CP-6 Introduction to PL-6

DOO
XP03-00
June 1888



Preface

This document is an introduction the the PL-6 system programming language used
to create and maintain the CP-6 Operating System.

Computer Aided Publication (CAP) is an advanced electronic technical
publishing system. The Honeywell Bull Los Angeles Development (Center (Product
Development Organization) Documentation Services group authors, edits,
reviews, and creates laser print masters with integrated text and graphics
using CAP. This manual is a product of CAP.

Readers ot this document may report errors or suggest changes through a STAR
on the CP-6 STARLOG system. Prompt response is made to any STAR against a

CP-6 manual, and changes will be incorporated into subsequent releases and/or
revisions of the manuals.

The information and specifications in this document are subject to change
without notice. Consult your Honeywell Bull Marketing Representative for
product or service availability.

Copyright (c) Honeywell Bull Inc., 1988 File No.:

ii XP03-00



Table of Contents

Section 1. PL-6 IN A NUTSHELL .

Basic Forms

Declarations . . . « ¢ & o . .

Based Data
Assignment
Control Sta

Structures e e o .
Statements « e e
tements . . . . . .

Procedure Related Statements .

Scope of Va

Built-in Functions and Subroutines

riables . . . . . .

Input and Output . . . . . . .

Appendix A.

Appendix B.

XP03-00

Example Program . .

PL-6 Reserved Keywords

PGS QI I T (T QI I . Q'Y
]
_ D DO NONUVTN

H 00

>
t
-

@
]
-



About This Manual

This manual is a beginner's guide to the PL-6 programming language. It was
originally prepared for college course-tevel instruction at IUP (Indiana
University of Pennsylvania), a CP-6 educational site. It is currently in a
form appropriate for that environment, but someday, the section on I1/0 at the

end will be redone to reflect proper usage of CP-6 Monitor Services directly
from the CP-6 system.

XP03-00



Syntax Notations

Table 1. Notation Conventions Table

Notation Description

Lowercase

Lowercase letters identify an element that must be replaced
by a user-selected value. For example, in a TEXT macro the
value:

"figure title" indicates the user supplies a
value for figure title.

CAPITAL LETTERS

Capital letters indicate a literal, to be entered as shown.
For example:

FIG "figure title" indicates that the value FIG
must be entered as shown.

Special Characters

The character ~ has a special function and is to be entered
as shown. Likewise the combination of characters ..: is
used to introduce CAP macros and must be entered as shown.
The period is used to introduce TEXT control words.

Carated Letters

Letters inside carats (< >) identify physical keys on the
terminal. C(arats are not typed. The indicated keys are
pressed.

<CR> indicates touch the RETURN or NEWLINE key.

XP03-00

vii



Table 1. Notation Conventions Table (cont)

Notation Description

Brackets

Brackets are used to enclose an optional element. 1If more
than one element is enclosed in brackets, the notation
indicates an optional choice. Multiple elements in brackets
can be stacked or separated with the OR bar. For example:

[id] indicates that a value for id may be entered.
[id] or [idIA] indicates that a value for id or
[A ] the lLiteral A may be entered.

When enclosing keywords, brackets signify that all or part
of the bracketed portion may be entered.

K[EY] indicates KEY can appear as K, KE, or KEY.

Braces

Braces are used to enclose a required choice: one of the
elements enclosed in the braces must be selected. The
elements can be stacked or separated with the OR bar. For
example:

{A )} or {Alid) both mean that either the
{id} Literal A or a user-supplied
value for id must be selected.

OR Bar

The OR bar separates elements enclosed in braces or brackets
from which one may or must be chosen.

{Alid} means that either the letter A or the
value of id must be entered.

viii XP03-00



Tabte 1. Notation Conventions Table (cont)

Notation Description

Horizontal Ellipsis

The horizontal ellipsis indicates that an element can be
repeated. For example:

indicates that the user can
supply multiple data fields,
each one separated from the
preceding field by the #.

#datagdata...ydata

Vertical Ellipsis

The vertical ellipsis indicates that something has been
omitted purposely. For example:

This is the first line of text
indicates that text Lines

have been omitted.

This is the lLast line of text.

XP03-00

ix



Section 1

PL-6 IN A NUTSHELL

PL-6 is the CP-6 system implementation language. It provides for efficient
block structured programming of tasks that are closely related to the
operation of the system, for example, compilers, assemblers, simulators, and
communication packages. PL-6 has a variety of data types, flexible control
statements, and a simple syntax. It also provides easy access to the monitor
services of CP-6.

Basic Forms

A PL-6 program is organized into procedures. One of these procedures is
designated as the MAIN procedure or program. Other procedures can be
considered subroutines. These procedures may be declared inside or outside
the main procedure. All procedures begin with a PROC statement and end with
an END statement.

Identifiers in PL-6 may be formed using any of the following characters: A
through Z, O through 9, #, $, @, and _. The tirst character must be
alphabetic and the number of characters less than 31. Each statement in a
procedure must be ended with a semicolon (;). Each statement may have a
label. A label has the same form as an identifier, must be to the Left of the
statement, and must end with a colon (:). Commas are used to separate
portions of certain statements and the apostrophe is used to delimit string
constants.

The arithmetic operators are:

(add)
(subtract)
(multiply)
(divide)

N % 1+

There is NO exponentiation.
There are NO floating pocint values.

XP03-00 1-1



The relational operators are symbolic:

= for equal

< for less than

> for greater than

<= for less than or equal

>= for greater than or equal
~= for not equal

The logical operators are:

~ for "not"
I for "or"
& for "and"

\ for "exclusive or"

The keywords ''NOT', "AND", and "OR" may also be used with truth-value
expressions in IF and DO statements.

Logical operators work on bit-string values, performing bit-by-bit
operations. '

NOT, AND, and OR work on bit-strings and evaluate to truth values; if
ANY bit of a named variable is 1, its truth value is TRUE.

Parentheses and the equal sign (=) have the usual meaning in assignment
statements. The beginning and end of a comment are denoted by '/x" and "x/",
respectively. The symbols "->" are used in associating a pointer with a based
variable.

Declarations

ALl identifiers (names) must be declared using the DCL statement. ALl DCL
statements for a procedure must appear at the beginning of the procedure. A
declared identifier is known in all procedures contained within the procedure
in which it is declared. Only ONE variable, array, or structure can be
declared with each DCL statement. The forms of the DCL statement are shown
below.

pCL id [attributelist]; To declare a variable
named ''id".

pcL id (0:b) [attributelist]; To declare the array "id"
that has elements 0 to b.

pCL Llevell id1 [attributelist1] [, lteveln idn attributelistn];

1-2 XP03-00



To declare a structure. The top lLevel (level1)
is 1; other levels (lLeveln) may 2 through 10.
This is similar to a COBOL record, except

that levels may not be skipped. Also,

= may be used in place of an identifier name
for an "idn" in order to denote '"filler".

There are four types of attributes that may appear in an attribute list in a
DCL statement: data type, alignment, storage class, and special. A data type
should be declared for each identifier (except for the level 1 name in a
structure). The data type attributes are lListed below.

Attribute Meaning Default Alignment
SBIN(n) Signed binary integer ALIGNED

UBIN(n) Unsigned binary integer ALIGNED

CHAR(c) Character string CALIGNED

BIT(b) Bit string UNAL

PTR Pointer to another variable ALIGNED

The "n" in parentheses after the attribute name is optional. If it is
included, it represents the number of bits used to represent the integer. If

n" is not used, the default size is 36 bits. For SBIN and UBIN, a size may
be specified by keyword instead of using "n'. The form is "SBIN size'" or
"UBIN size" where '"size' is WORD (same as n=36), HALF (same as n=18), or BYTE

(same as n=9).

The "c¢" represents the number of characters in a character string. Each
character of the string may be accessed individually through the use of
several built-in subroutines. The '"b'" represents the number of bits in a bit
string.

An alignment attribute may be specified for any identifier that has a data
type. It an alignment other than the default is to be used, it must be
specified in the DCL statement. The alignment attributes indicate how storage
should be allocated for an identifier. The following List indicates the
storage boundaries used for various alignments.

Attribute Beginning and ending boundary unit
ALIGNED Word

CALIGNED Byte

DALIGNED Even numbered word

HALIGNED Half word

WALIGNED Word (same as ALIGNED)

UNAL Bit

XP03-00 1-3



The storage class of an identifier determines how permanent it is and where it
is known. The storage class may be specified for any identifier. A Llist of
most storage classes and their meanings follows.

Class Meaning

- - - .- ————— - - - - - - - - - .-

AUTO Storage is allocated for the identifier each time
the procedure is called. Storage is released
when the procedure is exited.

STATIC Storage is allocated throughout the running of
the program.

CONSTANT Storage is allocated to contain a constant value.
The value cannot be changed. '

EXT The identifier may be referenced outside the
procedure in which it is declared.

bCB Storage is allocated for a data control biock.
Other attributes cannot be used with this one.

SYMREF Indicates that the identifier refers to the same
location as the same identifier declared with
SYMDEF in another procedure.

BASED No storage is allocated for the identifier, only
a storage template is made. The template is
associated with storage through the use of a
pointer variable.

The special attributes are used to indicate special properties associated with
an identifier. The following is a List of the most important special
attributes.

Attribute Meaning
SYMDEF Specities that the identifier may be referred to
with a SYMREF in another procedure.

REDEF Specifies an alternate description for a previously
declared storage area. Note: the sizes must match.

ENTRY (n) Specifies that the identifier is an external
procedure name. The "n'" represents the number of
parameters the procedure has; '"(n)'" can be omitted
if it is zero.

1-4 XP03-00



ALTRET Specifies that an external procedure can have
an ALTRETURN.

INIT Specifies starting values to be assigned to
identifiers. An array may be initialized by
lListing individual elements or by specifying
entries of the form "valuexr" to repeat the
"value" r times. Note: ‘“valuex0'" repeats the
value enough times to fill the unspecified
portion of the array.

Based Data Structures

Most languages associate one or more specific memory locations with each named
data item. This is also true of most data items in PL-6. However, PL-6 also
provides the capability of detining simple or complex data structures that are
not directly associated with any memory locations. Such data items are said
to be '"based" and have a declaration similar to the following one.

DCL ABC(0:9) CHAR(1) BASED;

ABC is declared to be an array of 10 single characters, but no storage is
allocated to hold the array. Instead, only the template (or form) of the
array is set up. The template is associated with memory locations through the
use of a pointer variable. For example:

DCL P$ PTR;
DCL STR CHAR(10) STATIC;

declares P$ to be a pointer and STR to be a string of 10 characters.
By assigning P$ the address of STR, the ABC structure can be overlayed onto
the locations allotated to STR. P$ is assigned the address by a statement

such as:

Ps

"

ADDR(STR);
(See the Built-in Functions section for a description of ADDR.) Then the
following statement shows a pointer-qualified reference to ABC which causes an
asterisk to be put in the 4th element of ABC, that is, the 4th character of
STR.

P$ -> ABC(3) = 'x';

Note: P$ can also be used in association with other templates.

XP03-00 1-5



Pointer qualification can be explicit (as in the previous example) or
impiicit. Implicit quaiification occurs when a pointer variable is associated
with a based data item in the DCL statement, for example:

DCL XYZ(0:4) CHAR(2) BASED P$;

Here XYZ is a based variable that is automatically associated with the P$
pointer, untess it is explicitly pointer qualified with another pointer.
Thus, the following two statements are equivalent. Both set the 4th and 5th
characters of STR to blank.

XYz(2) = ' ';
P$ -> XY2(2) = ' *;

Based data items and pointer variables are particularly useful in dealing with
linked data structures.
Assignment Statements
The form of an assignment statement is:

target = expression;
The validity of such statements depends on the syntax of the expression and of
the value types of the target and expressions. The following lList describes

the valid combinations of value types; where possible, the data type of the
target is shown.

Target Expression type Special action

SBIN or Arithmetic High order bits are Lost
UBIN it target field is too small.
CHAR Character string 1f target shorter, truncate

on the right. 1If target is
longer, extend on the right
with blanks.

BIT or Bit string If target is shorter, truncate
array or on the right. 1If target is
structure longer, extend on the right

with zero bits.

PTR Pointer None, but value must be ADDR
of a location.

1-6 XP03-00



The following List indicates the order of precedence in evaluating an
expression in an assignment statement. The list is in order from highest to
lowest.

Order of precedence by operation symbol:

~, unary -, unary +
%, /

binary -, binary +
<=, > >=, =, ~=

’ ’

OR

Control Statements

/
There are three statements of the control type in PL-6 that are of interest.
They are I1f, DO, and EXIT. Each of these is described below. The IF and DO
have more than one form.

There are two forms for the IF statement:

IF exp THEN stmt;
and
IF exp THEN stmt1; ELSE stmtZ;

The “exp" is a bit-string or truth-value expression. The "stmt' in each IF
may be almost any executable PL-6 statement or a DO block. Each "stmt" may
have a label. For nested IF statements, each ELSE goes with the nearest
unELSEd IF.

The DO statement has at least six forms that you may find useful. The

simplest DO is not a control statement at all; it is a way of making a
compound statement. 1Its form is:

DO,
Following the DO are a series of statements which are collectively treated as
a single statement. The end of the series of statements is marked with an END
statement. This collection of statements is referred to as a DO block and can
usually appear anywhere a single statement can occur.

DO CASE (exp);

XP03-00 1-7



The "exp' is an arithmetic expression or variable, a UBIN va

lue. This
statement is followed with a series of CASE statements of the f

ori

CASE (const,const,...);
The "exp'" in the DO CASE is evaluated and matched against each of the CASE
constants ('‘const''). When a match is found, the statements associated with
that CASE statement are performed.

An example is shown at the right.

Each "const' must be a constant DO CASE (K);

at compile time. The series of CASE (0); J=4+1;
CASE statements is terminated with CASE (1,3); J=J+2;
an END statement. The '"const' may be CASE (ELSE); J=0;
the word ELSE to cover all other cases. END;

The example increments J by 1 if K
is 0, by 2 it K is 1 or 3, and sets
J to zero otherwise.

DO SELECT (exp);

The "exp'" may be any type of expression, representing a UBIN, SBIN, CHAR, or
BIT value. This statement is followed by a series of SELECT statements of the
form:

SELECT (const,const,...);

Each of the constants ('const') must be of the same type as the 'exp" in the
DO SELECT statement. The "exp' is evaluated and matched against the
constants. When a match is found, the statements associated with that SELECT
statement are performed. As with the DO CASE, ELSE may be used in place of a
constant in a SELECT statement.

DO var = expl1 TO/DOWNTO exp2 [BY exp3]’

The "var'" is a scalar variable (not part of a structure); "expl1" is the
initial value for "var'; "exp2'" is the Limit for 'var'; and "exp3" is the
increment for "var'". The default increment is +1 for TO and -1 for DOWNTO.
Exp3 must be greater than O for the TO form and must be less than O for the
DOWNTO form. This DO statement works like the FOR statement in FORTRAN,
except that the test is made at the top of the lLoop. It is delimited by an

END statement. (The DO statement in FORTRAN is implemented differently.)

DO WHILE (exp);

1-8 XP03-00



The "exp' may be a bit-string or truth-value expression. The DO WHILE
statement is followed by a series of statements which are executed repeatedly
as long as the "exp" is true. The series of statements is delimited by an END
statement. The statements inside the DO WHILE lLoop may be any executable PL-6
statements. The check of the expression is made at the beginning of the loop.

DO UNTIL (exp);

The "exp' may be a bit-string or truth-value expression. The DO UNTIL
statement is followed by a series of statements that are executed repeatedly
until the "exp' is true. The series of statements is delimited by an END-
statement. The statements inside the DO UNTIL Loop may be any executable PL-6
statements. The check of the expression is made at the end of the loop.

The EXIT statement has the form:
EXIT [label];

This statement is used to escape from a DO loop. The simple form of the
statement (EXIT;) jumps to the statement after the END of the innermost DO
which the EXIT statement is in. To get out of several levels of nested DO
loops, the other torm (EXIT label;) is used. The EXIT label; jumps to the
statement after the END of the DO loop which has the specified Label on its DO
statement. The DO loops from which the EXIT escapes may be any of the forms
of the DO described previously.

Procedure Related Statements

There are five procedure related statements that you will be using frequently.
Each of them is described below after their format is shown.

entry: PROC MAIN/(parameterlist) [ALTRET];

Only one PROC in a program is the MAIN PROC. ALl other PROCs are subroutines
and have parameter Lists. The parameter List is a sequence of identifiers
separated by commas. They correspond to the dummy parameters in a FORTRAN
subroutine. The declarations of the dummy parameters in a procedure must
match the declarations of the parameters in the procedure from which it is
called. The "entry" is the name by which the procedure is called.

A PROC may be internal or external. An internal PROC is wholly contained
within another procedure. Internal procedures are known only to the
procedures they are contained within. Internal procedures cannot be
recursive. An external procedure is not contained within any other PROC. To
be performed, a PROC must be called; execution cannot 'fall into'" a PROC.

XP03-00 " 1-9



The use of "ALTRET" in the PROC statement enables the use of the ALTRETURN
statement within the procedure to cause special action to be taken when
control is returned from a call.

CALL ref [(parameterlist)] [WHENALTRETURN DO; ... END];

The CALL statement is used to invoke a procedure. The 'ref' may be an entry
point for a procedure or it may be the name of an EPTR variable (such
variables are not described in this document). The arguments in the parameter
List must match those in the definition of the PROC being called. The
WHENALTRETURN clause specifies a DO block of statements that should be
performed if the called procedure does an ALTRETURN. Both internal and
external procedures can be invoked with the CALL statement. ALl parameters
are passed by reference; that is, the main program variable and associated
subroutine variable refer to the same location.

RETURN; and ALTRETURN;

These two statements are used to return control from a called PROC. For
ALTRETURN, control is returned to the DO block specified with the
WHENALTRETURN in the CALL statement and then continues with the statement
after the CALL. For RETURN, control is returned to the statement after the
CALL statement. 1If ALTRET is not specified in the PROC definition, ALTRETURN
does the same thing as the RETURN. ALTRETURN is normally used tc indicate an
error condition within the called procedure.

END [id];

The END statement is used to mark the end of a procedure or DO block. For a
DO block there is no "id'. For a PROC, the '"id" is the entry name of the
procedure.

Scope of Variables

Variable names declared in a procedure are known in all procedures that are
internal to the one in which the declaration is made. If the same variable
name is redeclared in the internal procedure, the internal declaration
overrides the outer declaration, but only within the internal procedure.
Variables declared in procedures which are disjoint are unknown in the
disjoint procedures. unless they are specially declared with the EXT or
SYMDEF attributes. *

The portion of a program in which a variable is known (is accessible) is
referred to as the scope of the variable . As an example of scope, consider
the following program:

FIRST: PROC MAIN;
DCL A CHAR(1);

1-10 XP03-00



DCL B SBIN;

SECOND:  PROC;
DCL A SBIN;
DCL € UBIN;

END SECOND;
THIRD: PROC;
DCL D CHAR(1);

END THIRD;
END FIRST;

Here, A refers to the same CHAR(1) location in FIRST and THIRD. In SECOND, A
is a SBIN location that is unrelated to A in the other procedures. Variable C
is known only in SECOND; variable D is known only in THIRD; variable B is
known everywhere in the program.

Because of the way the scope of a variable can be used to pass values between
nested procedures, internal procedures rarely have parameters.

Built-in Functions and Subroutines

There are many functions and subroutines built in to PL-6. These perform
various tasks, such as string manipulation, base conversion, and pointer
manipulation. The most important functions and subroutines that you will need
are Listed below and described briefly. Note: as with FORTRAN, functions are
invoked by using their name and subroutines are invoked by the use of a CALL
statement.

ADDR (ref)
ADDR is a function that returns a pointer value that identifies the storage
location referred to by "ret'. It is useful in assigning values to
identitiers of type PTR. ADDR may be used in an INIT.

ASCBIN (char-exp)
ASCBIN is a function that converts a single character into a binary integer.
The Length of the ''char-exp’ must be one. The integer is returned as
UBIN(36).

BINASC (exp)

XP03-00 1-11



BINASC is a function that converts the lLow order 9 bits of the value of the
arithmetic "exp'" to a single character. The "exp" may be UBIN or SBIN. The
returned result is CHAR(1). .Related function: BITASC which works with a bit
expression rather than a numeric one.

MOD (div,dsr)

MOD is a function that returns the remainder when "div' is divided by "dsr".
Both "div" and "dsr' may be arithmetic expressions. The remainder has the
same sign as the 'div".

PINCRW (ptr ,nword)

PINCRW is a function that returns a pointer value equivalent to incrementing
the pointer (ptr) by a specified number of words (nword). The value of nword
may be positive or negative. Related functions: PINCRC to increment a
pointer by a specified number of characters and PINCRB to increment a pointer
by a specified number of bits.

POFFW (ptr1,ptr2)

POFFW is a function that returns a signed value that represents the positional
relationship in words between two locations pointed to by ptr1 and ptr2. The
pointers must point to locations in the same data segment and the bit and
character offsets of the pointers must be the same. Related function: POFFC
returns a value that represents the positional difference in characters
between the two pointer values.

CALL BINCHAR (str, val);

BINCHAR is a subroutine that converts a binary integer to a character string
with no spaces and no sign characters. The "str' is the resultant string and
must be of type CHAR. Leading zeros are supplied to fill the field if
necessary. The "val' may be of type SBIN or UBIN; it may also be an
arithmetic expression that evaluates to one of these types. If the result
does not fit in "str', it may be truncated or an error may occur. Related
subroutine: BINXCHAR which puts a leading sign character on the character
string.

CALL CHARBIN (ref, str);

1-12 XP03-00



CHARBIN is a subroutine that converts an unsigned character string of decimal
digits to a positive binary value. The '"ref" is the location to contain the
binary value; the 'str' is the CHAR variable containing the character string.
It there is an illegal character in the string, an error occurs. If the
binary value will not fit in the ref location, it may be truncated or an error
may occur. Related subroutine: XCHARBIN which accepts a sign character at
the beginning of the character string.

CALL CONCAT (tostr,str1 [,str2]...[,stré6]);

CONCAT is a subroutine that concatenates up to six strings to form a single
string. The "tostr" is the destination, the character location where the
concatenated string is to be stored. Each of the 'str's is a character
expression that is to be concatenated. 1f '"tostr" is larger than the formed
string, it is right-filled with blanks. If it is smaller, the concatenated
string is truncated on the right. 1If truncation occurs, an ALTRETURN is used
and may be handled with @ WHENALTRETURN.

CALL INDEX (index, stri1, str2, [, [start] [,mask]]);

The INDEX subroutine locates the first or next occurrence of a string within
another string using a left to right scan. The "index" is the character
position number at which the found string begins. The '"str1" is the string
which is to be found; "str2" is the string to be searched. 1t "start" is
specitied, it must be in the range 0 to the length of "str2". It "str1" is
not found, the index is set to the length of "str2" and ALTRETURN is taken, if
WHENALTRETURN is specified. A "mask' may be specified if only portions of the
characters are to be compared. The '"mask' is specitied as a literal value and
indicates which bits of the characters are to be considered. Related
subroutine: INDEXR which uses a right to lLeft scan to (ocate the occurrences
of a substring. ’

SUBSTR (str1, start [,len])

SUBSTR is a function that extracts part.of a character string for use in a
character expression. The "str1" is the string from which the substring is to
be extracted. The "start" is the character position of the first character in
the substring. The "len" is the length of the substring. When 'len'" is not
specitied, the substring is assumed to begin at "start" and go to the end of
"str1'". SUBSTR may also be used on the left side of an assignment statement
to replace a portion of a string with the value of a character expression.

CALL INSERT (tostr, [start], [len]}, str1 [,strZ].i.[,stréj);

XP03-00 1-13



The INSERT subroutine allows up to six strings to be concatenated and then
inserts the resultant string into another string. Each of the "str's is used
in the same way as for the CONCAT subroutine. The "tostr" is a reference to
the string into which the insertion is to be made. The "start"” indicates
where in "tostr' the insertion is to be made and 'len" indicates how many
characters are to be inserted. The sum of the values of "start" and "len"
must be Less than the length of ‘‘tostr'. Truncation and blank filling occur

based on the size of "len" and the concatenated expression in the same way as
for CONCAT.

Input and Output

Input and output in PL-6 must be done with the aid of monitor service calls.
ALL monitor service calls are done with the CALL statement and each of them
has a name that begins with M$. The principal monitor services that you will
need are involved with opening, reading, writing, and closing a file.

Many of the monitor service calls require the set up of a rather elaborate
data structure. There are macros defined to make the creation of these data
structures as simple as possible. The macros are kept in several files under
the account :LIBRARY. To gain access to the macros all you have to do is
place the following statement in your PL-6 program:

%INCLUDE CP_6;

Because the macros contain a number of declarations, you should place the
statement among the DCL statements in your program, perhaps right at the end
of your own DCLs.

Each of the macros is invoked by using a statement of the form:
Zmacroname [(refid=string[,refid=string]l...)]’

Many of the macros that you will need have names of the form ZFPT_name, where
FPT stands for Function Parameter Table, and ''name" is the name of the
associated function. For example, ZFPT_OPEN is used in conjunction with
opening a fite. The function parameter table is the data structure the
monitor service call requires to perform the function. Each monitor service
call takes one parameter, the name of the FPT that is associated with the
call.

The "retid"s in each invocation of the macros depend on the function to be
performed. One '"refid" that can be used with each FPT macro is FPTN which is
used to specify the name of the FPT structure. This name can be used in other
reterences to the structure. The following List shows some of the most common
macros, the associated monitor service call and the "refid"s that are usually
specified. Nearly all "refid"s have default values which are used if they are
not specified.

1-14 XP03-00



Macro M. Service Retfids and strings

FPT_OPEN  MSOPEN DCB=dcbname, NAME=variable holding
the file name, ASN=FILE for disk files,
FUN=function (IN, UPDATE or CREATE),
ACCT=variable holding account name,
EXIST=status (NEWFILE or OLDFILE)

FPT_READ  MSREAD . DCB=dcbname, BUF=variable used as an
input buffer

FPT_WRITE MSWRITE DCB=dcbname, BUF=variable used as an
output bufter

FPT_CLOSE MSCLOSE DCB=dcbname

Examples of each of these macros and the associated monitor service calls are
given in the attached sample program. An additional macro and monitor service
call is used in the sample program to change the prompt used when the system
attempts to get input from a terminal See the PROMPT PROC.

Certain "refid's take variables as values, for example NAME and ACCT above.
There are macros available to be sure that such variables are in the proper
form. Some of these are referred to as VLPs (Vector located parameters). The
macro used to handle the NAME refid is ZVLP_NAME. There is an example of its
use in the sample program.

Because of the complexity of 1/0 in PL-6, you may wish to use FORTRAN
subroutines to handle the 1/0 in your programs. It is not difficult to do
this; however, there are a few special things that need to be done. The
following statements must be put in the PL-6 main program.

DCL XFF_7INITL ENTRY CONV(O) ALTRET;

CALL XFF_7INITL;
XFF_7INITL is a FORTRAN initialization Library routine. The CALL should be
placed in the main program so that it is executed before a call to any FORTRAN

subroutine.

ALl FORTRAN subroutine names should be declared using the ENTRY attribute, in
the form:

DCL subr-name ENTRY (no-of-parameters);
FORTRAN functions cannot be used. The ''no-of-parameters' is a maximum; the
actual FORTRAN subroutine may have fewer. The attributes of the PL-6

identifiers must match the FORTRAN variable declarations. The following List
shows the matching attributes.

XP03-00 1-15



FORTRAN PL-6

INTEGER SBIN WORD

REAL BIT(36) ALIGNED
DOUBLE PRECISION  BIT(72) DALIGNED
LOGICAL BIT(1) ALIGNED
CHARACTER=*n CHAR(n)

The second sample program illustrates the use of FORTRAN subroutines to do
file 1/0. Terminal 1/0 and printer output can also be done with FORTRAN
subroutines.

NOTE:

FORTRAN subroutine names must be no more than 8 characters long. Longer names
are not handled properly when lLinking.

1-16 XP03-00



Appendix A

Example Program

EXAMPLE

XP03-00

: PROC MAIN;

/* This program does a lLinear search of a file whose

name is read from the terminal. The file is in the form
of a symbol table with mnemonic, opcode and type. The
file is read in before the search begins. The prompt is
changed tor each bit of information that is requested from
the terminal =/

DCL 1 OPREC (0:400) STATIC,

2 MNE CHAR(6), /* Mnemonic for instruction */
2 OPCODE UBIN, /* Opcode for instruction =/
2 ITYPE UBIN; /% Type for instruction =/

DCL F$10 DCB;
DCL M$SI DCB;

[2Yal ] a N NCD
ODCL M3LO D(CB;

DCL COMMAND STATIC CHAR(31); /% terminal buffer =/
DCL INREC STATIC CHAR (12); /% file buffer =/
DCL DIGITS CHAR(3);

DCL HOLD STATIC CHAR(6);

DCL OUTLINE STATIC CHAR(30); /* output buffer =/
DCL NFOUND CHAR(9) CONSTANT INIT('NOT FOUND');

DCL N SBIN; /* number of records x/

DCL MARK SBIN; /* location of dot in tile name x/
DCL FINI SBIN; /* end of input Line */

DCL LOOK STATIC SBIN INIT(-1); /= trial location %/
/* Setting up structures to be used by the monitor calls =/

ZINCLUDE CP_6;

ZVLP_NAME (FPTN=SOURCE);

DCL SACCT CHAR(8) STATIC;

%FPT_OPEN (FPTN=OPSRCE,FUN=IN,ACCT=SACCT, ASN=FILE,
NAME=SOURCE ,DCB=F$10);

%FPT_READ (FPTN=OPFILE,BUF=INREC,DCB=F$10);

%FPT_READ (FPTN=TTY,BUF=COMMAND,DCB=M$SI);

%FPT_WRITE (FPTN=TERM,BUF=OUTLINE,DCB=MSLO);

%FPT_CLOSE (FPTN=OPFILEC,DCB=F$10);



READ:

A-2

/% Set the prompt; read the file name; find the dot separator
and the trailing blank. Then separate the COMMAND string
into its parts and open the file =x/

CALL PROMPT('Enter file name: '):
COMMAND = ' *';

CALL MSREAD(TTY);

CALL INDEX (MARK,'.', COMMAND);
CALL INDEX (FINI,' ',COMMAND):

/* Set length of name string (.L#); put name string in the
structure (.NAME#); and put account string in SACCT. =/

SOURCE.L#=MARK;

SOURCE.NAME# = SUBSTR(COMMAND ,0,MARK);

SACCT = SUBSTR(COMMAND ,MARK+1,FINI-MARK-1);

CALL MSOPEN(OPSRCE);

/* Read in all the records of the file and keep track of
how many there were in N. Each record part is moved to the
appropriate place in OPREC. %/

CALL MSREAD (OPFILE);
N =0;

/* N counts the number of records in the file. The (1=1) test
a dodge to create an infinite loop. =/

DO WHILE (1=1);
OPREC.MNE(N) = SUBSTR(INREC,0,6); /* note start at 0 »/
DIGITS = SUBSTR(INREC,7,3):
CALL CHARBIN(OPREC.OPCODE(N),DIGITS);
OPREC.ITYPE(N) = ASCBIN(SUBSTR(INREC,11,1));

N=N3+1;
CALL MSREAD (OPFILE) WHENALTRETURN DO; EXIT READ; END;
END;

CALL MSCLOSE(OPFILEC);

/* Change the prompt and Loop through getting instruction
names to look up =/

CALL PROMPT ('Enter mnemonic: ');
DO WHILE (FINI > O AND LOOK ~= 0);
COMMAND = ' *;
CALL MSREAD(TTY):;
CALL INDEX(FINI,' *',COMMAND);
HOLD = SUBSTR(COMMAND,O,FINI);
LOOK = 0;

XP03-00



/* Search through the entries and print a response whether found
or not x/

DO WHILE (OPREC.MNE(LOOK) ~= HOLD AND LOOK < N);
LOOK = LOOK + 1;
END;
IF OPREC.MNE(LOOK) = HOLD THEN
DO; -
CALL BINCHAR(DIGITS,OPREC.OPCODE(LOOK));
CALL CONCAT (OUTLINE,'The code is ',DIGITS,' The type is '

BINASC(OPREC.ITYPE(LOOK))):
END;
ELSE OUTLINE = NFOUND;
CALL MSWRITE(TERM);

/%= A search for an ADD instruction ends the loop because
it is the first mnemonic in the OPREC table. 1Its entry
number is zero. x/

END;

/% Procedure to change the prompt on reads from the
terminal. The prompt string is expected to be passed
as a parameter to this procedure. =/

PROMPT: PROC(DIS);
DCL DIS CHAR(20);
DCL DAT CHAR(Z20) STATIC;
DCL SI1Z SBIN STATIC;
#FPT_PROMPT(FPTN=DOIT,DCB=M$UC ,PROMPT=DAT);
CALL INDEX (S1Z,':',DIS);
DAT = SUBSTR(DIS,0,S1Z+1);
CALL M$PROMPT(DOIT);
RETURN;
END PROMPT;

END EXAMPLE;

XP03-00

A-3



EX_WITH_FOR:  PROC MAIN;

/* This program does a linear search of a file whose

name is read from the terminal. The file is in the form
of a symbol table with mnemonic, opcode and type. The
file is read in before the search begins. The prompt is
changed for each bit of information that is requested from
the terminal. The tile is opened, read, and closed

using FORTRAN subroutines. =%/

DCL 1 OPREC (0:400) STATIC,

2 MNE CHAR(6), /* Mnemonic for instruction %/
2 OPCODE UBIN, /* Opcode for instruction %/
2 1TYPE UBIN; /* Type for instruction %/

DCL HOLD STATIC CHAR(6);

DCL NFOUND CHAR(9) CONSTANT INIT('NOT FOUND'):;

DCL N SBIN; /* number of records */

DCL FINI SBIN; /* end of input Line »/

DCL LOOK STATIC SBIN INIT(-1); /* trial location x/
DCL RDTTY ENTRY(1);

DCL WRITELN ENTRY(4);

DCL OPENF ENTRY;

DCL RDFILE ENTRY (4&);

DCL CLOSEF ENTRY;

DCL XFF_7INITL ENTRY CONV(0) ALTRET;

DCL EOF SBIN STATIC INIT(O); /~ end of file indicator %/

/* Set the prompt and read in the file name.
Then, open the file with the subroutine. =/

CALL XFF_7INITL; /* Initialize FORTRAN routines x/
CALL PROMPT('Enter file name: ');

CALL OPENF;

/* Read in all the records of the file and keep track of

how many there were in N. Each record part is moved to the
appropriate place in OPREC. x/

N=-1;

/* N counts the number of records in the file. »/

DO WHILE (EOF=0);

N=N4+ 1;
CALL RDFILE(OPREC.MNE(N),OPREC.OPCODE(N) , OPREC.ITYPE(N) EOF);
END;

CALL CLOSEF;

A-4 XP03-00



/*= Change the prompt and loop through getting instruction
names to Look up */

CALL PROMPT ('Enter mnemonic: ');
DO WHILE (FINI > O AND LOOK ~= 0);
CALL RDTTY(HOLD);
LOOK = O;

/x Search through the entries and print a response whether found
or not x/

DO WHILE (OPREC.MNE(LOOK) ~= HOLD AND LOOK < N);
LOOK = LOOK + 1;
END;
IF OPREC.MNE(LOOK) = HOLD THEN
CALL WRITELN(OPREC.OPCODE(LOOK),0,0PREC.ITYPE(LOOK),0);
ELSE CALL WRITELN(O,NFOUND,0,1);

/= A search for an ADD instruction ends the lLoop because
it is the first mnemonic in the OPREC table. 1Its entry
number is zero. */

END;

/* Procedure to change the prompt on reads from the
terminal. The prompt string is expected to be passed
as a parameter to this procedure. =*/

PROMPT: PROC(DIS);
DCL DIS CHAR(20);
DCL DAT CHAR(20) STATIC;
DCL SIZ SBIN STATIC;
%INCLUDE CP_6;
%FPT_PROMPT(FPTN=D0OIT,DCB=MSUC,PROMPT=DAT);
CALL INDEX (SI1Z,':',DIS);
DAT = SUBSTR(DIS,0,S51Z+1);
CALL MSPROMPT(DOIT);
RETURN;
END PROMPT;

END EX_WITH_FOR;

XP03-00

A-5



o

31

OO0

21

19

P

o

20

aNeNeNal

A-6

Subroutine to open the tile

SUBROUTINE OPENF
CHARACTER*30 FNAME

READ 31, FNAME

FORMAT (A30)
OPEN(UNIT=10,FILE=FNAME)
RETURN

END

Subroutine to read a record from the file
STATUS is set negative on end of file.

SUBROUTINE RDFILE(MNE,OP,TYPE,STATUS);
INTEGER STATUS, OP, TYPE

CHARACTER*6 MNE

STATUS = 0

READ (10,21,END=19) MNE, OP, TYPE
FORMAT(A6,1X,13,1X,11)

RETURN

STATUS = -1

RETURN

END

Subroutine to close the file

SUBROUTINE CLOSEF
CLOSE(10)

RETURN

END

Subroutine to read a mnemonic from the terminal

SUBROUTINE RDTTY(COM)
CHARACTER*6 COM

READ 20, COM
FORMAT(A6)

RETURN

END

Subroutine to print the results

IND indicates whether to print MSG or CODE and TYPE

SUBROUTINE WRITELN(CODE,MSG,TYPE,IND)
CHARACTER*9 MSG

INTEGER CODE, TYPE, IND

IF (IND .EQ. 0O) THEN



PRINT 20, CODE, TYPE
20 FORMAT(' The ¢
ELSE
PRINT 21, MSG
21 FORMAT(* ',A9/)
ENDIF
RETURN

XP03-00

ode is ',13,' The type is ',11/)

A-7



Appendix B

PL-6 Reserved

ADDR
ALIGNED
ALTRET
ALTRETURN
AND
AREADEF
AREAREF
ASCBIN
ASCBIT
ASYNC
AUTO
AVOID

BASED
BINASC

DINRBTT
PBiAND4L T

BINCHAR
BINXCHAR
BIT
BITASC
BITBIN
BITDSCR
BITVECT
BY

BYTE

CALIGNED
CALL
CASE
CHAR
CHARBIN
CONCAT
CONSTANT
CONV
CPTR
CSTARTx*

xThese keywords are not

DALIGNED
DBASE
DBOUND
bCB
DCBADDR
DCBNUM
DCL

D0
DOMAIN
DOWNTO
DSCR
DSTART=*
DTYPE

EDITCHAR

EDITSTR

EDITXCHAR
ELSE
END
ENTADDR
ENTRY
EPTR
ERASE
ESTARTx
EXIT
EXT
EXTROOT

FOR
GOTO
HALF

HALIGNED
HSTART*

the near future.

XP03-00

part of PL-6 yet; but they will probably be adopted in

Keywords
IF PALIGND
IN PALIGNW
INDEX PINCRB
INDEX1 PINCRC
INDEX 1R PINCRW
INDEX2 POFFC
INDEXZR POFFW
INHIBIT PRIVY
INIT PROC
INSERT PSTART %
PTR
LENGTHB
LENGTHC READONLY
LENGTHV REDEF
LENGTHW REMEMBER
RETURN
MAIN
MATERIALIZE SBIN
MAXIMUM SEARCH
MINIMUM SEARCHR
MOD SELECT
SIZEB
NIL SIZEC
NOAUTO SIZEV
NOT SIZEW
SPOIL
OFF STATIC
ON SUBSTR
OPTIONAL SYMDEF
OR SYMREF
THEN
TO
THRU=*

UBIN

UNAL
UNINHIBIT
UNTIL
UNWIND
USE

VBASE
VBOUND
VFLAGS
VECTOR
VTYPE

WALIGNED
WHENALTRETURN

UUENRETHQN

wil [ S

WHILE
WORD
WSTARTx

XCHARBIN
XLATE
XLATE_6_TO_9
XLATE_9_TO_6

$PR5
$PR6
$PR7
$X5
$X6
$X7



Index

Assignment Statements - 1-6

Based Data Structures - 1-5

Basic Forms - 1-1

Braces - viii

Brackets - viiji

Built-in Functions and Subroutines - 1-11

Capital Letters - vii
Control Statements - 1-7

Declarations - 1-2

Horizontal ELLlipsis - ix

Input and Qutput - 1-14

OR Bar - viii

XP03-00



Procedure Related Statements - 1-9

Scope of Variables - 1-10
Special Characters - vii

Vertical ELLipsis - ix

i-2

XP03-00



	001
	002
	003
	005
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	I-01
	I-02

