
CONTROL PROGRAM-SIX (CP-6)

CONCEPTS AND FACILITIES

AUGUST 1977

or

PRELIMINARY DRAFT

PREFACE

Honeywell Control Program-Six (CP-6) is a migration product
designed to provide users of Xerox Control Program-Five (CP-V)
with a highly compatible growth path to Honeywell
state-of-the-art hardware. Therefore this manual contains
comparative references to CP-V for the benefit of users familiar
with CP-V.

GLOSSARY

alternate shared library a special shared processor that
resides in its own working space, has greater privilege than
the user program, and can be called directly from the user
program (e.g., I-D-S/II).

ANS tape a tape that has labels written in American National
Standard (ANS) format.

application processor a Honeywell supported processor that is
intended for use in specific types of applications such as
data base management.

bandwidth the maximum rate at which memory, an I/O channel, or
a front-end processor can deliver or accept information.

batch job a job that is submitted to the batch job queue
through the central site card reader, through an on-line
terminal (using the BATCH command), or through a remote
batch terminal •.

batch job queue a set of jobs which are to be run in the batch
mode~ These jobs are scheduled by CP-6 in a manner that
optimizes the use of nonsharable resources.

batch stream a logical entity which is- used by the scheduler
to select jobs from the batch job queue for execution. -A
batch stream is essentially a definition of the minimum and
maximum number of each type of resource that a job must
require to be scheduled to run in that batch stream.
(Resources include such items as main memory, CPU time, tape
drives, disk spindles, and other peripheral devices.)
Typically 32 batch streams are defined by the system
manager. This allows 32 batch jobs to be run concurrently.
When a batch stream does not have a job scheduled for it,
the scheduler selects a job from the batch job queue which
fits the resource profile of that batch stream and schedules
the job for execution in it.

bipoint line a line that connects a single remote transaction
processing station to the computer center. (See multiplint

)

line. }

command processor a processor which enables the users to
direct the monitor to perform functions required for the
processing of their jobs.

data control block (DCB) a table in the user's program that
contains the information used by the monitor in the
performance of an I/O operation.

data set 1) a device which converts data processing device
signals to telephone tones and telephone tones to device
signals. (Also referred to as "modem".); or 2) an
organization of data or files.

data set controller a hardware interface between a remote
processing terminal and the central computer.

DCB see data control block.

execution control processor a processor which is used to load,
run, and/or debug a user program.

File Information Table a table of information associated with
each file. It contains such information as file type, size,
location, access controls, and dates.

FIT see File Information Table.

FPT see Function Parameter Table.

Function Parameter Table (FPT) a table through which a user's
program communicates with a monitor function (such as an I/O
function).

ghost job a job that is neither a batch nor an on-line
program. It is initiated and logged on by the monitor, ~he
operator, or another job and consists of a single job step.
When the ghost program exits, the ghost terminates. '.

granule a block of disk sectors large enough to contain 1024
words (a page) of stored .information.

granule stamp a one word item at the beginning of each granule
in a file. It contains an id which is the same for each
granule in a file and the low order bits of the granule
number. The main function of the granule stamp is to
facilitate system reliability.

HASP a communications protocol commonly used between central
site computer centers and remote batch terminals. It
includes "mu1tileaving" which the ability to combine data
records for several destination devices (printers, punches,
etc.) in a single transmission block.

HDLC a full-duplex bit-oriented data transmission protocol.
The international standard and the IBM version are nearly
identical.

JeL the job control language consisting of ~ommands of the
Interactive and Batch Executive (IBEX) processor.

JIT see job information table.

job a collection of steps or activities presented together to
a data processing system for execution.

job control commands (JCL) commands that control the
. construction and execution of programs and provide
communication between a program and its environment.

job information table (JIT) a table associated with each
active job. The table contains accounting, memory mapping,
and temporary monitor information.

job step an executable computer program and a subunit of job
processing such as compilation, assembly, loading, or
execution.

key a data item that uniquely identifies a record within a
keyed or indexed file.

key-in information entered by the operator via a keyboard.
. Pruyuvu,-

language processor either aAprocessor which translates
assembly level or high-level source code into machine object
code for execution or an interpreter of source code or
commands.

library a collection of frequently used routines in a form
that expedites their inclusion into other programs.

link~r a processor that combines and tranpforms the output of
one or more compilations into a single run unit~

logical device a peripheral device that is represented in a
program by an operational label (e.g., SI or LO) rather than
by specific physical device name.

logical device stream an information stream that may be used
when performing input from or output to a symbiont device.
Several logical device streams may be defined at System
Definition. Each logical device stream is given a name
(e.g., LI, PI, CI), each is assigned to a default physical
device, and each is given default attributes. The user may
perform I/O through a logical device stream with the default
physical device and attributes, or he may change the
physical device and/or attributes to satisfy the
requirements of his job.

MAILBOX file a file with the name MAILBOX which contains
account-specific messages from the system. Each account may
have a MAILBOX file associated with it.

modem see data set.

monitor a program that supervises the processing, loading, and
execution of other programs.

monitor services operations performed by the monitor on behalf
of a user program. (Also referred to as system services.)

multipoint line a line that connects two or more transaction
processing stations to the central computer. A line
controlled by the computer as though it were connected to
two or more stations is considered to be multipoint even
though it connects only one station to the computer. (See
bipoint line.)

object file a file consisting of one or more object units.
Object files serve as input to the linking processor.

object unit the series of records containing the instructions,
debug schema, and linking information pertaining to a single
program or subprogram (i.e., from the beginning to the end).
An object unit is the output of a compilation or an
assembly.

op label see operational label.

operational label a symbolic name used to identify a logical
system device.

overlay program a tree-structured program in which the node
currently being executed may overlay the main storage area
occupied by a previously executed node.

processor a public program supplied by Honeywell.
• . .

prompt character a character that is sent to the terminal by
an on-line processor to indicate that the next line of input
may be entered.

protective mode a mode of tape protection in which only ANS
expired tapes may be written; all ANS tapes must be
initialized by the LABEL processor; no tape serial number
specification is allowed at the operator's console;
specification of an output serial number forces processing
to be done only on a tape already having that serial number;
tapes mounted as IN may not be written; and tapes mounted as
other than IN must have a write ring. (See "semiprotective
mode".) .

public library a set of library routines declared as System
Definition to be public (i.e., to be used in common by all
concurrent users).

run unit a memory image of an executable program. It is the
result of the linking process and is loaded as a job step.

SDLe a full-duplex' bit-oriented data transmission protocol.
The international standard and the IBM version are nearly
identical.

secondary storage any rapid-access storage medium other than
main memory (e.g., disk storage).

semi-protective mode a mode of tape protection in which a
warning is posted to the operator when output is attempted
on an unexpired ANS tape, or when a tape mounted as OUTPUT
has no write ring. The operator can authorize the
overwriting of the tape or the override of OUTPUT through a
key-in. ANS tapes may be initialized by the LABEL processor
or may be given labels as the result of an operator key-in;
tape serial number specification is allowed at the
operator's console; and specification of an output serial
number "forces processing to be done only on a tape already
having that serial number unless the operator authorizes an
overwr i te. (See "protective mode II •)

shared processor a processor which permits the sharing of the
code among all simultaneous users. Each user of a shared
processor has its own copy only of the data and DCB portion
of that program; the procedure (code) portion is shared by
all users associated with the shared program.

shared run-time library a shared processor that is mapped into
the user's working space quarter along with the user program
(e.g., FORTRAN Run-Time Package).

software check a software failure that could have adverse
effect on the system. It" causes the system to go into an

. aptomatic recovery procedure.

source language a language used to prepare a source program
suitable for processing by an assembler or a compiler.

special shared processor a shared processor that resides in
its own working space but can be called to execute in
conjunction with the user program (e.g., DELTA).

spooling the technique of buffering unit record input or
output on disk to allow simulated unit record I/O. User
programs thus proceed at speeds unlimited by the speed of
record peripherals.

standard shared processor a shared processor that is mapped
into the user's working space and effectively is the user
program (e.g., FORTRAN compiler).

stream-id the name of a logical device stream.

symbiont a monitor routine that transfers information between
disk storage and a peripheral device independent of and
concurrent with job processing. (See spooling.)

system definition the process of creating an operating system
that is tailored to the specific requirements of an

installation. The major steps in a system definition
include: gathering the relevant programs, generating
specific monitor tables, loading monitor and system
processors, and writing a bootable system tape.

system management processo~ a processor that performs some
function that provides the system manager of a CP-6
installation with on-line control of the system.

system services operations performed by the monitor on behalf
of a user program. (Also referred to as monitor services.)

unit record equipment. peripherals which deal with hard copy
media such as card readers, card punches, and p~inters.

Pro11~1f\
utility processor aflprocessor that performs some general

function required for running and using the CP-6 system.
Examples of service processors are EDIT (which enables the
user to build and manipulate files of program and data) and
peL (which enables the user to move files among card
devices, line printers, disk, etc.).

TABLE OF CONTENTS

PREFACE

GLOSSARY

1 •

2.

3.

4.

5.

INTRODUCTION .•••..
Control Program-Six •.•.•••••.•

Modes of @p-e-t a tiorr.q~.~.
CP-6 Features •••••••••.

Organization of This Manual

THE OPERATING SySTEM ••.•.•.••••••.•.••••••••....••

Ov erv iew.
The Monitor.

CP-6 P ROC ESSORS.
Standard CP-6 Processors ••
Programs in Account Y.
Other Programs •.••••••

SYSTEM CONTROL ••••••••••••••••••••••••••••••••••••

Scheduling •••••••
Multiprocessing.

USER~

Overview •••••.••••••••••
Load and Execution ••••.•••

Program Overlays .••••
Related Utility Processors .•

Peripheral Conversion Language.
ED IT

.

1-1

1-1
1-2
1-3
1-6

2-1

2-1
2-2

3-1
3-9
3-10

4-1

4-1
4-3

5-1

5-1
5-1
5-2
5-3
5-3
5-3

6.

7.

8.

9.

FILES AND DEVICE INDEPENDENT I/O ..•.•...•••.•.•...

Introduction •..
Pack Sets
Files ••••••..

File
File
File

File

Identification ..
Function and Disposition .•
Organization •.•......•.•••

Keyed and Indexed Files .••
Consecutive and Relative Files ..
Random Files .•.•...•.•••....

Access•.•...••.•••.••••
Simultaneous Files Access ••

Record Blocking •..•.......•.......•.•.
Special Features of the File System.
File Se c ur it Y •••••••••••••••••

Granule Access Control ..••
File Access Control .•.•

Reliability, Maintainability, and
Availability .••..••••.....•.

Efficient File Transfer (EFT).
Backup ...
Res tore ..
Archive.

. -...

Labeled Tape ••••...•
Protection and Security.
Tape Formats •.•.
Multifile Tapes .•

Device Input/Output
Interactive Terminals ••
Unit Record Peripherals.
Unformatted Devices ..•..

THE COMMAND PROCESSOR .•••..••...•.•..•.••......•••

USER PROGRAM SERVICES.

System Services ••••..•
Monitor Error Messages.

DEBUGGING FACILITIES.

6-1

6-1
6-3
6-4
6-5
6-6
6-6
6-7
6-9
6-9
6-10
6-11
6-12
6-13
6-14
6-14
6-14

6-15
6-16
6-16
6-17
6-17
6-17
611
6-18
6-19
6-19
6-20
6-20
6-21

7-1

8-1

8-1
8-7

9-1

User Debugging................. .•••. 9-1
System Debugging............... 9-5

Automatic Crash Analysis.. 9-5
Remote System Analysis. 9-5
Executive DELTA.... 9-6
Symbolic Patching....... 9-6
GENMD Patching.......... 9-6
-Bo6t~ Un-de r-':;Th e::F il e s :-:~ .--~--:-~~~- :--:--:-:--:--:--:~:-:--:--:-:-~-~---:- •• ----9:.6---

10. TIME-SHARING...................................... 10-1

In trod uct ion ••..•.••••••••.•..•.•.•.....•••.••••••
Sam pIe Tim e-S h a r i n g Se s s ion • . • • . • • • • • • • . • • • • • . • • . .
Time-Sharing Features ••••..•....•••••.•.•.•••.•••.

Typeahead •••••.•.•.•••••.••..•..••.•..••••••
Terminal Types and Timing Algorithms •••.••••
Transparent Mode ••••••.••..•••.•.••••••••.••
Pagination •••••••••••.••••••••••.••••••.•..•
Editing .Terminal Input .••.•••••.• _ ••••••.•••
Controls Over Input Co.nversion .•••••••••••••
'iTab Simulation •••....••••••••••••••••.••••••
'Mi scellaneous Con troIs ••••.•••.•••••••••.•••

X Entry of Jobs to the Batch Job Queue •.••.•..
Comm~nication with the Computer Operator •..•

. JLAutomatic Processor Association .•.•.•••.••••
)<Files of rerminal Commands •••.•.••.••.•••..•

Automatic Save for Line Disconnect •••.••.••.
Terminal Coupling ••••••.••••••.••••••.•••••.
~utomatic Terminal Speed and
, Format Qetection ••.•..••••• ~ •.••••••••••••
Terminal Tape.Input •••..•.••••••.••••.•..•••

. ' .

10-1
10-2
10-9
10-9
10-9
10-9
10-10
10-10
10-10
10-11
10-11
10-12
10-12
10-13
10-13
10-13
10-14

10-14
10-14

11. MULTIPROGRAMMED BATCH PROCESSING.................. 11-1

Introduction........ .•••• .•••••••• ••.• .••••. •••••• 11-1
Sources of Batch Jobs ••••••..•.....•••••••..•.••.• 11-1
Resource Control and Job Scheduling •••••.•••.••••• 11-1
Fac iIi ties for. Batch Jobs......................... 11-2

Cataloged Procedures ••.•..•••••••••.•.•.•..• 11-2
Spool in g . • • • • . • . • • . • • • . . • 11 - 3
Logical Device Streams •.••.••••••••••••••.•••••••• 11-4

12. REMOTE PROCESSING .•.•••••••••••••••.•••.•••••.•••• 12-1

Introduction...................................... 12-1
Remote Processing Terminals....................... 12-2

Hardware Connection of Remote Terminals..... 12-2
Remote Processing Modes •.•••.•••••••.••••••••.•••• 12-3
Workstations...................................... 12-5
Remote Processing User Facilities •••.••••••••••.•• 12-6

Operator Control Commands .•••••••.•••••••••• 12-6
Transferring Files to Remote CP-6 Systems .•• 12-7

13. NETWORK PROCESSING .•.....•.....••.•••.•.•..•••..•. 13-1

Introduction...................................... 13-1
Netwo~k Configurations •••••.••.••••...•....•.•..•. 13-3
Connecting Terminals to Programs.................. 13-4
Virtual Terminal Access Methods and

Commun ications Protocols........................ 13-6
Communication Groups ••..••.•••.••••••••.•••.••••.. 13-1
Reliability, Recoverability, Reconfiguration .•.•.. 13-8
Configuration and Bandwid th. . . • • . . • • • . . . • . . • . . • • • . 13-9

14. TRANSACTION PROCESSING •.••.••...•.•••••.••••••.•.• 14-1

Introduction ••••.••••••.••.•.•••••••••.•.•.••••..•
Front-end Processing .••..•.•.••••••••••..•••.•••..
Station Names and Report Delivery Files ••...•..••.

Th e T F D F i 1 e
Operator Control .•••.••••••••••...•••••••.••••••••
Common Journal .•..•..••••••.•....•.•••..••.••.••..
Transient Journal .•••••••••••.•••.••••••••..••.•..
System Queue Management •..•.••••....••••.••••.••••
Transaction Processing Administration •••••••.•.••.
Transaction Processing Command Processor •••••.•.••
I-O .. S/II
System Integ~ity •• : .••.. : •.••••••.••••••••••••.•••
Recovery •••••••..••.••.••••••••••.•••..•.•••••••.•

Abort of a Single Transaction ••••..•..•.••••
System Crash •..•.•••••••...••.•••.•.••••••••
Destruction of Critical Files ••.••.••••..•••

Additional Features and Variations in System Usage
Protection and Control Features •••••••••.•••
System Queue Management Variations .••..•.•••
User-written Transaction Processing Modules.
Spawned Transactions ••.•.••.•••••..••••••••.

Operational Considerations .•••.••.••••••••••••.•••
Transaction Processing Terminals ••••••••.••..•.••.

14-1
14-3
14-3
14-3
14-4
14-4
14-4
14-4
14-5
14-5
14-5
14-1
14-7
14-1
14-10
14-10
14-11
14-11
14-11
14-11
14-12
14-12
14-12

15. REAL-TIME PROCESSING .••••••••••••••••••.••••••..••• 15-1

, Introduction.............. •••••••.••••.•• .••.••.•• 15-1
Distributed Real-time Processing.................. 15-2
Level 6 Real-time Software Development ••.•...•.••• 15-4
Software Services ••••••••••••••••.••••••.••••••.•• 15-6

Level 6 Services .•.•••••••••..••.••.•••••.•• 15-6
Level 66 Host Services •••.•••••••.••..•••••• 15-1

Performance. • • • . . • • . • • • • • • . • • . . • . • • • . . • . • • • • • • . • • . 15-7

16.

17.

18.

19.

20.

VIRTUAL MEMORY AND PROGRAM SECURITY ..•••.•.•.•••••

Virtual Memory and Security •••••••••••.••.•••.•.••
User Virtual Memory Layout ..•.••..•....•••••

Shared Processor Facilities •...••.•••.••••••••.•.•
Standard Shared Processors .•••.•••••.•••..••
Shared Run-Time Libraries ••.••••••••.•••...•
Special Shared Processors ••.•...•.•.••..•.••

Alternate Shared Libraries ••.•••••.•••
Shared Debuggers •••.•.••.••••••.••••••
Command Processors •••.••••••••••.•••••

SYS~EM PROGRAMMER FACILITIES .•••••••.•••••.• ~ •••••

In trod uc t ion .••••..•••.••.•••.••••••••••••.•••..••
Shared Entities •.•.•.•.•.••••.•••••••.••.••••••.••
Memory Management .••••. ~ •.•••••••••...•..•.••...•.
In ter faces
Exceptional Condition Handling ••••••••••••.•.••.•.
Accessing Shared Entities ..•••••••.••••.•••••••...
Initialization and Data ••••••••••..•••••••.••...••
Star Files ••••..•••••••.••••••••••.••.••••••••.••.
Standard DCBs ••••.••.•••••••.•••••••••••••••••.•••
System Facil i ties •••.•.••.•••••••..••••••••.•••.••
Standards and Conventions ••.•.••.•••.•••••••••••.•
Common Library ••.•.•....•.•••••••.••.•...•..••••••
,

SYSTEM MANAGEMENT FACILITIES •••••••••••••••••••..•

Introduction ••••••.••••••.••••••••••••••••.•.•..••
System Definition •••••.••.••.•••••••••••.•••..••.•
System Performance Control •••.••.•••.•••••.•.••••.

Batch Stream Control •.••••••••••••••.•••..••
System Tuning and Measurement •••••••••••.•••

Resource Management .•••••••••.••••••••••••••.•.•••
User Authorization •••.•.••••.••••••••••••••••••.•.
Use Accounting ••••.•••.••••.••.•••••••.•••.•••.•.•

COMPUTER OPERATIONS ••••••••••••.••..••.•.•••••••••

In troduction ••.•••••••••••••••••••••••••••••••••••
System Start-up and Initialization •..•••.•.•.•••••
Job and System Controls ••••••••.••.•••••••••.•..•.
Removable Storage Initialization •...••••••••.•••••
Peripheral Device Error Procedures ••••••••.••••.••
Unattended System Operation •.••••••••••••..•••••••

R E COVE R Y ••••••••••••••.•••••••••••••••••••••••••••

16-1

16-1
16-9
16-11
16-11
16-13
16-13
16-14
16-15
16-15

17-1

17-1
17-1
17-4
17-4
17-5
17-5
17-5
17-5
17-6
17.:..6
17-7
17-7

18-1

18-1
18-1
18-2
18-2
18-3
18-5
18-6
18-7

19-1

19-1
19-1
19-1
19-5
19-5
19-7

20-1

21. HARDWARE MAINTENANCE AND THE DIAGNOSTIC SySTEM •••• 21-1

System Error Log File .•••..•••.•.••.•••••••••••.•• 21-1
Error Threshold Reports •.••.•.•.•...••.••.•.•.•••• 21-1
On-line Peripheral Diagnostic Facilities •.••.•.••. 21-1

APPENDIXES

A. CP-6 HARDWARE •••••.•••.••••••.•••••••.•••.•••••••• A-1

B. CP-6 SOFTWARE MANUALS ..••••.••••..•••••••.•••••••• B-1

SECTION I

INTRODUCTION

CONTROL PROGRAM-SIX

Control Program-Six (CP-6) is a comprehensive, multi-use
virtual memory operating system that provides the following six
modes of operation:

• Time-sharing

• Multiprogrammed batch processing

• Remote batch processing

• Network processing

• Distributed real-time processing

• Transaction processing

CP-6 supports these modes of operation with balanced service.
There is no inherent emphasis on anyone mode of processing.

The six modes of operation are also designed so that they
may operate concurrently. That is, several programs utilizing
different modes may be simultaneously resident in main memory
with CP-6 selecting the appropriate one for execution at a given
time or possibly selecting more than one if the hardware
configuration provides more than one central processing unit.

Modularity allows the user to select only the mode or modes
required by a given task. CP-6 performs equally well whether a
single mode is used or multiple modes are combined. Common
services, file management and processors facilitate an
exceptional degree of compatibility between all the modes of
operation. These common services and the fact that they are
provided in a rather uniform way to all users regardless of the
mode of use has been emphasized in the design of CP-6.

Before discussing the distinguishing characteristics of each
mode, it is important to emphasize that the CP-6 functional
elements are essentially the same for all programs regardless of
mode of operation. The elemental building blocks of CP-6 are:

• Highly efficient scheduler
• File management system
• I/O and communication systems
• Command language

1-1

• Reentrant languages
• Service facilities

A comprehensive file system is integrated into CP-6. This means
that programs can communicate easily since files are managed in a
common way by a common set of programs. Also of great importance
is the complete device independence provided by the logical I/O
services so that files, devices, or terminals are all read and
written with the same set of monitor service calls.

Modes of Operation

To give the. reader a general overview of the system, the six
modes of operation will be described briefly in this
introduction.

• The time-sharing mode allows up to 500 interactive
terminals to be connected to the central computer
system at one time. Rapid access to and response from
CP-6 creates an atmosphere in which each time-sharing
user appears to have the entire system dedicated to
his task.

• The batch processing mode is designed to maXlmlze
utilization of the system's resources while preventing
conflicts in resource use. Batch jobs may be
submitted to the batch job stream through the central
site card reader, from an on-line terminal, or from a
remote site via the remote processing mode.

• The remote batch processing mode provides flexible
communication between CP-6 and a variety of remote
terminals. Remote terminals can range from a simple
card reader and line printer combination to another
large-scale computer system with an assortment of
peripheral devices.

• Network processing facilities allow the distribution
of communications processing into a network of Level 6
minicomputers with their associated software.
Networks of Level 6 minicomputers may be
geographically distributed and connection may be to
several CP-6 host computers as well as to a variety of
terminals.

• Transaction processing facilities allow users at
remote terminals to simultaneously enter business
transactions utilizing a common database. The
transaction processing system provides features for
communication network definition,. transaction
queueing, and journalization.

1-2

• The real~time processing facilities provide
capabilities to implement sensor-based, real-time
applications. Portions of the CP-6 real-time
capability are distributed to Level 6 processors.
Data reduction and analysis tasks more suited to a
large system can be performed on the host Level 66
system, while the actual sensor-b~sed applications are
being performed on one or more Level 6 systems.

CP-6 Features

The list below outlines those features, facilities or
principles which give CP-6 a special uniqueness among
large-scale, full-function operating systems.

• Program compatibility in all concurrent operating
modes. Programs may be run in any mode without
modificaton (subject to very minor restrictions).

• Single, central file management facility within the
system. Files are completely compatible and shareable
across operating modes and language processors,
eliminating the need for file'conversions. The file
system is easy to use, provides access security,
dynamically allocates secondary storage file space,
and is accessed compatibly with devices such as card
readers, line printers, tape drives, and user
terminals. Optionally, files may be updated
concurrently by separate programs.

• Event driven, priority-adjustable scheduler integrated
with virtual memory management.

• Highly interactive response at time-sharing terminals
which is nearly independent of system load.

• Multiprocessing with up to four central processing
units per system.

• An excellent remote processing system, including
dynamic workstation definition, concurrent master and
slave operation, and network support. The system
supports any HASP-360/20 protocol IRBT as well as
remote batch terminals. The remote processing system
is integrated with spooling as its buffering
mechanism.

• Ease of use for the casual user in both batch and
time-sharing modes. A simple yet comprehensive
language exis~s for control of time-sharing and batch
jobs.

1-3

• System default conventions that simplify programming
and the specification of job control commands.

• Time-sharing access to all devices. Devices are
spooled if appropriate.

• Easy-to-use system I/O services permitting access to
standard as well as special devices.

• Time-sharing access to almost all programs.

• Sophisticated debugger which has a simple yet
comprehensive set of functions suitable for debugging
programs of varying source languages. The debugger
may be used interactively or in the batch mode.

• Terminal personality including typeahead, echoplex,
support of virtually any terminal -- all ASCII TTY
compatibles, CRTs, TTY Model 40, Memorex, Execuport.
Special handling of tabs, paper tape, transparent
(unconverted) I/O, dynamic timing algorithms may be
set for each individual terminal.

• Terminal access without translation, providing
transparent control for special purpose devices.

• Master and slave modes for time-sharing terminals. A
single terminal may be the source of program control
commands and/or one or more terminals may be acquired
as passive devices slaved to a program.

• Services supplied by CP-6 have a low overhead.

• High I/O performance via tree structure file indexes
with several forms of I/O caches and
program-disassociated buffering.

• Automatic, operator-free crash recovery with complete
preservation of current user file updates, retention
of batch jobs awaiting processing or waiting to print,
and a complete diagnostic analysis of the memory dump.
The seriousness of the recovery is determined and an
appropriate level of recovery is automatically chosen.

• Hardware diagnostics available for time-sharing
terminals at local and remote sites.

• Compatibility with other operating systems through ANS
labeled tape in either ASCII or EBCDIC and the HASP
communication protocol.

1-4

• Excellent protection and security of programs and
files.

• Shared reentrant system processors which may be
user-supplied and may be dynamically added or changed
during system operation. These include language
processors such as APL and BASIC, public libraries
such as that for FORTRAN, and user-written programs.

• Common command processor for interactive and batch
users as well as provision for installation-specific,
specialized command processors.

• A modern, extensive, and secure data base management
system, I-D-S/II, interfaced at the source language
level to COBOL-74 and APL. An interface is also
available for ANS FORTRAN, PL/I, PL-6, and assembly
language programs.

• Ghost jobs for a variety of system and user tasks.

• A comprehensive accounting system including a dynamic
charge rate structure and budget accouting.

• An integrated performance monitor for measuring and
tuning system performance.

• Simple to use, high-speed system definition and
initialization process.

• Completely relocatable and symbolic system on-site
system maintenance.

• Most of implementaton code written in a high-level
modular language (PL-6).

• Small staff requirement for installation and system
support.

• A transaction processing system which includes
features for for assuring transaction completion
through journalling and recovery services and through
increased processing time in response to increased
load.

• A transaction formatting system and language which
disassociates terminal I/O from the application
program.

• Ability to let the system run in an unattended mode
(i.e., without the presence of the operator).

1-5

/

ORGANIZATION OF THIS MANUAL

Chapter 2 provides an overview of the operating system.
Chapters 3 through 9 discuss elements of the system which are
common to all modes of operation. Chapters 10 through 15 each
describe those features of the system which deal exclusively with
the time-sharing, batch processing, remote batch processing,
network processing, transaction processing, and real-time modes
of operaton, respectively. Chapters 16 through 22 describe those
features of the system which are of interest to the system
manager, system programmer, and computer operator. Appendix A
describes the hardware configurations supported by the first

. release of CP-6. Appendix B lists the CP-6user software
manuals.

1-6

SECTION II

THE OPERATING SYSTEM

OVERVIEW

The CP-6 operating system consists of a monitor and a number
of associated processors. The monitor provides two basic
functions:

• Control of the entire system operation, making efficient use
of system resource and providing good system response.

• Services to the user that enhance the capabilities of the
hardware, providing to each user an extended machine
enclosed in an envelope of security.

The associated processors provide specific functions such as
compilation, execution, and debugging. All the processors
available for a CP-6 system are listed and catagorized in Figure
2-1. These processors are briefly described in Section 3, and
some are mention,ed throughout thi s manual. \

.

I
. ,

MONITOR

I l t ,. I I I
Command System Language Execution Utility Appl icatlon User-Developed
Processors Management Processors Control Processors Processors Proces30rs

Processors Processors

LOGON SUPER AHS FORTRAN' LINK':" EDIT - SORr I MERGE
IBEX CONTROL' COBOL-7W DELTA - PCL - I-D-S/II .&.

RATES Assembler' LEMUR - lOP -
EFT . BASIC' ANLZ - TEXT.
FIX APL ~ HEALS ~)
GAC' RPG-II .. TOLTS

/INITVOL"r PLII _

N.ABEL~.-/ PL-6.
STATS :)
SUMMARY
CAT

-

Figure 2-1. CP-6 Operating System

2-1

Th~ough t~e process of system definition, the system manager
defines the operating system required for a particular
installation. As the requirements of an installation increase,
the operating system can easily be enlarged, modified, or
updated, because adaptability is inherent in the system design.
User programs and the standard system processors are stored,
cataloged and referenced in the same manner, and are written
using the same services for communicating with the monitor. -

Th e 0 pe rat i n g s y stem iss elf - con t a i n ed, r e qui r in g 0 pe r a to r
intervention only under exceptional circumstances, thereby
ensuring faster throughput and a minimization of human error.
For the most part, the operator need only perform routine tasks,
such as loading and unloading tape reels.

Work is per formed on the CP- 6 system through a combination
of the CP-6 processors and user-developed programs. Each unit of
work is packaged together as a "job". There are four kinds of
jobs in CP-6 that meet different user (and system) requirements:
batch jobs, on-line jobs, ghost jobs, and transaction processing
jobs.

Batch Job s

The system knows the entire control stream and resource
requirements of a batch job before the job is put into execution.
CP-6 schedules batch jobs to optimize the use of resdurces. As a
general rule, batch jobs are disconnnected from human interaction
and output is not deliver~d until the completion of the job.
Errors or abnormal conditions cause the remainder of the job to
be discarded. Batch jobs can be submitted from a central site
card reader, through an on-line terminal, or through a remote
processing terminal.

On-l ine Job s

An on-line job receives its control stream from the user at
a time-sharing terminal. Resource requirements are not apparent
to CP-6 in advance, and are acquired as needed and when
available. The user interactively handles unexpected occurences.
An on-line job can do everything a batch job can do ex.cept
pre-allocate resources.

Ghost Jo bs

Ghost jobs are not connected to any terminal and have no
input control stream. (Many system ghost jobs, however, ask the

2-2

central site operator for "advice".) Ghost jobs usually provide
some special service to the monitor, and their actions are
controlled by communication through a file or some other form of
internal communication.

Transaction Processing Jobs

Transaction processing jobs make concurrent data base
accesses or updates. When a transaction is recieved from a
remote terminal, output for the terminal is blocked and queued
upon the completion of the transaction processing job.

THE MONITOR

The CP-6 monitor functions as the major control element in
the operating system. The monitor governs the order in which
programs are executed and provides common services to all
programs. (See Figure 2-2.) The number J types and versions of
the programs in an operating system vary according to the exact
requirements at a particular installation. Each operating system
consists of a selection of monitor routines and processsing
programs that are closely integrated for a given range of
appl ications.

The monitor controls or schedules the use of the system
resources including CPUs, main memory, secondary storage de~ices,
spooled unit record devicesi and terminals of all types. It does
this scheduling primarily by deciding when units of user's work
should be executed. The monitor also provides extensive services
to the users, the installation manager, the computer operator and
the hardware support engineers.

Basic hardware control includes routines that field all
hardware traps and interrupts and disperse them to the
appropriate handlers. It also includes routines and appropriate
handlers that schedule or queue and execute all requests for I/O •

. Since all I/O requests are thus centralized J optimum use can be
m ad e 0 f t he I /0 d e vic e s • Th is c en t r ali z a t ion a 1 so allow s for
optimum or even experimental use of unique or new features
incorporated in fut ure 1;0 d ev ices.

The CPU scheduler selects the next user or unit of work to
be executea-on the available CPU(s). This selection algorithm
includes some parameters which are modifiable by the installation
manager to optimize the system for selected types of jobs.

2-3

Job scheduler and resource management routines primarily
manage-the use of non-shareable resources in an attempt to use
the full capacity .of the system as specified by the installation
manager.

Memory management routines manipulate the hardware tables
such that user programs do not require contiguous physical space,
can associate and disassociate shared processors and I;1J buffers
without memory moves, and can contain different program or data
areas with varying access restrictions. These routines also
provide user services for obtaining and freeing dynamic work
spaces.

A spooling facility is provided to help eliminate
bottlenecks associated with slow-speed peripheral devices. These
routines provide complete buffering between lID devices and the
user's program. Therefore, a user's program never has to wait
for an 1;0 device to complete an action. Also, the current job
may be running while the output of a previous job and the job
file for a subsequent job are being handled by the spooling
routines.

The file management routines provide extensive CP-6 user
services:

• Full ANS tape capabilities of label verification,
formatting, blocking/deblocking and volume switching

• Six d~sk file organizations

• Blocking/deblocking

• Data compression

• Security

• Ca tolog ing

• Backup and restore

• Archival storage management

• Automatic buffering

Device independent I/O is provided so that programs can be
written and debugged without knowing the final disposition of the
output or input. When a job is executed it can accept the system
default assignments or the user ~ay supply control commands to
reassign input/output files or devices.

2-4

Job stet control provides clean-up services such as closing
open fifes, lagging error conditions, permitting the user to
handle abnormal termination, performing step accounting,
associating the processor required for the next step, and merging
file information into the data control blocks for the next step.

Security measures are designed to prevent unauthorized
access to the system, some services of the monitor, programs, and
data. Access to the system is controlled by user authorization
performed by the installation manager. To access the system, the
user must have been authorized and given a user identification.
The user identification may include a password which is stored in

. scrambled form. The entire identification information is not
echoed at an on-line terminal during log-on as an added
protection. A user's authorization may restrict which monitor
services and shared processors are available to the user.

Hardware protection features prevent unauthorized access to
memory locations. Users are protected from each other, the
monitor protected from the users, users from· the monitor, and
sections of the monitor from other sections of the monitor. The
ring structure of the L6 is used to protect users from one
another in communications and real-time processors. A user
suspected of attempting unauthorized actions may be aborted by
the operator and his authorization to access the system can be

. dynamically deleted. The memory management routines clear
acquired memory to prevent access to data from previous programs.

Levels of access control from account to files, data, and
records exisr-within the file management routines. Accounts and
files may restrict access to a specified group of users. Data in
a file may be passworded and/or encrypted. Within the 1-D-S/11
management process, items within each record may be restricted.
Secondary storage pages may not be read before being written thus
avoiding access to data of previous files. ANS protected or
semi-protected controls are provided for tape storage with
additional access controls on CP-6 formatted tapes.

During initialization, the installation manager defines the
system to reflect the hardware configuration, the number of
users, the system features, and the processors to be included.
'System tables are initialized without requiring installation
manager intervention.

Performance tuning parameters exist throughout the system
and are used extensively in scheduling tasks. Most of these
parameters can be modified dynamically by the system manager to
tune the system to his requirements. Statistics gathering and
analYSis processors are included with the system to provide
information to aid tuning efforts.

2-5

Recovery routines provide a high level of system
availability. Unrecoverable software or hardware failures may
result in either a single user abort or a total system crash.
Single user aborts remove only the one user from the system. A
memory dump is taken and the system then continues. Following a
major crash, all the user's files are closed, the accounting log
is updated, a memory dump of the critical monitor tables is
taken, the monitor is automatically rebooted, and service is then
continued. On-line users are asked to log on again and batch
jobs that have specified the RERUN option are rerun.

Accounting information is maintained for users and several
processors are provided for processing the information.- Hooks
are provided to allow the installation manager to include his own
accounting routines in the system. - Accounting may cover an
entire job or an individual job step. Processors are available
that allow the system manager to charge a separate rate for each
individual resource, creating a total charge for the job. Rates
can be changed dynamically and applied to a variety of classes of
users.

Error detection routines record all hardware errors
discovered by the system in an error log file. This file is then
available for analysis by the supporting engineers in their
preventive maintenance routines or malfunction analysis.

On-line diagnostics and hardware exercisers are available to
the support engineers.

Operator communications inform the operator about set-up
requirements, device errors that need attention and current state
of the batch queue. Users can send and receive operator
messages. Several different interactive terminals may be used as
operator consoles and different types of messages can be routed
to the appropriate consoles.

2-6

SECTION III

CP-6 PROCESSORS

STANDARD CP-6 PROCESSORS

The processors that are available for use with CP-6 are
briefly described in alphabetical order in this section.

APL

APL is an acronym for A Programming Language, the language
invented by Kenneth Iverson~ -It is an interpretive,
problem-solving language." "As an interpretive language, APL does
not wait until a program is completed to compile it into object
code and execute it; instead, APL interprets each line of input
as it is entered to produce code that is immediately executed.
As a problem-solving l~nguage, APL requires minimal computer
programming knowledge; a problem is entered into the computer and
an answer is received, all in the APL language.

Because APL is powerful, concise, easy to learn, and-easy to
use, it is widely used by universities, engineers, and
statisticians. It also has features that make it attractive for
business applications where user interaction and rapid feedback
are key issues. One of APL's major strengths is its ability to
manipulate vectors and multidimensional arrays as easily as it
does scalar values. For example, a matrix addition that might
require a number of statements and several loops in other
languages can be accomplished as A+B in APL. This type of
simplification exemplifies APL's concise power.

ASSEMBLER

A macro assembler is to be provided with CP-6.

BASIC

CP-6 BASIC is a powerful compiler and programming language
that is based upon Dartmouth BASIC and represents a superset of
the proposed ANS standards. Although BASIC is easy to teach,
learn, and use, it is useful for a wide range of applications.

3-1

-CP~6 BASIC provides many significant enhancements over ANS
BASIC. These include:

COBOL

• The language contains comprehensive set of statements,
commands, and supplied functions, an extended MAT
package, extensive character string manipulation
facilities, and both ASCII and binary file
input/output.

• Named data and data files can be shared between
successively executed programs and accessed by direct
statements.

• The complete working storage environment, including
program, named data, and current status can be saved
and recalled.

• Debugging operations can be carried out at any time.
The user can control BASIC's response to run-time
errors.

• Program-flow can be automatically traced, and
breakpoints specified that interrupt execution,
permitting immediate on-line debugging.

• On-line and batch operations are similar, differing
onry in default device assignments and error response.

• Most statements can be executed directly, allowing the
on-line terminal to be used as a "super" calculator.

• Conformity to CP-6 file conventions allows BASIC to
access files created by other CP-6 processors, and to
create files that can be used by other CP-6
processors.

• Programs can be sealed, permitting the user to execute
(but not modify, copy, or view) the program and
associated data.

CP-6 COBOL offers a powerful and convenient programming
language for implementation of business or commercial
applications. COBOL is a standard compiler that conforms to
American National Standard COBOL 74. All the required modules
have been implemented. It offers extensions in the nucleus and
communication modules. I-D-S/II subschema and DML (Data
Manipulation Language) capabilities are integral features of the
compiler. The compiler accepts source program input from cards,

3-2

remote terminals, user files, and the user copy library files.
The compiler produces an object-code compilation unit that can be
linked with other compilation units from programs written in
COBOL 74 or other source languages to form an executable run
unit.

DELTA

The DELTA debugging processor is used to debug run units.
The source code may have been written in any CP-6 assembler or
high-level language. The language processors, in cooperation
with the LINK loader, supply symbolic information to DELTA such
that the user can describe the debugging requirements to DELTA in
terms close to the language in which the source program was
written.

DELTA operates in both the batch and on-line modes. If the
user is running in the time-sharing mode, conditions that occur
in the user program are reported directly at the terminal. This
allows the user to take immediate action to correct an error. In
the batch mode, the user is only restricted to that which can be
preplanned.

DELTA facilitates the activities of debugging by allowing
the user to:

1. Examine, insert, and modify such program elements as
instructions, numeric values, and coded information
(i.e., data in all its representations and formats).

2. Control execution, including the insertion of
break-points into a program and requests for breaks on
changes in elements of data.

3. Trace execution by displaying information at
designated points in a program.

4. Search programs and data for specific elements and
subelements.

DELTA is designed and interfaced to the system in such a way
that it may be called in to aid debugging at any time, even after
a program has been loaded and execution has begun.

EDIT

The EDIT processor is a line-at-a-time context editor for
on-line creation, modification, and handling of programs and
other bodies of information. All EDIT data is stored in a keyed

3-3

file structure of sequence numbered, variable length records.
This structure permits the user to directly access each line
(i.e., record) of data.

EDIT functions are controlled through single line commands
supplied by the user. The command language permits insertion,
deletion, reordering, and replacement of lines or groups of lines
of text. It also permits selective printing, renumbering of
records, and context editing operations of matching, moving, and
substituting for records selected by a range of line numbers and
the presence or absence of specified character strings. File
maintenance commands are also provided to allow the user to
b~ild, copy, merge, and delete entire files.

FORTRAN

The FORTRAN compiler is compatible with most features of the
forthcoming (new) ANS Standard FORTRAN language which includes
many extensi6ns to the 1966 ANS FORTRAN Standard Language. It is
operable under CP-6 as a shared processor, offering services to
both the batch user and the on-line user. The user may request,
via an option, that the compiler produce either object module
output or program execution (LOAD and GO).

Features of the ANS FORTRAN compiler include

• Compressed input/output capability.

• Addition of INCLUDE (system) capability.

• Conversational characteristics for time-sharing.

• New ANS FORTRAN compatibility.

• CHARACTER variables.

• Expanded READ/WRITE capabilities.

• OPEN and CLOSE statements.

GENMD

The GENMD processor permits on-line, batch, and ghost users
to make permanent modifications to existing run units, thereby
reducing the number of compilations required to debug a program.
GENMD patches are used to modify nonresident elements of the
system.

3-4

IBEX

The command processor for CP-6 is called Interactive and
Batch Executive (IBEX). IBEX commands identify the user job, the
tasks to be performed by the job, and the resources required by
the job. There are also IBEX commands for functions such as
controlling interactive terminal operations. All batch jobs and
most interactive sessions require the use of IBEX commands. The
language is the same for both modes of processing. (However, not
all commands apply to both modes of processing.)

IDP

The Interactive Database Processor (IDP) is a query language
which offers the capability for on-line retrieval and display of
data maintained within I-D-8/I1 data bases. The IDP query
language consists of keywords and operators that can be combined
with data base item names and literals to form meaningful
statements.

IDP is very easy to use. The IDP user need not have any
knowledge of programming nor of I-D-8/II. All the user needs to
know are the commands and the names of the items contained in the
data base. The IDP language is completely free form. Query
sessions are conducted on-line. Any syntax errors are flagged,
a diagnostic is issued, and the user is given the opportunity to
correct the syntax on-line.

I-D-S/II

CP-6 Integrated Data Store (I-D-S/II) is one of the most
advanced data base management systems available. I-D-S/II is a
standard implementation of the recommendations and specifications
of the Conference on Data Systems Languages (CODASYL). I-D-S/II
is richer in functionality than CP-V EDMS and offers additional
security because of CP-6 system features.

Highlights of I-D-S/1I include:

• The Data Definition Language (DDL) conforms closely to
the CODA8YL Journal of Development specifications.
The DDL is free form and natural.

• The Data Manipulation Language (DML) is part of the
COBOL 74 language and conforms closely to the ANSI
standard.

• Programs can remain independent of many types of
changes to the data base data formats.

3-5

• An integrated data base may contain up to 68 billion
records in integrated or indexed files.

• Multiple batch and on-line user programs may
concurrently update the same area of a data base.

• I-D-S/II data structures may be singular, tree,
hierarchical or network in any combination.

• A CALL interface and INCLUDE file for workspace
definition in PL/I, FORTRAN and assembly language are
provided. . -

• Data base run~time statistics may optionally be turned
on and off when testing or debugging new data b~se
application programs.

• The data base manager is a secure shared library in
CP-6 and may not be accessed by the user.

• Data base files can only be accessed by the I-D-S/II
data base manager.

• Subschema generation and validation allows the data
base administrator to restrict the access of user
programs to a subset of the schema specified in the
DDL. ·

. • Using privacy locks and keys, I-D-S/II users can limit
access to information in the data base down to the
data item level.

LEMUR

LEMUR (Library Editor and Maintenance Utility Routine) is a
processor available in both on-line and batch modes. It builds
library files from object files. It also edits existing library
files and object files by performing insertion, deletion, and
replacement of object units within these files. Library files
built by LEMUR are accessed by LINK when constructing run files.

LINK

The LINK processor controls loading and execution of
programs. It accepts object units (which are the output of
compilers or assemblers) as input and resolves any linkages
between them, producing run units as its output. LINK may be
directed to include object units from library files in the run
unit and may also be directed to produce overlaid programs. LINK
is available in both the batch and time-sharing modes.

3-6

PERIPHERAL CONVERSION LANGUAGE

The Peripheral Conversion Language (peL) is a utility
processor for operation in the batch or on-line environment. It
provides for information movement among card devices, line
printers, on-line terminals, magnetic tape devices, and disk
packs. PCL is available in both the on-line and batch modes.
The command language provides for single or multiple file
transfers with options for selecting, sequencing, formatting, and
converting data records. Additional file maintenance and utility
commands are provided.

PL/l

PL/l is a powerful block structured language that conforms
to ANS standards. Local and global variables and "procedures are·
supported. Significant features include 16 distinct types of
data formats, structure variables, dynamic allocation of array
and scalar variables, powerful string heading capability, and
comprehensive conditional testing mechanisms.

RATES

The RATES processor allows the system manager to set
relative charge weights on the utilization of system services.
Specific items for which charge weigh~s may be assigned are
currently being selected.

RPG II

RPG (Report Program Generator) II is a convenient means of
preparing reports from information available in computer-readable
forms, such as punched cards, magnetic tape, and magnetic disks.
In addition, it is a means of establishing and updating files of
information, usually in conjunction with preparation of reports.

RPG II provides its capabilities through generation
(compilation) of object programs, each of which is tailored to
produce a different set of reporting results and/or file
processing desired by the user. The RPG object programs are
capable of a~cepting input data, retrieving data from existing
files, performing calculations, changing formats of data,
updating existing files, creating new files, comparing data
values to one another and to specified constants to determine
appropriate handling, using user-defined processing subroutines,
using system library subroutines, and printing reports derived
from the input and file data.

3-7

RPG II has several advantages over the more traditional
method of writing object programs in a symbolic programming
language. The RPG language is oriented toward the user's
problem, describing reporting requirements, rather than toward
the mechanics and manipulations of computer usage. The language
and specification techniques are easily learned. A user can
become proficient in RPG II after writing only a few programs,
whereas an equal facility in symbolic programming would require
considerable experience.

SORT/MERGE

SORT and MERGE are processors that provide a method of
performing fundamental data manipulation proc~ssing:

1. Rearranging (sortin~) records of a file to a specified
order.

2. Combining (merging) records of multiple ordered files
into a single ordered file.

SORT or MERGE may be run as a single job step or as a
subroutine called by another executing task.

STATS

The STATS processor displays and collects performance data
on a running system and produces snapshot files to be displayed
by the report generator Summary.

SUMMARY

The Summary processor provides a global view of system
performance by formatting and displaying the statistical data
collected by STATS.

SUPER

SUPER gives the system manager control over the entry of
users and the privileges extended to users. Through the use of
SUPER commands, the system manager may add and delete users,
specify how much main memory and disk storage space a user may
have, specify how many central site magnetic tape units a user
may use, grant certain users special privileges, (e.g., grant
system programmers the privilege of examining, accessing, and
changing the monitor), and individually authorize or deny access
to the various processors for each user. SUPER is also used to
create and delete remote processing workstations.

3-8

TEXT

TEXT is a word processing language specifically designed to
simplify and accelerate textual communication. The TEXT commands
are logical and simple, and can be learned in a few hours. TEXT
features include:

• Editing may be done by context or by line number,
providing maximum efficiency in error correction.

• Documents can be printed in a variety of spacings and
formats, including multiple columns.

• The uset" can specify headings and footings that print
o~ designated pages, with automatic page numbering.

• Indexes and tables of content can be compiled
automatically.

• TEXT is compatible with other CP-6 processors.

• Documents can be accessed, printed, and indexed in the
batch mode; the user may reassign input and output
DCBs to specified devices or files.

• Names, addresses, and other personalized infor~ation
may be automatically inserted into form letters or
business proposals.

• TEXT can arrange data into complex tables; columns and
rows within a table structure can be formatted to
obtain a variety of appearances.

PROGRAMS IN ACCOUNT Y

This CP-6 account contains a number of unsupported programs
that were, for the most part, created in the process of
developing CP-6. One of these programs (HELP) provides
information about all of the other programs in account Y. HELP
is called by entering HELP.Y in response to an IBEX prompt (1).
As soon as HELP is entered, it prints NEXT: on the terminal. If
the user responds Y, HELP then types a brief description on the
terminal, including a definition of the HELP commands.

Two of the HELP commands are L (list) and H (help). If the
user enters the command L, HELP lists the names of all programs
in account Y. If the user enters the command H, HELP prompts
with NAME= whereupon the user enters the name of the program for
which information is desired. Other HELP commands provide
additional information about account Y programs.

3-9

. OTHER PROGRAMS

The Software Library Distribution Center that distributes
CP-6 contains a large number of useful programs that are not
supported by the CP-6 staff. These programs can be ordered from
the library for execution under CP-6. This set of programs is
listed in the Honeywell Software Catalog.

Most of these programs are contributed by CP-6 users.and are
supported by the users.

3-10

SECTION IV

SYSTEM CONTROL

This section discusses two CP-6 internal control topics,
scheduling and multiprocessing.

SCHEDULING

The most vital part of a multi-use operating system is the
scheduler, the module whose primary responsibility is allocating
the central processor (as a resource) to various tasks. The
scheduler is critical in providing fast response to on-line users
and rapid throughput for all jobs. The degree of efficiency with
which the scheduler performs its role is the key to optimum
utilization of a computer system--and the value of the computer
to an organization.

The CP-6 scheduler performs two major functions in achieving
the goal of high performance:

• Selecting the highest priority job that is ready for
execution.

• Ensuring that the remalnlng high priority jobs are
ready to use the processing resource when it becomes
available.

The CP-6 scheduler accomplishes this by

• Creating prioritized status queues into which every
job has a single entry.

• Assigning a priority to every job in the system.

• Modifying a job's priority as requirements for access
to the processing resource change during execution.

There are three fundamental classes into which the various
status queues may be segmented:

• Waiting to Execute - This group of queues contains
those jobs requiring the processing resource in order
to proceed.

• Executing - This queue consists of a single entry for
each central processor: the job currently using the
processing resource.

4-1

• Non-Executable - This group of queues contains jobs
waiting for an "event" to occur before requiring
access to the processing resource.

A primary benefit of the priority queue structure is that it
provides complete service to I/O users while concurrently keeping
the processing resource busy with compute-bound jobs, allowing
maximum utilization of both I/O devices and the basic processor.

Each job is assigned a base priority when first activated.
The base priority may be different depending upon the selected
mode of operation - for example, batch or on-line - thereby
allowing one class of jobs to gain preferential service. Under
normal operation, the priority of a job changes frequently during
processing. Conditions or events that cause the scheduler to
modify a job's priority include

• Completion of an I/O operation

• Opening or closing of a file

• Completion of a time quantum

• Addition of a real-time task

• Completion of terminal input

Upon being notified of the occurrence of one of these
events, the scheduler changes the priority of the associated job.
To facilitate the changing of job priorities, the scheduler uses
an event-transition technique. This technique can be viewed as a
matrix for which one coordinate represents all possible events
that can occur and the second represents the status queues. Any
intersection defined by the occurring event and the current state
of the associated job determines the new priority and the new
queue. Because the executing programs and the environment
continually apprise the scheduler of their requirements and of
the availability of resources, the scheduler can efficiently and
effectively optimize the entire system. Dynamic system tuning is
a major factor in making CP-6 an efficient multi-use operating
system.

Another mechanism used by the CP-6 scheduler to increase the
amount of time spent in processing user jobs is the use of
bounded time intervals. The system control parameters QUAN and
QMIN are time intervals which may be set to ensure that no user
job receives more than its share of the processing and memory
resources, yet still gets enough to continue processing
efficiently.

4-2

• QUAN is the maximum time-slice allowed a compute-bound
user before another job is given control of the
system. This assures that no single compute-bound job
of a given priority can dominate the processor
resource. The QUAN value is separately specified for
each batch partition and all on-line users.

• QMIN is the amount of processor time guaranteed a job
unless pre-empted by a critical real-time task. The
processor will still respond·to IIO interrupts and
perform other system tasks, but the processor will not
be given to another user until the current user has
received the QMINtime.

MULTIPROCESSING

The multiprocessing facil~ty of CP-6 is an extension to the
basic mono-processing system wherein one or more additional
processors are available as computer peripherals, each with the
ability to access all of physical memory. Sharing of physical
memory by all processors is fundamental to multiprocessing. It
provides the means of communication between processors and allows
each processor accessibility to all users.

Only one processor, called the primary processor, may
execute the entire body of code comprising the CP-6 monitor. All
other processors, called secondary processors, operate as
computer peripherals for use by the primary processor. The
secondary processors execute all slave mode user compute tasks
and those portions of CP-6 monitor service procedure that do not
require interaction with stored central monitor tables. Once a
task begins execution on a secondary processor, it continues
until either a quantum end condition occurs or a need arises to
perform a portion of monitor service that requires access to
central tables. Monitor services that do not require such access
are completed on the secondary processor. When a secondary
processor is no longer able to continue execution of its assigned
task, it communicates this condition via data and flags and
interrupts the primary processor.

Upon notification of the idle condition of the secondary,
the primary CPU suspends the user previously assigned and
attempts to find a new user for the secondary. In the event that
no suitable user is found, the primary will attempt to schedule
tasks for each idle slave upon each subsequent entry of the
scheduler (e.g., for IIO interrupt, timer runout fault, and
monitor service completion).

4-3

SECTION V

USER-DEVELOPED PROGRAMS

OVERVIEW

A user creates, compiles, loads, and executes a program in
the following manner:

1. The source language program is built as a file via the
EDIT processor in the time-sharing mode or is punched
onto cards.

2. The program is assembled or compiled by calling the
appropriate assembler or compiler. The command for
calling this processor is the same in the batch and
time-sharing modes. Incremental compilers such as
BASIC and interpreters such as APL eliminate some or
all of the following processing steps, including them
(or their equivalents) automatically -- i.e., without
explicit user commands. For processors not falling
into one of the two categories just discussed, the
output of the assembly or compilation is a relocatable
object unit.

3. The object unit or a set of associated object units is
loaded by the LINK processor. The LINK processor
combines object units into a single entity called a
run unit. The user may specify that LINK is to
produce an overlaid (tree-structured) program. (This
is discussed in greater detail below.)

4. Program execution is initiated via the RUN command, or
by specifying (as a control command) the file
identification of the file that contains the run unit.

Users may execute a program under the control of the
debugging processor DELTA to facilitate the location and
correction of errors.

Some of the more specific details of user-developed programs
are given in the following section.

LOAD AND EXECUTION

The LINK processor controls loading and execution of
programs. It accepts object units (which are the output of
compilers or assemblers) as input and resolves any linkages

5-1

between them, producing run units as its output. LINK may be
directed to include object units from library files in the run
unit and may also be directed to produce overlaid programs. LINK
is available in both the batch and time-sharing modes.

Program Overlays

An overlaid program is a tree-structured program that has
only one node (the root node) resident in main memory
permanently. The other nodes are called for by a resident node
and brought in as needed. They may reside (at different times)
in the same main memory area, thus reducing the amount of main
storage required to house the entire program.

If a program is to be overlaid, the overlay specification is
given to the LINK processor in the LINK command. It is the
user's responsibility to plan the relationship of the nodes
within the program.

The relationship of the nodes that constitute an overlay
program can be represented graphically by means of a tree
diagram, as in Figure 5-1 below. The horizontal coordinate of
the diagram denotes increasing main storage (address) allocation,
from left to right. The vertical coordinate denotes overlays.
The leftmost node, or "root", is that portion of the program that
resides in main storage throughout program execution. A "path"
of an overlay consists of those nodes that may occupy main
storage at the same time. The portion of a path that extends
from the start of the program (i.e., the root) to a given node is
termed the "backward path" of that node.

LINK A(C(O) (E» (B(G) (F» ON SAMPLETREE

E 1

C

0 I

I A

G I

0

F I

Figure 5-1. Sample Tree Structure

5-2

The example in Figure 5-1 consists of four paths, anyone of
which may be present in main storage at any given time. Node A
is the root of the program and is never overlaid by another node.
Any path may be loaded into main storage and overlaid as many
times as required by the program. All nodes of the run file are
saved in disk storage and, when a node that has been overlaid is
called again by the executing program, the original copy is
loaded from the disk. Therefore, any communication between two
overlay segments (e.g., D and E, below) must be done in a part of
the backward path common to both. Although the tree below is
singular, most actual overlaid programs consist of two parallel
t~ees, one-for data and one for program. Both are fetched by a
single node load call. - ,.

RELATED UTILITY PROCESSORS

There are two processors, peL and EDIT, which are
particularly useful in the creation and manipulation of files.

Peripheral Conversion Language

The Peripheral Conversion Language (PCL) is a utility
processor designed for working with files in a batch or
time-sharing environment. It provides for information mov~ment
among card devices, line printers, on-l~ne terminals, magnetic
tape devices, and disk storage.

The command language provides for single or multiple file
transfers with options for selection, sequencing, formatting, and
conversion of data records. Additional file maintenance and
utility commands are provided. The PCL commands are summarized
in Table 5-1.

EDIT

EDIT is a line-at-a-time context editor for creation,
modification, and manipulation of files of text.

All EDIT data is stored on disk in keyed files of
sequence-numbered variable-length records, which permits EDIT to
directly access each line or record of data. EDIT functions are
controlled via- single-line commands from the user. The command
language provides for the following: -

1. Creating a sequenced text file.

2. Inserting, deleting, reordering, and replacing lines
or groups of records within a file.

5-3

Command

COpy

COPYALL

COPYSTD

DELETE

DELETEALL

END

LIST

REMOVE

REVIEW

REW

SPE LT

SPF FT

TABS

WEOF

3.

4.

5.

Ta~le 5-1. PCL Command Summary

Function

Copies file(s) between devices or between
public storage and devices.

Copies files from labeled tape or disk
pack to any output device.

Copies a control file and all files named
within the file.

Deletes specified file(s).

Deletes all files or a specified range of
files in the job's account.

Returns control to the monitor.

Lists files names and, optionally,
attributes from the account directory,
tape, or disk pack.

Removes a magnetic tape or disk pack.

Lists files in the job's account and waits
for a user response after listing each
file name to allow the option of deleting
the file.

Rewinds a tape reel.

Spaces to the end of the last file on
labeled tape.

Positions free form tape forward or
backward a designated number of files.

Set table values for tab expansion.

Writes an end-of-file on the current
output device.

Selective printing and renumbering.

Merging part of one file into another.

Selecting records for' intrarecord editing based on the
presence or absence of specified character strings.

5-4

6. Context editing operations that allow deleting, moving
and substituting character strings within a previously
selected set of records.

7. Maintaining files (allowing the user to build, copy,
and delete whole files of text lines).

Files may be edited in the user's account (i.e., the log-on
account) or under accounts to which the user has been granted
write access by the file creator. A user may copy his own files
or those to which he has read access. Under the rules of CP-6
file access, a file may not be created (i.e., built or copied to)
under an account number different from that used for log-on
unless a very high privilege level is associated with the log-on
account.

An example of the use of the EDIT processor to create a file
is given in Figure 5-1. (Output from CP-6 is underscored. User
input is not underscored.) All of the EDIT commands are
summarized in Table 5-2.

!BUILD PRIME

The user wants to create a file called PRIME.
(EDIT is called implicitly by the BUILD command.)

1.000 10 REM GENERATE PRIMES GR THAN #

EDIT prompts for input by printing 1.000. The
user types the first line, then types lines 2-10
in response to more prompts by EDIT.

2.000 20
3.000 30
4.000 40
5.000 50
6.000 60
7.000 70
S.OOO SO
9.000 90
10.000 100

P=l
P=P+4, S=O
FOR I = 5 TO SQR(P} + 1 STEP 2
Q=INT(P/I}
IF Q*I=P THEN SO
PRINT P' 'TAB (a)
IF S=l THEN 30
S=l, P=P+2
GOTO 40

The user types a carriage return immediately following
the prompt for line 11.000 to indicate end-of-file, that
is, that the last line of the file has been entered.

Figure 5-2. Sample EDIT Session

5-5

Command

·A

AD

BP

BUILD

CM

COpy

CR

CRPT

CT

D

DE

DELETE

E

Table 5-2. EDIT Command Summary

Function

Aligns character strings to specified positions
within a record.

Allows addition of text to the end of a record
or selected records.

Sets the blank preservation mode. When "on",
all strings of blanks are preserved during
intrarecord operations. When "off", blank
strings are compressed to a single blank or
expanded as required to retain column alignment
of nonblank fields. The default mode is "off".

Enables the user to create a new file.

Causes EDIT to insert commentary into specified
columns of each successive record beginning at a
specified record.

Copies one file to another file.

Controls the inclusion of the carriage return
character at the end of each record in the
user's output file.

Controls data encryption of information in the
file.

Causes EDIT to type the record up to a specified
column and then to insert commentary (given by
the user) into specified columns of each
successive record beginning at the specified
record.

Locates a given occurrence of an indicated
string, between columns specified by an SE, SS,
or ST command, and deletes it.

Deletes all records whose sequence numbers lie
in a specified range.

Deletes the file specified from the log-on
account.

Starts at a column occupied by the first
character of a given occurrence of a specified
string or column and overwrites with another
string.

5-6

Command

ECHO

EDIT

END

F

FD

FS

FT

IN

IP

IS

Table 5-2. EDIT Command Summary (cont.)

Function

Causes commands executed via the EDIT XEQ
command to be displayed.

Opens a file to be edited and enters the record
editing mode.

Closes all active files and returns control to
the control command processor. This command is
equivalent to the X command.

Starts after the last character of a given
occurrence of a specified string or column and
inserts another string, pushing everything from
this column right as required to make room.

Searches for the presence or absence of
specified strings between specified columns in a
specified range of records. If the string is
found, the record containing it is deleted from
the file.

Searches for the presence or absence of the
specified string between specified columns in a
specified range of records. Each time the
string is found, the sequence number of the
record is printed.

Searches for the presence or absence of the
specified string between specified columns in a
specified range of records. Each time the
string is found, the sequence number and the
contents of the record are printed.

Inserts new records into a file starting at a
specified record. EDIT prompts the user with
the sequence number of each record to be
inserted.

Inserts new records into a file only if a record
with the same sequence number doesn't already
exist.

Inserts new records into a file starting at a
specified record. EDIT does not prompt with
sequence numbers of the records to be inserted.

5-7

Command

JU

L

MD

MERGE

MK

NO

o

P

R

RF

RN

RP

Table 5-2. EDIT Command Summary (cont.)

Function

Causes the SS or ST command to jump to the
specified record and then continues stepping
from that point.

Shifts portions of the record left the number of
positions indicated.

Moves records within a file from one range to
another range. The original records are
deleted.

Merges records from one file into another file.

Performs the same function as MD except that the
original records are not deleted as they are
moved.

Specifies that no editing is to be performed on
the current active line.

Starts at the column occupied by the first
character of a given occurrence of a specified
string or column and overwrites with another
string.

Starts before the first character of a given
occurrence of a specified string or column and
inserts another string, pushing characters of
the first string to the right as required to
make room.

Shifts portions of the record right the number
of positions indicated.

Causes the current setting of the blank
preservation mode ("on" or "off") to be reversed
temporarily (for the current line only).

Renumbers a specified record.

Sets the record size preservation mode. When
ON, the size of the edited records is not
changed. Trailing blanks are not deleted. When
OFF, records are shortened or lengthened as
necessary by the editing process. Trailing
blanks are deleted. The default mode is OFF.

5-8

Command

RR

S

SE

SS

ST

TA

TAB X

TC

TS

Table 5-2. EDIT Command Summary (cont.)

Function

Types the currently active record and allows
interactive terminal input type editing on it.

Locates a specified string between columns
specified by an SE, SS, or ST command and
replaces it with another string.

Causes EDIT to accept successive lines of
intrarecord commands to be applied to records
selected by a range of line numbers and the
presence or absence of certain character strings
within selected columns.

Causes EDIT to start at a specified record and
proceed to each record in succession, accepting
one line of intrarecord commands to update the
current record.

Causes EDIT to start at a specified record and
pcoceed to each record in succession, accepting
one line of intrarecord commands to update the
current record. The sequence number and
contents of each record are typed prior to
accepting a command.

Causes EDIT to set or reset the terminal tab
stops to settings appropriate for a specified
language processor.

Controls the tab expansion mode. If on, tab
characters are replaced with blanks when read
from a file and blanks are replaced with tab
characters when written. If off, tab characters
are not changed.

Types the sequence numbers and the contents of
specified columns of one or more records
beginning at a specified record. Any nonblank
strings within the columns typed are shifted to
the left to compress each blank string to a
single blank.

Types the contents of the record currently open
for editing under control of an SE, SS, or ST
command or types the contents of specified
columns of one or more records beginning at a
specified record.

5-9

Command

TX

TY

x

XEQ

Table 5-2. EDIT Command Summary (cont.)

Function

Types the sequence number and contents of those
records within the edit range (set by SE, 55, or
ST commands) which have been changed by the
preceding intrarecord command(s).

Types the sequence number and contents of the
record currently open for editing under control
of an SE, 55, or ST command or types the
sequence numbers and the contents of specified
columns of one or more records beginning at a
specified record.

Closes all active files and returns control to
the executive language (IBEX). This command is
equivalent to the END command.

Causes EDIT to execute commands from a specified
file.

5-10

SECTION VI

FILES AND DEVICE INDEPENDENT IIO

INTRODUCTION

CP-6 provides all I/O services through a set of services
that are common to all modes of system operation. Programs may
be written without the need for explicit knowledge of the file or
device to which I/O will actually take place. Selection of the
file or device can be made internally via a system service
(M$OPEN) or externally via an IBEX control command (SET or LDEV).
In addition, a set of default device assignments may be used
which make appropriate device selections for batch or on-line
jobs.

All requests for I/O services specify a data control block
(DCB) name for use in performing the I/O. The DCB is a data
structure used for describing the actual I/O connections and for
maintaining information such as the result of an I/O operation.
Figure 6-1 illustrates the various connections established for
performing I/O. The following points are keyed to the
connections illustrated in the figure:

1. The user program references a DCB via the CALL M$name
(FPT name) mechanism.

2. The DCB is connected to one of several types of I/O
facilities via M$DCB, !SET, !LDEV, or M$OPEN.

a. FILE - a file on a user-available pack set.

b. ANS labeled tape - a file on a labeled tape
named as a resource.

c. Operational label - a label that has been
assigned a "functional" connection (e.g., "the
place where all listings go") to a spooling file
or to a user terminal as appropriate for on-line
or batch.

d. Device type - a name which is connected to a
spooling file, the user terminal, or a specific
device (e.g., a specific tape drive with a
foreign tape mounted, which has been defined to
be a resource).

6-1

~'D\ic:. f3f' r,,-'t4
~,\e ,,"O'IS~

1"a.'fC cl""es Q,!.

't'~au"'ces

s\\gt~. d""'D\,~ \,,"J
corrUr".JO\c~
'Y'Q,. "",,~stCl.Hrt\.

r-______ ~---_I_....----L.--=<lt:.:..:..:\f,'f'I~,\,'"" ~,\e

....

.
~Q.\ OT 'f't'I"I\o\e

S~,....'o\OV\t dc."'ce

Figure 6-1. Connection Established for Performing I/O

6-2

3. The contents of a spooling file are copied to a local
or remote device (line printer, card punch, etc.) or
are built from such a device (e.g., card reader).
Spooling file destinations are established by default
conventions or by the IBEX LDEV command.

For convenience, a number of DCBs are available that have
default assignments to the operational label of the same name.
For example, LO (listing output) and SI (symbolic input) are the
assignments of the M$LO and M$SI DCBs. These DCBs are set up for
common system usage.

Each request for 1/0 service from the monitor is made by
inclusion of an IIO call in the user's program. This call
references a Function Parameter Table (FPT), which in turn refers
to a Data Control Block (DCB). The combination of the IIO call,
the FPT, and the DCB provides the information that the monitor
needs to perform the requested operation.

PACK SETS

All random access devices known to CP-6 are initialized by
INITVOL or by system initialization. All initialized random
access devices, whether dismountable or non-dismountable, belong
to some pack set, a group of one or more devices. A pack set is
identified by its pack set name, a one to six character name
common to all devices in-the set.

Each member of the pack set also has a unique serial number,
used by CP-6 when mounting a pack set. External usage of serial
numbers is restricted to the system manager or operator for
communication with CP-6 while initializing, extending, or
mounting the set. Users of a pack set are unaware of its serial
numbers, referring to the set by pack set name only.

The set of devices containing the system area is called the'
pack set name zero (PSNO) set. PSNO is also the default location
of files created in the system account (:SYS) and user temporary
files.

Spindles not in the PSNO set are in the managed spindle
pool. Pack sets mounted in the managed spindle pool may be
accessed in either a shared or exclusive mode. Shared pack sets
may be accessed by many users concurrently; exclusive pack sets
may be accessed only by the user for whom they are mounted. The
shared and exclusive properties of a pack set are determined by
its user's mode of access. There is no difference in the
internal format of shared and exclusive sets and a pack set may
be accessed interchangeably regardless of how it was accessed
previously.

6-3

The word public means that a pack set has been mounted as
public and the accounts on it have been entered into 'the system
account directory. The pack set name is entered into the system
catalog, along with serial numbers and device types. This
catalog is a file created by the system manager. Any public and
private volume sets required by a batch job must be mounted or
reserved prior to the job's selection for execution.

FILES

A general understanding of files and the way that the
monitor deals with them will help the user to obtain the high
level of performance available.

A file is an organized collection of information. This
collection of information may consist of one or more programs,
one or more sets of data, or some combination of programs and
data. Under CP-6, a user always accesses files through the
monitor - never directly. An option does exist, however, that
allows a user to deal with a non-standard set of data on an
unlabeled magnetic tape) as though it were being accessed
directly.

On each pack set, the monitor maintains a directory of
accounts having files maintained between jobs. This is called an
Account Directory, and contains, with each account number, an
address of a directory of files (termed a File Directory) for
that account. A File Directory contains, with each file name, an
address of a table containing file attributes and location for
that file. The table is called a File Information Table. To
summari ze, each pack set has ,a single Account Directory which, in
turn, points to a File Directory for each account. Each File
Directory, in turn, points to a File Information Table (FIT) for
each file.

Each file directory and each file has information associated
with it (in the FIT) controlling who may access the directory or
the file and how it may be accessed. This information can
include a list of which accounts may perform certain controllable
operations. To access a file, a user must be running under an
account which is authorized to access the file's account and the
file and must provide the proper password (if (1e exists). In
addition to access control information, the FIT also contains the
various file dates, special installation information, and file
type. '

6-4

File Identification

In CP-6, files are identified according to a standard
format. The identification is assigned to the file by the user
when the file is created. The -fo.rmat for a file identifier (fid)
is one of the following:

where

name
name .accoun t
name •• password
name.account.password
name.account •• setname
name.account.password.setname

name is the name of the file and may have a maximum of 31
characters. (Certain processors in CP-6 may have
shorter length restrictions.)

account is the account number of the file and may have a
maximum of eight characters. A user normally may not
create a file in any account other than the one under
which he is running. He may not execute, read, or
modify a file in another account unless he has been
given the appropriate access rights to that file.

password is the password for the file and may have a
maximum of eight characters. A password is useful in
preventing unauthorized users from accessing data in
the file.

setname is the pack set name of from one to six
characters in length.

The various combinations for file identifiers are determined
by which data are required.

name is always required.

account is required only when the account is different
from the current user's account.

password is required only when the file has a password
associated with it.

setname is required only to access privately mounted
pack sets.

6-5

File Function and Disposition

A file may be opened for one of four functions: input,
output, update, or journal. There are two possible dispositions
for a file -- either to save it or to release it. The
specification of whether to save or release a file may be made
when the file is opened and/or when the file is closed. If a
file is opened in the save mode, the user can have a change of
mind and close the file in the release mode. However, a file
that is opened in the release mode may not be closed in the save
mode. If the disposition of a file is not specified, the default
(save or release) depends on the function of the file.

A file opened and closed with the CREATE option and with a
save disposition becomes a permanent file and storage used is
accounted for as permanent granules. A CREATE file with a
release disposition is a true scratch file which is never
cataloged and storage use is accounted for as temporary granules.
The default close at job step or across recovery is release so
that open output files are released. (Files associated with the
diagnostic output 'DCB (M$DO) are an exception so that diagnostic
output is not lost.)

There is a special class of files called star files. These
files exist for the duration of a job and are automaticallly
released at the end of the job. Therefore they accounted as
temporary granules. Star files are guaranteed by the system to
be unique for each user. Thus a processor running for different
users may have intermediate files of the same name but they will
not be confused among the users.

With one option, a user may request opening of an existing
file, or replacement of a file with a file of the same name, an
error return to the user indicating that a file of the same name
exists, or creation of a new file if no file of the same name
exists.

File Organization

The information in a file may be structured in one of three
ways: as a keyed, consecutive, or random file. There are two
suborganizations: indexed and relative. The type of structure
is called the organization of the file and is a file attribute.
The information in a file may be accessed in one of two ways:
directly (by supplying the unique identifier of the record) or
sequentially (by using the ordering relationship of the records).
Thus file access is simply the way in which a file is being
accessed at a particular instance of usage.

6-6

KEYED AND INDEXED FILES

Keyed files are those in which each record has an
identifying key associated with it. A key consists of a byte
string, the first byte of which states the number of bytes in the
string. The contents of each byte may be a binary number or the
binary representation of some character. A key may consist of up
to 31 bytes plus a count byte.

As the file is being created, a master index is also created
with an entry for each keyed record in the file. The keys are
sorted into collating sequence so the file can subsequently be
accessed sequentially. The entry contains such information as
the key, file-relative disk address of the record, size of the
record, and position of the record within the blocking buffer.
Thus records in keyed files may be accessed directly or
sequentially.

Keyed files have a multilevel index structure to provide
fast direct access. A multilevel index structure is a collection
of hierarchical levels of index blocks, where the entries in a
higher level point to index blocks at the next lower level and
the entries in the lowest level (called level 0) point to data
records. This is best illustrated by the hypothetical example
shown in Figure 6-2 Unless specified otherwise by the user, the
multilevel structure is initially built when the file is closed
if the file has more than three level 0 index blocks.

This example is computed for a fixed length key when in fact
the keys are of variable length and would be more tightly packed.
Additionally, the key entries on the higher levels are further
compressed to the minimum value required for uniqueness. This
example also shows the data in the same sequence as the keys.
This need not be true and will not be true after random addition
of records.

Each entry in a higher-level index block contains the disk
address of an index block at the next lower level, and enough of
the first key in that block to differentiate it from the first
keys in adjacent blocks.

The multilevel index structure can considerably speed up the
direct access of a large keyed file, at only a small cost of
secondary storage space. Since th~ keys are ordered in ascending
sequence, at most it would take three index block accesses to
locate a data record as shown in the example. Without the
higher-level structure, it could take up to 390 index block
accesses.

6-1

~
1 Index 31cclc

~l t--

~fY 10161

KEY 20241

IC:Y 3::321 ~

t r

Figure 6 -2.

J.::!.!!..l
'" Index !Ioc!cs

ICEY I I---

K." a1 ~

~

ICEY 10051

l
~ KEY 10101

K!'(t0241

.. a
I
I

r
y ICEY 20241

~!Y 3l~21

r.n' ~14%

t
ICEY ~321

ICEY 3C401

-

~
390 Index sredes

,.....--.. ICEY t

°KEY2 f---

I-

K.:y SO

FIT

~
~ KEY 8t

KEY 82 f---

~

1

I
T

KfY 16J

ICEY 162

lCEY 240
I
I
I
I
I

I

I
I
t

KEY ~112J

- KEY Jlt2l

r
I

.. ,,;;,..,,_

Cota !Icc!cs

Mc:lrd 1 -- ,-
Rec~2

U
~ec=td :l

lteccrd "

U
lecord .s

· · ·
L ~ecord il ,-

~ecord 8~

I · I
· · ·

1ec:::ord 31120

!ec:~ JIll1 ,-
l4C~rd 31 t 42

,..--

Example of Mul tilevel Index Structure

6-8

.~ ,.;..;., ..
.._-A .:; ti"!,.-

'", -. ~.-- - .'-~'"
-~~~ :: -. ,_-All .f; .".

The user has control ove~ the initial creation of the
multilevel index structure and can specify when and if the
higher-level structure should be rebuilt. This can be specified
by using the NEWX option on the SET control command or the M$OPEN
and M$DCB procedures.

The indexed organization is implemented as a special case of
the keyed file organization. The keys must be fixed length, less
than 256 characters, and contained as a contiguous field within
the data record. Secondary index capability is not provided.

CONSECUTIVE AND RELATIVE FILES

Consecutive files are files whose records are organized in a
consecutive manner; i.e., the user is not aware of any
identifying keys associated with the records. The records may
only be accessed sequentially.

The principal benefit of consecutive files to system
operation is a reduction in the amount of space required for the
files on disk and a consequent reduction in the time required to
traverse the files. Also, there is no need to identify each
record.

Many positioning operations for consecutive files are
performed with user selected system procedures rather than with
I/O operations. The positioning is only effected when a data
transfer operation is about to take place. At that time, there
are three known points in the file that can be used as a starting
point: beginning of file, end of file, and the position
reflected by the DCB. The starting position chosen is the one
that requires the fewest record skips to be made.

Relative organization is implemented as a special case of
the consecutive file organization. A relative file consists of
fixed-length records in a fixed-length file which is
pre-allocated and effectively initialized at creation time. It
may be accessed directly by record position.

RANDOM FILES

Random files provide a basic organization for those users
desiring to manage their own files. Random organization differs
from keyed and consecutive organization as follows:

1. A random file is simply a collection of logically
contiguous granules on the user's pack set. The
number of granule~ is specified at the time the file
is created and may be expanded dynamically. If the

6-9

·~ -. .;.,..,_.... ,.~-

-.:1' .,... '!-____ . _-A ;; .:,...

requested number of granules is not available, an
error code is returned to the user and the file is not
opened.

2. The user may specify a relative starting granule
number and a byte count with each read or write.

3. Each write consumes the entire specified granule.
Bytes not specifically written contain no useful
information. The contents of the granule include no
system information except the granule stamp. The
one-word granule stamp on each granule mayor may not
be visible to the user (at the user's option).
Management of the user's data is the responsibility of
that user.

Thus, the monitor provides allocation of granules, security
checks, and normal I/O/queuing service and clean-up. The user is
responsible for record management.

File Access

Records within a file may be accessed by either of two
means, direct or sequential access. The interaction of the type
of access used for a given operation and the mode in which the
file is opened results in the limitations described below.

Direct access of consecutive file has meaning only for input
files and the meaning is that read-ahead is inhibited.

For direct access reading of (IN,UPDATE) keyed files, the
key mayor may not be specified. If a key is specified, a search
is made of the file until the key is found and the record is then
read. If the key is not found, an error return is executed. If
a key is not specified, the next sequential record is read.

Direct access for writing of output (CREATE) keyed files
requires that the keys be specified. The keys do not need to be
given in a sorted order. They will be ordered as they are
stored.

Direct access for writing update (UPDATE) keyed files mayor
may not specify the key. If a key is not specified, the write
function must have been preceded by a read. If it is, the record
just read is updated; if not, an error code is signaled.

Write operations may indicate whether the record is intended
to be a new or replaced record. The absence of an option
indicates replacement by defaul t.

6-10

· ~.--- .~ ',:;"';"''' _
- The DELETE function may be specified. If a key is specified

with DELETE, a search of the directory is made to find the
specified key. The record is then deleted. If a key is not
specified, the DELETE operation must have been preceded by a
READ, and the record just read will then be deleted.

Sequential access to input and update (IN, UPDATE) files is
the same as for direct access.

Sequential access to create (CREATE) a keyed file requires
that a key must be specified and this key must be a new key
(i.e., it must not have been used before). If the key has
already been used, no information is written and an error cQde is
returned. The keys must be given in a sorted order. For
example, if the user writes records with keys A, C, and D,
respectively, and then writes a record with key B, the record
will not be written and an error return will be executed.

The position record forward and position record backward
operations are allowed on both keyed and consecutive files.
Error return is made when beginning or end of file condition is
encountered. Otherwise, for keyed files, the pointer to the
current entry in the master index is decremented or incremented.
For consecutive files, a directional count of records to skip
from the current position is established. POSitioning will not
occur until the next read, write, or delete operation.

In sequential access of an update file, a read order issued
prior to the first write results in an error return. When
reading a keyed file, a key mayor may not be specified. If the
key is not specified, the next record in sequence is read and the
key may be returned to the user if requested.

SIMU~TANEOUSFILE ACCESS

The SHARE mode feature extends the use of ~eyed and random
files by permitting simultaneous access to a file by many
updaters and many readers. Thus several user programs executing
concurrently in separate jobs may be generating reports from a
data file while other user programs are concurrently modifying
data items within the file.

Responsibility for coordinating concurrent update activity
is divided into two parts, one controlled and provided by the
operating system and the other by the application programs via
the system's enqueue/dequeue service. The operating system
guarantees the physical integrity of the file so that it remains
properly connected regardless of the update activity and also
ensures that readers are provided with the most up-to-date
information in response to their requests.

6-11

Coordinating and guaranteeing logical integr~ty of the file
(primarily the data content) is the responsibility of the
application programs, since any connection of the data in one
record of a file with that in another record of the same or
another file is carried in the application program, not in the

. file itself. A single example will serve to illustrate this.

Suppose that a file contains records recording a parts
inventory - each containing the available number of bolts,
washers, nuts, etc., in various sizes. Without any special
coordination, the number of any given item can be determined by
querying the file even in the face of additions and removals by a
concurrent updater. If, however, the application needs to first
determine the available number and then remove a quantity from
stock, then the record must be locked between the read and the
update to preclude the possibility of the stock being taken by
another updater.

More elaborate record locking requirements may exist
depending on the application. For example, if a fastener must be
made up of a bolt, a nut and a lock washer, then these three
records must be acquired and locked prior to making the needed
upd ates.

Applications use the system's enqueue/dequeue facility to
gain exclusive access to the records. Enqueue/dequeue is a
generalized service and guarantees exclusive or shared access to
named items as required and requested. It is the responsibility
of all users of the service to agree on the meaning of the names
- for example the names of the records containing inventory count
of nuts, bolts, and washers.

There is also a type of file sharing which provides a
journal facility. Many output users may share a consecutive file
(tape or disk) by adding records to the end of the file. No
other type of access to the file is permitted as long as the file
is open in journal mode. Once a file is closed, it is no longer
a journal and may be accessed as any other consecutive file is
accessed.

Record Blocking

The system automatically blocks records for keyed and
consecutive files in 1023-word blocks to provide more efficient
use of disk space. The user has no knowledge of this blocking
and, when reading, will receive the appropriate record within the
block and not the entire block.

When updating a keyed file, the user may rewrite a record in
a size larger or smaller than the original record size. If

6-12

necessary, the monitor will allocate additional disk space to
accommodate a larger size. A record may also be rewritten in a
consecutive file but the original record size is maintained. If
the new record is larger, data is lost; if it is smaller, old
data remains in the record.

A write with a 0 byte count to a keyed file results in a
master index entry for the record with fields in the entry
pertaining to disk address, record size, and displacement into
the blocking buffer all set to zero. A write with a 0 byte count
to a consecutive or random file is ignored.

Special Features of the File System

In addition to the facilities of the file system as outlined
above, there are a number of special features which make CP-6
easier to use:

• File Extension - A limited set of system defined DCBs
(M$operational label) are provided file extension by
the system. Thus the first use of a system output DCB
within a job will create a new file and subsequent
uses add to the end of the file without explicit
action on the part of the using program.

• An option is available to determine the next account
in the account directory and the next file in a file
directory provided the user has proper authorization.

• Assignments to the M$SI (source input) DCB by on-line
jobs are extant for one job step only (which is what
the user wants and expects but may forget to do for
himself).

• Data compression and automatic decompression may be
requested by the user.

• Read-ahead, write-ahead, and IJU cache are
implementation details which enhance the performance
so that the user need not worry about buffering
efficiency.

• Data intended for a printing device may be sent to a
file for the userts inspection and later sent to the
printing device with the device information intact
(e.g., forms, vertical format control, etc.).

• Files have a code which is used by programs to
determine the type: APL works~ace, various FORTRAN
output formats, BASIC program, etc.

6-13

• In most cases, files are automatically extended in
size as the files grow. Random files are extended by
specific request rather than by automatic extension.

File Security

The integrity and security of the file system is critical to
ensure safe and reliable operation. The CP-6 file system uses
four separate techniques to prevent unauthorized access. The
first is discussed under the heading "Granule Access Control".
The remaining three are discussed under the heading "File Access
Controls".

GRANULE ACCESS CONTROL

Each granule which is active in the system (except any
unwritten granules of a random file) has an identification stamp
in the first word of the granule. Thus, no information from some
source other than the file in question will be returned to the
user or left in any of his monitor buffers unless the stamp is
verified. Th~s provides a high level of information security for
both hardware and software error situations, and also prevents
the user from usefully reading any granule which has not been
written.

FILE ACCESS CONTROLS

Access to rile data is applied at several levels: account,
file, and data. There are two types of account access control:
creation of new files and access to existing files. There are
about eleven types of file access control. Data access control
includes password and data encryption.

Account Access Controls

Each account may specify two access controls: permission to
create new files in this account or permission to access existent
files either for reading or updating. These controls may be one
of the following: NONE, ALL, PUBLIC, or a specified list of
accounts.

File Access Controls

There are eleven types of access controls for files (e.g.,
~ead, update,delete records, knowledge of its existence •••).

6-14

Each file may specify a combination of these accesses to be
permitted to ALL, NONE or PUBLIC. Also, different lists of
accounts. (This control information is included within files on
ANS labeled that have CP- 6 formatted files.)

Data Access Controls

Data access is controlled through two mechanisms: passwords
and encryption.

A user may assign a password to a file. Access to the data
is denied to any user who cannot supply the password. When the
password is first assigned, it is passed through a non-reversible
encoding mechanism and the encoded password is entered into the
file information table (FIT).

It is possible to request encryption of data in a file of
any organization. This process consists of applying, via an
exclusive OR operation, successive elements of a sequence of
pseudo random numbers to successive groups of four data bytes.
The initial element of the sequence is derived from a seed
specified by the user. This seed is not present within the file
information, so even highly privileged users cannot request
decryption without knowledge of the seed.

Reliability, Maintainability, and Availability

Reliability, maintainability and availability for the file
system are the cornerstone of the design of file management for
CP-6. Some of the features are:

• Unique granule stamps provide not only security but
maintainability by providing information to aid in the
reconstruction of file(s) when disaster strikes.

• Directory granules are linked and the forward and
backward links are checked on access.

• At job step and during recovery, the user's DCBs are
closed properly and current updates are posted to the
files.

• Dual copies are maintained for critical elements -
directories, file information tables, and granule
allocation tables.

• Pack sets provide a separation of files such that a
disaster is localized and may affect a file or an

6-15

account but will not affect the entire file system.
Full system restores are not necessary and thus
availability of the system is high.

• File space is allocated by extents (groups of
granules) rather than by single granule. This is
beneficial in two ways. Damage to several granules
may be contained .to damage of one file rather than
several and a reconstruction of the directory or
cataloging information is fast, since only the FIT of
each file needs to be read in order to reconstruct the
entire set.

• Each file extension is updated immediately in the FIT
so that memory failure cannot cause the loss of file
granules.

• Each open file has a list of associated users by user
number so that recovery may close the files properly
even if the user's Job Information Table was
destroyed.

• File directory descriptors and dates are updated when
the file is opened so that recovery need not handle
that.

• Finally, if a file was opened and in some way (major
disaster) was not closed, the open process will
reconstruct the necessary control information.

Efficient File Transfer (EFT)

The file maintenance processor is called Efficient File
Transfer (EFT). EFT provides file protection via backup,
restore, and archival functions.

BACKUP

User files are copied to some backup media according to an
installation determined schedule. On an individual file basis,
the user may specify that a file should or should not be included
in the regular backup scheme. Only files thus qualified that
have recently been modified are considered for backup. The
backup media may be either ANS labeled tape or a dual pack set.
In general, the installation will update the dual pack set when a
set is dismounted. It may also back the files onto tape during
the day in order to protect active files more frequently. Backup
may be performed either in the fastest way possible (block
access) with no cleanup, or not quite as fast (record by record)
with complete cleanup.

6-16

RESTORE

The restore function has two applications: restore an
entire pack set because of some large disaster, or restore
individual files which have been damaged or accidentally deleted.
If the installation is maintaining pack set duals, the
restore-all operation may be as simple as mounting the dual set
and creating a new dual. If the backup media include tapes, the
process is a little more complicated since various sets of tapes
must be restored to ensure that the latest copies of all files
are properly restored.

ARCHIVE

The user may specify that an individual file should be
copied to the archive (stow) media. That file is then frozen
from updates until it has been stowed. The user may further
specify that the file shoUld be put in inactive (the data is
deleted) or active (data is reiained) status. Either way, the
file remains cataloged and the stow tape identification is
retained with the file's information. At some later date, the
user may request that the stowed version be returned from the
archive media to the active file system.

LABELED TAPE

CP-6 supports ANS (American National STandard) labeled
tapes. The ANS tape format has two advantages: data protection
(unexpired tapes cannot be overwritten) and use as a transport
vehicle. Using ANS tapes, data can be transported between CP-6
and all other systems which support ANS tapes (other Honeywell
systems, IBM systems, etc.).

Protection and Security

For tape files of specific CP-6 format, information within
the header and data records supplies the security features found
in the file managem~nt system - encryption, password, and file
access control.

Additionally two mode options allow the installation manager
to specify how rigidly the ANS protection features are to be
applied:

1. Protective Mode: A mode of tape protection in which
only ANS expired tapes may be written; all ANS tapes
must be initialized by the LABEL processor; no tape
serial number specification is allowed at the

6-17

operator's console; specification of an output serial
number forces processing to be done only on a tape
already having that serial number; tapes mounted as
input tapes may not be written; and tapes mounted as
other than input tapes must have a write ring.

2. Semi-Protective Mode: A mode of tape protection in
which a warning is sent to the operator when output is
attempted on an unexpired ANS tape, or when a tape
mounted as available for output has no write ring.
The operator can authorize the overwriting of the tape
or the override of the input and output specification
through a key-in. ANS tapes may be initialized by the
LABEL processor or may be given labels as the result
of an operator key-in; tape serial number
specification is allowed at the operator's console;
and specification of an output serial number forces
processing to be done only on a tape already having
that serial number unless the operator authorizes an
overwrite.

The user should be aware, however, of the following
restrictions on ANS labeled tape processing:

• Tape cataloging is not available, so Generation Data
Groups are not applicable.

• Multiple tape sets are processed by serial number.

Tape Formats

For transport purposes, CP-6 supports the EBCDIC formats F,
V, U, and S and ASCII formats F, U, and D. (F is fixed length
records, U is unformatted, and V and D are variable length
records. The V format records size in EBCDIC and D records size
in decimal. S format allows logical records to span physical
blocks to allow for long records.)

For tape usage within CP-6, the ANS formats have been
expanded to allow additional file types. B format provides
blocked access and efficient tape usage for the file maintenance
processor. K format provides keyed files which can be processed
on tape only in sequential access mode. C format provides
consecutive file formats. These three special formats include
the File Information Table as part of the data (though invisible
to the user) so that the files indeed resemble the files from
pack sets. Files can be copied from one to the other and retain
their personalities.

6-18

Blocking, deblocking, and volume switching is performed by
the tape file management system and is not the responsibility of
the user.

Multifile Tapes

Once a user has opened a file on a multifile tape, no other
user may access the tape until the original user has closed and
removed the tape. If the rewind option is specified, the tape is
rewound. Otherwise, the tape remains at the current position
and, if a DCB is opened using tape, one of two actions occurs:

1. On input or update, the tape is scanned forward for
the desired file.

2. On output, the tape is positioned to the end of the
current file and the new file is written at that
po si tion •

DEVICE INPUT/ OUTPUT

Devices used for IIG other than file or labeled tape are
basically divided into three classes:

1. Interactive Terminals

2. Unit record peripherals (local or remote) ,
3. Unformatted Devices

A DCB used for I/O by a user program can become connected to
these types of devices by assigning a DCB to an operational label
or physical device type. Operational labels are a set of
convenient default assignments which are set up on a system basis
with one set of assignments for on-line jobs and one set for
batch jobs; these assignments are to logical device streams or to
the interactive terminal. A logical device stream may be
directed to unit record peripherals with the LDEV command.

A physical device type assignment causes a connection which
depends on the device type. Unit record peripheral DCBs 3re
connected to spooling files, while unformatted device DCBs are
connected directly to a device of the proper type using criteria
such as serial number for a foreign tape on a tape-type device.

6-19

Interactive Terminals

Interactive terminals fall into two classes, master and
slave, with a great deal of commonality between classes. Slave
terminals are acquired by programs as a contention resource (not
pre-allocated) if not already acquired or logged on as a master
terminal. The terminal may then be used as an llU device by the
program until released. Slave terminals are completely under
control of the program.

Master terminals are associated on a one-to-one basis with
on-line jobs. In addition to being an available I/O device, the
terminal is the control device for the on-line job. JeL commands
are read from the terminal. The BREAK key can be used as a
program interrupt and the CONTROL Y sequence causes return to the
associated command processor. Thus the master terminal is in
control of the program. Whenever a time-sharing user logs on,
his terminal automatically becomes a master terminal. (See
Sections 10 and 13 for more-information on communication
terminals and time-sharing terminals.)

Regardless of type, terminals are usable as I~ devices with
a great deal of flexibility. Terminals can be operated in
echoplex mode or with local printing. Sophisticated editing and
tabbing features are provided on input. When operating in
echoplex mode, typeahead is allowed with proper sequencing of
input and output guaranteed. Tabbing, line breakup to fit
device, pagination, and page headers are provided on output. A
wide variety of timing algorithms and code sets are provided to
fit the idiosyncracies of specific terminals.

Unit Record Peripherals

All I/O to unit record peripherals (card readers, card
punches, line printers, plotters) is staged via spooling files
whether the device is local or remote. This simply means that
the entire input job from a card reader is read onto disk before
processing and all of the job's output to these devices is stored
on disk, normally not being output until the job is complete.
(Spooling is discussed in more detail in Section 11.)

The processing of these devices symbiotically provides the
following benefits:

• Disconnects program execution from I/O devices

• Smooths peaks and valleys in I/O demand

• Allows multiple programs to output to the same device
simultaneously

6-20

• Allows grouping of output by form type

• Allows a program to generate several 'streams' of
output to one device

• Allows several copies of output to be produced

• Enables on-line use of batch peripherals

• Allows submission of jobs to the batch job queue from
on-line terminals

• Allows pre-scanning of job requirements for efficient
resource allocation in batch scheduling

Unformatted Devices

An unformatted device (primarily foreign tape) is handled as
a resource which must be pre-allocated (contended for if
on-line). When the device is allocated to the user, he is
responsible for the data read or written to the device. No
blocking or formatting services are provided.

6-21

SECTION VII

THE COMMAND PROCESSOR

The command processor for CP-6 is called Interactive and
Batch Executive (IBEX). IBEX is an interface between the user
and the operating system and is directed by its various commands.
These commands control the construction and execution of programs
and provide communication between a program and its environment.
The environment includes the monitor, processors (such as EDIT,
COBOL, LINK, DELTA), the operator, peripheral devices and, for a
time-sharing user, the on-line terminal. The functions performed
by several of the IBEX commands may also be performed during
program execution via monitor services. (See Section VIII.)

All batch jobs and most interactive sessions require the use
of IBEX commands. The language is the same for both modes of
processing. (However, not all commands apply to both modes of
processing.) IBEX commands are listed in Table 7-1.

CP-6 processors are called by specifying the processor name
as a command to IBEX. Similarly, execution of user programs that
are in run unit form may be initiated by IBEX simply by
specifying the file identification of the file that contains the
run unit.

Command Mnemonic

ADJUST

BACKUP

BATCH

Table 7-1. IBEX Commands

Description

Performs the requested adjustment on any DCB
in the user's DCB area (providing a dynamic
SET when not at a job step). The format of
the command and the options are the same as
for the IBEX SET command.

Qualifies a specified file to be saved on
the system backup tape during the next
backup operation.

Enters the specified file(s) into the batch
job stream, allowing field and string
substitutions first.

7-1

Table 7-1. IBEX Commands (cont.)

Command Mnemonic

BUILD

BYE

CANCEL

COMMENT

CONTINUE

COpy

COUPLE

DEBUG

DECOUPLE

DELETE

DES TOW

Description

Invokes the EDIT processor to create a file.

Terminates an on-line session. This command
is \equivalent to the OFF command.

Cancels previously submitted batch jobs.

Directs error commentary to the specified
device or counteracts the preceding DONT
COMMENT command.

Restarts a program that was interrupted with
CONTROL Y or that was RESTOREd. This
command is equivalent to the GO and PROCEED
commands.

Invokes the PCL processor to copy a file or
device input to a specified output file or
device.

Establishes a link between the user's
terminal and the terminal specified: or puts
the user's terminal in a mode such that
attempts to couple to it will be accepted.

Sets the FORTRAN debug mode.

Releases the coupling of a currently coupled
terminal.

Invokes the PCL processor to delete the
specified file(s).

Removes the qualification to be stowed from
a specified file. (See the STOW command.)

7-2

Table 7-1. IBEX Commands (cont.)

Command Mnemonic

DISPLAY

DONT COMMENT

DONT COUPLE

DONT DEBUG

DONT ECHO

DONT ERROR

DONT LIST

DONT OUTPUT

DONT SEND

E

ECHO

Description

Lists the current values of various system
parameters.

Stops error commentary output from an
assembly or compilation.

Causes attempts to couple to the terminal to
be rejected.

Resets the FORTRAN debug mode.

Suppresses printing of IBEX commands being
executed from a command file.

Prevents messages pertaining to peripheral
device usage (such as tape) from being
output at the user's terminal and prevents
the user from exiting from conditions
requiring operator intervention. '

Stops listing output from an assembly or
compilation.

Stops the output of an object unit from an
assembly or compilation.

Disallows messages from the machine operator
to the user's terminal. Global broadcasts
are deferred until IBEX is in control. Also
disallows the MESSAGE command.

Invokes the EDIT processor.

Causes printing of IBEX commands being
executed from a command file.

7-3

Table 7-1. IBEX Commands (cont.)

Command Mnemonic

END

ERASE

ERROR

FETCH

GET

GO

HELP

INFORM

JOB

JOIN

Description

Terminates an interrupted program. This
command is equivalent to the STOP and QUIT
commands. '

Deletes the accumulated line printer output
for an on-line user.

Allows the user to receive the same messages
as the operator when dealing with tapes.

Requests the restoration of an inactive
stowed file to active status. (See the STOW
command.)

Restores the previously saved main memory
image. This command is equivalent to the
RESTORE command.

Continues processing from the point of
interruption. This command is equivalent to
the CONTINUE and PROCEED commands.

Prints general information about IBEX and
its commands.

Permits the output of a message to a user's
terminal when a couple is attempted by
another user.

Controls access to the system in the batch
mode.

Changes the terminal from one communication
group to another.

7-4

Table 7-1. IBEX Commands (cont.)

Command Mnemonic

L

LDEV

LIMIT

LINK

LIST

LOAD

LOCATE

LOGON

LWX

MAP

MESSAGE

Description

Invokes the PCL processor to list file names
and, optionally, attributes from the file
directory, tape, or private disk pack.

Modifies a logical device definition;
directs a stream of information.

Establishes job or job step-limits for
various system resources when in batch mode.
Additionally, the command may be utilized to
release system resources.

Invokes the LINK processor. This command is
equivalent to the LOAD and LYNX commands.

Directs the listing output to the specified
device, or counteracts the preceding DONT
LIST command.

Invokes the LINK processor. This command is
equivalent to the LINK and LYNX commands.

Determines the line number of a specified
user.

Terminates an on-line session and logs the
user back on in the name and account
specified.

Invokes the LINK processor. This command is
equivalent to the LINK and LOAD commands.

Invokes the LINK processor to output a load
map of a run unit.

Sends the specified message to the operator.

7-5

Table 7-1. IBEX Commands (cont.)

Command Mnemonic

OFF

OUTPUT

J PASSWORD

PLATEN

PMD

PRINT

PROCEED

PROMPT

QUIT

RESET

\

Description

Disconnects the terminal from the system and
provides an accounting summary. This
command is equivalent to the BYE command.

Directs object output to the specified file,
or counteracts the previous DONT OUTPUT
command. _

Assigns, changes, or deletes a log-on
password for the user.

Sets the value of the terminal platen width
and/or page length or displays the terminal
platen width and page length values.

Invokes the DELTA processor to perform a
postmortem dump.

Sends accumulated symbiont output, such as
output for the line printer or the card
punch, to the output device.

Continues processing from the point of
interruption. This command is equivalent to
the GO and CONTINUE commands.

Sets a prompt character for programs that
don't issue aN M$PC CALL.

Terminates an interrupted program. This
command is equivalent to the STOP and END
commands.

Resets all DCBs back to their system default
values.

7-6

Table 7-1. IBEX Commands (cont.)

Command Mnemonic

RESTORE

REW

ROO

SAVE

SEND

SET

SHOW

START

STATUS

STEP

Description

Restores the previously saved main memory
image. This command is equivalent to the
GET command.

Invokes the PCL processor to perform rewind
functions.

Invokes the LINK loader and instructs it to
link, load and start execution of the
designated run unit.

Saves the main memory image of the currently
interrupted program on the designated file
for subsequent recall and continuation.

Allows messages to be sent from the operator
to the user terminal.

Assigns file or device to a DCB or sets a
DCB parameter.

Displays information about the user.

Loads a run unit into main memory and starts
execution at its beginning address.

Displays the current accounting values for
an on-line session.

Provides conditional execution of batch
jobs. It operates on and tests the value of
the step condition codes (SCC), which are
set by the monitor or by the program
performing an M$EXIT.

7-7

Table 7-1. IBEX Commands (cont.)

Command Mnemonic

STOP

STOW

SWITCH

TABS

TERMINAL

TERMINAL STATUS

TIME

TITLE

U

Description

Terminates an interrupted program. This
command is equivalent to the END and QUIT
c ornrn and s •

Qualifies a file to be copied to archival
storage (stowed) during the system's next
stow processing. The file is stowed as
either active or inactive according to an
option of the STOW command. If active, the
original file is retained in the file
system; if inactive, the original file is
deleted.

Controls setting and resetting of the user's
pseudo sense switches. With no parameters,
the command displays the pseudo sense switch
settings.

Sets simulated tab stops for the terminal or
displays the simulated tab stop settings.

Sets the terminal type for proper I/O
translations.

Lists the terminal type and the current
values of parameters associated with its
operation.

Outputs the time and date.

Inserts a specified text on each batch page
heading.

Causes the words UNDER DELTA to be inferred
in the next command.

7-8

Table 7-1. IBEX Commands (cont.)

Command Mnemonic

WHERE

XEQ

Description

Returns the line number of the specified
user (if the user is logged on).

Initiates processing of IBEX commands
from a command file.

7-9

SECTION VIII

USER PROGRAM SERVICES

SYSTEM SERVICES

The services of the CP-6 monitor which are available to user
programs are listed in Table 8-1. These services are available
to users regardless of the language in which the user programs
are written, although interface routines may be required in some
languages.

System services are requested via the hardware CLIMB
instruction, an instruction which protects the system from the
user through both a change of protection domain and a check of
all parameters passed by the user for legitimacy in his domain.
With certain obvious exceptions, system services operate
identically, regardless of whether the program is executing in
time-sharing or batch mode.

In many cases, system services are available. both via
embedded program requests (as listed in this chapter) and via the
job command language as detailed in Section 7.

The services are broadly grouped as follows:

• Program execution and resource control

• Memory management

• File management and logical file I/O (access methods)

• Time-sharing terminal control

• On-line diagnostic services

8-1

Name

M$EXIT

M$ERR

M$XXX

M$XCON

M$SEGLD

M$LINK

M$LDTRC

M$GHOST

M$FSUSER

M$ASUSER

M$DSI

M$RRES

M$ENQ

M$DEQ

M$TRAP

M$STRAP

M$STIMER

Table 8~1. CP-6 System Services

Function

PROGRAM EXECUTION CONTROL

Exit to monitor normally; exit from
command processor

Error current job step

Abort current job step

Give user control on exit, abort, or line
hang-up

Load overlay segment

Call a separate program with return
expected

Transfer to a program with no return
possible

Initiate ghost job

Find suspended user image

Associate suspended user image

Delete suspended user image

RESOURCE CONTROL

Release resource

Enqueue resource

Dequeue resource

RUN-TIME SERVICES

Give user control on program traps

Simulate a trap

Give user control after specified time
interval

8-2

Name

M$TTIMER

M$INT

M$TRTN

M$MERC

M$WAIT

M$CHECKECB

M$SYS

M$MASTER

M$SLAVE

M$EXU

M$ALIB

M$DLIB

M$CPREF

M$CPEXIT

M$ERRPRT

M$SCCEXIT

M$SCCERR

M$SCCXXX

M$TIME

M$DISP

Table 8-1. CP-6 System Services

Function

Test interval timer

Give user control on console interrupt

Exit from trap, interrupt, timer, or exit
control routine

Direct monitor to'process any system
abnormal or error code, overriding a
user-specified abnormal or error exit

Suspend program

Check Event Completion Block (ECB) for
completion

Enter master mode

Enter master-protected mode

Enter slave mode

Execute privileged instructions

Associate library

Disassociate library

Reset error flags

Exit from command processor

Output standard error message

Set condition codes and exit

Set condition codes and error

Set condition codes and abort

SYSTEM INFORMATION

Get time and date

Report system load parameters

8-3

Name

M$GDDL

M$GDP

M$FDP

M$GVP

M$FVP

M$SMPRT

M$CVM

M$STLPP

M$RSPP

M$GDS

M$FDS

M$SSC

M$DCB

M$OPEN

M$OPLD

M$CLLD

M$JOB

M$CLOSE

M$READ

M$WRITE

Table 8-1. CP-6 System Services

Function

MEMORY MANAGEMENT

Get dynamic data limits

Get dynamic data pages

Free dynamic data pages

Get virtual page

Free virtual page

Set memory protect

Change virtual map

Get stolen page

Free stolen page

Get segment

Release segment

Set software control flags

FILE MAINTENANCE

Compile a Data Control Block (DCB)

Open a file (initialize DCB)

Open logical device I/O stream

Close logical device I/O stream

Check batch job status

Close a file (terminate I/O through a DCB)

DATA RECORD MANIPULATION

Read a data record

Write a data record

8-4

Name

M$DELREC

M$TRUNC

M$CHECK

M$PRECORD

M$PFIL

M$CVOL

M$REW

M$WEOF

M$PRINT

M$KEYIN

M$TYPE

M$LINES

M$EXTEND

M$CORRESPOND

M$BLDCB

M$DEDCB

M$SETFMA

Table 8-1. CP-6 System Services

Function

Delete a data record or a range of data
records

Truncate blocking buffer

Check I/O Completion

FILE MANIPULATION

Position a specified number of records
forward or backward within a file

Position to beginning or end of current
file

Close volume

Rewind tape

Write end-of-file

DEVICE-LIKE PROCEDURES

Write to listing log

Request operator key-in

Type a message

Set the number of printable lines per page

Extend random file

Check for correspondence of DCB
assignments

Allocate and build a DCB

Delete a DCB

Set file management account

8-5

Name

M$PC

M$CT

M$RB

M$STA

M$ACPL

M$RCPL

M$TS

M$PURGE

M$CAC

M$COUPLE

M$DECOUPLE

M$DOPEN

M$DCLOSE

M$BLIST

M$CIOC

M$DMOD#

M$RDERLOG

M$WRERLOG

M$DPART

M$DRET

I

Table 8-1. CP-6 System Services

Function

TIME-SHARING TERMINAL FUNCTIONS

Set prompt character

Change terminal type

Reset break count

Set terminal attributes

Accept couple

Reject couple

Obtain terminal status

Purge terminal I/O Buffers

Change activation character

Associate one terminal with another

End association of terminals

ON-LINE DIAGNOSTIC SERVICES

Open DDCB

Close DDCB

Build command list

Start I/O

Obtain model number and type mnemonics

Read error log

Write error log

Partition device or controller

Return partitioned device or controller

8-6

MONITOR ERROR MESSAGES

Each monitor error condition is associated with a unique
code. This code is divided into three parts:

1) The Functional Code Group and Module ID of the area of
the system that detected the error.

2) An error number uniquely identifying the error
condition encountered.

3) A severity field which defines the system action to be
taken if the user has not requested control of an
error condition on the monitor call.

If the user has asked for control in case of errors by
specifying an ALTRETURN address on his call for monitor service,
then the error code is returned to him. If the user didn't ask
for error control the job will either continue, the current job
step will be aborted, or the user will be logged off--depending
on the value of the severity field.

If the user is aborted
procedure, the monitor uses
error message from an error
requested error control.may
error code returned to him.
provided for this function.

or has initiated the logoff
the error code to select and print an
message. file. Any user who has
print the message associated with an

A monitor service (M$ERRPRT) is

8-7

SECTION IX

DEBUGGING FACILITIES

USER DEBUGGING

The DELTA debugging processor is used to debug object
programs written in any source language. The language
processors, in cooperation with the Link loader, supply symbolic
information to DELTA such that the user can describe the
debugging requirements to DELTA in terms close to the language in
which the source program was written.

DELTA operates in both the batch and on-line modes. If the
user is running in the time-sharing mode, conditions that occur
in the user program are reported directly at the terminal. This
allows the user to take immediate action to correct an error. In
the batch mode, the user is only restricted to that which can be
preplanned.

The DELTA commands may be input directly at the terminal or
they may be predefined in a file.

Tracing ability is provided at several levels: on all entry
points, on a specific entry point, on all non-sequential points,
or on specific statements or locations. Additionally, a history
mode may be set such that tracing information is saved and
examined at a later time.

The command language of DELTA supports abbreviations. A
user who is familiar with DELTA functions will probably find it
more convenient to issue DELTA commands in their abbreviated
forms. DELTA also has abbreviated command forms that match the
commands of CP-V DELTA. They are not shown in the command
summary below but are / for display, = for expression evaluation;
TAB for indirect display, for display of previous location, and
LINE FEED for display of the next location.

The general facilities provided by DELTA allow the user to:

1. Interrupt the flow of program execution on specified
conditions.

2. Examine, insert, and modify such program elements as
instructions and data.

3. Trace the flow of program-execution.

9-1

4. Control the flow of program execution.

5. Obtain snapshot or post-mortem dumps.

DELTA's commands are classified as direct, stored, or
attachable according to when they are activated. A direct
command is activated immediately. A stored command is activated
when specified conditions of the user program occur. Attachable
commands may be issued directly or may be stored along with a
stored command.

Stored commands are assigned an identification (by the user
or by DELTA). This allows the programmer to dynamically alter
the debugging specifications by cancelling or changing stored
debug commands. Most DELTA commands allow for conditional
execution.

A summary of DELTA commands is given in Tables 9-1 through
9-3.

Command

AT

ON ABORT

ON CALL

ON EXIT

ON NODE

ON TRACE

SKIP

WHEN

Table 9-1. Stored Commands

Function

Sets a breakpoint at a specified statement.

Specifies an action to be taken in the event of
an abort.

Sets a breakpoint at the call of a specified
procedure or subroutine.

Specifies an action to be taken when the program
exits.

Specifies an action to be taken when a specified
overlay node is loaded.

Qualifies the amount and nature of trace display
information. A history buffer may be requested.

Specifies that a range of statements is to be
skipped during program execution.

Specifies that a break in execution is to occur
whenever a specified variable is modified.

9-2

Command

BREAK

DISPLAY

DUMP

EXIT

GOTO

HISTORY n

KILL TRACE

LET

MODIFY

NEXT

OUTPUT

PREV

QUIT

READ

STOP

TRACE

..-
._:Ji'-

Table 9-2. Attachable Commands

Function

Transfers control to the user's break key
routine.

Displays specified variables.

Dumps memory.

Exits from Delta to the monitor or a library.

Returns to the user program.

Displays the last n points from the trace
history buffer.

Resets trace to the initial off conditions.

Changes the value of a variable.

Displays and modifies memory.

Displays and modifies the next memory location.

Directs DELTA output to a specified device or
file.

Displays and modifies the previous memory
location.

Exits from Delta to the monitor.

Reads DELTA commands from a user-specified file.

Changes the mode of a specified stored command
to stop program execution.

Specifies the type of tracing action that is to
take place.

9-3

Command

*

ABBREV

DEF

EVAL

FIND

HISTORY n MORE

INSTRUCTION

KILL ALL

KILL ATS

KILL DEFS

KILL INSTRUCTION

KILL ONCALLS

KILL SCHEMA

KILL WHENS

NODE

SCHEMA

SHOW

STEP

XEQ

ZERO

Table 9-3. Direct Commands

Function

Displays and modifies a memory location
indirectly.

Defines an abbreviation for a program
symbol.

Defines a symbol.

Evaluates an expression.

Finds (and changes) a value in a specified
memory range.

Displays n more points from the history
buffer.

Sets word addressing mode.

Removes all stored commands.

Removes all statement breakpoints.

Removes all user-defined symbols.

·Resets addressing mode to schema.

Removes all stored ON CALL commands.

Inhibits schema usage.

Removes all data breakpoints.

Toggles activation mode setting.

Causes the specified overlay schema to be
used.

Causes DELTA to use program schemas.

Displays stored commands and user program
elements.

Steps through statements.

Assembles and executes a GMAP instruction.

Alters a range of memory.

9-4

.-.-..;>-

Table 9-3.

Command

break key

modification of
stored commands

activation mode

SYSTEM DEBUGGING

Direct Commands (cont.)

Function

Interrupts execution of an on-line
terminal.

Allows the user to modify a stored
command.

Provides a highly terse form of EVAL and
MODIFY group commands compatible with CP-V
DELTA.

Extensive facilities are provided for debugging the CP-6
system itself. Facilities of specific importance are described
below.

Automatic Crash Analysis

Explicit internal tests detect most software and some
hardware problems and activate the system recovery routines. A
dump taken at this time is submitted to a ghost job (ANLZ) which
provides an analysis of the problem, including the immediate
symptoms and formatted presentations of system tables and
job-dependent information. About 20 specially formatted tables
are presented in terms of well-known system symbols, permitting
fast and accurate isolation of the problem either by home office
experts or by field analysts. The analysis and repair of
problems is thus especially prompt.

Remote System Analysis

The same routines used for automatic analysis may be used
during system operation from any remote or local terminal to
isolate system problems in a crash dump on file or in the running
system itself. Further, the DELTA debugger may be used to
examine and repair the running monitor, again from a remote
terminal. This facility is a fast method of solving problems at
CP-6 installations. It allows several home office experts to
combine their various talents to solve a problem within hours.
They can log onto the customer's system, gather information,
analyze it, and dynamically apply the correcting patch.

9-5

Executive DELTA

An executive version of DELTA, called XDELTA, may be
resident for the purpose of debugging the monitor. In addition
to most of the commands listed in Tables 9-1 through 9-3, XDELTA
contains special commands to reference monitor memory and to
handle faults. XDELTA is independent of the monitor; that is, it
performs its own I/O and does not use system services.

Symbolic Patching

XDELTA is also used to patch the monitor at boot time. The
same symbolic patch format is used for both debugging and for
patching. Patches are generally relocatable so that patch decks
may be applied without change to all systems regardless of the
configuration.

GENMD Patching

The GENMD processor permits on-line, batch, and ghost users
to make permanent modifications to existing run units, thereby
reducing the number of compilations required to debug a program.
GENMD patches are used to modify nonresident elements of the
system.

Boot-Under-The-Files

Both GENMD patches and XDELTA patches may be applied to the
system at boot-time. CP-6 also provides for rereading the patch
deck without disturbing the permanent files of the system and its
users, which avoids the necessity of saving and restoring an
extensive file system in order to apply critically needed
patches.

9-6

I "

SECTION X

TIME-SHARING

INTRODUCTION

For those activities best suited to an interactive "
environment, CP-6 provides time-sharing service for remotely
connected terminals. A variety of language and utility
processors are provided to aid the user in accomplishing:

• Program development

• Program compilation

• Program execution

• Program debugging

• File maintenance

• Text creation and editing

Programs to be executed using the other modes of operation
may be completely or partially developed in the time-sharing
mode. Since there is one common file management facility in
CP-6, files used in the interactive mode are identical to those
of'the batch and real-time modes. (See Section VI for further
details on the file management system.) Also, the time-sharing
user has full access to spooled unit record peripherals, tape
drives, and private disk packs. -

The command language by which the terminal user directs the
course of a time-sharing session is identical to that used for a
batch job (either local or remote). The name of the command
processor is IBEX. The IBEX language is compatible with and
nearly identical to the CP-V TEL language. Users familiar with
TEL will only be able to detect minor differences between "TEL and
IBEX.

10-1

Up to 500 time-sharing terminals may be connected
simultaneously to CP-6. (This number is dependent on hardware
configuration, activity at terminals, and desired response time.)
The following types of terminals may be used with CP-6:

Teletype Models 33, 3~, 37, 38, and 40

IBM 3270 terminals

Honeywell VIP terminals (certain models)

Any video or hard-coPY terminal compatible with any of the
above and with standard or APL keyboards.

CP-6 allows terminals to connect to the system via dial-up
communication lines or permanent circuit lines. These lines may
interface either local or remote from central site communications
processors as described in the section on communications.

Regardless of how a terminal is physically connected to
CP-6, terminal protocol is the same. After connection has been
established, users identify themselves by entering their account,
their name, and (if required) a password. If the id~ntification
is valid and consistent with information maintained by the
monitor, the user's on-line session is initiated and the system
prompts the user for commands. If the identification is invalid,
CP-6 sends an error message and requests the user to resupply
"log-on" data.

An on-line session is terminated by entering a simple
"log-off" command. CP-6 then transmits selected accounting
information and offers the user the opportunity to log on again.
Thus, separate accounting for separate functions may be achieved
by a change of account number and/or name.

Concepts that are relevant only to the time-sharing mode of
operating are discussed in the remainder of this chapter.

SAMPLE TIME-SHARING SESSION

Figure 10-1 presents a sample time-sharing session. (The
sample is a CP-V session. It reflects the general nature of a
CP-6 session despite the fact that some of the details may be
different.) System output is underscored and user input is not
underscored. Comments describing th~ session are indented.

10-2

HONEYWELL CP-V AT YOUR SERVICE
12: 00 AUG 01, '77 USER 1/ F LINE /I 28
LOGON PLEASE: 2232,HALL

! TEREMN
-TERNIN-

MR\
TERMIN

AL STT\ATUSR\
TERMINAL STATUS

LINE 01
LINE SPEED 300
~IMING ALGORITHM 5
REJECT COUPLES
TRANSLATION TYPE 37
ECHOPLEX ON
TAB SIMULATION ON
UPPER CASE RESTRICT OFF
PAPER TAPE OFF
SPACE INSERTION ON
LOWER CASE SHIFT OFF
PARITY CHECK OFF
RELATIVE TABBING OFF
BACKSPACE EDIT ON

The system identifies itself, states the
time and date, and requests that the user
log on. The user types in the account
numb er (2232) and name (HALL) • To
preserv~ security, this information is not
normally echoed by the system.

The user begins to enter a command, but
finds that it has been typed incorrectly;
<ESC)X (which echos as an underscore and a
new-line sequence) is used to delete the
line. The user then begins again, makes
another error, and uses the backspace mode
to correct the line. Insertion of the "M"
is verified by an <ESC)R which causes the
line to be retyped.(R\ is echoed by the
<ESC)R sequence.) As, the word "STATUS" is
typed, the user enters an extra "T" which
is deleted with the RUBOUT key. The user
then types <ESC)R to see the entire line
retyped. A carriage return is pressed and
the current status of the on-line terminal
is displayed.

Figure 10-1. Sample Time-Sharing Session

10-3

).TABS 7
!EDIT
EDIT HERE
*BUILD INPUT

1 .000
~.OOO 10
3.000
4.000 20
5.000
b.OOO 50
7.000 100
tl.OOO 200
9.000 300

1U.OOO
11 . 000

!.IN 5.5

WRITE (6,100)
READ (5,200) X,Y,Z
IF(X) 20,50,20
D = SQRT(X**2+y*w2+Z**2)
WRITE (6,300) X,Y,Z,D
STOP
FORMAT(7X,1HX,11X,1HY,11X,1HZ,11X,1HD)
FORMAT (3E)
FORMAT(4(1X,E11.3))
END

The user builds a file of source input,
named INPUT, but notices that a line is
missing. A line numbered 5.5 is inserted:

5.500 GO TO 10
.!END
.1.BUILD DATA

1.000 1.0,2.0,3.0
2.000 1.0,1.0,1.0
3.000 0.0
4.000

,lANSF INPUT ON BIN

ANS FORT BOO AU9 01,'77
OPTIONS)

The user builds a program-data file.

The user asks for a compilation of the
source file INPUT with program output on
file BIN.

1: WRITE (6,100)
11 : END

HIGHEST ERROR SEVERITY; 0 (NO ERRORS)
DEC HEX

WORDS WORDS

TOTAL PROGRAM: 61 0003D

The summary prints at the terminal.
lBUILD COMF ILE

1.000 !SET F:5 IDATA;IN
2.000 !SET F:6 UC

Figure 10-1. Sample Time-Sharing Session (cont.)

10-4

3.000 !STATUS
4 000 !RUN
5 000 !STATUS
6.000

!ECHO
TXEQ COMFILE
- 0001 - !SET F:5 /DATA;IN

0002 - !SET F:6 UC
0003 - !STATUS

CPU = .0455 CON = 00:05:51 INT = 31 CHG = $0.25 CALS = 263
0004 - !RUN

:P1 ASSOCIATED.
X Y z D

.100E 01 .200E 01 .300E 01 .314E 01

.100E 01 -.100E 01 .100E 01 • 113E 01
STOP 0

0005 - !STATUS
CPU = .071'5 CON = 00:06:06 INT = 31 CHG = $0.55 CALS = 412

***XEQ TERMINATED**.

.LE COMFILE
EDIT HERE
~IN.:>,.1

.500 !JOB
----.~6~0~0 !SET M:SI /INPUT

.700 -
*RR2

The user builds -an execution file that,
when run via the XEQ command, links,
loads, - and executes the program,
displaying the accounting records before
and after the run. The ECHO command
causes the commands to be listed as they
are executed .

2.000 !SET F:6 UC\\/OUTFILE;OUT
*DEl
*DE5
*IN4

*TY

4.000 !FORTRAN GO
5.000 !LOAD (GO)
6.000 !RUN
1.000

.500 !JOB

.600 !SET M:SI IINPUT
1.000 !SET F:5 IDATA;IN
2.000 !SET F:6 IOUTFILE;OUT

Figure 10-1. Sample Time-Sharing Session (cont.)

10-5

4.000 !FORTRAN GO
5 • 000 ! LOA D (GO)
6.000 !RUN

! BATCH COMF ILE

The user alters COMFILE so that it can be
run as a batch job, redirecting output to
a file called OUTFILE.

ID=00A1 SUBMITTED 12:00 AUG 1,'77
RUNNING
! JOB Al
COMPLETED

!DISPLAY
USERS = 0022
ETMF = 0001

The user submits COMFILE to the batch
stream directly from the terminal, and
then checks the progress of the job.

RESPONSE 90% < 0027 MSECS
RADS = 00440 GRANULES

The user requests
status.

!SEND INPUT TO INPUT.FISHER~CHICAGO

lPCL
pel. Eoa HERE
~COPY INPUT TO LP
.. COPYING
~END

The user sends a copy
the account FISHER,
CP-V computer site in

the current system

of the file INPUT to
located at a remote

Chicago.

lM PLEASE SEND LINE-PRINTER OUTPUT TO COPY CENTER.
SENT AT 12;00 P.M.---THANX

lBASIC
VER. D03
)OPEN. "DATA" TO : 1, INPUT
2.INPUT :1,X,Y,Z

The user enters PCL (Peripheral Conversion
Language) and copies INPUT to the
line-printer. Returning to the command
processor level, the user instructs the
computer operator to send the output to
another department. The operator confirms
the delivery.

2.10 D = SQR«X A 2)+(y A 2)+(Z A 2))
2..2 0 P R I NT" X";" Y";" Z " ; " D "

Figure 10-1. Sample Time-Sharing Session (cont.)

10-6

230 PRTNT X:Y;Z;D
)RUN
-x

1
Y
2

2X = 1
2.Y = X
2.Z = Y
2.RUN

X Y
1 1

2S YS

Z D
3 3.74166

Z D
1 1.73205

!SET F:IN-FILE
!AFILE.

DC/DATA·

X
1 • 00
1 .00

!A\

,!.APL
APL D02
CLEAR WS

Y
2.00
1 . 00

The uier enters BASIC, and. issues two
direct statements that access '. the first
three values in DATA. A program is
constructed and executed. The user
returns to direct mode and assigns new
values to the variables. The program is
re-executed, illustrating the effect of
the direct statements upon the program.
The user then returns to the command
processor level.

z D
3.00 3.74
1 .00 1.73

The user runs a previously compiled COBOL
program called AFILE that is equivalent to
the FORTRAN program above. The period
after AFILE tells the command processor to
fetch the program from the users account.

The user types <ESC)A to signal the
system that an APL typewheel is about to
be inserted.

Figure 10-1. Sample Time-Sharing Session (cant.)

10-7·

)TERM 1
WAS 3

)LOAD APLSAMPLE
APLSAMPLE SAVED 13:26 MAY 06,'77

[lJ
[2]
[3]

[5]
[61
[7]
[8]
[9]
[10]
[11]
[12]

VINPUT[O] V·
V INPUT;I1FMT

llFMT+14TO

I.

7 p' ';' X, ; lip' '.;' Y' ; lip' ';' Z' ; 11 p' ';' D'
LOOP:BUFPER+ffi;A READ RECORD FROM P1LE
~oxlO=p,BUFFER;A STOP IF END OF FILE
~LOOPX12=+/','=BUFFER;A IGNORE ANY RECORD WITHOUT TWO COMMAS

BUFFER+(BUFFER1',')+BUFFER;A REMOVE FIRST NUMBER AND COMMA

Z+€BUFFER[(BUFFER1',')+1(pBUFFER)-BUFFER1',']

,'Xl,E11.3,Xl,El1.3,X1,Ell.3,X1,El1.3'IlFMT(X;Y;Z;D)
~LOOP

)SET fi] IN DC/DATA

INPUT
X Y Z D

1.00ED 2.00EO 3.00EO 3.74EO
1.00ED 1.00EO 1.00EO 1.73EO

)OFF

CPU = . 0 5 3 2 CON = 0 0 : 1 8 : 0 0 IN T = 6 8 C H G = $ 1 • 6.5.

An APL program is run that is equivalent
to the FORTRAN and COBOL programs above.

Figure 10-1. Sample Time-Sharing Session (cant.)

10-8

TIME-SHARING FEATURES

CP-6 has an-extensive set ~f commands which enable the
terminal user to edit terminal input, control terminal output,
and control the course of program execution. The most widely
used features are summarized below.

Typeahead

CP-6 terminal liD routines allow terminai users to type
input during the time computation is taking place or output is
being typed at the terminal. Such input is not echoed to the
terminal immediately (and the user is effectively typing
blindly). Instead it is stored until the proper time for its
output -- that is, the time following programatic request for
input. Thus in the terminal type script, input appears following
the query asking for it even if the input was typed some time
previously.

Terminal Types and Timing Algorithms

CP-6 carries code conversion routines for s~veral types of
terminals. The appropriate code conversion routine is selected
for certain classes of terminals during the logon sequence, but
som~ may be changed during system operation (such as to the ASCII
APL set).

Several timing algorithms are supplied which determine how
many characters are to be sent to the terminal and when they are
to be sent. These characters provide delay for positioning of
the carrier before tabs and before and after NEW LINE characters.
The number of characters is dependent on the terminal speed and
the current carrier position.

Each algorithm is appropriate for a different class of
terminals and may be set by the user via an IBEX command.

Transparent Mode

A program may request that no translation or other
processing be performed by CP-6 on the terminal liD. In this
case, characters are moved between program and terminal without
change in the bit structure. This mode is useful for connecting
to special equipment, to tape cassettes, to paper tape, or to
other computers.

10-9

Pagination

Output to the terminal may be formatted into sta~dard size
"pages 'l by the system. System service calls embedded within
programs or terminal commands are used to establish page width
and length. Thereafter, lines are folded to fit within the
established width and a page break is created at the established
length (which includes top and bottom margins and page
numbering). If the terminal is a CRT, output pauses at the end
of each page (screen bottom) and awaits a user signal before
proceeding.

Editing Terminal Input

A series of simple keystroke commands and two special modes
allow the user great t"lexibility in preparing terminal input.
They are:

RUBOUT

ESC X

ESC R

ESC 0

Erases the last typed character.

Erases the current input message (usually a line).

Retypes the current input message.

Enters the backspace edit mode. In this mode:

Backspace characters move a pointer to the left on the
line and CONTROL R moves the pointer to the right.
RUBOUT deletes the character at the pointer and any
other character replaces the character at the pointer.
ESC J sets a submode in which typed characters are
inserted to the left of the pointer.

Controls Over Input Conversion

Character conversions are generally done automatically by
CP-6 in the proper way for each terminal type. Certain controls,
however, may be set by the user. These are:

ESC U

ESC)

ESC (

Reverses the setting of a mode in which received lower
case letters are converted to upper case.

Causes subsequent upper case characters received to be
converted to lower case. Thus lower case characters
may be input on an upper case only terminal.

Removes the effect of ~SC).

10-10

Tab Simulation

CP-6 can simulate the effect of physical tab stops on a
terminal. This activity is controlled by the user with the
following three ind~pendent commands:

"-
ESC T

ESC C

ESC S

Reverses the setting of tab simulation mode (ON to OFF
or OFF to ON). If the mode is ON, spaces are sent to
properly position terminal output when a tab character
is received from either the terminal or a program.

Reverses the setting of the tab relative mode. If
this mode is ON, tab stops are assumed to be relative
to a left margin established by the carrier position
at the last program read.

Reverses the setting of the space insertion mode. If
this mode is ON, spaces are delivered to the reading
program when tab characters are received.

In addition, the user may establish the setting of the tab
simulation tab stops using either programatic or IBEX commands.

Miscellaneous Controls

There are miscellaneous terminal commands which allow the
user to:

ESC F

BREAK

ESC Y

ESC Q

ESC H

ESC W

ESC Z

Signal an end of file.

Give control to the interrupt point of a program
associated with the terminal.

Return control to the command language (IBEX).

Receive an acknowledgement that the system is alive.

Temporarily halt terminal output.

Delete all output until after the next terminal input.

Enter a mode in which coupled terminals may converse
without their typed input being delivered to their
connected programs.

(These commands and the commands mentioned previously in
this section are the identical to commands offered by CP-V.)

10-11

'"" -.. ~&'- - ~
-'J:'~" ":-.,,-" _

Entry of Jobs to the Batch Job Queue

When the on-line user does not wish to sit" at the terminal
and attend the execution of a long process or wait for resources
such as tapes, the terminal batch entry facility may be
conveniently employed. This facility allows the user to enter a
job into the batch job queue for execution in the batch
processing mode. The user may then disconnect from the system or
start another time-sharing task.

This service allows time-sharing users to create and edit a
control command file which will direct the execution of their
jobs. At any time after submitting a job control file, the user
may request the status of the job. CP-6 responds' by telling the
user either the number of jobs ahead of his in the queue, that
the job is running, or that the job is completed. (The user may
also cancel the job from the on-line terminal.) After the job has
completed, the user may examine files created by the job.

Even if the batch mode is not operating concurrently with
the time-sharing mode, jobs may be entered into the batch job
queue for subsequent execution as soon as the batch mode is
activated by the operations staff.

Communication with the Computer Operator

Communication of control instructions to the CP-6 operating
system is accomplished through the IBEX processor (described in
Section VII). Since the on-line user is in direct control of the
computing task, the need for the vast majority of special
instructions to the computer operator is eliminated. However,
the need for some communication between the on-line user and the
central operator still exists - for example, to request the
mounting of tapes and disks or to request information.

CP-6 provides facilities for the on-line user to transmit
messages to the central site operator. When the message appears
on the operator's console, the transmitting terminal and account
is identified with the incoming message. The central operator
can then carryon a aialogue with the individual on-line user.

For users not currently logged-on, the central operator may
input a "greeting message". This message is stored by CP-6 and
is presented to the user during the log-on process. Other
information is placed in a "mailbox" which may be examined by the
user at his convenience.

10-12

.:> ."'!,.

.. ;;".'-- .~, .~~
_J/* .. ~; rf'-

Automatic Processor Association

The time-sharing mode allows the user to work at a terminal,
interacting "directly" with a CP-6 processor or with a
user-written program. The word "directly" has been put in quotes
because there are monitor routines which do not make themselves
apparent to the user but which facilitate the interaction taking
place.

In gen~ral, a time-sharing user may interact with a variety
of processors during an on-line session. There is a feature of
CP-6, however, which enables the system manager to restrict a
user in such a manner that interaction may take place with only
one selected processor. As soon as such a user logs onto the
system, the user begins interacting with that one particular
processor. The feature is valuable when a user who is unfamiliar
with CP-6 is being introduced to the system or when a particular
user requires only limited services.

Files of Terminal Commands

The CP-6 user may prepare a series of commands in a file and
later call for their execution with a single IBEX command (XEQ).
At the time each such file is invoked for execution, field and
string substitutions may be performed before the execution
begins. Execute files may contain XEQ commands to any level of
nesting.

Automatic Save for Line Disconnect

This feature of CP-6 preserves a user's program when a line
disconnect occurs before the user has logged off, and provides a
method of reconnection of the preserved program when the user
calls back. Files remain open and properly positioned so that
the program may be continued as if it had never been interrupted.

When a line disconnect occurs, the suspended program image
is retained for a fixed length of time. This retention period is
established as a system parameter and may be modified by the
operator at any time. (The operator may also abort a user when
the user is in the suspended state.)

When the disconnected user logs back onto the system, the
system recognizes that a program image exists for his
account/name combination and issues the following message:

PROGRAM HELD. RECONNECT?

10-13

.. ~."--
._..AI>

The user then responds with either Y or N. If Y, the user is
reconnected to the suspended image and continues from the point
of disconnect. (However, I/O going to and from the terminal may
have been lost.) If the response is N, the program imag~ .
continues to be retained. (The retention ti~e is not changed

Terminal Coupling

This facility provides for coupling (linking) of two or more
terminals in such a way that the input and output of each
terminal is displayed on all connected terminals. All typing at
these terminal keyboards (except simple input editing) appears on
all of the terminals. Connection between terminals is at the
message lev~l. Usually each typed line is a message. A running
program belonging to a particular terminal "sees" only the input
of that terminal.

Conversations may be carried on between linked terminals by
using the ESC Z sequence so as not to affect a reading program.
Terminal page heading output is not coupled. The link is broken
if either line is disconnected.

This facility includes mechanisms for accepting, rejecting,
creating, and terminating couplings. The user may control the
coupling either using IBEX commands typed at the terminal or
system services embedded within the program.

Automatic Terminal Speed and Format Detection

CP-6 detects the speed and format of calling terminals by
examlnlng the first character typed by the user and sets the
hardware line interface module appropriately. This eliminates
the need to segregate lines by speed and results in a lower per
line cost ..

Terminal Tape Input

CP-6 provides facilities for terminal input from either
paper tape, tape cassette, or 'other compatible sources. Tape may
be prepared off-line on terminals and subsequently read on-line
after the user has logged on and a prompt for data on the tape
has been issued. The same characters that are keyed in during
on-line input may be punched into tape.

CTL Q or DC 1 s tar·ts the read ing of the tape under control of
CP-6. CTL S or DC3 is sent by CP-6 to stop the tape reader.

10-14

Rubout characters are ignored during a tape read operation.
This enables the user to use rubout characters to delete unwanted
characters as in normal paper tape operation.

The tape read mode is set when a DC1 character is received
from the terminal. It is reset (to normal processing) when a DC3
character is received.

DC1 and DC3 characters are sent to the terminal as necessary
to control the input rate and ensure that buffer space is not

, exhausted resul-f,in;"g In -lost characters.

A special mode is available for half duplex terminals that
are reading tape. (A half duplex terminal does not respond to
DC1 and DC3 characters sent by the system while it is sending
tape input to the system -- even though it is connected to the
system with full duplex circuitry.) While in this mode, no
attempt is made by the monitor to turn the tape reader off or on.
Input is accepted until available buffer space is exhausted. No
program output, prompt characters, or echoes are sent to the
terminal.

The half duplex tape mode is entered upon receipt of an ESC
P sequence or upon receipt of a DC1 character while in the
non-echoplex mode. The mode is exited by a balancing ESC P
sequence or by a DC3 character if it was initiated by DC1.

10-15

SECTION XI

MULTIPROGRAMMED BATCH PROCESSING

INTRODUCTION

CP-6 offers a comprehensive multiprogramming batch facility
for those jobs which do not need or do not benefit by on-line
processing (time-sharing or transaction processing).
Multiprogramming allows more than one batch job to be run at the
same time, distributing the resources among th~ jobs. Resources
include CPU time, memory space, tape drives, and private disk
spindles. Several batch jobs may be run concurrently under the
control of the Multi-Batch Scheduler.

In CP-6, as in other operating systems, concurrent operation
of several jobs (multiprogramming) significantly extends the
throughput of the computer system because the system is able to
achieve several levels of overlap in the processing of jobs. 1/0
of one job is overlapped with computation of another, and 1/0 of
several jobs can be overlapped providing they are directed to
separate devices (which is often the case). This overlap applies
not only within the batch mode but also with all other jobs.
Thus maximum use of CPU, disks, tapes, and other system resources
is achieved.

SOURCES OF BATCH JOBS

Jobs to be run in batch mode arrive from three sources in
CP-6: local card readers, remote batch stations somewhere in the
communication network, and the users of time-sharing terminals.
As described in the remote batch chapter, CP-6 itself may act as
a remote batch station; thus one CP-6 system may submit jobs to
another. Jobs may also be received from IBM systems through the
HASP transmission protocol. Commands for jobs, regardless of
source, are stored temporarily while awaiting execution in
spooling files as described below.

RESOURCE CONTROL AND JOB SCHEDULING

Batch jobs are protected from execution-time resource
conflicts or deadly-embraces by the CP-6 job scheduling
algorithms. Each batch job contains a command which specifies
the required resources and the system ensures availability of all
required resources before starting the job. In contrast,

11-1

" I
, \ '

J " I f

time-sharing jobs may request resources dynamically, but must be
prepared to respond to a "not available" message.

CP-6 can concurrently run a large number of batch jobs.
Each job is run in a 'batch stream' (see glossary). The number
o~suc~_streams is controlled by the system manager who usually
finds (~_?) streams sufficient to provide full resource use and
flexibility to adapt to other circumstances such as evening,
night, and weekend shifts.

Each of the batch streams has a defined resource profile
which is dynamically changeable by the system manager. This
profile describes the ranges of job resources which are allowed
when running in each stream. Thus in order to qualify for a
given stream, the resource requirements of a job must match the ,; ,
stream!.s profile. It is possible fot:" a job to "fit" ill many \" ," .
st'reams:\ Whenever a stream is('cem,p't'y((not runningAaCjoti:f,' the
scheduler selects the first (highest priority) job from the batch
input queue whose requirements fit the stream's profile. Both
the job and its required resources are assigned to the stream and
the job begins execution.

II

1\

FACILITIES FOR BATCH JOBS

Batch jobs, like all other CP-6 jobs, make use of standard
system facilities~ These include:

1. File management descri-bed in Section 6.

2. Common programatic services described in Section 8.

3. A common command processor described in Section 7.

4. Debugging facilities described in Section 9.

5. Processors described in Section 3.

Cataloged Procedures

Especially important among the facilities provided by the
system and its command processor is the ability to create a file
of job control commands and call for its execution as a job or
portion of a job. This facility is available to both batch and
on-line CP-6 jobs. As the execution of a cataloged command file
is requested, parameters may be substituted in previously defined
fields of the file. A file may within itself call for execution
of other files, and programs may create files which are inserted
in the on-going command stream.

11-2

SPOOLING

A spooling facility (referred to as a symbionts in CP-V) is
provided to help eliminate bottlenecks associated with slow speed
peripheral devices. Symbionts are monitor routines that transfer
information between secondary (disk) storage and unit record
peripheral devices concurrently with jobs being run. To transfer
information between a user's program and this secondary storage,
a "cooperative" monitor routine is used.

The spooling system provides for complete buffering between
I/O devices and the user's program. Therefore, a user's program
never has to wait for an I/O device to complete an action. Also,
the current job may be running while the output of a previous job
and the job file for a .subsequent job are being handled by
spooling. The CP-6 spooling system is depicted in Figure 11-1.

~--1 Drtput
~poo\i~

Figure 11-1. CP-6 Spooling

Inpu
E.OOpero:H ve."

OutPIJ1:
c,co~ra±ive.,

Spooling files are normally written to disk completely
before being output. However, for certain long-running data
processing programs, the "concurrent output mode" is provided.
When in this mode, the spooling system begins printing a
program's output before the program has completed. Thus a
14-hour job which produced 14 hours of printing uniformly over
the execution time of the job will complete in about 14 hours
rather than 28 hours.

11-3

Spooling files are standard CP-6 files and therefore may be
moved individually or collectively to tape or pack for removal
from the system as required in the day-to-day management of the
installation.

Spooling operations are controlled by the central site
operator (or, to a certain extent, by remote batch terminal
operators) using commands described in Section 19.

LOGICAL DEVICE STREAMS

A logical device stream is an information stream through
which a user may conveniently perform I/O. A logical device may
be associated with any physical device that the user specifies,
provided that the device is a spooling device. (Spooling devices
include unit record devices such as the line printer, card
reader, card punch, and all devices that are accessed via remote
processing.)

Logical device streams may be defined by the user by means
of the LDEV command. There are three logical device streams
available for use without specific user definition. They are
used for control command input, line printer output, and card
punch output.

Logical device streams have three major uses. First, they
may be used to merge (or separate) output from different user
DCBs intended for the same destination device. Second, their
names may serve as a convenient shorthand for an entire set of
device characteristics (device name, form name for printer,
number of copies, etc.). Third, the three predefined streams
allow users to run jobs with little concern for the physical
location or connection of devices on the system.

11-4

INTRODUCTION

SECTION XII

REMOTE PROCESSING

The purpose of CP-6 remote batch processing is the management
of jobs and data submitted from remote sites. Jobs are sent from a
remote site to the central site, are processed there, and may
direct output to the originating remote site, a central site
device, or another remote site as specified. Remote terminals can
range from a simple card reader and line printer combination to
another large-scale computer system with an assortment of
peripheral devices. Important features of the remote processing
system include:

• Any user of the CP-6 system can communicate with any
number of devices at one or several remote sites. When
data is being sent by a user program to a remote site,
the remote site need not be connected since CP-6
automatically buffers on disk for deferred transmission.

• Through monitor and user interfaces, virtually any type
of device (e.g., tape, disk, plotter) may be accessed at
a remote terminal.

• A remote site may be another large-scale computer, and
files of data may be transferred between user programs
at the central and remote computers.

;. A CP-6 system may act as the central site to some remote
terminals and as a remote terminal to other computers,
simultaneously. Thus it may be a master of some
terminals while being a slave to several computers.
This feature encourages the construction of
communications networks.

• "Remote stations" need not be remote nor are they
necessarily composed of physically associated devices.
Local peripherals may be grouped under the workstation
definition mechanism - associating, for example, a
particular printer and a particular card reader into a
designated "remote station". Further, a peripheral from
one physical site may be associated with a peripheral
from another physical site to form a single ·'remote
station".

• Definitions of workstations (remote stations) can be
added, deleted, or modified during system operation.

12-1

REMOTE PROCESSING TERMINALS

Two basic types of remote terminals are supported by CP-6:
Remote Batch Terminals (RBTs) and Intelligent Remote Terminals
(IRBTs).

An RBT is typically a card reader, card punch, and line
printer combination which is used primarily to allow batch
processing I/O functions to be performed at remote sites. That is,
a job is input to the system from the remote site card reader, the
job is processed at the central site, and the output is sent to the
remote site line printer or card punch. The output may optionally
be directed to the central site or to another remote site.

An IRBT can be either a mini-computer system for which the
primary function is to control the operation of peripheral
equipment (e.g., COPE 1200) or another large-scale computer system
(e.g., another CP-6 system). Any computer system that supports the
IBM HASP Multileaving protocol may act as an IRBT to CP-6. (This
and 'all other reference to "HASP" and "Multileaving"in this
document refer to the HASP Multileaving protocol as described in
HASP Version 2.3 program documentation and not to the IBM HASP
operating system, except where IBM HASP is specifically noted.)
Multileaving allows a single data block to contain records
associated with different peripherals at the IRST. In conjunction
with a feedback mechanism that temporarily suspends transmission
for a single peripheral, multileaving permits peripherals of
different speeds to operate at their individual rates.

The majority of records transmitted to and from any computing
system contain many adjacent characters that are identical. CP-6
and supported IRBT systems increase, throughput by contracting
(compressing) strings of characters before transmission and
eipanding (decompressing) these character strings after receipt.
Thus, while the compression/decompression process improves overall
system efficiency, the user of transmitted data does not have to be
aware of its source or format.

Hardware Connection of Remote Terminals

A remote terminal is connected to the central site over a
communication line that is either a private line or a switched
line.

If the connection is long enough, two modems are required.
The modems provide interfaces between the line and the remote
terminal and between the line and the central site.

12-2

As described in network processing chapter, batch terminals
for remote processing may be connected to a local communications,
processor (CP) of the CP-6 host or may be connected to a remote
communications.processor (RCP) in the CP-6 network. Peripheral
devices local'to the CP-6 host or to one of the CPs or RCPs may be
incorporated into remote processing workstations along with RBTs
and IRBTs. '

Figure 12-1 depicts the relationship between the central site,
remote sites, CPs, RCPs, and the peripherals of each. Not shown in
the figure, but available as discussed in the network processing
chapter, are time-sharing and transaction processing terminals on
the CPs and RCPs.

Cp-(;
host

I I

CR LP

CR

/
:-- CP

IRBT
\

LP

~p

-'------o-----'~ R B T
"

LP I

I--

IRBT

/ \ '"
c..,p

Rep
~ ,

CR.
LP

\

LP

Figure 12-1. CP-6 Remote Processing.

REMOTE PROCESSING MODES

LP

GR

The remote processing system is designed so that the CP-6
system may act as the central site to a set of remote terminals
while simultaneously acting as a remote terminal to one or more
other systems. A system that is acting as the central site is
referred to as the "master" system, and a system that is acting as
a remote terminal is referred to as a "slave" system.

12-3'

To the CP-6 system, the role of master and slave manifests
itself only at log-on time. After the modem to modem communication
path is established, the slave logs onto the master. (The master
cannot log onto the slave.) Once the log-on is complete, the

~'. .' communication path between the master and slave is symmetrical -
~ streams of data flowing in both directions over the communication

path. '

Four fundamental modes of remote processing are

1. A CP-6 master system connected to one or more slave
RBTs.

2. A CP-6 master system connected to one or more slave
mini-computer IRBTs.

3. A CP-6 system communicating with another CP-6 system.

4. A CP-6 system acti~g as a slave IRBT connected to
,another computer system acting as the master computer.
(These are primarily IBM HASP systems, but also may be
more modern network systems.)

These four modes may be combined to provide a large variety of
communications networks. An example of such a network is given in
Figure 12~2. (The arrows point to the RBTs and slave IRBTs.)

R1)T

Figure 12-2.

IBM
360/.zo,30

Unite.c.h,
HQ"l"'i~. etc:.

CP-6

Other­
L""S~-~c .. lt"
C4I''''p",tCI"
S ,t~...,

CP-6 Remote Processing Network.

12-4

WORKSTATIONS

The CP-6 system contains a description of the hardware
characteristics of all remote and local devices. A workstation is
a definition which groups the devices into logical collections that
are independent of physical association. (A particular device may
be part of more than one workstation definition.) A workstation,
then, is a named data structure contained in a CP-6 file which
represents a group of hardware characteristics at local or remote
sites. (In sophisticated applications, a workstation definition
may include pseudo-hardware.) The workstation may represent all of
the hardware at a given remote site, the hardware available to a
particular group of users at a given remote site, or the hardware
available to a particular group of users at any site which has the
requisite configuration. Further, a workstation may logically
group together devices from several physical terminals and may
include peripheral devices local to the L66 CP-6 hosts or L6 CP-6
communications processors. The definition of a workstation
specifies such items as:

• Name of the workstation.

I

• Maximum priority for jobs submitted from the
workstation.

• Whether the workstation will be a slave computer or the
master computer.

• Type of teminal(s) to be used.

• Peripheral devices to be associated as part of the
workstation.

• Attributes of devices defined for the workstation.

Each workstation is given a workstation name (WSN) of one to
eight alphanumeric characters. Local devices at a CP-6 system have
the workstation name LOCAL.

A workstation definition may be created dynamically any time
during system operation by the system manager. The attributes of
workstations may also be changed or workstations may be deleted
during system operation.

12-5

REMOTE PROCESSING USER FACILITIES

Operator Control Commands

There are several control commands that are available only for
remote processing. These commands are used by the remote site
operator to gather information about and control his terminal.
Table 12-1 lists the commands that exist in CP-V. A similar set of
commands will exist for CP-6.

Table 12-1. Remote Processing Monitor Control Commands

Command Function

RBID Logs a workstation onto the system.

RBDISC Logs a workstation off the system.

RBXXX Logs a workstation off the system and disconnects
it immediately.

RBMSG Transmits a message to the central site operator.

RBDEV Displays the status of all devices at the
workstation and, where applicable, the name of the
form mounted on each device.

RBINFO Displays various CP-6 statistics.

RBPRIO Changes the priority of the workstation's files in
the symbiont system to a specified priority.

RBHOLD Prevents current output files and output files
from other sources from being output, but does not
affect input files (except that results from the
execution of such files is held).

RBRETRIEVE Releases files that were held with RBHOLD.

RBDELETE Deletes input, output, or executing files from the
symbiont system.

RBSTATUS Requests the status of files belonging to the
workstation.

12-6

Table 12-1. Remote Processing Monitor Control Commands (cont.)

Command Function

RBSWITCH Changes the workstation assignment of output
files.

RBSUSPEND Suspends output on specified device(s).

RBCONTINUE Specifies that suspended output is to be continued
from where it stopped.

RBREPRINT Restarts output at the symbiont retry point.

Transferring Files to Remote CP-6 Systems

When the remote site is another CP-6 system, Peripheral
Conversion Language (PCL) commands permit transfer of CP-6 managed
files between machines. The on-line or batch user may copy,
create, list or delete files in another CP-6 system via the CP-6
communications network.

To use PCL commands (which replace CP-V ISCL commands), the
user must be authorized at the remote site as well as the local
site. User requests may

• Copy a file from a remote CP-6 system.

• Copy a file at a remote CP-6 system.

• Delete a file at a remote CP-6 system.

• List file(s) which are at a remote CP-6 system.

A file may be renamed as defined in the copy command.
Appropriate messages report errors, security violation attempts,
and successful file transfers to the user.

These commands may be grouped together in a file and "standing
orders" may cause the filed commands to be executed at
predetermined times. Thus files may be transferred between systems
on a regularly scheduled basis.

12-7

SECTION XIII

NETWORK PROCESSING

INTRODUCTION

CP-6 communications facilities are a significant extension
over those of CP-V. This is due to the distribution of
communications processing into a network of Level 6 minicomputers
together with expanded software architecture which takes
advantage of this distribution. Communications networks may be
geographically distributed and connected to several CP-6 host
processors as well as to a variety of terminals. Figure 13-1
shows a sample CP-6 communication network.

CPs are local communications processors physically connected
close to the CP-6 host. Reps are remote communications
processors connected 'to local CPs via high-speed communication
lines.

C~6

Host

C~~
Host

Figure 13-1. Sample CP-6 Communication Network

13-1

1 •

The objectives of CP-6 communications are:

To geographically distribute the communication processing
load.

2. To provide fast interactive response to each terminal
directly from the CP or RCP which is physically closest.

3. To provide effective error detection and recovery over the
long high-speed lines between CPs and RCPs.

4. To provide device independence in the CP-V style by
converting the I/O to each of the connected terminals into a
common network protocol so that programs need not know the
characteristics of~ the terminal to which they are connected.

5. To provide for communications between CP-6 hosts for file
exchange.

6. To provide cost effective communications by concentrating
low volume tra~fic into efficient high bandwidth trunks.

CP-6 communications processing relates directly to other
subjects discussed in this manual.

1. Timesharing. The communications network is responsible for
providing the terminal interface and thus the personality of
CP-6 terminals. Time-sharing is discussed in Section 10.

2. Remote Batch Processing. Similarly, the interface programs
which allow connection of remote processing terminals are
programs in the CP-6 L6 network. Remote batch processing is
discussed in Section 12.

3. Real-Time. A major portion of the real-time services of
cp-6 is distributed on Level 6 minicomputers. These may be
local to or remote from the host L66 CP~6 system. In either
case communications with other real-time programs, whether
in L6 or L66, is carried out using CP-6 communications
network services. Furthermore the base system software is
common for both real-time and communications applications
residing on the L6 computer. Real-time processing is
described in Section 15.

4. Transaction Processing. Terminals connected into groups by
the communications system may be controlled by transaction
processing programs in a host. This method of connection is
such that terminals may move freely from one transaction
processing application to another or to time-sharing use as
required. Transaction processing is described in Section
14.

13-2

5. Operator Consoles. CP-6 operations can be controlled by "use
of a group of terminals, each assigned to a particular
function (tape mounting, printer control, user control,
etc.). These terminals are part of the communications
network and may be anywhere on that net. Computer
operations are described in Section 19.

The remaining sections of this chapter discuss how CP-6
networks are configured, how terminals and programs are connected
to each other, how programs talk to terminals (the protocols),
and the facilities for reliability and recoverability.

NETWORK CONFIGURATIONS

As stated above, CP-6 networks are composed of Level 6
computers. There are two basic types of local and remote
communications processors: CPs and RCPs. ,CPs are directly
connected to a host processor via a direct I/O connection which
can transfer up to one million bytes per second between Level 6
memory and Level 66 memory. RCPs are connected via commercial
carrier lines to CPs or to other RCPs. These lines may be
dial-up or private and may be any speed required by the load (up
to a maximum of 12K bits per second). Highercapacity
connections may be obtained by using multiple parallel paths
between CPs and RCPs. Multiple paths also may be used to
increase reliability of connection. CP-6 uses a full-duplex
bit-oriented protocol over these lines for maximum throughput and
control over errors.. The protocol used is Honeywell's HDLC which
is similar to IBM's SDLC.

Whether local or remote, each communications processor
carries the software required to interface all supported types of
terminals to the network. As detailed" in other chapters, these
include asyncronous terminals such as Teletypes and typewriters,
multidrop message ·oriented terminals such as CRTs, remote batch
terminals, and HASP-protocol terminals. It is the task of this
interface software to transform the characteristics of each of
the supported terminals into the standard protocol of the
network.

Each terminal which connects to the network logs on
following connection. This process dynamically establishes the
proper parameters for the terminal. Logon information is created
dynamically during system operation and thus may be changed
without any sort of system definition (SYSGEN) process. The
network configuration and capabilities of CP-6 are adjusted and
augmented during system operation rather than by an off-line
reconfiguration process.

The network may provide connection to more than one host L66
computer. Terminals are connected to a particular host during

13-3

the logon process, either automatically through specifications -in
a user's logon profile or at the user's explicit request.

The network is logically independent of the hosts that
connect to it but it is physically dependent on one or more hosts
for initialization, logon files, and many other services. Once
initialized, however, the network can continue to function during
times when one or all of its hosts are out of service, picking up
where it left off (within certain limits) when the host returns.

As in CP-V remote processing, CP-6 hosts can connect
together for purposes of remote job entry, job load leveling, or
file transfer. CP-6 networks may connect to other networks or
systems such as CP-V, HDNA, SNA, and Telenet. The extent, timing
and priority of these connections is yet to~be determined.

CONNECTING TERMINALS TO PROGRAMS

In CP-6 the terminal or device is the unit of allocation.
That is, each terminal is separately connected to a program even
if the terminal is one of many on a multidrop line. CP-6
communications processing controls polling on such lines, not the
user program. This isolates applications from device-specific
characteristics and makes it possible, for example, to use one of
several 3270s on a single line for time-sharing while the others
are connected to a transaction processing application.

Similarly each .device associated with a" rem"ote" "processing
terminal is separately allocated. Unlike CP-V, a CP-6
workstation is not a description of a physical device, but rather
a logical collection of physical devices. This kind of
workstation extends to the local peripherals of the L66 such that
a logical workstation may be made up of a particular printer and
a particular card reader on the local IIO Multiplexor (laM).
Such a configuration is often useful for student programmers, for
example, whose output must be delivered to the printer adjacent
to the card reader used for the job.

Asyncronous terminals, regardless of speed and format, may
connect to any asynchronous CP-6 line. An automatic speed and
format detection procedure determines the terminal speed (from
100 to 9600 baud) and sets up the line interface unit
appropriately. This Autobaud technique reduces per-line cost and
administrative overhead in dealing with groups of fixed speed
lines.

13-4

Terminals logon to CP-6 in two stages:

1) Network Logon
2) Host Logon

However, the fact that the two stages happen may not be visible
r to the user.

Network Logon is controlled by the contents of the 'SUPER'
file which is maintained by the Network Manager. When a terminal
connects to the network, the logon identification is collected
and supplied to the Network Logon process over a previously
defined path. Information returned from Network Logon refines
the characteristics of the caller using previously stored
information, such as the exact device complement of a particular
RBT and to which host connection should be made. Connections are
now se~ up between each terminal device and the appropriate host.

Note that all connections are established dynamically at the
time a terminal calls and identifies itself and that these
connections are under the control of the Network Manager via
modifications to the contents of his 'SUPER' file. No 'SYSGEN'
or initialization process is required except that which
establishes the path to Network Logon. Shifting activity from
one host to another is simply a matter of modifications to the
'SUPER' file.

After the proper host is determined, Host Logon is consulted
to determine how each connected device is to be used. Host Logon
uses a 'SUPER' file to determine what the system use is to be for
each device. This file, controlled by the System Manager, causes
the device to be treated in one of two ways:

1. If the device is to be considered a master (time-sharing)
terminal, a new user is started and the 10 (or yet another
translation obtained from the file) is passed to the control
program which accesses the :USERS file and performs the
accounting logon which includes accounting initialization.
Thus a. time-sharing user actually goes through three
"logons":

a. The Network Logon which determines that he is at a
Teletype and to which host he is to be connected.

b. The Host Logon which determines that he is a
time-sharing user.

c. CP-6 logon in the host L66 which fills in his JIT from
the :USERS file.

13-5

2. Any device which does not represent a time-sharing user can
be referred to by the general term "slave line". This
includes:

a. Operators' consoles

b. RBT (symbiont) devices

c. Transaction processing acquired stations

d. Remote peripherals (other devices, accessed by
programs like local peripherals)

Operators' consoles may need to be connected to KEYIN; RBT
devices to the input or output symbiont; transaction
processing terminals to an acquisition pool. All of this
hookup is performed by Host Logon following instructions in
its control file.

This connection process, described for connecting terminals
to programs, is also· used to connect programs in one host to
programs in another host. Both programs may be L66 CP-6 hosts,
both may be L6 CP-6 real-time hosts, or one may be a L6 and one a
L66. Thus the needs of real-time programs for communication with
each other are served by the same facilities which service
terminal communication.

VIRTUAL TERMINAL ACCESS METHODS AND COMMUNICATIONS PROTOCOLS

In order to provide extensions in CP-6 so that programs may
take advantage of the rich features of modern CRT terminals and
at the same time continue the device independence and familiar
READ/WRITE method of talking to devices or files used in CP-V, a
set of virtual protocols or access methods will be introduced in
CP-6. Each access method may be thought of as the description of
the features of a "Virtual Terminal" and how to use them. The
access methods are unified in such a way that a user can either
write programs which work correctly regardless of the access
method or end device or he may use an access method which takes
full advantage of the capabilities of a particular terminal
class. Not all uses of the most complex access method will be
implemented "perfectly" on every device, but some action will
take place. For example a completely satisfactory mapping of a
"cursor home" function is not likely on a Teletype. Access
methods to be available in CP-6 are:

1. Teletype or Unit Record. The device (as in CP-V) looks like
a Teletype or printer/card reader combination. Vertical
format control, tabs, etc. apply.

13-6

!\

~

2.

3.

4.

5.

CRT. A new access method·allowing use of modern CRT
terminal features such as cursor movement, high light,
blink, etc.

FORMS. A generalization of CP-V TFD formatted terminals.
(See the transaction processing section.)

INTER-USER. Features for conversation between user
programs.

TRANSPARENT. Direct access of an actual physical device.

It is important to note that in choosing an access method
the user does not change the operations used to converse. They
are still READ, WRITE, OPEN, and CLOSE. Exactly what they do
varies of course, just as it does with the access to keyed or
consecutive files, but it is always possible to program in such a
way that the variations are of no concern. Additional operations
are available in some access methods to control special features
of terminals, just as the set prompt (M:PC) and set terminal
attributes (M:STA) were used in CP-V. These however are 'device
independent' in that·the system extracts meaning as appropriate
for a particular device even if the meaning is simply ignoring
the command.

So that all access methods be convertible to the needs of
all terminals, a common protocol is used in CP-6. Each access
method is interfaced to the common protocol. At the destination
terminal, the common protocol is transformed into the needs of
the specific terminal. This provides a standard way to provide
interfaces for new terminals a's they are developed or to connect
to the generalized protocols of other networks.

COMMUNICATION GROUPS

Certain teleprocessing applications require a gathering of
terminals into identifiable groups. These applications are
particularly common in transaction processing. For this purpose,
CP-6 provides private networks of terminals called Communication
Groups (CG). CP-6 communication groups have the following
properties:

• A single DCB may connect a program to many devices or
terminals in the CG.

• Many separate programs (CP-6 jobs) may connect to a CG and
each may have an address on the group.

• There is a special read operation which delivers the next
message (arriving from any of the terminals in, the group) to
the reading program.

13-7

. '.

• The group may be composed of devices or terminals from
anywhere in the CP-6 network, unrestricted by physical
characteristics •

• Terminals may dyna~ically join and leave the group.

o There is, optionally, a file-backed queue of messages
associated with each CG in which messages awaiting
processing may be stored.

Communication groups are used in standard CP-6 processing
for input symbiont terminals, output symbiont terminals, and
operator qonsole terminals.

RELIABILITY, RECOVERABILITY, RECONFIGURATION

As mentioned previously, the CP-6 network is independent of
its hosts. This is not completely true since the network is
indeed initialized from some host and the network depends on
hosts for services which require file services such as Network
Logon. But the network is able to sustain itself when a host
crashes and ride through the period, minimizing the effect on
connected users.

The network's ability to make a host crash unnoticeable at
terminals depends on the terminal type and the system options
selected.

o Terminals connected to one host will not be affected if
another host crashes.

• Transaction processing terminals may use a journalizing
service in the network to store transactions while the host
is recovering. In this case, terminal users will not be
aware of the down host except possibly through slow
responses.

• Crash of a single machine in the network is automatically
recovered. Users of other parts of the network are
un affected.

• Lines between nodes in the network may be added, deleted,
recalled, etc. without loss of data when reestablishing
reliable communications.

Diagnostics and dynamic verification programs are available
for use on the machines in a CP-6 network. Diagnostics may be
used during system operation to isolate faults in parts of the
system to the extent that the machine is "well enough" to execute
diagnostics. V~rification procedures are run periodically to
check and report on the status of communication lines, thus

13-8

-­_.:.JI-

making bad lines visible to customer engineers. Errors,
especially correctible errors, are reported to error logs where
they form a profile useful in predicting trouble areas or lines.

Because of the dynamic terminal identification processes
mentioned above, almost all additions of terminal devices to the

~ system are done during system operation. No network shutdown is
necessary to add capability for an additional terminal. Also,
because the Level 6 software is capable of adding programs
dynamically by down-time loading them from a host, the system may
add handlers to accommodate a new terminal type without a network
shutdown.

CONFIGURATION AND BANDWIDTH

Two factors limit the number of terminals in a CP-6 network:
physical connectability and processing bandwidth. Physical
connectability, both hardware and software limits, are much
easier to state accurately than are bandwidth limitations which
depend on hardware and software speed as well as on the nature
and amount of data which arrives from.each terminal in each time
period. CP-6 has, for example, a much higher capacity when
processing print lines destined for a remote printer than it does
when processing input characters from a time-sharing terminal
by an order of magnitude or so.

CP-6 networks have physical connectability for tens or
hundreds of L6 nodes and for thousands or tens of thousands of
terminals. Software is limited by similarly large numbers.

-
Processing bandwidth is load dependent as stated above. A

working rule of thumb is: a processing bandwidth of 15K char/sec
for Level 6 hardware and character mixes typical of CP-V
time-sharing and remote processing operation. This translates
roughly to 128 time-sharing lines and four RBT terminals per
Level 6 communication processor. Both much higher and much lower
capacity may be expected in the reasonable range of CP-6
applications.

13-9

SECTION XIV

TRANSACTION PROCESSING

INTRODUCTION

Transaction processing (TP) is a unique combination of
hardware and software designed to satisfy the data processing
requirements of business and the professions. It is an optional
feature of the CP-6 system. Transaction processing combines the
hardware field of teleprocessing with the software fields of
operating systems, data management systems, and special
transaction processing components. Critical to the entire
operation is network processing which allows information to be
transmitted over communication lines between human and computer,
computer and computer, and human and human.

In the software realm, transaction processing requires the
standard operating system functions of job queuing, scheduling,
and execution. It also requires the current sophisticated data
management systems that have evolved from the basic storage and
retrieval of information. This generalized software is further
enhanced with transaction processing components that interface
with user stations and with software designed at an installation.
The result of this hardware and software combination allows
business and the professions to query a central data base or to
dynamically modify its contents as transactions are submitted to
the system throughout the organization.

Transaction processing consists of the set of CP-6
components shown in Figure 14-1. Integrated Data Storage
(I-D-S/II) is part of the CP-6 system but its use in transaction
processing is optional.

-All inputs to TP are messages, and all output are reports or
acknowledgments. The entry of a single message may produce an
acknowledgment, a single report, or- several reports, depending on
the user-supplied software module that processes the input. The
entire processing cycle is called a transaction.

14-1

7~A""S'~Nr
1t1':4":a So ACio ~
.:T.,u.A,.",,,,-

""ItAIVt;,."~ ria"'"
"p/2Q c.e,~~ ,Aft;,

A 1)1"J I '" IS i I2A TOIt.

.j)/Z, ", "T~
a,t­

J:'",~ LoIC-

/)",,",p- rlLe~

D,4TIt
Co,., 1"".4.41L...

:$'ISr6W\

:t:.-D'-s/rr

1'/2 AAlSACTI 0""
P/2.()Ce"'~/Ai&
CCoM,.;rAI>J{)

?/l,OCt:.SS()A-

Fig ur e 1 4 -1 • Transaction Processing Components

14-2

FRONT-END PROCESSING

Front-end processing is an L6 system component. It controls
the communications network within its domain, and proviQes
special transaction services for transaction processing users.
Once TP has been initialized, the front-end processor acts as a
complete system interface for the TP stations in the
communications network. For example, it logs user stations on
and off, accepts messages and edits them through Transaction
Format Descriptors (TFDs), and journalizes messages. Thus, the
front-end processor accepts transactions in a multiplexed fashion
from the stations it controls and routes the resulting reports
back to the originating stations or to alternate destinations.

STATION NAMES AND REPORT DELIVERY FILES

The TP Administrator, a module supplied by Honeywell, reads
the Authorized Input Device File to identify stations that it may
control during the course of transaction processing. This file
associates logical names with logical stations, specifies any
required passwords, and may restrict the types of transactions
entered from certain stations. A logical name is one entered by
a station user as he logs onto the system. A logical name may
also identify a station to which a report is to be delivered,
even though the transaction that produced the report did not
originate at that station. The Authorized Input Device File is
created by a utility processor.

A report may be sent back to the station that originated the
transaction, o~ a report may be routed to the location of another
station or a group of stations in the communications network.
Whenever a report is to be delivered "to location", the TP
command processor module selects the appropriate TFD and submits
it, through the communications path, to the front-end together
with the body of the report. It also transmits destination
information, obtained from the Authorized Destination File, to
the Communications Processor.

The TFD File

The input/output Transaction Format Descriptor file (TFD)
consists of records which describe the form layout of each TP
message and report. At least one TFD must be prepared for each
message type and each report type in the system. For messages,
TFDs are used to prompt the user for specific information and to
detect errors typically made by a station user, such as entering
data in the wrong field or omitting required information. For
reports, TFDs control the report layout (titles, columns, rows)
so that applications programmers are not required to format
reports within the application program. The TFD processor, which

14-3

• ~a'_'" ,"'~
-;-~. '? -. __

gener.ates this file, permits TFDs to be inserted, modified, or
deleted as required by the application program.

OPERATOR CONTROL

If TP is included as a component of the operating system, it
may be initiated or terminated at any time by the installation
~manager, or it may be invoked automatically at a specific time of
day depending on System Definition parameters. It will be
automatically re-invoked at system re-start following
interruption of operation. Once the system is operational, TP
may be serviced or controlled from both the operator's console
and the master terminal via a set of commands specific to each of
these terminals.

COMMON JOURNAL

Messages and reports may be recorded in the common journal
for purposes of maintaining audit trails, for data collection
activities, or for recovery in the event of a system malfunction.
Use of this journal is optional. When used, it provides a

- complete history of the flow of transactions and reports through
the system, via the date and time stamped on each record. If the
installation elects to journalize transactions or reports (or
both), then in the event of a malfunction, any affected
transactions and reports may be reprocessed, as required, from
the common journal.

TRANSIENT JOURNALS

Transient journals are optionally maintained at each link
between hardware processors, such as at the link between a
front-end processor and the host. This provides another level of
data integrity control for those users who require it.

SYSTEM QUEUE MANAGEMENT

System queue management resides within the communications
processing area. Initially it receives a list of transactions
together with their priorities, from the TP Administrator. These
priorities will dictate when messages and reports are to be
processed and, coincidentally, which application modules are to
be scheduled for the user slots. System queue management enters
and removes entries from the queue, but the TP Command Processor
has control privileges which permit it to request the insertion
or deletion of any entries associated with transaction processing
activities within its scope.

14-4

When reports and messages have been completely processed,
they are automatically deleted from the queue. This technique
frees the queue space and reduces the probability of "losing"
messages or reports within the system. In typical TP usage, all
transactions and reports are automatically queued.

System queue management is always part of the system, and
thus queuing may be used for purposes other than transaction
processing.

TRANSACTION PROCESSING ADMINISTRATOR

The TP Administrator is a privileged ghost processor (see
Glossary). During system initialization or re-start, it performs
certain one-time tasks such as opening the TP system files and
initializing system tables. Thereafter, the TPAdministrator
checks the log-on ID of each TP terminal, verifies passwords,
determines which TFDs are pertinent to each and when appropriate
passes this information back to the Front End Manager. The TP
Administrator also keeps continuous statistics, determines when
to send messages to the master terminal or to the operator's
console, and responds to commands from these devices. As needed,
it calls the appropriate system components to perform queuing,
journaling, scheduling, processing and recovery. It also
controls the order of message processing, based on priority, and
makes the required adjustment whenever it is notified of a
dynamic change in the priority of a message.

TRANSACTION PROCESSING COMMAND PROCESSOR

The Transaction Processing Command Processor (TPCP) is the
Honeywell-supplied interface to TP applications programs at the
installation. The actual processing of transactions and the
creation of reports occur in user-written modules (which may be
written in any CP-6 supported language). The TPCP is a shared
pro~essor consisting of routines that transfer messages and
reports to and from the user-coded programs and the queue
management system. In addition, the TPCP maintains user
exit-control so that it is able to intercept any user errors and
take the appropriate action.

I-O-S/II

Integrated Data Store/II (I-O-S/II) is a data base
management system that allows an integrated data base to be
accessed by many independent users, providing each user with a
separate subset view of the total data base structure. The full
logical structure of the data base is described by means of a
schema Data Description Language (DOL). The physical

llJ-5

· ;".'-'" --
~. i .",

characteristics are expressed in a schema Device Media Control
Language (DMCL).

For 1-0-5/11, the Data Base Administrator (DBA) is a person
or group of individuals who control the design, creation, access
controls, and the use of the schema file and the data base files.
Once the data base design has been successfully translated by the
appropriate functions of the Data Base Administrator Control
System (DBAC5), then subschema views can be prepared. The DBA
has the responsibility for determining the scope of access to any
subschemas created for a data base.

The Data Manipulation Language (DML) facility of 1-0-5/11
provides a means by which the user can access a data base that
has been described by a schema. The facility includes special
registers, status indicators, conditions, record selection
expressions, currency indicators, subschema selection
expressions, exception handling mechanism, privacy protection
mechanism, and procedural statements. The DML relies on a host
language, frequently COBOL, to manipulate data before storing it
or after retrieval from the data base.

After a schema has been translated, device characteristics
added, a subschema translated and validated, data base files
allocated and initialized, and a program compiled using the
subschema, then the data base can be accessed to store and
maintain data. A validated subschema provides enough information
to the compiler to allow the successful compilation of permitted
DML statements, using the subset of the data structure and
contents described in the particular subschema. The program
deals with those fields and uses the formats specified in the
subschema. Any alias names declared in the subschema become the
only valid names available to the program.

The program can be made independent of many changes to the
schema by the use of data descriptions tailored to the
requirements of the program. Any transformations needed to
convert the fields from the format of the data base (schema view)
into the format used by the program (subschema view) are
established in the validation process. If the data base formats
change, then only the subschema needs to be revalidated and the
resultant control structure must be relinked with the program
object deck. The program need not be recompiled.

14-6

... :"''' ____ '.:.ill: ".~

-:"~. ": -. -_ ...
SYSTEM INTEGRITY

The integrity of the central data base, and therefore of the
entire system, depends on the inclusion of specific records in
the common journal. When journalization of certain records is
specified, other records are automatically journalized as
diagrammed in Figure 14-2. (All common journal records are
listed and defined in Table 14-1.)

If an installation elects to journalize transactions,
reports, or both, then transactions and reports being processed
when a failure occurs may be reprocessed from the common journal.
Should a failure occur, the data base administrator must decide
which of the recovery phases to execute and the central operator
initiates the recovery process.

RECOVERY

Recovery is an important aspect of transaction processing
since the system must be capable of detecting failures and
recovering from them. Some failures that can occur are operator
errors, machine and device failures, accidental destruction of
the data base of the transaction queue, file contention problems,
and violation of rules established for system usage. Errors may
also occur in user modules written at the installation.

Recovery handles several types of failures. It handles the
abort of a single transaction, the abort of a system component,
and a crash of the system itself. Recovery also handles the
destruction of a critical file, such as the data base or the
transaction queue.

Abort of a Single Transaction

If a user module employing I-D-S/II aborts while modifying
the data base, the contents of the data base may be inaccurate.
Should this condition occur, I-D-S/II~ together with the TPCP,
rolls back the data base (i.e., backs it up to reflect its
contents before the transaction was processed) and reports the
current transaction as failed to the TPCP.

14-7

When journalization for this
record is specified in the TFD,

Begin Transaction

End Transaction

this record is auto­
~-------matically journalized.

When journalization for this
record is specified by 1-D-S/1I,

~
Before Page Image

After Page Image

this record is auto­
~------matically journalized.

Journalization for this record may
be specified in a TPCP subroutine.

}
Report

When journalization for this
record is specified in a
TPCP subroutine,----------~

Begin Report Delivery

End Report Delivery

this record is auto­
~------matically journalized.

Figure 14-2. Journalization Scheme

14-8

Table 14-1. Common Journal Records

Record Definition

Begin Synchronization Indicates that the data base area has been
opened. I-D-S/II journalizes this record
when opening an area (CP-6 random file) of
the data base.

Begin Transaction Indicates that the trarisaction has entered
the system. The TP Command Processor
journalizes this record before the
transaction is queued. The TFD for the
transaction type specifies whether or not
transactions are to be journalized.

Before Page Image Journalizes the data base page before the
data base is modified. Journalization of
this record is specified in I-D-S/II.

After Page Image Journalizes the data base page after the
data base has been modified. When Before
Page Image records are journalized, After
Page Image records are automatically
journalized.

Report Journalizes the report contents.

End Transaction Proves that the transaction has been
processed and indicates whether it was
successful or had failed. When Begin
Transaction records are journalized, End
Transaction records are automatically
journalized.

Begin Report Delivery Indicates that the TP Command Processor is
beginning to deliver the report or
reports. Journalization of this record is
specified in an application program.

End Report Delivery Indicates that the TP Command Processor
has completed delivery of the report.
When Begin Report Delivery records are
journalized, End Report Delivery records
are automatically journalized.

End Synchronization Indicates that the data base area has been
closed.

14-9

Table 14-1. Common Journal Records (cont.)

Record Definition

Crash

TP Administrator End

Queuedump

User

System Crash

CP-6 recovery automatically writes this
record after a system failure when closing
journals.

The TP Administrator automatically writes
this record to journals before closing
them. This occurs whenever the system
crashes.

This record is a snapshot of the
transaction queue as it currently appears
on disk. It is automatically written to
the common journal when the TP
Administrator opens the next tape in the
series. When this record is journalized,
together with its subsequent transaction
records, reconstruction of the queue is
expedited by limiting the number of
journal entries to be scanned.

User records may appear on the journal.
They will contain special header
identification appended by the system.

Events associated with the CP-6 monitor could also cause the
system to crash. In this case, CP-6 recovery automatically
checks all open files for incorrect linkages and inconsistencies.
It records the cause of the crash, as well as other pertinent
data, for subsequent analysis. Standard recovery can then be
run.

Destruction of Critical Files

The data base or the transaction queue could be destroyed
because of a hardware or a system malfunction or because of
errors in user modules. The recovery process called by the TP
Command Processor can reconstruct the data base and the
transaction queue after failures within TP and CP-6.

14-10

ADDITIONAL FEATURES AND VARIATIONS IN SYSTEM USAGE

Protection and Control Features

TP provides extensive protection. User modules are written
in the traditional manner and protection is provided centrally
within the system. Some of the protection and control features
are:

• Each user station is authorized by a log-on procedure
in order to control access to TP components.

• A transaction may be journalized. This ensures that
it will not be "lost" between its entry into the
system and its processing.

• 1-D-S/II may generate a record of the premodified data
base so that changes made by an aborted transaction
may be undone or a damaged data base may be restored.

• TP does not deliver reports until the transaction is
successfully processed. Because reports and Begin and
End Report Delivery records can be journalized, the
loss of created - but undelivered - reports can be
corrected.

System Queue Management Variations

CP-6 System queue management provides queue access services.
Thus other types of jobs may avail themselves of these services
and other processors may be substituted for, or added to, the TP
system. For example, the queue could be employed by user
programs executing under CP-6 time-sharing. It may be used for
communication between two batch programs. It may also be used as
a data collection medium where transactions are received at
random intervals during the day, stored in the transaction queue,
and processed during slow hours by a batch program similar to the
a TP application module.

User-written Transaction Processing Modules

The programs which carry out the activities associated with
processing each transaction are user-written and may be written
in most CP-6 languages. however, COBOL is used most often.
These modules may be developed and ckecked out the time-sharing
mode using editing, debugging, and other facilities of the
system.

14-11

Spawned Transactions

One transaction may generate other transactions.
Transactions are spawned in user modules by calling a TPCP
subroutine, which is typically used to spawn one or more .
transactions on a low priority basis. Spawned transactions break
down a unit of work in order to improve response times. For
example, in an inventory application, each time a part is removed
from stock, the relevant user module decrements the
number-in-stock item for that part. When the number-in-stock is
reduced to the re-order point, a transaction is spawned to place
an order for that part.

OPERATIONAL CONSIDERATIONS

Some operational features to be considered are

1. TP does not affect the availability of the CP-6 batch
and time-sharing services. These services can be used
concurrently with transaction processing. TP files
are compatible with other CP-6 files.

2. TP provides a controlled interface between user
modules and the I-D-S/II data base files accessed by
those modules. It does not, however, provide this
interface for any data base other than an I-D-S/II
data base. The user module communicates with those
files using the CP-6 file management system.

3. CP-6 handles file contention problems.

4. CP-6 enables the use of I-D-S/II as a public library
capable of concurrently serving the data base access
requirements of multiple on-line and batch users.

TRANSACTION PROCESSING TERMINALS

Terminal support is provided to TP through the general
facilities of CP-6. All terminals supported for time-sharing are
also supported for TP.

14-12

SECTION XVI

VIRTUAL MEMORY AND PROGRAM SECURITY

This section describes virtual memory and security and the
impact of these features on shared processor facilities.

VIRTUAL MEMORY AND SECURITY

The Level 66 Virtual Memory and Security Option (VM&S)
provides virtual memory capability and protection capability at
the hardware level. The virtual memory feature is based on the
concept of working spaces and segments within working spaces.
The security aspect is grounded in this virtual memory management
concept. The paragraphs that follow describe the CP-6
implementation of virtual memory and security.

The virtual memory concept provides for a large memory area
which may be divided into 512 equal working spaces (WS) of 512K
words each. A WS is further divided into variable size elements
called segments. A segment has at least one descriptor that
serves to locate the segment in virtual memory. The descriptor
defines the WS in which a segment resides, the base address of the
segment relative to the WS, the size of the segment, and the
access allowed to that segment. The WS may be specified expli­
citly in the segment descriptor or indirectly through a Working
Space Register whose number is contained in the segment descriptor.
The hardware provides 8 Working Space Registers (WSRO ••• WSR7) that
can be used to supply the working space number (0-511).

To reference any portion of virtual memory, a procedure must
have a segment descriptor which frames the particular area and
which gives the desired permission (e.g., read, write or execute).

An effective address is the address calculated by summing
the address supplied in an instruction word, the address in a
specified address register, and the address specified in an index
register. The effective address is segment relative. An
effective address is converted to a WS relative address by adding
the base address of the segment, as defined by the segment
descriptor, to the effective address.

Each WS is divided into equal parts of 1024 words called
pages. Associated with each WS is a Page Table which identifies
the physical pages allocated within the WS and the access that is
to be allowed to each page. The associated page table is located
by using the working space number as an index into the Working

16-1

Space Page Table Directory (WSPTD). The WSPTD is simply a table
whose entries are pointers to each WS page table. The WSPTD
itself is located via the Page Directory Base Register (PDBR) •.

This mapping process is illustrated in Figure 16-1.

PDBR

o 'vJ5 PT'D WS Q

,-el ,d .. ' " t!J (",r+uaJ)
p~e 110. '

SH '---------'

Figure 16-1. Memory Mapping

Another logical element of virtual memory is the domain. A
domain is defined by the segments it may access and the access
rights of those segments. The segments need not be contiguous and
may encompass more than one working space. A domain may reference
only those areas of virtual memory framed by the segment descrip­
tors which are available to the domain. The operating system
defines the user's domain by creating segment descriptors and
passing them to the user. The user 9an not create a segment
descriptor, or change the location or increase the size of the
area originally framed by the monitor-prepared segment descriptors.
Figure 16-2 shows two simple domains on a user's working space:
that used by the user program and that used by the operating
system.

A domain, then, is made up of segments. There are two
general types of segments: Operand Segments which contain
instructions, data, or a combination of both, and Descriptor
Segments which may contain only descriptors. There are also two
types of segment descriptors corresponding to the segment types.

16-2

S e. ~·me.r\.t
\ ' '-

c e ~cr I ?LOr~

Figure 16-2.

l1ser's

\AJar-kin.g
5po.ce,

CP-6 Domains of Reference

'1) · User s O'iI'1a..~f\.,

s ~ y"e.'ft t
de.~ri ptefs

There are two descriptor segments that are of particular
interest. The first of these is the Linkage Segment (LS). The
linkage segment is associated with a domain, and there is only
one linkage s~gment for each domain. This segment is prepared by
the operating system, is protected by the hardware, and provides
the user program with descriptors that may be used to access its
portion of virtual memory. The linkage segment is addressable
through a special descriptor register, the Linkage Segment
Register (LSR). The linkage segment and the LSR cannot be
altered by a user program.

The other descriptor segment that is of particular interest
is known as the Parameter Stack (PS). As with the linkage
segment, there is only one parameter stack per domain. This
descriptor storage is addressable through the Parameter Segment
Register (PSR). The stack is empty until such time descriptors
are entered during execution of the user program. This stack is
used to contain descriptors that define parameters (areas of
memory) to which another domain is to have access.

Operand segments are addressable through anyone of nine
Descriptor Registers (DR). The hardware provides a set of eight
general operand descriptor registers (DRO ••. DR7) which may be
loaded by the user to address any segment to which he has access.

16-3

The ninth DR is the Instruction Segment Register (ISR) which
defines the domain's Instruction Segment. The ISH is associated
with the Instruction Counter (IC) which locates the current
instruction within the segment framed by the descriptor in the
ISR. The ISR cannot be loaded directly. It is loaded by the
hardware when control is transferred to a segment other than that
framed by the current setting of the ISR.

In summary, the NSA hardware provides for several levels of
isolation and protection. At the first level, everything is
accessed via a descriptor which directly or indirectly (via a
WSR) addresses a WS and provides a limited window into that WS.
At the second level, the WSPTD specifies whether or not the WS
exists (by a flag which signifies presence or absence of a page
table). The third level is provided by the domain concept. To
reference a segment, a process must have a descriptor for the
segment. The reference must be within the virtual area framed by
that descriptor and it must be consistent with the permission
granted by that descriptor.

Another major factor contributing to the protection
mechanism is that a slave mode user is prohibited from modifying
any WSR, the LSR, and the contents of the Linkage Segment. The
slave user is also prohibited from addressing in- the absolute
mode or manipulation of the page tables.

cP- 6 supports five levels of execution for each user, each
with its own set of privileges and visibility (areas of memory to
which a process has access) - and with an established priority.
Since each level of execution has its own Linkage Segment we can
relate it to the NSA term "domain".

The domains supported by CP-6, i.e., the Linkage Segments
the software will build in order of lowest to highest priority
(and infallibility), are:

1) USR - User
2) ASL - Al ternate Shared Library
3) lOB - Interactive Debugger
4) ICP - Interactive Command Processor
5) MON - Monitor

These five domains are shown in Figure 16-3, together with the paths
of control transfer which exist between them.

16-4

1)ebLL9s€·r
(DELTA)

U5er~

CommCU1d
?rcce.ssor'

(iBEX)

CP-G
Monitor

A\ te.rna.te..
Sha..red
L'lbio.Ci.

1-\)-5/11. }

Figure 16-3. Control Paths Between CP-6 Working Spaces

Each level of execution has its own well-defined domain
which is granted by the monitor. While many users will be
resident at the same time, scattered over the real memory
available, the VH&S option prevents anyone user from accessing
the memory of other users or special shared processors. The
descriptors available to a given domain provide access to
segments within the various domains only on a "need to know"
basis. Even the monitor views only those parts of the user
program which were designated on its call.

Change from one domain to another is effected by execution
of the call form of the CLIMB instruction which establishes a new
Linkage Segment and, usually, a new Parameter Segment. To call a
new domain an Entry Descriptor is required. The Entry Descriptor
describes the Linkage Segment that defines the called domain, the
Instruction Segment of the called domain, and an entry point
within the Instruction Segment. .

16-5 .

The CLIMB instruction used to transfer control to another
domain allows for saving the environment of the calling domain on
the Safe-Store Stack (SSS). The called domain can then return to
the domain from which it was called by execution of the return
form of the CLIMB instruction (which will restore the environment
from SSS). The call form of CLIMB also provides for passing
parameters to the called domain on the parameter stack which are
removed by execution of the return form of CLIMB.

The domains of reference in CP-6 are summarized graphically
in Figure 16-4. The linkage segments and parameter segments
defining the domains of the debugger, the command processor (CP),
the alternate shared library (ASL), and the user are physically
contained in each user's working space HJIT. A descriptor of the
user's JIT in each domain is not shown but is also present.

16-6

~

()\

I
-oJ

USER'S WORK1NG SPACE·

.J Debl11~e~s
DOn'\o..i.n

DELTA

ComVYlllV\d
processor
Doma.:u'\

IBEX

A\le.rVlot~
Sha.red
L1bt"1l'rl:\
Domnt,n

I-D-s!.Q:
Mov{.:\:or DOMllin I Att:)uments

Moni.tor

Figure 16-2. CP-6 Domains of Reference

The basic approach to memory allocation and execution
control in CP-6 is as follows:

1) CP-6 uses only one 64-word Safe-Store Stack frame per
domain.

2) A program may enter a domain at a higher level of
privilege or priority only via a CLIMB instruction
using entry descriptors controlled by the monitor.

3) Exit from a higher level domain restores the privilege
and priority to those that existed prior to entry.

4) The monitor resides in its own working space.

5) Each user has a unique working space.

6) Up to three special shared processors may be
associated with any given user: an alternate shared
library, a debugger, and the command processor. Each
type of special shared processor resides in a separate
working space.

7) Ordinary processors with shared procedure execute
within the user's working space. These include most
language processors such as APL, FORTRAN, BASIC,
RPG-II, etc.

8) Working spaces are assigned to the following uses:

• Real addressing. Can only be referenced by
monitor procedure running in privileged master
mode.

• The monitor and its dynamic data segments, as
seen by the monitor (all procedure on
housekeeping pages).

• Interactive command processors - procedure only.

• Debuggers - procedure only.

• Alternate shared libraries - procedure only.

• The users. Each user's working space contains
all pages that are assigned to him. Some of the
pages in his working space may be shared:
standard shared processor and run-time library.

16-8

User Virtual Memory Layout

The user's 512K words of virtual space is divided into the
following seg:1E:nts:

1) Housekeeping JIT (HJIT)

There are three segments of interest required by the
NSA hardware which are provided for in the HJIT.
These are:

1)

2)

3)

LS

SSS

PS

the linkage segments for a user and
all processes which may potentially
be associated with a user.

the safe-store stack.

the parameter stack.

2) Job In fo rmation Tabl e (JIT)

The JIT is divided into accounting information and the
page table for the user's working space.

3) Buffers

All file (and formerly COOP) buffers are allocated
from a common pool within this segment.

4) Special Shared Processor Data Segments

Space for data required by a debugger, alternate
shared library, or inter-active command processor is
alloc ated from thi s area.

5) Data Control Block (DCB)

This contains information used by the monitor to
perform I/O operations for the user.

6) The user's Instruction Segment (IS)

This area provides a 256K area for the user program
(instructions and compiled data) and dynamic data. If
the program requires the use of a run-time library,
the user program is restricted to 224K.

1) Use r Da t a Se g men t s

This area can contain up to eight independent user
data segments, the first two of which are used for
PL-6 automatic data and for COMMON data.

16-9

The linkage segment provided to the user provides no access
to the HJIT (other than via the LSR and PSR) , the buffers, or
Special Shared Processor Data Segments. The descriptors for the
JIT and DCB segments allow read access only. The user has read,
write and execute access via the descriptors for his Instruction
Segment. The procedure portion within the Instruction Segment is
protected at the page level. The descriptors for the User Data
Segments allow read and write access.

Figure 16-5 shows the layout of the user's virtual space
within his working space. With the exception of a fixed minimum
requirement for HJIT, JIT, DCBs and buffers, the physical pages
allowed to the user are demand allocated.

JIT, TSTACK, ACCOUNTING

HJIT, LINKAGE SEGMENTS, SAFESTORE STACK, PARAMETER STACK

FILE (& COOP) BUFFERS

TCB, ECCB, TREE, DCBs

LIBRARY AND US~R DATA

INSTRUCTION
USER PROCEDURE SEGMENT

(256K)
-, ,-

DYNAMIC DATA

~ - - ~ - - ~ - - _. - - - - ~

SHARED RUN-TIME LIBRARY

AUTOMATIC DATA, COMMON DA TA, USER DA TA SEGMENTS

SPECIAL SHARED PROCESSOR DATA SEGMENTS

Figure 16-5. User Virtual Memory
512K Working Spaces (not to scale)

16-10

SHARED PROCESSOR FACILITIES

The shared processor facilities of CP-6 permit the sharing
of the code for compilers, assemblers, command language
processors, data base managers, debuggers, libraries, and other
programs among all simultaneous users. Each user of a shared
processor has its own copy only of the data and DCB portion of
that program; the procedure (code) portion is shared by all users
associated with the shared program.

Shared processors are not limited to those offered under
CP-6. The facilities may be effectively used whenever any
program has a high probability of common usage. Service bureaus,
for example, may use the mechanism for proprietary packages.
Corporate installations may use the mechanism for programs with a
high use frequency.

CP-6 supports the following three types of shared
processors:

• Standard shared processors

• Run-time libraries

• Special shared processors

Figure 16-6 shows the relationship of the working spaces for
CP-6 users and the working spaces for the special shared
processors to real memory, thus showing the several ways that
CP-6 shares program procedure.

Standard Shared Processors

Standard shared processors are created by the linker in the
same manner as any user program. The processor resides in the
user's working space. It may have initial data and DeBs which
are unique for every user. The procedure portion of the
processor is shared by all users associated with that processor
by having the procedure portion mapped into each user's working
space.

To qualify as a standard shared processor, a program must
meet certain requirements. Two of the more important
requirements are:

1) Shared processors are allowed only one level of
overlay. There is no restriction on the number of
overlays but only one of them can be associated at a
time. In contrast with CP-V, data is allowed in
overlays.

16-11

" ..
.>

1

ID5/n
DELTA

IBEX
I

CPAr6

•

CP-6
•

• t'\onitor

In5ta(ration CP

t\onito r
~ ~::---~ "DELTA

Virtua(VJork\'n3 Spa(,~
(lVl<\ --P~e M':Ys

ID5/n
In5Tar(ation ASL

IBE-X
BA~IC

-~. ;I ~un-tlrne
~ Libra0

fORTRAN
A"?L

COBOL

A rru cation 1

Kear M,em~

Soec..ial
5 1 tJ t

harect
l1oc.e s5or".5.

j~ ,

('

havre 16-6 C?-b Shored tJY-Oc.eC5~or5 (ProcesseS)

2) Shared processors are often written in assembly
language but may be written in FORTRAN or any
processor providing pure code output. These shared
processors must provide an initialization routine that
associates any required run-time library and calls
library initialization routines.

Shared Run-Time Libraries

A shared run-time library is a collection of frequently used
subroutines which is treated by CP-6 in such a way that multiple
programs may simultaneously use the same copy of the library,
resulting in efficient use of main memory. A number of public
libraries are supplied with CP-6 (e.g., the FORTRAN Run-Time
Package and the COBOL library). User installations may create
additional public libraries wQich suit their specific
requirements.

Run~time libraries are shared by all simultaneous users
associated with the library by having the library procedures
mapped into the top 32K 0 f each user's Instruc tion Segments.
Data required by the libraries is supplied individually to each
user.

A call to a run-time library does not cause a change of
domains.

Special Shared Pr ocessor s

CP-6 recognizes three types of special shared processors:

• Alternate Shared Library

• Debugger

• Interactive Command Processor

The user program may be associated with one of each type of
special shared processor at any given time.

The standard CP- 6 system includes I-D-S/II as the supplied
alternate shared library, DELTA as the debugger for FORTRAN,
COBOL, PL-6, and assembly language, and IBE X as the interactive
command processor. It is both useful and common for
installations to supply additional special shared processors in
any of the three categories. Command processors are especially
useful.

The procedure portion of a special shared processor resides
in its own working space and is shared by all users associated

16-13

with the processor by referencing the processor's'unique working
space. A data area is provided in each user's own working space
for each special shared processor.

A call to a special shared processor causes a change of
domain, thereby changing the areas of memory to which the
processor has access. The areas of memory to which the processor
has access are determined by its type.

Special shared processors must employ dynamic data segments
for all their non-constant data. As with run-time libraries,
special shared processors must be self-contained.

ALTERNATE SHARED LIBRARIES

The alternate shared library type of special shared
processors was created to provide the I-D-S/II with an
environment which allows file access protection, data protection,
and greater control of buffers during error recovery operations.

The procedure portion of an alternate shared library resides
in its own working space. By locating I-D-S/II outside of the
user working space, it is possible to identify its calls and thus
allow file protection by excluding access except by I-D-S/II.
The DCBs and buffers reside in the user's working space because
they are unique to the user.

The alternate shared library has its own dynamic data
segment fixed within the user working space to which the user has
no access and this area is used to store the data base
procedures, page buffers, subschema dictionary, and data base
context. Alternate shared libraries will be given Exit Control
(optionally) if the user aborts, giving I-D-S/II a chance to
clean up the data base.

The descriptors in the Alternate Shared Library's Linkage
Segment allow full access to the procedures in the alternate
shared library's own working space and to the alternate shared
library's data segments in the user's working space. The
alternate shared library has read access to the JIT and DCBs
within the user's working space, but has no access to the user's
HJIT, Buffer Segment, Debugger Data Segments, Interactive Command
Processor Data Segments, and the user's Instruction Segment and
Data Segments (except via arguments that are passed when it is
called).

A user program that calls an alternate shared library
relinquishes control until the library returns control to the
user. User established break control, timer runout, and Event
Control Block posting are deferred while the library is in
control.

16-14

SHARED DEBUGGERS

The CP-6 supplied debugger is known as DELTA. DELTA has a
need to access everything the user has access to and must not be
allowed to access procedure and data for other special shared
processors. In addition, DELTA needs its own data area within
the user's working space.

DELTA's procedure resides in its own working space and
thereby does not occupy any of the user's virtual memory.

Descriptors in DELTA's Linkage Segment provide full access
to all segments within the user's working space to which the user
has access, as well as access to DELTA's procedure in its own
working space and to the Debugger Data area. DELTA does not have
access to any other special shared processor data area or
procedure.

COMMAND PROCESSORS

The CP-6 supplied command processor is called IBEX
(Interactive and Batch Executive). It is pure procedure that
resides in the working space reserved for command processors. It
requires only limited access to users' working spaces, JIT, DCBs,
and command processor data segments. In addition to processing
all commands (see Section 7), IBE X recognizes and processes calls
to shared processors (e.g., FORTRAN, BASIC, APL, COBOL) and
fields "interrupts" from time sharing-terminals, allowing the
operator to quit, continue, or invoke DELTA at the point of
interrupt.

User written command processors reside in the command
processor working space concurrently with IBEX and with one
another. Because only one command processor can be associated
with a given user at a given point in time, and the virtual
address range of a working space is large (up to 16 million
words), no conceptual problems exist.

16-15

SECTION XVII

SYSTEM PROGRAMMER FACILITIES

INTRODUCTION

This section provides an overview of those CP-6 features
that are designed to aid the systems programmer in the
development and maintenance of shared entities. For readers not
directly involved in the.dev~lopment or maintenance of CP-6, it
is recommended that this section be omitted because of its level
of detail.

A large portion of the operating system and its associated
processors is coded in. PL-6, a high-level language developed
especially for the implementation of CP-6. Some portions of the
system are implemented in assembly language. All specific
instructions mentioned within this section are assembly
instructions.

SHARED ENTITIES

Five kinds of shared entities are discussed:

• Shared libraries

• Shared (language) processors

• Command processors

• Shared debuggers

• Alternate shared libraries

Shared libraries reside in the user's working space at a
fixed origin within his ISR segment (see Figure 11-1). Library
data is always at a second fixed origin (zero) within the ISR
segment. Standard linkage to shared libraries utilizes the
direct subroutine branch (rSX) instruction.

17-1

---'
~
I
I\)

Opera.t; ns'
S~5te.M.

Monltor

~

I WSR-L I

-WOR\,\NG SPACES

"DeblA1'jet'

'DELTA

DB-1
D8-2

Com~
Proc~

IBEK
CP-1
CP-2

.. .
•

.~

·1 WSR-kl

.

Alte.rn~,
Shtu-ec
L\bn:Lrte~

l':D-·s/rr
ASL-i
ASL-Z

.. .

.
J~

\V3R-ll

llsers

FielLre 17-1 .. tP-b Conte)(t for ShlLring

D~VVJj"l1ic!.DLt.

Sha..re<1
L\brut',

i I ~
f. t '\,f)

'. _ r' ,'-.L1f 0 e~ ;
- - --.-... "" __ -.1

Shared processors run as user programs in the user's working
space utilizing dynamic data and user data segment space as
required (see Figure 17-1).

All command processors run in one working space which
consists of procedure and constants plus the page table for the
working space. They obtain data space from the user's working
space data segments which are reserved for command processor (CP)
use (see Figure 17-1). Only one command processor may be
associated with a given user at a given point in time; therefore,
the linkage segment for the command processor is carried in the
user working space (in the user HJIT). There is no direct
linkage (CALL-RETURN) between command processors and user
programs.

All al t'ernate shared libraries (ASL) run in one working
space which consists of procedure and constants plus the page
table for the working space. Like command processors, ASLs
obtain data space frQrn the user's working space data segments
which are reserved for ASL use (see Figure 17-1)', and the ASL
linkage segment is in the user's HJIT. Linkage from user to ASL
is via the CALL form of CLIMB (itiward CLIMB) with parameters
passed on the Parameter Stack. Exit from ASL to user is via RET
(outward CLIMB).

The DELTA debugger's procedure resides in its own working
space and thereby does not occupy any of the user's virtual
memory. In addition, DELTA needs its own data area within the,
user's working space. Descriptors in DELTA's Linkage segment
provide full access to all segments within the user's working
space to which the user has access, as well as access to DELTA's
procedure in its own working space and to the Debugger Data area.
DELTA does not have access to any other special shared processor
data area or procedure. DELTA is not entered directly by users;
rather, it is entered for the user by the monitor as the result
of a return to IBEX followed by a tDELTA command or on certain
faults. (DELTA plants fault-causing in'structions at breakpoint
locations.)

The monitor resides in its own working space (see Figure
17-1). Requests for monitor services are via the PMME form of
CLIMB with parameters passed on the Parameter Stack. Normal
return is via an outward CLIMB.

17-3 '

MEMORY MANAGEMENT

The following provides a brief outline of memory management
restrictions and services.

1. Overlays

Shared libraries, command processors, and alternate
shared libraries may not be overlaid; shared
processors are restricted to one level of overlay.
This overlay level may have data (which is an
extension over CP-V facilities).

2. Dynamic data

Monitor services exist to get and free dynamic data
pages on a "next-last" basis (M$GDP-M$FDP) or on a
virtual page number basis (M$GVP-M$FVP).

3. Data segments

Monitor services exist to allocate and expand
(M$GDS) and to contract and free (M$FDS) data segment
space. Based on the domain of the caller (i.e., the
current linkage segment) data segments unique to the
user, command processor, or alternate shared library
are manipulated.

4. Services for processors with special privileges

INTERFACES

A set of services exist to acquire real pages, map
them into virtual pages and manipulate access control
flags for virtual pages. These are available only to
processors with. appropriate privilege levels.

In CP-6, all program interfaces - both intra and inter
language - are defined via a set of standard calling sequences
which, for generality, are defined at the assembly language
level. All compilers adhere to these calling sequences in the
code that they generate.

One of the standard calling sequences is the set of monitor
service calls. For these service calls, transfer of control is
effected via the PMME form of CLIMB with XO specifying both the
kind of service requested and whether or not errors in processing
are to be signaled by means of an alternate return from the
monitor. Part of the calling sequence specifies the location of
an FPT (Function Parameter Table) which contains information

17-4 .

pertinent to the service request (parameters) as well as
information pertinent to how results - if any - are to be
returned.

EXCEPTIONAL CONDITION HANDLING

Facilities are provided whereby programs can specify
parameterless procedures to be invoked on occurrence of
exceptional conditions such as traps, break control from a
terminal, elapsed time run out, and event posting. Information
relating to the nature of the condition is conveyed in a frame on
a stack devoted to exceptional condition handling, thus
permitting processing of multiple simultaneous conditions or
recursion on a given condition. Exit from condition handling may
be of three types: resume processing from whence the trap
occurred, transfer to a previously specified label (unwinding
automatic storage in the process), or merely pop the frame on the
condition stack.

ACCESSING SHARED ENTITIES

Centralized enqueue/dequeue facilities are provided for
general use in controlling access to anytting that is shareable
by more than one program: data, files, othe~ programs, etc.

INITIALIZATION AND DATA

Of the five shared entities discussed in this chapter -
shared libraries, shared processors, command processors, shared
debuggers, and alternate shared libraries - only the first two
have any data space with which to work when they are first
entered, and only shared processors may have initialized data
(just as any user program may). Command processors, debuggers,
and alternate shared libraries must "bootstrap" themselves data
space by first making a monitor service call (with a constant
FPT) requesting a small amount of data segment space. Such a
service call cannot request that results be returned. This
acquired space c an then be used to make "full blown" reque sts for
space.

STAR FILES

There is one type of file in CP-6 whose names are guaranteed
by the system to be unique for a given job (or terminal user):
the star file. The uniqueness is ensured by two mechanisms: (1)
A file is a star file if, and only if, the first character of its
name is an asterisk (*); (2) The directory for star files is

11-5"

named *T and is itself catalogued in Job Information Table (JIT).
Star files exist only as long as the job (or terminal session)
exists and they never appear in any of the system catalogs.

The following star file names are reserved:

*T
*A
*S
*G
*L
*N

the directory for star file
assign/merge information
step accounting
object unit output from compilers
default load module
used by LDLNK

All other names are available (e.g., for use as temporary files)
and are not restricted to two characters.

STANDARD DCBs

By convention, all processors are expected to use standard
Data Control Blocks (bCBs) for standard I/O functions. For
example, source input is read thru the M$SI DCB. The important
standard DCBs are:

M$CI
M$SI
M$DO
M$LO
M$SO
M$GO
M$UC

Compressed input
Source input
Diagnostic output
Listing output
Source output (which is optionally compressed)
Binary output
User terminal (for interactive liD)

In CP-6, use Qf the full capabilities of IBEX, especially
those relating to default assignments, requires adherence to
these conventions.

SYSTEM FACILITIES

CP-6 offers a number of centralized services to aid the
systems programmer. Two of them are described here.

• A common command parser exists for use by shared
entities. It accepts as input a pointer to a text
string and a table describing commands and options to
be searched for and produces as output a parsed tree
of the input text.

17-6 .

• Another system service interprets the text string
input to it as a file identification and outputs the
data. required by M$OPEN FPT.

• A centralized set of error message files are supported
for use of the operating system as well as user
programs. They are keyed by functional code group,
module identification, error code, and severity level.
A centralized service to access a given record in the
files and print its content (with parameter
substitution) is provided.

STANDARDS AND CONVENTIONS

CP-6 has a number of support programs and services which are
based on the standards and conventions adopted for system
implementation. To the extent that users adhere to the same
standards and conventions, the support programs and ser~ices can
be utilized. One example - the centralized error message files -
has already been cited. The standard key is a two character
functional code group~ a one character module ID, a fifteen bit
error code, and a 3 bit severity level. The error message print
service utilizes a user-supplied file name (or defaults to the
standard .system file) together wi th this key to access the
message. The same service is utilized for HELP facilities.
Support programs for maintaining error message files are
provided. Another set of conventions deals with use of PL-6
comments in standard fashion so that an EXTRACT program can
produce "automatic" system technical documentation.

COMMON LIBRARY

A comprehensive library of subroutines commonly used by
applications and systems programmers is available for use both
for providing individual subroutines and for incorporation into
shared libraries. Among other things, it includes:

• receiving sequence and automatic storage handling
routines.

• binary, complex, decimal and double precision
arithmetic.

• numeric and alphanumeric comparison.

• type conversion.

17-7

SECTION XVIII

SYSTEM MANAGEMENT FACILITIES

INTRODUCTION

The manager of a CP-~ system may exercise considerable
control over the system through use of the following facilities:

• System Definition

• System Performance Control

• Resource Management

• User Authorization

• Use Accounting

SYSTEM DEFINITION

CP-6 3ystem definition facilities include the programs and
procedures in the system which accomplish the following:

• Configuration and Reconfiguration - tailoring the
system to the particular hardware configuration.
Parts of thi3 process occur during cold start, parts
during warm start or recovery, and parts are
controlled dynamically and thus may be changed during
system operation.

• System preparation - compiling and loading parts or
all of the system. In CP-V, this process was referred
to as SYSGEN.

Much more of CP-6 is defined at run-time or determined at
system start-up than was the case with CP-V. It is easier to
define a CP-6 system than it was to 'SYSGEN' a CP-V system. In
particular, the start-up or "boot time" adaptation of the system
to its hardware includes generation of tables for peripheral
devices, 1/0 enqueueing, physical memory management, and managing
the users of CP-6.

18-1

- .
.. ';"'."-- ~ ~,~

Certain tables grow and shrink dynamically, adapting to the
demands of run-time. This relieves the system manager or analyst
of the difficult chore of "pre-guessing" the requirements.
Tables handled in this way are:

• File access control tables (CFU)

• Enqueue/dequeue tables

• I/O accelerator tables and buffers

• Communication context (line) tables

As in CP-V, CP-6 carries definitions of remote processing
workstations in files that may be created and altered during
system operation.

SYSTEM PERFORMANCE CONTROL

Batch Stream Control

Th~ system manager is able to allocate the re~ources of the
system to jobs· with certain attributes by defining a set of batch
streams under which diverse categories of jobs may run. A batch
stream is a collection of ranges of job attibutes. In effect, it
is a job profile. Physical system resources such as memory,
spindles, or tape drives are not permanently allocated to a
particul~r batch stream. All jobs executing in the various batch
streams draw their physical resource requirements from a common
pool without regard to the stre~m under which they qualified for
execution except that the numeric limits that pertain to that
stream will apply. Examples of attributes that comprise a batch
stream profile are:

• Minimum and maximum job execution time

• Minimum and maximum amount of main memory

• Minimum and maximum number-of disk drives

• Minimum and maximum number of tape drives

All jobs entering CP-6 for batch execution share the same
input queue (referred to as the batch jo~ queue). Jobs are
selected from this queue for execution in the batch streams.

18-2

Scheduling is performed in the following manner:

1. Available resources are determined.

2. The highest priority job requiring only available
resources is selected.

3. The batch stream tables are searched for a stream that
fits the requested resources and is currently
available.

...
4. If a'stream is notavailabl~ foi the selected job, the

next job is considered as in steps #1, 2, and 3.

In summary, batch stream definitions are a primary factor in
the job selection process. The system manager may direct the
power of the system to any particular category of jobs by means
of those definitions.

It is recommended that at least 32 batch stream definitions
be generated for all systems unless main memory is a serious
consideration. This will provide a variety of job attribute
classifications and those batch streams in excess of the
operational number may be locked from use through a processor
(CONTROL) available to the system manager.

In a time~sharing/batch processing system, emphasis may be
given to batch processing by opening up more batch streams.
However, it should be noted that CP-6 is a queue-driven system
and tasks are selected from prioritized queues without regard to
the source of the request (i.e., on-line, batch, or remote
batch). When there is a heavy on-line user load, as the number
of batch streams increases, the number of compute-bound tasks
increases and each receives a small fraction of the CPU time.
This means that batch jobs will be able to get more CPU time
because of large quanta assigned to the batch streams. This will
not make a significant difference in on-line response time
because interactive requests have a higher priority than compute
bound jobs. More attention may be given to certain categories of
batch jobs by increasing the number of batch streams suitable for
them.

System Tuning and Measurement

CP-6 has a comprehensive set of performance measurement and
system control facilities. These facilities allow the system
manager to determine how the system is performing and to adjust
critical operational parameters to achieve better performance.

18-3

.. ;""._....- ... "~ -
-"'.~. :::-~-...~ ~s ~

The three processors that provide these facilities are

1. CONTROL

2. STATS

3. SUMMARY

The CONTROL processor provides a means of adjusting system
performance. Commands of the CONTROL processor enable the system
manager to display certain measurements and to "tune" the system
as needed by setting new values for parameters that affect system
perfor~ance. CONTROL provides commands for

• Display of system parameters.

• Modification of system control parameters.

• Display and modification of batch stream definitions.

The STATS processor performs two functions. One function
consists of displaying selected performance data in real-time.
The other function consists-Qf creating "snapshot" records of
performange data for later processing by the SUMMARY processor.

-The SUMMARY processor provides a global view of system
performance by formatting and displaying the statistical data
collected by STATS. The input data for SUMMARY is the SNAPSHOT
file created by STATS. The output listings are generally large
and therefore must be output to a file or on the l'ine printer.

The SUMMARY processor allows the system manager to

1. Request a chronological listing of snapshot data for
one or more display groups.

2. Specify a sort filter to remove undesired snapshots
from the sample for subsequent reports.

3. Request filtered, sorted, and ordered listings of
snapshot data for one or more display groups.

4. Request filtered, sorted, ordered, and averaged
listings of snapshot data for one or more display
groups.

18-4

RESOURCE MANAGEMENT

The term resource ha~ a very specific meaning in the
following discussion. A resource i~ any portion of the CP-6
installation that is to be shared by the users in a manner such
that each user requiring the resource is allocated the resource
for its exclusive use. (An exception to this is private disk
packs which, under some circumstances, may be shared even though
they have been defined to be resources.) Peripheral devices, CPU
time, and main memory are common types of resources. Spooled
devices and public storage devices can never, be defined to be
resources b~c~use 'they are non-allocatable devices; that is,' they
are never reserved for the exclusive use of one user.

There are special resource management routi~es within the
monitor. The specific task of these routines is to keep track of
the number of resources of each kind in use and the number of
resources of each kind that are available for use. For a batch
job, the requirement for resources is compared with the available
resources and the job is not started unless sufficient resources
are available. Further, the resources are reserved for the
exclusive-·u.:se of the job. Thus it is guaranteed that they will
be available even if time elapses between job start-up and actual
use of the resources.

CP-6 does not require that an actual physical device
correspond to each of the resources it manages. ~hen there is no
correspondence between a resource and an actual physical device,
the resource is called a pseudo-resource. Pseudo-resources are
used to achieve special job scheduling.

The system manager must define what the resources are for
the installation, establish system defaults and maximums for use
of the resources, and set limits on the use of the resources for
the individual users. He performs these tasks using the
following processors:

• System definition

• CONTROL

• SUPER

During system definition, the system manager establishes
which items are to be considered as resources. For each
resource, he establishes the system defaults and maximum values.

18-5

.'

The CONTROL processor can be used· to dynamically mod ify the
default and maximum values associated with each resource.
Resources are defined during system definition, but resource may
be effectively removed from or returned to the system by
appropriate modification of the values associated with the
resource.

The SUPER processor is used to establish the maximum amount
of each resource that is to be available to each particular user.

In order to coordinate the sharing of a CP-6 installation
. among many users, it is necessary to impose resource limitations
on'the exectition of user programs. When. a job is started, limit
values fo~ the job are initially set from the :USERS file record.
Values which are not specified in that record are then set from
the monitor limit tables. For batch jobs, limit values are ~et
to the values specified by an (optional) LIMIT control command.
(A new LIMIT, command may be issued at any job step so long as the
limits specified are less than those previously specified.)

Finally, these composite values are compared to the maximum
values in the :USERS file record or monitor limit tables and the
job is aborted if the limits are exceeded.

USER AUTHORIZATION

User authorization is achieved in the following way. Before
any user can do any processing on CP-6, an account must be
created for him by the system manager. When the account is
created, the system manager must specify the user's name and
account number. In addition to .these items, the following
additi~nal parameter~ may be supplied for each account:

1. The associated type and level of privilege granted the
user. The user may be authorized for use of many
facilities. For example:

• Utilize real-time services.

• Access and change the monitor.

• Read and write error file; request the devices;
invoke diagnostics; authorize enqueue/dequeue
automatically.

• Examine (but not change) the monitor.

18-6

2. The password that is to be associated with the
account. If specified, no one can do any processing
unless the password is provided.

3. Whether or not all files created under this account
may be read, executed, or modified by other users.
There is a default which applies to files created by
the user unless the user explicitly gives overriding
instructions.

4. Whether or not a security check is to be performed on
newly allocated main memory to be used by this
account. If requested ,'-all memory that the user will
access will be effectively erased before being
accessed.

5. Whether or not the processors available to this
account should be restricted.

6. Whether or not to automatically connect a user of this
account to a given processor.

Through these features, an installation has numerous
security controls over each and every user. These controls may,
with the system manager's discretion, be applied to users on an
individual account basis.

USE ACCOUNTING

During the operation of each job, CP-6 accumulates a wide
assortment of counts which record the job's activities. These
include CPU use, memory use, 1/0 operations, pages printed, cards
punched, monitor service requests, terminal 1/0 character rates,
and many others. These counts are written into a file which may
be used by the installation to prepare charges for its customers.
Hooks are provided so that installation-supplied routines may
augment or modify the records written to the accounting file.
Further, extra counters are included for use by the installation
in preparing special charges of their own, either for unique
programs or for individual transactions within unique programs.

An option exists which will cause the system to write an
accounting record for each job step completed. This record
includes the counter values attributable to the step plus the
name of the program executing. This makes charging for
proprietary program products especially easy.

18-7

For installations that wish to use it, a program called
RATES is provided. RATES allows the installation manager to
define monetary charges for each of the system counted values.
Given these values, the system will automatically calculate the
proper charge for the user session or job step. Additional
features allow for a currency conversion multiplier, differen~
rate structures to be applied to different classes of users and
to the same users under different circumstances such as time of
day, and charge discounting. Separate charging schedules are
available for printed forms and for program usage. Program
'hooks' within the charge calculating program provide for the
addition of installation-specific routines into the charge
calcul~tion process." ·

The system provides summary information to batch and on-line
users at the end of each job,detailing the counter values
accumulated. Charges are included if the RATE processor was used
and details at each job step are optionally available. .

Budget accounting is also available in CP-6. This permits
an installation to establish a budget hierarchy and to control
access to the system depending on a user's remaining budget. If
a user or anyone above him has exhausted the budget, he mayor
may not be denied access to the system. The installation has the
option of performing budget calculation at step-time, providing
very tight control on budget over-runs. A job-step which

. exhausts the Qudget mayor may not be the last one the user is
allowed.

."

18-8

SECTION XIX

COMPUTER OPERATIONS

INTRODUCTION

The computer operations facilities for CP-6 are still in the
design phase. This section would be empty except that it was
decided to include a description of the CP-V computer operations
facilities since CP-6 is an outgrowth of CP-V.

SYSTEM START-UP AND INITIALIZATION

Several procedures combine to cover the general subject of
system start-up, initialization, and recovery from various levels
of error situations. Each of the procedures is tailored to
restoration of the minimum amount of the system required to
regain operation. Further, recoveries proceed automatically
whenever possible--generally requiring no operator intervention.

JOB AND SYSTEM CONTROLS

The operator controls system operation through the use of
console key-ins. CP-6 operators may use any remote or local
terminal to control system activity. Operator activities may be
separated into several groups with each group of commands and
their associated messages handled from a separate terminal (e.g.,
one for tape mounts, one for printer control). CP-V key-ins are
listed in Table 19-1.

Table 19-1. Operator Key-ins

Key-In Function

ABORT Abort user or job.

ANSMOUNT Inform monitor that an ANS tape has been mounted.

ANSSCRATCH Inform monitor that an ANS scratch tape has been
mounted.

19-1

--
Key-In

D

DATE

DELETE

DIAG

DISPLAY

E

ERROR

ERSEND

FLUSH

FORM

GJOB

HEADING

INT

MOUNT

Table 19-1. Operator Key-ins (cont.)

Function

Enter date.

Enter date.

Delete symbiont file from system.

Authorize customer engineers to run diagnostics.

Send system information to operator.

Error (terminate) job step - go to next job step.

Error (terminate) job step - go to next job step.

Build a record in the system error log file.

Delete concurrent mode output being generated by a
specified job for a specified device.

Change the form name on output files in the
system.

Initiate a ghost job.

Provide message for on-line top-of-page heading or
cancel previous heading.

Transfer control to user's console interrupt
routine.

Inform monitor that tape or pack is mounted.

19-2

Key-In

OBOFF

OBON

OFF

ON

ONB

OUTPUT

OVER

PRIORITY

RBBDCST

RBDISC

RBLOG

RBS

RBSEND

Table 19-1. Operator Key-ins (cont.)

Function

Disallow entry of jobs to the batch stream from
on-line terminals and processors.

Reallow on-line and processor entry of jobs to the
batch stream after an OBOFF key-in.

Allow no more users to log on.

Set maximum number of on-line users.

Set maximum number of batch users.

Place all output streams of a job into concurrent
output mode or release a device from the .
concurrent output mode.

Override the rejection of an output tape.
(Applicable only for ANS tapes in the
semi-protective mode.)

Change user file or eX'et:'IJtion priori ty.

Add message to the remote message file.

Disconnect a remote processing terminal.

Allow automatic log-on of a remote processing
terminal.

Allow connection of remote processing terminal.

Send a message to a remote terminal.

19-3

'. -.. .:;,. •• _--:i;.::

Key-In

RBSWITCH

RBX

READ

REQUEST

SCPU

SCRATCH

SEND

SS

START

s

T

TIME

x

Table 19-1. Operator Key~ins (cont.)·

Function

Switch output files from one workstation to
another.

Disconnect (and disallow connection of) one or all
remote processing terminals.

Inform the monitor that a tape without a write
ring (for which the user specified that both
reading and writing would be done) will be read
only.

Prepare to dismount tape from a specified unit or
request the tape type of a specified resource.

Start the specified secondary CPU.

Use the specified tape as a scratch unit.

Issue message to a specific on-line user or to all
on-line users.

Start symbiont card reader.

Search for input symbiont files to run.

Initiate symbiont action.

Enter time.

Enter time.

Abort user or job.

19-4

Table 19-1. Operator Key-ins (cont.)

Key-In Function

ZAP Abort all users and save the symbiont pointers for
restart.

device,action Initiate action indicated on the specified device
(in response to a previous device message).

REMOVABLE STORAGE INITIALIZATION

INITVOL initializes pack sets for use with the file
management system. It is used to establish serial numbers,
account directories, and granule authorization and to write
headers and other system information on selected areas of the
volumes.

The LABEL processor initializes ANStapes by writing ANS
formatted labels. In the ANS protective mode, all ANS tapes must
be prelabeled by LABEL. In the semi-protective mode, ANS tapes
may be prelabeled by LABEL or may be given ANS labels as the
result of an operator key-in.

PERIPHERAL DEVICE ERROR PROCEDURES

If the monitor encounters an abnormal condition during an
I/O operation, it will send a message (Table 19-2) to the
operator. These device error messages are generated both for
errors that are irrecoverable and for errors that are recoverable
with operator assistance. The operator may respond with a device
key-in

device,action

where 'device' specifies the device and the 'action' is one of
the following:

C continue as is.

E continue but inform the program of the error.

R retry IIO operation, possibly after correcting the
problem (e.g., by moving the error card back to the
read station).

19-5

Table 19-2. Device Error Messages and Operator Action

Message Operator Action

device MANUAL Ready the device.

device WRITE PROTECT

device TIMED OUT

device ERROR

device NOT OPERATIONAL

Error (E) or remove write-protect
and retry (R).

Retry (R) or error (E). Time-out
values are measured in ticks of a
5-second clock.

1. Tape rewind and space file -
50 ticks.

2. Operator terminal input - 100
ticks.

3. All others - 2 ticks.

Retry (R), continue (e), or error (E)
if card reader or line printer; other­
wise the error is irrecoverable and no
operator action is needed or possible.

Device busy, not recognized, or I/O
not accepted. Correct the condition,
usually dial tape unit or turn power
on, and error (E) or retry (R).

If a required device is in manual status, the following message
is typed every 20 seconds:

device MANUAL

In all other cases, if an operator action is required and
none is received, the following message is issued:

device PLEASE RESPOND

In addition to logging errors on the operator's console, the
system also maintains a system error log file. This file
contains a log of system and peripheral device failures that were
corrected, that were irrecoverable, or that required operator
assistance for recovery.

19-6

UNATTENDED SYSTEM OPERATION

An important feature of the CP-6 system is that the computer
operator may leave the system alone and let it run itself. This
allows an installation to have selected periods of time (for
example, graveyard shift) to provide time-sharing or run
time-sharing concurrently with batch jobs which require no
peripheral device action on the part of the operator.

To allow unattended operation, the operator uses a system
facility to logically remove the peripheral devices which would
require an operator's attention (e.g., line printers and tape
drives). These devices can then be turned off so there need be
no concern about a tape or printer device failure in the
operator's absence. Printer output will collect in the output
spooling files. When the operator returns, the devices can be
turned on and returned to the system and the collected output
will be printed. If some on-line or batch job happens to request
the mounting of a tape, the request will be denied and only that
one job will be affected. The system continues operation in a
normal mode.

19-7

SECTION XX

RECOVERY

CP-6 attempts to make the system available as much as
possible with minimal loss of data when problems occur. To this
end, a recovery package is available which takes actions based on
the seriousness of any problem that occurs. CP-6 accomplishes the
recovery completely automatically, requiring minimal operator
intervention only for the most serious problems, such as power
interruption.

The various modules of CP-6 check the consistency of the
resident operating system tables and the important user context.
If an inconsistency is detected, or if a hardware error is
reported which is judged to have compromised the integrity of the
resident operating system, recovery is initiated and one of three
actions is taken.

1. If the damage is judged to be isolated to the context
of a single user, a procedure called Single User Abort
is performed. This involves writing the contents of
main memory to secondary storage, writing out updated
file buffers for the user, and eliminating the user
job. The system is then allowed to proceed for all
other user~.

2. If the damage is not isolated to the context of a
single user but certain key system tables are judged to
be intact, a procedure called Normal Recovery is
performed. The memory image is written to secondary
storage. The context for each user is then examined.
All open files are closed with default options.
Remaining input for batch jobs which are partially
completed is discarded unless the user has specified
the rerun option in his job deck, in which case the job
is put back into the job queue. The accounting
information is saved and the resident operating system
is brought in from the system device. Before resuming
normal operation, accounting records are written. At
this point, normal system operation proceeds. Terminal
users must log on again.

3. If the key system tables are damaged, a procedure
called Extended Recovery is performed. The memory
image is written to secondary storage. Each individual
file in the system is then examined for space

20-1

allocation information. The allocation tables are
rebuilt and dual allocations (i.e., situations in which
more than one file is trying to use the same space in
the file system) are noted. When this process is
complete, the system is reinitiated.

After any of the three types of recovery has been performed,
the monitor dump analysis program is initiated to aid i~
determining the cause of the problem. The output produced by this
program consists of formatted displays of monitor and user tables
and the status o~ the CPUs at the time of the problem.

20-2

SECTION XXI

HARDWARE MAINTENANCE AND THE DIAGNOSTIC SYSTEM

SYSTEM ERROR LOG FILE

All hardware malfunctions and some software problems
occurring during system operation, whether recovered or not, are
recorded in a special disk storage file. This file is
periodically copied into a standard file by a program which is
initiated automatically for that purpose.

The error file may be listed and summarized by the error log
listing processor. The error file is also available for on-line
preventive maintenance of the system and for diagnosis and
prediction of hardware malfunctions.

Not all error file records are the result of error conditions.
For example, a time stamp record is entered once each hour on the
hour and an I/O activity count is recorded each hour and at recovery.

The error log listing processor provides an efficient tool for
listing and sorting the error log file. Its output furnishes a
meaningful, comprehensive diagnostic evaluation of the system and
its peripherals, aiding in the early detection of product failures
and thus increasing the reliability, maintainability, and avail­
ability of the system.

ERROR THRESHOLD REPORTS

The system accumulates hardware error rates over time
(including those successfully recovered) and issues reports to
the field engineer when these rates exceed a prespecified value.
These reports direct the attention of the field engineer to those
portions of hardware which are failing at abnormally high rates.

ON-LINE PERIPHERAL DIAGNOSTIC FACILITIES

Within the system, diagnostics are provided that may be used
from either local or remote terminals to analyze and repair card
readers, card punches, line printers, magnetic tapes, and disk
packs. These run during system operation without disturbing
on-line users or batch job throughput (except, of course, for
jobs requiring the down device). Full direct access to the
device is provided, and all hardware status information for the
read or write operation is returned to the diagnostic.

21-1

APPENDIX A

CP-6 HARDWARE

The equipment supported by CP-6 is listed in Table A-I.

Table A-I. CP-6 Hardware

Equipment Number Supported

CPUs (several models) up to four

Main memory many megawords

I/O multiplexers up to 4

Disks with single or dual access

100 mb removable

200 mb removable

Tapes with single or dual access

9 track 800/1600 bpi
75/125/200 ips

Unit record devices

Card reader 1050 cpm

Card punch 100-400 cpm

Line printers 1200/1600 lpm
(64 or 96 char)

Operator consoles

Local communications processors
(CP)

Local real-time processors

Remote communication processors

Remote real-time processors

A-I

up to 32 per controller

up to 32 per controller

up to 16 per controller

several

several

several

several

up to 4 (or more)

up to 4 (or more)

up to 16 (or more)

up to 16 (or more)

Table A-I. CP-6 Hardware (cont.)

Equipment Number Supported

Communication lines per local
or remote communication
processor
(asynchronous/synchronous)

Level 6 peripherals

Printer

60 lpm 64/96 character serial

300 lpm 64/96 character line

600 lpm 64/96 character line

Card reader 300/500 cpm

Cartridge disk 2.5-10 mb
fixed and removable

Diskette 256 K bytes

Magnetic tape 9T 800 bpi 75 ips

A-2

up to 128

several

several

several

several

several

several

several

several

APPENDIX B

CP-6 SOFTWARE MANUALS

The entire set of CP-6 software documentation is listed
below.

• CP-6 Concepts and Facilities

• CP-6 Programmer's Reference Manual

• CP-6 Programmer's Guide

• CP-6 Monitor Services Reference Manual

• CP-6 Operations Reference Manual

• CP-6 System Management Reference Manual

• CP-6 System Programmer's Reference Manual

• FORTRAN Language Reference Manual

• CP-6 FORTRAN User's Guide

• CP-6 DELTA Reference Manual

• APL Language Reference Manual

• BASIC Language Reference Manual

• CP-6 TEXT Language Reference Manual

• CP-6 TEXT User's Guide

• RPG-Il Language Reference Manual

• lDP Language Reference Manual

• CP-6 lDP User's Guide

• CP-6 Assembler Language Reference Manual

• SORT/MERGE Language Reference Manual

• COBOL Language Reference Manual

B-1

• CP-6 COBOL User's Guide

• I-D-S/II Data Base Administrator's Guide

• I-D-S/II Programmer's Guide

• CP-6 I-D-S/II User's Guide

• PL/I Language Reference Manual

• CP-6 PL/I User's Guide

• CP-6 Common Index

• CP-6 Pocket Guide

• CP-6 Conversion Manual

• CP-6 Real-Time Reference Manual

• CP-6 Remote Processing Reference Manual

• CP-6 PL-6 Language Reference Manual

• CP-6 PL-6 User's Guide

B-2

