
HONEYWELL

CP-6 ~
SYSTEM
PROGRAMMER
GUIDE

_ __ . SOFTWARE

SUBJECT

CONTROL PROGRAM-SIX (CP-6)

SYSTEM PROGRAMMER GUIDE

Description of System Programming Practices and Examples of System
Programming Techniques

SOFTWARE SUPPORTED

Software Release B03

ORDER NUMBER

CE62-00 January 1984

Honey",ell

Preface

This guide contains descriptions of system programming practices and provides
numerous examples of system programming techniques. This guide is intended
for readers already familiar with the CP-6 PL-6 Reference Manual (CE44) and
the CP-6 Monitor Services Reference ManuaL (CE33). In addition, the HoneyweLL
training courses are an important resource for the system programmer.

The Los Angeles DeveLopment Center (LADC) of HoneyweLL Information Information
Systems has deveLoped Computer Aided PubLications (CAP). CAP is an advanced
text processing system providing automatic tabLe of contents, automatic
indexing, format controL, automatic output of camera-ready masters~ and other
features. This manuaL is a product of CP-6 CAP.

Readers of this document may report errors or suggest changes through a STAR
on the CP-6 STARLOG system. Prompt response is made to any STAR against a
CP-6 manual; changes wiLL be incorporated into subsequent reLeases and/or
revisions of the manuaL. If high impact errors are discovered, patches to
this manual may be issued and distributed via communication lines.

The information in this pubLication is beLieved to be accurate in aLL
respects. However, HoneyweLL Information Systems cannot assume responsibility
for any consequences resuLting from the use of this document. The information
contained in this manuaL is subject to change. New editions of this
publication may be issued to incorporate such changes. The Latest version of
this manual may be ordered from

Honeywell Information Systems Inc.
National Distribution Operation
47 Harvard Street
Westwood, Massachusetts 02090

Telephones: Customers (617) 392-5235
HoneyweLL (HVN) 273-5215 (HED MA06)

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

CHoneywelllnformation Systems Inc:., 1984 File No.: 1 W13 CE62·00

Section Introduction

Section 2 PL-6 for System Programming.

Section 3 X Account TooLs.
X Account PoLicy

X Account Support Mechanisms
X Account Naming Conventions

Contents of the X Account.
Programmer Aids.
System Programmer Aids
Integration Aids
InstaLLation Management Aids
Documentation Aids
DeveLopment Management Aids.
Support Aids
Microprocessor Support Aids.
MisceLLaneous TooLs.

X Account TooL Invocation.
HELP for X Account TooLs
X Account Programming ExampLes

Section 4 Processor Conventions.
GeneraL Case of Run Unit Invocation.
Command Language Conventions
Automatic FiLe Extension
FiLe Type Codes.
Processor Termination Conventions.
SampLe Interactive Processor

Prompting and Parsing Command Text
Syntax Prompting at Syntax Error
DispLaying Error Messages.
Displaying HELP Messages

Section 5 Documenting Source Code.
ExtractabLe Commentary
Commentary RuLes
Comment Types.

M Comments
P and F Comments
D Comments
B Comments
I Comments
E Comments
W Comments
S Comments
K Comments

CE62-00 TabLe of Contents

Content.

Page

1-1

2-1

3-1
3-1
3-1
3-1
3-2
3-2
3-4
3-6
3-7
3-9
3-10
3-11
3-12
3-12
3-13
3-13
3-14

4-1
4-1
4-2
4-3
4-4
4-5
4-5
4-10
4-10
4-11
4-12

5-1
5-1
5-3
5-4
5-6
5-6
5-7
5-9
5-9
5-10
5-12
5-12
5-13

; i i

Contents (contI

o Comments
T Comments
N Comments
X Comments

Placement of Commentary in a File.
Commentary Tools

EDICT.X.
EXTRACT.X.
Text Blocking in Extractable Commentary.
Sample EXTRACT.X Job

Section 6 Error Message Reporting.
Error Message Source

Error Codes.
Layers of Error Messages
Field and Phrase Substitution.
Default Error Messages

Examining the Error Code After Monitor Service ALTRET.
Creating the Error Message File.
Foreign Language Error Message Files
Finding the Error Message Fi le

Section 7 User Documentation/HELP.
$TEXT Facility

File Naming Conventions.
Document Assembly.
Summary of Control Words and Macros.

Creating Text Source Files
Line Length.
Blocking
Spacing.
Section and Subsection Headings.

Level 0 Head Macro
Level 1-3 Head Macro
Level 4 Head Macro

Syntax Formats
Tables

Purpose of :MAT Macro.
:MAT Macro

Figures.
:FIG Macro
Figure Symbols

Index Entries.
:IDX Macro

Ending a Section
Preparing On-line (HELP) Documentation

Encoding a Source File
Excluding Topics
Topic Names and Synonyms

Encoding Subtopics
Creating Subtopics
Subtopics Within Tables.
Automatic Transformation of Subtopics.

:HLP .. acro
Creating a HELP File

CE62-00 TabLe of Contents

Page

5-13
5-14
5-14
5-15
5-15
5-17
5-17
5-17
5-17
5-18

6-1
6-1
6-1
6-2
6-2
6-3
6-3
6-3
6-4
6-5

7-1
7-1
7-2
7-2
7-3
7-5
7-6
7-6
7-6
7-6
7-7
7-7
7-8
7-9
7-10
7-12
7-12
7-14
7-14
7-15
7-18
7-18
7-19
7-19
7-19
7-20
7-20
7-22
7-22
7-23
7-23
7-24
7-25

iv

Content. (cont)

Section 8 Techniques: Central System ••
Accessing the JIT •••••
Accessing the Task Control Block (TCB)
Break Handling
Trap Handling. • • • •••••••••••
Associating or Linking to Another Program ••
Shared Data Segments • • • • • • • • • • • • •••

Sharing COMMON between M$LINKed Programs •••••••
Sharing Data Segment between Independent Programs ••

Virtual Data Segments. • • • • • • •• • •••
How Virtual Segments Work ••••••••
Size Limits of Virtual Data Segments ••
Addressing Data within a Virtual Segment ••••••

Method 1: Small Virtual Segments ••••••
Method 2: 'Divide and Conquer'. • •••••
Method 3: Direct Accessing ••••

Performance Considerations ••••••
Guidelines for Virtual/Real Segment Sizing
Accounting Considerations •••••••••
Restrictions and Programming Considerations ••••••

Section 9 Techniques: Communications •••••••••••••••
Terminal I/O Control ••••••••••••••
Transparent 1/0 for Asynchronous Graphics Terminals •••••••

Transparency and M$WRITE •••••••
Transparency and M$READ ••••••••
Performing Transparent/Non-transparent 1/0

Use of Comgroups ••••••

Section 10 Shared Run Units.
Advantages of Shared Run Units.
Shared Programs •••••••••
System Configuration to Permit Sharing •
Auto-Sharing Process ••••

Programming Considerations •••••
Usage Considerations •••••

Section 11 Special Shared Processors.
Guidelines for All Special Shared Processors ••

Special Shared Processor Initialization ••
Processor Initialization Area (PIA) •••
Initial Entry and Obtaining AUTO Storage.
Obtaining DCBs ••••••••••

Use of Data Segments ••••••••
Exceptional Condition Processing.
Taking Snapshot Dumps ••••••••

Calling M$SCREECH •••••••
Special Shared Processor Data in Dump Files.

Debugging of Special Shared Processors with XDELTA ••••••
Using XDELTA ••••••••••••••••••••••
Operational Considerations When Using XDELTA • • •••
Addressing with XDELTA - Domain Specification. • ••••
Control of XDELTA's Input and Output ••
Control of Faults •••••••••••
Inactivation of Breakpoints by XDELTA ••

Guidelines for Command Processors ••
Entry to Command Processor ••
Command Processor Capabilities.
DCBs for Command Processor ••
Effecting DCB Assignments •••
Addressing User Memory from Command Processor.

CE62-00 Table of Contents

Page

8-1
8-1
8-3
8-5
8-6
8-8
8-13
8-13
8-13
8-14
8-14
8-16
8-16
8-17
8-17
8-20
8-21
8-21
8-22
8-22

9-1
9-1
9-7
9-7
9-7
9-8
9-9

10-1
10-1
10-1
10-2
10-2
10-2
10-3

11-1
11-2
11-2
11-2
11-3
11-4
11-4
11-4
11-5
11-5
11-5
11-6
11-6
11-8
11-9
11-10
11-11
11-12
11-12
11-13
11-13
11-14
11-14
11-15

v

Contents (cont)

User's JIT •••••••••
User Parameters for MSYC ••

Exit from a Command Processor. • • • • • • ••••
Guidelines for Debuggers • • • • • • •••

Entry to the Debugger. • ••••••••
Debugger CapabiLities.. ••• • • ••••••••
DCBs for Debugger. • • • • • • • • • ••••
Addressing User Memory from Debugger • • ••••••
Data Breakpoints •••••••••••••••••••••••••
Exit from a Debugger. • • • • • • • • • • • • • ••••

Guidelines for Alternate Shared Libraries. • • • • • • ••••
Associating an ASL with the User. • ••••••••••••
Defining the Function Codes of the ASL • • ••••
User Calls to an ASL • • •••••••••••
Building an ASL System File. • • • • • • •••••••••••
Entry to ASL • • • • • • • • • • • •• • ••••
ASL Capabilities •••• e • • • ••••••••••

DCBs for ASL • • • • • • • • • • ••••••••••••
Addressing User Memory from ASL. • • • • • • • ••••
Exit from an ASL • •••••••••• • ••••••••
ASL Recovery. • • • ••••••••••••
Debugging an ASL • • •••

Section 12 Run-Time Libraries. • • • • • •• • •••••
Shared Libraries. • ...

Link Time Association of Shared Libraries. • • ••••••
Run Time Association of Shared Libraries • • • ••••••••
Building Shared Libraries. • • • • • • • • • ••••
Subroutines Included in Shared Libraries •••••••••••••
User Installation of Shared Libraries.. • ••••••••••

Section 13 Library Functions ••••••
Input Services •••••••••
Output Services ••••••••••••
Miscellaneous Utilities ••

Section 14 Compilers and Language Utilities •••••••••
Conventions for Language Processors. • • • • • ••••••••

Standard Run Unit Invocation Format for Compilers ••
DCB Usage Conventions. • • • • • • • • • • ••••
Compiler Options Usages and Conventions. • • •••••
Compiler Error Handling. • • •• • ••••••••••••••
Object Unit Conventions. • • • • • • •••••••••
Compiler Output Control Via IBEX.

Source Update Services ••••••••••

Section 15 Interlanguage Calling •••••••••••••••••••
Receiving Sequences. • • ••••••••

Registers Used •••••••••••••••••••••
Return Sequences • • • • • • • • • •••••
UNWIND Routines. • • • ••••
Automatic Storage Layout •••••••
Calling Sequences for ExternaL Routines ••
DELTA Interaction with Shared Libraries ••
Calls to the Monitor and ALternate Shared Library. • ••••

Monitor-User Interface • • •••••••
ASL-User Interface • • ••••••

Sample Programs ••••••

CE62-00 Table of Contents

Page

11-15
11-16
11-16
11-17
11-17
11-20
11-20
11-20
11-21
11-21
11-22
11-22
11-22
11-23
11-24
11-25
11-27
11-27
11-27
11-28
11-28
11-29

12-1
12-1
12-1
12-2
12-2
12-3
12-4

13-1
13-2
13-3
13-4

14-1
14-1
14-1
14-3
14-4
14-7
14-8
14-8
14-9

15-1
15-2
15-3
15-3
15-4
15-4
15-8
15-12
15-12
15-12
15-14
15-14

vi

Cont.nt. (cont)

Appendix A Job Information Table ••
JIT FieLds •••
Structure Format
JIT Structure.

Index •••••••

TABLES

Table 3-1 • X Account Programmer Aids · · · · Table 3-2. X Account System Programmer Aids.
Table 3-3. X Account Integration Aids. · · · Table 3-4. X Account Installation Management
Table 3-5. X Account Documentation Aids. · · Table 3-6. X Account Development Management
Table 3-7. X Account Support Aids. · · · · · Table 3-8. X Account Microprocessor Support
Table 3-9. X Account Miscellaneous Tools · Table 4-1 • F i l e Type Codes · · · · · · · Table 5 -1 • Summary of Commentary Types · Table 7-1 • TEXT Control Word Summary · Table 7-2. Macro Summary . · · · · · ·
Table 7-3. Examples of :L4H Transformation · Table 11 -1 • ECCs for Debugger. · · · · · ·

· · · Aids.

Aids · · · · Aids ·
· · ·

Table 11-2. ECCs for User Exceptional Condition. · Table 13-1 • Input Library Services · · · · · · Table 13-2. Output Library Services. · · · · · · · Table 13-3. Miscellaneous Library Services · · · ·

· · ·

· · · ·

·
· ·

· · · ·
· ·

· · · · ·
Table 14-1 • Descriptions of Standard Compi ler Options. · · · Table 15 -1 • Procedure Entry Routines · · · · · · · · · Table 15-2. Procedure Return Routines.
Table 15-3. Procedure UNWIND Routines.
Table 15-4. Data Types for Arguments ·

FIGURES

Figure 2-1 • Sample PL-6 Program. · · · · · · · · · · · · · · Figure 3-1 • Browsing through X Account HELP. · · · · · · · · Figure 3-2. Program Sample from :XSI Account - Part 1 • · · · Figure 3-3. Program Sample from :XSI Account - Part 2. · · · Figure 4-1. Command, Error, HELP Processing Source · · · Figure 4-2. Command Language Definition Nodes. · · · · · Figure 4-3. Command Language Definition EQUs · · · · · · Figure 4-4. Command, Error, HELP Processing: Sample Session

·

· · ·

·

·

· · · · ·

· Figure 4-5. Command, Error, HELP Processing: Associated Jobs.
Figure 5 -1 • Source F i l e Containing EXTRACTable Commentary. · Figure 5-2. Placement of Commentary in Source Code F i l e.
Figure 5-3. Sample EXTRACT.X Job · · · · · · · · · · · · · Figure 5-4. TEXTed Document of EXTRACTed Commentary. · · · · Figure 6-1 • Sample Job to Create Error Message F i l e • · · · · · Figure 7-1 • COBOL-oriented Syntax Format · · · · · · Figure 7-2. General Syntax Format in a User Document · Figure 7-3. Matrix Table . · · · · · · · · · · · · Figure 7-4. Formatted 2-Column Table · · · · · · · Figure 7-5. Source for Unformatted Table · · · · Figure 7-6. Figure Symbols · · · · · · · · · · · · Figure 8-1 • Accessing the JIT Using PL-6 Subroutine. · · · · Figure 8-2. Accessing the reB using PL-6 Subroutine.
Figure 8-3. Break HandLing Via PL-6 ASYNC Procedure. · · · · ·

CE62-00 TabLe of Contents

· · ·

· · · · · · · · · · · ·

· · · · · · · ·
·

·

·
· · ·

· · · · · · · ·
·

· · · ·
· · · · ·

· · ·

· · ·

·

· · · ·

·
·

·

·
·

·
·

·

·

Page

A-1
A-1
A-25
A-29

i-1

3-2
3-4
3-6
3-7
3-9
3-10
3-11
3-12
3-13
4-4
5-4
7-3
7-4
7-24

11-18
11-19
13-2
13-3
13-4
14-4
15-2
15-3
15-4
15-11

2-2
3-14
3-15
3-16
4-6
4-8
4-8
4-9
4-9
5-2
5-16
5-18
5-20
6-4
7-9
7-9
7-10
7-11
7-11
7-15
8-2
8-4
8-5

vii

Content. (cont}

Figure 8-4.
Figure 8-5.
F.igure 8-6.
Figure 8-7.
Figure 8-8.
Figure 8-9.
Figure 8-10.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 15-1.
Figure 15-2.
Figure A-1.
Figure A-2.
Figure A-3.

CE62-00

Trap Handling Via a PL-6 Subroutine ••••
DCBs for Program CaLLed by M$LINK/M$LDTRC ••
Associating DELTA to Dump I.C •••••
PL-6 Routine to Set up Sub-segments ••••••••••
BMAP UtiLity SampLe Routine 'SHRINK' ••
Accessing Data within a Standard Segment •••••••••

Accessing Data within a Large VirtuaL Segment.
PL-6 Subroutine to ControL Terminal I/O ••••••
SampLe Use of Comgroups •••••••••••
Use of SUPER for Comgroup Definition •••••••••••

BMAP Program - Standard Receiving Sequences.
PL-6 Program - Receiving/CaLLing Sequences.

SampLe Structure.. • ••••
B$JITO Structure.. • ••••••
B$JITOX Structure.

Table of Contents

Page

8-6
8-9
8-11
8-18
8-19
8-20
8-20
9-2
9-10
9-14

15-15
15-17

A-28
A-30
A-38

vi; ;

About This "'anua'

The contents of the manual are grouped into fifteen sections:

Section 1, Introduction, highlights key concepts that are essential to the
system programmer.

Section 2, PL-6 for System Programming, includes an annotated example of the
use of monitor services in PL-6 programs.

Section 3, X Account Tools, discusses tools available to the system
programmer.

Section 4, Processor Conventions, describes guidelines which help to provide
consistency in the user interface to the CP-6 system.

Section 5, Source Code Documentation, describes conventions and tools for
including extractable commentary in source code files.

Section 6, Error Message Reporting, describes conventions and tools for error
reporting and creation of error message files.

Section 7, User Documentation/HELP, describes the $TEXT facility which
simplifies and standardizes creation of user manuals and on-line (HELP)
documentation.

Section 8, Techniques: Central System, describes interfaces to central system
software.

Section 9, Techniques: Communications, describes interfaces to communication
software.

Section 10, Shared Run Units, describes sharing programs and the auto-sharing
process.

Section 11, Special Shared Processors, describes guidelines for writing
Command Processors, Debuggers, and Alternate Shared Libraries.

Section 12, Run-Time Libraries, describes how to build and associate run-time
libraries.

Section 13, Library Functions, describes functions available from the
:SHARED_SYSTEM run-time library.

Section 14, Compilers and Language Utilities, describes conventions and tools
to aid in writing language processors.

Section 15, Interlanguage Calling, describes calling and receiving sequences
and related information.

Appendix A, Job Information Table, describes the JIT information maintained
for all active users of the system.

CE62-00 About This Manual i x

Not.tion Con"entions

The following table gives notation conventions used in this manual to describe
commands, statements, directives, and other language elements.

Notation Conventions Table

Notation Description

Lower-case Letters

Lower-case letters indicate that the element is a variable, to
be replaced with the desired value.

CAPITAL LETTERS

Capital letters indicate a literal, to be entered as shown.

Special Characters

Numerals

Braces

OR Bar

CE62-QQ

Special characters are literals, to be entered as shown.

Numerals standing alone are literals, to be entered as shown.
Numerals embedded in or affixed to a string of capital letters
are also literals, to be entered as shown, for example, PL6.
Numerals embedded in or affixed to a string of lower case
letters are part of the variable name to be replaced with a
desired value, for example, fid1.

Elements stacked inside a pair of braces identify a required
choice. The braces may be elongated to contain the possible
choices, or may be represented by vertically-stacked printed
braces.

{shift count}
{R1}

means that either a value for
shift count or the word R1 must be
entered.

Alternatively, the vertical OR bar is used to separate the
choices, thus: {shift countlR1}

The OR bar separates elements in a list from which one element
may be, or must be, chosen.

Syntax Notation x

Notation

Notation Conventions Table (cont.)

Description

{R1/shift_count} means that either the word R1 or the
value of shift_count must be entered.

Vertical Ellipsis

Blanks

CE62-00

The vertical ellipsis indicates that zero or more commands or
instructions have been omitted.

START CCP

END

means that there are zero or more
statements omitted between the
CCP and END statements.

Where blanks are shown in syntax formats, one or more blanks
must be used except inside character literal strings.

Syntax Notation xi

Section 1

Introduction

Interfaces and their use and manipulation are major strengths of the CP-6
system. A guiding goal in implementing the CP-6 system was to build a system
which did not need to be modified by the users or by Honeywell in order to
adapt to special requirements. The system has been successful in this effort
as judged by the exceptionally small number of site specific patches to the
system and the lack of changes by addition and recompilation of system or
processor modules.

System programmers do change the way the system operates, however, largely
through use and understanding of the interfaces documented in this guide.
There are three major interfaces to the CP-6 system described in this guide:

1. The user interface
2. The compiler output or direct language interface
3. The program calling interface

File management, terminal and device I/O interfaces which are equally
important in using the system are described in the CP-6 Programmer Reference
Manual (CE40) and the CP-6 Monitor Services Reference Manual (CE33).

The CP-6 system presents a common, familiar, and consistent interface to the
end-user. Standards used throughout the CP-6 system and in all its processors
provide a consistent syntax; the same options mean the same thing throughout
the system. The CP-6 parsing tools and standards are described here so that
newly built processors can present the same consistent user interface. Many
of the tools employed in the development of the CP-6 system are made available
with the system in account X. A description of the most important and useful
of the account X routines are described in Section 3.

The standard object language prov;d~s a form for all compilers to produce
loadable code and the debugging schema. Tools useful to compiler writers are
also discussed.

Standards for calling between programs allow subprograms in several languages
to be combined into a single program with each language being used where it ;s
strongest.

CP-6 interfaces are also provided so that a site may create its own command
language, its own debugger, or its own database management system. Each of
these is a type of shared program called a special shared processor. The
rules for their creation and the privileged calls available to them are
described in the sections that follow. User and system libraries form another
level of sharing in the CP-6 system. RuLes governing these libraries (which
may be amended or recreated by the user) are given together with techniques
which, if used, will allow change of the libraries without the need to change,
reload or recompile programs which use them.

CP-6 comgroups are a unique method for communicating between programs, and
between programs and terminals or devices connected to the system. Comgroups
form an internal Message switching network within the CP-6 system.

Examples throughout this volume will help the system programmer to make new
and innovative use of the CP-6 system through its interfaces.

CE62-00 Introduction 1-1

Section 2

PL-8 tor System Programming

PL-6 is the implementation language for the CP-6 system. The PL-6 language,
which is intended for block-structured programming, provides simple syntax and
simple data types. See the CP-6 PL-6 Reference Manual (CE44) for a complete
definition of the language. The first part of the Reference discusses
concepts of the language and its main features.

PL-6 users must rely on monitor services, as documented in the CP-6 Monitor
Services Reference Manual (CE33), for functions which the PL-6 compiler does
not provide. The PL-6 CALL statement may be used to transfer control to any
monitor service or library service. In addition to the service subroutines,
the CP-6 system provides macro definition for related structures which are
INCLUDEd for use in the PL-6 program.

To use a monitor service, the PL-6 program simply calls the needed service.
Every monitor service has no more than one argument. The argument is the name
of the Function Parameter Table, (FPT) which contains parameters specific to
each monitor service. The program generates the FPT by using the macro
structures supplied in the system macro library. (See the CP-6 Monitor
Services Reference, CE33, for more information on the system macro library).

Figure 2-1 illustrates a program which uses several common monitor services
and demonstrates the use of the system macros to set up the FPTs for the
monitor services. The sample program is purposely brief. A somewhat longer
sample program is illustrated in the CP-6 Monitor Services Reference Manual.
PL-6 program fragments are shown throughout this handbook. In addition,
programs in account .:XSI are a source of examples, as discussed in Section "3.

CE62-00 PL-6 for System Programming 2-1

1*

*1

Program to REKEY a fiLe, starting with a key of 1.000 in
increments of 1.000

REKEY: PROC MAIN;

1*
LocaLLy needed substitution
strings (XEQUs)

XEQU TRUE#='1'B I*TRUE#*I;
XEQU FALSE#='O'B I*FALSE#*I;

1*

*1

INCLUDE all the system macros
so we can set up the FPTs for
the monitor services.

XINCLUDE CP 6;
XINCLUDE CP=6_SUBS;

1*
DCBs defined here

DCL MSSI DCB;
DCL MSOO DCB;
DCL MSDO DCB;

1*
EXTERNALs

DCL BSTCBS PTR SYMREF;

1*
Local STATIC storage

DCL BUF1 CHAR(256) STATIC INITC' I);

DCL BUF1ARS UBIN WORD STATIC;

DCL MSSIS PTR STATIC;
DCL MSOOS PTR STATIC;

DCL 1 00 KEY STATIC,
-2 * UBIN BYTE CALIGNED INIT(3),

2 KEY UBIN(27) CALIGNED INITCO);

DCL MY_ERROR_BUF CHAR(255) STATIC CALIGNED;

DCL FPARAM_BUFCO:1025) SBIN STATIC ALIGNED;

1*
Invoke the macros that got INCLUDEd in CP 6 to set up
the information needed by the monitor services.

XFPT ERRMSG CFPTN=ERROR PRINT,
BUF=MY-ERROR BUF,
DCB=MSSI, -
OUTDCB1=MSDO,
CODE=NIL);

Figure 2-1. Sample PL-6 Program (cont. next page)

CE62-00 PL-6 for System Programming

*1

*1

*1

*1

*1

2-2

%FPT OPEN

%FPT OPEN

%FPT READ

XFPT WRITE

XFPT CLOSE

XFPT CLOSE

XFSDCB;
XBSTCB;

XBSALT;

XEJECT;

(FPTN=OPEN SI IN,
FPARAM=FPARAM_BUF,
DCB=MSSl);

(FPTN=OPEN 00 OUT,
DCB=MSOO;
FUN=CREATE,
EXlST=NEWFILE,
ASN=FILE,
ACS=DIRECT,
IFPARAM=FPARAM_BUF,
ORG=KEYED);

(FPTN=READ BUF1,
DCB=MSSI,
BUF=BUF1,
WAIT=YES);

(FPTN=WRITE 00 BUF2,
DCB=MSOO,­
BUF=BUF1,
ONEWKEY=YES,
KEY=OO KEY,
WAIT=YES);

(FPTN=CLOSE SI REL,
DISP=RELEASE,
DCB=MSSI);

(FPTN=CLOSE 00 SAVE,
DIS P=SAVE;
DCB=MSOO);

1*
Invoke the MACROs to generate
based structure for accessing
data in the TCB, DCB and ALTRET
frame.

*1

MSSIS = DCBADDRCDCBNUMCMSSI»;
MSOOS = DCBADDRCDCBNUM(MSOO»;

1*
Set up the file name in the
OPEN FPT and call the monitor
service routines to open the
necessary files.

*1
OPEN_OO_OUT.NAME_ = VECTOR(MSSIS->FSDCB.NAME#);

CALL MSOPEN COPEN_SI_IN) ALTRET (MXXX);

CALL MSOPEN (OPEN 00 OUT) ALTRET (MXXX);

Figure 2-1. Sample PL-6 Program Ccont. next page)

CE62-00 PL-6 for System Programming 2-3

1*
READ record, update the key,
WRITE it out and so on ••••
until we hit the end of file.

DO WHILE (XTRUE#);

BUF1 = I I;

CALL MSREAD (READ BUF1) ALTRET (MUST_BE_END_OF FILE);

BUF1ARS = MSSIS->FSDCB.ARS#;

OO_KEY.KEY_ = OO_KEY.KEY_ + 1000;

WRITE_00_BUF2.BUF_.BOUND = BUF1ARS;

CALL MSWRITE (WRITE 00 BUF2) ALTRET (MXXX);

END; 1* DO WHILE TRUE# *1

MXXX: ;
ERROR PRINT.CODE

1*
An error occurred somewhere,
get the error code and print
the error message.

VECTOR(BSTCBS->BSTCB.ALTS->BSALT.ERR);

CALL MSERRMSG (ERROR_PRINT) ALTRET (HMMM);

HMMM: ; 1* Abort this job, something went wrong *1

CALL MSXXX;

CALL MSCLOSE (CLOSE_OO_SAVE) ALTRET (MXXX);

CALL MSCLOSE (CLOSE SI REL) ALTRET (MXXX);

CALL MSEXIT;

END REKEY;

Figure 2-1. Sample PL-6 Program

CE62-00 PL-6 for System Programming

*1

*1

2-4

Section 3

X Account Tool.

X Account Policy

The X Account provides a toolcrib for unsupported tools on the CP-6 system.
Tools that are placed in this account may be of use to a small or large number
of users. Any tool that is used by more than two individuals is a candidate
for inclusion in the X Account.

The X Account tools provide users with programming examples of techniques and
standards for using the CP-6 system. There are no access restrictions to the
account; most of the source code used to create it is delivered to customer
sites.

X Account Support Mechanisms

The X Account contains tools that are not supported through the normal support
mechanisms provided with the CP-6 system. However, in the case of deficiency
or oversight, or if a new feature is needed, a Severity D STAR may be
submitted to STARlOG with the subject listed as Product X. There is no
guarantee that the suggestion will be implemented in a timely manner, but the
tool's originator may be able to provide help and advice through STAR lOG
responses.

X Account Naming Conventions

As released, the X Account tools are put in the .:XSI account which contains
the source, HELP, JCl and rununits of all the tools. The job SBUIlD X ACCT
copies all the essential elements into the X Account. The following-naming
conventions are used for the .:XSI account.

• • • •

TOOL SIcn
TOOL-HELP
TOOl-CRU
TOOl=Ccn

(source)
(HERMAN input)
(Sample JCl)
(Include, copy files>

where c is a compiler indicator, and n is a digit.

NOTE: If files in the :XSI account appear not to exist, consult
the system manager to determine if the account was created with
appropriate access permissions granted.

CE62-00 X Account Naming Conventions 3-1

Content. of the X Account

The X Account contains approximately 175 tools; the most frequently used tools
are documented in this section. The X Account is constantLy being changed and
updated; therefore, tooLs may disappear or appear in the account at the
different releases. The tools may be categorized as follows:

Programmer aids
System Programmer aids
Integration aids
Installation Management aids
Documentation aids
Support aids
Microprocessor Support aids
Miscellaneous tools

Programmer Aids

Programmer aids are tools that are of general use to the application
programmer in all languages. These tools cover a wide spectrum of
applications -- from tools that inform the user about the status of the system
to tools that list HELP files.

Tool Name

A

BANNER

CALENDAR

DI

DILDEV

EJECT

CE62-00

Table 3-1. X Account Programmer Aids

Description

Records and reports the status of batched jobs.

Prints user specified text in block letters on a line printer.

Builds, displays and stores a user's personal calendar.

Displays information about the system such as the number of
users, the ETMF and 90% response time.

Displays a user's current Logical DEVices and how much output
is queued up for each of them.

Positions output to a new page.

Programmer Aids 3-2

Tool Name

EMU

FIND

GOPHER

LISTHELP

OVERLAP

OX

PMDISP

PMON

RQ

SETUP

SKUNK

CE62-QQ

Table 3-1. x Account Programmer Aids (cont.)

Description

The Error Message Uncoder prints the CP-6 error message text
associated with a specified error code.

Searches account(s) for a given filename or prefix.

Displays the filename and lines within it that contain the user
specified string.

Lists one or more HELP files on the specified destination.

Reads an FPL source program and then can be directed to check
for overlapping fields and/or print one or more forms described
in the program.

Provides a cross reference of a FORTRAN 77 program and/or
subroutines.

Displays Performance data gathered via PMON.X or PM.X.

Software Performance MONitor used with PMDISP.X and PM.X.

Displays information about the running or input/output queues.

Is a universal setup program which eliminates the need to go
through IBEX.

Locks your terminal and keeps someone from using it while
you're away.

Programmer Aids 3=3

TabLe 3-1. X Account Programmer Aids (cont.)

TooL Name Description

Sl

DispLays severity LeveL of rununits and object units.

System Programm'J'~Jds

System programmer aids are tooLs that are of use to programmers working in an
environment that maintains a source base. These deveLopment tooLs can be used
by a wide range of users on the CP-6 system. Many of these tooLs such as CMPR
or lIN are used to maintain and update the source base.

TooL Name

AUTO

BOOKWORM

CMPR

DRAW

EDGEMARK

EDICT

FORMAT

CE62-00

TabLe 3-2. X Account System Programmer Aids

Description

ALLows a user to raise or Lower the batch queue priority of
subsequentLy batched jobs.

A program designed to aid in the electronic preparation of
tabLe of contents and indexes from TEXT files.

Compares two files and generates update files.

Converts Pl-6 DCl statements to pictures, for use in debugging
Pl-6 structures, design specs, technical manuals, etc.

Prints specified text in block letters on the edge of a
print-out.

Puts extractable commentary into code.

Formats <i.e., pretty prints) Pl-6 source files, merges updates
and inserts copyright notices.

System Programmer Aids 3-4

Table 3-2. X Account System Programmer Aids (cont.)

Tool Name

KEYUP

KEYER

LIN

LISTER

MODEL

PARSE/PARSEOU

PARTRGE

SDUMP

UNGMAP

WHAT

CE62-00

Description

Takes a file of plus records and gives them proper edit keys.

Validates and rekeys plus-card files.

Merges lines from a base file and puts them into plus-card
format.

Copies selected portions of unit-record listing files (produced
by PL-6, PL1, PARTRGE, BMAP, or GMAP6) to the line printer.

Allows a user on a multiprocessor system made up of different
CPU types to specify the CPU on which he wants to run.

Tools used with the parser and PARTRGE to tell the user what
the output nodes look like after a parse.

Creates parse node object units.

Dumps debug schema from an object unit file, run unit file or
an overlayed run unit file.

Takes an object unit and produces an assembly listing from it.

Displays information about the current running system.

System Programmer Aids 3-5

I ntegration Aids

CP-6 integration tooLs are tooLs used in integrating and distributing the CP-6
system.

Tool Name

DRAW

DTOR

EDGEMARK

EXTRACT

FICHER

HERMAN

INSREC

LINKMOD

LOOK4

CE62-00

TabLe 3-3. X Account Integration Aids

Description

Converts Pl-6 DCl statements to pictures, for use in debugging
Pl-6 programs, design specs, technicaL manuaLs, etc.

Converts files containing Pl6 DCl statements and pre-processor
directives into files with corresponding SVMREF and/or BASED
DC ls.

Prints specified text in block letters on the edge of a
print-out.

Extracts error messages and commentary from source code.

Takes listing and source files and creates a set of tapes for
printing on microfiche.

Reads a text file containing HELP and HERMAN commands and
creates a HELP database.

Inserts records from a base file into another file based on a
control file.

Alters lINK, PCl and/or LEMUR JCL.

Reports on multiple occurrences of update files.

Integration Aids 3-6

Tool Name

MODMOVE

MPUR

STI

Table 3-3. X Account Integration Aids (cont.)

Description

Controls the manipulation of update files in controlled
accounts.

Removes unwanted schema from OBJECT and RUN units.

Places software technical identifiers into released software.

In.tallation Management Aids

Installation management aids are tools that are useful to CP-6 system
managers. These tools help manage the machine efficiently by giving
information about the state of the machines such as what users have certain
p~;vileges or which remote terminals are connected.

Tool Name

AUTO

COSWEB

EXPIRED

Table 3-4. X Account Installation Management Aids

Description

Allows a user to raise or lower the batch queue priority of
subsequently batched jobs.

A tool that installs and deletes shared processors.

Prints the names of files which have expired as of the current
date.

fWEDITOR

Builds and edits a customized firmware file from an IFAD tape.

GRAMPS

Watches for disk packs that are running out of space.

CE62-00 Installation Management Aids 3-7

TooL Name

MPCDUMP

PRIVCHECK

PRIVDISP

Spy

ST

TERM

USERS

CE62-00

TabLe 3-4. X Account InstalLation Management Aids (cont.)

Description

Provides a hexadecimaL dump of an MPC's main memory separated
by its memory content headings.

Checks running users priviLeges against the priviLeges for
which they were authorized.

Displays the logon id of users who have the requested
privileges.

Displays certain information about current users on a CP-6
system.

Aids in analyzing performance by displaying certain fields from
the specified users' JIT.

Tells which remote terminals are connected or have output
queued.

Converts user authorization files into newer versions.

Installation Management Aids 3-8

Documentation Aids

These tools are, to the largest extent, used in documentation preparation
along with CP-6 TEXT. They include a proofreading dictionary as well as a
tool that creates indices.

Tool Name

BOOKWORM

EDICT

EXTRACT

FIXTEXT

FORMAT

HERMAN

LISTHELP

NOBS

PROOF

CE62-QQ

Table 3-5. X Account Documentation Aids

Description

A program designed to aid in the electronic preparation of
table of contents and indices from TEXT files.

Puts extractable commentary into code.

Extracts error messages and commentary from source code.

Strips leading and trailing blank lines from TEXT-produced
output files, thus making them more suitable for use with other
processors.

Formats (i.e., pretty prints) PL-6 source files, merges updates
and inserts copyright notices.

Reads a text file containing HELP and HERMAN commands and
creates a HELP database.

Lists one or more HELP files on the specified destination.

A program that reads a TEXT input fiLe and changes
backspaced/underscored passages into a format compatible with
CP-6 FEP input functions.

Is a document proofreader with an accompanying dictionary.

Documentation Aids 3-9

TooL Name

TUNA

UNPRINT

TabLe 3-5. X Account Documentation Aids (cont.)

Description

A program to TUNe An edit-keyed text input file so that it can
be edited on an 80 column CRT screen.

Reads text files and reports on any unprintable characters
found.

Development Management Aids

These are tools that support the system design as well as reporting system
progress.

Tool Name

CRF

LNCOUNT

CE62-00

Table 3-6. X Account Development Management Aids

Description

Copy Review File. CRF is used to review files to which
additional information may be appended at regular intervals.

Counts the number of comment and source lines in files in
controlled accounts and reports this information to a Unit
Record file or Terminal.

Development Management Aids 3-10

Support Aids

These tools provide a mechanism for both programmers and support personnel to
support the software and customers.

Tool Name

BEAM/MAEB

CGDUMP

ELBBIRD

MOVE/SCOTTY

PATCH

RUMSPLIT

TATTLE

WOODPECKER

CE62-00

Table 3-7. X Account Support Aids

Description

Transports files between CP-6 systems.

Reads a closed comgroup file and any monitor dump file, and
creates a dump file that can be used with ANLZ to look at the
comgroup tabLes.

Converts fiLes created by the DRIBBLE command from its original
form to a form more easiLy used in documentation.

Transports files to and from other CP-6 systems.

Formats patches. Inserts pertinent information such as the
date, STAR number, etc.

Takes a file containing RUM directives and splits it into
smaller fiLes, each containing a single product's RUMs.

Informs a Honeywell programmer when a test case has arrived in
the ZZZTEST account.

Allows a user without the DISPJOB priviLege to display all
output destined for his Workstation of Origin.

Support Aids 3-11

Microprocessor Support Aids

These tooLs provide the user with severaL types of assembLers.

TabLe 3-8. X Account Microprocessor Support Aids

TooL Name Description

APE

A program that provides the required handshaking for down-line
loading of ASMZ80.X and ASM6502.X run units into a
micro-processor.

ASM6502

A 6502 Cross-Assembler for CP-6.

MSA6800

A reverse assembler for 6800-based machine code.

MSA8085

A reverse assembler for 8085-based machine code.

MSAZ80

A reverse assembler for Z80-based machine code.

Miscellaneous Tools

These tools provide programs in the common tool crib which are of common
interest and relatively high usage.

CE62-00 Miscellaneous Tools 3-12

Table 3-9. X Account Miscellaneous Tools

Tool Name Description

COPYPGM

Copies records, portions of records, or constant information
from one file to another. Records may be copied based on
Boolean criteria supplied by the user.

lOOK

Is a cross between EDIT and PCl with some extensions. It works
with most file organizations and has no built in restrictions
on maximum record lengths.

X Account Tool Invocation

The tool invocation command for tools in the X Account is:

!toolname.X [options]

For those tools that, because of their nature, reside in the :SYS account
(i.e., Spy) the tool invocation command is:

!toolname [options]

HELP for X Account Tools

All of the tools that are in the X Account have HELP files. These fiLes can
be exercised by the foLLowing command:

!HElP (toolname.X)

for tools in the X Account.

! HELP (tooLname)

for the tooLs that have been moved to the :SYS account.

CE62-QQ HELP for X Account TooLs 3-13

X Account Programming Examples

The X account, besides being a tooL crib for commonLy used tooLs can provide
PL-6 programming exampLes. Figure 3-1 shows a user examining the HELP fiLe
for a tooL caLLed TUNA.X.

!HELP (TUNA.X)
TUNA is a tooL to TUNE A edit-keyed text input fiLe so that it wiLL be
RR-EDITabLe on an 80-column CRT screen.
! ?
FuLL command Line syntax:

!TUNA.X text fiLe [{ONIINTOIOVER} scratch fiLe] [(options[)]]

where:

text fiLe is a TEXT input fiLe containing TEXT directives

scratch fiLe is an optionaL fiLe name to be used for scratch area. The
defauLt-scratch fiLe is *G. The scratch fiLe is automaticaLLy deLeted
upon TUNA exit.
! ?
Options are:

NWA/RN don't print warning messages about unknown macros

NWR/AP don't attempt to wrap text from one Line to the next

NUS/BS don't attempt to change the order of char/backspace/undersco~e
to underscore/backspace/characer

MA/XCOMPRESS try to compress aLL excess spaces out of a line except
those around the first word on an input record

LEN/GTH=line length sets the size of the records that TUNA will attempt
to produce. The default is 69, which is right for editing on an
80-column CRT. Allowable range is 50 through 132.

MAXCOMPRESS and NWRAP are mutuaLly exclusive options.

Figure 3-1. Browsing through X Account HELP

The source code for the X account is stored in the :XSI account. The two
source code files for TUNA can be used as a model for parsing commands input
that contains a list of options. Figure 3-2 examines the TUNA program
(TUNA SI6.:XSI) which calls the XSPARSE library service and contains the
required DCl statements needed to define structures to be passed to XSPAR5E.
Figure 3-3 demonstrates how the parse nodes for TUNA (in TUNA SIN.:XSI)
correspond to CASE statements in TUNA 516. In both figures underscoring is
used to highlight what the user typed:

CE62-00 X Account Programming Examples 3-14

!L TUNA?:XSI
TUNA SI6 TUNA SIN

- 2 files listed
!E TUNA SI6.:XSI
EDIT B03 HERE
* File TUNA SI6.:XSI is open input - cannot update
*FTO-9999,IOPTIONS/OR/tionl

58 CONSTANT definitions here
118 (' **** NUSBS option automaticaLly
135

invoked.');
OPTIONS flags

315
350 DO;
400 END;
407 END;

1087 DCL STD ERROR CHAR(O)
1088 DCL ADV ERROR CHAR(O)

* EOF hit after-1127
*TY350
--350 DO;

*TP9

BASED definitions
1* MUST BE OPTIONS ON CMD LINE *1
1* DO IF OPTIONS ON CMD LINE *1
1* DO IF CONFLICTING OPTIONS *1

STATIC INIT (' **** Bad option(s)');
STATIC INIT (' **** Conflicting options');

1* MUST BE OPTIONS ON CMD LINE *1

341 ** *1
342
343 MSI = DCBADDR(DCBNUM(M$SI»;
344 MOU = DCBADDR(DCBNUM(M$OU»;
345
346 TUNA_PCB.ROOT$ = ADDR(TUNA_NODES);
347
348 IF BJIT->B$JIT.CCARS > B$JIT$->B$JIT.CCDISP
349 THEN

*TY348
-----348 IF BJIT->B$JIT.CCARS > B$JIT$->B$JIT.CCDISP

*"WHOA ••• THIS IS HOW TO KNOW THERE'RE OPTIONS ON THE COMMAND LINE!"
*TN8

*TY352

349
350
351
352
353
354
355
356

THEN
DO; 1* MUST BE OPTIONS ON CMD LINE *1

TUNA PCB.TEXT$ = PINCRC(ADDR(B$JIT.CCBUF),B$JIT.CCDISP+1);
TUNA:PCB.NCHARS = B$JIT.CCARS - B$JIT.CCDISP - 1;

CALL X$PARSE (TUNA_PCB) ALTRET (XPERR);

-----352 TUNA PCB.TEXT$ = PINCRC(ADDR(B$JIT.CCBUF),B$JIT.CCDISP+1);
*"THIS IS HOW TO TELL THE PARSER WHERE TO FIND THE TEXT TO PARSE"
*TY353
-------353 TUNA PCB.NCHARS = B$JIT.CCARS - B$JIT.CCDISP - 1;

*"AND THIS IS TO TELL THE PARSER HOW MANY CHARACTERS TO PARSE"

Figure 3-2. Program Sample from :XSI Account - Part

CE62-00 X Account Programming Examples 3-15

*"WHERE'RE THE PARSE NODES?"
*E TUNA SIN. :XSI
* FiLe TUNA SIN.:XSI is open input - cannot update
*TY

1
2
3
4
5

I*M* TUNA SIN - Nodes for "TUNA" program. *1
I*T*** ********

T *
T COPYRIGHT, (C) HONEYWELL INFORMATION SYSTEMS INC., 1982 *
T *

6 *T** *******1
7 I*X* DMC,DFC *1
8
9 TUNA_NODES(D,OUT)=« ',',TUNA CMDS > [')'] .ENDINULL_CMD [')'] .END)

10
11 TUNA CMOS =
12
13
14
1 5
16

[.B] (MAXCOMPRESS
NWRAP I ;
NUSBS I ;
SIZE OPT I;
NWARN)

17 MAXCOMPRESS(1)='MA/XCOMPRESS'
18
19 NWRAP(2)='NWR/AP'
20
21 NUSBS(3)='NUS/BS'
22
23 NWARN(4)='NWA/RN'
24
25 NULL CMD(5)
26

(.B I [.B])

I ;

27 SIZE OPT(6) 'LEN/GTH' '= ' .DEC3
* EOF hit after 27
*"THERE'RE THE PARSE NODES! LOOKS A LOT LIKE THE HELP FILE!"

* *" GO BACK TO SEE WHAT THE PARSER DOES"
*E TUNA SI6.:XSI
* File TUNA SI6.:XSI is open input - cannot update
*TY353 -
-------353 TUNA PCB.NCHARS = B$JIT.CCARS - B$JIT.CCDISP - 1;

*TN23

*TY368

354
355
356
357
358 XPERR:
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

CALL X$PARSE (TUNA PCB) ALTRET (XPERR);

DO WHILE (FALSE#);

CALL PARSE ERROR(1);
GOTO GET_GONE;

END; /* DO WHILE PARSE ERROR */

DO I = 0 TO TUNA PCB.OUT$ -> TUNA$OUTBlK.NSUBlKS - 1;

DO CASE (TUNA PCB.OUTS -> TUNA$OUTBlK.SUBlKS(I) ->
TUNASOUTBlK.CODE);

CASE (1);
MAXCOMPRESS = TRUE.;

CASE (2);
NWRAP = TRUE';

CASE (3);
NUSBS = TRUE#;

-----368 CASE (1);
*"HMMM ••• THIS CASE(1) MATCHES THE NUMBER ON THE NODE IN THE PARSE NODE FILE!"
*TY377-391

Figure 3-3. Program Sample from :XSI Account - Part 2 (cont. next page)

CE62-00 X Account Programming Examples 3-16

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

*TY383-385
383
384
385

*"AND IT LOOKS LIKE I
*" THE PARSER RETURNS
*TN10

386
387
388
389
390
391
392
393
394
395

CASE (4);
NWARN

CASE (5);

CASE (6);

TRUE#;

CALL CHARBIN (MAX PER LINE,
TUNA PCB.OUTS ->-TUNA$OUTBLK.SUBLK$(I) ->
TUNASOUTBLK.SUBLK$(O) -> TUNA$SYM.TEXT);

IF MAX PER LINE> LEN LARGE#
OR -
MAX PER LINE < LEN SMALL#

THEN
DO;

CALL CHARBIN (MAX PER LINE,
TUNA PCB.OUTS ->-TUNA$OUTBLK.SUBLK$(I) ->
TUNASOUTBLK.SUBLK$(O) -> TUNA$SYM.TEXT);

HAVE TO MANUALLY CONVERT PARSED DECIMAL NUMBERS THAT"
INTO INTERNAL FORMAT TO •••• "

IF MAX PER LINE> LEN LARGE#
OR -
MAX PER LINE < LEN SMALL#

THEN
DO;

CALL PARSE ERROR(3);
GOTO GET_GONE;

END; 1* DO IF NUMBER TOO BIG *1

*"00 INTERNAL COMPARISONS WITH THEM!"
*END

Figure 3-3. Program Sample from :XSI Account - Part 2

CE62-00 X Account Programming Examples 3-17

Section 4

ProcessorConvenUons

Conventions foLLowed in writing HoneyweLL-suppLied processors are discussed in
this subsection. See Section 14 for conventions specificaLLy appLying to
Language processors.

General Case of Run Unit Invocation

A run unit is invoked via the IBEX command

!rununit [runinformation]

where

rununit
appLy.

is the disk fid specifying the run unit. Standard disk fid ruLes

runinformation is additionaL text to be made avaiLabLe to the rununit in
the user's JIT (B$JIT.CCBUF). The Length of the text in CCBUF is set in
BSJIT.CCARS. If the command includes options, B$JIT.CCDISP contains the index
of the left parenthesis preceding the options. If there are no options,
CCDISP is set to the same vaLue as CCARS. If the command is continued,
B$JIT.CCBUF contains only the first line of the command; the compLete command
(with any leading exclamation mark repLaced by a blank) is written record by
record to a star fiLe, *CONTINUATION COMMANDS; the fLag
B$JIT.PRFLAGS.CONTINUED is set to indicate continuation. The file contains
the semicoLons entered to show continuation, as weLL as any comments. (At job
step, the file is deLeted and the fLag indicating continuation is reset.)

If the command is in the standard format (described in Section 14), the DCBs
are set. If the run unit expects non-standard syntax, then it should be
linked without the SIDCB, UIDCB, OUDCB, and LODCB Link options.

The run unit is then called. If the run unit was linked with the STDINVOC
option and the command is not in standard format, the run unit is aborted.
Otherwise, it begins execution.

IBEX does not force the program invocation to be of the standard form; such
enforcement would be needlessly restrictive. Rather, a flag
B$JIT.PRFLAGS.NSSYNTAX is set (="'B) if the program invocation is
non-standard. The invocation line is made available to the program. The
program may examine this flag and accept or reject the invocation, as desired.

CE62-QQ General Case of Run Unit Invocation 4-1

Command Language Conventions

The following command language syntax rules and guidelines are considered
standard. These ruLes are observed by the command Language of IBEX, and by
the command languages of the general use processors suppLied for the CP-6
system by Honeywell, for example, EDIT and PCl.

1. Commands in the CP-6 common command language are not column dependent.
Very few CP-6 commands are positional in the sense of having the
significance of a parameter or operand denoted by its position in the
command, except that some use is made of commands with a structure like
simple conversational English, for example: tlCOPY sourcefile TO
destfile. tI

2. Keywords can be typed in uppercase or lowercase or a combination of both.
In CP-6 manuals, keywords are shown in uppercase.

3. Multiple parameters are often organized as Lists, e.g., an optionlist is a
parenthesis-delimited list of options, separated by commas.

4. Single parameters are connected to keywords in at Least one of three ways:

KEYWORD=parameter
KEYWORD(parameter)
KEYWORD=(parameter)

5. A List of more than one parameter is connected to a keyword in one of two
ways.

KEYWORD(parameter, parameter)
KEYWORD=(parameter,parameter)

6. Comments within command streams are denoted by being encLosed in doubLe
quotation marks (tI).

7. Strings that contain delimiters must be encLosed by apostrophes (I); if an
apostrophe is part of a string, it is denoted by adjacent apostrophes
(II) •

8. The semicoLon is a continuation indicator for muLtipLe line commands or
the command separator for multiple commands on a singLe Line. The
semicoLon cannot be used for continuation inside a keyword or text string.

CE62-00 Command language Conventions 4-2

Automatic File Extension

Under certain circumstances, automatic file extension occurs. File extension
means the process of adding data to the end of a non-keyed file, or of merging
data into a keyed file. Automatic file extension applies to the situation
that an initial step (rununit) of a job or session has created a given fiLe,
and subsequent job steps also perform writes to that fiLe. When automatic
fiLe extension appLies, the writes to a given file from a subsequent job step
are written at the end of the writes to that file from the previous step (or
merged with them if it is a keyed file); it is automatic in the sense that
there is no need for file management commands intervening between the steps to
position the file cursor.

Performance of automatic file extension, at a given subsequent job step, of a
particular fiLe (fid) through its associated DCB, takes place under the
foLlowing rules and conditions.

1. The writes to the fiLe take place through an eligible DCB.

EligibLe DCBs are:

M$LO
M$LL
M$DO
M$PO

M$SI
M$SO
M$UI

M$OU
M$EI
M$EO
M$ME

2. After the first rununit is invoked, automatic file extension of a given
fid through a given associated eLigible DCB wilL take pLace unless or
untiL:

• A SET command is issued for the DCB, specifying a fid.

• A RESET is done for this DCB, or a RESET ALL is done.

3. For writes through M$LO, automatic file extension is canceLled if a LIST
command that specifies a fid is issued.

4. For writes through M$DO, automatic file extension is canceLled if a
COMMENT command that specifies a fid is issued.

Explicit fi Le extension may be used if the "EXIST=oLdfi le" option is used on
the SET command, or if the "INTO" preposition on the rununit caLL is used.

CE62-00 Automatic File Extension 4-3

File Type Codes

There is a convention concerning identification of the compiler or processor
that created the object unit (or any other file) and the type of data
incorporated in the file. The 2-character file type (ft) identifier codes
shown in the Table 4-1 should be inserted in the FPT OPEN.V.TYPE# field when
the program is creating a file. The type code is provided for convenience and
is not required for correct functioning of most system-supplied processors.

Table 4-1. File Type Codes

Codes Meaning

First Character

D Data
I = Database
o = Object unit
R Run unit
S = Source
U = Update
W Work space
1 IDS schema or ARES model
2 = IDS subschema
* = System file not modified by the user
blank = undefined

Second Character

CE62-00

For Processor:
A = APL
a = ARES
B = BASIC
C = COBOL
D = TRADER
E = EDIT
F = FORTRAN
f = FPL
G = GMAP6
I = IDS
J = IMP
K = reserved
P = Performance Monitor or PARTRGE
Q = IDP

For Data:
A = ASCII
a = APL data block attributes
B = ASCII and single precision
c = APL co.ponent file
D = Double precision
S = Single precision
blank = undefined or unfor •• tted

File Type Codes 4-4

Processor Termination Conventions

Processors which operate by reading and acting on commands input by the user
(as opposed to compiLers) shouLd accept the 'END' command as sufficient cause
to terminate and return controL to IBEX (by issuing the MSEXIT monitor call).

S.mpl. Int.,.ctive Processor

SeveraL library services are avaiLable to provide a consistent user interface
to interactive processors. To provide a simple, readiLy comprehensibLe
exampLe of these services, Figure 4-1 iLLustrates a sampLe processor that
actuaLLy performs no usefuL work. Instead it highLights the mechanics of
defining a command Language, sampLe processing command input, providing
assistance with command syntax, reporting error messages, and reporting HELP
messages.

The sampLe processor, CORNER, consists of two moduLes of procedure. The main
moduLe (DEFSCORNER) soLicits and parses commands, and reports syntax error
messages and HELP messages. The internaL procedure (DEGSBEAST) receives
controL for the CLEAN command, but for the sake of simpLicity its onLy
function is to report an error message. In addition, the sampLe processor
contains a moduLe of parse nodes (Figure 4-2) and a moduLe of EQUs (Figure
4-3) which together define the command syntax for CORNER.

To demonstrate the user interface to the sampLe processor, Figure 4-4 shows an
interactive session. Figure 4-5 shows the compiLation, Linking, and other
steps necessary to run the sampLe program. The foLLowing subsections d·iscuss
various aspects of the sampLe processor.

C£62-00 SaMple Interactive Processor 4-5

I*M* DEF$CORNER - Main module for the CORNER processor.
CORNER: PROC MAIN;
1**1
I*T*** ********

T *
T COPYRIGHT, (C) HONEYWELL INFORMATION SYSTEMS INC., 1983 *
T *
*T** *******1

1**1
XINCLUDE
XINCLUDE
XINCLUDE
XINClUDE
XINCLUDE
XINCLUDE
1**1
XVLP NAME

CP_6;
DEP$FUZZY E;
XU MACRO C;
XUH MACRO C;
XUR-ENTRY;
XUJlERR_C;

(FPTN = ERRF FID,
NAME = ':ERRCORNER.',
STClASS = CONSTANT);

1* PARSE NODE EQUS
1* XUR MACROS
1* XUH MACROS
1* XUR ENTRY DCLS
1* XUR ERROR EQUS

DCl PROMPT CHAR(O) CONSTANT INIT('Corner: ,) ;
XXUR INIT (NAME=FPT INIT,

STClASS=CONSTANT);
1**1
XXUH_PARAM (NAME = XUH PAR AM,

STClASS = STATIC);
DCl EXITING BIT(1) STATIC;
XVlP ERRCODE (FPTN = ERR CODE,

- STClASS = STATIC);
DCl OUTS REDEF ERR CODE PTR;
1**1 -
XPARSESOUT (NAME=OUTSBlK,

STClASS=BASED);
XPARSESSYM (NAME = OUTSSYM,

1**1
STClASS = BASED);

DCL MSDO DCB;
DCl DEGSBEAST ENTRY(1) AlTRET;
DCL FUZZY NODES BIT(1) SYMREF;
1**1
XEQU FAlSE# = 'O'B;
XEQU TRUE# = '1'B;
1**1

EXITING = XFAlSE#;
CAll XURSINIT(FPT INIT);
CAll XURSSETERRMSG(ERRF FID);

1**1

DO WHILE (NOT EXITING);

*1

*1
*1
*1
*1
*1

CAll XURSGETCMD(FUZZY NODES,OUTS,VECTOR(PROMPT» ALTRET(PARSE ERROR);
DO CASE (OUTS -> OUTSBlK.CODE); 1* ON COMMAND TYPE *1-

CASE (XDEPSHElP CMD#);
XUH PARAM.HElPS = OUTS -> OUTSBlK.SUBLKS(O) -> OUTSSYM.TEXTCS;
CALL XURSHElP (XUH PARAM);

CASE (XDEPSQUES CMD#T;
CALL XURSMOREMSG (XUH PARAM);

CASE (XDEPSQQ CMD#); -
CALL XURSALIMSG (XUH PARAM);

CASE (XDEPSCLEAN CMD#);
CAll DEGSBEAST-(OUTS) AlTRET(ITS_OK); 1* HAVE BEAST CLEAN UP *1

ITS OK: ;
CASE (XDEPSQUIT CMD#);

EXITING = XTRUE#;
END; 1* END CASE ON COMMAND TYPE *1

DO WHILE (XFAlSE#);
PARSE ERROR: ;

- CALL XURSECHOIF (DCBNUM(MSDO»;

Figure 4-1. Command, Error, HELP Processing Source (cont. next page)

CE62-00 Sample Interactive Processor 4-6

IF ERR CODE.ERR# = %E$SYNERR
THEN -

CALL XUR$ERRPTR (,DCBNUM(M$DO»;
CALL XUR$ERRMSG (ERR CODE);
END;

END;
BAILOUT: ;

1* END WHILE NOT EXITING *1

CALL XUR$CLOSE DCBS; 1* CLOSE ALL DCBS WITH SAVE *1
RETURN; -
END CORNER;

I*M* DEG$BEAST - BEAST moduLe for the CORNER processor.
DEG$BEAST: PROC (NODE$) ALTRET;
1**1
I*T*** ********

T *
T COPYRIGHT, (C) HONEYWELL INFORMATION SYSTEMS INC., 1983 *
T *
*T***1

1**1
%INCLUDE CP 6;

*1

%INCLUDE DE-PERR C; 1* ERROR CODE EQUS *1
XINCLUDE XUR_ENTRY; 1* XUR ENTRY DCLS *1
1**1
DCL NODE$ PTR;
1**1
DCL FUZZINESS SBIN WORD STATIC INIT(99);
%VLP ERRCODE (FPTN = ERROR CODE,

1**1

FCG = "DE", -
MID = "G",
STCLASS = STATIC);

DCL M$OU DCB;
%EQU MAXFUZZ# 18;
1**/

IF FUZZINESS> XMAXFUZZ#
THEN

DO;
ERROR CODE.ERR# = XDEG$TOO FUZZY#;
ERROR-CODE.SEV = 2;
CALL XUR$ERRMSG (ERROR CODE,DCBNUM(M$OU»;

I*E* ERROR: DEG-DEG$TOO FUZZY#-2
MESSAGE: File X%FN Xtoo fuzzy.

*1

1**1

MESSAGE1: File X%FN Xis too fuzzy to use as a corner.
DESCRIPTION: The file intended for use as a corner is unsuitable

because it is too fuzzy for regular cleaning. This
may be the result of prior contact with a beast.
Until this code becomes more sophisticated, the
work-around is to have the file dry-cleaned by a
professional.

;

ALTRETURN;
END;

;
RETURN;

END DEGSBEAST;

1* Beasts too lazy to do any *1
1* cleaning; we'll do nothing *1

I*M* DE PERR C - This module contains error %EQUs for CORNER - -1**1
I*T*** ********

T *
T COPYRIGHT, (C) HONEYWELL INFORMATION SYSTEMS INC., 1983 *
T *
*T***1

1**/

Figure 4-1. Command, Error, HELP Processing Source (cont. next page)

CE62-00 Sample Interactive Processor

*1

4-7

1* The following errors are generated in DEG$CORNER. *1
1**1
XEQU DEG$TOO FUZZY#= 1001* DEG$TOO FUZZY# *1;
XEQU DEG$CORNER FUll#= 101/* DEG$CORNER FUll# *1;
XEQU DEG$CORNER-INACCESSABlE#= 102/* DEG$CORNER INACCESSABlE# *1;
1**1
1* The following errors are generated in DEF$BEAST. *1
1**1
XEQU DEF$NO BEAST#= 103/* DEF$NO BEAST# *1;
XEQU DEF$BEAST_IN_CORNER#= 104/*-DEF$BEAST_IN_CORNER# *1;

Figure 4-1. Command, Error, HELP Processing Source

I*M* DEP$FUZZY NODES - This module contains parse nodes for CORNER *1
1**1 -
I*T*** ********

T *
T COPYRIGHT, (C) HONEYWEll INFORMATION SYSTEMS INC., 1983 *
T *
*T***1

1**1
XINClUDE DEP$FUZZY E;
1**1 -
FUZZY_NODES

HELP CMD(XDEP$HElP CMD#)
QUES-CMD(XDEP$QUES-CMD#)
QQ CMD(XDEP$QQ CMD#)

(HELP CMD
QQ CMD
QUES CMD
CLEAN CMD

I;
I;
I;
I ;

QUIT CMD) .END
'HELP' .ASYM
, l'

= '1?'
CLEAN CMD(XDEPSClEAN CMD#)
QUIT_CMD(XDEP$QUIT_CMD#)

'Cl/EAN' .B ('CO/RNER' I 'HO/USE')
= ('Q/UIT' 'END' I ['E'-] 'X/IT'

Figure 4-2. Command language Definition Nodes

I*M* DEP$FUZZY E - This module contains parse XEQUs for CORNER *1
1**1 -
I*T*** ********

T *
T COPYRIGHT, (C) HONEYWEll INFORMATION SYSTEMS INC., 1983 *
T *
*T***1

1**1
XEQU DEP$HElP CMD#= 1/* DEP$HElP CMD# *1;
XEQU DEPSQUES-CMD#= 2/* DEPSQUES-CMD# *1;
XEQU DEP$QQ CMD#= 3/* DEP$QQ CMD# *1;
XEQU DEP$ClEAN CMD#= 4/* DEPSClEAN CMD# *1;
XEQU DEPSQUIT_CMD#= 5/* DEPSQUIT_CMD# *1;

Figure 4-3. Command language Definition EQUs

CE62-00 Sample Interactive Processor 4-8

!CORNER. OVER AMBER.CAT 1
2
3
4
5
6
7
8
9

Corner: THIS IS AN ERROR SINCE I DON'T KNOW WHAT TO SAY
Eh1

10
11
12
13
14
15
16
17
18

Corner: 1
1 11 CL/EAN E END HELP
Corner: CLEAN

Eh?
Corner: ?
CO/RNER HO/USE
Corner: CLEAN CORNER

File AMBER.CAT too fuzzy.
Corner: 1

File AMBER.CAT is too fuzzy to use as a corner.
Corner: HELP (BASIC) CAT
Syntax:
CAT(ALOGJ [{ACCT = accountIACCT=account,ALLIALL}J
Corner: Q

Q/UIT

Figure 4-4. Command, Error, HELP Processing: Sample Session

!DEFAULT SI=FUZZY,UI=DIGITAL,GN=FUZZY
!JOB WSN=UPSTAIRS
!PL6 DEGSBEAST.SI OVER *DEGSBEAST,ME (LS,OU,SCH)
!PL6 DEFSCORNER.SI OVER *DEFSCORNER,ME (LS,OU,SCH)
!P~RTRGE.X DEPSFUZZY_NODES.SI OVER *DEPSFUZZY_NODES,ME (LS,OU)
!LINK *DEGSBEAST,*DEFSCORNER,*DEPSFUZZY NODES OVER CORNER.GN

X/IT

!L(C=O) DE1.SI OVER *MODULE LIST(LN) "FIND ALL MODULES THAT MAKE 'CORNER'
!E *MODULE LIST -
IF I •• I;DE- "DON'T BOTHER WITH' nnn FILES'
IF IDE CORNER HELP/;DE "DON'T include the HELP source
END - -
!SET MSSI .SI
! SET .. SUI .UI
!EXTRACT.X
DA CORNER.GN
DFILE
DA CORNER.GN
XL *MODULE LIST
BUILD OVER-:ERRCORNER.GN,DE PERR C.SI PRO
END -
! R
!DEL CORNERSDAT,CORNERSTXT FROM .GN "GET RID OF EXTRACT SCRATCH FILES

Figure 4-5. Command, Error, HELP Processing: Associated Jobs

CE62-00 Sample Interactive Processor 4-9

Prompting and Parsing Command Text

Prompting and parsing are performed by a call to the XURSGETCMD library
service. In the DEFSCORNER module (Figure 4-1) the call to XURSGETCMD
references parse nodes (FUZZY NODES). These nodes coded in PARTRGE
metalanguage are stored as DEPSFUZZY NODES (Figure 4-2) and created via
PARTRGE.X (see Figure 4-5). -

The PARTRGE metalanguage to define parse nodes is described in the CP-6
Monitor Services Reference Manual, Section 10. The XURSGETCMD Library
service, which uses the XSPARSE service to access the parse nodes, provides a
consistent user interface in Honeywell-suppLied processors.

The XURSGETCMD service returns in OUTSBLK.CODE a symbol for which the sample
processor performs the DO CASE statement to cause action appropriate for each
command. If the command text is iLLegal, the aLternate return is taken with
an error code set for use by the Library service, XURSERRMSG.

Syntax Prompting at Syntax Error

The parse nodes are not only used to parse command text; the nodes can also be
used to prompt the interactive user by Listing the LegaL keywords permitted in
response to the user's entry of? folLowing a syntax error. XURSGETCMD
provides this feature by defauLt (it can be overridden by specifying SYNTAX=NO
when XURSINIT is called). This feature aids the interactive user who is
unfamiliar with a processor or the experienced user who merely forgets the
exact command syntax.

In Figure 4-4 an interactive user enters iLLegaL command text (line 2) which
is processed by XURSGETCMD resuLting in an alternate return. In the
PARSE ERROR routine, XURSERRMSG dispLays the error message (EH?) associated
with the error code from XURSGETCMD. When the interactive user enters? (line
4), the next calL to XURSGETCMD interprets this as a request to display all
keywords or syntax elements permitted at this point and thus lists all legal
command names (line 5) obtaining this information from the parse nodes.

Lines 6 to 8 show a variation of the above steps. In this case, because a
portion of the command text (CLEAN) is LegaL, the XURSERRPTR service is caLled
to display an up-arrow at the point where the syntax error occurred. In this
example at line 6, the CLEAN command is entered incompletely. Thus in
response to the user's? at the syntax error, XURSGETCMD Lists the keywords
that are permitted following CLEAN, namely CORNER or HOUSE.

CE62-00 Syntax Prompting at Syntax Error 4-10

Displaying Error Messages

In Figure 4-1 the DEF$CORNER module establishes its error message file name
with the call to XUR$ERRMSG. (ERRF FID is defined via the VLP NAME macro as
the file called :ERRCORNER.) The :ERRCORNER file is created from error
message commentary in the CORNER processor (via EXTRACT.X as illustrated in
Figure 4-5 and discussed in this section in "Creating the Error Message
Fi le"). When an error condition is detected by the DEGSBEAST module (Figure
4-1), the XUR$ERRMSG service passes an error code as an argument. That error
code, together with the pre-established error file name, allows the library
service to perform the error message display.

The error commentary is coded at the point in the program where the error is
detected and reported. At that point the value for the specific error (e.g.,
DEG$TOO FUZZV# for which there is an EQU in DEP$FUZZV_E) and the severity are
supplied.

Other portions of the error code (FCG="DE" and MID="G") are supplied as
options in the %VLP ERRCODE. It is assumed that all errors in this module
have the same FCG and MID. Two levels of complexity are provided by the
"MESSAGEx:" blocks. Both messages use a substitution %FN that takes the file
name from the passed error DCB and splices it into the text. Note that the
substitution is itself bracketed by %s. This requests that none of the
bracketed material should be printed if the DCB does not contain a name (to
satisfy FN). In the sample, %FN is satisfied from M$SI.

The "DESCRIPTION:" block is internal documentation.
information useful to a reader of the source code.
error message formats is provided in Section 5.

It can contain any
Further description of

In the sample session (Figure 4-4), the error is reported at line 12 with the
first level message (MESSAGED). When the user enters? for more information
about the error, XUR$GETCMD is called; the CASE %DEP$QUES CMD is satisfied and
the XURSMOREMSG service is called. XURSMOREMSG calls either XURSERRMSG or
XURSHELP depending on which was in control previously. In this case,
XURSERRMSG takes control and displays the next level message (MESSAGE1).

Note: The EH? message displayed at line 8 in Figure 4-4 as a result of a
parse error is available from a system-standard set of error messages (that
MSERRMSG uses because the parser's error code contains the XU Function Code
Group) •

CE62-QO Displaying Error Messages 4-11

Displayi ng HELP Messages

The HELP command, included in the parse nodes as any other command, is
processed by the DO CASE statement in Figure 4-1 and results in a call to
XUR$HELP. That service passes the HELP topic and subtopic text to the X$HELP
library service which performs the HELP message reporting function.

In Figure 4-4 the sample session demonstrates that a user can request HELP for
any other processor and then resume processing in the current processor. A
HELP file, although not shown for the CORNER processor, could easily be
provided. Techniques for creating help files are discussed in Section 7,
"Preparing On-Line (HELP) Documentation".

CE62-QQ DispLaying HELP Messages 4-12

Section 5

Documenting Source Code

Extractable Commentary

Much of the documentation of the CP-6 system is created in source fiLes that
contain both code and commentary. This means that documentation is kept cLose
to the code where it is easy to access and maintain. The commentary not onLy
documents the code, but it can aLso be EXTRACTed (using the EXTRACT processor)
to produce manuaL, error message and HELP fiLes. For exampLe, in Appendix A
of this manuaL is commentary EXTRACTed from code.

Structured commentary is used to document CP-6 code as it is written. This
structure enforces uniformity of documentation as weLL as providing a
hierarchy. This hierarchy aLLows for a gross LeveL of detaiL to be given at
the moduLe or file level, with progressive LeveLs of detaiL at entry points or
internal subroutines, for example. Because of this structure, the EXTRACT
processor can be used to create a hierarchical database of commentary. The
contents of the database can be used in a variety of forms, giving technical
documentation without the code.

Different types of comments document different portions of code. Figure 5-1
illustrates several comment types. An M type comment, for example, gives a
one-line overview description of a file, while a D type comment documents
entry points. Associated with the different type comments are keywords.
These keywords, used in conjunction with a given type comment, insure full
documentation of a block of code. For example, when documenting an entry
point with a D type comment the keywords used are CALL (where form of the call
is given), PARAMETERS (where the parameters of the call are described), etc.
Certain keywords can be selected for inclusion in EXTRACT reportso

Extractable Commentary 5-i

1 I*M* FOO$OUTSYM Main routine for OUTSYM ghost *1
2 I*T*** ********
3 *T* *
4 *T* COPYRIGHT, (C) HONEYWELL INFORMATION SYSTEMS INC., 1980 *
5 *T* *
6
7
8
9

10
11
12
13
14
15
16
17

*T** *******1
I*X* DMC,PLM=6,IND=0,IDT=2,SDI=2,CTI=0,ENU=0,AND,DCI=4,CSU= 2, ••• *1
1**1
I*P* NAME:

PURPOSE:

DESCRIPTION:

FOO$OUTSYM

To provide the main routine for the OUTSYM ghost.

FOO$OUTSYM is the main routine for the OUTSYM
ghost, which provides andlor controls aLL the
CP-6 output symbiont functions performed in the
host.

43 *1

688 I*D*
689
690
691
692
693 *1

NAME:
PURPOSE:
DESCRIPTION:

EXT EVENT
To process an externaL event
EVNT$ points to an FO$EVNT frame, in which is a
code, and a possibLe CITE$ pointing to an FO$CITE
frame.

771 I*S* SCREECH CODE: FOO-S$NODEV
772 TYPE: SNAP
773 MESSAGE: Event reported on non-existent device
774 REMARKS: A disconnect, break, or simiLar event has
775 been reported, but the named device
776 cannot be found. *1

Figure 5-1. Source FiLe Containing EXTRACTabLe Commentary

From the code shown in Figure 5-1 a programmer couLd, for exampLe, use EXTRACT
to create a report of aLL *M* comments, or a report of aLL *p* and *0*
comments, or a separate fiLe of screech codes from aLL *s* comments.

CE62-00 ExtractabLe Commentary 5-2

Commentary Rules

The foLLowing ruLes apply to producing commentary in an extractable form:

1. Commentary should not be on the same line as code.

2. To allow EXTRACT to identify commentary in various types of source files,
it is necessary for the first non-blank source line to conform to these
requirements:

Language Fir s t non-blank source Line must contain:

PL6 1* or i n any column(s)
FORTRAN C in column 1
BASIC REM starting in column (see NOTE)
APL $COM starting in column
IBEX ! or I" starting in column
TEXT (period) in column 1
IDL (dashes) starting in column
other * in coLumn 1 or 7

For example, a PL6 program starting with

C: PROC

is interpreted as a FORTRAN program.

NOTE: For BASIC programs the first record must not have a line number.
EXTRACT skips Line numbers of subsequent records.

3. The syntax for a comment is of the form:

{cmtstart}{cmttype}[*]{text}{cmtend}

The text can be any sequence of ASCII characters except {cmtend}. For
example, a PL6 comment appears as

I*M* FOO$OUTSYM Main routine for OUTSYM ghost *1

where *1 is not permitted with in the text string.

If {cmtstart} does not end with *, then the programmer must supply *. For
example, an M comment in FORTRAN wouLd be coded as

C*M*text

4. Comments can extend to the maximum record Length (e.g., 140 for PL6, 80
for FORTRAN).

5. Comments may be continued over a number of records.
be continued without a 1* in front of each record.
in a block of commentary must be terminated with a

In PL6, comments may
However, the Last Line

*1.

In non-PL6 code, Lines that are continuations of a previous commented line
must incLude either a comma as the comment type or the same Letter as the
comment type. Using the same comment type but repeating the previously
used keyword begins a new comment, as iLLustrated in the folLowing
examples.

ExampLes:

M EXAMPLE This is an exampLe of non-PL6 code

p NAME: EXAMPLE of non-PL6 extract code
, so that EXTRACT knows this beLongs
, with the 'Pi comment, we use "

CE62-00 Commentary RuLes 5-3

ENTDEF EXTRACT
SYMOEF •••••••

, This also belongs to the 'P'comment
D NAME: This is a new comment type 'DI
,
D

Second line of type IDI
Third line of type IDI

0 NAME: New type I D I comment

D NAME: Another new IDI comment
, Some more of the I D' comment

6. Upper and lower case letters should be used to make commentary more
readable.

7. Keywords must include a finaL colon (:), e.g., PURPOSE:

"Commentary Tools" in this section discusses a processor that formats
commentary to these standards. Conventions to follow in placement of
commentary within a file are also discussed later in this section.

Comment Type.

Table 5-1 gives a summary of the different comment types that can be used when
documenting a file.

TabLe 5-1. Summary of Commentary Types

Type Description

8

Data definitions.

D

Detail on ENTRY points, PROCs and macros.

E

Error message.

F

Preamble or overview for a routine or ENTRY point.

1

Detail on internaL subroutine.

K

Keyword definition or data description.

CE62-00 Comment Types 5-4

Type

T

CE62-QQ

Table 5-1. Summary of Commentary Types (cont.)

Description

One-line description of a file.

Denotes that code is to be added for a deferred feature.

Message to system operator.

Preamble or overview for a module or function.

Screech code message.

Denotes that copyright notice is to be inserted by FORMAT or
PL6FMT.

Gives warning and explanation of error codes, also describes
bugs and/or inefficiencies.

Source formatting controls used by FORMAT or PL6FMT.

Comment Types 5-5

M Comments

Description:

A type *M* comment is a one-line description of a file. There should only be
one *M* comment in a fiLe and it must be the first line of the file.

Format:

/*M* name - description */

Example:

/*M* PAYROLL - Program that computes employee payroLL and taxes.*/

P and F Comments

Description:

p and *F* comments are preambLes or overviews. A *p* is a preambLe to a
file; *F* is a preambLe to a routine or entry point. The preambLes are
descriptions that incLude significant features or Limitations of a fiLe or
routine, but do not incLude detaiLs.

Keywords:

The foLLowing keywords may be used in conjunction with *p* and *F* comments:

Keyword

NAME:

PURPOSE:

DESCRIPTION:

REFERENCE:

CE62-QQ

Description

The first record of any group of *p* or *F* comments must be
the NAME keyword. The name shouLd be the fiLe name for *p*
and the PROC/ENTRY name for *F*.

Describes the purpose of the fiLe, routine, or entry point.

Describes the function and special features which this module
performs.

Gives a cross-reference to manuaLs and/or other reports or
documents.

P and F Comments 5-6

o Comments

Description:

Type D comments give detaiLed description and shouLd be inserted for every
entry point, incLuding the PROC statement. Descriptive *D* comments may be
interspersed with the code to expLain individuaL Lines or bLocks of code. The
D comments appear at the point of entry rather than the front of a moduLe.
They incLude the information necessary for the user to know how to use the
routine and what to expect of it in the way of usage, interfaces, input,
output, etc. These comments wiLL be coLLected by EXTRACT and incLuded in the
D (detaiL) report. If a routine contains more than one entry point with
simiLar detaiLs, onLy the first *D* comment needs to incLude fuLL description
for each keyword; onLy the keyword ENTRY: and any differences need be
specified on *D* comments for Later entry points.

Keywords:

The foLLowing keywords may be used in conjunction with *D* comments:

Keyword

NAME:

ENTRY:

CALL:

PARAMETERS:

INTERFACE:

CE62-00

Description

Defines an entry point.
group of *D* comments.

It must be the first record of a
The name is used for sorting.

Needed onLy if muLtipLe entries require the same detaiL
report. If a routine contains two entry points which are
conceptuaLLy alike, the programmer, when documenting the
second entry point need onLy enter NAME:, ENTRY: and the
keywords and paragraphs which distinguish the second entry
point from the first. This saves the programmer a Lot of
typing because the EXTRACT processor then copies the common
fieLds from the first entry point into the second entry point.

Gives the caLLing sequence for this routine, incLuding the
aLternate return (ALTRET), if used.

Describes parameters of the caLL. This fieLd aLong with the
CALL commentary shouLd be sufficient to describe how to invoke
the routine.

Lists routines that this routine caLLs and routines that can
caLL this one. Describes decLaration of externaL entry
points. ALso Lists any INCLUDE fiLes needed to use this
routine.

D Comments 5-7

Keyword Description

ENVIRONMENT:

INPUT:

OUTPUT:

SCRATCH:

DESCRIPTION:

ALTRETURN:

Example:

/*0* NAME:
CALL:

INPUTS:

Describes anything special about how to run this routine such
as mapped/unmapped, master/slave, file authorization required
(privileges), inhibit or not, etc.

Data accessed (external as opposed to global) to perform a
function. Can also list the inputs from the calling sequence.

Data altered and intended as the result of this
operation/routine. Can also list the outputs of the calling
sequence.

Data altered but not intended as results (side effects).

Describes what the routine does and how it functions.

Describes the conditions which cause an alternate return, if
the routine is defined with the ALTRET option.

ZYFSCALL BUILTIN FUNC
CALL ZYFSCALL BuILTIN FUNC (V RESULT,

BUILTIN ID,ARG CQUNT,V ARG LIST) ALTRET(ERR);
BUILTIN 10, UBIN - XEQUs are in-MIlL definition.
ARG COUNT, UBIN - actual number of arguments

- provided.
V ARG LIST - array of up to 63 "values" representing
- - the arguments.

OUTPUTS: V RESULT - a "value" representing the function result.

CE62-QQ

DESCRIPTION: Verify the argument count and call the proper

ALTRETURN:

routine to do the real work.
If trouble is encountered, a diagnostic will be
issued and a default value of the appropriate type
will be returned to minimize later confusion.
If a non-recoverable difficulty is detected. */

D Comments 5-8

B Comments

Description:

8 comments are data definitions. All external data bases must contain a
definition for each field. The *8* comment must follow the field it
describes.

Format:

1*8* name - description
*1

I Comments

Description:

1 comments describe internal subroutines with no external calls.

Keywords:

The following keywords may be used in conjunction with *1* comments:

Keyword Description

NAME:

Defines the name of an internal subroutine. The first record
of a *1* group must be the NAME keyword.

PURPOSE:

CALL:

PARAMETERS:

DATA:

DESCRIPTION:

CE62-QQ

Describes the function performed by this internal module.

Documents the calling sequence. Also discussed here are the
means by which this routine could altreturn, if possible.

Lists and describes the input and output parameters.

Describes any additional data which might be required by this
routine. An exampLe would be the use of globals.

Describes what this routine does, how it functions, and the
details of its purpose.

I Comments 5-9

Example:

NAME:
PURPOSE:

INPUTS:

CHECK
Check that an acceptable number of arguments
has been specified.
Print message and ALTRETURN if not.
WANT, UeIN - number of arguments function

wants. 163 is a special case for
minimum/maximum who can handle 1 thru 63.

NAME - name of function followed by'.'
DESCRIPTION: It would be a whole lot easier to have constant

*1

E Comments

Description:

arrays containing the textual representations
and number of arguments expected but this
introduces maintenance problems.

E comments are used to create error message files and manual appendixes.
The comments should describe what went wrong to cause deLivery of this
message. These comment Lines appear in the Listings at the point of first
occurrence, since muLtiple uses of one error code and message are possibLe.
The comment shouLd include the error code, if any, and a description of the
error condition. Further discussion of error message reporting is incLuded
eLsewhere in this manual.

Keywords:

The following keywords may be used in conjunction with *E* comments:

CE62-00 E Comments 5-10

Keyword

ERROR:

MESSAGE:

MESSAGED:

MESSAGE1:

DESCRIPTION:

CE62-QQ

Description

This is the error code consisting of the FCG (Functional Code
Group), MID, MON, error code, and severity level (e.g.,
FMA-ESEOF-3). An EQU should also be made to relate this error
comment to its appropriate call. The ERROR: keyword must be
the first record of the group.

Contains the actual text of the error message. This field
must not be used with the numbered message fields.

This field contains the first level of a description of what
the error is. It is used in conjunction with at least one of
the following MESSAGEn fields. This field should not be used
with the unnumbered message field.

This is the next level of error message, to be displayed after
a user types a ? after receiving MESSAGED. Additional
keywords, MESSAGE2, MESSAGE3, ••• , MESSAGE?, may be specified.

This field is used as an aid to the programmer to describe how
this error can occur, a possible work around, and a means by
which the error might become eliminated in the future. It is
never delivered with the error message.

E Comments 5-11

WComments

Description:

A *W* comment can be used anywhere in a fiLe to describe a bLock of code, its
possibLe bugs and/or inefficiencies. It is aLso used to give warnings to the
programmer or to expLain probLems.

Format:

/*w* commentary
*/

S Comments

Description:

S comments are used to create the Screech code message fiLe and manuaL
appendixes. These comments are incLuded where a Screech condition occurs.
EXTRACT wiLL supply the filename for the "REPORTED BY" keyword.

Keywords:

The following keywords may be used in conjunction with *S* comments:

Keywords Description

SCREECH CODE:

Screech code to identify the condition (e.g., FOF-SSOFFADD).
The SCREECH CODE: keyword must be the first record of the
group.

TYPE:

Screech, SUA (Single User Abort), or SNAP

MESSAGE:

Explanation of what caused the Screech.

REMARKS:

Further description of the cause.

CE62-QQ S Comments 5-12

ExampLe:

I*S* SCREECH CODE:
TYPE:
MESSAGE:

REMARKS:

K Comments

Description:

FOF-S$OFFADD
SNAP
A batch job added a fiLe to OUTSYM after
going OFF.
OUTSYM receives an event from MONKEY
whenever a batch job Leaves the system.
This SCREECH occurs when OUTSYM receives
an output file add from a batch job which
has been marked off. This means that
OUTSYM or the monitor is very confused
about that job.
*1

The *K* may be used for keyword definitions or for data descriptions to be
extracted as user documentation.

Format:

I*K* name - definition or description
*1

o Comments

Description:

A *0* comment is a message to the system operator. Properly formatted, it
wiLL provide the appendix to the operators manual; thus keywords are
important. A *0* comment should appear in code wherever an operator message
is reported.

Keywords:

The following keywords may be used in conjunction with *0* comments:

CE62-QQ o Comments 5-13

Keyword Description

MESSAGE:

Contains the actual text of the message.

ACTIONS:

Instructs the operator on the course of action to take.

MEANING:

Describes the message in detail.

TComments

Description:

A *T* comment is placed at the point in a file where the Honeywell copyright
notice will be inserted. This comment does not have to be inserted by the
programmer. It is inserted by FORMAT.X or other services, prior to the
program files' release. By convention, the *T* comment is placed after the
M comment at the head of a file.

Format:

N Comments

Description:

N comments are placed at a point in a file where code is to be added at a
future date. They can also be used to identify minor features that are not
supported as a reminder to the module owner.

ForMat:

I*N* keyword - description
*1

CE62-QQ N Comments 5-14

X Comments

Description:

x comments are used to pLace PL6 format controLs in a fiLe. These comments
may be pLaced at any point in a fiLe, and may be used numerous times. The
Last encountered set of format commands are the ones foLLowed when formatting.
A fuLL description of the format commands appears' in in the PL-6 Reference
ManuaL (CE44), "Format FaciLity".

Format:

I*X* (format option),(option), •••
*1

Placement of Commentary in a File

Certain comment types are intended for the beginning of moduLes and routines;
others comment types are embedded in the code at the point of significance.
Figure 5-2 iLLustrates where to incLude each comment type in a fiLe. The
notes foLLowing each comment describe how the different comment types are
used.

CE62-QQ Placement of Commentary in a File 5-15

I*M*
I*T*
I*X*
I*P*

1*0*
XMACRO
XMENO;

I*F*
1*0*
A: PROC;

I*K*
1*8*
nCls

*1
*1

I*F* *1
I*D* *1
8: ENTRY;

M, *T*, *x* and *p* comments occur once
at the beginning of a fiLe. *p* comments
describe the function of a fiLe.

0 comments can be used to document the
detaiLs of a macro.

F and *0* comments are used to indicate
a procedure or entry point in a fiLe. They
may appear any number of times.

K and *8* comments are used to define data
types.

I*N* *N*, *0*, *5*, *w* and *E* comments may
0 appear at any appropriate point in a file.
5
w
E *1

COOE FOR MAIN PROGRAM;

1*1* *1
Routine internaL to this PROC;
END A;

XEOD;
I*F*
I*D*
Z: PROC;

1*1*

*1
*1

*1

XEOD indicates the start of a new procedure.

Routine internaL to this PROC;
END Z;

XEOD;

Figure 5-2. Placement of Commentary in Source Code File

CE62-00 PLacement of Commentary in a Fi Le 5-16

Commentary Tools

The X Account provides a multitude of tools which assist the user in
formatting and updating commentary, extracting commentary into a database and
exercising the database. Two of the more useful tools (EDICT. X and EXTRACT.X)
are described briefly below. For more information on available tools please
see Section 3, "Programmer Aids" and "Documentation Aids."

EDICT.X

EDICT. X is an interactive tool which formats commentary into an extractable
form. EDICT.X formats commentary, supplies keywords, allows use of EDIT
features, etc. For more information, invoke EDICT.X and request HELP within
that processor.

EXTRACT. X

The EXTRACT processor extracts error messages and commentary from source code
into a data base which then can be used to create Error Message files, HELP
files and Reference Manual files (portions of the Monitor Services Reference
Manual, for example).

Text Blocking In Extractable Commentary

A double colon can be placed after a Keyword to cause EXTRACT to block the
text on the left margin. A single colon tells EXTRACT to indent the text.

Example 1:

The following example illustrates what the output would look like if a single
colon is used after the keyword:

Keyword: The text will be EXTRACTed
in a block format like this
when a single colon is used.

Exallple 2:

The following example illustrates what the output would look like if a double
colon is used after the keyword:

Keyword: The text will be EXTRACTed in a block format like this when a
double colon is used.

CE62-00 Text Blocking in Extractable Commentary 5-17

Sample EXTRACT. X Job

The EXTRACT processor provides a number of commands to request extracting and
formatting of specific types of commentary. In addition, certain commands
also perform alphabetical sorting to generate easy-to-use reports. See HELP
(EXTRACT.X) for more information. Figure 5-3 shows a sample use of EXTRACT:
source file commentary is first displayed; an EXTRACT job using the DOC
command (and others) is performed. Figure 5-4 shows the resulting document
processed by TEXT, illustrating the commentary sorting, formatting, and
addition of page headers and footers performed by EXTRACT.X.

!C EDICT SOURCE
I*M* EDICT - EXTRACTABLE DOCUMENTATION IN CRISMAN TERMS *1
I*T***1
I*T* *1
I*T* COPYRIGHT, (C) HONEYWELL INFORMATION SYSTEMS INC., 1983 *1
I*T* *1
I*T***1
I*X* PLM=2,STI=2,IND=2,CTI=4,DCI=5,PRB=YES,ECI=3,CSI=3,THI=2,

*1
1*1*

*1

1*1*

IAD=2,DIN=2,ENI=4,CLM=O,CCC,MER=NO,CCE,SQB=YES,MCI=YES *1

NAME: Document
PURPOSE:

This program prompts the user for input for the *M* *p* *F*
1 *D* program documentation standards.

DESCRIPTION:
Using standard invocation syntax this program creates a
separate file containing the document material.
This documentation was created with this program!

REFERENCE:
Any problems? see gary palmer •

NAME: Promptfile
PURPOSE:

This routine does the structuring of the *M* document, since

CALL:
Call promptfile;

DATA:
This routine also structures the *p* document section.

DESCRIPTION:
Create the *M* and *p* documents. Then ask if you want to
document a module.

NAME: Dotext
PURPOSE:

Does the body of text for any subsection of a document type. For
example: it would create the paragraphls for purpose or call.

CALL:
Call DOTEXT(HEAD,P FLEG);

PARAMETERS: -
HEAD: Name of the subsection we are documenting. Required parameter.
P FLAG: Indicate whether this is a required section or not. Optional

DATA: -
None.

DESCRIPTION:
Sets up the section defined by head, if the input is nil and this is

Figure 5-3. Sample EXTRACT.X Job (cont. next page)

CE62-00 Sample EXTRACT.X Job 5-18

*1
EDICT: PROC MAIN;
XINCLUDE CP 6;
XINCLUDE BsTIT;
XINCLUDE B ERRORS_Ci

*
* !XEQ EX EDICT JOB
SJOB
SRESOURCE TIME=1,MEM=216
SDONT ECHO

File EDICT DOC does not exist
CP~6 EXTRACT Version B03 - February 1982

> DA EX
- New Data Base - EX.SAMPLE
> EX EDICT SOURCE
- Extracting from - EDICT SOURCE.SAMPLE
> DOC ME, EDICT DOC
> SECTION=EDICT
> HEADING=DOCUMENTATION FOR EDICT.X
> ?
- Document file EDICT DOC Created.

10 Records in Data Base EX.SAMPLE - Saved.
- Good Bye.

EXSDAT EX$TXT
2 files, 8 granules deleted

$ "------> TEXT EDICT DOC TO LP
DATA IGNORED: -

1 records ignored

Figure 5-3. Sample EXTRACT.X Job

CE62-00 Sample EXTRACT.X Job 5-19

NAME: Document

DOCUMENTATION FOR EDICT. X
EDICT SOURCE

00009

PURPOSE: This program prompts the user for input for the *M* *p*
F 1* *D* program documentation standards.

DESCRIPTION: Using standard invocation syntax this program
creates a separate file containing the document
material. This documentation was created with this
program!

REFERENCE: Any problems? see gary palmer.

00100
NAME: Dote.<t
PURPOSE: Does the body of text for any subsection

of a document type. For exampLe: it would
create the paragraph/s for purpose or call.

CALL: CaLL DOTEXT(HEAD,P FLEG);
PARAMETERS: HEAD: Name of the subsection we are

documenting. Required parameter.
P FLAG: Indicate whether this is a
required section or not. OptionaL
DATA: None.

DESCRIPTION: Sets up the section defined by head,

COPYRIGHT, (C) HONEYWELL INFORMATION SYSTEMS INC., 1983

CE62-00

EDICT-1

DOCUMENTATION FOR EDICT. X
EDICT SOURCE

NAME: Promptfile
00021

PURPOSE: This routine does the structuring of the

CALL: Call promptfile;
DATA: This routine also structures the *p*
document section.

DESCRIPTION: Create the *M* and *p* documents.
Then ask if you want to document a
module.

EDICT-2

Figure 5-4. TEXTed Document of EXTRACTed Commentary

Sample EXTRACT.X Job 5-20

Section 8

Error Atessage Reporting

The CP-6 system provides a centralized facility for the storage, selection and
delivery of error messages. A monitor service, X account tool, library
routine and set of standards provide an easy and uniform access to error
messages.

Error •••• ag. Sourc.

CP-6 error messages are embedded in source code as type E comments. The error
messages are placed in the code directly after the call to MSERRMSG. These
comments document the code and are also used to create error message files.
Figure 4-1 shown earlier in this manual illustrates the error message source
format.

Error messages should provide the user with meaningful as well as accurate
information. Therefore, messages should be a sentence that is specific and
clear. Substitution fields (discussed later> should be used frequently to
provide the user with as much detailed information as is possible. The error
encountered should be specifically referenced. layered messages, to be
displayed successively at the request, should expound on the causes and cures
of the error.

Error Codes

Each error message is associated with a standard CP-6 error code. The code is
split into four sections: the FCG, the MID, the MON and SEV. The FCG, or
Functional Code Group, is a two-character alphabetic field which indicates
which processor or portion of the operating system is reporting or has
detected the error. MID is a character that indicates which module of the
processor detected the error. MON determines whether or not the message came
from the monitor. Error number is a number that distinguishes a particular
error from others with the same FCG, MID, and MON.

The last field, SEV, serves two purposes:

1. It indicates which level of message complexity is desired when part of a
code is passed to MSERRMSG.

2. It determines what will happen to a caller when part of a monitor service
call does not have an AlTRET. For more information see the description of
MSMERC in the Monitor Services Reference Manual.

Example:

DEG-ESFUZZERR-2

where

DE specifies the FCG. This field may be blank.

CE62-QQ Error Codes 6-1

G specifies the MID. This fieLd may be bLank.

ESFUZZERR is the particuLar name or 1-to-4 digit number unique to this
particuLar error. If a name is specified, an EQU must be incLuded to define
the error number.

2 specifies the severity of the error.

Layers of Error Messages

CP-6 error messages may have up to eight LeveLs. The text of the message(s)
is specified foLLowing in *E* commentary foLLowing the keyword MESSAGE if a
single Level is used, or following the keywords MESSAGED, MESSAGE1, •••
,MESSAGE6, MESSAGE? if multiple levels are used. The contents of each level,
up to but not including the highest one used, may be built upon the lower
levels. Each message has different Levels of complexity with the lowest-level
message being short and to the point and each successive message elaborating
on causes and cures.

The highest level of error message must be self-contained since it is the only
message that a batch user receives. The environment at the time of the error
dictates which message is to be printed for a specific error. Interactive,
time-sharing users are given the lowest-level (least verbose) message. The
user can enter "?" to obtain the next level of message. This continues until
the user figures out the problem, or the messages are exhausted. A second
construct, "??", displays all remaining messages in order of ascending
complexity. Batch users are unable to request additional error messages since
the command stream was written before the occurrence of the error. To
accommodate them, the highest available level of message is displayed.

The selection of the original level and processing of the ?I?? commands takes
a moderate amount of code. To save code and enforce consistent treatment,
library routines are provided for the message display and subsequent
elaborations. For details, please see the documentation for XURSERRMSG,
XURSMOREMSG and XURSALLMSG in the Monitor Services Reference Manual.

Field and Phrase Substitution

An error message consists of one or more lines of text with optional
substitution fields. Substitution fields allow a canned message to be made
specific with details about the causes of the error. As an example, the
monitor message for "file does not exist" actually gives the name of the
offending file. This technique is discussed under "Field and Phrase
Substitution" in the MSERRMSG section of the Monitor Services Reference
Manual.

CE62-DD Field and Phrase Substitution 6-2

Default Error Messages

Default error messages can be defined pertaining to:

• All occurrences of the same error condition within all modules in a
Functional Code Group. In this case the Module 10 is set to NIL.

• All occurrences of the same error condition within all Functional Code
Groups in the user procedure. In this case the Functional Code Group and
Module 10 are set to NIL.

When the requested error message is not available, M$ERRMSG can go to great
lengths in search of a suitable substitute. The method used by M$ERRMSG to
determine which message to display is discussed in Monitor Services Reference
Manual in the SUBMESS Option subheading following the description of the
M$ERRMSG service.

Examining the Error Code After Monitor Service AL THET

If the caller has not aborted, the error code can be examined in the ALTRET
frame. The entire standard error code fits into a single 36-bit word. The
structure is described under VLP ERRCODE in the Monitor Services Reference
Manual. For more information on-accessing the TCB see Section 8, "Accessing
the TCB."

Creating the Error Message File

The EXTRACT.X processor can be invoked to create a data base of commentary,
and to build an error message file in the format required (i.e., a file that
is keyed by the modified error code>. Although M$ERRMSG can access an error
message file with any specified name, EXTRACT will supply default names for
error message fiLes it creates based on the FCG and MON.

Figure 6-1 illustrates a job that creates an error message file named in
Figure 4-1.

CE62-QQ Creating the Error Message File 6-3

1.000 !L(C=O) DE?SI OVER *LIST(LN)
2.000 !E *LIST
3.000 IF / •• /;DE
4.000 FD 0-99999.999,/DE CORNER HELP/
5.000 !SET MSSI .SI
6.000 !SET MSUI .UI
7.000 !EXTRACT.X
8.000 DA CORNER
9.000 DFILE

10.000 DA CORNER
11.000 XL *LIST
12.000 BUILD OVER :ERRCORNER PRO
13.000 END
14.000 !R
15.000 !DEL CORNERSDAT,CORNERSTXT

Notes

• Prior to calling EXTRACT, use the List command to place names of all the
modules with the FCG of DE into *LIST (line 1) Using EDIT, delete from
*LIST all lines containing " •• n FILES LISTED" and the HELP source file
which contains no error messages (lines 2-4).

• Specify the accounts from which the source and update files named in *LIST
are to come (lines 5-6).

• Invoke EXTRACT.X (line 7), establish the prefix for the names of the work
files (line 8), delete any old work files (DFILE at line 9), reestablish
the prefix for work file names (line 10), create a data base of commentary
from the files named in *LIST (Line 11), and buiLd the error message file
(line 12) in the format required by MSERRMSG.

Figure 6-1. SampLe Job to Create Error Message File

Foreign Language Error Me •• age File.

The CP-6 error-message system supports messages in various languages. Each
user's JIT contains a one-byte value determined by his declared native
language. This byte is appended to the name used by MSERRMSG in opening the
message file, so supporting a new language is as simple as placing translated
messages into a file with the appropriate name. More information on this
feature and the naming convention for error message files can be found in the
Monitor Services Reference Manual under the FILENAME parameter description of
MSERRMSG.

CE62-00 Foreign Language Error Message Files 6-4

Finding the Error Message File

When calling the M$ERRMSG monitor service, a programmer must supply the name
and account of the appropriate error message file. If the program and its
error message file can be assumed to be in the same account, the program can
obtain the account as follows. Every running program has DCB M$LM associated
with it as DCB #2. The progran can find what its name is by accessing the
DCBN.NAME#.C field, and its account by accessing DCBN.ACCT#. The DCBN.ACCT#
can be specified as the account on the call to M$ERRMSG. As long as the error
message file and the run unit are transported to different accounts as a set,
the error message file can always be found.

CE62-QQ Finding the Error Message File 6-5

Section 7

U •• r Document.t/oll/HELP

$TEXT Facility

The CP-6 user documentation -- incLuding this Guide -- is created via the
STEXT.:DOCUM facility. This facility can produce several forms of
documentation from source text fiLes: hard-copy documents, document
unit-record fiLes for eLectronic distribution, and HELP fiLes.

STEXT capabilities incLude:

• Assembly of complete manuals from muLtipLe fiLes.
• Automatic generation of titLe page, tabLe of contents, and index.
• Automatic layout of headings, tables, and figures.
• Generation of HELP files from source text fiLes.

FoLlowing the conventions discussed in this section assures device-independent
output for hard-copy and HELP fiLes.

Files that can be processed by $TEXT are keyed fiLes buiLt via EDIT. The
files contain text, plus TEXT controL words and macro control words. Once
source text files are buiLt, compiling a complete document is a fast, simple
process. "Document assembly" can be requested through a menu-driven interface
described in this section. The same interface allows creation of a HELP file;
see "Preparing On-line (HELP) Documentation" in this section for details.

The tools for the user of STEXT include:

• The EDIT processor to build source text files.
• The menu-driven interface, STEXT.:DOCUM (which uses SFASTEXT.:DOCUM and

invokes the TEXT processor).
• Macros which are stored in :LIBRARY (e.g., :MAT.:LIBRARY).

Conventions for text source files are highlighted in this section. A full
description of STEXT capabilities is provided in guide CE59. Full information
on TEXT is provided in the CP-6 Text Processing Reference Manual (CE48); a
HELP file is also available. In addition, the CP-6 Text Processing
Administrator Guide (CE52) contains related information.

CE62-00 $TEXT Facility 7-1

File Naming Conventions

File naming convention are crucial to document assembly. Source text file
names must be of the form: CEdocnum secnum or HAdocnum secnum. For example,
the file CE40 01 is manual CE40, section 1. The section number is used during
document assembly to order the files. The section numbers are organized as
follows:

Section Number

00

01 thru 49
50 thru 59
90

File Identified

The front matter section, which contains the
following standard introductory material:
the Preface, Title Page, a call to the
Table of Contents file, About This Manual,
and the Syntax Notation page.
The numbered document sections.
The appendixes.
The glossary.

Table of Contents and Index files are created and included in a hard-copy
manual during document assembly.

NOTE: After processing by STEXT, the resulting document may be printed in
hard copy form or stored in one unit record file (from which multiple copies
could be made). The name for such a unit record file may be any legal FID.

Document Assembly

The user can initiate a dialog with STEXT during which it prompts the user for
all the information required to perform document assembly.

To begin the document assembly dialog with STEXT, the user enters the
following:

!XEQ STEXT.:DOCUM

STEXT responds with:

FAST EXT B03
Fi les to Format>

In Account>

Device or Destination>

TEXT Options>

DRAFT or FINAL Format>

Pagesize (type of paper»

Number of Copies>

CE62-00

The user enters:

The names of the files to be printed.
A wildcarded file name in the
form prefix? is specified to
identify multiple files.

The name of the account in which
the files reside.

The location of the file or
printer device to which the
output is to be routed.

The options to be used to format
the document.

The format to be used for the
document.

The type of paper that the
document is to be printed on.

The number of hard copies desired.

Document Assembly 7-2

Extra Files>

Go for It?>

Whether to generate a table of
contents, an index, and/or a
typeset header file as part
of the document assembly.

Whether to begin the assembly
process, initiate a response
change mode, or terminate
document assembly.

All user responses are followed by a <CR>. For all prompts, there is a
default. The user selects the default by entering <CR> only. Typing HELP<CR>
in response to any prompt (except "Go for it") displays appropriate responses
to the prompt. For complete information on document assembly, please see
CE59.

Summary of Control Words and Macros

Text source files contain text, TEXT control words, and macro control words.
TEXT control words regulate indentation, spacing, etc. The macros control
placement and underlining of section and subsection headings, positioning of
headings and table columns, positioning of figure and table headings, and
identification of index entries.

Each control word or macro is placed on a line by itself, beginning in the
first character position of the line. ControL words begin with a period in
position 1. Macros begin with periods in positions 1-2. Table 7-1 summarizes
the subset of TEXT control words frequently used in fiLes processed by STEXT.
Table 7-2 summarizes the frequently used macros recognized by STEXT.

Table 7-1. TEXT Control Word Summary

Control Word Description

.SPB en]

.SPF en]

• F I F

.FIN

• INL n

CE62-QQ

Creates n blank line(s), where a page break is acceptable

Creates n blank line(s), where a page break is unacceptable

Causes the following copy to appear on output exactly as it is
entered in the file

Causes text formatting to resume. That is, after a .FIF and
portion of text to be output exactly as entered in the file,
.FIN causes text to fill full lines in the output produced •

Indents the following text lines by n positions

Summary of Control Words and Macros 7-3

TabLe 7-1. TEXT ControL Word Summary (cont.)

ControL Word Description

.UNL n

.BRP

Starts the foLLowing Line n positions to the Left from the
indent position specified by the previous .inL controL word

In fiLes to be processed by STEXT, "break page" (.BRP) is
restricted to use in the end-of-fiLe sequence. (STEXT
performs page Layout.>

.SRV name expr

• TRF xy

Macro

In fiLes to be processed by STEXT,

.SRV SECTION {nl"x"}

creates the section or appendix identifier for use on page 1,
in page numbering, and in the tabLe of contents. The
identifier is a number for sections, a Letter for appendixes
(e.g., "A"), or "g" for a gLossary •

TransLates character x to character y untiL the next .trf
controL word is encountered. STEXT assumes that the character
A is to be transLated to a bLank (i.e., it assumes .TRF A)

except in figures.

Table 7-2. Macro Summary

Description

•• :LOH "head"

Creates a section name •

•• :L{1121314}H "head[;help_info)"

CE62-00

Creates a subsection head of level 1-4, formatted according to
STEXT conventions. For levels 1-3, creates an entry in the table
of contents and index, if requested. By default, creates a HELP
topic of level 1-3 heads with associated level 4 heads as
subtopics.

Summary of Control Words and Macros 7-4

Table 7-2. Macro Summary (cont.)

Macro Description

•• :MAT "table info"

•• :END

Creates a table from subsequent text, controlling spacing before
and after the table, table title, table headings, and tabte layout.
Table types are as follows: matrix, 2-column formatted, and
unformatted. Also creates an entry in the list of tables, if a
table of contents ;s requested •

Terminates table text •

•• :FIG "fig_info"

Creates a figure from subsequent text, controlling spacing before
and after the figure, placement of figure title, and layout. Also
creates an entry in the List of figures, if the tabLe of contents
is requested •

•• :IDX "index info"

Creates an index entry for a term incLuded or impLied in the
preceding text •

•• :HLP "[manuaL textJ[;help_textJII

Creates alternate wording for the manuaL and for the HELP file.

Cr •• ting Text Source File.

This subsection describes conventions for creating a text source file for
hard-copy documentation. Guidelines for producing on-line HELP files from the
same files are discussed in a later subsection.

CE62-00 Creating Text Source Files 7-5

Line Length

In general, it is advisable to keep line Length to a maximum of 79 characters.
In unformatted copy-- such as figures, unformatted tables, or matrix tables-­
line length must not exceed the page width. Length restrictions are stated in
"Usage Notes" in the discussion of the macros for tabLes and figures.

HELP files must not include lines of greater than 79 characters. This can be
accomplished by entering text according to the guidelines stated above and by
limiting :HLP macro lines to 79 characters. In generating a HELP file, a
warning is issued for records exceeding 79 characters. NOTE: Overstriking
counts as two characters (backspace, and the overstrike character), and should
be avoided in text that is to appear in HELP files.

Blocking

STEXT assumes that text is blocked. That means that all paragraphs start on
the left margin. Lists do too, unless they are lists within lists.
Indentation of list text is accomplished by use of the TEXT control words .INL
and .UNL.

Spacing

STEXT produces single spaced output. Macros for headings, tables, and figures
cause appropriate spacing: between headings and text, between tables and
text, and between figures and text.

The user enters the TEXT control word .SPB between paragraphs. In certain
cases, where a blank line is needed but a page break is undesirable, the TEXT
control word .SPF can be used. For example, .SPF should be entered in these
cases: after a line ending in a colon that introduces a list of items on
separate lines, between lines in a table where a page break is inappropriate,
and between lines in syntax formats.

Section and Subsection Headings

Documentation files are hierarchically structured. In addition to the section
heading, four levels of headings are permitted. Headings created through
macros are distinguished typographically (by upper- and lower-case and by
underscoring) and by appropriate spacing. STEXT also attaches specific
meaning to the heading levels for hard-copy and HELP.

When outlining a new manual, both the hard-copy heads and on-line HELP topics
should be considered. For example, all commands of a given processor may
appear as level 2 headings with level 4 headings (such as "Format:",
"Parameters:", etc.) subordinate to each command heading; the command names
become topics, and "Format", "Parameters", etc. become subtopics for each
command. The following discussion of level head macros illustrates this
point.

Note: In CP-6 user documentation, the order of level 4 heads for command (and
similar) documentation is as follows: Format, Parameters, Description,
Example. This order of presentation produces the most usable HELP facility.

CE62-00 Section and Subsection Headings 7-6

Level 0 Head Macro

Format:

•• :lOH "section name"

Parameters:

section name is the 1-49 character section name.

Description:

This macro creates and formats the section name, and creates an entry in the
table of contents (if it is requested at document assembly).

Example:

•• :lOH "User Documentation/HELP"

creates the section name for this section.

Level 1-3 Head Macro

Format:

•• :l{11213}H "[headname][i][{xlhelp_topics [synonym list]}]"

Parameters:

headname is the heading name. headname can be up to 58 characters for
level 1, 55 for level 2, and 52 for level 3.

help_topic is the 1-31 character HELP topic name, if other than headname.
help topic must be specified even if the same as headname if a synonym list
follows. help topics must not include blanksi for example, lEVEL 1 could be
the topic associated with the heading "level 1-3 Head Macro". -

synonym list is a list of 1-31 character synonyms for the HELP topic.
Synonyms must not contain blanks.

Description:

This macro creates and formats the level head, and creates an entry in the
table of contents and index, if they are requested at document assembly. The
macro also creates a HELP topic unless X is specified.

Example:

•• :l2H "COPY CommandiCOPY C CO COP"

creates COpy Command as a hard-copy heading, COpy as a HELP topic, and C, CO,
and COP as HELP synonyms.

CE62-00 level 1-3 Head Macro 7-7

Level 4 Head Macro

Format:

•• :L4H "[headname][;{Xlhelp_subtop;c [synonym list]}]"

Parameters:

headname is the head contents of up to 255 characters.

heLp subtopic is the 1-31 character HELP subtopic name, if other than
headname. heLp subtopic must be specified, even if the same as head name, if a
synonym List foLLows. heLp_subtopic names must not incLude bLanks.

synonym List is a List of 1-31 character synonyms for the HELP subtopic.
Synonyms must not incLude bLanks.

Description:

This macro creates and formats the leveL 4 head (or tabLe entry, if the LeveL
4 head faLLs between •• :MAT and •• :END macros). If X is not specified, the
macro creates a HELP subtopic, provided the preceding higher LeveL head is a
HELP topic. (LeveL 4 headings do not appear in the tabLe of contents.)

$TEXT transforms LeveL 4 headnames, entered in metaLanguage used to described
syntax, into useabLe HELP subtopics. These transformations are described
Later in this section.

ExampLe:

•• :L4H "ExampLe:"

creates a hard-copy heading and generates the HELP subtopic EXAMPLE.

Usage Notes:

1. If headname exceeds Line width in the output produced, headname is
formatted on muLtipLe Lines just as any other text, with Line breaks at
bLank characters.

CE62-QQ LeveL 4 Head Macro 7-8

Syntax Formats

Two kinds of syntax formats are used:

• COBOL-oriented syntax formats, used in COBOL, I-D-S/1I and FPl documents.

• General syntax formats, used in all other documents.

Figure 7-1 is an example of a COBOL-oriented syntax format.

OBJECT-COMPUTER [HIS-SERIES-60] lEVEl-66-ASCII

[{WORDS }]
[, MEMORY SIZE integer {CHARACTERS}]
[{MODULES }]

[
[
[

[, PROGRAM COllATING SEQUENCE IS
[

[
[
[

{alphabet-name}]
{STANDARD-1 }]
{NATIVE }]
{ASCII }]
{EBCDIC }]
{GBC D }]
{HBCD }]
{JIS }]

Figure 7-1. COBOL-oriented Syntax Format

Notice the brace or bracket on each line of a group, and the alignment of the
braces and brackets that enclose the group.

Figure 7-2 is an example of a general syntax format as it appears in a user
document. Note that the OR bar is preferred to the vertical stacking of
options.

Syntax:

PASSWORD {OlD=oldpassword[,NEW=newpassword]INEW=newpassword}

Figure 7-2. General Syntax Format in a User Document

CE62-00 Syntax Formats 7-9

Tables

TabLes of seven lines or more are appropriate to be formatted as named tables.
All named tables are created through the use of macros.

The table macro allows rapid entry of table text. The following list explains
the three table types and when each is useful.

• Matrix - tables consisting of rows and columns. Up to 8 columns of data
are permitted. Each row of text is entered as one line, with the #
character as a column separator. Figure 7-3 shows a sample matrix table.

• Formatted 2-column - tables consisting of a table item in the left column
and formatted text in the right column. Each item in the first column,
entered as a level 4 head, occupies a separate line in the table. Text
explaining each item starts on a following line (allowing a wide second
column instead of one aligned beyond the longest item in the left column;
this usually results in more compact tables>. Each table item and
accompanying text can be an individually selectable HELP subtopic. Figure
7-4 shows a sample formatted 2-column table.

• Unformatted - tables consisting of text in unformatted mode, i.e., the
TEXT control word .FIF followed by text entered exactly as it is to appear
in the output. Figure 7-5 shows a sample unformatted table.

Table A-1. ASCII Character Codes

Graphic Octal Decimal Hexadec. Definition

NULL 0'000' 0'000' X'OO' NULL of time fill character
SOH 0' 001 ' 0' 001' X' 01 ' Start Of Heading
STX 0'002' 0'002' X'02' Start of Text
ETX 0'003' 0'003' X'03' End of Text
EOT 0'004' 0'004' X'04' End of Transmission

· · ·
Figure 7-3. Matrix Table

C!62-0G Taeles 7-10

Table 1-2. Set Options

Option Meaning

ACCESS=«{ALLlaccountlist})[,controllistJ)

ALL is the control list is to apply to all
other accounts.

ACSVEH=(vehiclelist)[,controllistJ)

vehiclelist processors that are to be given
access permissions.
controllist one of the following permissions:

DELRECORD

Figure 7-4. Formatted 2-Column Table

•• :MAT "Table 13-1. DELTA
.FIF
.spf 2

Directives"

HOUSEKEEPING IEXECUTION
ICONTROL

IEXECUTION IMEMORY DISPLAY IMODE IMISC.

Input/Output
Control:

COpy

•• : EN D

CE62-QQ

ITRACING 1& MODIFICATION ICONTROLI

I
Procedure I HISTORY*
Breakpoint:1 PLUGH*

1 TRACE*
AT* ,

Variable
Oriented
Directives:

ANLZ
RUM

Figure 7-5. Source for Unformatted Table

Tables

END*
HELP*
LIST
PROTECT

7-11

Purpose of :MAT Macro

Table macros perform the following functions:

• Insert and center the table title, including blank line spacing.

• Automatically create running titles for continuation pages.

• Provide standard blank line spacing to separate the table from preceding
and following text.

• Make logical page breaks.

In addition, these functions are performed for matrix and formatted 2-column
tables:

• Insert and position column headings, including blank line spacing.

• Automatically create running headings for continuation pages.

• Perform all the positioning for the columns.

Before the table macros terminate, they always perform an .FIN, an .ALL and an
.INL 0 so that the file builder is "reinitialized".

All named tables included in a text source file are delimited by :MAT and :END
macro calls as follows:

.~:MAT "detail"
table text
•• : EN D

:MAT Macro

Format:

•• :MAT "title[;col head1[;[#Jn;col head2J ••• J"

Parameters:

title is the 1-61 character table title.

col head1 is the column heading for the first column.

[#In;col head2 specifies the position and column heading for the second
column. If # is specified, n is relative to the end of the last column
heading. If # is omitted, n is the absolute column position for the heading.
For example, 35iDescription causes the head to be placed in column 35.
#5iDescription causes the head to be placed 5 positions after the previous
column heading. Matrix tables may consist of up to 8 columns; formatted
2-column tables must have only 2 column heads specified.

Description:

This macro labels and lays out a table consisting of the following text (up to
the •• :END macro). It also includes the table name in the list of tables and
figures in the table of contents (if a table of contents is requested).

CE62-00 :MAT Macro 7-12

Example:

•• :MAT "Table A-1. ASCII Character Codes;Graphic;1I5;Octal;1I6;
Decimal;1I7;Hexadec.;1I7;Definition"

is the macro used to create the matrix table in Figure 7-3. The first line of
source text in that table is entered in the source file as follows:

NULLIIQ'QQQ'IID'QQQ'IIX'QQ'IINULL of time fill character

Following is the macro used to create the 2-column formatted table in Figure
7-4:

•• :MAT "Table 1-2. Set Options;Option;15;Meaning"

The first lines of source text in that table are entered in the source file as
follows:

•• :L4H "ACCESS=«{ALLlaccountList})[controLList])"
ALLAAAAis the controL List that is to appLy to aLL other accounts •

•• :L4H "ACSVEH=(vehicLelist)[,controLList])"
vehicLeListAAAAprocessors that are to be given access permission •
• spb Q
controlListAAAAone of the foLLowing permissions:
.spf Q

DELRECORD

Note that the text between Level 4 heads is indented (as requested in the :MAT
macro) and formatted.

Usage Notes:

1. For matrix tables, text is Left-justfied within the coLumns unless blanks
are explicitLy entered (by use of the up-arrow character>. Adjacent pound
signs are entered if a field in the matrix is to be left blank.

2. For unformatted tables, no column headings are specified in the :MAT
macro. Any column headings must be included with the table text.

3. For matrix tables, the coLumn headings and text (excluding II characters)
cannot exceed 76 per line. For unformatted tabLes, each line of table
text is limited to 76 characters.

CE62-QQ :MAT Macro 7-13

Figures

Source text fiLes shouLd contain aLL artwork, not bLank space for hand-drawn
diagrams. (If desired, better quality artwork can overlay the artwork stored
in the fiLe if camera-ready master copies are being created.)

All figures included in a source text file are delimited by the :FIG and :FND
macro calls formatted as follows:

•• :FIG "fig info"
figure text-
•• : F NO

:FIG Macro

Format:

•• :FIG "title[in]"

Parameters:

title is the 1-61 character figure title.

n is the estimated number of lines in the actual figure. If n is not
specified, STEXT assumes the figure belongs on a single page.

Description:

This macro labels and Lays out a figure consisting of the foLLowing text (up
to the •• :FND macro). It also includes the figure name in the list of tables
and figures in the tabLe of contents (if the table of contents is requested).

STEXT uses the following ruLes to determine figure layout:

1. If there is enough room on the current page, the figure is printed.

2. If there is not enough room on the current page, and the figure is less
than a single page in length, a break to the next page occurs and the
figure is printed.

3. If the figure is longer than a single page, the figure will begin printing
on the current page, and all subsequent pages of the figure are printed
with a figure titLe at the bottom of each page.

Example:

•• :FIG "Figure 7-3. Matrix Tablei12"

created Figure 7-3 in this section.

Usage Notes:

1. The figure content must be kept within 78 character positions, starting at
character position 1.

2. Areas in a figure can be forced to appear together by placing a .BRN above
the area to be kept together. For exampLe:

.BRN 10

CE62-00 :FIG Macro 7-14

means the next 10 Lines must appear on the same page. Using an .SPF 0 is
another way of forcing Lines in a figure to print on the same page. .SPF
o specifies that this is an inappropriate pLace to break the current block
of text. (Using .SPB 0 specifies that this is an appropriate pLace to
break the current bLock of text.)

3. Figures are created in .FIF mode and the .TRF is set so that the up-arrow
prints. When the figure macro is exited, text is in .FIN mode, and the up
arrow character is reset to the "blank repLace" mode.

Figure Symbols

Figure 7-6 incLudes standard forms to be used in the construction of symboLs
used in eLectronicaLLy reproducible art. Some symboLs can be represented in
two ways: in an expanded or a condensed version. The expanded symbol uses
dashes for top and bottom Lines instead of underscores. The expanded symbol
is preferred because it aLlows space for more text within the figure. Within
any figure, it is important to be consistent about the use of condensed versus
expanded symboLs. It is also recommended that consistency be maintained
within sections and, if possibLe, within a document.

SymboL
Function

Process (aLso
annotation, comment,
predefined process)

Input/Output

Document (line
printer, printer)

Manual operation

Preparation

<

Expanded
Form

/

\
\

/
/

/

\ , ,

-_ _------

/

,
J
f

>

I
/

/
/

/

Condensed
Form

/ / I
/ I /

/ /------------,

/-------

I
/

\ 7 , /

,------_/

/ ,
<

\ J
\ f

>

Figure 7-6. Figure Symbols (cont. next page)

CE62-00 Figure Symbols 7-15

Merge

Collate

Sort

Decision

Connector

Magnetic tape

Display (also TP
terminaL>

/
\

\
\

\
\

\ /
\/

/\
/ \

/

/ \

/

/ \

/\
/ \

/ \
/ \
\ /

/

\

\ /
\ /
\/

/\ - -

\/

(1)

\

/

/
/

-
\
/

/
(

\
)

\

/
(

\

/

or

I / \ I
1 () 1
1 \ / 1
1-::::::::::::-1
---------------,

\
\

\ /
\/

/\

/
/

I \
I \

/ \

/-\
()

\ /

/)
()

\) ----

Figure 7-6. Figure SymboLs (cont. next page)

CE62-00 Figure SymboLs 7-16

AuxiLiary operation

Punched card -----------

OnLine storage

Direct arrows

Communications arrows

CE62-00

/ / , ,
, ,---------

/
(

\

or

<--+--> ,
v

, . , / ,

/\
()

\ /

, .----->
.----+----'

<---- ' ,. , / , ,
v

/ /\
(()

\ \ / ------

Figure 7-6. Figure Symbols

Figure Symbols 7-17

Index Entries

There is no Indexes are created on request as part of document assembLy.
Limit to the number of items that can be incLuded in an index.
a manuaL consists of:

The index for

• Automatic entries - aLL LeveL 1, 2, and 3 heads contained in the document
f i l e.

• Specified entries - entries selected by the user by entering the :IDX
macro.

:IDX Macro

Format:

•• :IDX "term[;subterm)"

Parameters:

term is the term to be entered into the index.

subterm specifies that subterm is to appear in the index subordinate to
term.

Description:

This macro creates an index entry. STEXT, on request, produces an
aLphabetized, coLLated index. Upper and Lowercase are considered identical;
the first occurrence of a term wiLL determine how an entry appears in the
index. Thus, "ASDF" and "asdf" wiLL be sorted together as "ASDF". SimiLarLy
"abcd" and "ABCD" wilL be sorted together as "abcd".

Plurals and suffixes of a term are not combined with the originaL term. Thus
"Process" and "Processing" do not coLLate together.

ExampLe:

•• :IDX "BUILD Command"
•• :IDX "BUILD Command;EDIT"
•• :IDX "BUILD Command;IBEX"

creates a 2-level index, which could appear as follows for the terms shown
above:

BUILD Command - 2-10
EDIT - 3-18
IBEX - 4-20

Usage Notes:

1. The :IDX macro must follow the paragraph to which it refers.

2. When a 2-level index is created by use of subterms, the term should be
defined on one :IDX macro without subterms (as shown in the example).

CE62-00 :IDX Macro 7-18

Ending a Section

All source text files must end with the following sequence:

•• :HLP ".BRP"
•• :L1H ";X"
.*

This is the only time that the user is permitted to include a .BRP in a source
text file.

Preparing On-line (HELP) Documentation

The CP-6 HELP facility is an on-line communication medium which provides quick
information about processor capabilities. It is participatory in nature; that
is, HELP issues messages in response to user requests for information. The
HELP audience includes anyone who uses the CP-6 system from the novice to the
experienced user. In addition to providing quick reference information, the
HELP facility can be used for browsing. Through HELP browsing, the user can
become familiar with the commands within a particular processor.

Reference manuals, stored as properly structured source text files, can be
used to produce both hard-copy manuals and on-line documentation. $TEXT is
designed to use level 1, 2, and 3 heads as HELP topics and level 4 heads as
subtopics, unless otherwise directed. The task of encoding a source text file
to also produce a HELP file is primarily a matter of suppressing topics that
are inappropriate to HELP, supplying topic synonyms, and providing alternate
wording for the on-line documentation (replacing references to other sections
of the hard-copy document, for example).

Encoding a Source File

The HELP file creator uses encoding tools to transform a manual source file
into a file containing a combination of manual information and HELP
information. These tooLs enabLe the HELP processor to differentiate between
material which is to appear in HELP and material which is to appear onLy in
the manual. The semicolon (;) is the tool which aLLows HELP to make this
distinction.

A semicoLon within a heading informs the HELP processor that anything to the
Left of it is manuaL-onty information and anything to the right of it is
HELP-onLy information. Semicolons are always used when it is necessary to
teLL the HELP processor of one of the folLowing conditions:

• A LeveL head and its text are to be excLuded from HELP.

• A HELP topic differs from the level head; also to suppLy synonyms for a
HELP topic.

• A HLP macro is entered to supply HELP-only text.

Encoding a Source Fi le 7-19

Excluding Topics

A HELP topic is automatically made of each level 1, 2 and 3 head unless steps
are taken to exclude the head as a topic. HELP makes no distinction between
levels 1, 2 and 3. Any level 1, 2 and 3 headings which are to be excluded
from HELP must be specifically flagged.

The following standard topics are good candidates for inclusion in HELP files:

• All statements, commands, verbs, and clauses. Their options with
descriptions, syntaxes, syntax rules, usage notes and examples are
subtopics.

• Lists of reserved words, verb categories and compiler options. The
description of each entry in the list is a candidate for a subtopic.

• Miscellaneous subjects such as notation conventions.

Good candidates for exclusion from HELP include:

• Conceptual material

• Tutorial information

• References to Manuals, Sections, Tables and Figures

For example, a level 1 heading INTRODUCTION and all text associated with it
are not to be included in HELP. The HELP creator adds ;X to the heading to
indicate that INTRODUCTION is not to be included in HELP. The heading then
appears as:

•• :L1H "Introduction;X"

The semicolon signifies that all information to the right of it is HELP-only
material. The X signifies that the heading and subsequent text are excluded
from HELP. The;X is automatically turned off when the next level 1, 2 or 3
head is encountered. If there are subsequent level 2 and 3 heads under
INTRODUCTION which are to be excluded from HELP, they must also be flagged
with a ;X.

Topic Names and Synonyms

A level 1, 2, or 3 head becomes a topic name by default. Any level 4 head
subordinate to a level 1, 2, or 3 head included in HELP becomes a subtopic
name by default. Alternate topics, subtopics, and synonyms can be provided by
entering them to the right of the ;.

If a single word appears on the right side of the ;, it is the topic name
(instead of the heading name). If multiple values appear on the right side of
the; the first is the topic name and the subsequent values are synonyms.
Each synonym is separated from the preceding value by a space.

No single topic name, synonym or sUbtopic name may exceed 31 characters. The
underscore is used as a connector (e.g., USAGE_NOTES).

Nalles

Unless changed, the name of a topic (or subtopic) is the name of the heading.
Topic names appear in the automatically generated HELP TOPICS message for a
HELP file. It is important that the manual heading be examined to deterMine
its appropriateness as a listed item in the TOPIC tabular message.

CE62-00 Topic Names and Synonyms 7-20

Synonyms

A synonym is an alternate name for a topic or subtopic. Synonyms are assigned
in two cases:

1. When a command (statement, etc.) can be abbreviated in one or more ways.

2. When a concept can be named in more than one way.

Note: Whenever a synonym is included, the topic (or subtopic) must always
appear as the first word to the right of ; even if it is the same as the level
head.

Command Abbreviations

For a good HELP file, each command that has abbreviations should be
retrievable through any of its abbreviated forms. Messages are retrieved
through that means. Therefore if a command is the topic, the HELP coding must
incLude all vaLid abbreviations for the command. These abbreviations are
introduced as name synonyms.

The COPYALL command has the folLowing syntax:

C[OPY]A[LL]

The vaLid abbreviations for the COPYALL command are:

CA,CAL,CALL,COA,COAL,COALL,COPA,COPAL,COPYALL,COPYA,COPYAL

The HELP portions of the COPYALL heading must contain aLL of these
combinations as synonyms for the user to be abLe to access the COPYALL topic
using anyone of the vaLid abbreviations. The heading appears as:

•• :L2H "COPYALL Command;COPYALL CA CAL CALL COA COAL COALL
COPA COPYA COPYAL"

Notice that the list begins with the fulL command form "COPYALL". The fuLL
command form is always listed first because onLy the first form will be listed
in the HELP TOPICS message.

Conceptual Synonyms

ConceptuaL synonyms give the user a choice of ways to access a topic which may
have severaL different names. For exampLe, suppose a portion of text
appearing under the heading "Possible Error Conditions" is to be incLuded in
the HELP fiLe. The heading appears in the manuaL as:

•• :L1H "PossibLe Error Conditions"

One user may think of the word "errors" whiLe another user may think of the
words "warnings" or "probLems". Using synonyms, the HELP creator can assign
aLL three names to the topic. The heading is changed to appear as:

•• :L1H "PossibLe Error Conditions; ERRORS WARNINGS PROBLEMS"

CE62-QO Topic Names and Synonyms 7-21

Encoding SubtopicS

A subtopic is the name of a retrievabLe submessage associated with a HELP
topic. Entering the HELP request for a command foLLowed by a subtopic
produces only the subtopic information.

Consistent organization and presentation of materiaL is critical for
successful use of subtopics. Messages in one subtopic must be the same
structure as similar messages in other subtopics.

The HELP file creator must determine:

• If any subtopics need to be excluded or modified.

• Appropriate subtopic names and synonyms.

• What table entries to include as subtopics.

Creating Subtopics

Any level 4 head appearing under a higher level head that is a HELP topic is
automatically a subtopic. Any level 4 head appearing under a higher level
head that is not a HELP topic is automatically excluded from HELP. To create
a subtopic for a subject appearing at a level 2 or 3 head requires the
insertion of a level 4 head of HELP-only information. For example, suppose
LITERALS appears in the manual file as:

•• :L2H "Literals"

• text

•• :L3H "Nonnumeric Literals"

• text

•• :L3H "Numeric Literals"

• text

The HELP creator wants to make NONNUMERIC and NUMERIC subtopics of LITERALS.
The manual file is modified to appear as:

•• :L2H "Literals"

• text

•• :L3H "Nonnumeric Literals;"
•• :L4H ";NONNUMERIC"

• text

•• :L3H "Numeric Literals;"
•• :L4H ";NUMERIC"

• text

CE62-QQ Creating Subtopics 7-22

The topic LITERALS now has the subtopics NONNUMERIC and NUMERIC. Adding the
semicoLon at the LeveL 3 head prevents those headings from becoming topics in
themseLves whiLe preserving the text under them for the HELP fiLe. Adding the
leveL 4 head with the semicoLon in front of the heading contents creates a
HELP sUbtopic name which does not appear in the manuaL but does appear in
HELP.

SubtopiCS Within Tables

Named sUbtopics are usefuL aLso for direct access to items such as compiler
options. In a tabLe of compiLer options, each option is a LeveL 4 heading.
The named topic, in this case the name COMP OPTIONS, is a LeveL 1, 2 or 3
heading (i.e., •• :L1H "iCOMP_OPTIONS" is specified immediateLy foLLowing the
:MAT macro).

Entering onLy the named topic produces a List of aLL the options in the tabLe.
For exampLe, to obtain a List of aLL compiLer options for PL6, the user
enters:

HELP (PL6) COMP OPTIONS

A List of all the compiLer options in PL6 is produced. The user decides to
view onLy the NFORMAT option for the PL6 compiLer and enters:

HELP (PL6) COMP OPTIONS NFORMAT

The syntax for the NFORMAT option appears aLong with a brief description of
the option's function.

Automatic Transformation of Subtopics

The HELP processor examines each character in the heading separately to
transform the manuaL entries to HELP sUbtopics. In the above exampLe, NFORMAT
actually appears in the manual as NFOR[MATJ. Braces and brackets are removed
from the heading. Any OR bars (III ") are transformed into blank spaces and
anything following a 11(11, ":", ni", n=" or " " is deleted from HELP. Whatever
remains is converted to uppercase. Table 7-3 illustrates the conversion from
the source fi le to the HELP fi lee

CE62-QQ Automatic Transformation of Subtopics 7-23

TabLe 7-3. ExampLes of :L4H Transformation

Heading Converted Subtopic Name

•• :L4H "ABC[OEJ" ABCDE

•• :L4H "{ABICO}" AB CD

•• :L4H "{AB[CJIDE}" ABC DE

•• :L4H "ABC=n" ABC

•• : L4H "ABC:DE" ABC

•• :L4H "Example:" EXAMPLE

:HLP Macro

Format:

•• :HLP "[manual textJ[;heLp_textJ"

Parameters:

manuaL text
f i l e •

is text that is to appear in the manual, but not in the HELP

heLp text
manual.

Description:

is text that is to appear in the HELP file, but not in the

This macro allows entry of alternate wording for the hard-copy manual and for
the HELP file.

Example:

•• :HLP "Refer to Section 3 of this manual for details;"

is text for the manual only, since references to Section 3 are inappropriate
for the user of the HELP file •

•• :HLP ";HELP messages for each option can be obtained"
•• :HLP ";by entering HELP (PL6) COMP_OPTIONS option"

is text for the HELP file only since references to HELP topics are
inappropriate for the manual •

•• :HLP "See Table 2-2 for a list of compiler options;Enter
HELP COMP OPTIONS for a list of compiler options"

provides alternate wording for the manual and the HELP file. The example is
functionally identical to:

•• :HLP "See Table 2-2 for a list of compiler options;"
•• :HLP ";Enter HELP COMP OPTIONS for a list of compiler options"

CE62-00 :HLP Macro 7-24

Creating a HELP File

The HELP fiLe is buiLt through $TEXT. The HELP fiLe creator invokes $TEXT and
directs the output of processing to a fiLe. $TEXT in turn, invokes the X
account program HERMAN which creates the HELP fiLe.

The foLLowing diaLog iLLustrates how a HELP fiLe can be generated from one
source fiLe.

Prompt

!XEQ $TEXT.:DOCUM

FASTEXT B03

FiLes to Format>CE29 01

In account>:MANUAlS

Device or Destination>ZO COBOl1 HELP

TEXT OPTIONS>

DRAFT or FINAL Format>H

Pagesize (type of paper)

Number of Copies>

Extra FiLes >1

Do you want these fiLes for :MANUAlS:

Action

CaLL the document assembLy
program.

Enter the fiLe name.

Enter the account the manuaL
fi Les are in.

Enter the name of the fiLe to
be created, ZO COBOl1 HELP. If
that exists, a-prompt-is issued
asking if you want to write
over it; respond with a "Y".
By convention, this fiLe name
is of the form
fcg processorname HELP, where
fcg-is the FunctionaL Code
Group (FCG). The "COBOl1"
portion of the fiLe name
indicates the manuaL Section
(1) for a HELP section fiLe.

Enter a carriage return <CR>.

Enter H for HELP.

Enter a <CR>.

Enter a <CR>.

Enter an I to get a HELP index.

ORG TY GRAN NGAV
KEY '-7 0

REC lAST MODIFIED NAME
CE29 01 541 11:50 NOV 23 '81

creating HELP source fiLe named ZO COBOl1 HELP
creating a readabLe HELP fiLe named HElP:COBOl1:

Enter Y to send the job, C to reenter the vaLues, or <CR> to exit.
Go for it?>Y Enter a Y to create a HELP fiLe.

Once HELP files for severaL sections have been created and tested, the HELP
fiLe creator can invoke STEXT in document assembLy mode specifying muLtiple
section fiLes to produce a singLe HELP fiLe.

CE62-00 Creating a HELP FiLe 7-25

Section 8

Techniques: Centr.1 System

This section discusses a number of interfaces to centraL system software and
incLudes sampLe code.

Acce •• ing the JIT

The Job Information TabLe (JIT) contains system reLated information about an
individuaL CP-6 user. From Logon to Logoff time, the JIT accumuLates and
retains facts about a user's session. The information contained in the JIT is
usefuL for programmers writing programs to run on the CP-6 system.

The JIT is the area in memory that gathers and records specific facts about
the user such as the users's account, mode, name, sysid and accounting
information.

The JIT is accessed in severaL different ways; via the Linker-buiLt pointer
BJIT, the JIT can be examined through DELTA by using Linkage segment number
one ($LS1) or by using $JIT. Any command processor automaticaLLy has
modification access to the JIT. A run unit that resides in the :SYS account
and that has been Linked with JIT aLteration priviLege aLso has modification
access to the JIT. Appendix A incLude a description JIT fieLds and a DRAW of
the structure. Figure 8-1 iLLustrates a PL-6 subroutine which returns a
user's Logon account and user name from the JIT to a FORTRAN program.

CE62-00 Accessing the JIT 8-1

!C JIT MAIN SIF
PROGRAM JIT
CHARACTER * 8 MYACCT
CHARACTER * 12 MYUNAME
CALL GETJIT (MYACCT,MYUNAME)
WRITE (108,1000) MYACCT, MYUNAME

1000 FORMAT (1X,A8,1X,A12)
STOP
END

!C JIT SUB SI6
I*M* Subroutine returns logon account and

user name from JIT to FORTRAN program *1

GETJIT: PROC (ACCT, UNAME);

DCl ACCT CHAR(8);
DCl UNAME CHAR(12);

DCl BSJITS PTR SYMREF;

%INCLUDE BSJIT;

ACCT = BSJITS -> BSJIT.ACCN;

UNAME = BSJITS -> BSJIT.UNAME;

RETURN;

END GETJIT;
!FORTRAN JIT MAIN SIF OVER *G(NlS)
FORTRAN 77 VERSION B04 AUG 20 '82
!Pl6 JIT SUB SI6 INTO *G(SRC.:lIBRARY),NlS)
Pl6 B02 -here at 15:32 AUG 20 '82

No errors detected in file JIT SUB SI6

!lINK *G OVER *l
* :SHARED COMMON.:SYS (Shared library) associated.
* No linking errors.
* Total program size = 3K.
!*l

XWKPl6 876KWIK
STOP

Figure 8-1. Accessing the JIT Using Pl-6 Subroutine

CE62-00 Accessing the JIT 8-2

Accessing the Task Control Block (TCB)

The Task Control Block (TCB) contains system related information about a
running program. From fetch to rundown time, the TCB accumuLates and retains
facts about a user's program incLuding information about monitor service
ALTRETURNs, interrupts, fauLts and asynchronous events.

The TCB is accessed in several different ways; via the Linker-built pointer
BTCB, the TCB can be examined through DELTA by using Linkage segment number
fifteen ($LS1S) or by using $TCB. The layout of the TCB and the structures
related to it are described in the Monitor Services Reference Manual, in the
section on Exception Condition Services.

Figure 8-2 shows a PL-6 subroutine which accesses the TCB, returning a monitor
service error code from the aLtreturn frame.

CE62-00 Accessing the Task Control Block (TeB) 8-3

!C ERR SI6
I*M* Get error code from TCB, print using M$ERRMSG *1
ERRMSG: PROC MAIN;

%INClUDE CP 6;
%INClUDE CP=6_SUBS;

DCl MSDO DCB;
DCl MY ERROR BUF CHAR(255) STATIC;
DCl BSTCBS PTR SYMREF;

XFPT ERRMSG

XBSTCBi

XBSAlT;

(FPTN=ERROR PRINT,
BUF=MY-ERROR BUF,
OUTDCB1=MSDO;
CODE=NIl);

ERROR PRINT.CODE = VECTOR(B$TCBS->BSTCB.AlTS->BSAlT.ERR);
CAll M$ERRMSG (ERROR PRINT) AlTRET (HMMM);

HMMM: CALL MSXXX;
END ERRMSG;
!PL6 ERR SI6 OVER *G(NLS,SR(.:lIBRARY»
PL6 B02 -here at 14:01 SEP 02 '82

No errors detected in fiLe ERR SI6

!RUN *G
* :SHARED SYSTEM.:SYS (Shared library) associated.
* No Linking errors.
* TotaL program size = 3K.

MMP-M00606-0 Attempt to free more space than is in data segment.
MSXXX issued by user.

Note: MMP-M00606-0 is the error given to :SHARED SYSTEM when it reLeases aLL
the memory in AUTO prior to starting a PL-6 MAIN program.

Figure 8-2. Accessing the TCB Using PL-6 Subroutine

CE62-00 Accessing the Task ControL Block (TCB) 8-4

Break Handling

Break handLing aLLows a time sharing user to hit the break key whiLe a program
is running and either check on the program's progress, or provide for an
aLternate routine or exit. To create a break handLing routine, a user must
provide a PL-6 subroutine which caLLs the M$INT Monitor Service to estabLish
and setup an address for the break handLer. The break handLer subroutine must
be a PL-6 asynchronous procedure (PROC ASYNC). Figure 8-3 shows a FORTRAN
program with a PL-6 subroutine that handLes a break by cLearing the break
frame from the Task ControL BLock (via the caLL to M$CLRSTK) and forcing the
program to exit on a speciaL path. Note the caLL to the M$TRMPRG monitor
service which is incLuded to avoid four breaks simuLating CONTROL-V; see the
discussion of M$TRMPRG in the CP-6 Monitor Service Reference Manual for
detaiLs.

!C INT SIF
PROGRAM INT
CALL SETUPINT(110S)
DO 100 1=1,10
CALL SLEEP(10)
OUTPUT I

100 CONTINUE
OUTPUT 'ALL DONE'
CALL EXIT(O)

110 OUTPUT 'BACK FROM BREAK'
STOP
END
SUBROUTINE BREAKH(*)
OUTPUT 'IN FORTRAN BREAK ROUTINE'
RETURN 1
END

!C INT SI6
I*M* INT HANDLERS FOR EXAMPLE PROGRAM *1
SETUPINT: PROC (ENTPOINT);
DCL ENTPOINT PTR;
DCL INTPTR PTR STATIC SYMDEF;
XINCLUDE CP_6;

DCL MY INT ENTRY ASYNC;

XFPT INT (FPTN=MY INT_FPT,UENTRY=MY_INT);

INTPTR = ENTPOINT;
CALL M$INT (MY INT FPT) WHENALTRETURN DO; END;
RETURN;

END SETUPINT;
XEOD;
MY INT: PROC ASYNC;
DCl INTPTR PTR SYMREF;
DCL BREAKH ENTRY (1);

XINCLUDE CP 6;
XFPT_TRMPRG-(DCB=M$UC,RSTBRK=YES);

CALL M$CLRSTK;
CALL M$TRMPRG (FPT TRMPRG) WHENALTRETURN DO; END;
CALL BREAKH (INTPTR);

RETURN;
END MY_INT;
XEOD;
SLEEP: PROC (TIME);
XINCLUDE CP 6;

XFPT-WAIT (FPTN=ZZZZZ);
DCL TIME SBIN;

Figure 8-3. Break HandLing Via PL-6 ASYNC Procedure (cont. next page)

CE62-00 Break Handling 8-5

ZZZZZ.V.UNITS#=TIME;
CALL M$WAIT (ZZZZZ);
RETURN;

END SLEEP;
!FORTRAN INT SIF OVER *G(NLS)
FORTRAN 77 VERSION COO NOV 03 '83
!PL6 1NT S16 INTO *G(NLS,SR(.:LIBRARY»
PL6 B02 -here at 15:56 NOV 03 '83

No diagnostics issued in procedure SETUPINT

No diagnostics issued in procedure MY 1NT

No errors detected in file 1NT S16.

!LINK *G OVER *L
* :SHARED COMMON.:SYS (Shared Library) associated.
* No linklng errors.
* Total program size = 3K.
!*L

I = 1
1=2
IN FORTRAN BREAK ROUTINE
BACK FROM BREAK

STOP

Figure 8-3. Break Handling Via PL-6 ASYNC Procedure

Trap Handling

Trap control allows the user to gain control in the case of a hardware
detected fault (trap). Trap handling allows the user to detect and
accommodate fault conditions. Trap control is usually taken by highly
generalized, widely used libraries of utility subroutines. To create a trap
handling routine, a user must provide a PL-6 subroutine which calls the M$TRAP
Monitor Service to establish and set-up an address for the trap handler. The
trap handling routine must be a PL-6 asynchronous procedure (PROC ASYNC). See
the Monitor Services Reference Manual for a complete description of M$TRAP.
Figure 8-4 shows a FORTRAN program with a PL-6 subroutine that handles a trap
by clearing the trap frame from the Task Control Block (via a call to
M$CLRSTK) and forcing the program to exit on a special path.

!FORTRAN TRAP S1F OVER *F(LS,OU)
FORTRAN 77 VERSION B04 SEP 20 '82

* 1.000>
2.000>
3.000>
4.000>
5.000>
6.000>
7.000>
8.000>
9.000>

ERRORS FOUND

* 10.000>
11.000>
12.000>
13.000>

ERRORS FOUND

1 :
2:
3:
4:
5 :
6:
7 :
8 :
9:

1 :
2 :
3:
4:

PROGRAM TRAP
CALL SETTRAP(100S)
OUTPUT 'GOING TO DIVIDE BY ZERO'
CALL DIVIDE(4,0,RESULT)
OUTPUT 'BACK FROM SUBROUTINE'
STOP 'ME BEFORE I KILL AGAIN'

100 OUTPUT 'GOT A ZERO DIVIDE'
STOP

o

o

END
TOTAL ERRORS FOUND: 0

SUBROUTINE DIVIDE (DIVIDEN,DIVISOR,QUOTI)
QUOTI=D1V1DEN/DIVISOR
RETURN
END

TOTAL ERRORS FOUND: 0

Figure 8-4. Trap Handling Via a PL-6 Subroutine (cont. next page)

CE62-00 Trap Handling 8-6

* 14.000>
15.000>
16.000>
17.000>

ERRORS FOUND

!Pl6 TRAP SI6
Pl6 B02 here

1 .000
2.000
3.000
4.000
5.000
5.100
6.000
7.000
7.010
7.020
7.030
7.040
7.050
7.055
7.060
7.070
7.080
7.090
8.000

1 :
2 :
3 :
4 :

: 0

SUBROUTINE ZERODIV (*)
OUTPUT 'WHOOPS! ZERO DIVISION ENCOUNTERED 1
RETURN 1
END

TOTAL ERRORS FOUND: 0

OVER *6(lS,OU,SR(.:lIBRARY»
at 15:55 SEP 20 182

1 I*M* SET UP TRAP CONTROL *1
2 SETTRAP: PROC (lABEL);
3
4

81
82
83
84
85
86
87

110
111
112
113
114
115
116
117

1
1
1

2
1

%INClUDE CP 6;
DCl lABEL PTR;
DCl MY lABEL PTR STATIC SYMDEF;
DCl MY-TRAP ENTRY ASYNC;

%FPT TRAP (FPTN=SETUP TRAP,
ARITHMETIC=MY TRAP,
DIVIDE_CHECK=TRAP);

CAll MSTRAP (SETUP TRAP) WHENAlTRETURN DO; END;
MY_lABEl=lABEl;

RETURN;

END SETTRAP;
%EOD;

No diagnostics issued in procedure SETTRAP

9.000 1 MY TRAP: PROC ASYNC NOAUTO;
10.000 2
11 .000 3 DCl ZERODIV ENTRY(1);
12.000 4 DCl MY lABEL PTR SYMREF;
13.000 5
14.000 6 XINClUDE CP_6;
15.000 83
16.000 84 CAll MSClRSTK;
17.000 85
18.000 86 CAll ZERODIV (MY_lABEL);
19.000 87
20.000 88 RETURN;
21.000 89 END MY_TRAP;

No diagnostics issued in procedure MY TRAP

No errors detected in file TRAP S16

!lINK *F,*6 OVER *l
* :SHARED COMMON.:SYS (Shared library) associated.
* No linking errors.
* Total program size = 3K.
!*l

GOING TO DIVIDE BY ZERO
WHOOPS! ZERO DIVISION ENCOUNTERED
GOT A ZERO DIVIDE

STOP

Figure 8-4. Trap Handling Via a Pl-6 Subroutine

CE62-00 Trap Handling 8-7

Associating or Linking to Another Program

Associating another program with a currentLy running program can be
accompLished by one of three monitor services:

• M$LINK passes controL to another program which runs and then returns
controL to the originaL program following the caLL to M$LINK.

• M$LDTRC passes controL to another program; context from the originaL
program is not saved.

• M$ALIB passes control to a shared Library, an aLternate shared library, or
a debugger.

The uses for M$LINK and M$LDTRC are straightforward. One point illustrated in
Figure 8-5 is particularly important to note: setting of the command line
DCBs (#1, #2, #3, #4) for a newly associated program can be performed by a
call to the MSYC monitor service. Figure 8-5 illustrates how this is done in
a PL-6 subroutine (which may be called within a FORTRAN program, for example).

CE62-QQ Associating 8-8
or Linking to Another Program

DRIBBLE ON @ 13:41 01/12/83
!B *2
EDIT B03 HERE

1.000 THIS IS A TEST.
2.000 IT IS ONLY A TEST.
3.000

!C *2 OVER *1
•• COPYing

!C LINK SI6
I*M* LINK TEST *1
I*X* DMR,PLM=5,IND=3,CTI=3,SDI=3,MCL=10,CSI=0,ECI=0 *1
LINK_TEST:PROC MAIN;

XINCLUDE CP 6;
XINCLUOE CP:6_SUBS;

XFPT YC (FPTN=SET 1,
CMD=SET 1 CMD,
NOERR=YES);

XFPT LINK (FPTN=LINK TUNA,
CMD=TUNA CMD,
NAME=TUNA NAME,
ACCT=TUNA-ACCT);

DCL 1 TUNA CMD STATIC, -
2 * UBIN BYTE CALIGNED INIT(SIZEC('TUNA.X (LEN=79)'»,
2 * CHAR(O) CALIGNED INIT('TUNA.X (LEN=79)');

XVLP NAME (FPTN=TUNA NAME,
NAME='TUNA');

XVLP ACCT (FPTN=TUNA ACCT,
ACCT='X I);

DCL SET 1 CMD CHAR (0) STATIC INIT (' ! SET #1 *1');

CALL MSYC(SET 1)
WHENALTRETURN-
DO;

CALL MSXXX;
END;

CALL MSLINK .(LINK TUNA)
WHENALTRETURN
DO;

CALL MSXXX;
END;

CALL fltSEXIT;

END LINK TEST;
!PL6 LINK SI6 OVER *G(NLS)
PL6 B02 here at 13:41 JAN 12 '83

No errors detected in file LINK SI6.

!LINK *G OVER *L
* :SHARED SYSTEM.:SYS (Shared Library) associated.
* No linking errors.
* Total program size = 3K.
!*L
!C *1
THIS IS A TEST. IT IS ONLY A TEST.
!DONT DRIBBLE
DRIBBLE OFF @ 13:42 01/12/83

Figure 8-5. DCBs for Program Called by MSLINK/MSLDTRC

CE62-00 Associating
or Linking to Another Program

8-9

M$AL1B is typicaLLy used in cases such as these:

• To dynamicaLly change the shared library in use.

• To dynamicalLy associate an ALternate Shared Library, such as 1-0-5/11,
based on need rather than automatically associating the data base manager
at invocation of a program.

• To dynamically associate a debugger to diagnose an error condition.

The sample subroutine shown in Figure 8-6 associates the CP-6 debugger, DELTA,
to ascertain the location at which an error occurred. This example shows how
to obtain the Instruction Counter (from the TCB) for the error location and
return it for display by the erring program.

CE62-00 Associating 8-10
or Linking to Another Program

!C AlIB SI6
I*X* DMR,PlM=5,IND=3,CTI=3,SDI=3,MCl=10,CSI=O,ECI=O *1
AlIB_TEST: PROC MAIN;

DCl SETXCON ENTRY;

DCl PTRS PTR STATIC INIT(ADDR(ARRAY»;
DCl ARRAY(O:1024) SBIN STATIC;
DCl WORD SBIN BASED(PTRS);
DCl X SBIN WORD;

CAll SETXCON; 1* SETUP THE XCON ADDRESS *1

DO WHIlE('1'B); 1* I KNOW THIS CODE DOESN'T WORK *1

PTRS=PINCRW(PTRS,-1);
X = PTRS->WORD ;
END; -

END AlIB TEST;
%EOD; -
SETXCON: PROC;
DCl MY XCON ENTRY ASYNC;
XINClUDE CP 6;

%FPT XCON (FPTN=SET XCON,
UENTRY=MY_XCON);

CAll MSXCON (SET XCON)
WHENAlTRETURN
DO;

END;

RETURN;
END SETXCON;
%EOD;
MY XCON: PROC ASYNC;
%INClUDE CP 6;

XFPT XCON (FPTN=RESET_XCON)i

XFPT AlIB (FPTN=PRINT ADDRESS,
CMD=DELTA CMD.NAME#,
ECHO=YES,-
DlIB=YES,
lIBNAME=DElTA NAME,
RETRN=YES); -

1* I WANT TO FORCE A FAULT SO *1
1* MY XCON ROUTINE Will BE *1
1* ENTERED *1
1* DO FOREVER *1

XVlP NAME(FPTN=DElTA CMD,
- NAME='EVAl .OOOOOO\R');

XVlP NAME(FPTN=DElTA NAME,
- NAME='DElTA');

XFPT ERRMSG (FPTN=MY ERROR,
BUF';"ERROR BUF,
OUTDCB1=MSDO);

DCl BSTCBS PTR SYMREFi

1* BASED STRUCTURES TO lOOK AT TCB *1
XBSTCB;
XBSXCON;
XBSEXCFR;

Figure 8-6. Associating DELTA to Dump I.C. (cont. next page)

CE62-QO Associating
or Linking to Another Program

8-11

DCL I SBIN;
DCL J SBIN;
DCL 1 X(O:5),

2 Z UBIN(3) UNAL;
DCL X REDEF X UBIN(18) UNAL;
DCL ERROR BUF CHAR(140) STATIC;
DCL MSDO DCB;

MY ERROR. CODE

1* PRINT ERROR MESSAGE THAT
CORRESPONDS TO ERROR CODE
IN XCON FRAME ON TCB *1

VECTOR(BSTCBS->BSTCB.STKS->BSXCON.ERR);

CALL MSERRMSG(MY ERROR)
WHENALTRETURN
DO;

END;
1* GET IC FROM TCB FRAME *1

X BSTCBS->BSTCB.STKS->BSEXCFR.IC;

J =6;
00 I = 0 TO 5;

1* CONVERT IC TO PRINTABLE
FORM SO IT CAN BE PASSED
TO DELTA *1

CALL INSERT (DELTA_CMD.NAME#,J,1,BINASC(X.Z_(I)+48»;
J=J+1;
END;

CALL MSALIB (PRINT ADDRESS)
WHENALTRETURN
DO;

END;

CALL MSXCON (RESET XCON)
WHENALTRETURN
DO;

END;

CALL MSEXIT;
END MY XCON;
!PL6 ALIB SI6 OVER *G
PL6 B02 here at 13:00 JAN 12 '83

1* DO 1=0 TO 5 *1

1* GO ASK DELTA TO EVALUATE
THE IC *1

No errors detected in file ALIB SI6.

!LINK *G OVER *L
* :SHARED SYSTEM.:SYS (Shared Library) associated.
* No linking errors.
*_ Tot alp r 0 g ram s i z e = 4 K •
!*L

HFA-M00520-6 Missing Page fault
SALIB >EVAL .004017\R

= ALIB TEST :16".1 [ASSIGNMENT]
!DONT DRIBBLE
DRIBBLE OFF ~ 13:01 01/12/83

Figure 8-6. Associating DELTA to Dump I.C.

CE62-00 Associating
or Linking to Another Program

8-12

Shared Data Segments

Data segments may be shared by separate programs that run independently or by
programs which call one another via the MSLINK monitor service. The two types
of data segment sharing are discussed below.

Sharing COMMON between MSLINKed Programs

Programs that caLL one another via the MSLINK monitor service may pass data in
the COMMON data segment, i.e., data segment 2. To aLLocate the COMMON data
segment, the MSGDS monitor service can be caLLed with SEGSIZE set; this
returns (via the RESULTS area) a vector framing the COMMON data segment. Once
the data segment is aLLocated, MSGDS (with SEGSIZE=O) simply returns a vector
framing the segment.

Sharing Data Segment between Independent Programs

Programs that have a need to share up to 256K of data may use a shared data
segement to provide fast access to that data. By using the MSOPEN monitor
service, the programs may estabLish or access a shared data segment. The
programs can access the data in the shared data segment without performing
physicaL 1/0 for each access. Parameters that must be specified on the caLL
to MSOPEN are as follows: DCB, NAME, ACCT, FUN which are set as appropriate
and ORG=RANDOM, ACS=DSn, and ASN=FILE. The fiLe wiLL be opened and mapped
into the specified data segment.

To access the data segment, the programs use either the SYMREFed pointer
BSDSnS or the MSGDS monitor service called specifying SEGSIZE=O and RESULTS= a
VLP VECTOR structure. The VLP VECTOR.SEGID field should be filled in with
XDSnSID from the B SEGIDS C include file. The call to MSGDS returns a vector
(VLP_VECTOR) framing the data segment.

The MSCLOSE and MSEXTEND monitor services may aLso be used to manipuLate a
shared data segment.

Programs that share a data segment in this way must take compLete
responsibiLity for assuring the integrity of the data. Such programs need to
incLude Locking mechanisms for this purpose (e.g., MSENQ to assure that the
item or group of items it accesses contains current information and that no
updates are lost).

CE62-00 Sharing Data 8-13
Segment between Independent Programs

Virtual Data Segments

A virtuaL data segment is much Like any other CP-6 data segment: it is an
addressabLe portion of memory which may be used to store and access user data.
VirtuaL data segments differ from standard data segments in severaL ways:

• A virtuaL data segment may be much Larger than a standard data segment.
VirtuaL data segments may contain up to 4 gigawords (4,294,967,296) of
data each; the user is permitted to have up to 3 virtuaL data segments in
existence at any particular time, yielding a total of 12 gigawords of
address space.

• As their name implies, virtual data segments reside in memory in a virtual
sense, and not necessarily in a real sense. Since the size of a virtual
data segment may easily exceed the memory-usage authorization of the user
(and may actually exceed the total amount of real memory available on the
entire CP-6 system), only a portion of each virtual data segment actually
exists in real memory at any particular time. The CP-6 hardware and
monitor conceal this fact from the user's program, by bringing selected
portions of the virtual segments into "real" existence whenever they are
needed by the program.

• Virtual data segments can "survive" after the program which created them
has ceased to exist. Each virtual segment is associated with a CP-6 keyed
file, stored on disk; this file is identified by the user's program when
the virtual segment is initialized, and may be cataloged, stored, backed
up, and deleted in the same way that any CP-6 file is manipulated. If a
virtual data segment's file is closed and cataloged in a file directory,
another program may subsequently re-open the same file and access its
contents as a virtual segment; the data stored in the original segment is
available, intact, in the new segment.

• Special addressing techniques are necessary to access the contents of the
virtual segment, if its total size exceeds 256K words.

How Virtual Segments Work

A virtual data segment is actuaLly a way of addressing data which exists in a
CP-6 keyed disk file. Virtual data segments are initially created by use of
the MSOPEN service and are released by use of the MSCLOSE service; they are
subject to all normal CP-6 file creation and access rules. To create a
virtual segment (and its associated disk file), the user's program must issue
an MSOPEN which includes a special VIRTUAL option (specifying a particular
VLP VIRTUAL data structure). The program must supply the following
information:

1. The identity of a DCB which is to be used to store this virtual segment.
The DCB must be assigned to an ASN=FILE, ORG=KEYED file (with a
DISPosition of either NAMED or SCRATCH). The DCB may be opened with
FUN=CREATE,EXIST=NEWFILE to create a new segment, or with FUN=UPDATE to
access an existing virtual-segment file.

2. The virtual size of the segment (i.e., the amount of space that the user
wishes to be able to access). This value is specified as a decimal number
of words, and is passed through the SEGSIZE option of the VLP VIRTUAL
structure.

3. The physical size of the segment (i.e., the amount of real memory which is
to be used to retain portions of the virtual data). This value is
specified as a decimal number of pages (not words), and is passed through
the PHYSICAL option of the VLP_VIRTUAL structure.

CE62-QQ How Virtual Segments Work 8-14

The CP-6 monitor opens the indicated DCB as specified. The user may then
examine the field VLP VIRTUAL.PTR$, which contains a pointer to the base
(beginning) of the newly-created virtual segment in memory.

The user's program may now use the virtual data segment as it would use any
other CP-6 data segment (subject to the addressing limitations discussed
below). The program may store or access data at any location within the
segment's virtual address limits. If the program attempts to access a portion
of the virtual segment which does not currently reside in real memory, the
following sequence of events occur:

1. The CP-6 hardware's memory-management logic generates a "missing page"
fault.

2. The CP-6 monitor's trap handler determines that the fault occurred while
accessing a virtual data segment, and calls the virtual-segment manager.

3. The virtual-segment manager looks through the real pages currently
assigned to the virtual segment, trying to find one or more pages which
have not been accessed recently. The pages which have not been accessed
for the greatest length of time are selected for purging.

4. The virtual-segment manager purges the oldest little-used page, by writing
it into the keyed fiLe associated with this segment if the page has been
modified recentLy. (If the page has not been updated since it was Last
M$READ from the keyed fiLe, it is not re-written).

5. The virtuaL-segment manager issues an M$READ, to bring the virtual page
needed by the program into the physicaL page just purged. The user's
memory map is updated to refLect the change in real memory aLLocation.

6. The CP-6 monitor returns control to the user's program. The instruction
which triggered the "missing page" fauLt is re-executed, and normalLy runs
to compLetion.

Note: The virtuaL-segment manager brings pages into reaL memory strictLy
on an "as-needed" basis, and onLy moves one page at a time. Thus, if an
instruction accesses several pages in a virtual data segment, it may
generate more than one "missing page" fault; the virtual-segment manager
is called once for each fault, and brings in one page each time.

A speciaL case of this sequence occurs during the initiaL use of a virtual
data segment, when few virtual pages have ever been accessed. If a "missing
page" fault occurs, and the virtual data segment does not yet have as many
real pages allocated as are permitted, then the virtual-segment handler simply
allocates a new real page to hold the as-yet-unused virtual page, and it
returns control to the user's program without performing any disk I/O
operations. Thus, if the user's program actually allocates enough real pages
to hold that portion of a virtual segment that it really accesses, then little
or no disk I/O is necessary.

A virtual data segment (and its associated disk file) is released by use of
the standard monitor service M$CLOSE. The program may opt to retain the
segment file, or to discard it, as follows:

• If the M$OPEN which created the segment specified DISP=SCRATCH, or if the
M$CLOSE which releases it specifies DISP=RELEASE, then the segment and its
associated disk file are immediately discarded. The information stored in
the segment is lost, and cannot be recovered.

• If the M$OPEN which created the segment specified DISP=NAMED, and if the
M$CLOSE which releases it specifies DISP=SAVE, then the segment's disk
file (and the information it contains) is retained. The real pages
containing portions of the segment's data are written onto the disk file
before being released.

CE62-QQ How Virtual Segments Work 8-15

Size Limits of Virtual Data Segments

There are two aspects to the size of a virtual data segment: virtual size and
real size. The virtual size of a segment is the number of uniqueLy
addressable memory Locations within the segment; the real size of a segment is
the amount of physicaL memory which is used to hoLd portions of the virtuaL
segment during processing.

The upper limit of a segment's virtual size is Limited by two factors:

1. The limit of the hardware's ability to represent addresses. The DPS-8
virtuaL-memory hardware is capable of accessing 4 biLLion (actualLy
4,294,967,296) unique word addresses; no virtuaL data segment may exceed
this size.
Note: References to hardware in the foLlowing discussion refer to the
DPS-8, L66, or any other hardware on which the CP-6 operating system can
run.

2. Special addressing techniques are necessary to access any address within a
virtuaL segment which Lies at any address above the 256K-word boundary.
These techniques are discussed in more detaiL later.

The upper Limit of a segment's reaL size is dictated to a Large extent by the
segment's virtuaL size, as foLLows:

1. If the virtuaL size of a segment is 2 mega-words (2048 pages) or less,
then the segment's reaL size may vary from 6 pages to the current virtuaL
size (or the remainder of the user's memory authorization, whichever is
Less). In this situation, it is possibLe to have a virtuaL segment which
is compLeteLy memory resident; no "missing page" fauLts occur, and no disk
I/O is necessary.

2. If the virtuaL size of a segment exceeds 2 mega-words (2048 pages), the
upper Limit of the segment's reaL size is 256 pages. This sharp reduction
in the reaL size Limit occurs because the virtuaL-segment manager must use
a "fragmented" page tabLe to keep track of the segment's reaL memory; such
a tabLe is Limited by the hardware to 256 entries.

Addressing Data within a Virtual Segment

Data within a virtuaL segment is addressed in much the same way as data within
any data segment is accessed: through PL-6 "PTR" variabLes, pointing to other
PL-6 variabLes which have been decLared "BASED".

UnfortunateLy, some fundamentaL Limitations of the hardware make accessing
Large virtuaL segments rather more difficuLt than the previous statement wouLd
impLy. The hardware is designed primariLy to access data which Lies within
segments not exceeding 256K words in size. Pointer registers (and "PTR"
variabLes in PL-6, of course) contain an 18-bit fieLd which contains the "word
dispLacement from the beginning of the segment"; index registers are onLy 18
bits wide; addressing caLcuLations are performed in an 18-bit moduLus
arithmetic; and so forth.

There are three practicaL ways in which the programmer may work around these
hardware Limitations:

1. Never use a virtuaL segment that exceeds 256K words in size. If this size
Limit is honored, a virtuaL segment may be addressed in exactLy the same
fashion as any other data segment.

CE62-00 Addressing Data within a VirtuaL Segment 8-16

2. Generate one or more secondary descriptors, which permit access to
portions of a virtuaL segment which Lie above the 256K-word address
boundary. In effect, this method breaks up one Large virtuaL segment into
a number (up to 16) of smaLLer segments, each of which is up to 256K words
in size. Each of these smaLLer segments has a unique "segment ID", and
may be addressed as a distinct area of memory.

3. Use the hardware's "extended addressing" instructions to directLy access
any Location within the virtuaL segment.

Method 1 can be performed entireLy in PL-6; methods 2 and 3 each require some
programming in GMAP or BMAP (DPS-8 assembLer) or FORTRAN, as they invoLve the
use of some DPS-8 instructions which the PL-6 compiler never generates.

Method 1: Small Virtual Segments

This is certainLy the easiest way to use virtuaL segments. Using this method,
a program may access up to three virtual data segments of 256K words each, for
a total virtuaL data area of 768K words. Each of the three virtual segments
may be accessed in the same fashion as a normal (non-virtual) data segment.
Data in the segments may be accessed through PL-6 "PTR" variables which point
to suitable "BASED" variables, and the data may be passed to other PL-6 or
FORTRAN procedures through the normal parameter-passing channeLs.

No assembly-language code is required when using this method.

Method 2: 'Divide and Conquer'

This method operates by breaking a singLe (large) virtuaL segment up into a
set of smaLLer segments, each of which is 256K words or less in size. In the
current version of the CP-6 system, it is possible to create up to 16 of these
sub-segments, thus permitting a program to simuLtaneousLy access up to 4
mega-words of virtual memory. Each sub-segment has a unique "SEGID" (segment
ID number), and is treated as a completeLy seLf-contained section of memory.
It is not possible to "access across" the boundary between two of these
sub-segments without causing a fauLt to occur; each BASED structure aLLocated
by the user must lie compLeteLy within one of these segments.

To use this method, the user's PL-6 program must calL a special-purpose
routine written in BMAP assembLer; this routine executes the instructions
necessary to create and store NSA descriptors which frame up to 16 256K-word
sub-segments, and return PL-6 "PTR" variables which may be used to refer to
these sub-segments.

Figure 8-7 contains a sample PL-6 routine which creates a virtuaL segment and
caLLs the BMAP routine called "SHRINK". Figure 8-8 contains the "SHRINK"
routine itseLf.

CE62-00 Method 2: 'Divide and Conquer' 8-17

SETUP SEGMENTS: PROC (NSEGS, SEG PTRS$) AlTRET;

DCl NSEGS SBIN; 1* input; number of 256K-word subsegments *1
DCl SEG PTRS$ (0:15) PTR; 1* output; PTRs to subsegments *1

DCl I SBIN;
DCl VIRTUAl_SEGMENT_DCB DCB;

%FPT OPEN (FPTN=OPEN VIRTUAL SEGMENT,
DCB=VIRTUAl SEGMENT DCB,
ASN=FIlE, - ORG=KEYED, FUN=CREATE, DISP=SCRATCH,
VIRTUAl=VlP_VIRTUAl);

%VlP VIRTUAL (FPTN=VlP VIRTUAL,
SEGNUM=VS1); 1* could use VS2 or VS3 instead ••• *1

DCl SHRINK ENTRY (4);

IF NSEGS < 1 OR NSEGS > 16 THEN AlTRETURN; 1* illegal call *1

VlP VIRTUAl.SEGSIZE# = NSEGS * 256 * 1024; 1* 256KW each *1
VlP=VIRTUAl.PHYSICAl# = NSEGS * 6; 1* minimum recommended *1

CAll M$OPEN (OPEN_VIRTUAL_SEGMENT);

DO I = 0 TO NSEGS - 1;

CAll SHRINK (VlP VIRTUAl.PTR$, 1* base of VDS *1
I * 256 * 4096,- 1* byte offset from VDS base *1
256 * 4096, 1* size of sub-segment, in bytes *1
SEG_PTRS$(I»; 1* pointer ;s returned here ••• *1

END;

RETURN;

END SETUP_SEGMENTS;

Figure 8-7. Pl-6 Routine to Set up Sub-segments

CE62-00 Method 2: 'Divide and Conquer' 8-18

TTL SHRINK
D NAME: SHRINK
, CALL: CALL SHRINK (base$, offset, size, new$);
, INPUT: "base$" points to the base of a virtual data segment;
, "offset" contains a byte offset into the segment;
, "size" contains the byte size of the resulting "shrink"
, operation.
, OUTPUT: "new$" contains a pointer corresponding to a new entry on
, the argument stack, which contains the shrunken
, descriptor.
, DESCRIPTION: This routine is used to perform a "normal shrink"
, operation on a segment framed by an NSA super-descriptor.
, The shrunken descriptor is saved on the hardware argument
, stack, and a pointer corresponding to the new AS entry is
, returned to the user.

USE SHRINK,1
ENTDEF SHRINK
ENTREF X66 AUTO 4
ENTREF X66-ARET

XO EQU 0-
X1 EQU 1
X2 EQU 2
X3 EQU 3
X4 EQU 4
X5 EQU 5
X6 EQU 6
X7 EQU 7
PRO EQU 0
PR1 EQU 1
PR2 EQU 2
PR3 EQU 3
PR4 EQU 4
PR5 EQU 5
PR6 EQU 6
PR7 EQU 7

*
SHRINK TSXO X66 AUTO 4 - -ZERO 7,0

LDP1 5"PR2
LDQ 0"PR1
QLS 16

Set up AUTO

Pointer to
Get size
Shift byte

and get parameters

new size

count into place
SBLQ =0200000,DL Make "byte count" into "byte bound"
ORQ
STQ
LDPO
LDP1
LDP7
LDEA7
LDD6
SDR6
LDP3
STP6
TSX2

*
*

* W1FLGS OCT

*
*
*

USE
SHRVEC OCT

END

CE62-00

W1FLGS Add all flags & "normal shrink"
SHRVEC Save in "shrink" vector
3"PR2 Pointer to "base"
4"PR2 Pointer to "offset"
O"PRO Get "base"
0"PR1 Set location field in descriptor
SHRVEC Shrink DR7 into DR6, self-id
0 Push shrunken descriptor onto AS
6"PR2 Get pointer to result area
0"PR3 Save new pointer
X66 ARET Return to user

Constant data for SHRINK routine

000000177640

Temp data area

SHRINK DATA,O
0,0000'00001777

Figure 8-8. BMAP Utility Sample Routine 'SHRINK'

Method 2: 'Divide and Conquer'

info

8-19

The SHRINK routine pushed new descriptors onto the hardware "argument stack".
Space on this stack is quite Limited, and is used for a number of purposes
(incLuding passing data to the CP-6 monitor when a monitor service routine is
caLLed). Therefore, programmers using method 2 shouLd obey the following
r u L e :

Never push more than 16 descriptors onto the argument stack. If you push
too many descriptors onto the stack, your program may abort with an
"Argument stack is full" fault at some Later time; this fault causes the
entire contents of the argument stack to be discarded.

Method 3: Direct Accessing

It is possibLe to use the LDEA ("Load Extended Address") instruction in a way
which permits a program to directLy access the entire 4-gigaword address space
permitted by the hardware. This technique cannot be used directLy by a PL-6
program, as the PL-6 compiLer has no knowLedge of the LDEA instruction or of
data structures Larger than 256K words. Therefore, it is necessary to use
BMAP (or GMAP) to access large virtual data segments in this fashion.

The LDEA instruction operates by inserting a "byte offset" value into a
descriptor register. This byte offset is not subject to the usual 256K-word
segment Limitation, and thus "adjusts" the descriptor register to access data
which lies anywhere within a virtual data segment.

Figure 8-9 shows a simple BMAP instruction sequence which might be used to
access a singLe data word within a NON-virtual data segment. Figure 8-10
shows the corresponding sequence which can be used to access a data word
within a large virtuaL segment.

LDA
LDP1
LDQ
STQ

WORD OFFSET
SEGMENTS
0,A,PR1
RESULT

* get word offset
* get pointer to segment
* Load data from segment/offset loc
* store it away

Figure 8-9. Accessing Data within a Standard Segment

LDA
ALS
STA
LDP1
LDEA1
LDQ
STQ

WORD OFFSET
2
TEMP
SEGMENTS
TEMP
0"PR1
RESULT

* get word offset
* shift left 2 bits to convert
* to byte offset, then save it
* get ptr to base of VDS
* insert byte offset into DR1
* load data from extended address
* save it

Figure 8-10. Accessing Data within a Large Virtual Segment

Further details concerning use of the LDEA instruction may be found in the
"DPS-8 Assembly Instructions" reference manual (order number DH03).

CE62-00 Method 3: Direct Accessing 8-20

Performance Considerations

The "cost" of using a virtual data segment depends on a number of factors:

• The virtual size of the segment.

• The number of real pages which are allocated to retain portions of the
virtual segment.

• The locations within the segment of the data actually accessed by the
program.

A virtual data segment is most efficient when most (or all) of those portions
of the segment which are actually being accessed can be retained in real
memory. In this situation, few or no "missing page" faults occur, and little
or no disk I/O occurs; the program using the segment can run at "full speed".
If the number of pages being frequently accessed by the program exceeds the
number of real pages assigned to the segment, a condition known as "thrashing"
may occur, and performance deteriorates drastically. One might consider
"thrashing" to be the point at which the system is spending more time swapping
virtual-memory pages than it is doing useful work.

At any particular time during its execution, a program usually tends to
concentrate its efforts on a subset of the data available to it. This subset
is generally called the program's "working set"; the working set changes with
time, and may expand or contract substantially during different phases of a
program's execution.

Guidelines for Virtual/Real Segment Sizing

Experience has shown that if the size of the working set is greater than three
times the real memory size avai lable, then the system wi II suffer from an
unacceptably high rate of missing-page faults and thrashing. There are two
ways to prevent a virtual-memory system from thrashing:

• Increase the amount of real memory used to hold the virtual segment.

• When allocating space within the virtual segment, cluster related data
together. This tends to reduce the size of the working set.

CE62-QQ Guidelines
for Virtual/Real Segment Sizing

8-21

Accounting Considerations

Use of a virtual data segment results in resource-use charges in a number of
categories:

1. Real memory usage (in "page-minute" units). This charge depends on the
number of pages of real memory actually used to hold the virtual segment
(derived from VLP VIRTUAL.PHYSICAL#) and on the amount of CPU time used by
the program.

2. User service time. When a page fault occurs, the virtual segment handler
generally issues a single M$WRITE followed by an M$READ. The time
necessary to perform these services is combined as the "user service"
category.

On a DPS-C central processor (L66 high-speed model used as the "1.0
performance multiplier"), the M$WRITE/M$READ sequence generally requires
between 8 and 10 milliseconds of CPU time (plus whatever "1/0 wait" time
is required by the disk drives; this time is not charged to the user).

3. PMME (monitor service) and disk 1/0. Generally, each page fauLt causes
the virtual segment handLer to issue 2 PMMEs, and between 4 and 8 disk 1/0
operations.

The actuaL charges which a particular program incurs depend on the rates set
by the CP-6 system manager. If, at an instalLation, memory usage is cheap and
disk access is dear, the system manager can minimize charges by increasing the
amount of reaL memory assigned to the program's virtual segments. On the
other hand, if a site is memory-conscious and charges heavily for memory
usage, and charges Little or nothing for disk activity, then reducing the
amount of real memory assigned to the virtuaL segments wiLL probabLy cut costs
(although the program will probably require more waLL-clock time to execute).

Restrictions and Programming Considerations

The CP-6 monitor expects all FPTs, VLPs, buffers, etc. to be available in reaL
memory whenever a monitor service request is caLLed; it does not recover from
a "missing page" fault when accessing any of these items. Therefore, it is
NOT POSSIBLE to reLiabLy pass portions of a virtuaL data segment to the CP-6
monitor, for use as 1/0 buffers or service parameters. To read data into a
portion of a virtuaL data segment, the program shouLd read the data into a
temporary buffer in STATIC or AUTO memory, and then move it to the appropriate
location(s) in the virtuaL segment; a simiLar technique should be used for
writing data in a virtuaL segment. Do NOT attempt to pLace FPT or VLP
structures in a virtuaL segment.

If access method 3 (LDEA Extended Addressing) is being used to address data in
a Large virtuaL segment, it is impossible to take the ADDR of data in the
segment, or to pass portions of the segment to PL-6 (or any other) subroutines
through the standard parameter-passing techniques.

Certain Extended Instruction Set (EIS) operations are sensitive to being
interrupted and restarted (as may happen if a missing-page fault occurs). In
particuLar, EIS instructions with a resuLt operand that overLaps any source
operand may not operate properly under these conditions. Bit- and byte-string
manipulation instructions (MLR, MRL, CSL, and CSR) are particularly vulnerable
to errors in situations of this sort.

CE62-00 Restrictions 8-22
and Programming Considerations

As mentioned above, the performance of a virtuaL data segment depends very
strongLy on the amount of reaL memory assigned to the segment, and on the
amount of virtuaL memory actuaLLy used by the program. Thus, a program which
uses a virtuaL segment shouLd be capabLe of determining the amount of real
memory actuaLLy avaiLabLe, and shouLd use a reasonabLe portion of that memory
for the virtuaL segment. This may be done by making proper use of the MSGDDL
service, which determines the number of pages of reaL memory which may be
acquired by the program. The user may then "tune" the program's behavior by
changing the vaLue of the MEMORY option on the !RESOURCE, !ORES, or !LIMIT
command.

For exampLe:

XINCLUDE CP_6;

XFPT GDDL (RESULTS=VLP_GDDL);
XVLP=GDDL;

XFPT OPEN (FPTN=OPEN_VIRTUAL, DCB=VIRTUAL_DCB, VIRTUAL=VLP_VIRTUAL);

CALL MSGDDL (FPT_GDDL);

VLP VIRTUAL.PHYSICAL# = VLP_GDDL.AVAIL_PGS# I 2;

CALL MSOPEN (OPEN_VIRTUAL);

This program fragment assigns 50% of the remaining memory space to the virtuaL
data segment.

CE62-00 Restrictions 8-23
and Programming Considerations

Section 9

Techniques: Communications

This section contains descriptions of interfaces to the CP-6 communications
software. This discussion is not exhaustive, but is intended to provide
usefuL exampLes.

Terminal 1/0 Control

ALthough the CP-6 FEP provides a rich variety of automatic formatting
features, which enabLe the FEP to optimize throughput to devices that have
positioning and optimizing hardware buiLt in, sometimes these features are not
desired. One exampLe of a situation where the automatic FEP Line wrapping and
spacing are not desired might be in an appLication which wishes to take fuLL
advantage of the incrementaL positioning of a print head on a speciaLized
device designed for text printing. By using the TERMINAL organization on a
DCB, co~pLed with the TRANS=YES option on M$WRITE, the appLication wiLL be
abLe to send ESCAPE sequences, carriage returnlLinefeed sequences, and tab
characters necessary to get the desired performance from the device, and
bypass the CP-6 FEP automatic formatting features.

In Figure 9-1, the ORG=TERMINAL option is used on the device open to guarantee
passage of certain characters directLy to the device, such as ESCAPE and other
characters from the first few rows of the ASCII chart. In addition, TRANS=YES
(transparency) is used to indicate that the application program aLso handles
carriage controL and intends to bypass the automatic Line-wrapping at !PLATEN
width. Note that the BIN=YES (binary data) option is not used. This
appLication is passing one byte of ASCII information per host (9-bit) memory
byte. With ORG=TERMINAL and TRANS=YES, the ninth bit is automatically
stripped when passing the byte from the host to the FEP. The binary option,
when used, wouLd guarantee passage of alL the bits in the 1/0 buffer to the
FEP, including the ninth bit. In this case, since the data is arranged one
byte per byte, ORG=TERMINAL on the M$OPEN and TRANS=YES on the MSWRITE is
sufficient.

CE62-QQ Terminal 1/0 ControL 9-1

%FPT OPEN

%FPT WRITE

(FPTN=OPEN DSI TERM,
ASN=DEVICE,
ACS=SEQUEN,
DCB=FSDSI,
DISP=NAMED,
FUN=CREATE,
ORG=TERMINAl);

(FPTN=WRITE BUFOUT,
BUF=BUFOUT,
BP=YES,
DCB=FSDSI,
TRANS=YES,
WAIT=YES);

I*M* DSIDUMP - contains machine-specific plotting subroutines *1
I*X* DMR,PLM=5,IND=5,CTI=5,SDI=5,MCl=10,CSI=0,ECI=0,DTI=2 *1
%SET lISTSUB='1'B;

DSIDUMP: PROC (CHARS_, COUNT_, FIN);
/*

1**1

CHARS IS CHARACTER ARRAY
COUNT IS CHARACTER COUNT
FIN <-0 => FORCE DUMP TO

TERMINAL
*/

1**
ARGUMENTS

***1
DCL CHARS (0:0) CHAR(1) CALIGNED;
DCl COUNT- SBIN WORD;
DCl FIN S8IN WORD;

1*

%SUB TRUE#='1'B I*TRUE#*I;
%SUB FAlSE#='O'B I*FAlSE#*/;

%INClUDE CP 6;
%INClUDE CP-6 SUBS;

%FSDCB; -

DCl FSDSI DCB;
DCl FSDSIN DCB;

DCL STATS SYMREF,
2 NUMCHARS
2 PRTCHARS
2 PLTREADS
2 WIPEMEMS
2 PUSHBAKS
2 FIlEREAD
2 FIlEWRTE
2 TERMWRTE

1*

SBIN WORD,
SBIN WORD,
SBIN WORD,
SBIN WORD,
SBIN WORD,
SBIN WORD,
SBIN WORD,
SBIN WORD;

lOCAllY NEEDED %SUBS
*/

INCLUDES
*/

1*
EXTERNALS

*/

Figure 9-1. Pl-6 Subroutine to Control Terminal I/O (cont. next page)

CE62-00 Terminal I/O Control 9-2

1*
lOCAL STORAGE

DCl FDSI PTR STATIC;

DCl CHAR COUNT SBIN WORD STATIC ALIGNED INIT(O);
DCl CHAR-MAX SBIN WORD STATIC ALIGNED INIT(72);
DCl ETX OUT SBIN WORD STATIC ALIGNED INIT(O);
DCl ETX:ERRORS SBIN WORD STATIC SYMDEF ALIGNED INIT(O);

DCl BUFOUT CHAR(255) STATIC;
DCl BUFOUTU (0:254) REDEF BUFOUT CHAR(1) CAlIGNED;

DCl HERE1CE BIT(1) ALIGNED STATIC INIT(FAlSE#);
DCl FLOW BIT(1) STATIC ALIGNED INIT(FAlSE#);

DCl ESC CHAR(1) STATIC CAlIGNED INIT(BITASC('033'0»;
DCl ETX CHAR(1) STATIC CAlIGNED INIT(BITASC('003'0»;
DCl PROMPT CHAR(1) STATIC INIT('@');
DCl READ_BUF CHAR(1) STATIC INIT(' I);

DCl I SBIN WORD STATIC;
DCl RECS UBIN WORD STATIC SYMDEF ALIGNED INIT(O);

DCl BAUD RATES(O:15) STATIC SBIN HALF INIT (- -1 , 1* 50 *1
-1, 1* 75 *1

110,
-1, 1* 134 *1
150,
200,
300,
600,
-1, 1* 1050

1200,
-1, 1* 1800
-1, 1* 2000
-1, 1* 2400
-1, 1* 4800
-1, 1* 9600
-1 1* 19200 *1> ;

DCl lINESPEED SBIN WORD STATIC SYMDEF INIT(-1);

XEJECT;

XFPT EOM

1*
FPTS

(FPTN=SET EOM,
DCB=MSUC,
EOMTABlE=DOO_DAH);

*1

*1
*1
*1
*1
*1

XVlP EOMTABlE(FPTN=DOO DAH,
- VAlUES="10, 44, 0, 47, 0*12");

XFPT PROMPT (FPTN=PROMPT FLOW,
TRANS=YES,
DCB=filSUC,
PROMPT=PROfilPT ,
VFC=YES); -

*1

*1

Figure 9-1. PL-6 Subroutine to Control Terminal 1/0 (cont. next page)

CE62-00 Terminal 1/0 Control 9-3

i.FPT OPEN

XFPT CLOSE

XFPT READ

XFPT OPEN

XFPT OPEN

XFPT WRITE

(FPTN=OPEN FLOW,
DCB=F$DSIN,
ASN=DEVICE,
FUN=IN,
ORG=TERMINAL,
RES='ME')i

(FPTN=CLOSE FLOW,
DCB=FSDSIN)i

(FPTN=READ FLOW,
DCB=FSDSIN,
BUF=READ BUF ,
WAIT=YES)i

(FPTN=OPEN DSI TERM,
ASN=DEVICE,
ACS=SEQUEN,
DCB=FSOSI,
DISP=NAMED,
FUN=CREATE,
ORG=TERMINAL);

(FPTN=OPEN DSI FILE,
DCB=FSDSI;
ASN=FILE,
ACS=SEQUEN,
DISP=NAMED,
FUN=CREATE,
EXIST=NEWFILE,
CTG=YES,
ORG=CONSEC,
REASSIGN=YES);

(FPTN=WRITE BUFOUT,
BUF=BUFOUT,
BP=YES,
DCB=FSDSI,
TRANS=YES,
WAIT=YES);

1**1

XFPT GLINEATTR (FPTN=FETCH SPEED,
LINEATTR=SPEED_TABLE);

XVLP LINEATTR (FPTN=SPEED_TABLE);

XEJECT;

1*
Begin D S IOU M P main

IF NOT HERE1CE
THEN

00;
HERE1CE = TRUE#i
FSDSIS = DCBAOOR(DCBNUM(FSOSI»;
IF FSOSIS -> FSDCB.ASN# = XDEVICEN
THEN

DO;
CALL MSOPEN (OPEN OSI TERM) ALTRET (BLEW IT);
CALL MSOPEN (OPEN-FLOW) ALTRET (BLEW IT);
CALL MSPROMPT (PROMPT_FLOW) ALTRET (BLEW_IT)i

*1

Figure 9-1. PL-6 Subroutine to Control Terminal 1/0 (cant. next page)

CE62-QQ Terminal 1/0 Control 9-4

ELSE

END;

CALL MSEOM (SET EOM) ALTRET (BLEW IT);
CALL MSGLINEATTR (FETCH SPEED) ALTRET (BLEW IT);
LINESPEED = BAUD RATES(SPEED TABLE.LINESPEED#);
IF LINESPEED = -1 -
THEN

GOTO BLEW IT;
FLOW = TRUE#; -

END;

IF FSDSIS -> FSDCB.ASN#
THEN

DO;

1**1

XFILE#

CALL "SOPEN (OPEN DSI FILE) ALTRET (BLEW_IT);
fLOW = FALSE#;

END;
ELSE

1* DO IF 1ST TIME *1

DO WHILE (FALSE#);
BLEW IT: ;

1* ALTRET HANDLER *1

CALL MSXXX;
END;

IF FIN < 0
THEN

DO;
CALL WRITE;
RETURN;

1* DO WHILE ALTRET *1
1**1
1**1
1**1

END; 1* DO IF DUMP REQUESTED *1
1**1

IF CMAR COUNT + COUNT >= CHAR MAX
THEN -

CALL WRITE;

DO I = 0 TO COUNT - 1;

BUFOUTU(CHAR COUNT) = CHARS (I);
CHAR COUNT =-CHAR COUNT + 1;

END; 1* DU~P EACH CHARACTER IN *1

IF CHAR COUNT >= CHAR MAX
THEN

CALL WRITE;

RETURN;

WItITE: PROC;

IF FLOW
THEN

DO;
BUFOUTU(CHAR COUNT) = ETX;
CHAR COUNT =-CHAR COUNT + 1;
ETX OUT = ETX OUT + 1;

1**1
1* FROM THIS ROUTINE *1
1**1

1* INTERNAL ROUTINE "WRITE" *1
1**1

1**1
WRITE BUFOUT.BUF .BOUND = CHAR COUNT - 1;
CALL MSWRITE (WRITE BUFOUT) ALTRET(WHO CARES);
STATS.TERMWRTE = STATS.TERMWRTE + 1; -

WHO CARES: ;
r U "D r" •• I.. T _ n. ""n,,_,,vv,., - U,

Figure 9-1. PL-6 Subroutine to Control Terminal 1/0 (cont. next page)

CE62-00 Terminal 1/0 Control 9-5

READ ACK:

READALT:

RECS = RECS + 1;

IF ETX OUT > 1
THEN

DO;

1**1

CALL M$READ (READ FLOW) ALTRET (READALT);
DO WHILE (FALSE#);

;
ETX ERRORS

END;

ETX OUT
END;

= ETX OUT

IF FIN < 0
AND
ETX OUT > 0

THEN
GOTO READ_ACK;

ETX ERRORS + 1;
7* DO WHILE ALTRET *1

- 1;
1* DO IF WAITING FOR ACK *1
1**1
1**1

END; 1* DO IF FLOW CONTROL *1
ELSE

DO;

ALTWRITE2:

1* IF TO FILE *1
WRITE BUFOUT.BUF .BOUND = CHAR COUNT - 1;
CALL M$WRITE (WRITE BUFOUT) ALTRET(ALTWRITE2);
STATS.TERMWRTE = STATS.TERMWRTE + 1;
,
CHAR COUNT = 0;
RECS- = RECS + 1;

1**1
END; 1* DO IF WRITING TO FILE *1

RETURN;
END WRITE;

END DSIDUMP;

C£62-00

1**1

Figure 9-1. PL-6 Subroutine to Control Terminal 1/0

TerMinal 1/0 Control 9-6

Transparent 1/0 for Asynchronous Graphics Terminals

Sending data in transparent or non-transparent mode to asynchronous graphics
terminaLs (such as the Tektronics 40xx series) requires a thorough
understanding of the specific terminaL in use as weLL as the particuLar
communications network in which the terminaL is to operate.

Transparency and MSWRITE

The foLLowing parameters controL transparent operation at write (and read)
operations: fpt.DVBYTE.BIN#, fpt.DVBYTE.TRANS#, and dcb.ORG#. These
parameters affect the write operation as foLLows:

1. If dcb.ORG# = %UR, the characters in the buffer are run through the "unit
record" transLation tabLe, which converts aLL non-printabLe characters to
bLanks. If dcb.ORG# = %TERMINAL, the characters are not so transLated.

2. If fpt write.V.DVBYTE.BIN# is set, the data in the buffer is sent to the
FEP in-binary mode. ALL bits in the data are significant; each
double-word in the buffer (72 bits) results in the transmission of nine
8-bit ASCII characters.

If fpt write.V.DVBYTE.BIN# is not set, the data is sent to the FEP in
ASCII mode. Each 9-bit byte in the buffer has its high-order bit stripped
off, and the remaining 8 bits prepared for transmission.

3. If fpt write.V.DVBYTE.TRANS# is set, the 8-bit characters derived from
step (2) above are transmitted exactly; no output optimization, tab
expansion, or cursor positioning (including VFC and CR/LF) is done. If
fpt write.V.DVBYTE.TRANS# is not set, the data is processed through the
output optimizing logic, has its parity set as appropriate, and is sent.

Transparency and M$READ

M$READ behaves almost as an mirror image of M$WRITE. If a transparent-mode
read is issued, the data characters received on the line are stored in the
user's buffer (in ASCII mode only, BINary input from ASYNC lines is not
implemented); the CP-6 input editing functions (escape sequences, backspace,
DEL, etc.) and echoing are disabled. When using a transparent read, the "read
complete" condition can occur from one of several causes:

• Enough bytes have been received to fill the user's buffer completely;

• An activation character has been received and the program specified (via
the M$STRMCTL service, with the flag VLP TRMCTL.V.ACTONTRN# set) that
transparent-mode reads are to honor the current activation character set
(which may be specified via the M$EOM service);

• or, a read timeout condition (specified by M$EOM) has occurred.

Issuing a transparent-mode read puts the terminal into transparent-input mode;
the terminal remains in this mode until a non-transparent read is issued.

CE62-00 Transparency and M$READ 9-7

Performing Transparent/Non-transparent I/O

To perform I/O with a Tektronics (or HP, or any other) graphics terminal which
expects to send and receive transparent data, first, open a DCB to the ME#
device, specifying FUN=UPDATE and ORG=TERMINAL. This ensures that unit-record
transLation is not performed.

To output to the terminaL, issue one or more MSWRITE requests with the
fpt write.V.DVBYTE.TRANS# bit set. Whenever possibLe, it is preferabLe to
buffer Large amounts of information in the host and to issue big MSWRITEs «=
2048 bytes) to the output DCB. While short (e.g., 10-byte) writes wiLL work,
the overhead invoLved in performing rapid burst of short writes can
significantly degrade the performance of both the host program and the FEP
being used.

To perform an operation such as "return current position of graphics
crosshairs", use a sequence such as the following:

1. Write any output currently buffered (see step 2 under "Transparency and
MSWRITE");

2. Issue an MSTRMPRG service request, specifying that any input currently in
the FEP's buffers be discarded;

3. Issue an MSEOM service, setting the read timeout to 1 ten-millisecond
interval (the minimum);

4. Issue a 1-byte transparent MSREAD. Expect this read to ALTRET with a
"read timed out" indication; if it returns normally, go back to step 2.
This process will help to ensure that any input that the user may have
typed ahead wi Ll be flushed and wi II not interfere with the
terminaL-enquiry operation, and wiLL ensure that the terminal is placed in
transparent-input mode before the response to step 6 is received (which
might not happen on a heavily-loaded FEP if this step were omitted).

5. If the operation being performed is one in which the terminal is supposed
to answer immediately (e.g., "report terminal status"), issue an MSEOM
specifying a timeout value somewhat greater than the communication
network's end-to-end turnaround delay plus the time required for the
terminal to respond (e.g., approximately 5 seconds for a Tektronics
connected to a local FEP). If the operation being requested requires the
terminal user to take manual action (e.g., "position crosshairs and hit a
key, please"), issue an MSEOM specifying a timeout value of 0 (to disable
timeout) or of 1 minute (for exampLe).

6. Issue a transparent MSWRITE, sending the character sequence to make the
terminal perform the necessary "answerback".

7. Issue a transparent MSREAD, specifying a buffer large enough for the
terminal's most verbose response. This read may ALTRET with a "read timed
out" if the terminal sends fewer bytes than the buffer specified; this
condition must be handled in a fashion appropriate for the terminal in
question.

8. Issue an MSEOM service specifying TIMEOUT=O to disable the read timeout.

NOTE: Performing only steps 1 and 5-8 may be sufficient for some graphics
terminals. However, taking steps 1-8 ensures correct operation.

CE62-00 Performing
Transparent/Non-transparent I/O

9-8

Us. of Comgroups

The program shown in Figure 9-2 iLLustrates the use of comgroups. To make the
exampLe more interesting, two comgroups are used. As in most comgroup
appLications where the data coming in from the comgroup arrives in bursts, it
is desirabLe to use no-wait 10. This aLLows the program to perform other
tasks when there is no activity on the comgroup.

This program opens two comgroups, sets up each one to aLLow terminaL connects
but not DCB connects, and then starts a no-wait read on each comgroup. Data
received from any connected terminals is written through M$LO; any terminaL
sending "OFF" wi lL be disconnected from its comgroup.

As with most comgroup appLications <and with most CP-6 appLications), there
are severaL ways to perform any given task. The exampLe below is not intended
to be the best soLution to the probLem but serves to iLLustrate some basic
techniques.

The most important thing to be Learned from this exampLe is to avoid the
temptation to place too much processing in the event routine. Most first-time
no-wait 1/0 programmers wilL process the event and re-issue the read in the
event routine, which can Lead to disaster.

When an event occurs, the current program status is pLaced in the user's TCB
which is treated as a push down stack. A RETURN from the event handLer pops
the stack, and controL returns to the point where the event took pLace. If
another read is started whiLe stiLL in the event routine, before the stack is
popped, another event can occur and another frame can be pushed. The number
of frames the TCB can hoLd is a LINK option, but there is a finite Limit.
EventuaLLy, if the comgroup has several records in it that the read wilL
satisfy, and a read is re-issued before the stack is popped, the stack wiLL
overfLow. Even using the DO INHIBIT feature wilL not prevent stack overfLow,
because any monitor service call creates an opportunity for event processing
to occur.

Therefore, the suggested course is the one shown beLow: save the pertinent
information from the stack frame, set a flag, and return. More compLicated
processes wiLL usuaLLy utiLize a Linked List of events; a short cut was used
here because of the Limited nature of the exampLe. Since the processing to be
done on any given event is Limited, the read is not re-issued untiL after aLL
processing is compLete; thus only one event need be saved per comgroup. An
information table is used, indexed by comgroup number.

The event code for both the open and the read caLls is used as the index to
the information tables. Note that the event code is offset by one, i.e.,
tabLe index 0 is event 1. Event codes of zero have a speciaL meaning, see the
Monitor Services Reference ManuaL for more information.

To get the most from this example, refer to the Monitor Services Reference
ManuaL for the defauLts taken for the various FPTs. WhiLe reLativeLy few
options are specified, correct running of this program depends on severaL
defauLts in VLP CGCP.

This program aLso makes use of the "anonymous queue". Comgroup terminaLs
aLways write into the anonymous queue; that is why the M$READ caLL need not
specify a station. Reviewing the M$READ, M$OPEN/SETSTA, and VLP SETSTA
defauLts is essentiaL to understanding the exampLe.

CE62-QQ Use of Comgroups 9-9

I*M* CGDEMO - Comgroup demo *1
CGDEMO: PROC MAIN;

XEQU CG1 READ=1;
XEQU CG2-READ=2;
XEQU CG1-0PEN=1;
XEQU CG2=OPEN=2;

DCl I UBIN;

DCl CG1 DCB;
DCl CG2 DCB;
DCl MSlO DCB;

DCl 1 CGTABlE (0:1) STATIC SYMDEF,
2 PROCESS BIT(1) ALIGNED, 1* set when read complete *1

1* set by admin messages from
the comgroup *1

2 ADMIN BIT(1} ALIGNED,

2 DCB# UBIN,
2 EVENT UBIN,

2 BUF VECTOR,
2 ARS-UBIN,
2 STATION CHAR(8);

DCl CG1 BUF CHAR(140) STATIC;
DCl CG2-BUF CHAR(140) STATIC;

DCl EVENT ROUTINE ENTRY ASYNC;

XINClUDE CP_6;

XEQU CG;

1* This comgroups DCB *1
1* The comgroup admin message

event, not the no-wait event,
valid only when ADMIN is true *1

1* this comgroups buffer *1
1* size of current record *1
1* name of this records originating

station *1

XFPT-EVENT (UENTRY=EVENT_ROUTINE, STClASS=CONSTANT);

X F P T WA IT (F P T N =·~'l Z Z, S T C lAS S = CON S TAN T ,

XFPT OPEN

XFPT OPEN

CE62-00

UNITS=86399); 1* 24 * 60 * 60 -1, WAIT is mod 24 hours *1

(FPTN=OPEN CG1,
ASN=COMGROUP,
DCB=CG1,
EVENT=XCG1 OPEN,
NAME=CG1 NAME,
SETSTA=MY STATION,
FUN=CREATE,
EXIST=NEWFIlE,
CTG=YES,
SHARE=All,
AU=YES);

(FPTN=OPEN CG2,
ASN=COMGROUP,
DCB=CG2,
EVENT=XCG2 OPEN,
NAME=CG2 NAME,
SETSTA=MY STATION,
FUN=CREATE,
EXIST=NEWFIlE,
CTG=YES,
SHARE=All,
AU=YES,
IXTNSIZE=30)i

STCLASS=CONSTANT,

STClASS=CONSTANT,

Figure 9-2. Sample Use of Comgroups (cont. next page)

Use of Comgroups 9-10

%VLP NAME (FPTN=CG1 NAME, STCLASS=CONSTANT,
NAME=' CG1T);

XVLP NAME (FPTN=CG2 NAME, STCLASS=CONSTANT,
NAME='CG2T);

XFPT_CGCTL (CGCP=VLP_CGCP);

XVLP CGCP (DCBCONLGL=NO,
MAXMC=140);

XFPT READ (FPTN=READCG,
WAIT=NO);

STCLASS=CONSTANT,

XVLP SETSTA (FPTN=MY STATION, STCLASS=CONSTANT,
MYSTATION=TME');

%FPT ACTIVATE (DISCONNECT=YES,
- STATION=DISC_STATION);

XVLP_STATION (FPTN=DISC_STATION);

1* Establish the event handler *1
CALL M$EVENT (FPT_EVENT);

1* Open the comgroups *1
CALL M$OPEN (OPEN CG1) ALTRET(KEEP IT SIMPLE);
CALL M$OPEN (OPEN CG2) ALTRET(KEEP_IT=SIMPLE);

1* Set up comgroup parameters *1

FPT CGCTL.V.DCB# = DCBNUM(CG1);
CALL M$CGCTL (FPT CGCTL) ALTRET(KEEP IT_SIMPLE);
FPT CGCTL.V.DCB# ~ DCBNUM(CG2); -
CALL M$CGCTL (FPT_CGCTL) ALTRET(KEEP_IT_SIMPLE);

1* Setup the CGt'able *1
CGTABLE.BUF (0)
CGTABLE.BUF-(1)
CGTABLE.DCB#(O)
CGTABLE.DCB#(1)

VECTOR (CG1_BUF);
= VECTOR (CG2 BUF);
= DCBNUM(CG1);
= DCBNUM(CG2);

1* Issue the first reads. Subsequent reads are done in PROCESS *1
DO I = 0 TO 1;

END;

READCG.V.DCB# = CGTABLE.DCB#(I);
READCG.BUF = CGTABLE.BUF (I);
READCG.V.EVENT# = 1+1; -
CGTABLE.PROCESS(I) = 'O'B;
CALL M$READ (READCG) ALTRET(KEEP IT_SIMPLE);

1* Loop, checking for read completes using the PROCESS flag. If
there is nothing do, goto sleep. The M$WAIT will be interrupted
by an event, the RETURN from the event routine comes back to the
instruction following the M$WAIT PMME. *1

DO WHILE ('1'B); 1* DO FOREVER *1
DO I = 0 TO 1;

IF CGTABLE.PROCESS(I)
THEN CALL PROCESS(I);

END;
1* Since a read could have completed in the interim, test flags

again before sleep, since it wiLL be a very deep sLeep *1

Figure 9-2. SampLe Use of Comgroups (cont. next page)

CE62-00 Use of Comgroups 9-11

DO INHIBIT;
IF NOT CGTABLE.PROCESS(O) AND NOT CGTABLE.PROCESS(1)

THEN CALL MSWAIT (ZZZZ); 1* A wait is aLways interruptabLe *1
END; 1* Do inhibit *1

END; 1* DO WHILE *1

KEEP IT SI"PLE:
-CALL MSMERC; 1* Let the monitor print the error *1

1*

*1

This routine does the actuaL work, based on the contents of the
active tabLe entry.

PROCESS: PROC(I);

DCl I UBIN;

DCl 1 OUTBUF STATIC,
2 * CHAR(O) INIT('From I),

2 STATION CHAR(S),
2 * CHAR(O) INIT(':'),
2 * CHAR(O) INIT (' I),

2 EVENT CHAR(20);

DCL CHAR3 CHAR(3) BASED;

XFPT WRITE (FPTN=WRITELO,
- DCB=MSLO);

OUTBUF.STATION = CGTABLE.STATION(I);
IF CGTABLE.ADMIN(I)
THEN DO;

OUTBUF.STATION = CGTABLE.STATION(I);
DO CASE(CGTABLE.EVENT(I»;

CASE(XCG TCON#);
OUTBUF.EVENT='Connected';

CASECXCG TDSC#);
OUTBUF.EVENT='Disconnected';

CASECXCG TBRK#);
OUTBUF.EVENT='Break';

CASECELSE);
CALL BINCHARCOUTBUF.EVENT, CGTABlE.EVENTCI»;

END; 1* Do case *1
WRITElO.BUF = VECTORCOUTBUF);
CALL MSWRITE CWRITELO);
END; 1* Admin event *1

ELSE DO; 1* not admin *1

CE62-00

OUTBUF.STATION = CGTABlE.STATIONCI);
WRITElO.BUF = VECTORCOUTBUF);
WRITElO.BUF-.BOUND = WRITELO.BUF .BOUND - SIZECCOUTBUF.EVENT);
CAll MSWRITE CWRITElO);
IF CGTABlE.ARS(I) = 0 THEN WRITElO.BUF = VECTORCNIL);
ELSE DO; -

WRITElO.BUF = CGTABLE.BUF (I);
WRITELO.BUF-.BOUND = CGTABLE.ARS(I)-1;
END;

CAll MSWRITE (WRITElO);
IF CGTABlE.ARS(I) = 3 AND VBASECCGTABlE.BUF CI»->CHAR3 = 'OFF'
THEN DO;

DISC STATION.STATION# = CGTABLE.STATION(I);
FPT ACTIVATE.V.DCB# = CGTABLE.DCB#CI);
CALL "SDEACTIVATE CFPT ACTIVATE) WHENALTRETURN DO;

- END; 1* ignore AlTRET *1
END;

END; 1* not admin *1 - ..

Figure 9-2. Sample Use of Comgroups (cont. next page)

Use of Comgroups 9-12

1*

*1
Reset the need-to-process flag and re-issue the read

CGTABlE.PROCESS(I) = 'O'B;
READCG.V.DCB# = CGTABlE.DCB#(I);
READCG.BUF = CGTABlE.BUF (I);
READCG.V.EVENT# = 1+1; -
CAll M$READ (READCG);
RETURN;

END PROCESS;
END CGDEMO;
XEOD;
1*

*1

The event routine is entered when the previously
issued comgroup read ;s complete. The TCB must be big enough
to handLe concurrent events since an event from one comgroup
can occur during processing of another. In this case, onLy
two events can occur at once, which wiLL fit in the default
TCB size.

EVENT ROUTINE: PROC ASYNC;

DCl STK$ PTR;
DCl I UBIN;

DCl 1 CGTABlE (0:1) SYMREF,
2 PROCESS BIT(1) ALIGNED,
2 ADMIN BIT(1) ALIGNED,
2 DCB# UBIN,
2 EVENT UBIN,
2 BUF VECTOR,
2 ARS-UBIN,
2 STATION CHAR(S);

XINClUDE CP_6;

DCl BTCB PTR SYMREF;
X B $ T C B (S T C lAS S = " B") SED (B $ T C B $) ") ;
XBSNWIO (STClASS="BASED(STKS)");
XB$CGAURD;

STK$ = B$TCB.STK$;
I = B$NWIO.EVID-1;
IF BSNWIO.CGPARM.MSGTYP# = '*AUEV'
THEN DO;

CGTABlE.ADMIN(I) '1 'B;
CGTABlE.EVENT(I) = VBASE(CGTABlE.BUF (I»->B$CGAURD.EVENT;
END;

ELSE CGTABlE.ADMIN(I) = 'O'B;
CGTABlE.ARS(I)=B$NWIO.ARS;
CGTABlE.STATION(I)=B$NWIO.CGPARM.STATION#;
CGTABlE.PROCESS(I) = '1 'B;
RETURN;

END EVENT_ROUTINE;

Figure 9-2. SampLe Use of Comgroups

To create devices which can be used as terminaLs for this program, use the
session shown in Figure 9-3 as an example.

CE62-00 Use of Comgroups 9-13

!SUPER

*** CP-6 SUPER 803 ***

CMD*CR DEV CGDEM02
OPT*USE=CG
OPT*COMGROUP=CG/CG2.account
OPT*SNAME=STATION2
OPT*END

STATION2 created.
CMD*END

*** NO Errors ***
*** NO Warnings ***

Substitute the account you will run CGDEMO in for ".account".

Figure 9-3. Use of SUPER for Comgroup Definition

CE62-00 Use of Comgroups 9-14

Section 10

Shared Run Unit.

Advantage. of Shared Run Unit.

CP-6 provides a sophisticated capabiLity for sharing the unchanging portions
of frequentLy-used run units (that is, those portions of the program which
cannot be aLtered by the program). This sharing Leads to a duaL advantage:

• Total system memory usage is greatLy reduced. For exampLe, no matter how
many users are accessing the FORTRAN compiler, there is only one copy of
the compiler's executable code in memory.

• System response is substantiaLly improved. After a shared run unit has
been loaded into memory once, its procedure does not need to be loaded
again when other users invoke it. Thus, users invoking the processor
receive a much faster response; the total number of disk 1/0 operations
decreases sharply, increasing disk throughput for other users of the same
disk packset.

Shared Program.

Programs can be divided into three categories, based on their ability to be·
shared:

1. Programs that must be shared to operate properly. All special shared
processors (debuggers, command processors, shared libraries, and alternate
shared libraries) fall into this category. Processors such as these are
normally placed in "shared" status when CP-6 is initialized, and remain in
that status.

2. Programs that cannot be shared. Programs in this class include programs
with more than one level of overlay, programs which have been LINKed with
the NSHAREABLE option, and programs stored in "star" files.

3. Programs that may be shared, but need not be. Most CP-6 processors and
user-written programs fall into this category.

CE62-00 Shared Programs 10-1

System Configuration to Permit Sharing

The sharing process operates, based on three options specified in the TIGR
deck at system initialization time:

• The SPROC option is used to specify the name, type, and overlay count for
a processor which is to be "always shared" (category 1). Generally, this
option is used to list those command processors (CP), debuggers (DB),
shared libraries (lI), and alternate shared libraries (AS) necessary for
normal operation of the system. It is possible to use this option to
specify that a standard processor (SP) should be "always shared", but this
is not recommended.

• The SPSPACE option may be used to reserve space in the shared-processor
tables for additional category-1 processors, which are to be installed at
a later time by use of the SPIDER processor. This option may be used to
permit installations to develop, install, and test new shared libraries,
etc. without requiring that the system be rebooted each time the new
libraries are changed.

• The SPAUTOSPACE option is used to reserve space in the shared-program
tables for ordinary, shareable run units (category 3).

Auto-Sharing Proce ••

The normal run-unit sharing process is performed automatically by the CP-6
monitor; it is essentially invisible to the users of a shared run unit, and
requires no intervention by either the system operator or the system manager.
Programs are placed in shared status when users invoke them, and remain in
this status until there is no further use for them.

Programming Considerations

Almost all programs written for the CP-6 system are capable of being shared.
Shared programs can acquire and release memory and DeBs, access files and
issue all but a very few monitor service requests without having to take the
program's "shared" status into consideration. A shared program can (if
necessary) issue an MSUNSHARE monitor service request, which creates a new,
unshared copy of the program's procedure on behalf of the user currently
running the program.

Programs written in a high level language (FORTRAN, Pl-6, PASCAL, etc.) are
generally very good candidates for sharing, as all executable instructions and
constants generated by these languages' compilers are automatically placed in
"read/execute/no-write" memory.

Programs or subroutines which are being written in assembler (GMAP or BMAP)
should be coded with data stored separately from procedure and without
self-modifying procedure in order to take advantage of the auto-sharing
process.

To ensure that a large, overlaid program can be shared in an effective manner,
care should be taken when the program's overlay structure is designed.
Specifically:

• The program may have only one level of overlays; that is, an overlay
cannot have other overlays subordinate to itself.

CE62-00 Programming Considerations 10-2

• The program shouLd not have a Large number of overLays at LeveL 1. Each
overLay in the program requires one entry in the shared-program tabLe; a
program with (for exampLe) 200 overLays might not fit into the tabLe at
aLL, or might fit onLy if most other shared programs were purged from the
tabLe.

If it is necessary to run programs with Large numbers of overLays, the
programmer shouLd request that the system manager increase the SPAUTOSPACE
entry in the TIGR deck to accommodate the Large programs. It is aLso
important to note that not aLL overLays of an overLaid program which is
shared need to be in memory at once.

Usage Considerations

Under normaL circumstances, a CP-6 user accessing a shared run unit need not
be concerned about the program's shared status. Differences in behavior
appear onLy when a shared program is being debugged via the DELTA debugger (or
some other, user-written debug tooL).

The major difference between debugging a shared program and debugging an
unshared program concerns changes to the program's "procedure" memory pages.
These pages may be accessed by the program, but can never be modified by the
program itseLf. The DELTA debugger is permitted to modify data in the
procedure pages of an unshared program, but cannot modify information in the
procedure pages of a shared program (because any such modifications would
affect every user associated with the program!). This restriction has severaL
impLications:

• The user cannot use DELTA's MODIFY command to change instructions or
constant data stored in the procedure portion of a shared program.

• The user cannot set procedure breakpoints (via DELTA's AT) in a shared
program's procedure.

• The user cannot set data breakpoints (via DELTA's WHEN command) when
executing a shared program, or when executing an unshared program which- is
associated with a shared library.

• The user cannot step through a shared program (via DELTA's STEP,
STEP ONE CALL, or] commands).

The user may work around this restriction in one of several ways:

• The user may choose to invoke the program via the IBEX command
"!START rununit UNDER DELTA" (or "!U" foLLowed by "!rununit"). When a run
unit is invoked in this fashion, the auto-sharing process is bypassed; the
user receives an unshared copy of the program, and may proceed with normal
debugging operations.

• If the user associates DELTA after the program has begun executing (via a
controL-Y "! !DELTA" sequence) or after the program aborts, DELTA informs
the user that a "shared program associated - use UNSHARE to set
breakpoints or modify procedure". At this point, the user must issue the
DELTA command "UNSHARE" before setting instruction breakpoints or
modifying the program's procedure; the user must issue the command
"UNSHARE ALL" before setting data breakpoints.

• Some sophisticated programs make use of the M$ALIB monitor service to
associate and pass commands to DELTA, to dispLay data or modify the
programs' procedure pages or perform other interesting tasks. If programs
modify constant data or procedure, it is necessary for the programs to to
issue an M$UNSHARE request before issuing the initial M$ALIB, to remove
themselves from "shared" status and thus permit DELTA to modify their
procedure.

CE62-00 Usage Considerations 10-3

Section 11

Specia' Shared Proce •• or.

A special shared processor is a run unit that may co-exist and interact with
the user program. It differs from shared run-time libraries in that it
resides in a working space other than that of the user; it is not LINKed with
the user program.

The CP-6 system recognizes three types of special shared processors:

• Alternate Shared Libraries

• Debuggers

• Command processors.

Only one processor of a given type may be associated with a user at any time.
The standard CP-6 system includes I-D-S/II as the supplied alternate shared
library, DELTA as the debugger, and IBEX as the command processor.
Installations may provide additional special shared processors for their own
use in any of the three categories.

All special shared processors of a given type reside in a dedicated working
space quarter concurrently with one another. Working space 6 is dedicated to
Alternate Shared Libraries, working space 5 is dedicated to debuggers, and
working space 4 is dedicated to command processors. The page table for a
special shared processor is also contained within its working space.

A special shared processor run unit must consist of only pure procedure; there
can be no DCBs or static data. Special shared processors may use the MSGETDCB
monitor service to acquire DCBs in the user's Read-only Segment and use
dynamic data segments for all non-constant data. A data segment area is
provided in each user's own working space for each type special shared
processor. One type of special shared processor does not have access to the
data segments of another special shared processor, nor does the user have
access to the data segments of any of the special shared processors. Refer to
the map of user virtual memory in the Monitor Services Reference Manual,
Appendix E.

It is, then, the procedure portion of a special shared processor that resides
in its own working space. The procedure portion is shared by all users
associated with the processor.

Entry to a special shared processor causes a change of domain, thereby
changing the areas of memory to which the processor has access. The areas of
user memory to which the processor has access are determined by its type and
are described in the discussion of each type of special shared processors.

CE62-QQ Special Shared Processors 11-1

Guideline. for All Special Shared Processors

The foLLowing discussion presents information needed to create a speciaL
shared processor. Information that is common to the three types of speciaL
shared processors is incLuded in this subsection; information that is specific
to each type of speciaL shared processor is presented Later in this document.

Special Shared Processor Initialization

Because speciaL shared processors do not contain static data or DCBs,
initiaLization for aLL three types of speciaL shared processors is simiLar.
The foLLowing subsections discuss interfaces and techniques availabLe for
speciaL shared processor initiaLization.

Processor Initialization Area (PIA)

Sixteen words of static in the user working space are reserved for use by
speciaL shared processor initiaLization routines. This area is shared by aLL
speciaL shared processors associated with the user program, so any process
that references that area shouLd be inhibited to avoid being interrupted by
another speciaL shared processor that may aLso modify the contents of the PIA.
This space is framed by a descriptor in the speciaL shared processor's Linkage
Segment. A pointer to this area, BSPIAS, is SYMDEFed in the moduLe
B USRPTRS D.:LIBRARY. If the speciaL shared processor is not to be LINKed
with this-moduLe, a pointer to this area may be buiLt as foLLows:

%INCLUDE B SEGIDS C.:LIBRARY;
DCL PIA BIT(36) CONSTANT INIT(%PIASID);
DCL PIAS REDEF PIA PTR;

ALso, this segment may be referenced in BMAP moduLes as foLlows:

CE62-QQ

SEGREF
LDPn

PIASID
PIASID,DL

Processor InitiaLization Area (PIA) 11-2

Initial Entry and Obtaining AUTO Storage

When a debugger or alternate shared library is entered, it must first
determine if this is the first time it has been called so that it may perform
any initialization functions that may be required. The module that contains
the special shared processor entry address must be written in BMAP, because on
the first entry the AUTO segment must be obtained and initialized and on
subsequent entries the AUTO stack must not be obtained, but must be
re-initialized to its initial (empty) values.
NOTE: Command Processors do not have this requirement as the data segments
for a command processor are released on every M$CPEXIT service request. A
command processor's entry module may be written in PL-6 by declaring that
procedure as the "MAIN" procedure. A call to X66 MAUTO will be generated by
the compiler. -

A simple test to determine if this is an initial entry to a special shared
processor is to determine if an AUTO segment has been allocated. This may be
accomplished as follows:

SEGREF
SEGREF

* LDI
LDP2
LDP1
INHIB
STD2
LXL1
INHIB
AN X1
ER X1
TZE

AUTOSID
PIASID

=04010
AUTOSID
PIASID
ON
0,,1
0,,1
OFF
=0100600,DU
=0100600,DU
NOTFIRST

Set HEX & OVRFL mask

Store the AUTO descriptor in the PIA
Load the descriptor access flags

Test Read, Not empty, Present

Segment previously aLlocated, not first

AUTO storage for a special shared processor must be in a data segment. A
special shared processor may establish the AUTO stack by making a call to the
appropriate routine in X6U$CSEQU which is an object unit in the :LIBRARY
account. If the need is only to initialize AUTO for possible future use,
X66 MSTATIC should be called. If, however, the calling BMAP module needs AUTO
storage, X66 MAUTO should be invoked. In either case the call is: TSXO
X66 Mxxx. The following word is assumed to be a data word. For X66 MAUTO it
must contain the size of the desired frame in the left half of the word
following TSXO, and must specify an even number of words:

ENTREF X66 Mxxx

* TSXO
ZERO

X66 Mxxx
frame size,O

In either case return is: TRA 1,XO.

Now that the AUTO Stack has been allocated, the BMAP entry module may call
PL-6 subroutines to complete any initialization functions.

The AUTO data segment may be re-initialized on subsequent entries to the
special shared processor as follows:

NOTFIRST
LDP2
LDXO
SXLO
AWD

CE62-00

AUTOSID,DL
-5,DU
0,,2
4,,2

Point to base of AUTO

Set current frame offset
Point to first frame

Initial Entry and Obtaining AUTO Storage 11-3

Obtaining DeBs

A speciaL shared processor must obtain its own DCBs. See the description of
M$GETDCB in the CP-6 Monitor Services Reference ManuaL (CE33) for detaiLs.
Some entries in the DCB table are reserved for special shared processors.
These are mentioned in the discussion of each type of special shared
processor.

Use of Data Segments

Because a special shared processor has no static data, it makes use of Data
Segments in the user working space obtained via either the M$GDS monitor
service described in the CP-6 Monitor Services Reference Manual or the use of
the AREADEF attribute of the PL-6 compiler as described in the CP-6 PL-6
Reference Manual. The data segments for each type of special shared processor
while residing within the user working space are separate from the user data
segments and are not directly accessible by the user. The M$GDS automatically
allocates the appropriate segments based on which domain issued the MSGDS
request.

Once obtained, data segments remain allocated until the current user program
is run down, with the exception of data segments for command processors which
are released on every MSCPEXIT service request.

Exceptional Condition Processing

Exceptional condition processing works basically the same way for special
shared processors as it does for user programs. Any differences are discussed
in the description of exceptional conditions in Section 6 of the CP-6 Monitor
Services Reference Manual. An author of a special shared processor should
take note of:

• MSINT - "Entry to M$INT Procedure"

• MSEVENT - "Event Conditions and Domains"

• MSXCON - "Exit Control and Domains"

Also of interest are monitor services for exiting exceptional condition
procedures that are available only to special shared processors:

• MSINTRTN - Return from MSINT procedure

• MSXCONRTN - Return from MSXCON procedure

CE62-QO Exceptional Condition Processing 11-4

Taking Snapshot Dumps

Taking and anaLyzing snapshot dumps is discussed in the following subsections.

Calling M$SCREECH

A speciaL shared processor may cause an entry to CP-6 recovery for the purpose
of creating a snapshot dump by using the MSSCREECH monitor service. One of
the parameters of this service is the recovery code which aLlows the special
shared processor to indicate what portions of the user memory and the special
shared processor memory are to be written to the dump file. Refer to the
following in Section 8 of the Monitor Services Reference Manual:

• MSSCREECH - RECOVERY

• VlP SCODE

Special Shared Processor Data in Dump Files

The ANlZ processor may be used to examine data belonging to a Special Shared
Processor. CompLete information on ANlZ is contained in the CP-6 System
Support Reference Manual (CE41). The folLowing ANlZ commands may be useful:

• To examine the SpeciaL Shared Processor's Task Control Block:

TCB(ssp) nnn

• To examine the Special Shared Processor's Data Segments:

DU SlS4->O USING nnn, ssp
DU SlS5->O USING nnn, ssp
DU SlS6->O USING nnn, ssp

DU SlS11->O USING nnn, ssp

where nnn is CUN for the current user, or is a specific user number and
ssp is ICP, ASl, or lOB to identify the type of special shared processor.

CE62-00 Special 11-5
Shared Processor Data in Dump Files

Debugging of Special Shared Processors with XDEL TA

This subsection discusses XDELTA and describes its use for the debugging of
Special Shared Processors (debuggers, command processors, and alternate shared
libraries). Specified here is also some generaL information pertaining to the
use of XDELTA for debugging of user programs and the CP-6 Monitor.

XDELTA is a standalone entity which does not depend on the CP-6 Monitor for
control or services. XDELTA uses the mini-I/O system in AARDVARK for all its
input and output requirements. This is the same 1/0 system used at boot-time
and by recovery. With this system XDELTA can read commands (usually patches)
from cards, tape, or the console at boot-time, and can output to the console
or the boot-time printer. The control of XDELTA at boot-time for patching is
described in the Operations Reference Manual (CE34) under System Startup and
Recovery. The other function of XDELTA is its use as an interactive debugger.
XDELTA may be used to debug the Monitor, any user program, or any special
shared processor (command processor, debugger, or alternate shared library).
When being used as a debugger, XDELTA uses the mini-I/O system for reading
commands (from the console or card reader) and for outputting to the console
and the printer. XDELTA reads and writes only through the 10M-connected
system console, and will print only on the 10M-connected printer specified at
boot time.

XDELTA is the same as user DELTA in its general operation and command
repertoire. The major difference is noticed when debugging entities other
than the CP-6 Monitor when none of the program symbols are available. When
debugging the Monitor, the linker defined symbols (ENTDEFs and SYMDEFs) and a
small subset of debug schema are always available along with as much
additional schema as was specified at boot time. (See Operations Reference
Manual, CE34, System Start-up and Recovery.) For the same reason, the @ and #
symbols are not defined except in the Monitor. To reference the patch space
defined by LINK's IPATCH and DPATCH options, one must DEFINE symbols for the
locations B PATCH I and B PATCHD respectively. These symbols can be found in
the LINK map. Other general restrictions are that XDELTA has no provisions
for handling overlaid programs and does not have a data breakpoint (WHEN)
capability.

Using XOEL TA

When using XDELTA to debug any domain other than the Monitor, it is important
to remember that XDELTA references ASL, ICP, and IDB domains through some
user's linkage segment and page table. The USE command discussed in detail
later establishes which domain is to be examined. The most frequently used
form of the USE command is as folLows:

USE USER[#nn], domain

ALL users of the same ICP will cause XDELTA to reference the same actual pages
of memory when referencing the Iep's instruction segment (SLSO), but aLL other
references wilL be unique to each user. For this reason, it is usuaLLy best
to debug a command program, ASL, or debugger which has only one user
associated with it. In generaL it is best to debug these domains on a
quiescent system if at aLL possibLe. ALL speciaL shared processors are aLways
shared; therefore, if a breakpoint is pLanted in a special shared processor
via the address domain of one user, any other user of the same speciaL shared
processor can trigger the same breakpoint.

Debugging IDBs (Debuggers)

The following technique is useful for initially planting a breakpoint in a
debugger:

CE62-00 Using XDELTA 11-6

1. Enter XDELTA via the DELTA keyin.

2. Place a Monitor breakpoint at SSU$DELTAGO.

3. GO

4. Start up the user which associates the debugger to be tested.

5. When the breakpoint is reached, the debugger is about to be entered. The
USE command UU,IDB will give access to the debugger for the purpose of
planting breakpoints. Using the LINK map for the debugger, DEFINE
appropriate symbols for the modules to be debugged and specify the wanted
breakpoints.

Debugging ICPs (Command Processors)

The following technique is useful for initially planting a breakpoint in a
command processor:

1. Enter XDELTA via the DELTA keyin.

2. Place a Monitor breakpoint at SSC$ACPENT.

3. GO

4. Start up the user which associates the command processor to be tested.

5. When the breakpoint is reached, the command processor is about to be
entered. The USE command UU,ICP will give access to the command processor
for the purpose of planting breakpoints. Using the LINK map for the
command processor, DEFINE appropriate symbols for the modules to be
debugged and specify the wanted breakpoints.

Debugging ASLs (Alternate Shared Libraries) and User Programs

The following information is useful when debugging ASLs and user programs with
XDELTA.

Alternate Shared Libraries are called directly from the user domain without
involving the Monitor. For this reason it is necessary to first "catch" the
user program before planting breakpoints in the ASL. On a quiescent system
this may be accomplished by the following technique:

1. Enter XDELTA via the DELTA keyin.

2. Place a Monitor breakpoint at FMM$ASSMRG.

3. GO

4. Cause the user program which will call the ASL to be fetched.

5. When the breakpoint is reached, both the user program and the ASL (if any)
will be accessible. To access the user program enter the USE command UU.
To access the ASL enter the USE command UU,ASL.

Note: If the system is not sufficiently quiescent to "catch" the appropriate
user, use SPY.X to find out what user number the user program will run as.
Then use an IF S CUN = .nn clause on the Monitor breakpoint specified in Step
2.

CE62-00 Using XDELTA 11-7

Debugging ASLs at Recovery

When debugging the portion of an ASL that is called at the time of System
Recovery, use the following steps to set breakpoints in the ASL:

1. Entry to XDELTA is made following the "DO YOU WANT DELTA?" question,
which comes out to the system console just as the system is rebooted.
Just answer yes to the question and the system will go to XDELTA.

2. From GHOST1's link map, find the ENTDEF ASLSRECOVER. A Link map for
GHOST1 can be obtained by using the linker MAP command on the GHOST1 run
unit supplied with the CP-6 release tape.

3. Place a breakpoint in GHOST1 at this address. (GHOST1 is the current user
at this time so just specify UU to address it.)

4. When the breakpoint is hit, specify UU,ASL and plant whatever breakpoints
you need to debug the ASL.

It should be remembered that all breakpoints planted in the user by the
debugger under test will be first reported to XDELTA. The GOTRAP command
should be used to pass these faults on to the user program.

Operational Considerations When Using XDEL TA

Initial entry to XDELTA may be caused by the keyin DELTA on the system
console. This is usually adequate. If, however, this does not work or it is
undesirable to have the KEYIN system ghost as the current user, then XDELTA
may be entered by typing CNTRL-Y, CNTRL-Y, RETURN (or ESC, ESC, EOM on some
older consoles.)

Entry to XDELTA may also be made by causing the machine to perform an EXECUTE
fault via the maintenance panel or DPU. This procedure is different for each
type of CPU and is described fulLy in the Operations Reference Manual, CE34,
under System Start-up and Recovery. (N.B. It is not always possible to
proceed correctly from XDELTA if it is entered via an EXECUTE fauLt.) The·
EXECUTE fault may also be used to interrupt XDELTA from a lengthy command such
as DUMP. In this case there is no probLem with continuing.

CE62-00 Operational
Considerations When using XDELTA

11-8

Addressing with XDELTA - Domain Specification

The USE command specifies to XDELTA what is to be addressed for all memory
references. Depending on what this command specifies, XDELTA will reference
real memory locations, virtual locations through a specified page table, or a
domain of virtual space specified by some combination of linkage segments and
page tables. When XDELTA is entered, a default USE command is assumed which
sets addressability to the currently executing domain. This can be the
Monitor, a user program, or an ICP, lOB, or ASL executing on behalf of a
particular user. When this default addressability is established, XDELTA will
address anything in the current process's domain including segments framed by
descriptors on the argument and parameter stacks, as well as those framed by
the current process's descriptor registers.

USE REAL(,AARDVARK]
USE REAL(,XDELTA]
USE REAL(,.offset]
e.g. UR

USE PT@.pta
e.g. UPT@.120400

USE MON
e.g. UM

USE USER,USER
e.g. UU

USE USER#.nn,USER
e.g. UU#.21

USE USER@.pta,USER
e.g. UU@.102030

USE USER[#.nn],ASL
USE USER(@.pta],ASL
e.g. UU,A

USE USER(#.nn],IDB
USE USER(@.pta],IDB
e.g. UU#.33,ID

USE USER[#.nn],ICP
USE USER(@.pta],ICP
e.g. UU,IC

USE USER[#.nn],MON
USE USER[@.pta],MON
e.g. UU#.53,M

USE
e.g. U

CE62-00

Addresses real memory locations directly.
Optional argument adds appropriate bias
for AARDVARK, XDELTA, or whatever is
specified.

Address through any page table. pta is
the 18 bit page table address as it
appears in WSPTD (word address modulo 64).

Address through Monitor's linkage segment
and Monitor's and current user's page
tables.

Address current user through his linkage
segment and page table. ",USER" is
assumed if omitted.

Address user number .nn through his
linkage segment and page table.

Address user whose page table is at
page table address .pta through that
page table and his linkage segment.
(.pta is the 18-bit word address of the
page table modulo 64.)

Address ASL through page table and
appropriate linkage segment of the
specified user.

Address debugger through page table and
appropriate linkage segment of the
specified user.

Address command processor through page
table and appropriate linkage segment of
the specified user.

Address the Monitor through its page
table and linkage segment and the page
table of the specified user.

Resets addressing to that of the executing
process at the time of entry to XDELTA.

Addressing
with XDELTA - Domain Specification

11-9

Note: XDELTA allows data access to memory through type 1 descriptors. This
means that the special symbols SLSR, SASR, SPSR, and SSSR may be used as
pointers in a pointer qualified reference such as:

SLSR->.26

XDELTA allows modification of memory through descriptors that have only read
access to memory, and onto pages that are write protected.

Control of XOEL TA's Input and Output

The commands which affect XDELTA's input and output are READ, OUTPUT, ECHO,
and to some extent DUMP. XDELTA has only one input stream, which is used for
reading commands. This input stream is directed by the READ command. The
available sources for commands are the system console, the card reader, and,
during the boot process only, the patch deck. The patch deck is a collection
of input from the boot tape, the card reader, and the system console, under
control of commands to AARDVARK. (Reference the Operations Reference Manual,
CE34, System Start-up and Recovery.) During debug sessions, commands may only
come from the system console or the card reader. The card reader must be the
10M-connected card reader known to AARDVARK at boot time.

The READ command:

R[EAD] P[ATCH]

R[EAD] C[ARD]

R[EAD] M[E]

Read commands from AARDVARK controlled
patch deck.

Read commands from the card reader. At
End-Of-Deck input reverts to the console.

Read commands from the system console.

XDELTA has two output streams. One, called the echo stream, directs the
output of echoed commands and the output of the DUMP command. (Commands are
echoed whenever they are read from a device other than the system console.)
This stream is controlled by the ECHO command. The other output stream is
called the output stream and is used for all other output (except command
prompts) and is controlled by the OUTPUT command. The only options for these
commands are LP, ME, and NO. ME is the system console and LP is the
10M-connected line printer known to AARDVARK at boot time. NO turns off the
stream. The ECHO stream defaults to LP, and the OUTPUT stream defaults to ME.

EC[HO] M[E]

EC[HO] L[P]

EC[HO] N[O]

OU[TPUT] M[EJ

OU[TPUTJ L[P]

OU[TPUT] N[O]

Echoed commands and output of DUMP command
go to the system consoLe.

Echoed commands and output of DUMP command
go to the Line printer.

Throwaway output of command echoing
and the DUMP command.

Direct output of aLL commands except
DUMP to the system console.

Direct output of aLL commands except
DUMP to the line printer.

Do not print the output of commands.

The DUMP command may optionaLLy specify an output device, LP or ME, which is
effective onLy for the single command.

DU[MPJ
or DU[MP]

CE62-00

O[N] M[E]
O[N] L[PJ

Control of XDELTA's Input and Output 11-10

The LP option on these commands specifies the printer known to AARDVARK at
boot time. AARDVARK exercises some degree of control over this device in that
if AARDVARK is given the skip option, "S", at boot time in response to its
request to ready the printer, AARDVARK sets a flag indicating that all
subsequent output to that device through mini-I/O is to be ignored. If XDELTA
printed output is desired and this skip condition has been set, the following
sequence must be followed to reset the flag:

>MINI
AARDVARK HERE

? OU LP
? GO

>DUMP

Control of Faults

During normal system operation, all program faults are handled by the system
fault handler in the Monitor without XDELTA's awareness. In order to allow
XDELTA to function, faults must be given to XDELTA whenever one or more
breakpoints are set. This function is handled automatically by communication
between XDELTA and the system fault handler. In order that the user of XDELTA
have control over the handling of faults other than breakpoints, XDELTA has
the KEEP command. The KEEP command specifies which classes of faults XDELTA
is to report (KEEP) and which to give back to the system fault handler for
normal processing. XDELTA will keep control of just Monitor SCREECHes, just
Monitor faults, or all faults. When debugging the Monitor it is usually
desirable to have XDELTA report any Monitor faults, but not user faults. When
debugging any other domain, however, it is usually necessary to have XDELTA
report on all faults. For this reason it is recommended that debugging of
these domains take place on a relatively quiescent system. Whenever XDELTA
reports a fault it brings the entire system to a halt and prompts for
commands. XDELTA can be directed to return control of a reported fault to the
system for normal handling with the GOTRAP command.

KE[EPJ S[CREECHJ

CE62-QQ

Instructs XDELTA and the Monitor to give
control to XDELTA just before any SCREECH
occurs. This option alone does not cause
any system overhead for fault handling,
all faults are directly handled by the
system fault handler without XDELTA's
involvement.

Note: When XDELTA reports a SCREECH, the
current environment is that of the SCREECH
call unless the SCREECH was caused by a
Monitor fault in which case the current
environment is that at the time of the
fault. This permits, in the case of a
Monitor fault, the commands "GO" or
"GO location" to continue execution
without allowing the SCREECH to occur.
When a SCREECH with a severity of 5 (snap)
is reported to XDELTA, the GO command
causes execution to resume without creating
the snapshot dumpfile. In order to allow
any SCREECH to continue normally, XDELTA
must be given a QUIT command. (N.B. If
XDELTA is given a QUIT command at any other
time it causes a DISK boot!)

Control of Faults 11-11

KE[EP] M[ON]

KE[EP] A[LL]

G[O] T[RAP]

Instructs the system to give fauLt controL
to XDELTA and instructs XDELTA to report
onLy those fauLts caused by the Monitor.
User fauLts, incLuding those caused by any
speciaL shared processor, are handed back
to the system for normaL processing.

Instructs the system to give fauLt handLing
to XDELTA and instructs XDELTA to report
all faults.

Instructs XDELTA to return control of the
currentl~ reported fault to the system for
normal fault processing. This is onLy
vaLid if entry to XDELTA was caused by a
program fault.

Inactivation of Breakpoints by XDEL TA

Some times while debugging domains other than the Monitor, XDELTA wiLL s~t
certain breakpoints in user or special processor domains inactive. This is
due to the fact that the user through which the breakpoint was specified has
been run down by the Monitor and the pages which contain the breakpoints are
no Longer accessible through that user. When this occurs, KILL the
breakpoints and start over. This wilL usuaLly mean having to SPIDER in a new
copy of the special shared processor, as the oLd copy will have breakpoints
(DeraiL instructions) left in it.

Guideline. for Command Proce •• or.

A command processor is to controL the conditions under which a terminal
session or a batch job takes place. Through command processor commands, th~
user controls resources, files, devices, comgroups, and terminaLs and causes
user programs and standard shared processors to be executed.

User-written command processors reside in the command processor working space
concurrently with IBEX and with one another. Only one command processor can
be associated with a given user at a given point in time.

The foLLowing guideLines are provided for the system programmer who creates a
command processor.

CE62-QQ Guidelines for Command Processors 11-12

Entry to Command Processor

A command processor becomes associated with a user whenever:

• The command processor has been specified via the SUPER user authorization
CPROC option, or

• One command processor issues an MSCPEXIT monitor service request
specifying that another command processor be associated with a user.

Once associated with a user, a command processor is entered at its start
address under any of the following conditions:

• The user is at Job Step (as is the case on the initial entry to the
command processor).

• The user has aborted and is about to be run down.

• A time-sharing user has typed a Control-Y sequence on his terminal.

• A user program has issued an MSYC monitor service request.

There is no direct linkage between the command processor and the user program;
instead, the interface is in the monitor.

The CP-6 monitor communicates the reason for entry to the command processor
via bit settings in BSJIT.CPFLAGS1 as follows:

CP JSTEPfI
CP-RUNDfI
CP-YCfI
CP-YCPMMEfI

The user is at Job Step.
The user is about to be run down.
The time-sharing user typed a Control-Y sequence.
The user program issued an MSYC.

Another interesting bit in BSJIT.CPFLAGS1 is CP LOGOFFfI. This bit is set
whenever the system detects a line hang-up of a-time-sharing terminal or an
operator abort of a user. This bit may be set in conjunction with any of the
other bits mentioned above. When set, it indicates to the command processor
that no more job steps are allowed.

Command Processor Capabilities

The privileges afforded the command processor domain are:

• the ability to issue an MSCPEXIT monitor service request

• the ability to issue an MSFINDPROC monitor service request

• the ability to issue an MSACCT monitor service request

• the ability to issue an MSOCMSG monitor service request

• the ability to issue an MSSCREECH monitor service request

• the ability to issue an MSXCONRTN monitor service request

• write access to the JIT

• w r it e access to the *A f i l e to effect DCB assignments
(See "Effecting DCB Assignments" later in this section.)

CE62-QQ Command Processor Capabilities 11-13

• write access to the *s file for accounting purposes
(See MSACCT in Section 9 of the CP-6 Monitor Services
Reference Manual and Appendix A of the CP-6 System
Support Reference Manual, STARACCSKEY and ACCT KEY.)

DCBs for Command Processor

There are three DCBs reserved for Command Processors. Because the first
command processor written was called IBEX, these DCBs are called MSIBEX,
MSIBEX1 and MSIBEX2. These DCBs should be referred to by their EQUs in
CP_6_SUBS.:LIBRARY, i.e., MSIBEX#, MSIBEX1#, and MSIBEX2#, respectively.

A command processor may also use MSDO and MSUC as appropriate. Additional
DCBs may be acquired by issuing an MSGETDCB monitor service request, unless
the command processor is executing on behalf of an interrupted run unit and
has used all of the DCB slots.

The CP-6 system generally recognizes that MSLL is used for listing purposes by
the command processor. This DCB is acquired dynamically, or by passing one of
the reserved DCB numbers through FPT_GETDCB.DCBNUM_ when calling MSGETDCB.

If acquiring MSLL, first attempt to acquire a dynamic DCB. This is because an
interrupted run unit may already have an MSLL defined. The command processor
should use that DCB if possible.

The MSUC DCB is only useful for interacting specifically with the user
terminal of timesharing users (not the normal command stream). At other times
it is tied to the "bit bucket" or NO# device.

The MSDO DCB is used for diagnostic output. If a command processor is
effecting a DeB assignment for a user DCB that is also being used by the
command processor (i.e. MSDO or MSLL), the command processor should close that
DCB and reopen it to insure that the new assignment takes effect immediately.

Effecting DCB Assignments

A special form of the OPEN FPT, with the desired options set, is to be written
into the *A file. The record is keyed by the name of the DCB.

The OPEN FPT should be invoked with PFMT="PTR". This changes all the vectors
to pointers. Any necessary VLPs should be contained in the record and should
be pointed to by the appropriate vector name.

DeBs #1 through #4 require some special processing. These DCBs are reserved
for specification of files on the run unit invocation. There are four bits in
the JIT that indicate the specification of these DCBs. They are
BSJIT.PRFLAGS.SI, .UI, .OU and .LS. If records for these DeBs are written to
the *A file, then the bit in BSJIT.PRFLAGS should be set. Upon re-entry to
the command processor, if at job step (BSJIT.CPFLAGS1# & XCP JSTEP# are true),
these flags and the corresponding DCBs should be reset. -

Refer to the following items in Section 14 of this guide:

• Standard Run Unit Invocation Format for Compilers

• DeB Usage Conventions

CE62-00 Effecting DeB Assignments 11-14

Addressing User Memory from Command Processor

The user's Job Information Table (JIT) is of primary interest to the command
processor. The command processor may also receive commands in the user's
command buffer via the M$YC monitor service.

User's JIT

A command processor has write access to the user's JIT through the JIT
descriptor in the command processor's Linkage Segment.

The fields in the JIT are described in detail in Appendix A of this manual.
Those that are of particular interest to the creator of a command processor
are listed below. The command processor should take care that all other
fields in the JIT remain intact.

CPFLAGS1

This word is used by the monitor and the LOGON processor to communicate job
step information to the default command processor. Some of the flags are to
be set by the default command processor to communicate information to the
logoff command processor. This word may also be used by the command processor
to communicate information across job step.

PRFLAGS

This set of flags is used to pass information from the command processor to
standard shared processors or user programs based on the run unit invocation
line or other commands.

CCBUF, CCARS and CCDISP

These fields should be set to reflect the latest run unit invocation.

USRERR and USRDCB

This word contains the error code that describes why the previous run unit
aborted. JIT.USRERR.CODE is non-zero when there is an error to report. If
CP EXIT# is set in JIT.CPFLAGS1 then the command processor should not report
it-now (the exiting processor should have done so), but hold it for processing
later, usuaLly in response to a question mark command. JIT.USRDCB contains
the DCB number that was associated with this error.

USRRNST and USRIC

USRRNST, along with the RNST masks, is used to determine the final status of
the previous run unit. USRIC contains the address of where the user program
terminated.

JSLEV, PSLEV and SSLEV

These three fields are used to control what level of statistics is to be
reported to the user when at jobend (JSLEV), a proprietary processor is
invoked (PSLEV) or at jobstep (SSLEV).

CE62-QQ User's JIT 11-15

MODE

This fieLd specifies the mode in which the user is running: M INT#
(interactive, onLine), M BATCH# (batch), M GHOST# (ghost) or M-TP#
(transaction processing):

NEXTCC

This specifies the source of the next command stream read.

User Parameters for M$YC

In generaL, a command processor is not granted access to memory beLonging to a
user program. However, if the command processor is being entered as a resuLt
of an MSYC monitor service request, the monitor executes LTRAS to invoke the
command processor, making the user's MSYC parameters available through the
command processor's Parameter Stack.

Parameter 0 - frames the command which may consist of a TEXT string of up to
256 characters. The "bound" of this parameter (byte count - 1)
is stored in BSJIT.YCOSZ.

Parameter 1 - frames the V area of the MSYC FPT. Bit 0 is set if ECHO = YES
was specified. Bit 1 is set if NOERR = YES was specified.

The pointers to these parameters are defined in the module B_USRPTRS_D. These
pointers are SYMDEFed as BSPSOS and BSPS1S.

Exit from a Command Processor

The Command Processor communicates the action to be taken for this user via.
the various options of MSCPEXIT. This monitor service is used to:

• Initiate execution of a user program or shared processor.

• Resume execution of an interrupted program (following Control-Y or an MSYC
service calL>.

• Associate a debugger with a (possibly interrupted) user program.

• Remove a user from the system.

Before a Command Processor issues an MSCPEXIT, it must close and release
(MSRELDCB) all its DCBs and, in general, clean up. Data Segments obtained via
MSGDS are released unless CP KEEPDS# is set in BSJIT.CPFLAGS1.

The MSCPEXIT monitor service and its options are explained in the CP-6 Monitor
Services Reference Manual, Section 8.

CE62-00 Exit from a Command Processor 11-16

Guideline. for Debugger.

A debugger can be used to monitor and/or control the execution of a program in
the user domain.

Entry to the Debugger

The debugger is entered under any of the following conditions:

1. Initial entry to the debugger:

a. A program is started under the debugger.
b. The debugger is invoked at Job-Step with no run unit associated.
c. The debugger is invoked after a user program is in execution by

striking Control-Y and asking for the debugger.

2. An overlay of the user's program is loaded.

3. A program is put into execution via MSLINK or MSLDTRC or an MSLINKed to
program is restored.

4. An Exceptional Condition occurs other than:

a. Line hang-up
b. Operator!X key-in
c. Bad call, and the user specified ALTRET.

5. A user is exiting an Exceptional Condition processing procedure.

6. The debugger is associated via an MSALIB Service Request. If the program
making the request is not executing under control of the debugger (see
Item 1), DELTA is thereafter entered only on subsequent MSALIB requests or
for requests to be put under control of the debugger. Note that this may
or may not be the initial entry to the debugger.

When the debugger ;s entered a standard Exceptional Condition frame containing
a copy of the user's Safe-Store frame is placed in the debugger's TCB. The
ExceptionaL Condition Code (BSEXCFR.ECC), Sub-code (BSEXCFR.SUBC) and Event ID
(BSEXCFR.EVID) uniquely identify the condition that caused the entry to the
debugger. The XSUB EXC and XSUB ECCDELTA macros from the system macro library
provide string substitutions for-the values of these fields as indicated in
Tables 11-1 and 11-2.

CE62-00 Entry to the Debugger 11-17

TabLe 11-1. ECCs for Debugger

ECC SUBC Reason for Entry
1---------------------- ----------"--- -"---- -"------------ --

ECC DELTAII

ECC OLAYII

ECC LINKII

ECC LRTNII

ECC ALIBII

CE62-00

SC STARTUII

se JOBSTEPII

se yell

Contains the
Nodell

SC .IILINKII

se MLDTRCII

SC TRTNII
SC-MERCII
SC-MERCSII
SC-RETRYII
SC-RETRYSM
SC-XCONXITII

User program started under the debugger.

Debugger was invoked at Job-Step time.
No Run unit associated.

Post association of the debugger whiLe
the user program is in execution.
BSEXCFR.EVIO contains one of
the foLLowing vaLues:

EVID USERII
EVID-AUTOSII

Overlay has been loaded.
BSEXCFR.EVID contains one of
the following values from the
MSOLAY FPT:

EVID CANCELli
EVID-ENTERII
EVID-NOPATHII

User program entered via MSLINK.

User program entered via MSLDTRC.

MSLINKed to program has been
restored.

Debugger was invoked via MSALIB.
BSALIB[FJ.CMDSZ contains the byte
size of the command.
BSALIB[FJ.REPLYSZ contains the
byte size of the reply area.
BSALIB[FJ.WHO is set as follows:

SC AUSRII - User Program
SC-AASLII - ALternate Shared Library
SC-ASHRII - Standard Shared Processor
SC-EXUOII - Execute-only Run unit

Exit from a user's exceptional
Condition procedure. BSEXCFR.EVID
contains the address of the call.

MSTRTN
MSMERC
MSMERCS
MSRETRY
MSRETRYS
Final Exit from Exit Control. In
this case BSEXCRTN.TYP has the
following values:

XCON EXIT. - MSEXIT
XCON-ERR' - MSERR
XCON-XXXM - MSXXX

Data Break Point

Entry to the Debugger 11-18

ECC

ECC TIMER#

ECC EVENT# -

ECC INT# -

ECC XCON# -

ECC PMME#

ECC ARITH#

ECC PROG# -

ECC ERROR# -

Table 11-2. ECCs for User Exceptional Condition

SUBC

As specified
by user

SC BRK#

SC BYC# -

See CE33
Section 6

See CE33
Section 6

See CE33
Section 6

See CE33
Section 6

See CE33
Section 6

Reason for Entry

MSSTIMER specified interval
expired.

Event over which the user has
requested control occurred.

Time-sharing terminal break key.

The debugger request from the Command
Processor when the debugger is already
associated.

User exit condition, normal
or abnormal.

Error on Monitor Service request.
No ALTRET specified on user's call.

User caused an Arithmetic
fault.

User caused a Programmed
fault.

User caused an Error class
fault.

When the debugger is entered because of a user's Exceptional Condition, the
ECC and the remainder of the frame reflects what would have been placed on the
user's TCB had the user not been running under the debugger and had
established control of the specific condition. No determination is made as to
user specified Exceptional Condition control requests. The Exceptional
Condition frame is moved to the user's TCB and the procedure to handle the
condition is entered only when this action is specified via options of the
MSDRTN FPT. {Refer to the description of the SETECC and ECC options below.}

Word 1 of the TCB frame is non-zero if the ASL was in control upon entry to
the debugger. Note that this can happen only if the user has hit Break and
the ASL has not requested break control or if the user has hit Control-Y and
invoked the debugger while the ASL is in control.

CE62-00 Entry to the Debugger 11-19

Debugger Capabilities

The power of the debugger comes from its position of control between the
monitor and the user program for all exceptional conditions. The special
privileges afforded a debugger are:

• the ability to set the data breakpoint software flag in the user's page
table. See MSSSC in Section 8 of the Monitor Services Reference Manual.

• the ability to write on user Instruction Segment and user dynamic data
segment pages.

• the ability to use the MSDRTN monitor service

• the ability to issue an MSSCREECH monitor service request

• the ability to issue an MSXCONRTN monitor service request.

DCBs for Debugger

The DCB Table entry for DCB 9 is reserved for use by the debugger.
should be referred to as MSDELT#; its EQU is in CP 6 SUBS.:LIBRARY.
DCBs used are not protected from use by the user program.

This DCB
Any other

Addressing User Memory from Debugger

The debugger has access to the user's Working Space through descriptors stored
in the Special Descriptor Access descriptor slots in the debugger's Linkage
Segment. The following pointers (which are DEFed in B USRPTRS D) may be used
to access the user's area: - -

BSSPCL1S -> the user's Safe-Store frame
BSSPCL2S -> the user's Linkage Segment
BSSPCL3S -> the user's Argument Segment
BSSPCL4S -> the user's Parameter Segment
BSSPCL5S -> the user's Instruction Segment

The first four of these descriptors are type 1; the user's Instruction Segment
descriptor is type O. The Special Access Descriptors 2 through 5 are a copy
of those from the user's Safe-Store frame. Unless the debugger is being
entered as a result of an MSALIB from an ASL, shared processor or execute-only
run unit, the Page Table write control bit for procedure pages in the user's
ISR is set prior to entry to the debugger; it is reset when the debugger
returns to the monitor via MSDRTN.

The monitor normally enters the debugger via the LTRAD instruction. However,
if the debugger is being entered as a result of an MSALIB request, the monitor
executes LTRAS to invoke the debugger making the user's "SALIB FPT available
through the debugger's Parameter Stack:

Descriptor 0 - frames the Debugger name.
Descriptor 1 - frames the area containing the command.
Descriptor 2 - frames the area where the debugger may return a reply.
Descriptor 3 - frames the V area of the MSALIB FPT. FPTSALIB V may be used to -define the based structure of this area.

The pointers to these parameters are defined in the module B_USRPTRS_D and are
SY"DEFed as BSPSOS, BSPS1S, BSPS2S and BSPS3S.

CE62-00 Addressing User Memory from Debugger 11-20

Ten words of user data space are set aside for use by debuggers. These words
are inserted by the linker and are found by a pointer which is located in the
second word of the user's first procedure page. The sixth through tenth words
of this space are reserved for use by XDELTA.

Data Breakpoints

A debugger may use the MSSSC service to cause a data breakpoint flag to be set
for specified page(s) owned by the user (see MSSSC in the Monitor Services
Reference Manual, Section 8).

Once this flag is set, the monitor causes the debugger to be entered if the
user causes a fault because of trying to modify data on a page for which this
flag is set. ECC is set to ECC DBRK# in the TCB frame upon entry to the
debugger. The debugger can cause the data breakpoint flag to be reset by
again using the MSSSC service or by the MSDRTN DBRK option (see MSDRTN in the
Monitor Services Reference Manual, Section 8).

Exit from a Debugger

The debugger returns control to the user program via the MSDRTN service
request. This monitor service is used to:

• Change the registers and/or IC of the user program

• Resume execution of the user program

• Terminate execution of the user program

• ALTRET to the user's MSALIB monitor service request

• Disassociate the debugger from the user program

The MSDRTN monitor service and its options are explained in the CP-6 Monitor
Services Reference Manual, Section 8.

CE62-00 Exit from a Debugger 11-21

Guidelines for Alternate Shared Libraries

An Alternate Shared Library (ASL) is a special shared processor that can be
called directly from the user program via the CLIMB instruction. Its primary
use is for the implementation of a data base manager; it may also be used to
implement other applications such as I/O graphics packages, etc.

Associating an ASL with the User

An ASL is associated with a user whenever that user begins execution of a run
unit that has an ASL specified in the HEAD record or when the ASL is the
object of an MSALIB monitor service request.

There are two methods of associating an ASL with a user run unit. One method
is to automatically associate it when the run unit is invoked. This happens
if the head record of the run unit contains an ASL name. The head record
contains an ASL name if either the ALTSHARELIB option is specified in the link
of the run unit, or one of the object unit head records that comprise the run
unit contains an ASL name (COBOL associates I-D-S/II by using the latter
method). In either case, the LINKer uses the ASL to satisfy the references to
the symbols that correspond to the function being provided by the ASL.

An ASL may also be associated dynamically at run-time by a user program that
issues a call to the MSALIB monitor service. In this case the ASL is not
present until the MSALIB is issued; no ALTSHARELIB on the LINK command or ASL
name in the head record is necessary. Instead the ASL should be included in
the LINK command as if it were a normal object unit. This causes the LINKer
to satisfy references to the functional entry points of the ASL run unit
without forcing it to be automatically associated.

Defining the Function Codes of the ASL

The creator of the ASL must define symbolic function names to distinguish the
various operations the ASL performs. This is necessary since there is only
one actual entry point into the ASL. The symbols used to identify the
functions are defined in a module, SYMDEFed, and that module is linked as part
of the ASL.

Because it is the symbolic values that define the functions, and not the
contents of the memory locations associated with the symbols, the symbols are
usually equated to specific sequential constants in a BMAP routine.

For example, for an ASL capable of performing function "X" and function "Y",
the BMAP module contains:

SYMDEF
SYMDEF

ASLSFUNCTION X
ASLSFUNCTION-Y

ASLSFUNCTION X
ASLSFUNCTION-Y

EQU
EQU

2
3

Note that the value of is skipped. This is because the value of 1 is
reserved to indicate ASL recovery and should only be used for that function.

CE62-QQ Defining the Function Codes of the ASL 11-22

User Calls to an ASL

The CP-6 Operating System provides a CLIMB instruction interface for
communication between the user and an associated ALternate Shared Library. A
sLot has been reserved in every user's Linkage Segment for the ASL Entry
Descriptor. The descriptor is built from information contained in the ASL run
unit. When a user program wishes to cause entry to an ASL, it issues a CLIMB
instruction in which the S,D field is coded to reference the Linkage Segment
descriptor that points to the ASL.

This CLIMB instruction is generated by the PL6 compiLer when the user calls a
procedure that is defined using the CONV type 2 attribute of the ENTRY
decLaration.

If no parameters are to be passed:

DCL asl function name ENTRY CONV(2,O)
CALL asT function_name;

If parameters are to be passed:

DCL asL function name ENTRY(1) CONV(2,code1)
CALL asT function_name(asL_vector_List);

where:
code1 = the number of parameters to be passed.

The "asL function name" is pLaced in the object unit as a SYMREF rather than
an ENTREF. The SYMREF is satisfied by the LINKer from the ASL associated with
the run unit as described above. This is the function code that is passed
from the user program to the ASL in the XO register.

The "asl vector list" contains a vector framing each parameter that is to be
passed to the ASL. This is simiLar to the FPT passed to the monitor on a
monitor service request.

For more information on the descriptors, parameter stacks, and CLIMB
instructions, see DPS 8 Assembly Instructions reference manual (DH03).

A user program that calLs an Alternate Shared Library relinquishes controL
until the Library returns controL to the user. User-established break
controL, timer run-out, and event reporting are deferred until the ASL returns
control to the user program.

CE62-00 User Calls to an ASL 11-23

Building an ASL System File

A programmer who is creating an ASl should provide other users with an INCLUDE
file that contains the ENTRY declarations for each service the ASl performs.
This INCLUDE file could also contain macros to generate the vector lists for
those services that require parameters.

As expLained above the INCLUDE fiLe contains the DCls that correspond to the
symbolic function codes for the ASl entry points:

DCl ASlSFUNCTION X ENTRY CONV(2,0);
DCl ASlSFUNCTION-Y ENTRY CONV(2,3);

These declare statements define the two ASl functions and indicate that they
require zero and three vectors respectiveLy.

The macros to generate the vector List for the ASl functions can be built in
the same manner as those contained in the CP 6 system file. That is, the
structure for each function contains a List of vectors foLlowed by a LeveL 2
sub-structure that is framed by the first vector in the structure. The level
2 sub-structure contains the additionaL parameters necessary for the function.
This whoLe structure is generated within a MACRO that can specify defauLt
options and parameters. An exampLe of ASlSFUNCTION_Y is as foLLows:

XMACRO ASlSVECTORS Y(NAME=ASlSVECTORS Y,
OPTION1(YES='1'B,NO='0'B)='1 T B,
OPTION2(RED=1,ORANGE=2,YEllOW=3,GREEN=4,BlUE=5,INDIGO=6,VIOlET=7)=0,
INPUT=NIl,
OUTPUT=NIl);

DCl 1 NAME STATIC,

XMEND;

2 V VECTOR INIT(VECTOR(NAME.V»,
2 INPUT VECTOR INIT(ADDR(INPUT»,
2 OUTPUT VECTOR INIT(VECTOR(OUTPUT»,
2 V DAlIGNED,

3 OPTION1# BIT(1) INITCOPTION1) UNAl,
3 OPTION2# UBIN(3) INITCOPTIONT2) UNAl;

The user who then wishes to access the ASl buiLds a program that contains the
foLLowing statements:

A: PROC MAIN;
XINClUDE ASlSSYSTEM FILE

XASlSVECTORS YCNAME=FUNCTION_Y,INPUT=IN,OUTPUT=OUT,OPTION1=YES);

DCl IN CHAR(1S) STATIC INITC'HeLLo there ASl');
DCl OUT CHAR(1S) STATIC;

CAll ASlSFUNCTION_YCASlSVECTORS_Y);

END A;

Refer to the CP-6 Pl-6 Reference Manual (CE44), Section 10 for details on the
CONV attribute and Section 12 for MACRO definition. Calls from other
languages could be done through a BMAP interface.

CE62-00 Building an ASL System File 11-24

Entry to ASL

The main routine of the ASl should be a BMAP routine. This is necessitated by
two facts. First, the function code associated with this call is placed in
Register XO by the CLIMB instruction. Second, the BMAP routine has to
determine whether the ASl has been entered before or not and set up an AUTO
Stack as described earlier in this section.

The routine makes use of an initialized data segment. Any segment besides
AUTO may be used. The following example uses Dynamic segment 8. Thus the
BMAP routine assumes the following Pl-6 declarations are part of the ASl code:

DCl 1 ASl STATUS STATIC AREADEF(DS8SID) ALIGNED,
2 INITED UBIN WORD INIT(O),
2 BREAK UBIN WORD INIT(O);

DCl ASl STATUSS PTR CONSTANT SYMDEF INIT(ADDR(ASl_STATUS»;

The entry module for the example program would be coded as follows:

* ENTDEF ASlSENTRY The ASl start address is ASlSENTRY

*
*
*
*

Define the symbols that correspond the the functions
supported by the Alternate Shared library

*

SYMDEF
SYMDEF
SYMDEF

ASlSRECOVERY
ASlSFUNCTION X
ASlSFUNCTION-Y

*

EQU
EQU
EQU

ASlSRECOVERY
ASlSFUNCTION X
ASlSFUNCTION-Y

1
2
3

* References to the ASl subroutines written in Pl-6

*

*

ENTREF
ENTREF
ENTREF
ENTREF

ASlSINIT
ASlSRECOVERY
ASlSROUTINE X
ASlSROUTINE-Y

ENTREF X66 MSTATIC and external BMAP routines

* * References to external segments

* SYMREF
SYMREF
SYMREF

BSPIAS
BSAUTOS
BSISS

We will link with B USRPTRS D

*
*
*

References to the AREADEF structure.

SYMREF
INITED EQU
BREAK EQU

ASl STATUSS o -

*
*
* AlTRETFlG
INTRTN
XXX

*

1

CP-6 monitor

BOOl
EQU
EQU

MSINTRTN MACRO

service macros

400000
17
3

- -

* This macro generates a monitor service call that returns
* control to the user domain just as if the normal ASl
* return were issued. In addition it causes the operating
* system to cause a BREAK event to be reported on the
* user. Thus the ASl can transfer breaks it receives

CE62-00 Entry to ASl 11-25

*

MSXXX

*

*

to the user program when it is ready.
PMME 17+ALTRETFLG
ENDM
MACRO
This macro generates a standard MSXXX.
PMME XXX
ENDM

ASLSENTRY NULL

*
*
*

*

EAX7
TMOZ
CMPX7
TPL
LOI

0,0
BADFCN
ASLSFUNCTION Y
BAOFCN -
=04010

Copy function code to X7
If legal codes are all positive
Highest defined function code
Out of range
Set HEX and OVRFL mask

See if this is the initial entry

LDP7
lOA
TNZ
lDA
STA

ASl STATUSS
INITED,,7
SET AUTO
1,Dl
INITED,,7

Pointer to AREADEF structure
Have we been entered before
Yes
Indicate have been entered
And save

* Initialize an AUTO stack

*

*
*
*

*
*
*

TSXO
ZERO

X66 MSTATIC
0,0-

Call any ASL initialization routines.

TSX1
ZERO
TRA

ASlSINIT
0,0
FUNCTION

Set PR2 to current top of auto stack

SETAUTO LDP2 BSAUTOS
0,,2
1,2,2

Make sure base pointer set up.
Offset to top AUTO frame
Compute pointer to top.

*

LXL2
SWOX

* Now go do the requested function
*
FUNCTION LDX1 CHKBREAK,OU For PL-6 returns

TRA *+1,7
TRA BA 0 F C N 0 is not used in this example
TRA ASlSRECOVERY 1 is reserved for recovery
TRA ASlSROUTINE X -TRA ASlSROUTINE Y -

*
* RET is the common exit point

*
*
*
*
*
*
*
*

It is the ASl's responsibility to save BREAK events received
when it is in control and report them to the user. The
ASl must set up an ASYNC routine to intercept breaks, and
must set the flag STATUS.BREAK to be non-zero. This
interface will check that flag and report the break event
to the user if it is set.

CHKBREAK NULL

*
*

CE62-00

INHIB
LOP7
LDA
TZE

ON
ASL STATUSS
BREAK,,7
RET

Set pointer to status block
Check for break during ASL
None. Normal return

Break hit during ASL execution. Report event to user.
LDA O,OL Clear old flag
STA BREAK,,7

Entry to ASL 11-26

*
RET

*

MSINTRTN

NOP
EXIT
INHIB OFF

* Issue MSXXX if the user passes a bad function code

*
BADFCN MSXXX

END

ASL Capabilities

ASLSENTRY

An ASL has the following special abilities:

• the ability to access the *1 file

• the ability to issue an MSSCREECH monitor service request

• the ability to issue an MSXCONRTN monitor service request

• the ability to issue an MSINTRTN monitor service request.

DCBs for ASL

There are no special DCBs for ASLs. However, an ASL may use the DCBs defined
by the user, or acquire his own DCBs using the MSGETDCB monitor service. The
XONLY option can be used to disallow user programs from accessing the ASL's
DCBs. See the discussion of MSOPEN in the Monitor Services Reference Manual
for details.

Addressing User Memory from ASL

Each parameter passed by the call to the ASL corresponds to a vector specified
as part of the user's call. When the ASL is entered, the hardware builds a
descriptor on the parameter stack associated with each of these vectors. Thus
to access the first parameter, the ASL uses a pointer with the SEGID
referencing parameter stack entry zero. The pointers for up to nine
parameters are defined in the module B USRPTRS D. These pointers are SYMDEFed
as BSPSOS, BSPS1S, BSPS2S ••• BSPS8S. -

Thus in the exampLe above, to access the memory framed by
ASLSVECTORS Y.INPUT , BSPS1S wouLd be used. To access
ASLSVECTORS-Y.V.OPTIONS1, BSPSOS wouLd be used. In the second case a
structure must exist that defines the V area of the ASLSVECTORS Y structure,
without the additionaL vectors. (The pointer BSPSOS wiLL point-to
ASLSVECTORS Y.V; using this pointer in combination with the ASLSVECTORS
structure wilL not work). This can be automaticaLly generated by the X
account tooL FPTCON which converts the V areas of FPT-Like structures for use
after a CLIMB has been issued.

If the creator of an ASL defines functions that require more than nine
parameters, pointers to these parameters may be built as follows:

DCl BSPS9 UBIN CONSTANT INIT(9);
DCl BSPS9S REDEF BSPS9 PTR;

CE62-00 Addressing User Memory from ASL 11-27

Exit from an ASL

When the ASL has completed its functions, it must return to the user. This is
done by performing an outward CLIMB, which restores the user environment and
returns control to the user program. Note that this is done in the example
above. When the PL-6 routine ASLSROUTINE X or ASLSROUTINE Y simply returns,
control transfers to 'RET' in the setup routine which performs the outward
CLIMB.

ASL Recovery

The key to ASL recovery is the *1 file. This file can only be accessed from
the ASL's domain. The existence of the *1 file causes GHOST1 to associate and
call the ASL during the recovery procedure with a function code of 1. It is
the ASL's responsibility to write records to the *1 that are useful during the
rec'Overy process. As an example, I-D-S/II writes before-images of updates to
the' *1 and uses them to back out of partial updates if a deadlock, abort or
recovery occurs.

As part of the recovery process, the JIT for each user is written to the dump
area of the system disk. After the system has re-booted itself, the system
ghost, GHOST1, is entered where further recovery functions are performed. One
of these functions is to access the user JITs from the dump area to determine
if ASL recovery entry is indicated.

If the disk address of the FIT for the *1 file in the user's JIT is non-zero,
that address is moved to the *1 entry of GHOST1's BSJIT.STAR.DA and the file
is opened (test mode) in order to locate the FPARAMS. The PROCATTR
information in the FPARAM table (if any) ;s assumed to contain the TEXTC name
of the ASL that was associated with the user at the time of the Screech.

This name is then used as the NAME parameter of an MSALIB request. If the ASL
has been established as a Special Shared Processor via the SPROC command to
TIGR, the ASL is now associated with GHOST1.

GHOST1 then causes entry to the ASL via the CLIMB instruction. No parameters
are passed; XO is set to 1. The routine to handle recovery must, therefore,
correspond to a function code of 1. At this point the ASL may do whatever is
required for closing the data base.

CE62-00 ASL Recovery 11-28

Debugging an ASL

An ASL may be debugged using XDELTA as described earlier in this section.
However, since the interface between the user program and an ASL is through
the hardware CLIMB interface and not through the monitor, considerable
debugging may be accomplished by linking the ASL object units and the user
program object units into one run-unit and using DELTA to debug.

The modules that make up the ASL may be linked with the modules of the user
program that calls that ASL to form a single run-unit that is to be executed
in the user domain under DELTA. The calls from the user program to the ASL
need to be changed from the inter-domain CLIMB via the ASL entry descriptor to
an intra-domain CLIMB through the user's Instruction Segment descriptor. The
difference between an inter-domain CLIMB and an intra-domain CLIMB is as
follows. The IC is loaded from the 18-bit entry location contained in the
Entry descriptor if the CLIMB is inter-domain, and from the address field of
the CLIMB instruction if intra-domain.

In order to make an intra-domain call to an ASL, the actual CLIMB instruction
must be coded in BMAP. Because of this fact, the PL-6 routines that call an
ASL must be modified to call a BMAP interface module which will then issue the
intra-domain CLIMB instruction.

In order to facilitate switching from an inter-domain interface to an
intra-domain interface, it is recommended that all the calls to the ASL be
issued from a BMAP module. That is, the ASL system file would contain the
macros to generate the vector lists, and ENTRY declarations for the BMAP
routine names for each function of the ASL. The BMAP routine names cannot be
the same as the ASL function names although they should be similar enough to
identify the functions they represent. The ASL system file would then
contain:

XMACRO ASLSVECTORS X(

XMEND;
XMACRO ASLSVECTORS Y(

XMEND;
DCL ASFUNCTION X ENTRY(1);
DCL ASFUNCTION-Y ENTRY(1);

The PL-6 routine wishing to call the ASL contains statements as follows:

XINCLUDE ASLSSYSTEM FILE;
XASLSVECTORS_X;

CALL ASFUNCTION X(ASLSVECTORS X);
CALL ASFUNCTION=Y; -

The BMAP routine then issues the CLIMB to the ASL. It is a simple matter to
code the BMAP routine to issue both types of the CLIMB instruction depending
on a patch being applied. Thus only one version of the interface is necessary
to user either a real production ASL or a debug version.

Once the type of ASL has been decided upon and called, it is no longer valid
to switch types. That is, if an inter-domain call is issued to the ASL, it is
not valid to modify the BMAP interface to start issuing intra-domain calls and
vice versa. The reason is that the two different types will actually call two
different instances of the ASL (one that is a real ASL and one that is linked
into the user's run unit).

The folLowing is an exampLe of a BMAP interface routine. This routine is
coded to issue the inter-domain CLIMB by defauLt. If the instruction at DEBUG
is modified to a NOP, the routine issues intra-domain CLIMBs. (Of course it
is also necessary to LINK the ASL code into the run unit as mentioned
previousLy, for the intra-domain CLIMB to work).

CE62-00 Debugging an ASL 11-29

*
*
*

Define the entry points to this routine

ENTOEF
ENTOEF
ENTOEF

ASRECOVERY
ASFUNCTION X
ASFUNCTION-Y

*
*
*

Define patchable location for ease of access

ENTOEF OEBUG
*
*
*

Reference the ASL function codes

SVMREF
SVMREF
SVMREF

ASLSRECOVERV
ASLSFUNCTION X
ASLSFUNCTION-V

*
*
*

Reference to the ASL main entry point

ENTREF ASLSENTRV
*
*
*

Other external references that are required

ENTREF X66 AUTO 1
ENTREF X66-ARET-
SVMREF BSAUTOS

SEGREF ISSID
SEGREF ASLENTSID

*
* Now the actuaL code
* ASRECOVERV

TSXO
ZERO
LDXO
LOX1
TRA

ASFUNCTION X
TSXO
ZERO
LDXO
LDPO
LOX1
TRA

ASFUNCTION V
TSXO
ZERO
LDXO
LDX1
TRA

DEBUG

INTRA

TRA
TRA
TRA
TRA
TRA
TRA

NULL
X66 AUTO 0
4,0- -
ASLSRECOVERV,DU
O,DU
DEBUG

NULL
X66 AUTO 1 - -4,1
ASLSFUNCTION_X,DU
,0
3,DU
DEBUG

NULL
X66 AUTO 0
4,1- -
ASLSFUNCTION V,DU
O,DU -
DEBUG

INTER,1
INTRA,1
INTRAO
INTRA1
INTRA2
INTRA3

Auto references

For intra-domain CLIMB
For inter-domain CLIMB

Set up 0 parameters

Put function code in XO
Set for no vectors

Set up 1 parameter

Put function code in XO
PRO now points to the vectors
Set for 3 vectors
Go issue the CLIMB

Set up 0 parameters

Put function code in XO
Set for no vectors

Default to issue inter-domain
Issue intra-domain CLIMB
Intra-domain. Zero vectors.
Intra-domain. One vector.
Intra-domain. Two vectors.

Three vectors.
*
*
*
*
*
*
*

The ENTER generates a CLIMB instruction. Since an entry
descriptor is not being used in the intra-domain version,
the ASL entry point must be specified. The XO indicates
that the function code is already in XO and should not
be modified.

CE62-00 Debugging an ASL 11-30

INTRAO

INTRA1

INTRA2

INTRA3

*

ENTER
TRA
ENTER
TRA
ENTER
TRA
ENTER
TRA

ISSID,O,(ASLSENTRY,O)
FIXAUTO
ISSID,1,(ASLSENTRY,0)
FIXAUTO
ISSID,2,(ASLSENTRY,0)
FIXAUTO
ISSID,3,(ASLSENTRY,0)
FIXAUTO

* An intra-domain climb destroys the SEGIDs of all the
* pointers in the pointer registers. Since PL-6 assumes
* that PR2 always points to the top of auto, it is necessary
* to restore PR2 before returning.
FIXAUTO LDP2 BSAUTOS Pointer to the beginning of AUTO

LXL2 0,,2 Negative current size.
SWDX 1,2,2 Reset PR2 to correct value
TRA RETURN

* * The ENTER generates a CLIMB instruction. The symbol
* ASLENTSID references an entry descriptor that describes
* the ASL and already contains the start address of the ASL.
* The ENTER therefore does not specify the ASL entry point.
* Again, XO indicates that the function code is already
* in XO.
*
INTERO

INTER1

INTER2

INTER3

* RETURN

*

ENTER
TRA
ENTER
TRA
ENTER
TRA
ENTER
TRA

TSX2

END

ASLENTSID,O,(O,O)
RETURN
ASLENTSID,1,(0,0)
RETURN
ASLENTSID,2,(0,0)
RETURN
ASLENTSID,3,(0,0)
RETURN

X66 ARET

The ASL entry module must also be changed to recognize the different
conditions under which the ASL might be called. In the case of an
intra-domain CLIMB the ASL should use the existing AUTO segment instead of
initializing its own. In addition it is sometimes useful to know within the
ASL if it has been called by an inter-domain or intra-domain CLIMB.

To facilitate the latter case, a field can be defined in the structure
ASL STATUS as follows:

DCL 1 ASL STATUS STATIC AREADEF(DS8DIS),
2 INITED UBIN WORD INIT(O),
2 BREAK UBIN WORD INIT(O),
2 INTRA UBIN WORD INIT(O);

Where ASL STATUS.INTRA is non-zero if an intra-domain CLIMB is issued. The
following-is an updated version of this interface:

* ENTDEF ASLSENTRY The ASL start address is ASLSENTRY

*
*
*
*

Define the symbols that correspond the the functions
supported by the Alternate Shared Library

*

SYMDEF
SYMDEF
SYMDEF

ASLSRECOVERY
ASLSFUNCTION X

CE62-00

EQU
EQU

ASLSRECOVERY
ASLSFUNCTION X
ASLSFUNCTION-Y

2

Debugging an ASL 11-31

ASLSFUNCTION Y EQU 3
•
• References to the ASL subroutines written in PL-6
•

•

ENTREF
ENTREF
ENTREF
ENTREF

ASLSINIT
ASLSRECOVERY
ASLSROUTINE X
ASLSROUTINE-Y

ENTREF X66 MSTATIC and external BMAP routines
•
• References to external segments
•

SYMREF
SYMREF
SYMREF

BSPIAS
BSAUTOS
BSISS

We will link with B USRPTRS D

•
•
•

References to the AREADEF structure.

SYMREF ASL STATUSS
INITED EQU a
BREAK EQU 1
INTRA EQU 2
•
• CP-6 monitor service
•
ALTRETFLG
INTRTN
XXX
•

BOOL
EQU
EQU

MSINTRTN MACRO

400000
17
3

macros

• This macro generates a monitor service call that returns
• control to the user domain just as if the normal ASL
• return were issued. In addition it causes the operating
• system to cause a BREAK event to be reported on the
• user. Thus the ASL can transfer breaks it receives
• the the user program when it is ready.

PMME 17+ALTRETFLG
ENDM

MSXXX MACRO
• This macro generates a standard MSXXX.

PMME XXX
ENDM

•
ASLSENTRY NULL

•
• •

•
•
•

CE62-00

EAX7
TMOZ
CMPX7
TPL
LDI

See if

LDP7
LDA
TNZ
LDA
STA

0,0
BADFCN
ASLSFUNCTION Y
BADFCN -
=04010

this is the initial

ASL STATUSS
INITED,,7
SET AUTO
1,DL
INITED,,7

Copy function code to X7
If legal codes are all positive
Highest defined function code
Out of range
Set HEX and OVRFL mask

entry

Pointer to AREADEF structure
Have we been entered before
Yes
Indicate have been entered
And save

Check for which type of CLIMB

LDP1
LDP2
INHIB
STD2
LDA
INHIB

BSPIAS
BSISS
ON
0,,1
0,,1
OFF

Get pointer to the PIA
Load Instruction Segment pointer

Store the descriptor in the PIA
Get the Working Space Register #

Debugging an ASL '1-32

ANA =0160,DL
ARS 4
CMPA 6,DL
TZE CKAUTO
LOA 1,DL
STA INTRA,,?

*
CKAUTO LDP2 BSAUTOS

INHIB ON
STD2 0,,1
LXL1 0,,1
INHIB OFF
LXL1 0,,1
AN X1 =0100600,DU
£R X1 =0100600,DU
TNZ NOAUTO

* Use existing AUTO segment
LXL2 0,,2
SWDX 1,2,2
TRA INIT

*

Mask out junk
Shift into place
Is it from inter-domain CLIMB
Yes. Leave flag as is.
Non-zero value
Set flag in ASL STATUS

Store AUTO descriptor in the PIA
Load the descriptor access flags

Load the descriptor access flags
Test Read, Not empty, Present

None yet. Initialize one.

Offset to top AUTO frame
Compute pointer to top.

* Initialize an AUTO stack

*
NOAUTO

*
*
*
INIT

*
*
*

TSXO
ZERO

X66 MSTATIC
0,0-

Call any ASL initialization routines

TSX1
ZERO
TRA

ASLSINIT
0,0
FUNCTION

Set PR2 to current top of auto stack

SETAUTO LOP2 BSAUTOS
0,,2
1,2,2

Make sure base pointer set up.
Offset to top AUTO frame
Compute pointer to top.

*

LXL2
SWDX

* Now go do the requested function
*
FUNCTION LO X1 CHKBREAK,DU Fo r PL-6 returns

TRA *+1,?
TRA BADFCN 0 is not used in this example
TRA ASLSRECOVERY 1 is reserved for recovery
TRA ASLSROUTINE X -TRA ASLSROUTINE Y

*
* RET ;s the common exit point

*
*
*
*
*
*
*
*

It is the ASL's responsibility to save BREAK events received
when it is in control and report them to the user. The
ASL must set up an ASYNC routine to intercept breaks, and
must set the flag STATUS.BREAK to be non-zero. This
interface will check that flag and report the break event
to the user if it is set.

CHKBREAK NULL
INHIB
LDP?
LOA
TZE

ON
ASL STATUSS
BREAK,,?
RET

Set pointer to status block
Check for break during ASL
None. Normal return

*
*

CE62-00

Break hit during ASL execution. Report event to user.
LOA O,OL Clear old flag
STA BREAK,,?

Debugging an ASL 11-33

*
RET

*

MSINTRTN

NOP
EXIT
INHIB OFF

* Issue MSXXX if the user passes a bad function code
* BADFCN "SXXX

END

Linking an ASL

ASLSENTRY

Once coded an ASL must be linked. The following command illustrates linking
of a production ASL:

!LINK ;
B SSPSL D.:LIBRARY,;
ASLSENTRY,;
ASLSPL6SSUBROUTINES,;
B USRPTRS D.:LIBRARY,;
X6USCSEQU::LIBRARY ;

OVER ASL_LIVE (ASLIB,NOSHARELIB)

The ASL then needs to be installed in memory. This can be done on a temporary
basis using the INSTALL command under the SPIDER processor, and on a permanent
basis using TIGR as mentioned above.

The user program is linked using the command:

!LINK ;
USRSMODULE,;
ASLSBMAP INTERFACE ;

OVER USR PROGRAM(ALTSHARELIB=ASL LIVE) - -
To link a debug version of the ASL and user program that issues the
intra-domain climbs, only one link is necessary as illustrated by the
following command:

!LINK
USRSMODULE,;
ASLSBMAP INTERFACE,;
B SSPSL D.:LIBRARY,;
ASLSENTRY,;
ASLSPL6SSUBROUTINES,;
B USRPTRS D.:LIBRARY,;
-OVER USR_PROGRAM_DEBUG(NOALT)

This link produces a warning that indicates the presence of multiple start
addresses for the run unit. This is caused by the fact that both the user's
module USRSMODULE and the ASL module ASLSENTRY are main procedures. This
warning can be ignored. Referencing the user's moduLe first in the LINK
command causes the run unit to start execution at its main procedure and not
the ASL's.

The following RUM can then be applied to change the CLIMB to the the
intra-domain type:

!RUM USR PROGRAM DEBUG
M DEBUG NOP 0 -
END

CE62-00 Debugging an ASL 11-34

If the RUM is not applied and the program is executed, an IPR fault occurs
because the user program tries to issue an inter-domain CLIMB to an ASL that
is not associated with the run unit.

CE62-QQ Debugging an ASL 11-35

Section 12

Run-Time Libr.rie.

Shared Libraries

A shared library is an executable image of a set of shareable sub-programs
which is installed in the :SYS account and is permanently memory resident. A
shared library is constructed by LINK in two parts: shareable procedure and
static data. The shareable procedure is always biased at octal 700000 or
224K. Since a user's instruction segment is limited to 256K, the procedure
portion of a shared library is limited to 32K. The data portion of the shared
library is biased at octal 34 and may be as large as is required. When a
user's program is linked specifying a shared library (implicitly or
explicitly), the library static data space is allocated first in the user's
static data space. All other user static data follows the end of the shared
library's data space. The total for the procedure and constant data is
prohibited from exceeding 224K.

Link Time Association of Shared Libraries

A shared library can be associated at link time by specifying the SHARELIB
option which causes the specified library to be associated with the run unit.
An alternate method is to build an object unit that has the two fields
BSOUHEAD.LNAMSIZ and BSOUHEAD.LNAM filled in appropriately with the desired
library name size and text of the name. In this case the linker will
automatically associate the specified library from the :SYS account. If
multiple library names are specified in the object units making up the
program, the linker will associated the library that has the highest
precedence. The following is a list of shared libraries in order by
precedence (high to low):

:SHARED COMMON - for programs compiled or interpreted by FORTRAN, APL, or
BASIC -

:SHARED COBOL - for programs compiled by COBOL

:SHARED RPG - for programs compiled by RPG

:SHARED SYSTEM - for programs compiled by PL6.

CE62-00 Link Time
Association of Shared Libraries

12-1

Run Time Association of Shared Libraries

When a user's program is linked with a shared library, the user's run unit
only contains the space reserved for the library's static data. When the
library is associated at run time (by either fetch or a MSALIB monitor
service), the initialized library data will be copied into the space reserved
for the library data. At that point, the procedure portion of the shared
library will also be mapped in the user's working space. Note that the
procedure portion of the library is shared among all users and that each user
has a copy of the data portion.

Building Shared Libraries

In order to build a shared library the SLIB option must be specified on the
LINK command. The linker will then produce a run unit that represents the
shared library. Since the shared library is a self-contained entity, all
external references must be resolved when the library is built.

Since the shared library is a self-contained entity, the user may only refer
to the externally known entry points in the library. This ensures that when
new versions of the library are made, the user's program does not need to be
relinked to interface with the new shared library. The ability to create an
invariant interface for the user is made possible with the VECTOR option to
LINK when the library is built. This option will cause the linker to
automatically build a transfer vector at the beginning of the shared library.

The ENTRIES sub-option of the VECTOR option allows the builder of the shared
library to specify those entry points that are to be included in the transfer
vector built by the linker. Once a transfer vector is built, it must be used
as the basis for all libraries built thereafter.

The linker performs this task by changing the external entry point name to
refer to a location in the transfer vector. It then maps the entry point name
concatenated with an underscore to refer to the original entry point. The
following example should illustrate the concept of a transfer vector. If a
routine that is to be included in the library starts as follows:

ABC
ENTDEF
TSXO

ABC
X66 AAUTO

and the following linker options are specified

VECTOR(ENTRIES(ABC»

a transfer vector will be built as follows:

ENTDEF ABC
ENTDEF ABC

ABC TRA ABC-
ABC TSXO X66-AAUTO

The RF option informs the linker that the specified rununit file is a shared
library and that the transfer vector in it should be used as the starting
point in building a new transfer vector. The linker will insure that the
virtual address of the external entry points does not change which allows a
new library to be associated without requiring the users to relink. Any new
entry points will be added to the end of the transfer vector from the
previously built library.

CE62-00 Building Shared Libraries 12-2

The REMOVE SYMDEF and the REMOVE ENTDEF commands cause the linker to build the
shared library such that only the legal external entry points (those in the
transfer vector) will be available when a user links his program with a shared
Library. This automaticalLy keeps a user from accidentalLy referencing either
a data location or a procedure entry point that is not necessarily invariant
from one version of the library to the next. Using the above example and
specifying REMOVE ENTDEF the following represents the resultant library:

ABC
ABC

ENTDEF
TRA
TSXO

ABC
ABC
X66-AAUTO

Subroutines Included in Shared Libraries

The reason for packaging subroutines into a shared Library is twofold:
convenience and efficient use of system resources. The convenience can be
achieved by packaging the subroutines in a LEMUR library. Thus the principal
motive for a shared Library is system efficiency. This manifests itself in
several ways:

1. Reduced Linking time

2. Reduced time to fetch a program for execution

3. Reduced use of memory within a system due to sharing of Library procedure.

However, it is important to note that any program which has a shared library
associated wiLL have alL of the static data of the shared library in it. Thus
subroutines to be included in a shared Library shouLd minimize the amount of
static data used in order to maximize the benefit of system efficiency. This
factor should also be considered for purposes of possible use of subroutines
asynchronousLy, e.g., by break routines.

There are several things which cannot be done by subroutines which are to be
in a shared Library:

1. Explicit references to DCBs other that MSUC and MSDO. Others must be
acquired at execution time.

2. SYMREFs or ENTREFs to symbols not contained in the shared library.

3. SYMDEFs of data to be referenced in programs linked with the library.

4. Use of the AREADEF or AREAREF compile-time data segment is not allowed.

Also, special attention shouLd be paid to the considerations for DELTA
vis-a-vis shared Libraries as specified in Section 15.

CE62-00 Subroutines Included in Shared Libraries 12-3

User Installation of Shared Libraries

A Library may be instaLled as a shared Library temporarily (until system
shutdown or crash) via the SPIDER processor. This is done via the INSTALL
command of SPIDER, using a type designation of LIB. For further information
on the SPIDER processor, see the System Support Reference Manual (CE41).

A Library may be instaLLed as a shared library permanently, via the Boot
process. This;s done by incLuding the library on the Labeled portion of the
PO tape, via the INCLUDE command of the DEF processor, and by including a MON
command, in the TIGR commands of the Boot instructions, specifying the fid of
the library and having a fLag designation of LI.

CE62-00 User Installation of Shared Libraries 12-4

Section 13

Library Functions

The term "library services" refers to a set of utility routines which may be
used by a PL-6 program to perform common, complex, andlor repetitive tasks in
a simple, standardized fashion. Most library services are designed to
simplify the job of getting data into a program (prompting the user, reading
input, parsing commands, reporting errors, etc.) or getting data out of a
program (formatting data, writing object units, etc.). These services thus
provide the PL-6 programmer with the same sort of 1/0 capabilities available
to programmers working in other, applications-oriented Languages such as
FORTRAN, COBOL, or PASCAL. Most Library services are used extensiveLy by
various CP-6 components (e.g. PCL and EDIT) andlor processors (e.g. FORTRAN).
User-written programs which use these library services can be made to resembLe
familiar CP-6 products, and can take advantage of future enhancements in the
service routines.

"Library services" are simiLar to
in severaL fundamentaL respects.

"monitor services"
For exampLe:

in many ways, but differ

• Like monitor services, aLL Library services are supported by HoneyweLL.
STARs may be submitted against Library services, using the subject name
"SHARED SYSTEM".

• Both library and monitor services are accessed via the PL-6 "CALL"
statement. Neither set of services is directly supported by any other
CP-6 language.

• Lib r a r y s e r vic e s are t rea ted ass tan dar d P L - 6 sub r 0 uti n e s • Nor maL l y, s.u c h
services are accessed from within the standard PL-6 run-time Library known
as :SHARED_SYSTEM; however, a user may wish to actuaLly LINK the service
routines into a program.

• Library services can interact with the user's program in complex ways;
monitor services cannot. For example, many library service routines
accept an optional PL-6 EPTR variable, which holds the ENTADDR of an
error-processing routine written by the user; if an error condition is
detected by the Library service, the error-processing routine will be
CALLed to perform any appropriate action.

Library service routines generaLly have the foLLowing characteristics:

• A copy of each service routine is available in the :SHARED SYSTEM shared
Library, which is normally associated with each PL-6 program. By using
this shared copy, the programmer may make full use of the routine's
capabilities without increasing the size of the program.

• A copy of each routine is available in the :LIB SYSTEM unshared Library.
This library is automatically searched (and the-necessary routine(s)
loaded) if a program contains any FORTRAN or COBOL routines (and thus
requires use of the :SHARED_COMMON or :SHARED_COBOL libraries).

• A copy of each routine is avaiLable in the :LIBRARY account. These
unshared copies may be explicitly LINKed into the user's program as
necessary (if, for example, it is not desirable to associate or search any
system Library fi Le).

CE62-QQ Library Functions 13-1

• Each library service has a name beginning with the letter "X". Some
library services are named "XSservicename" (e.g. XSPARSE); others are
named "XUxSservicename" (e.g. XUUSREAD, XURSGETCMD).

• Library service routines are designed to be called from a PL-6 procedure.
Information is normally passed to/from such routines via PL-6 data
structures. These data structures may be generated by copying a PL-6
pre-processor file stored in the :LIBRARY account (by coding an
appropriate XINCLUDE statement), and invoking the appropriate XMACRO.

Library service routines can be classified in three general categories: input
services, output services, and miscellaneous utility services. For additional
information on many of these services, see the CP-6 Monitor Services Reference
Manual, Library Services section.

Input Service.

Services in this class are used to give the programmer the ability to receive
data from an external source (timesharing terminal, disk file(s), batch
command stream, etc.) in an easy, standardized fashion.

Service

XSPARSE

XURSGETCMD

XUUSREAD

XSASFSF

XUESEVAL

Table 13-1. Input Library Services

Description

A general-purpose recursive-descent parser.

Command processing service to fetch a command' from the user,
echo it if necessary, parse it, print diagnostics and error
messages, give the user HELP information, etc.

A utility to process source, update, and XINCLUDE records on
behalf of a CP-6 compiler.

The "fast sequential file" package. This set of routines may
be used to read CP-6 keyed and consecutive files in a strictly
sequential fashion, at speeds of about twice that of the normal
.. SREAD method.

A general-purpose "expression evaluation" routine, which may be
used to evaluate arithmetic expressions within commands, and/or
to provide an IBEX-like "pre-processing" capability.

Input Services 13-2

Output Services

Services in this class are designed to provide the PL-6 programmer with a way
of easily formatting and writing output from a program, in useful and/or
standardized ways.

Service

XSFORMAT

XSHELP

XSASFSF

XUOSBUILD

CE62-QQ

Table 13-2. Output Library Services

Description

A set of routines which provide the programmer with the ability
to format and pres~nt information in a flexible fashion (not
unlike that provided by the FORTRAN formatted-write feature).

A routine which provides a simplified interface to the monitor
service MSHELP. Programs which call XSHELP can provide their
users with access to all of the features of the CP-6 !HELP
command.

The "fast sequential file" package may be used to write CP-6
consecutive files, roughly twice as fast as the standard
MSWRITE method.

A set of routines which may be used by compilers and other
utilities to create a standard CP-6 object unit file, which can
then serve as input to the LINK process.

Output Services 13-3

Miscellaneous Utilities

Service routines in this class perform useful functions not related to
input/output.

Service

XSALLOCATE

XUMSLRU

XUWSWILDCARD

Table 13-3. Miscellaneous Library Services

Description

A general-purpose routine for managing space within a large
block of memory.

A routine which manages a "least-recently used" list.

A routine to perform general-purpose wildcard pattern matching.

CE62-QQ Miscellaneous Utilities 13-4

Section 14

Compilers and Language Utilitie.

Conventions for Language Processors

Conventions specifically for language processors are described in this
subsection.

Standard Run Unit Invocation Format for Compilers

Shown following is the standard compiler invocation format of the
Honeywell-supplied compilers. All run unit invocation commands are invoked at
the IBEX command level with a command of this format.

[{ON }
[{TO }

]
]

!rununit [source[, update]][{OVER}[object][, listout]][(optionlist)]
[{INTO}]

where

rununit is any valid disk fid. If no account name is specified, special.
fetch rules apply, as follows. If the file name is specified without a
trailing period, the file is fetched from :SYS. If a trailing period does
follow the file name, the file is fetched from the user's current file
management account.

source is any valid fid. If this fid is omitted, the compiler will process
source text entered from the CR device.

update is any valid fid. There is no default.

object is any valid fid. *6 file is the default.

listout is any valid fid. The LO device is the default.

optionlist contains rununit specific options, separated by commas.

Source, update, object, and listout are also frequently referred to
respectively as fid1, fid2, fid3, and fid4, and are collectively referred to
as the positional fids.

This invocation performs the following functions for the invoked run unit:

1. The run unit's designated source DCB is assigned to the source fid if that
fid is present on the command line; the flag BSJIT.PRFLA6S.SI is set by
IBEX.

2. The run unit's designated update DCB is assigned to the update fid if that
fid is present on the command line; the flag aSJIT.PRFLAGS.UI is set by
IBEX.

CE62-00 Standard Run 14-1
Unit Invocation Format for Compilers

3. SimiLarLy, the run unit's designated object and Listout DCBs are assigned
to the specific object and Listout fids (if present), subject to the
impLications of the preposition preceding these fids, as follows:

ON causes IBEX to abort the command ~f either the object or Listout
file currently exists.

OVER directs that the object and listout files are to over-write an
existing file, if any. Specifically, the MSOPEN options FUN=CREATE,
EXIST=NEWFILE are added to the assignments.

INTO directs that if the object or listout file exists, it is to be
updated; otherwise, new files are to be created. This corresponds to the
MSOPEN options FUN=CREATE, EXIST=OLDFILE.

The flags corresponding to these fields are BSJIT.PRFLAGS.OU and
BSJIT.PRFLAGS.LS.

These actions occur prior to entry of the invoked run unit. There is more on
this subject in the CP-6 Programmer Reference Manual on LINK, where the LINK
options governing DCB associations are described, and in the CP-6 Monitor
Services Reference Manual where DCBs and the services connected with them are
described in detail.

Consider the example:

NEWCOMP A,B ON C,LP (SR(.ALPHA),XR)

Upon entry to NEWCOMP, the following assignments have been merged into
NEWCOMP's DCBs:

MSSI = A (disk file); BSJIT.PRFLAGS.SI='1'B.
MSUI = B (disk file); BSJIT.PRFLAGS.UI='1'B.
MSOU = C (disk file; BSJIT.PRFLAGS.OU='1'B.
MSLO = LP (line printer); BSJIT.PRFLAGS.LS='1'B.

Note that the invocation, by its use of positional fids, implicitly specified
the following options: UI, OU, LS. These options need not be specified .
explicitly in the options field of the invocation assuming the the processor
examines BSJIT.PRFLAGS. Note that the corresponding flags in the BSJIT are
only modified by the invocation command; there is no link between the flags
and any particular DCB name.

CE62-00 Standard Run 14-2
Unit Invocation Format for Compilers

DCB Usage Conventions

A processor designed to be invoked by its users via a standard invocation may
have an interface which allows the user great flexibility in specifying the
DCBs through which I/O to the positional fids takes place. If it is not
desired to provide this flexibility, the processor's programmer may find it
convenient to require the user to employ the standard DCB default associations
taken by the LINKer, as described in the LINK section of the CP-6 Programmer
Reference Manual.

When a CP-6 processor is
source, update, obj ect,
Invocation. To conform

• Source DCB = MSSI

• Update DCB = MSUI

• Object DCB MSOU

• Listout DCB MSLO

LINKed, specific DCBs may be associated with the
and listout fields of the Command Processor
to the standard conventions, these DCBs should be:

The functions associated with these DCBs should also be common:

MSSI reading of source, base, or command input.

MSUI reading of update input, to be applied to the base input that is read
through MSSI.

MSOU writing of the generated object unit resulting from the compilation;
MSOU should also be used for workspace files, e.g., in APL or BASIC.

MSLO writing of the generated print file resulting from the compilation.

Other common DCBs and related functions are:

MSSO writing of the merged update and source files to a new file.

MSDO writing of any error or warning messages; all standard processors will
have an MSDO DCB.

MSME reading and writing of information which is to be dispatched to a
mode-appropriate device. For instance, EDIT would like its output to appear
on a terminal if the user is on-line and on the line printer if the user is in
batch mode. This behavior is effected by assigning the special name 'ME' to
the RES# field of the DCB.

CE62-QQ DCB Usage Conventions 14-3

Compiler Options Usages and Conventions

Options are included in compiler-invoking commands to affect the operation of
the compiler. Presumably, writers of processors which provide options similar
to those used by the Honeywell supplied compilers will want to use the same
terms for these options, or at least will want to avoid using these terms in a
manner inconsistent with their use by the Honeywell supplied compilers, and
will want to follow similar practices concerning default options.
Accordingly, Table 14-1 provides definitions of the options considered
standard for new compilers. Note that in Table 14-1 the prefix N indicates NO
(i.e., do not perform the option). The explicit use of the N prefix to an
option supersedes any implicit assignment of the option.

Table 14-1. Descriptions of Standard Compiler Options

Option Description

BC({ALLlnumber[, number] ••• })

Specifies the sequential number of each procedure in the
source file to be included as a compile unit. ALL requests
that aLL procedures be included.

[MIN]DM[AP][(option[, option] •••)]

[MIN]PM[AP]

[MIN]SC[HEMA]

CE62-00

Requests that a data map listing of the compilation object
unit be written to the device that is associated with the
position 4 DCB. DefauLts, if no contrary action is taken,
are: the position 4 DCB is MSLO, the associated device is the
LO device. Options may consist of the foLlowing data types:
AU[TO], BA[SED], ST[ATIC], SY[MREF]. The prefix M requests a
mini-map that consists of the first level of a structure only.

Requests that a procedure map indicating the relative
Locations of external entry points, local subroutines, and
labels be written to the device that is associated with the
position 4 DCB. Defaults, if no contrary action is taken are:
the position 4 DCB is MSLO, the associated device is the LO
device. The prefix M requests that the statement Locations be
omitted from the map.

Specifies that debugging schema records are to be written to
the file that is associated with the position 3 DCB.
Defaults, if no contrary action is taken, are: the position 3
DCB is MSOU, the file is that named in the third positional
fid of the compiler invocation line. Default file name is *G.
The prefix M causes schema records to be written only for
referenced, external, or SYMDEFed items.

Compiler Options Usages and Conventions 14-4

TabLe 14-1. Descriptions of Standard CompiLer Options (cont.>

Option

[MIN]XR[EF]

[N]SYS

[N]LO

[N]LS

[N]LU

[N]OU

[N]SO

CE62-00

Description

Requests that a cross-reference Listing of the compiLed object
units be written to the device that is associated with the
position 4 DCB. DefauLts, if no contrary action is taken,
are: the position 4 DCB is MSLO, the associated device is the
LO device. This Listing contains a dictionary of symboL
definitions including alL occurrences of aLL references to the
definition. The prefix M generates a cross reference for used
references only.

Specifies that, if an INCLUDE statement or directive is
encountered, the :LIBRARY account is to be searched if the
fiLe is not found in any of the accounts in the SRCH List.
SYS is the default.

Specifies that the symbolic object listing is to be written to
the device that is associated with the position 4 DCB.
Defaults, if no contrary action is taken, are: the position 4
DCB is MSLO, the associated device is the LO device.

Specifies that all source lines are to be written to the
device that is associated with the position 4 DCB. Default~,
if no contrary action is taken, are: the position 4 DCB is
MSLO, the associated device is the LO device. If LS is not
specified, only source lines with errors are listed.

Specifies that the update file is to be listed. Defaults, if
no contrary action is taken, are: the position 4 DCB is "SLO,
the associated device is the LO device.

Specifies that an object unit is to be generated, and written
to the fiLe that is associated with the position 3 DCB.
Defaults, if no contrary action is taken are: the position 3
DCB is MSOU, the file is that named in the third positional
fid in the compiler invocation line. Default file name is *G.

Requests that a new source file with updates ~erged is to be
written through the MSSO DCB, to the file associated with that
DCB.

Compiler Options Usages and Conventions 14-5

TabLe 14-1. Descriptions of Standard CompiLer Options (cont.)

Option

[N]UI

[N]UR[EF]

[N]WA[RN]

SR[CH] (List)

Description

Specifies that update source code is to be read from the fiLe
that is associated with the position 2 DCB. DefauLts, if no
contrary action is taken, are: the position 2 DCB is MSUI,
the fiLe is that named in the second positionaL fid in the
compiLer invocation Line.

Requests that a List of unused data references be written to
the device that is associated with the position 4 DCB.
DefauLts, if no contrary action is taken, are: the position 4
DCB is MSLO, the associated device is the LO device.

Requests that aLL warning messages generated by the compiLer
be written through MSDO.

This option augments the specification of the accounts to be
searched if a Language processor encounters an INCLUDE
statement or other directive which specifies a fiLe onLy by
fiLe name. The List is a List of accounts, possibLy quaLified
by packset, separated by commas. Each account designation in
the List must have a Leading period. The accounts are
searched in the order specified by the List. If the fiLe i~
found in more than one pLace, the first instance found is the
one that is incLuded. A maximum of eight accounts may be
suppLied in the List. If the fiLe is not found in any of the
accounts in the List, the :LIBRARY account and the user's
running account wiLL then be searched, in that order. Note
that a search of the :LIBRARY does not take place if the NSYS
option ;s specified.

Specifying positionaL fids in the invocation of a standard compiLer will
implicitly specify certain options, as foLlows:

• Specifying the second positional fid (the update fid) constitutes an
implicit specification of the UI option.

• Specifying the third positional fid (the object fid) constitutes an
implicit specification of the OU option.

• Specifying the fourth positional fid (the Listout fid) constitutes an
implicit specification of the LS option.

If no option list is specified on the invocation line of a standard compiler,
the compiler will take, in addition to the implicit options implied by use of
positional fids, the following standard defauLts:

LS, OU, BC(ALL), MSCHEMA, NWARN, SYS

CE62-00 Compiler Options Usages and Conventions 14-6

If an option List is specified, a standard compiler will supply only three of
these defaults, as follows:

• UnLess WARN was specified, NWARN will .be assumed.

• Unless NSYS was specified, SYS will be assumed.

• Unless BC(list) was specified, BC(ALL) will be assumed.

Suppose that a compiler called NEWCOMP, conforming to these conventions, is in
place, and consider the following examples.

!NEWCOMP

Sets the options LS, OU, BC(ALL), MSCHEMA, SYS, and NWARN (the defaults
assumed by the compiler). 'Source will be read through the MSSI DCB, the
defauLt is the CR device.

!NEWCOMP A,B ON C,D

Sets the options UI, OU, LS, BC(ALL), MSCHEMA, SYS, and NWARN. Note that OU
aLways impLies MSCHEMA unless the user specifies otherwise.

!NEWCOMP A,B ON C,D (NSCHEMA)

Sets the options UI, BC(ALL), SYS, and NWARN.

!NEWCOMP A,B (LS)

Sets the options UI, LS, BC(ALL), SYS, and NWARN.

Complier Error Handling

Compilers should behave consistentLy when dealing with errors in the
specification of options; specifically, the compiler should give an
appropriate diagnostic and then error the step (issue an MSERR monitor call).
Errors covered by this general rule include specification of an illegal
option, repeated options, and inconsistent options.

If the compiler uses a column-flag method of pointing to errors, i.e., placing
a special character beneath the offending statement at the position where the
error was detected, the following conventions should be observed:

1. The character used should be a caret or up-arrow IAI (octal 136 on the
ASCII chart).

2. The offending statement and the flag should both be written through MSDO,
unless the statement has already been written to the same print
destination as MSDO. This is to ensure that the error flag is not printed
out of context.

CE62-00 Compiler Error Handling 14-7

Object Unit Conventions

The severity level assigned to an object unit by CP-6 compilers should conform
to the following values (decimal):

a no error or warning messages

4 warning messages issued during compilation

7 errors were detected which may be sufficient to cause execution failure

11 fatal error; the object unit contains flaws which will almost certainly
prevent proper execution

These values should be stored in the BSOUHEAD.SEVLEV field of the head record
of the object unit.

Complier Output Control Via IBEX

The CP-6 system uses two IBEX-level commands to control generation of compiler
output. These commands are:

!COMMENT or !DONT COMMENT

!LIST or !DONT LIST

These commands cause flags in the JIT to be set or reset (!DONT case); the
corresponding flags are BSJIT.PRFLAGS.COMMENT and BSJIT.PRFLAGS.LIST. The
meaning to compilers should be consistent with the following:

COMMENT flag = 'O'B; skip all writes through the MSDO DCB.

= '1 'B; perform all writes directed through MSDO DCB.

LIST flag = 'O'B; skip all MSLO writes

= '1 'B; perform all MSLO writes.

These flags should be checked for every write through the MSDO and MSLO DCBs,
since the user may set them at any time. Note that the bits control only the
specified DCB; the compiler may choose to skip an MSDO write, regardless of
the COMMENT-bit value, when MSDO and MSLO are both assigned to the same thing
(assuming the diagnostic is written through MSLO as well as MSDO).

The COMMENT and LIST flags are reset by IBEX when a job step terminates; thus
the DONT-case resetting will only hold through the end of the next
program/processor invocation.

CE62-QQ Compiler Output Control Via IBEX 14-8

Source Update Service.

The Source Update Package provides input management (XUU) services for
language processors which access source input from multiple files. The source
update services obtain input from:

• A base source file
• An update file
• One or more files referenced by a "read source library file" directive

(e.g., the Pl-6 XINClUDE directive).

For detailed information on these services, refer to the Monitor Services
Reference Manual, library Services section.

CE62-00 Source Update Services 14-9

Section 15

Interlanguage Calling

This section discusses the format of calling sequences in the CP-6 system.
The use of standard calling sequences means that the programs may freely call
or be called, regardless of the language in which they are written. Thus
programs may be created from routines written in COBOL, FORTRAN, PL-6, RPG-II,
PASCAL, or any other language with a compiler that uses the standard calling
sequences.

In addition to describing calling sequence conventions for user procedures and
subroutines, this section discusses calls for monitor services and the
Alternate Shared Library.

The programmer does not normally need detailed knowledge of the calling
sequence conventions. However, information in this section is useful in the
special circumstances listed below:

• To call the monitor or ASL easily via PL-6 when this capability is not
provided by run-time support for a language.

• To write special-purpose subroutines in machine language.

• To call another procedure from machine language.

• To debug by examining in detail a calling or receiving sequence, a monitor
call, or an ASL call.

Thus while the dynamics of a subroutine call might suggest that this
discussion be presented in the order: calling sequences, receiving sequences,
return sequence, a different order is chosen to present the most useful
information first. Topics are presented in the following order:

• Receiving sequences
• Return sequences
• UNWIND Routines
• Automatic Storage Layout
• Calling Sequences for External Routines
• Arguments
• Calls for Monitor and the Alternate Shared Library
• Sample Programs

The entry and exit routines described in this section are all included in the
file X6U$CSEQU in account :LIBRARY.

The discussion of calling and receiving sequences refers to the registers
listed below. For further information on hardware instructions and registers,
refer to the DPS8 Assembly Instructions (DH03) manual.

PRO
PR1
PR2
DR2
AR2
XO-X7
A
Q

E

CE62-00

Pointer Register 0
Pointer Register 1
Pointer Register 2 (DR2,AR2)
Descriptor Register 2
Address Register
Index Registers 0-7
Arithmetic Register
Arithmetic Register
Arithmetic Register

Interlanguage Calling 15-1

Receiving Sequence.

The receiving sequences for all PL-6 subroutines will be one of the following
forms depending upon the form of storage used and the type of procedure.

Note that the receiving sequences documented here are those that will be used
by PL-6, COBOL, and BMAP programs. Other languages, while using the same
basic calling sequences, may alter the receiving sequences as required by the
requirements of the language.

Table 15-1. Procedure Entry Routines

Procedure Type Using Auto Using STATIC (NOAUTO)

MAIN X66 MAUTO X66 MSTATIC -
ASYNC X66_AAUTO X66 ASTATIC

Callable - 0 Arg s Expected X66_AUTO_O X66 STATIC 0 - -
Callable - 1 Args Expected X66 AUTO 1 X66 STATIC 1 - - - -
Callable - 2 Args Expected X66_AUTO_2 X66 STATIC 2 - -
Callable - 3 Args Expected X66 AUTO 3 X66 STATIC 3 - - -
Callable - 4 Args Expected X66_AUTO_4 X66 STATIC 4 - -
Callable - 5 Args Expected X66_AUTO 5 X66 STATIC 5 - - -
Callable - N Args Expected X66 AUTO N X66 STATIC N - - -

Each of the procedure entry routines listed in Table 15-1 is entered upon
procedure activation with the following sequence:

TSXO
ZERO

where:

X66 xxx
frameinfo, numargs

frameinfo defines the procedure activation frame. If the routine is an
AUTO routine, frameinfo is the required size of the AUTO frame rounded up to
the nearest even number. If the routine is a NOAUTO routine, frameinfo is the
doubleword address in the instruction segment where return address and
parameters are to be stored. frameinfo must always be an even value.

numargs is the number of arguments expected by the routine.

Upon return, the required automatic data is allocated, the argument pointers
given in this call are moved to the AUTO or NOAUTO frame, and the alternate
return address is stored. Note that the value specified for frameinfo must
include the words required for the. frame header (see below) and the parameter
pointers. PR2 is updated to locate the new stack frame.

CE62-00 Receiving Sequences 15-2

Registers Used

All of the routines involving Automatic Data assume that Pointer Register 2
(OR2, AR2) frames all of the automatic storage and locates the current
external automatic frame •. Thus all programs should leave PR2 undisturbed. In
addition, ORO, OR1, XO, X1, X2, X3, X4, A , and Q are used by the receiving
routines. All other registers are not disturbed.

Note that a subroutine that requires no automatic storage, receives no
parameters, and calls no other routines need not call any receiving routine.
It may simply not alter X1 and execute TRA 1,X1 for normal return or TRA 0,X1
for alternate return.

Return Sequence.

Table 15-2 defines the exit sequences from various types of procedures:

Table 15-2. Procedure Return Routines

Procedure Type Using AUTO Using STATIC (NOAUTO) Registers Used

MAIN RETURN TRA X66 MARET TRA X66 MSRET N/A

ASYNC RETURN TRA X66 AARET TRA X66 ASRET N/A

Callable RETURN TRA X66 ARET LOX1 frame Q

TRA 1, X1

Function RETURN TRA X66 FARET LOX1 frame X1, X3 - TRA 1, X1

MAIN ALTRETURN TRA X66 MAALT TRA X66 MSALT N/A

ASYNC ALTRETURN TRA X66 AAALT TRA X66 ASALT N/A

Callable ALTRETURN TRA X66 AALT LOX1 frame Q

TRA 0, X1

Function ALTRETURN TRA X66 FAALT LOX1 frame X1, X3 - TRA 0, X1

In all cases where TRA is recommended to go to a return sequence, TSX2 is a
recommended alternative. This can frequently leave useful information for
debugging.

CE62-00 Return Sequences 15-3

UNWIND Routine.

The following table defines the routine names to be entered for the execution
of an UNWIND statement for various cases. In all cases A and Q are assumed to
be pre-loaded with an Unwind Variable (A has Auto Pointer for frame to be
unwound to, Q has EPTR destination).

Table 15-3. Procedure UNWIND Routines

Procedure Type Using AUTO Using STATIC (NOAUTO) Registers Used

MAIN X66' MAUNW IND

ASYNC X66 AAUNWIND

Callable X66 AUNWIND

Automatic Storage Layout

X66 MSUNWIND

X66_ASUNWIND

X66 SUNWIND

N/A

N/A

NIA

The layout of automatic storage which is assumed by the callinglreceiving
sequences is as follows:

1. DR2 frames all of Automatic Storage.

2. AR2 locates the current external frame which may include several internal
frames.

3. The following structures define the required form of each AUTO frame
header and of the base of AUTO storage. Also shown is a frame for a
typical Pl-6 subroutine with internal procedure.

1*

*1

1*

*1

1*

*1

DCl 1 AUTO_STORAGE_FRAME DAlIGNED,

This structure defines the AUTO frame as used by Pl-6.
The first three words of the frame must also be adhered to
by all users of AUTOmatic storage. Further storage in the
frame is managed at the discretion of the language.

2 RETURN_ADDRESS UBIN HALF HAlIGNED,

This field contains the address of the location after the TSX1
instruction in a CAll statement, i.e. the location where
an AlTRET will return. For MAIN and ASYNC procedures
(no return address), this field contains zero (see loc
of entry field below).

This field contains the comple.ent of the value (offset of
previous frame + 1). The field is used to set the AUTO pointer
when returning from a procedure.

CE62-00 AutoMatic Storage layout 15-4

1*

*1

1*

2 FRAME_EXTENSION UBIN HALF HALIGNED,

This field is used to record the original end of an AUTO frame
when a frame is extended.

2 LANGUAGE_FRAME_IDENTIFIER UBI~ HALF HALIGNED,

This field is used to identify the language of the procedure
to which this frame belongs.
Valid values and their meanings are as follows:

-1
-2
-3
-4

PL6
FORTRAN
RFU
RFU

RFU -16
else PL/I(field identifies static father - possibly 0)

*1

1*

*1

1*

*1
1*

*1

1*

*1

*1

1*

*1
;

2 NEXT FRAME OFFSET_PLUS_1 UBIN HALF HALIGNED,

This field contains the offset to the next frame +1. The +1
value is stored to avoid overflow when the complement value
is loaded from the field.

If the return address field contains zero (MAIN or ASYNC)
then this field will contain the location of the entry
to the procedure +1.

The format of the frame through this point is mandatory for
all frames. The remainder of the frame as described ;s for
PL-6 and BMAP procedures.

2 PARAMS,

The following words contain PTR's to the arguments passed
to this procedure. As many as required are reserved.

3 POINTER1 PTR,
3 POINTER2 PTR,
3 POINTER3 PTR,

2 AUTO VARIABLES AND TEMP(0:3) BIT(36)

The remainder of an AUTO frame is used for storage of AUTO
variables and temps generated by the compiler.

AUTO STORAGE FRAME - -
012345678 012345678 012345678 012345678

+---------+---------+---------+---------+ DCL
.01 1 1 11 AUTO STORAGE FRAME DALIGNED,
.Oluuuuuuuuuluuuuuuuuul 1 2 RETURN ADDRESS UBIN HALF HA
.01 1 1 1 1 2 NEG PREV FRAME OFFSET MINUS
.01 1 luuuuuuuuuluuuuuuuuul - - - UBIN HALF HA
.1luuuuuuuuuluuuuuuuuul 1 1 2 FRAME EXTENSION UBIN HALF HA
.11 1 1 1 1 2 LANGUAGE FRAME IDENTIFIER
.11 1 luuuuuuuuuluuuuuuuuul - - UBIN HALF HA
.21 I I I I 2 NEXT_FRAME_OFFSET_PLUS_l

CE62-00 Automatic Storage Layout 15-5

.2luuuuuuuuuluuuuuuuuul

.21 I I I I
UBIN HALF HA

2 LOC OF ENTRY MAIN OR ASYNC
.21 I luuuuuuuuuluuuuuuuuul - - - UBIN-HALF HA
.31 I I I I 2 PARAMS,

3 POINTER1 PTR,
3 POINTER2 PTR,
3 POINTER3 PTR,

.3lppppppppplppppppppplppppppppplpppppppppl

.4lppppppppplppppppppplppppppppplpppppppppl

.5lppppppppplppppppppplppppppppplpppppppppl

.61 I I I I

.6lbbbbbbbbblbbbbbbbbblbbbbbbbbblbbbbbbbbbl
2 AUTO_VARIABLES_AND TEMPCO:3)

BIT(36);

1*

*1

1*

*1

1*

*1

1*

l l Z Z l
+---------+---------+---------+---------+

012345678 012345678 012345678 012345678 .12-0-0 total length

DCl 1 AUTO_STORAGE_BASE'DAlIGNED,

This structure defines the base of the automatic storage segment.
The items contained are used to control AUTO as a whole, and
to supply values for initializing each frame.

2 INDETERMINATE UBIN HALF HALIGNED,
2 NEG_CURR_FRAME_OFFSET_MINUS_1 UBIN HALF HALIGNED,

This field contains the complement of the valueCoffset of current
frame +1). This field is used for initializing the 'previous
frame' field in the auto frame. It is also used
to locate the current frame when ASYNC procedures are entered.

2 MBZ1 UBIN HALF HALIGNED,

This field is used to initialize the frame extension field.

2 PL6_FLAG UBIN HALF HALIGNED,

This field contains the value of the language flag which is proper
for PL6.

*1
2 LIMIT OFFSET UBIN HALF HALIGNED,

1*
This field contains the value of the last legal offset which
a frame may reach before further allocation is needed.

*1
2 MBl2 UBIN HALF HALIGNED,
2 MBl3 UBIN;

AUTO STORAGE BASE - -
012345678 012345678 012345678 012345678

+---------+---------+---------+---------+DCL
.01 I I I 11
.Oluuuuuuuuuluuuuuuuuul I I
.01 I I I I
.01 I luuuuuuuuuluuuuuuuuul
.1luuuuuuuuuluuuuuuuuul I I
.11 I luuuuuuuuuluuuuuuuuul
.2luuuuuuuuuluuuuuuuuul 1 1
.21 1 luuuuuuuuuluuuuuuuuul
.3luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul

+---------+---------+---------+---------+
012345678 012345678 012345678 012345678

AUTO STORAGE BASE DALIGNED,
2 INDETERMINATE UBIN HALF HAL
2 NEG CURR FRAME OFFSET MINUS 1

- - - UBIN HALF HAL
2 MBl1 UBIN HALF HAL
2 PL6 FLAG UBIN HALF HAL
2 LIMIT OFFSET UBIN HALF HAL
2 MBl2 - UBIN HALF HAL
2 MBl3 UBIN;

.4-0-0 total length

CE62-00 Automatic Storage Layout 15-6

Pl6_FRAME_WITH_INTERNAl

012345678 012345678 012345678 012345678
+---------+---------+---------+---------+ DCl

.0

.0 uuuuuuuuu uuuuuuuuu

.0

.0

.1 uuuuuuuuu uuuuuuuuu

.1
• 1
.2
.2 uuuuuuuuu uuuuuuuuu
.2
.2
.3

uuuuuuuuu uuuuuuuuu

uuuuuuuuu uuuuuuuuu

uuuuuuuuu uuuuuuuuu

.3 PPPPPPPPP PPPPPPPPP PPPPPPPPP PPPPPPPPP

.4 PPPPPPPPP PPPPPPPPP PPPPPPPPP PPPPPPPPP

.5 PPPPPPPPP PPPPPPPPP PPPPPPPPP PPPPPPPPP

.6

.6 bbbbbbbbb bbbbbbbbb bbbbbbbbb bbbbbbbbb
Z Z Z Z Z

.121 I I I I
• 121 I I I I
.121 uuuuuuuuu I uuuuuuuuu 1 ••••••••• 1 ••••••••• 1
.131 I I I I
.13lppppppppplppppppppplppppppppplpppppppppl
.14lppppppppplppppppppplppppppppplpppppppppl
.15lppppppppplppppppppplppppppppplpppppppppl
• 161 I 1 1 I
.16lbbbbbbbbblbbbbbbbbblbbbbbbbbblbbbbbbbbbl

z z z z z
.221 I I I I
.221 1 1 1 1
.22Iuuuuuuuuuluuuuuuuuul ••••••••• I ••••..•.• 1
.231 I 1 I 1
.23lppppppppplppppppppplppppppppplpppppppppl
.24lppppppppplppppppppplppppppppplpppppppppl
.25lppppppppplppppppppplppppppppplpppppppppl
.261 1 1 1 1
.26lbbbbbbbbblbbbbbbbbblbbbbbbbbblbbbbbbbbbl

z z z z z
+---------+---------+---------+---------+

1 Pl6 FRAME WITH INTERNAL DAlIGNE
2 RETURN ADDRESS UBIN HALF HAL
2 NEG PREV FRAME OFFSET MINUS 1

- - - UBIN HALF HAL
2 FRAME EXTENSION UBIN HALF HAL
2 lANGUAGE FRAME IDENTIFIER

- - UBIN HALF HAL
2 NEXT FRAME OFFSET PLUS 1

- - UBIN HALF HAL
2 lOC OF ENTRY MAIN OR ASYNC

- - - UBIN-HAlF HAL
2 PARAMS,

3 POINTER1 PTR,
3 POINTER2 PTR,
3 POINTER3 PTR,

2 AUTO VARIABLES AND TEMP(0:3)
- - 811(36),

2 INT FR A,
3 RETURN ADDRESS

- UBIN HALF,
3 PARAMS,

4 POINTER1 PTR,
4 POINTER2 PTR,
4 POINTER3 PTR,

3 AUTO VARIABLES AND TEMP(O:
- BIT(36),

2 INT FR B,
3 RETURN ADDRESS

- UBIN HALF,
3 PARAMS,

4 POINTER1 PTR,
4 POINTER2 PTR,
4 POINTER3 PTR,

3 AUTO VARIABLES AND TEMP(O:
- BIT(36);

012345678 012345678 012345678 012345678 .32-0-0 total length

The basic structure of automatic storage illustrated applies to all users of
automatic storage. Users may apply more structure to the frame beyond the
first three words.

A BMAP subroutine accesses the parameters passed to it by first loading the
parameter pointers into pointer registers. For example, to load the first
parameter, an aligned word, into the Q register, a routine can use the
following instructions if an AUTO storage entry routine is used:

LDPn 3,,2 The 3rd word of AUTO is the pointer to the 1st argument
lDQ O"n

or the following instructions if a NOAUTO entry routine is used:

lDPn STADDR+1
lDQ O"n

CE62-00 Automatic Storage layout 15-7

Calling Sequence. for External Routine.

ALL caLLs to externaL unknown routines must use the foLLowing formats. The
basic form of the caLL is as foLLows:

EPPRO

EPPR1

TSXI

{TRA
{TSXn
{

{NOP

where:

LOC

LOC

XXX

yyy}
yYY}

}

}

(pointerList)

(descriptor list)

Required if arguments present

Required

XXX is called routine

Control returned here if XXX
ALTRETURNs

Normal return

pointerlist is the list of NSA pointers to actual arguments being passed.
This list of pointers is made up as necessary depending on the complexity of
the caLL. When aLL arguments being passed are in STATIC or CONSTANT storage,
the list should be compiled as a block of Literals in constant storage. The
List must be word aLigned.

descriptorlist is described in the following structure:

1*

*1

1*

*1

1*

DCL 1 ARG_DESCRIPTOR_LIST ALIGNED,

This structure defines the argument descriptor list which
must accompany each CALL. This list is Located by
PR1 when the CALL is executed. The list should normally
be compiLe time constant and thus shouLd be Located in
CONSTANT storage.

2 NUMBER OF ARGS UBIN HALF HALIGNED,

This fieLd contains the number of arguments being passed.

2 V BIT(1),

V=O specifies that the List is a normal argument list
as specified here.

V=1 specifies that the List is non-dense with implied ADDR(NIL)
for aLL arguments not passed. This form is not accommodated by the
setup routines described here.

*1

1*

*1

1*

*1

2 * BIT(1),
2 NUM_DESC_WORDS UBIN(16) UNAL,

This field contains the total number of words in the following
list not including this word.

The foLlowing words define each of the arguments being passed.

3 DATA TYPE UBIN HALF HALIGNED,
1*

*1

CE62-00

The data type of the associated argument. See Table 15-4 for
vaLid data types.

Calling Sequences for External Routines 15-8

1*

*1

1*

*1

1*

*1

1*

*1

1*

3 F BIT(1),

F=O specifies that the argument is a data item.
F=1 specifies that the argument is a subroutine or function
address.

3 I BIT(1),

1=0 specifies that the ARG SIZE field contains the actual size
of the argument in units appropriate to DATA TYPE.
See data type list. -
1=1 specifies that the ARG SIZE OFFSET field contains the
word offset from the beginning of the descriptor extension
list (DESC EXT). That location contains further information
about the specification of the actual size.

3 A BIT(1),

A=O specifies that the argument is being passed as a scalar
variable.
A=1 specifies that the argument has an array description
located by ARG_SIZE_OFFSET.

3 S BIT(1),

S=O specifies that the argument is an elementary data item.
S=1 specifies that the argument has a structure description
located by ARG_SIZE_OFFSET.

3 * BIT(1),
3 ARG SIZE UBIN(13) UNAL,

If I=A=S=O and the size of the argument is <2**13 units, then
this field contains the size of the data item. See data type list.

*1
3 ARG_SIZE_OFFSET REDEF ARG SIZE UBIN(13) UNAL,

1*

*1

If I or A or S = 1, then this field contains the offset to
the descriptor extension word further defining the argument.
This offset is from the beginning of the descriptor extension
words. Thus the descriptor extension is located at
PR1->NUMBER_OF_ARGS+1+ARG_SIZE_OFFSET.

2 DESC_EXT(0:NUM_DESC_WORDS-NUMBER_OF_ARGS-1) ALIGNED,
1*

*1

1*

*1

1*

*1

1*

CE62-00

The following words are present only for the exception cases
specified above.

3 I BIT(1),

1=0 specifies that LARGE SIZE contains the actual size of the
argument.
1=1 specifies that the size is located elsewhere as specified
below.

3 A BIT(1),

A=O specifies that the actual size is contained in the word
located by STATIC LOC OF SIZE.
A=1 specifies that the actual size is contained in the word
in the caller's AUTO frame located by AUTO_OFFSET_OF_SIZE.
Note that A is ignored if 1=0.

3 * BIT(7),
3 LARGE SIZE UBIN(27) UNAL,

Actual size of the argument.

Calling Sequences for External Ro~tines 15-9

*1

1*

*1

The location within the Instruction Segment which contains
the actual size.

3 AUTO_OFFSET_OF_SIZE REDEF LARGE SIZE UBIN(27) UNAL
1*

*1
;

The offset within the caller's automatic frame which contains
the actual size.

ARG_DESCRIPTOR LIST

012345678 012345678 012345678 012345678
+---------+---------+---------+---------+DCL

.0 1 ARG DESCRIPTOR LIST ALIGNED,

.0 uuuuuuuuu uuuuuuuuul 2 NUMBER OF ARGS UBIN HALF HAL

.0 14 2 V - - BIT(1),

.0 1 2 2 * BIT(1),

.0 1 1421421 421421421 2 NUM DESC WORDS UBIN(16) UNAL
• 1 1 2 DESt WORDS(O:NUMBER OF ARGS-1
• 1 uuuuuuuuu uuuuuuuuul 3 DATA TYPE UBI'N HALF HAL
• 1 4 3 F - BIT(1),
• 1 2 3 I BIT(1),
• 1 1 3 A BIT(1),
• 1 4 3 S BIT(1),
• 1 2 3 * BIT(1),
• 1 1421 421421421 3 ARG SIZE UBIN(13) UNAL
• 1 3 - OFFSET ARG SIZE REDEF ARG S
• 1 1421 421421421 - UBIN(13) UNAL
.2 2 DESC EXT(O:NUM DESC WORDS-NUM
.2 - - ALIGNED,
.2 4 3 I BIT(1),
.2 2 3 A BIT(1),
.2 1421421 3 * BIT(7),
.2 uuuuuuuuu uuuuuuuuu uuuuuuuuu 3 LARGE SIZE UBIN(27) UNAL
.2 3 - OF SIZE STATIC LOC REDEF LA
.2 - - UBIN(27) UNAL uuuuuuuuu uuuuuuuuu uuuuuuuuu
.2 3 AUTO OFFSET OF SIZE REDEF L
.2 - - UBIN(27) UNAL uuuuuuuuu uuuuuuuuu uuuuuuuuu

+---------+---------+---------+---------+
012345678 012345678 012345678 012345678 .3-0-0 total length (variable)

CE62-00 Calling Sequences for External Routines 15-10

Data Type

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50-59
60-63

CE62-00

Table 15-4. Data Types for Arguments

Bits/Unit Description

1
1
1
1
1
1
1
1
4+1/2
4+1/2
4+1/2
4+1/2
36
18
36

1
1
9
9

1
4+1/2
9
1
36
18
36
4+1/2
36
36
1
1

1
1
4+1/2
9
9
9
9
9

72
72
72

Type not specified
Binary fixed point single (SBIN, INTEGER, COMP-6)
Binary fi~ed point double precision
Binary(Hex exp) float single (REAL)
Binary(Hex exp) float double (DOUBLE PRECISION)
Complex binary fixed point single
Complex binary fixed point double
Complex binary(hex exp) float single(COMPLEX)
Complex binary(hex exp) float double(DOUBLE COMPLEX)
Packed decimal fixed, lead ASCII sign (COMP-4)
Packed decimal float
Complex packed decimal fixed,lead ASCII sign
Complex packed decimal float
Pointer (18 word, 2 byte, 4 bit, 12 segid)
Offset
Label
Entry
Structure (aggregate)
Area
Bit string
Varying bit string
Character string
Varying character string
File
Unsigned binary fixed point single (UBIN)
Packed decimal fixed, trail ASCII sign (COMP,COMP-4)
Adjustable character string
Adjustable bit string
Entry pointer (EPTR)
16 bit signed integer (2 bytes) (COMP-1)
32 bit signed integer (4 bytes) (COMP-2)
Packed decimal fixed, trail EBCDIC sign (COMP-3)
INDEX-1
INDEX-2
Fortran EVERY
Fortran LOGICAL
Fortran ANY (never passed)
Fortran LABEL
Fortran UCB
Intrinsic constant
Packed decimal fixed, no sign (COMP,COMP-3,COMP-4)
Unpacked decimal fixed, no sign
Unpacked decimal fixed, lead sign
Unpacked decimal fixed, trail sign
Unpacked decimal fixed, lead overpunched sign
Unpacked decimal fixed, trail overpunched sign
Adjustable structure
Vector
Remember
Descriptor
Reserved
Used in debug schema of object unit

Calling Sequences for External Routines 15-11

DELTA Interaction with Shared Librarie.

When DELTA is tracing the flow of execution which includes calls to shared
libraries, the following assumptions are made about TSX instructions which
reference the shared library:

• TSXO is always followed by a non-executable word of information.

• TSX1 is always followed by a instruction to be executed when an alternate
return is taken (generally a NOP, TRA, or TSXn).

• TSX2 will not return and is functionally identical to TRA.

Call. to the lIonltor and Alternate Shared Library

Transfer of control from one domain to another via the CLIMB instruction. The
user may call on the monitor by using the PMME form of the CLIMB. He may
CLIMB to the Alternate Shared Library directly. This subsection describes the
standard calling sequence to be used to enter another domain.

Monltor-U.er Interface

A monitor service is invoked by the PMME form of the CLIMB instruction.
Associated with each montior service is a unique Function Parameter Table
(FPT) that supplies the monitor with user-specific information to be used in
processing the service request.

The format of this machine instruction is as follows:

o 18 28 29 30 35
I I I I I I
I ADDRESS lop CODEII IARITAGI
IALTIFCGlpMMECODEI(CLIMB)1 I I ,
o 1 7 18

0 1 18 19 20 24 26 35
I I I I I I I ,
'E' P , X 'M , C , S , D , , I I I I I I ,

ADDRESS Identifies the unique service request and an optional error return:

Bit 0 When set indicates that the instruction following the CLIMB is the
alternate return. It is to be executed if the monitor cannot successfully
complete the service request. If successfully completed, control is
returned skipping this instruction.

When Bit 0 is reset, there is no alternate return address. In this case the
monitor aborts the user if the service cannot be completed successfully.

Bit 1-17 Uniquely identify the type of service request. The code defining
each monitor service (FCG and PMME code) as well as the structure of each
FPT is defined in the INCLUDE file CP_6.

S, D = 1760 Indicates that this instruction is a PMME.

CE62-00 Monitor-User Interface 15-12

C = 00 Indicates an Inward CLIMB (CALL). Allows for descriptors to be
prepared and placed on the Argument Stack. A new Parameter and Argument
Segment are framed, and the processor state is saved. Other values of C
indicate other types of CLIMB which are nQt relevant to the present
discussion.

x = 1 Specifies loading of the effective address of the instruction into
Index Register a after the context is pushed into the Safe Store STack.

E - E = a Indicates that the service call does not require any parameters.
E=1 if parameters are to be passed to the monitor on the Parameter Stack. If
E=1, ORO must contain a descriptor framing the parameters to be passed.

P Specifies the number of parameters minus 1. P is ignored if E=O.

Details concerning the parameters that must be specified are described in the
CP-6 Monitor Services Reference manual. The FPT contains all information
required for building the monitor's Parameter Stack and for performing the
service for the user.

There are two possible sections to an FPT:

1. Vectors framing arguments, expressed as addresses in the user's area.
This section of the FPT defines the monitor's Parameter Stack. If the FPT
contains value parameters, the first of these vectors frames the data
block that contains these values.

2. A data block containing the value parameters.

Each vector in the FPT is of the following format:

a
I
I BOUND
I
I BASE ADDRESS
o

20
I I FLAGS
1111I

1IIIIIs
20 24

29 31 35
I II II
Iv I11I

I I
I 0 I
26 35

V = 01
S,D.

Indicates a request for a normal shrink of the descriptor defined by

S, 0 Identifies the descriptor to be shrunk.

FLAGS Should all be set. The shrunken descriptor will have the same
permissions as the descriptor in the Linkage Segment.

BOUND Specifies the byte size minus 1 of the area being passed as a
parameter.

BASE ADDRESS Specifies the byte offset into the segment defined by the
descriptor that is specified by S,D.

If the hardware is to prepare the monitor's Parameter Stack, PRO must be
loaded with a descriptor prior to executing the PMME CLIMB instruction. PRO
locates a vector list which is used to shrink descriptors to be placed on the
stack.

A typical monitor service calling sequence is then:

1. Generate the value parameters as required by the service call.

2. Generate vectors framing areas of memory to build descriptors that the
monitor expects to find on the Parameter Stack.
NOTE: Steps 1 and 2 are freQuently accomplished by compiling the correct
values.

CE62-00 Monitor-User Interface 15-13

3. Load DRO with the descriptor that the hardware may use to build the
Parameter Stack.

4. Execute the PMME form of the CLIMB in~truction. Follow with an
instruction to transfer control to an error routine if the CLIMB had the
ALTRET bit set in the address field.

ASL-User Interface

The form for calls to the Alternate Shared Library is identical to that for
calling the monitor with two exceptions:

1. There is no provision tor alternate return.

2. The S,D field of the CLIMB should contain the value of ASLENTSID. This
value will be supplied by the Linker if a program contains a SEGREF
ASLENTSID.

Sample Programs

Two sample programs are shown in Figures 15-1 and 15-2 which display code
typically generated for standard calling and receiving sequences.

CE62-00 Sample Programs 15-14

o 000000

000001

000002
000003
000004
000005
000006
000007
000010
000011
000012

000013

000014

000015
000016

000000000003
000000000004
000000000005

x 000000 7000 00

000006 000003

2 00004 4705 00
2 00005 4715 00
2 00003 4735 00
000001 6140 04
000001 6150 04
a 00000 4311 00
1 00000 4751 00
3 00000 4551 00

X 000000 6140 00

x 000000 6150 00

x 000000 7100 00

(0)000000000015

000000 6170 11
000001 7100 11

CONTROL SECTION TABLE

o CODE EVEN 000017

1.000
1.100
2.000
3.000
3.100
3.200
3.300
4.000
4.100
5.000
6.000
6.100
7.000
7.100
8.000
8.100
9.000

10.000
11.000
12.000
13.000
14.000
15.000
16.000
16.100
17.000
17.100
17.200
17.300
19.000
20.000
21.000
22.000
23.000
24.000
25.000
26.000
27.000
27.100
28.000
28.100
29.000
30.000
31.000
32.000
33.000
33.100
34.000
34.100
35.000
36.000
37.000

1 RODATA EVEN 000000 LITERALS

8 SYMBOLS

a MACROS

M Sample BMAP subroutines showing
* use of standard receiving sequences

ENTDEF TOV
ENTDEF FAD

* Add two floating point
* numbers, giving a third
*
*'
*
*

*

*
*
*
* SUM
ADDEND1
ADDEND2
*
*

First argument is SUM, 2nd
and 3rd are addends

ENTREF X66 AUTO 3
Set up args-and allocate AUTO

ENTREF X66 ARET
Take normal-return, free AUTO

ENTREF X66 AALT
Take altret; free AUTO

Define locations in AUTO frame
EQU 3
EQU 4
EQU 5

FAD TSXO X66 AUTO 3
* Allocate AUTO, set up args

ZERO 6,3
* Allocate 6 words, set up 3
* args. 6 words are for
* 3 header, 3 args, a local

LDPO ADDEND1,,2
LDP1 ADDEND2,,2
LDP3 SUM,,2
TEO 1,IC reset overflow
TEU 1,IC and underflow
FLD 0,,0
FAD 0,,1
FST 0,,3
TEO X66 AALT

* Altret if overflow
TEU X66 AALT

* ... or underTlow

*
*
*

TRA X66 ARET

TOV EQU *
* This routine requires no auto,
* and has no arguments, so it is
* simply:

TOV 0,1 ALTRETURN
TRA 1,1 RETURN
END

Figure 15-1. BMAP Program - Standard Receiving Sequences (cont. next page)

CE62-00 Sample Programs 15-15

SYMBOL SPACE USED
MACRO SPACE USED

INPUT RECORDS READ
STATEMENTS PROCESSED

ELAPSED TIME
CPU TIME

ASSEMBLY RATE

NO ERRORS

61 WORDS
o WORDS

104
30

0:02.49
0.83 SEC.

2169 STATEMENTS/CPU MIN.

Figure 15-1. BMAP Program - Standard Receiving Sequences

CE62-00 Sample Programs 15-16

!PL6 PL6 EG (LO)
PL6 B02 -here at 09:52 SEP 27 '83

Include file information

CP 6.:LIBRARY cannot be made into a system file and is referenced.
BSJIT C.:B030U was found in the system file and is never referenced.
CP 6 C.:B03TOU was found in the system file and is referenced.

No diagnostics issued in procedure SAMPLE

Procedure SAMPLE requires 48 words for executable code.
Procedure SAMPLE requires 14 words of local(AUTO) storage.

Object Unit name= SAMPLE File name= *G.
UTS= SEP 27 '83 09:52:46.89 TUE
SharedLib= :SHARED SYSTEM

Compiler= PL-6/B02 Severity=OO
Alt SharedLib=

**** Control sections ****

Sect Type Bound Init Size OctSiz Section name(segment
0 DCB even UTS 0 0 MSUC
1 Data even UTS 30 36 SAMPLE
2 Proc even none 48 60 SAMPLE
3 RoData even none 6 6 SAMPLE

**** Entry defs ****

Check Calling
calling sequence

Sect OctLoc Primary Altret sequence type Parms
2 0 yes yes yes

**** Entry refs ****

Check
calling

Altret sequence SRef
yes yes

yes

Calling
sequence

type Args
Std 3
Std 3
nStd 0
nStd 0
nStd 0

**** Data refs ****

Std

Name
SUBR
SUBR1
X66 AUTO 2
X66-AALT­
X66-ARET

Flags: r = read only, s = secondary
Flgs Name

MSUC

**** Segment refs ****

Flags: r = read only, s
Flgs Name

ISSID

= secondary

Flgs Name

Flgs Name
NULLSID

2
Name
SAMPLE

info)

Flgs Name

Flgs Name

1.000
2.000

1
2

/*M* Sample to show calling sequence features*/
SAMPLE: PROC (PAR1,PAR2) ALTRET;

2 2 000000
2 2 000001

000000 700200 xent SAMPLE
000016 000002

TSXO
ZERO

X66 AUTO 2
14,2 -

Figure 15-2. PL-6 Program - Receiving/Calling Sequences (cont. next page)

CE62-00 Sample Programs 15-17

3.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000
11 .000
12.000
13.000
14.000
15.000
16.000
17.000
18.000
19.000
20.000
21.000
22.000
23.000
24.000
25.000
26.000

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
99

127
128
129

129 2 000002
129 2 000003
129 2 000004

27.000 130

130 2 000005
130 2 000006
130 2 000007
130 2 000010

28.000 131

131 2 000011
131 2 000012

29.000
30.000

132
133
133

133 2 000013
133 2 000014
133 2 000015
133 2 000016
133 2 000017
133 2 000020
133 2 000021
133 2 000022
133 2 000023
133 2 000024
133 2 000025
133 2 000026

31.000 134
32.000 135
33.000 136
33.100 137
34.000 138
35.000 139
36.000 140
36.100 141
37.000 142

I*Procedure accepts 2 parameters & may altret*1
DCl PAR1 UBIN;
DCl PAR2 CHAR(8);

I*Parameters: alL references are through
PTRs prepared by setup routines.*1

DCl lCl1 UBIN;
DCl lCl2 CHAR(12);
DCl lCl3 UBIN;

I*local variables referenced directly in
Instruction Segment or through PR2
depending on whether procedure is
compiled NOAUTO or not*/

DCl SUBR ENTRY(3) CONVCO) AlTRET;
DCl SUBR1 ENTRY(3);

/*Two subroutines may be called, the
first allowing AlTRETURN and
requiring all sizes to be specified
and the second not permitting
AlTRETURN and not requiring sizes.*/

XINClUOE CP 6;
XFPT_ClOSE;- /*Oeclare FPT for monitor call*/

lCl1 = PAR1;

200003 470500
000000 235100
200005 755100

lOPO
lOA
STA

IIPAR1"AUTO
O"PRO
lCl1"AUTO

1 lCL2 = PAR2;

IIPAR2"AUTO
fill='040'O

200004 471500
040100 100500
100000 000010
200006 000014

lOP1
MLR
AOSC9
AOSC9

0"PR1 cn=0,n=8
LCL2"AUTO cn=0,n=12

1 LCL3 = PAR1;

000000 235100
200011 755100

LOA
STA

O"PRO
LCL3"AUTO

/*note re-use of same PTR*/
CALL SUBR CLCL1,PAR2,SUBSTRCLCL2,0,LCL1» ALTRET

(LBL);

200005 236100
200015 756100
200006 633500
200014 453500
200004 236100
200013 756100
200005 634500
200012 454500
200012 630500
000000 631400 3
000000 701000 xent
000045 702000 2

LOQ
STQ
EPPR3
STP3
LOQ
STQ
EPPR4
STP4
EPPRO
EPPR1
TSX1
TSX2

LCL1"AUTO
LCL3+4"AUTO
LCL2"AUTO
LCL3+3"AUTO
IIPAR2"AUTO
LCL3+2"AUTO
LCL1"AUTO
LCL3+1"AUTO
LCL3+1"AUTO
o
SUBR
LBL

/*Subroutine called, Altreturn accepted
Argument list includes:

argument passed in, size impLied by
data type

argument is local variable, size is
constant(12)

argument is locaL, size computed at
exeuction*/

1 LCL1 = PAR1;

Figure 15-2. PL-6 Program - Receiving/Calling Sequences Ccont. next page)

CE62-00 Sample Programs 15-18

142 2 000027
142 2 000030
142 2 000031

38.000
38.100

143
144

144 2 000032
144 2 000033
144 2 000034
144 2 000035

38.200
38.300

145
146

146 2 000036
146 2 000037
146 2 000040

39.000 147

147 2 000041
147 2 000042
147 2 000043

40.000
41.000

148
149

149 2 000044

42.000
43.000

150
151

151 2 000045
151 2 000046
151 2 000047
151 2 000050
151 2 000051
151 2 000052
151 2 000053
151 2 000054
151 2 000055
151 2 000056

44.000
45.000
46.000

152
153
154

154 2 000057

FPT CLOSE
Sect OctLoc

200003 470500
000000 235100
200005 755100

LOPO
LOA
STA

IIPAR1"AUTO
O"PRO
LCL1"AUTO

I*Note PTR requires reloading after CALL*I
CALL MSCLOSE (FPT CLOSE) ALTRET (LBL);

000000 630400
450001 713400
406000 401760
000045 702000 2

EPPRO
CLIMB
pmme
TSX2

FPT CLOSE
alt;close
nvectors=13
LBL

1
I*Monitor call with altreturn specified*'

LCL1 = PAR1;

200003 470500
000000 235100
200005 755100

LOPO
LOA
STA

CALL MSCLOSE (FPT_CLOSE);

000000 630400
050001 713400
406000 401760

EPPRO
CLIMB
pmme

IIPAR1"AUTO
O"PRO
LCL1"AUTO

FPT CLOSE
close
nvectors=13

1
I*Monitor call with no altret specified*1

ALTRETURN;

000000 702200 xent TSX2 ! X66 AAL T

'*Take alternate return from SAMPLE*I
LBL: CALL SUBR1 (LCL1,PAR2,SUBSTR(LCL2,0,LCL1»;

200006 630500 LBL
200014 450500
200004 236100
200013 756100
200005 631500
200012 451500
200012 630500
000005 631400 3
000000 701000 xent
000000 011000

EPPRO
STPO
LOQ
STQ
EPPR1
STP1
EPPRO
EPPR1
TSX1
NOP

LCL2"AUTO
LCL3+3"AUTO
IIPAR2"AUTO
LCL3+2"AUTO
LCL1"AUTO
LCL3+1"AUTO
LCL3+1"AUTO
5
SUBR1
o

'*Same as call to SUBR above except no altret
and no size information required*1

RETURN;

000000 702200 xent TSX2 X66 ARET

1 000000
1 000004
1 000010
1 000014
1 000020
1 000024
1 000030
1 000034

000003
000000
000000
000000
000000
000000
000000
000220

777640
177640
177640
177640
177640
177640
177640
000000

000032 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

000000 177640 000000 000000
000000 177640 000000 000000
000000 177640 000000 000000
000000 177640 000000 000000
000000 177640 000000 000000
000000 177640 000000 000000
000000 000000 000000 000040

Figure 15-2. PL-6 Program - Receiving/Calling Sequences (cont. next page)

CE62-00 Sample Programs 15-19

(unnamed)
Sect Octloc
3 000000 000003 000004 000030 000044 000025 000010 000032 200000 ••••••• S •••
3 000004 600000 000015 000003 000000 ••••••••

47.000 155 /*Take normal return from SAMPlE*/
48.000 156 END;
49.000 157 XEOD;

Include file information

CP 6.:lIBRARY cannot be made into a system file and is referenced.
BsTIT C.:B030U was found in the system file and is never referenced.
CP 6 C.:B03TOU was found in the system file and is referenced.

No diagnostics issued in procedure SAMPLE

Procedure SAMPLE requires 48 words for executable code.
Procedure SAMPLE requires 14 words of local(AUTO) storage.

Include file information

CP 6.:lIBRARY
BsTIT C.:B030U
CP 6 C.:B03TOU

cannot be made into a system file and is referenced.
was found in the system file and is never referenced.
was found in the system file and is referenced.

No diagnostics issued in procedure SAMPLE

Procedure SAMPLE requires 48 words for executable code.
Procedure SAMPLE is declared NOAUTO and requires 42 words of local

(STATIC) storage.

No errors detected in file Pl6_EG.DHEXMPl

Object Unit name= SAMPLE
UTS= SEP 27 '83 09:53:26.18 TUE
Sharedlib= :SHARED SYSTEM

File name= *G.

**** Control sections ****

Sect Type Bound Init Size OctSiz Section
0 Data even UTS 42 52 SAMPLE
1 DCB even UTS 0 0 MSUC
2 Proc even none 48 60 SAMPLE
3 RoData even none 8 10 SAMPLE

**** Entry defs ****

Check Call i ng
calling sequence

Sect Octloc Primary Altret sequence type
2 0 yes yes yes Std

**** Entry refs ****

Check Calling
calling sequence

Altret sequence SRef type Args Name
yes yes Std 3 SUBR

yes Std 3 SUBR1
nStd 0 X66 STATIC -

**** Data refs ****

Compiler= Pl-6/B02 Severity=OO
Alt SharedLib=

name(segment info>

Pa rms Name
2 SAMPLE

2

Figure 15-2. Pl-6 Program - Receiving/Calling Sequences (cont. next page)

CE62-00 Sample Programs 15-20

Flags: r = read only, s = secondary
Flgs Name Flgs Name Flgs Name

MSUC

**** Segment ref s ****

Flags: r = read
Flgs Name

ISSID

50.000

51.000
52.000
53.000
54.000
55.000
56.000
57.000
58.000
59.000
60.000
61.000
62.000
63.000
64.000
65.000
66.000
67.000
68.000
69.000
70.000
71.000
72.000
73.000
74.000

2 000000
2 000001

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
98

126
127
128

128 2 000002
128 2 000003
128 2 000004

75.000 129

129 2 000005
129 2 000006
129 2 000007
129 2 000010

76.000 130

130 2 000011
130 2 000012

77.000
78.000

131
132
132

only, s = secondary
.Flgs Name Flgs Name

NUllSID

SAMPLE: PROC (PAR1,PAR2) AlTRET NOAUTO;

000000 700200 xent SAMPLE
000000 000002 0

TSXO ! X66 STATIC 2
ZERO 0,2- -

/*Procedure accepts 2 parameters & may altret*/
DCl PAR1 UBIN;
DCl PAR2 CHAR(8);

/*Parameters: all references are through
PTRs prepared by setup routines.*/

DCl lCl1 UBIN;
DCl lCl2 CHAR(12);
DCl lCl3 UBIN;

/*local variables referenced directly in
Instruction Segment or through PR2
depending on whether procedure is
compiled NOAUTO or not*/

DCl SUBR ENTRY(3) CONV(O) AlTRET;
DCl SUBR1 ENTRY(3);

/*Two subroutines may be called, the
first allowing AlTRETURN and
requiring all sizes to be specified
and the second not permitting
AlTRETURN and not requiring sizes.*/

XINClUDE CP 6;
XFPT_ClOSE;- /*Declare FPT for monitor call*/

lCl1 = PAR1;

000001 470400 0
000000 235100
000003 755000 0

lCl2 = PAR2;

000002 471400 0
040000 100500
100000 000010
000004 000014 0

lCl3 = PAR1;

000000 235100
000007 755000 0

lDPO
lDA
STA

lDP1
MlR
ADSC9
ADSC9

lDA
STA

IIPAR1
O"PRO
lCl1

IIPAR2
fill='040'O
0"PR1 cn=0,n=8
lCl2 cn=0,n=12

O"PRO
lCl3

/*note re-use of same PTR*/
CAll SUBR (lCl1,PAR2,SUBSTR(lCl2,0,lCl1» AlTRET

(lBl);

Figure 15-2. Pl-6 Program - Receiving/Calling Sequences (cont. next page)

CE62-00 Sample Programs 15-21

132 2 000013
132 2 000014
132 2 000015
132 2 000016
132 2 000017
132 2 000020
132 2 000021
132 2 000022
132 2 000023
132 2 000024
132 2 000025

79.000
80.000
81.000
82.000
83.000
84.000
84.100
84.200
85.000

133
134
135
136
137
138
139
140
141

141 2 000026
141 2 000027
141 2 000030

86.000
87.000

142
143

143 2 000031
143 2 000032
143 2 000033
143 2 000034

88.000
88.100

144
145

145 2 000035
145 2 000036
145 2 000037

88.200 146

146 2 000040
146 2 000041
146 2 000042

88.300
89.000

147
148

148 2 000043
148 2 000044

90.000
91.000

149
150

150 2 000045
150 2 000046
150 2 000047
150 2 000050
150 2 000051
150 2 000052
150 2 000053
150 2 000054
150 2 000055

000003 236000 a
000051 756000 0
000005 236000 3
000050 756000 a
000002 236000 0
000006 235000 3
000046 757000 0
000046 630400 0
000000 631400 3
000000 701000 xent
000045 702000 2

LOQ
STQ
LOQ
STQ
LOQ
LOA
STAQ
EPPRO
EPPR1
TSX1
TSX2

LCL1
FPT CLOSE+33
5
FPT CLOSE+32
#PAR2
6
FPT CLOSE+30
FPT-CLOSE+30
a
SUBR
LBL

/*Subroutine called, Altreturn accepted
Argument list includes:

argument passed in, size implied by
data type

argument is local variable, size is
constant(12)

argument is local, size computed at
exeuction*/

1 LCL1 = PAR1;

000001 470400 0
000000 235100
000003 755000 0

LOPO
LOA
STA

#PAR1
O"PRO
LCL1

/*Note PTR requires reloading after CALL*/
CALL MSCLOSE (FPT_CLOSE) ALTRET(LBL);

000010 630400 0
450001 713400
406000 401760
000045 702000 2

EPPRO
CLIMB
pmme
TSX2

FPT CLOSE
alt-;close
nvectors=13
LBL

1
/*Monitor call with altreturn specified*/

LCL1 = PAR1;

000001 470400 0
000000 235100
000003 755000 0

LOPO
LOA
STA

CALL MSCLOSE (FPT_CLOSE);

000010 630400 0
050001 713400
406000 401760

EPPRO
CLIMB
pmme

#PAR1
O"PRO
LCL1

FPT CLOSE
close
nvectors=13

1
I*Monitor call with no altret specified*/

ALTRETURN;

000000 221200 0
000000 702211

LOX1 ! 0
TSX2 ! 0,X1

1
/*Take alternate return from SAMPLE*/

LBL: CALL SUBR1 (LCL1,PAR2,SUBSTR(LCL2,0,LCL1»;

000005 236000 3 LBL
000050 756000 0
000002 236000 0
000006 235000 3
000046 757000 0
000046 630400 0
000007 631400 3
000000 701000 xent
000000 011000

LOQ
STQ
LOQ
LOA
STAQ
EPPRO
EPPR1
TSX1
NOP

5
FPT CLOSE+32
#PAR2
6
FPT CLOSE+30
FPT-CLOSE+30
7
SUBR1
o

Figure 15-2. PL-6 Program - Receiving/Calling Sequences (cont. next page)

CE62-QO Sample Programs 15-22

92.000 151 /*Same as caLL to SUBR above except no aLtret
93.000 152 and no size information required*/
94.000 153 RETURN;

153 2 000056 000000 221200 a LDX1 a
153 2 000057 000001 702211 TSX2 1, X 1

FPT CLOSE
Sect OctLoc
a 000010 000003 777640 000042 000000 000000 177640 000000 000000 " ·
a 000014 000000 177640 000000 000000 000000 177640 000000 000000 ·
a 000020 000000 177640 000000 000000 000000 177640 000000 000000 ·
a 000024 000000 177640 000000 000000 000000 177640 000000 000000 ·
a 000030 000000 177640 000000 000000 000000 177640 000000 000000 ·
a 000034 000000 177640 000000 000000 000000 177640 000000 000000 ·
0 000040 000000 177640 000000 000000 000000 000000 000000 000040 ·
a 000044 000220 000000 000000 000000

(unnamed)
Sect OctLoc
3 000000 000003 000004 000030 000044 000025 000010 000032 200000 ••••••• S •••
3 000004 400000 000051 000004 000000 000003 000000 000003 000000 •••) •••••••

95.000 154 /*Take normaL return from SAMPLE*/
96.000 155 END;

IncLude fiLe information

CP 6.:LIBRARY cannot be made into a system fiLe and is referenced.
BsTIT C.:B030U was found in the system fiLe and is never referenced.
CP 6 C.:B03TOU was found in the system fiLe and is referenced.

No diagnostics issued in procedure SAMPLE

Procedure SAMPLE requires 48 words for executabLe code.
Procedure SAMPLE is decLared NOAUTO and requires 42 words of LocaL

(STATIC) storage.

No errors detected in fiLe PL6 EG.DHEXMPL

Figure 15-2. PL-6 Program - Receiving/CaLLing Sequences

CE62-00 SampLe Programs 15-23

Appendix A

Job Information Tabl.

A discussion of accessing the Job Information Table (JIT) is included in
Section 8 of this manual. This appendix includes descriptions of JIT fields
and a depiction of the JIT structure.

JIT Fields

The following fields are contained in the JIT:

ACCESS.

ACCESS. The ACCESS field contains counts of various kinds of physical
accesses to devices.

ACCESS. FORMS

ACCESS. FORMS - SBIN. The FORMS field counts the number of physical accesses
to resource devices other than disk or tape (e.g. resource Line Printer).

ACCESS.PACKS

ACCESS.PACKS - SBIN. The PACKS field counts the number of physical accesses
to files during this job or session. Also included are requested physical
accesses which were satisfied by the I/O cache.

ACCESS. TAPES

ACCESS. TAPES - SBIN. The TAPES field counts the number of physical accesses
to tapes during this job or session.

ACCN

ACCN - CHAR(8). The ACCouNt field contains the user's log on account.

ARECX

ARECX - UBIN(16). The Accounting RECord indeX field contains the key to be
used in the next resource accounting record to be written to *S. This field is
incremented each time a resource accounting record is written.

BILL

BILL - CHAR(6). The BILL field is used to locate the user's charge rate
record.

CE62-QQ J!T Fields A-1

BLINDACCTNG

BLINDACCTNG - BIT(1). The BLIND ACCounTiNG field is a flag which, if set,
specifies that this user is only to see resources used, and not charge rates
or actual monetary units.

BUDLIM

BUDLIM - SBIN. The BUDget LIMit field contains the amount of charges which
this job or session is allowed to incur. This field is recorded in hundredths
of pennies.

CALC NT

CALCNT - SBIN. The CALCNT field contains the total number of monitor services
(PMMEs) executed during this job or session.

CCARS

CCARS - SBIN HALF. The Control Command Actual Record Size field contains the
size of the last run unit invocation command.

CCBUF

CCBUF - CHAR(256). The Control Command BUFfer contains the text of the first
record of the last run unit invocation.

CCDISP

CCDISP - SBIN HALF. The Control Command DISPlacement field contains the
position within the last run unit invocation at which the beginning of options
may be found.

CPFLAGS1

CPFLAGS1 - BIT(36). CPFLAGS1 is used by the monitor to communicate with the
command processor and is also available for use by the command processor as a
word where he may remember user directives.

Bits 0 -> 8 are used by the monitor to communicate job step information to the
command processor. These bits are not to be set or reset by the command
processor. The meanings of these bit settings are:

CP LOGOFF#
'400000000000'0

CP JSTEP#
'200000000000'0

CP RUND#
'100000000000'0

CP YC#
'040000000000'0

CE62-00

When set indicates that the system has
detected a line hang-up of a time-sharing
terminal or an operator abort of a user
and indicates to the command processor that
no more job steps are allowed. This bit may
be set in conjunction with any of the other
CPFLAGS1 bits that are owned by the monitor.

Indicates that the user is at Job Step.

Indicates that all levels of exit control
processing are completed and the user is
about to be rundown.

Indicates that the command processor is
being entered because the time-sharing
user has typed the Control-Y sequence.

jIT Fields A-2

CP YCPMME#
'020000000000'0

CP STTARTII
'010000000000'0

Indicates that the command processor is
being entered because of an MSYC monitor
service request.

Used onLy by the monitor. Indicates that
a Start Step Accounting record has been
written. This bit is reset when the Stop
Step Accounting record is written.

The foLLowing bits are aLso used for monitor I command processor or LOGON I
command processor communication:

CP STARSACC#
'000020000000'0

Set by LOGON if the '*S ACCOUNTING' option
of SUPER' was specified for this user. When
this bit is set, :ACCTLG records wiLL be
written to the user's *s fiLe as weLL.

CP LASTCPEXISTSII Set by LOGON if the 'LAST CPROC' option
'000010000000'0 of SUPER has been specified for this user.

CP LASTCP#
'000004000000'0

CP FIRSTCP#
'000002000000'0

CP STARPROC#
'000001000000'0

CP DRIBBLE#
'000000100000'0

CP EXIT#
'000000020000'0

CP KEEPDS#
'000000010000'0

CP PROCACCT#
'000000001000'0

CP STEPACCT#
'000000000400'0

CE62-00

Indicates that the defauLt Command Processor is
to make its finaL MSCPEXIT to this user's Logoff
command processor and not use the deLete user
form of MSCPEXIT.

To be set by the command processor when issuing
an MSCPEXIT to the Logoff command processor.
This aLLows one finaL job step after the monitor
has set CP LOGOFF#.

LOGON sets this bit when exiting to the user's
command processor.

Set by the monitor whenever a proprietary
accounting record is written to the *s fiLe. Refer
to MSACCT in the Monitor Services Reference ManuaL.

To be set and reset by the command processor
to indicate to the monitor if interactive
terminaL transactions are to be recorded on
the fiLe or device assigned to the MSDRIBBLE
DCB.

Set by the monitor to indicate that the error
in JIT.USRERR is not to be reported to the user.
The command processor shouLd, however, use the
vaLue of JIT.USRERR.SEV as the severity LeveL
of the error message Last reported to the user.

This bit may be set by the command processor
to indicate that the monitor is not to reLease
the command processor dynamic data segments.

Set by the monitor whenever a run unit from the
:SYS account that has been LINKed with the
PROCACC option is put into execution. When this
bit is set, the monitor wiLL cause proprietary
start and stop records to be written to the *S
f i L e.

Set by LOGON if the 'STEPACCNT' option of
SUPER was specified for this user. When set,
the monitor wiLL cause job step start and stop
records to be written to the *s fiLe.

JIT FieLds A-3

The remainder of the bits in CPFLAGS1 may be used as seen fit by the command
processor. IBEX has predefined the bits for a specific use as follows:

CP SOMENOTIFY# There is something to NOTIFY user.
'000040000000'0

CP SKIPABORT# Don't abort user at this time
'000000040000'0

CP TRMNATE# Logoff this user after rundown
'0000'00004000'0

CP NOTIFY# NOTIFY user of changes in BATCH jobs
'000000002000'0

CP STEPLMT# Step liMits in effect
'000000000200'0

CP PROTECT# Don't prompt !quit
'000000000100'0

CP BUFFULL#
'000000000040'0

CP CFREAD#
'000000000020'0

CP ECHO#
'000000000010'0

CP BRK#
'000000000004'0

CP SCREECH#
'000000000002'0

CP DELTA#
'000000000001'0

CTIME

Command in BSJIT.CCBUF

Read from XEQ file

Echo commands from XEQ

Break received

Prevent multiple snaps when IBEX aborts

!U command found

CTIME - SBIN. The Compensatory TIME field contains the number of microseconds
by which this quantum will be shortened due to I/O operations. This value is
the number of physical I/O operations done this quantum times the I/O Time
Allowance (IOTA) for the user's mode.

CURPNUM

CURPNUM - SBIN HALF. The CURPNUM field is incremented every time a run unit
that is the target of an MSLINK or MSLDTRC request is put into execution.
This field is decremented when that run unit exits. CURPNUM and HIGHPNUM are
used when processor accounting is in effect.

CURRCORE

CURRCORE - UBIN HALF. The CURRent CORE field contains the current number of
memory pages chargeable to this user. This value is the result of the
following calculation of values from the JIT. CURRCORE = PCD + PCDD + PCDS +
PCDDS + PCADS + PCL + PCV + PCROS - 1. PCP is also added unless
MMFLGS.FREE_PPGS is set.

CE62-00 JIT fields A-4

CURSUDO

CURSUDO - ARRAY(D:?) UBIN BYTE. The CURrent pSeUDO field contains the current
number of each pseudo resource defined whi~h is currently allocated to this
job or session. The order is as defined by TIGR.

CURTMPDP

CURTMPDP - SBIN. The CURrent TeMP Disk Pack field contains the current number
of granules of temporary disk space allocated.

DCBS

DCBS - PTR. Contains a pointer to the DCB that was specified on the current
monitor service request. If the service request doesn't have a DCB associated
with it, this value will be nil. As with JIT.DCBNO, JIT.DCBS should not be
referenced by the user program.

DCBNO

DCBNO - UBIN(9). Contains the number of the DCB that was specified on the
current monitor service request. If the service request doesn't have a DCB
associated with it, this value will be zero. If an ALTRETURN is made to the
user request, this field will be placed in the ALTRET frame along with the
value from JIT.ERR. As with JIT.ERR, JIT.DCBNO should not be referenced by
the user program.

DDLL

DDLL - UBIN HALF. The Dynamic Data Lower Limit field contains the virtual
page number of the first page in the Instruction Segment that may be used for
dynamic data.

DDUL

DDUL - UBIN HALF. The Dynamic Data Upper Limit field contains the virtual
page number of the last page in the Instruction Segment that may be used for
dynamic data.

DEFEXP

DEFEXP - SBIN HALF. The DEFault EXPire field contains the default value for
the duration that a file created by this user will be unexpired. This value is
used if no expiration date is specified when a file is created.

DEFPRI

DEFPRI - UBIN BYTE. The DEFault PRIority field contains the default batch
priority to assign to jobs batched by this job or session.

DLL

DLL - UBIN HALF. This field contains the Data Lower Limit, which is the
virtual page number of the first data page of the run unit or standard shared
processor currently executing.

CE62-QQ JIT Fields A-5

DOS

DOS - PTR. The DOS field contains a pointer to an active do-list entry used
during several file management operations.

DUl

DUl - UBIN HALF. This field contains the Data Upper limit, which is the
virtual page number of the last data page of the run unit or standard shared
processor currently executing. If the user is at job step, JIT.DUl will be
set to JIT.Dll -1.

ENQS

ENQS - UBIN(18). The ENQS field contains the current number of ENQue
resources owned by this job or session.

ERR.

ERR. The ERR field in the JIT always contains the "current" error code
reported on this user. This field will be moved to the AlTRET or Stack Frame
on the Task Control Block of the domain (user, alternate shared library,
debugger or command processor) in control at the time of the error. If this
is the error to be reported to the user following all levels of exit control
processing, this field will be moved to JIT.USRERR. In any event JIT.ERR is
subject to change on any change of domain and should therefore never be
referenced by the user program. JIT.ERR is in VlP ERRCODE format and contains
the following subfields: -

ERR. CODE

ERR. CODE = DEC(Q-16383). This field contains the number that identifies a
particular error condition. The file B_ERRORS_C contains a list of the error
codes reported by the monitor.

ERR.FCG

ERR.FCG = BIT(12). This field contains the two special six bit characters
that identify the functional code group that is reporting the error. Each
character is composed of the low-order 6 bits of the ASCII code.

ERR.MID = BIT(6). This field contains the special six bit character that
identifies which module in the functional code group is reporting the error.
This character is composed of the low-order 6 bits of the ASCII code.

ERR.MON = BIT(1). This bit is set if this error is reported by the monitor;
reset if reported by a processor.

ERR.SEV

ERR.SEV = DEC(Q-7). This field serves a double purpose. Within the monitor
it is used to indicate the seriousness of an error. When passed by the user
to MSERRMSG it indicates the level of detail requested in the error message.

CE62-0Q JIT Fields A-6

EUP

EUP - UBIN HALF. The End User Page field contains the highest virtual page
number in the instruction segment which is available for user allocation.

EXTUS

EXTUS - UBIN. The EXecution Time microseconds field contains the number of
microseconds (0-9999) of execution time which were not able to be reflected in
TPEXT or TUEXT at the end of the previous quantum.

FACCN

FACCN - CHAR(8). The File 'ACCouNt field contains the users default file
account. This field is used as the account for any file reference made when
an account is not explicitly specified. This field may be freely be changed by
the user, and is not used to determine accessability of files. See MSSETFMA,
!DIRECTORY.

FACNACS

FACNACS - BIT(18). The File ACcouNt ACceSs field contains the account
permissions for this user vis-a-vis his current file account (FACCN).

FACNCM

FACNCM - UBIN(9). The File ACcouNt Character Match field contains the number
of characters of FACCN which matched on a wild compare.

FBUC

FBUC - UBIN HALF. The File Buffer Use Count field contains the total number
of file buffers (FPOOLs) currently in use by this user.

FBUL

FBUL - UBIN HALF. The File Buffer Upper Limit field contains the maximum
number of file buffers which file management will use on this user's behalf.
See !LIMIT FPOOL=n.

FEXT

FEXT - ARRAY(0:3S) BIT(1). The File EXTension field contains bits which
specify whether ('1'B) or not automatic file extension is currently active on
the four command line DCBs as well as a number of DCBs of the form MSxx, where
xx is any of a set of CP-6 special names.

FPSN

FPSN - CHAR(6). The File PackSet Name field contains the packset name which
is to be used in conjunction with FACCN for default file references.

CE62-QO JIT Fields A=7

FRS

FRS - BIT(9). The Final Run Status field contains the accumulated abort
flags. This is a logical OR of all the flags that may appear in bits 0
through 4 of RNST as the job step is rundown through all the various levels of
exit control. Refer to RNST for the EQUated values and the meanings of the
bit settings in this field.

For example, if a user is aborted by the operator, RS XKEY will appear in RNST
until it is put in either the user's exit control frame or USRRNST. At that
point the RS XKEY flag is moved to FRS and RNST is set to zero. Should the
user exceed MRT in the exit control routine, RS LIMX would temporarily appear
in RNST, and both RS_XKEY and RS_LIMX would be set in FRS.

GAC

GAC - ARRAY(O:2) UBIN. The Granule ACcounting field contains accounting
information for files deleted during this job or session which had been
created by this user. Each entry contains a floating point number which is the
integral of granules times time. The three entries are for the three charging
classes of file granules:

AZSGACBACKUP 0

AZSGACNOBACKUP 1

AZSGACSTOWACT 2

HIGHPNUM

Granules of files
eligible for backup.
Granules of files
not eligible for backup.
Granules of stowed
active files.

HIGHPNUM - SBIN HALF. The HIGHPNUM field is incremented every time a run unit
that is the target of an MSLINK or MSLDTRC is put into execution and is reset
only on job step termination; thus, this is a count of the number of "fetches"
per job step.

HPSN

HPSN - CHAR(6). The Home Pack Set Name field contains the name of the home
pack set for this user. The principal use of this field is to determine the
pack set on which to create the user's account if it does not already exist.

IDELTAT

IDELTAT - SBIN. The IDELTAT field contains the total quantum time allocated
at the last quantum end. This will normally be the quantum specified by the
system manager for this mode, partition, user, etc.

INSTWORD

INSTWORD - ARRAY(O:3) UBIN(18). The INSTallation WORD field is a set of four
values available for installation use. See MSUSRFIELD.

INTER

INTER - SBIN HALF. The INTERactions field contains the number of terminal
interactions which have occurred during this time sharing session.

CE62-00 JIT Fields A-8

INTTIME

INTTIME - SBIN. The INTeraction COMPute time field contains the time in
microseconds expended until the time of the last terminal read. This is used
in the calculation of compute time used per interaction. This field is used
for time sharing only. See also STATS HISTOGRAM.

JOBNAME

JOBNAME - CHAR(31). The JOB NAME field contains the job name as specified by
!JOB NAME=x. Regardless of mode, this job name will be carried with any
output symbiont files generated. It may be subsequently used by a user in
interrogating the status of output. It will also be displayed on operator
displays.

JOBUNIT

JOBUNIT - ARRAYCO:3) UBIN(18). The JOB UNIT field is a set of four counters
which are maintained through an entire job and may be used for 'transaction
charging'. See MSCHGUNIT and RATES processor.

JPEAK

JPEAK - UBIN HALF. The Job PEAK field contains the maximum value of CURRCORE
attained during the job or session.

JRESPEAK

JRESPEAK - UBIN HALF. The Job RESource PEAK field contains the value which
must be specified on a !RESOURCE or !ORES command to assure the job of
successful execution. This value may differ from JPEAK due to overlay path
considerations.

JSLEV

JSLEV - UBIN(3). The Job Statistics LEVel field specifies the type of
accounting summary which is to be displayed at the end of job or session. See
!OFF. The field can contain the following values:

AZ ALL#
AZ-SUMMARY#
AZ-NONE#

JTMPDPPK

1
2
3

Full Accounting Display
One line Accounting Summary
No Accounting Display

JTMPDPPK - SBIN. The Job TeMP Disk Pack PeaK field contains the maximum
amount of temporary disk storage allocated during this job or session.

JUNK

JUNK - BIT(18). Bits in JIT.JUNK are used by job step processing and help us
keep track of what we are doing:

JJ MLINKIP# Set while processing an MSLINK or MSLDTRC.
'000001'0 Reset when run-unit has been fetched or the

LINK/LDTRC process is aborted.

JJ LNKRETIP# Set while the MSLINKing program is being restored.
'000002'0

CE62-QQ JIT Fields A-9

JJ RTNXIT#
'000100'0

JJ SAVING#
'010000'0

JJ GETTING#
'020000'0

JJ NOSAVE#
'040000'0

JJ SCON#
'100000'0

JJ SCCSET#
'000040'0

JJ LOGOFF#
'000200'0

JJ BYPASSD#
'000400'0

JJ EVENT#
'400000'0

JJ UDELTA#
'200000'0

JJ BAKIC#
'001000'0

JJ RUNXCON#
'002000'0

JJ DLIB#
'004000'0

CE62-00

Set whiLe an MSLINKed to run-unit is in execution.

Set whiLe a program is being saved for MSSAVE or
the SAVE command via IBEX.

Set whiLe a SAVEd image is being restored.

Set when an MSSCON service request has been issued
with SAVEFLG = NO specified. When set, aLL requests
to SAVE the program are ignored. Once set, this
bit may onLy be reset when the job step terminates.

Set when an MSSCON service request has been issued
with XCON ='YES specified. When set, the user's
exit controL routine (if any) is entered prior to
writing the save image. Reset onLy on job step
termination.

Set when an MSEXIT, MSERR or MSXXX service request
with the STEPCC option is specified (from any domain).
Reset when the trickLe down for exit controL reaches
the user LeveL, thus aLLowing the user to reset his
STEPCC settings via his finaL exit from exit controL
processing.

Set on MSCPEXIT when CP LASTCP# is set in CPFLAGS1
and the user is at job step. Used to aLLow entry to
a Logoff Command Processor, and to prevent muLtipLe
entries to same.

Set on MSDRTN when the Debugger indicates that the
user exit controL routine is to be entered. Reset
when entering the user exit controL routine.

Set on MSDRTN with EVENT = YES specified. Causes
the ScheduLer to defer events for this user untiL
after the user program has been re-entered. Reset
by the scheduLer.

Set when a run-unit is started under controL of a
debugger and not set when a debugger is associated
via MSALIB. ControL goes to the debugger on aLL
user exceptionaL conditions (break, traps, etc.)
when this bit is set.

Set by various monitor service processing routines
to indicate that controL is to be returned to the
user with the IC is Safe-Store reset to the address
of the outstanding service request. Used to back out
of reads when a break is received, for exampLe.

Set by the exit controL Logic when the user exit
controL processing is compLete and giving exit
controL Logic for the speciaL shared processors
is to be entered. Causes the subcode in the exit
controL frame for the speciaL shared processor to
be set to one.

Set when a debugger or ASL is disassociated because
of an MSDLIB request. Causes the exit controL Logic
to be entered (run-up) for the processor being
disassociated and indicates that the user program is
to be resumed foLLowing exit from the processor's
exit controL routine.

JIT FieLds A-10

JJ EXONLYII
''000010'0

JUNK2

Set when an execute-only run-unit is put into
execution. Causes association of a debugger to
be disallowed.

JUNK2 - BIT(18). JUNK2 is the overflow of JIT.JUNK. Bits in this word are
used as follows:

JJ2 PACCESSII

JJ2 DBRKII

JJ2 DFRBRKII

LANG

Set prior to transfer of control to the debugger if
the user page table has been modified to allow the
debugger to modify user procedure. Will not be set
if ALIB. Reset on MSDRTN when write access to
procedure is reset.

Set on MSDRTN when the DBRK = YES option is specified.
Write access to data pages with the SCDRRK bit set in
the user's page table will be disabled. This bit will
be reset and the write access allowed on those pages
when the debugger is next entered.

Set by the scheduler to defer break control to the user
when the break is received during MSYC PMME processing.
This bit is reset when the command processor issues the
MSCPEXIT, at which time control will be given to the
user's break control routine.

LANG - CHAR(1). The LANGuage field is a single character which specifies the
native language of the user. This field is used to select the correct error
message and help files for this user.

LBJID

LBJID - UBIN HALF. The Last Batch Job ID field contains the sysid of the last
batch job submitted by this job or session.

LLL

LLL - UBIN HALF. The Library Lower Limit field contains the virtual page
number of the first page of procedure of an associated run-time library.

LNKCNT

LNKCNT - UBIN(9). Contains the current number of nested MSLINK service
requests. This field is incremented on every MSLINK request and decremented
each time the linking program is restored.

LOCK

LOCK - ARRAY(0:71) BIT(1). The LOCK is really a "KEY". This double word
contains bit settings that allow users to access restricted processors. The
LOCK is initialized from the :USERS record when the user enters the system.
Refer to the description of the KEY option of SUPER in the System Support
Reference Manual and to the description of the SLOCK and WLOCK options of LINK
in the Programmer Reference Manual.

CE62-00 JIT Fields A-11

LOGONTIME

LOGONTIME - UBIN. The LOGON TIME field contains the time, in UTS units, when
this job or session was initiated.

LUL

LUL - UBIN HALF. The Library Upper Limit field contains the virtual page
number of the last page of procedure of an associated run-time library.

MAX CORE

MAXCORE - UBIN HALF. The MAXimum CORE field contains the maximum value which
CURRCORE will be allowed to' reach. The word CORE is retained for nostalgia.
See !RESOURCE, !ORES, !LIMIT.

MAXEXP

MAXEXP - SBIN HALF. The MAXimum EXPiration field contains the maximum
expiration time that this user may specify.

MAXPRI

MAXPRI - UBIN BYTE. The MAXimum PRIority field contains the maximum batch
priority which this job or session may assign to a submitted batch job.

MAXTMPDP

MAXTMPDP - SBIN. The MAXimum TeMP Disk Pack field contains the maximum number
of granules of temporary disk space which this job or session is allowed to
use.

MMFLGS.

MMFLGS. The Memory Management FLaGS field contains a set of flags which
describe the current state of this user from a memory management standpoint.

MMFLGS.FREE PPGS

MMFLGS.FREE PPGS - BIT(1). The FREE Procedure PaGeS field indicates whether
or not the procedure pages in the currently executing run unit are to be
charged to this user. A value of '1'B specifies that the pages are not to be
charged.

MODE

MODE - UBIN(4). Specifies the type of user. One of the following EQUed
values will be contained in this field:

M BATCH# 1 Batch User
M-GHOST# 2 Ghost User
M-INT# 3 Interactive User
M-TP# 4 Transaction Processing User

MOUNTS

MOUNTS - ARRAY(O:2) SBIN HALF. The MOUNTS field contains the number of
operator mounts required for various resource devices. The entries are used as
follows: disk=O, tape=1, other=2.

CE62-00 JIT Fields A-12

MRT

MRT - SBIN. The Maximum Run Time field contains the maximum allowed execution
plus service time at the beginning of a job and when a !lIMIT command is
processed. At any other time it contains the amount of time remaining within
the limit. This field is maintained in UTS units.

MSGID.

MSGID. The MeSsaGe IDentification field contains the message id of the last
comgroup read done by this job or session. This is used primarily for
Transaction Processing.

MSGID.PRIMARY

MSGID.PRIMARY - UBIN. The PRIMARY subfield contains the primary
identification of the transaction. This value is the same for all spawned
transactions and identifies the parent transaction.

MSGID.XT

MSGID.XT - UBIN. The eXTension field provides a unique identifier for spawned
transactions.

NEXTCC

NEXTCC - UBIN(9). The NEXT Control Command field specifies where the next
command will be obtained. The possible values are:

CC FROMNO#

CC FROMJOB#
CC-FROMXEQ#
CC-FROMUC#

OlTA

o

1
2
3

There are no more
(end of batch job).
Batch job not in XEQ file.
Execute file.
Time sharing terminal.

OlTA - ARRAY(0:1) BIT(1). The On line TApe field contains permission bits
which allow time sharing users to use 0-2 tape drives without reserving them
via !ORES.

OUTPRIO

OUTPRIO - UBIN(9). The OUTput PRIOrity field contains the priority value to
be assigned to output symbiont files generated by this job or session.

PCADS

PCADS - UBIN HALF. The Page Count ASl Data Segments field contains the total
number of pages which an ASl has allocated on behalf of this user.

PCC

PCC - UBIN HALF. The Page Count of Context field contains the number of pages
the monitor has allocated for this user's context. User context includes
HJ!T, Page Table, Tstack, JIT, and the first page of the Read Only
Segment(ROS).

CE62-00 JIT Fields A-13

PCD

PCD - UBIN HALF. The Page Count of Data field contains the number of pages
that have been allocated for program data .in the instruction segment.

PCDD

PCDD - UBIN HALF. The Page Count Dynamic Data field contains the number of
pages which have been allocated dynamically in the Instruction Segment. See
MSGDP, MSGVP.

PCDDS

PCDDS - UBIN HALF. The Page Count Debugger Data Segments field contains the
total number of pages which a debugger has allocated on behalf of this user.

PCDS

PCDS - UBIN HALF. The Page Count Dynamic Segments field contains the number
of pages that the user has allocated in dynamic data segments. See MSGDS.

PCL

PCL - UBIN HALF. The Page Count of library field contains zero if no run-time
library is associated, or if a shared run-time library is associated. If the
run-library becomes unshared, because of an MSDLIB or UNSHARELIB command to
DELTA, this field will contain the number of pages that have been obtained for
the run-time library procedure.

PCP

PCP - UBIN HALF. The Page Count of Procedure field contains the number of
pages that have been allocated for procedure. If a shared processor is in
execution, this number will not be included in the PPC field.

PCROS

PCROS - UBIN HALF. The Page Count Read Only Segment is the total number of
pages in the Read Only Segment. This segment contains the TCB and DCBs. The
first page of this segment is also counted in PCC.

PCV

PCV - UBIN HALF. The Page Count Virtual field contains the total number of
real pages allocated in the three virtual segments, as well as the page tables
and context necessary to support them.

PlL

PLL - UBIN HALF. This field contains the Procedure Lower Limit, which is the
virtual page number of the first procedure page of the run unit or standard
shared processor currently executing.

PMEMTIM

PMEMTIM - SBIN. The Processor MEMory TIMe field contains the integral of
<TPEXT + TPSVT) * CURRCORE over all quanta of the entire job or session. This
is maintained in UTS * page units.

CE62-00 JIT Fields A-14

PMME COUNT

PMME COUNT - SBIN. The PMME COUNT and PMME DATA fieLd are used in conjunction
to gather data on PMMEs executed when the .MoUsE (Monitor Usage EvaLuator>
feature of STATS is in use. The PMME COUNT fieLd contains the current nesting
LeveL of a PMME, e.g. an MSERRMSG PMME must invoke an MSOPEN PMME to open the
appropriate error message fiLe.

PMME DATA

PMME DATA - ARRAY(O:2). The PMME DATA fieLd contains various information
about starting a PMME for this user. When the PMME compLetes, the resuLtant
information is recorded in the system MOUSE tabLes. This fieLd is indexed by
PMME_COUNT.

PMME DATA.CPU

PMME DATA.CPU - UBIN. The CPU fieLd contains the service time used by this
job or session up to the start of this PMME.

PMME DATA.I 0 - -
PMME DATA.I 0 - UBIN. The I 0 fieLd contains the sum of the three ACCESS
fieLds at the start of this PMME.

PMME DATA.MISC1

PMME DATA.MISC1 - SBIN. The MISCeLLaneous1 and MISC2 fieLds contain various
information about the PMME in progress, e.g. for fiLe management operations,
the ASN fieLd of the DCB.

PMME_DATA.MISC2

PMME DATA.MISC2 - SBIN. See MISC1.

PNR

PNR - UBIN(9). The Partition NumbeR fieLd contains, if batch, the batch
partition in which this user is running.

PPC

PPC - UBIN HALF. The PhysicaL Page Count fieLd contains the number of reaL
memory pages which are onLy recorded in the page tabLe of this user. The
vaLue in this fieLd mayor may not be equaL to CURRCORE depending on a variety
of factors, such as shared procedure, shared data segments, free procedure,
etc.

PPRIV

PPRIV - BIT(36). Contains bit settings indicating which priviLeged processors
may be put into execution by this user. Refer to the description
PPRIVILEGE option of SUPER in the System Support Reference ManuaL
description of the various processor priviLeges that may be set.
processor priviLeges have an EQU defined here in the JIT that may
test the bit setting in JIT.PPRIV. These are of the form:

%EQU PPR_pprivname# = vaLue;

CE62-00 JIT FieLds

of the
for a
Each of the
be used to

A-15

where pprivname is the same as that of the option.

PRDPRM

PRDPRM - S8IN. The PeRmanent Disk Pack ReMaining field contains the number of
granules of permanent space which this job or session is still allowed to
allocate. Note that this is not the same as file account limits.

PRFLAGS.

PRFLAGS. The PRocessor FLAGS field contains a set of flags which are set by
the command processor based on the run unit invocation line and other
commands.

PRFLAGS.COMMENT

PRFLAGS.COMMENT - 8IT(1). The COMMENT field is a flag which is set unless a
!DONT COMMENT command was entered immediately prior to this job step.

PRFLAGS.CONTINUED

PRFLAGS.CONTINUED - 8IT(1). The CONTINUED field is a flag which is set if a
run unit invocation command is continued. The continuation records may be
found in the file *CONTINUATION_COMMANDS.

PRFLAGS.LIST

PRFLAGS.LIST - 8IT(1). The LIST field is a flag which is set unless a !DONT
LIST command was entered immediately prior to this job step.

PRFLAGS.LS

PRFLAGS.LS - 8IT(1). The List Source field is a flag which is set if a fid
was specified in the fid4 position of the run unit invocation.

PRFLAGS.NSSYNTAX

PRFLAGS.NSSYNTAX - 8IT(1). The Non-Standard SYNTAX field is a flag which is
set if a run unit invocation command did not conform to the standard syntax.
This command will be executed only if the run unit specifies that non-standard
syntax is allowed.

PRFLAGS.OU

PRFLAGS.OU - 8IT(1). The Object Unit field is a flag which is set if a fid
was specified in the fid3 position of the run unit invocation.

PRFLAGS.OUTPUT

PRFLAGS.OUTPUT - 8IT(1). Field not currently used.

PRFLAGS.SI

PRFLAGS.SI - 8IT(1). The Source Input field is a flag which is set if a fid
was specified in the fid1 position of the run unit invocation.

CE62-00 JIT Fields A-16

PRFLAGS.UI

PRFLAGS.UI - BIT(1). The Update Input field is a flag which is set if a fid
was specified in the fid2 position of the run unit invocation.

PRIINC

PRIINC - REDEF PNR UBIN(9). The PRIority INCrement field contains the
execution priority increment to be given to this system ghost over that
established for ghosts as a default.

PRIV.

PRIV. There are five words' that are defined in the JIT that are used to
verify a user's privilege prior to performing certain system functions for
this user. A description of the contents of each of these words follows.
Within each of the words, the bit settings will correspond to a value for
which an EQU statement is included in BSJIT C. These are of the form:

XEQU PR_privname# = value;

where privname is the same as that of the sub-option available on the
PRIVILEGE option of SUPER. Please refer to the System Support Reference
Manual for the names and meaning of these sub-options.

PRIV.ACTIVE

PRIV.ACTIVE - BIT(36). Contains the privileges that are currently in effect.
These active privileges are the combination of PRIV.JOB and PRIV.PRC. These
privilege bits may also be set and reset by the MSSPRIV and MSRPRIV monitor
service request. Refer to the Monitor Services Reference Manual for a
description of these requests.

PRIV.AUTH

PRIV.AUTH - BIT(36). Contains the user's privilege indicators as defined, via
SUPER, in the :USERS file.

PRIV.JOB

PRIV.JOB - BIT(36). Contains the privileges that have been requested via the
!PRIV command of IBEX. The privilege must appear in JIT.AUTH before IBEX will
set it in JIT.JOB.

PRIV.PRC

PRIV.PRC - BIT(36). Contains the processor privilege bits, as defined by LINK
options, from the :SYS processor's head record. If the currently executing
run unit is not from :SYS, PRIV.PRC is set to zero.

PRIV.SAVED

PRIV.SAVED - BIT(36). Contains the value from PRIV.ACTIVE while the
associated Command Processor is in control. This value is then restored to
PRIV.ACTIVE when the command processor returns control to the user.

CE62-QQ JIT Fields A-17

PROG ENTRY

PROG ENTRY - BIT(9). Set to indicate how the currently executing run-unit was
put into execution as follows:

PE CP#
PE-LINK#
PE-LDTRC#

PSEUDOPGS

'000'0
'020'0
'010'0

Started via MSCPEXITi
Started via MSLINK.
Started via MSLDTRC.

PSEUDOPGS - UBIN HALF. The PSEUDO PaGeS field contains the total number of
pages which the user is charged for but which are not reflected in PPC.

PSLEV

PSLEV - UBIN(3). The Processor Statistics LEVel field specifies the type of
accounting summary which is to be displayed when proprietary processor
charging is in effect. See JSLEV for possible values. Also see RATES,
CONTROL.

PUL

PUL - UBIN HALF. This field contains the Procedure Upper Limit, which is the
virtual page number of the last procedure page of the run unit or standard
shared processor currently executing. If the user is at job step, JIT.PUL
will be set to JIT.PLL -1.

REMCPO

REMCPO - SBIN. This field contains the number of punched cards allowed
remaining for this job.

REMDO

REMDO - SBIN. This field contains the number of pages of DO output remaining
for this job.

REMLO

REMLO - SBIN. This field contains the number of pages of LO output remaining
for this job.

RERUN

RERUN - BIT(1). The RERUN field specifies, if set, that this batch job is
being rerun as a result of some precipitate termination on a previous run.

RESCORE

RESCORE - UBIN WORD. The RESource CORE field contains the current amount of
resource memory allocated (not necessarily physically allocated). The MAXCORE
field is always less than or equal to RESCORE. See !RESOURCE, !ORES.

RESPEAK

RESPEAK - REDEF JRESPEAK UBIN HALF. See JRESPEAK.

CE62-00 JIT Fields A-18

RNST

RNST - BIT(9). The RNST field in the JIT always contains the "current" run
status reported on this user. This field .will be moved to the exit control
frame on the Task Control Block of the domain (user, alternate shared library,
debugger or command processor) in control at the time of the exit condition.
If this is the status to be reported to the user following all levels of exit
control processing, this field will be moved to JIT.USRRNST. JIT.RNST is
subject to change on any change of domain and should therefore never be
referenced by the user program.

This field contains one of the following EQUed values:

RS EXIT# '000'0

RS ERRII '001' 0

RS XXXII '002'0

RS SSPII '004'0

RS ABRTII '010'0

RS EKEYII '020'0 -

RS CANII '021' 0 -
RS OFFII '040'0

RS LIMXII '100' 0 -

RS DROP# '200'0 -
RS XKEYII '400'0 -

MSEXIT was issued.

MSERR was issued.

MSXXX was issued.

Aborted by Special Shared Processor.

Job step aborted by the monitor. This
may be because of program trap and no
trap control or an errored monitor service
request and no ALTRET.

Aborted because of operator ! E keyin
or because on user Control-Y QUIT.

Batch job has been canceled.

Logoff by the monitor.

Abort because some limit has been exceeded.
See description of BSJIT.XLIMFLG.

Interactive user's line has disconnected.

Abort because of ! X keyin by the operator.

Note that this field may have more than one bit set on to indicate multiple
exit conditions.

RUNFLAGS

RUNFLAGS - BIT(9). Indicates the currently executing process as follows:

RUN MONII '001' 0

RUN PROC# '002'0

RUN USERII '004'0

SCHTIME

Monitor or Command Processor

Processor in :SYS linked with PROCACC

User program or processor not linked
with the PROCACC option

SCHTIME - SBIN. The SCHedule TIME field contains the sum of XTIME, STIME, and
CTIME as they existed the last time this user was scheduled for execution.

SPEAK

SPEAK - UBIN HALF. The Step PEAK field contains the maxiMum value of CURRCORE
attained during the current job step.

CE62-00 JIT Fields A-19

SRESPEAK

SRESPEAK - UBIN HALF. The Step RESource PEAK field is the same as JRESPEAK
for a job step.

SSLEV

SSLEV - UBIN(3). The Step Statistics LEVel field specifies the type of
accounting summary which is to be displayed at each job step. See JSLEV for
possible values. Also see !REPORT.

STAR

STAR - ARRAY(O:7). The STA~ field contains information about several commonly
used star files. The entries are in the order: *T,*G,*L,*A,*S,*N,*X,*I.

STAR.DA

STAR.DA - UBIN. The Disk Address field contains the disk address of the file
information field for each of the abovementioned star files.

STDLOPGS

STDLOPGS - SBIN WORD. The STanDard LO PaGeS field contains the number of
printed pages of output which have been generated using the form STDLP.

STEPCC

STEPCC - UBIN(9). Contains the Step Condition Code. This field is set from
the SEV field of the error code at the time of the exit condition from the
user program:

CC EXIT# 0
CC-ERR# 4
CC-XXX# 6

STEPS

MSEXIT
Job step has been errored.
Job step has been aborted.

STEPS - SBIN HALF. Contains the number of job steps that have been executed
since this user logged on.

STEPUNIT

STEPUNIT - ARRAY(O:3) UBIN(18). The STEP UNIT field is a set of four counters
which are maintained through a job step and reset to zero at the beginning of
each job step. These may be used for 'transaction charging'. See MSCHGUNIT
and RATES processor.

STIME

STIME - SBIN. The Service TIME field contains the number of microseconds of
service time used this quantum.

STMPDPPK

STMPDPPK - SBIN. The Step TeMP Disk Pack PeaK field contains the maximum
amount of temporary disk storage allocated during this job step.

CE62-00 JIT Fields A-20

SVLDTF

SVLDTF - BIT(9). The SVLDT field contains bit settings to keep track of
various functions (exit control processing and association of DELTA) in the
course of MSLINK, MSLDTRC, SAVE and GET processing:

SVL DICII
SVL-EXITII

SVL TRTNII

SVL LINKfI
SVL-LDTRCfI
SVL-MSAVEfI
SVL-YCSAVEfI
SVL-GETfI

SVTUS

'200'0
'100' 0

'040'0

'020'0
'010'0
'004'0
'002'0
'001 '0

DELTA was in control at the time of the SAVE.
MSEXIT from exit control for SAVE - Saved
program is now to be run down.
MSTRTN from exit control for SAVE Saved
program is to continue execution.
MSLINK in progress.
MSLDTRC in progress.
MSSAVE in progress.
Control-Y SAVE in progress.
GET' in progress.

SVTUS - UBIN. The SerVice Time microseconds field contains the number of
microseconds (0-9999) of service time which were not able to be reflected in
TPSVT or TUSVT at the end of the previous quantum.

SWITCH

SWITCH - ARRAY(0:3S) BIT(1). The SWITCH field contains a set of 36 pseudo
sense switches which may be set/reset by !SWITCH and set/reset by
MSSSWITCH/MSRSWITCH.

SYSID

SYSID - UBIN HALF. Specifies the unique System Identification number that has
been assigned to this user by the system. This number is reset only on a cold
boot or wrap around. All operator communication and external or printed form
of user identification will use SYSID.

TDP

TDP - UBIN HALF. The Top Dynamic Page field contains the virtual page numnber
of the highest dynamic page currently allocated.

TMPGAC.

TMPGAC. The TeMPorary Granule ACcounting field contains accounting
information for temporary files used in this job or session.

TMPGAC.N

TMPGAC.N - UBIN. The TMPGAC.N field contains the integral of temporary
granules times time up to the time recorded in TMPGAC.TIME in floating point.
This is updated each time a temporary granule is allocated or deallocated.

TMPGAC.TIME

TMPGAC.TIME - UBIN. The TMPGAC.TIME field contains the time in UTS units of
the last update of TMPGAC.N.

CE62-00 JIT Fields A-21

TPEXT

TPEXT - SBIN. The Total Processor EXecution Time field contains the processor
execution time used in this job or session prior to the current quantum. This
is maintained in UTS units.

TPSVT

TPSVT - SBIN. The Total Processor SerVice Time field contains the processor
service time used in this job or session prior to the current quantum. This is
maintained in UTS units.

TSLINE.

TSLINE. The Time Sharing LINE field contains several attributes of a time
sharing users terminal connection.

TSLINE.FEX

TSLINE.FEX - UBIN(9). The Front End indeX field contains the FEP number of
the FEP to which this user's terminal is connected.

TSLINE.PORT

TSLINE.PORT - UBIN(18). The PORT field identifies the port or MLCP address on
the FEP to which this user's terminal is connected.

TSLINE.SPEED

TSLINE.SPEED - UBIN(9). The SPEED field contains a number signifying the line
speed of this user's terminal. The current values are:

SPEED baud SPEED baud SPEED baud
o 50 1 75 2 110
3 134 4 150 5 200
6 300 7 600 8 1050
9 1200 10 1800 11 2000

12 2400 13 4800 14 9600
15 19200

Values 0, 1, 3, 8, 10, 11 are not currently supported.

TUEXT

TUEXT - SBIN. The Total User EXecution Time field contains the user execution
time used in this job or session prior to the current quantum. This is
maintained in UTS units.

TUSVT

TUSVT - SBIN. The Total User SerVice Time field contains the user service
time used in this job or session prior to the current quantum. This is
maintained in UTS units.

UMEMTIM

UMEMTIM - SBIN. The User MEMory TIMe field contains the integral of (TUEXT +
TUSVT) * CURRCORE OVER all quanta of the entire job or session. This is
maintained in UTS * page units.

CE62-00 JIT Fields A-22

UNAME

UNAME - CHAR(12). The User NAME field contains the user's log on name.

USER

USER - UBIN(9). Specifies the User Number that has been assigned to this user
by the system. This number is used internally as an index into the system
user tables (BSUSER) and is not used for any external user identification.

USERWORD

USERWORD - ARRAY(O:3) UBIN(18). The USER WORD field is a set of four values
available for user use. S~e MSUSRFIELD.

USRDCB

USRDCB - UBIN(9). Contains the value from DCBNO at the time of the exit
condition from the user program. Thus, if there is a DCB# associated with the
error code in JIT.USRERR it will be here.

USRERR.

USRERR. Contains the error code that reflects the exit condition of the user
program. JIT.USRERR is in VLP ERR CODE format; refer to ERR for an explanation
of the FCG, MID, MON, CODE and-SEV subfields. USRERR only reflects the exit
condition of the user domain.

USRIC

USRIC - UBIN(18). Contains the Instruction Counter at the time of the exit
condition from the user program.

USRRNST

USRRNST - BIT(9). Contains the run status to reflect the exit condition of
the user program. Refer to RNST for an explanation of the bit settings in
this field. Note that USRRNST only applies to the exit condition of the user
domain. For example, if the job step is terminated because a special shared
processor aborts, RS ABRT# would have been set JIT.RNST for that special
shared processor's error processing, but JIT.USRRNST would have RS ABORT#
reset and RS_SSP# would be set instead. -

UTIMER

UTIMER - UBIN. The User TIMER field contains the time, in microseconds,
remalnlng before expiration of the timer which the user established with
MSSTIMER. A value of zero means there is no timer currently established.

VIRTUAL.

VIRTUAL. The VIRTUAL field is a structure defining currently open virtual
data segment files.

VIRTUAL.DCB#

VIRTUAL.DCBN - ARRAY(O:2) UBIN(9). The DCBN field contains the DeB number of
the DCB open to the file which defines each of the virtual data segments.

CE62=QQ JIT Fields A-23

woo

woo - CHAR(S). The Workstation Of Origin field contains the name of the
workstation from which this batch job originated. If the WSN option is
specified on a !JOB record, that becomes the WOO for the job. Timesharing,
ghost, and Transaction Processing jobs get their default WOO from the
authorization file. Regardless of the source of WOO, it is used as the default
workstation for all unit record output if WSN is not specified. It can also be
used for banners.

XCONF

XCONF - BIT(9). Bits 6 through S of the XCONF field are used by the monitor
to keep track of the exit control activity as control passes from one domain
to another:

XC URND '004'0

XC ASLII '002'0

XC QUIT '001 '0

Set when user level exit control processing
is completed, or if the user has no request
for exit control.

Set when ASL exit control processing
is complete.

Set on a QUIT command to DELTA or IBEX.

Bits 0 through 7 are used to record the prior RNST for multiple entries to
exit control within any domain. Refer to RNST for the EQUated values and
meanings of these bits.

XLIMFLG

XLIMFLG - BIT(9). When RS LIMXII is set in RNST, one of the following bits
will be set in XLIMFLG to indicate what limit has been exceeded:

XL POll '400'0 Cards Punched -
XL - MEMII '200'0 Memory -only causes abort if restoring a

an MSLINK or SAVE program image.

XL LOll '100' 0 MSLO pages -
XL DOli '040'0 MSDO pages -
XL - STACKII '002'0 Safe-store Stack or Argument St ac k

XL TIMEII '001' 0 Maximum Run Time exceeded -

XTIME

XTIME - SBIN. The eXecution TIME field contains the nUMber of microseconds of
execution time used this quantum.

YCOSZ

YCOSZ - UBIN(1S). Contains the bound of the MSYC monitor service request C .. D
parameter. This field has meaning only when the CP YCP EII bit is set in
CPFLAGS1.

CE62-00 JIT Fields A-24

Structure Format

Each of the structure drawings in this appendix represents one XMACRO entry
which defines a structure. Comments and most preprocessor constructs have
been removed from the descriptions to make them easier to read. There are
one, two, or three sections in each drawing, depending on the data contained
in the text of the structure and whether the structure is a XMACRO or DCl.

The first section of each drawing contains an alphabetized list of all the
parameters specified in the XMACRO header and their default values. If
substitution keywords are also present, they are listed alphabetically under
the parameter to which they apply, along with their values. Most parameters
are used in the INIT clause of the DCl; in this case the (first) location in
the structure ;n which the parameter value will be found ;s printed opposite
the par a met ern a me. The f o' r mat use dis ". 0 c tal w 0 r d - by t e - bit" • 1ft h e
parameter is not referenced in an INIT clause, the location is replaced by
.......... Only one value per INIT clause may be cross-referenced in this
manner; if multiple values are present in the INIT clause, the second and
succeeding ones will be flagged as "not found" (.........) in the parameter
listing.

The second section contains a list of XEQUs or XSUBs found embedded in the DCl
source. The fully-qualified name to which they apply appears as a header line
prior to the list of source text.

The third section is the actual text of the DCl and a drawing of the structure
it generates. The right half of the page contains the structure as it appears
in the source file, except that comments and preprocessor expressions have
been removed. The left half of each line shows the memory layout generated by
the code to its right on the same line. The drawing is one word (36 bits)
wide and continues for as many words as necessary to describe the entire
structure. The words are divided into four nine-bit bytes to make them easier
to read. lower case letters are used to represent the bits occupied by the
item being described:

bbbbb - indicates a BIT item.
ccccc - indicates a CHAR item.
eeeee - indicates an EPTR ; t em.
ppppp - indicates a PTR item.
sssss - indicates an SBIN item.
uuuuu - indicates a UBIN item.

If the data item either begins or ends on a non-byte boundary, its
representation in the drawing is changed to a string of "421" sequences,
indicating the value of the bit within the octal nibble of the byte. This
assists in decoding fields which are non-byte aligned when only an octal
representation is available.

Filler or supplementary storage which will be present in the structure is
indicated by a sequence of one or more periods (.....).

If a data item generates six or more words of storage, the "middle" words will
not be printed to conserve space. This omission is indicated by a line of .. z ..
characters replacing the vertical bars ("I") normally used to separate bytes.

Only one occurrence of an array element is shown, to illustrate its shape.
Blank spaces and/or .. z .. lines represent the remaining space occupied by the
array.

Items which are variable-length are shown as one bit (or byte) wide; the user
must use the actual values used in the structure to determine the true length
of the item at execution time. Similarly, arrays with variable upper bounds
are shown with only one element.

CE62-QQ Structure Format A-25

Each word in the drawing is preceded by its octal offset from the beginning of
the structure. The total length of the structure is indicated below the last
line of the DCl in the form ".octal words-bytes-bits". If the structure
contains variable-length strings or variable-dimension arrays, it is flagged
as "variable".

The following sample structure illustrates many of these points. Numbers in
parentheses refer to the items indicated by the <bracketed> numbers on the
example.

(1) The XMACRO or DCl name is printed at the left margin at the beginning of
the structure drawing and on each continuation page.

(2) This is a listing of the parameters in alphabetic order in a two-column
format.

(3) Indicates that the storage for "TYPE" begins at word 3 (octal), byte 0,
bit O.

(4) This is the parameter ("TYPE") and its default value ("0").

(5) These are the keywords which may be specified to change the value of the
parameter (e.g., "TYPE=TERMINAl" places "3" in the TYPE field of the
structure) and the values they represent.

(6) The periods (.....) indicate that this parameter was not found in an INIT
clause or is part of a list of initial values. In this case, the latter is
true.

(7) This is the XEQU and XSUB section.

(8) This is the fully-qualified name to which these EQUs apply. Note that
"FPTN" is a parameter which will be changed when this macro is invoked.

(9) These are the names which may be used when comparing FPTN.V.TYPE# to a
value.

(10) The remainder of the entry is the drawing section.

(11) The right half of this section contains the DCl text.

(12) The left half of this section contains the drawing of the storage
generated by the DCl text.

(13) The location for this line is indicated in octal. Since there is nothing
else in the drawing, this line of the DCl generates no storage.

(14) This line of the DCl has generated a 72-bit (two word) bit item,
represented by the b's. OTher items generate e's, u's, and so forth,
depending on their type.

(15) This is an array element. Note that the two bytes following it in word
.4 are blank, indicating that the array occupies this space.

(16) Although DIRECTION# is a UBIN value, its storage is represented by the
two bits "42" since it does not end on a byte boundary. The "42" indicates
that DIRECTION# occupies the leftmost two bits of the first octal nibble of
this byte.

(17) Since HEADER# generates 20 words of storage, it is shortened to its first
two words and last two words. The "z" line indicates that one or more words
have been omitted to conserve space.

(18) Since C# is a variable-length string, only one byte is indicated as its
length in the drawing. The user would consult the l# byte to determine the
true length of C# at run time.

CE62-00 Structure Format A-26

(19) Periods indicate supplementary or filler storage. Three bytes of
supplementary storage are added to LN since it is (by default) ALIGNED. Up to
seven bytes of filler storage are added to the structure after the last
character of CN since it is DALIGNED.

(20) The total length of the structure is octal .34 words, 0 bytes, and 0
bits; however, since this structure contains a variable-length item, the user
must adjust the total length appropriately at run time.

CE62-00 Structure Format A-27

SA"PLE +-(D
.4-3-2 ABC='O'B

CD
INDENT2=10

NO="'O'B" • INDENT3=15
YES="'1'B" .31-0-0 L=O

.32-0-0 C=' ,
PF"T="BI~

DCB=NIL CD ~ .3-0-0 TYPE=O 4
CD .4-3-0 DIRECTION=1 FILE=1

INOUT=3
CD

TAPE=2
INPUT=1 ~ TER"INAL=3
OUTPUT=2 UNDEF=4

FPTN=SA"PLE .0-0-0 USER=NIL
.4-0-0 INDENT1=5 .2-0-0 ZZZ=NIL

FPTN.V.TYPE# ~}
XEQUs and XSUBs

XEQU TYPE FILE=1;
IXEQU TYPE-TAPE=2; CD
XEQU TYPE-TER"INAL=3; G])
XEQU TYPE:UNDEF=4; +

• 0
.0
.1
.2
.2
.3
.3
.3
.4
.4
.4
.4
.4
.5
.6

.27

.30

.31

.31

.32

.33

012345678 012345678 012345678 '012345678
+---------+---------+---------+---------+ +-@ .

bbbbbbbbb bbbbbbbbb bbbbbbbbb bbbbbbbbb
bbbbbbbbb bbbbbbbbb bbbbbbbbb bbbbbbbbb

eeeeeeeee eeeeeeeee eeeeeeeee eeeeeeeee
uuuuuuuuu

bbbbbbbbb
uuuuuuuuu uuuuuuuuu

sssssssss
42

1
421421

ccccccccc ccccccccc ccccccccc ccccccccc
ccccccccc ccccccccc ccccccccc ccccccccc

Z Z Z Z Z
Iccccccccclccccccccclccccccccclccccccccci
Iccccccccclccccccccclccccccccclccccccccci
I I I I I
I uuuuuuuuu I •• : •• ~ • I. +-<J.j). I ••••••••• 1
Iccccccccci. ~.I ••••••••• I ••••••••• 1
1 ••••••••• 1 ••••••••• 1 ••••••••• 1 ••••••••• 1
+---------+---------+---------+---------+

DCL
1 FPTN DALIGNED,

2 JUlER_ PF"T INIT(VECTOR(
~

2 V,
3 ZZZ# EPTR INIT(ENTADDR
3 TYPE# UBIN BYTE UNAL IN
3 * BIT(9) INIT('O'B)
3 DCB# UBIN HALF UNAL IN
3 IDENT#(0:2) SBIN BYTE UN

(INDENT1,INDENT2,INDENT3
3 DIRECTION# UBIN(2) U
3 ABC# BIT(1) INIT(ABC),
3 * BIT(6) UNAL INIT(
3 HEADER# CHAR(80) INIT('

3 FNA"E,
4 L# UBIN BYTE INIT(L)
4 C# CHAR(FPTN.V.FNA"E

012345678 012345678 012345678 012345678 .34-0-0 total len. (variable

Figure A-1. Sample Structure

CE62-00 Structure Format A-28

JIT Structure

The Job Information Table is illustrated on the following pages. The JIT
structure is available in BSJIT C.:LIBRARY.

CE62-QO JIT Structure A-29

••••• BSJIT=BSJIT ••••• STCLASS="BASED(BSJITS)"

--> BSJIT.MODE <-­
%EQU M INTII=3;
%EQU M-BATCHII=1;
%EQU M-GHOSTII=2;
XEQU M:TPII=4;

--> BSJIT.PRIV.ACTIVE <--
XEQU PR SPCLMMII='000000000001'0;
%EQU PR-EXMMII='000000000002'0;
%EQU PR-MAXMEMII='000000000004'0;
XEQU PR-MSYSII='000000000010'0;
XEQU PR-J ITII=' 000000000040 "0;
XEQU PR-TNDII='000000000100'0;
XEQU PR-PMII='000000000200'0;
%EQU PR-EXPMII='000000000400'0;
XEQU PR-IOQII='000000001000'0;
%EQU PR-IOQWII='000000002000'0;
XEQU PR-CFEPII='000000020000'0;
XEQU PR-MFEPII='000000040000'O;
XEQU PR-SYSLOGII='000000100000'0;
XEQU PR-GPPII='000000400000'0;
XEQU PR-ASAVEII='000001000000'0;
XEQU PR-SYSCONII='000002000000'0;
XEQU PR-DISPJOBII='000010000000'0;
XEQU PR-FMEFTII='400000000000'0;
%EQU PR-FMBLKII='200000000000'0;
XEQU PR-FMSECII='100000000000'0;
%EQU PR-FMDIAGII='040000000000'0;
%EQU PR:FMREADII='020000000000'0;

--> BSJIT.PPRIV <--
%EQU PPR CNTRLDII='400000000000'0;
%EQU PPR-CNTRLCII='200000000000'0;
%EQU PPR-EFTII='100000000000'0;
%EQU PPR-ELII='040000000000'0;
%EQU PPR-LABELII='020000000000'0;
XEQU PPR-PIGDII='010000000000'0;
%EQU PPR-PIGCII='004000000000'0;
XEQU PPR-SPIDERDII='002000000000'0;
%EQU PPR-SPIDERCII='001000000000'0;
XEQU PPR-SUPERII='000400000000'0;
XEQU PPR-FEPANLZII='000200000000'0;
%EQU PPR-SUPERAUTHII='000100000000'0;
XEQU PPR-SUPERWSNII='000040000000'0;
%EQU PPR-SUPERFORMII='000020000000'0;
%EQU PPR-PADMINII='000010000000'0;
%EQU PPR-SUPERDII='000004000000'0;
XEQU PPR:VOLINITM='000002000000'0;

%EQUs and %SUBs

Figure A-2. BSJITO Structure (cont. next page)

CE62-00 JIT Structure A-30

XEQU PPR REPLAY#='000001000000'O;
XEQU PPR:RATES#='000000400000'O;

--> BSJIT.CPFLAGS1 <--
XEQU CP DELTA#='000000000001'O;
XEQU CP-SLEAZE#='000000000001'O;
XEQU CP-SCREECH#='000000000002'O;
XEQU CP-BRK#='000000000004'O;
XEQU CP-ECHO#='000000000010'O;
XEQU CP-CFREAD#='000000000020'O;
XEQU CP-BUFFULL#='000000000040'O;
XEQU CP-PROTECT#='000000000100'O;
XEQU CP-STEPLMT#='000000000200'O;
XEQU CP-STEPACCT#='000000000400'O;
XEQU CP-PROCACCT#='000000001000'O;
XEQU CP-NOTIFY#='000000002000'O;
XEQU CP-TRMNATE#='000000004000'O;
XEQU CP-KEEPDS#='000000010000'O;
XEQU CP-EXIT#='000000020000'O;
XEQU CP-SKIPABORT#='000000040000'O;
XEQU CP-DRIBBLE#='000000100000'O;
XEQU CP-INITIALIZE#='000000200000'O;
XEQU CP-TESTMODE#='000000400000'O;
XEQU CP-STARPROC#='000001000000'O;
XEQU CP-FIRSTCP#='000002000000'O;
XEQU CP-LASTCP#='000004000000'O;
XEQU CP-LASTCPEXISTS#='000010000000'O;
XEQU CP-STARSACC#='000020000000'O;
XEQU CP-SOMENOTIFY#='000040000000'O;
XEQU CP-SSTART#='010000000000'O;
XEQU CP-YCPMME#='020000000000'O;
XEQU CP-YC#='040000000000'O;
XEQU CP-RUND#='100000000000'O;
XEQU CP-JSTEP#='200000000000'O;
XEQU CP-LOGOFF#='400000000000'O;
XEQU CP-RESET#='417777777777'O;
XEQU CP:RSSTART#='407777777777'O;

--> BSJIT.SSLEV <--
%EQU AZ ALL#=1;
%EQU AZ-SUMMARY#=2;
%EQU AZ:NONE.=3;

--> BSJIT.NEXTCC <-­
%EQU CC FROMNO'=O;
%EQU CC-FROMJOB.=1;
%EQU CC-FROMXEQ.=2;
%EQU CC-FROMUC.=3;
%EQU CC:FROMXEQEND#=4;

--> BSJIT.PROG ENTRY <-­
%EQU PE_CP#='O~O'O;

Figure A-2. BSJITO Structure (cont. next page)

CE62-00 JIT Structure A-31

%EQU PE_LINK'='020'O;
%EQU PE_LDTRC'='010'O;

--> BSJIT.RNST <--
XEQU
XEQU
XEQU
XEQU
XEQU
XEQU
XEQU
XEQU
XEQU
XEQU
XEQU
XEQU
XEQU
XEQU
%EQU

RS EXIT'='OOO'O;
RS-ERR'='001'O·· - ,
RS XXX'='002'O;
RS-SSP'='004'O;
RS=ABRT'='010'O;
RS EKEY'='020'O· - ,
RS_OFF'='040'O;
RS LI"X'='100'O;
RS-DROP'='200'O;
RS-XKEY'='400'O;
RS=CAN'='021'O;
RS P E'=·774·0;
RS-CL23'='740'O;
RS-CL3'='640'O;
RS=XCON'='760'O;

--> BSJIT.RUNFLAGS <-­
%EQU RUN .. ON'=·001·Oi
%EQU RUN-PROC'='002'O;
%EQU RUN=USER'='004'O;

--> BSJIT.JUNK <--
%EQU JJ .. LINKIP'=·000001'O;
%EQU JJ-LNKRETIP'='000002'O;
%EQU JJ-A .. ERGE'=·000004·O;
%EQU JJ-EXONLY'='000010'Oi
%EQU JJ-ENQBIT'='000020'O;
XEQU JJ-SCCSET'='000040'O;
%EQU JJ-RTNXIT'='000100'Oi
XEQU JJ-LOGOFF'='000200'O;
%EQU JJ-BYPASSD'='000400'O;
%EQU JJ=BAKIC'='001000'O;
XEQU JJ RUNXCON'='002000'O;
XEQU JJ-DLIB'='004000'O;
XEQU JJ-SAVEING'='010000'O;
%EQU JJ-GETTING'='020000'O;
XEQU JJ-NOSAVE'='040000'Oi
XEQU JJ=SCON'='100000'O;
XEQU JJ UDELTA'='200000'O;
XEQU JJ=EVENT'='400000'O;

--> BSJIT.XCONF <--
XEQU
XEQU
XEQU
XEQU
XEQU

xc QUIT'='001'O;
XC-ASL'='002'O;
XC=URND'='004'Oi
XC DO .. AIN'='007'O;
XC-PRNST#='770·O· - ,

Figure A-2. BSJITO Structure (cont. next page)

CE62-00 JIT Structure A-32

--) BSJIT.STEPCC <-­
XEQU CC EXITII=O;
XEQU CC-ERRII=4;
XEQU CC=XXXII=6;

--) BSJIT.XLIMFLG <-­
XEQU XL_TIMEII='001'0;
XEQU XL STACKII='002'0;
XEQU XL=TAPEII='004'0;
XEQU XL TDISCII='010'0;
XEQU XL-PDISCII='020'0;
XEQU XL-DOII='040'0;
XEQU XL-LOII='100'0;
XEQU XL-MEMII='200'0;
XEQU XL=POII='400'0;

--) BSJIT.SVLDTF <-­
XEQU SVL DICII='200'0;
XEQU SVL-EXITII='100'0;
XEQU SVL-TRTNII='040'0;
XEQU SVL-READYII='140'0;
XEQU SVL-LINKII='020'0;
XEQU SVL-LDTRCII='010'0;
XEQU SVL-LYNXII='030'0;
XEQU SVL-MSAVEII='004'0;
XEQU SVL-YCSAVEII='002'0;
XEQU SVL-SAVEII='006'0;
XEQU SVL-ECCBII='016'0;
XEQU SVL=GETII='001'0;

--) BSJIT.JUNK2 <--
XEQU JJ2 DBRKII='000001'0;
XEQU JJ2=PACCESSII='000002'0;

012345678 012345678 012345678 012345678
+---------+---------+---------+---------+

.0

.0 4214

.0 21421

.0 uuuuuuuuu

.0 uuuuuuuuu uuuuuuuuu
• 1 ccccccccc ccccccccc ccccccccc ccccccccc
.2 ccccccccc ccccccccc ccccccccc ccccccccc
.3 ccccccccc ccccccccc ccccccccc ccccccccc
.4 ccccccccc ccccccccc ccccccccc ccccccccc
.5 ccccccccc ccccccccc ccccccccc ccccccccc
.6 ccccccccc ccccccccc ccccccccc ccccccccc
.7 ccccccccc ccccccccc ccccccccc ccccccccc

.10 ccccccccc ccccccccc ccccccccc ccccccccc

.11 ccccccccc ccccccccc ccccccccc ccccccccc

.12

.12 421421421 421

.12 421421

.12 4

.12 21421421 421421

.12 421

.13

.13 bbbbbbbbb bbbbbbbbb bbbbbbbbb bbbbbbbbb

.14 bbbbbbbbb bbbbbbbbb bbbbbbbbb bbbbbbbbb

.15 bbbbbbbbb bbbbbbbbb bbbbbbbbb bbbbbbbbb

.16 bbbbbbbbb bbbbbbbbb bbbbbbbbb bbbbbbbbb

.17 bbbbbbbbb bbbbbbbbb bbbbbbbbb bbbbbbbbb

.20 bbbbbbbbb bbbbbbbbb bbbbbbbbb bbbbbbbbb

.21 ccccccccc ccccccccc ccccccccc ccccccccc

.. 22 ccccccccc ccccccccc

.22 uuuuuuuuu

.22 uuuuuuuuu

DCL
1 BSJIT STCLASS DALIGNED,

2 MODE UBIN(4) UNAL,
2 * BIT(5),
2 USER UBIN(9) UNAL,
2 SYSID UBIN HALF UNAL,
2 ACCN CHAR(8),

2 UNAME CHAR(12),

2 FACCN CHAR(8),

2 WOO CHAR(8),

2 ERR,
3 FCG BIT(12),
3 MID BIT(6),
3 MON BIT(1),
3 CODE UBIN(14) UNAL,
3 SEV UBIN(3) UNAL,

2 PRIV,
3 ACTIVE BIT(36),
3 AUTH BIT(36),
3 JOB BIT(36),
3 PRC BIT(36),
3 SAVED BIT(36),

2 PPRIV BIT(36),
2 FPSN CHAR(6),

2 OUTPRIO UBIN(9) UNAL,
2 DCBNO UBIN(9) UNAL,

Figure A-2. BSJITO Structure (cont. next page)

JIT Structure A-33

.23

.30

.30

.30

.30

.30

.30

.30

.30

.30

.30

.30

.31

.32

.32

.33

.34

.131

.132

.133

.135

.137

.141

.143

.144

.144

.144

.144

.144

.144

.145

.145

.145

.146

.146

.147

.150

.151

.151

.151

.151

.151

.152

.153

.153

.153

.153

.153

.154

.156

.156

.157

.160

.164

.165

.166

luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul
z z z z z

1 t
4

2
1

4
2

1
4

2
1

1
I
1
1
1
I
1
I
I

bbbbbbbbblbbbbbbbbb bbbbbbbbb
4 1
sssssssss sssssssssl

I's s s s s s s s s s s s s s s s s s
eeeeeeeee eeeeeeeeeleeeeeeeee eeeeeeeee
eeeeeeeee eeeeeeeeeleeeeeeecc ccccccccc

Z Z Z Z z
Iccccccccclccccccccclccccccccclccccccccci
Iccccccccclccccccccclccccccccclccccccccci
luuuuuuuuuluuuuuuuuul 1 1
z z z z z
luuuuuuuuuluuuuuuuuul 1 1
z z z z z
luuuuuuuuuluuuuuuuuul 1 1
z z z z z
luuuuuuuuuluuuuuuuuul 1 1
z z z z Z
Ibbbbbbbbblbbbbbbbbblbbbbbbbbblbbbbbbbbb
1 1 1 I
421421421 421 1 1

4214211 1
4 I

21421421 421421
421

uuuuuuuuu uuuuuuuuu
bbbbbbbbb

ccccccccc
uuuuuuuuu uuuuuuuuu

uuuuuuuuu uuuuuuuuu
sssssssss sssssssss sssssssss sssssssss
uuuuuuuuu uuuuuuuuu uuuuuuuuu uuuuuuuuu
421

421
421

uuuuuuuuu
ccccccccc ccccccccc

ecccccccc ccccccccc ccccccccc ccccccccc
uuuuuuuuu

uuuuuuuuu

4

4
21421421

uuuuuuuuu

Z Z Z Z z
luuuuuuuuul I I I
I Iccccccccclccccccccclccccccccci
lecccccccclccccccccclccccccccclccccccccci
Iccccccccclccccccccclccccccccclccccccccci
z z z z z
Iccccccccclccccccccclccccccccclccccccccci
Iccccccccclccccccccclccccccccclccccccccci
I I I I I

2 *(0:4) UBIN,

2 PRFLAGS,
3 SI BIT(1),
3 UI BIT(1),
3 OU BIT(1),
3 LS BIT(1),
3 COMMENT BIT(1),
3 LIST BIT(1),
3 OUTPUT BIT(1),
3 NSSYNTAX BIT(1),
3 CONTINUED BIT(1),
3 * BIT(27),

2 SWITCH(0:35) BIT(1),
2 CCARS BIN HALF UNAL,
2 CCDISP SBIN HALF UNAL,
2 CCBUF CHAR(256),

2 USERWORD(0:3) UBIN(18) UNA

2 INSTWORD(0:3) UBIN(18) UNA

2 JOBUNIT(0:3) UBIN(18) UNAL

2 STEPUNIT(0:3) UBIN(18) UNA

2 CPFLAGS1
2 USRERR,

3 FCG
3 MID
3 MON
3 CODE
3 SEV

2 JORG
2 USRRNST
2 LANG
2 YCOSZ
2 USRIC
2 BUDLIM
2 LOGONTIME
2 JSLEV
2 PSLEV
2 SSLEV
2 NEXTCC
2 BILL

BIT(36),

BIT(12),
BIT(6),
BIT(1),
UBIN(14) UNAL,
UBIN(3) UNAL,
UBIN(18) UNAL,
BIT(9),
CHAR(1),
UBIN(18) UNAL,
UBIN(18) UNAL,
SBIN,
UBIN,
UBIN(3) UNAL,
UBIN(3) UNAL,
UBIN(3) UNAL,
UBIN(9) UNAL,
CHAR(6),

2 DEFPRI UBIN BYTE UNAL,
2 MAXPRI UBIN BYTE UNAL,
2 BLINDACCTNG BIT(1),
2 * BIT(8),
2 USRDCB UBIN(9) UNAL,
2 LOCK(0:71) BIT(1),

2 * UBIN BYTE CALIGNED,
2 JOBNAME CHAR(31),

2 MSGID,

Figure A-2. BSJITO Structure (cont. next page)

CE62-00 JIT Structure A-34

.166

.167

.170

.170

.171

.176

.176

.177

.177

.200

.200

.201

.201

.202

.202

.203

.203

.204

.204

.205

.205

.206

.206

.206

.206

.207

.207

.210

.210

.211

.211

.212

.212

.212

.212

.213

.213

.214

.214

.215

.215

.216

.216

.217

.217

.217

.220

.221

.221

.222

.222

.232

.233

.234

.235

.235

.236

.237

.240

.241

.242

.243

.246

.246

luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul
luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul
Ibbbbbbbbbi I I I
I Ibbbbbbbbblbbbbbbbbblbbbbbbbbbi
luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul
z z z z z
luuuuuuuuu uuuuuuuuul
I luuuuuuuuu uuuuuuuuu
luuuuuuuuu uuuuuuuuul
I luuuuuuuuu uuuuuuuuu
luuuuuuuuu uuuuuuuuul
I luuuuuuuuu uuuuuuuuu
luuuuuuuuu uuuuuuuuul
I uuuuuuuuu uuuuuuuuu
uuuuuuuuu uuuuuuuuu

uuuuuuuuu uuuuuuuuu
uuuuuuuuu uuuuuuuuu

uuuuuuuuu uuuuuuuuu
uuuuuuuuu uuuuuuuuu

uuuuuuuuu uuuuuuuuu
uuuuuuuuu uuuuuuuuu

uuuuuuuuu uuuuuuuuu

4
21421421 421421421

uuuuuuuuu uuuuuuuuu
uuuuuuuuu uuuuuuuuu

uuuuuuuuu uuuuuuuuu
uuuuuuuuu uuuuuuuuu

uuuuuuuuu uuuuuuuuu
uuuuuuuuu uuuuuuuuu

uuuuuuuuu uuuuuuuuu
uuuuuuuuu uuuuuuuuu

uuuuuuuuu uuuuuuuuu
uuuuuuuuu uuuuuuuuu

uuuuuuuuu uuuuuuuuu
uuuuuuuuu uuuuuuuuu

uuuuuuuuu uuuuuuuuu
uuuuuuuuu uuuuuuuuu

uuuuuuuuu uuuuuuuuu
uuuuuuuuu uuuuuuuuu

uuuuuuuuu uuuuuuuuu
uuuuuuuuu uuuuuuuuu

uuuuuuuuu
uuuuuuuuu

4
sssssssss sssssssss

sssssssss sssssssss

uuuuuuuuu uuuuuuuuu uuuuuuuuu uuuuuuuuu
Z Z Z Z z
Ippppppppplppppppppplppppppppplpppppppppi
Ippppppppplppppppppplppppppppplpppppppppi
Iccccccccclccccccccclccccccccclccccccccci
Iccccccccclccccccccci I I
I I Ibbbbbbbbblbbbbbbbbbi
Issssssssslssssssssslssssssssslsssssssssl
Issssssssslssssssssslssssssssslsssssssssl
Issssssssslssssssssslssssssssslsssssssssl
Issssssssslssssssssslssssssssslsssssssssl
Issssssssslssssssssslssssssssslsssssssssl
luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul
z z z z z
I I I I I
luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul

3 PRI .. ARY
3 XT

2 PROG ENTRY
2 *
2 *(0:4)

UBIN,
UBIN,
BIT(9),
BIT(27),
UBIN,

2 PLL UBIN HALF HALIGNED,
2 PUL UBIN HALF HALIGNED,
2 DLL UBIN HALF HALIGNED,
2 DUL UBIN HALF HALIGNED,
2 DDLL UBIN HALF HALIGNED,
2 DDUL UBIN HALF HALIGNED,
2 PCP UBIN HALF HALIGNED,
2 PCD UBIN HALF HALIGNED,
2 PCDS UBIN HALF HALIGNED,
2 PCC UBIN HALF HALIGNED,
2 PCROS UBIN HALF HALIGNED,
2 PCDD UBIN HALF HALIGNED,
2 TDP UBIN HALF HALIGNED,
2 EUP UBIN HALF HALIGNED,
2 FBUC UBIN HALF HALIGNED,
2 FBUL UBIN HALF HALIGNED,
2 FLGS,

3 FREE PPGS BIT(1),
3 * BIT(17),

2 * UBIN HALF HALIGNED,
2 * UBIN HALF HALIGNED,
2 PPC UBIN HALF HALIGNED,
2 .. AXCORE UBIN HALF HALIGNED
2 CURRCORE UBIN HALF HALIGNE
2 SPEAK UBIN HALF HALIGNED,
2 JPEAK UBIN HALF HALIGNED,
2 JRESPEAK UBIN HALF HALIGNE
2 RESPEAK REDEF JRESPEAK

UBIN HALF HALIGNED,
2 PSEUDOPGS UBIN HALF HALIGN
2 SRESPEAK UBIN HALF HALIGNE
2 PCDDS UBIN HALF UNAL,
2 PCADS UBIN HALF UNAL,
2 LLL UBIN HALF UNAL,
2 LUL UBIN HALF UNAL,
2 PCL UBIN HALF UNAL,
2 PCV UBIN HALF HALIGNED,
2 * UBIN HALF HALIGNED,
2 VIRTUAL,

3 DCB#(0:2) UBIN(9) CALIGN
3 * UBIN(9) CALIGNED,

2 FEXT(0:35) BIT(1),
2 DEFEXP SBIN HALF UNAL,
2 .. AXEXP SBIN HALF UNAL,
2 STAR(0:7),

3 DA UBIN,

2 DCBS
2 DOS
2 HPSN

2 FACNACS
2 STMPDPPK
2 JT .. PDPPK
2 CURT .. PDP
2 .. AXT .. PDP
2 PRDPR ..
2 GAC(0:2)

2 T"PGAC,
3 N

PTR,
PTR,
CHAR(6),

BIT(18),
SBIN,
SBIN,
SBIN,
SBIN,
SBIN,
UBIN,

UBIN,

Figure A-2. BSJITO Structure (cont. next page)

CE62-QO JIT Structure A-35

.247 luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul 3 TIME UBIN,

.250 luuuuuuuuul I I I 2 FACNCM UBIN(9) UNAL,

.250 I Ibbbbbbbbbi I I 2 *(0:2) BIT(9),

.251 luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul 2 *(0:6) UBIN,
Z Z Z Z Z

.260 sssssssss ssssssssslsssssssss sssssssss 2 CEXT SBIN,

.261 sssssssss ssssssssslsssssssss sssssssss 2 STIME SBIN,

.262 sssssssss ssssssssslsssssssss sssssssss 2 XTIME SBIN,

.263 sssssssss ssssssssslsssssssss sssssssss 2 CTIME SBIN,

.264 sssssssss ssssssssslsssssssss sssssssss 2 INTTIME SBIN,

.265 sssssssss ssssssssslsssssssss sssssssss 2 SCHTIME SBIN,

.266 sssssssss ssssssssslsssssssss sssssssss 2 IOELTAT SBIN,

.267 sssssssss ssssssssslsssssssss sssssssss 2 CALCNT SBIN,

.270 sssssssss ssssssssslsssssssss sssssssss 2 TPEXT SBIN,

.271 sssssssss sssssssss sssssssss sssssssss 2 TPSVT SBIN,

.272 sssssssss sssssssss sssssssss sssssssss 2 PMEMTIM SBIN,

.273 sssssssss sssssssss sssssssss sssssssss 2 TUEXT SBIN,

.274 sssssssss sssssssss sssssssss sssssssss 2 TUSVT SBIN,

.275 sssssssss sssssssss sssssssss sssssssss 2 UMEMTIM SBIN,

.276 sssssssss sssssssss sssssssss sssssssss 2 MRT SBIN,

.277 sssssssss sssssssss 2 RCOMT SBIN HALF UNAL,

.277 sssssssss sssssssss 2 RCURT SBIN HALF UNAL,

.300 sssssssss sssssssss 2 RESPT SBIN HALF UNAL,

.300 sssssssss sssssssss 2 TURNT SBIN HALF UNAL,

.301 uuuuuuuuu uuuuuuuuu uuuuuuuuu uuuuuuuuu 2 UTIMER UBIN UNAL,

.302 uuuuuuuuu 2 PNR UBIN(9) UNAL,

.302 uuuuuuuuu 2 PRIINC REOEF PNR UBIN(9) U

.302 4 2 RERUN BIT(1),

.302 21421421 2 * UBIN(8) UNAL,

.302 uuuuuuuuu uuuuuuuuu 2 LBJID UBIN HALF UNAL,

.303 luuuuuuuuu uuuuuuuuu uuuuuuuuu uuuuuuuuu 2 EXTUS UBIN,

.304 luuuuuuuuu uuuuuuuuu uuuuuuuuu uuuuuuuuu 2 SVTUS UBIN,

.305 luuuuuuuuu uuuuuuuuu uuuuuuuuu uuuuuuuuu 2 *(0:6) UBIN,
Z Z Z Z Z

.314 bbbbbbbbbi I 2 RNST BIT(9),

.314 bbbbbbbbbi 2 FRS BIT(9),

.314 bbbbbbbbb 2 RUNFLAGS BIT(9),

.314 uuuuuuuuu 2 LNKCNT UBIN(9) UNAL,

.315 bbbbbbbbb bbbbbbbbb 2 JUNK BIT(18),

.315 sssssssss sssssssss 2 STEPS SBIN HALF UNAL,

.316 bbbbbbbbb 2 XCONF BIT(9),

.316 uuuuuuuuu 2 STEPCC UBIN(9) UNAL,

.316 bbbbbbbbb 2 XLIMFLG BIT(9),

.316 bbbbbbbbb 2 SVLDTF BIT(9),

.317 bbbbbbbbb bbbbbbbbb bbbbbbbbb bbbbbbbbb 2 YCERR BIT(36) ALIGNED,

.320 sssssssss sssssssss 2 CURPNUM SBIN HALF UNAL,

.320 sssssssss sssssssss 2 HIGHPNUM SBIN HALF UNAL,

.321 bbbbbbbbb bbbbbbbbb 2 JUNK2 BIT(18),

.321 bbbbbbbbb bbbbbbbbb 2 * BIT(18),

.322 sssssssss sssssssss sssssssss sssssssss 2 *(0:1) SBIN,

.324 sssssssss sssssssss 2 REMCPO SBIN HALF UNAL,

.324 sssssssss sssssssss 2 REMLO SBIN HALF UNAL,

.325 sssssssss sssssssss 2 REMDO SBIN HALF UNAL,

.325 sssssssss sssssssss 2 INTER SBIN HALF UNAL,

.326 sssssssss sssssssss sssssssss sssssssss 2 STDLOPGS SBIN WORD,

.327 2 ACCESS,

.327 sssssssss sssssssss sssssssss sssssssss 3 PACKS SBIN,

.330 sssssssss sssssssss sssssssss sssssssss 3 TAPES SBIN,

.331 sssssssss sssssssss sssssssss sssssssss 3 FORMS SBIN,

.332 sssssssss sssssssss 2 MOUNTS(0:2) SBIN HALF UNAL

.333 4 2 OLTA(0:1) BIT(1),

.333 1421421 421421421 2 ARECX UBIN(16) UNAL,

.334 uuuuuuuuu 2 CURSUDO(0:7) UBIN BYTE UNA
Z Z Z Z Z

.336 luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul 2 RESCORE UBIN WORD,

.337 I I I I I 2 TSLINE,

.337 luuuuuuuuul I I I 3 FEX UBIN(9) UNAL,

Figure A-2. BSJITO Structure (cont. next page)

CE62-00 JIT Structure A-36

.337

.337

.340

.341

.341

.~4 ~

.343

.344

.355

.355

.356

luuuuuuuuul I I
I I luuuuuuuuuluuuuuuuuul
Issssssssslssssssssslssssssssslsssssssssl
I I I I I
luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul
! IJ JUUUUUUU I uuuuuuuuu I uuuuuuuuu I uuuuuuuuu I
Issssssssslssssssssslssssssssslsssssssssl
Issssssssslssssssssslssssssssslsssssssssl
z z z z z
luuuuuuuuuluuuuuuuuul I I
I I Ibbbbbbbbblbbbbbbbbbi
luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul
z z z z z
+---------+---------+---------+---------+

3 SPEED UBIN(9) UNAL,
3 PORT UBIN(18) UNAL,

2 PMME COUNT SBIN,
2 PMME-DATA(0:2),

3 cp'ij' URlN.,
3 1 0 UBIN,
3 MISC1 SBIN,
3 M1SC2 SBIN,

2 ENQS
2 *
2 *(0:7)

UBIN(18) UNAL,
BIT(18),
UBIN WORD;

012345678 012345678 012345678 012345678 .366-0-0 total length

Figure A-2. BSJITO Structure

CE62-00 JIT Structure A-37

••••• BSJITO=BSJITO
012345678 012345678 012345678 012345678

+---------+---------+---------+---------+
.0 I I I I I
.0 luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul

z z z z Z
.30 luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul

z z z z Z
.176 luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul

z z z z Z
.220 luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul

z z z z Z
.260 luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul

z z z z Z
.314 luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul

Z Z l Z Z
.324 luuuuuuuuuluuuuuuuuuluuuuuuuuuluuuuuuuuul

Z Z Z Z Z
+---------+---------+---------+---------+

012345678 012345678 012345678 012345678

••••• STClASS=BASED

DCl
1 BSJITO STClASS DAlIGNED,

2 *(0:23) UBIN WORD,

2 *(0:101) UBIN,

2 *(0:17) UBIN,

2 *(0:31) UBIN,

2 *(0:27) UBIN,

2 *(0:7) UBIN,

2 *(0:33) UBIN;

.366-0-0 total length

Figure A-3. BSJITOX Structure

CE62-00 JIT Structure A-38

Index

Note: Index references indicate the page on which the paragraph containing the
index term actuaLLy ends. ShouLd the paragraph straddLe two pages, the actuaL
indexed term might be on the first page, whiLe the index reference is to the
second page.

A

A - 3-2
*A - 11-13 11-14
ACCESS./BSJIT - A-1
ACCESS.FORMS/BSJIT - A-1
ACCESS.PACKS/BSJIT - A-1
ACCESS.TAPES/BSJIT - A-1
Accessing the JIT - 8-1
Accessing the Task ControL BLock (TCB) - 8-3
ACCN/BSJIT - A-1
Accounting Considerations - 8-22
Addressing Data within a VirtuaL Segment - 8-16
Addressing User Memory from ASL - 11-27
Addressing User Memory from Command Processor - 11-15
Addressing User Memory from Debugger - 11-20
Addressing with XDELTA - Domain Specification - 11-9
Advantages of Shared Run Units - 10-1
ALternate Shared Library - 11-22
ALTSHARELIB - 11-22 11-34
ANLZ - 11-5
annotation - 7-15
APE - 3-12
ARECX/BSJIT - A-1
Argument Segment, addressing from debugger - 11-20
ASL - 11-22
ASL CapabiLities - 11-27
ASL Recovery - 11-28
ASL system fiLe - 11-24
ASL-User Interface - 15-14
ASM6502 - 3-12
ASM6502 (APE) - 3-12
ASMZ80 (APE) - 3-12
assembLer, 6502 cross- (ASM6502) - 3-12
assembLer, 6800 reverse (MSA6800) - 3-12
assembLer, 8085 reverse (MSA8085) - 3-12
assembLer, Z80 reverse (MSAZ80) - 3-12
assembLy Listing from object unit (UNGMAP) - 3-5
Associating an ASL with the User - 11-22
Associating or Linking to Another Program - 8-8
AUTO - 3-4 3-7 11-3
Auto-Sharing Process - 10-2
Automatic FiLe Extension - 4-3
automatic index entries - 7-18
automatic indexing - 7-18
Automatic Storage Layout - 15-4
Automatic Transformation of Subtopics - 7-23
auxiliary operation - 7-17

CE62-00 Index ;-1

B

B Comments - 5-9
BSJIT - 8-1
BSJIT.CCARS - 4-1
BSJIT.CCBUF - 4-1
BSJIT.CCDISP - 4-1
BSJIT.PRFLAGS.CONTINUED - 4-1
BSJIT.PRFLAGS.NSSYNTAX - 4-1
BSJIT -

ACCESS. - A-1
ACCESS. FORMS - A-1
ACCESS. PACKS - A-1
ACCESS.TAPES - A-1
ACCN - A-1
ARECX - A-1
BILL - A-1
BLINDACCTNG - A-2
BUDLIM - A-2
CALCNT - A-2
CCARS - A-2
CCBUF - A-2
CCDISP - A-2
CPFLAGS1 - A-4
CTIME - A-4
CURPNUM - A-4
CURRCORE - A-4
CURSUDO - A-5
CURTMPDP - A-5
DCBS - A-5
DCBNO - A-5
DDLL - A-5
DDUL - A-5
DEFEXP - A-5
DEFPRI - A-5
DLL - A-5
DOS - A-6
DUL - A-6
ENQS - A-6
ERR. - A-6
ERR. CODE - A-6
ERR.FCG - A-6
ERR.MID - A-6
ERR.MON - A-6
ERR.SEV - A-6
EUP - A-7
EXTUS - A-7
FACCN - A-7
FACNACS - A-7
FACNCM - A-7
FBUC - A-7
FBUL - A-7
FEXT - A-7
FPSN - A-7
FRS - A-8
GAC - A-8
HIGHPNUM - A-8
HPSN - A-8
IDELTAT - A-8
INSTWORD - A-8
INTER - A-8
INTTIME - A-9
JOBNAME - A-9
JOBUNIT - A-9
JPEAK - A-9
JRESPEAK - A-9
JSLEV - A-9

CE62-QQ Index ;-2

JTMPDPPK - A-9
JUNK - A-11
JUNK2 - A-11
LANG - A-11
LBJID - A-11
LLL - A-11
LNKCNT - A-11
LOCK - A-11
LOGONTIME - A-12
LUL - A-12
MAXCORE - A-12
MAXEXP - A-12
MAXPRI - A-12
MAXTMPDP - A-12
MMFLGS. - A-12
MMFLGS.FREE PPGS - A-12
MODE - A-12-
MOUNTS - A-12
MRT - A-13
MSGID. - A-13
MSGID.PRIMARY - A-13
MSGID.XT - A-13
NEXTCC - A-13
OLTA - A-13
OUTPRIO - A-13
PCADS - A-13
PCC - A-13
PCD - A-14
PCDD - A-14
PC DDS - A-14
PCDS - A-14
PCL - A-14
PCP - A-14
PCROS - A-14
PCV - A-14
PLL - A-14
PMEMTIM - A-14
PMME COUNT - A-15
PMME-DATA - A-15
PMME-DATA.CPU - A-15
PMME-DATA.I 0 - A-15
PMME-DATA.MISC1 - A-15
PMME-DATA.MISC2 - A-15
PNR -= A-15
PPC - A-15
PPRIV - A-16
PRDPRM - A-16
PRFLAGS. - A-16
PRFLAGS.COMMENT - A-16
PRFLAGS.CONTINUED - A-16
PRFLAGS.LIST - A-16
PRFLAGS.LS - A-16
PRFLAGS.NSSYNTAX - A-16
PRFLAGS.OU - A-16
PRFLAGS.OUTPUT - A-16
PRFLAGS.SI - A-16
PRFLAGS.UI - A-17
PRIINC - A-17
PRIV. - A-17
PRIV.ACTIVE - A-17
PRIV.AUTH - A-17
PRIV.JOB - A-17
PRIV.PRC - A-17
PRIV.SAVED - A-17
PROG ENTRY - A-18
PSEUDOPGS - A-18
PSLEV - A-18

CE62-00 Index ;=3

PUL - A-18
REMCPO - A-18
REMDO - A-18
REMLO - A-18
RERUN - A-18
RESCORE - A-18
RESPEAK - A-18
RNST - A-19
RUNFLAGS - A-19
SCHTIME - A-19
SPEAK - A-19
SRESPEAK - A-20
SSLEV - A-20
STAR - A-20
STAR.DA - A-20
STDLOPGS - A-20
STEPCC - A-20
STEPS - A-20
STEPUNIT - A-20
STUitE - A-20
STMPDPPK - A-20
SVLDTF - A-21
SVTUS - A-21
SWITCH - A-21
SYSID - A-21
TDP - A-21
n'PGAC. - A-21
TMPGAC.N - A-21
TMPGAC.TIME - A-21
TPEXT - A-22
TPSVT - A-22
TSLINE. - A-22
TSLINE.FEX - A-22
TSLINE.PORT - A-22
TSLINE.SPEED - A-22
TUEXT - A-22
TUSVT - A-22
UMEMTIM - A-22
UNAME - A-23
USER - A-23
USERWORD - A-23
USRDCB - A-23
USRERR. - A-23
USRIC - A-23
USRRNST - A-23
UTIMER - A-23
VIRTUAL. - A-23
VIRTUAL.DCBN - A-23
WOO - A-24
XCONF - A-24
XLIMFLG - A-24
XTIME - A-24
YCOSZ - A-24

BSPIAS - 11-2
BANNER - 3-2
batch queue (AUTO) - 3-4 3-7
BEAM/MAEB - 3-11
BILL/BSJIT - A-1
BLINDACCTNG/BSJIT - A-2
Blocking - 7-6

CE62-00 Index ;-4

c

BMAP -
Accessing data in Large Virtual Segment Example - 8-20
Accessing Data in Standard Segment Example - 8-20
SHRINK Routine Example - 8-19

BOOKWORM - 3-4 3-9
Break Handling - 8-5
breakpoint - 11-21
BRN - 7-15
BUDLIM/BSJIT - A-2
Building an ASL System File - 11-24
Building Shared Libraries - 12-2
B USRPTRS D - 11-2 - -

CALCNT/BSJIT - A-2
CALENDAR - 3-2
Calling MSSCREECH - 11-5
Calling Sequences for External Routines - 15-8
Calls to the Monitor and Alternate Shared Library - 15-12
CCARS/BSJIT - A-2
CCBUF/BSJIT - A-2
CCDISP/BSJIT - A-2
CGDUMP - 3-11
CLIMB instruction for ASL - 11-23 11-25
CMPR - 3-4
COBOL-oriented syntax formats - 7-9
COBWEB - 3-7
collate - 7-16
comgroup <CGDUMP) - 3-11
comgroups, use of - 9-9
Command continuation - 4-1
Command Language Conventions - 4-2
Command Processor - 11-12
Command Processor Capabilities - 11-13
comment - 7-15
Comment Types - 5-4
Commentary Rules - 5-3
Commentary Tools - 5-17
communication arrows - 7-17
Compiler Error Handling - 14-7
Compiler Options Usages and Conventions - 14-4
Compiler Output Control Via IBEX - 14-8
condensed figure - 7-15
connector - 7-16
Contents of the X Account - 3-2
Control of Faults - 11-11
Control of XDELTA's Input and Output - 11-10
Conventions for Language Processors - 14-1
COPYPGM - 3-13
CPFLAGS1 - 11-13
CPFLAGS1/BSJIT - A-4
CP LOGOFF# - 11-13
Creating a HELP File - 7-25
Creating Subtopics - 7-22
Creating Text Source Files - 7-5
Creating the Error Message File - 6-3
CRF - 3-10
CRT terminal - 7-16
CTIME/BSJIT - A-4
CURPNUM/BSJIT - A-4
CURRCORE/BSJIT - A-4
CURSUDO/BSJIT - A-5
CURTMPDP/BSJIT - A-5

CE62-00 Index ;-5

D

E

D Comments - 5-7
Data Breakpoints - 11-21
data map - 14-4
Data Segment for Special Shared Processor - 11-4 11-5
data segment, virtual - 8-14
DCB Usage Conventions - 14-3
DCBS/BSJIT - A-5
DCBNO/BSJIT - A-5
DCBs for ASL - 11-27
DCBs for Command Processor - 11-14
DCBs for Debugger - 11-20
DDLL/BSJIT - A-5
DDUL/BSJIT - A-5
debug schema (SDUMP) - 3-5
Debugger - 11-17
Debugger Capabilities - 11-20
Debugging an ASL - 11-29
Debugging of Special Shared Processors with XDELTA - 11-6
decision - 7-16
Default Error Messages - 6-3
DEFEXP/BSJIT - A-5
Defining the Function Codes of the ASL - 11-22
DEFPRI/BSJIT - A-5
DELTA Interaction with Shared Libraries - 15-12
DELTA, for shared run unit - 10-3
Development Management Aids - 3-10
DI - 3-2
DILDEV - 3-2
direct arrows - 7-17
display - 7-16
Displaying Error Messages - 4-11
Displaying HELP Messages - 4-12
DLL/BSJIT - A-5
DOS/BSJIT - A-6
:DOCUM - 7-1
document - 7-15
Document Assembly - 7-2
Documentation Aids - 3-9
Documentation, on-line (HELP) - 7-19
Documentation, user - 7-1
DRAW - 3-4 3-6
DRIBBLE (ELBBIRD) - 3-11
DTOR - 3-6
DUL/BSJIT - A-6
DUMP command (XDELTA) - 11-10

E Comments - 5-10
ECC, Debugger Entry - 11-17
ECHO command (XDELTA) - 11-10
EDGEMARK - 3-4 3-6
EDICT - 3-4 3-9
EDICT.X - 5-17
Effecting DCB Assignments - 11-14
EJECT - 3-2
ELBBIRD - 3-11 3-11
EMU - 3-3
Encoding a Source File - 7-19
Encoding Subtopics - 7-22
END - 7-12
Ending a Section - 7-19
ENGS/BSJIT - A-6
Entry to ASL - 11-25

CE62-00 Index i-6

F

Entry to Command Processor - 11-13
Entry to the Debugger - 11-17
ERR./BSJIT - A-6
ERR.CODE/BSJIT - A-6
ERR.FCG/BSJIT - A-6
ERR.MID/BSJIT - A-6
ERR.MON/BSJIT - A-6
ERR.SEV/BSJIT - A-6
Error Codes - 6-1
Error commentary - 5-10
Error message - 4-11
Error message fiLe - 6-3
Error message reporting - 6-1
Error Message Source - 6-1
Error Message Uncoder (EMU) - 3-3
Error message, substitution - 6-2
ETMF (01) - 3-2
EUP/BSJIT - A-7
Examining the Error Code After Monitor Service ALTRET - 6-3
ExampLe -

Accessing Data in Large VirtuaL Segment (BMAP) - 8-20
Accessing Data in Standard Segment (BMAP) - 8-20
Accessing JIT in PL-6 - 3-15 8-2
Accessing TCB in PL-6 - 8-4
Associating DELTA to Dump I.C. - 8-12
Break HandLing in PL-6 ASYNC Procedure - 8-6
Browsing through X Account HELP - 3-14
CaLLing XSPARSE - 3-15
DCBs for Program CaLLed by MSLINK-MSLDTRC - 8-9
FORTRAN Program with PL-6 Subroutine - 8-6 8-7
Parse Nodes - 8-12
SHRINK Routine in BMAP - 8-19
TerminaL 1/0 ControL in PL-6 - 9-6
Trap HandLing in PL-6 - 8-7
VirtuaL Sub-Segments in PL-6 - 8-18

ExceptionaL Condition frame at Debugger Entry - 11-17
ExceptionaL Condition Processing - 11-4
ExcLuding Topics - 7-20
Exit from a Command Processor - 11-16
Exit from a Debugger - 11-21
Exit from an ASL - 11-28
expanded figure - 7-15
EXPIRED - 3-7
expression evaLuation - 13-2
extended addressing - 8-17
EXTRACT - 3-6 3-9 5-1
EXTRACT, for error message fiLe - 6-3
EXTRACT.X - 5-17
ExtractabLe Commentary - 5-1
EXTUS/BSJIT - A-7

F Comments - 5-6
FACCN/BSJIT - A-7
FACNACS/BSJIT - A-7
FACNCM/BSJIT - A-7
fast sequentiaL fiLe - 13-2 13-3
SFASTEXT.:DOCUM - 7-1
FBUC/BSJIT - A-7
FBUL/BSJIT - A-7
FCG - 6-1
FEXT/BSJIT - A-7
FICHER - 3-6
FieLd and Phrase Substitution - 6-2
FIG - 7-14

CE62-00 Index ;-7

G

H

I

:FIG Macro - 7-14
Figure Symbols - 7-15
Figures - 7-14
file extension - 4-3
File Naming Conventions - 7-2
File Type Codes - 4-4 4-4
FIND - 3-3
Finding the Error Message File - 6-5
FIXTEXT - 3-9
FND - 7-14
Foreign Language Error Message Files - 6-4
FORMAT - 3-4 3-9
FORTRAN (OX) - 3-3
FPL (OVERLAP) - 3-3
FPSN/BSJIT - A-7
FRS/BSJIT - A-8
FWEDITOR - 3-7

GAC/BSJIT - A-8
General Case of Run Unit Invocation - 4-1
General syntax formats - 7-9
GOPHER - 3-3
GOTRAP command (XDELTA) - 11-11
GRAMPS - 3-7
Guidelines for All Special Shared Processors - 11-2
Guidelines for Alternate Shared Libraries - 11-22
Guidelines for Command Processors - 11-12
Guidelines for Debuggers - 11-17
Guidelines for Virtual/Real Segment Sizing - 8-21

HELP - 13-3
HELP (LISTHELP) - 3-3 3-9
HELP data base (HERMAN) - 3-6 3-9
HELP documentation - 7-19
HELP file, creating - 7-25
HELP for X Account Tools - 3-13
HELP subtopics - 7-22
HELP topic - 7-20
HERMAN - 3-6 3-9
HIGHPNUM/BSJIT - A-8
:HLP Macro - 7-24
How Virtual Segments Work - 8-14
HPSN/BSJIT - A-8

*1 - 11-27 11-28
I Comments - 5-9
I/O queues (RQ) - 3-3
IDELTAT/BSJIT - A-8
:IDX Macro - 7-18
IFAD tape (FWEDITOR) - 3-7
Inactivation of Breakpoints by XDELTA - 11-12
Index - 7-3
Index Entries - 7-18

CE62-00 Index i-8

K

L

Initial Entry and Obtaining AUTO Storage - 11-3
Input Services - 13-2
input/output - 7-15
INSREC - 3-6
Installation Management Aids - 3-7
Instruction Segment, addressing from debugger - 11-20
INSTWORD/BSJIT - A-8
Integration Aids - 3-6
INTER/BSJIT - A-8
INTTIME/BSJIT - A-9

JIT - 11-13 11-15
JIT (ST) - 3-8
JIT Fields - A-1
JIT Structure - A-29
JOBNAME/BSJIT - A-9
JOBUNIT/BSJIT - A-9
JPEAK/BSJIT - A-9
JRESPEAK/BSJIT - A-9
JSLEV/BSJIT - A-9
JTMPDPPK/BSJIT - A-9
JUNK/BSJIT - A-11
JUNK2/BSJIT - A-11

K Comments - 5-13
KEEP command (XDELTA) - 11-11
KEYER - 3-5
KEYUP - 3-5
Keywords, conventions for - 4-2

L1H - 7-7
L2H - 7-7
L3H - 7-7
L4H - 7-8
LANG/BSJIT - A-11
Layers of Error Messages - 6-2
LBJID/BSJIT - A-11
Level 0 Head Macro - 7-7
Level 1-3 Head Macro - 7-7
Level 4 Head Macro - 7-8
libraries, shared - 12-1 12-2
:LIBRARY account - 13-1 14-5
:LIB SYSTEM shared library - 13-1
LIN ::- 3-5
Line Length - 7-6
line printer - 7-15
Link Time Association of Shared Libraries - 12-1
Linkage Segment, addressing from debugger - 11-20
LINKMOD - 3-6

CE62-00 Index i-9

•

LISTER - 3-5
LISTHELP - 3-3 3-9
LLL/BSJIT - A-11
LNCOUNT - 3-10
LNXCNT/BSJIT - A-11
LOCK/BSJIT - A-11
LOGONTIME/BSJIT - A-12
LOOK - 3-13
LOOK4 - 3-6
LUL/BSJIT - A-12

M Comments - 5-6
MSACCT - 11-13
MSALIB - 10-3 11-17 11-22
MSCPEXIT - 11-4 11-13 11-13 11-16
MSDRTN - 11-20 11-21 11-21
MSERRMSG - 6-1
MSFINDPROC - 11-13
MSGDS - 11-4
MSHELP - 13-3
MSIBEX', MSIBEX1#, MSIBEX2# - 11-14
MSINTRTN - 11-27
MSOCMSG - 11-13
MSSCREECH - 11-5 11-13 11-20 11-27
MSSSC - 11-20 11-21
MSUNSHARE - 10-2 10-3
MSXCONRTN - 11-13 11-20 11-27
MSYC - 11-13 11-16
magnetic tape - 7-16
manual operation - 7-15
MAT - 7-12
:MAT Macro - 7-12
MAXCORE/BSJIT - A-12
MAXEXP/BSJIT - A-12
MAXPRI/BSJIT - A-12
MAXTMPDP/BSJIT - A-12
merge - 7-16
Method 1: Small Virtual Segments - 8-17
Method 2: 'Divide and Conquer' - 8-17
Method 3: Direct Accessing - 8-20
microfiche (FICHER) - 3-6
M;croprocessor Support Aids - 3-12
Miscellaneous Tools - 3-12
Miscellaneous Utilities - 13-4
MMFLGS./BSJIT - A-12
MMFLGS.FREE PPGS/BSJIT - A-12
MODE/BSJIT = A-12
MODEL - 3-5
MOD MOVE - 3-7
Monitor-User Interface - 15-12
MOUNTS/BSJIT - A-12
MPCDUMP - 3-8
MPUR - 3-7
MRT/BSJIT - A-13
MSA6800 - 3-12
MSA8085 - 3-12
MSAl80 - 3-12
MSGID./BSJIT - A-13
MSGID.PRIMARY/BSJIT - A-13
MSGID.XT/BSJIT - A-13
multiprocessor system (MODEL) - 3-5

CE62-00 Index ;-10

N

o

p

N Comments - 5-14
NEXTCC/BSJIT - A-13
NOBS - 3-9
NSHAREABLE - 10-1

o Comments - 5-13
Object Unit Conventions - 14-8
Obtaining DCBs - 11-4
OLTA/BSJIT - A-13
on-line storage - 7-17
Operational Considerations When Using XDELTA - 11-8
operator message commentary - 5-13
OUTPRIO/BSJIT - A-13
OUTPUT command (XDELTA) - 11-10
Output Services - 13-3
overlay - 10-2
OX - 3-3

P and F Comments - 5-6
Parameter Segement, addressing from debugger - 11-20
PARSE/PARSEOU - 3-5
parser - 13-2
PARTRGE - 3-5 4-10
PATCH - 3-11
PCADS/BSJIT - A-13
PCC/BSJIT - A-13
PCD/BSJIT - A-14
PCDD/BSJIT - A-14
PCDDS/BSJIT - A-14
PCDS/BSJIT - A-14
PCL/BSJIT - A-14
PCP/BSJIT - A-14
PCROS/BSJIT - A-14
PCV/BSJIT - A-14
Performance Considerations - 8-21
Performing Transparent/Non-transparent 1/0 - 9-8
PIA - 11-2
PL-6 -

Accessing JIT Example - 3-15 8-2
Accessing TCB Example - 8-4
Associating DELTA to Dump I.C. - 8-12
ASYNC Procedure Exmaple - 8-6
Break Handling Example - 8-6
Calling XSPARSE - 3-15
DCBs for Program Called by MSLINK-MSLDTRC - 8-9
FORTRAN Program with PL-6 Subroutine - 8-6 8-7
Parse Nodes Example - 8-12
Terminal I/O Control Example - 9-6
Trap Handling Example - 8-7
Virtual Sub-Segments Example - 8-18

Placement of Commentary in a File - 5-15
PLL/BSJIT - A-14
PMDISP - 3-3
PMEMTIM/BSJIT - A-14
PMME COUNT/BSJIT - A-15
PMME-DATA.CPU/BSJIT - A-15
PMME-DATA.I O/BSJIT - A-15
P"ME-DATA.MISC1/BSJIT - A-15
PMME:DATA.MISC2/BSJIT - A-15

CE62-00 Index

Q

R

PMME DATA/8SJIT - A-15
PMON-- 3-3
PNR/BSJIT - A-15
PPC/BSJIT - A-15
PPRIV/BSJIT - A-16
PRDPRM/BSJIT - A-16
pre-processing - 13-2
predefined process - 7-15
preparation - 7-15
Preparing On-line (HELP) Documentation - 7-19
PRFLAGS - 11-14
PRFLAGS./BSJIT - A-16
PRFLAGS.COMMENT/BSJIT - A-16
PRFLAGS.CONTINUED/BSJIT - A-16
PRFLAGS.LIST/BSJIT - A-16
PRFLAGS.LS/BSJIT - A-16 .
PRFLAGS.NSSYNTAX/BSJIT - A-16
PRFLAGS.OU/BSJIT - A-16
PRFLAGS.OUTPUT/BSJIT - A-16
PRFLAGS.SI/BSJIT - A-16
PRFLAGS.UI/BSJIT - A-17
PRIINC/BSJIT - A-17
printer - 7-15
PRIV./BSJIT - A-17
PRIV.ACTIVE/BSJIT - A-17
PRIV.AUTH/BSJIT - A-17
PRIV.JOB/BSJIT - A-17
PRIV.PRC/BSJIT - A-17
PRIV.SAVED/BSJIT - A-17
PRIVCHECK - 3-8
PRIVDISP - 3-8
privileges (PRIVCHECK) - 3-8
privileges (PRIVDISP) - 3-8
procedure map - 14-4
process - 7-15
Processor conventions - 4-1
Processor Initialization Area (PIA) - 11-2
Processor Termination Conventions - 4-5
Programmer Aids - 3-2
Programming Considerations - 10-2
PROG ENTRY/BSJIT - A-18
Prompting and Parsing Command Text - 4-10
PROOF - 3-9
PSEUDOPGS/BSJIT - A-18
PSLEV - 11-15
PSLEV/BSJIT - A-18
PUL/BSJIT - A-18
punched card - 7-17
Purpose of :MAT Macro - 7-12

queue, batch (AUTO) - 3-4 3-7
queues, 1/0 (RQ) - 3-3

READ command (XDELTA) - 11-10
Receiving Sequences - 15-2
Recovery for ASL - 11-28
Registers Used - 15-3
REMCPO/BSJIT - A-18
REMDO/BSJIT - A-18
REMLO/BSJIT - A-18
RERUN/BSJIT - A-18

CE62-00 Index i-12

s

RESCORE/BSJIT - A-18
RESPEAK/BSJIT - A-18
Restrictions and Programming Considerations - 8-22
Return Sequences - 15-3
RNST/BSJIT - A-19
RQ - 3-3
RUMSPLIT - 3-11 3-11
Run Time Association of Shared Libraries - 12-2
run unit invocation - 4-1
RUNFLAGS/BSJIT - A-19

*S - 11-14
S Comments - 5-12
Safe-Store frame, addressing from debugger - 11-20
Safe-Store frame, Debugger Entry - 11-17
Sample EXTRACT.X Job - 5-18
Sample Interactive Processor - 4-5
Sample Programs - 15-14
schema, debug (SDUMP) - 3-5
schema, removal of (MPUR) - 3-7
SCHTIME/BSJIT - A-19
Screech commentary - 5-12
SDUMP - 3-5
Section and Subsection Headings - 7-6
SETUP - 3-3
severity level (SL) - 3-4
Shared Data Segments - 8-13
Shared Libraries - 12-1
shared libraries, building - 12-2
shared libraries, installing - 12-4
shared processor (COBWEB) - 3-7
Shared Programs - 10-1
:SHARED SYSTEM run-time library - 13-1
SHARELIB - 12-1
Sharing COMMON between MSLINKed Programs - 8-13
Sharing Data Segment between Independent Programs - 8-13
Size Limits of Virtual Data Segments - 8-16
SKUNK - 3-3
SL - 3-4
SLIB - 12-2
sort - 7-16
Source Update Services - 14-9
Spacing - 7-6
SPAUTOSPACE - 10-2
SPEAK/BSJIT - A-19
Special Descriptor Access descriptor - 11-20
Special Shared Processor - 11-1
Special Shared Processor Data in Dump Files - 11-5
Special Shared Processor Initialization - 11-2
special shared processor, sharing - 10-1
Special Shared Processors, debugging - 11-6
specified index entries - 7-18
SPROC option - 10-2
SPSPACE option - 10-2
Spy - 3-8
SRESPEAK/BSJIT - A-20
SSLEV - 11-15
SSLEV/BSJIT - A-20
ST - 3-8
Standard Run Unit Invocation Format for Compilers - 14-1
STAR.DA/BSJIT - A-20
STAR/BSJIT - A-20
STDLOPGS/BSJIT - A-20
STEPCC/BSJIT - A-20

CE62-00 Index ;-13

T

u

STEPS/BSJIT - A-20
STEPUNIT/BSJIT - A-20
STI - 3-1
STIME/8SJIT - A-2Q
STMPDPPK/BSJIT - A-20
Structure Format - A-25
Subroutines Included in Shared Libraries - 12-3
Subtopics Within Tables - 7-23
Summary of Control Words and Macros - 7-3
Support Aids - 3-11
SVLDTF/BSJIT - A-21
SVTUS/BSJIT - A-21
SWITCH/BSJIT - A-21
Syntax Formats - 7-9
Syntax Prompting at Syntax Error - 4-10
SYSID/BSJIT - A-21
System Configuration to Permit Sharing - 10-2
System Programmer Aids - 3-4

T Comments - 5-14
Table of Contents - 7-3
Tables - 7-10
Taking Snapshot Dumps - 11-5
TCB - 11-5 11-19
TDP/BSJIT - A-21
TERM - 3-8
Terminal I/O Control - 9-1
Text Blocking in Extractable Commentary - 5-17
TEXT control words - 7-3
STEXT Facility - 7-1
STEXT macros - 7-3
STEXT.:DOCUM - 7-1
TMPGAC./BSJIT - A-21
TMPGAC.N/BSJIT - A-21
TMPGAC.TIME/BSJIT - A-21
Topic Names and Synonyms - 7-20
TPEXT/BSJIT - A-22
TPSVT/BSJIT - A-22
Transparency and MSREAD - 9-7
Transparency and MSWRITE - 9-7
Transparent 1/0 for Asynchronous Graphics Terminals - 9-7
Trap Handling - 8-6
TSLINE./BSJIT - A-22
TSLINE.FEX/BSJIT - A-22
TSLINE.PORT/BSJIT - A-22
TSLINE.SPEED/BSJIT - A-22
TUEXT/BSJIT - A-22
TUNA - 3-10
TUSVT/BSJIT - A-22

UMEMTIM/BSJIT - A-22
UNAME/BSJIT - A-23
UNGMAP - 3-5
unit record listing file (LISTER) - 3-5
UNPRINT - 3-10
UNWIND Routines - 15-4
Usage Considerations - 10-3
USE command (XDELTA) - 11-9
Use of Comgroups - 9-9
Use of Data Segments - 11-4
User Calls to an ASL - 11-23

CE62-00 Index i-14

v

w

x

User InstaLLation of Shared Libraries - 12-4
User Parameters for MSYC - 11-16
User's JIT - 11-15
USER/BSJIT - A-23
USERS - 3-8
USERWORD/BSJIT - A-23
Using XDELTA - 11-6
USRDCB/BSJIT - A-23
USRERR./BSJIT - A-23
USRIC/BSJIT - A-23
USRRNST/BSJIT - A-23
UTIMER/BSJIT - A-23

VirtuaL Data Segments - 8-14
VIRTUAL option - 8-14
VIRTUAL./BSJIT - A-23
VIRTUAL.DCB#/BSJIT - A-23
VLP VIRTUAL - 8-14

W Comments - 5-12
WHAT - 3-5
wiLdcard - 13-4
WOO/BSJIT - A-24
WOODPECKER - 3-11
working space for SpeciaL Shared Processor - 11-1

X ACCOUNT - 3-2
X Account Naming Conventions - 3-1
X Account PoLicy - 3-1
X Account Programming Examples - 3-14
X Account Support Mechanisms - 3-1
X Account Tool Invocation - 3-13
X ACCOUNT -

A - 3-2
APE - 3-12
ASM6502 - 3-12
AUTO - 3-4 3-7
BANNER - 3-2
BEAM/MAEB - 3-11
BOOKWORM - 3-4 3-9
CALENDAR - 3-2
CGDUMP - 3-11
CMPR - 3-4
COBWEB - 3-7
COPYPGM - 3-13
CRF - 3-10
01 - 3-2
DILDEV - 3-2
DRAW - 3-4 3-6
DTOR - 3-6
EDGEMARK - 3-4 3-6
EDICT - 3-4 3-9
EJECT - 3-2
ELBBIRD - 3-11 3-11
EMU - 3-3
EXPIRED - 3-7
EXTRACT - 3-6 3-9
FICHER - 3-6

CE62-00 Index ;-15

FIND - 3-3
FIXTEXT - 3-9
FORMAT - 3-4 3-9
FWEDITOR - 3-7
GOPHER - 3-3
GRAMPS - 3-7
HERMAN - 3-6 3-9
INSREC - 3-6
KEYER - 3-5
KEYUP - 3-5
LIN - 3-5
LINKMOD - 3-6
LISTER - 3-5
LISTHELP - 3-3 3-9
LNCOUNT - 3-10
LOOK - 3-13
LOOK4 - 3-6
MODEL - 3-5
MODMOVE - 3-7
MPCOUMP - 3-8
MPUR - 3-7
MSA6800 - 3-12
MSA8085 - 3-12
MSAZ80 - 3-12
NOBS - 3-9
OVERLAP - 3-3
OX - 3-3
PARSE/PARSEOU - 3-5
PARTRGE - 3-5
PATCH - 3-11
PM - 3-3
PMDISP - 3-3
PMON - 3-3
PRIVCHECK - 3-8
PRIVDISP - 3-8
PROOF - 3-9
RQ - 3-3
RUMSPLIT - 3-11 3-11
SDUMP - 3-5
SETUP - 3-3
SKUNK - 3-3
SL - 3-4
Spy - 3-8
ST - 3-8
STI - 3-7
TERM - 3-8
TUNA - 3-10 3-10
UNGMAP - 3-5
UNPRINT - 3-10
USERS - 3-8
WHAT - 3-5
WOODPECKER - 3-11

X Comments - 5-15
X66 MAUTO - 11-3
X66-MSTATIC - 11-3
X6USCSEQU - 11-3
XCONF/BSJIT - A-24
XDELTA - 11-6
XLIMFLG/BSJIT - A-24
XTIME/BSJIT - A-24
XURSERRMSG - 4-11
XURSERRPTR - 4-10
XURSG£TCMO - 4-10
XURSHELP - 4-11 4-12
XURSMOREMSG - 4-11

CE62-00 Index ;-16

y

YCOSZ/BSJIT - A-24

CE62-00 Index ;-17

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

CP-6 SYSTEM PROGRAMMER GUIDE
TITLE

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. 0

FROM: NAME --
TITLE __ __

COMPANY ---------------
AODRESS __ ___

ORDER No.1 CE62-00

DATED I JANUARY 198'

DATE

LEASE FOLD AND TAPE-
OTE: U. S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Together. we can find the answers.

Honeywell
Honeywell Information Systems

U.S.A.: 200 Smith St., MS 486, Waltham, MA 02154
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N?

U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano
Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2-2 Kanda Jimbo-cho Chiyoda-ku, Tokyo

Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East HK

39519, 5C184, Printed in U.S.A. CE62-00

