
HONfYMll .

CP-6
APPLICATION
PROGRAMMER
HANDBOOK

SOFTWARE

SUBJECT

CONTROL PROGRAM-SIX (CP-6)
APPLICATION

PROGRAMMER HANDBOOK

A Handbook for the Application Programmer

SOFTWARE SUPPORTED

Release B03

ORDER NUMBER

CE55-01 January 1984

Honey",ell

Pre'ace

CESS, the Application Programmer Handbook for the CP-6 system, is a companion
manual to CE40, the Programmer Reference Manual. It is intended for use by
the applications programmer who is conversant with the CP-6 System language
references and language guides, as well as with the Programmer Reference
manual.

Documentation would like to express its appreciation to Marketing National
Software Support/CP-6 for making selected documents available for inclusion in
this handbook.

The Los Angeles Development Center (LADC) of Honeywell Information Systems has
developed Computer Aided Publications (CAP). CAP is an advanced text
processing system providing automatic table of contents, automatic indexing,
format control, automatic output of camera-ready masters, and other features.
This manual is a product of CP-6 CAP.

Readers of this document may report errors or suggest changes through a STAR
on the CP-6 STARLOG system. Prompt response is made to any STAR against a
CP-6 manual, and changes will be incorporated into subsequent releases and/or
revisions of the manual.

The information in this publication is believed to be accurate in all
respects. Honeywell Information Systems cannot assume responsibility for any
consequences resulting from unauthorized use thereof. The information
contained herein is subject to change. New editions of this publication may
be issued to incorporate such changes.

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

@Honeywell Information Systems Inc., 1984 FileNo.: 1W13 CE55·01

MODULE 1-0 Section - Obtaining Information

MODULE 1-1 HELP ••

MODULE 1-2 Displays ••••••
CHECK and NOTIFY - Comments.

MODULE 2-0 Section 2 - Controlling Terminals

MODULE 2-1 Setting Terminal Profiles ••

MODULE 2-2 Cursor/Printhead Positioning.
Moving the Cursor ••••••••

ESCAPE N •••••••••••
ESCAPE V - Moving to Character 'N'
Tab Stops ••••••••••••••••••••
ESCAPE I • • • • • • • • • • • • ••••

CONTROL R - Forward Positioning ••••••
CONTROL H - Backspacing •••••
ESCAPE <RET> - Position to Beginning of Record ••••••

MODULE 2-3
ESC APE
ESCAPE
ESCAPE
ESC APE
ESCAPE

Cancelling and Recalling Input •••••
X - Deleting Current Input Line •••
K - Deleting From Current Edit Point.
A - Setting Pagination Mode ••••
R - Retyping the Current Input Line •••••
D - Retrieving the Last Input Line •••••••

MODULE 2-4 Inserting/Replacing/Overstriking •••
ESCAPE J, ESCAPE <CR>, ESCAPE 0, ESCAPE M ••
More About ESCAPE J ••

MODULE 2-5 Platen Control.

MODULE 2-6 IMP......
Defining New Escape Sequences ••
Setting Up Special Function Keys.

Resetting Special Function Keys.
Redefining the Keyboard.

MODULE 2-7 Dribble Files.
Displaying DRIBBLE Files at Your Terminal ••

MODULE 3-0 Section 3 - Editing and Manipulating Files ••

MODULE 3-1 Creating New Files.

MODULE 3-2 EDIT Command Files ••

MODULE 3-3 Selecting Record Ranges ••

MODULE 3-4 Moving, Merging, and Copying Files ••

CE55-01 Table of Contents

Contents

Page

2

6
7

8

9

11
11
11
12
12
13
13
13
14

15
1 5
16
16
17
17

18
18
19

20

21
21
22
23
24

26
27

28

29

31

32

35

iii

Contents (cont)

MODULE 3-5 ConditionaL Execution in
EDIT Command FiLes •••••

EDIT

MODULE 3-6 Listing and Reviewing FiLes.
Listing FiLe Attributes.
REVIEW Command (peL)
Recovering FiLes ••

MODULE 3-7 Changing FiLe Organization.

MODULE 3-8 Changing FiLe Access Attributes.

MODULE 3-9 SeLecting Files •••••••••

MODULE 3-10 Wildcarding •••••••••••
Abbreviating Account References Through Wildcarding.

MODULE 3-11 Maintaining File Accounts ••••••
FiLe Types ••••••
Star Fi Les • • • • • • • • • •••
Running Out Of Space • • ••••••••
Conserving Disk Space •••••••

Object Units. • • • •••
Source Programs •••••••••
Run Units. • •• • •••••••••••••
Other Fi les. • • • •••
Keyed Data Fi les • • •••

Using Files in Other Accounts •••••••••••

MODULE 3-12 Printing Files on the Lineprinter.

MODULE 4-0 Section 4 - Creating and Running Programs.

MODULE 4-1 IBEX Programming •••••••••
IBEX Programming Conventions ••••••••••••••
Executing Programs ••••••••••••
Invoking Language Processors ••••••••••••••••
Interrupt Processing • • • • • •••
ALLocating Resources and Establishing Service Limits.
Execute Files. • • • • • • •••••
Batch Jobs • • • • • ••••••••••
Command Files. •• ••• • • ••••••••••••

Data Replacement ••••••••••••••
IBEX Command Labels. • • • • • • •••
Command File Logic - Conditional Execution.
STEPCC • • • • • •• •••• • • •••
Program Exit Method •••••••••••••••••••••

IBEX Expressions • • • • • • • • • • • • • • • •••••
Expression Component - Precedence of IBEX Operators ••
Preprocessing of Commands. • • • • ••••••••

BATCH/XEQ Substitution. • •• • ••••••
Preprocessor Substitution ••••••••••••••••••

Examples of IBEX Command Files ••••••••••••••••
Command File to Read Tape. • • • ••••••••
Command File That Interrogates User. • ••••
Setup Fi le • • • • • • ••••

MODULE 4-2 Sample Session.

CESS-01 Table of Contents

Page

39
40

43
43
45
46

47

49

51

52
53

54
54
56
57
57
57
57
58
58
58
59

60

62

63
63
64
65
65
66
67
67
69
69
71
71
72
72
73
74
75
75
75
76
76
77
78

79

iv

Contents (cont)

MODULE 4-3 FPl: CompiLing, linking, Debugging.

MODULE 4-4 Using lINK OverLays •••••••
ResoLving Differences and Ambiguities.
Program Trees •••••••••••••
Specifying an OverLay ••••••••••••

Using lINK to BuiLd a Run Unit with OverLays.
Using lINK's PROMOTE BLANK and PROMOTE lABEL
Using HELP ••••• - ••••••••••••

MODULE 5-0 Section 5 - PracticaL AppLications.

MODULE 5-1 Creating Sorted Indexes on CP-6 ••

Options.

MODULE 5-2 How to Perform CompiLations in Batch Mode.

MODULE 5-3 A CP-6 System Program with its Own 'HELP' •

MODULE 6-0 Section 6 - Use of Magnetic Tape in the CP-6 System.

MODULE 6-1 RuLes for Tape Usage ••
Tape Management •••••••••••••••••••••••••••

PCl Commands • • • • • • • • • • • • • • ••••
Basic Types of Magnetic Tapes. • • • • • • ••••••
ANS leveLs of Protection. • • • • • • • • ••••••••
Free and Managed Free Tapes. • • • • • • • ••••••••

Free Tapes • • • • • • • • • •••••
Managed Free Tapes • • • • • • • ••••
Comparisons - Free and Managed Free. • • • • • • •••
ANS labeLed Format ••• • • ••••••••
EBCDIC labeLed Format. • • • • • • • • • • • •••
Mixing of CP-6, ANS, and EBCDIC labeLed. • • • • • • • •••

Tape Fids. • • • • • • • • • • • • • • • ••••
ANS Tape Fids. • • • • • • • • • • • ••••
Tape Fids May Need Quotes. • • • • • • • • • • • •••
MuLti-reeL Tape Fids •••• • •••••••••••

Acquiring Tape Drives. • • • • • • •••••
MOUNT Command. • • • • •••••••••••
RESOURCE, ORESOURCE, and ACQUIRE Commands ••

DefauLt Tape Drive Assignments •••••••••
logicaL Density •••••••••••••••••

SingLe-density and Mixed-density Systems
ExampLes of OnLine Use •••••••
FiLe Sequence Numbers •••••••
Hardware limitations ••

Minimum Record Size.
lost Data •••••••
Number of Bytes Stored on Tape •

FiLe Management Buffers.
DC B s . • . • • • • • • • • • • • •

MODULE 6-2 Tape Commands, Options,
Introduction ••••••••
PCl Tape ControL Commands •••
PCl and !SET Output Options.

!SET Command Options.
PCl Input Options •••
PCl Output Options.

PCl vs SET •••••
Monitor Service CaLLs~

M$DCB~ ; • ; • ; ; •

and CaLLs.

CE55-01 TabLe of Contents

Page

88

95
97
97
98
102
103
104

105

106

109

111

113

114
114
114
115
116
117
117
117
118
118
119
119
119
119
120
120
120
121
121
121
122
122
123
125
127
127
127
127
128
128

129
129
129
130
130
132
133
135
135
136

v

Contents (cont)

M$OPEN - OPEN DCB •••
M$CLOSE - CLOSE DCB •••
M$CVOL - CLOSE VOLUME •••••
MSREAD - READ RECORD ••
MSWRITE - WRITE RECORD •••••
MSPRECORD - POSITION TO RECORD
MSREW - REWIND ••••••
MSPFIL - POSITION FILE ••••
MSWEOF - WRITE END-OF-FILE •••
MSREM - REMOVE OR RELEASE VOLUME
MSTRUNC - TRUNCATE BUFFERS •••

MODULE 6-3 CP-6 System Tape Processing •
Automatic Volume Recognition ••••••
Tape Resource Management • • ••••
CP-6 Tape File Management ••
Anomalies and Errors

MODULE 6-4 How to Make Tapes That Other Machines Can Read ••
Tape Types in CP-V and CP-6 •••••••••••••••
C reat i ng Tapes ••••••••••••••
ANS Tape Options at a Glance ••••••
ANS Tape Options - Complete Description.
Block Sizes for ANS Tapes ••

MODULE 6-5 Converting Imported Tapes For CP-6 Use ••
Introduction ••••••••
How to Make ANS Tapes on CP-V for CP-6 Use
Making ANS Tapes on Multics for CP-6 Use
ANS Tapes Made On Other Systems.

MODULE 6-6 How to Copy Tapes • • • • •••
Making Tape Copies ••••••••••••

Making Copies of Labeled Tapes ••••••••••••
Copying Managed Free Tapes •••••••
Copying Free Tapes ••••
Extension of Tape Files ••

ASCII TO EBCDIC Conversion ••••••
Making a Tape Copy for Export.
Copying Binary Data to Tape •••
Copying ANS Tapes Made on Other Systems.
Block Size •••••••••••••••••

Blocked Tapes and FPOOL Buffers •••••
Block Size Versus Efficiency. • •••

MODULE 6-7 Multi-reel Tapes.
Creating Multi-volume Tape Sets.

Using Volume Sets •••••••

Page

139
140
141
142
142
142
143
143
144
144
144

145
145
146
147
148

149
149
150
1 51
151
152

153
153
153
154
155

156
156
156
157
157
157
158
158
158
159
159
159
159

161
161
162

MODULE 6-8 Tape Formats. • • • • • • • • 164
CP-6 Tape Formats. • • • • • • • • • • • • • • 164

User Labels. • • • • • • • • • • • • • • • • 165
Additional ANS Labels.. • • • • • • • • • • • • • • • • • 166
ANS Labeled Structure. 166

CES5-01 Table of Contents vi

MODULE 6-9 TAPE ERRORS
Introduction

I/O Errors
Free Tape Errors
Volume End Errors.
Volume Change Errors
Data Record Structure Errors
Break Error Messages
Operator-generated Errors.
Errors and Protection level.
Access limitation Errors
Tape Type and Tape Format Errors
Miscellaneous Errors
Tape Error Message Summary

Index.

TABLES

Types of Tape
ANS levels of Protection.
PCl Tape Commands
!SET Options (Tape)
PCl Input Tape Options.
PCl Output Tape Options
MSDCB and MSOPEN Tape Options
Additional MSOPEN Tape Options.
Primary ANS Tape labels
User labels
Additional ANS labels
I/O Errors.
Free Tape Errors.
Volume End Errors
Volume Change Error Messages.
Data Record Structure Errors.
Break Error Messages.
Operator-generated Errors
Protection level Errors
Access limitation Errors.
Tape Type/Format Errors
Miscellaneous Tape Error Messages
Tape Error Message Summary.

FIGURES

Tape Structure.

CESS-01 Table of Contents

Contents (cont}

Page

168
168
168
169
170
171
171
173
173
174
17S
175
176
177

i-1

115
116
129
131
132
134
136
140
165
166
166
168
169
170
171
172
173
174
174
175
175
176
177

167

vii

About This Manua'

This is a user's handbook and is intended to be function oriented, i.e., to
show "how to do" various tasks that represent the capabilities of the CP-6
system. It should be us~d in conjunction with the Programmer Reference
Manual, CE40, which is organized as an encyclopedic manual containing all of
the commands and syntaxes for various CP-6 processors, along with detailed
descriptions of the CP-6 file system and terminal editing features.

Users will find the CP-6 HELP facility useful in providing on-line access to
reference data such as command syntax.

This manual is organized into six sections:

Section 1
Section 2
Section 3
Section 4
Section 5
Section 6

Obtaining Information
Controlling Terminals
Editing and Manipulating Files
Creating and Running Programs
Practical Applications
Use of Magnetic Tape in the CP-6 System

Module 4-4 and Section 6 are new additions to this revision of the manual.

The CP-6 Application Programmer Handbook is conceived as a dynamic document
which can grow and be modified in future editions to reflect user needs and
input.

CE55-01 About This Manual vii i

Not.tion Con"entions

Notation conventions used in command specifications and examples are listed
below.

Convention

CAPITAL LETTERS

lowercase letters

Special Characters

Brackets

Braces

CE55-01

Meaning

Capital letters must be entered as shown for input, and
will be printed as shown in output.

Lowercase letters identify an element that must be
replaced with a user-selected value.

AP i could be entered as AP 2.

Numbers that appear on the line (i.e., not subscripts),
special symbols, and underlines appear as shown in output
messages and must be entered as shown when input.

#xxx could be entered as #011.

An element inside brackets is optional. Several elements
separated by an "or" bar inside a pair of brackets means
that the user may select anyone or none of those
elements.

[key] means a key value may be entered.

When enclosing keywords, brackets signify that all or
part of the bracketed portion may be entered.

K[EY] can appear as K, KE, or KEY.

Elements placed inside a pair of braces identify a
required choice. These are always used with the Or bar
(I) •

Notation Conventions i x

Convention

Or Bar

Ellipsis

Meaning

The Or bar also separates elements in a required choice.

{Alid} means that either the letter A or the value
of id must be entered.

The horizontal ellipsis indicates that a previous
bracketed element may be repeated, or that elements have
been omitted.

option(,option]... means that one or more options
may be entered, with a comma inserted between each
variable.

Careted Letters

Letters inside carets indicate the keys on a physical
terminal device.

<ESC> <BS>
backspace key.

means press the escape key and then the

Related Manuals

The following manuals are available to users of the CP-6 System.

ORDER
NUMBER

CE26
CE28
CE29
CE30
CE31
CE32
CE33
CE34
CE35
CE36
CE37
CE38
CE39
CE40
CE41
CE42
CE44
CE45
CE46
CE47
CE48
CE49
CE50
CE51

CE55-01

TITLE

CP-6 Concepts and Facilities
CP-6 SORT/MERGE Reference Manual
CP-6 COBOL Reference Manual
CP-6 lOP Reference Manual
CP-6 FORTRAN Reference Manual
CP-6 BASIC Reference Manual
CP-6 Monitor Services Reference Manual
CP-6 Operations Reference Manual
CP-6 1-0-S/II Reference Manual
CP-6 I-D-S/II DBA Reference Manual
CP-6 RPG/II Reference Manual
CP-6 APL Reference Manual
CP-6 DELTA Reference Manual
CP-6 Programmer Reference Manual
CP-6 System Support Reference Manual
CP-6 Pocket Guide
CP-6 PL-6 Reference Manual
CP-6 Primer
CP-6 COBOL Programmer Guide
CP-6 FORTRAN Programmer Guide
CP-6 Text Processing Reference Manual
CP-6 TP Applications Programmer Guide
CP-6 TP Administrator Guide
CP-6 FPL Reference Manual

Related Manuals x

CE52
CE53
CE54
CE55
CE56
CE62
CE64
HA01
HA02
HA03
HA04
HA05
HA06

CP-6 Text Processing Administrator Guide
CP-6 Text Processing Primer
CP-6 1-0-5/11 Guide
CP-6 Application Programmer Handbook
CP-6 Pocket Guide to User Documentation
CP-6 System Programmer Guide
CP-6 Operations Pocket Guide
CP-6 Introduction to ARES
CP-6 ARES Reference Manual
CP-6 Introduction to MAIL
CP-6 MAIL Reference Manual
CP-6 Introduction to PCF
CP-6 PCF Reference Manual

Manuals may be ordered from:

Honeywell Information Systems, Inc.
Publications Distribution Center
47 Harvard Street
Westwood, Massachusetts 02090

Telephone: Customers (617) 392-5235
Honeywell (HVN) 273-5215 (HED MA06)

CE55-01 Related Manuals xi

MODULE 1-0

Section 1 - Obtaining Information

This section shows how to obtain information concerning the CP-6 system
through the the HELP facility and by means of the various displays available
to the user.

CE55-01 MODULE 1-0 Pag e 1
Section 1 - Obtaining Information

MODULE 1-1

HELP

SETUP: ALas. Somebody swiped my CP-6 reference manuaLs again, and I need to
get some work done. I seem to recaLL a highly touted CP-6 HELP facility.
Hmmm •••

Let's see. I want to know about the LDEV command so I can set a Logical
device. It wouLd be pretty LogicaL to say "HELP LDEV" to find out about LDEV.
I'LL try it.

!HELP LDEV

Syntax:

LDEV lname [fid][,optionlist]

! ?

Parameters:

Hey, it works! But I want to know what the options are.
When I get an error message on CP-6, I type a question
mark to get more information. Maybe this works with this
HELP faciLity, too.

lname is a user-assigned LogicaL device name, or the system logical

HE[ADER]=NO
IN[DENT]=value
LI[NES]=value

!HELP LDEV EXAMPLES

Examples:

There's the option I wanted, INDENT. But I'm stiLL not
sure how to use the command. Maybe I can get an example.

!LDEV LP01 LPiNORDOR,COPIES=7

means, when LP is used as an output device, the system should send that output

Alright! Now I can issue my LDEV command, but I'll use my
own workstation name, and the INDENT option.

!LDEV LP01 LPiINFERNO,IN=100

CESS-01 MODULE 1-1
HELP

Page 2

The other day I saw Dennis getting information about the
ASCII character set on his terminal. I wonder if that's
in HELP.

!HELP ASCII
To obtain information about the ASCII character set, enter:

!HELP ASCII character

where character is:

A character or mnemonic (for unprintables)
An octal value in the form 0'000'
A decimal value in the form D'ddd'
A hexadecimal value in'the form X'xx'

To list the entire ASCII character set, merely type ??<CR> at the next prompt.

I don't want the entire ASCII set, but HELP tells me that
I can obtain information about an individual character.
I'll try that.

!HELP ASCII 4
4 0'064' 0'052' X'34' Four
!HELP ASCII 0'123'
S 0'123' D'083' X'53' Uppercase Letter

HELP gave me the information I requested. Now I want to
ask for information about escape sequences:

!HELP ESCAPE A
<ESC> <A>

Toggles (reverses the setting) CRT pagination mode. When on,
output will halt at the end of each screen full of output,
relative to the last input line (depends upon whether relative
pagination is on.) Hitting carriage return resumes output.

This is all very interesting. I wonder if there's an easy
way to find out about all the information I can get from
this HELP file. I think I'll try just a plain, old
"HELP".

!HELP
Welcome to 803 HELP!

The HELP command prints information about CP-6 and its processors
(system programs).

The message you are reading tells how to use the HELP command,
and a little about how the HELP information is structured.

We suggest that you read this entire message before actually
issuing HELP commands.

Now type a question mark .,?" followed by a carriage return.
to get the next part of this message.

Type
! ?

<?><CR>

You have now learned an important lesson about HELP. Typing a
question mark displays next part of the message.

Just for your information, typing a double question mark (??) will
print all the parts of the message.

For example, if you typed ??<CR> at the next "!" prompt,
the entire remaining description of HELP will be printed.

CE55-01 MODULE 1-1
HELP

Page 3

But don't type a doubLe question mark yet. Just enter a singLe
question mark for more information about HELP.

Type
! ?

<?><CR>

Let's Look at the generaL ruLes about HELP. You can aLmost aLways
find out how to call a processor by entering:

HELP (processor)
For exampLe:

HELP (BASIC)
prints the syntax of the call to BASiC. in some processors, a
description of the processor is printed instead.

That tells me a lot. I can put a processor name in
parentheses to get more information about that processor.
Like this, I suppose:

! HELP (EDIT) RR
Syntax:
RR [n1[-n2]]

I wonder if I can get the same information if I'm actually
in EDIT?

!EDIT
EDIT B03 HERE
*HELP RR
Syntax:
RR [n1[-n2]]
*END

This is beginning to make sense. I wonder what's in the
COBOL HELP facility?

!HELP(COBOL)
The COBOL compiler is invoked by using the standard CP-6 processor
invocation line.
Format:

[{ON }]
!COBOL [source[, update]] [{OVER} [object][, listout]] [(optionlist)]

[{INTO}]

That gave me the COBOL compiler invocation. Now I'll try
COBOL OVERVIEW •••

!HELP(COBOL)OVERVIEW
The following list gives an overview of the
major groups of topics provided by the COBOL
HELP (COBOL) facility
COBOL DIV for COBOL divisions
COMPILER
IMPERATIVE VERBS
VERB CATEGORIES

SEGMENTATION
SAMPLE PROGRAM
Each of the above topics, when requested provides
general information and a HELP (COBOL) pointer or pointers
to specific information at the end of the topic.
For a complete list of topics, enter:
HELP (COBOL) TOPICS

CE55-01 MODULE 1-1
HELP

Page 4

!HElP (PCl) TOPICS
BREAK RESPONSE
COpy ALL COPYSTD

WILD DESTINATION

!HElP (PCl) TOPICS
BREAK RESPONSE
COpy COPY All

!HElP (PCl) TOPICS
BREAK RESPONSE

CE55-01

Hmmm ••• I think IILL try PCl TOPICS •••

BUILD
DCBS

COMMANDS
DELETE

COMPLEX COMPONENTS COPY
DElETESTD DESTINATION

That seems Like a pretty reasonabLe List for the PCl
processor. Too bad that the top Lines went off my screen
(I forgot to set <ESC><A> for CRT pagination). IILL try
tog e t, ash 0 r ten e d Lis t :

B - C
BUILD
COPYSTD

Or maybe

B
BUILD

I think

COMMANDS COMPLEX

even

I ILL

shorter:

try some more •••

MODULE 1-1
HELP

COMPONENTS COpy

(FA DE TO BLACK)

Page 5

MODULE 1-2

Displays

SETUP: You have logged on and submitted an important batch job. It is
necessary to check on the status of the job continually, while
at your terminal.

!BATCH SCE32:HELP
47989 submitted.

!CHECK

You use the CHECK command to see the status of your job,
and are told that it is still waiting to run in the batch
queue. When using CHECK, you do not have to specify the
sysid, since this was "remembered" by the system when you
BATCHed the job.

47989 .XXZZYYQ waiting 0 to run at prio 7

!DI PROFILE
PROFILES:

CURRENT: TTY
AVAILABLE:
7802X72
CDI1203

!DI SETUP

While waiting, you display your current profile and all
other available profiles are displayed as well.

SASYNC
ADDS200
CDI1203S

SHDLC
ADDS25
CDI1205

SRBT
ADDS60
CDI1205W

SRBTD
ADDS980
CTR6300

You ask for your type of setup file.

SURP
BEEDM20
CUMSLV

SETUP: ! XEQ SETUP

!CHECK

You take another look at the batch job. It is still
waiting in the batch job queue.

47989 .XXZZYYQ waiting 4 to run at pr;o 7

!DI USER

You decide to check your disk space. DISPLAY USER shows
you what user number you have, how much disk space is left
in your account, your logon, directory, and setup command
f i l e •

XXZZYYQ, 473SINCLAIR SYSID = 47984 USER NUMBER = 80
DIRECTORY = XXZZYYQ DISK SPACE REMAINING = 501
SETUP: ! XEQ SETUP

You check your job again, and find that it is running.
!CHECK
47989 .XXZZYYQ running 0:35/29:42

CE55-01 MODULE 1-2
Displays

Page 6

! D I
USERS = 75
ETMF = 1

While your job is running, you check on general system
usage: DISPLAY shows number of current users, ETMF
(execution time multiplication factor) which relates
program CPU time to job throughput time, RESPONSE (number
of milliseconds that just exceed response time of 90% of
responses to terminal requests), and date/time. For a
complete listing of available DISPLAY options, use the
HELP facility.

90X RESPONSE < 50 MSECS
FEB 03 '83 10:35

!STATUS

The STATUS command will display accounting information
concerning your system usage.

CON~000:19:33 EX=000:00:04.09 SRV=000:00:23.95 PMME= 4893 CHG= 2.11

You check your job once more and are told it is printing.
You log off.

!CHECK
47989-1 .XXIIYYQ printing on LP04GlLOCAL
!OFF

CHECK and NOTIFY· Comments

The CHECK command reports the current status of jobs for the current user
(i.e. waiting to run, running, printing, etc.). Once the job has finished,
CHECK tells you how it was completed. A word of caution: once CHECK has
reported a job as completed, it forgets the SYSID. If CHECK is used after
this, the sysid must be specified.

If you use the NOTIFY command, it will call on CHECK to report on any of your
jobs which have changed status since the last report. This occurs upon the
completion of each job step.

CE55-01 MODULE 1-2
Displays

Page 7

AfODULE2-0

Section 2 - Controlling Terminal.

This section shows how to control terminals and terminal input, and how the
user can record a terminal session through use of the DRIBBLE command.

CE55-01 MODULE 2-0 Page 8
Section 2 - Controlling Terminals

MODULE 2-1

Setting Terminal Proti/es

The CP-6 system accommodates a number of terminal types (i.e, Diablo 1550,
Honeywell VIP 7802, etc.) Use the IBEX DISPLAY PROFILE command to obtain a
listing of the available ~rofile types.

Immediately after logging on, you should set your terminal profile to tell the
CP-6 system what terminal you are using. After logging on successfully, and
receiving the IBEX prompt, use the PROFILE command:

!PROFILE DBL1620

This sets the profile for a Diablo 1620.

!PROFILE VIP7801

sets the profile for a Honeywell VIP 7801.

If you use the same terminal every time you log on (or the same terminal type)
you can use the permanent form of the PROFILE command:

!PROFILE VIP7801(PERM)

Now every time you log on to the same account, your profile will be
automatically set. You can also make the PROFILE command part of a setup
file, which will be executed every time you log on:

!BUILD SETUPS
EDIT B03 HERE

*END

1.000 !PROFILE DBL1620
2.000

To execute the above file every time you log on, use the SETUP command:

!SETUP !XEQ SETUPS

You have now instructed the CP-6 system to execute the file SETUPS every time
you log on. This will remain in effect until cleared by the SETUP command,
i.e., !SETUP RESET. Of course your setup file may be expanded to perform
added functions in addition to setting your profile:

!EDIT SETUPS
EDIT B03 HERE
*IN 2

2.000 !DONT ECHO
3.000 !PLATEN W=80
4.000 !TABS 3,11,19,27,37,49,57,63
5.000

You have added some new instructions to your setup file, and now request to
see the entire file:

CE55-01 MODULE 2-1
Setting Terminal Profiles

Page 9

*TY 1-99
1.000 !PROFILE DBL1620
2.000 ! DONT ECHO
3.000 !PLATEN W=80
4.000 !TABS 3,11,19,27,49,63

* EOF hit after 4.000

The above setup fiLe wiLL set your terminaL profiLe, inhibit the printing of
commands from your setup fiLe at your terminaL, set the pLaten width, and
preset tabs at your terminaL each time you Log on.

CESS-01 MODULE 2-1
Setting TerminaL ProfiLes

Pag e 10

AfODULE2-2

Cursor/Printh •• d Positioning

When editing or building a file, a quick and easy way to control the
cursor/printhead positioning is to use the many control sequences available on
the CP-6 system. While it' is not necessary to memorize all of the escape and
control sequences, you should familiarize yourself with some of the more
useful controls. The HELP file is a handy tool to list the different
sequences and their definitions. To access the HELP File, type the following
after the exclamation point (!) prompt:

!HELP ESCAPE SEQUENCES

Moving the Cursor

Following are some examples to show you how to use a few of the different
control and escape keys. The underscore () denotes the placement of the
cursor position.

ESCAPE N

To move the cursor to the end of an input line the <ESC> N sequence is used.

1.000 The rain in_Spain falls

To move the cursor to the end of the line simply type
<ESC> N. The cursor moves to the following position and
you can resume typing:

1.000 The rain in Spain falls

CE55-01 MODULE 2-2
Cursor/Printhead Positioning

Page 11

ESCAPE V - Moving to Character 'N'

<ESC> V are the first two characters of a three character sequence. The third
character In' is the criteria for the search of the input record. If In' is
not found, no action is taken.

Consider the foLLowing exampLe with the cursor at the end of the Line:

1.000 I have one smaLe skiLL which

Type <ESC> Ve
The curSOr searches the record and
stops at 'e'.

1.000 I have one smaL~ skiLL which

Then type' L' and your mistake is fixed.

1.000 I have one smaLL skiLL which

Tab Stops

Input (TAB) stops are set differentLy on the computer than on a typewriter.
Instead of manuaLLy setting the tabuLation stops, you use a "TABS" command. Up
to 32 tabs can be set in a sequence. Tabs can be set after the exclamation
point (!) prompt or after the asterisk (*) prompt in EDIT.

• Tabs set after the excLamation point prompt (!) remain effective untiL you
log off or untiL you turn the command off with the TABS {OINOIOFF}
command.

ExampLe:

!TABS 10,20,30,40

means set the tab stops at 10, 20, 30, and 40.

• Tabs set after the asterisk prompt (*) in EDIT remain effective until you
end the editing session or issue the TABS OFF command.

CE55-01 MODULE 2-2
Cursor/Printhead Positioning

Page 12

ESCAPE I

If your terminal does not have a "TAB" key you have the option of moving the
cursor to the next input stop with the <CNTL> I or the <ESC> I sequences.

CONTROL R • Forward Positioning

The <CNTl> R sequence is the opposite of backspacing; it moves the cursor one
space to the right without altering any skipped characters.

Example:

1.000 I have one small skill which

By holding down <CNTl> and depressing R three times your
terminal will display the following:

1.000 I have one small skill which

CONTROL H . Backspacing

The <BS> key moves the cursor one space to the left. If your terminal does
not have a BACKSPACE key simply type <CNTl> H and the cursor will backspace.

Example:

1.000 The rain in sp~in

Hold down <CNTL> and type H twice and the cursor will move
accordingly:

1.000 The rain in ~pain

CESS-01 MODULE 2-2
Cursor/Printhead Positioning

Page 13

ESCAPE <RET> - Position to Beginning of Record

After typing a Line and finding that it is not right you can return to the
beginning of a Line by typing <ESC><RET>.

ExampLe:

1.000 ! don't like this

Type <ESC><RET>

1.000 I don't Like this

CESS-01

and begin typing the line over.

MODULE 2-2
Cursor/Printhead Positioning

Pag e 14

AfODULE2-3

Cancelling and Recalling Input

The CP-6 system has a series of escape keys that make life a lot easier for
those programmers who change their minds in mid-s~ream. These escape
sequences allow you to cancel or recall input with ease. To obtain a complete
list of the escape sequences from the HELP file, type the following after the
exclamation point (!) prompt:

!HELP ESCAPE SEQUENCES

In the following examples the underscore () denotes the cursor position.

ESCAPE X· Deleting Current Input Line

If you change your mind while typing a line, the <ESC> X sequence will clear
the current input record to blanks and you can begin retyping the line.

Example:

1.000 Little Bo Peep has lost her ship_

If you decide this isn1t exactly what you want to say,
simply type <ESC> X and your input record will look like
this:

1.000 Little Bo Peep has lost her ship<X>

1.000

CE55-01

Now you can begin retyping the line.

MODULE 2-3
Cancelling and Recalling Input

Page 15

ESCAPE K - Deleting From Current Edit Point

If you want to delete only a portion of a record, you can use <ESC> K to
delete from the current edit point to the end of the record.

Example:

1.000 The rain in Spain falls mainly on the plain.

You reposition the cursor by backspacing:

1.000 The rain in Spain_falls mainly on the plain.

Now you use <ESC> K

1.000 The rain in Spain falls mainly on the plain.
<K>

1.000 The rain in Spain_

As a result the line to the right of the cursor or edit
point has been deleted.

ESCAPE A - Setting Pagination Mode

SETUP: You want to use TEXT to display your file named ZEBRA on your CRT. You
want to check for proper page breaks, and also to look for typos, mispelled
words, and other errors. You enter:

!TEXT ZEBRA

TEXT C01

The computer responds with:

The file starts printing on the CRT but the lines go by so
fast that you can't read a word.

PROBLEM: How can you TEXT your file, but halt the output at the end of each
full CRT screen?

SOLUTION: After referring to the HELP file under ESCAPE SEQUENCES, you find
that by typing <ESC> A you can control the pagination mode on the CRT. The
CRT halts at the end of each full screen of output and waits for you to hit
<CR> to resume output.

Example:

!<ESC> A
!TEXT ZEBRA

CE55-01

Since the <ESC> A toggles (reverses the setting), you need
only to press <ESC> A to resume normal output.

<ESC> A may be used to control the pagination mode on the
CRT for any type of display, so it may be used while in
EDIT or while COPYing a file to your CRT.

MODULE 2-3
Cancelling and Recalling Input

Page 16

ESCAPE R . Retyping the Current Input Line

While editing at a hard copy terminal, a line might look like this:

1.000 AD
\BC

1.000 ABCD

If you're not sure what the record actually contains, just
type <ESC> R; this cancels the insert mode, and the
current line is retyped like this:

ESCAPE 0 . Retrieving the Last Input Line

The <ESC><D> sequence retrieves the last line of input as if you had just
retyped it. This is especially useful if you are typing a long line with
basically the same information.

Example:

1.000
2.000 <ESC><D>

1.000

1.000
3.000

CESS-01

WRITE OUT-PUT RECORD FROM CARD-A. <CR>

The terminal displays:

WRITE OUT-PUT RECORD FROM CARD-A.

Backspace and change the 'A' to 'B', and the terminal
displays:

WRITE OUT-PUT RECORD FROM CARD-B.

MODULE 2-3
Cancelling and Recalling Input

Page 17

AfODULE2-4

In •• rfing/R.placing/O".r.friking

You are reviewing a file called KIWI. You realize that there are certain
words that would be more distinguishable if they were underlined. You also
notice that you have a few' mispelled words.

How can you insert the required letters into your mispelled words, and
underline the words that you want to emphasize?

ESCAPE J, ESCAPE <CR>, ESCAPE 0, ESCAPE M

By using several different escape sequences, you can both underline words and
insert letters.

Example:

STEP YOU ENTER

EDIT KIWI

2 RR 19

3 (backspace to m)
<ESC><J>

4 (Strike I i I and <CR»

5 RR 19

6 <ESC><CR>

7 <ESC><O>
(underscore I Nowl)
<ESC><M> <CR>

8 TY19

COMPUTER RESPONDS

EDIT 803 HERE

* 19.000 Now is the tme for all

(carriage moves up one line and
prints \)

(i is inserted)

19.000 Now is the time for all

(carriage backspaces to beginning
of line)

(sets overstrike mode "on")
19.000 Now is the time for all
(resetsoverstrike mode to "off")

19.000 Now is the time for all

COMMENTS: The CRT screen does not have the capacity to display the underscore
as well as the overstruck character; it only displays the last character
typed. However, it is possible to input the underscore first, and then use
<ESC><O> to enter text characters. In this way, you will be able to read the
text on the CRT, although you wonlt see the underscore.

The overstrike mode is a useful one and it can be used for other tasks besides
underlining, such as combining Ib l and III to create a I~I, or 1=1 and III to
create ',#1.

When using the <ESC><J> sequence the CRT doesnlt display the 1\1 or move down
a line, aLthough it stiLL aLLows you to insert a character.

CE55-01 MODULE 2-4
Inserting/Replacing/Overstriking

Page 18

When using <ESC><O> (overstrike mode), remember that you will remain in that
mode until you use <ESC><M> to exit.

More About ESCAPE J

It is sometimes useful to combine <ESC><J> with <ESC><Vn>. <ESC><Vn> moves
you to an insert point; <ESC><J> can then be used to insert the desired
character. In the following example, the underscore () denotes the placement
of the cursor. -

STEP

2

3

4

5

6

7

8

9

CE55-01

YOU ENTER

EDIT PFILE

RR 1

<ESC><V.>

<ESC><J>Q

<ESC><J>

<ESC><V.>

<ESC><J>Q

<CR>

TY

COMPUTER RESPONDS

*EDIT 801 HERE

1.000 PL6 XXX.Y

1.000 PL6 XXX.Y

1.000 PL6 XXX.Y

1.000 PL6 XXX.Y

1.000 PL6 XXX.Y

1.000 PL6 XXX.Y
\Q

1.000 PL6 XXXQ.Y

MODULE 2-4
Inserting/Replacing/Overstriking

OVER

OVER

OVER

OVER

OVER

OVER

OVER

ZZZ.Y

ZZZ.Y

ZZZ.Y
\Q

ZZZQ.!..Y

ZZZQ.Y

ZZZQ.Y

ZZZQ.Y

Page 19

MODULE 2-5

P/.ten Control

SETUP: You want a print-out of a file with the following parameters in the
final print-out:

• No more than 65 characters in a terminal line.

• No more than 60 lines to a page.

• No more than 3 lines between the last printable line
in the page and the page perforation.

• 0 lines between the perforation and the first
printed line.

SOLUTION: You use the PLATEN command to tell the computer that you wish to
define the parameters instead of using the defaults. You find that:

• WIDTH (or W) = number of characters in a terminal line.

• LENGTH (or L) = number of printable lines in a page.

• LIMBO (or LI) number of lines between the last printed line
and page bottom.

• FIRST (or F) = number of lines between the top of the page and the
first printed line.

You insert the following:

!PLATEN L=60,W=65,F=0,LI=3
!TEXT MYFILE

This gives you the desired results.

Determining Platen Settings

When you log on to the CP-6 system, the PROFILE setting for your terminal
automatically sets the platen variables. You can use the PLATEN command,
followed by a carriage return, to display your current setting. For example:

!PLATEN <CR>
PLATEN: WIDTH = 80 LENGTH = 0

Resetting PLATEN Parameters

Use the PLATEN command to reset any of the variables such as length or width:

!PLATEN W=80

The above command resets the platen width to 80 characters.

CE55-01 MODULE 2-5
Platen Control

Page 20

MODULE 2-8

IMP

You can use the Input Manipulation Processor (IMP) to redefine keystroke
sequences and special characters on any terminal. The new sequences or
characters may be unique c~mbinations of system escape sequences and special
characters, or new special purpose functions.

You can use IMP to redefine the keyboard of one terminal so that it performs
like the keyboard of another terminal. Redefined keys can perform commonly
used functions or commands, or generate frequently used strings.

This module covers the following three topics:

• Defining new escape sequences

• Setting up function keys

• Redefining the keyboard

The first two show how to create temporary IMP function keys; the last shows
how to create a permanently reuseable IMP function.

Defining New Escape Sequences

Try the following example at your terminal to see how IMP works:

!IMP (ADD PRIMARY I=ESC 111 TEXT='xanthocyanopia' I TY)

You now can use the new IMP keyin <ESC><1> to type the
word 'xanthocyanopia ' whenever it occurs. You build a
file to try this out:

!BUILD PATIENT_HISTORY
EDIT B03 HERE

1.000 The patient is suffering from acute
2.000

Here you press <ESC><1>; the word 'xanthocyanopia ' is
printed at the terminal. You can then enter the rest of
the text.

xanthocyanopia which makes her unsuitable
3.000 as a color specialist at the paint factory.
4.000

!TEXT PATIENT HISTORY ON ME
TEXT C01 -

The patient is suffering from acute xanthocyanopia which makes
her unsuitable as a color specialist at the paint factory.

When you TEXT the file, the word 'xanthocyanopia ' is
included as part of the text.

CE55-01 MODULE 2-6
IMP

Page 21

The above IMP command has been used to add a temporary primary escape
sequence. When this escape sequence is activated, the text of the IMP command
is pLaced in the typeahead buffer. Then,.the word 'xanthocyanopia' is entered
into the stream of text as if it has just been typed at the terminaL.

You can aLso use IMP to issue frequentLy used commands, such as might be used
when you batch a daily report:

!IMP (ADD PRIMARY I=ESC '2' TEXT = 'BATCH DAllY_RPT', CR I TY)

!BATCH DAILY RPT

Now by touching <ESC><2> the report is entered into baten
queue. Note that the presence of CR in the IMP command
resuLts in an automatic carriage return.

29859 DAILY RPT.MYACCT running 0:00/9:59

This command aLso adds a temporary primary escape
sequence. The text of the command is read immediateLy and
pLaced in the typeahead buffer. The command 'BATCH
DAILY RPT' is then initiated as if it has just been
entered by the user.

The above exampLes create temporary IMP function keys which are in effect onLy
for the duration of the Logon session.

Setting Up Special Function Keys

If you have an often used source fiLe, the foLLowing IMP command can be used
to open the fiLe in EDIT and print the desired number of Lines, in this case 0
through 10:

!IMP (ADD SPECIAL '#' TEXT='EDIT MY_FllE',CR,'TY 0-10',CR TY R

Entering the # character then executes the following
sequence at your terminal:

!EDIT MY FILE
EDIT B03-HERE
*TY 0-10

1.000 .**
2.000 .* *
3.000.* Copyright (c), Honeywell Information Systems Inc., 1983 *
4.000 .* *
5.000 .**
6.000 .*
7.000 .FBB
8.000 IIXPAGENOXII
9.000 .FBE

10.000

This example shows how IMP can be used to provide combinations of often typed
keystroke sequences. The special character # is defined by the IMP command to
activate many keystrokes at once. The text will be echoed to your terminal
(if echoplex is on), and the series of commands will be activated using one
keystroke instead of several.

The next example adds a special character' to be used in place of an escape
key on the keyboard:

!IMP (ADD SPECIAL '" T=ESC R I IN)

CE55-01 MODULE 2-6
IMP

Page 22

A command such as this could be used if the escape key on
a keyboard is inconvenient or nonexistent. The \ now
becomes an escape key.

These examples create temporary IMP function keys which are in effect only for
the duration of the logon session. See Redefining The Keyboard, below, for an
example of how to create permanently reuseable IMP functions.

Resetting Special Function Keys

Once you have used IMP to set a special function key, you may need to reset
the definition for that key. There are several methods you can use to
accomplish this. You can use the IMP DELETE ALL to delete all user-defined
input functions. You can also use the IMP DELETE command to delete the
special function key, which can then be reset.

CAUTION: You cannot insert the special character as part of the DELETE
command, as this character will always trigger the IMPed substitute. The way
out of this 'dilemma' is to use the ASCII octal, decimal, or hexadecimal
string equivalent of the character in question.

Examples:

You have set up a special IMP function for the # character. You want to
change this function.

!IMP
IMP B03 HERE
->DELETE ALL
->END

!IMP
IMP B03 HERE
->OEL SPECIAL 0'043'
->END

You invoke IMP and use the DELETE ALL to delete the
special character input function. Remember, this also
deletes any other user-defined IMP input function as well.

You invoke IMP and use the octal equivalent of the #
character to delete the special function for that
character.

Finding the ASCII Equivalent

To find the ASCII octal, decimal, or hexadecimal string equivalent of a
character, use HELP to ask for information about ASCII characters:

!HELP (IBEX) ASCII

You ask HELP for information about ASCII characters, and
HELP responds:

To obtain information about the ASCII character set, enter:

!HELP (IBEX) ASCII character

where character is:

CESS-01 MODULE 2-6
IMP

Page 23

A character or mnemonic (for unprintables)
An octal value in the form 0'000'
A decimal value in the form D'ddd'
A hexadecimal value in the form X'xx'

To list the entire ASCII character set, merely type ??<CR> at the
next prompt.

The table has the following format:
CHAR OCTAL DECIMAL HEX MEANING

! ??
NULL 0'000'
SOH 0'001'
STX 0'002'
ETX 0'003'
ECT 0'004'

US 0'037'
SP 0'040'

0' 041'
0'042'

0'043'

In answer to your request, HELP has given you the format
of the ASCII table. You now enter a double question mark
(??) •

0'000' X'OO' NULL of time fill character
0' 001 ' X' 01 ' St art Of Heading
D'002' X'02' Start Of Text
0'003' X'03' End Of Text
0'004' X'04' End Of Transmission

D '031 ' X'1 F ' Unit Separator
0'032' X'20' SPace
D'033' X, 21' Exclamation Point
0'034' X'22' Quotation Mark
D'035' X'23' Number Sign

When you arrive at the # sign in the table, you interrupt
with the BREAK key. You now see that the equivalent for #
is 0'043' or 0'035' or X'23'. Any of these three strings
may be used in conjunction with the IMP ADD or DELETE
command in place of the # character.

Redefining the Keyboard

A series of IMP functions can be made into an IMP command file and initiated
as part of a normal setup process which occurs at logon. Following is a
sample IMP command file built in EDIT for a VIP7801. Notice the abbreviation
of ADD (A) and PRIMARY (P) at the beginning of each command, and the
abbreviation of IMMEDIATE READ (I R) in lines 9, 13, and 14. The file name is
IMP7801.

CE55-01 MODULE 2-6
IMP

Page 24

1.000 D ALL
2.000 A P I=ESC lei TEXT=ITN 10' ,CR I R TY ECH "TYPE NEXT 10"
3.000 A P I=ESC 10 1 TEXT=ESC,IV I IMMEDIATE READ TYPEAHEAD ECHO
4.000 A P I=ESC 121 TEXT=DC2 I EC READ INPUT
5.000 A P I=ESC 16 1 TEXT=ESC,CR READ INPUT
6.000 A P I=ESC 18 1 TEXT=ESC,INI READ INPUT
7.000 A P I=ESC 1:1 TEXT=ESC,IVI READ INPUT
8.000 A P I=ESC 1<1 TEXT=ESC,IJI READ INPUT
9.000 A P I=ESC 1>1 TEXT=IBATCH STAR RPTI,CR I R TYPEAHEAD ECHO

10.000 A P I=ESC Ip i TEXT=ESC,IDI READ INPUT
11.000 A P I=ESC IRI TEXT=ESC,IXI READ INPUT
12.000 A P I=ESC ITI TEXT=ESC,CR,ESC,IV I,DC2,ESC,IJ I ,DEL,DEL,DEL,

DEL,DEL,DEL,DEL,DEL,DEL,DEL,DEL,DEL,DEL,DEL,DEL,DEL,DEL,DEL,
DEL,DEL,DEL,DEL,DEL,DEL,DEL,DEL,DEL,DEL,DEL~DEL,DEL,DEL,DEL,
DEL,DEL,DEL,DEL,DEL,DEL,DC2,BS IMMEDIATE READ TYPEAHEAD ECHO

13.000 A P I=ESC 1\1 TEXT=ESC,INI,ESC,IV I,ESC,IKI I R TYPEAHEAD ECHO
14.000 A P I=ESC I I TEXT=BS,ESC,IO I,ESC,IMI,BS I R TYPEAHEAD ECHO
15.000 A P I=ESC Iii TEXT=ITP 101,CR I R TY ECH "TYPE PRIOR 10"
16.000

Note that line 12.000 is actually one continuous line, limit 255 characters.

The functions provided by the IMP command file are:

EDIT
LINE #

LINE 1
LINE 2
LINE 3
LINE 4
LINE 5
LINE 6
LINE 7
LINE 8
LINE 9
LINE 10
LINE 11
LINE 12
LINE 13
LINE 14
LINE 15

CODE KEY

CLEAR/RESET
F1
F2
F3
F4
F5
F6
F7
F8
F9
F 1 0
F11
F12
TRANSMIT

FUNCTION

DELETES ALL IMP COMMANDS CURRENTLY EFFECTIVE
TYPE NEXT 10 LINES
FIND NEXT BETWEEN WORD BLANK
FORWARD SPACE WITHOUT DELETING (CTL R)
BEGINNING OF LINE (ESC CR)
END OF LINE (ESC N)
FIND CHAR (ESC V)
INSERTION MODE (ESC J)
BATCH STAR RPT
RECALL LAST LINE (ESC D)
DELETE LINE (ESC X)
DELETE FIRST WORD
DELETE LAST WORD
UNDERSCORE BACKWARDS
TYPE PREVIOUS 10 LINES

The special set of IMP commands shown above is then automatically activated
each time you log on, if you insert the following IBEX command into a setup
command file associated with your user logon.

!IMP IMP7801

This command initiates the IMP processor which reads the
IMP commands; the commands take effect immediately. Each
command is echoed to the terminal as it is read by IMP.

A second method is to create an object file with the following command:

!IMP IMP7801 OVER IMP7801 OU

!IMP IMP7801 OU

IMP then reads the object file as part of the setup
process using this IBEX command:

These commands are also effective immediately, but the commands are not echoed
to the terminal during the reading of the file, and are processed slightly
faster.

CE55-01 MODULE 2-6
IMP

Page 25

MODULE 2-7

Dribble File.

Have you ever watched a crucial piece of information scroll beyond your view
on a CRT terminal and wished you could scroll ba~kwards to see it again? Most
CRT terminals do not have'this backwards scrolling capability, but with CP-6
dribble files you can capture your terminal session on a disk file for later
examination.

The relevant command to accomplish this wonder is:

!DRIBBLE [(ONIOVERIINTO) fid]

The DRIBBLE command directs your terminal output into a file for later replay.
Examples of the command are:

!DRIBBLE OVER ANYFILE

which causes unconditional replacement of the existing file.

!DRIBBLE INTO OTHERFILE

which will append the forthcoming terminal session onto the end of file
OTHERFILE, or create OTHERFILE if it did not already exist.

!DRIBBLE ON NEWFILE

will only start off the dribble process if NEWFILE did not exist when the
DRIBBLE command was issued.

The dribble process is turned off with the command:

!DONT DRIBBLE

And after the above command you can copy the file just created to the line
printer, edit the file looking for the useful piece of information that
scrolled off your screen, or delete the file because you don't need to record
the terminal session any longer.

CE55-01 MODULE 2-7
Dribble Files

Page 26

Displaying DRIBBLE Files at Your Terminal

If you want to dispLay a DRIBBLE fiLe at your terminaL, a word of caution is
in order. If the terminal session you recorded with DRIBBLE incLudes control
functions such as IMP settings, TAB settings, etc., the DRIBBLE fiLe, when
copied to your terminal, will cause these control functions to be performed
again. There are a number of ways in which this can be avoided. One way ;s
to use the PCL NVFC option:

<COPY DRIBBLEFILE TO ME(NVFC)

This inhibits the function of the VFC (vertical format controL) characters at
your terminaL, although the VFC characters wilL be retained in the DRIBBLE
fiLe. Or, PCL may be used' to copy the DRIBBLE file and delete the VFC
characters:

<COpy DRIBBLEFILE OVER MYFILE(NVFC)

This results in a new fiLe, MYFILE, from which the VFC characters have been
removed.

An aLternate method of removing the VFC characters from a DRIBBLE fiLe is to
use ELBBIRD.X, if this capabiLity is avaiLabLe at your site:

!ELBBIRD.X DRIBBLEFILE

This copies the file named DRIBBLEFILE over itseLf as an EDIT keyed file. Now
you have a keyed file, DRIBBLEFILE, with line numbers starting at 1.000, in
increments of 1.000 (the defauLt).

Please note that ELBBIRD.X may not be available at alL sites.

CESS-01 MODULE 2-7
Dribble Files

Page 27

MODULE 3-0

Section 3 - Editing and Manipulating File.

This section shows how to create, edit, and manipulate files.

CE55-01 MODULE 3-0 Page 28
Section 3 - Editing and Manipulating Files

AfODULE3-1

Cr •• fing N.w FII ••

In this example, the BUILD command is used to create four files: FILE1,
FILE2, FILE3 and FILE4. FILE1 is created via EDIT, using the default values.
FILE2, FILE3 and FILE4 ar~ created after the user calls EDIT.

FILE3 and FILE4 are then listed to illustrate the difference between your
choosing the file type, and allowing the file type to be chosen by default.

Starting from the IBEX (!) level, you enter the BUILD command:

!BUILD FILE1
EDIT B03 HERE

1.000

EDIT responds with a message and line number prompt.

1.000 Mary had a little lamb.
2.000 Its fleas were white as snow.
3.000

You enter a line of input after each prompt and a <CR>
only after the third line prompt to indicate completion of
data entry.

!EDIT

EDIT B03 HERE

*

You call EDIT in response to the prompt.

EDIT responds with a message and asterisk prompt.

*BUILD FILE2
1.000 And everywhere that Mary went,
2.000 The fleas were sure to follow.
3.000

You build FILE2.

*BUILD FILE3,10,10
* EDIT stopped

10.000 They followed her to school one day,
20.000 Which was against the rules.
30.000

*BUILD FILE4"QT
* EDIT stopped

You build FILE3, starting at line number 10 and
incrementing by 10.

1.000 It made the children itch and scratch
2.000 and unteachable as mules.
3.000

CE55-01

You build FILE4, selecting file type QT.

MODULE 3-1
Creating New Files

Page 29

*L FILE4
ORG TY GRAN NGAV
KEY QT 2 0

*L FILE3
ORG TY GRAN NGAV
KEY SE , 0

*END

REC
2

REC
2

LAST MODIFIED

LAST MODIFIED

NAME
FILE4

NAME
FILE3

You list FILE3 and FILE4. Note that FILE4 has a type of
QT (user selected) and F!LE3 has a type of SE (the
default).

You type END to return to IBEX.

In the following example, you create FILES consisting of two records (using
the COpy ME command), list FILES to illustrate that COpy ME creates a
consecutive file, and delete all five files created during the two examples.

!COPY ME TO FILES

• RECORD1
.RECORD2
.<F>

!L FILES
ORG TY GRAN
CON 1

!DEL FILE?

You use the COPY ME command to create FILES •

You create two records, the contents of which are
"RECORD'" and "RECORD2". The COpy ME routine prompts with
a period (.). After the second record is entered, you
input <ESC> <F> (end of file) to exit the routine.

NGAV
o

REC
2

LAST MODIFIED NAME
FILES

You list FILES, showing the organization to be
consecutive.

DELETE FILE?MYACCT ?YESS
FILE1 FILE2 FILE3 FILE4 FILES

S files, 9 granules deleted

CE55-01

You use DEL FILE? to request that all your files starting
with "FILE" be deleted. PCL seeks a confirmation of the
deletions by asking DELETE FILE? A response of YESS
causes multiple deletions. The files are listed as they
are deleted and the number of files and granules freed are
listed after the deletions are complete. The use of FILE?
is an example of wildcarding. See Wildcarding module,
CESS.

MODULE 3-1
Creating New Files

Page 30

AfODULE3-2

EDIT Command File.

SETUP: You have a file, COBOL-EXAMPLE, that you want to make changes to using
EDIT commands. You do not want to make the changes to the original program,
because you want to use it' 'as is' at a later date. You know that you can
make these changes by entering them directly into the terminal before running
the program, but the list of commands is quite lengthy.

PROBLEM: How can you edit the file with ease, retaining the original program?

SOLUTION: You decide to build a file of EDIT commands and then, by using the
EDIT READ command, execute that file. You call your file EDIT-COMMAND-FILE,
and build it as follows:

! E
EDIT B03 HERE
*BUILD EDIT-COMMAND-FILE

*E

1.000 COPY COBOL-EXAMPLE OVER COBOL-EXAMPLE2
2.000 SE 0-1000;/1 LINES/s/2 LINES/
3.000 /DATA-FILE/s/REPORT-FILE/
4.000 O/PIC X(80)/s/PIC X(132)/
5.000 /SEPTEMBER 29, 1983/s/0CTOBER 27, 1983/
6.000

The first line of your EDIT command file copies your COBOL
program, COBOL-EXAMPLE, to COBOL-EXAMPLE2. Then you set
the selection criteria in COBOL-EXAMPLE2 and specify
changes to the file.

After building the EDIT-COMMAND-FILE all you need do is:

!EDIT
EDIT B03 HERE
* READ EDIT-COMMAND-FILE

This means read and execute the EDIT commands contained within the EDIT
command file.

After using the READ command to execute your EDIT command file, you will find
a new file, COBOL-EXAMPLE2, in your account which contains the desired
changes. The original file, COBOL-EXAMPLE, remains intact.

CE55-01 MODULE 3-2
EDIT Command Files

Page 31

AfODULE3-3

Selecting Record Range.

The EDIT seLection criteria sets the record range over which subsequent EDIT
commands take effect. The range is set by the EDIT SE command, directLy, or
by using many other EDIT cbmmands which set the range impLicitLy. For
exampLe,

!EDIT
EDIT B03 HERE
*E S8127A

*STATUS

Using the E or EDIT command above sets the seLection range
over the entire fiLe named. You can determine this by
requesting the STATUS dispLay:

FILENAME = S8127A.MYACCT
DIRECTORY: .MYACCT
EDIT FILE
BP ON
CR OFF
RP OFF
TABX OFF
TABC OFF
VE OFF
NO TABS SET
SE 0.000-99999.999,001,256

*
The selection range covers the entire file, records 0-99999. This means, for
exampLe, that if you now enter the DE command without specifying any Line
numbers, the entire range of records wiLL be deLeted! So it is important to
know what your current seLection criteria is when editing a fiLe.

Some EDIT commands, Like the RR command, set the seLection range to the record
numbers indicated. Others, Like SS, ST, TS, TY, etc., set the range to the
end of the fiLe if no range is specified. To find out for yourseLf how the SE
range is set, buiLd a test fiLe and use various EDIT commands, caLLing up the
STATUS dispLay after each to see what the SE range is.

The SE range is also set by the Linefeed function, which aLLows you to step
through the records of a fiLe:

*E S8127A
*RR 3

3.000 The IBEX PREPROCESSOR enabLes the user to define new commands <CR>
<Linefeed>

4.000 by substitution into normal commands. This is done by means

By using the Linefeed key, the SE range is reset, and the
next Line is displayed. The Linefeed function enabLes you
to step through a fiLe record by record, making changes at
each step if desired.

Now, Let us Look at a sampLe session showing the use of the SE setting:

CE55-01 MODULE 3-3
Selecting Record Ranges

Page 32

SETUP: In a creative frenzy, a programmer builds a keyed file with EDIT and
later discovers that it contains a lot of errors. Selecting record ranges can
speed up the process of editing a file •. Record ranges are specified to EDIT
in the form starting line number, hyphen, ending line number.

One portion of the file is shown below. (To try the record range selection
techniques described below, use EDIT to BUILD a similar file requesting to
append lines starting at 101.)

101.000
102.000
103.000
104.000
105.000
106.000

*RR103-106
103.000
104.000
105.000
106.000

*FTO-99999,/VALUEI
103.000
105.000

01 VIEW VARS OUTPUT
REPEATS 19 TIMES.
02 VALUE PIC 99 POSITION 4, 1
02 FILLER PIC X POSITION 4, 3

-CONSTANT VALUES 11=11
02 SUFFIX PIC 99 POSITION 4, 4

Problem: The ending period is missing on several lines.

solution: Reread the range of lines that requires change.
Use the RR (Reread) command and as each line is displayed,
enter a period (if appropriate) or a carriage return if no
period is required. In the following sample, periods are
added to lines 103, 105, and 106.

02 VALUE PIC 99
02 FILLER PIC X

CONSTANT VALUES 11=".
02 SUFFIX PIC 99

POSITION 4, 1.
POSITION 4, 3

POSITION 4, 4.

Problem: The identifier VALUE on line 103 is a reserved
word which the programmer realizes must not be used as an
identifier.

Solution: To find all occurrences of VALUE in the
program, enter the Find and Type (FT) command for the
entire file. Specifying the range 0-99999 ensures that
the complete file is searched.

02 VALUE PIC 99 POSITION 4, 1.
CONSTANT VALUES "=".

Problem: Some occurrences of VALUE are legitimate uses of
the reserved word (line 105, for instance). In other
cases, VALUE is mistakenly used as the identifier for a
variable (as in line 103, for example).

Solution: Select only the record ranges where VALUE is
misused and use the Substitution (S) intrarecord command
to change the occurrences when the word is used as a
variable.

*SE103i/VALUE/S/CENUMliTY
103.000 02 CENUM PIC 99 POSITION 4, 1.

* 1 strings changed

Problem: The items CENUM, FILLER, and SUFFIX should be
grouped under one identifier, CEVAR.

CESS-01 MODULE 3-3
Selecting Record Ranges

Page 33

*IN102.1

102.100
*se103-106;1P/

103.000
104.000
105.000
106.000

Solution: Insert CEVAR as a level 02 item by inserting
(IN command) line 102.1. Select the items (lines 103-106)
to be subordinated to CEVAR; change them from 02 level
items to 03 level items (by the Substitution [S]
intrarecord command) and indent those items by four
additional spaces (by the insert Preceding [P] intrarecord
command) •

02 CEVAR PIC XeS)
/;/02/s/03/;tx

03 CENUM
03 FILLER

CONSTANT
03 SUFFIX

PIC 99
PIC X

VALUE "-"
PIC 99

POSITION 4,1.

POSITION 4, 1.
POSITION 4, 3

POSITION 4, 4.
* 7 strings changed

*DE103-106

Problem: After CEVAR is inserted it becomes clear to the
programmer that lines 103-106 are unnecessary.

Solution: Delete the unnecessary lines using the Delete
command (DE) specifying the range 103-106; then Type that
portion of of the file to verify the deletion.

* 4 records deleted
*TY102-106

102.000
102.100

CE55-01

REPEATS 19 TIMES.
02 CEVAR PIC XeS)

MODULE 3-3
Selecting Record Ranges

POSITION 4,1.

Page 34

MODULE 3-4

MOiling, M.rging, and Copying FII ••

SETUP: You have just built two files, A and B, which are parts of a COBOL
program. You need to incorporate your files into one common file, move a few
lines around and generally do some manipulating of data. Notice that the two
files have different numbering schemes; this will affect the way in which they
are later combined.

!EDIT
EDIT B03
*BU A

HERE

1.000
2.000
3.000
4.000
5.000

IDENTIFICATION DIVISION.

*END
!EDIT
EDIT B03 HERE
*BU B,1.1,1

CHAPTER1.
o 0 MCCRACKEN.
5 FEBRUARY 1983.

1.100 PROGRAM-ID.
2.100 AUTHOR.
3.100 DATE-WRITTEN.
4.100
5.100 ENVIRONMENT DIVISION.
6.100

An easy way to create a backup file is to use the COpy command. So, you make
a duplicate file which is stored in *BLOB. The asterisk (*) designates *BLOB
as a CP-6 star file, a file used for temporary storage which will be
automatically deleted at the end of a job, or when you log off. See
description of star files in the module entitled Maintaining File Accounts
(CE55).

*COPY B TO *BLOB
* EDIT stopped
* Copying
* COpy done

File A requires some changes also, so you copy it into file *ARK which was a
previously existing file. Since you specify COpy A OVER *ARK, the information
in *ARK is replaced by file A.

*COPY A OVER *ARK
* EDIT stopped
* Copying
* COpy done
*TY

1.000
2.000
3.000
4.000

IDENTIFICATION DIVISION.
CHAPTER1.
o 0 MCCRACKEN.

* EOF hit
5 FEBRUARY 1983.

after 4.000
*END

CE55-01 MODULE 3-4
Moving, Merging, and Copying Files

Page 35

After aLL necessary changes have been made to fiLes A and B, you enter the PCl
processor to transfer aLL of fiLe A into fiLe B. Notice that fiLe A and B now
have interLaced Line numbers.

!PCl
PCl B03 here
<COpy A INTO B

•• COPYing
<END

!EDIT B
EDIT B03 HERE
*TY

1.000 IDENTIFICATION DIVISION.
1.100 PROGRAM-ID.
2.000 CHAPTER1.
2.100 AUTHOR.
3.000 D D MCCRACKEN.
3.100 DATE-WRITTEN.
4.000 5 FEBRUARY 1983.
4.100
5.100 ENVIRONMENT DIVISION.

* EOF hit after 5.100

The Line numbers of file B are not in their original sequence, as the file has
been modified. To correct this, you copy fiLe B over itself without
specifying a target file. Now the entire file is renumbered (i.e. 1,2,3,4 •••)
for easy reading.

*COPY B
* EDIT stopped
* Copyi ng
* COpy done
*TY

1.000 IDENTIFICATION DIVISION.
2.000 PROGRAM-ID.
3.000 CHAPTER1.
4.000 AUTHOR.
5.000 D D MCCRACKEN.
6.000 DATE-WRITTEN.
7.000 5 FEBRUARY 1983.
8.000
9.000 ENVIRONMENT DIVISION.

* EOF hit after 9.000

In the meantime, you build another fiLe caLled X. It contains vital
information pertaining to the COBOL program. How do you incorporate it into
file B? Using the MERGE command, specify the lines to be transferred into
file B, and at which place in file B. File X is then incorporated into file
B.

*BU X
* EDIT stopped

1.000 INPUT-OUTPUT SECTION.
2.000 FILE-CONTROL.
3.000 SELECT lINE-OUT-FIlE ASSIGN TO UT-S-PRINTER.
4.000

CE55-01 MODULE 3-4
Moving, Merging, and Copying Files

Page 36

*MERGE X, 1-3 INTO B, 10
* EDIT stopped
* MERGE started
* EOF hit after 3.000
* Done at 12.000
* 3 records moved
* MERGE done
*TY1-12

1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000
11.000
12.000

IDENTIFICATION DIVISION.
PROGRAM-ID.

CHAPTER1.
AUTHOR.

o 0 MCCRACKEN.
DATE-WRITTEN.

5 FEBRUARY ·1983.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT LINE-OUT-FILE ASSIGN TO UT-S-PRINTER.

After examining your file, you feel line number 7 should be at the end of the
file. With the MD(Move/Delete) command, the original line number 7 is deleted
and appears as line number 13.

*MD 7,13
* EOF hit after 12.000
* Done at 13.000
* 1 records moved

*TY
13.000 5 FEBRUARY 1983.

*TY1-13
1.000 IDENTIFICATION DIVISION.
2.000 PROGRAM-ID.
3.000 CHAPTER1.
4.000 AUTHOR.
5.000 0 0 MCCRACKEN.
6.000 DATE-WRITTEN.
8.000
9.000 ENVIRONMENT DIVISION.

10.000 INPUT-OUTPUT SECTION.
11.000 FILE-CONTROL.
12.000 SELECT LINE-OUT-FILE ASSIGN TO UT-S-PRINTER.
13.000 5 FEBRUARY 1983.

Well, you've changed your mind again. You want to move line 13 to line 6.5
(you specify the line number). You use the MK (Move/Keep) command; line 13
remains in its original position. That way you can keep track of where lines
were positioned originally in case you want to change them again.

*MK 13,6.5
* Done at 6.500
* 1 records moved
*TY1-12

1.000
2.000
3.000
4.000
5.000
6.000
6.500
8.000

IDENTIFICATION DIVISION.
PROGRAM-ID.

CHAPTER1.
AUTHOR.

D 0 MCCRACKEN.
DATE-WRITTEN.

5 FEBRUARY 1983.

9.000 ENVIRONMENT DIVISION.
10.000 INPUT-OUTPUT SECTION.
11.000 FILE-CONTROL.
12.000 SELECT LINE-OUT-FILE ASSIGN TO UT-$-PR!NTER;
13.000 5 FEBRUARY 1983

CE55-01 MODULE 3-4 Page 37
Moving, Merging, and Copying Files

So you will have an easy-to-read file, use the RN (renumber) command, which
renumbers an individual line number to whatever value you choose. In this
case, line number 6.5 is changed to line number 7. Line number 13 is deleted,
and you display the final updated version of file B.

*RN 6.5,7
*TY

7.000

*DE 13

5 FEBRUARY 1983.

* 1 record deleted

*TY 1-12
1.000
2.000
3.000
4.000
5.000
6.000

. 7.000
8.000
9.000

10.000
11.000
12.000

IDENTIFICATION DIVISION.
PROGRAM-ID.

CHAPTER1.
AUTHOR.

D D MCCRACKEN.
DATE-WRITTEN.

5 FEBRUARY 1983 •

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT LINE-OUT-FILE ASSIGN TO UT-S-PRINTER.

* EOF hit after 12.000
*END

You've finally made all the necessary changes and log off •••

!OFF

CE55-01 MODULE 3-4
Moving, Merging, and Copying Files

Page 38

AfODULE3-5

Conditional Execution in EDIT

It is possible to use the EDIT IF command to evaluate a string selection in an
EDIT file, and to modify subsequent EDIT processing of that file depending
upon the "true" or "false~' findings of the evaluation.

This type of processing operates upon the current selection criteria.

Example:

SE 1-10
IF/#/,1,1;DE;EI

means, for records 1 through 10, search beginning in column 1,
and ending in column 1, for all records that have a pound sign
in that column, and delete these records. The EI command
terminates an IF block.

Let's see how this operates on an EDIT file:

!EDIT
EDIT B03 HERE
*BUILD TEMPO

1.000 100-XXX-XXX
2.000 126-456-742
3.000
4.000 #100-987-90
5.000 #200-XXX-XXX

You can now try the IF command on the above file.
Remember that EDIT commands follow the EDIT asterisk
prompt:

*SE 1-5
*IF/#/,1,1;OE;EI
* 2 records deleted
*TY 1-5

1.000 100-XXX-987
2.000 126-456-742
3.000
EOF hit after 3.000

CE55-01

The records beginning with a pound sign have been
deleted.

MODULE 3-5
Conditional Execution in EDIT

Page 39

In the next exampLe, you ask EDIT to Look for two designated strings after
rebuiLding the fiLe as TEMP01:

!EDIT
EDIT B03 HERE
*BUILD TEMP01

1.000 100-XXX-XXX
2.000 126-456-742
3.000
4.000 #100-987-90
5.000 #200-XXX-XXX

*s E 1-5
*IF 2/XXX/;DE;EI
* 2 records deLeted
*TY 1-5

2.000 126-456-742
3.000
4.000 #100-987-90

* EOF hit after 5.000

EDIT Command Flies

Now those records which had two occurrences of the
string xxx have been deLeted. In specifying two
strings, you made use of the EDIT string selection
expression. For more information about it enter HELP
(EDIT) STRING SELECTION.

EDIT commands, including conditionaL execution commands, can be incorporated
into an EDIT command file. Such a fiLe can be given any Legal name and is
executed by using the EDIT READ command. In the foLlowing example, an EDIT
command fiLe named EDIT NUMB is built:

First you buiLd a fiLe that contains a single, multi-line EDIT command: Then
you create a short fiLe consisting of numbers. When the EDIT command file is
executed, it reverses the numbers.

CE55-01 MODULE 3-5
ConditionaL Execution in EDIT

Page 40

*BUILD EDIT NUMB
1.000 IFI 1,1,1il IDi
2.000 EL/1/,1,1i/1/Dil IF/1/iTXiRLi
3.000 EL/2/,1,1iI2/Dil IF/21iTXiRLi
4.000 EL/3/,1,1iI3/Dil IF/31iTXiRLi
S.OOO EL/4/,1,1i/4/Dil IF/4/iTXiRLi
6.000 EL/S/,1,1iIS/Dil IF/SliTXiRLi
7.000 EL/6/,1,1iI6/Dil IF/61iTXiRLi
B.OOO EL/7/,1,1iI7/Dil IF/71iTXiRLi
9.000 EL/BI,1,1iIB/Dil IF/B1iTXiRLi

10.000 EL/9/,1,1iI9/Dil IF/91iTXiRLi
11.000 EL/01,1,1iI0/Dil IF/OliTXiRLi
12.000 EIiTX
13.000

Next, a short file consisting of numbers is created.
This file will be acted upon by the command file.

*BUILD *INVERSE
* ·EDIT stopped

1.000 3412344
2.000 123412346
3.000 12344B
4.000

After building the file, you set the selection criteria
to include the entire file:

*SE
Now you use the READ command to invoke the EDIT command
f i l e :

*READ EDIT NUMB
IFI 1,1,1i7 IDi
EL/1/,1,1i / 1/ Di l
EL/2/,1,1iI2/Dil
EL/3/,1,1i I 3/Di l
EL/4/,1,1i/4/Dil
EL/5/,1,1i/5/ Di l
EL/6/,1,1iI6 /D i l
EL/7/,1,1iI7/Dil
EL/BI,1,1i I B/Dil
EL/9/,1,1iI9/Dil
EL/01,1,1i I0/ Di l

IF/1/iTXiRLi
IF/21iTXiRLi
IF/31iTXiRLi
IF/4/iTXiRLi
IF/5/iTXiRLi
IF/61iTXiRLi
IF/71iTXiRLi
IF/BliTXiRLi
IF/91iTXi RLi
IF/OliTXiRLi

EIiTX
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000

CE55-01

412344 3
12344 43
2344 143
344 2143
44 32143
4 432143

4432143
4432143
23412346 1
3412346 21
412346 321
12346 4321
2346 14321
346 214321
46 3214321
6 43214321

643214321

MODULE 3-5
Conditional Execution in EDIT

Page 41

2.000 643214321
3.000 23448 1
3.000 3448 21
3.000 448 321
3.000 48 4321
3.000 8 44321
3.000 844321
3.000 844321

* EOF hit after 3.000
* 47 strings changed

When you print out the file INVERSE, you see that the
execution of the command file has reversed the numbers.

*TY
1.000 4432143
2.000 643214321
3.000 844321

* EOF hit after 3.000
*END

CESS-01 MODULE 3-5
Conditional Execution in EDIT

Page 42

AfODULE3-8

LI.tlng and R.lli.wing FII ••

SETUP: On occasion, you may want to clean up files in your account. You may
find that some are no longer important for your records and should be deleted.
In addition, you may need, to make a quick check of how much disk storage space
you still have available, of file backup dates, and file creation dates.

To receive a quick listing of files in your account, use the LIST command.
Although LIST is a PCL command, it may be called from IBEX as L, from EDIT as
L[IST], or from PCL as L[IST].

LIST prints a summary of disk and labeled tape storage. Enter HELP (PCL) LIST
for more information.

In the following example, the command is called from IBEX. A word of caution:
If you use the LIST command at the! (bang), be sure to only key in the
abbreviated form, L. Keying in LIST at the! invokes a different LIST
command, the IBEX LIST command.

!L
:MAILBOX A
COM WORLD D
MOVING MR SMITH

17 files listed

Listing File Attributes

B
DISP PRHD
NEWDEST

COMP
FIGURES
OC MSG S

COMP HISTORY
FIGURES 1 LISTREVW
SAMPLE1- SETUP

If you want a listing of files in your account with a summary of attributes
for each file, use the A (attribute) option. Attributes listed include: file
organization, file type, granules used, granules remaining, length of file,
date last modified, and name of file.

!L(A)
15:02 SEP 08 '83 .MYACCT
ORG TY GRAN NGAV REC LAST MODIFIED NAME
KEY DM 13 1 339 10:40 SEP 08 '83 :MAILBOX
KEY SE 1 0 4 13:14 SEP 04 '83 A
KEY SE 1 0 13 13:21 SEP 04 '83 B
KEY SE 1 0 4 07:53 AUG 21 '83 COMP
KEY SE 1 0 53 07:53 AUG 21 '83 COMP HISTORY
KEY SE 1 0 5 14:40 SEP 03 '83 COM WORLD
KEY SE 1 0 4 10:31 SEP 04 '83 D
KEY 3 0 203 13:26 SEP 03 '83 DISP PRHD
KEY 18 0 1301 13:01 AUG 27 '83 FIGURES
KEY 19 0 1371 13:41 AUG 28 '83 FIGURES 1
CON 2 0 19 15:02 SEP 08 '83 LISTREVW
KEY 3 0 258 10:31 SEP 08 '83 MOVING
KEY SE 1 0 6 15:02 SEP 03 '83 MR SMITH
KEY SE 1 0 21 15:07 SEP 03 '83 NEWDEST
KEY SE 3 0 113 10:39 JUL 31 '83 OC MSG S
KEY SE 1 0 6 15:02 SEP 03 '83 SAMPLE1
KEY SE 1 0 8 07:53 AUG 21 '83 SETUP

"7 ~~I_- 7" granules listed If I I l. C':', f I

CE55-01 MODULE 3-6 Page 43
Listing and Reviewing Files

The exampLe beLow shows a Listing of fiLes in a specified account called
: M EM O.

!L .:MEMO
:END :FMT

2 fiLes listed

You can aLso List fiLes with extended attributes (EA). Extended attributes
incLude: Last access date, backup date, and creation date.

! L • :MEMO(EA)
15:03 SEP 08 183 .:MEMO
ORG TY GRAN NGAV REC LAST MODIFIED NAME
KEY TM 2 0 107 10:55 AUG 11 183 :END

lAST ACCESS 07:52 AUG. 21 183
BACKED UP 01:55 AUG 22 183 ON DP#D00121
XTNSIZE = 2
FITSIZE = 54
CREATED 10:55 AUG 11 183
lSlIDE = 510 SLIDE = 1
lRDlO = 3 TDAlVl = 0 SPARE = 50
BACKUP

KEY TM 3 0 147 10:55 AUG 11 183 :FMT
LAST ACCESS 07: 52 AUG 21 183
WIll EXPIRE 38676 DAYS FROM CREATION
BACKED UP 01:55 AUG 22 183 ON DP#D00121
XTNSIZE = 2
FITSIZE = 54
CREATED 10:55 AUG 11 183
lSlIDE = 510 SLIDE = 1
lRDlO = 3 TDAlVl = 0 SPARE = 50
BACKUP

2 fiLes, 5 granuLes Listed

In the previous exampLe, the lIST command was caLled from IBEX. In the
exampLe beLow, the lIST command is calLed directLy from PCl.

!PCl
PCl B03 here
<l
:MAIlBOX A
COM WORLD D
MOVING MR SMITH

17 files listed

B
DISP PRHD
NEWDEST

COMP
FIGURES
OC MSG S

COMP HISTORY
FIGURES 1 lISTREVW
SAMPlE1- SETUP

In the foLLowing example, extended attributes are requested for the fiLe
NEWDEST:

<l NEWDEST(EA)
ORG TY GRAN NGAV REC lAST MODIFIED NAME
KEY SE 1 0 21 15:07 SEP 03 183 NEWDEST

lAST ACCESS 15:07 SEP 03 183
BACKED UP 01:31 SEP 05 183 ON DP#D00121
XTNSIZE = 2
FITSIZE = 54
CREATED 15:07 SEP 03 183
lSlIDE = 510 SLIDE = 1
lRDlO = 3 TDAlVl = a SPARE = 50
BACKUP

CE55-01 MODULE 3-6 Page 44
listing and Reviewing Files

REVIEW Command (PCl)

The REVIEW command gives you a sequentiaL 'Listing of your fiLes and aLso
prompts you with a period after each fiLe name. At that point you can choose
to make severaL adjustments which affect your fiLe Listings. For exampLe, you
can see a summary of attributes or extended attributes. You can aLso skip
fiLes, deLete them, and make copies.

!PCL
PCL B03 here
<REVIEW
:MAILBOX.
A.
B.

After the period prompt for fiLes :MAILBOX, A, and B, you
enter CR onLy, indicating that no additionaL information
is needed.

COMP.A
ORG TY GRAN NGAV
KEY SE 1 0

REC LAST MODIFIED NAME
4 07:53 AUG 21 183 COMP.

An A entered after the period prompt for fiLe COMP
produces the above Listing of attributes. After the
second period prompt for COMP, you enter CR to indicate
that no additionaL information is needed.

COMP HISTORY.EA
ORG TY GRAN NGAV REC LAST MODIFIED NAME
KEY SE 1 0 53 07:53 AUG 21 183 COMP HISTORY

LAST ACCESS 07: 53 AUG 21 183
BACKED UP 01:57 AUG 22 183 ON DP#D00121
XTNSIZE = 2
FITSIZE = 54
CREATED 14:41 AUG 03 183
LSLIDE = 510 SLIDE = 1
LRDLO = 3 TDALVL = 0 SPARE = 50
BACKUP.JUMP SAMPLE1

An EA entered after the period prompt for fiLe
COMP HISTORY produces the above Listing of extended
attributes. After the period prompt foLLowing BACKUP, you
enter JUMP SAMPLE1, which causes PCL to jump to the
designated fiLe, skipping the intervening fiLes.

SAMPLE1.EA
ORG TY GRAN NGAV REC LAST MODIFIED NAME
KEY SE 1 0 6 15:02 SEP 03 '83 SAMPLE1

<

LAST ACCESS 15:02 SEP 03 183
BACKED UP 01:32 SEP 05 183 ON DP#D00121
XTNSIZE = 2
FITSIZE = 54
CREATED 14:55 SEP 03 '83
LSLIDE = 510 SLIDE = 1
LRDLO = 3 TDALVL = 0 SPARE = 50
BACKUP.END

5 fiLes Listed

An EA entered after the prompt for SAMPLE1 produces a
Listing of extended attributes. FoLLowing the period
prompt after BACKUP, you enter END. This ends the
reviewing process, and returns you to the PCL command
LeveL.

CE55-01 MODULE 3-6 Page 45
Listing and Reviewing FiLes

The REVIEW command may also be used to specify an individual file:

<REVIEW COMP HISTORY
ORG TY GRAN- NGAV
KEY SE 1 0
KEY SE 1 0

LAST ACCESS 07:53
BACKED UP 01:57
XTNSIZE = 2
FITSIZE = 54
CREATED 14:41
LSLIDE 510
LRDLO = 3
BACKUP.END

<END

Recovering Files

REC LAST MODIFIED NAME
53 07:53 AUG 21 '83 COMP HISTORY.EA
53 07:53 AUG 21 '83 COMP-HISTORY

AUG 21 '83
AUG 22 '83 ON DP#D00121

AUG 03 '83
SLIDE = 1
TDALVL = 0 SPARE = 50

SETUP: Inadvertently, you deleted a large number of records in a file. Is it
possible to recover these lost records?

First get a listing with attributes of that file, which shows you when the
file was last backed up, created, and modified. This information can help you
recover the file.

Procedures will vary from site to site, but let's consider a site at which
files are backed up daily, weekly, and mont~ly, using an odd-even rotation.
ALL changed or new fiLes are copied (backed up) to tape daiLy. Then aLL
existing fiLes are saved weekLy, and finaLly monthLy. If your fiLe has been
backed up, it may be possibLe for you to have the lost records restored. The
restored version may not contain your most recently entered changes; this wilL
depend on when the backup fiLe was created.

Suppose you deLeted a file three days ago, and now the boss asks to see that
particuLar file. Can that fiLe be recovered? There may be times when you can
recover your file if the timing is right.

Find out what the procedures are at your site for backing up fiLes. Then, if
you need to recover a file you will be well informed. With your knowLedge
about fiLe recovery, you may be abLe to recover the fiLe your boss urgentLy
requested. He'LL be happy, and so wiLL you.

CE55-01 MODULE 3-6 Page 46
Listing and Reviewing FiLes

AfODULE3-7

Changing File Organization

CP-6 file structures include keyed, indexed, consecutive, relative, random,
IDS, and unit record. See the CP-6 Programmer Reference, CE40, for a detailed
descript ion of these types. of fi les.

Perhaps the most commonly used types of files are keyed, consecutive, and
indexed. Let's consider some examples in which it may be necessary for you to
change the organization from one file type to another.

SETUP: You want to copy a file of error messages which exist in account
:CENTRAL in a file named COBRA, and edit your copy. You decide to use EDIT.

!EDIT
EDIT B03 HERE
*E COBRA.:CENTRAL

*TY

!EDIT

File COBRA.:CENTRAL is not a keyed file - limited updating - RP
mode set

EDIT has informed you that COBRA is not a keyed file. You
request to see the file at your terminal:

1 XU1 is of type character. Illegal in a VIRTUAL statement.
2 XU1 is not an array or common block.
3 Common block XU1 exceeds previous allocation
4 Equivalenced scalar XU1. Too many subscripts.

EDIT has provided abbreviated line numbers because this is
not a keyed file. You decide to make a keyed copy for
your own account:

EDIT B03 HERE
*COPY COBRA.:CENTRAL OVER MYFILE

!PCL
PCL B03 here

By using the EDIT COpy command, you have asked EDIT to
make a keyed copy of file COBRA. By default, your copy
will start with line number 1.000, incremented by 1.

You can also make a keyed copy of a consecutive file using
the PCL processor:

<COPY COBRA.:CENTRAL ON MYFILE (ORG=KEYED)

You have copied file COBRA on to your own file "MYFILE" as
an EDIT keyed file. Or, if you you want to designate the
beginning line number:

<COPY COBRA.:CENTRAL ON MYFILE (LN=4)

CESS-01

You have specified that the input file COBRA is to be
copied as an EDIT keyed file with beginning line number
4.000, i.e.

MODULE 3-7
Changing File Organization

Page 47

4.000 %U1 is of type character. Illegal in a VIRTUAL statement.
5.000 %U1 is not an array or common block.
6.000 Common block XU1 exceeds previous allocation.
7.000 Equivalenced scalar XU1. Too many subscripts.

The options specified in parentheses in the above PCl commands are PCl output
options. These options enable you to change file organization from one type
to another. If you want to change file organization to indexed, you must use
both the KEYlENGTH option to specify the number of characters for the key, and
the KEYX option to specify the character position, as well as ORG = INDEXED.

When you build a file using the BUILD command, it will be an EDIT keyed file.
Suppose you want to build a consecutive file. You could build a keyed file
and then use the PCl copy command to change the file organization to
consecutive, using either the NlN output option, or the ORG=CONSECUTIVE output
option. You can also use ihe COPY ME command to build a consecutive file
directly. See the module entitled Creating New Files (CESS) for an example of
using the COPY ME command.

The principal benefit to the user of consecutive files over keyed files is a
reduction in the amount of space required for the file, and a consequent
reduction in the time required to traverse the file. So, for very large files
which will be used in a sequential manner only, the consecutive file has an
advantage.

The type of file organization you select will affect the results you get when
using the PCl COPY command. Suppose you have two files, ALTA and DENA.

<COpy ALTA INTO DENA

If the files are not keyed, the records in ALTA are appended at the end of
file DENA.

If, however, the files are keyed, the records in ALTA are "woven" into
destination file DENA (perhaps replacing existing records). All keyed files
always look like they have been sorted by keys.

CESS-01 MODULE 3-7
Changing File Organization

Page 48

AfODULE3-B

Changing FII. Ace ••• Attrlbut ••

What is file access? In the CP-6 system, the term fid is used as a name to
refer to both files on disk or tape, and to devices such as terminals and
printers. File access is access to a fid.

It is possible for you to specify the type of file access available to other
users for disk or tape files in your account. This may be done by:

• Specifying SHARE and FUN attributes through the IBEX SET command

• Establishing access to users holding specified accounts, also by means of
the SET command (ACCESS SET option).

• Using a PCL command to specify the desired PCL output option.

Let's look at some examples of each of the above.

!SET MSSI MYFILE,SHARE=ALL

This command assigns MSSI DCB to disk file MYFILE, which
can be opened by all qualified users while you have it
open.

!SET MSSI MYFILE,SHARE=IN

specifies that qualified users can open MYFILE for input
only (while you have it open).

!SET MSSI MYFILE,SHARE=NONE

specifies that no sharing users can open the file while
you have it open.

These SET command options remain in effect for the duration of that job or
session, unless reset by the RESET command. You can, for example, start a job
by allowing input from other users, and then use RESET to change to
SHARE=NONE.

The SET command FUN option specifies whether an existing file is to be read or
updated, or whether a new file is to be created.

!SET MSSI MYFILE,FUN=IN

The above means that MYFILE can only be read; no
modification can be made to the file.

!SET MSSI MYFILE, FUN=UPDATE

means that MYFILE can both be read and modified.

!SET MSSI MYFILE,FUN=CREATE

means that a new file is to be created.

Now let's look at the SET command ACCESS option, which allows you to specify
those accounts which may access your file:

CE55-01 MODULE 3-8 Page 49
Changing File Access Attributes

!SET M$SI MYFllE, ACCESS=(All,REAO)

means that any and all accounts may access MYFllE. You
may also indicate a singLe account, or a number of
accounts (caLLed an accountList), or a range of accounts
specified by the use of wiLdcard characters, i.e.,

!SET M$SI MYFllE, ACCESS=(477?,REAO)

means that any account beginning with 477 has access to
MYFILE.

PCl output options may aLso be used to Limit access to a fide The PCl output
options we are concerned with are ACCESS, ACSVEHIClES, READ, and WRITE.

ACCESS Specifies 'which accounts are permitted access
to the fiLe, and what controL appLies to those
accounts.

ACSVEHIClES Specifies which processors are permitted access
to the fiLe, and which controLs apply to those
processors. A processor is defined as any
run unit with optional account specification.
If the account is not specified, :SYS is
assumed (BASIC, EDIT, etc.)

READ Specifies which accounts can read records from
a file.

WRITE Specifies which accounts can write records to a
file.

Examples:

!PCl
<MOD MYFIlE TO (REAO=SAM)

means that MYFIlE may be read only by account SAM and the
creating account.

<MOD MYFIlE TO (ACC=(?,NOlIST»

will make the file MYFIlE visible only to the creating
account.

SETUP: You want a data file to be given READ and WRITE access, but want to
prohibit the use of PCl to copy all or portions of the file.

SOLUTION: You use the following SET options:

!SET MYFIlE , ACCESS=(accountlist1,READ,EXEC),;
ACCESS=(accountlist2,WRITE,UPOATE,DElR,EXEC),;
ACSVEH=(PCl)

where acountlist1 is the READ accountlist, and accountlist2 is the WRITE
accountlist. The use of EXEC implements the ACSVEH option, which is used to
specify a processor or processors, (i.e., PCl), and the access permissions to
be granted to them. In this case, PCl has been specified with no permissions.
Therefore, the use of the PCl processor by the accounts specified is
prohibited for the designated file.

Additional information concerning PCl file access output options and SET
options is available from the HELP facility.

CESS-01 MODULE 3-8 Page 50
Changing File Access Attributes

AfODULE3-8

S.'.cting FII ••

The CP-6 PCl processor provides the user with the capabiLty to seLect fiLes in
a variety of ways. It is possibLe to seLect a range of fiLes, or to seLect
fiLes by organization and type. .

Suppose you have a number of fiLes designated FIlE-A to FIlE-Z. You want to
seLect onLy FIlE-A to FIlE-P (incLusive):

!PCl
PCl 803 here
<COPY FILE-A> FIlE-P

This wiLL copy the designated range of disk fiLes to your
terminaL (the defauLt designation). The range designated
is sorted aLphabeticaLLy.

If the fiLes are not in your account, the account must be specified:

<COPY FILE-A> FIlE-P FROM .CENTREX

When using a tape fiLe, you may want to copy aLL fiLes physicaLLy Located
between two fiLes.

<COpy IT#1489IFIlE-A > FIlE-P (PHY) TO MYFIlE

The COpy command above designates a physicaL range, i.e.,
the fiLes copied from tape 1489 wiLL be those Located
physicaLLy between FIlE-A and FIlE-P. The range is
incLusive, so FIlE-A and FIlE-P are incLuded.

The exampLes above show the use of source parameters to designate a range of
fiLes. For more information, see the range source component in CE40.

The range source component can aLso be used to specify a range of fiLes
seLected by password:

<COpy FIlE-A •• QBl > FIlE-P

The fiLes seLected must aLL have the password "QBl", or be
un-passworded.

Further options can be added to designate additionaL criteria for seLecting
such as fiLe type or fiLe organization:

<COpy FIlE-A •• QBl > FIlE-P (ORG=K)

CESS-01

NOw, in addition to the other criteria, the fiLes seLected
must be keyed.

MODULE 3-9
SeLecting FiLes

Page 51

MODULE 3-10

Wildcarding

Wildcarding is one of those CP-6 features that you wonder how you ever got
along without. Simply stated, wildcarding allows the wildcard character '?'
to be used in place of a string of zero or more characters. Several CP-6
processors allow the use ot wildcard characters, although not all of them
allow exactly the same syntax.

PCl's use of wildcarding is a good example. The wildcard character is allowed
to replace any characters in file names. For example, the construct 'l FOR?'
will list all files in the user's current file management account whose names
begin with 'FOR' and end in anything. PCl's response might be something like

FOR FORTRAN FORTRAN TEST

Note that 'FOR' satisfies the request since the wildcard matched a null string
of characters. Similarly, the request 'l ?HOPE.ZED' will list all the files
whose names end in 'HOPE' from the ZED account.

If your site runs a production shop, this makes management of a library of
source files and run units much easier. If you establish a naming convention
using prefixes or suffixes to identify the parts of a system, PCl's
wildcarding feature can be used to list, copy, or delete them without having
to build a standard file. For example, a facility might use the following
suffixes to identify files in account ZED:

_SIpn - identifies a Source Input file requiring compiler 'pi;
if there are multiple parts to the source file, In' is
used to identify them, 1 through 9.

OUn - Identifies Object Unit (optional In')
CRU - A job file to create the Run Unit.

-HELP - A HELP file to explain the program's usage.

The command 'l EXTRACT?ZED' therefore would list all the pieces of the
EXTRACT program.

Using wildcards in multiple places in a file-name fragment allows you to
search an account for a file that you don't quite remember the name of. 'L
?PROG?', for example, might find files with names of 'COPVPROG', 'PROG01',
'PROG', and 'MVPROG_SI'.

Finally, the wildcard allows you to delete all the files in your account.
This is done by using DEL ?, a PCl command which can also be given at the IBEX
prompt (!). This deletes all the files in your account (after asking
permission, of course).

CE55-01 MODULE 3-10
Wildcarding

Page 52

Abbreviating Account References Through Wlldcardlng

Through use of wildcarding, account access attributes may be set to limit the
accessibility (READ, WRITE, NOLIST, etc.) of individual files to account
groups.

By means of illustration, assume an installation has assigned accounts as
follows:

RD002AOO

Where: RD
002
A
00

Represents the department code
Represents the project code
Represents the users job title
Represents t~e programmer number
(Only project leaders receive a 00 number)

If the following 'MODIFY' command were issued:

!MOD FID TO (ACC=(RD?,READ),ACC=(RD?OO,WNEW),ACC=(?,NOLIST»

All accounts with the 'RD' prefix would have 'READ' access, those accounts
with an 'RD' prefix and a '~O' suffix would have 'WNEW' access (the ability to
write new records), and no accounts would be able to 'LIST' the file, except
for those with 'READ' or 'WRITE' access and the account within which the file
resides.

This technique might be particularly useful when utilized within a software
factory environment, where programmers are given separate accounts for each
project to which they're assigned. Similarly, in an academic environment this
might apply where students are given an account for each computer-utilizing
course in which they're enrolled.

CE55-01 MODULE 3-10
Wildcarding

Page 53

MODULE 3-11

M.'nt.'nlng File Account.

In order to remember what the files in your account contain, it is a good idea
to name your files in relation to their contents.

Suppose you have a FORTRAN' program in a fi le named FORT. If it is absolutely
necessary for you to have permanent object unit or run unit files (see
CONSERVING DISK SPACE, in this module), it is sometimes desirable to name your
object unit file FORT OU, and your run unit file FORT RU. This has several
advantages. When you-list your files, you will immediately be able to see
which files are related to program FORT. If you want to delete all of the
files related to program FORT, this can be done in a single command (provided
that you don't have any other files starting with FORT). Note that the DELETE
command with a wildcard character (?) is a PCl command, and must be taken from
PCl or IBEX; the EDIT DELETE command does not allow the use of a wildcard
character.

!DElETE FORT?
DELETE FORT?MYACCT ?YESS
FORT FORT OU FORT RU

3 files, - 9 granules deleted

When you enter the command, PCl requests that you confirm the DELETE action,
which you do by entering YESS as shown above.

File Types

Your files are all assigned a file type automatically by the processor you are
operating in. The file type is a two-letter designator, which can be modified
to meet your needs if necessary. For example, you could assign all files
which contain memos for the office a file type MM. This way you could quickly
get a listing of all memos you wrote just by specifying the file type MM.

You build four files and assign file type ZZ to FIlE1 and
FIlE2. File type YY is assigned to FIlE3 and FIlE4. Now
you can list only file type ZZ's, or only file type YY·s.

!EDIT
EDIT B03 HERE
*TYPE ZZ
*BUIlD FIlE1

1.000 Twas brillig and the slithy toves
2.000

*BUIlD FIlE2
* EDIT stopped

1.000 Did gyre and gimble in the wabe
2.000

CE55-01 MODULE 3-11
Maintaining File Accounts

Page 54

*TYPE YY
*BUILD FILE3
* EDIT stopped

1.000 All mimsy were the borogroves
2.000

*BUILD FILE4
* EDIT stopped

*END

1.000 And the mome raths outgrabe
2.000

!L ?(TY=ZZ)
FILE1 FILE2

2 f i l e s lis t ed
!L ?(TY=YY)
FILE3 FILE4

2 f i l e s lis ted

You can use file types to collect files with related
contents and print them.

!C ?(TY=ZZ),?(TY=YY)
Twas brillig and the slithy toves
Did gyre and gimble in the wabe
All mimsy were the borogroves
And the mome raths outgrabe

After running a short BASIC program, you can get a listing
with attributes of FILES. Notice that SB (Source Basic)
is listed under file type (column 2). This is the file
type assigned by the BASIC processor. You can copy FILES
into the MEMO account with an added option "NFA". This
requests that no file attributes be copied.

!BASIC
BASIC C02 HERE
>10 REM A RATHER SHORT PROGRAM.
>20 END
>SAVE FILES
FILES SAVED
>SYS
!L FILES
ORG TY GRAN NGAV REC LAST MODIFIED NAME
KEY SB 2 0 2 12:21 SEP 14 '83 FILES
!COPY FILES TO FILES.:MEMO(NFA)

•• COPYing
!L FILES.:MEMO
ORG TY GRAN NGAV REC LAST MODIFIED NAME
KEY 1 0 212:21 SEP 14 '83 FILES

A listing of FILE1-FILES shows you all the file types
which have been assigned so far.

! L (A) FILE?
12:28 SEP 14 '83 FILE?MYACCT
ORG TY GRAN NGAV
KEY ZZ 1 0
KEY ZZ 1 0
KEY YY 1 0
KEY YY 1 0
KEY SB 2 0

S files, 6

CESS-01

REC LAST MODIFIED NAME
1 12:16 SEP 14 '83 FILE1
1 12:17 SEP 14 '83 FILE2
1 12:17 SEP 14 '83 FILE3
1 12:17 SEP 14 183 FILE4
2 12:21 SEP 14 '83 FILES

granules listed

You can request that these files be tagged as file types
SE (Source Edit) again, if you prefer.

MODULE 3-11
Maintaining File Accounts

Page SS

!MOD FILE? TO (TY=SE)
FIlE1 FIlE2 FIlE3 FIlE4
!l (A) FILE?
12:29 SEP 14
ORG TY GRAN
KEY SE 1
KEY SE 1
KEY SE 1
KEY SE 1
KEY SE 1

Star Files

'83 FIlE?MYACCT
NGAV REC lAST MODIFIED

o 1 12:28 SEP 14 '83
o 1 12:28 SEP 14 '83
o 1 12:28 SEP 14 '83
o 1 12:29 SEP 14 '83
o 2 12:29 SEP 14 '83

FIlE5

NAME
FIlE1
FIlE2
FIlE3
FIlE4
FIlE5

CP-6 star files are temporary job files that are automatically deleted at the
end of the job. They can be created by the user or the system. A star file
is designated any time you use a file name which begins with an asterisk (*)
or "star".

Star files are handy for use as scratch files or quick test case files that
you don't want to keep around. How many times have you tried to create file
TRASH or SCRAP or JUNK and had the monitor reply that the "FILE EXISTS"
because you forgot to delete it from the last time? Imagine the wasted system
file space that these files occupied. Getting into the habit of making them
star files automatically keeps your account clean.

You can build a star file with PCl by COPYing something TO (or OVER or INTO)
*filename or in EDIT by BUILDing *filename. "filename" is any legal CP-6 file
name, but names longer than one character are recommended. "*TRASH",
"*SCRAP", and "*JUNK" are popular names. Any number of users logged onto the
same account can create star files with the same names simultaneously, since
the file names are not entered into your directory. You can't create a star
file in someone else's account, nor can you look at someone else's star
file(s), even though PCl will accept an account specification on a star file
name without complaint (e.g., COpy ME TO *SCRAP.YOURACCT is equivalent to COpy
ME TO *SCRAP).

If you create a star file and later decide you want to keep it, simply use PCl
to COpy it to a permanent file before you log off. You cannot use MOD to
rename a star file as a permanent file, though.

Star files are also handy since they don't take up space in your account; they
are charged against temporary file space and reside in "public" disk space.

Star files won't be listed or deleted by PCl commands "l" or "DEL ?", since
those commands scan the specified file directory. You can list your
accumulated star files and delete them by using the PCl commands tIL *?" and
"DEL *1".

CE55-01 MODULE 3-11
Maintaining File Accounts

Page 56

Running Out Of Space

You wiLL know when you have run out of di~k space when a message suddenLy pops
up on your terminaL. If this happens, go to the person in charge of
aLLocating more disk pack set storage space. If you are toLd that you cannot
be aLLocated more space, you have three options:

1. DeLete aLL fiLes in your account which are of LittLe or no vaLue to you.
They just take up vaLuabLe disk space.

2. If you need aLL the fiLes in your account, have them copied onto tape, so
that you can free some disk space in your account.

3. Compress or purge unne~cessary information from your existing fiLes, as
described below.

Con,ervlng Disk Space

There are several techniques that can be used to conserve disk space, and the
techniques differ slightly depending on what the fiLe contains.

Object Units

In generaL, object units need not be retained on disk once the associated run
unit has been created. (This is because an object unit can ALWAYS be
recreated by recompiLing the source unit.) If an object unit contains
commonLy used routines, it shouLd be merged into a library fiLe (with LEMUR)
with other commonLy used routines; then the individuaL 'object unit should be
deLeted. If it is absoluteLy necessary to retain individuaL object units on
disk, space may be saved by compiLing WITHOUT fuLL debug schema ••• (i.e. MINI
schema, the compiLer defauLt). It is aLso possibLe to save even more space by
requesting absoLuteLy NO debug schema with the NSCHEMA option.

Source Programs

Source programs (and, in generaL, any fiLe containing aLL ASCII characters)
may be forced to occupy less disk space by empLoying severaL methods. One
method is to simpLy strip the EDIT Line number keys from the fiLe by copying
the file over itself with PCL using the (NLN) option.

Even more space may be saved by empLoying a method caLLed fiLe compression. A
source fiLe may be compressed by copying it over itseLf with PCL and using the
(C) option:

<C fid OVER fid(C)

Of course, the most space may be saved by copying the fiLe over itseLf:

<C fid (NLN,C)

NOTE: These methods apply onLy to source fiLes. AppLication of these methods
to object units, run units, workspaces or binary data fiLes may render them
unusabLe or cause them to occupy MORE disk space than before.

NOTE: Once a fiLe has been compressed, you may use EDIT only to EXAMINE the
fiLe. If you wish to make a modification to a fiLe that has been compressed,
you must rekey it with EDIT.

CE55-01 MODULE 3-11
Maintaining File Accounts

Page 57

!E fid
*** File fid is not a keyed file - limited updating - RP mode set
*c fid

•••• NOW you can use EDIT to update the file

Run Units

You can conserve disk space occupied by run units by always using the NODEBUG
option when lINKing a run unit. This will eliminate all but the most
primitive debug schema from the run unit. Even more space may be saved by
using the following. Please note, however, that MPUR.X may not exist at all
sites.

!lINK *G OVER rufid
!MPUR.X rufid,NO OVER rufid

Other Files

BASIC and APl workspaces, binary data files, data files that require their
keys, and databases should not have the above space-saving techniques applied
to them.

Keyed Data Files

Keyed data files that are updated frequently (or, in particular, have records
deleted from them frequently), can begin to accumulate space and occupy more
disk space than necessary (space where records and keys are deleted are
retained for possible future re-use). To recover this space, you can copy a
file over itself with pel (provided enough space is available on your
packset). If you don't have enough space, you can copy the file to tape,
delete the file from disk, and restore the file from tape. Of course, you
should NOT strip the keys from the file in either step, as the programs that
access these keyed data files almost always depend on the keys in the file to
get their job done correctly.

CE55-01 MODULE 3-11
Maintaining File Accounts

Page 58

Using Flies In Other Accounts

SETUP: Suppose you are working on a project with another person who has a
file named PROJECT1 which you need to complete a section of your work. How
can you put that file into your own account and then work on it?

All you need to know is the file name, which is PROJECT1 and your co-worker's
account name which is COMPWORK. With this information you can copy PROJECT1
into your account:

COpy PROJECT1.COMPWORK INTO MYPROJECT

You must specify a file name to which PROJECT1 ;s copied. Also, be sure to
insert a period between the file name and the account name.

Or if you like, you can request a formatted version of PROJECT1 which is
printed at a line printer so that you have a hard-copy:

TEXT PROJECT1.COMPWORK TO LP

So with the file name and account name of a particular person, you have access
to his/her files in various forms, whatever is most convenient for you.

CE55-01 MODULE 3-11
Maintaining File Accounts

Page 59

MODULE 3-1 tl

Printing File. on the Lineprinter

SETUP: You own a file called CHIMERA, and want to distribute copies of
CHIMERA to various people. Twenty feet from your terminal is a lineprinter
which belongs to workstation GRYPHON. Your account, by default, uses this
lineprinter. At the other'side of the city is another workstation called
PHOENIX, which also has a lineprinter. The copies of CHIMERA that you want
are:

• copy for your notebook

• 2 copies for your manager

• copy on 8 1/2 by 11 for the home office (to be mailed)

• 3 copies for the programming staff at workstation PHOENIX

PROBLEM: How can you make and deliver all these copies with a minimum of
hassle and legwork?

SOLUTION: You create the following XEQ file:

!COPY CHIMERA TO LP

First, you make a copy for yourself, using the simple form
of the copy command. You copy it to LP because you know
that the system is smart enough to realize that LP means
the printer that's twenty feet down the hall.

!LDEV LP03 LP@GRYPHON,COPIES=2

Next, you create a logical device for the lineprinter at
GRYPHON. Anything sent to LP03 will be printed twice.
These will be the copies for your manager.

!LDEV LP04 LP@GRYPHON,FORM='LONG'

Now you create another logical device that has form LONG.
The system manager at your site has told you that form
LONG is 8 1/2 by 11 paper, and the operations staff
already knows how to mount it.

!LDEV LP05 LP@PHOENIX,COPIES=3,TITLE='CHIMERA by YOURNAME'

Now you create yet another logical device, one that will
print three copies at workstation PHOENIX. You put a
title on each page that has your name and the name of the
f i l e.

!COPY CHIMERA TO LP03
!COPY CHIMERA TO LP04
!COPY CHIMERA TO LP05
!PRINT LP03

CE55-01 MODULE 3-12 Page 60
Printing Files on the Lineprinter

Now that you have created your logical devices, all that
you have left to do is copy CHIMERA to each. You use the
PRINT command to specify that the LP03 copies are to be
printed immediately.

EPILOGUE: Two copies of file CHIMERA are immediately printed at the
lineprinter near your office. The LONG form is not immediately printed,
because the system manager has instructed the operations staff to mount form
LONG only when a sizeable amount of output has accumulated for that form.
Eventually you do obtain this copy and send it to the home office. The three
copies sent to workstation PHOENIX are printed as planned.

COMMENTS: In addition to sending output to lineprinter devices, the COpy
command has many other uses.

A logical device is a user~created profile for a device. It should not be
confused with the actual physical device on which the output (in the case of
lineprinters) is printed.

Using the LDEV command, you can set certain attributes for a printer, such as
number of copies, the type of form (paper), or title to be added. You may
also set printing width, lines per page, etc. See the LDEV command in the
Programmer Reference (CE40), or in the IBEX HELP facility.

Workstations are, by and large, physical areas where work takes place on the
computer. Workstations are, however, defined as part of the system software,
and there is no reason why a remotely located printer can not "belong" to the
same workstation as the main computer facility. Each user, regardless of
physical terminal location, has a "workstation of origin", which determines
the default lineprinter, cardreader, and other system devices.

CESS-01 MODULE 3-12 Page 61
Printing Files on the Lineprinter

AfODULE4-0

Section 4 • Cre.tlng and Running Programs

Module 4-1 in this section discusses and gives examples of IBEX programming.
Module 4-2 presents an actual CP-6 session, including examples incorporating
FORTRAN, COBOL, and BASIC programs. Module 4-3 presents an example of the use
of FPL on the CP-6 system.' Module 4-4 discusses and gives examples of LINK
overlay programs.

CESS-01 MODULE 4-0 Page 62
Section 4 - Creating and Running Programs

AfODULE4-1

IBEX Programming

Interactive and Batch Executive (IBEX) commands identify the user job, the
tasks to be performed by the job, and the resources required by the job. IBEX
commands also control interactive terminal operations. All batch jobs and
interactive sessions require the use of IBEX commands.

To obtain a list of available HELP topics for IBEX, enter:

!HElP (IBEX) TOPICS

IBEX Programming Conventions

The following conventions apply to IBEX programming:

• Only one IBEX command may be used per line. If the command and its
options extends over multiple lines, a semicolon must be used at the end
of each line, except the last.

• IBEX command labels (see IBEX Command labels in this module) may not be
used with the following commands:

! JOB
!RESOURCE
!INClUDE
!DEFAUlT

labels may be used with all other IBEX commands.

• Comments may be included as part of a series of IBEX commands and may
appear anywhere arbitrary blanks are allowed. Comments must be enclosed
in double quotes (II), but the closing quote is not required at the end of
a line. If a comment extends over multiple lines, each line is treated as
a separate comment.

• The following" IBEX commands may not be indented (i.e., no blanks are
allowed after !):

JOB
FIN
EOD
DEFAULT
INCLUDE
ASC
BIN
NCTl

For all other IBEX commands, indentation is allowed; i.e., any number of
intervening blanks may appear between! and the command, as long as the
command appears on a single line.

CESS-01 MODULE 4-1
IBEX Programming

Page 63

Executing Programs

You can initiate program execution through three IBEX commands:

rununit

RUN

START

Examples:

!FORT RU.

Fetches and initiates execution of a run unit

Links an object file (or files), and fetches and
initiates execution of the resulting run unit.

Fetches and initiates execution of a run unit.

This rununit command fetches and starts execution of the run unit FORT RU.

!RUN FORT OU

This command links the object file FORT OU, and fetches and initiates
execution of the resultant run unit. -

!EXAMPLE SOURCE,UPDATE INTO OUTPUT, LIST

This rununit command fetches the run unit EXAMPLE into memory from :SYS and
starts execution using SOURCE as the source input file, UPDATE as the run unit
update file, OUTPUT as the run unit output file, and LIST as the run unit
listing file.

!START EXAMPLE

Starts execution of the run unit EXAMPLE without an associated debug
processor.

!START EXAMPLE UNDER DELTA

Starts execution of the run unit EXAMPLE under control of DELTA.

!START EXAMPLE UNDER MYBUG

Starts execution of the run unit EXAMPLE under control of the debug processor
named MYBUG.

CESS-01 MODULE 4-1
IBEX Programming

Page 64

Invoking Language Processors

The commands used to invoke language processors are IBEX rununit commands.

Examples:

!COBOL

invokes the COBOL compiler and sets the default options for COBOL.

!COBOL MYFILE OVER MYFILE OU

invokes the COBOL compiler with the default options, using MYFILE as a source
file and MYFILE_OU as the ,object unit file.

!FORTRAN FILE X OVER *MYFILE

invokes the FORTRAN compiler with the default options for FORTRAN, using
FILE X as a source file and designating a temporary star file, *MYFILE, as the
object unit file.

For information concerning the various compiler invocations and options, use
HELP, i.e.,

!HELP (COBOL) COMPIL

!HELP (COBOL) COMPILER OPTIONS

!HELP (FORTRAN) COMPIL

!HELP (FORTRAN) OPTIONS

etc.

Interrupt Processing

You can interrupt processing of an activity by entering <CNTL><Y>. This
suspends the current process, and IBEX initiates interrupt mode in which you
are prompted with a double bang (!!). If you then respond by entering an IBEX
command, this command will be processed, unless processing will result in
making the interrupted activity unresumable and the PROTECT command has been
issued earlier in the job stream.

For more information, enter:

!HELP (IBEX) PROTECT

CESS-01 MODULE 4-1
IBEX Programming

Page 6S

Allocating Resources and Establishing Service Limit

The following IBEX commands allow you to -allocate resources and establish
service limits:

ACQUIRE

ORESOURCE

RELEASE

RESOURCE

LIMIT

Requests and aLlocates additional resources
for your use if available (only avaiLable online).

Establishes resources and global limits required
to run an online job.

Releases or deallocates previously allocated
resources.

Establishe~ resources and global limits required
to run a batch job (must immediately follow the
JOB command if it exists.)

Sets maximum values for various system services
required by a job.

The ACQUIRE, ORESOURCE, and RESOURCE commands are used with the Resourcelist
Component. Enter !HELP (IBEX) RESOURCE for more information.

Examples:

!ACQUIRE MT=2

indicates that two additional tape drives ai"e to be allocated to this job.

!ORESOURCE MEM=256

indicates that 256K words of memory are to be allocated for this online
session.

!RELEASE DP01,DP02

releases two disk drives identified as DP01 and DP02.

!RESOURCE DP(100MEG)=4,LP(OVERPRINT)

indicates that the current job will require four 100MEG disk packs and a line
printer with an overprint capacity.

!RESOURCE CP(BIN),MEM=4,TIME=04:20:13

indicates that the current job is to be allocated a binary card punch, 4K of
memory, and that the execution time is not to exceed 4 hours, 20 minutes, and
13 seconds.

!RESOURCE ACC(MYACCT,YOURACCT)

indicates that the packset containing the accounts MYACCT and YOURACCT is a
public packset for this job.

!RESOURCE DP#LIBSET(PUBLIC)

allocates the packset LIBSET as a PUBLIC packset for this job.

!LIMIT TIME=:05,LO=125

indicates that the current job is not to use more than 5 seconds of execution
time or produce more than 125 pages of printed output.

!LIMIT STEP,DO=50,PDIS=18,TDIS=24

CE55-01 MODULE 4-1
IBEX Programming

Page 66

indicates that this lIMIT command is to apply to the following job step only,
with these limits in effect: 50 pages of diagnostic output, 18 permanent disk
granules, and 24 temporary disk granules.

Execute Flies

An execute eXEQ) file can contain IBEX commands, run unit calls, and data. It
provides a convenient method of executing a frequently used sequence of
commands.

The XEQ command is used to initiate execution of an XEQ file. The ECHO
command controls printing of the commands in the file at your terminal or
output destination as the 'commands are processed. DONT ECHO disables ECHO.

Examples:

! X E Q, RUN JOB eST ART = 1 0 , P , , I * ' = , ')

inserts the disk file RUNJOB starting at record 10 into the command stream.
In addition, each record of the file is printed on the output destination, and
each occurrence of the string 1/*' is converted to a blank.

!XEQ FORTCOMPeTEST,COMMON=GlOBAl)

prints each record of the file FORTCOMP that is altered by the replacement
specification COMMON=GlOBAl. The file is not executed.

Batch Jobs

Batch files are used to submit jobs to the system batch queue for execution.
You can submit a batch job from a card reader, an interactive terminal, or a
running batch job.

If the job is submitted from a card reader, the command stream can be
contained in the card deck, which is converted into a job file, or the command
stream can be read from a pre-stored job file.

If the job is submitted from an interactive session, the command stream may be
contained in a pre-stored job file, or may be created from input typed at the
terminal.

A pre-stored job file may be built through EDIT, PCl, or a user program. A
record in a job file may not exceed 256 characters.

When a batch file is submitted for batch processing, it is queued, scheduled,
and executed. The system schedules jobs for execution based on priority and
resource requirements. You can influence scheduling of your job by assigning
a higher or lower priority than the one assigned by the system through
default.

You define a batch job and its priority through the JOB command, and then
submit the batch job with the BATCH command. Once a batch job is submitted,
the status of the job can be determined through the CHECK and NOTIFY commands.
The job can be cancelled through the CANCEL command.

At the time a batch job is submitted for processing, you can replace values in
selected strings and fields in the file being submitted. This data
substitution feature is described under Command Files in this module.

JOB

CE55-01

defines the beginning of a batch job, and must be
the first command in each job command stream

MODULE 4-1
IBEX Programming

Page 67

BATCH specifies one or more files that are to be submitted
for batch job execution; can include data replacement
specifications.

PRIORITY establishes the default priority for a job. The
default is utilized if a priority is not specified
on the JOB command.

Examples:

!JOB MYACCT,JOHN,MYPASSWORD ORDER,NRERUN

defines a batch job from account MYACCT, user-name JOHN with password
MYPASSWORD. Also indicates that this job is to be scheduled in the order
submitted among other jobs which specify the ORDER option in this account, and
that the job is not to be 'reinitiated automatically if the system should
crash.

!JOB MISACCT,GENERAL

defi~es a batch job from account MISACCT with user name GENERAL.

!BATCH RUNEXAMPLE(P),COBOLCOMP('YOURACCT'=MYACCT)

places the jobs RUNEXAMPLE and COBOLCOMP into the batch queue. The job
RUNEXAMPLE will have all records of its command stream displayed as they are
submitted for execution, and when the job COBOLCOMP is submitted for
execution, all occurrences of the string YOURACCT will be replaced by the
field MYACCT.

!BATCH NEWJOB

places the file NEWJOB into the batch queue for execution.

The system responds to the BATCH command by assigning each batch job a system
identification (sysid) and sending the following message for each batch job
submitted to the user's output destination:

'JOB sysid SUBMITTED current time and date'

Examples:

!CANCEL EXAMPLE

deletes the job named EXAMPLE from the batch queue.

!CANCEL 389

deletes the job with the sysid of 389.

!CANCEL 390 (OUTPUT=NO)

deletes the job with the sysid of 390, and deletes its output.

CE55-01 MODULE 4-1
IBEX Programming

Page 68

Com mend Flies

Both XEQ and batch files are command files, files that contain IBEX commands
that control execution. As such, they share the following common
characteristics and capabilities.

Data Replacement

Prior to submitting a command file for execution, you can replace existing
values with new ones through the use of the Replacement Component, which may
be used with the BATCH, XEQ, XMIT, DEFAULT, and GLOBAL commands. This can be
used to: .

• define and modify data replacement parameters for a single BATCH or XEQ
file (through the DEFAULT command).

• define and modify data replacement parameters for all BATCH and XEQ files
in the session (through the GLOBAL command).

• override DEFAULT and GLOBAL data replacements for a file by specifying
data replacement parameters as part of the BATCH or XEQ command that
submits the file.

Through data replacement parameters, you can specify which string or field is
to be changed, and what the new value is to be. Every occurrence in the file
of the specified field or string will be changed.

A field is a contiguous set of nondelimiter characters bounded on either side
by a delimiter character, or by the left or right record boundary.
Nondelimiter characters and some sample delimiter characters are:

Sample Delimiters

(

~
+ , ,
=
I

Nondelimiters

A-Z
a-z
0-9
- (hyphen)
? $ *

(underscore)

The list of nondelimiters is complete; anything else is considered a
delimiter.

A string can be part of a field, contiguous parts of two fields, or one or
more contiguous fields. A string is designated in replacement equations by
enclosing it in apostrophes.

Data replacement parameters are entered as replacement equations in BATCH,
XEQ, DEFAULT, and GLOBAL commands. The replacement equations have the same
syntax regardless of which command they appear in.

Examples:

1. Field replacement:
Command file content:
Modified command file:

2. 'String' replacement:
Command file contents:
Modified command file:

CE55-01

ABC=DEF
ABC ABC ABC ABC ABC
ABCABC DEF ABC ABC

'ABC'=DEF
ABCABC ABC ABC ABC
DEFDEF DEF DEFDEF

MODULE 4-1
IBEX Programming

Page 69

In exampLe 1, the vaLue to be repLaced is the fieLd ABC; in exampLe 2 the
vaLue to be repLaced is the string ABC.

If a string or fieLd is identified for replacement more than once, (i.e., the
field or string specified on the left-hand side of the replacement expression
is specified in more than one command) it will be modified only once in
accordance with the following three rules of precedence:

1. Within a job command stream, XEQ and BATCH command data replacement
specifications have precedence over DEFAULT and GLOBAL replacements.

2. Within a session, GLOBAL data replacement specifications have precedence
over DEFAULT replacements. Also, a later GLOBAL specification has
precedence over an earlier one.

3. Within a file, a later'DEFAULT replacement specification has precedence
over an earlier one.

Examples:

!DEFAULT abc=DEF

All subsequent occurrences of the field abc will be replaced by the field DEF.

!DEFAULT 'NOT'=NON,EQUAL=GREATER,'o'=' ,

All subsequent occurrences of the string NOT will be replaced by the field
NON, the field EQUAL will be replaced by the field GREATER, and the string 0

wiLL be repLaced by a bLank.

!DEFAULT DELETE

deLetes aLL previous DEFAULT replacement specifications.

!GLOBAL AND=OR,DO=FOR

causes the field OR to repLace the fieLd AND, and the fieLd FOR to replace the
field DO.

!GLOBAL DELETE DO

terminates substitution of the field FOR for the field DO.

CESS-01 MODULE 4-1
IBEX Programming

Page 70

IBEX Command Labels

Command labels provide you with the means· to direct branching. You can
precede most IBEX command with a label in the format:

!label: command

Note that a blank must separate the colon from the command.

The value for a label is a 1 to 31 character alphanumeric name. The following
characters are allowed (at least one character must be non-numeric):

A-Z
a-z
0-9
S II @

You direct branching to the labeled command by using a GOTO command.

!IF OK THEN GO TO SAVIT
!SAVIT: OUTPUT 'PROCEDURE OK'

If the preceding program was terminated with a MSEXIT, skip to the command
labeled SAVIT, which outputs the message 'Procedure OK'.

!IF A=B THEN GOTO ENDLBL

If variable A is equal to variable B, skip to the command labeled ENDLBL.

Command File Logic - Conditional Execution

If IBEX is reading commands from a command file (i.e., a command stream
created by an XEQ command or a batch file), the flow of control from one job
step to the next may be affected by the IF, LET, and GOTO commands.

These commands operate on the Step Condition Code (STEPCC), command variables,
and command labels, and give you the ability to conditionally modify command
stream flow.

The IF command allows you to establish the conditions for affecting a change
in the command stream flow (the IF clause) and to redirect the flow (the
object clause). The IF clause establishes a relational test which, if true,
causes the object clause that follows it to be executed.

The object clause consists of any IBEX command.

The LET command establishes values; the GOTO command branches forward or back
within the command stream, and the QUIT command terminates processing of the
command stream.

CESS-01 MODULE 4-1
IBEX Programming

Page 71

STEPCC

STEPCC is a system variable that is modified by the system each time program
processing terminates. You can also set STEPCC directly through the LET
command. STEPCC's contents reflect the nature of program termination.

STEPCC is a one-byte field in the JIT that can take on values from a to 511,
and can be set by the program using MSEXIT, MSERR, and MSXXX monitor services.
CP-6 processors use the values 0, 4, and 6 for exit control. The default
behavior of each of the exit monitor services is to set STEPCC as follows:

Monitor Service

MSEXIT
MSERR
MSXXX

Default STEPCC
Setting

a
4
6

Termination Type

Normal
Error Condition
Program Abort

Note that the STEPCC setting is under the programmer's control and can be set
to any value between a and 511 for any case.

Program Exit Method

The form of exit (MSEXIT, MSERR, or MSXXX) taken by the program at the last
job step determines the settings of the OK, ERROR, and ABORT flags. These
one-bit indicators are either on or off. The form of exit in relationship to
the indicators and the type of termination is as follows:

Monitor Service

MSEXIT
MSERR
MSXXX

Flag Setting

OK ERROR ABORT

1
a
a

a
1
a

a
a
1

Termination Type

Normal
Error Condition
Program Abort

The flag settings always refer to the type of exit chosen, independent of the
value of STEPCC. Both STEPCC and the exit flags (OK, ERROR, ABORT) may be
tested with the IF command and appropriate action taken depending on the value
or setting.
Note that these settings of STEPCC by MSEXIT, MSERR, and MSXXX are defaults
only; the exiting program may specify a different value for STEPCC for any of
these services.

STEPCC's contents can be used as part of the relational expression in an IF
clause. The relational expression that includes STEPCC can test:

1. Whether STEPCC is

Equa l to
Greater than
Greater than or equal to
Less than
Less than or equal to
Not equa l to

a command variable or a constant, or

2. Whether a command variable bears any of these relationships to STEPCC.

The object clause of the IF command will direct processing based on whether
the test is true.

CEss-a1 MODULE 4-1
IBEX Programming

Page 72

Examples:

!IF ERROR THEN QUIT

means that if the preceding program terminated with a MSERR, abort the
remainder of the job.

!IF STEPCC>VAR THEN LET STEPCC=O

If the value of STEPCC is greater than the value of the command variable VAR,
set STEPCC=O.

!LET STEPCC=A

sets STEPCC equal to the value of the command variable A.

!LET C=3

sets command variable C equal to 3.

!LET· X=STEPCC

sets command variable X equal to the current contents of STEPCC.

IBEX Expressions

STEPCC as used above is an example of the use of an IBEX expression. To
obtain more information, enter:

!HELP (IBEX) EXPRESSION COMPONENT

The expression component is a numeric or string representation that may
combine a unary modifier, a primary expression, and an operator in one
expression. The expression component may form part of the IF, LET, and OUTPUT
commands.

Examples:

!LET A='123'
!LET B=100
!LET C=A+B

Everything is stored as strings. Thus 123 is the same as '123'. Conversions
are made as required by the operation type. The final value of C is '223'.

!LET A='123'
!LET B=A I I is a string.'

This example illustrates the use of the concatenation operator. The value B
is '123 is a string.'.

!IF SOAY='TUE' THEN XEQ FlO

This example shows the use of the function SOAY. If today is Tuesday, then the
file FlO will be XEQed. This would be useful for running jobs that need only
run on specific days or dates.

!LET A=1
!LET B=2
!LET C=A & B

CESS-01 MODULE 4-1
IBEX Programming

Page 73

This exampLe shows the use of a TRUTH VALUE operator. Any NUMERIC vaLues may
be operated on by AND, OR and NOT. A numeric vaLue is considered TRUE if
greater than zero, and FALSE if zero or negative. Thus in this exampLe A and
B are TRUE and the resuLt of A & B is TRUE aLso.

!LET A=SINPUT('FULL, PARTIAL or NO SAVE tonight? F/P/N')
!IF SEOF THEN QUIT "Esc F input. Stop processing"
!IF A=" THEN GOTO NEXT II Null input. Assume N"
!IF SSUBSTR(A,O,1)='F' THEN BATCH FULL SAVE
!IF SSUBSTR(A,O,1)='P' THEN BATCH PART-SAVE
!IF SSUBSTR(A,O,1)='N' THEN GOTO NEXT -

!NEXT: "Continue processing"

The partial file above shows a fairly complex command file. This could be
XEQed by the operator to prompt for all the things to be done at the end of
the day. Note that an END-OF-FILE on the INPUT would cause SEOF to return a 1
or TRUE value. This would allow aborting of the rest of the job. A CARRIAGE
RETURN or null input could be used to choose a default. And by using
SSUBSTR(A,O,1) only the first character is checked so that F or FU or FULL
could be entered.

Expression Component - Precedence of IBEX Operators

Expressions in IBEX are evaluated from left to right with operators of the
higher precedence being performed first. The precedence may be modified by the
use of enclosing parenthesis.

OPERATION

Sfunctions
UNARY PLUS
UNARY MINUS
MULTIPLY
DIVIDE
PLUS
MINUS
CONCATENATION
EQUAL
NOT EQUAL
LESS THAN
LESS THAN OR
GREATER THAN
GREATER THAN
UNARY NOT
LOGICAL AND
LOGICAL OR

CESS-01

PRECEDENCE OPERATOR
---------- --------

9
8 +
8
7 * 7 I
6 +
6
S II or ! !
4 = or .EQ.
4 = or .NE.
4 < or .LT.

EQUAL 4 <= or .LE.
4 > or .GT.

OR EQUAL 4 >= or .GE.
3
2
1

or .NOT.
& or .AND.
I or .OR.

MODULE 4-1
IBEX Programming

Page 74

Preprocessing of Commands

The IBEX PREPROCESSOR enables you to define new commands by substitution into
normal commands. This is done by means of a preprocessor expression. A
preprocessor expression consists of a command variable which may be modified
by a unary modifier, and which may also be combined with an operator
expression to perform a variety of functions. The preprocessor expression is
defined under EXPRESSION COMPONENT in CE40, Programmer Reference Manual.

IBEX preprocessor expressions can be used with any IBEX command. Immediately
after the command is read, IBEX looks for a single X sign. This character
signals the start of a preprocessor expression. IBEX then evaluates the
expression and substitutes the result into the command variable

Please note that there are'two types of substitutions which occur in IBEX: 1)
BATCH/XEQ substitutions performed when a file is XEQed, BATCHed, or XMITed,
and 2) preprocessor substitutions performed in the online IBEX command stream.

BATCH/XEQ Substitution

When a file is XEQed, BATCHed, or XMITed, expressions may be defined by
!DEFAULT, !GLOBAL, and the replacement components of the BATCH and XEQ
commands. As the file is read, a routine makes substitutions, checks syntax
if requested (SCAN option), and prints the file (PRINT option) if requested.
The resultant file is passed to IBEX for interpretation. The !DEFAULT and
!INCLUDE directives are stripped from the file at this time. When IBEX
interprets this file, it checks to see if a bang (!) is present, and alerts
you if it is not. At this point, IBEX looks at the file for preprocessor
expressions, and the file is processed in the same manner as an online command
stream described below.

Preprocessor Substitution

For an online IBEX command stream, IBEX looks for preprocessor expressions,
and, when one is found (on IBEX commands only), the routine is called which
evaluates the expression and returns a resultant string. This string is then
inserted into the IBEX command in place of the preprocessor expression, the
resultant command is parsed by IBEX, and interpreted. Following is an example
of preprocessor substitution:

!LET CMD='DI'
!XCMD

In this example, the command variable CMD is given a value of '01'. Then the
substituted string ('01') is processed as an IBEX command. The result is that
a DISPLAY command is executed. Every subsequent occurrence of !XCMD in the
command stream will be processed as a DISPLAY command.

Another example:

!LET FID='XYZ'
!FORTRAN XFID OVER X(FIDI 1':oU')

The result is that FORTRAN compiles XYZ and creates an object unit in XYZ:OU.
Notice that in this example the expression is enclosed in parentheses. This
is necessary for expressions which have multiple elements.

!FORTRAN XSINPUT('What fid?') OVER OU (NLS)

CE55-01 MODULE 4-1
IBEX Programming

Page 75

In the above example, you are prompted with 'What fid?'. IBEX then waits for
input and substitutes this input back into the command. If your input is
'KUHENBEAKER' then the command as executed by IBEX will be:

!FORTRAN KUHENBEAKER OVER OU (NlS)

The next example shows how to use the preprocessor to abbreviate frequently
used long commands.

!LET LINK='LINK A,B,C,D OVER FRED'
!XlINK

You need only type XlINK and the contents of the variable lINK will be
inserted into the command record and then executed.

The final example shows where parentheses prevent ambiguities.

!lET FID='TEST'
!Pl6 XFID OVER X(FIDI 1':oU') (SR(.:lIB_B01),NlS)

This results in Pl6 compiling 'TEST' and creating a file 'TEST:OU'.

Your program may access preprocessor command variables via the MSCMDVAR
monitor service, and affect the execution of JCl. See CE33, Monitor Services
Manual.

Since the percent sign (X) has been reserved as a special character for IBEX,
if you actually need a percent character, you must double the percent sign
(XX) for each required character.

Examples of IBEX Command Flies

Following are some samples of command files.

Command File to Read Tape

SETUP: In the following command stream, you want to read some data from a
tape; if the data comes in without errors, you want to process it; otherwise,
you want the whole process to be terminated.

Processing the data involves compiling a program without errors, linking the
object unit into a run unit (also without errors), and then using the run unit
to process the data. You want to use command file logic to control processing
so that if either the compile or link portion have errors, the data will be
processed by the previous copy of the run unit, which is assumed to be good.

! JOB
!RESOURCE lT01(1600BPI)=1

Initiates job processing, and allocates a tape device.

!PCl
C lT01#DATA/DATA on *DATA
END

!IF ERROR THEN QUIT

CE55-01

Invokes PCl, reads the data, then terminates PCl. Note
that while the IBEX prompt (!) must appear in the command
file, the PCl prompt does not. It is provided by the PCl
processor when the file is executed.

MODULE 4-1
IBEX Programming

Page 76

If PCl was exited with a M$ERR because of a bad read,
terminate processing.

!COBOL MUNGE SlOVER MUNGE OU

Invoke the COBOL compiler.

!IF ERROR THEN GO TO MUNGE

If COBOL was exited with M$ERR because of a compilation
error, branch to the command labeled MUNGE; otherwise,
continue.

!PCl
COpy MUNGE ON *MUNGE
END

Invoke PCl and save current program; terminate PCl.

!lINK MUNGE OU OVER MUNGE
!IF OK THEN-GOTO MUNGE

Create a new MUNGE program. If lINK exited with a M$EXIT
indicating no error, branch to the command MUNGE;
otherwise, continue.

!COPY *MUNGE OVER MUNGE

Restore saved version.

!MUNGE: MUNGE *DATA

This is the command transferred to, which processes data
using MUNGE.

Command File That Interrogates User

SETUP: You would like a program to ask you some questions, then modify its
output depending upon your answer:

BEGIN ASK NAME: lET FNAME=SINPUT('Enter your first name>')
LET LNAME=SINPUT('Enter your last name>')
OUTPUT 'Then your name must be XFNAME XlNAME,'
lET QSTRING=SINPUT('True?>')
lET QSTRING=SSUBSTR(QSTRING,O,1)
IF QSTRING-='Y'&QSTRING-='y' THEN GOTO BEGIN ASK NAME
lET INITIAlS=SSUBSTR(FNAME,O,1) II'. '1ISSUBSTR(lNAME,O,1) II'.'
lET NAME = 'XFNAME XlNAME'
OUTPUT 'Do you mind if I call you XINITIAlS?'
lET QSTRING=$INPUT('O.K.?>')
LET QSTRING=SSUBSTR(QSTRING,O,1)
IF QSTRING='Y'IQSTRING='y' THEN lET NAME='XINITIAlS'
OUTPUT 'O.K. SO lONG, XNAME'

CE55-01 MODULE 4-1
IBEX Programming

Page 77

Setup File

SETUP: You want to modify a setup file to allow you to choose from several
terminaL profiles:

!BEGIN ASK: OUTPUT 'Terminal 1, 2, or 3?'
!LET ASKER=SINPUT('Which>')
!IF ASKER=1 THEN GOTO VIP PLACE
!IF ASKER=2 THEN GOTO DBL-PLACE
!IF ASKER=3 THEN GOTO TTY-PLACE
!OUTPUT 'Terminal 1 is a Honeywell VIP 7801.'
!OUTPUT 'Terminal 2 is a DIABLO 1620.'
!OUTPUT 'Terminal 3 is a Teletype 33.'
!GOTO BEGIN ASK
!VIP PLACE:-PROFILE VIP7801
!TABS 20,40,60
!END
!DBL PLACE: PROFILE DBL1620
!TABS 10,20,30,40,50
!END
!TTY PLACE: PROFILE TTY33
!TABS 5,10,20,30,40,50,60
!END

CE55-01 MODULE 4-1
IBEX Programming

Page 78

AfODULE4-2

Sample Session

This module presents a terminal session performed on the CP-6 system at LADC.
The purpose of this module is to present examples of the following:

• FORTRAN - compiling, linking, debugging, and running of a FORTRAN program.

• COBOL - compiling, linking, and running of a COBOL program.

• PL6 - compiling, linking, and batching of a PL-6 program.

• lOP - execution of an lOP source program and creation of a dictionary.

• BASIC - creation of a BASIC program, which is then compiled and executed.

In the course of this session, use of DELTA, the LEMUR processor, the SORT
processor, and TEXT are also briefly shown. All explanatory comments are
indented.

!DONT ACCEPT(ALL)

!DISPLAY
USERS = 92
ETMF = 2

The DONT ACCEPT command disables the printing of messages
from the operator.

90% RESPONSE < 50 MSECS
OCT 17 '83 15:08

!DISPLAY USER

The DISPLAY command prints the number of users, the
current CPU throughput average (ETMF), the response time,
and the date/time.

MYACCT, 433USERNAME SYSID = 48586 USER NUMBER = 62
DIRECTORY = MYACCT DISK SPACE REMAINING = 364
SETUP: !XEQ SETUPS

!EDIT
EDIT B03 HERE
*B FORT-TEST

*END

1.000
2.000
3.000 10
4.000
5.000
6.000 12
7.000
8.000

CESS-01

The DISPLAY USER command prints information about the
current user.

DOUBLE PRECISION A
READ(10,10)I,J,A
FORMAT(I3,1X,I3,/A7)
OUTPUT,I,J
WRITE(108,12)A
FORMAT(' A= ',A7)
END

MODULE 4-2
Sample Session

Page 79

!FORTRAN FORT-TEST
FORTRAN 77 VERSION
* 1.000> 1:

7.000> 7:
ERRORS FOUND

!HELP (LINK) LINK
Syntax:

The EDIT processor is entered and a FORTRAN source program
named FORT-TEST is constructed.

OVER FORT OU (OU)
COO OCT 17 183

DOUBLE PRECISION A
END

: 0 TOTAL ERRORS FOUND: 0

The FORTRAN program is compiled, with the object unit
stored as file FORT OU. No errors are discovered by the
compiler. -

{LINKILOADILYNX} fid[,fid]~ •• [tree][{ONIOVER} rununit[,listfid][(optionlist)]

The HELP command prints the syntax of the LINK command.

!LINK FORT OU ON FORT RU
* :SHARED-COMMON.:SYS (Shared Library) associated.
* No linking errors.
* Total program size = 3K.

!BUILD TESTFILE
EDIT B03 HERE

1.000 999,777
2.000 ELEAZER
3.000

!SET FS10 TESTFILE
!FORT RU.
I = 999
J = 777
A= ELEAZER

STOP

!UNDER DELTA
!FORT RU.

FORT OU is LINKed and loaded; a run unit named FORT RU is
created. The LINK processor prints an allocation summary.

Data file TESTFILE is built.

The SET command associates the data control block FS10
(defined in line 2 of FORT-TEST) with TESTFILE. The run
unit FORT RU is executed. The program reads and prints
the data Tn TESTFILE.

DELTA-B03 here IC = 4MAIN :1 [PROC)
>AT 4
>GO

The UNDER DELTA command associates the DELTA processor
with the terminal session. FORT RU is executed again;
DELTA takes control. The AT 4 dTrective sets a breakpoint
at line 4 of the FORTRAN code. The GO directive resumes
execution of FORT RU.

01 A BRK@ 4MAIN :4 [1/0]
>DISPLAY I
I = 999
>DISPLAY J
J = 777
>LET J 555
>GO

CE55-01

Execution halts at line 4. The variables I and J are
displayed, and variable J is altered.

MODULE 4-2
Sample Session

Page 80

I = 999
J = 555
A= ELEAZER

STOP
MSEXIT ~ XPM_1EXIT_+.17
>END

!LEMUR
LEMUR B03 here

GO resumes execution of FORT RU. The altered data is
printed. DELTA takes control at the end of execution and
the END directive exits the DELTA processor.

*COPY FORT OU TO MY LIBRARY
••• COPYing

*LIST MY LIBRARY
DBG SEV COMPILER LEMUR TIME COMPILE TIME OBJECT UNIT NAME

Y 0 FORT COO 15:10 OCT 17 '83 15:06 OCT 17 '83 4MAIN
*END

!EDIT
EDIT B03 HERE
*B COBOL-TEST

1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000
11.000
12.000
13.000
14.000
15.000
16.000
17.000
18.000
19.000
20.000
21.000
22.000
23.000
24.000
25.000
26.000
27.000
28.000
29.000
30.000
31.000
32.000
33.000
34.000

CE55-01

The LEMUR processor is entered. The COpy command creates
a library file MY LIBRARY. The LIST command prints
information about-MY_LIBRARY.

IDENTIFICATION DIVISION.
PROGRAM-ID.

*COBOLTEST.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. LEVEL-66-ASCII.
OBJECT-COMPUTER. LEVEL-66-ASCII.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT PRINT-FILE
ASSIGN TO PRINTER.
SELECT INPUT-FILE
ASSIGN TO DISK.
DATA DIVISION.
FILE SECTION.
FD PRINT-FILE

LABEL RECORDS ARE OMITTED.
01 PRINT-RECORD PIC X(132).
FD INPUT-FILE

LABEL RECORDS ARE OMITTED.
01 INPUT-RECORD PIC X(132).
WORKING-STORAGE SECTION.
01 MORE-INPUT PIC 9 VALUE 1
01 TRUE PIC 9 VALUE 1.
01 FALSE PIC 9 VALUE O.
PROCEDURE DIVISION.

PERFORM OPEN-FILES.
PERFORM READ-WRITE-FILE UNTIL MORE-INPUT = FALSE.
PERFORM CLOSE-FILES.
STOP RUN.

OPEN-FILES.
OPEN INPUT INPUT-FILE.
OPEN OUTPUT PRINT-FILE.

READ-WRITE-FILE.

MODULE 4-2 Page 81
Sample Session

35.000
36.000
37.000
38.000
39.000
40.000
41.000
42.000
43.000

*END

MOVE SPACES TO INPUT-RECORD.
READ INPUT-FILE

AT END MOVE FALSE TO MORE-INPUT.
IF MORE-INPUT = TRU~

MOVE INPUT-RECORD TO PRINT-RECORD
WRITE PRINT-RECORD.

CLOSE-FILES.
CLOSE INPUT-FILE, PRINT-FILE.

A COBOL source program named COBOL-TEST is built.

!COBOL COBOL-TEST ON COBOL_OU(NLS,NLO)

00082985 06/17/83 09:13 HI~I SERIES 60 LEVEL 66 COBOL CB4.2U2 BOS 2U2 BOS

ESN ISN C TEXT

24.000 24 01 TRUE PIC 9 VALUE 1.
1

*** 1 3-35 AN UNRECOGNIZABLE DATA ATTRIBUTE IS ENCOUNTERED, OR
PERIOD IS MISSING.

THERE WERE 42 SOURCE INPUT LINES.
THERE WERE 1 FATAL MESSAGES.

COBOL-TEST is compiled, but a diagnostic message indicates
the presence of an error.

!EDIT
EDIT B03 HERE
*E COBOL-TEST
*TY 23-25

23.000 01 MORE-INPUT PIC 9 VALUE 1
24.000 01 TRUE PIC 9 VALUE 1 •
25.000 01 FALSE PIC 9 VALUE O.

*RR 23
23.000 01 MORE-INPUT PIC 9 VALUE 1 •

*END

A period is missing in line 23. The RR command is used to
correct the error.

!COBOL COBOL-TEST OVER COBOL_OU(NLS,NLO)

THERE WERE 42 SOURCE INPUT LINES.
THERE WERE NO DIAGNOSTICS.

COBOL-TEST is compiled successfully; the object unit is
named COBOL OU.

!SET INPUT-FILE TESTFILE
!SET PRINT-FILE ME

The data control block INPUT-FILE is set to TESTFILE;
PRINT-FILE is set to the terminal (ME).

!RUN COBOL OU OVER COBOL RU
* :SHARED-COBOL.:SYS (Shared Library) associated.
* No linking errors.
* Total program size = 8K.

999,777
ELEAZER

CESS-01 MODULE 4-2
Sample Session

Page 82

The RUN command causes two events: COBOL OU is linked into
run unit COBOL RU, and COBOL RU is executed. The data
from TESTFIlE is read and printed.

!EDIT
EDIT B03 HERE
*B Pl6-TEST

1.000 RW: PROC MAIN;
2.000 XINClUDE CP_6;
3.000 XFSDCB;
4.000 DCl MSSI DCB;
5.000 DCl MSlO DCB;
6.000 DCl BUFFER CHAR(80) STATIC;
7.000 XFPT READ (FPTN=READBUFFER,BUF=BUFFER,DCB=MSSI);
8.000 XFPT-WRITE (FPTN=WRITEBUFFER,BUF=BUFFER,DCB=MSlO);
9.000 DO WHIlE('1'B); .

10.000 CAll MSREAD(READBUFFER)AlTRET(BYEBYE);
11.000 WRITEBUFFER.BUF .BOUND=DCBADDR(DCBNUM(MSSI»->FSDCB.ARS#-1;
12.000 CAll MSWRITE(WRITEBUFFER);
13.000 END;
14.000 BYEBYE:;
15.000 CAll MSEXIT;
16.000 END RW;
17.000

A Pl6 program named Pl6-TEST is built.

*B Pl6-JOB
1.000 !JOB NAME=Pl6JOB
2.000 !RESOURCE TIME=2,MEM=80
3.000 !Pl6 Pl6-TEST OVER Pl6 OU(NlS,NlO)
4.000 !lINK Pl6 OU OVER Pl6 RU
5.000 SET MSSI TESTFIlE -
6.000 !Pl6 RU.
7.000

*SE5;1P/!/;TX
5.000 !SET MSSI TESTFIlE

* 1 strings changed
*END

A file consisting of IBEX commands and named Pl6-JOB is
built and edited.

!BATCH Pl6-JOB
Job 48671 submitted.
!CHECK
48671 Pl6JOB.MYACCT running 0:06/1:56
!CHECK 48671
48671-1 Pl6JOB.MYACCT completed successfully at 15:21 06/16/83
!TIME

OCT 17 '83 15:32

The BATCH command submits Pl6-JOB to the batch queue. The
batch job is named Pl6JOB and has the system
identification 48671. The first CHECK indicates that the
job is running. The second CHECK (using for variation the
id 48671) indicates that the job is now printing. TIME
displays the current date/time.

CE55-01 MODULE 4-2
Sample Session

Page 83

!EDIT
EDIT B03 HERE
*B lOP-TEST

1.000 DICT.
2.000 CREATE ENTRY FISH.
3.000 CREATE FIELD ONLYFIELD
4.000 FIRST BYTE = 1
5.000 LENGTH = 7
6.000 TYPE = CHARACTER.
7.000 END DICT.
8.000 QUERY FILE TESTFILE USE FISH.
9.000 DISPLAY ONLYFIELO.

10.000 RETRIEVE.
11.000 END.
12.000

*ENO

An IDP source program named IDP-TEST is built.

!IOP IDP-TEST
IDP 803 Here
:DICT.
Dict:CREATE ENTRY FISH.
Dict:CREATE FIELD ONLYFIELD
Create>FIRST BYTE = 1
Create>LENGTH = 7
Create>TYPE = CHARACTER.
Dict:END DICT.
:QUERY FILE TESTFILE USE FISH.
:DISPLAY ONLYFIELD.
:RETRIEVE.
ONLYFIELD

999,777
ELEAZER

*** Report Statistics for Display Number ***

File Name: TESTFILE.MYACCT
Number of Records Read
Number of Records Selected

:END.

2
2

IDP-TEST is executed. The data from TESTFILE is read and
printed. During this process, the dictionary file DICT is
created.

!BASIC
BASIC C02 HERE

>AUTO
10 OPEN tlTESTFILE" TO 1,INPUT
20 INPUTN1,X,Y,CS
30 PRINT X
40 B=7
50 FOR A = 1 TO 7
60 PRINT TAB(A*2);SSTS(CS,1,B)
70 B = B -1
80 NEXT A
90 FOR A = 8 TO 1 STEP -1
100 PRINT TAB(A*2);SSTS(CS,1,B)
110 B = B + 1
120 NEXT A
130 PRINT Y
140 CLOSE 1
150 END
160

CESS-01 MODULE 4-2
Sample Session

Page 84

>RUN
999
ELEAZER

ELEAZE
ELEAZ

ELEA
ELE

EL
E

E
EL

ELE
ELEA

ELEAZ
ELEAZE

ELEAZER
777'

HALT AT LINE 150

>SAVE BASIC-TEST
BASIC-TEST SAVED
>SYS

!BUILD TESTSORT1
EDIT B03 HERE

1.000 ELEAZER
2.000 LEAZERE
3.000 EAZEREL
4.000 AZERELE
5.000 ZERELEA
6.000 ERELEAZ
7.000 RELEAZE
8.000 ELEAZER
9.000

The BASIC processor ;s entered. AUTO causes prompting of
line numbers. A BASIC program is built.

The RUN command compiles and executes the program.

The program is stored under the name BASIC-TEST.

A data file called TESTSORT1 is constructed.

!SET FSSORTIN TESTSORT1
!SET FSSCRF1 TEMP,ORG=RANDOM,IXTNSIZ=30
!SET FSSORTOUT ME

The data control blocks for the SORT processor are set.

!SORT
* SORT STARTS B06
*REC INLEN=7
*KEY START=1,LEN=3
*END

AZERELE
EAZEREL
ELEAZER
ELEAZER
ERELEAZ
LEAZERE
RELEAZE
ZERELEA

CE55-01

OCT 17 '83 15:43:29.12

MODULE 4-2
Sample Session

Page 85

* SORT STOPS B06 OCT 17 183 15:44:02.37

The SORT processor is entered. The length of the input
records, the start and length of the SORT keys are
specified. The fiLe TESTSORT1 is read, and its contents
sorted and printed aLphabeticaLLy.

!BUIlD TEXT-TEST
EDIT B03 HERE

1 .000 • POW 25
2.000 .PDl 14
3.000 .FBB
4.000 IIPage=XPageNoXI I
5.000 .FBE
6.000 .VM 0,0,0,2
7.000 ECHO prints IBEX'commands contained in a command file as
8.000 they are read from the command
9.000 stream. If the

10.000 ECHO
11.000 command
12.000 is
13.000 not
14.000 issued,
15.000 this
16.000 echoing of commands
17.000 read from a
18.000 command fiLe
19.000 does
20.000 not
21.000 occur.
22.000'

A file named TEXT-TEST is built. It contains TEXT control
words and textual data.

!TEXT TEXT-TEST
TEXT C01

ECHO prints IBEX commands
contained in a command
file as they are read
from the command stream.
If the ECHO command is
not issued, this echoing
of commands read from a
command file does not
occur.

Page=1

The TEXT processor is invoked to format and print the file
TEXT-TEST.

!PCl
PCl B03 here
<HELP lIST
Syntax:
l[IST][(listopt)] [sourcelist [{TOIONloVERIINTO} destination][FROM fid]

CESS-01

The PCl processor is entered. The HELP command requests
information about the lIST command.

MODULE 4-2
Sample Session

Page 86

<LIST (A) '?TEST'?,'? '? -ORG TY GRAN NGAV REC LAST MODIFIED NAME
KEY SB 1 0 16 15:37 OCT 17 '83 BASIC-TEST
KEY SE 1 0 42 14:30 OCT 17 '-83 COBOL-TEST
KEY SE 1 0 7 15:08 OCT 17 '83 FORT-TEST
KEY SE 1 0 12 15:33 OCT 17 '83 IDP-TEST
KEY SE 1 0 17 15: 13 OCT 17 '83 PL6-TEST
KEY SE 1 0 2 15:35 OCT 17 '83 TESTFILE
KEY SE 1 0 8 15:42 OCT 17 '83 TESTSORT1
KEY SE 1 0 22 11:00 OCT 14 '83 TEXT-TEST
KEY 01 2 0 31 15: 11 OCT 17 '83 COBOL OU
KEY R 12 0 19 15:12 OCT 17 '83 COBOL RU
KEY OF 1 0 20 15:09 OCT 17 '83 FORT QU
KEY R 10 0 13 15:09 OCT 17 '83 FORT-RU
KEY LE 1 0 21 14:29 OCT 17 '83 MY L.IBRARY
KEY 06 1 0 17' 15:21 OCT 17 '83 PL6 OU

14 files, 38 granules listed

The files created during this session are listed with
their attributes.

<DELETE '?TEST'?,'? '?
DELETE '?TEST'?MyACCT ,?YESS
BASIC-TEST COBOL-TEST FORT-TEST IDP-TEST PL6-TEST TESTFILE
TESTSORT1 TEXT-TEST
DELETE'? ,?MYACCT ,?YESS
COBOL OU- COBOL RU FORT OU FORT RU MY LIBRARY PL6 OU

14 files, -38 granules deleted
<END

The DELETE command erases the files created during this
session.

!OFF FULL

15:46:38 OCT
SUBMITTED
STARTED
ELAPSED

17 '83 MYACCT,433USERNAME
15:05:56 OCT 17 '83
15:05:56 OCT 17 '83

40:41.93
PERMANENT DISK USED
PEAK TEMPORARY DISK
PEAK MEMORY
RESOURCE MEMORY REQUIRED
CPU TIME USED

PROC EXEC TIME
USER EXEC TIME
PROC SERVICE TIME
USER SERVICE TIME

CONNECT TIME
TERMINAL INTERACTIONS
JOB STEPS
PMMES ISSUED
PROC MEMORY USED
USER MEMORY USED
TEMP DISK USED
DISK ACCESSES

TOTAL CHARGE = 4.01

-3
111
126
126

0:36.00
0:05.65 @
0:00.03 @
0:29.74 @
0:00.58 @

40:41.93 @
121 @

38 @

4217 @
6.92 @

.10 @

529.01 @
3251 @

@UPSTAIRS

STEP

STEP CONDITION CODE
END STATUS: NORMAL

.8250/min

.8250/min

.8250/min

.8250/min

.0200/min

.0100/tinter

.OOOO/step

.OOOO/pmme

.0045/pg-min

.0045/pg-min

.OOOO/pg-min

.0004/access

ID= 81426

38

o

.08

.41

.01

.81
1 .21

.03

1.46

4.01

The session ends; a complete accounting of the session is
printed. The RESOURCE MEMORY REQUIRED field is an
indication of how much memory to appropriate when the job
is run in the future.

CE55-01 MODULE 4-2
Sample Session

Page 87

AfODULE4-3

FPL: Compiling. Linking. Debugging

SETUP: A programmer has created a Forms Program using the Forms Programming
Language (FPL). The source program is a file built via the EDIT processor.
The Forms Program must be compiled and linked on the CP-6 host system; it can
then be loaded into a front-end processor and tested in coordination with a
Transaction Processing (TP) application program operating in the CP-6 host.

First, invoke the FPL compiler for the source program FORM:S to produce an
object unit as a temporary file, *OU. The source program includes a COpy
statement that names a file PO-STATE-CODES already existing in the same
account from which the compilation is requested.

!FPL FORM:S
1
2
3
4
5
6
7
8
9

Error

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

CE55-01

OVER *OU
1.000 IDENTIFICATION DIVISION.
2.000 *---------------------
3.000 PROGRAM-ID. FORM:CDA.
4.000
5.000 ENVIRONMENT DIVISION.
6.000 *---------------------
7.000 CONFIGURATION SECTION.
8.000 *----------------------
9.000 SPECIAL-NAMES

9.000 Required period is missing (in the vicinity of
'SPECIAL-NAMES').

10.000
11 .000
12.000
13.000
14.000
15.000
16.000
17.000
18.000
19.000
20.000
21.000
22.000
23.000
24.000
25.000
26.000
27.000
28.000
29.000
30.000
31.000
32.000
33.000
34.000
35.000
36.000
37.000
38.000
39.000

*--------------
ALPHABET ALPHA-UPPER-LOWER IS

"A" THRU "Z", "a" THRU "z", " "

INPUT-OUTPUT SECTION.
*---------------------

FILE-CONTROL.
*-------------

SELECT XACTION

SELECT ENTRY-SCREEN

ASSIGN TO COMMUNICATIONS
TYPE IS XACTION-TRANTYPE.
ASSIGN TO TERMINAL-IO.

DATA DIVISION.
*--------------

FILE SECTION.
*-------------

FD XACTION.
*------------

01 TRANSACTION-RECORD.
02 FUNCTION PIC XXX FIELD F-FUNC

LEGAL ARE "ADD", "DIS", "END"
ERROR-MESSAGE "*Invalid Function".

02 ERRCODE PIC 9(5).
88 ACCOUNT-EXISTS VALUE O.
88 ADD-WAS-SUCCESSFUL VALUE O.

02 ACCOUNT-NUMBER PIC 9(9) FIELD F-ACCT.
02 CUSTOMER-NAME PIC X(30) FIELD F-NAME.
02 STREET-ADDRESS PIC X(30) FIELD F-STRT.

MODULE 4-3 Page 88
FPL: Compiling, Linking, Debugging

40 40.000 02 CITY PIC X(30) FIELD F-CITY.
41 41.000 02 STATE PIC XX FIELD F-STATE
42 42.000 LEGAL ARE POST-OFFICE-STATE-CODES
43 43.000 ERROR-MESSAGE IS "*Invalid U.S. state code".
44 44.000 02 ZIPCODE PIC 9(5) FIELD F-ZIP.
45 45.000
46 46.000 FD ENTRY-SCREEN
47 47.000 *-------------~--
48 48.000 FRAMES ARE TITLES, DATA-ENTRIES.
49 49.000
50 50.000 WORKING-STORAGE SECTION.
51 51.000 *------------------------
52 52.000 01 XACTION-TRANTYPE PIC X(8) VALUE "EX1APPL".
53 53.000
54 54.000 COPY PO-STATE-CODES.
55 1.000+ 01 . OFFICIAL-POST-OFFICE-CODES.
56 2.000+ 02 P-O-CODES.
57 3.000+ 03 ALABAMA PIC XX VALUE "AL".
58 4.000+ 03 ALASKA PIC XX VALUE "AK".
59 5.000+ 03 ARIZONA PIC XX VALUE "AZ".
60 6.000+ 03 ARKANSAS PIC XX VALUE "AR".
61 7.000+ 03 CALIFORNIA PIC XX VALUE "CA".
62 8.000+ 03 COLORADO PIC XX VALUE "CO".
63 9.000+ 03 CONNECTICUT PIC XX VALUE "CT".
64 10.000+ 03 DELAWARE PIC XX VALUE "DE".
65 11.000+ 03 DISTRICT-OF-COLUMBIA PIC XX VALUE "DC".
66 12.000+ 03 FLORIDA PIC XX VALUE "FL".
67 13.000+ 03 GEORGIA PIC XX VALUE "GA".
68 14.000+ 03 HAWAII PIC XX VALUE "HI".
69 15.000+ 03 IDAHO PIC XX VALUE "10".
70 16.000+ 03 ILLINOIS PIC XX VALUE "IL".
71 17.000+ 03 INDIANA PIC XX VALUE "IN".
72 18.000+ 03 IOWA PIC XX VALUE "IA".
73 19.000+ 03 KANSAS PIC XX VALUE "KS".
74 20.000+ 03 KENTUCKY PIC XX VALUE "KY".
75 21.000+ 03 LOUISIANA PIC XX VALUE "LA".
76 22.000+ 03 MAINE PIC XX VALUE "ME".
77 23.000+ 03 MARYLAND PIC XX VALUE "MD".
78 24.000+ 03 MASSACHUSETTS PIC XX VALUE "MA".
79 25.000+ 03 MICHIGAN PIC XX VALUE "MI".
80 26.000+ 03 MINNESOTA PIC XX VALUE "MN".
81 27.000+ 03 MISSISSIPPI PIC XX VALUE "MS".
82 28.000+ 03 MISSOURI PIC XX VALUE "MO".
83 29.000+ 03 MONTANA PIC XX VALUE "MT".
84 30.000+ 03 NEBRASKA PIC XX VALUE "NE".
85 31.000+ 03 NEVADA PIC XX VALUE "NV".
86 32.000+ 03 NEW-HAMPSHIRE PIC XX VALUE "NH".
87 33.000+ 03 NEW-JERSEY PIC XX VALUE "NJ".
88 34.000+ 03 NEW-MEXICO PIC XX VALUE "NM".
89 35.000+ 03 NEW-YORK PIC XX VALUE "NY".
90 36.000+ 03 NORTH-CAROLINA PIC XX VALUE "NC".
91 37.000+ 03 NORTH-DAKOTA PIC XX VALUE "NO".
92 38.000+ 03 OHIO PIC XX VALUE "OH".
93 39.000+ 03 OKLAHOMA PIC XX VALUE "OK".
94 40.000+ 03 OREGON PIC XX VALUE "OR".
95 41.000+ 03 PENNSYLVANIA PIC XX VALUE "PA".
96 42.000+ 03 RHODE-ISLAND PIC XX VALUE "RI".
97 43.000+ 03 SOUTH-CAROLINA PIC XX VALUE "SC".
98 44.000+ 03 SOUTH-DAKOTA PIC XX VALUE "SO".
99 45.000+ 03 TENNESSEE PIC XX VALUE "TN".
100 46.000+ 03 TEXAS PIC XX VALUE "TX".
101 47.000+ 03 UTAH PIC XX VALUE "UT".
102 48.000+ 03 VERMONT PIC XX VALUE "VT".
103 49.000+ 03 VIRGINIA PIC XX VALUE "VA".
104 50.000+ 03 WASHINGTON PIC XX VALUE "WAil.
105 51.000+ 03 WEST-VIRGINIA PIC XX VALUE "WV".
106 52.000+ 03 WISCONSIN PIC XX VALUE "WI".

CE55-01 MODULE 4-3 Page 89
FPL: CompiLing, Linking, Debugging

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

CE55-01

53.000+
54.000+
55.000+
56.000+
57.000+
55.000
56.000
57.000
58.000
59.000
60.000
61.000
62.000
63.000
64.000
65.000
66.000
67.000
68.000
69.000
70.000
71.000
72.000
73.000
74.000
75.000
76.000
77.000
78.000
79.000
80.000
81.000
82.000
83.000
84.000
85.000
86.000
87.000
88.000
89.000
90.000
91.000
92.000
93.000
94.000
95.000
96.000
97.000
98.000
99.000

100.000
101.000
102.000
103.000
104.000
105.000
106.000
107.000
108.000
109.000
110.000
111 .000
112.000
113.000
114.000
115.000
116~OOO

03 WYOMING
03 BLANKS

02 POST-OFFICE-STATE-CODES

FRAME SECTION.

PIC XX VALUE "WY".
PIC XX VALUE SPACES.
REDEFINES P-O-CODES
OCCURS 52 TIMES
PIC XX.

*--------------
FR TITLES.

*-----------
01 TITLES-RECORD OUTPUT.

02 F-T1 PIC X(16) POSITION 8, 32
CONSTANT VALUE "Example Number 1".

02 F-T2 PIC X(9) POSITION 10, 23
CONSTANT VALUE "Function:".

. 02 F-T3 PIC X(15) POSITION 10, 38
CONSTANT VALUE "Account Number:".

02 F-T4 PIC X(14) POSITION 12, 18
CONSTANT VALUE "Customer Name:".

02 F-T5 PIC X(15) POSITION 13, 17
CONSTANT VALUE "Street Address:".

02 F-T6 PIC X(5) POSITION 14, 27
CONSTANT VALUE "City:".

02 F-T7 PIC X(11) POSITION 15, 21
CONSTANT VALUE "State Code:".

02 F-T8 PIC X(9) POSITION 16, 23
CONSTANT VALUE "Zip Code:".

FR DATA-ENTRIES.
*-----------------

I

01 F-FUNC-RECORD 1-0.
02 F-FUNC PIC XXX POSITION 10, 33

ENTRY-REQUIRED.
02 F-ACCT PIC 9(9) POSITION 10, 54

PROMPT IS "Please enter an account number".

01 F-CUSTOMER-RECORD
02 F-NAME

02 F-STRT

02 F-CITY

02 F-STATE

02 F-ZIP

PROCEDURE DIVISION.

1-0.
PIC X(30) POSITION 12, 33
ENTRY-REQUIRED
CLASS ALPHA-UPPER-LOWER.
PIC X(30) POSITION 13, 33
DEFAULT VALUE SPACES.
PIC X(30) POSITION 14, 33
DEFAULT VALUE SPACES.
PIC XX POSITION 15, 33
DEFAULT VALUE SPACES.
PIC 9(5) POSITION 16, 33
MINIMUM SIZE IS 5
DEFAULT VALUE ZEROES.

*-------------------
MAINLINE.

*---------
OPEN 1-0 XACTION, ENTRY-SCREEN.
ACTIVATE TITLES, DATA-ENTRIES.
DISABLE INPUT FOR ENTRY-SCREEN.
WRITE TITLES-RECORD.
PERFORM 100-CONTROL THRU 199-END-CONTROL

UNTIL FUNCTION = "END".
CLOSE XACTION, ENTRY-SCREEN.
STOP RUN.

I
100-CONTROL.

*------------
CLEAR 1-0 FOR ENTRY-SCREEN.
PERFORM 200-GET-FUNCTION-AND-ACCOUNT THRU 299-EXIT.

MODULE 4-3 Page 90
FPL: Compiling, Linking, Debugging

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

117.000
118.000
119.000
120.000
121 .000
122.000
123 .. 000
124.000
125.000
126.000
127.000
128.000
129.000
130.000
131.000
132.000
133.000
134.000
135.000
136.000
137.000
138.000
139.000
140.000
141.000
142.000
143.000
144.000
145.000
146.000
147.000
148.000
149.000
150.000
151.000
152.000
153.000
154.000
155.000
156.000
157.000
158.000
159.000
160.000
161.000
162.000
163.000
164.000
165.000
166.000
167.000
168.000
169.000
170.000
171.000
172.000
173.000
174.000
175.000
176.000
177.000
178.000
179.000

Errors: 1
Procedure size: 03B6
Data size: 019D

CESS-01

IF FUNCTION = "ADD"
PERFORM 300-ADD-FUNCTION THRU 399-END-ADD
GO TO 199-END-CONTROL.

IFF UN C T ION =. " DIS"
PERFORM 400-DISPLAY-FUNCTION.

199-END-CONTROL.
*----------------

EXIT.

200-GET-FUNCTION-AND-ACCOUNT.
*-----------------------------

ENABLE INPUT F-FUNC, F-ACCT.
READ ENTRY-SCREEN.
VERIFY FUNCTION.
DISABLE INPUT F-FUNC •

. IF FUNCTION = "END"
GO TO 299-EXIT.

210-VERIFY-ACCOUNT.
*-------------------

IF F-ACCT IS AVAILABLE
VERIFY ACCOUNT-NUMBER
DISABLE INPUT F-ACCT

ELSE
ACCEPT F-ACCT
GO TO 210-VERIFY-ACCOUNT.

299-EXIT.
*---------

EXIT.

300-ADD-FUNCTION.
*-----------------

MOVE "CHK" TO FUNCTION.
WRITE TRANSACTION-RECORD.
READ XACTION.
IF ACCOUNT-EXISTS

STOP "That account already exists!"
GO TO 399-END-ADD.

MOVE "ADD" TO FUNCTION.
ENABLE INPUT F-CUSTOMER-RECORD.
READ ENTRY-SCREEN; INVALID GO TO 399-END-ADD.
VERIFY TRANSACTION-RECORD.
DISABLE INPUT FOR F-CUSTOMER-RECORD.
WRITE TRANSACTION-RECORD.
READ XACTION.
IF ADD-WAS-SUCCESSFUL

STOP "The account has been added"
ELSE

STOP "Sorry, that account exists!".
399-END-ADD.

*------------
EXIT.

400-DISPLAY-FUNCTION.
*---------------------

WRITE TRANSACTION-RECORD.
READ XACTION.
IF ACCOUNT-EXISTS

PRESENT TRANSACTION-RECORD
WRITE F-CUSTOMER-RECORD
STOP "Hit TRANSMIT to continue"

ELSE
STOP "That account does not exist".

MODULE 4-3 Page 91
FPL: Compiling, Linking, Debugging

!EDIT FORM:S
EDIT B03 HERE
*TY9

9.000
*RR9

9.000
*END

*E
!EDIT
EDIT B03 HERE
*BUILD FPL JOB

1.000 TJOB

In the above compilation, a single error has been detected
by the FPL compiler. To correct the error, reinvoke the
EDIT processor for the source file (FORM:S). The
diagnostic message from the compiler indicates a missing
period, which can be added using the RR command to reread
the record that contains the error.

SPECIAL-NAMES

SPECIAL-NAMES.

At some sites, policy may require that all compilations be
performed in batch mode. To do this, invoke EDIT and
BUILD a job file. This file requests the FPL compilation;
it also invokes FEPLINK to process the object unit file
(temporary file *OU) and to produce the executable
interpretation unit called FORM:IU. The interpretation
unit can be loaded into a front-end processor and executed
under control of the Forms Interpreter.

2.000 !FPL FORM:S OVER *OU
3.000 !FEPLINK *OU OVER FORM:IU
4.000

*END
!BATCH FPL JOB
27429 .RPACCT running 0:00/0:00

!CHECK 27429

Some time later, check the status of the batch compilation
for completion using the CHECK command.

27429-1 .RPACCT completed successfully at 13:08 09/08/83

This message indicates that both the FPL compilation and
FEPLINK occurred without error.

The testing of the Forms Program must be coordinated with the application
program operating on the CP-6 host. The administrator responsible for
operation of the Forms Program in production mode must prepare for testing (as
described in the TP Administrator Guide, CE50). Assuming that these
preparations are made, the Forms Program can be loaded into the front-end
processor on request from an authorized user logged on to a separate terminal.
Typically the programmer operates the two terminals used in debugging.

At the terminal that is to communicate with the Forms Program, log on and
enter the command:

DEBUG CDA

where CDA is the type associated with the Forms Program FORM:IU. Meanwhile
via the programmer's terminal, invoke the debugger for Forms Programs, FOX, on
behalf of the station that called the Forms Program.

CE55-01 MODULE 4-3 Page 92
FPL: Compiling, Linking, Debugging

!FOX
FOX B02
>DEBUG RLP ON TP/RLPINST USING FORM:IU
FOX B02 HERE IC = FORM:CDA :157 [ENTRY]

>AT 174

>GO

FOX identifies itseLf, the Forms Program by PROGRAM-ID
(FORM:CDA), and the entry point into the program according
to the debug schema (at 157 which is source line number
100, the start of the PROCEDURE DIVISION). FOX then waits
for entry of a directive from the programmer=

Using the AT directive, set a breakpoint at 174, the
number assigned in the debug schema to the source Line
number 117.

Request program execution by entering the directive GO.
(At the terminaL running the Forms Program, enter the data
requested. InitiaLLy, enter DIS and an account number to
request dispLay of that account information.)

01 BRK @ FORM:CDA :174 [IF]

>DISPLAY FUNCTION
FUNCTION = 'DIS'

>]
FORM:CDA :177 [IF]
>]

Execution stops at the specified breakpoint, aLLowing the
programmer to enter the DISPLAY directive to examine the
contents of the item caLLed FUNCTION.

To request execution of statements in the program,
statement-by-statement, enter the symboL].

FORM:CDA :178 [PERFORM]
>]
FORM:CDA
>]
FORM:CDA
>]
FORM:CDA

:229

:230

:231

[I/O]

[I/O]

[IF]

Instead of continuing step by step execution, dispLay the
item caLled CUSTOMER-NAME, then change the contents of
that field via the LET directive.

>DIS CUSTOMER-NAME
CUSTOMER-NAME = 'MIKE ROESECOND
>LET CUSTOMER-NAME 'RICHARD PETKIEWICZ'
>DIS CUSTOMER-NAME
CUSTOMER-NAME = 'RICHARD PETKIEWICZ

>GO

Resume program execution by entering the GO directive.

To interrupt execution, press the BREAK key (or press ESC,
then B). This action stops execution and identifies the
point of interruption.

BREAK @ FORM:CDA :220 [STOP]

CE55-01 MODULE 4-3 Page 93
FPL: Compiling, Linking, Debugging

>SHOW ATS

Display any currently assigned breakpoints via the SHOW
directive.

01 FORM:CDA :174 [IF]

KILL ATS
>AT 174;DIS FUNCTION
>G

The only breakpoint (at 174) is deleted via KILL ATS and
repLaced by a breakpoint at the same point that aLso
incLudes an attachment (the DISPLAY directive). Then
resume execution by entering G for GO. (From the terminaL
running the Forms Program, request the function ADD and an
account number.)

01 BRK @ FORM:CDA :174 [IF]
FUNCTION = 'ADD'

>]
FORM:CDA
>]
FORM:CDA
>]
FORM:CDA
>]
FORM:CDA
>]
FORM:CDA
>]
FORM:CDA
>]
FORM:CDA

>KILL ATS
>SHOW

: 175

:206

:207

:208

:209

:210

:211

At the breakpoint, the contents of FUNCTION is dispLayed
as requested by the attachment. Then] is entered to
request statement by statement execution.

[PERFORM]

[ASSIGNMENT]

[I/O]

[I/O]

[IF]

[STOP]

[GOTO]

CanceL via the KILL directive any breakpoints, then use
the SHOW directive to verify that the KILL took effect.
Proceed with execution by entering GO.

No such breakpoint(s)
>GO

Press the BREAK key and dispLay FUNCTION; then exit FOX by
entering the END directive.

BREAK @ FORM:CDA :214 [I/O]
>DIS FUNCTION
FUNCTION = 'ADD'
>END

CE55-01 MODULE 4-3 Page 94
FPL: CompiLing, Linking, Debugging

AfODULE4-4

Using LINK O"erlays

This module discusses LINK overlay programs and provides several examples of
using overlay programs in the CP-6 system.

Overlay programs are used to reduce memory requirements for a program by
constructing the run unit so that the program can execute with only a part of
the program image in memory. Some of the nonresident portions are defined to
overlay other parts of the program image.

The following figure shows the main memory layout of an overlay program:

ROOT
NODE

+-----------+
I D I
+-----------+
I

+------------+ I
I B I OVERLAYS
+------------+ I
I I v
I I +---------+
I I I E I

+-------+ I +---------+
I A I OVERLA YS
+-------+ I

I I +---------+
I I I F I
I I +---------+
I v I
+---------+
I C I
+---------+

I
I

I
I

OVERLAYS
I
v

+-----------+
I G I
+-----------+

Each box represents a portion or node of the program. Each node is stored as
a separate entity within the run unit file. Memory allocation extends
horizontally from left to right. In the sample overlay program, Band C
overlay each other, D and E overlay each other, and F and G overlay each
other.

For program overlays, the LINK processor constructs two different structures:
one for data (with read/write/execute access), and one for procedure (with
read/execute access) as illustrated below:

CESS-01 MODULE 4-4
Using LINK Overlays

Page 9S

DATA STRUCTURE

+-------+
D

+-------+
+---+
I B I +---+

+----+
I A I
+----+

I
I
I

+------+
I E I
+------+

+---------+
I F
+---------+ +---+

I C I +---+
I
I +--------+
I G
+--------+

PROCEDURE STRUCTURE

+------------+
I D
+------------+
I

+------------+
I B I
+------------+
I
I
I

I
+----------+
I E I

--------+ +----------+
A I

--------+

PA E
BOUNDARY

I
I
I

+-----------+
I F I
+-----------+ +---------+

I C I
+---------+

I
I
+------------+
I G I
+------------+

The data structure is allocated first; the procedure structure is allocated
starting at the page boundary following the maximum path of the data
structure, unless modified by the PBIAS LINK option.

Overlay programs are specified using the complex form of the LINK command.
The specification of overlay programs is described in detail in the CP-6
Programmer Reference Manual, CE40.

CE55-01 MODULE 4-4
Using LINK Overlays

Page 96

Resolving Differences and Ambiguities

Overlay programs can be quite complex. If the programs contains multiple
definitions which are 'ambiguous', the LINK processor will attempt to resolve
these references in accordance with rules specified in CE40, the Programmer
Reference Manual. If references cannot be resolved, they are collected by the
LINK processor and listed at the end of the linking process.

For a discussion of overlay structures containing ambiguities and the rules
for resolution, see the Programmer Reference Manual, CE40.

Programs with more than one level of overlay cannot be shared. See the CP-6
System Programmer Guide, CE62, for a discussion of this restriction.

Program Trees

The following figure depicts a sample overlay program as a tree structure.

Level 0

Level 1

Level 2

(A) ROOT NODE
I \

I \
I \

(8) (C)

I \ I \
I \ I \

(D) (E) (F) (6)

The linkage forms the paths of the tree and determines the resolution of
references. The four paths in the sample program are the four connecting
lines which proceed from the root node (A), to the four farthest nodes (D, E,
F, and 6).

Node relationships are defined in terms of levels. The root node is at level
O. Nodes connected to the root node are at level 1, and so on through the
last level of the tree.

All nodes except the root node have a parent node, a node at the previous
level to which the node is directly connected. The level 1 nodes are 'direct
descendents' of the root node. Level 1 nodes, in turn, are the parents of the
level 2 nodes connected to them.

The descendents of a node are all nodes to the nth level of the tree that
descends in an connecting line from the node. (In the sample tree structure,
the descendents of 8 are D and E, and the descendents of A are all the
remaining nodes in the structure.)

The ancestors of a node are all parent nodes in a backward path to the root
node. (In the sample tree structure, A and 8 are the ancestors of D).

CE55-01 MODULE 4-4
Using LINK Overlays

Page 97

Specifying an Overlay

The complex form of the LINK, LOAD, LYNX or RUN command ;s used to define and
describe a program overlay structure. Member nodes are defined by specifying
their names, and their relationship is described by identifying their levels
through balanced or nested parentheses. Consider the following tree
structure:

(A)

I \
I \

I \
(B) (C)

This overlay structure is'defined as follows:

!LINK A(B)(C) ON •••

The root node A is not enclosed in parentheses. Each of its level 1
descendents ;s defined as a tree, and that definition is specified by
enclosing each level 1 node in a separate set of parentheses.

Both the member nodes and the tree order is established through the command.
B is now defined as the leftmost path. This order is important in that it
establishes the order in which the LINK processor searches descendent nodes to
resolve ambiguities.

Now, consider again the tree structure:

(A)

I \
I \

I \
(B) (C)

I \ I \
I \ I \

(D) (E) (F) (G)

This overlay structure is defined as follows:

!LINK A(B(D)(E»(C(F)(G» ON •••

The above example illustrates the following features of overlay
specifications:

1. The root node is specified immediately following the keyword LINK and is
not enclosed in parentheses as follows:

Root (R)
I
v

!LINK A

2. A left parenthesis is entered to indicate that a definition of a direct
descendent at level 1 follows. The fi le id (or ids) that make up the
level 1 node are specified:

R
I
v

!LINK A(B

I
1st level (1st)

CESS-01 MODULE 4-4
Using LINK Overlays

Page 98

3. Additional left hand parentheses/file ids are specified to define a
complete path to the last level:

R 2nd level (2nd)
I I
v v

!LINK A(B(O

I
1st

4. The end of the last level is signalled by closing the deepest nested
parenthesis:

R 2nd
I I
v v

!LINK A(B(O)

r I
1st End of Path (EOP)

5. The backward path from the last level is followed looking for the first
branch to open a new path:

R 2nd 2nd
I I I
v v v

!LINK A(B(O)(E

I I
1st EOP

6. The new path is followed to completion. The end of the last level is
signalled by closing the deepest nested parenthesis:

R 2nd 2nd
I I ,
v v v

!LINK A(B(O)(E)

, , ,
1st EOP EOP

7. This backward/branch forward procedure continues until all the descendents
of the direct descendent of the root node have been defined and their
relationships described through nested parentheses.

1st level
+-------+ , ,
1
2nd 2nd'

R , I End of Oescendent (EOO)
I , I I
v v v v

!LINK A(B(O)(E»

, , I
1st EOP EOP

8. The procedure is repeated with the next direct descendent of the root
node.

CE55-01 MOOULE 4-4
Using LINK Overlays

Page 99

1st level 1st level
1 1 1 1
v v v v

!LINK A(B(O)(E»(CCF)CG»

I II I
1 1+-+
+-+ I

1 I

I II I
+-+ 1 1

I +-+
I I

+--+-----+--+
Second levels

This procedure continues until every direct descendent of the root node and
all its descendents are defined in this manner.

Consider the following tree structure:

I
I

I
(C)

I I \
I I \

(A)
I \

I \
I \

(8) (K)

I 1 \
(0) (G) (H)

I \ I \
I \ I \

I \ I \
(E) (F) (1) (J)

This overlay structure is defined as follows:

1st level subtree
+-------------------------+ 1st
I 1+-+
1 2nd level subtree II I
I +----------------------+ II I
I I III I
v v vvv v

!LINK A(B(C(D(E)(F»(G)(H(I)(J»»(K)

Notes:

I II IIJ II I II II
I I +-+ II II I I +-+ I
I 14thll II I 14thl
+-+ II II +-+ I
4th II II 4th I

+-------+ I 1+-------+
3rd +-+ 3rd

3rd

1. For each node at each level a new parenthesis is open. These parentheses
are nested along the path from the 1st level ancestor to the farthest
descendent.

2. When the farthest point on the leftmost path is reached, the first closed
parenthesis is entered.

3. Definition continues by taking the backward path:

CESS-01 MODULE 4-4
Using LINK Overlays

Page 100

If the next (backward) node has no descendents, a cLosed parenthesis is
entered.

If the next (backward) node has a des~endent, definition branches forward
down the Leftmost path of the new subtree.

4. This process repeats itseLf untiL the entire tree is defined, and aLL
left-hand parentheses are balanced with right-hand parentheses.

Finally, consider the following example of a LINK command that defines and
describes the overlay structure of a program in which some nodes contain more
than a single file. Assume the foLlowing structure:

(A,B)
I \

I \
I \

(C) (D,E)
I \

I \
I \

(f) (6)

I \
I \

I \
(H) (I,J)

The following LINK command defines and describes the above overLay
structure:

1st 1st
+-+ 1st +---+
I I +--------------+ I
1 I I II
v v v vv v

!LINK A,B(C(F(H)(I,J»(6»(D,E) ON •••

CESS-01

.- A AA AIAA ..

I II III I
I 1+---+11 I
+-+ 3rd 1+-+
3rd 12nd

+---------+
2nd

MODULE 4-4
Using LINK OverLays

Page 101

Using LINK to Build a Run Unit with Overlays

LINK's BREF option should be invoked when· you create a program with overlays.
Unless the BREF option is used, you will have to load and transfer control to
overlays via explicit calls to monitor services MSOLAY. (When the BREF option
is used, the linker supplies all calls to MSOLAY.) The MSOLAY service calls
or releases a specified overlay.

A rule-of-thumb to determine what value to use for BREF= is to use the number
of nodes minus one.

Example:

Following is an example of' linking an overlaid program:

!LINK ;
ROOT:OU;
(NODE1:0U,SUB1:0U,SUB2:0U,SUB3:0U);
(NODE2:0U,SUB4:0U,SUBS:OU);

OVER PGM:RU (BREF=2)

The next example illustrates an overlaid FORTRAN program:

!FORTRAN *ROOT OVER *ROOT OU,ME
FORTRAN 77 VERSION COO SEP 06 '83
* 1.000> 1: PROGRAM ROOT

2.000> 2: CALL NODE1
3.000> 3: CALL NODE2
4.000> 4: END

ERRORS FOUND : 0 TOTAL ERRORS FOUND: 0

!FORTRAN *NODE1 OVER *NODE1 OU,ME
FORTRAN 77 VERSION COO SEP-06 '83
* 1.000> 1: SUBROUTINE NODE1

2.000> 2: PRINT*,'Entering Node1'
3.000> 3: END

ERRORS FOUND : 0 TOTAL ERRORS FOUND: 0

!FORTRAN *NODE2 OVER *NODE2 OU,ME
FORTRAN 77 VERSION COO SEP-06 '83
* 1.000> 1: SUBROUTINE NODE2

2.000> 2: PRINT*,'Entering Node2'
3.000> 3: END

ERRORS FOUND : 0 TOTAL ERRORS FOUND: 0

!LINK *ROOT OU(*NODE1 OU)(*NODE2 OU) OVER *L(BREF=2)
* :SHARED COMMON.:SYS (Shared Library) associated.
* Number of branch reference instances = 2.
* Number of unique branch reference targets = 2.
* No linking errors.
* Total program size = 3K.
!*L

Entering Node1
Entering Node2

STOP

CESS-01 MODULE 4-4
Using LINK Overlays

Page 102

Using LINK's PROMOTE-BLANK and PROMOTE-LABEL Option

The PROMOTE BLANK and PROMOTE LABEL LINK options are used to specify how bLank
common and labeLed common storage wiLL be used.

• PROMOTE BLANK specifies that aLL instances of bLank common must refer to
the same storage aLLocation.

• PROMOTE LABEL specifies that aLL instances of LabeLed common with the same
name must refer to the same storage aLLocation.

• PROMOTE Specifies that both the PROMOTE BLANK and PROMOTE LABEL options
are to be in effect. The defauLt is not to PROMOTE.

If PROMOTE BLANK is specified, the LINK processor may promote the aLLocation
of bLank common to accompLish this request. Assume the foLLowing structure:

(A)
I \

I \
I \

(B) (e)

I \
I \

I \
(D) (E)

If instances of bLank common are in nodes 0 and E, and the PROMOTE BLANK
option is not specified, aLLocations for bLank common wiLL be made-in both
nodes 0 and E.

However, if the PROMOTE BLANK option is specified, the LINK processor wiLL
aLLocate onLy one area of bLank common so that aLL instances of bLank common
refer to the aLLocated storage. This may be accompLished by promoting
aLLocation of bLank common to one of its ancestors. In the case above, bLank
common wilL be allocated in node B.

Since PROMOTE LABEL specifies that aLL instances of LabeLed common with the
same name must refer to the same storage alLocation, the LINK processor may
promote the aLLocation of each and every uniquely named labeL common when
PROMOTE_LABEL is specified.

ExampLe

Assume that you have six object moduLes named A, B, e, 0, E, and F which you
want to Link into an overLaid program. ALso assume that aLL modules but A
have references to a LabeLed common section named BLAZE. The overlaid program
can be represented as follows:

I
I

(E, F)

(A)

I I \
I I \

I I \
(B) (e) (D)

I

The LINK command to be used is:

!LINK A(B(E,F»(e)(D) OVER *RU (BREF=3)

This command generates the foLLowing overLay structure:

CE55-01 MODULE 4-4
Using LINK Overlays

Page 103

+-------+
D

+-------+
I

+-------+ +-------+
A 1------1 C I

+-------+ +-------+ +-------+
I I E I
+-------+ +-------+
I B 1-----= I
+-------+ +-------+

I F I
+-------+

When PROMOTE LABEL is spe~ified, all labeled com~on sections are forced to the
root node A.-

IF PROMOTE_LABEL is not specified, references to a labeled common section
called BLAZE are unique in nodes B, C and D. In other words, nodes B, E and F
share a common area of memory tagged with the label BLAZE, node C has a unique
area of memory tagged with the label BLAZE, and node D also has a unique area
of memory tagged with the label BLAZE.

If node A has a reference to BLAZE, PROMOTE LABEL will have no effect.
PROMOTE BLANK works analogously to PROMOTE LABEL. The default is to not
PROMOTE-BLANK and not PROMOTE LABEL. -

If the target RU ;s not to be overlaid, the PROMOTE options have no effect.

Using HELP

Enter

!HELP (LINK) TOPICS

to obtain a display of LINK topics available through the HELP facility.

CESS-01 MODULE 4-4
Using LINK Overlays

Page 104

AfODULE5-0

Sect'on 5 - P,act'cal Applicat'ons

This section contains examples of CP-6 system practical applications.

CE55-01 MODULE 5-0 Page 105
Section 5 - Practical Applications

AfODULE6-1

Cr •• tlng Sort.d Ind.x •• on cp-e

The following procedure for sorting document indexes will accept any
EDIT-built file for input, sort it into alphabetic order (regardless of case),
and place it back into your original file. A few restrictions apply:

1. Do not place any CP-6 TEXT commands in the file; they will simply be
sorted at the front of the output file.

2. Maximum record length is 100 characters.

3. Every line must have an index entry to sort in it; that is, continuation
lines are not allowed. If you must continue a line, repeat the index
entry on the continuation line.

Example:

DELTA commands,3-6,4-7,4-10,4-12,
5,19-5,19-7,20-1

should be entered as

DELTA commands,3-6,4-7,4-10,4-12
DELTA commands,5,19-5,19-7,20-1

4. The index entries may begin in any column, but you must be consistent in a
single file; that is, if you start entering index entries in column 1,
then all succeeding entries must begin in column 1 also.

5. The separator between the index entry and references to it is immaterial;
in the above example, a comma was used. Spaces may also be used. The
list of references may begin in any column after the index entry.

You may call the index by any filename you desire. To sort the file into
order, the command is

!XEQ SORTINDEX[.account] INDEX='filename'

The procedure will output a considerable amount of text on your terminal while
it is working. Check this carefully for comments enclosed in double quotes
("); they will tell you whether the process was successful or not. When
completed successfully, your original file will be sorted into alphabetic
order and re-keyed for editing.

This is what SORTINDEX looks like:

!PCL
SEVERITY ABORT
COpy INDEX OVER INDEX(NLN,RECS=100)
!IF STEPCC>O THEN GO TO NOFILE
!SET FSSORTIN INDEX
!SET FSSORTOUT INDEX
!SORT
REC INLEN=100,MEMORY=32
KEY START=1,LEN=100,XLATE=UC
XLATE UC,START=97,CHAR='ABCDEFGHIJKLMNOPQRSTUVWXYZ',;

START=225,CHAR='ABCDEFGHIJKLMNOPQRSTUVWXYZ',;

CE55-01 MODULE 5-1
Creating Sorted Indexes on CP-6

Page 106

START=353,CHAR='ABCDEFGHIJKlMNOPQRSTUVWXYZ',;
START=481,CHAR='ABCDEFGHIJKlMNOPQRSTUVWXYZ'

END
IF STEPCC=O THEN GO TO GOODSORT
"SORT step failed; index is not in order."
GOODSORT: COPY INDEX OVER INDEX(lN,NBlANKS)
RESET FSSORTIN
RESET FSSORTOUT
GOTO DONE
NOFILE: "File name missing: ~a7 !XEQ SORTINDEX.acct INDEX=filename"
DONE: "Processing terminated"

A sample run follows:

!EDIT
EDIT B03 HERE
*BUIlD INO

1.000 FOUR
2.000 SCORE
3.000 AND
4.000 SEVEN
5.000 YEARS
6.000 ago
7.000 our
8.000 forefathers
9.000 brought

10.000 forth
11.000 upon
12.000 this
13.000 continent
14.000 A
15.000 new
16.000 nation
17.000 conceived
18.000 in
19.000 liberty
20.000 and
21.000 DEDICATED
22.000 TO
23.000 the
24.000 PROPOSITION
25.000 that
26.000 all
27.000 MEN
28.000 are
29.000 created
30.000 EQUAL
31.000

*END
!XEQ SORTINDEX INDEX=IND
SPCl
PCl B03 here
<SEVERITY ABORT
<COPY IND OVER IND(NlN,RECS=100)

•• COPYing
SIF STEPCC>O THEN GOTO NOFIlE
SSET FSSORTIN INO
SSET FSSORTOUT IND
SSORT

* SORT STARTS B06 OCT 20 '83 14:45:04.37

**** NO COllATION FILES; WIll ATTEMP MEMORY CONTAINED SORT.

CE55-01 MODULE 5-1
Creating Sorted Indexes on CP-6

Page 107

* SORT STOPS 806 OCT 20 IB3 14:45:10.02
SIF STEPCC=O THEN GOTO GOODSORT
S GOTO GOODSORT
SGOODSORT: COpy IND OVER INDCLN,N8LANKS)

•• COPYing
SRESET FSSORTIN
SRESET FSSORTOUT
SGOTO DONE
SDONE: "Processing terminated"

A listing of the sorted file appears below:

!EDIT IND
EDIT 803 HERE
*TY

1.000 A
2.000 ago
3.000 all
4.000 AND
5.000 and
6.000 are
7.000 brought
B.OOO conceived
9.000 continent

10.000 created
11.000 DEDICATED
12.000 EQUAL
13.000 forefathers
14.000 forth
15.000 FOUR
16.000 in
17.000 liberty
1B.000 MEN
19.000 nation
20.000 new
21.000 our
22.000 PROPOSITION
23.000 SCORE
24.000 SEVEN
25.000 that
26.000 the
27.000 this
2B.000 TO
29.000 upon
30.000 YEARS

* EOF fit after 30.000
*END

CE55-01 MODULE 5-1
Creating Sorted Indexes on CP-6

Page 10B

MODULE 5-2

How to Perform Compilations in Satch Mode

The following method will enable you to run your compilation in batch mode,
deliver the compilation diagnostics to a file in your account, and deliver a
line printer listing only if the compilation is successful. Although this
example uses a Pl-6 compi(ation, a similar approach may be used with other
CP-6 system compilers. Also note that lISTER.X and EDGEMARK.X may not exist
at all sites.

In this example, several options may be selected by the user batching the job
on the BATCH command. These are:

SlO

SNOlS

SPRERR

If SlO is equal to 1, the job will make a Pl-6 compilation with
lO, and, if the compilation is successful, print the compilation
listing (source & lO) on the line printer, edgemarked
appropriately. If SlO is equal to 0 (the default), the job will
perform a standard lS compilation and, if successful, print the
lS listing, edgemarked.

If SNOlS is equal to 1, no listing will be printed if the
compilation was successful (even the JCl and banner will be
suppressed). If SNOlS is equal to 0 (the default), standard,
edgemarked listings will be produced if the compilation was
successful.

If SPRERR is equal to 1, the erroring compilation will print a
compilation listing on the line printer. If SPRERR is equal to
o (the default), the erroring compilation will not generate a
line printer listing of the compilation. In either case, a file
called D:modulename will be created in the user's account.

As presented below, the job contains several DEFAULT commands that are used to
set up the accounts and conditions of the compilation. Once established,
these conditions require infrequent modification. For example, this job looks
at :B01SI and :B010U to obtain source files and include files.

Finally, the IBEX command you would use to batch a compilation of TESSEXAMPlE
would be:

!BATCH SJOB Z=TESSEXAMPlE

CESS-01 MODULE S-2 Page 109
How to Perform Compilations in Batch Mode

Here is a listing of the file SJOB

JOB RERUN,WSN=WOO,D=DFR,NAME=Z
RESOURCE TIME=TIM,MEM=1S0
DEFAULT TIM=10,'&'=",WOO=LOCAL,SLO=0,SNOLS=0,SPRERR=0,VERS=BO1C
DEFAULT SIACCT=:B01SI,UIACCT=:CGUI,OUACCT=:CGOU,LSACCT=DLRHOST
DEFAULT DFR=00:01
LIMIT LO=2000
LET STEPCC=O
SET MSLO *&Z,CTG,ORG=UR,FUN=CREATE
SET MSDO *TEMP,ORG=UR,CTG,FUN=CREATE
PL6:
IF SLO = 0 THEN GOTO NOLOCOMP
PL6 Z.SIACCT,Z.UIACCT OVER Z.OUACCT(NSYS,SR(.OUACCT,.:B010U,.:B01XOU),LS,LO,SC)

.GOTO COMPDUN
!NOLOCOMP:
!PL6 Z.SIACCT,Z.UIACCT OVER Z.OUACCT(NSYS,SR(.OUACCT,.:B010U,.:B01XOU);

,LS,SC)
COMPDUN:
R
LET HOLDCC=STEPCC
IF STEPCC = 0 THEN GOTO COMPOK
ERR:
C *TEMP OVER D:&Z.LSACCT
IF SPRERR = 0 THEN GOTO END
LISTER.X *&Z INTO,*TEMP (BA)
GOTO EDG
COMPOK:
DEL D:&Z.LSACCT
C ME INTO *TEMP

*
*
*

NO ERRORS *
*
*

!IF SNOLS = 1 THEN GO TO END

IF SLO = 0 THEN GOTO NOLO
LISTER.X *&Z INTO,*TEMP (BA,LO)
GOTO EDG
NOLO:
LISTER. X *&Z INTO,*TEMP (BA)
EDG:
EDGEMARK.X *TEMP ON LPQ&WOO (L='Z',R='VERS',NA)
END:
SET MSLL NO
LDEV LP01,ERASE,REMOVE
LET STEPCC=HOLDCC

CESS-01 MODULE S-2
How to Perform CompiLations in Batch Mode

Page 110

MODULE 5-3

A CP-8 Sy.tem Program with it. Own 'HELP'

This module presents an example of a CP-6 IBEX program that incorporates its
own "HELP" facility. When the program is executed, the user is presented with
a number of choices. In response to these program queries, the user can enter
either the data required, or 'HELP'.

Example:

TEXT Options>HELP

The program has asked for TEXT options. The user
responds by asking for HELP.

Enter TEXT options, separated by commas
Valid Options are:

CB Change Bars
CK Check
CRPT=octalstring Encryption mode

WT Wait

In response to the users 'HELP', the program lists the
TEXT options which may be entered. Then, the program
again asks for options:

TEXT Options> CK

The user responds with 'CK', indicating the check
option.

This is how the feature looks in the IBEX command file:

81.000
82.000
83.000
84.000
85.000
86.000
87.000
88.000
89.000
90.000
91.000
92.000

CE55-01

IF OPT-='HELP' THEN GO TO OPTPLACE1
OUTPUT 'Enter TEXT options, separated by commas l
OUTPUT 'Valid Options are:'
OUTPUT' CB
OUTPUT' CK
OUTPUT' CRPT=octalstring
OUTPUT' FN=name
OUTPUT I FROM=name
OUTPUT I IN=n
OUTPUT I LS=n
OUTPUT I NOF
OUTPUT I NB

MODULE 5-3

Change-Bars '
Check '
Encryption-Model
Form-Name'
From-Page'
Indentation '
Line-Spacing '
No-Fill-Mode '
Number-Printing'

A CP-6 System Program with its Own 'HELP'
Page 111

93.000 OUTPUT , NBB Number-Printing-Brief'
94.000 OUTPUT , PGS=(n,n-n) Page-Selection'
95.000 OUTPUT , PM=string Parameter'
96.000 OUTPUT , SP Stop'
97.000 OUTPUT , TO=n To-Page'
98.000 OUTPUT , WT Wait'

100.000 GOTO OPTQUER1

CESS-01 MODULE 5-3 Page 112
A CP-6 SysteM PrograM with its Own 'HELP'

AtODULEIS-O

Section IS - Use of Atallnetic Tape In the CP-IS System

The use of magnetic tape in the CP-6 system involves cooperative effort
between the user and the system operator. The user issues commands to
allocate resources (tape drives), mount tapes for reading, writing, or
copying, etc. The system operator mounts and dismounts tapes as requested,
and also performs functions involved with tape security, use of the LABEL
processor, automatic volume recognition (AVR), etc.

This section concentrates on tape usage from the user's point of view, but
will'often refer to the operator and system functions which make it possible
for the user to perform his tasks using magnetic tape. The operator tasks and
keyins related to magnetic tape use are described in detail in CE34, the
Operations Reference Manual.

The modules in this section cover the following topics:

Module 6-1
Module 6-2
Module 6-3
Module 6-4
Module 6-5
Module 6-6
Module 6-7
Module 6-8
Module 6-9

CE55-01

Rules for Tape Usage
Tape Commands, Options, and Calls
CP-6 System Tape Processing
How to Make Tapes That Other Machines Can Read
Converting Imported Tapes for CP-6 Use
How To Copy Tapes
Multi-reel Tapes
Tap'e Formats
Tape Errors

MODULE 6-0
Section 6 - Use of Magnetic Tape in the CP-6 System

Page 113

AfODULE8-1

Rul •• tor Tap. U.ag.

Tape Management

For the user, tape management is achieved:

• via PCl commands and PCl input and output options

• via IBEX commands and options of the IBEX SET command

• via monitor service calls

These PCl, IBEX, and monitor service features are summarized in Module 6-2,
Tape Commands, Options, and Calls.

PCl Commands

The MOUNT, REMOVE, and RELEASE commands control the physical mounting and
removing of tapes. The REWIND, SPR, SPF, and SPE commands control the
positioning of tapes. The SCAN command searches free tape. The WEOF command
writes an end-of-file marker to a device.

In addition, many of the PCl commands related to files apply to files on tape
as well as files on disk, i.e., COPY, COPYAll, etc.

A subset of the PCl commands can be issued directly from IBEX. These include:
COPY, lIST, MOUNT, REMOVE, and REWIND. PCl commands are described in detail
in the Programmer Reference manual, CE40, and in the PCl HELP facility.

CESS-01 MODULE 6-1
Rules for Tape Usage

Page 114

Ba.ic Type. of Magnetic Tape.

There are two categories of tape types in the CP-6 system: LabeLed (ANS> and
free. The LabeLed category incLudes ANS, CP-6 LabeLed, and EBCDIC. The free
category incLudes free and managed free. The characteristics of these types
are Listed in the foLLowing tabLe:

Type

ANS

CP-6 LabeLed

EBCDIC Labeled

FREE

Managed FREE

Types of Tape

Description

ASCII labeLs, ASCII data, fiLenames of 17 characters
or less. FiLes are ORG= UNDEF, FIXED, or VARIABLE.

Superset of ANS which alLows filenames up to
31 characters, incLudes FiLe Information Table
(FIT) for each file; files of any CP-6 ORG which
includes KEYED and INDEXED files. Data written in
binary.

Like ANS except labels and data are written in
EBCDIC. ORG=FIXED or VARIABLE, EBCDIC=YES.

Completely the user's responsibiLity to write and
retrieve the data, non-standard labels, etc. Tape
file management (TFM) doesn't care what is on these
tapes. Data written in ASCII, binary, or EBCDIC.

Like FREE but the records may be blocked.
Files are ORG=UNDEF, FIXED, or VARIABLE.
Data written in ASCII (or EBCDIC if ORG=UNDEF
or FIXED).

For data written in ASCII, 9-bit bytes in memory correspond to 8-bit bytes on
tape (the high order bit of each byte is ignored). For data written in
binary, eight 9-bit bytes in memory correspond to nine 8-bit bytes on tape.

CESS-01 MODULE 6-1
Rules for Tape Usage

Page 115

ANS Leve.s of Protection

The manner in which tapes are handled in anyone CP-6 system is determined by
the ANS protection level of that particular system. There are three levels of
ANS volume protection: unprotected, semi-protected, and fully-protected. The
protection level is set by the system manager. The characteristics of each
level of protection are shown in the following table:

ANS Levels of Protection

POSSIBLE USER FUNCTIONS
+-----------+-----------+-----------+-----------+----------
ICHANGING ICONNECT ICHANGE IMAKE IWRITE ON

TYPE OF
ANS VOLUME
PROTECTION

IVOLUME IFREE TAPE IVOLUME ISCRATCH IUNEXPIRED
ITYPE: lOR EXPIRED ISERIAL IREQUESTS IANS VOLUME
I FREE-> ANS I ANS VOLUME I NUMBER I I
IANS-> FREE ITO USER I I I

--~--------+-----------+-----------+-----------+-----------+----------
UNPROTECTEDIYes,
SYSTEM Iwithout

loperator
Iverifi­
Ication.
I
I

-----------+-----------
SEMI- IYes, but
PROTECTED loperator
SYSTEM Imust issue

lOVER keyin.
I
I

-----------+-----------
FULLY INo.

Yes -
operator
must
specify
serial no.
and use
MOUNT
keyin for
free tape.

Fo r
expired
ANS tape
MOUNT is
optional.

PROTECTED I
SYSTEM IYes -

IFMSEC
I

(Applies to
with all three
priv. levels of

protection)
I
I

Operator IYes - for IYes
may use Ifree I
MOUNT keyinltapes I
to change land ANS I
vol# until Ivolumes. I
user is I I
connected. I I
-----------+-----------+----------
No. IYes - for 10nly if

Ifree tapes loperator
Yes - with land ANS lissues an
FMSEC priv.lvolumes. lOVER keyin

I I
I I

-----------+-----------+----------
No. INo - not INo.

Ifor any I
Yes - with Itype of IYes - with
FMSEC priv.ltape. IFMSEC priv

I I
IYes - with I
IFMSEC priv.1

-----------+-----------+-----------+-----------+-----------+----------

CE55-01 MODULE 6-1
Rules for Tape Usage

Page 116

Free and Managed Free Tape.

The function of free and managed free tapes is to permit tapes with non-ANS
format to be read and written on in the CP-6 system.

Free Tapes

For free tapes, positioning, content, and data are completely user controlled.
The user decides whether to read or write in ASCII or binary using the BIN
option.

Note that data written in binary may be read in ASCII and vice versa. ASCII
to EBCDIC translation on ASCII write and EBCDIC to ASCII translation on ASCII
read may be requested when a free tape is opened using the EBCDIC and CNVRT
options, and overridden on read or write using the TRANS option.

The user may also rewind the tape (MSREW), skip records in either direction
(MSPRECORD), skip a tape mark in either direction (MSPFIl), write a tape mark
(MSWEOF), and cause the free tape to be dismounted (unloaded) after the tape
is closed (MSREM, MSCLOSE REM=YES).

Managed Free Tapes

Managed free tape files are treated similarly to ANS labeled tape files with
like organizations, and have the same restrictions (e.g., no record keys).
Managed tape file records are blocked on output and deblocked on input
according to the user's instructions (e.g. BlKL, RECl, ORG). Managed tapes
may have EBCDIC data if ORG=FIXED or UNDEF.

Note that since there are no labels to describe the required deblocking of
input files, the user's program must have an intimate knowledge of the input
tape.

The primary application of managed free tape is in transferring character
files of FIXED organization; the advantage of managed free over free tape
being the automatic blocking/deblocking of records into physical tape blocks
and subsequent saving of tape footage.

CE55-01 MODULE 6-1
Rules for Tape Usage

Page 117

Comparisons· Free and Managed Free

Both free and managed free tape are specified with ASN=DEVICE and a tape RES
such as MT or FT. The difference is that for "real" free tape ORG=FREE while
for managed free tape ORG is VARIABLE, FIXED or UNDEF. A subtle difference
between free and managed tape on input is that when a free tape read hits a
file mark, the end-of-file error is returned and tape position is left after
the file mark. For managed tape, tape position is left before the file mark
until the file is closed.
Labeled tapes are specified with ASN=TAPE. ORG defines the format of the tape
f i l e •

The function of labeled tapes in the CP-6 system depends on the file
organization. CP-6 labeled tape files are intended to be used to backup or
save CP-6 disk files. Any'disk file can be saved on tape and restored to its
previous condition. All CP-6 labeled tape file data is written in binary; no
information is lost. CP-6 labeled tape files have standard ANS labels; they
are always blocked and spanned except for RANDOM and IDS organizations. The
block length is always a multiple of 4096 bytes.

ANS Labeled Format

ANS format tape files are intended to be used to transfer character data to
and from other systems with ANS tape capabilities. They may also be used to
backup and save non-keyed character files.

All ANS format tape file data is written in ASCII; the high order bit of each
CP-6 byte is lost. The user decides, where valid, whether ANS format tape
files are to be created blocked and/or spanned and specifies a block length.

When saving character files for which the keys are unimportant, an ANS
S-format tape file <ORG=VARIABLE, BLOCKED=YES, SPANNED=YES) with a large block
size will use the least amount of tape.

ANS volumes have expiration dates coded on the tape itself. This date defines
when the volume "expires" and may be re-used <written on). In the CP-6
system, the expiration date for the first volume on a tape is assumed as the
expiration date for all volumes on that tape. Depending upon this date, the
CP-6 system requires certain operator keyins for volumes, and limits access to
volumes.

CESS-01 MODULE 6-1
Rules for Tape Usage

Page 118

EBCDIC Labeled Format

EBCDIC labeled format tape files are inte"ded to be used to transfer data to
and from EBCDIC systems. They have no particular use within a CP-6 shop. All
EBCDIC files are written in ASCII mode causing the high order bit of each CP-6
byte to be lost. The user decides, where valid, whether EBCDIC format tape
files are to be created blocked and/or spanned and specifies a block length.

Mixing of CP-6, ANS, and EBCDIC Labeled

CP-6 labeled and ANS label~d tape files may be freely intermixed on the same
volume set; such volume sets are called ASCII volume sets. EBCDIC labeled
tape files may only reside on EBCDIC volume sets.

Tape Fids

There are important differences between disk fids and tape fids. For ANS
tapes, tape fids must follow the ANS restrictions for such names.

For full information about tape fids, see the Programmer Reference manual,
CE40, or use HELP by inserting !HElP(IBEX)TAPE_FIDS.

ANS Tape Flds

If the options used designate the tape fid as an ANS name, the name can only
include those characters that are legal in an ANS name. A standard format ANS
tape filename must be 1 to 17 characters: upper case, numeric,
!"%S'()*+,.I?;:<>+-_

Example:

!PCl
PCl COO here
<COpy A1811 DISK TO IT#0008/A1811&TEST (ORG=V, RECl=400, Bl=3200)

The above commands result in an error message because '&' is not a legal
character for an ANS file name. The use of ORG=V option means that the tape
will be an ANS tape; as such the name must be a valid ANS filename. This is
also true for the options ORG=F and ORG=UN.

CESS-01 MODULE 6-1
Rules for Tape Usage

Page 119

Tape Flds May Need Quotes

Tape fids that include unusual characters must be enclosed in quotes.

Example:

A user has an ANS labeled tape from another installation; he wants to use it
as input to a FORTRAN run unit. He issues the following !SET command:

!SET FS1 IT#ABCDIDA395.DATA,BlK=25500,REC=255,ORG=FIXED,EB=YES

However, the job aborts. When DA395.DATA is enclosed in single quotes, as
shown below, the job works.

!SET FS1 IT#ABCDI ' DA395.DATA ' ,BlK=25500,REC=255,ORG=FIXED,EB=YES

The problem here is that the 'period ' (.) is a legal character in a standard
ANS tape label, whereas in the CP-6 system a period is used to separate name
from account. There is no account in a standard ANS tape label, so the .DATA
is ignored unless the entire name is enclosed in quotes.

Multl·reel Tape Flds

A valid labeled tape fid is IT#S1#S2#S3. PCl treats this as a 'unit " (called
a volume set) rather than three separate tapes. See Module 6-7, Multi-reel
Tapes.

Acquiring Tape Drive.

A tape drive is considered to be a CP-6 resource (such as memory, time, etc.).
There are a number of ways in which the user can acquire tape drives (provided
he has authorization):

• through the use of the IBEX RESOURCE, ORESOURCE, or ACQUIRE commands,
which enable the user to directly acquire resources from the system.

• for online users, on the first reference to a tape via commands such as
PCl MOUNT or COpy which result in the acquisition of a drive through
operator keyin.

The CP-6 system supports tape drives that operate at 800, 1600, and 6250 BPI,
and anyone system may have a mixture of these capabilities. Individual
dual-density drives operate at 800/1600, or 1600/6250 BPI. This is discussed
in detail under single-density and mixed-density systems in this module.

Generally speaking, when you want to use a scratch tape or to mount a specific
tape by serial number, you need not specify BPI and can leave this to be
assigned by the system. However when you are conce~ned with acquiring a drive
or drives with specific density capability or mixed-density capability, you
are best advised to acquire those drives through the use of the RESOURCE,
ORESOURCE, or ACQUIRE commands.

You can check to see what tape drives are assigned to you by using the IBEX
DISPLAY command with the RESOURCES option, i.e., DISPLAY RESOURCES.

CESS-01 MODULE 6-1
Rules for Tape Usage

Page 120

MOUNT Command

Before using the MOUNT command, you should alert the operator by using the
IBEX MESSAGE command:

!M PLEASE MOUNT A SCRATCH TAPE WITH RING AS LT#ABLE

This sends a message to the operator. RING tells the
operator to place a ring in the reel of the tape so that
it can be written on.

!MOUNT LT#ABLE RING
!COPY STUFF TO LT#ABLE/STUFF

You neit use the MOUNT and COpy commands to initiate
copying the file STUFF to labeled tape ABLE. When the
operator has taken appropriate action to mount the tape,
and the AVR process is completed, a bang (!) prompts you
to begin. Since you have not specified drive or density,
you have been assigned the system default density and
drive.

RESOURCE, ORESOURCE, and ACQUIRE Commands

The IBEX ORESOURCE, RESOURCE, and ACQUIRE commands are used to request tape
drives: ORESOURCE for the online user, RESOURCE for the batch user, and
ACQUIRE to request additional resources for the online user. When you use
these commands to request a tape drive, you may either request a drive by
logical name (such as MT01, MT02, etc.) or you may allow the system to assign
the resource name by default. It is very important to use resource names when
using tapes of different densities.

Default Tape Drive Assignments

MTDFLT is an option of the MON command in the TIGR deck that describes the
attributes of the default tape drive. If nothing is specified for MTDFLT in
the TIGR deck, the system will assign to MTDFLT the attributes of the first
drive that is declared in the deck. For example, if the first declared drive
is a 1600/6250 device, the default drive you get for a simple online tape copy
is a 1600/6250 device; the system won't allow you to use a 80011600 device
unless it is specifically named. However, if MTDFLT had been set to 1600, the
system would allow you to use either a 1600/6250 device or an 80011600 device
as the default drive.

CE55-01 MODULE 6-1
Rules for Tape Usage

Page 121

Logical Density

A drive may only be used at the density or densities logically acquired,
regardless of the densities the physical drive is capable of. This is true
both for default tape drive assignments and directly acquired drives.

For example, for a default assignment, if MTDFLT has been set to 1600, the
drive acquired through default can only be used at 1600 BPI even though it is
physically capable of 6250 BPI.

If a device has been acquired directly, for example by

! RES MT01 (1600)

that device is logically acquired at 1600 BPI and can only be used at that
density. However, if the device had been acquired by

!RES MT01(1600,6250)

it can then be used at either 1600 BPI or 6250 BPI.

Single-density and Mixed-density Systems

The CP-6 system currently supports two different types of tape drives (from a
resource management point of view): 800/1600 BPI drives, and 1600/6250 BPI
drives. A "single-density" system contains only one type of drive. A
"mixed-density" system contains a combination of 80011600 and 1600/6250
drives.

Problem:

In a single-density system, a user specifies the following:

! JOB
!RES MT(1600)=1,MT(800)=1
!PCL
COpy LT#4839/DATA TO LT#XX31#XX32/DATA(EB,DE=800)

This results in an error message. However, with the following change the job
is accepted:

! JOB
!RES MT01(1600),MT02(800)
!PCL
COPY LT01#4839/DATA TO LT02#XX31#XX32/DATA(EB,DE=800)

If several tape devices are acquired that have different attributes
(densities), they should be referenced by their full name (i.e. MT05 not just
MT) to assure getting the desired association between density and drive.

Example:

! JOB
!RES MT01(800),MT02(1600,6250),MT03(6250)
!PCL
COPY MT01#XXXX/AFILE TO MT02#YYYY/BFILE(DEN=1600)
REM #YYYY
COPY ALL MT02#ZZZZ TO MT03#AAAA

CE55-01 MODULE 6-1
RuLes for Tape Usage

Page 122

In the above example, the RESource command acquires three drives. MT01 is an
800BPI only drive. MT02 is a 1600/6250 BPI dual density drive. MT03 is a
6250 BPI only drive. The COpy command copies the file AFILE from the 800 BPI
tape #XXXX. The COPYALL command copies all the files from the tape zzzz to
the 6250 BPI tape #AAAA. The #ZZZZ tape may have been written at either 1600
or 6250 BPI.

Density specification is also honored during FUN=IN or FUN=UPDATE tape opens
if the tape's density can not be determined during AVR. For a description of
AVR, see Module 6-3. Once the density is set, it can not be changed.

Example. of Online U.e

!M PLEASE MOUNT A SCRATCH TAPE WITH RING AS LT#ABCD
!M PLEASE MOUNT ANOTHER SCRATCH TAPE WITH RING AS FT#1234
!PCL
PCL coo here
<MOUNT FT#1234 RING
<MOUNT LT#ABCD RING

<REW FT#1234

Via the IBEX command message, you send two messages to the
operator requesting that two scratch tapes be mounted.
One is free tape #1234; the other is labeled tape #ABCD.
You then enter PCL and formally request the mount of the
tapes via the MOUNT command. Note that if the tapes had
been initialized prior to the session, the messages to the
operator would have been unnecessary.

<COpy ME TO FT#1234

You rewind the free tape only (to make certain that tape
is at beginning after other activity) and use the COPY ME
command to prepare for online input. Input can be placed
in the file once you have been prompted with a period (.) •

• This is the first record on the free tape •
• This is the second record on the free tape •
• This is the third record on the free tape •
• <F>
<WEOF FT#1234

<REW LTMABCD

In this example, you have written three records. You use
<ESC><F> to indicate the end of file input, then use the
WEOF command after the last file on the free tape to mark
the end of the volu.e.

<COpy LESLIE TO LT#ABCD/LESLIE
•• COPYING
<COpy HELEN TO LTMABCD/HELEN
•• COPYING

You rewi"d the labeled tape a"d copy files LESLIE and
HELEN to it.

CESS-01 MODULE 6-1
Rules for Tape Usage

Page 123

<LIST LT#ABCD
LESLIE HELEN

2 files listed
<SPF LT#ABCD/HELEN
<COPY MARTA TO LT#ABCD/MARTA
•• COPYING
<LIST LT#ABCD
LESLIE MARTA

2 f i l e s lis t ed

<REW FT#1234

You list the files on the labeled tape, then issue a SPF
command that positions the tape to the beginning of file
HELEN. You then copy file MARTA to the labeled tape and
relist the tape. Note that file MARTA has been written
over file HELEN.

<COpy FT#1234 TO ME
This is the first record on the free tape.
This is the second record on the free tape.
This is the third record on the free tape.
<REW FT#1234
<SPR FT#1234 1
<COpy FT#1234 TO ME
This is the second record on the free tape.
This is the third record on the free tape.

<REW FT#1234
<SCAN FT#1234
FT#1234 FILE

1

<RELEASE LT#ABCD

CE55-01

You now rewind the free tape and issue a COpy command that
displays the records on that tape. You rewind the tape,
issue an SPR command that positions the tape one record
forward, and then use another COpy command which results
in the display of only records 2 and 3.

RECS
3

MAXLEN
42

1600 BPI

You rewind the free tape and issue a SCAN command. The
resulting display provides the tape number, file
information, and density.

You request that the labeled tape be removed from the tape
drive and release the tape drive so that other users can
allocate it for their tasks.

MODULE 6-1
Rules for Tape Usage

Page 124

File Sequence Number.

The names of files on a particular tape volume do not need to be unique. The
File Sequence Number (FSN) may be used to identify a specific file which has a
non-unique name.

The following example shows how you can list tape files to obtain the FSN.

Example:

!MOUNT LT#FROG RING
!COPY CE33 TEST TO LT#FROG/FILE1

!REWIND LT#FROG
!L LT#FROG
FILE1

The ta~e is automatically labeled (if it was not
previously), as a file (FILE1) has been created.

You rewind the tape, request a listing of the files in
LT#FROG, and are given FILE1.

!COPY CE32 TEST TO LT#FROG/FILE2
•• COPYING -
!L LT#FROG
FILE1 FILE2

2 files listed

You copy a file to FROG to be named FILE2. Once
completed, a listing of the file names and their sequence
numbers can be obtained. Copies to tape always begin at
the current tape position, regardless of tape content,
unless certain options are specified.

!L (A) LT#FROG
14:36 AUG 21 '82 LT#FROG.
ORG TY BLKL RECL REC VOL
CON 4096 0 2 FROG
KEY 4096 0 1115 FROG

2 files listed

FSN NAME
1 FILE1
2 FILE2

The files and their attributes are listed.

!COpy CE32 03 OVER LT#FROG/FILE2
•• COPYING -
!L (A) LT#FROG
14:37 AUG 21 '82 LT#FROG.
ORG TY BLKL RECL REC VOL
CON 4096 0 2 FROG
KEY 4096 0 1115 FROG
KEY 4096 0 1092 FROG

3 files listed

FSN NAME
1 FILE1
2 FILE2
3 FILE2

Another file has been copied to FROG as FILE2. Note that
in this example two distinct files have the same file
name. The File Sequence Number (FSN) distinguishes them.

The first file on the tape is not copied over only because listing tape
contents causes position to be left after the last file on the tape; copies to
tape always begin at the current tape position (regardless of tape content)
unless certain options (e.g., XTEND or PHYS) are used.

CE55-01 MODULE 6-1
Rules for Tape Usage

Page 125

This example assumes that the site is running in ANS unprotected mode. If
protected mode is used, you cannot write on a tape unless it has been labeled
by the system manager/operator prior to use, or is expired.

Due to the label and tape mark structure imposed by the ANS standards, opening
a file by its sequence number is much faster than opening the same file by its
name. For name opens, all labels must be inspected to find the name. For
sequence number opens, the arrangement of tape marks gives a precise
determination of file location.

A tape file is opened by file sequence number by means of the PCl FSN input
option, the !SET command FSN option, or the monitor services MSDCB and MSOPEN
FSN options.

The following example illustrates the retrieval of a file using the PCl FSN
input option:

!PCl
PCl COO here
<MOUNT IT#FROG
<COPY IT#FROG (FSN=(2-6» TO NORMA

Specifies that files with FSNs 2 through 6 are to be read
sequentially from the tape IT#FROG and copied to the disk
file NORMA. FSN may not be specified if a filename or
range is included in the source parameter. The MOUNT
command is not needed if the tape is already mounted.

The following example demonstrates the importance of being able to retrieve a
file by FSN when there is more than one file on the tape with the same name.

<MOUNT IT#FUZZY RING,REEl=EDWARD
<C ME TO IT#FUZZY/BEAR
.CE54 Status Summary

<C ME TO IT#FUZZYIBEAR
Datafair Trip Report
(March 21-25 1983)

You mount tape IT#FUZZY and build two files with the same
name (BEAR) on the tape.

<l IT#FUZZY(A)
10:49 AUG 17 '83 IT#FUZZY
ORG TY BlKl RECl REC VOL
CON 4096 0 1 FUZZY
CON 4096 0 2 FUZZY

2 files listed

FSN NAME
1 BEAR
2 BEAR

Then you use the PCl lIST command to list tape IT#FUZZY
with file attributes; the listing shows the two files that
have the same name.

<REW IT#FUZZY
<C IT#FUZZY/BEAR TO ME
CE54 Status Summary
<C IT#FUZZYIBEAR TO ME

Datafair Trip Report
(March 21-25 1983)

You rewind IT#FUZZY and attempt to retrieve the file BEAR
by NAME, but discover that you may get either file,
depending on your current position on the tape.

<C IT#FUZZY(FSN=1) TO ME
CE54 Status Summary

CE55-01 MODULE 6-1
Rules for Tape Usage

Page 126

<REM LT#FUZZY

By specifying the file by FSN, you can get the desired
file no matter where it is located on the tape.

Since you're done with the tape now, you use the REMOVE
command to dismount tape LT#FUZZY.

Hardwar. Limitations

The following hardware limitations apply to the use of magnetic tapes in the
CP-6 system.

Minimum Record Size

When writing a free tape, there is a limitation as to the minimum size a
record must be before it can be successfully written. This limit is four
bytes. The four-byte lower limit is a hardware restriction which is detected
by software. There is no similar problem with labeled tapes (LTs) since
records are blocked and (if necessary) padded to obtain a data block which is
acceptable.

Lost Data

Tape hardware will not inform the user of lost data conditions on a read. For
this reason, when reading a free tape it is important to know how much data
resides on the tape, or to use a buffer size larger than the largest expected
record.

Number of Bytes Stored on Tape

Information on tape is stored in 'frames'. On a 9-track tape, each frame
contains nine bits. Eight of these bits are used for data; one is used to
check parity.

Honeywell machines use a word size of 36 bits. Each word contains four 9-bit
bytes. The hardware automatically rearranges each eight 9-bit bytes into nine
8-bit data frames (plus one parity bit each) for a convenient fit on a 9-track
tape during binary write operations. Thus when read back in, data is in
multiples of eight bytes.

In addition, the tape drives will write only integral numbers of words. Thus
when four bytes (one word) are written, five frames (or 40 bits) are placed on
tape. Four bits of that last frame are padding, not actual data.

CE55-01 MODULE 6-1
Rules for Tape Usage

Page 127

File Management Buffers

When using magnetic tape, you should give'special consideration to the size of
the file management buffers (FPOOL) as set by the IBEX LIMIT command. This is
particularly true when reading or writing tapes with large blocks. For
example, a block size of 28672 requires a seven-page file buffer (one page =
4096 bytes) or FPOOL=7. If you were both reading and writing tapes with this
block size, a minimum of FPOOL=14 should be used. To this number should be
added the number of buffers required to perform miscellaneous functions (at
least two to three).

While the default FPOOL buffer allocations supplied by the CP-6 system will be
adequate for many tasks, you should be aware that this allocation may not be
sufficient for circumstanc~s involving large blocks or very large records.'

DCBs

The DCB assignments and options values assigned by the SET command or by
monitor services remain effective throughout the job or session unless
modified

• at a subsequent job step by another SET command or monitor services call,

• at a subsequent job step by a RESET command which resets some or all DCB
parameter values to the default assignments by deleting the existing
assignments,

• during the job step by the ADJUST command. ADJUST assigns the specified
option values to the specified DCB, but the assignment does not survive
the job step.

See the discussion of DCBs in CE40, the Programmer Reference Manual.

CESS-01 MODULE 6-1
Rules for Tape Usage

Page 128

AfODULE8-2

Tape Command., Option., and Ca".

Introduction

This module contains summary tables of the IBEX and PCl commands and options
that are related to the use of magnetic tape. Also included is a summary of
monitor service calls that are used in the management of magnetic tape in the
CP-6 system.

PCL Tape Control Commands

A subset of the PCl commands can be issued directly from IBEX. These include:
COPY, lIST, MOUNT, REMOVE, and REWIND. PCl commands are described in detail
in the Programmer Reference manual, CE40, and in the PCl HELP facility.

The PCl tape control commands are summarized in the following table.

Command

MOUNT

REWIND

SPE

SPF

CE55-01

PCl Tape Commands

Description

Requests that a certain tape be mounted on a system
tape drive. When a MOUNT command is issued, the
operator is informed of the request. No further
commands can be issued until the requested mount has
taken place. If the BREAK or <CNTRl>Y key is struck
while a MOUNT request is pending, the request is
terminated, and a cancellation message is sent to
the operator. <CNTRl>Y cancels the MOUNT command
and gives control to the command processor (IBEX).
If the user issues a GO command to IBEX, PCl will
resume execution and reissue the MOUNT command.

Rewinds a tape to its beginning. If it is a
multi-volume set positioned at any reel other
than the first, the current reel is dismounted.

Positions a tape just beyond the end of its last file.
If the file specifies a free tape, the tape is positioned
forwards until two adjacent tape marks are encountered
and is then positioned between them. If the fid specifies
a labeled tape, the tape is positioned after the last file.

Positions a tape to a specified file. If the fid
specifies a filename on a labeled tape, the specified
file becomes the current file, and positioning takes
place forwards or backwards from that file.

MODULE 6-2
Tape Commands, Options, and Calls

Page 129

Command

SPR

SCAN

REMOVE

RELEASE

PCl Tape Commands (cont.)

Description

Positions a free tape forwards or backwards a
specified number of records. It does not allow
positioning beyond the tape marks. If the positioning
operation encounters a tape mark, the user is informed
and the tape is positioned just inside the offending
tape mark.

Searches a free tape from present position to the
fir s ten c 0 u n·t ere d do u b let ape mar k, and rep 0 r t s the
recording density of the tape, the number of records
accessed, and the length of the longest record in each
f i l e •

Requests that a certain tape be removed (dismounted)
from the system tape drive.

Releases a tape drive back to the system. If a
tape is currently mounted, it is removed.

peL and !SET Output Options

A subset of PCl options are of particular importance to the user of magnetic
tapes. A similar subset of the IBEX SET command options perform many of the
same functions, but the PCl and SET command options do have differences.
These options are summarized below.

ISET Command Options

SET command options related to the use of tape are shown in the following
tables. For more information, see CE40, Programmer Reference manual, or use
HELP:

HELP (IBEX) SET OPS option

For example,

HELP (IBEX) SET OPS SPANNED

CE55-01 MODULE 6-2 Page 130
Tape Commands, Options, and Calls

Option

ACCESS

ACS

ACSVEH

BlKl

BLOCKED

CVOl

DENSITY

EBCDIC

EXPIRE

FSN

FUN

KEYl

KEYX

MAXVOl

NRECS

ORG

READ

RECl

SN

SPANNED

TYPE

VOlACCESS

WRITE

CESS-01

!SET Options (Tape)

Description

Establishes associated accounts and their permissions.

Defines how file access will occur: sequentially,
or in journal mode.

Defines a vehicle control list that allows the file
creator to control access by limiting it to processors.

Specifies the maximum physical tape block size (in
bytes) that will be read from or written to a
labeled tape.

Controls packing of logical records into physical
tape records.

Specifies that the user is to be notified of
end-of-volume conditions.

Specifies the recording density at which a
tape is to be written.

Controls conversion of tape file labels, user
labels, and the data itself from ASCII to EBCDIC.

Determines the expiration date of the volume
set for ANS tapes.

Specifies the file sequence number for labeled tapes.

Specifies whether a file can be read and/or modified.

Specifies the length of a key for an indexed file.

Specifies the key starting position for an indexed
file.

Specifies the maximum number of tapes to be used
as scratch tapes to supplement the explicit volumes
requested by serial number.

Specifies the number of records in a relative file.

Defines the file organization; distinguishes between
ANS, EBCDIC, managed free, and free tape.

Specifies the accounts that may read but not write
the file.

Specifies maximum record length.

Specifies a list of tape serial numbers.

Determines whether logical records may be divided
between physical tape records.

Specifies the file type.

Controls access to read and write on the volume.

Specifies the accounts that may have write access to
a volume.

MODULE 6-2
Tape Commands, Options, and CalLs

Page 131

Option

XTEND

PCl Input Options

!SET Options (Tape) (cont.)

Description

Determines the position for CREATE opens of
LabeLed tape.

The foLLowing PCl input options appLy to tapes. AdditionaLLy, options that
appLy to CP-6 fiLes wiLL aLso appLy to files on tape when appropriate. For
more information, see CE40, Programmer Reference manuaL, or use HELP:

HELP (PCl) INOPS option

For exampLe,

HELP (PCl) INOPS DEOD

PCl Input Tape Options

Option Description

BINARY Specifies that any read operation from a free tape
(FT) is to interpret data as binary. The
defauLt is NBINARY (see the NBINARY option).

BLOCK Specifies the bLock length for input from free tape.

DEOD Specifies that aLL fiLes in a free tape (FT) are to
be read as if there were onLy one fiLe untiL two
consecutive tape marks (EODs) are encountered.

EBCDIC Specifies that tape fiLe LabeLs and records read
from free tape (FT) be transLated
from EBCDIC to ASCII. The defauLt is no
transLation.

FSN=(n-m) Specifies that fiLes n through m are to be read
sequentiaLly from a tape. The vaLue of m must exceed
the vaLue of n, and both must be between 1 and 9999.
FSN may not be specified if a fiLename or range is
incLuded in the source parameter. If m is omitted,
onLy fiLe n is assumed.

FTORGANIZATION Specifies the input fiLe organization for free tape.
Organization may be FREE, UNDEFINED, FIXED,
or VARIABLE. The defauLt is FREE.

NBINARY Specifies that any read operation from a free tape
(FT) is to interpret data as character
rather than as binary. The default is
NBINARY. (See the BINARY option.)

NBlOCKED Specifies that the input free tape is not bLocked.
The defauLt is bLocked.

CESS-01 MODULE 6-2
Tape Commands, Options, and CalLs

Page 132

Option

NCNVRT

NSPANNED

ORGANIZATION

PHYSICAL

REClENGTH

TRANSPARENT

VOLUME

PCL Output Options

pel Input Tape Options (cont.)

Description

Specifies EBCDIC data read from EBCDIC tapes
is not to be transLated into ASCII. The
defauLt is transLation.

Specifies that the input free tape is not spanned.
If unspecified, it is assumed to be spanned.

Specifies that onLy fiLes of certain
organizations are to be seLected.

Determines how the range specification of fiLe names
wiLL be interpreted. Specifies that a range of fiLe
names in a source parameter is to be interpreted
physicaLLy; this onLy appLies to LabeLed tape. PCl
positions to the first fiLe in the range specification
and then consecutiveLy accesses fiLes untiL the second
fiLe in the the range specification is Located
and accessed.

If PHYSICAL is not specified, aLL fiLes whose fiLenames
are aLphabeticaLLy between the two fiLenames in the
range specification are accessed.

Specifies the LogicaL record Length for input
from managed free tape.

Specifies input without transLation.

Specifies which voLume of a tape set is to be accessed
initiaLLy. The vaLue can range from 1 to 511.

The foLLowing PCl output options appLy to tapes. AdditionaLly, options that
appLy to CP-6 files will also appLy to files on tape when appropriate. For
more information, see CE40, Programmer Reference manual, or use HELP:

HELP (PCl) OUTOPS option

For example,

HELP (PCl) OUTOPS DENSITY

CE5S-01 MODULE 6-2 Page 133
Tape Commands, Options, and Calls

Option

BINARY

BLOCK

DENSITY

EBCDIC

MAXVOl

NBlOCKED

NCNVRT

NSPANNED

ORGANIZATION

REClENGTH

TRANSPARENT

VOlACCESS

CE55-01

PCl Output Tape Options

Description

Specifies that all records are to be written as binary
data. The default is for records to be written in the
same form as they were input.

Sets the maximum block size for files on tape. The
size is expressed in number of bytes per block. If
BLOCK is not specified, a format dependent default
will be supplied. The maximum is also format
dependent.

Specifies the tape recording density. Valid densities
are: 800, 1600, 6250, or 556 (valid for 7T only).

Specifies that the labels on labeled tape are to be
written in EBCDIC; data will also be written in EBCDIC
unless NCNVRT is included as one of the output options.
Valid only for labeled tape, managed file types F and
U, and free tape (FT).

Specifies the maximum number of additional tape volumes
that can be accumulated as part of the volume set.
(When you run out of space writing on a labeled tape,
the system can allocate scratch volumes to be added to
the set.) The value must be in the range of 1 to 511.
The default is 511. Valid only for labeled tape.

Specifies that tape output is not to be blocked. See
the BLOCK option.

Specifies that data is not to be translated into EBCDIC
format n the EBCDIC labeled tape. Valid only for
labeled tape and only when the EBCID option is included
among the output options.

Specifies that records are not to be spanned. Spanned
records may be divided between physical tape records
and may exceed the record size specified in the
REClENGTH option. Valid only for labeled tapes.

Specifies the organization of the output file. For
free tapes, ORG=FREE; for managed free tapes and for
ANS tapes, ORG=UNDEFINED, FIXED, or VARIABLE. For
CP-6 labeled tapes, all values of ORGANIZATION are
acceptable. For EBCDIC tapes, ORG cannot be
VARIABLE.

For fixed record length formats such as RELATIVE and
FIXED, the RECl option is the maximum record length in
bytes. For variable record length TAPE formats such as
CONSEC, KEYED, and VARIABLE, the RECl option is the
maximum record segment length in bytes. For unspanned
files, at most one record segment is used per record
thus limiting each record. Records exceeding this
length are truncated. All variable record length TAPE
formats include control information bytes with the data
record.

Specifies input without translation.

Specifies volume access mode.

MODULE 6-2 Page 134
Tape Commands, Options, and Calls

Option

VOLUME

XTEND

pel vs SET

PCl Output Tape Options (cont.)

Description

Specifies which reel in a multi-volume tape set is
to be accessed initially. Valid only for labeled tape.

Prevents overwrite of other files on the tape by
writing the new output file at the end of the labeled
tape set. If unspecified, the write occurs at the
current tape position. Valid only for labeled tape.

As can be seen from the above tables, PCl and SET options are sometimes
similar, but not identical. For example, block length in !SET is BlKli in PCl
it is BLOCK. The following examples show the same options in !SET and PCl:

SET: !SET INFIlE FT#1234, ORG=FIXED, RECl=20, BlKl=60

PCl: !COPV FT#1234(FTORG=FIXED, RECl=20, Bl=60)

Monitor Service Calls

Monitor service calls related to magnetic tapes are summarized here. For more
complete information about monitor service calls, see the Monitor Services
Reference manual, CE33, or use HELP:

HELP (MONSER) call

for example,

HELP (MONSER) MSOPEN

CE55-01 MODULE 6-2 Page 135
Tape Commands, Options, and Calls

M$DCB

The DCB is the communication data block between the user and the monitor
concerning the attributes of a disk file, labeled tape file, or device. The
following MSDCB options are of particular importance to users of magnetic
tapes. The options in the table are also options used with MSOPEN.

Option

ASN

BLKL

BLOCKED

CNVRT

CVOL

CE55-01

MSDCB and MSOPEN Tape Options

Description

Indicates whether the DCB parameters describe a DISK
file (FILE), a labeled tape (TAPE), a specific device
(DEVICE), or a communication group (COMGROUP).

Specifies the maximum physical tape record size (in
bytes) that will be read from or written to a labeled
tape.

YES specifies that logical records and record segments
are to be packed into physical tape records. NO
results in, at most, one record or record segment per
tape record. BLOCKED applies only to FIXED and
VARIABLE labeled and managed t2pe files. BLOCKED
should be used in conjunction with SPANNED for optimum
tape record utilization.

YES specifies that for EBCDIC tape files, data is to
be translated from EBCDIC to ASCII after reading, or
ASCII to EBCDIC before writing. Translation is done
while data is being moved between user and monitor
buffer for all file formats except UNDEF, for which
translation is done in the user's buffer. (This
destroys original contents when writing.) CNVRT
applies only to FIXED, VARIABLE, and UNDEF formats.

For nonbinary writes to free tape, if CNVRT is set and
EBCDIC is not, the user's buffer is converted to
assure that no high order bits are set (which will
cause an 1/0 error). If both CNVRT and EBCDIC are set
for free or managed free tapes, normal translation
takes place. The default is YES.

YES specifies that the user desires to be notified of
end-of-volume conditions. CVOL should only be
specified for SPANNED=NO tape files since spanned tape
files may have records which cross volume boundaries.
It is not possible to process these records if the
user takes CVOL control.

For free tapes, end-of-tape will be reported to permit
the user to MSCVOL to the next output tape or MSWRITE
which automatically mounts the next output tape. For
read operations, two file marks are interpreted to
indicate end-of-volume. A read encountering two file
marks will 1) if CVOL was specified, return an
end-of-file error and leave tape position after the
first file mark or 2) if CVOL was not specified, cause
the next volume to be automatically mounted and read.

The default is NO in which case volume changes are
done automatically.

MODULE 6-2
Tape Commands, Options, and Calls

Page 136

Option

DENSITY

EBCDIC

EXPIRE

FSN

FUN

MAXVOL

NAME

CESS-01

MSDCB and MSOPEN Tape Options (cont.)

Description

The recording density at which a tape is to be
written. DENSITY may be specified only when creating
the first file of a volume set. All following files
are created at the same density as the first. For IN
or UPDATE opens, DENSITY is determined from the tape
volume containing the opened file.

YES specifies that tape file labels (including user
lab e l s) are ·t 0 bet ran s l ate d fro m E BCD I C t 0 A SCI Ion
input and from ASCII to EBCDIC on output. Data is
subject to translation (see DCB.CNVRT). EBCDIC
applies only to VARIABLE, FIXED, and UNDEF files
on labeled and managed tape, and to free tape.
EBCDIC must be specified on output and input for
free and managed tape files.

For labeled tape volumes in protected systems, EXPIRE
specifies the number of days to protect the volume
against content changing operations (UPDATE or
CREATE). In semi-protected systems, unexpired volumes
require an OVER keyin to UPDATE or CREATE open.
EXPIRE has no effect in unprotected systems. The
expiration date of the entire volume set is that of
the first file of the volume set.

The file sequence number (FSN) for labeled tape
indicates the position of the tape file relative to
the beginning of the set, with first file of volume
set numbered 1.

Applies to tape files used to read, update, or create
a file. Unless otherwise specified, record
positioning is to the first data record in the file.

IN - Used to read records from a file. Specifies
the read only mode.

UPDATE - Used to extend an existing tape file.
Specifies the read and write mode. On opening an
existing tape file for UPDATE, the file will be
positioned at the end.

CREATE - The type of file open that CREATE performs
will depend on the parameters of the MSOPEN option
EXIST. Specifies the write and read mode. If the
file is cataloged at "SOPEN time (CTG=YES), the
function effectively changes to UPDATE
(FUN=UPDATE).

Specifies the number of extra tape volumes which will
be requested as scratch tapes after the volumes in the
serial number list are used up.

Specifies the name of the file to which the DCB is to
be assigned. For UNDEF, FIXED, or VARIABLE tape file
names, NAME must be a 17-character legal ANS name.
For other tape files, the name may consist of up to 31
alphanumeric characters from the following character
set: A-Z,a-z,O-9,:,S, ,-.

MODULE 6-2
Tape Commands, Options, and Calls

Page 137

Option

ORG

RECl

SEQ

SPANNED

CESS-01

MSDCB and MSOPEN Tape Options (cant.)

Description

File organization. For ASN=TAPE, ORG is meaningful
for FUN=CREATE opens only.

CONSEC - specifies that the records in the file are
consecutively organized and each record will be
processed sequentially.

FIXED - specifies ANS or EBCDIC tape format F -
fixed-lengt~ (RECl) records with no control
information. (See EBCDIC, CNVRT, BLOCKED.)

FREE - specifies free tape (i.e., not managed free
tape for which FIXED, UNDEF, or VARIABLE must be
specified).

UNDEF - specifies ANS or EBCDIC tape format U -
undefined-length records with no control
information. (See EBCDIC, CNVRT.)

VARIABLE - specifies ANS tape format D for
unspanned files, ANS tape format S for spanned
files, and format V for EBCDIC files - variable
length records. (See EBCDIC, CNVRT, BLOCKED,
SPANNED.)

The default for disk and tape files is CONSEC. The
default for free tape is FREE.

For fixed record length formats such as RELATIVE and
FIXED, RECl is the maximum data record length in
bytes. For VARIABLE formats, RECl is the maximum
record segment length in bytes. For unspanned files,
at most one record segment is used per record, thus
limiting each record to RECl bytes which includes 4
bytes of record information. For spanned files, RECl
is the maximum length of the data record not including
record information bytes. RECl may be zero for
spanned files indicating that there is no maximum.

RECl is determined for IN or UPDATE opens from the
file opened, except for managed tape files for which
RECl must be specified.

YES specifies that sequencing is to occur on each
output record.

YES specifies whether logical records may be divided
between physical tape records. Spanned records may
exceed the record limit imposed by RECl, since RECl
applies to record segment size. SPANNED applies only
to VARIABLE labeled and managed tape files. SPANNED
is determined for IN or UPDATE opens from the tape
file opened. Spanned and unspanned files may be
freely intermixed on a volume.

SPANNED should be used in conjunction with BLOCKED for
optimum tape record utilization. (SPANNED must be
specified for INPUT or UPDATE managed tape files.)

MODULE 6-2
Tape Commands, Options, and Calls

Page 138

Option

MSDCB and MSOPEN Tape Options (cont.)

Description

The default is YES which permits records of any length
and results in the most efficient usage of tape
records.

VOL On open, VOL specifies which volume of the volume set
(as specified by the serial number list) is to be
initially mounted. VOL is used in conjunction with
XTEND to determine which volume of the volume set to
Any processor can determine current volume by using
VOL as an index to the serial number table. See
MSOPEN SN.

VOLACCESS Indicates labeled tape volume set access limitations.

XTEND For CREATE opens of labeled tape files, YES causes the
volume set to be positioned after the last file if
VOL=O. If VOL is non-zero, the volume selected is
positioned after its last file. XTEND = NO causes
the next file to be created at current volume
position. The default is NO.

Note: For additional MSOPEN tape options, see next table.

M$OPEN . OPEN DeB

The MSOPEN monitor service performs the functions necessary to give a user
access to the I/O medium through a DCB. MSOPEN and MSDCB share the tape
options shown in the preceding table. The additional MSOPEN options in the
following table are also used with magnetic tape processing:

CE55-01 MODULE 6-2 Page 139
Tape Commands, Options, and Calls

Additional MSOPEN Tape Options

Option Description

MNTONLY YES specifies that the initial tape volume is to be
mounted without opening any files. The tape volume is
positioned to its beginning. The file sequence number
(FSN) and file section number (FSECT) of the first

SN

file (section) are returned in the DCB for labeled
tapes. DCB.ASN is set to TAPE for labeled tapes, and
to DEVICE for free or managed tapes.

Locates an area containing a list of tape serial
numbers or a pack set name. This list must be in the
same order in which the volume set was created and
cannot contain duplicate or blank serial numbers.
Blank serial numbers occurring at the end of the list
will be counted in MAXVOL. Serial numbers must
conform to ANSI standards.

UHL Locates the VLP_ULBL into which User Header Labels
(UHLs) are to be read during an IN or UPDATE open of a
labeled tape file, or from which UHLs are to be
written during a CREATE open. The label number and
contents must conform to ANSI standards.

M$CLOSE-CLOSEDCB

The MSCLOSE service terminates and inhibits 1/0 through a specified DCB, until
the DCB is again opened. For tape updating, the MSCLOSE service performs
these additional functions:

• Performs end-of-file processing appropriate to tapes:

For free or managed tape, if the last operation performed was a write, two
file marks are written and the tape positioned between them. If the last
operation was a write-end-of-file, one file mark is written and the tape
positioned before it.

For labeled tape, User Trailing Labels (UTLs) may be specified to be
written following the End Of File label group for CREATed or UPDATEd (if
modified) files. A buffer may be specified for receipt of any UTLs
present for IN or UPDATE file if the file was not modified. Tape position
is left following the file mark which follows the end of file label group
(including UTLs) based upon the specification of the POS parameter.

• Positions the tape following end-of-file processing, if the POS parameter
is specified.

CESS-01 MODULE 6-2 Page 140
Tape Commands, Options, and Calls

M$CVOL·CLOSEVOLUME

The M$CVOL service causes the monitor to 'terminate the reading or writing of
data in the magnetic tape reel currently associated with a specific DCB, and
to advance to the next reel of the volume set.

For free and managed tapes, the current reel is terminated and the next reel
positioned to its beginning.

For input files on labeled tape, the current file section is positioned to its
end and determination made (by reading the following label group) of the
existence of a subsequent file section. If no such file section exists,
M$CVOL will ALTRET with an end-of-file error and leave the current file
positioned to its end. If a subsequent file section exists, the current
volume is dismounted, and 'the next mounted and positioned to the first record
of the next file section. Any UTLs following the EOV label group are returned
if UTL is specified. Any UHLs following the HDR label group of the next file
section are returned if UHL is specified. Both UTLs and UHLs are returned in
VLP ULBL format.

For output files on labeled and managed tape, the current file section is
truncated after the last whole record.

In addition, for output files on labeled tape, an EOV label is written
followed by any UTLs specified by UTL. The current volume is dismounted, and
the next mounted and positioned ready to write the next record of the file
(first of the next file section) after writing necessary VOL1, HDR and UHL
labels as required or specified by UHL.

Note: On input, UTLs and UHLs are returned to their separate buffers
contiguously packed. The first word of the user label areas will contain the
number of labels of that type returned. On output, UTLs and UHLs are written
from the user's respective label buffers which are contiguously packed. The
first word of the user label areas will contain the number of labels of that
type to write. Any labels not containing the proper first three characters
will cause termination of user label writing.

CVOL control should only be used with unspanned tape files, since spanned tape
files may have records which cross volume boundaries. It is not possible to
process these records if the user takes CVOL control.

CE55-01 MODULE 6-2 Page 141
Tape Commands, Options, and Calls

M$READ . READ RECORD

The MSREAD service causes a specified data record to be read into a user
buffer in memory. The MSREAD service is used for all types of files and
devices for which input is appropriate.

The user normally provides a buffer that is large enough to contain the
maximum length record. In the normal case if a record exceeds buffer size,
the record is truncated and this condition is reported as an error. If a
record is smaller than buffer size the remainder of the buffer is unchanged
from its previous contents. The MSREAD service also provides the option
(CONT) to issue several calls to read successive portions of a single large
record.

M$WRITE . WRITE RECORD

The MSWRITE service causes a data record stored in a buffer in memory to be
written. The MSWRITE service is used for all types of files and devices for
which output is appropriate.

The user normally provides a buffer to accommodate the maximum length record.
To write records of varying sizes, the user adjusts the FPT field BUF which
contains a vector: BUF .BUFS points to the start of the buffer and BUF .BOUND
specifies the record length minus 1. The user typically adjusts the BOUND
field before writing each variable-length record to the record length minus 1.
MSWRITE provides options comparable to the options available on the MSREAD
service.

M$PRECORD . POSITION TO RECORD

The MSPRECORD service permits the user to change position within a disk or
tape file. Based on the parameters supplied, the monitor positions by key or
positions forward or backward by a specified number of records.

Positioning by key applies to all file organizations except consecutive and
unit record. To position by key the user specifies these parameters: DCB,
KEY, KEYS=YES, and optionally KEYR=YES and N. If KEYR=YES the monitor returns
the key of the record found, or if the requested key does not exist the next
larger key. If N is also specified, the file is positioned by key and then
forward or backward by the number of records specified by N.

The MSPRECORD service positions the file so that the next record read will be
the record with the specified key, if a record with the specified key exists.
The alternate return is taken with an error reported (ESNOKEY), if a record
with the specified key does not exist; the file remains positioned to read the
record with the next higher key.

NOTE: For keyed and indexed labeled tape files opened with ACS=SEQUEN, the
file is searched in the forward direction. The search is terminated if a key
of equal value is found or if end-of-file is reached.

CESS-01 MODULE 6-2 Page 142
Tape Commands, Options, and Calls

The user may request reLative positioning by specifying KEYS=NO and N as the
number of records to skip from the current position. The number of records to
skip may be a positive number to move forward or a negative number to move
backward. At the time the MSPRECORD is caLLed, current position is considered
to be (1) the next record to be read if the previous operation was a read, (2)
end-of-file if the previous operation was a write for a consecutive disk fiLe
or tape file, (3) the next record if the previous operation was a write for
other disk files, and (4) the record which would be read next if the previous
operation was a call to MSPRECORD or MSPFIL. If the N parameter specifies a
value which would cause positioning beyond the limits of the file, the
alternate return is taken; the file remains positioned before the first record
or after the last record depending on the value of N.

NOTE: If the same FPT is used to position by key at times and relatively by
number of records at othe~ times, N must be cleared before positioning by key.

After the relative positioning operation, the number of records actually
skipped is returned in the ARS field of the DCB.

M$REW· REWIND

For labeled and managed tape files, MSREW positions to the beginning-of-file
(just the same as MSPFIL with BOF=YES). For free tapes, MSREW rewinds to
beginning-of-tape (BOT). If the user calls MSREW with a closed DCB, the DCB
is opened automatically using the information currently in the DCB. If no DCB
is specified, the serial number parameter specifies which tape volume to
rewind. The volume must currently belong to the user and cannot be open.

M$PFIL· POSITION FILE

The MSPFIL service causes positioning of the medium to the beginning or the
end of the current file. For labeled and managed tape files, the position is
set before the first record or beyond the last record in the file. Free tapes
are positioned beyond the next file mark in either the forward or reverse
direction. If the user calls MSPFIL with a closed DCB, the DCB is opened
automatically using the information currently in the DCB.

CE55-01 MODULE 6-2 Page 143
Tape Commands, Options, and Calls

M$WEOF - WRITE END-OF-FILE

The MSWEOF service is appropriate for only certain devices that require
special end-of-file procedures. The MSWEOF service causes a file mark to be
written on device (free or managed free) tape. (For managed tape, the current
buffer is truncated before the file mark is written.) If the user calls
MSWEOF with a closed DCB, the DCB is opened automatically using the
information currently in the DCB.

M$REM - REMOVE OR RELEASE VOLUME

The MSREM service permits a tape volume to be dismounted and optionally
permits its respective resource to be released by its volume number. MSREM
also rewinds the tape.

There is no DCB associated with an MSREM call. The specified tape volume must
belong to the user and cannot currently be open.

M$TRUNC • TRUNCATE BUFFERS

The MSTRUNC service releases any blocking (POOL) buffers associated with a DCB
after completion of any outstanding I/O operations. The MSTRUNC service
applies to consecutive, keyed, indexed, relative, and unit record files on
labeled tape; labeled tapes in V format; and labeled and managed tapes in D,
S, and F formats. For any subsequent read or write operations for the DCB,
the system assigns blocking buffers automatically as needed.

CE55-01 MODULE 6-2 Page 144
Tape Commands, Options, and Calls

AfODULE8-3

CP-8 System Tape Processing

This module describes CP-6 system functions involved in the use of magnetic
tapes.

This module sometimes refers to tape format information which is detailed in
Module 6-8, Tape Formats.

Automatic Volume Recognition

Before you can use a tape, the tape must undergo the automatic volume
recognition (AVR) process. The purpose of AVR is to determine:

1. Tape type - either free tape, unexpired ANS/EBCDIC, or expired ANS/EBCDIC
2. Tape density
3. Volume access limitations
4. Volume owner
S. Volume serial number

The AVR process begins when a tape reel has been successfully loaded and the
drive is in a ready state. The AVR routine first determines if the reel has a
ring inserted. A rewind, set density, read sequence is then performed to
determine whether:

1. the tape can be read at one of the drive's densities
2. the tape can not be read (either the drive can not read at the density the

tape was written at, or the first physical record of the tape contains a
bad area), or

3. the tape is blank.

Blank and unreadable tapes are considered to be free scratch (unlabeled)
tapes.

For tapes successfully read, the contents of the tape's first record are
checked to determine if the tape is an ANS volume, a free tape, a managed free
tape, or a CP-6 PO tape.

For ANS volumes not created by CP-6, the volume access is ALL. For ANS
volumes created by CP-6, the volume access is whatever VOLACCESS the volume
creator specified.

As authentication continues, labels are skipped until:

1. an I/O error occurs which causes the volume to be considered a free tape
2. a blank tape, a tape mark, or a label less than 80 bytes long is read

which causes the volume to be considered an ANSscratch volume, or
3. an aD-byte HDR1 label is read, which causes the expiration date in the

HDR1 label to be compared against the current date to determine if the
volume is an expired or unexpired ANS volume.

CESS-01 MODULE 6-3 Page 14S
CP-6 System Tape Processing

The AVR routine now rewinds the tape and reports the AVR to tape-concerned
operators' consoles and tape file management (TFM), which determines how the
volume may be accessed by a user as a function of the volume's serial number
and its type:

• either free, unexpired -- for unexpired ANS volumes, or
• expired -- for expired ANS volumes, CP-6 PO tapes, and ANScratcn tapes).

The AVR process, referred to as "AVRing a tape", is now complete and the
volume is ready to be acquired by you.

Tape Resource Management

Tape resource management (TRM) is the next stage of tape verification. It is
TRM that actualLy permits a user to access a tape. TRM remembers which
voLumes are mounted on which drives, which voLumes beLong to which users, and
which voLumes are currentLy in use (i.e. have a DCB open to them). In
addition, TRM records tape drive utiLization for accounting purposes.

TRM becomes invoLved when you attempt to open a fiLe on a tape voLume.
VoLumes requests may be divided into two types:

• those requesting a specific voLume for input or output
• those requesting "any" voLume for output by specifying a bLank seriaL

number (this is known as a "scratch" mount when a free tape is desired and
an "ANSscratch" mount when an ANS voLume is desired).

These differences mainLy affect which operator keyins are required for giving
a voLume to a particuLar user the first time a user gains access to a voLume.
FoLLowing accesses require no operator intervention since TRM aLready knows
which voLumes beLong to which users and by what seriaL numbers the user wiLL
refer to them as.

Note that in any type of system the operator must specify the seriaL number
for non-scratch mounts of free tapes.

The LABEL processor may be used to Label ANS volumes in fully and
semi-protected shops. This processor ;s described in CE34, Operations
Reference Manual, and in CE41, System Support Reference Manual.

When two or more scratch tapes are being used by the same user (different
tapes, or tapes with the same name), the user should, on successive opens,
fully qualify the resource name which is returned in the DCB after the first
(and succeeding) opens (DCB.RES) e.g. by specifying 'MT01' instead of simply
'MT'. This eliminates confusion about which scratch tape is desired.

CESS-01 MODULE 6-3 Page 146
CP-6 System Tape Processing

cp-e Tape File Management

CP-6 Tape File Management (TFM) is almost" functionally equivalent to Disk File
Management to permit programs to work with either a disk file or tape file
without special considerations. However, it must be remembered that tapes are
definitely not random access devices. Due to the sequential nature of tape,
writing a record in the middle of a tape file during an update operation
destroys the rest of the file and destroys all following files on that tape
vol um e.

TFM behaves differently according to the level of ANS volume protection
selected by the system manager. (See ANS Levels of Protection, Module 6-1.)

Tape files are especially pifferent from disk files when a tape volume set
contains more than one volume and has files which cross volume boundaries.
TFM will cause proper volumes to be mounted when a file crosses a volume
boundaries even when processing involves backing up to a previous volume (by
issuing an MSREW or MSPFIL to position to beginning of file or an MSPRECORD to
skip backwards). Changing volumes is a time-consuming operation for the
operator since reels must be physically mounted. It is time-consuming to the
program unless reels have been already pre-mounted by the operator.

A special monitor service, MSCVOL, exists to position a tape file to the
beginning of the next section of the file (the part of the file on the next
volume). This may be used on input to either skip records in the current file
section and go on to the next or to cause the next volume to be mounted if the
user has requested volume change (CVOL) control (see MSDCB CVOL). TFM
notifies the user of volume end conditions with either of the two abnormal
returns ESEOVOL or ESEOVOLS (see Tape Errors module).

ESEOVOL on output means that the MSWRITE failed and must be reissued after the
volume change. ESEOVOLS only occurs on input and means that the current
record segment is divided across volumes.

MSCVOL may be used on output to cause the next volume to be mounted and the
current file section ended. The primary purpose of MSCVOL is to provide user
label handling capabilities. It permits the user to read user trailing labels
(UTLs) after the current file section, and user header labels (UHLs) preceding
the next on input and to write such UTLs and UHLs on output. There is no
reason to request CVOL control unless user label processing is desired.

User label processing ;s the user's responsibility; CP-6 TFM simply makes
these labels accessible to the user. TFM verifies that successive volumes
indeed contain the proper sections of the tape file. There is no reason for
the user to do this. User labels preceeding the file (written or read during
MSOPEN) and following the file (written or read during MSCLOSE) are useful
only to special applications.

CP-6 TFM insures that file sequence numbers properly ascend as each succeeding
file is created.

TFM supplies required ANS labels (see Module 6-8, Tape Formats) and supports
the following ANS labeled volumes:

• single-file multi-volume
• single-file single-volume
• multi-file single-volume
• multi-file multi-volume

CESS-01 MODULE 6-3 Page 147
CP-6 System Tape Processing

Anomalie. and Error.

For a compLete Listing of tape error messages and a discussion of how they are
handLed see ModuLe 6-9, Tape Errors.

CE55-01 MODULE 6-3 Page 148
CP-6 System Tape Processing

MODULE 8-4

How to Make Tape. That Other Machine. Can Read

The CP-6 system is capabLe of producing tapes for use on other systems such as
CP-V, or systems which foLLow ANS standards. This moduLe presents summary
information to assist the p'roduction of these tapes.

Tape Type. in CP-V and cp-e

The foLLowing tabLes may be used to compare the types of tape formats
avaiLabLe on CP-6 and CP-V:

FREE

Managed FREE

ANS

CP-6 LabeLed

EB CD I C

FREE

ANS

CP-V ANS <IBM)

CE55-01

CP-6 TAPE FORMATS

CompLeteLy the user's responsibiLity to retrieve
the data, non-standard LabeLs, etc. FiLes are
ORG=FREE.

Like FREE but the records may be bLocked.
FiLes are ORG=UNDEF, FIXED, or VARIABLE.

ASCII LabeLs, ASCII data, fiLenames of 17 characters
or Less. FiLes are ORG= UNDEF, FIXED, or VARIABLE.

Superset of ANS which aLLows fiLenames up to
31 characters, incLudes FiLe Information TabLe
(FIT) for each fiLe; fiLes of any CP-6 ORG which
incLudes KEYED and INDEXED fiLes.

Like ANS except LabeLs and data are written in
EBCDIC. ORG=FIXED or VARIABLE, EBCDIC=YES.

CP-V TAPE FORMATS

CompLeteLy the user's responsibiLity to retrieve
the data, non-standard LabeLs, etc.

ASCII LabeLs, ASCII data, fiLenames of 17 characters
or Less. FiLes are UNDEF, FIXED, or VARIABLE.
EquivaLent to 'ANS' on CP-6 as Listed above;
avaiLabLe onLy on systems with tape drives which
contain the optionaL ASCII conversion option,
such as the X560 CP-V machines.

Like ANS except LabeLs and data are written in
EBCDIC. This format is equivaLent to 'EBCDIC'
on CP-6, as Listed above.

MODULE 6-4
How to Make Tapes That Other Machines Can Read

Page 149

CP-V labeled

Creating Tape.

EBCDIC labels, EBCDIC data, filenames up to 31
characters, files of any CP-V supported ORG.
This format is similar in content to 'CP-6
labeled' listed above, but differs greatly in
how the information is laid out.

The foLLowing are some exampLes of creating ANS or IBM/CP-V tapes for use on
systems other than CP-6 (i.e., CP-V). The pertinent SET and PCl options
needed to create these tapes are described. Note: The CP-V of IBM/CP-V
indicates a CP-V ANS tape" and NOT a CP-V labeled tape.

Examples:

The following examples are with options fully abbreviated. (These aLL create
EBCDIC fi les.)

• To create a blocked file with variable length logical records:

PCl: COPY srcefid TO IT#reelnolansfid(OR=V,EB,NS)
SET: SET dcb IT#reelnolansfid,OR=V,EB(CN),SPAN=NO

• To create a blocked file with fixed length records:

PCl: COPY srcefid TO IT#reelnolansfid(OR=F,Bl=4096,EB, RECl=80)
SET: SET dcb IT#reelnolansfid,OR=FI,BlK=4096,EB(CN), REC=80

• To create an UNDEFined format file:

NOTES:

PCl: COPY srcefid TO IT#reelnolansfid(OR=UN,RECl=80,EB)
SET: SET dcb IT#reelnolansfid,OR=UN,REC=80,EB(CN)

1. Before using ANS tapes for transporting files containing non-textual data
(i.e., binary, packed decimal, etc.), to a non CP-6 machine, keep in mind
the conversion will probably NOT be what you want and you may have to use
some other means for transporting.

2. If files capable of non-sequential access (i.e., KEYED, INDEXED, etc.) are
copied to ANS tape, the files are copied as if they were CONSECutive
files, and any keys or similar information is lost.

3. If files with variable length records are blocked and the destination
machine is CP-V, be advised that PCl on the CP-V machine will probably
need patch #32847 in order to successfully read the CP-6 ANS tape. The
alternative is:

• on CP-6, create blocked fixed length records (ORG=FI, •••) (see the
second example above)

• then, on CP-V, specify the IN option on the output fid such as:

COpy AT#ANS/ansfid TO outfid(lN)

This will create an EDIT keyed file on CP-V. If you just wanted variable
-length records (not EDIT keyed), then:

copy outfid OVER outfid(NlN)

CE55-01 MODULE 6-4 Page 150
How to Make Tapes That Other Machines Can Read

ANS Tape Options at a Glance

PCl OPTIONS

OR[GANIZATIONJ =
{F[IXEDJ }
{UN[DEFJ }
{ V[ARIABlEJ }

Bl[OCKJ = block-size
DE[NSITYJ = tape-density
EB[CDICJ
NCN[VERTJ
R[EClENGTHJ = rec-length
NS[PANNEDJ
NB[lOCKEDJ

SET OPT IONS

OR[GJ =
{ F[IXED }
{UN[DEFJ }
{ V[ARIABlEJ }

BlK[lJ = block-size
DE[NSITYJ = tape-density
EB[CDICJ {[=YESJ I =NO}
[(CN[VRTJ {[=YESJ I =NO})J
REC[lJ = rec-length
SPAN[NEDJ {[=YESJ I =NO}
BlO[CKEDJ {[=YESJ I =NO}

Note: In PCl, there are no counterparts to CNVRT=YES and SPANNED=YES because
PCl defaults to CONVERT and SPANNED.

ANS Tape Options • Complete Description

ORG[ANIZATIONJ
F[IXEDJ Records are fixed length with no control information
UN[DEFINEDJ Records are an undefined length with no control

information
V[ARIABlEJ Variable length records

Bl[OCKJ I BlK[lJ
Specifies the maximum physical tape record size, in bytes (1-32764), that
will be written to the ANS tape. If this option is omitted, ORGs of FIXED
and VARIABLE have a default of 4096 via a SET command, and 2048 in PCl.
This option is not applicable to files with ORGANIZATION of UNDEF.

DE[NSITYJ
Specifies the density (800,1600 or 6250 BPI) at which to write the tape.

NOTE: This option is not REQUIRED to create an ANS tape, but if not
specified, care must be taken to insure that a tape written at the default
density can be read on the target machine.

EB[CDICJ,NCN[VERTJ I EB[CDICJ ••• (CN[VRTJ •••)
Controls the translation (ASCII to EBCDIC) of tape file labels and data.

In PCl: EBCDIC specifies that the tape labels are to be written in
EBCDIC; data will also be written in EBCDIC unless the NCNVERT
option is included.

In SET: EBCDIC option specifies whether to write tape labels in EBCDIC
(EBCDIC) or ASCII (EBCDIC=NO). The data will be written in ASCII
unless (CNVRT) follows the EBCDIC options.

RECl[ENGTHJ I REC[lJ
In pel: For files with FIXED organization, REClENGTH specifies the

maximum record length, in bytes. For files with VARIABLE
organization, REClENGTH specifies the maximum record length, in
bytes. If this option is omitted or 0 is specified, 80 is used.

In SET: For files with FIXED organization, RECl specifies the actual
record length. For files with VARIABLE organization, RECl
specifies the maximum record length including the four byte count
field.

CE55-01 MODULE 6-4 Page 151
How to Make Tapes That Other Machines Can Read

NS[PANNEDJ / SPAN[NEDJ {[=YESJ I =NO}
Specifies whether LogicaL records are to be spanned between physical
records (bLocks). This option is onLy applicable to ORG=VARIABLE tape
fiLes. ORG=UNDEF or FIXED files can not be spanned. CP-6 ORG tape files
are aLways spanned (except ORG=RANDOM or IDS). It distinguishes between
ANS formats D and S and EBCDIC (IBM) formats B, S, and R.

Block Size. for ANS Tape.

The CP-6 system writes muLtiples of four bytes when creating blocks for ANS
tapes. This is in accordance with the ANS standard, which states that all
data bLocks and Labels maY,be padded out to a multiple of the word length.
This padding is included in the block length, but does not affect reading the
f i l e •

Example:

A user creates an ANS labeled tape using PCL with the following command:

COpy fid TO LT#sn/fid(ORG=F,BL=1330,RECL=133,NSPANNED)

However, the system changes the block size to 1332 because the I/O system
writes multiples of four bytes.

CE55-01 MODULE 6-4 Page 152
How to Make Tapes That Other Machines Can Read

AfODULE8-5

Con".rtlnglmport.d Tap •• For cp-e U ••

Introduction

This module contains suggestions concerning the use of tapes made on other
systems for use on the CP-6 system. The information is accurate as of the
date of publication of this manual; however the user should be aware that the
accuracy of commands and specifications pertaining to systems other than the
CP-6 system cannot be guaranteed.

How to Mak. ANS Tap •• on CP-V for cp-e u ••

Options allowed when creating an ANS tape with CP-Y PCl that the CP-6 system
can read are:

FMT(U) - Unblocked - One record per block
FMT(F) - Fixed-length records, blocked
REC(n) - Record size. The value n specifies the size of records

for FMT(F) only, where 1 <= n <= 32767 bytes. Records
will be truncated or padded to conform, but padding with
blanks will extend only 140 bytes. The BlK value must be
a multiple of the record size (n). The default for n is
128 bytes.

BlK(n) - Block size. The value n specifies the maximum block size
to be built for FMT(F), where 1 <= n <= 32767 bytes. The
default is 2048 and if n is less than 18, 18 will be
used.

Examples:

To create a blocked file with fixed length records:

COpy srcefid TO AT#reelno/ansfid(FMT(F»

This would use the defaults: REC(128),BlK(2048)

To create an unblocked file:

COpy srcefid TO AT#reelno/ansfid

Transporting either an EDIT keyed file with an initial key of 1.000 and
increments of 1.000, or a CONSECutive file with variable length records can be
done by doing the following:

On CP-Y System:

COpy srcefid TO AT#reelno/ansfid(BlK(b),REC(n»

CE55-01 MODULE 6-5 Page 153
Converting Imported Tapes For CP-6 Use

where b is a muLtipLe of n, and n is >= the Longest record

On CP-6 System:

If the fiLe was EOIT keyed on CP-V system:

COpy IT#reeLnolansfid TO outfid(lN,NB)

If not:

COpy IT#reelnolansfid TO outfid(NB)

Notes:

1. Before using ANS tapes for transporting files containing non-textuaL data
(ie. binary, packed decimaL, etc.), keep in mind the conversion wiLL
probabLy NOT be what you want and you may have to use some other means for
transporting.

2. If fiLes capabLe of non-sequentiaL access (ie. keyed, random, etc.) are
copied to ANS tape, the fiLes are copied as CONSECutive fiLes and any keys
or simiLar information wilL be Lost.

Making ANS Tap •• on Multlc. for cp-e u ••

The foLlowing MuLtics command copies one file to ANS LabeL tape for transport
to the CP-6 system. Key in the command exactLy as shown except for the
variabLe information indicated by CAPITAL LETTERS.

cpf -ids "record stream -target vfiLe SEGIO" -ods "tape ansi
TAPESN -nm FILENM -cr -nb NO -retain none -mode ascii"

Note that the above is a singLe command. Substitute appropriate vaLues for
SEGIO, TAPESN, FILENM and NO as folLows:

SEGIO is the MuLtics segid of the fiLe to be copied to the tape (the fiLe name
for the CP-6 system>.

TAPESN is the tape seriaL number to be used (1-6 characters>.

FILENM is the name to be used on the tape. Enter it in ALL CAPS and restrict
it to Letters and numbers; aLso, it shouLd be no more than 17 characters
Long for ANS compatibiLity.

NO is the file sequence number on the tape. Use 1 for the first fiLe, 2 for
the second, and so on.

The above command can be pLaced in an EC file, substituting &1, &2, &3, and &4
for SEGID, TAPESN, FILENM, and NO, respectiveLy. This wiLL simpLify the fiLe
copy operation if it is used repeatedLy.

CE55-01 MODULE 6-5 Page 154
Converting Imported Tapes For CP-6 Use

ANS Tapes Made On Other Systems

Generally speaking, ANS tapes made on other systems should be readable on the
CP-6 system, as the purpose of ANS standards is to enable such transfer of
information. These other-system ANS tapes may be written in either ASCII or
EBCDIC; the CP-6 automatic volume recognition (AVR) process determines the
format of the tape and ANS EBCDIC tapes are converted to ASCII when read by
the CP-6 system.

For such tapes, the CP-6 COPYALL command can be used:

COPYALL LT#GNORF TO .MYACCT

The CP-6 system will autolllatically recognize the "EBCDICness" of the tape and
perform the necessary conversions when reading the files.

ANS tapes made on other systems may have ANS names which require quotes when
used in the CP-6 system. For example:

!COPY LT#46424/DKS.DK090HEC TO FILE

will not work since the ANS name includes a period (.). The name must be
enclosed in quotes:

!COPY LT#46424/'DKS.DK090HEC' TO FILE

The above command is accepted by the CP-6 system.

CE55-01 MODULE 6-5 Page 155
Converting Imported Tapes For CP-6 Use

AfODULE8-8

How 10 Copy Tape.

Making Tape Copies

The PCl COPY and COPYAll command can be used to make copies of tapes. The
COpy command copies seLected fiLes, and the COPYAll command (which can be used
onLy for LabeLed tapes) copies muLtipLe fiLes (or compLete tapes).

Making Copies of Labeled Tapes

CP-6 labeled tapes and ANS tapes may be copied with the COPYAll command. For
exampLe:

<COPYAll IT#source TO IT#dest

resuLts in a copy of the source tape. To make a copy of seLected fiLes, the
COpy command can be used:

<COpy IT#sourcelA - H TO IT#dest

This resuLts in aLL the fiLes whose names are in the aLphabetic range from A
to H incLusive being copied. The order on output wiLL be the same as on input
(i.e., they wiLL not be sorted by name.)

The PHYSICAL PCl input option can be used to copy a consecutive range of
fiLes. For exampLe:

<C IT#sourceIB>H(PHYS) TO SQUISH

teLLs PCl to copy onLy those fiLes consecutiveLy Located between Band H
(incLuding B and H).

A LabeLed tape cannot be copied as a free tape unLess the FMSEC priviLege is
used.

CESS-01 MODULE 6-6
How to Copy Tapes

Page 156

Copying Managed Free Tapes

It is possible for a user to copy selected files from one managed free tape to
another tape. If the requirement exists to copy a large number of files on a
managed free tape, or to copy an entire tape, it is possible to SCAN the tape
to determine how many files need to be moved, build an XEQ file that says
'COPY FT#source TO FT#dest', once for each file to be moved (after an initial
!PCl) and run the XEQ file. File sequence number (FSN) may also be used to
select files for copying.

At the end of any free tape operation (with the exception of SPR) the tape is
positioned past the end of the file. Thus, after you copy one file, the tape
is positioned after your file and you are at the beginning of your next file.

Copying Free Tapes

A free tape may be copied as one large file by using the DEOD option; however,
if there are intervening file marks, these will be stripped out by PCl. If
the free tape has been structured to include individual files, these can be
selected for copying using the PCl COPY command in the same manner that files
or a range of files are selected for copying managed tapes.

The SCAN command can be used to examine the free tape and select the file or
files desired. Files may be selected by filename or FSN.

A COPY from FT to FT with no options specified will apply all the tape
defaults.

When reading tapes made on other systems, a knowledge of the maximum record
size is useful in determining the initial buffer size required. In the
absence of this information, some experimentation is necessary, as CP-6
hardware does not return a lost data error.

Extension of Tape Flies

In order to extend a tape file, the file must be opened FUN=UPDATE and
positioned to its end (MSPRECORD BOF=NO) before any WRITEs take place.

CE55-01 MODULE 6-6
How to Copy Tapes

Page 157

ASCII TO EBCDIC Conversion

The EBCDIC option works with any ORG except ORG=V.

Example:

A user enters the following commands:

!PCl
PCl B03 here
<COpy FlO TO FT#1823(EB,OR=V,NS,RECl=3000)
<END

in the expectation of creating an EBCDIC tape. However, the tape is created
in ASCII.

In order for the conversion to work, the tape file organization must not be
variable. If ORG=V is selected, the EDCDIC option is ignored.

Making a Tape Copy for Export

It is possible to create a copy of a tape for export by using PCl:

Example:

!ORES MT(1600BPI)=1
!M Please get reel number 12 (IT#XFER) from library.
!PCl
PCl B03 here
<MOUNT IT#XFER RING,REEl=12
<COPYAll fid OVER IT#XFER(DE=1600,ORG=V,NFA,NBIN)
<REM IT#XFER
<END
!M Please send reel 12 (IT#XFER) to 'No.24, Royce Bldg.'

Copying Binary Data to Tape

Copying binary data to tape is easy to do, even though the CP-6 system must do
some special work in order to place the ninth bit on the tape. Simply use PCl
to say:

!COPY file TO IT#snlfile

Do NOT specify ORG on the destination tape, as this will tell PCl to create a
transportable ANS tape format which only records eight bits out of nine. The
ORG of the disk file tells PCl how to write the tape. Don't bother to specify
RECl either, as it is meaningless for a CP-6 tape. You may, however, specify
a BlKl to make PCl write longer tape records. See the discussion of block
size below.

CESS-01 MODULE 6-6
How to Copy Tapes

Page 158

Copying ANS Tapes Made on Other Systems

See Module 6-5 under ANS Tapes Made on Other Systems.

Block Size

The following considerations enter into specifying block size when copying
tapes.

Blocked Tapes and FPOOL Buffers

When copying a tape with large blocks, the size of the file management buffers
(FPOOLS) as set by the IBEX LIMIT command will have an appreciable effect upon
the time required to perform the copy.

For example, consider the following command:

COPYALL LTN0023/?CP91ACC OVER LTN2110/?CP91ACC (BLOCK=28672)

The block size specified requires a seven-page file buffer (one page = 4096
bytes) for the input tape, and another for the output tape. This block size
will require at least 7 FPOOL pages to work at all, and will require at least
14 FPOOL pages to operate efficiently.

To the number of buffers mentioned above, the user must add those buffers
required to perform miscellaneous functions (two or three).

The default number of buffers supplied by the CP-6 system will be sufficient
in the performance of ordinary tasks, and need be given special consideration
only when large blocks are specified.

Block Size Versus Efficiency

Increasing block size results in a gain in tape efficiency (that is, more data
on less tape) but also increases the probability of error. The marginal gain
in tape efficiency using 7k blocks over 4k or Sk should be balanced against
this increased probability; the tradeoff may not necessarily be a good buy.

Tape efficiency may be expressed as:

block size (inches)
efficiency = -------------------------

block size (inches) + gap

where
block size (bytes)

block size (inches)= ------------------
BPI

and

gap = 1/2 inch

The following table illustrates results calculated for both 1600 BPI and 62S0
BPI comparing block sizes of 4K and 7K.

CES5-01 MODULE 6-6
How to Copy Tapes

Page 159

CESS-01

Density

1600 BPI
6250 BPI

Efficiency @4K(16kb) Efficiency @7K(28kb)

.95

.84

MODULE 6-6
How to Copy Tapes

.97

.90

Page 160

MODULE 8-7

Multi-reel Tape.

Creating Multi-volume Tape Sets

Consider the following situation: You want to create a multi-volume tape set.
To do so, you issue the PCl command

!COPY ANYFIlE TO IT#SN1#SN2#SN3IANYFIlE

You don't know how many reels the file will occupy, so the tape mounted could
be any of the three serial numbers. How do you remove or rewind the tape?

The answer is to issue the PCl command

!REM IT#SN1#SN2#SN3
or

!REW IT#SN1#SN2#SN3

PCl remembers reels that are used together. So if you use a volume set called
IT#SN1#SN2#SN3, PCl remembers that the three are related and you are
positioned on (for example) #SN2. Then when you say "REW IT#SN1#SN2#SN3'', PCl
removes #SN2 and sets things up so that the next use of that set gets #SN1.

User programs and other processors do not have access to PCl's memory of what
is going on, so they won't handle tapes in the same way. If you use, for
example, a COBOL program to create a multi-volume tape set and then use PCl to
rewind it, PCl tries to do the "right thing": It tries to rewind all the
reels and complains for each one that isn't mounted. Thereafter, PCl
remembers which reels belong to that set and that the set is positioned to the
first reel.

CE55-01 MODULE 6-7
Multi-reel Tapes

Page 161

Using Volume Sets

A vaLid LabeLed tape fid is IT#s1#s2#s3 •. PCl treats this as a voLume set or
'unit' rather than as separate tapes. Hence

REW LT#R1#R2#R3

(if R2 is the current one mounted) unloads R2, asks for R1 and positions it at
BOT (even if the tape set was left in this state as the result of~ for
example, output from an executing COBOL program).

REW IT#R1,lT#R2,lT#R3

attempts to perform a rewind on three different single-reel tape sets and
requests that the ones not mounted be mounted.

REM IT#R1#R2#R3

attempts to remove all reels of the set.

For a three-reel set which ends on reel two,

SPE IT#R1#R2#R3

leaves the tape positioned in #R2 -- it puts the file at current position on
the tape set (on #R2 where the SPE left it).

Once PCl treats #R1#R2#R3 as a volume set, if you then use the partial tape
set #R2#R3, you may cause some difficulty. PCl will now remember that there
is a set called #R2#R3 and store any subsequent volume transitions under that
name. later use of the full set would (once again) put you on #R1.

The first time #R1#R2 is used PCl starts with the first volume, #R1. If the
set was used before, the volume last used with that set is opened. Note if
either of the volumes is manipulated by itself (with or without PCl), you will
encounter difficulties.

There is no reason why volumes cannot be pre-mounted or even used before being
used as a set as long as you make certain that they're at BOT. Note, however,
that there is no way for PCl to tell anything about which reels are mounted,
as PCl uses a private system of remembering what's going on without use of
monitor support.

In order to read a tape in PCl that was set up by another processor, VOl=n
should be used to tell PCl where the last processor left the tape~ It is
possible to say VOl=n on output.

Problem:

A program outputs to IT#S1#S2#S3 and leaves it positioned at end of file
(which may be on any of the reels). You then want to rewind the tape and then
use it as input to something else (perhaps PCl). How do you know what Inl to
use on VOl=n?

If you say:

!REW IT#S1.S2.S3
!IF STEPCC>1 THEN ABORT

;s PCl going to give an error message about non-mounted reels and set the
STEPCC?

The answer is that yes, PCl will complain about non-mounted reels in this
example. However, the STEPCC is set to a low number (one) to indicate that
this was only a warning message.

CE55-01 MODULE 6-7
Multi-reel Tapes

Page 162

Does PCl 'remember' the volume set only for the particular PCl invocation, or
can a series of commands given to IBEX be processed correctly? The answer is
that the memory lasts for the the entire ,session. Therefore, invocations from
IBEX and departures from PCl are possible.

You cannot get COBOL to position to BOT on #51 when closing the output file,
since COBOL doesn't report volume transitions. However, you can say

!ACCEPT ANNOUNCE

This will tell you when you hit a MOUNT request. However this does not apply
when running in batch.

CESS-01 MODULE 6-7
Multi-reel Tapes

Page 163

AfODULE8-8

Tape Format.

cp-e Tape Formats

The purpose of this module is to describe and explain the various tape formats
and tape file organizations, to enable a user to make an informed choice when
determining optimum parameters for creating tape files.

The formats described in this module reflect standards of the American
National Standards Institute (ANSI). Further information about American
National Standards (ANS) tape labels and file structures is available in the
American National Standard for Magnetic Tape Labels and File Structure for
Information Interchange (ANSI X3.27-197S), which defines a tape labeling
technique to enable the transfer of character data between two dissimilar
operating systems.

Tape formats used in the CP-6 system are an extension of the ANSI standard to
permit backup of non-character CP-6 disk files. However, both CP-6 format and
ANS format tape files have the same label structure; they only differ in data
record representations and the inclusion of a File Information Table (FIT)
with data records for CP-6 format tape files.

The ANS labeling method uses SO-byte labels and tape marks (records
distinguishable from data records) in a way which allows a number of files of
different formats to be stored on a single tape volume. The primary ANS
labels, named after the contents of their first four bytes, are:

CESS-01 MODULE 6-S
Tape Formats

Page 164

LABEL

VOL1

HDR1

HDR2

EOV1

EOV2

EOF1

EOF2

Primary ANS Tape Labels

MEANING

First label on tape; contains volume serial number and
volume owner information.

Indicates the beginning of a file "section" (files which
cross volumes are composed of separate sections); contains
basic file identification information such as file name,
creation and expiration dates, and section number.

Follows HDR1 label and continues file information with
data record structure information.

Indicates the end of a file section; implies that the file
continues on the next volume of the set.

Mirrors HDR2 which began the file section except contains
the block count for the file section.

Indicates the end of a file section and file.

Mirrors HDR2 which began the file section except contains
the block count.

User Labels

In addition to these required labels which are supplied by CP-6 Tape File
Management (TFM), the ANS standards make provisions for user labels to
supplement HDR label information. The first three characters of each user
label are determined by the standard; the fourth and remaining characters are
supplied by the user. User labels are described in the following table:

CESS-01 MODULE 6-8
Tape Formats

Page 16S

User LabeLs

LABEL MEANING

UHL User Header LabeL immediateLy foLLows HDR LabeLs.

UTL User TraiLer LabeL immediateLy foLLows EOV or EOF LabeLs.

Additional ANS Labels

The ANS standard provides for other LabeLs:

AdditionaL ANS LabeLs

LABEL MEANING

HDR3 through HDR9 Used in addition to HDR1 and HDR 2.

EOV3 through EOV9 Used in addition to EOV1 and EOV2.

EOF3 through EOF9 Used in addition to EOF1 and EOF2.

UVL1 through UVL9 User voLume LabeLs; immediateLy
foLlow the VOL1 label.

A tape volume containing this last group of labels can not be created by CP-6
TFM, but if these Labels are present, they will be ignored. Options on the
MSOPEN, MSCVOL, and MSCLOSE service calLs permit the creation and acquisition
of UHL and UTL label groups.

ANS Labeled Structure

The overall structure of a single-file multi-volume ANS labeled volume set is
diagrammed in the following figure. Note that CP-6 TFM also supports
single-file single-volume, multi-file single-volume, and multi-file,
multi-volume volume sets.

CE55-01 MODULE 6-8
Tape Formats

Page 166

first voLume (first section of fiLe A)
VOL1-[UVLs]-HDR1-[HDR2]-[HDRs]-[UHLs]-*-fiLe A data bLocks-*­

EOV1-[EOV2]-[EOVs]-[UTLs]-*-*

second voLume (second section of fiLe A)
VOL1-[UVLs]-HDR1-[HDR2]-[HDRs]-[UHLs]-*-fiLe A data bLocks-*­

EOV1-[EOV2J-[EOVs]-[UTLs]-*-*

Last voLume (Last section of fiLe A)
VOL1-[UVLs]-HDR1-[HDR2]-[HDRs]-[UHLs]-*-fiLe A data bLocks-*­

EOF1-[EOF2]-[EOFs]-[UTLs]-*-*

Tape Structure

In the above figure, the square brackets denote optionaL LabeLs. The
asterisks represent tape marks. Dashes represent inter-record gaps. The
structure of data bLocks depends on the format of the tape fiLe. The doubLe
tape mark (represented by *-*) indicates end of voLume. HDR2, EOF2, and EOV2
LabeLs are aLways present for CP-6 created tape fiLes. If a HDR2 is not
present on an input voLume created by another system, fiLe format is assumed
to be UNDEF.

For more detaiLed information about ANS tape labels and file structure, see
the ANSI standard referenced at the beginning of this module.

CE55-01 MODULE 6-8
Tape Formats

Page 167

MODULES-II

TAPE ERRORS

Introduction

This moduLe describes the kinds of errors that may be encountered by the user
in performing tasks using magnetic tape. A summary tabLe of these errors in
aLphabeticaL order is incLuded at the end of the moduLe.

WhiLe a wide variety of errors are possibLe, most mean basicaLLy the same
thing: your tape can not be trusted for reLiabLe information. LuckiLy, most
serious tape errors are unLikeLy to occur, but if one does, it shouLd be
handLed by reporting the error and giving up.

I/O Errors

The I/O system retries aLL errors a number of times. When an I/O error is
returned to the user it means that at the current point on this tape, nothing
can be read or written properLy. I/O errors are shown in the foLLowing tabLe:

I/O Errors

Error Message Meaning/Comment

ESIOERR

ESCANTIO

ESSMALLRECL

CE55-01

Can't read or write tape. Tape fiLe management at this point
"Locks" an ANS voLume (but not a free tape) against aLL
further I/O attempts. Subsequent I/O attempts wiLL cause
ESCANTIO error.

No I/O is currentLy aLLowed. The voLume is unLocked when it
is rewound (MSREW or MSCLOSE PTV) which enabLes tape fiLe
management to verify the actuaL position.

Record is too smaLL to be written; records Less than four
bytes Long, which are considered to be noise records, are not
permitted to be written.

MODULE 6-9
TAPE ERRORS

Page 168

I/O Errors (cont.)

Error Message Meaning/Comment

ESPOSERR

Free Tape Errors

Position error; tape position has been lost. This occurs
when a supposedly ANS labeled volume is discovered to have
non-standard or unrecognizable labels where standard labels
are expected. After this error has been received on an open
tape file, the only reasonable action is to close the file.
No more I/O is permitted until position is found; attempts to
do I/O will result in ESCANTIO. The user can restore
position in one of two ways, either by rewinding the tape (as
for free tape) or by attempting to open the next "findable"
file on the tape with an MSOPEN specifying NXTF (next file)
and FINDPOS (find position). Note that a number of files may
be skipped trying to find the next "openable" file and that
it is possible, if the tape is near the end of the reel, for
the tape to run off the end of the reel.

Errors which are peculiar to free tape are:

Error

ESEOT

ESBOT

ESBLNKTP

ESBOF

ESEOF

CE55-01

Free Tape Errors

Meaning/Comment

End of tape; detected during writes; record successfully
written, though.

Beginning of tape; detected during MSPFIL and MSPRECORD

Blank tape; detected during read.

Beginning of file; tape mark hit during MSPRECORD. (Can also
occur for ANS tape.)

End of file; tape Mark hit during MSREAD or MSPRECORD. (Can
also occur for ANS tape.)

MODULE 6-9
TAPE ERRORS

Page 169

Free Tape Errors (cont.)

Error Meaning/Comment

ESOPER

Fatal device error; tape drive went out of ready.

Volume End Errors

A special service, MSCVOL, exists to position a tape file to the beginning of
the next section of the file (the part of the file on the next volume). This
may be used on input to either skip records in the current file section and go
on to the next or to cause the next volume to be mounted if the user has
requested volume change (CVOL) control (see MSDCB CVOL). The user is notified
of volume end conditions with either of the two abnormal returns:

Error

ESEOVOL

ESEOVOLS

CE55-01

Volume End Errors

Meaning/Comments

End of volume. ESEOVOL on output means that the MSWRITE
failed and must be reissued after the volume change.

End of volume but current record crosses volumes. ESEOVOLS
only occurs on input and means that the current record
segment is divided across volumes.

MODULE 6-9
TAPE ERRORS

Page 170

Volume Change Errors

Another condition occurs during voLume change when the subsequent volume can
not be mounted for some reason or the volume set is maLformed. The DCB may
stay open even though there is no tape volume associated if the previous
volume has been already dismounted. 1/0 attempts wiLL result in abnormal
returns. The DCB must be closed by the user. The operation which caused the
error to be detected will result in one of the foLlowing errors:

Error

ESSECTERR

ESVOLOUT

ESVOLORDER

VoLume Change Error Messages

Meaning/CQmments

The next or previous fiLe section is missing.

No next volume to CVOL to.

Next or previous volume is missing or mispLaced. The seriaL
number List (voLume set) is incompLete or out of order.

Data Record Structure Errors

Errors in which non-standard or confLicting data record structure are detected
during a read are reported to the user. UsuaLLy record segments can be
salvaged under such conditions; thus, CP-6 TFM returns partiaL record segments
even though the abnormaL return is taken. This cLass of errors incLudes:

CE55-01 MODULE 6-9
TAPE ERRORS

Page 171

Error

ESBADBLKL

ESBADRECL

ESBADSPAN

ESPARTIALKEY

ESBLKCNT

ESNONDECRCW

CE55-01

Data Record Structure Errors

Meaning/Comments

ActuaL data bLock is smaLLer than indicated in the bLock.

ActuaL record is smaLLer than indicated in the bLock.

Spanning information is inconsistent.

Part of the key returned is missing.

The system accumuLated bLock count differed from the bLock
count specified in the EOV1 or EOF1 LabeL. The DCB wiLL
contain the proper ARS for the segment returned. In some
cases the data record structure is sufficientLy destroyed to
render the data inaccessibLe.

Record controL word (for VARIABLE (D,S) ANS format fiLe
records) is nondecimaL. This error can not be passed by;
subsequent attempts to read the same record wiLL resuLt in
the same error.

MODULE 6-9
TAPE ERRORS

Page 172

Break Error Messages

Since operator intervention is an important part of system tape handLing, some
operations require that a program must be temporariLy suspended. Hitting
break or controL-Y during such moments aborts the current operation. AbnormaL
returns resuLt in:

Error

ESMNTBRK

ESTAPBRK

Break Error Messages

Message/Comments

ControL-Y or break whiLe waiting for voLume to be mounted.

ControL-Y or break whiLe waiting for RING/OVER keyin, or
during fiLe search. This message is generated by hitting
break or controL-Y after the voLume has been mounted but
during a period when Tape FiLe Management is searching for a
requested fiLe.

If any of these errors occur during a tape MSOPEN, it shouLd probabLy be
reported and considered fataL. It is possibLe to "recover" from these errors
by re-executing the MSOPEN.

Operator-generated Errors

The CP-6 operator has the ability to deny access to a tape for a number of
reasons. These resuLt in errors:

CE55-01 MODULE 6-9
TAPE ERRORS

Page 173

Error

ESCANT

ESOPROT

Operator-generated Errors

Meaning/Comments

The operator can't mount the specified volume.

The operator is protecting the tape by not issuing a RING
keyin and not putting a ring in the reel.

Errors and Protection Level

The following errors are related to the level of ANS volume protection.

Error

ESOPROT

ESUNEXPIRED

ESNOTANS

ESNOTDEV

CE55-01

Protection Level Errors

Meaning/Comments

The operator is protecting the tape by not issuing an OVER
keyin.

That volume is unexpired. This error is peculiar to a
fully-protected shop as the result of attempting to write on
an unexpired volume.

Mounted volume is not an ANS volume. This error occurs in a
semi-protected shop on an attempt to open an ANS tape DCB to
a free tape for output, or in any shop on an attempt attempt
to open an ANS tape DCB to a free tape for input.

Mounted volume is not a free (device) tape; occurs in a
semi-protected shop on an attempt to open a free tape DCB to
an ANS tape for output.

MODULE 6-9
TAPE ERRORS

Page 174

Access Limitation Errors

Errors which occur due to the volume owner specifying an access limitation
are:

Access Limitation Errors

Error Meaning/Comment

ESNOTOWNR

Access to this volume is limited to its owner.

ESNOTOWNRW

Write access to this volume is limited to its owner.

Tape Type and Tape Format Errors

Errors concerned with tape type and tape format are:

Error

ESDENSBAD

ESASCIITAP

ESEBCDICTAP

ESEOSET

CE55-01

Tape Type/Format Errors

Meaning/Comments

Density specified on MSOPEN is unavailable on the acquired
tape drive. The user may specify a volume density change
when opening the first file of a volume set for output.
Density changes elsewhere in the volume set are not
permitted.

An EBCDIC file may not be created on an ASCII tape. The user
may specify a change from an EBCDIC volume to an ASCII volume
or vice versa only when creating the first file of the volume
set.

An ASCII file may not be created on an EBCDIC tape.

End of volume set. The FSN of the last file of a volume set
is returned when an open results in the ESEOSET error.

MODULE 6-9
TAPE ERRORS

Page 175

Miscellaneous Errors

Remaining errors are concerned with proto~ol involved in acquiring volumes,
creating files, and specifying volume sets:

Error

ESBRDUPSN

ESNOSN

ESNOFIDTHIS

ESBADFSN

ESFSNERR

ESSCRORDER

ESVOLERR

ESFUNNYPOS

CESS-01

Miscellaneous Tape Error Messages

Meaning/Comments

There is a blank or duplicate serial number imbedded in the
specified serial number list (blank serial numbers may occur
at the end of the list or be indicated by specifying a
non-zero MAXVOL (see MSDCB).

No serial number or blank serial number is specified for an
input volume.

No file name or file sequence number is specified for this
input tape file.

The volume set contains 9999 files which is the maximum for
an ANS labeled volume set. A new file can not be created.

The current volume contains adjacent files with file sequence
numbers that are either out of order or not in sequence.

An ANSscratch or free tape which is not the first volume of a
set is specified as the volume to create a labeled file on;
since its file sequence number can not be determined, this is
not allowed.

The serial number list does not contain the volume specified
by DCB.VOL

Due to an error in a previous operation, this volume was left
with a funny position; it must be rewound to be accessed
again.

MODULE 6-9
TAPE ERRORS

Page 176

Error

ESPARTIALSN

Miscellaneous Tape Error Messages (cont.)

Meaning/Comments

The serial number list returned during an MSCLOSE operation
is incomplete because the user's buffer is not large enough.

There are, of course, a number of errors which are not limited to tape files,
but also occur with disk files. Errors of this type are in CE40, Programmer
Reference manual.

Tape Error Message Summary

The following table presents a summary of tape error messages in alphabetical
order for easy reference.

Tape Error Message Summary

Error Message Meaning

ESBADBLKL

ESBADFSN

ESBADREC L

ESBADS PAN

ESBLKCNT

ESBLNKTP

ESBOF

ESBOT

ESBRDUPSN

ESC ANT

ESCANTIO

ESDENSBAD

ESEBCDICTAP

ESEOF

ESEOSET

CESS-01

Actual data block is smaller than indicated in the
block.

The volume set contains 9999 files which is the maximum
for an ANS labeled volume set.

Actual record is smaller than indicated in the block.

Spanning information is inconsistent.

The system accumulated block count differed from the
block count specified in the EOV1 OR EOF1 LABEL.

Blank tape; detected during read.

Beginning of file; tape mark hit during MSPRECORD.

Beginning of tape; detected during MSPFIL and MSPRECORD.

There is a blank or duplicate serial number imbedded in
the specified serial number list (blank serial numbers
may occur at the end of the list or be indicated by
specifying a non-zero MAXVOL (see MSDCB).

The operator can't mount the specified volume.

No I/O is currently allowed.

Specified density is unavailable on the
acquired tape drive.

An ASCII file may not be created on an EBCDIC tape.

End of file; tape mark hit during MSREAD or MSPRECORD.

End of volume set.

MODULE 6-9
TAPE ERRORS

Page 177

Tape Error Message Summary (cont.)

Error Message Meaning

ESEOT End of tape detected during writes aLthough
record successfuLLy written.

ESEOVOL End of volume.

ESEOVOLS End of voLume but current record crosses voLumes.

ESFSNERR The current voLume contains adjacent fiLes with fiLe
sequence nurobers that are either out of order or not in
sequence.

ESFUNNYPOS Due to an error in a previous operation, this voLume was
Left with a funny position; it must be rewound to be
accessed again.

ESIOERR

ESMNTBRK

ESNOFIDTHIS

ESNONDECRCW

ESNOSN

ESNOTANS

ESNOTDEV

ESNOTOWNR

ESNOTOWNRW

ESOPER

ESOPROT

ESOPROT

ESPARTIALKEY

ESPARTIALSN

ESPOSERR

ESSCRORDER

ESSECTERR

ESSMALLRECL

CESS-01

Tape data can not be read or written.

ControL-Y or break whiLe waiting for voLume to be mounted.

No fiLe name or fiLe sequence number is specified for
this input tape fiLe.

Record controL word (for VARIABLE (D,S) ANS format fiLe
records) is non decimaL.

No seriaL number or bLank seriaL number is specified for
an input voLume.

Mounted voLume is not an ANS voLume.

Mounted voLume is not a free (device) tape.

Access to this voLume is Limited to its owner.

Write access to this voLume is Limited to its owner.

FataL device error; tape drive went out of ready.

The operator is protecting the tape by not issuing a
RING keyin and not putting a ring in the reeL.

The operator is protecting the tape by not issuing an
OVER keyin.

Part of the key returned is missing.

The seriaL number List returned during an MSCLOSE
operation is incompLete because the user's buffer is
not Large enough.

Position error; tape position has been Lost.

An ANSscratch or free tape which is not the first
voLume of a set is specified as the voLume to create a
LabeLed fiLe on; since its fiLe sequence number
can not be determined, this is not aLLowed.

The next or previous fiLe section is missing.

Record is too smalL to be written.

MODULE 6-9
TAPE ERRORS

Page 178

Tape Error Message Summary (cont.)

Error Message Meaning

ESTAPBRK Control-Y or break while waiting for RING/OVER keyin,
or during file search.

ESUNEXPIRED That volume is unexpired.

ESVOLERR The serial number list does not contain the volume
specified by DCB.VOL.

ESVOLORDER Next or pre~ious volume is missing or misplaced; the
serial number list (volume set) is incomplete or
out of order).

ESVOLOUT No next volume to CVOL to.

CE55-01 MODULE 6-9
TAPE ERRORS

Page 179

Index

Note: Index references indicate the page on which the paragraph containing the
index term actually ends. Should the paragraph straddle two pages, the actual
indexed term might be on the first page, while the index reference is to the
second page. .

A

Abbreviating Account References Through Wildcarding - 53
ACCESS - 50
Access Limitation Errors - 175
account access - 49 53
account references - 53
accounts, file - 54
ACQUIRE - 66
Acquiring Tape Drives - 120
ACSVEHICLES - 50
Additional ANS Labels - 166
Allocating Resources and Establishing Service Limits - 66
Anomalies and Errors - 148
ANS Labeled Format - 118
ANS Labeled Structure - 166
ANS labels - 164 166
ANS Levels of Protection - 116
ANS Tape Fids - 119
ANS Tape Options - Complete Description - 151
ANS Tape Options at a Glance - 151
ANS Tapes Made On Other Systems - 155
ANS unprotected mode - 127
ASCII - 3
ASCII TO EBCDIC Conversion - 158
attributes - 43

file - 43
file access - 49
FUN - 49
SHARE - 49

Automatic Volume Recognition - 145

CE55-01 Index i-1

B

c

backspacing - 13
backup fiLe - 46
BASIC - 85
Basic Types of Magnetic Tapes - 115
BATCH ~ 6 68 69
Batch accounting report - 87
Batch Jobs - 67
BATCH/XEQ Substitution - 75
BLock Size - 159
BLock Size Versus Efficiency - 159
BLock Sizes for ANS Tapes - 152
BLocked Tapes and FPOOl Buffers - 159
Break Error Messages - 173
BREF option (lINK) - 102
BUILD command (EDIT) - 29 48

CANCEL - 68
CHECK and NOTIFY - Comments - 7
CHECK command - 6 7
command fiLe (EDIT) - 40
Command FiLe logic - ConditionaL Execution - 71
Command FiLe That Interrogates User - 77
Command FiLe to Read Tape - 76
Command FiLes - 69

EDIT - 31 40
IBEX - 69 76

command LabeLs (IBEX) - 71
Comparisons - Free and Managed Free - 118
compiLations in batch mode - 109
conditionaL execution -

EDIT - 39
IBEX - 71

consecutive fiLes - 47 48
Conserving Disk Space - 57
CONTROL H - Backspacing - 13
CONTROL R - Forward Positioning - 13
copies, Lineprinter - 60
COpy command (PCl) - 60
COpy com_and -

EDIT - 35
lEMUR - 81
pel - 51

COPY ME command - 30 48
Copying ANS Tapes Made on Other Systems - 159
Copying Binary Data to Tape - 158
Copying free Tapes - 157
Copying Managed Free Tapes - 157
copying on the Lineprinter - 60
CP-6 Tape FiLe Management - 147
CP-6 Tape For.ats - 164
CP-V - 149 153
Creating MuLti-voLume Tape Sets - 161
Creating Tapes - 150

CE55-01 Index i-2

D

E

Data Record Structure Errors - 171
Data Replacement - 69
data replacement parameters - 69
DCBs - 128
debugging FPL - 88
DEFAULT - 69
Default Tape Drive Assignments - 121
Defining New Escape Sequences - 21
disk - 49
disk space - 57 58
DISPLAY PROFILE command - 9
DISPLAY USER command - 79
Displaying DRIBBLE Files, at Your Terminal - 27
DISPLAYS - 6
DONT ACCEPT command - 79
dribble files - 26

EBCDIC Labeled Format - 119
EDIT - 31
EDIT Command Files - 40
EDIT COPY command - 47
EDIT -

command file - 31 40
conditional execution - 39
selection criteria - 32 39

Errors and Protection Level - 174
errors, tape - 168
ESCAPE <CR> - 18
ESCAPE <RET> - Position to Beginning of Record - 14
ESCAPE A - 3
ESCAPE A - Setting Pagination Mode - 16
ESCAPE 0 - Retrieving the Last Input Line - 17
ESCAPE I - 13
ESCAPE J - 18 19
ESCAPE J, ESCAPE <CR>, ESCAPE 0, ESCAPE M - 18
ESCAPE K - Deleting From Current Edit Point - 16
ESCAPE M - 18
E SCA PE N - 11
ESCAPE 0 - 18
ESCAPE R - Retyping the Current Input Line - 17
escape sequences - 11 15 18

defining new - 21
E SCA PE V - 19
ESCAPE V - Moving to Character 'N' - 12
ESCAPE X - Deleting Current Input Line - 15
ETMF - 7
Examples of IBEX Command Files - 76
Examples of Online Use - 123
Execute Files - 67
Executing Programs - 64
EXPRESSION COMPONENT - 75

,
Expression Component - Precedence of IBEX Operators - 74
expressions, IBEX - 73
extended attributes (file) - 44
Extension of Tape Files - 157

CE55-01 Index i-3

F

G

H

I

fid - 49
fiLe access attributes - 49
file attributes - 43
FiLe Management Buffers - 128
file organization - 51
fiLe recovery - 46
FiLe Sequence Numbers - 125
FiLe Types - 54
file, XEQ - 67
files - 29 35 51

access attributes - 49
accounts - 54
attributes - 43
backup - 46
consecutive - 47 48
copying - 35
dribble - 26
EDIT command - 31
extended attributes - 44
in other accounts - 59
indexed - 47
keyed - 47 48
keyed data - 58
listing and reviewing - 43
merging - 35 48
organization - 47
recovery - 46
reviewing - 43
scratch - 56
selecting - 51
star - 35 56
types - 54

formats, tape - 164
Forms Program - 92
forward positioning - 13
FPL - 88
FPOOLS - 128
Free and Managed Free Tapes - 117
Free Tape Errors - 169
Free Tapes - 117
FUN attribute - 49

GLOBAL - 69

Hardware Limitations - 127
HELP - 2 11 111
How to Make ANS Tapes on CP-V for CP-6 Use - 153

I/O Errors - 168
IBEX Command Labels - 71
IBEX Expressions - 73
IBEX Programming Conventions - 63
IBEX -

command files - 76
operators (precedence) - 74
preprocessor - 75

CE55-01 Index ;-4

J

K

L

programming - 63
SET command - 49

IF command (EDIT) - 39
IMP - 21
IMP command file - 25
indexed files - 47
indexes - 106
input manipulation processor (IMP) - 21
inserting characters - 18
inserting/replacing/overstriking - 18
Interrupt Processing - 65
Introduction - 129 153 168
Invoking Language Processors - 65

JOB - 67

keyboard, redefining - 21
Keyed Data Files - 58
keyed files - 47 48

labels (IBEX) - 71
labels -

ANS - 164
ANS additional - 166
ANS user - 165

LDEV command (IBEX) - 60
LEMUR processor - 81
LIMIT - 66
linefeed function - 32
lineprinter - 60
LINK -

ambiguities in references - 97
ancestor node - 97
BREF option - 102
descendent node - 97
HELP - 104
nodes - 97
overlay programs - 95
overlays - 95
program trees - 97
PROMOTE options - 103
root node - 97
sharing overlayed programs - 97
tree structure - 98

LIST (IBEX) - 43
LIST command (IBEX) - 44
LIST command (LEMUR) - 81
LIST command (PCL) - 44
listing and reviewing files - 43
Listing File Attributes - 43
Logical Density - 122
Lost Data - 127
lost records restored - 46

CE55-01 Index i-5

M

MSCLOSE - CLOSE DCB - 140
MSCVOL - CLOSE VOLUME - 141
MSDCB - 136
MSOPEN - OPEN DCB - 139
MSPFIL - POSITION FILE - 143
MSPRECORD - POSITION TO RECORD - 142
MSREAD - READ RECORD - 142
MSREM - REMOVE OR RELEASE VOLUME - 144
MSREW - REWIND - 143
MSTRUNC - TRUNCATE BUFFERS - 144
MSWEOF - WRITE END-OF-FILE - 144
MSWRITE - WRITE RECORD - 142
mag tape -

access limitation errors - 175
acquiring drives - 120
acqulrlng resources - 121
ANS labeled structure - 166
ANS labels - 164
ANS levels of protection - 116
ANS options - 151 151
ANS user labels - 165
ASCII to EBCDIC conversion - 158
automatic volume recognition (AVR) - 145
basic types - 115
block size - 152 159
block size versus efficiency - 159
blocked tapes and FPOOL buffers - 159
break error messages - 173
copying binary da ta to tape - 158
CP-6 formats - 149
C P-V - 149
CP-V formats - 149
data record structure errors - 171
DCBs - 128
default drives - 121
drives - 120
EBCDIC - 119
error message summary - 177
errors - 168
extension of tape files - 157
file management buffers - 128
file sequence numbers (FSNs) - 125
formats - 164
FPOOL buffers - 159
FPOOLS - 128
free - 117
free tape errors - 169
hardware limitations - 127
I/O errors - 168
labeled tapes - 118
labels - ANS - 164
labels - ANS additional - 166
labels - ANS user - 165
logical density - 122
lost data - 127
managed - 117
miscellaneous errors - 176
mixed-density - 122
monitor service calls - 135
multi-reel - 120
Multi-voluMe tape sets - 161
number of bytes stored - 127
operator-generated errors - 173
PCL commands - 114
PCL MOUNT command - 121

CESS-01 Index i-6

N

o

p

protection level errors - 174
record size - 127
resources - 121
single-density - 122
tape copies - 156
tape fids - 119
tape file management (TFM) - 147
tape format errors - 175
tape resource management (TRM) - 146
tape sets - 161
tape type errors - 175
tapes for other machines - 149
volume change errors - 171
volume end errors - 170
volume sets - 162

Making a Tape Copy for Export - 158
Making ANS Tapes on Multics for CP-6 Use - 154
Making Copies of Labeled Tapes - 156
Making Tape Copies - 156
Managed Free Tapes - 117
MD(Move/Delete) command - 37
MERGE command - 36
merging files - 35 48
Minimum Record Size - 127
Miscellaneous Errors - 176
Mixing of CP-6, ANS, and EBCDIC labeled - 119
Monitor Service Calls - 135
More About ESCAPE J - 19
MOUNT Command - 121
Moving the Cursor - 11
Multi-reel Tape Fids - 120
multi-volume tape sets - 161
MUlTICS - 154

NODEBUG option - 58
NOTIFY command - 7
Number of Bytes Stored on Tape - 127

Object Units - 57
!OFF FUll report - 87
Operator-generated Errors - 173
ORESOURCE - 66
Other Files - 58
overlay programs - 95
overstriking characters - 18

pagination mode - 16
password - 51
PCl - 36
PCl (and star files) - 56
PCl (wildcarding) - 52
PCl and !SET Output Options - 130
PCl commands - 48 114
PCl Input Options - 132
PCl output options - 48 133
PCl processor - 51
PCl Tape Control Commands - 129
peL vs SET = 135

CE55-01 Index i-7

R

s

Peak memory - 87
pLaten controL - 20
Preprocessing of Commands - 75
preprocessing of commands (IBEX) - 75
Preprocessor Substitution - 75
preprocessor substitution (IBEX) - 75
printing fiLes - 60
PRIORITY - 68
PROFILE command - 9
Program Exit Method - 72
program tree structure - 98
Program Trees - 97
programs, source - 57
PROMOTE options (lINK) - 103

range source component - 51
READ - 50
READ command (EDIT) - 40
record ranges (EDIT) - 32
Recovering FiLes - 46 46
Redefining the Keyboard - 24
RELEASE - 66
repLacing characters - 18
RESET command - 49
Resetting SpeciaL Function Keys - 23
ResoLving Differences and Ambiguities - 97
RESOURCE - 66
Resource memory required - 87
RESOURCE, ORESOURCE, and ACQUIRE Commands - 121
RESPONSE - 7
retrieving the last input line - 17
REVIEW Command (PCl) - 45
RN (renumber) command - 38
RUN command - 83 85
Run Units - 58
Running Out Of Space - 57

sampLe CP-6 session - 79
scratch files - 56
SE range (EDIT) - 32
selecting files - 51
selection criteria (EDIT) - 39
selection range (EDIT) - 32
service limits - 66
SET command - 49 80
SET command options - 49
!SET Command Options - 130
Setting Up Special Function Keys - 22
SETUP command - 6 9 9
setup file - 6 78 78
SHARE and FUN attributes - 49
sharing users - 49
Single-density and Mixed-density Systems - 122
SORT processor - 86 106

CESS-01 Index i-8

T

u

v

sorted indexes - 106
Source Programs - 57
special function keys - 22
Specifying an Overlay - 98
star files - 35 56
STATUS command - 7
STEPCC - 72
string selection (EDIT) - 39
substitutions (IBEX) - 75
sysid - 6 7

Tab Stops - 12
tape drives - 120

default - 121
Tape Error Message Summary - 177
tape errors - 168
Tape Fids - 119
Tape Fids May Need Quotes - 120
Tape File Management (TFM) - 147
tape formats - 164
Tape Management - 114
tape options - 151
Tape Resource Management - 146
tape sets, multi-volume - 161
Tape Type and Tape Format Errors - 175
Tape Types in CP-V and CP-6 - 149
Terminal Profiles - 9
TEXT - 86
TFM (tape file management) - 147
tree structure (program) - 98
TRM (tape resource management) - 146
TRUTH VALUE operator - 74

UNDER DELTA command - 80
underlining - 18
User Labels - 165
Using Files in Other Accounts - 59
Using HELP - 104
Using LINK to Build a Run Unit with Overlays - 102
Using LINK's PROMOTE BLANK and PROMOTE LABEL Options - 103
Using Volume Sets - 162

Volume Change Errors - 171
Volume End Errors - 170
volume sets - 162

w

x

wildcarding - 52
WRITE - 50

XEQ command - 67 69
XEQ files - 67 69
XMIT - 69

CE55-01 Index i-9

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

CP-6 APPLICATION PROGRAMMER HANDBOOK
TITLE

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME ---
TITLE ____________________________ . ________________ ____

COMPANY ------------
ADDRESS _______________________________________ ___

ORDER No.1 CESS-OI

DATED I JANUARY 1984

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Together. we can find the answers.

Honeywell
Honeywell Information Systems

U.S.A.: 200 Smith St., MS 486, Waltliam, MA 02154
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7

U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano
Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2-2 Kanda Jimbo-cho Chiyoda-ku, Tokyo

Australia: 124 Walker St., North Sydney, N.S.w. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

39518, 5C184, Printed in U.S.A. CE55-01

