIFY

OFF

CE26-01

Table A-I. IBEX Command (cont)

Function

Changes the default account and pack set for fids specified
during the session or job.

Prints information on current users and the system.

Cancels the conditions set by the ACCEPT, COMMENT, ECHO,
LIST, or PROTECT command.

Invokes the EDIT processor to manipulate a file.

Prints IBEX commands contained in a command file as they are
read from the command stream.

Terminates interrupt mode, prompting the user for an IBEX
command. The QUIT and STOP commands are synonyms.

Deletes output accumulated for logical devices.

Recalls a saved activity from disk storage.

Establishes, rescinds and displays global data replacement
specifications.

Resumes an interrupted activity and terminates interrupt
mode. The CONTINUE and GO commands are synonyms.

Directs branching forward within a command stream.

Establishes conditions for affecting command stream logic,
and specifies alterations in the command stream fl6w.

Defines a batch job and its attributes.

Prints a summary of disk or labeled tape storage.

Defines logical devices and also defines and modifies logical
device attributes.

Sets a value for STEPCC or defines a command variable and sets
a value for it.

Establishes maximum values for system resources.

Invokes the LINK processor to create a run unit. The LOAD and
LYNX commands are synonymous.

Determines disposition of listing output.

Invokes the LINK processor to create a run unit. The LINK
command is a synonym.

Invokes the LINK processor to produce a map.

Directs a message to the installation operator's console.

Modifies the name, password, and attributes of one or more
files. The RENAME command is a synonym.

Terminates an on-line session and disconnects the terminal.
The BYE command is a synonym.

A-2

Command
Mnemonic

ORESOURCE

PASSWORD

PLATEN

PMD

PRINT

PRIORITY

PRIV

PROCEED

PROFILE

PROTECT

QUIT

RELEASE

REMOVE

RENAME

REPORT

RESET

RESOURCE

REWIND

RUM

RUN

rununi t

SAVE

SET

Table A-I. IBEX Commands (cont)

Function

Requests resources and establishes global limits for an
on-line session.

Creates, changes, or deletes a log-on password for an account.

Defines the number of lines per page and char~cters per line
on terminal output.

Invokes DELTA to dump specified portions of a program which
terminate abnormally.

Immediately sends output accumulated for logical devices to
their destinations.

Establishes the default priority for a job.

Requests authorization and deauthorization of privileges.

Resumes an interrupted activity and terminates interrupt
mode. The CONTINUE and GO commands are synonyms.

Selects a terminal profile.

Instructs IBEX to issue a QUIT? message prior to performing
any activity which will make the user's interrupted process
unresumable.

Terminates interrupt mode, prompting the user for an IBEX
command. The END and STOP commands are synonyms.

Deallocates allocated resources.

Requests that a tape be removed from a system tape drive.

Modifies the name, password, and attributes of one or more
files. The MODIFY command is a synonym.

Specifies the level of accounting statistics to be displayed
after each job step.

Modifies DCB assignments at a job step.

Requests resources and establishes global limits for batch
processing.

Rewinds a tape to its beginning or load point.

Invokes DELTA to process permanent patches against a run unit.

Invokes the LINK processor to link specified object units into
a temporary run unit, fetches the run unit, and initiates
execution.

Fetches the specified run unit and initiates execution.

Copies the current contents of memory to a disk file.

Assigns a file or device to a DCB and sets DCB parameters.

A-3 CE26-01

Command'
Mnemonic

SETUP

START

STATUS

STOP

SWITCH

TABS

TERMINAL

TIME

TITLE

UNDER

XEQ

CE26-01

Table A-I. IBEX Commands (cont)

Function

Specifies an IBEX command that will be automatically executed
whenever the issuing account logs on to the system.

Fetches a run unit and either initiates execution of it or
invokes a debugger to process it.

Displays information about system usage during the current
session.

Terminates interrupt mode, prompting the user for an IBEX
command. The END and QUIT commands a re synonyms.

Sets and resets sense switches.

Sets terminal tab stops.

Defines the attributes for a terminal.

Requests a display of the current time and date. The DATE
command is a synonym.

Inserts a heading at the beginning of each output listing
page.

Invokes a debug processor.

Initiates execution of a file of commands.

A-4

AppendixB

DEL TA Directive Summary

This appendix consists of the following six tables that describe the
directives interpreted by the DELTA debug procssor:

• Table 8-1 contains a list of DELTA housekeeping directives, which
influence the behavior of the DELTA processor. These directives control
I/O, addressing and symbols, stored directives management, and faults and
traps.

• Table 8-2 contains a list of DELTA execution control directives, which
determine when DELTA is to assume control of an execution run unit. These
directives control procedure and data breakpoints, transfers, procedure
stepping, and special purpose execution.

• Table 8-3 contains a list of DELTA execution tracing directives, which
cause the flow of control within a run unit to be recorded and displayed.

• Table 8-4 contains a list of DELTA memory display and modification
directives, which display and change the control of both memory and
program visible registers.

• Table 8-5 contains a list of DELTA mode control directives, which instruct
DELTA to change from the normal debug mode to:

o RUM mode to apply permanent patches to a run unit.

o ANLZ mode to examine the running monitor or a system dump file.

• Table 8-6 contains a list of DELTA miscellaneous directives (those that do
not fall into the other DELTA directives categories) •

In each table, directives are listed alphabetically, and a brief description
of directive function is included for each directive.

Directive

ACTIVE/INACTIVE

ALTERNATE VARIABLES

BYPASS

COpy

Table 8-1. Housekeeping Directives

Function

Activates or deactivates a single directive
or a range of stored directives.

Specifies alternate debug schema to be
searched when an unqualified variable
reference is not satisified by searching
the current schema.

8ypasses assembler program units during
stepping.

Causes DELTA output to be copied on the
user terminal when the specified destination
for output is other than the user terminal.

8-1 CE26-01

Table B-1. Housekeeping Directives (cont)

Directive Functi~n

-----.--------------------------~--~

DEFINE

DO

ECHO

EOM

FORMAT

KEEP/TRAP/IGNORE

KILL

ON ABORT

ON EXIT

OUTPUT

PROMPT

RANGE

READ

REPORT

SAVE

SCHEMA

SHOW

SILENT/UNSILENT '

SYNTAX

USE NODE

, CE26-01

Associates a value or location with a symbol.

Executes the attachments to a stored directive
or group of directives identified by the SAVE
directive.

Causes input to be echoed to an output device
when DELTA input is from a device other than
an on-line terminal.

Sets or resets a sp~cial activation (end of
message) character set.

Specifies default format for MODIFY and
EVALUATE display output.

Directs DELTA's handling of ?lsynchronous.
events and other exceptional cO,nditons.

Deactivates a toggle or removes a sto red
directive or a range of sto red directives.

Specifies activities to occur upon abort.

Specifies activities to occur upo,n normal
exit.

Specifies destination for DELTA output.

Sets the DELTA prompt character.

Specifies a range of offsets from a defined
symbol to be used for position reporting.

Causes DELTA to read other than the normal
input stream.

Directs DELTA's formatting of position
repo rt ing •

Stores and remembers a single or a range
of stored directives.

Activates or deactivates schema usage or
sets "current" schema.

Displays the status of toggled options,
keyword option or a single directive/attachment
or range of stored directives and attachments.

Activates or deactivates the reporting of a
single directive or a range of stored
directives.

Allows explicit specification of input syntax
(for example, FORTRAN, COBOL, and RPG II).

Activates schema(s) associated with a specific
overlay node. In RUM mode, allows access to
specific overlay nodes.

B-2

Directive

ALIB

AT

BREAK

EXIT

GO

GOSTEP

GOTRAP

GOTRAPSTEP

ON CALL

ON CALLS

ON NODE

ON NODES

SOC

STEP

WHEN

XCON

Directive

HISTORY

PLUGH

TRACE

TRACE XCALLS

Table B-2. Execution Control Directive

Function

Specifies return/altreturn from M$ALIB call to
DELTA.

Sets an instruction breakpoint.

Passes control to user interrupt routine.

Exits from a run unit invoked by M$LINK and returns
to the linking program, or continues an M$LDTRC
or M$SAVE.

Proceeds with program execution.

Goes to a specified location and executes one step.

Passes control to user's event handling routine
when DELTA has been entered for an exceptional
or asynchronous event.

Passes control to user's event handling routine
for execution of a single step.

Sets breakpoints on a specific procedure call.

Sets breakpoints on all procedure calls.

Sets a breakpoint on a specific overlay.

Sets breakpoints on all overlays.

Steps one CALL statement, halting upon return.

Steps by statement or instruction.

Sets a data breakpoint.

Passes control to the unit's exit control procedure
simulating an exit condition.

Table B-3. Execution Tracing Directives

Function

Displays contents of the history buffer (filled
by TRACE).

Traces back through the automatic stack and lists
the return addresses leading to the arrival at
the current procedure point.

Traces transfers at the statement, substatement,
or instruction level or traces the flow of
parag raphs.

Traces entry to all procedures. If XCALLS is
specified, traces entry to external procedures
only.

B-3 CE26-01

Directive

DISPLAY

DUMP

EVALUATE

FIND

LET

MODIFY

PMD

STORE

Directive

ANLZ

RUM

Table 8-4. Memory·Display and Modification Directives

Function

Displays the value of a variable or the contents of an
address.

Dumps a specified range of memory in octal or hexadecimal
format. Optionally provides ASCII translation.

Evaluates an expression and reports its value in a specified
format. Reports the address of.a program entity by segment
and offset.

Searches memory under mask and optionally substitutes
under mask.

Changes the value of a variable or the contents of an
address.

Displays the contents of an address and optionally replaces
it with new contents.

Dumps specified portions of a program which terminates
abnormally.

Modifies a range of memory. Optionally performs the
modification under mask.

Table 8-5. Mode Control Directives

Function

Associates the schemas fo r the CP-6 monitor and sets DELTA's
domain of reference to that of the running moni tor or a
specified system dump file.

Invokes the Run Unit Mo d i f i cat ion (RUM) mode for permanently
patching a run unit file.

CE26-01 8-4

Directive

ENDIQUIT

HELP

LIST

PROTECT

SAD

UNFID

XEQ

?

??

Table B-6. Miscellaneous Directives

Function

Unconditionally exits to the command processor.

Provides HELP for most commands.

Lists changes made during Run Unit Modification.

Sets Protect mode (disallows LET, MODIFY store) •

Allows addressing through the monitor Special
Access Descriptor for privileged users.

Performs M$UNFID on specified DCB.

Executes a GMAP6 assembler instruction.

Requests elaboration of last-issued error or HELP
message.

Requests all available information on the last-issued
error or HELP message.

B-5 CE26-01

Appendix C

EDIT Command Summary

This appendix consists of the following three tables that describe the
commands interpreted by the EDIT processor:

• Table C-l contains a list of EDIT file commands, which build, copy, merge
and delete files. EDIT file commands are organized functionally into the
following groupings: editing attribute commands, file manipulation
commands, and informational commands.

• Table C-2 contains a list of EDIT record commands, which insert delete,
reorder, replace and print the lines of a file. EDIT record commands are
organized functionally into the following groupings: alter commands;
insert/delete commands; print commands; reorder commands; search
commands; and select commands.

• Table C-3 contains a list of EDIT intra-record commands, which modify the
characters within a record. EDIT intra-record commands are organized
functionally into the following groupings: conditional execution
commands, string manipulation commands, and miscellaneous commands.

In each table, commands are listed alphabetically within functional
groupings. A brief description of command function is included for each
command.

Functional
Grouping

Editing
Attribute
Commands

File
Manipulation
Commands

Info rmational
Commands

Table C-l. EDIT File Commands

Command

BP
CR
CRPT
RP
TA
TABC
TABX
TYPE
VE

BUILD
COpy
DELETE
EDIT
END
EXAMINE
MERGE
READ

HELP
LIST
STATUS

Description

Retain fields of blanks.
Include carriage returns.
Set a data encryption seed.
Maintain record lengths.
Set tab positions.
Controls tab compression.
Controls tab expansion.
Select a file type code.
Verify editing.

Create a new file.
Make a copy of a file.
Delete a file.
Select a file for editing.
Return to IBEX.
Select a file for examination.
Merge one file into another.
Read a command file.

Supply information.
List files.
Display EDIT status.

C-l CE26-01

Functional
Grouping

Alter Record
Commands

Insert/Delete
Reco rd Command s

Print Record
Commands

Reorder Record
Commands

Search Record
Commands

Select Record
Commands

CE26-01

Table C-2. EDIT Record Commands

Command

AD
CM
CT
RR

AP
DE
IA
IB
IN
IP
IS

OL
TC
TN
TP
TS
TY

MD
MK
RN

FD
FS
FT

SE
SS
ST

Description

Add to end of record.
Insert commentary.
Print and insert commentary.
Reread record.

Append records.
Delete records.
Insert after records.
Insert before records.
Insert records.
Insert new records.
Insert records with period prompt.

Print at the line-printer.
Print records compressed.
Print next record.
Print previous record.
Print records without keys.
Print record with keys.

Move and delete records.
Move and keep records.
Renumber records.

Find and delete records.
Find and print keys of records.
Find and print records.

Select records for intra-record editing.
Select records for set and step.
Select records for set, step, and type.

C-2

Functional
Grouping

Conditional
Execution
Commands

String
Manipulation
Commands

Miscellaneous
Commands

Table C-3. EDIT Intra-Record Commands

Command

EI
EL
IF
QP
RL

A
D
E
F
L
o
P
R
S

CI
CL
CP
JU
NO
RF
TX

Description

End condition.
Else conditional execution.
Conditional execution.
Quit processing, return.
Return to beginning of command line.

Align columns.
Delete string.
Overwrite string, blank fill.
Insert string following.
Shift image left.
Overwrite string.
Insert string preceding.
Shift image right.
Substitute string.

Copy current record, interlacing.
Override column editing limits.
Copy current record, protected.
Jump to new sequence.
No change.
Reverse blank preservation.
Print changed records.

C-3 CE26-01

Appendix D

PCL Command Summary

This appendix contains a table of the commands interpreted by the PCL
processor. The commands are listed alphabetically, and a brief description of .
command function is included for each command.

Command

COpy

COPYALL

COPYSTD

DELETE

DELETESTD

END

ERASE

ERRORS

HELP

LIST

LISTSTD

MODIFY

PRINT

RELEASE

REMOVE

REVIEW

Table D-l. PCL Commands

Function

Transfers data between peripherals.

Performs mass file transfers from one account
to another.

Performs mass file transfers where the sources
are specified in an STD file.

Deletes disk files.

Deletes disk files as defined in an STD file.

Terminates PCL processing and returns the user
to IBEX.

Deletes device streams from the system.

Determines the handling of output files and
streams in the event of an error or break
condition.

Provides information about PCL, its concepts, and
commands.

Prints a summary of disk or labeled tape storage.

Prints a summary of disk or labeled tape STD file
storage.

Modifies the name, password and/or file attributes
of one or more files.

Prints all pending output through device streams.

Requests that a tape be removed from the system
tape drives and that the drive be released to the
system.

Requests that a tape be removed from a system
tape drive.

Prints a summary of disk storage, allowing the user to
user to delete, relist or copy the contents of the file.

D-l CE26-01

Command

REVIEWSTD

REWIND

SCAN

SPE

SPF

SPR

TX

WEOF

CE26-01

Table D-l. PCL Commands (cont)

Prints a summary of disk storage, with the files
defined in an STD file, allowing the user to delete,
backup, or copy the contents of the file.

Rewinds a tape to its beginning or load point.

Searches a free tape up to the first encountered
double tape mark and reports on the density, number
of records, and longest record length.

Positions a tape just beyond the end of its last file
on labeled tape or between the next two adjacent
tape marks on free tape.

Positions a tape to the beginning of a specified file.

positions a free tape forwards or backwards a specified
number of records.

Sets the tab stops for PCL copy operations which use
the TX option.

Writes an end-of-file record to the specified device.

D-2

Appendix E

Summary of Monitor Services

This appendix contains a table of CP-6 monitor services. These services are
available to user programs regardless of the language in which they are
written; interface routines may be required in certain cases. The monitor
services are listed alphabetically by name, and a brief description of service
function is included for each monitor service.

Name

M$ACPL

M$ACTIVATE

M$ALIB

M$ASUSER

M$BADPP

M$CGCTL

M$CGINFO

M$CHECK

M$CHGUNIT

M$CLOSE

M$CLRSTK

M$CORRES

M$COUPLE

M$CPEXIT

M$CVM

M$CVOL

M$DCB

M$DEACTIVATE

M$DECOUPLE

M$DELREC

Table E-l. CP-6 Monitor Services

Function

Accept coupl ing •

Allow other users and terminals access to a comgroup.

Associate a monitor service or alternate shared
library (or a debugger) with the user program.

Attach a suspended user image.

Remove a bad page from normal use.

Establish comgroup parameters.

Get information about comgroup status.

Check the I/O completion type.

Increment counters in the user JIT.

Close a file (terminate I/O through a DCB).

Clear the Exceptional Condition Stack and proceed in
line.

Check for correspondence of DCB assignments.

Associate one terminal with another.

Exit from a Command Processor.

Change the virtual map.

Terminate I/O to the magnetic tape reel.

Compile a data control block (DCB).

Disallow other users and terminals access to a comgroup.

End association of terminals.

Delete data records or ranges of records.

E-l CE26-01

Name

M$DEQ

M$DEVICE

M$DISPLAY

M$DISPRES

M$DLIB

M$DRTN

M$DSUSER

M$ENQ

M$EOM

M$ERR

M$ERRMSG

M$EVENT

M$EXIT

M$EXTEND

M$FDP

M$FDS

M$FEBOOT

M$FECTL

M$FEDUMP

M$FEPDATA

M$FID

M$FSUSER

M$FVP

M$GBPL

M$GDDL

M$GDP

M$GDS

M$GETDCB

M$GETMOUSE

CE26-01

Table E-l. CP-6 Monitor Services (cont)

Function

Dequeue for a logical resource.

Change device formatting attributes.

Display system load parameters.

Display a list of resources currently owned by
a program.

Disassociate a core or alternate shared library, or
a debugger from the user program.

Return to the user from a debugger.

Delete a suspended user image.

Enqueue for a logical resource.

Set the activation character set and read timeout.

Error the current job step.

Send a message from an error message file.

Give the user control at event completion.

Exit to monitor normally.

Increase the file size.

Free dynamic pages.

Free a user data segment.

Reboot Level 6 FEPs.

Control front-end processor operation.

Dump Level 6 FEP memory.

Log FEP performance data.

Set up a fide

Check for a suspended program for a newly logged
on user.

Free a virtual page.

Get a bad page list.

Get the dynamic data limits.

Get dynamic pages.

Get or enlarge user data segments.

Create a data control block (DCB) at run time.

Get the data segment of the PMME monitoring routine.

E-2

Name

M$GETPM

M$GETSTATE

M$GJOB

M$GLINEATTR

M$GOODPP

M$GTRMATTR

M$GTRMCTL

M$GTRMTAB

M$GVP

M$HELP

M$INT

M$INTRTN

M$IOQ

M$JOBSTATS

M$KEYIN

M$LDEV

M$LDTRC

M$LIMIT

M$LINES

M$LINK

M$MADMUCK

• M$MBS

M$MERC

M$MERCS

M$MONINFO

M$MPL

M$OCMSG

M$OLAY

Table E-I. CP-6 Monitor Services (cont)

Function

Get general system performance monitoring data.

Get the data segment of the state monitoring routine.-

Start the system ghost.

Get line (physical connection) attributes.

Return a page to normal use.

Get terminal attributes.

Get terminal control flags.

Get device (physical) tabs.

Get a virtual page.

Send a message from a HELP file.

Give the user control at BRK keyin.

Return to user from alternate shared library when break
control occurs.

Perform a direct I/O request.

Control job status operations.

Cause a write, read, or write-followed-by-read (keyin)
to the operator's console.

Change the attributes of logical devices.

Transfer to a separate program with no possible return.

Reserve resources.

Get the number of lines remaining on the printer page.

Call a separate program with return expected.

Associate an account with the pack set on which it resides.

Obtain resources for a batch job or determine what
resources are available.

Give the monitor_ control to process monitor service
error.

A variation of M$MERC using the Exceptional Condition
Stack.

Return information about the site and the running monitor.

Mark bad pages as in test mode.

Write console messages.

Load or release a program overlay.

E-3 CE26-01

Name

M$OPEN

M$PFIL

M$PLATEN

M$PRECORD

M$PROCNAME

M$PROFILE

M$PROMPT

M$RCPL

M$RDSYSLOG

M$READ

M$RELDCB

M$RELRES

M$REM

M$RENV

M$REQUIRE

M$RETRY

M$RETRYS

M$REW

M$RPRIV

M$RSPP

M$RSWITCH

M$SAD

M$SAVE

M$SCON

M$SCREECH

M$SENV

M$SETFMA

M$SETFP

CE26-01

Table E-l. CP-6 Monitor Services (cont)

Function

Op e n a f i 1 e (i nit i ali z e DC B) •

Position to the beginning or end of the current file.

Set paper (forms) characteristics.

Reposition a disk or tape file.

Return the name(s) of shared processor(s) associated
with the program in execution.

Change the terminal profile.

Set the prompt string.

Reject coupling.

Read the system error log.

Read a data record into a user buffer.

Release the space occupied by any closed DCB.

Release resources owned by a program.

Enable dismounting of a tape volume and, optionally,
releasing of the resource.

Restore an M$SENV-saved environment.

Ensure ownership of needed pseudo resources.

Retry a monitor service request.

A variation of M$RETRY using the Exceptional Condition
Stack.

Rewind a tape or reposition a disk.

Reset privilege bits.

Return a stolen physical memory page.

Reset pseudo switches in the user JIT.

Set special access descriptors.

Save a program memory image.

Set parameters for a SAVEd program.

Enter recovery.

Save the environment after a monitor service request
erro r.

Change the file management default account and pack
set name.

Send a Forms Program to the front-end processor.

E-4

Name

M$SINPUT

M$SMOUSE

M$SMPRT

M$SPRIV

M$SSC

M$SSTATE

M$SSWITCH

M$STIMER

M$STLPP

M$STRAP

M$STRMATTR

M$STRMCTL

M$STRMTAB

M$SYSCON

M$TDCLOSE

M$TDIO

M$TDOPEN

M$TDREQCPU

M$TIME

M$TRAP

M$TRMISC

M$TRTN

M$TRUNC

M$TTIMER

M$UMPL

M$UNFID

M$UNLATCH

M$USRFIELD

M$WAIT

Table E-l. CP-6 Monitor Services (cont)

Function

Set the effective last line typed by user.

Initiate the PMME mounting feature.

Set memory protect.

Set privilege bits.

Set software control flags.

Initiate the user-state monitoring feature.

Set pseudo switches in the user JIT.

Set the timer interval and time-out entry.

Get stolen physical memory pages.

Simulate a trap.

Set terminal attributes.

Set terminal control flags.

Set device (physical) tabs.

Partftion, return and display status of de~ices.

Perform a test and diagnostic close.

Perform a test and diagnostic input or output.

Perform a test and diagnostic open.

R~quest CPU for test and diagnostics.

Get the current time.

Give the user control on program traps.

Allow or inhibit operator sending and broadcasting
to the terminal.

Return normally to the user.

Release POOL buffers back to the system after I/O completion.

Get the current timer value and optionally cancel the
current interval.

Unmark bad pages.

Convert components from a DCB into a fide

Release a latched transaction.

Set JIT user fide

Wait a specified period of real time.

E-5 CE26-01

Name

M$WEOF

M$WRITE

M$WRSYSLOG

M$XCON

M$XCONRTN

M$XEQTIME

M$XMOUSE

M$XSTATE

M$XXX

M$YC

CE26-01

Table E-l. CP-6 Monitor Services (cont)

Function

Write an end of file (on free tape), an EOD (output
to the card punch) or a top-of-form (output to a line
printer) •

Write a data record from a user buffer to a file or device.

Write an entry to the system error log.

Give the user control at program exit.

Defer exit control processing by a special shared processor
until all user exit control processing is completed.

Get execution and service time expended for the current
job.

Terminate the PMME monitoring feature.

Terminate the user-state monitoring feature.

Abort the current job step.

Simulate a CONTROL-Y sequence, giving control to the
command processor.

E-6

Glossary

account - a group of files and privileges, usually associated with a particular
I user.

alternate shared library - a special shared processor that resides in its own
working space, has greater privilege than the user program, and can be called
directly from the user program (e.g., I-D-S/II).

ANS tape - a tape that has labels written in American National Standard (ANS)
fo rmat.

application processor - a Honeywell supported processor intended for use in
specific types of applications such as data base management.

bandwidth - the maximum rate at which memory, an I/O channel, or a front-end
processor can deliver or accept information.

batch job - a job submitted to the batch job queue through the central site
card reader, through an on-line terminal (using the BATCH command), or
through a remote batch terminal.

batch job class - a logical entity used by the scheduler to select jobs from
the batch job queue for execution. A job class is each type of resource that
a job requires to be scheduled to runin that class. (Resources include such
items as main memory, CPU availability tape drives, disk spindles, or pseudo
reso urces .)

batch job queue - a set of jobs to be run in the batch mode. These jobs are
scheduled by CP-6 in a manner that optimizes the use of nonsharable
reso urces •

bipoint line - a line that connects a single remote transaction processing
station to the computer center. (See multipoint line.)

block - a block of disk sectors large enough to contain 1,024 words (a page) of
stored information.

block stamp - a one word item at the beginning of each granule in a file. It
contains an identification of the file plus the low order bits of the granule
number. The main function of the granule stamp is to facilitate system
reliability by identifying the file to which each granule belongs.

comgroup - a CP-6 logical communications network commonly used to connect
terminals to programs and programs to programs. Through this mechanism, a
terminal may be accessed by name.

command processor - a processor which enables the users to direct the monitor
to perform functions required for the processing of their jobs.

data control block (DCB) - a table in the user's program that contains the
information used by the monitor in the performance of an I/O operation.

data set - a device which converts data processing device signals to telephone
tones and telephone tones to device signals (also referred to as 'modem').

data set controller - a hardware interface between a remote processing terminal
and the central computer.

g-l CE26-01

DCB - see data control block.

execution control commands - commands that control job step construction and
execution and provide communication between a program and its environment.

execution control language - commands that control program construction and
execution of programs and provide communication between a program and its
env ironment.

execution control processor - a processor used to load, run, and/or debug a
user program.

FEP - front-end processor.

fid - the identification information of a CP-6 file.

file - a collection of data in one or more formats.

file information table - a table of information associated with each file. It
contains such information as file type, size, location, access controls, and
dates.

FIT - see file information table.

FPT - see function parameter table.

front-end processor - a minicomputer on to which the processing and
communications load is distributed.

function parameter table (FPT) - a table through which a user's program
communicates with a monitor function (such as an I/O function) •

ghost job - a job which is neither a batch nor an on-line program. It is
initiated and logged on by the monitor, the operator, or another job. It may
consist of a single job step or it may be controlled by a file or the
execution control language.

HASP - a communication protocol commonly used between central site computer
centers and remote batch terminals. It includes 'multileaving', which
provides the ability to combine data records for several destination devices
into a single transmission block.

HDLC - a full-duplex, bit-oriented data transmission protocol. The Honeywell
and IBM versions and the international standard are nearly identical.

JIT - see job information table.

job - a collection of steps or activities presented together to a data
processing system for execution.

job information table - a table associated with each active job. The table
contains accounting, memory mapping, and temporary monitor information.

job step - a subunit of job processing such as compilation, assembly, loading,
or execution.

key - a data item that uniquely identifies a record within a keyed or indexed
file.

kcyin - information entered by the operator via a keyboard.

language processor - either a processor which translates assembly level or
high-level source code into machine object code for execution or an
interpreter of source code or commands.

library - a collection of frequently used routines in a form that facilitates
their inclusion into programs.

CE26-01 g-2

linker - a processor that combines and transforms the output of one or more
compilations into a single run unit.

logical device - a peripheral device represented in a program by a special name
(e.g., SI or La) rather than by specific physical device name.

logical device stream - an information stream which may be used when performing
input from or output to a spooling device. Several logical device streams
may be defined at system definition; each is given a name (e.g., LPOI, CPOI,
CROI), each is assigned to a default physical device, and each is given
default attributes. The user may perform I/O through a logical device stream
with the default physical device and attributes, or he may change one or both
to satisfy the requirements of his job.

modem - see data set.

monitor - a control program that supervises the processing, loading, and
execution of other programs.

monitor services - operations performed by the monitor on behalf of a user
program. (Also referred to as system services.)

multipoint line - a line that connects two or more remote terminal stations to
the central computer. A line controlled by the computer as though it were
connected to two or more stations is considered to be multipoint even though
it connects only one station to the computer. (See bipoint line.)

object file - a file consisting of one or more object units. Object files
serve as input to the linking processor.

object unit - the series of records containing the instructions, debug schema,
and linking information pertaining to a single program or subprogram (i.e.,
from the beginning to the end). An object unit is the output of a
compilation or an assembly.

overlay program - a tree-structured program in which the node currently being
executed may overlay the storage area occupied by a previously executed node.

packset - a group of disk packs associated with a unique identifier.

processor - a public program supplied by Honeywell. See application processor,
command processor, language processor, shared processor, special shared
processor, shared run-time library, standard shared processor, system
management processor, and utility processor.

prompt character - a character sent to the terminal by an on-line program to
indicate the next line of input may be entered.

protected mode - a mode of tape protection in which only expired ANS tapes of
the specified label may be written; all ANS tapes must be initialized by the
LABEL processor; no tape serial number specification is allowed at the
operator's console; specification of an output serial number forces
processing to be done only on a tape already having that serial number. (See
'semi-protected mode', 'unprotected mode'.)

public library - a set of library routines declared to be public (i.e., to be
used in common by all concurrent users) •

recovery.- restart of the system after a temporary halt in system performance.

resource - a portion of a CP-6 installation to be shared by users in such a
manner that each user requiring it has it allocated for his exclusive use.

run unit - a memory image of an executable program. It is the result of the
linking process and is executed as a job step.

SDLC - a full-duplex bit-oriented data transmission protocol. The Honeywell
and IBM versions and the international standard are nearly identical.

g-3 CE26-01

secondary storage - any rapid-access storage medium other than main memory
(e.g., disk storage).

semi-protected mode - a mode of tape protection in which a warning is posted to
the operator when output is attempted on an unexpired ANS tape. The operator
can authorize the overwriting of the tape through a keyin. ANS tapes may be
initialized by the LABEL processor or may be given labels as the result of an
operator key-in; tape serial number specification is allowed at the
operator's console; and specification of an output serial number forces
processing to be done only on a tape already having that serial number unless
the operator authorizes an overwrite. (See 'protected mode', 'unprotected
mode' .)

shared processor - a processor which permits the sharing of the code among all
simultaneous users. Each user of a shared processor has its own copy only of
the data and DCB portion of that program; the procedure (code) portion is
shared by all users associated with the shared program.

shared run-time library - a shared processor mapped into the user's working
space quarter along with the user program (e.g., FORTRAN Run-Time Package).

software check - a failure that could have an adverse effect on the system or
its programs. It causes the system to go into an automatic recovery
procedure.

source language - a language used to prepare a source program suitable for
processing by an assembler or a compiler.

special name - a symbolic name used to identify a logical system device.

special shared processor - a shared processor that resides in its own working
space but can be called to execute in conjunction with the user program
(e.g., DELTA).

spooling - the technique of buffering unit record input or output on disk to
allow simulated unit record I/O. User programs thus proceed at speeds
unlimited by the speed of unit record peripherals.

standard shared processor - a shared processor mapped into the user's working
space and effectively is part of the user program (e.g., FORTRAN compiler).

symbiont - see spooling.

system definition - the process of creating an operating system tailored to the
specific "requirements of an installation. The major steps in a system
definition include: gathering the relevant programs, generating specific
monitor tables, loading monitor and system processors, and writing a bootable
system tape.

system management processor - a processor that performs some function that
provides the manager of a CP-6 installation with on-line control of the
system.

system services - operations performed by the monitor at the request of a user
program. (Also referred to as monitor services.)

unit record equipment - peripherals which deal with hard copy media such as
card readers, card punches, and printers.

unprotected mode - a mode of tape use in which both unexpired and expired
labeled tape can be overwritten without operator intervention. (See
'protected mode', 'semi-protected mode'.)

utility processor - a processor that performs some general function required by
users for running and using the CP-6 system. Examples of service processors
are EDIT (which enables the user to build and manipulate files of program and
data) and PCL (which enables the user to move files among card devices, line
printers, disk, etc.).

CE26-01 g-4

working space - the megaword of main memory available to every user. Other
working spaces are used by the system in carrying out user associated
services.

g-5 CE26-01

A

access methods, 9-5
accessing shared entities, 16-3
a c c 0 un t, g -1
account directory, 7-1
account management, 17-4
accounting, 11-4
accounting information, 2-4
accounting record, 17-5
acco un ting . stat ist ic s, 17-4
addressing in the absolute mode, 8-3
alternate shared, 8-5
alternate shared libraries, 16-1, 8-8
alternate shared library, g-l
an efficient monitor, 1-3
ANLZ, 4-9
ANS labeled tape, 7-7, 7-6, g-l
ANS minimal BASIC, 4-4
ANS standard formats, 7-6
APL, 4-4
APL Reference, 5-4
application processor, g-l
archive, 7-5
ASL, 8-3
Assembly Instructions Reference, 5-6
asynchronous terminals, 9-1
authorization, 10-3
auto-logon, 11-4
automatic decompression, 7-11
automatic dump analysis, 10-2
automatic extension, 7-11
automatic" recovery, 10-2, 11-4
automatic storage stack, 8-6
automatically shared program, 8-7

B

backup on tape or disk duals, 7-4
bandwid th, g-l
base priority, 8-2
BASIC, 4-4
BASIC Reference, 5-4
batch job, 2-4
batch job class profile, 17-2, g-l
batch job scheduler, 13-2
bipoint line, g-l
bit-oriented, 9-1
block, g-l
block stamp, g-l, 7-10
budget accounting, 17-5

Index

i-I CE26-01

catalog of documents, 5-3
cataloged procedures, 13-2
central processor, 3-1
check-write feature, 7-10
chronological listing, 17-3
class profile, 13-1
CLIMB instruction, 8-3, 8-5
clock service, 15-2
COBOL, 4-3
COBOL Programmer Guide, 5-5
COBOL Reference, 5-5
comgroup, 7-7, 9-4, 9-6, g-l
command and control processors, 4-2
command processors, 16-1, 8-8, g-l
Common Index, 5-8
common processors, 8-9
communication configuration, 9-1, 9-3
communication context (line) tables, 17-1
communication groups, 9-6
communication management, 2-3, 9-1
communication protocols, 9-5
communications environment, 14-1
communications log-on, 9-3
communications processor, 9-1
communications subsystems, 9-1, 9-6
configuration-independence, 14-1
connecting terminals to programs, 9-2
consecutive files, 7-2
console keyins, 18-2
CONTROL, 4-10, 17-3
convenient tools, 16-1
CP, 8-3
CP-6 access modes, 1-1
CP-6 batch processing, 1-2
CP-6 distributed real-time, 1-2
CP-6 documentation, 5-1
CP-6 hardware, 3-1
CP-6 monitor, 2-1
CP-6 philosophy of commonality, 13-1
CP-6 programming environment, 6-1
CP-6 remote processing, 1-2
CP-6 scheduling, 8-1
CP-6 system features, 1-3
CP-6 time sharing, 1-1
CP-6 transaction processing, 1-1
CRT, 9-5

D

data access controls, 10-3
data base integrity, 11-4
data compression, 7-11
data control block, 7-7, 8-6, g-1
data record access, 9-2
data set, g-l

.. data set controller, g-l
DCB, 7-7, g-2
deadlock situations, 13-1
debug facilities, 11-4
debuggers, 8-5, 8-8, 8-9
decrypt, 7-11
default device selection, 14-1
DELTA, 8-8, 16-2, B-1, 6-9

CE26-01 i-2

DELTA debugging processor, 4-2
DELTA execution control directive, B-3
DELTA execution tracking directives, B-3
DELTA housekeeping directives, B-1
DELTA memory display and modification directives, B-4
DELTA mode control directives, B-4
DELTA Reference, 5-6
device accessing, 9-3
device attachment, 9-3
device configuration, 9-3
device independence, 11-3
device keyin, 18-2
device name, 7-7
diagnostic programs, 17-4
diagnostics, 10-1
directory blocks, 7-10
display and modification of batch job class definitions, 17-3
display of system parameters, 17-3
distributed real-time, 15-1
distributed real-time system, 15-1
documentation set, 2-2
domain, 8-3
DPS configuration, 3-2
DUAL, 4-5
dynamic reconfiguration, 17-1
dynamic verification programs, 9-6

E

ease of use, 1-3
EBCDIC formats, 7-6
EDIT, 4-7, C-l, 6-8
EDIT file commands, C-l
EDIT intra-record commands, C-3
EDIT record commands, C-2
effective addresses, 8-2
efficient file transfer (EFT), 7-4
EFT, 4-10
ELAN, 4-11, 10-1
encryption, 10-3, 7-11
enqueue/dequeue, 7-4, 17-1
error file, 10-1
error-tracking, 10-1
exceptional condition handling, 16-3
execution control command, g-2
execution control language, g-2
execution control processor, g-2
execution control syntax checking, 13-1
execution-time resource, 13-1
extents, 7-11

F

features of the file system, 7-10
FEP, g-2
FEPANLZ, 4-9
FEPLINK, 4-8
fid, g-2
file, 7-1, 7-7, 9-2
file access control tables (CFU), 17-1
file access control, 10-3
file access, 7-3

i-3 CE26-01

file and device management, 2-2
file attributes, 7-11
file buffers, 8-6
file directory descriptors, 7-11
file extension, 7-11
file function and disposition, 7-1
file information table, 7-1, 9-2
file organization, 7-2
file security, 10-2, 10-3
file transfer, 9-2
file-backed queue, 9-6
FIT, 7-1, 9-2
format control, 7-11
formatted devices, 7-10
fo rms, 9-5
forms processing system, 11-3
FORTRAN, 4-3
FORTRAN Programmer Guide, 5-5
FORTRAN Reference, 5-5
FPL, 11-3, 4-7
FPL Reference, 5-7
front-end processor, g-2
full-duplex, 9-1
fully-protected mode, 7-6
function parameter table (FPT), 16-2, g-2

G

ghost jobs, 2-4, g-2
GMAP-6, 4-5
GOOSE, 4-9
granule access controls, 10-3
granule accounting, 17-4
graphics, 9-5
GUIDES, 5-3

H

hardware, 2-1
hardware connection, 15-1
hardware malfunctions, 10-1
hardware protection features, 10-3
hardware's multiple channels, 13-1
HASP II, 14-3, g-2
HASP-protocol terminals, 9-1
HDLe, g-2
HELP facility, 5-8, 6-1, 6-2
high priority jobs, 8-1
HJIT, 8-6
host log-on, 9-3
housekeeping JIT, 8-6

I

I-D-S/II, 4-6
I-D-S/II Data Base Administrator Reference, 5-6
I-D-S/II Guide, 5-6
I/O accelerator tables and buffers, 17-1
IBEX processor, 4-2, 6-8, A-I

CE26-01 i-4

identification stamp, 10-3
lOP, 4-7
lOP Reference, 5-6
IMP, 4-9
increased bandwidth, 15-1
independent devices, 14-1
indexed files, 7-2
initialization, 16-3, 18-2, 9-3
input/output, 7-7
input/output multiplexers, 3-1
installation requirements, 13-2
installation specific routines, 17-5
installing, 18-1
instance administration, 11-4
instruction segment, 16-3
interactive terminals, 7-9
interative command processors, 8-5
intertask message passing, 15-2
intertask signalling, 15-2
IOMs, 3-1
I-D-8/I1 Reference, 5-6

J

JIT, 8-6, g-2
job, g-2
job and system controls, 18-2
job information table, 8-6, g-2
job load leveling, 9-2
job scheduling algorithms, 13-1
job scheduling controls, 13-2
job step, g-2
job step control, 2-3

K

key, 7-2, g-2
keyed files, 7-2
keyin, g-2
KEYIN, 18-1

L

LABEL, 4-10
language processors, 4-3
language processors feature, 4-1
LEMUR, 4-8
libraries, 8-5
library, g-2
LINK, 4-8, 6-8
linkage segments, 8-6
1 inker, g-3
local communications processor, 9-1
local processors, 15-1
log-on process, 9-3
logical devices, 7-10, g-3
logical stations, 9-4
LOGON processor, 4-2

i-5 CE26-01

M

manual set, 5-1
maximum resources, 17-4
megaword of virtual space, 8-6
memory allocation, 8-5
memory management, 8-1
memory management routines, 2-3
memory security, 10-3
memory sharing, 15-2
micro-programmed controllers, 3-1
minimal operating cost, 1-4
miscellaneous DELTA directives, 8-5
MON, 8-3
monitor, 2-1, 9-3
monitor and user interfaces, 14-1
monitor controls, 2-1
monitor services, 4-11, E-l, g-3
Monitor Services Reference, 5-6
mounting a pack set, 7-5
MPCs, 3-1
multi-drop communication line, 9-4
multi-drop line, 9-1, 9-2
multiple parallel paths, 9-1
multiple programs, 8-8
multipoint line, g-3
multiprocessing, 3-2
multiprogrammed batch, 13-1
multiprogramming, 1-1
multiprogramming depth, 9-6

N

networks of devices, 9-4
networks of terminals, 9-6
non-overlaid run units, 8-6

o

object file, g-3
object unit, g-3
on-line diagnostics and hardware exercisers, 2-4
on-line documentation, 5-8
on-line job, 2-4
operating system, 2-1
Operations Reference, 5-6
operator communications, 2-4
operator intervention, 18-1
operator terminal, 9-3
operator's console, 18-2
optimized file management, 1-3
organization and access methods, 7-1
overlaid programs, 8-6, g-3

p

pack set initializer, 18-2
pack sets, 7-5, 7-10, g-3

CE26-01 i-6

page directory base register, 8-3
pag e tabl e, 8-2
parameter stack, 8-6
passwo rd, 10-2
passwords, 10-3
patching, 18-1
peL, 4-8, 18-1, 0-1
performance data, 17-3
performance evaluation and tuning, 11-4
performance tuning parameters, 2-5
periodic task initiation, 15-2
peripheral device failures, 18-2
peripheral devices, 9-5
physical system resources, 17-2
PIG, 18-2
PIT, 4-10
PL-6 Reference, 5-7
PL-6, 4-5
plotter, 9-4
Pocket Reference, 5-5
preventing unauthorized access, 10-3
preventive maintenance, 10-1
primary processor, 3-2
Pr imer, 5-8
priority queue structure, 8-1
privacy and security, 11-4
private resource, 9-4
privileged master mode, 8-5
problem identification, 10-2
processing terminals, 14-3
processor procedures, 3-2
program development, 2-2
Programmer Guide, 5-4
Programmer Reference, 5-5
project administration, 17-4
project administrator, 10-2
prompt character, g-3
protected environment, 11-1
protected mode, g-3
protection and security, 7-6
protection mechanism, 8-3
protocol, 9-1
public library, g-3

Q

QMIN, 8-2
QUAN, 8-2

random files, 7-3, 7-14
RATES, 4-10, 17-5
read/write interface, 15-2
real-time, 15-1
real-time computers, 15-1
reconfiguration, 17-1
reconfiguring, 18-1
record blocking, 7-4
recovery procedure, 10-1, 10-2, g-3
reduced debug time, 13-1
reference manual, ,5-1

i-7 CE26-01

relative files, 7-3
reliability and security, 2-3
reliability, 10-1
remote batch character, 9-1
remote batch terminal, 9-3
remote communications, processor, 9-1
remote devices, 14-3
remote facilities, 14-1
remote input capabilities, 14-3
remote job entry, 9-2
remote processing, 14-1
remote real-time and communications processors, 15-1
remote site, 14-1
remote workstations, 13-1
removable storage initialization, 18-2
reso urce, g-3
resource control, 13-1
resource management, 17-3
resource profile, 13-1
restoring from backup, 7-5
RPGII, 4-6
RPG II Reference, 5-5
RUM, 16-2
r un un it, g - 3
run-time library, 8-8

s

safe-store stack, 8-5, 8-6
sample program, 6-2
scheduler, 8-1, 8-2
scheduling and memory management, 2-3
SDLC, g-3
secondary processor, 3-2
secondary storage, g-4
security, 10-1, 10-2
semi-protected mode, 7-6
semi-protected mode, g-4
serial printers, 9-4
shared processor, g-4
shared processor facilities, 8-6, 16-1
shared run-time libraries, 8-8, g-4
simultaneous users, 8-8
single user abort, 10-2
snapshot data, 17-3
software check, g-4

-software processors, 2-1
SORT/MERGE Reference, 5-5
SORT/MERGE, 4-8
source language, g-4
special name, 7-7, g-4
special resource management, 17-3
special shared processor, 8-5, 9-4
SPIDER, 18-1
spooling, 13-2, 13-3, g-4
standard DCBs, 16-4
standard shared processor, g-4
standard shared processors, 8-7
star files, 16-3
STATS, 17-2, 4-11
SUPER, 4-10
support services, 2-4
support staff, 18-1
symbion t, g-4
synchronous communication, 18-1

CE26-01 i-8

synchronous terminals, 9-1
system control, 17-2
system definition, 9-3, 17-1, 17-3, g-4
system highlights, 1-4
system integrity, 10-2
system log listing, 10-1
system management, 17-1
system management processors, 4-1, 4-10, g-4
system patches, 18-1
system performance control, 17-2 system programming, 16-1
system services, g-4
system support reference, 5-7 system

T

terminal features, 11-3
terminal stations, 11-1
TEXT ,4-6
TEXT Processing Administrator Guide, 5-7
TEXT Processing Primer, 5-7
time-sharing terminal, 9-4
TOLTS, 4-11
TP Administrator Guide, 5-7
TP Applications Programming Guide, 5-7
TP operating environment, 11-1, 11-2
TPA, 4-3 TPCP, 4-3
TRADER, 4-9
transaction processing, 11-1
transaction processing administrator, 4-3
transaction processing command processor, 4-3
transaction processing job, 2-4
transaction processing timing, 11-4
TSTACK, 8-6
tun ing, 17-2

u

unattended system operation, 18-1
unformatted devices, 7-9
unit record, 9-5
unit record equipment, g-4
unit record peripherals, 7-9
unit-record files, 7-3
unprotected mode, 7-6, 9-4
user accounting, 17-4
user authorization, 10-2, 17-4
user's instruction segment, 8-6
user's monitor buffers, 10-3
user-developed processors, 4-1
USR, 8-3
utility processors, 4-7, g-4

v

virtual memory and security, 8-2, 8-3
virtual protocols, 9-5
VOLIN IT, 4-10

w
working space, 8-2, 8-5, g-5

i-9 CE26-01

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

CP-6
TITLE CONCEPTS & FACILIT IES

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms wi II be
acknowledged; however, if you require a detailed reply. check here. D

FROM:NAME--
TITLE _______________________________________ __

COMPANY---------------________________ __

ADDRESS ___________________________________ __

ORDER No·1 CE26-01

DATED I SEPTEMBER 1980 I

DATE ______________ _

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WA L THAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Honeywell
HoneY"'eli information Systems

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, W~lowdale, Ontario M2J 1W5

In the U.K.: Great West Road, Brentford, Middlesex TWa 90H
In Australia: 124 Walker Street, North Sydney, N.S.W. 2060

In Mexico: Avenlda Nuevo Leon 250, Mexico 11, D.F.

29298, 21080, PrInted in U.S.A. CE26-01

