Lo

i @ 2 g

{

- H632 General Purpose Digital Computer System

Honeywell

(lac) COMPUTER CONTROL

DIVISION

NOILdI4530 40SS320Ud THYINTD



H632
CENTRAL PROCESSOR
DESCRIPTION

November 1968

Honeywell

COMPUTER CONTROL

DIVISION

Doc. No. 130071963A
M-383



COPYRIGHT 1968, by Honeywell Inc., Computer Control Division
Framingham, Massachusetts. Contents of this publication may not
be reproduced in any form in whole or in part, without permission
of the copyright owner. All rights reserved.

Printed in U.S.A.

Published by the Publications Department,
Honeywell Inc. Computer Control Division



CONTENTS

SECTION 1
INTRODUCTION
Scope of Manual
Applicable Documents
Functional Description
SECTION 1I

GENERAL DESCRIPTION

Machine Structure

Registers and L.ogic Networks

Logic Domains

Control Gating and Data Flow/Cycle Phase
Sequencing and Control

Logic Elements

Normal CP Operating Sequence
CP Interfaces

MPC Interface

Memory Interface

Control Panel and Power Control Interconnections

Cable PACs

SECTION III
DETAILED THEORY

Start-Stop, Timing and Control Logic

System Initialize

CP Initialize

Start-Stop Logic

Timing Oscillator and Clock Distribution

Timing Level Generator

Interrupt Register and Control

Trap Control Logic
Memory Interface

Interface Signals and Cabling

CP/MAD/IOP/Memory Handshake

System Initialize and Startup

Cycle Initiate Logic

IOP Break-In

CP Inactive (Cycle Request Removed)

Panel Halts

iii

2-1
2-1
2-6
2-8
2-8
2-8
2-15
2-20
2-21
2-21
2-25
2-25

3-1

3-1

3-7

3-7

3-13
3-13
3-16
3-18
3-20
3-23
3-23
3-26
3-29
3-30
3-33
3-33



CONTENTS (Cont)

Look-Ahead

Principles of Operation

Detailed Theory of Operation

Instruction Counter

Loading RP
Up-Counter Algorithm

Cycle Counter

Structure

Theory

Shift Network

Adder

Input Selection
One-Place Shift Gates
Four-Place Shift Gates
Sixteen-Place Shifting
Unshifted Data Transfers
Shifting Example

Summands and Summand Selection
Results

Method of Implementation
Skip-Carry Network

Adder Structure

Console Control and Display Panels

Address/Data Entry Switches
Address Halt Keys

Sense Keys

Execute and Maintenance Control Switches

Display Select Switches

Direct-Wired Status and Display Labeling

Lamp Drivers and Display Selection

Control Panel Power Switching

MPC Interconnections

iv



ILLUSTRATIONS

Typical Series 32 General Purpose Computer System

Central Processor Block Diagram

Typical Control Logic Structure: Logic Domains

Control Gating Development and Data Flow in Each Logic Cycle Phase
Sequencing and Control Logic Block Diagram

Simplified Central Processor Timing Signals

Central Processor Sequence of Operations

Central Processor Interface Connection Summary

Cable PAC Applications (2 Parts)

Time Sharing of Execution Functions with Sequencing and Control Functions
System Initialize and Central Processor Initialize Flow Chart
Start-Stop Logic Flow Chart

Clock Oscillator Timing

Timing Level Generator Signals During Access (Example)

Interrupt Control Flow Chart

Trap Control Flow Chart

Memory Interface Signals

Overall Memory Interface Timing -- Read Cycle

CP Logic Functions Related to Memory Cycles

Memory Interface Logic Signals During System Initialize and Startup
Memory Interface Logic Signals (Write Cycle)

Memory Interface Logic Signals During IOP Break-In

Memory Interface Logic Signals During Central Processor Inactive
Condition

Memory Interface Logic Signals During Panel Halt
Instruction Processing Cycle Alternation

Cycle Entry Decisions

Memory Address Switching Principles

Timing for TIC, TSP and TIP Look-Ahead Controls
Memory Address Switching Details

Instruction Counter Operation

Shift Network Block Diagram

One-Place Shift Gates (Typical)

Four-Place Shift Gates (Typical)

Sixteen-Place Shift Patterns

Shifting Example: 21-Place Right or 43-Place Left Rotation
Typical Adder Stage Block Diagram

Final Carry Signals Block Diagram

Adder Structure

Console Data Distribution

Page

1-3
2-3
2-7
2-9
2-11
2-14
2-17
2-23
2-26
3.3
3-5
3-9
3-14
3-15
317
3-19
3-21
3.24
3-26
3-27
3-30
3-31
3-35

3-37
3-39
3-41
3-44
3-46
3-47
3-51
3-54
3-55
3-56
3-57
3-58
3-61
3-63
3-67
3-69



TABLES

Page

1-1 Standard H632 Documentation 1-2
2-1 CP Start/Stop Condition Summary 2-21
3-1 Trap Condition Table Entries 3-20
3-2 Adder Inputs and Definitions 3-59
3-3 Truth Table for SSPN and SCPN 3-61
3-4 Truth Table for SPRN, SPON, SPlN and SPZN 3-62
3-5 Truth Table for Stage 25 Type - Final Carry Generation Where Carry = 3-63

(SCYN) \% (SPZN)
3-6 Truth Table for Stage 27 Type Carry Generation Where Carry - 3-63

(SCYN) A (~SP0N)
3-7  Truth Table for Stage 28 Type Final Sum Generation 3-64
3-8 Truth Table for Stage 27 Type Final Sum Generation 3-64
3-9 Truth Table for Stage 26 Type Final Sum Generation 3-65
3-10 Truth Table for Stage 25 Type Final Sum Generation 3-65
3-11 Display Lamp Driver Input Summary 3-71



SECTION I
INTRODUC TION

SCOPE OF MANUAL

Technical information on the H632 Central Processor appears in this manual and in

the following two companion volumes:

a. H632 Central Processor Instructions (Flow charts and analyses of all instruc-
tions and control algorithm, and mnemonic glossary).
b. H632 Central Processor Diagrams (Logic and power distribution diagrams,

PAC layout drawings, and mechanical coding diagrams).

This manual emphasizes the hardware implementation of H632 Central Processor functions
described from a general operational viewpoint in the H632 Reference Manual. The main
CP logic elements are discussed on a block-diagram basis, and unusual or complex logic
structures, such as the adder, are described in detail. While all the H632 CP data-
processing instructions and algorithms are analyzed by flow charts and analysis tables in
the Central Processor Instructions manual, this manual provides additional detail on the
sequencing and control functions that operate in addition to, and simultaneously with, the
actual data-processing algorithms. These functions include power turn-on; system and CP
initializing; panel start-stop and control of operating mode; interface synchronization of the
CP, Memory Access Director (MAD), Multiprocess Controller (MPC), I/O Processor

(IOP), and the memory system, and instruction overlap.

APPLICABLE DOCUMENTS

- All manuals provided as standard documentation with each Series 32 Digital Computer
System are listed in Table 1-1. Additional copies of any manual in Table 1-1 may be
obtained by contacting a local Honeywell Inc., Computer Control Division representative or
by writing directly to:

Honeywell Inc.
Computer Control Division

Old Connecticut Path \
Framingham, Massachusetts 01701



Table 1-1.
Standard H632 Documentation

Title Doc. No.

System Manuals

H632 Reference Manual 130071960
H632 Operator's Manual 130071967
H632 Modular Products Manual Vol. I 130071974
H632 Modular Products Manual Vol. 1I 130072932

Systemm Component Manuals

H632 Central Processor Instructions 130071962
H632 Central Processor Diagrams 130071968
H632 Memory Access Director 130072037
H632 Multiprocess Controller 130072042

FUNCTIONAL DESCRIPTION (Figure 1-1)

The Central Processor (CP) is a 32-bit general-purpose, stored-program digital
computer. It performs all of the Series 32 system computation (arithmetic and logic) and
data-processing functions, exclusive of input/output transfers (direct CP input/output
capability is optional).

The CP has the standard capability of processing eight levels of programming, each
level having an assigned priority, The MPC specifies which level the CP is to be acting
upon. The CP is equipped (as is the IOP) with a control process order which it delivers to
the MPC, The control process order requests the MPC to affect a change of state in the
CP process which issued the order and/or another CP or IOP process. Thus, the CP has
the capability of affecting the activity state of any of the system processes.

Transfers between memory and input/output devices are, as a rule, performed by
the IOP into and out of a processor port shared by the CP and IOP. Thus, the CP can be

devoted to purely computation tasks.

1-2



DEVICES

r-=-1
1 ]
—
¥
DEVICE "';--
CONTROLLERS
____________ —d
10P BUS
MPC |OP
MEMORY
BANK
CP MAD MEMORY PORTS
PROCESSOR
PORTS
OTHER
PROCESSOR MEMORY
PAIRS ™ BANK
5153
Figure 1-1. Typical Series 32 General Purpose Computer System

1-3



SECTION 11
GENERAL DESCRIPTION

MACHINE STRUCTURE

Registers and Logic Networks (See Figure 2-1.)

Addressable Registers. -- There are 16 32-bit general registers, designated RO

through RF (second character is hexadecimal). The general registers can be accessed by the
instruction word address field when the effective address is equal to or less than Flé’ or
by the instruction word R-field. The general registers can be used as operand and result
locations. Registers R1 through R7 can also be specified by the instruction word X-field and
serve as index registers.

Inputs to the general registers are from the adder or the RG or RT register. The

contents of the general registers are gated out to the U and V shift network.

Auxiliary Registers. -- The auxiliary registers supply operands to the logic networks

({the U and V shift network and the adder) and are used to retain partial results.

Register RG is a 36-bit register. Some of its functions are as follows. It retains
augend, minuend, product, or dividend/remainder in arithmetic operations. It provides
address storage during control panel operations and buffer storage during the direct read
operation (optional). The main input path to RG is via the U and V shift network. The RG
register output is hardwired (ungated) to the adder. The contents of RG can be gated to
any one of the general registers.

Register RH is a 36-bit register. Some of its functions are as follows. It retains
addend, subtrahend, multiplicand, or divisor in arithmetic operations. It also provides
data storage during control panel operation. The input path to RH is via the U and V shift
network. The contents of RH can be gated only to the adder.

Register RQ is a 33-bit register. RQ holds the multiplier or divisor during multi-
plication or division. RQ is used at various times to inject zeros into the U and V shift
network. The input path to RQ is from the RT register. The contents of RQ can be gated
to the U and V shift network.

'~ Register RT is a 33-bit register. Generally, RT serves as temporary storage for
intermediate results. It also is used as a buffer during the optional direct write operation.
The input path to RT is via the shift network. The contents of RT can be gated to any

general register or the RQ register.



RM

RO
THROUGH

P am— <
C
7]

RF

RQ

UsX
15
10
VSX
VS

31

U-NET

V-NET

33RD BIT ONLY

(33)

RP

32-63

)
ey
A
~

RK

RL

\

NOTE: 32 BITS/BLOCK
5052 EXCEPT AS NOTED

o MEMORY
ADDRESS

RI EXECUTE
> 42— 14 |RIP
(14) CONTROL
RJ SEQUENCE |  MEMORY
V1,00,MM
(14) RIG CONTROL | DATA READ RM
RG
UXX (36)
UNGATED
RO
S
Sum THROUGH
(36)
RF
VXX RH +8H
» L
(36) +4H p
RT
—»{ (33)
+2H
P
RP tH RQ
04-30 | B > (33)
INCREMENT ] RP
: ] 32-63
|
' Y :
| RK
I
I i >
RL
A-PHASE —®&—— B.PHASE MEMORY
DATA WRITE

Figure 2-1. Central Processor
Block Diagram




Memory Interface Registers, -- There are three memory interface registers: RM,

RK, and RL. Register RM is a 32-bit register for holding data received from memory.
The input to RM is from memory. The contents of RM are gated to the U and V shift
network.

The RK and RL registers are 32 bits each. The RK register holds the
addresses for the I-sequence, and RL holds the addresses for the J-sequence (the I
and J sequences are explained in the paragraph on Look-Ahead). The input path to either
RK or RL is via theRP04_>30

gated to the memory address lines and to the V shift network.

register or the adder. The contents of either RK or RL are

Instruction Registers, -- There are two 14-bit instruction registers, RI and RJ,

belonging to the I and J sequences, respectively, Bits 4-7 hold the instruction R-field,
which is used to specify one of the general registers. Bits 8 through 14 hold the 2-digit
hexadecimal operation code, Bit 0 holds the flag indicator, Bit VI holds the validity
indicator. Bit MM is a specialized indicator set by a certain group of instructions. Bits 0,
VI, and MM are used as look-ahead controls and are explained in the paragraph on Look-
Ahead. The input path to RI or RJ is via the input level of the U and V shift network. The
contents of RI or RJ are delivered to various control areas under control of the look-ahead

logic.

Program Status Registers. -- There are two program status registers which dynam-

ically retain the status of the program currently being processed by the CP. These registers

are designated RP and RP The RP register is a double-rank register

0430 32-63° 0430
containing the memory address of the next instruction. The RP32_>63register retains

the following data:

a. Bits 32 and 33 - Condition code, an indication of the result of a comparison
operation,
b. Bit 35 - Floating-point normalize mask. When set, inhibits normalization of

addition, subtraction, and difference results.

c. Bit 36 - Floating-point underflow mask, When set, enables entry to trap
algorithm upon sensing underflow condition during floating-point operations.

d. Bit 37 - Floating-point overflow mask, When set, enables entry to trap
algorithm upon sensing overflow condition during floating-point operations.

e. Bit 38 - Fixed-point halfword overflow mask, When set, enables entry to
trap algorithm upon sensing a halfword overflow condition.

f. Bit 39 - Fixed-point word overflow mask. When set, enables entry to trap
algorithm upon sensing a word overflow condition,

g. Bits 42-45 - Sense switch flip-flops. Used to suppress sense switch contact

bounce.



Logic Networks. -- The U and V shift network and the adder are the two logic net-

works for performing arithmetic, shift, and logic operations on the CP data. Most data
transfers from one register to another are via the shift network or adder.

The U and V shift network is 64 bits long and is made up of several layers, or levels,
Each level is capable of performing a shift of a certain number of places. The shift net-
work always shifts right and is capable of rotating a doubleword operand 0 through 63 places.
The high-order 32 bits of the shift network are designated U, and the low-order 32 bits are
designated V,

The adder has 36 stages numbered in order of significance as follows: 60 through 63
and 00 through 31. The adder has a skip-carry or carry-anticipation feature. The RG
register is hardwired to the adder, The other data paths to the adder are designated Sl and
S4, The adder performs addition and subtraction, The exclusive-OR function is performed
by suppressing adder carries.

NdTE
The inclusive-OR and AND logical functions are

performed by algorithm manipulations which are
illustrated in the algorithm flow charts.

Logic Domains

Figure 2-2 shows the structure of the basic CP control logic domains and their rela-
tionship to each other, Note that the letter assigned to each domain is the first character
of all mnemonics in that domain,

The K-domain consists of variable gating structures used to develop the various keying
conditions (such as overflow) required by the A-domain,

The A-domain consists of AND gates used for developing control minterms. The
inputs to the A-domain are primarily from the decoders (operation code, R-field, X-field),
the timing level generator logic, the K-domain, and the R-domain., Basically, an A-domain
gate is selected by an operation code and a specific time (or cycle phase).

The C-domain develops the actual control signals used to gate data into the R-domain
registers, Generally, the C-domain structure is as follows. The first level of C-domain
gates function as OR gates receiving inputs from the A-domain. The OR-gate output enables
a particular AND gate which has a timing requirement; i.e., a set or clear pulse of
phase A or B, If the AND gate has a clearing function, its output is sent directly to the
R-domain, If the AND gate has a setting function, it is inverted to an assertion signal and
then sent to the R-domain.

The R-domain consists of register stages and input gates. Generally, data is ANDed

with a C-domain control to set a register stage.

NOTE

The flow charts in the H632 Central Processor
Instruction Manual illustrate events in the first level
of C-domain gates (OR gates). The flow chart anal-
ysis tables specify which A-domain signal and function
(gate) enabled the C-domain OR gate.

2-6



! | K-DOMAIN

INPUTS FROM: TL,D, R, K, ETC.

\j/ A-DOMAIN

C-DOMAIN

A
TPS B X+

TPCAX+ — o——-——l [—TPCQX+

czp Q{z?-y

DATA+

R-DOMAIN

5154

Figure 2-2. Typical Control Logic Structure: Logic Domains



Control Gating and Data Flow/Cycle Phase

Figures 2-1 and 2-3 show the data flow during the two phases of each logic cycle.
During phase A, data is transferred through (and possibly manipulated by) the U and V shift
network and then gated into one of the auxiliary registers. If the cycle is a fetch cycle, the
instruction is transferred into the proper instruction register at this time.

In phase B, the contents of the appropriate auxiliary register (or registers) are gated
into the adder, and the adder output, or result, is gated into an appropriate register or

presented to the memory data lines.
SEQUENCING AND CONTROL

Logic Elements

The logic domains described previously perform the data transfer operations that
execute all CP algorithms. In addition, sequencing and control logic provides the timing
signals and conditional control signals that determine the CP operating sequence from
algorithm to algorithm. Figure 2-4 is a simplified block diagram showing the sequencing
and control logic structures and the main logic signals used for communication between

them.

Panel Functions. -- The panel functions control initializing, startup, panel-directed

halts, and the algorithms associated with the panel (access, fill, transfer).

IAF Register and Interrupt Control. -- The interrupt (LAF) register stores the

current process level code and compares it to the code on the MPCs IDL lines. When the
codes differ, an interrupt algorithm is set up. During the interrupt, the new code is trans-
ferred from IDL to IAF. The code in the IAF register, both before and after updating, is
applied to RKL, to specify dedicated program stateword locations. When the interrupt is

to an inactive process level, the memory request is cleared, and the CP enters the inactive

condition. When the MPC supplies a new, valid code, the memory request is set; another

interrupt restores active operation.

Memory Interface Control. -- When the CP memory request is setand MAD is grant-

ing the CP the next memory cycle, MAD responds with address select, and the CP generates

cycle initiate, starting the memory cycle. Memory busy synchronizes events in MAD.

During consecutive memory cycles, the CP waits for the trailing edge of read data select

before enabling the next set of CP clock pulses. The A-phase clock pulse triggers
cycle initiate for the next memory cycle.
When an interrupt brings the inactive process level code into the IAF register, the

memory request is cleared. Since MAD does not return an address select, the CP cannot

generate cycle initiate. MAD also withholds read data select, so the CP clock is not

started. This suspension of operation is the '""CP inactive'' condition. In this state the CP

requests memory cycles only when a fetch or store operation is initiated at the panel.



SI1SS

REGISTER
DATA

LEVEL
CONTROL

UAND YV
SHIFT
NETWORK

DATA

o | TL-AF

DATA FLOW IN PHASE A
OF LOGIC CYCLE

Figure 2-3.

REGISTER
DATA

LEVEL
CONTROL

ADDER

DATA

TL-BF

Control Gating Development and Data Flow
in Each Logic Cycle Phase

TPCBX
czp

DATA FLOW IN PHASE B
OF LOGIC CYCLE

2-9



SYSTEM INITIALIZE

¢ T I
CP INITIALIZE '
*- INITIALIZES
PANEL INTERNAL
CP CONTROL
INTERRUPT OLS
ENABLE r 07.00 THRU 07.30
RUN
PANEL oo
ESS
ALGORITHM FETCH OR
CONTROL gq 40 STORE
CLOCK PULSES
ACCESS |  SET DISTRIBUTED THROUGHOUT CP
FILL TL1
TRANSFER 4
RE - _
INTERRUPT TIMING LEVEL CLOCK CLOCK e AD DATA SELECT [_ MEMO ]
P RY
GENERATOR GENERATOR AND | TPRUN START/ MEMORY REQUEST I
TRAP > 00.60 DISTRIBUTION STOP . ACCESS |
¥y _ _¥ - 00.62 00.56 00.40 | DIRECTOR
[ | [ ADDRESS SELECT | (MaD) |
| | L 3X.XX
r _ XXX
CONTROLLER | AND INTERRUPT I MEMORY | MEMORY
| (MPC) | o IAF INACTIVE (CLEAR) | REQUEST ' BUSY
| | 06.72 | .
SET ” — —
| AXXX | INHIBIT TLF, MSAFF, MSTJA CYCLE CYCLE INITIATE [ ]
- INTERRUPT TL, NITIATE >
TLD | | |
CIL CODE TRAP ALGORITHM | MEMORY |
PRO((l'ENS-SI::ELRET/L:EL) CONTROL [ CONTROL ] | BANK
06.60 ‘ |
WRITE | | WRITE |
| IR AR OF COMMAND i |
l GROUP NO.} MEMORY INTERFACE CONTROL 00.50
o RKL AND TICAF LOOKAHEAD
5150 WA GATING |, LIARK CONTROL
- : 00.50 06.50
ADDER 04.72 (TYP) 00.60 06.52
RK RL MAT RKL Figure 2-4. Sequencing and Control Logic

Block Diagram



When MAD is giving memory cycles to the other processor, the CP does not receive

address select, and so cannot generate cycle initiate. These brief suspensions of

operation (one to five consecutive cycles) are the '""'memory wait'" condition.

Clock and Timing Level Generator. -- The basic system timing signals are illustrated

in Figure 2-5. After each memory cycle, a set of timing pulses (TPCA, TPSA, etc.) is
produced by the timing oscillator. The timing pulses gate signals to and from the CP
registers and also control the timing level generator.

During each set of timing pulses, one timing level is in effect in the timing level gen-
erator. Timing levels are generated in A and B pairs: TLFA-TLFB, TL1A-TL1B, etc.
The timing levels enable data gating paths in the A-domain according to the requirements of
the algorithm in effect. The timing pulses are applied in the C-domain to actually gate the
data to the destination. Phase A timing pulses (TPCA, TPSA) gate data through paths
enabled by phase A levels (TLFA, TL1A). Similarly, phase B pulses gate data transfers
enabled by phase B levels. In general, TPS pulses perform register setting actions, while
the shorter TPC pulses are used for clearing. During each TPSA pulse, the next B-phase

timing level is set. During TPSB, the next A-phase timing level is set.

Look-Ahead Control. -- When the CP is in the normal run condition, the sequencing

of timing levels is under control of the look-ahead logic, except during the execution phase
of an algorithm, when the algorithm itself specifies which execute cycle to enter.

The look-ahead feature permits the concurrent fetch and effective address formation
of two sequential instructions. Figure 2-5 illustrates a typical example of a cycle sequence
under look-ahead control. The two instructions are each assigned to a sequence (I or J),
and each sequence has its own address and instruction register. Figure 2-5 shows a fetch
cycle for the I-sequence instruction, followed by a fetch cycle for the J-sequence. Assum-
ing there is no indirect addressing required, the I-sequence enters its execute phase of one
or more execute cycles. After the I-sequence instruction is executed, the J-sequence is
executed. Generally, the look-ahead feature provides for maximum use of memory. It
includes control for cycle entry, gating to and from the instruction and address registers,

and guarding against possible conflicts between the two instructions being processed.

Trap Control. -- The trap control logic conditions the timing level generator to set
up the trap algorithm when errors are detected after certain arithmetic instructions, or
when an unimplemented instruction is fetched. A code is generated which specifies a group
number appropriate to the type of trap in effect. The trap group number is used to address
a dedicated location during the trap algorithm. Interrupts are inhibited until an arithmetic

trap condition has been processed.

RKL and MA Gating. -- This logic selects and distributes memory addresses for the

I and J sequences, under control of the look-ahead logic. The CIL and CIK codes specify

dedicated memory locations during traps and interrupts.



READ
DATA SELECT

TIMING
OSCILLATOR
PULSES

TLFA

TLFB
TL1A

TLI1B
|
SEQUENCE

J
SEQUENCE
5157

TPCA

TPSA

TPCB

TPSB

Figure 2-5.

TL1A |

I TL1B

TLFA | |
| TLFB ]
[ TLFA 1
| TLFB |

Simplified Central Processor Timing Signals



Normal CP Operating Sequence

The normal sequence of events from power-on through continuous operation, and the

entry points to the CP inactive, memory wait, and panel halt conditions are illustrated in

Figure 2-6.

System Initialize. -- Turning the POWER control switch to ON starts the primary

power sequence which energizes the system dc power supplies. During the power-on
sequence, a time delay relay simulates action of the SYSTEM INITIALIZE button for about

a second. In the system initialized state, the CP is prepared to enter the fill mode and is in
both a panel halt and the CP inactive condition. (This condition can be reinstated at any
time by pressing the SYSTEM INITIALIZE button.) System initialize also transfers a code
from the DEVICE SELECT switches on the panel to the RH register. The code specifies

the input device that will supply the load program.

Fill Start. -- The CP is prepared to enter the fill (LOAD) algorithm as soon as the
START button is pressed. The fill algorithm writes fill order commands in memory loca-
tions dedicated to IOP channel 6, and generates the MPC fill strobe which causes the MPC
to start IOP channel 6 sequencing.

Immediately after the fill algorithm, because the MPC IDL code is the inactive code
and the IAF register is cleared, the CP enters an interrupt. The only significant effect of
this interrupt is to transfer the inactive code to the IAF register and clear the memory
request. The CP then waits in the inactive condition. If the IOP bootstrap program so
specifies, the MPC assigns a new and active CP process level by changing the IDL code.

The resulting interrupt starts the CP running at the new process level.

CP Initialize Start. -- If the fill operation is not required, the CP INITIALIZE button

is pressed. This clears the fill mode and causes the MPC to place the code for CP process

level 0 on the IDL lines. When the START button is pressed, the CP interrupts to process

level 0 and starts running.

Continuous Running, -- After a start, in the RUN mode, the CP runs continuously,

fetching and executing instructions at the process level specified by the IAF register. The
memory request remains set as long as the code in IAF is valid. If MAD is granting mem-
ory cycles to the CP, the CP initiates the next memory cycle, executes the current timing
level of the algorithm in effect, and sets up the next timing level. Instruction execution

continues until there is a tré,p or interrupt, or until a panel operation causes a halt. After

an interrupt to an invalid process level, the CP enters the inactive condition,

Memory Wait. -- Even though the IAF code is valid and the CP is generating cycle

request, operation may be suspended because MAD is giving memory cycles to a processor
of higher priority. This appears to the CP as a withholding of address select and read

data select. Once the other processor has released MAD, the waiting CP memory request



SYSTEM INITIALIZE

DEVICE SELECT

SWITCHES SET SYMBOLS:
UP FOR DESIRED .
FILL DEVICE FILL START (LOAD) CP INITIALIZE START RUN CONDITION l PANEL HALT AND STARTUP
| | I I OPERATOR
ACT
| l I STOP CLOCK 'oN
TURN FILL N MEMORY | —>  INCURRENT
POWER ON | WANTED? | READY? TIMING LEVEL
VEMORY EMOTY [ PROCESSOR
| | PRESS CP I RE?;TEST WAIT ACTION
INITIALIZE EXECUTE ONE ‘ CONDITION l
POWER-ON | | I TIMING LEVEL 3
SEQUENCING OF ALGORITHM | ] 3 A | PANEL PROCESSOR
BEGINS l FILLMODE l IN EFFECT H INADC;TTII\{)E\: (STARTUP FROM PANEL) o HALT STATE
| gl f-———"—————-7 11— B CONDITION
l I DISABLED i |
——— | I L 1 I |
- -
SYSTEM (~ PREss @‘l | l ALGORITHM ADDRESS v ! |
INITIALIZE  |e—|  SYSTEM I | PRESS | SETS UP NEXT HALT OR SCY? f | | | ALGORTTIW
GENERATED { INTIALIZE J START l MPC: TIMING LEVEL : STEP RUN I ACCESS ENTRY
—— I PUTS CODE FOR | | l | it | oA
| |processLeveLo | I ! RY OF
i ENTER ON IDL LINES END OF I l L SELECT L SELECT ALGORITHM
MPC: | FILL ALGORITHM I | ALGORITHM? | ACCESS ACCESS FUNCTIONS
cp: DELIVERING | | N~
SET UP FOR INVALID CODE WRITES FILL ORDER I | !
COMMAND IN |
FILL MODE ON IDL LINES PRESS ARITHMETIC | |
|AF REGISTER LOCATIONS 38 AND 3A | TRAP?
CLEARED START ! | UNIMPLEMENTED
| " | INSTRUCTION I
PANEL HALT GENERATES MPC |
AND INACTIVE l ¥ SELECT SELECT (ACCESS FETCH) (ACCESS STORE)
CONDITION FILL STROBE ENTER | STEP RUN 4 i
BOTH IN EFFECT | (ISFLL) TRAP ALGORITHM
| INSERT NEW INSERT STORAGE
| STARTING INSERT STORAGE ADDRESS IN RG,
_l___ MPC: | STORE LINKAGE DATA | ADDRESS ADDRESS IN RG DATA TO BE
POWER SWITCH | STARTS 10P IN DEDICATED LOCATION IN RG STORED IN RH
AT UNLOCK | CHANNEL 6 ENTER APPROPRIATE I
ALL PANEL EQUENCING
ALLPANEL s |AF £ 1DL | TRAP PROCESSING PRESS
CENTER i ROUTINE START
POSITION IAF=0
IDL = LEVELOCODE | |
T '
3 l IAF # IDL L |
t RELOAD IDL = INACTIVE CODE |
STATE t IAF = 0 po !
Y /7 INTERRUPT
MEMORY | )
I IAF # 1DL \___REQUIRED? ENTER SELECT RUN
1) ENTRY FROM ANY OTHER CP REQUEST N INTERRUPT ALGORITHM OR STEP
STATE IS POSSIBLE I
(@) operaTiON OF SWITCH SETS STORE CURRENT
MEMORY REQUEST
I (STEP OR RUN MODE, STATEWORD
\ 1
(®) see FLOWCHART A INTERRUPT \y = MAINT, SWITCHES NEUTRAL) F:F <ibL PRESS PRESS PRESS
IN TCH NEW
MA':JﬁgLCP INSTRUCTIONS ENABLED? SETCH NEW TRANSFER k FETCH STORE
l , L y | ENTER TRANSFER ENiER ENTER
K
| seruprirst @ 1k, 1ip STOP CLOC ALGORITHM ACCESS FETCH ACCESS STORE
: IN TL1(STEP) i ALGORITHM _| ALGORITHM
TIMING LEVEL OF OR TLD (ACCESS) ‘ RLK<« {RG) — 1
NEXT ALGORITHM INHIBIT B AKL+ (RG)+2 RKL «(RG) RKL< (RG)
u ACTIVE CP LEVEL? MEMORY . ; RP « (RG) +2 RH<+ [RKL] [RKL}- (RH)
REQUEST
T Y
1AF < 60
TAF CODE
(PROCESS | ACTIVE
N LEVEL 0)
5158 -

; Figure 2-6. Central Processor Sequence of
Operations



is recognized and both address select and read data select are restored to normal operation.
The CP resumes continuous running. A memory wait condition is possible before each clock
cycle of the trap, interrupt, and panel algorithms, as well as the CP execution algorithms.
When the IOP breaks in, the CP is held up in a memory wait for from three to six
memory cycles; the IOP then releases control to the CP for at least one cycle.
When a memory wait occurs because the CP has removed its cycle request (CP
inactive condition), operation stops until a change in the IDL code from the MPC causes an

interrupt or the operator causes a panel start.

Address Halt and SCY Halt. --During every timing level, if an address halt is present
or the panel SCY/RPT switch is at SCY (single cycle), the CP clock stops and the CP enters
the panel halt condition. The address halt results when the address for the next memory
cycle matches an address manually set into the ADDRESS HALT keys on the panel. A switch
at the left of the address keys permits disabling the address halt function. (This feature is

an option.)

Traps. -- After a fetch cycle, if the fetched operation code is for an instruction that
is not implemented in the system, the CP proceeds automatically to the trap algorithm. A
trap can also be entered at the end of the execution of certain arithmetic instructions. After

the trap algorithm, instruction fetching and execution resume.

Interrupts. -- The MPC may, asynchronously, change the code on the IDL lines at any
time. At the end of each algorithm, when the resulting inequality between the IDL and IAF
codes is detected, the CP enters the interrupt algorithm (provided an interrupt is enabled).
Statewords of the current process are stored, the new process code is brought into IAF,
and the statewords corresponding to that process are fetched. After the interrupt, processing

continues at the location specified by the new stateword, provided the MPC code is valid.

CP Inactive Condition. -- After an interrupt, if the inactive code is in IAF, the

memory request is cleared. Since no memory cycle occurs, the CP clock stops, and the

CP inactive condition is in effect. This condition holds until the MPC delivers an active

IDL code, which sets the memory request and causes an interrupt. After the interrupt,

processing resumes at the new process level. During the CP inactive condition, the CP can

be started from the panel for the duration of the panel access fetch or store algorithm.

Panel Halt. -- The CP may be halted at any time without destroying data by placing
the execute control key at STEP or ACCESS. The CP completes the algorithm in effect,
performs any waiting traps or interrupts, and then stops the clock. Startup must be

controlled from the panel.

2-19



Access Mode. -- When the CP is stopped in the access mode, data and addresses may
be inserted in RG and RH through the panel ADDRESS/DATA keys, as required for access
store, access fetch, and transfer operations. For access fetch or store, startup is
initiated by the FETCH or STORE buttons. After completing the selected algorithm, the
CP stops in another panel halt.

Transfer. -- For a transfer, the step or run mode must be selected after setting up
the starting address in the access mode. When the TRANSFER button is pressed, the
transfer algorithm is performed. If the step mode is in effect, the CP enters another panel
halt. If the run mode is selected, the CP fetches the instruction at the transfer location and
continues running. If a transfer is attempted while the code in IAF is invalid, the transfer
algorithm forces the code for process level 0 into the IAF register. After the transfer, the
CP enters an interrupt and stores the transfer address in the dedicated location for process
level 0. Because the interrupt is to an invalid level, operation then ceases in the CP inactive
condition. When the MPC next commands the CP to operate at process level 0, another
interrupt fetches the former transfer address, and the CP proceeds from that point in

process level 0.

Resuming Continuous Instruction Processing. -- Continuous operation can be

resumed from a panel halt by selecting the run mode and pressing START.

Single Instruction Operation., -- When the step mode is selected, the CP performs one

full instruction algorithm, plus any waiting traps or interrupts, and then returns to the

panel halt condition,

Identifying CP Status at Panel. -- The current status of the CP can be determined by

inspecting a few indicators on the console. See Table 2-1.

CP INTERFACES

The CP logic frame is interfaced directly to the MPC and to MAD and the memory
system. In addition, there is a connection to the IOP, actually a tandem connection to the
main data/address bus to the memory port, (Either the CP or the MPC controls the bus
through the bidirectional cable PACs. )

The control panel, indicator panel, and power control chassis (considered a part of
the CP) interconnect to the CP logic frame through connectors. Interconnections to the
system power distribution equipment are brought in through the power control chassis,

Figure 2-7 summarizes the methods of interconnection (cable PACs, connectors, or
direct wiring). Wire-by-wire connection details and signal mnemonics appear in the logic

diagrams specified in the illustration,



Table 2-1.
CP Start/Stop Condition Summary

Panel Indicators

CP Condition CP ACTIVE | RUN TLG Other
System Initialize OFF OFF TL1 LOAD
CP Initialize ON OFF No change
Normal Run ON ON Changing
Panel Halt:
Step -- OFF TL1
Access -- OFF None (TLD)
SCY or Address Halt -- OFF Any
CP Inactive OFF ON TLF

Unusual Conditions

Memory Wait ON ON Any (See Note)

Wait for Control ON ON TL6 Op code = $30
Process Acknowledge (See Note)

Indirect Hangup ON ON TLF & TLI R-field and Op code

or TLI alone| not changing
{Program Error)

Indefinite Execute Loop ON ON Changing Op code = $4A
(Program Error)

NOTE

Normally, these waits are a few microseconds or
less. If the CP pauses long enough for the condition
to be seen at the panel, there is a hardware fault.

MPC Interface

The MPC has two interface connections to the CP. One exchanges process level
codes and delivers an order code word and strobe during control process instructions.
Sampling of the IDL code and gating from the IAF register to the MPC are discussed under
Interrupt in Section III. See the Control Process Instruction Flow Chart and Analysis for
detail on the order code word, order strobe, and acknowledgment.

The other interface supplies IOP and CP activity state data for display at the control

panel; see the Console Control and Display Panel description in Section III.

Memory Interface

Interconnections to the Memory Access Director and to the memory port (shared with

the IOP) are discussed in the Memory Interface description in Section III.

2-21



RIBBON CABLE PLUGS—/

00.12

MPC J

1OP

|

CABLE PACS —/

CABLE PLUGS —/[

T T T ke ]

5159

Figure 2-7.

- ]
—<— F|LL STROBE —
| - _J———<—» MAD
|—<— ORDER STROBE | ” CP MODULE
ADDRESS AND
|, ACKNOWLEDGE | MEMORY \ CONTROL
IAF —————" CP LOGIC FRAME | INTERFACE}  00.12*
- | INTERRUPT | |
] LoGIC | l
oL t———- | 11— <« » MEMORY PORT
- WORD ADDRESS,
L J_ B \ READ/WRITE DATA,
- RKL | 00.10 CONTROL
ORDER WORD L _ 00.12
M CP, IOP ACTIVITY STATES
‘L\ SYSTEM, CP
016 INITIALIZE cp
’ DISPLAY
DATA
1 7 4 = 7 oispLay | 7 3DIRECT WIRED TO CP
-0 IS USED
I |y | | sequencING | SELECTION|  DISPLAY |
| | | | AND CONTROL | | DRIVERs |
_ L L | L
MANUAL
DATA
MODE
— ENTRY CONTROL | g l
1 -1
1 —J I
00.18 00.16
| 07.08
|
L_\J 32-BIT
POWER o= -7 POWER CONTROL CHASSIS DISPLAYS,
DlSTRIBUTION4—.[ POWER ——— CP STATUS
| EQUIPMENT CTRL .
| —— I - 07.06
l I STATUS
PAC SLOTS 07.06 LABELS
OR CONNECTORS I 07.04 | 07.04
a2
-
POINT-TO-POINT I CONTROL INDICATOR
WIRING | PANEL PANEL |

Central Processor

Interface Connection Summary

2-23



Control Panel and Power Control Interconnections

See the Console Control and Display Panel description in Section III for details.

Cable PACs

Special cable PACs are used for one-way and bidirectional information transfer at the
CP, at MAD, at the IOP, at the memory port interface and at all IO controllers. Each PAC
contains ten driver-receiver circuits of the type illu'strated in Figure 2-8. The circuits
permit gated data transfer in either direction along a single interconnecting cable. On some
PACs (type CC-214) each circuit is wired to the same pin on two identical ribbon cable
connectors. This permits data to be placed on, or read from, a given line by different
devices. (See Figure 2-8C.) Memory address, read/write data, and control lines from
both the IOP and CP are applied to common lines in this way.

Type CC-215 cable PACs have a single connector only; each receiver circuit contains

resistors which terminate a cable or chain of cables.



2-26

OUTPUT SIGNAL
TO EXTERNAL EQUIPMENT

I /——— RIBBON CABLE

OUTPUT SIGNAL

OUTPUT GATING FUNCTION

DRIVER
RECEIVER

MAY BE USED

BY INTERNAL LOGIC

A. OUTPUT FUNCTIONS

INPUT SIGNAL
FROM EXTERNAL EQUIPMENT

:Do j D:> » INPUT SIGNAL

s160 B. INPUT FUNCTIONS

Figure 2-8. Cable PAC Applications (Sheet 1 of 2)



UNIT A

|
|
: OUTPUT—{>C l D} {
l J JUMPER

SOURCE DEVICES

| <

i > l}l“

COMMON
N7 EH\'TEPUT
DESTINATION
UNITC T 215|
| WYY |
TERMINATION

TSR !

|

5161
Figure 2-8. Cable PAC Applications (Sheet 2 of 2)



SECTION III
DETAILED THEORY

Figure 3-1 maps the functions that are active in the CP during execution of an algorithm.
The primary functions (bold outlines) are the 6perationa1 CP algorithms (fetch, indirect cycle,
instructions, panel functions, trap, and interrupt) which execute the actual program. These
primary functions are described in detail in the flow charts and instruction analyses of the
H632 Central Processor Instructions manual.

Secondary functions (single-weight lines) operate during the same timing levels as
the primary algorithm to anticipate interrupts, detect trap conditions, control the memory
interface, permit operator control at the proper time, and control the cycle look-ahead
function. These sequencing and control functions are described in this section with the use

of detailed flow charts or timing diagrams.
START-STOP, TIMING, AND CONTROL LOGIC

System Initialize (See Figure 3-2.)

Turning power on or pressing the SYSTEM INITIALIZE pushbutton (with the power
switch at UNLOCK) presets a known starting condition in the CP sequencing and control

logic, and also in MAD, the MPC, and the IOP.

Start-Stop Logic. -- The fill flip-flop is set and conditions are set up for a panel-halt

condition (the clock will not run until a manual start from the panel is executed). Once

started from the panel, the CP enters the fill algorithm.

Timing Level Generator. -- The TLXAZ signal clears all timing level flip-flops

except TL1A, in preparation for the fill algorithm (or an interrupt, after CP initialize).

Memory Interface. -- System initialize clears TPCAF, disabling cycle initiate.

The memory busy line is cleared in memory during power turn-on.

Memory Access Director (MAD). -- Pressing the SYSTEM INITIALIZE pushbutton

clears the main CP interface data and address select signals. The memory busy line also

initializes MAD internal timing circuits.

3-1



START

TLF
TLD
N
PANEL HALT?
) 4
l N MEMORY
| : GO-AHEAD?
——— Y
SYSTEM ]
INITIALIZE [ HCZ8Y | :_
‘ i TIMING
! | OSCILLATOR
l
CP INITIALIZE [—® HCZCP- J |
| |
| L * I TLF
o e e TL1 TLZ TLI
=
L | i I | TLE
| THOA FLOW CHART B FLOW CHART A
(OP-CODE (RKL SWITCHING
TRAP INTERRUPT PANEL MEMORY LOOKAHEAD INDEPENDENT ] CONTROL CP ALGORITHM
E | .
TPSA : CONTROL CONTROL START/STOP INTERFAC CONTROL FUNCTIONS ’ (SE
CONTROL | FLOW CHARTS
TPCA
1 MANUAL)
e ) it ——— e —— ———_———r— - — — —_— — — —— | —— e e /| T —— I N ———;——-__.__g__‘________________‘______‘__—_
— A
®—» TL( )B
FLOW CHART A
—————————— —4(TLF, TLI, TL1, TLD
l ™ : SETUP)
TPCB | |

TIMING LEVEL
GENERATOR

5162

Figure 3-1. Time Sharing of Execution
Functions with Sequencing
and Control Functions



UNLOCK?

10P
Y
.| INTERNAL
PRESS SYSTEM CLEARING
, INITIALIZE
POWER ON h BUTTON
HCZSY
MEMORY
PANEL START—STOP LG INTERFACE MAD INTERRUPT MPC LOOK-AHEAD TRAP REGISTERS
HCMCY <« 1 —> HFFCH<0 TLXAZ MSTJA < 0 | | 1AF < 000010 INTERNAL ITRAF < 0 = RG <« $00000038
—» HFFAX « 1 MSTIW <0 Lo ll;:Ll_J«E—AOF:)IO’\(‘)?l TICAF < 1 ITDHF < 0 L»{ RH< $11M00038
Lol HEFIL <1 1 — MSTJR < 0 —e INTAF <0 ITDSF « 0
«
| e  HFSTA <0 THA MCJBZ< O
TLFAF < 0
Lel MSRFF<1
TLIAF < 0
HFRUN « 0 TL2AF <0 (IN MEMORY) ~VIKAQD
THROUGH INTERNAL
| MCJBY « 0 I—.
HCMCR TL6AF n CLEARING

SYSTEM (INCP)

INITIALIZE
TPCAF < 0

MCTiN< 0

MCTRQ <« 1

PROCESSOR WITH
HIGHER PRIORITY
REQUESTING?

MCTRQ « 0 N
MSAFF « 1 MSTJm
MPC
IDL CODE = 011000
HCZCP PROCESS LEVEL
PRESS 0 SEQUENCING

CP INITIALIZE
BUTTON HFFIL <0

INTERRUPT
ENABLED?

5163

INTAF « 1

Figure 3-2. System Initialize and Central
Processor Initialize Flow Chart

3-5



Multiprocess Controller (MPC). -- The system initialize condition forces code 000011

(the inactive code) on the IDL lines from MPC to the CP.

Interrupt Logic. -- The system initialize condition sets an inactive level code in the

IAF register and clears the interrupt flip-flop. The difference between the IDL code from
MPC and the IAF register code is detected by IKAQD, and the memory request flip-flop is

set. The memory request is received by MAD; if no higher priority processor is requesting

a memory cycle, MAD responds with address select. The CPs memory request is cleared

by address select.

Trap Logic. -- The three trap-condition flip-flops are cleared.

Registers. -- In preparation for a fill operation, register RG is loaded with $00000038
(the CS1 location for IOP process level 6), and register RH is loaded with $11M00038. The
latter is a fill order transmission command addressed to device 000 of controller 1M (M is

the code manually set into the panel device select keys).

Look-Ahead Logic. -- The system initialize condition sets the TICAF flip-flop.

Input/Output Processor (IOP). -- Internal logic is preset to a known starting condition

(no effect on CP).

CP Initialize (See Figure 3-2.)

The CP INITIALIZE button clears the fill flip-flop in the start-stop logic and also
forces the code for process level 0 on the IDL lines from the MPC. The interrupt flip-flop

is set (unless interrupt is disabled from the panel).

Start-Stop Logic (See Figure 3-3.)

The start-stop logic (LBD 00.40) controls an orderly computer startup after system or
CP initialize and controls stopping of the clock oscillator in the step or access mode, during
an address halt (optional), or when the single-cycle (SCY) maintenance mode is selected.

Continuous running and startup depend on a go-ahead from the memory interface logic.

System Initialize. -- Power turn-on or pressing the SYSTEM INITIALIZE button sets

the fill flip-flop (HFFIL) and initializes the start-stop controls for a halt condition. (HFSTA
and HFRUN are cleared.) The timing level gerderator is set up in TL1A. The mode key is
assumed to be in RUN, with the power switch at UNLOCK.



[_ SYSTEM l CLOCKED I STARTUP AFTER —l

INITIALIZE START/STOP PANEL
FUNCTIONS HALT
ENABLE
Y  (HCMAC) PANEL
TLOA ACCESS? — — —» DONE
c MSRFE <0
NOTE: SYSTEM INITIALIZE N
CLEARS MSTJR AT MAD HFSTA <0 TLFAF <0

ENTRY |

5164 |

HFFAX <0

l TLG START—STOP |
AR <1 TLXAZ TFFCI—0 Hezsy | START PRESSED? ) T;:E'\lsssifﬁ FETCH PRESSED? STORE PRESSED? )
I TLFAF <0 HFFAX <1 | Y v v v
TLIAF <0 HFFIL<1 | (HCMSA) (HCMTC)
I TL2AF<0 HFSTA< O | HEEXR< 1 HFFCH <1 HCMFE HFFCH <0 HCMSO
l THROUGH MSRFF « 1 ‘ MCTRQ <1 HCMFS MCTRQ < 1 HCMFS
TLEAF<0 HFRUN < 0 HCMCY- | !
| H
HFFAX <1
READY TO BEGINY_Y END OF Y | (TLEAX)A(~TLIA) Y MIDDLE OF
l CPINITIALIZE Hezcee EXECUTION? CactOnimime ALGORITHM? !
| HCMCY HCHLT N TPRNI | N TPRNA | r___
- | HFRUN <0 J s| HFRUN <0 I s' HFRUN<0 sr HFRUN <0 J I I TOTAFTS TLXAZ
| (UNLOCK ASSUMED)| 1 i 1 l TLFAF <0
' TLIAF <0
| STARTUP START | @@Y— (HCGSA)V (HCMFS) TL2AF<0
PRESSED? ! HFSTA <1 THROUGH
N
| [EERFRT TL6AF <0
I HFFIL <0
HFSTA <1 HCGSA BUTTON
) RELEASED? HFFIL«<0
| S - ] : |
I START TL( B p——— | (HCMGO)
-
RELEASED? ¢ I
‘ HFRUN « 1 HCGGO
I HCMGO PANEL l
HALT |
| HFRUN <1 HCGGO v CONDITION | «l
I TPRUN < 1 TPRNY | l [
I d N MEMCRY
MSRFF = 1?
| D—— MEMORY WAIT SYNC 1
| I Y CONDITION
I (SEE MEMORY l
‘ v INTERFACE
| DESCRIPTION) I
| MSREF < 1
I l MSTJR = 0? |
I l TPRNY ’

Figure 3-3. Start-Stop Logic Flow Chart

3-9



Startup from System of CP Initialize. -- In a normal operating sequence, if a fill

operation is desired, the START button is pressed and released. Because MAD and the
memory are also initialized, the TPRUN flip-flop is set as soon as the RUN f{lip-flop
(HFRUN) is set. The CP is then running in the fill algorithm.

After a CP initialize, the fill flip-flop is cleared. When START is pressed and released,
the CP is running in an interrupt algorithm. The interrupt is followed by normal continuous

running and execution of the program level brought in by the interrupt.

Continuous Running. -- Program execution of the current process level continues

until the step mode is selected or an interrupt brings a different MPC code to the IAF
register.

While the run mode is in effect and the process level in IAF is valid, the start-stop
logic maintains clock synchronization with the memory interface. The memory-wait flip-
flop (MSRFF) is cleared during TPCA. Both the leading and trailing edges of read data select
(MSTJR) must be received in order for the clock to proceed. The leading edge is stored by
MSRFF. (After a system or CP initialize, MSRFF is waiting-set.) Ordinarily, MSRFF
is set during timing level B, but the trailing edge of MSTJR does not occur until after TPCB.
As a result, TPRUN is cleared by TPCB. As soon as MSTJR ends (the memory go-ahead),

TPRUN is set, and another cycle of clock pulses is generated.

Memory Wait. -- When MAD has given another processor access to the memory bank
(or an inactive MPC code has removed the CP memory request), the CP waits with the clock
stopped. MSRFF and TPRUN are cleared and MSTJR is zero. When MAD returns control

to the CP (or when an active MPC code is received), read data select is received, MSRFF

and TPRUN are set, and normal running resumes. (See the Memory Interface description.)

Panel Halt. -- Continuous running can be stopped from the panel by placing the mode
key in STEP or ACCESS, by selecting the SCY maintenance mode, or by using the

ADDRESS HALT option.

In the step mode, when the CP has fetched an instruction and formed its effective
address, the run flip-flop (HFRUN) is cleared during TPSA. During TPSB, TPRUN is
cleared, stopping the clock in the panel halt condition with TL1A set.

In the access mode, during the last execution cycle of the algorithm, the run flip-flop
is cleared by TPSA. HCMAC prevents setup of the next fetch cycle. During TPCB, TPRUN
is cleared and the CP stops in dummy timing level TLD (no timing level set).

In any timing level, if SCY is on or an address halt is present, HFRUN is cleared.

During the following TPCB, TPRUN is cleared and the panel halt is in effect.

Step Startup. -- When the START button is pressed and released, HCGGO sets the run
flip-flop. If MSRFF and MSTJR are in a memory go-ahead condition, the TPRUN f{lip-flop is
set and one full algorithm is executed. A normal step halt occurs with TL1A of the next

algorithm set up and waiting to be executed.



Transfer Startup. -- If TRANSFER is pressed instead of START, HFFXR and HFFAX

are set as the effective op code for the transfer algorithm, and TLI1A is set up in the timing
level generator. TPRUN is set as in START (if there is a memory go-ahead), and the CP
performs the transfer algorithm.

After a transfer from the step halt condition, a normal step halt occurs with TL1A of
the next algorithm waiting to be executed. If transfer is initiated in the run mode, continuous

operation resumes at the new instruction location.

Access Fetch and Store. -- With the mode key in ACCESS, startup is controlled by
the FETCH or STORE button. When the FETCH button is pressed, the HFFCH and HFFAX

flip-flops are set as the effective op code for the access fetch algorithm and TLIA is set

up in the TLG. When the FETCH button is released, HCGGO starts the clock (assuming a
memory go-ahead), and the access fetch algorithm is performed. During the last execution
cycle of the algorithm (TLZAX), HFRUN is cleared, and the clock is stopped in the panel
halt condition.

When the STORE button is pressed and released, the start-stop logic operates as in
access fetch, except that the HFFCH flip-flop is cleared to provide the effective op code for
the access store algorithm.

If the panel RPT (repeat) maintenance switch is on, the access fetch and store

algorithms do not generate TLZAX; access continues until the RPT switch is turned off.

Clearing the Console Algorithms. -- Any operation of the transfer, fetch, or store

buttons sets HFFAX, which serves as a part of the effective op code for panel algorithms.
One other start-stop control flip-flop (such as HFXFR, for transfer) contributes to the
op code. System initialize also sets HFFAX to enable the fill algorithm.

At the end of any panel algorithm, TPSBE clears HFFAX. During the following
TPCA, HFXFR and HFFIL are cleared so that no console algorithm is in effect.

Returning to Continuous Run. -- When the run mode is selected after a step or an

access operation, startup can be controlled either by the START or TRANSFER button.

If the START button is used, the CP fetches and begins execution of the current instruction.
If the TRANSFER button is used, the transfer algorithm is executed, and continuous
instruction processing begins at the address manually inserted in RG. (See Normal CP
Operating Sequence in Section II for information on attempted transfer in the CP inactive

condition.)

Single-Cycle Operation. -- If SCY (single-cycle) operation is selected by use of the

maintenance panel switch, the HFRUN flip-flop is cleared unconditionally. After every
operation of the START, TRANSFER, FETCH, or STORE button, the HFRUN flip-flop is
set, then cleared every TPCA time, when the HFSTA flip-flop is cleared. This mode per-

mits the operator to step through the current algorithm one clock cycle at a time.



The first time the TRANSFER, FETCH or STORE button is pressed, TLXAZ sets
the timing level generator to TL1A. Thereafter, each operation of the button steps
the CP through one clock cycle of the selected algorithm. The (TLEAX)A (~TLlA) input
to TLXAZ prevents setup of TL1A again until the algorithm is complete.

Address Halt (Optional). -- This optional logic (shown on LLBD 00.42) compares the
current memory address on the MAT lines with the settings of the ADDRESS HALT keys on

the panel. When the addresses match, HCHLL and HCHLH cause entry to the panel halt
condition by clearing HFRUN.

Timing Oscillator and Clock Distribution (LBD 00. 56)

Once it is triggered by TPRUN from the start-stop logic, the timing oscillator PAC
generates one set of clock pulses: clear A, set A, clear B and set B. The basic signals
are produced by the TPCAX, TPSAX, TPCBX and TPSBX gates, controlled by the three
delay lines. Idealized timing is shown in Figure 3-4. TPCBX clears the TPRUN f{lip-flop
preventing more clock pulses until the '"panel run' and "memory go-ahead' conditions are
in effect.

The four basic signals are fanned out through load-balancing resistors to distributing
gate PACs, one in each quadrant of the central processor frame. The active signals
(TPSAl, etc.) are wired from the distributing gates to logic circuits nearby. The delay
lines can be adjusted so that the active signals approach the timing shown in Figure 3-4 in
spite of gate and propagation delays.

The TPXXX signal clears MSAFF and also provides for an early clear of the write
flip-flop (MCTWR) in cases where a memory write cycle is followed by a read cycle. (See

the Memory Interface description.)

Timing Level Generator (LBD 00. 60)

The timing level generator consists of the flip-flops that store the current CP timing
state, and the logic gates that determine the next timing state. Timing levels are divided
into two phases, A-phase and B-phase, At any given time, no more than one A-phase and
one B-phase flip-flop are set,

Sequencing from state to state is triggered by the timing oscillator pulses. A fetch
cycle, for example, starts with TLFA set. The next TPSA clock pulse executes the TLFA
functions and sets up the TLFB flip-flop. The following TPSB clock pulse executes the
TLFB functions and sets up the next A-phase timing level,

Entry into the TLFA, TLIA, and TLI1A states is controlled by instruction look-ahead,
interrupts, and trap conditions. More details appear under those headings and in flow

chart A of the Central Processor Instructions manual.



NOMINAL TIMING (NS)

o u?o 2(30 3(:0 400 500 6(:0 700 0 (ETC)
|
b )}
MSTJR ] v¢ | " A
| « I
MSRFF l l 5 ?—I l l__
<
TPRUN [ | 33
I <C
TPXX | |

TPCA | I

1]

TPSA | 1

TPCB I I

5165 TPSB J l

Figure 3-4. Clock Oscillator Timing

Execution of every algorithm starts in TL1A. Some instructions complete execution
during a single cycle. Algorithms that require more execution cycles arbitrarily select a
sequence of other timing states (TL2A-TL2B, etc.).

Figure 3-5 illustrates a series of timing levels during execution of a console access
fetch or store algorithm. Timing level TL1A is set up when the console FETCH or STORE

button is pressed (or also by a system initialize). = When the switch is released, HCGGO

starts the timing oscillator and the timing pulses advance the timing levels. The access
fetch/store algorithms arbitrarily proceed from TL1A to TLé6, TL2, and TL3. 1f the con-
sole RPT (repeat) button is off, the algorithm ends in a panel halt after TL3, as illustrated.
(With the RPT button on, TL2 and TL3 repeat indefinitely.)

In the access mode, TLFAF is inhibited by HCMAC, so the algorithm ends with no
timing level flip-flop set. This is the "dummy" timing level called "TLD'" elsewhere in this
manual and in the Central Processor Instructions manual. Dummy timing levels are
also set up during overlapped instruction execution, to resolve precedence conflicts between

the I and J sequences. (See description of Look-Ahead.)



TIMING
OSCILLATOR

TL1AF

TL1BF

TL2AF

TL2BF

TL3AF

TL3BF

TL6AF

TL6BF

TLEAX

TLEBX

TLZAX

TLZBF

TPSBE

5166

TL1A TL6A TL2A TL3A TL(D)A
TL1B TL6B TL2B TL38 TL(D)B
RELEASE OF FETCH MEMORY
OR STORE BUTTON WAIT

|

TPS A

iMoo ninl

vo [aL sl PLIPL JAL L JRL Il JeL el

|

(’(l
“T
s
J——(‘P—I
—
22

Figure 3-5. Timing Level Generator Signals During Access (Example)



Figure 3-5 illustrates signals that keep track of the execution portion of an algorithm.
The TLEAX flip-flop is set during TL1A of each algorithm and kept set through the last
execution A-phase. The TLEBX flip-flop is kept set during all B-phases of the algorithm.
The last execution cycle of each algorithm is identified by the TLZAX signal, which permits
the TLZBF flip-flop to be set by the next TPSA pulse. The TLZBJ and TPSBE signals con-
tribute to the TL1A, TLIA, and TLFA setup logic to be discussed under ''Look-Ahead."

The notation at the top of Figure 3-5 represents the current timing state of the CP in

relation to other internal or external events.

Interrupt Register and Control (LBD 06.70 and 06.72)

IAF Register. -- The interrupt register stores the currently active CP process level
and compares it with the process level code from the MPC. When the codes are unequal,
IKAQD goes false and causes an interrupt during the next timing level (if interrupt is
enabled). During TL3 of the interrupt, the MPC code on the IDL lines is transferred into
the IAF register. (Thereafter, the MPC and IAF codes are equal; IKAQD is true until the
MPC changes its code again.)

Interrupt Controls (See Figure 3-6). -- When a change in the MPC code is detected

by the interrupt register during any timing level except TLI1A, IKAQD sets INTAF (provided
interrupt is enabled and no arithmetic-exception trap condition is present). INTAF enables
the timing level generator to enter TL1A during the last execution cycle of the instruction
in progress, or during a dummy cycle, F-cycle, or I-cycle. During TLI1A of the interrupt
algorithm, INTBF is set. INTBF serves as the equivalent of an interrupt op code, enabling

the minterms which execute the interrupt algorithm.

Enabling Interrupt. -- In normal run or step opera.tion, with all maintenance switches

at the neutral center position, interrupt is enabled from the panel. In the access mode,
interrupt is inhibited; since addresses are set up manually, the active process level is
unimportant. The maintenance switches affect interrupt as follows:

ENI/INI at INI Permits single-instruction stepping without interruption to
another process level

SCY/RPT at SCY Permits single-clock-cycle stepping without interrupt to another
process level

SCY/RPT at RPT Prevents interrupt during repetition of algorithms

ENI/INI at ENI Enables interrupt in spite of SCY to permit single-cycle
checkout of the interrupt algorithm itself

Even when interrupt is enabled from the panel, an arithmetic-exception trap condition

postpones the interrupt until the trap operation is complete.

CIL Gates. -- Under control of the interrupt algorithm, the code in IAF is transferred
through the CIL 24 through 29 gates to RKL, to identify the location of the program state-

words for the interrupted and interrupting process levels.



TL(

5401

5

T

SEE FIGURE 3-1

)G

I v
' || ACCESS? >
IAF = IDL? '
N(~1KAQD) | : N
: I INI ENI/INI ENI
INTERRUPT 41 s
ENABLED?
NEUTRAL
M |
(INABL) ;
} oy SCY/RPT
ARITHMETIC 4 ._'ﬂ_c )
TRAP CONDITION? SWITCH?
N ! NEUTRAL
v !
| INHIBIT ENAB
Y
TL1A?
-------- 1
)
1
l""'"t""ﬁ
INTAF «1 I MCTRQ«1 |
———_J
(SEE MEMORY
INTERFACE)
ENTER
INTERRUPT
ALGORITHM
Y

Y IAF = INACTIVE
" CODE ?

=t

I MCTRQ« 0!
b ——= -

(SEE MEMORY
INTERFACE)

S| INTBF«< 0

D

N

Figure 3-6,

Interrupt Control Flow Chart

e



Inactive Code Detector. -- The IKAQV decoder monitors IAF 24, 25 and 28 for an
inactive code of the form 00XX1X. When the MPC inactive code (000011) has been stored
in IAF by an interrupt, IKAQV becomes false. When the interrupt is over and the TLG
enters TLF, the memory request flip-flop (MCTRQ) (LBD 00.50) is cleared. The CP waits

in the CP inactive condition until a new MPC code is received. IKAQD then becomes false,

sets the memory request flip-flop, and starts another interrupt by setting INTAF (assuming
interrupt is enabled from the panel).

IKAQV also modifies the transfer algorithm when IAF contains an inactive code.

Trap Control Logic (ILBD 06.60) (See Figure 3-7.)

Arithmetic Exception. -- When an arithmetic exception occurs, the ITRAF flip-flop

is set during TPSB. At the end of the instruction, flow chart A detects ITRAF and sets up

TLIA of the trap algorithm. ITRAF takes precedence over a waiting interrupt by pre-
venting INTAF (LBD 06.72) from setting. The ITDHF and ITDSF flip-flops are set at the
same time as ITRAF to further subdivide the type of arithmetic trap.

During TL1A of the trap algorithm, ITRBF is set. ITRAF and ITRBF generate
DITRA and DITRB, which serve as effective op codes during the trap algorithm. ITRAF is
cleared during TL6B of the trap algorithm. ITRBF is cleared during the following TL1A.

Unimplemented and Undefined Operations. -- Also contributing to DITRA and DITRB

are terms generated when unimplemented or undefined operation codes are detected:

DIUNA, B Undefined Operation

DIFLA, B Unimplemented Floating Point Operation
DIEXA, B Unimplemented Extended Operation
DIBBA, B Unimplemented Byte Operation

These terms do not set ITRAF and so do not take precedence over waiting interrupts. When
an undefined or unimplemented instruction is fetched, the CP proceeds with the trap algorithm

rather than an instruction algorithm.

Trap Condition Class Code Generation. -- Early in the trap algorithm, the CP

accesses a dedicated location to obtain a pointer to one of four class entry tables. The
address of the dedicated location is encoded when CIKRC enables ITCOV, ITCUN, and
ITCEB, which control CYK24 through CYK30 on LBD 01.75. The four class codes are

generated as follows: CYK Code
Trap Class 24 25 26 27|28 29 30 (31) Hex Equiv.
1 Arithmetic Exception (ITCOV) 0 0 0 10 O O O 10
II Unimplemented Floating Point (ITCUN) 0 0 0 1 |0 0 1 0 12
III  Unimplemented Extended or Byte 0000 1|0 1 0 O 14
Operation (ITCEB) i ‘
v Undefined Operation (ITCUN, ITCEB) 0o o0 1]o 1 1 0 16




TL(

SEE FIGURE 3-1

5168

TL(

)8

N ARITHMETIC
EXCEPTION?

\Y

C DIVIDE?

_/ (ITRPR)
y
s | ITRAF<1 | 1TRAY
DITRA
Y
HALFWORD?
(ITDHR)
N
y
s| ITDHF«<1 | ITDHY
»—
N (ITDHR) A (ITDSR)
s| ITDHF <1 | ITDHY
(SHIFT)
(ITDSR)
s | 1TosF«1 | 1TDSY

N
TPSBE?

)

Y

ENTER TL1A OF
TRAP ALGORITHM

Figure 3-7. Trap Control Flow Chart



Addressing Trap Condition Table Locations. -- Later in the trap algorithm, one of

the locations in the selected trap class entry table is accessed to obtain to the trap processing

routine. The offset from the initial table address is produced when CIKRO enables a code on
CIK27 through CIK30. These signals drive CYK27 through CYK30 on LLBD 01.75. The code

is related to trap class subdivisions in Table 3-1.

Table 3-1,
Trap Condition Table Entries
Trap Condition Class

Bits 27-31 of I I 11 v

Table Address Arithmetic Exception Op Code Op Code Op Code
00000 X X X X
00010 X X X X
00100 - E2 EO -
00110 - C2 co -
01000 Overflow on fullword 82 BO A0
01010 Overflow on shift 92 90 80
01100 Overflow on halfword F2 : Fo A2
01110 Zero division D2 DO 82
10000 - ' A6 24 -
10010 - 86 - -
10100 - : E6 26 -
10110 - Cé6 06 -
11000 - B6 2C 20
11010 - 96 28 00
11100 - ‘ Fé6 2E 22
11110 - D6 2A 02

Note: Locations marked ""X'" are loaded by trap; locations marked ''-"
are reserved,

MEMORY INTERFACE

The CP memory interface consists of the control logic on LLBD 00.50 and the control
lines exchanged with MAD and a processor port. Logic elements in the CP which are related
to the handshake between the CP start-stop and timing logic, MAD, the processor port, and
IOP are illustrated in Figure 3-8.

3-20



HCGGO

TO IOP CABLES
B,D,E F,GH

[

(SHARED CONNECTIONS
TO MEMORY PORT)

- - - = 1
HCZSY N CABLE . SYSTEM INITIALIZE o
—>| =
PANEL I MSTJR ! PAC 5 READ DATA SELECT
OPERATIONS 1 (DIRECT [l
mMcTrRa ! WIRING :F CP CYCLE REQUEST R
> -
HFRUN MSTJA ' USED L ADDRESS SELECT > MAD_
{ FOR g
START-STOP MSTJR MAT12-17 | [ BANK/MODULE ADDRESS
» MAD-Q) — .
CONTROL
MSTIW ! (LBDNO. 00.12) WRITE DATA SELECT )
1 ¢
N
TPRU MCTIN b - CYCLE INITIATE
TIMING MCJBY MEMORY BUSY MAD-0
OSCILLATOR ONLY
MCJBZ FORCED MEMORY BUSY
TPSA,CA
TPSB.CB
CABLE
MCTRQ PACS
(LBD NO. | ~ | muLTIBANK CONTROL N
MCTMB <«
%':g') ST (F MORE THAN 1 BANK)
MSTJW )
MSTJA _Q<—“< MEMORY BANK BUSY
(00.50) HCZSY.
T MSTJWO,1,2,3
SUM0D-31
ADDER _C'éﬁ_/ READ/WRITE DATA -
MEMORY €
INTERFACE A MDRO0-31
LOGIC
{LBD NO. 00.50) RK
l WORD ADDRESS
MAT18-30 P —— «— .
I (-._/
RL [ > | earmimioning
':',,g‘;‘,;'ﬁ MR ~ | PROCESSOR PORT
(MAD OR
MEMORY BANK)
MCTP02-3 «+——
[ /: ,E CYCLE INITIATE
MCTIN <& -
MCTWR f") WRITE COMMAND
N
,( PARITY ERROR
N
5169
< PARITY BITS
N -
Figure 3-8. Memory Interface Signals



Interface Signals and Cabling

The CP supplies the bank/module portion of the memory address and a cycle request
to MAD, which responds with address and data select signals when the CP is selected for a
memory cycle. MAD decodes the module portion of the address and sends the memory
bank individual module select lines. MAD also checks the address and generates a 'forced
memory busy'' when an illegal bank or nonexistent module address is present. The forced
busy allows the memory/MAD /processor cycle to proceed until a legal bank and existing
module are specified.

In a system containing MAD-0, the CP/MAD-0 interface connections are direct-wired;
no cables are required. Systems using a larger version of MAD (capable of handling more
than two processors or more than one memory bank) use cabled connections from CP to
MAD.,

Two processors (usually a CP and an IOP) share a processor port through common
cables, Both processors are capable of placing data, addresses, and control signals on the
lines, or reading data from memory. MAD referees conflicts between the two processors
and allows only one to use a memory port during each cycle. In systems using MAD-0, the
processor port cables go directly to the memory bank; in larger systems with more than
one memory bank, the shared processor port cables go to MAD for switching from bank to
bank. Signals on the processor port connections include the word address, read/write data,

write command, cycle initiate, partitioning control, memory busy, and optional parity signals.

CP/MAD/IOP/Memory Handshake

In a typical system the CP competes with the IOP for the use of a processor port.

The MAD (Memory Access Director), oversees the process and makes sure that only one
processor at a time is using a given port or a given memory bank,

When the CP has access to a processor port, there is a three-way '""handshake'' among
the CP, MAD, and the memory. After a CP inactive period or a system initialize, the cycle
starts when the MPC sends the CP an active process code that differs from the current CP
process code in the IAF register. The CP responds by turning on its cycle request to MAD.
MAD returns an address select, which prepares the CP to generate cycle initiate (after a

system initialize, the first cycle initiate is postponed until the clock is started from the

panel)., Then, both MAD and the CP wait for the memory to respond with memory busy,

which indicates that a memory cycle is;-, underway.

Memory and Logic Cycle Timing:‘ -- Relative timing of the interface signals during

two consecutive cycles is illustrated in Figure 3-9. Since the memory specifications
guarantee that read data will be available at a specified time after memory busy, MAD gen-
erates a read data select at that time, to gate read data to the CPs RM register. At the

end of read data select, the CP (conditional on receipt of a second address select) generates

another cycle initiate and enables one set of pulses from the timing oscillator. The current

timing level of the algorithm in effect is executed. MAD independently generates another

address select, for the next cycle, and both MAD and the CP wait for memory busy.




100 200 300 400 500 600 700

I R

MAD TIME SCALE (NS) 0 100 200 300 400 500 600 7fio

[ I N

(
MSTIA —_TL el S pommmm o mmmm e
: ___________ - IL ________ J
' R
MCTIN l i I v | k v
| R U, J A J
fe— 105NS+D —afe—o 520NS ————— |
MCJBY ! ettt 3
[ R § e
MSTJR 1 T H FooTTTTTTT A
e e - ——— ——— Jd I - .
cP \!- ------- - T - \I \I' ———————
TIMING ! f !
| TPSA Lo TPSB L] TPSA L | TPSB L _t  Tesa
RELATED PRESENT USE
LOGIC CYCLE STABLE READ
FUNCTIONS ADDRESS DATA
INITIATE
READ
CYCLE

A. READ CYCLE

MAD TIME SCALE(NS) 0O 100 200 300 400 500 600 700 100 200 300 400 500 600 700

T A T A O A A I
f
|

—— - ————————

MSTJA Vo __r
MCTIN N a |100NS_]—_—L FoTTTTT
P | e e e e e e ——— —— e e = e

—al
I i
[ pratindiddiihdh e A 1
messy ] . J L
_________________ A —————
MSTJW L ___ _l o ___J
1 Tttt = A q
1
MSTJR e e e e e e e e - e e ——— 4 Lo = = —
\r_ _____________ - ~N N
CP TIMING i TPSA L TPse Lo T™SA | |  TPsB L & TPsA
]
MCTWR i L
Egé‘?c-rg\?cm FORM INITIATE FORM WRITE ggp:AD
A
Loaic cYcL DDRESS WRITE CYCLE DATA DATA ABLE

NOTE: D =GATE AND CABLE DELAYS FOR MCTIN FROM CP
TO MEMORY AND FOR MCJBY FROM MEMORY TO MAD.

B. WRITE CYCLE

Figure 3-9. Overall Memory Interface Timing

3-24



MAD also generates a write data select shortly after address select (Figure 3-9).
Under control of the algorithm the CP may send memory a write command, which causes
the memory to store the data gated to the memory by write data select. During a write
operation, cycle initiate is delayed for about 100 ns in order to allow write data, gated

through the adder, to stabilize,

CP Logic Functions Related to Memory Cycles. -- Figure 3-10 illustrates a typical

series of overlapped memory and logic cycles. Memory busy (MCJBY) represents the
memory cycle, and the CP timing pulses (TPSA, B) represent the CP logic cycle. Memory
and logic cycles are correlated in terms of read data; logic cycle A can use the read data
from memory cycle A, etc.

Read data is gated into the CPs RM register by MSTJR toward the end of each read
cycle. The data cannot be used until the next logic cycle. Thus, the data at the address
formed during logic cycle A and applied to memory during logic cycle B is available for use
in TM during logic cycle C, etc.

Write commands are formed early in the logic cycle that initiates a write memory
cycle (see logic cycle E). Write data is gated through the adder during the same logic
cycle and is stable during timing level B; for this reason, a write cycle initiate is delayed
for about 100 ns to allow the write data to stabilize.

During each cycle the CP supplies an address from the RKL network either from
the I-sequence address register (RK) or the J-sequence address register (RL). Usually
the RKL network selects RK and RL alternately, but a number of special conditions govern
the alternation. A detailed discussion of these conditions and the switchiﬁg logic (LMAHL)
appears in the paragraph on Look-Ahead. From the standpoint of the overall memory/MAD/
CP cycle, it is unimportant whether the address is obtained from RK or RL. Because the
address is required early in each logic cycle it must be formed and stable in RKL before a
memory cycle is initiated. As a result, thé address for memory cycle C is formed during

logic cycle A, etc.

IOP Break-In, CP Inactive Condition, and Panel Halts. -- If the IOP requests a

memory cycle while the CP is running, MAD prevents the CP from generating cycle
initiate (by withholding address select), stops the CP clock (by withholding read data select)
and generates address and data select signals for IOP. The latter communicates with
memory over the interface lines shared with the CP through the cables.

When the MPC sends the CP the inactive process level code, the CP removes its cycle
request to MAD after interrupting to the inactive process level, and enters the inactive con-
dition. The IOP retains free access to MAD and memory., If no processor is requesting,
MAD idles as well,

If the CP enters a panel halt the clock is stopped and the CP does not generate cycle
initiate. If the halt occurs while a valid process code is in IAF, the CP address select is

set and memory is not available to the IOP until the CP is started. However, if the CP is

in the inactive condition during the halt, IOP can receive memory cycles.

3-25



A B c D E F G H
MEMORY CYCLE (MCJBY)  (READ)  (READ) (READ) (WRITE)  (READ) (WRITE) (WRITE}  (READ)

TE
LOGIC CYCLE (TPSA, B) OF / MCTIN / /

MSTJR

I__.___.._.I

—
h\
/
™~
—
AN
N

T

LOGIC CYCLE FUNCTIONS:

USE READ DATA FROM
MEMORY CYCLE

(9]
T._._.__.

@

INITIATE

MEMORY CYCLE c

=]
o

: JR—
mn

@
-;;_—

GENERATE WRITE
COMMAND FOR
MEMORY CYCLE

mn

o
[}

FORM WRITE DATA
FOR MEMORY CYCLE

o

_1______________|
I

_l___________

FORM ADDRESS FOR
MEMORY CYCLE

m

(2]

o

————————— -

2]
___..__..__._.___'_.._

Figure 3-10. CP Logic Functions Related to Memory Cycles

Systemn Initialize and Startup

Startup of the CP from a system initialize and a series of memory cycles are shown
in Figure 3-11. Timing oscillator output pulses are shown in relation to the memory inter-
face signals. Relative timing is based on nominal MAD and memory cycle times. The
waveforms are idealized; events which are shown as simultaneous are actually staggered in
a practical system because of gate and cabling delays. Read cycles are assumed. Write

cycles are discussed later.

System Initialize. -- A system initialize (HCZSY) clears MSTJR and MSTJA in MAD
and sets MSRFF in the clock control (LBD 00.40). Because TPCAF is cleared, cycle initiate
is held off. The CP is waiting only for a manual start to set TPRUN and start the timing

oscillator.



MEMORY BANK BUSY

I I—
(REFERENCE ONLY) 4 )
SYSTEM INITIALIZE START SWITCH l,: MAD TIME SCALE (NS) =|‘
PANEL OPERATIONS PRESSfD RE:,EASED PRESSED  RELEASED 0 100 200 300 400 500 600 700 O 100 200 300 400 500 600 700
}
! | : I l | | | | | - | | | | | | |
' L]
CP CYCLE REQUEST MCTRQ ! |
| ——_——ed P |
] Iy | (HCGGO-) 3 $ DELAYED # ‘ ¢
: l IN MULTI-BANK ===
ADDRESS SELECT  MSTJA , l SYSTEMS
.
| | |e80NS |
MSALE-T : , |
I v | * 7 ) e
MSAFF I | L l_
: | TPXXX TPXXX
MSATE 1 |
| I
| I
I |
READ DATA SELECT MSTJR [ |
| I ) )
| |
MSRFF | I
| v & TPCA I d1PCA &_TPCA
| ~HFRUN
|
TPRUN X
o 4 4
| TPCB TPCB
|
|
|
I
| , ,
CP TIMING ! TPSA L _] TPSB L TPSA |_ _I TPSB I_ TPSA I_
PULSES I _ _ _
| v ) Y v
| A
TPCAF I
I v v ' L
|
CYCLE INITIATE MCTIN |
FIRST CYCLE INITIATED SUBSEQUENT CYCLES INITIATED
BY MANUAL START WHEN T. E. OF MSTJR STARTS CLOCK >
Figure 3-11, Memory Interface Logic Signals
5172 During System Initialize and Startup



Startup and Normal Consecutive Cycles. -- Since the system initialize forces code
000011 on the MPC IDL lines and also sets an inactive code (000010) in the IAF register,
~IKAQD sets the CP memory request (MCTRQ). As soon as MAD receives the request
it sets address select, which clears the request. When the console START, TRANSFER,
FETCH, or STORE button is activated and released, TPRUN is set, enabling the timing

oscillator to develop one cycle of timing signals. TPCA then sets TPCAF, which enables
cycle initiate.

From the time TPCA enables cycle initiate, about 200 ns elapse before the memory
busy signal from the memory bank reaches the CP. (The actual time can vary because of

cable delays.) Memory busy is, effectively, 'time 0" for MAD; address select is cleared

and a fixed timing sequence begins. In the CP, ~MSTJA generates MSATE, which clears
TPCAF, turning off cycle initiate.

A memory request for the next cycle is set when address select goes false. In multi-

bank systems, the request is delayed for about 180 ns to give MAD time to do the necessary
bank or processor switching.

During the MAD cycle, read data select for the memory cycle in progress is turned

on and off. The leading edge sets MSRFF in the start-stop logic; the trailing edge permits
the TPRUN flip-flop to set, provided the panel run flip-flop is still on. In turn, TPRUN

enables the next cycle of clock pulses and another cycle initiate.

Cycle Inititate Logic

Logic shown on LBD 00.50 generates the cycle initiate (MCTIN) signal in the correct
synchronous relationship with MSTJA and MSTJR from MAD and allows an additional delay

during write cycles.

Read Cycles, -- During a read cycle the logic contains provisions to make sure that
cycle initiate is held false until both the trailing edge of the previous MSTJR and the delayed
leading edge of the new cycle's MSTJA., Normally, MAD generates MSTJA for the new
cycle first, so that the effective control for MCTIN is the MSTJR trailing edge. The
MSALE-T delay ensures address stability when MSTJA enables the first cycle initiate after
an IOP break-in, by withholding cycle initiate until the address gated through the CP/memory
cable PACs is stable.

The basic control for MCTIN is the TPCAF f{lip-flop; the flip-flop is set by TPCAX,
which is initiated by the end of MSTJR. (TPCAX is also applied directly to the MCINR
gate to produce MCTIN without the flip-flop turn-on delay.) The MCINW gate is disabled
during read cycles (MCTWR is false) and has no effect on MCTIN. If MSALE-T has returned
to ground before TPCAX, the MSALE+T gate also has no effect on MCTIN timing. However,
if MSTJA for the next cycle is late, the MSAXX}T gate holds MCTIN false until the end
of the MSALE-T delay.

The MSATE signal, controlled by the MSAFF f{lip-flop, occurs on the trailing edge of
address select. MSATE clears TPCAF (which, in turn, inhibits cycle initiate) in prepara-

tion for the next cycle.

3-29



Write Cycles (See Figure 3-12). -- During TPSA, if specified by the algorithm, the
MCTWR (write command) flip-flop is set. =~ Because write data is applied to memory through
the adder, the cycle initiate is delayed for about 100 ns after TPCA to ensure that the adder
output is stable. To do this the MCINW gate holds MCTIN false until the end of the TPCAT-T
delay. Cycle-~initiate is turned off as usual when MSATE clears TPCAF. The MCTWR flip-
flop is cleared by the special TPXXX output of the clock oscillator PAC in order to clear

the write command sufficiently ahead of the next cycle initiate.

MSATE
TIMING | J TPSA L | I TPSB L TPSA
PULSES
' v v o
TPCAF
3 T TPXXX
WRITE COMMAND
TOMEMORY  MCTWR I |
_____ _ JE U
TPCAT-T ’ L

I————] —— NO EFFECE
DURING READ
MCTIN CYCLES
WRITE DATA r—— = - -
SELECT MSTJW I J

5173

Figure 3-12. Memory Interface Logic Signals (Write Cycle)

IOP Break-In

When the IOP requests a memory cycle, either for a data transfer or to execute a

command, it breaks into normal CP running as shown in Figure 3-13. An IOP cycle-request

conditions the MAD logic to withhold address-select from the CP and give it to the IOP

instead. Because the CP does not receive an address-select, MSALE-T is held high and
MCTIN is inhibited even after TPCAF is set. The IOP responds to the MAD address~ and

read-data-select by controlling the cycle-initiate line to memory through the bus shared

by the CP. The memory busy line pulses as usual but under IOP control. The MSAFF
flip-flop is held on by the absence of delayed CP address-select (MSALE-T) during IOP
cycles. As a result, MSATE is prevented and the TPCAF f{lip-flop stays set for the

duration of IOP control.



MEMORY BANK BUSY
(REFERENCE ONLY)

MEMORY
CYCLE
FOR:

MCTRQ

MSTJA

MSALE-T

MSAFF

MSATE

MSTJR

MSRFF

TPRUN

TIMING
PULSES

TPCAF

MCTIN

MEMORY BUSY FOR
I0P CYCLES

‘ ‘ —a L ‘ 'y ‘ ‘
LAY 4 I/
cp cp 1P 10P 10P cp
vy /L
7 77/ ]
Irf MAD TIME SCALE (NS) .l
300 400 500 600 700 O 100 200 300 400 500 600 700 O 700 © 700 0 100 200 300 400 500 600 700 O 100 200 300 400 500 600 700
I I I I I | [ | | I I I | |- == — | ! | I I | | (I I R T |
§'NHIBITED IN MAD
! | 7 R
I—I h - - — — T — — — — Ir
TPXXX TPXXX TPXXX
| ) |
v L eca I 4 Trca e v b Teea
’

TPCB

TPSB I TPSA “_J TPSB l_ TPSA
— -

=1 w [ L=

) v _TPCA . i \ )
1OP CONTROLS CYCLE INITIATE |
THADUGH CABLE PAC Rl '
' y 1
{ —— —— / Mk /ol l—’—//—"1I ‘
| ! o ! 1
1 | pya a | Py | | I
-—-——————————] 0 L L4 | j I
l ' | _I j |
I0P REQUESTS CYCLE; | CP COMPLETES ONE MORE 4 CP CONTROLS CYCLE INITIATE
‘ N NEXT CP LOGIC CYCLE ENABLED;
e MA\SDV%IQ’SHSHS%ILI%%%P e LOGIC GYCLE —‘I"I-—— CP MEMORY WAIT CONDITIO T DURING LAST IOP CYCLE —fe— " ORMAL CP CYCLES RESUME —

5174

|

Figure 3-13. Memory Interface Logic Signals
During IOP Break-In



The IOP typically requires several consecutive cycles. When it is through with
memory, it removes its cycle-request to MAD, which responds with the usual address
select to the CP (MSTJA). Because TPCAF is still set, a CP cycle-initiate is generated
as soon as MSTJA passes through the MSALE-T delay. Thereafter, the CP resumes
normal control and the MSAFF flip-flop and MSATE signal are cycled as usual. While the

IOP has control, the CP is in the memory-wait condition.

CP Inactive (Cycle Request Removed) (Figure 3-14)

When the MPC delivers the inactive process-level code on IDL 24-29, the CP enters
the interrupt algorithm as usual, storing the statewords of the previously active process
and entering the inactive code in the IAF register, negating IKAQV (LBD 06.72). After
the interrupt, the CP enters TLF and performs a meaningless fetch; no programs are
associated with the inactive process level. During the fetch cycle, the absence of IKAQV
permits MCTRQ to be cleared, and inhibits TSOAX (L.BD 06.52) to prevent setting the
validity bit of the sequence that initiated the fetch. (See paragraph on Look-~-Ahead.)

Because address-select and cycle-initiate are already present, MAD and the CP complete

the current cycle except that MAD withholds the next address-select. The end of MSTJR

triggers the CP clock for one more logic cycle (also an inactive fetch) but the absence

of address-select prevents cycle-initiate. The CP enters the CP inactive condition.

The wait is ended when a program is advanced to the active condition by the MPC.
The interrupt register logic detects the inequality between IAF and IDL, negating IKAQD,
which sets MCTRQ. MAD responds with address select as soon as a memory cycle is

available. (The IOP may be using memory at the time.) Because TPCAF is waiting set,

cycle-initiate is generated as soon as address-select passes through the MSALE-T delay.

When the memory responds with memory-busy, MAD begins a CP cycle; read-data-
select starts the CP clock and normal consecutive cycles resume. The first algorithm per-
formed after a CP inactive condition is, of course, an interrupt.

The CP can also be started from the panel during CP inactive periods. The HCMFS
signal, generated when the FETCH or STORE button is activated, sets the cycle request
and MAD responds as shown in Figure 3-14. (After completing the panel algorithm, the
CP enters the panel-halt condition.)

Panel Halts

When a halt condition is set up at the panel during normal CP operation, the HFRUN
flip-flop in the start-stop logic is cleared during the appropriate timing level (prior to TLl
for step, TLD for access, etc). The effect on the memory signals is shown in Figure 3-15,

Because HFRUN is cleared, the trailing edge of read-data-select does not set TPRUN

and start the clock oscillator as usual. No cycle-initiate is generated. The memory com-
pletes the cycle in progress, but because there is no cycle-initiate, MAD does not receive

memory-busy and so cannot proceed. Since the CPs address select line is on, the IOP

cannot break in. This condition (panel halt) lasts until a manual start is performed.



When the panel START, TRANSFER, FETCH, or STORE button is activated and
released, the HCGGO signal sets HFRUN. Because MSRFF is set and MSTJR has ended,
TPRUN is set immediately. The TPCA clock pulse sets TPCAF, generating cycle-initiate.

After the usual wait for memory-busy, normal operation continues.
LOOK-AHEAD

Principles of Operation

To obtain maximum use of memory, the CP processes two instructions at a time,
interleaving the fetch, indirect addressing, and execute operations of the instruction pair.
The primary object is to present an effective address and access memory for one instruc-
tion while a logic cycle is simultaneously preparing the effective address for the other

instruction or executing the other instruction.

Assuming for the moment that instructions use only one execute cycle, it can be said
that at the beginning of the logic cycle for one instruction a memory cycle for the next
instruction is initiated (given certain conditions; refer to paragraphs on Start/Stop and
Memory Interface). The result is that each logic cycle is entered with its data (if required)
fetched and waiting. It is thus necessary to provide an effective address approximately two
logic cycles before the logic cycle which uses the contents of the addressed location.

The alternation of logic cycles between the instruction pair is prohibited during
execute operations of more than one cycle. An instruction proceeds through its execute
cycles without interruption under control of the particular instruction algorithm, The inter-
leaving of fetch cycles, indirect address cycles and entry to the first execute cycle is
under control of the look-ahead logic. The following is a specific example of look-ahead
instruction processing, (See Figure 3-16,)

While a CP fetch cycle is forming the effective operand address for instruction 1,
instruction 2 is being fetched from memory., The next logic cycle is a fetch cycle which
forms the effective operand address for instruction 2 while the operand for instruction 1 is
being read from memory. Assuming that the instruction 1 operand is being read from
memory, the next logic cycle or cycles are execution cycles for instruction 1. During the
last execute cycle of instruction 1, the operand for instruction 2 is read from memory,

The next logic cycle is then the first execute cycle for instruction 2, and so on. Note that
when an instruction is in its execution phase, there is no alternation of logic cycles between
the two instructions.

As instruction 3 (Figure 3-16) requires an indirect address cycle, instruction 4 is
ready for execution before instruction 3, This is not permitted as instruction 3 was fetched
first and has precedence. Therefore, a dummy cycle (in which no timing levels are set) is
entered while the instruction 3 operand is fetched. Instruction 3 then enters its execution

phase.

3-34



|0P MAY REQUEST

_ CYCLES DURING CP e —
MEMORY BANK BUSY INACTIVE STATE I P i
(REFERENCE ONLY) I L I
J, ] | x
}: MAD TIME SCALE (NS) , MPC PRESENTS NEW IKAQD {e————MAD TIME SCALE (NS)
CODE ON IDL LINES
300 400 500 600 700 O 100 200 300 400 500 600 700 SETTING OF REQUEST (~IKAQD) 0 100 200 300 400 500 60 700 O 100
| | | | b | l | | l | | IS INHIBITED BY l | | | l l l | |1
— (~IKAQV)A (~<TLEAX) A(IKAQD) —
MCTRQ
T f_ ACCESS FETCH OR STORE
WILL ALSO SET MCTRQ
(TPCAIA~IKAQY) MAD GIVES CP ADDRESS
SELECT AS SOON AS A
CYCLE IS AVAILABLE
MSTJA § MAD WITHHOLDS CP ADDRESS SELECT (NO REQUEST)
————— JL

~
N

MSALE-T l |
| ——
MSAFF U L

TPXXX

TPXXX TPXXX
MSATE [ I . l
MSTJR l
S ‘} [
MSRFF |
) | 4 - - - ]
TPCA TPCA
TPRUN 4 -
TPCB TPCB

MING
:LL'SES TPSB |_ TPSA LJ TPSB l_ l TPSA l_ _J TPSB l_ l TPSA |
T TPCA ! TPCA TPCA
—— A v

TPCAF k

. ] v |

MCTIN §— CYCLE INITIATE INHIBITED (NO ADDRESS SELECT)
|
I
|
I
|
|
I

LAST EXECUTE CYCLE |
OF INTERRUPT THAT MEMORY REQUEST CLEARED DURING ANOTHER 0 P INACTIVE |
ADDRESS SELECT ENABLES
< TRANSFERS |NACT|VE-+—— TLF FOLLOWING THE INTERRUPT ‘—"*'*\,NVA,_,D FETCH o CONDITION " voLE o N ﬁ.l._ NORMAL CP
MPC CODE TO IAF (INVALID FETCH) CYCLES RESUME
REGISTER
5175

Figure 3-14. Memory Interface Logic Signals
During Central Processor Inactive Condition

3-35



MEMORY BUSY
(REFERENCE ONLY)

MCTRQ

MSTJA

MSALE-T

MSAFF

MSATE

MSTJR

MSRFF

TPRUN

TIMING
PULSES

TPCAF

MCTIN

MCTRQ

HFRUN

5176

- ]

J— MAD TIME SCALE
300 400 500 600 700 O 100 200

(NS)

300 400 500 600 700

yi

100 300 400 500 600

-_—Q

STEP, ACCESS, SCY,
OR ADDRESS HALT

I'st

| FETCH ORSTORE ~ ™

ART, TRANSFER HCGGO

7/
-7 A
T7
/L e —
| v |
L HELD TRUE I-
¢ BY MSTJA t
TPXXX TPXXX
IIII
) | ] l
' 7/
|
[ | 1|
TPCA I TPCA
l U
¢ | ¥
TPCB | TPCB
r
TPSB _J TPSA l L ] TPSB I_ : _l TPSA l l_ _| TPSB l_
v | ¥
|
! I/IL
v 4 ] v v
[
4 / foes
T 7/ -
I S
|

‘ | ——

l
| !- ﬁlllg
| l

PANEL HALT CONDITION
PANEL ACTION {~HFRUN PREVENTS MSTJR PANEL START ENABLES
fe————— FANEL ACTION FROM ENABLING CLOCK; —*[*— CLOCK AND CYCLE INITIATE;
NO CYCLE INITIATE) NORMAL CYCLES RESUME
i
Figure 3-15., Memory Interface Logic Signals

During Panel Halt



6€-¢

v

MC

MC

MC

mC

MC

MC

FETCH CYCLE

FETCH CYCLE
INSTRUCTION 1

FETCH CYCLE
INSTRUCTION 2

EXECUTE CYCLE
INSTRUCTION 1

"EXECUTE CYCLE
INSTRUCTION 1

EXECUTE CYCLE
INSTRUCTION 2

FETCH CYCLE
INSTRUCTION 3

INSTRUCTION 4

A Vo Ve

INSTRUCTION 3

INSTRUCTION 4

INSTRUCTION 3

INSTRUCTION 4

{MC MC MC MC MC MC MC
\ ] |
INDIRECT ADDRESS CYCLE | DUMMY CYCLE | EXECUTE CYCLE | EXECUTE CYCLE | FETCH CYCLE FETCH CYCLE
INSTRUCTION 5 | INSTRUCTION 6

i ETC.

TMC = MEMORY CYCLE

NOTE:

THIS ILLUSTRATION DOES NOT SHOW THE
EXACT TIMING RELATIONSHIP BETWEEN
MEMORY CYCLES AND LOGIC CYCLES.

5177

Figure 3-16,

Instruction Processing Cycle Alternation



I and J Sequences, -- There are two instruction registers, one to hold the current

instruction and the other to store the next sequential instruction. The two instruction
registers are designated RI and RJ. There are also two address registers, RK and RL.
The RI register and RK register are always used together to process an instruction and the
instruction processing defined by RI and RK is designated the I-sequence. The RJ and RL
registers are similarly used together and the instruction processing defined by RJ and RL

is designated the J-sequence.

Sequence Status Controls: TIP, TIC, and TSP. -- Since the CP can hold two

instructions at a time and since the processing of the two instructions is interleaved, the

CP maintains three controls to reflect the status of the I and J sequences. These controls
are TIP, TIC, and TSP.
TIP is true when the I-sequence has precedence, that is, when its instruction is
fetched before the J-sequence instruction. TIP is false when the J-sequence has precedence.
TIC is true when the I-sequence instruction '"has the clock, ' that is, when the current
logic cycle is processing the I-sequence. TIC is false when the J-sequence has the clock.
TSP is true when the sequence which has precedence also has the clock. It is false

when the sequence which has precedence does not have the clock.

Sequence Conflicts: TSO and Validity Indicators. -- Since instruction 2 (for example)

can be fetched and have its effective address formed before instruction 1 is executed, the

CP checks for the possibility that instruction 1 will modify either the instruction 2 word
itself or the instruction 2 indirect-address word or the instruction 2 index value. This
possible conflict between the two sequences is checked every time the sequence without
precedence fetches its instruction or indirect-address word (i.e., every fetch or indirect-
address cycle).

If there is no conflict, the TSO (timing sequence OK) control is true, and the fetch or
indirect cycle is permitted to be effective, and RI or RJ validity indicator (RIFVI or RIFVI)
is set. If there is a conflict, the sequence without precedence goes through the fetch or
indirect-address cycle but fails to set the validity indicator in the first case and does not
change the bit in the second case. Furthermore, the CP will not accept the instruction or
indirect address word, When a conflict exists, the sequence without precedence is not
permitted to accept its instruction or indirect address word (whichever caused the conflict)
until the preceding instruction has been executed. By this time any intended modification
to the next instruction's instruction word, indirect address word, or index value has been

accomplished,

Cycle Entry Decisions. -- As can be seen in Figure 3-16 the CP must decide what

type of logic cycle it must enter, and it makes this decision when in the last phase (phase B)
of the preceding cycle. Flow chart A in the H632 Central Processor Instructions manual
shows this decision-making in detail, Figure 3-17 in this manual is a simplified flow chart
of these decisions. The cycle entry decisions illustrated in Figure 3-17 and the sequence

conflict description give the general restrictions imposed upon the CP look- ahead feature,

3-40



YES

ENTER DURING PHASE B OF ANY CYCLE

T%

ISPRESENT CYCLE AN EXECUTE CYCLE?

N
DO NOT GIVE °

CLOCK TO OTHER
SEQUENCE AT

'

1§

IS PRESENT CYCLE LAST EXECUTE YES
CYCLE OF AN ALGORITHM?

END OF THIS
CYCLE

YES

y

ENTER NEXT EXECUTE CYCLE
FOR THIS ALGORITHM

'

kE

TRAP OR INTERRUPT CONDITION?

0]

'

ENTER EXECUTE CYCLE TO PROCESS
TRAP OR INTERRUPT ALGORITHM

J

'

DOES SEQUENCE WITHOUT THE CLOCK
HAVE ITS VALIDITY BIT SET?

YES

YES

'

ENTER FETCH CYCLE

v

DOES SEQUENCE WITHOUT THE CLOC
HAVE ITS FLAG BIT SET?

K NO

;

YES

v

ENTER INDIRECT ADDRESS CYCLE

'

WILL SEQUENCE WITHOUT THE CLOCK NO
HAVE PRECEDENCE?

:

5178

v

ENTER EXECUTE CYCLE

v

ENTER DUMMY CYCLE

Figure 3-17. Cycle Entry Decisions

GIVE CLOCK TO

OTHER SEQUENCE

AT END OF THIS
CYCLE

3-41



Address to Memory Switching., -- The LMARK f{lip-flop controls the gating of either

the contents of the RK or the RL register to the memory address lines. (See Figure 3-18,)
Note that it is necessary to supply a memory address two logic cycles before the logic cycle
which uses the contents of that address, Unless inhibited, LMARK is complemented each
cycle, thus alternately switching the contents of RK and RL to the memory address lines.

Certain algorithms inhibit switching. (This is shown in the H632 Central Processor
Instruction manual. ) An algorithm inhibits switching, for example, to ensure that the
correct address register is on the memory lines for a write cycle used by the algorithm.
An algorithm also will inhibit switching to ensure that, in its second-to-last execute cycle,
the address register of the sequence without the clock is gated to the memory address lines.

If an instruction uses the memory cycle which the instruction initiates in its first
execute cycle (TLl), the address switching must be inhibited before the instruction algorithm
itself can pos’sibly do so. This inhibition is controlled by the RIFMM or RIJFMM flip-flop
(associated with the I and J sequence instruction registers, respectively). These flip-flops
are op-code sensitive, and a certain group of op codes will enable the setting of RIFMM or
RIFMM when such an instruction is fetched. Although all of the instructions which set the
IRFMM or RJFMM flip-flop do not of necessity require switching inhibition, this is of no
consequence, for the instruction algorithm can then effect switching as required. The set
condition of RIFMM or RIJIFMM will cause switching to be inhibited in the logic cycle prior
to the first execute cycle of the instruction,

Figure 3-18 shows the address switching during the processing of several instructions.
The STW instruction (Store Word, op code 1E) stores data in its first logic cycle. Address
switching is inhibited during the preceding J-sequence fetch cycle {(caused by RIFMM being
set), so that RK is specifying the memory address during TLl of the STW instruction when

this instruction is storing a word in memory,

Instruction Register Input and Output Gating. -- The input gating to the RI and RJ

instruction registers is controlled by TIC. TIC ensures that when an instruction is fetched
the instruction is gated into the instruction register of the sequence which has the clock.
The output gating of instruction register bits 4 through 14 is controlled by TIP. TIP
ensures that only the register and op code fields of the instruction with precedence are
gated out into the CP logic. The output gating of the instruction register validity bit, flag
bit, and MM bit is controlled by TIC. These bits are used in look-ahead control. TIC con-
trols the output gating of these bits so that the sequence which has the clock, when it is
preparing to give the clock to the other sequence, can observe these bits of the sequence

without the clock and set the correct type of logic cycle for the other sequence.

Address Register Input and Output Gating. -- The input gating to the RK and RL

address registers is controlled by TIC. Normally, TIC steers the address into the address
register of the sequence which has the clock. Exceptions are those algorithms which load
a new address into the address register of the sequence without the clock, for example, the

interrupt, trap, and jump algorithms,

3-42



The output gating of the address registers to memory is controlled by LMARK and
has been previously discussed.

For various reasons, a sequence must at times examine its own address register
contents; for example, when forming an effective address in a fetch or indirect address
cycle, when the effective address is a general register, and during a shift instruction. TIC

therefore controls the gating of the address register contents (RKL) into the CP logic.

Detailed Theory of Operation

TIP, TIC, and TSP Controls, -- These controls specify which sequence an instruction

is assigned to, control the cycle entry decision, and effect sundry other functions. The

operation of these controls, their setting and clearing, is shown in Figure 3-19. (See

LBD 06.50.)

TSO Controls. -- The TSO controls (TSOAX, TSOAY, and TSOBF) must be true to

allow an effective fetch or indirect address cycle to occur. There are seven conditions
which, if not met, disable the TSO control signals, (See LBD 06.52.) These conditions
are represented by seven gates whose function names are: TSOWR, TSOXR, TSOWN,
TSOXN, TSOHI, TSOIV, and TSOOP. If the output signal of any one of these gates is false
TSOAX or TSOAY will be false, which condition will make A++FC (LBD 01, 04) false, With
A++FC false, CUIRW (LBD 06. 50) is disabled and an effective or valid fetch or indirect

address cycle will not occur.

a. TSOWR is false if the address from which the next instruction or indirect address
word is being fetched is the same general register specified by the R-field of the instruction
with precedence,

b. TSOXR is false if the X-field of the nonprecedent instruction with the clock speci-
fies the same general register as the R-field of the instruction with precedence. DXRQA
prevents the indication of a conflict if the X -field content is zero.

c. TSOWN is false if the next instruction or indirect address word is being fetched
from the same general register specified by the precedent instruction's R-field plus one,
when the precedent instruction uses the register specified by R-field plus one as an operand
(DIRNA).

d. TSOXN is false if the X-field of the nonprecedent instruction with the clock speci-
fies the same general register as the precedent instruction's R-field plus one and if the
precedent instruction uses the register specified by the R-field plus one as an operand
(DIRNA). DXRQA prevents the indication of a conflict if the X-field content is zero.

e. TSOHI is false if the look-ahead switch is in the inhibit position, (VHCMEL) A
(HCMIL), If the look-ahead switch is in mid-position, the single-cycle or step mode
(HCMCS) or single-cycle, repeat or memory access modes (HCMCR) will make TSOHI false.
When in the enable position, (HCMEL) A (vHCMIL), TSOHI is false only in the memory
access mode, (HCMAC) A (HCMCR).

3-43



Py-€

MEMORY CYCLES {

| SEQUENCE
INSTRUCTIONS

J SEQUENCE
INSTRUCTIONS

ADDRESS REGISTER
TO MEMORY

1 2 3 4 5 6 7 8 9 f
\
X \ ‘ / \ \
TLF \ TLI1 \ TLF! TL1 TL4 \ §
! |
{:: TLF TL1 TLF TL1
RKFOR | RLFOR | RKFOR| RLFOR | RKFOR| RKFOR | RLFOR | RK FOR
RL |MEMORY | MEMORY | MEMORY | MEMORY | MEMORY| MEMORY | MEMORY | MEMORY | R_L
CYCLE2 | CYCLE3 | CYCLE4 | CYCLES | CYCLE6| CYCLE7 | CYCLE8 | CYCLE9

ARROWS INDICATE DIRECTION OF MEMORY DATA TRANSFERS.

TTHE INSTRUCTION FETCHED IS AN STW INSTRUCTION (OP CODE 1E) WHICH IN THIS
EXAMPLE WOULD SET THE RIFMM FLIP-FLOP IN ITS FETCH CYCLE. TL1 OF THE STW
INSTRUCTION REQUIRES A MEMORY WRITE CYCLE.

5179

Figure 3-18,

Memory Address Switching Principles

—— RIFMM INHIBITS ADDRESS SWITCHING



f. TSOI1V is false if an inactive process code is detected in a fetch cycle.

NOTE
This function is not a look-ahead function; it is used
here as a convenient means for aborting the fetching
of instructions when the CP is inactive (idling).
g. TSOOP is false if the instruction with precedence is a store instruction. No

attempt is made to anticipate whether the effective address of the store instruction (which

may not yet have been formed) will cause modification of the nonprecedent instruction.

Cycle Entry Decisions (See LLBD 00.60). -- The progression of execute cycles is

under particular control of each algorithm. Entry to a fetch cycle (TLF), indirect address
cycle (TLI), the first executive cycle (TL1), or a dummy cycle (no timing level set) is under
control of the look-ahead logic.

The TPSBE signal is generated by TPSBX when the sequence with the clock is going
to give the clock to the other sequence. The rules for giving the clock away can be deduced
from the input to TPSBE. Gate TCYEP enables the giving away of the clock at the end of an
algorithm if a trap condition does not exist. Gate TLEBP enables the giving away of the
clock whenever the sequence with the clock is not in an execute cycle.

TPSBE is a TPSB timing pulse which is enabled at the end of each algorithm.
Depending upon the requirements of the sequence without the clock and whether it has
precedence, TPSBE will appropriately set either TLFAF, TLIAF, TLI1AF, or no timing
level.

If an interrupt condition does not exist and the sequence without the clock does not
have its validity indicator set (RJBVI), the sequence without the clock has not yet success-
fully fetched its instruction; therefore, TLFAF is set.

If an interrupt condition does not exist and if the sequence without the clock has its
validity indicator set and has its flag bit set, an indirect address cycle is required; there-
fore, TLIAF is set,

The first execute cycle flip-flop (TL1AF) can be set by normal processing require-
ments (gates TL1AY and TL1AE), a trap condition (gates ITRPF and ITRPG), an interrupt
condition (gate TL1 AI), or human intervention (gate TLXAZ).

Gate TL1AY sets TL1AF if all of the following conditions prevail: if the sequence with
the clock is not in an execute cycle, if the sequence without the clock is ready to execute
(its validity indicator is set and its flag bit is not set), and if the sequence without the clock
has precedence., (Note that if the sequence without the clock has precedence (TSPBF), the
other sequence is not allowed to perform an execute, )

Gate TL1 AE sets TL1 AF if both of the following conditions prevail: if the sequence
with the clock is in its last execute cycle and the sequence without the clock will be ready
to execute,

Gate ITRPG sets TL1AF at the end of an instruction if a trap condition has set the
ITRAF trap flip-flop in a previous cycle. Gate ITRPF sets TLIAF at the end of an instruc-
tion if a trap condition (ITRPR) is setting the trap flip-flop in the present cycle,

Gate TL1AI sets the TL1AF flip-flop on TPSBE if an interrupt condition has occurred.

3-45



9%-¢

TPCAX

TPSAX

TPCBX

TPSBX

TPSBE

| SEQUENCE
LOGIC CYCLES

J SEQUENCE
LOGIC CYCLES

TLEAX

TLEBX

TICAF

TICBF

TSPAF

TSPBF

TIPAX

TIPBX

5180

LI

[ [ S N

[ Tirar ] { Tuar | TeaF | [ Terar ] [Tuar ] [ Toar |

l TLFBF I l TL1BF I TL2BF l l TLFBF I I TLFBF I l TL1BF l

[Trar ]
l TLFBF |

| tuar | tear | | TLFAF | [ l [Toar |
| tuer | Tmzer | | TLFBF l tA | [_ter_ |

NO TIMING

L LEVEL | l_

Figure 3-19.

Timing for TIC, TSP and TIP Look-Ahead Controls



MEMORY

/ BUSY TIME

MEMORY CYCLES W/ v/ v/, V///‘ VA <3 YV v/ Y/ YV
TPSAX ’ X( } \\ I \ I I I , \\ —
\

\ | I\
TPSBX __I— ,’ - | II \I \ / | |

l | \ | | \ /1 [ [——
| SEQUENCE TL1AF | TLFAF | TL1AF! TL3AF2 TL4AF | TLFAF ¢
LOGIC CYCLES TL1er \| / TLFBF || | TL1BF TL3BF TLaBF ||| i

/ \/ ] I ] | v
JSEQUENCE  § I TL1AF | TLFAF I / TLTAF
LOGIC CYCLES { TLFBF }I , TL1BF ,, ’ TLFBF 'l / TL1BF
LMAHL | | DUE TO R:JAMM.\‘ / : /DIUE TO 8A ALGORITHM
(INHIBIT SWITCHING ADDRESS) ! H
| | I | I | / L
LMAPK | / | | | |
] | | | 1 |
LMARK RL— MA RK—> MA | RL-> MA RK— MA | RL-MA | RK>MA | RL>MA
CPPRW
CPKRW
OPERAND
ADDRESS
CSKRW /
CONTENTS OF RK { I'd INSTRUCTION ADDRESS OPERAND ADDRESS INSTRUCTION ADDRE:SS
CONTENTS OF RL OPERAND ADDRESS INSTRUCTION ADDRESS OPERAND ADDRESS INSTRUCTION ADDRESS

1. EXCLUSIVE-OR TO STORAGE INSTRUCTION, CASE H (OP CODE 8A)

2. WRITE CYCLE

3 MEMORY CYCLE X IS USED TO ENABLE OSCILLATOR PULSES AND SYNCHRONIZE WRITE CYCLE;

5181 IT IS NOT USED FOR DATA.

Figure 3-20. Memory Address Switching Details

3-47



Address Switching (See LBD 00.50). -- The normal complementation of LMARK is

implemented to accomplish address switching as follows. (See Figure 3-20). The comple-
ment of LMARK is stored in LMAPK. LMAPK is then copied into LMARK. Normally,
LMAPK is complemented every TPCAX. Then LMAPK is normally copied into LMARK on
the trailing edge of TPSAX when memory goes busy and no longer requires the old address
[ (MSAFF) A(~MSTJA)].

Initially and during the DIJAM algorithm, the LMAPI and LMAPJ gates ensure that
LMAPK is set (if the I-sequence has the clock) or cleared (if the J-sequence has the clock).
Initially it is these two gates which ensure that LMARK is correctly associated with the
address registers.

The inhibition of the normal complementation of LMARK is accomplished by LMAHL
(LMARK hold) which inhibits the copying of the complement of LMARK into LMAPK.
LMAHL is generated by certain control panel functions, by certain instruction algorithms,
or when the set condition RIFMM or RIJFMM is sensed at certain times. RIFMM or RJFMM
(LBD 03.44) is set when a valid fetch cycle is underway and one of the MM group of op codes
is sensed. The op codes in this group are 10, 12, 16, 30, 32, and 36, and all op codes
ending in A or E (mostly storage operations).

As the switching inhibition caused by RIFMM or RJFMM is accomplished by the
sequence with the clock on behalf of the sequence without the clock, the set condition of one
of these flip-flops is steered to RTAMM by TIC. RJAMM represents the MM bit of the
sequence without the clock.

At certain times, RJAMM generates ABTIM (LBD 01.02) which generates LMAHL.
Note that RTAMM, in addition to indicating an MM instruction, also indicates that a valid
fetch was accomplished.

Gate A+++F generates LMAHL if the following conditions exist: the sequence without
the clock has precedence (~TSPAF), has fetched an MM instruction (RJAMM), and has
satisfied any indirect addressing requirements (~RJAO00); the sequence with the clock is in
its last execution cycle (TLZAX), and is not going to clear the instruction register of the

sequence without the clock (~CZJRO).
Gate ACJ3B generates LMAHL during jump instructions (DICJA) and ensures that if

the jump condition is not met the address switching is properly set up for the MM instruc-
tions. If the jump condition is met, LMAHL is inhibited in TL4AF, thus ensuring that the
address register of the sequence with the clock is supplying the address for the logic cycle
after the next., Note that at the end of a jump the next cycle is a fetch, after which the clock

will be given back to the sequence which processed the jump.

INSTRUCTION COUNTER
RP register stages 04 through 30 (LBD 05.30 through 05.42) also called the

"instruction counter, ' address the storage location of the next instruction to be fetched,
interpreted and executed. The contents are incremented during the TL1A execution phase

of all algorithms except interrupt, trap, console access fetch/store, transfer, LNJ, JMP,

XEC, and LNX. The following algorithms provide for incrementing at times other than




TL1A: transfer, interrupt, trap, bit operations (skips), LNJ, conditional jumps, and

load and swap program stateword.

The instruction counter consists of master rank flip-flops (RPF04-30), slave rank flip-
flops (RPA04-30); master-to-slave and slave-to-master copy gates, a carry speedup net-
work, and input gates that permit the contents of address register RK or RL (RKL) to be

copied into the master rank.
Output of the instruction counter is gated to one of the address registers (controlled

by CPK, and selected by the gating signals LRKL) or to the adder by the control level LSRPI.

Loading RP

The RP register is loaded from RKL during TPSA of certain algorithms. CZPPI clears
the register, and CKP loads ones from RKL. (During TPSB of the same timing level, the
CPPIA signal transfers a function of RPF into the RPA slave register.)

Up-Counter Algorithm

The instruction counter operates as a binary up-counter in a two-step process based
on simple rules for incrementing binary numbers. To increment a number, set the least

significant stage which contained zero, and clear any less significant stages. See examples

below:
Example 1 Example 2
Initial value — XXXXXO0 XXX011
Set least significant zero — 1 1
Clear less significant ones— 00
Leave more significant stages XXXXX1 XXX100

unchanged -

Slave Rank Setup. -- The following example illustrates a case where the three low-

order stages of RPF contain 011 as shown in the starting condition of Figure 3-21. Slave
rank setup takes place during every TPSB. (See LBD 05.42.)

a. CZPPA attempts to clear all RPA stages. Since RPF28 contains the first zero,
RPA30 and RPA29 are cleared. (If PRF contained more low-order ones, all of them would
cause corresponding RPA stages to be cleared.)

b. RPF28 contains the least significant zero. This enables CPPIA to set RPA28
(via gate RPP28).

c. The RPG27 carry-speedup gate detects the fact that the low-order zero has appeared
in this group of four gates. The RPG27 signal is applied to RPA stages 23 through 26, setting
them all. Other carry-speedup gates detect ones in this group and rapidly propagate ones

into all higher stages of the RPA register. Setup of the slave rank is now complete.

Incrementing RPF. -- The instruction counter itself remains unchanged during and

after the slave-rank setup. When the counter is to be incremented (usually during TL1A of

3-50



(LOADED FROM RKL
DURING TIMING LEVEL A
OF CERTAIN ALGORITHMS)

!

RPFlrx X X X X011
T SThces ——— LTS
RrA l1 1111 11l 0ol
L ]
(NO CHANGE)
5182 RPF IXXXXX||1 0o o]

Figure 3-21, Instruction Counter Operation

each algorithm), the CPPIW signal operates as follows (example 2 in Figure 3-21). (See
LBD 05.42.)

a. Since RPA29 and 30 contain zeros, RPF29 and 30 are cleared.

b. Since RPA28 contains the first one, RPF28 is set. (Gate RPY28 is enabled by

the fact that RPA29 contains a zero.)
c. RPA27 contains a one, but because RPA28 does also, the RPY27 gate is inhibited

and RPF27 is unchanged. Since all higher stages of RPA contain ones, corresponding
stages of RPF are unchanged also. Incrementing is complete.

In each group of four stages the low-order RPYXX gate is inhibited by the carry-
speedup input (RPG) from the preceding group rather than RPA of the preceding stage.
(RPG27 inhibits RPY26 on LLBD 05.40, for example.)



CYCLE COUNTER (See LBD 00.66.)

The cycle counter is used to count cycle iterations for the following algorithms:

a. Interval compares (op codes 12, 16, 32, 36)

b. Multiplies (op codes D4, D8, DC)

c. Divides (op codes F4, F8, FC)

d. Load and store registers (op codes 6A, 7A)

e. Load and store statewords (op codes 10, 30 with R=0)
f. Trap

g. Interrupt

h. Fill

Structure

The cycle counter is a five-stage double-rank down-counter. It consists of the

following components:

a. Master rank flip-flops (TCT ) whose contents indicate the number of remaining

27->31
cycles.

b. Slave rank flip-flops (TCA27__’31)

c. Master and slave flip-flop set and clear gates used in implementing the decrement
function,
d. Four gating structures to preset the counter to a desired count, They are defined

as follows:

1. TCYY is pulsed By TPCA and attempts to preset the master rank to a value
of 3110. The remaining preset gates (whichever is selected) clear the appropriate master
rank stages on TPSA to preset the counter to a value less than 31 10°

2. TCOl is used by the interval compare, load and store program stateword,

interrupt and trap algorithms. TCOl presets the counter to 1.

3. TCML is used by the multiply and fill algorithms to preset the master

rank to 7.
4. TCIR is used by the load and store registers algorithms. TCIR presets the

counter to one less than the number of registers to be loaded or whose contents are to be

stored.
e. Gating structure for developing the decrementing function, TCDC. The algorithms

which use the cycle counter control decrementation by enabling TCDC. As long as the
counter contents are not equal to zero and while TCDCR is true, each TPSA pulse generates

TCDCI, which decrements the counter by one.

Theory

Initially, the cycle counter is preset by TCYY alone or TCYY and one of the other
preset signals. Depending on the algorithm, the counter is initially preset to 3110 (divide

algorithm only), 7, 1, or one less than the number of registers to be transferred.



Note that TCYY occurs on TPCA and functions to clear all master stages to ones. The
other preset signals are used with TPSA to set selected stages to zero.

In phase B the slave rank is set up for the decrementing of the master rank in the
next A-phase. Pulse TPCB attempts to clear the slave rank stages to ones, and TPSB
sets to zero the first slave rank stage whose associated master was set. All slave stages
to the left (more significant stages) of the first stage to be set will also be set. This sets
up the slave rank.

When the algorithm has completed an iteration, the decrement pulse is generated
to copy the slave rank into the master rank. The slave rank is copied into the master rank
up to and including the first slave stage which contains a zero. The changing of all more

significant master stages is inhibited. See the following example.

27 28 29 30 31 <~ Bits

0 1 1 0 0 « Master rank after preset
0 0 0 1 1 « Slave rank after TPSB and TPCB
0 1 0 1 1 <~ Master rank after TCDC

SHIFT NETWORK

The shift network (Figure 3-22) is one of the primary data transfer structures in the
CP. In addition to performing logical and arithmetic shifts and rotations, the network is
used during almost every algorithm for the unshifted transfer of data into the G, H, and T
registers, Two nearly identical 32~bit structures (the U-net and the V~net) make up the
shift network. Each section includes input gating plus three layers of shifting (1-place,
4-place, and l6-place).

The input selection gates and shift network of stages 14 and 15 are representative.

(See LBDs 03,40 and 03. 42.)

Input Selection

Inputs to the U-net come fromthe memory register (RM), the 16 general-purpose
registers (RO through RF), the quotient register (RQ), and the PS2 stateword (RP32-63)'
The V-net receives the same inputs, but only stages 0, 1, and 3-7 of the stateword are
used. In addition, the V-net accepts the address register of the sequence with the clock
(RKL). In systems containing the optional byte-manipulation instructions, special inputs
are brought into V-net stages 16-31. These inputs, controlled by certain byte-control
instructions, are a function of the current content of RKL. The gating terms that select
U-net and V-net inputs are shown in Figure 3-22. Some of the notation in the flow charts

and analyses for input selection is symbolic.

3-53



¥s-¢

MEMORY

GENERAL
PURPOSE <
REGISTERS

QUOTIENT
(OFTEN SET TO 0s)

PS2
STATEWORD

ADDRESS

REGISTER

WITH THE
CLOCK

5183

RM

%

RO

-
C
(7]
mn
B

£
g

RF

RQ

RP
32-63

0,1,370NLY |
oo |y, |

RKL

o 4

Figure 3-22.

Shift Network Block Diagram

UIXINN) UAX(NN) |
— —> |
1 4 16 l

USXINN) PLACE PLACE PLACE UXX(NN)
SHIFTS SHIFTS SHIFT I
LUXKS l
RKLg 15 I
—-——-———————4———-——-——1-—-——-—--———————-—-—-——-—-———|
] ~ |
VSX(NN) 1 4 16 ‘

PLACE PLACE PLACE |—————————— VXX(NN)
SHIFTS SHIFTS SHIFT l
VIX(NN) VAX(NN) I

V-NET



Flow Chart Notation Actual Gating Term

LUSRW LUS(R)W

where R = (RIA04-07)
LUSNW LUS(N)W

where N = 1+R
LUSXW LUS(X)W

where X = (USX01-03)
LUSWW 1f (RKL28-31) > 15: LUSMW

If (RKL28-31) < 15: LUS(W)W
where W = (RKL28-31)

(The preceding examples are for the U-net only; V-net input gating is similar.)

When two or more inputs are gated to one of the networks at the same time, the
logical product function (AAB) is performed.

The selected input (or inputs) appear on the USX(NN) and VSX(NN) lines, unshifted.
If no input is selected, the network delivers an output of all ones.

In many algorithms, RQ is gated to a shift net input after it is cleared; this effectively

applies all zeros to the shift net.

One-Place Shift Gates (See Figure 3-23.)

The one-place shift gates receive inputs from the input selection gates (USX-- and
VSX--) and rotate the input zero, one, two, or three places to the right. Vacated stages
of the U-net are filled by selected V-net inputs, and vacated stages of the V-net receive

selected U-net inputs.

USX(N) USX02+ —
LUTOW+ —
USX(N-1) USX01+ —

LUTTWH — L

U1X02+ U1IX(N)

USX(N-2) USX00+ — "
LU12W+ —
USX(N-3) VSX31+ —
LU13W+

5184

Figure 3-23. One-Place Shift Gates (Typical)

3-55



Four-Place Shift Gates (See Figure 3-24.)

The 4-place shift gates receive inputs from the l-place gates (UlX-- and V1X--) and
rotate the input 0, 4, 8, or 12 places to the right. Vacated stages of the U-net are filled
from the V-net one-place shift outputs, and vacated stages of the V-net are filled from the

U-net one-place outputs.

Sixteen-Place Shifting (See Figure 3-25.)

The 16-place shift gates operate much like the 1- and 4-place gates. By selection of
gating terms, the l6-place shift gates can perform straight-through transfer or 16-place
right rotations of full words or halfwords. Selection of gating terms is controlled by the
algorithms.

Normally, unless shifting is specified, the LUHOH, LUHOL, LVHOH, and LVHOL
gating terms are true, and the full 32-bit outputs of the U and V 4-place shift gates are
transferred straight through to the UXX and VXX lines. The LUHYH and LUHYL signals
inhibit LUHOH and LUHOL, respectively, to force ones in either halfword of the U-net
output. LVHYH and LVHYL similarly force ones in either half of the V-net output.

U1X(N) UTX11+ —
U4x11- UA4X(N)
LU40 —

U1X(N-4) U1X07+ —

LU41 —

UTX(N-8) U1X03+ —
LU42 —

U1X(N-12) V1X31+ —

LU43
5185 B

Figure 3-24. Four-Place Shift Gates (Typical)

3-56



5186

U4x_

15
16

)\

31

Vax_

15

J U

16

31

Figure 3-25,

LUH1H

UXX_
" | oo
LUHYH
(INHIBIT)
LUHOH L. 4
15
LUH1L -
16
LUHYL
! (INHIBIT)
LUHOL <
31
LVH1H -
VXX_
B
INHIBIT
LVHOH <
15
LVHIL by
16

LVHYL

! (INHIBIT)

Kl

Sixteen-Place Shift Patterns



Unshifted Data Transfers

All unshifted data transfers to RG from the U-selection gates and to RH or RT from
the V-selection gates use the direct path through the 1-place, 4-place, and 16-place shift
gates. Unshifted data transfers are identified in the flow charts in the Central
Processor Instructions manual by the symbolic notation "LU30W,'" meaning that LUIOW,
LU40W, LUHOH, and LUHOL are active in the U-net, or '"LV3KOW,'" meaning that LVIOW,

LV40W, LVHOH, and LVHOL are active in the V-net,

Shifting Example

Figure 3-26 illustrates a 21-place right rotation or a 43-place left rotation, Note that
bit 11 of the selected U-net input ends in bit 00 of the V-net output; bit 27 of the selected
V-net input ends in bit 16 of the U-net output, etc.

ADDER

Summands and Summand Selection

There are three summands: RGF, S1H, and S4H. The RG register is a hard-wired
adder input. Whenever the contents of RG are not required to contribute to the adder result,
the current algorithm clears RG.

Several inputs can contribute to summands S1H and S4H and are selected under algo-

rithm control, These inputs and their selection control are listed in Table 3-2,

T Tl |l 1o N PO P S %
| 1

usx (oo, S 15116 1 27, Tl 001 Ll 1'5]16; 1 ’ (3 bt

LUTIW LVIIW
i : L | '28} 31 : i : : I : ; \ ViX
1 [ ] | 1 | }

uix 001 1121 115 161 L1 001 12, 11516, 1281 1 31

LUs1wW

LV41W

1 1 1 1 1 T ¥ T

u4x | 00! 116 |16} 131 00! 115(16! 131]Vax
] ] 1 | 1 | | 1

LUH1H LVH1H

LUHIL LVHIL

i

T 1 T T T T T T

uxx| oo! 115116 i 131 001 151161 131 | VXX
1 1 1 I} 1 1 ] 1

s187

Figure 3-26, Shifting Example: 21-Place Right or 43-Place Left Rotation

3-58



Table 3-2,
Adder Inputs and Definitions

Selection Control Result Remarks

Used for transferring (RP) to one of the
address registers, Certain algorithms incre-
ment (RP) during this transfer.

LSRPI (SII—I)<—(RP04 _)30)

LSP1W (S1H) <« (RH) Gates (RH) x 1 to summand S1H.
LSN1W (S1H) « (~RH) Gates one's complement of (RH) to summand
SLH.
LSP2W (SIH) « (RH) x 2 Gates (RH) x 2 (shifted left one place) to
summand S1H,
LSN2W (S1H) « (“RH) x 2 Gates one's complement of (RH) x 2 to
summand S1H,
Multiple Selection (S1H) « Inclusive-OR
of S1H Inputs of selections
No S1H Inputs (SIH) « 0
Selected
LSP4W (S4H) « (RH) x 4 Gates (RH) x 4 (shifted left two places) to
summand S4H,
LSN4W (S4H) <« (VRH) x 4 Gates one's complement of (RH) x 4 to
summand S4H,
LSP8W (S4H) <« (RH) x 8 Gates (RH) x 8 (shifted left three places) to
summand S4H,
LSN8W (S4H) <« (VRH) x 8 Gates one's complement of (RH) x 8 to
summand S4H,
Multiple Selection (S4H) « Inclusive-OR
of S4H Inputs of selections
No S4H Inputs (S4H) « 0
Selected
LSCIC (Stage 31 Prelim- Injects carry
inary Adder)
<« 1
LSCIW (Stage 31 Final Injects carry
Adder) «1
LSZCW (All Carries) <0 Suppresses all carries
Results

The adder produces the sum:

SUM = (RG) + (S1H) + (S4H) + k
where k= (0 or 1 or 2) x
function of LSCIC and LSCIW (carry injections).

2‘31 and is a

The CP is two's-complement oriented and the sign is therefore considered only to
detect overflow or underflow conditions, For subtraction the subtrahend is obtained from the
RH register and is formed by gating (V\RH) to S1H and injecting a carry. Subtraction is then

performed by adding.

3-59



If LSZCW is true and LSCIC and LSCIW are false, carries are suppressed throughout

the adder and an exclusive-OR result is produced.
SUM = (RG) ¥ (S1H) ¥ (S4H)

The RG and RH registers and the sum are 36 bits long and are numbered 60 through

63, 00 through 31, Carries are numbered for the stage from which they emanate.

Method of Implementation

Typical Adder Stage Block Diagram. -~ As it is possible to add three summands

simultaneously (used by the multiply algorithm only), each adder stage is constructed of

two full adders. This provides the capability for receiving and generating two carries,

} Carries

0 0 1 1 1 2
0 0 1 1 1S Summands

+ 0 0 1 1 1

1 0 1 0 1 Sum

Figure 3-27 is a block diagram of a typical adder stage showing the two full adders
(preliminary and final), The preliminary adder of stage N produces a preliminary sum
(SSPN) and a preliminary carry (SCPN) from the summands RGFN, SlHN, and S4HN. The
preliminary carry is presented to the final adder of the next most-significant stage (N-1).
The preliminary sum is presented to the final adder of this stage (N). The inputs to the
final adder are SSPN, SCPN_*_1 , and the final carry of the next least-significant stage,
FCYN+1' The final adder produces a final sum (SUMN) and a final carry (FCYN).

NOTE

FCY is a pseudo-mnemonic used for convenience, as
the final carry is carried on two wires and has no
single mnemonic,

Preliminary Adder. -- See LBD 04. 70 for a logic drawing of a specific adder stage.

The summands are S1H27, S4H27, and RGF27. The preliminary sum (SSP27) and preliminary

carry (SCP27) are produced as shown in the following truth table (Table 3-3) which is valid

for all adder stages.

3-60



(RPN) (RHN) ("'RHN) (RHN‘H) (~RHN+1) (RHN+2) (~RHN+2) (RHN+3) (~RHN+3)

4 b } : d ' ' |

StHy S4Hy
PRELIMINARY (RGF
I ADDER GFN)
SCPy ssy
SCPN+1
D le——
FCYN FINAL ADDER FCYN41
- -————
SuMy

SSP = PRELIMINARY SUM

SCP = PRELIMINARY CARRY

FCY = FINAL CARRY (PSEUDOMNEMONIC)
sis8 SUM = FINAL SUM

Figure 3-27. Typical Adder Stage Block Diagram

Table 3-3.
Truth Table for SSP,, and SCP
N N

RGFN 0 1 0 0 1 1 0 1
SIHN 0 0 1 0 1 0 1 1
S4HN 0 0 0 1 0 1 1 1
SSPN 0 1 1 1 0 0 0 1
SCPN"‘ 0 0 0 0 1 1 1 1
*If LSZCW is true, SCP60 31" 0

3-61



Intermediate Functions. -- There are several intermediate functions between the

preliminary adder and final adder. These functions are developed to indicate the number
of ones being delivered to the final adder by SSPy and SCPN+1 . The functions are SPRN
(SSPN is a one and/or SCPN+1 is a zero), SPON (both SSPN and SCPN are zeros), SPIN
(either SSPN or SCPN is a one but not both), and SPZN (both SSPN and SCPN are ones),
Note that SPON, SPl.. and SP2_, are mutually exclusive. Table 3-4 is a truth table for

N N
these functions,.

Table 3-4.

Truth Table for SPR, SPO\» SP1y and SP2,

SSPy 0 1 0 1

SCPN1 0 0 1 1

SPRN 1 1 0 1

SPO 1 0 0 0

SPly 0 1 1 0

SP2y 0 0 0 1

Final Adder. -- The development of the final carry and the final sum is discussed in

the following. To reduce gate delays and speed up carry propagation, even-nurnbered
adder stages do not produce final carries. Instead, the even-numbered stages deliver the
raw data necessary to form their carries to the next most significant odd-numbered stage
to be used in forming its final sum and carry.

An additional step in eliminating gate delays results in two wires being used to repre-
sent the final carry out of each odd-numbered stage. The signal over each wire represents
only a partial carry or part of the total carry equation. Furthermore, there are two
methods used to develop final carries, the methods being alternated every odd-numbered
stage (ignoring insertion of skip carries),

One method uses SCYN and SPZN. These two signals are inclusively-ORed by stage
N to develop its final sum, also by stage N-1 to develop its final sum, and also by stage
N-2 to develop its final carry and sum,

The second method uses SCYN and SPON. SC YN is ANDed with 'vSPON by stage N
to develop its final sum, also by stage N-1 to develop its final sum, and also by stage N-2
to develop its final carry and sum,

Tables 3-5 and 3-6 are truth tables for final carry generation., The Full Carry row

indicates the logical operation used to develop the actual final carry from SCYN and either

SPZN or SPON.

3-62



Table 3-5.

Truth Table for Stage 25 Type
Final Carry Generation Where Carry

= (SCYy) V (SP2y)

SPXN, where X = 0 0 O 1 1 1 1 2
Inputs SPXN+1’ where X = 0 0 2 0 1

CarryN+2 = 010 0 0
Partial SCYN = 1 000 00
Carries sP2y = 0 011 11
Full Carry (SCYN) \ (SPZN) = 1 1 11 11

Table 3-6.
Truth Table for Stage 27 Type
Carry Generation Where Carry = (SCYN) A (~SP0N)

SPXN, where X = 00 01 11 2
Inputs SPXN+1, where X = 0 0 2 00

Carry N+ 2 01 0 1 0
Partial SCYy = 11111 000 1111 11
Carries SPOy = 00000GO0T1 1 11 11 11
Final Carry (SCYN) A (~SP0N) = 0 00O0OOOTOO 1 111 11

Figure 3-28 shows a segment of the adder with the signals necessary to produce final

carries passing from stage to stage. Note that the preceding discussion has ignored the

skip carry logic which is discussed later.

5189

Figure 3-28.

Final Carry Signals Block Diagram

SP126- SP128-
l&— SP130-
STAGE 25 | SP026- STAGE 26 STAGE 27 SP228- | STAGE 28 STAGE 29
le— SP030-
FINAL FINAL FINAL FINAL FINAL
je—— SCY31+
ADDER ADDER ADDER ADDER ADDER
f*— SP031-
SP225- l SP027- ] SP229- ‘
SCY25- SCY27+ SCY29-

3-63



Four methods are used to develop the final sum, the reasons being: (2) the two
methods for generating final carries (and the consequent alternation of signal polarities),
and (b) the odd-numbered stages receive raw data for the carries out of the even-numbered
stages. Therefore, there are two methods for sum generation in the odd-numbered stages
and two methods in the even-numbered stages.

Tables 3-7 through 3-10 are truth tables for the four methods of sum generation.

The tables show the truth values for partial sums SMQN, SMEN, and SMDN for all possible
input combinations. The truth values for the final sum are shown as logical functions of
SMQ» SME, and SMDN.

Ignoring skip-carries, Table 3-7 is for those even-numbered stages receiving a carry

on lines SCYN+1 and SP2N+1' Table 3-8 is for those odd-numbered stages receiving a

carry on lines SCY, and SP2 Table 3-9 is for those even-numbered stages receiving

N+2 N+2°

a carry on lines ‘SCYN+1 and SPON+ 1

receiving a carry on lines S_CYN+2 and SP0N+2'

Table 3-10 is for those odd-numbered stages

Table 3-7.
Truth Table for Stage 28 Type
Final Sum Generation

SPXN, where X = 0 0 1 1 2
Inputs C _
N+1s% 0 1
Partial SMD._. = 0 0 1 0
Sums : N
SMQN= 0 1 0 0 0 1
Final Sum (SMD) V (SMQ) = 0 1 1 0 0 1
MCyp1) = BCY gy ) V (SP2, )
Table 3-8.
Truth Table for Stage 27 Type
Final Sum Generation
SPXN, where X = 000 0O 1 1 111 2 2
Inputs SPXN+1, where X = 0 | 0 011 2
CN+2*= 01 OI_‘l 01 0101 01 1
SMQN= 010111010111 0111
Partial SMEN= 001.1111111119001111
Sums '
SMDN= 1 11111111000PO0 1 111
(SMQN) A(SMEN)/\
Final Sum _ 00011111 1000O0O0O01T11
(SMDN) =
*(Cnpp) = (5CY ) V (SP2y )

3-64



Table 3-9.
Truth Table for Stage 26 Type
Final Sum Generation

SPXN, where X = o o 1 1 2 2
Inputs =
CN+1* = 0 1 0 1
= 1
Partial SMQN c 11 10
Sums SMDN = 1 1.1 0 1 1
Final Sum (SMQN) A (SMDN) o 1 1 0 0 1
#(Cpy1) = BCY 1) ATSPOG,,)
Table 3-10.

Truth Table for Stage 25 Type
Final Sum Generation

SPX, where X = 0000001111 22 2
Inputs SPXN+1, where X = 0011 2 2 011 2 0 2
Cppzs = 0101010101 01010°10
SMD = 000000111 0 0 0
Partial _
sor SME, = 001 0 1
smQ = 010100 0 10 1
Final Sum (SMD)V(SME )V 000111111000000711°1
(SMQy) =

#(Cppp) = BCY ) A (~SPO, )

Skip-Carry Network

The skip-carry network (LBD 05, 20) functions to speed up carry propagation. The
network inserts four signals into various‘stages: SKP23-, SKP13+, SKP05-, and SKP63+,
The generation of one of these signals indicates a carry generation in some less significant
stage and a continuous propagation of that carry through the stage indicated in the SKP
mnemonic. For example, if the first carry is generated by stage 29 and propagated through
stage 23, gate SKP28 generates SKP23, (The gates are named for the first stage through
which the carry is propagated, not for the stage which generates the carry.) The conditions
for gate SKP28 are SP229, i.e., (~vSP029)A (~SP129), and at least an input of one (vSPO0) to
the final adders of stages 28 through 23. a

3-65




Note that the signal SKP23~ indicates carry propagation through stage 23 but not
necessarily a carry generation by stage 23. Therefore, the skip carry signal SKP23-,
SKP13+, SKP05~, and SKP62+ are partial carries and are inserted into their next respective
stages. The SKP assertion signals are inserted instead of the SCY assertion signals and
to form the complete carry, are ORed (by the stages which use the carries) with SP2, just
as would be the SCY assertion carries. Similarly, the SKP negation signals are ANDed

with ~ SPO just as the SCY negation signals.

Adder Structure

The adder structure is depicted in Figure 3-29, illustrating general signal routing
and polarity. For example, it shows the inputs to adder stage 11 as RHF 11l or RHF 12 via
S1 and RHF13 or RHF 14 via S4. The carry and sum polarities for the different stages are
indicated. The insertion of skip carries and their polarities is shown.

Figure 3-29 also indicates the PAC boundaries of the RG, RH, and adder stages. For
example, stages 10 and 11 of the RG and RH registers and of the preliminary adder are on
one PAC with the intermediate functions and the final adder of stages 11 and 12. The skip-

carry network is contained on one separate PAC.

CONSOLE CONTROL AND DISPLAY PANELS

The Series 32 control and display console consists of two electrically separate assem-
blies cabled to each other, to the CP logic frame, and to the power control chassis. Mounted
on the control panel are the pushbuttons, toggle switches, and keys that control power turn-on,
CP operation mode and start-stop control, manual data entry, display selection, maintenance
mode control, address halt (optional), fill device selection, and sense switching. The dis-
play panel features two 32-bit indicator displays that can be supplied with data from a
variety of sources, controlled by the control panel display selection switches. Back-lighted
labels display CP status indications and identify the contents of the selected 32-bit displays.
Full information on display labeling appears in the Series 32 Operator's Manual.

Figure 3-30 shows the routing of data and control to and from the control and display
panels. Logic diagrams that provide detail on interconnections and logic functions are
specified on the block diagram.

All console signals are defined in the mnemonic glossary in the Central Processor

Instructions manual.

Address/Data Entry Switches (LBD 07.26 and 07.28)

These switches are used for direct insertion of addresses and data in RG and RH
prior to a transfer, access fetch, or access store operation. The access mode must be

selected for the switches to be effective.

3-66






69-¢

MPC <

T
I BXRgg-31 : 0016/ HDUg_3q
! (NPUT | muLTIPLE— |
—— HCZSY — FANAN |
| CP {SEE INPUT |
INPUTS | HDLg_31
: —— Hczep —=  TABLE 3-11) i F— |
| — Hsiop INPUT SELECTION | |
FROM CONTROL —|
| L— nscpu PANEL ] — T - |l HDTXX
SINGLE HDTIO
: BIACT BIACT INaLE |
| BCACT BCACT | HDTCP
. HFRUN i HDTRN
| INTERRUPT START- e T
CONTROL ST
| 06.72 0040 |HFFIL DRIVERS | | HDTLD
| INABL gg-gg I HDTII
l LOOKAHEAD {NABL 00.24 : HDTIL
| CONTROL 00.26 —
| 06.52 ZDC FAULT | HOTPW
I
| —
—— NTROL _PANEL ————
00.18 | I 1 co r —
\‘ HUSgo-31 07.08 | 0128 - 07.06 HDHSR
] RG ! ! ! ADDRES;—’ 1 | HDHPR
. H] HUC0-31 ! |__lcLear | |
] | | 1 ENTRY | | HDHAD
I H| Hisgp-1 | ! 07.28 SWITCHES | | HDHIT
' RH H e | | DATA | | |—HoHel
| | 00-31 | | CLEAR | | HDHIO
T
| | { I | | Homxx
| ! l ! o722 ' I HDHAE
[ RPE 4245 | LHessA, B,.c,D | | ! SENSE ' |
| 05.44 | | | | SWITCHES | | HDHRP
| | - Ve | [ omse
‘ ADDRESS I l ! 07.30 OUTPUTS ) ; | HDHIS
| | HCHLH {COMPARATOR | HCHiz30 |1 | | ADDRESS | |
| | HeHLL (OPTION) | | | HALT HDHOF:
| 00.42 ! I | | swiTckes ! | HDRAR
1 - LEL | | |
| MAT/2.30 | T 3 | I HDHUL
| | { HsCcPU | | T |
| | [ 1 | HDHSD
! LAMP | HSIOF | t 07.24 ] |
DISPLAY HDHCP
l, Dnﬁlp\(yETR - | |_Hsu/v | | SELECT T | —
| SELECTION | _ I HSM/M : | SWITCHES ; :
T
| _ | |LHsiTs : | ! | HDHUV
T
I g | |_HspPsD I y | : HDHGH
I - i HCMCS I I | i HDHMM
1
l | |_HcMAH I I W : l HDHDE
| * | | T - | | ZDC18-
| HCME! | i | I ZAC28
| i HCMII | h | , ZAC28
T
! | | _HCMEL I | I ]
| -] } | ] |
| | HemiL ! X |
1 | ' l
‘ | | _HCmAC | : l |
| |
| | |LHeze I | [ fo7.00
} | Lnemso [ | EXECUTE { . _ZAC28-
| PANEL CONTROL I Hemey | ! MAINTENANCE | : | ZAC28+
SIGNALS - | | } CONTROL '
| {DISTRIBUTED | | Hemmre | | SWITCHES POWER I I'| HPOFF
I THROUGHOUT CP) | +— | | T SWITCH f |
I <] | | HCHAB | | 07.22 | { HPWON
| || HcmoF I | I
| 1 | ; | POWER CONTROL :
[ | HCMFE | | | |
|
| | HCMTC | ! } : ZDC13+
ll SEE MNEMONIC <] | [ [HCMGO | L | || zocra
FOgLF%SI\?éPIBNS I | ! i |
| | | | | 1 PWSTT
HCMSI P |
- i +
: : | } | | | zpioo
I
| | [ Housa | i : 'l zpcae-
| | Hezsy | i —a\ |
‘ L+ | J | {| zocrs-
| | | zbc FAaULT | | 07.20 |
| — ZDC FAULT
| CENTRAL PROCESSOR | ‘}J | i !
| LOGIC FRAME Lo - L
R | | |
| POWER CONTROL |
| CHASSIS |
5191 e — 4

Figure 3-30,

Console Data Distribution

DISPLAY  PANEL

07.04 07.02

MuPPER ]
32-81T

DISPLAYS

LOWER _|

STATUS
INDICATORS

(SPARE)
10P ACTIVE

CP ACTIVE
RUN

LOAD
INHIBIT
INTERRUPT
INHIBIT
LOOKAHEAD
POWER

STATUS AND
L DISPLAY
LABEL
INDICATORS

SEE

MNEMONIC
GLOSSARY

FOR FUNCTIONS

PDU,

BULK SUPPLY,
- INDICATOR
SUPPLY,
REGULATORS




PS1/PS2 Display* IOP Display CP Display G/H Display Inst. Display M Display U/V Display
or Access Display*

Bit Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Bit
0 RPF32+ BXRO00+ BXP00+ BXRO00+ BXPO00+ RHF 00+ RGF 00+ TSOBF - RMF00+ RKLO0O+ VXX00+ UXX00+ 0
1 RPF33+ BXRO1+ BXPOl+ BXRO01+ BXPOl+ RHFOL+ RGFOl+ TSPAF+ RMFO1+ RKLO1+ VXXO01+ UXXO01+ 1
2 BXRO02+ BXPO02+ BXRO02+ BXP02+ RHF02+ RGF02+ TIPAX+ RMFO02+ RKLO02+ VXX02+ UXX02+ 2
3 RPF35+ BXRO03+ BXP03+ BXRO03+ BXPO03+ RHF03+ RGF03+ TICAF+B | RMFO03+ RKLO03+ VXX03+ UXX03+ 3
4 RPF36+ RPF04+ | BXR04+ BXP04+ BXR04+ BXP04+ RHF 04+ RGF 04+ RIA04+ RMF04+ RKL04+ VXX04+ UXX04+ 4
5 RPF37+ RPF05+ | BXRO05+ BXPO05+ BXR05+ BXPO05+ RHFO05+ RGFO05+ RIAO05+ RMF05+ | RKLO5+ VXX05+ UXX05+ 5
6 RPF38+ RPF06+ | BXR06+ BXP06+ BXRO06+ BXP06+ RHF 06+ RGF 06+ RIAO06+ RMFO06+ RKLO6+ VXX06+ UXX06+ 6
7 RPF39+ RPFO07+ | BXRO7+ BXPO7+ BXRO7+ BXPO7+ RHFO07+ RGFO7+ RIAO7+ RMFO7+ RKLO7+ VXX07+ UXX07+ 7
8 RPFO08+ | BXRO08+ BXP08+ BXRO08+ BXP08+ RHF 08+ RGF08+ RIAO08+ RMF08+ RKLO08+ VXX08+ UXX08+ 8
9 RPF09+ | BXR09+ BXP09+ BXR09+ BXP09+ RHF09+ RGF09+ RIAO09+ RMF09+ RKLO09+ VXX09+ UXX09+ 9

10 RPF42+ RPF10+| BXR10+ BXP10+ BXR10+ BXP10+ RHF10+ RGF10+ RIAL0+ RMF10+ RKL10+ VXX10+ UXX10+ 10

11 RPF43+ RPFl1+| BXRIL1l+ BXPl1+ BXRI1+ BXPl1l+ RHFI11+ RGFl1+ RIALl+ RMF11+ RKLI1+ VXX11+ UXX11+ 11

12 RPF44+ RPF12+ | BXR1l2+ BXPl2+ BXR12+ BXPl2+ RHF12+ RGF12+ RIAlZ2+ RMF12+ RKL12+ VXX12+ UXX12+ 12

13 RPF45+ RPF13+| BXRI13+ BXP13+ BXRI13+ BXP13+ RHF13+ RGF13+ RIA13+ RMF13+ RKL13+ VXX13+ UXX13+ 13

14 RPFl14+ | BXR14+ BXP14+ BXR14+ BXP14+ RHF14+ RGF14+ RIAL 4+ RMF14+ RKL14+ VXXI1 4+ UXXI14+ 14

15 RPF15+| BXR15+ BXP15+ BXR15+ BXP15+ RHF15+ RGF15+ RMF15+ RKL15+ VXX15+ UXX15+ 15

16 RPF16+| BXR16+ BXP1l6+ BXR16+ BXPl6+ RHF16+ RGF16+ TLFAF+ | RMF16+ RKL16+ VXX16+ UXX16+ 16

17 RPF17+| BXRL17+ BXPL1 7+ BXR17+ BXP1 7+ RHF17+ RGF17+ TLIAF+ '] RMF17+ RKLI17+ VXX17+ UXX17+ 17

18 RPF18+| BXR18+ BXP18+ BXR18+ BXP18+ RHF18+ RGF18+ TLLIAF+D| RMF18+ RKL18+ VXX18+ UXX18+ 18

19 RPF19+| BXR19+ BXP19+ BXR19+ BXP19+ RHF19+ RGF19+ TL2AF+ RMF19+ RKL19+ VXX19+ UXX19+ 19

20 RPF20+ | BXR20+ BXP20+ BXR20+ BXP20+ RHF20+ RGF20+ TL3AF+B| RMF20+ RKL20+ VXX20+ UXX20+ 20

21 RPF21+| BXR2l+ BXP21+ BXR21+ BXP21+ RHF21+ RGF21+ TL4AF+ RMF21+ RKL21+ VXX21+ UXX21+ 21

22 RPF22+ | BXR22+ BXP22+ BXR22+ BXP22+ RHF22+ RGF22+ TL5AF+ RMF22+ RKL22+ VXX22+ UXX22+ 22

23 RPF23+| BXR23+ BXP23+ BXR23+ BXP23+ RHF23+ RGF23+ TL6AF+ RMF23+ RKL23+ VXX23+ UXX23+ 23

24 RPF24+ | BXR24+ BXP24+ RHF24+ RGF24+ RMF24+ RKL24+ VXX24+ UXX24+ 24

25 RPF25+ | BXR25+ BXP25+ RHF25+ R GF25+ RMF25+ RKL25+ VXX25+ UXX25+ 25
26 RPF26+| BXR26+ BXP26+ IAF24+ IDL24+ RHF26+ RGF26+ RMF26+ RKL26+ VXX26+ UXX26+ 26
27 RPF27+| BXR27+ BXP27+ IAF25+ IDL25+ RHF27+ RGF27+ TCT27+ RMF27+ RKL27+ VXX27+ UXX27+ 27
28 RPF28+| BXR28+ BXP28+ IAF26+ IDL26+ RHF28+ RGF28+ TCT28+ RMF28+ RKIL.28+ VXX28+ UXX28+ 28
29 RPF29+| BXR29+ BXP29+ IAF27+ IDL27+ RHF29+ RGF29+ TCT29+ RMF29+ RKL29+ VXX29+ UXX29+ 29
30 RPF30+ | BXR30+ BXP30+ IAF28+ IDL28+ RHEF30+ RGF30+ TCT30+ RMF30+ RKL30+ VXX30+ UXX30+ 30
31 BXR31+ BXP31+ IAF29+ IDL29+ RHF31+ RGF31+ TCT31+ RMF31+ RKL31+ VXX31+ UXX31+ 31

Lamp Driver Gating
Term: HSPSD

Lamp Driver Gating
Term: HSIOP

Lamp Driver Gating
Term: HSCPU

Lamp Driver Gating
Term: HSG/H

Lamp Driver Gating
Term: HSITS

Lamp Driver Gating
Term: HSM/M

Lamp Driver Gating
Term: HSU/V

#Selected when « switch is centered in run mode oF step mode.

— - - .
#%Selected when < switch is centered in access mode.

Table 3-11.

Display Lamp Driver Input Summary

3-71



Address Halt Keys (LBD 07.30)

These keys are used in connection with the optional address halt feature. An address
is manually set into the keys and the control key to the left is set at HALT. When a memory
address matches the key setting, the CP clock is stopped in a panel halt condition. (See

start-stop logic description.) LBD 00. 42 illustrates the comparison logic.

Sense Keys (LBD 07.22)

The four sense keys directly control bounce-suppression flip-flops RPF42 through 45,

where they are available for testing by bit-addressing instructions.

Execute and Maintenance Control Switches (LBD 07.22)

These switches control the CP execution mode. Many of the signals (such as HCZSY
and HCMSA) have been discussed in connection with start-stop sequencing and control.
Others take effect during the execution of a particular algorithm. Refer to the mnemonic

glossary and flow charts in the Central Processor Instructions manual for details.

Display Select Switches (LBD 07.24)

These switches generate the signals that gate inputs through the lamp drivers to the
32-bit indicator registers. The gating signals correspond directly to selection switch
positions except for HSPSD and HSG/H. HSPSD is enabled when the left-right selector switch
is centered and the CP is not in the access mode, to provide a normal PS1/PS2 display.
HSG/H is enabled in the access mode (assuming the left-right switch is centered) to provide

the G/H display of memory address and data.

Direct-Wired Status and Display Labeling

Many of the control panel switches produce outputs that are wired directly to the dis -
play panel to light status or labeling indicators. For example, HDHGH lights the G-REG
and H-REG labels that appear when the G/H display is selected. See the mnemonic glossary

in the Central Processor Instructions manual for definition of these terms.

Lamp Drivers and Display Selection (LBD 00.20 through 00. 26)

One lamp driver PAC is provided for each 8 stages of the upper or lower 32-bit display
indicator banks. Each PAC contains a seven-input data selection fan-in and an output switch
that controls the display indicator.

Input selection is controlléd by the gating terms from the display select switches on
the control panel. Data selected by the lamp drivers for each display is summarized in

Table 3-11,

3-73



The lamp driver output stage provides a low impedance to ground when the selected
data input is true, and an open circuit when the input is false. The output stage thus serves
as a switch in series with the 18-volt indicator supply and the associated indicator lamp.

Lamp drivers with ungated inputs drive the status indicators (POWER, LOAD, etc.)
that are controlled by signals from CP logic. The other status indicators are controlled

directly from control panel switches, and so do not require lamp drivers.

Control Panel Power Switching (LBD 07. 20)

When the control panel POWER switch is held ON, 28 Vac is applied across the power
distribution unit's main power contactor. If the bulk supply and the indicator supply reach
full voltage and there is no ac fault in the system, a relay in the PDU holds the contactor on;
the panel POWER switch can be released. (The HPOFF contact holds the main contactor on.)
When the POWER switch is turned OFF, the HPOFF contact opens the contactor holding cir-
cuit and turns off prime power in the PDU. (Loss of the indicator supply or presence of an
ac fault at the input to the bulk supply also drops out the main power contactor.)

A time delay relay on the power control chassis generates system initialize for about
1 second during and after power-on. The same relay provides the PWSTT contact closure
which informs external devices that CP ac power is off.

The ZDCFAULT signal, brought into the power control chassis from the system power
supply regulators, controls the POWER lamp on the panel through a lamp driver. The
ZDCFAULT signal is ORed from all regulators in the system; if any regulator develops a
dc fault, the signal turns off the POWER indicator on the panel. (No automatic ac or dc

power shutdown occurs, however, outside of the faulty regulator.)

MPC Interconnections

The BXP and BXR lines from the MPC contain activity state codes used in the CP and
' IOP display modes. The HSIOP and HSCPU gating terms from the panel specify which
group of data is required. The MPC also provides control signals for the CP ACTIVE and
IOP ACTIVE indicators, driven by lamp drivers. Over this same cable the system and CP
initialize signals are supplied from the CP to the MPC. (See paragraph on Sequencing and

Control in Section II.)

3-74



HONEYWELL, COMPUTER CONTROL DIVISION, FRAMINGHAM, MASS. 01701

Printed in U.S.A.



	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	2-01
	2-03
	2-05
	2-06
	2-07
	2-08
	2-09
	2-11
	2-13
	2-14
	2-15
	2-17
	2-19
	2-20
	2-21
	2-23
	2-25
	2-26
	2-27
	3-01
	3-03
	3-05
	3-07
	3-09
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-23
	3-24
	3-25
	3-26
	3-27
	3-29
	3-30
	3-31
	3-33
	3-34
	3-35
	3-37
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-69
	3-71
	3-73
	3-74
	xBack

