
Honeywell

SERES 60 (LEVEL 68)

SOFTWARE

MUL TICS PR~RAMMERS' MANUAL
REFERENCE GUIDE

Honeywell MUL TICS PROGRAWMERS' MANUAL
REFERENCE GUIDE

SERES 60 (LEVEL 68)

SUBJECT:

Reference Guide to the Overall Mechanics, Conventions, and Usage of the
Multics System.

SPECIAL INSTRUCTIONS:

This manual is one of four manuals that constitute the Multics Programmers'
Manual (MPM).

Reference Guide
Commands and Active Functions
Subroutines
Subsystem Writers' Guide

Order No. AG91
Order No. AG92
Order No. AG93
Order No. AK92

This manual supersedes AG91, Rev. O. The manual has been extensively
revised; therefore, marginal change indicators have not been included in
this edition.

SOFTWARE SUPPORTED:

Multics Software Release 3.0

DATE:

December 1975

ORDER NUMBER:

AG91, Rev.

PREFACE

Primary reference for user and subsystem programming on the Multics system
is contained in four manuals. The manuals are collectively referred to as the
Multics Programmers' Manual (MPM). Throughout this manual, references are
frequently made to the MPM. For convenience, these references will be as
follows:

Document

Reference Guide
(Order No. AG91)

Commands and Active Functions
(Order No. AG92)

Subroutines
(Order No. AG93)

Subsystem Writers' ~
(Order No. AK92)

Referred To In Text As

MPM Reference Guide

MPM Commands

MPM Subroutines

MPM Subsystem Writers' Guide

The MPM Reference Guide contains general information about the Multics
command and programming environments. It also defines items used throughout the
rest of the MPM. And, in addition, describes such subjects as the command
language, the storage system, and the input/output system.

The MPM Commands is organized into four sections. Section I contains a
list of the Multics command repertoire, arranged functionally. It also contains
a discussion on constructing and interpreting names. Section II describes the
active functions. Section III contains descriptions of standard Multics
commands, including the calling sequence and usage of each command. Section IV
describes the requests used to gain access to the system.

The MPM Subroutines is organized into three sections. Section I contains a
list of the subroutine repertoire, arranged functionally. Section II contains
descriptions of the standard Multics subroutines, including the declare
statement, the calling sequence, and usage of each. Section III contains the
descriptions of the I/O modules.

The MPM Subsystem Writers' Guide is a reference of interest to compiler
writers and writers of sophisticated subsystems. It documents user-accessible
modules that allow the user to bypass standard Multics facilities. The
interfaces thus documented are a level deeper into the system than those
required by the majority of users.

AG91

~ 1975, Honeywell Information Systems Inc. File No: 1L13

Examples of specialized subsystems for which construction would r'equire
reference to the MPM Subsystem Writers' Guide are:

• A subsystem that precisely imitates the command environment of some
system other than Multics.

• A subsystem intended to enforce restrictions on the services available
to a set of users (e.g., an APL-only subsystem for use in an academic
class).

• A subsystem that protects some kind of information in a way not easily
expressible with ordinary access control lists (e.g., a proprietary
linear programming system, or an administrative data base system that
permits .access only to program-defined, aggregated information such as
averages and correlations).

Several cross-reference facilities help locate information:

• Each manual has a table of contents that identifies the material
(either the name of the section and subsection or an alphabetically
ordered list of command and subroutine names) by page number.

• Each manual contains an index that lists items by name and page number.

iii AG91

SECTION I

SECTION II

SECTION III

CONTENTS

Multics Concepts and Characteristics
History of Multics
System Concepts • • • •
System Characteristics

Segments
Virtual Memory
Paging •• . • •
Process • • • •

Selective Sharing •
Access Control List • • • • •
Access Isolati6n Mechanism • • • •
Ring Structure •• • •

System Administration • • • • • • • •
User Interfaces • • • • • • •

Programming Environment •
Programming Languages

PLII . • • •
FORTRAN ••••
BASIC • • • • •
COBOL •
APL • •
ALM • • •
qed x ••• •
runoff

Support Facilities and Tools
Remote Access • • • • • . • • •
Service to Large and Small Users
System Design • • • • • •

Continuous Operation
System Reliability

Glossary of Multics Terms

Multics Storage System
Directory Contents

Entry Attributes
Multisegment Files

System Directories

Naming, Command Language, and Typing
Conventions .••• • • • •

Constructing and Interpreting Names • •
Entrynames •• • • • • • • •
Pathnames .•.•••
Star Names •• • • •

Constructing Star Names •
Interpreting Star Names •

Equal Names • • • • • • • . •
Constructing Equal Names
Interpreting Equal Names . • • • •

Reference Names • • • • • • •
Entry Point Names • • • • • •
Command, Subroutine, Condition,
and 1/0 Switch Names •••••••.•

iv

Page

1-1
1-1
1-1
1-2
1-2
1-3
1-3
1-4
1-4
1-4
1-4
1-5
1-5
1-6
1-6
1-6
1-6
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-8
1-8
1-9
1-9
1-9
1-10

2-1
2-1
2-3
2-6
2-6

3-1
3-1
3-1
3-1
3-4
3-4
3-4
3-6
3-6
3-7
3-10
3-12

3-i2

AG91

SECTION IV

SECTION V

CONTENTS (cont)

Command Language
Command Environment
Simple Commands • •
Reserved Characters and Quoted
Strings ••••

Iteration ••••••••
Active Strings
Concatenation ••

Typing Conventions
Canonical Form
Examples of Canonical Form . • • • • •
Erase and Kill Characters • •
Examples of Erase and Kill Processing •

ASCII Character Set • • • ••
Escape Characters • • •

Multics Programming Environment •
Program Preparation • '. • •

Programming Languages • •
Creating and Editing the Source

Segment •••• • • • • •
Creating an Object Segment
Object Segment Format • • • •
Debugging Facilities ••••
Writing a Command •••••••••••
Writing an Active Function

Address Space Management
Dynamic Linking • • • •
Search Rules •• • • • •
Binding • • • • • • • • • • • • •
Making a Segment Known • • • •
Address Space Management Subroutines ••

Multics Stack Segments
Stack Header •••• •
Stack Frames •• • • • •
Combined Linkage Region

Clock Services ••• • • • • • • • •
Access to Sy~tem Clocks •
Facilities for Timed Wakeups

Input and Output Facilities •• ' ••••
Multics InputlOutput System • • • • • • • •

System InputlOutput Modules • • • • • •
User-Written InputlOutput Modules •
How to Perform InputlOutput ••••
InputlOutput Switches ••

Attaching a Switch
Opening a Switch
Synonym Attachments •
Standard InputlOutput Switches

Interrupted InputlOutput Operations
Programming Language InputlOutput
Facilities ••••••

File InputlOutput • • •
Unstructured Files
Sequential Files
Indexed Files
File Opening
File Closing
File Position Designators

v

Page

3-13
3-13
3-14

3-15
3-15
3-16
3-18
3-19
3-19
3-20
3-21
3-22
3-22
3-22

4-1
4-1
4-1

4-2
4-3
4-3
4-4
4-4
4-5
4-1
4-1
4-8
4-9
4-10
4-10
4-11
4-11
4-12
4-12
4-12
4-13
4-13

5-1
5-1
5-2
5-2
5-2
5-3
5-4
5-5
5-5
5-8
5-9

5-9
5-9
5-10
5-10
5-10
5-11
5-11
5-14

AG91

SECTION VI

SECTION VII

CONTENTS (cont)

Terminal Input/Output • • .
Bulk Input and Output • •

Printed Output
Punched Card Input
Punched Card Output •

Access Control ••••• • •
Types of Access Control
Effective Access ••
Discretionary Access Control

Access Identifier • •
Access Modes • • • •
Structure of An ACL
Matching Entries on an ACL
Maintenance of ACLs •
Special Entries on an ACL . •
Initial ACLs ••• • . • • •.
Maintenance of ~nitial ACLs •

Nondiscretionary Access Control • .
AIM Attributes
Relationships Between AIM Attributes
AIM Access Rules

Segments •• • •
Directories • • •
Interprocess Communication ••••
Message Segment •

Authorizations
Access Classes

Segment ••••
Directory •
Message Segment • • • •

Maintenance of AIM • • • • • • •
User Commands and Subroutines •
Special Situations
Mailboxes • • • • • • • •
General Restrictions

Intraprocess Access Control •
Valida tion Level ••••
Segment Ring Brackets • • • • • •
Directory Ring Brackets • •
Modification of Segment Attributes
Default Values •• • • • • ••••

Handling Unusual Occurrences
Printed Messages
Sta tus Codes ••••
List of System Status Codes and

Meanings • • • • • •
Storage System Status Codes • • •
Input/Output System Status Codes
Other Status Codes ••• • ••••

Conditions ••••••••••••••
Multics Condition Mechanism ••••
Example of the Condition Mechanism
On Unit Activated by All Conditions
Interaction with the Multics Ring
Structure ••• • • • • • • • • •

Action Taken by the Default Handler • •
Signalling Conditions in a

User Program • • • • • • • • • • •
Obtaining Additional Information About

a Condition •• • • • • •••••••

vi

Page

5-14
5-16
5-16
5-17
5-17

6-1
6-1
6-2
6-2
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-9
6-10
6-11
6-11
6-11
6-12
6-12
6-12
6-13
6-14
6-14
6-14
6-15
6-15
6-15
6-15
6-16
6-16
6-11
6-18
6-18
6-20
6-20
6-21

1-1
1-1
1-2

1-3
1-3
1-5
1-1
1-10
1-10
1-11
1-12

1-14
1-14

7-14

7-14

AG91

SECTION VIII

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

Index

Figure 2-1
Figure 2-2
Figure 3-1
Figure 7-1

Table 5-1

Table 5-2
Table 5-3

Table 5-4
Table 5-5

.

CONTENTS (cont)

Machine Condition Data Structure
Information Header Format • • • •

List of System Conditions and Default
Handler •••••• • • • • • •

PL/I Condition Data Structure ••
System Conditions ••••••

Nonlocal Transfers and Cleanup
Procedures • • • • • •

Faults
Simulated Faults ••••
Process Termination Fault • • • • • • •

Backup and Retrieval •. • •
Dumping • • • • • • • • •

Incremental Dumps • •
Consolidated Dumps
Complete Dumps

Reloading •

ASCII Character Set . . .
Terminal Characteristics

Punched Card Input and Output

Standard Data Type Formats

..

·
. ·
. ·

List of Names with Special Meanings ·
Standard Magnetic Tape Format

Standard Checksum
.

ILLUSTRATIONS

Storage System Hierarchy
Directory Hierarchy • • •
Sample Storage Hierarchy
Simplified Handler Algorithm

TABLES

. .
. .

Opening Modes and Allowed Input/Output

·
·
·

Operations • • • • • • • • • • • • • •
Opening Modes Supported by 1/0 Modules
File Types and Allowed InputlOutput
Operations ••••••••••

Compatible File Attachments •
File Position DeSignators at Open •

vii

· .
·
·

· . . .

Page

7-15
7-18

7-18
7-19
7-21

7-41
7-41
7-42
7-42

8-1
8-1
8-2
8-2
8-3
8-3

A-1

B-1

C-1

D-1

E-1

F-1

G-1

i-l

2-2
2-7
3-3
7-13

5-6
5-7

5-12
5-13
5-15

AG91

SECTION I

MULTICS CONCEPTS AND CHARACTERISTICS

The first part of this section is a brief introduction to the Multics
system. Many items mentioned here are described in detail in other sections of
this manual. Refer to the contents and index of this document to locate desired
information. When necessary, the user is referred to other manuals.

The second part of this section is a glossary of Multics terms. A
reference that refers the reader to either a section of this manual or to
another manual is supplied with most of the terms defined.

HISTORY OF MULTICS

The Multics system is a general purpose computer system developed by
Honeywell Information Systems. Introduced to commercial markets in January
1973, Multics was then the result of more than 7 years of joint research on the
part of the development principals. Continued development and system
enhancement is planned to extend well into the future. Multics was implemented
initially on the Honeywell Model 645 computer system, an enhanced relative of
the Honeywell Model 635 computer system. A transition was later made to the
more advanced Honeywell Model 6180 computer system when it became available, and
now has been made to Honeywell's top-of-the-line Series 60/Level 68 system.

SYSTEM CONCEPTS

Multics is a unique combination of hardware, software, communications
capabilities, and supervisory techniques. The system hardware, particularly the
central processor, is specifically designed for the Multics operating system.
The system provides capabilities that have long been sought by research,
government, academic, and network-oriented computer users -- those sophisticated
users who require unique security, system development, and centralized data base
features.

Setting Multics apart from other offerings in the general purpose computer
market is its ability to provide total resources on demand. Computer systems
previously have been measured in terms of memory size, speed, and hardware cost,
but Multics is gauged by its ability to provide the most cost-efficient
environment for problem solving. Productivity of the system is high because all
Multics software including the operating system supervisor, user programs,
and data files -- is free of main memory constraints and of any particular
hardware configuration.

1-1 AG91

An ability to share data within the framework of a general purpose,
time-sharing system, is a vital feature of Multics that can be directly applied
to administrative problems, applications requiring a multiuser accessible data
base, and general application of the computer to very complicated problems. The
attention paid to mechanisms to provide and control privacy is of direct
interest for many applications dealing with proprietary information.

Multics offers a number of additional capabilities that go well beyond
those provided by many other systems. Those which are most significant from a
user's point of view are described in this section. Perhaps the most important
aspect of all is that a single system comprises all of these capabilities
simultaneously. The major design concepts of the Multics system include:

• Virtual memory designed to make addressable memory seem virtually
infinite

• Selective sharing of information through controlled access that is
regulated by both software and hardware

• Security mechanisms enforced by hardware: this includes the Multics
ring structure

• Structural administration, allowing
management of system resources

decentralized control and

• Flexible user interfaces, allowing a wide variety of programming
environments

• Remote terminals as the normal mode of system access

• Efficient service to all users whether their use of system resources
is very large or very small

• Continuous operation through the use of dynamic hardware configuration
techniques and online software maintenance and system administration

• Open-ended, modular system design that anticipates the evolution of
technological improvements and the expansion of user requirements

SYSTEM CHARACTERISTICS

The following para~raphs describe, in more detail l the major
characteristics of the Mult1cs system. These characteristics are 1ntegral parts
of the Multics system and cannot be separated from the system yet in many
instances, use of these capabilities is optional to the individual user.

Segments

The segment is the unit of storage of the Multics storage system analogous
to a file on other systems. A segment can range in size from 0 to 256K 36-bit
words. On Multics, all information is grouped into nondirectory and directory
segments. A nondirectory segment is a collection of instructions or data
specified by a user. A directory segment is a catalog of subordinate segments,
created and maintained by users via the supervisor. Each directory segment also
lists the attributes including length, secondary storage address, date and time
of creation, and access restrictions for each segment cataloged. The directory
concept is the key to several Multics features including storage structure,
administrative control, search rules, and naming conventions.

1-2 A091

A user can create a segment by issuing a command (e.g., create) from
command level or via a call statement from within a program. A user has control
over every segment he creates. The segment attributes mentioned above provide
the user with extensive control over the manipulation and sharing of the
segments he creates. (See "Selective Sharing" below.) A user may specify the
individuals who have access to his segments. Also levels of protection (rings)
can be specified as a further control over the same segments.

Virtual Memory

The Multics virtual memory makes all segments in the storage system
directly addressable. An address in Multics, as used by the hardware, consists
of two components: the first identifies a segment and is called a segment
number; the other specifies a location within that segment.

A segment number is assigned by the supervisor and associated with the
specified segment by user request, provided the user has the necessary access
privileges. This request is often done implicitly as part of some other
supervisor function.

Once a segment number has been provided by the supervisor, user software
can reference the segment directly with appropriate machine instructions. The
data or code of the segment so referenced is automatically brought into main
memory, if necessary, so that the processor can use it.

Since the physical movement of information between secondary storage and
main memory is totally automatic, it is of no concern to the programmer when he
is constructing his application. A user does not have to be concerned with
where and on what devices his segments reside. Because of the demand paging
technique described below, users need not be concerned about overlaying or
partitioning program modules to satisfy limited main memory resources. Since
conventional input/output is not required, programming on Multics is greatly
simplified.

Paging

Since segments can be different sizes, it may be impractical to have an
entire segment in main memory when in use. Therefore Multics segments nre
automatically subdivided into fixed-size (1024 words) storage units called
pages. when a segment is referenced, the page referenced is automatically
retrieved from secondary storage and placed in any available "frame" in main
memory. when main memory is filled and more frames are needed, some pages have
to be displaced. Pages not used recently are moved to secondary storage so that
new pages may be transferred to main memory.

Address mapping at the hardware level allows the system to deter~ine
whether or not a page of a referenced segment is in main memory. If the page is
not in main memory, a missing page exception occurs (called a "page fault").
The system software intervenes at this point and processes the page fault by
locating the desired page of the storage system in secondary storage and
transferring it to main memory. This procedure is automatic; and the time
involved is not noticeable to the user. During this phase, the process that
generated the page fault may relinquish control of the processor and the system
may dispatch the processor to another process. (See nprocess" below.) Once the
page does arrive in main ~emory, the system notifies the "waited" process and
schedules it for continued execution. Consequently, only those pages that are
currently needed are in ma~~ memory at anyone time.

1-3 AG91

Process

A process may be defined as how the system is seen by a logged-in user; in
essence; a user's process is the user's (virtual) machine. Multiprogramming
multiplexes real processors among users' processes. A user's process executes
programs sequentially. A user's process also has an address space. Each
process can directly reference only those segments that have been assigned a
segment number for that process by supervisor calls.

The system creates a process for each user at login time. (For information
on logging in and out on the system, see "How to Access the Multics System" in
the Multics Users' Guice, Order No. AL40.) Within the constraints imposed by
the supervisor, a user may customize his process as desired: the commands,
command processor and environment, and translator provided by the system can all
be replaced in a user's process by his own code. A project administrator also
has the option of enforcing the use of a given process environment upon users in
his project.

Each user's process executes programs fairly independent of other users'
processes. Information may be shared between processes, allowing sharing of
programs and communication between processes (if desired). All processes
coexist in the system, and cannot maliciously or accidentally interfere with
each other.

SELECTIVE SHARING

Segments are data objects that exist independently of any process. The
system manages the physical location of pages of segments. If the pages are in
use, they will be in main memory. If several users have the same segment known
in their process, they will reference the same physical locations of main memory
when referencing it. No per-user "copies" or "images" of segments exist.
Hence, several users referencing a given segment may use its contents to
comillunicate, given that access has been appropriately granted. Furthermore,
several processes using the same program use the same physical pages,
contributing to effective use of main memory.

Access Contrel List

Each segment has an access control list (ACL) that names the individuals
who have acc~ss to the segment and describes the type of access they have.
Through the ACL, a user can grant specific access to individual users or groups
ef users to permit easy, controlled sharing of information. Different access
rights can be granted to different users of the same segment. The hardware
enforces access control during the execution of each individual machine
instruction.

Access Isolation Mechanism

The access isolation mechanism (AIM) allows administrators of the system to
define several levels of privilege, which the system itself rigidly enforces.
Enforcing the separation of these levels is totally independent of other access
controls or user action. The use of this administrative mechanism ensures
privacy by preventing inadvertent or malicious disclosure of information between
these privilege levels, even by those who own the information.

1-4 AG91

Ring Structure

A further refinement to selective sharing is provided by special hardware
that implements the Multics ring structure. Ring structure is an advanced form
of protection capability that permits the ready construction of protected data
bases. Privileged users may have complete access to the data base and can
control (by program) the information less privileged users can see.

Logically, the ring structure iR eight concentric rings, each representing
the level of privilege accorded to procedure segments executed in that ring.
The highest level of privilege is the innermost ring, designated as ring 0; the
outermost is ring 7. Privileged ring segments, such as a supervisor and special
user subsystems, are protected from uncontrolled use by less-privileged rings.
These segments can only be used by procedures in less-privileged rings if called
via a special "gate" mechanism. The access permission checking is still
required, as well.

The Multics ring implementation makes it possible to:

• create protected programs and data bases for controlled use by other
users

• implement a supervisor program in rings with differing degrees of
privilege

• debug a program in an unprivileged ring and then move it to a
privileged ring with no recompilation or modification

SYSTEM ADMINISTRATION

All information stored online on Multics is organized into a
tree-structured hierarchy. Within this hierarchy, directories catalog segments
residing below them in the tree. (See Section II, "Storage System.rt) The
organization of the body of users on Multics is patterned after the organization
of the storage system. Users are grouped by the system administrator into
projects, which are generally under the control of a project administrator. The
project administrator may impose special disciplines on users within his
project. For example, the project administrator defines the initial procedure
in a process for users under his project. The project administrator also
allocates storage quota to individual users based on the quota granted his
project by the system administrator. The distribution of authority between the
system administrator and project administrator results in a decentralized
control of the system. (See the System Administrator's Manual, Order No. AK50
and the Project Administrator's Manual, Order No. AK51.)

The facilities required to manage a Multics site are integrated into the
system itself. In the area of financial control, the Multics system accounts
for use of resources on a per-user basis and organizes .these accounts based upon
project and system administration. Users can be allocated quotas according to
storage space, central processor utilization, or dollar amounts based on the
current billing rates. Users, project administrators, and the system
administrator can interrogate quota amounts and usage at any time.

1-5 AG91

US£R INTERFACES

Multics h s an open-ended design with a uniform interface for both
user-written an system-provided commands. The user can create or manipulate
segments resid ng in various user directories while at command level or from
within a program. Users can create commands and subsystems of arbitrary
complexity. All of the interfaces available to system-provided commands and
subsystems are available to the user and are documented in the MPM Subsystem
~riters' Guide.

Programming Environment

A Multics user is not restricted to the programming environment defined by
the standard system but can alter this environment for private use or use an
altered environment that a project administrator provides or imposes on him. As
an example, the project administrator may offer some of his users only a subset
of the full system (a limited service system), or he may create a completely
separate environment (a closed subsystem) that bears no resemblance to the
standard Multics environment and requires no knowledge of the Multics system
itself. These environment changes are made possible by a large number of
Multics mechanisms. Primary contributors are:

• Modular system design that allows easy replacement of a specific
operating system module without affecting other modules

• Implementation of the system in the PL/I language, which permits easy
interfacing with operating system modules

• Project administration features, wll~ch permit the installation and
management of a new environment

• Security and protection features, which keep the environment separate
from the other users in an atmosphere of mutual protection

Programming Languages

The Multics system includes several language processors. A program written
in one of the Multics languages can call programs written in another language by
merely following appropriate calling conventions. The Multics compilers
optionally generate a symbol table that permits a user to check out his program
at the original source level with the aid of the debug, probe, and trace
commands. (For detailed information about programming on Multics in the various
programming languages, see the language manual and users' guide for the
languages in question.)

PL/I

The PL/I compiler for Multics offers a full selection of language facilties
and access to the advanced features of Multics. PL/I is the recommended
programming language for Multics users. Multics PL/I conforms to the draft
American National Standards Institute standard for the language.

1-6 AG91

FORTRAN

The Multics FORTRAN compiler conforms to the current American National
Standards Institute (ANSI) for FORTRAN. Multics FORTRAN is a superset of the
ANSI standard FORTRAN and is source-language-compatible with Series 60/Level 66
FORTRAN.

BASIC

The Multics BASIC is
contains all the functional
compiler.

compatible with the Dartmouth Version 6 BASIC and
capabilities of the Series 60/Level 66 BASIC

COBOL

This compiler is a subset of the ANSI standard COBOL and is
source-language-compatible with Series 60/Level 6-6, COBOL-74.

APL

APL is a powerful interpretive language available to Multics users. The
Multics APL interpreter is compatible with other common APL implementations.

ALM

ALM is the assembly language on Multics. It is
privileged supervisor code, compiler support operations and
It is not recommended for general use.

qedx

commonly
utility

used for
packages.

The qedx editor is used to create and edit ASCII segments. Through its
macro capabilities, it also qualifies as a minor interpretive language.

runoff

The runoff command, used for manuscript formatting, also has programmable
requests that make it a minor programming language.

Support Facilities and Tools

Stable and reliable software components within the Multics operating system
provide numerous utility and support functions. Foremost among these are the
Multics text editors, edm and qedx.

1-1 AG91

The debug, probe, and trace commands permit a user to analyze and correct a
compiled program at both the original source level and the more specific
machine-register level.

Performance-measurement tools permit the user to analyze his program's
behavior so that optimum applications software can readily be developed.

Interuser communication facilities, both immediate and deferred, permit
online messages to be transmitted among users.

Online documentation facilities provide the user with useful information
and document preparation tools.

For easy reference, the standard commands and subroutines provided by the
Multics system are listed according to function in Section I of the MPM
Commands, Section I of the MPM Subroutines, and Section V of the MPM Subsystem
writers' Guide.

REMOTE ACCESS

The primary means of accessing the Multics system is from a remote
terminal. The system accepts input from a terminal, interprets the user's
request, and invokes the software component to perform the desired function.
The software component can be either system or user-supplied: there is no
distinction at the command or subroutine level. The command language allows
recursive, iterative commands and the embedding of function calls in the command
line.

The command processor is a shared, replaceable module, written in PL/I.
The deSign of the command processor thus permits an extremely wide range of
interfaces to all system facilities either on a controlled or open-ended basis.
The project administrator can require a user to interface with a special version
of the command processor, thereby limiting the software requests or commands
available to him.

The Multics system does not usually differentiate between interactive and
batch users, except that a batch user (called absentee in Multics) is not
available to answer any questions the system may ask and must therefore
anticipate such questions and have prepared answers ready.

SERVICE TO LARGE AND SMALL USERS

The Multics system automatically assigns system resources to a user in
proportion to the size of his task. System functions (such as locating and
retrieving information from secondary storage) are invoked on a demand basis, as
the detailed requirement is encountered by the program. This not only relieves
the programmer of the burden of predicting in advance his use of system
resources, but also prevents the additional burden on the system caused by
programmers calling for more resources than they need. By default, the system
controls the automatic allocation of resources for all users. In addition, the
system and project administrators can set storage quotas on a user and even
impose "governors" that limit the amount of system resources that user can
consume in a given time interval.

1-8 AG91

SYSTEM DESIGN

The designers of' the Multics system were determined from the very beginning
to develop a system that could both evolve as a body of software on a given
machine and sustain a movement across hardware generations. To attain this
goal, they implemented a modular design, Operating system modules may be easily
replaced on a system or individual-user basis. In addition, approximately 95%
of the Multics operating system is written in PL/I, which makes further
flexibility and easy modification possible.

Continuous Operation

Various system features contribute to the Multics characteristic of
continuous operation:

• Central processors and memory units may be added or subtracted without
shutting down the system

• User programs and the system itself need not change structure in any
way whatever due to differences in hardware configuration

• Tasks required to manage the system can be performed without
interrupting service; these tasks include metering system or user
behavior, invoking management subsystems such as accounting and
billing, or even updating the bulk of the system software capabilities
and facilities

System Reliability

Information stored online on a Multics system is protected by an
incremental backup system that dumps onto magnetic tape any segment whose
contents have been changed during the backup interval. The length of the backup
interval and the segments to be protected can be set by the system
administrator. A straightforward technique permits the retrieval of a segment
from the backup tapes and its reinclusion in the online stdrage system.
Finally, there is a subsystem called the "s~lvager" that examines the online
storage system after a failure, corrects improper directories, and informs
operations personnel of missing or damaged segments. These may then be
retrieved from the backup tapes.

1-9 AG91

GLOSSARY OF MULTICS TERMS

absentee
A facility for running background jobs (noninteractive processes).
(See the enter_abs_request command in the MPM Commands.)

access attributes
See access modes below.

access class
An access isolation mechanism (AIM) attribute that denotes the
sensitivity of information contained in a segment, directory,
multisegment file, or message in a message segment. An access class
is associated with an entry for its lifetime. (See "Nondiscretionary
Access Control" in Section VI.)

access control
The mechanism for determining
(files) and directories. (See
Section VI.)

who may reference or modify segments
"Discretionary Access Control" in

access control list (ACL)
A set of access identifiers specifying who may access a segment or
directory. Associated with each access identifier is a set of allowed
modes of access to that segment or directory. There is an ACL for
each segment and each directory. See initial access control list
below. (See "Discretionary Access Control" in Section VI.)

access identifier (access_id, access_name)
A character string representing a user or class of users.
of three fields: Person_id. Proj ect_id. tag. (See" Access
in Section VI.)

It consists
Identifier"

access isolation mechanism (AIM)
The mechanism used to guarantee that only authorized persons access
certain classes of information. (See "Nondiscretionary Access
Control" in Section VI.)

access modes
A way to identify the kinds of access that may be set for a segment or
directory. The access modes for segments are read (r), write (w),
execute (e), and null (n). Those for directories are status (s),
modify (m), append (a), and null (n). See extended access below.
(See "Discretionary Access Control" in Section VI.)

active function

AIM

ALM

A function specified in a command line whose value (a character
string) becomes part of an expanded reevaluated command line. (See
"Active Strings" in Section III.)

See access isolation mechanism above.

The assembly language on Multics, used primarily for programs that
mus~ closely interface with the hardware. (See the alm command in the
MPM Commands.)

alternate name(s)
A segment, directory, multisegment file, or link may have more than
one name and may be referred to equally well by anyone of its names.
One of the names is the primary name. A segment often has more than
one name because it is a program with alternate entry points; commands
often have short names as well as long ones for convenience in typing
(i.e., cwd instead of change_wdir). (See primary names below.)

1-10 AG91

archive

attach

A segment used to conserve space. When storing a group of segments,
the contents of the individual segments can be packed together in an
archive to eliminate breakage in the last page of each segment. (See
the archive command in the MPM Commands.)

The act of associating an 1/0 switch with another 1/0 switch, file, or
device. For example, the normal output switch (user_output) is
usually attached to the terminal, but may be attached to a file via
the file_output command. (See IOSIM below.)

authorization

backup

bind

bit count

An access isolation mechanism (AIM) attribute that denotes the range
of information a process can access. An authorization is associated
with.a process for its lifetime. (See "Nondiscretionary Access
Control" in Section VI.)

The backup system dumps (copies) user segments and directories onto
removable storage (magnetic tape). The dumping is conventionally done
using the processes Backup.SysDaemon and Dumper.SysDaemon. The
information dumped can be recovered by the operations staff at the
user's request. (See Section VIII, "Babkup and Retrieval.")

See bound segment below.

An index to the last bit of useful information in a segment. For
example, a segment that contains 43 characters starting at the
beginning has a bit count of 387 (9*43). (A segment may, however,
contain useful data independent of its bit count.) (See "Entry
Attributes" in Section II.)

bound segment

branch

A group of (usually related) object segments bound into one
segment to save space and speed up references (calls, etc.)
them. The process of binding segments is similar to linkage
on other systems and is done by use of the bind command.
bind command in the MPM Commands.)

object
between
editing

(See the

An item cataloged in a directory: segment, multisegment file or
another directory but not a link. (See entry below.)

canonicalization

"carriage

The conversion of a terminal input line into a standard (canonical)
form. This is done so that lines that appear the same on the printed
page, but that may have been typed differently (i.e., characters
overstruck in a different order), appear the same to the system. (See
"Canonicalization" in Section IV.)

return"
A "carriage return" means that the typing mechanism moves to the first
column of the oext line. On Multics, this action is the result of the
ASCII line-feed character. The terminal type determines which keyes)
the user presses to perform the equivalent action (e.g., RETURN, LINE
SPACE, or NL).

closed subsystem
A separate environment that bears no resemblance to and no knowledge
of the Multics system itself. (See "Programming Environment" in
Section I.)

1-11 AG91

command
A program designed to be called by typing its name at a terminal.
Most commands are system-maintained, but any user program that takes
only character-string input arguments can be used as a command. (See
"Command Language" in Section III.)

command level
The process state in which lines input from a user's terminal are
interpreted by the system as a command (i.e., the line is sent to the
command processor). A user is at command level when he logs in, when
a command completes or encounters an error, or is stopped by issuing
the quit signal. Command level is normally indicated by a ready
message. (See "Command Environment" in Section III.)

command processor
The program that interprets the lines input at command level and calls
the appropriate programs, after processing parentheses and active
functions. (See "Command Environment" in Section III.)

component (of an archive)
One of the segments placed in an archive. (See the archive command in
the MPM Commands.)

component (of an entryname)
A logical part of an entryname. Entryname components are separated by
a period. (See suffix below and "Entrynames" in Section III.)

See Person_id.con_msgs below.

control argument

crash

daemon

detach

directory

An argument to a command that specifies what the user wants done, or
what information he is interested in. System control arguments begin
with a hyphen, such as -all, -long, or -hold. The meaning of each
control argument accepted by a specific command is given as part of
the description of the command. Many control arguments have standard
abbreviations such as -lg for -long. A list of the abbreviations of
the most frequently used control arguments is found in Appendix A of
the MPM Commands. (System commands are described in the MPM Commands
and in the MPM Subsystem Writers' Guide.)

An unplanned termination of system availability caused by problems in
hardware and/or software.

One of several system service processes that perform such tasks as
process creation, backup, network control, and printing segments on
the line printer.

Inverse of attach (see above).

A catalog of segments, multisegment files, links and other subordinate
directories. The directory contains information about the attributes
of these entries and information about the physical device on which
the data is stored. (See Section II, "Storage System.")

directory (home)
The directory that is the working directory of a user when he first
logs in to the system (also known as the initial working directory).
Usually this directory has a pathname of the form:

>udd>Project_id>Person_id

See directory (working) below.

1-12 AG91

directory (working)
Identifies the user's current location within the storage system with
regard to pathnames. Any pathname the user types that does not begin
with a greater-than (» character is considered relative to the
working directory. By default, this directory is used by the search
rules. (See "Search Rules" in Section IV.)

directory hierarchy
The tree-structured organization of the logical contents of the
Multics storage system. (See Section II, "Storage System.")

dprint, dpunch (for Daemon print and Daemon punch)

dump

A queued request to the system to output on a line printer (or card
punch) the contents of a segment or multisegment file. (See the
dprint and dpunch commands in the MPM Commands.)

See backup above.

dynamic linking

entry

The resolution of symbolic external references at execution time (that
is, the first time the symbol is actually referenced). (See link pair
below and "Dynamic Linking" in Section IV.)

An item cataloged in a directory:
or another directory. (See branch
"Entrynames" in Section III.)

segment, link, multisegment file,
and file in this glossary and

entry point
An address in an object segment referenced by a symbolic name; e.g.,
that which would be produced by the PL/I or FORTRAN procedure,
subroutine, or entry statements.

entry point name

entryname

The name associated with an entry point in an object segment. The
entry point name is found by the dynamic linker. (See "Entry Point
Names" in Section III.)

A name given to an item contained in a directory. It may contain one
or more components, separated by periods. All names given to entries
within one directory are unique, but need not be different from names
defined in other directories. (See "Entrynames" in Section III.)

equal convention
A method used by many commands to specify one or more characters in a
group of entrynames. (See "Equal Convention" in Section III.)

error codes
See status codes below.

exclamation point convention
See unique name below.

exec_com (ec)
A facility for executing a list of commands taken from a segment. It
includes argument passing and conditional branching capabilities.
(See the exec com command in the MPM Commands.)

extended access

fault

An additional field of access modes used with message segments to
further restrict operations on a message segment. (See "Access Modes"
in Section VI.)

A hardware signal similar to an interrupt that may
signalling of a condition. (See "Faults" in Section VII.)

1-13

cause the

AG91

file

frame

gate

A term that stands for segment and/or multisegment file.

See main memory frame below.

The only point at which a procedure in an outer ring can transfer to a
procedure in an inner ring. (See "Intraprocess Access Control" in
Section VI.)

hardcore (hardcore supervisor)

help files

The set of routines that perform the supervisory functions of the
system. The hardcore executes in ring O.

See info segments below.

home directory
See directory (home) above.

impure procedure
A procedure that modifies itself.

info segments
The segments whose contents are printed by invoking the help command.
These segments, sometimes called help files,give information about
the system. The system info segments are kept in the directory
>documentation>info_segments (>doc>info). The info segments that are
peculiar to an installation are kept in >doc>iml_info_segments. (See
the help command in the MPM Commands.)

initial access control list
A list that specifies what the access control list of a newly created
segment or directory will be. There are separate initial access
control lists for segments and directories for each ring. (See
"Initial ACLs" in Section VI.)

initial working directory
See directory (home) above ..

Initializer

initiate

The system control process that
accounting statistics. This is the
destroys other processes.
Initializer.SysDaemon.z.

logs
only
Its

users
process
access

in and out and keeps
that creates and

identifier is

The act of associating a reference name with a given segment in the
storage system. The segment must be part of the user's "address
space" (made known), and the supervisor entries will do this
automatically if necessary. A reference name is said to be initiated
for a given segment. (See "Reference Names" in Section III.)

Installation Maintained Library (IML)

liD module

liD switch

The library of programs maintained by the particular installation. It
is kept in the directory >system_library_auth_maint (>am). (See
Section II, "Storage System.")

A program that processes input and output requests directed to a given
switch. It may perform operations on other switches, or call the
supervisor.

See switch below.

IO.SysDaemon
The of the system that does dprinting and dpunching.

1-14 AG91

IOSIM
Obsolete term. See I/O module above.

library_dir_dir (ldd)
The starting directory of the subtree in which the source and object
module of the system are stored. (See Section II, "Storage System.")

limited service system
A subset of
administrator.

the Multics system imposed on users by the project
(See "Programming Environment" in Section I.)

link

link pair

(1) An entry in a directory that specifies the pathname of an entry in
another- directory. it allows references to items in other
directories as if they were actually contained in the working
directory. Links eliminate the need for multiple copies of
segments.

(2) An external symbolic reference. See link pair below.

An indirect word in a procedure segment's linkage section thro~gh
which all references to some external data or procedure are maae.
Until the link is snapped, it contains symbolic information about the
external object. A link pair initially contains a code that causes a
fault, and invokes the dynamic linker, when first used in a process.
The linking, if successful, puts the actual address of the procedure
or data referenced in the link pair.

linkage section

listener

mailbox

(1) The portion of a procedure object segment that is a pure template
for impure data needed by the procedure at runtime.

(2) The impure copy made from this template. (See dynamic linking
above.)

The program that reads command lines from the terminal and passes them
to the command processor.

See Person_id.mbx.

memory units
A measure of the usage a user makes of the system memory resources.

making a segment known
Specifying its pathname to the supervisor, and rece1v1ng a segment
number in return. The segment may then be referenced by that segment
number in the process. (See "Making a Segment Known" in Section IV.)

main memory frame
A 1024 36-bit word block of main memory that holds a page of a
segment. (See "Paging" in Section I.)

message segment
A special type of segment that is managed by Multics supervisor
programs and is not directly accessible .to the user. A message
segment is simply a permanent place to hold interprocess messages,
e.g., dprint and dpunch requests.

Multics Programmers' Manual (MPM)
The primary reference manual for Multics. (See the preface of this
document.)

Multics card code (MCC)
A code for punched card input and output. It is essentially the IBM
standard EBCDIC card code. This is not the default code for the
dpunch command. (See "Punched Card Codes" in Appendix C.)

1-15 AG91

multiple names
See alternate names above.

multisegment file (MSF)
A file that occupies more than one segment, i.e., a file larger than
262,144 words. May only be manipulated by certain programs. (See
"Multisegment Files" in Section II.)

object segment

page

A procedure or data segment produced as the result of a compilation
with a system-defined format. An executable object segment can be
directly executed by a process. Object segments may be searched and
linked to by the dynamic linking mechanism. (See "Creating an Object
Segment" in Section IV.)

A 1024 3b-bit word block of data within a segment.

page control

password

pathname

The routines that manage the
storage and main memory frames.

transfer of pages between secondary
(See "Paging" in Section I.)

A character string supplied by a user and known only to him and the
software that controls access to the system. When supplied with the
user's Person_id at log-in time, it validates the true identity of the
user. (See Section I, "How to Access the Multics System", in the
Multics Users' Guide, Order No. AL40.)

A character string that specifies a segment by its position in the
directory hierarchy. The pathname can be relative or absolute (see
below). (See "Pathnames" in Section III.)

pathname (absolute)
A concatenation of a segment's entryname with all superior directories
leading back to the storage system root. (See "Pathnames" in Section
III.)

pathname (relative)
A pathname that uniquely names a segment relative to the working
directory. (See "Pathnames" in Section III.)

person name table (PNT)
System table containing all Person ids (persons and fictitious
persons) registered on Multics with their encoded password, default
project, address, and certain other data.

A unique name assigned to each user of the system. It is usually some
form of the user's name and contains both uppercase and lowercase
characters. It may not contain blank characters. Associated with the
Person_id is a single password. The Person_id and the password can be
used to identify a person on several projects. (See Section I, "How
to Access the Multics System," in the Multics Users' ~, Order
No. AL40.)

Person_id.con_msgs
A segment in the user's home directory used to hold messages sent by
the send_message command. (See the send_message and accept_message
commands in the MPM Commands.)

Person id.mbx
- A message segment used to convey, between processes, arbitrary text (a

letter) intended to be read by a user. (See the mail command in the
MPM Commands.)

1-16 AG91

pointer
An address value. On Multics, an address consists basically of a
segment number and an offset within the segment.

primary name

process

The main name associated with a segment, directory, multi segment file,
or link. (See the list command in the MPM Commands.)

A program or group of programs in execution: an address space and an
execution point. Each logged-in user has his own process. (See
"Process" in Section I.)

process directory
A directory containing those segments that are meaningful only during
the. life of a process. These segments include the stack(s), free
storage, PIT, and various temporary segments.

process initialization table (PIT)
The segment (in the process directory) that contains information about
process initialization, i.e., Person_id and Project_id, home
directory, attributes, and accounting data.

process overseer

project

The first procedure called in a process. It sets up the environment,
then calls the listener to start reading commands.

An arbitrary set of users grouped together for accounting and access
control purposes.

project administrator
A person who has the access to specify spending limits and other
attributes for the users on a particular project.

project definition table (PDT)
A compiled project master file.

project master file (PMF)

Project_id

An ASCII file giving the names., attributes, and account limits of the
users on a particular project. It is compiled into a project
definition table.

The name assigned to a project.

pure procedure
A procedure that does not modify itself.

quit request
Several commands that read input from the keyboard use the typed
request "quit" or "q" to indicate to them that the user is done. This
is not the same as issuing the quit signal.

quit signal

quote

A method used to interrupt a running program. The quit condition is
raised by pressing the ATTN, BRK, INTERRUPT, etc. key on a terminal.
This condition normally causes the printing of QUIT followed by
establishment of a new command level. (See "System Conditions" in
Section VII.)

A character used to delimit strings in commands and source programs.
On Multics this is the double quote octal 042, not to be confused
with the single quote or apostrophe, octal 047.

1-17 AG91

ready message

record

recursion

A message that is printed each time a user is at command level.
Printing this message may be inhibited, or the user may define his own
ready message. The standard system ready message tells the time of
day and the number of CPU seconds, memory units, and page faults since
the last ready message plus the current listener level (if greater
than 1).

(1) The smallest unit of disk allocation, containing 1024 36-bit words
(4096 characters).

(2) In PL/I and FORTRAN, a block of data transferred during input or
output

The ability of a procedure to invoke itself.

reference name
When a segment is made known to a process, particular names may be
associated with it in that process. This is called initiation.
Thereafter, a symbolic reference to this reference name is directed to
the associated segment. Reference names need not be the same as any
of the segment's entrynames. (See "Reference Names" in Section III.)

relative pathname

retrieval

root

ring

See pathname (relative).

The process of copying a segment or directory back into the directory
hierarchy from backup tapes. This is normally done by the operations
staff using Retriever.SysDaemon at the request of the user. (See
Section VIII, "Backup and Retrieval.")

The directory that is the base of the directory hierarchy. All other
directories are subordinate to it. It has an absolute pathname of >.
(See Section II, "Storage System.")

A particular level of privilege at which programs may execute. Lower
numbered rings are of higher privilege than higher numbered ones. The
supervisor program runs in ring 0, most user programs run in ring 4.
(See "Intraprocess Access Control" in Section VI.)

ring brackets

scheduler

A set of integers associated with each segment that define in
rings that segment may be written, read, called, or executed.
"Intraprocess Access Control" in Section VI.)

See traffic controller below.

what
(See

search rules

segment

A list of directories that are searched to find a command, subroutine,
or data item referenced symbolically. Each directory is examined, in
order, to find the given external name. This is to be distinguished
from addressing a segment by its pathname, which explicitly specifies
the directory containing the segment. (See "Search Rules" in Section
II.)

Basic unit of information within the Multics storage system. Each
segment has access attributes, (at least one) name, and may contain
data, programs, or be null. (See "Segments" in Section I.)

shriek names
See unique names below.

1-18 AG91

snap (to snap a link)
The process of finding that segment (and entry point in the segment)
that is referenced by "a link pair and replacing the link pair with a
pointer to that entry point. This is part of the· dynamic linking
mechanism, by which external symbolic references (subroutine calls,
PL/I external variables) are resolved while the program is running.

standard service system (SSS)

stack

A group of commands and subroutines that are provided as part of the
standard Multics system. They are located in the directories
>system_library_standard, >system_library_unbundled, and
>system_library_1. (See Section II, "Storage System.")

A pushdown list where active procedures maintain private regi.ons used
for temporary variables and interprocedure communication. (See "Stack
Header" and "Stack Frames" in Section IV.)

star convention
A method used by many commands to specify a group of segments and/or
directories using one name (a star name). (See "Star Convention" in
Section III.)

start_up.ec

status

An exec_com segment that is invoked automatically when the user logs
in. It is often used to execute commands such as mail, abbrev, and
accept_messages.

(1) command for printing attributes of a directory entry
(2) one of the access modes on directories
(3) a coded state word returned by peripheral devices
(See status code below.)

status code

subsystem

suffix

switch

SysDaemon

A value returned by a subroutine indicating either the success of or
the reason for failure to accomplish the requested action. Associated
with standard system error codes are certain predefined messages that
tell what happened. (See "Status Codes" in Section VIII.)

A collection of programs that provide a special environment for some
particular purpose, such as editing, calculation, or data management.
It may perform its own commarid processing, file handling, and
accounting. A subsystem is said to be closed if:

1. all necessary operations can be handled within the subsystem

2. no way exists to use the normal Multics environment from within
the SUbsystem

The last component of an entryname (components are separated by a
period (.» that usually specifies the type of segment. For example,
p11, con_msgs, and list. A segment without a suffix is usually an
object segment or data segment. (See Appendix E, nList of Names with
Special Meanings.")

A path in the I/O system through which information is sent. (See
attach and detach above and Section V, nlnput and Output Facilities. n)

See daemon above.

system administrator
A person who has the access to register users, create projects,
perform accounting runs, and perform other functions necessary for the
administration of the system.

1-19 AG91

system_control_dir (sc1, system_control_')
The directory that contains those segments and directories used to
control the operation of the system including the answer table, who
table, person name table, project PDTs, etc.

terminal 1D
A character string that identifies a particular terminal at an
installation.

terminal type

terminate

A character string that identifies the terminal device, e.g., one
similar to the GE TermiNet 300. The terminal type is associated with
the user's terminal and/or the modes associated with terminal
input/output.

The opposite of initiate: to delete reference names for a segment.
This is sometimes done to substitute one version of a command or
subroutine for another that had been known to the process. (See
"Reference Names" in Section III.)

traffic controller
The module in the system that determines when a process is to run and
how long it will run. It also notifies processes of events that have
occurred such as timers, I/O events, and signals from other processes.

translation (translator)
The process of compiling a source language program or data base into
an object segment. (See "Creating an Object Segment" in Section IV.)

user_dir_dir (udd)
The user directory directory, which contains all project directories.
Its pathname is >udd, and all user segments and directories are
subordinate to it. (See "Pathnames" in Section III.)

Used to refer to a Person_id.Project_id pair. (See access identifier
above.)

unique name (shriek name, exclamation. pOint convention)
A name, generated from a system clock value, that is guaranteed to be
different from any other name so generated (e.g., !BBBnZNlqLQddRJg).

who table (whotab)
A segment that contains a list of users who are currently logged in
together with certain attributes such as log-in time, load, and
terminal type.

wired segment

word

A portion of the system that (of necessity) remains resident in the
main memory at all times; e.g., page control, teletype buffers, etc.

A unit of information that on Multics is 36 bits.

working directory (working_dir)
See directory (working) above.

1-20 AG91

SECTION II

MULTICS STORAGE SYSTEM

The basic unit of storage in the Multics storage system is a segment.
Segments form a tree-structured data base that is organized by a hierarchy of
special segments called directories. As shown in Figure 2-1, any segment
(directory or nondirectory) in the tree can be located by its entry in the
directory immediately superior to it. That directory is located in the same
manner by its entry in a superior directory. The immediately superior directory
also referred to as the containing directory.

All segment references begin at the root of the tree and consist of a
string of entrynames ending with the name of the target segment. Such a string
of entrynames is called an absolute pathname. The greater-than character (» is
used to separate entrynames and is also used at the beginning of the pathname
(by convention, the root directory is never explicitly specified). Using Figure
2-1 as'a reference, the absolute pathname for the segment named "chess" would
be:

>udd>Others>Jones>chess

The syntax of entrynames and pathnames is given in detail in "Entrynames"
and "Pathnames" in Section III. The following discussion gives the general
contents of a directory and describes the system directories that form the basis
of the storage hierarchy.

DIRECTORY CONTENTS

A directory contains a series of entries, each of which is used to locate a
target segment. The target segment can be a procedure or data segment or
another directory. An entry is composed of the segment's name (entryname) and
may be one of two kinds -- a branch or a link. A branch contains a full set of
attributes describing properties of the segment such as its physical location,
length, access rights, and so on. A link entry contains a pathname leading to
the target segment through an entry in some other directory. A particular link
may point directly to the entry of interest, to another link entry, or, since no
checking is done, to a nonexistent entry.

2-1 AG91

root directory

first directory level inferior to the root

second level of inferior directories

third level of inferior directories

segments in the third-level directories

fourth-level directories (user's working directory)

Figure 2-1. Storage System Hierarchy

2-2 AG91

Entry Attributes

A branch-type entry serves both to identify and characterize the target
segment. Attributes are entered when the segment is created and, in most cases,
can be modified later either explicitly or implicitly. As shown below, the
attributes maintained in a branch entry differ for the three possible branch
entry types: segment, directory, or multisegment file.

Explicit modification of an attribute is achieved using a standard storage
system subroutine. Implicit modification is automatic and occurs as a result of
some change to the target segment. For example, when data is written into an
existing segment, the date-time-modified attribute is changed accordingly.

The types of attributes maintained in a directory and the types of entry to
which they are applicable are described below. Multisegment files are treated
somewhat differently and are described in "Multisegment Files" (following this
attribute list).

access class (segments, directories)

The access class of an entry is established when the entry is created. It
is used to restrict access to users who meet specific security
requirements. The access class attribute cannot be modified. Access class
characteristics are described in detail in "Nondiscretionary Access
Control" in Section VI.

access control list (segments, directories)

The access control list (ACL) maintains a list of access names, specifying
classes of users who are allowed access to the entry and, for each class,
the mode of access permitted. The access specified may be null, indicating
that no access is permitted. The ACL attribute is used in conjunction with
the access class attribute to determine access rights when a particular
process refers to the entry. An ACL can be explicitly modified. See
"Discretionary Access Control" in Section VI for a complete discussion of
access control.

author (segments, directories, links)

The author attribute of an entry is the access identifier of the process
that created the associated entry. This attribute cannot be modified.

bit count (segments)

The bit count attribute gives the length (in bits) of the segment. The bit
count can be modified by any process with write access to the segment and
is maintained by the user rather than the system. Any procedure that
modifies the segment length should also modify the bit count since many
system commands and subroutines depend on its accuracy.

bit count author

The bit count author attribute contains
process that last set the bit count. This
updated when the bit count is set.

2-3

(segments)

the access identifier of the
attribute is automatically

AG91

copy switch (segments)

The copy switch attribute is a mechanism that permits simultaneous
executions of an impure procedure by more than one process. If the copy
switch is "on"1 each process that refers to the entry is given a copy of
the segment rather than the segment itself. The copy switch may also be
used to obtain a copy of a data segment. Since a new copy is also
generated each time an external reference invokes the segment by a
different name, it is recommended that only one name be associated with a
segment whose copy switch is on. This attribute can be explicitly
modified.

current length (segments, directories)

The current length attribute gives the length in pages of an entry. This
attribute is modified by the system when data is stored beyond the existing
current length or when the entry is truncated.

date time dumped (segments, directories, links)

This attribute records the time at which a backup copy of the entry was
last made by the Multics backup procedures. The date-time-dumped attribute
is automatically modified by these procedures.

date time entry modified (segments, directories, links)

This attribute records the last time any attribute of the entry was
modified. It is implicitly updated after any modification.

date time modified (segments, directories)

This attribute records the time at which an entry was last modified. It is
impliCitly updated as a result of the modification. (This value is
approximate and is normally within a few minutes of the time the entry was
modified.)

date time salvaged (directories)

This attribute records when the directory was last salvaged. The term
salvage refers to the rebuilding of a directory, undertaken either as a
corrective or housekeeping measure. This attribute is implicitly modified
as a result of the salvaging process.

date time used (segments, directories, links)

This attribute records the last time the target entry was referenced. The
date-time-used attribute is implicitly updated when the entry is used.
(This value is approximate and is normally within a few minutes of the last
time the entry was modified.)

initial access control lists (directories)

An ACL is created for each new entry in a directory by copying the initial
ACL from the containing directory. The initial ACL contains default values
(see "Initial ACLs" in Section VI for these) and can be explicitly modified
by any process that has modify access to the directory at validation level.
No access to the containing directory is required.

2-4 AGg1

maximum length (segments)

The maximum length attribute sets a limit on the size a segment can attain.
Maximum length is accurate to units of 16 words and can be explicitly
modified. The maximum value in words is 256K (K = 1024).

multisegment file indicator (directories)

names

This attribute is used to indicate that the directory is associated with a
multisegment file. The value of the attribute is the number of segments in
the file (that is, the entryname of the last segment in the file plus one).
The multisegment file indicator is implicitly modified by multisegment file
primitives when the length of the file changes. It can also be explicitly
modified.

(segments, directories, links)

The names attribute is one or more character strings that identify the
entry. Each entry can have many names. The first name returned to the
storage system is called the primary name. Entrynames can be explicitly
modified.

quota (directories)

The quota attribute gives the maximum number of storage records permitted
to segments and directories inferior to the target directory. This value
excludes subtrees that have their own quotas. The quota attribute can be
explicitly modified by any process that has modify access in the directory
at the validation level. The modification is done by moving partial
amounts to or from the superior directory. The total quota in the
hierarchy is constant.

records used (segments, directories)

The records used attribute gives the amount of secondary storage (in
records) occupied by the entry. This attribute is implicitly modified when
there is any change to the number of nonzero records used.

ring brackets (segments, directories)

The ring brackets attribute is used in connection with other access control
mechanisms to determine access rights to the target entry. See
"Intraprocess Access Control" in Section VI for a complete discussion of
ring brackets.

safety switch (segments, directories)

The safety switch attribute is used to protect an entry from deletion. If
the safety switch is "on", the user is asked if the target entry should be
deleted before the deletion is performed. This attribute can be explicitly
modified.

secondary storage device identifier (segments, directories)

This attribute identifies the type of device on which the target entry is
stored. It cannot be modified.

2-5 AG91

security out of service switch (directories)

type

When this switch is on, the directory in which it occurs and all inferior
segments and directories cannot be referenced. The switch is automatically
set when an access class discrepancy is detected. This attribute can only
be modified by a system security administrator.

The type attribute
directory, or a link.

(segments, directories, links)

indicates whether an entry refers to a segment, a
The type attribute cannot be modified.

unique identifier (segments, directories, links)

The unique identifier attribute is a number assigned when an entry is
created to distinguish it from all other entries in the storage system.
This attribute cannot be modified.

Multisegment Files

Very large data bases may need to exceed the size of a single segment. In
such cases, Multics treats this data base as a group of segments in a single
multisegment file. The segments are grouped under a common directory whose
multisegment file indicator is set. The directory and its contents are termed a
multisegment file (MSF).

Any directory whose multisegment file indicator is not 0 is an MSF. For an
MSF, this indicator is a count of the number of segments it contains.

Not all of the attributes listed above are applicable to MSFs. Some of the
attributes are the same for any entry, e.g., names; however, due to the nature
of an MSF, many of the attributes are implemented differently. For example, the
bit count of an MSF is the sum of the bit counts of the segments it contains.
The access control list for an MSF directory applies to all of the segments it
contains. The safety switch attribute can be used; however, if it is set for
one of the segments in the MSF, it should be set for all of them. For more
specific information on these and other attributes of MSFs, refer to the
msf_manager_ subroutine in the MPM Subroutines.

Most standard system programs that work on segments also work on MSFs.
However, some commands and subroutines will give unpredictable results when used
on MSFs. The programmer should consult the individual command or subroutine
description before invoking it on an MSF.

SYSTEM DIRECTORIES

A single directory hierarchy is used for both system and user segments.
Figure 2-2 shows, at the upper level of the storage hierarchy, the basic
structure assumed by the Multics system. Additional segments and directories
can be created at this level of the structure as well as at lower levels.

2-6 AG91

system
control
dir

process_
dir_dir

(root
directory)

daemon
dir_dir

---....vr ---

Directories and
segments of the
backup and I/O
daemon process

user_
dir_dir

system_
libraries

All commands and
subroutines provided
as part of Multics

------------~v,-----------'
Plus miscellaneous account-

ing, log, line
usage, and pass-
word segments }

~~:ctory
per

L-_...,... __ ~ process

(name=
processed)

Plus other temporary segments created as needed

(project
name) per }

~~:Ctory
I.----,r----~ project

(user
name) per }

~~:ctory
-..r------,...... user

Personal segments
and directories
of this user

Figure 2-2. Directory Hierarchy

2-7

system_
library_
auth maint

~--v"'---
Commands and
subroutines of the
local author-maintained
library

AG91

As shown in the Figure 2-2, several system directories emanate from the
root. These are always present and are described below.

This directory is used for administrative purposes. It contains
information associated with system accounting, user authorization, and
logging-in procedures. Project administration tables are stored in a directory
subtree beginning at this directory. The following three segments are the only
generally accessible ones entered in system_control_1: the table printed by the
who command; the message of the day; and absentee queue segments.

This directory contains entries for a set of directories, each of which is
associated with a currently active process. The name of an individual process
directory is derived from the unique identification of the process. A process
directory contains temporary segments created by a process and retained only for
the life of that process.

When a process is created, a process directory is established with the five
initial segments described below:

process data segment
(PDS)

known segment table
(KST)

process initialization table
(PIT)

A supervisor data base, the PDS keeps a record
of the state of the- process. This segment is
accessible only to the supervisor.

A supervisor data base, the KST contains
correspondence between segment numbers
segments known to the associated process.
segment is accessible only to the supervisor.

The PIT contains information
initialize the process.

that is used

the
and

This

to

This segment contains the stack used for PL/I
automatic variables and for subroutine call and
return operations. One stack segment is created
for each active ring; the last character of the
stack name is the ring number, except in the case
of ring 0 where the PDS is used as a stack.

This segment, managed by the linker, contains
interprocedure links and PL/I internal static
storage. If the total requirements for linkage
information and static storage exceed the length
of a segment, additional segments are created as
needed under the same name, the last two
characters (mm) serving as a sequence number,
beginning with 00 for the first segment. In
addition, each active ring has its own linkage
segment, where the ring number is indicated by the
character (n) preceding the period. ThUS,
combined_linkage_3.02 indicates the third linkage
segment for ring 3.

Other segments commonly found in the process directory include the free
storage area used to implement PL/I allocate and free statements, the parse tree
of the PL/I compiler, and temporary storage areas used by Multics editors.
These segments are created as needed.

2-8 AG91

This directory catalogs segments that support system daemon processes, such
as automatic file backup and bulk (card and printer) input and output. Only one
portion of the entries in this directory is generally accessible to users -- the
queues of the I/O facilities.

This directory is the beginning of a tree containing all segments belonging
to individual users. It contains entries for a set of directories, one for each
project. Each project directory generally contains one personal directory for
each user associated with that project. Individual users can create their own
directories, inferior to their own personal directory.

5. system_libraries

The standard Multics commands and subroutines are combined in three system
libraries:

system_Iibrary_standard
system_Iibrary_1
system_Iibrary_tools

The procedures in these directories are documented in the MPM Commands, MPM
Subsystem Writers' Guide, and MPM Subroutines. A library of unbundled software
(system_Iibrary_unbundled) may also be present. Unless the user specifies
otherwise, these directories are included in the list of directories to be
searched during dynamic linking. See "Dynamic Linking" and "Search Rules" in
Section IV for descriptions of dynamic linking and search rules.

This directory is similar to the standard system libraries except that it
contains commands and subroutines provided by programmers of the local
installation.

2-9 AG91

SECTION III

NAMING, COMMAND LANGUAGE, AND TYPING CONVENTIONS

CONSTRUCTING AND INTERPRETING NAMES

The various types of names used on Multics are constructed and interpreted
according to certain definite, fixed conventions. The names discussed below are
entrynames, pathnames, star names, equal names, reference names, offset names,
command names, subroutine names, condition names, and I/O switch names. User
names are discussed under "Access Control" in Section VI since they are
primarily used to specify access control information.

Entrynames

An entryname is the name of a segment, multisegment file, directory, or
link. An entryname consists of at least one nonblank and no more than 32 ASCII
characters. Any entry (segment, multisegment file, directory, or link) can have
more than one entryname. In general, entrynames consist of uppercase and
lowercase alphabetic characters, digits, underscores (_), and periods (.). The
underscore is used to simulate a space for readability; e.g., a segment might be
named delta_new. (Including a space in an entryname is permitted, but is
cumbersome since the command language uses spaces to delimit command names and
arguments.) The period is used to separate components of an entryname, where a
component is a logical part of the name. Several system conventions (e.g., the
star convention and equal convention both described below) operate on
components. Also, compilers implemented on Multics expect the language name to
be the last component of the name of a source segment to be compiled, such as,
square_root.pI1 for the name of a PL/I source segment. See "Program
Preparation" in Section IV for details on programming conventions.

Only the greater-than (» character is prohibited in entrynames, since it
is used to form pathnames as described below. Several other characters are not
recommended for entrynames -- less-than «), asterisk (*), question mark (?),
percent s1gn (~), equal sign (=), dollar sign ($), quotation mark ("), and
parentheses -- because standard commands attach special meanings to them. In
addition, all ASCII control characters (e.g., space, tab, carriage return, etc.)
are not recommended for use in entrynames because some of these characters have
a special meaning in the command language, and the others are hard to use (they
do not print out correctly and are difficult to type.) .. Non-ASCII characters are
not permitted in entrynames.

Pathnames

A pathname is a sequence of entrynames. Each entryname except the last in
a pathname is the name of a directory entry (or link to a directory entry) in
the storage system hierarchy. (See "Directory Contents" in Section II.) The
last entryname in a pathname is the name of a segment, multisegment file,
directory, or link entry. Each entry in the hierarchy has an entry in a
superior directory.

3-1 AG91

Any entry can be found by following the appropriate entries from a
designated directory through inferior directories. The length of a pathname
must not exceed 1bd characters. An absolute pathname traces an entry from the
root directory; a relative pathname traces an entry from the current working
directory.

An absolute pathname is formed from a sequence of entrynames, each preceded
by a greater-than character. Each greater-than character denotes another level
in the storage hierarchy. The entryname following the initial greater-than
character designates an entry in the root directory (see Figure 3-1, below). An
example of an absolute pathname is:

>udd>Project_id>Person_id)epsilon

The directory named user_dir_dir (udd) is immediately inferior to the root;
Project_id is an entry in udd; Person_id is an entry in Project_id; and epsilon
is an entry in Person_ide Each intermediate entry in the chain can be either a
directory or a link to a directory. The final entry, epsilon, can be a
directory, a segment, a multisegment file, or a link. A maximum of 16 levels of
directories is allowed from the root to the final entryname.

A relative pathname looks like an absolute pathname except that it does not
contain a leading greater-than character, and can begin with less-than
characters as explained below. It is interpreted by commands as a pathname
relative to the user's working directory. The simplest form of relative
pathname is the single name of an entry in the user's working directory. For
example, in Figure 3-1, the relative pathname beta refers to the entry beta in
the user's working directory sub_dir2. On a slightly more complex level, the
relative pathname my_dir)omega refers to the entry omega in the directory
my_dir, which is immediately inferior to the user's working directory sub_dir2.

A less-than character can be used at the beginning of a relative pathname
to indicate that the directory immediately superior to the working directory is
where the following entryname is to be found. The less-than character can be
used to denote levels in the storage hierarchy similar to the use of the
greater-than character. Each less-than character represents one level up the
hierarchy (toward the root), starting at the current working directory. In this
way, a directory several levels superior to the current working directory can be
searched for the first entryname in the relative pathname.

The following examples (using the sample hierarchy in Figure 3-1) show some
relative pathnames and the absolute pathnames of the segments they identify when
the user's working directory is:

Relative Pathname Segment

delta_new >udd)Project_id)Person_id)sub_dir2)delta_new

older)delta_old)udd)Project_id>Person_id>sub_dir2)older>delta_old

<sub_dir1)alpha)udd)Project_id)Person_id)sub_dir1)alpha

«<Others)Jones)chess)udd)Others)Jones)chess

3-2 AG9i

root directory

first directory level inferior to the root

second level of inferior directories

third level of inferior directories

segments in the third-level directories

fourth-level directories (user's working directory
in accompanying examples)

segments (or directories, or links) in directories
inferior to the working directory

fifth level of inferior directories

segments (or directories, or links)

Figure 3-1. Sample Storage Hierarchy

3-3 AG91

Star Names

Many commands that accept pathnames as input allow the final entryname in
the pathname to be a star name e A star name is an entryname. The star
convention matches a star name with entrynames in a single directory to identify
a group of entries. The entrynames matching a star name have components in
common and are matched according to specific rules. Commands that accept star
names perform their function on each entry identified by the star name.

CONSTRUCTING STAR NAMES

Star names are constructed according to the following rules:

1. A star name is an entryname. Therefore, it is composed of a string of
32 or fewer ASCII printing graphics or spaces, none of which can be
the greater-than (» character. Unlike an entryname, a star name
cannot contain control characters such as backspace, tab, or newline.

2. A star name is composed of one or more nonnull components. This means
that a star name cannot begin or end with a period (.) and cannot
contain two or more consecutive periods.

3. Each question mark (?) character appearing in a star name component is
treated as a special character.

4. Each asterisk or star (*) character (referred to as a star) appearing
in a star name component is treated as a special character.

5. A star name component consisting only of a double star (**) is treated
as a special component.

INTERPRETING STAR NAMES

A star name is matched to entrynames in a single directory according to the
following rules:

1. Each question mark (?) in
character that appears
position of an entryname.

a star name component matches anyone
in the corresponding component and character

2. Each asterisk (*) in a star name component matches any number of
characters (including none) that appear in the corresponding component
and character position of an entryname. If the asterisk is the only
character of the star name component, it matches any corresponding
component of' an entryname. Only one asterisk can appear in each star
name component, except for the double star component as noted in the
next rule.

3. The double star component (**) in a star name matches any number of
components (including none) in the corresponding component position of
an entryname. Only one double star component can appear in a star
name.

3-4 AG91

The rules above do not require that star names contain asterisks or
question marks. Therefore, an entryname that does not contain either of these
special characters can be used as a star name, as long as it does not contain
any null components (two consecutive periods make a null component). When such
an entryname is used as a star name: the directory is searched until the single
entryname that matches is found. The rules above impose no restrictions on the
form of the entrynames to be matched with the star name. Such names can contain
null components that match only star name components of * or **

The following examples illustrate some common forms for star names.

I??????????????

ad?

ad?*

*

.

·.pI1

prog*.pI1

identifies all fifteen character one-component
entries beginning with (called unique names
because such names are generated by the
unique_chars_ subroutine, described in the MPM
Subroutines, and by the unique active function) in
the user's working directory.

identifies all three-character one-component
entries in the user's working directory that begin
with ad.

identifies all one-component entries in the user's
working directory that begin with ad and have
three or more characters.

identifies all one-component entries in the user's
working directory.

identifies all one-component entries whose first
component ends with _data preceded by any number
of other characters (including none).

identifies all two-component entries in the user's
working directory.

identifies all two-component entries in the user's
working directory that have pl1 as their second
component.

identifies all two-component entries whose first
component begins with the letters prog followed by
any number of other characters (including none),
and whose second component is p11.

identifies all three-component entries in the
directory sub_dir (which is immediately inferior
to the user's working directory) that have
my-prog.new as their first and second components.

identifies all three-component entries whose first
component begins with interest_, ends with _data,
and has any number of characters (including none)
in between.

3-5 AG91

**.pI1

sub_dir>prog?**.pI1

Equal Names

identifies all entries with two or more components
of which the last is my_seg.

identifies all entries in the user's working
directory.

identifies all entries with pl1 as the last (and
possibly only) component.

identifies all entries with my_prog as the first
(and possibly only) component.

identifies all entries in the directory sub_dir
(which is immediately inferior to the user's
working directory) with two or more components,
such that the first component has exactly five
characters and begins with prog, and the last
component is p11.

Some commands that accept pairs of pathnames as their arguments (e.g., the
rename command described in the MPM Commands) allow the final entryname of the
first pathname to be a star name, and the final entryname of the second pathname
to be an equal name. An equal name is an entryname containing special
characters that represent one or more characters from the entrynames identified
by the star name (not characters from the star name itself). Commands that
accept equal names provide a powerful mechanism for mapping certain character
strings from the first pathname into the second pathname of a pair. Use of the
equal convention reduces the typing required for the second pathname, and it can
be essential for mapping character strings from the entrynames identified by the
star name into the equal name, because these character strings are not known
when the command is issued.

CONSTRUCTING EQUAL NAMES

An equal name is constructed according to the following rules:

1. An equal name is an entryname. Therefore, it is composed of a string
of 32 or fewer ASCII printing graphics or spaces, none of which can be
the greater-than (» character. Unlike an entryname, an equal name
cannot contain control characters such as backspace, tab, or newline.

2. An equal name is composed of one or more nonnull components. This
means that an equal name cannot begin or end with a period (.) and
cannot contain two or more consecutive periods.

3. Each percent sign (%) character appearing in an equal name component
is treated as a special character.

3-6 AG91

4. Each equal sign (=) appearing in an equal name component is treated as
a special character.

5. An equal name component consisting only of a double ~qual sign (==) is
treated as a special component.

INTERPRETING EQUAL NAMES

An equal name maps characters from the entrynames that match the star name
(first entryname) into the second entryname of a pair according to the following
rules:

1. Each percent sign (~) in an equal name component represents the single
character in the corresponding component and character position of an
entryname identified by the star name. An error occurs if the
corresponding character does not exist.

2. An equal sign (=) in an equal name component represents the
corresponding component of an entry name identified by the star name.
An error occurs if the corresponding component does not exist. An
error also occurs if an equal sign appears in a component that also
contains a percent character. Only one equal sign can appear in each
equal name component, except for a double equal sign component, as
noted in the next rule.

3. The double equal sign (==) component of an equal name represents all
components of an entryname identified by the star name that have no
other corresponding components in the equal name. Often, the double
equal sign component represents more than one component of an
entryname identified by the star name. If so, the number of
components represented by the entire equal name is the same as the
number of components in the entryname. When the equal name contains
the same number of components or more components than the entryname, a
double equal sign is meaningless and, therefore, ignored. (See the
examples below.) Only one double equal sign component can appear in
an equal name.

The rules above do not require that equal names contain equal signs or percent
characters. Therefore, an entry name that does not contain either of these
special characters can be used as an equal name, as long as it does not contain
any null components. Also, the rules above impose no restrictions on the form
of the entrynames identified by the equal name. These names can contain null
components. However, the rename and add_name commands cannot be called with an
entryname that contains null components, because these commands treat their
arguments as either star names or equal names. The fs_chname command can be
used to rename entries if names containing null components are accidentally
created. (See the MPM Commands for a description of the rename, add_name, and
fs_chname commands.)

3-1 AG91

The following examples illustrate how equal names might be used in rename
and add_name commands. The command:

rename random. data_base ordered.=

is equivalent to:

rename random. data_base ordered. data_base

and the command:

add_name world.data =.statistics =.census

is equivalent to:

add_name world.data world.statistics world. census

The command:

rename random.data.base

is equivalent to:

rename random.data.base random. data

The star convention is used in the command:

rename ·.data_base =.data

to rename all two-component entrynames with data_base as their second component
so these entrynames have, instead, a second component of data. The command:

rename alpha beta.=.gamma

is in error because the first entryname of the pair does not contain a component
corresponding to the equal sign in the second name.

3=8 lG91

The command:

rename program.pl1 old_=.=

is equivalent to:

rename program.pl1 old_program.pI1

and the command:

is equivalent to:

In the two examples that follow, the first entryname has components that
correspond to the double equal sign in the equal name of each pair. As a
result, the number of components represented by the equal name is the same as
the number of components in the first entryname. The command:

rename one.two.three 1.==

is equivalent to:

rename one.two.three 1.two.three

and the command:

add_name one.two.three.four.five 1.==.5

is equivalent to:

add_name one.two.three.four.five 1.two.three.four.5

In the example that follows, the equal name contains the same number of
components as the entryname. Therefore, the double equal sign does not
correspond to any components of the entryname and is ignored. The commands:

rename alpha. beta
rename alpha. beta
rename alpha. beta

are all equivalent to:

==.x.y
x.y.==
x.==.y

rename alpha. beta x.y

3-9 AG91

In the next example, since the equal name contains more components than the
entryname, the double equal sign corresponds to no components of the entryname
and is ignored. The command:

add_name able ==.baker.charlie

is equivalent to:

add_name able baker. charlie

The command:

add_name **.ec ==.absin

uses the star convention to add a
last (or only) component is ec.
and the first components (if any)
(e.g., the name alpha.absin would
command:

rename ???*.data ~~%.=

name to each entry with an entryname whose
The last component of this new name is absin,

are the same as those of the name ending in ec
be added to the entry named alpha.ec). The

renames all two-component entrynames that have a last component of data and a
first component containing three or more characters so that the first component
is truncated to the first three characters and the second component is data
(e.g., alpha.data would be renamed alp.data). The command:

rename *.data %%~.=

results in an error if the first component of any name matching *.data has fewer
than three characters.

Reference Names

A reference name is a name used to identify a segment that has been made
known by the user. Initiating a reference name for a segment is one way to make
a segment known to the user's process. (See "Making a Segment Known" in Section
IV and "Process" in Section I.) A segment can be made known via the initiate
command (described in the MPM Commands) and the hcs_$initiate and
hcs_$initiate_count subroutines (documented in the MPH Subroutines). When a
segment is made known and a reference name initiated for the segment, its
reference name is entered into the reference name table. If the user uses the
initiate command to initiate a reference name for a segment, the reference name
need not have any similarity to the entryname of the segment. For example:

initiate)udd)Project_id)Person_id)debug newdebug

makes the segment named debug in the user's home directory known with the
reference name newdebug.

3-10 AG91

A segment can be addressed by its reference name either from command level
or from within a program. When a segment is addressed, the hcs_$make_ptr
subroutine (described in the MPM Subroutines) uses search rules to locate the
desired segment. The reference name table, listing reference names for
segments, is always searched first. If the segment has not been made known and
a reference name has not been initiated for the segment, the search continues
until a segment with an entryname that matches the reference name is found.
(Search rules are described in detail under "Search Rules" in Section IV.)

A reference name is associated only with segments made known in a process.
The same reference name can be used in two different processes to refer to two
different segments. Also, a reference name/segment binding exists only for the
duration of the process in which it is specified. It is possible to break that
binding by making the segment unknown, thus causing all external references
(links) from other segments to the unknown segment to be unsnapped and causing
the segment to no longer be known in the process (by any reference name). Any
reference name of an unknown segment can be used again in the process to refer
to a different segment. (See the descriptions of the terminate and
terminate_refname commands in the MPM Commands and the term_,
hcs_$terminate_file, and hcs_$terminate_seg subroutines in the MPM Subroutines.)
For example, there is a system command named debug. If the user has made a
segment in his home directory known with the reference name debug, every time he
calls debug he gets the version in his home directory rather than the system
provided version of debug. If the user wants to call the system version of the
command, he must first make the segment in his home directory unknown.

A user must keep his search rules in mind when he initiates and terminates
reference names. For example, if a user has initiated the reference name debug
for a segment in his home directory and he also has a segment named debug in his
working directory, every time he calls debug he gets the version in his home
directory. If he wishes to use the version of debug in his working directory,
he must first terminate the reference name debug for the segment in his home
directory. Future calls to debug will then find the version in the user's
working directory unless home directory appears before working directory in his
search rules. If this is the case, the user must explicitly initiate the
reference name debug for the segment in his working directory.

Individual reference name/segment name bindings can be terminated in a
process without making the segment unknown unless the reference name removed is
the only one on the segment. (See the descriptions of the
terminate_single_refname command in the MPM Commands and the term_,
hcs_$terminate_name, and hcs_$terminate_noname subroutines in the MPM
Subroutines.) If a user has called the system version of the debug command and
later wants to make known the version of debug in his home directory with the
reference name debug, he must first terminate the reference name to the system
v~rsion. For example:

terminate_single_refname debug

initiate >udd>Project>Person_id>debug debug

causes calls to debug to invoke the routine in >udd>Project_id>Person_id with
one exception: other system routines bound together with debug (via the bind
command described in the MPM Commands) continue to invoke the system routine
since those links were presnapped when the routines were bound together. The
terminate, terminate_single_refname, and terminate_refname commands and the
term_ subroutine unsnap dynamic links, whereas the hcs_ entry points (described
in the MPM Subroutines) do not unsnap links.

3-11 AG91

Entry Point Names

Procedures frequently have more than one entry pOint, and data segments
frequently have internal locations that are known externally by symbolic names.
The names of entry points and internal locations are generically called entry
point names. Each designates symbolically an offset within a segment. The
location specified can be referred to by the construction
ref_name$entry_point_name where the dollar sign separates the reference name and
entry point name.

In many cases the entry point to a procedure has the same name as the
segment itself (or the segment has several entrynames corresponding to the names
of its entry pOints). A shorthand notation allows the entry pOint name to be
assumed to be the same as the reference name. For example:

call square_root (n);

is interpreted to mean:

call square_root$square_root (n);

and the command line:

rename a b

is equivalent to:

rename$rename a b

If the user has renamed one of .his procedure segments (perhaps to preserve
an old copy) or created a storage system link to a segment using a different
name, he must thereafter use the full reference name/entry point name
construction when referring to that segment as a procedure or external data
segment. For example, a PL/I subroutine compiled with subr_name as the label of
its procedure statement and then renamed new_name must be referred to as
new_name$subr_name.

Command. Subroutine. Condition. and I/O Switch Names

These types of names all have some conventions in common.

1. Each is permitted to be 32 characters or less in length.

2. All ASCII characters are legal in any position except as noted in the
following points and "Entrynames" above.

3. System subroutine names end in an underscore to prevent conflicts
with subroutine names given by users; that is, the user can easily
avoid conflicts by not having an underscore as the last character of
any of his subroutine names.

3-12 AG9i

4. Condition and I/O switch names that are part of the system, according
to the new convention, end in an underscore to help prevent conflicts
with names given by users. See Appendix E, "List of Names with
Special Meaning" for a list of previously established condition and
I/O switch names that do not end in an underscore.

5. Command and subroutine names should not contain a period; i.e.~ they
should have only one component.

COMMAND LANGUAGE

A command procedure is a special type of PL/I procedure that uses argument
processing facilities provided by the command processor. A Multics system
command invocation consists of a command procedure name (command name) plus any
character-string arguments to be passed to the command procedure when the
command is invoked. A Multics system command invocation consists of a command
procedure name (command name) plus any character-string arguments to be passed
to the command procedure when the command is invoked. Most user programs that
take character strings as arguments can be invoked as commands. (See "Writing a
Command" in Section IV.) The Multics command processor is a mechanism for
invoking programs by command name. It is 'called by the Multics listener
subroutine to process the command lines typed by the user. (The command
processor can also be called from a program by using the cu_$cp entry point.
See the description of cu_$cp in the MPM Subroutines.)

A command line contains one or more commands separated by semicolons C;).
The syntax of a command line should not be identical to the subroutine call of a
programming language. Calls in most programming languages are cumbersome to
type. Instead, the conventions for the syntax of a command line are chosen for
simplicity in the basic case, and for functional flexibility otherwise. The
command language provides various services such as nesting and iteration of
commands. The command language syntax allows these features to be specified by
means of certain special delimiters in the command line; but if the services
are not desired, the user need only type his commands according to the format
discussed below under "Simple Commands." The special services of the command
system are then bypassed.

Some subsystems under Multics may choose to interact with their users with
their own conventions. The following description does not apply to these
subsystem command languages.

Command Environment

After a user successfully logs in to the system, the listener prints a
ready message on the terminal. The user is now at command level and the system
is available for new commands. When a command has finished executing, it
returns to the listener, which prints a ready message. At command level, the
user issues commands in the syntax of the command ,language described below.
Multics terminal input allows read-ahead; therefore, the user does not have to
wait for a ready message before typing another command line. The user can,
however, be interrupted in the middle of typing a line by the ready message or
by output printed by the command. If this occurs, some characters in the line
being typed may be lost. Therefore, the entire line should be killed and
retyped. (See "Erase and Kill Characters" below.) The printirig of ready
messages can be turned off and on using the ready_off and ready_on commands (see
the descriptions of these commands in the MPH Commands).

3-13 AG91

Simple Commands

A command specifies a function to perform and, if necessary, the arguments
w~vu which the function operates. Command names and command arguments are
treated as character strings. Individual commands convert numeric characters to
binary representation, as needed.

The command consists of two basic elements: the command name and the
arguments. The command name is essentially a reference name, and if
appropriate, an entry point name. The command processor uses the user's search
rules (see IISearch Rules" in Section IV) to find the program whose name is the
command name. A pathname may be used in place of the reference name to override
the search rules. In this case, the segment identified by the pathname is made
known and is initiated with the final entryname of the pathname as its reference
name. Then this reference name is used along with any entry point name that was
given, as described above. Notice, that since the segment has been initiated
with a reference name, it can be identified by reference name in subsequent
commands (see example below). The argument portion of the command is simply
character strings designating, for instance, a segment. The number of
arguments, if any, depends on the command invoked. The elements of a command
(command name and command arguments) are delimited by the space (also called a
blank). The terminator of a command carr be either the semicolon (;) or the
newline character. More than one command can be issued on the same line of
terminal input by using the semicolon between commands.

The general form of the simple command is:

where each element is separated from the preceding one by one or more spaces.
For example, the rename command takes arguments in pairs; the first is the
current pathname of the segment to be renamed and the second is the desired new
entryname. Thus:

rename square_root sqrt

causes the command processor to search for and invoke a command procedure named
rename at entry point rename with the character strings square_root and sqrt as
arguments. There is no difference between invoking a command from the terminal
and calling it in a procedure. For example, typing the command line "rename
square_root sqrt" is equivalent to executing the following PL/I program:

x: proc;
call rename ("square_root", IIsqrt");
end x;

As another example, suppose a user knows that an experimental version of
the rename command resides in the directory)Smith_dir. If the user types:

)Smith_dir)rename square_root sqrt

then the experimental version is invoked instead of the version that would have
been found by the search rules. Subsequent unqualified references to the rename
command invoke the one in)Smith_dir. Any program in the storage system
hierarchy can be invoked in the same way.

3-14 AG91

Reserved Characters and Quoted Strings

The Multics command language reserves some characters to which special
significance is attached. The reserved characters are: space, quotation
mark ("), semicolon C;), the newline character, left and right brackets ([and
J). left and right parentheses and the vertical bar (I) when adjacent to the
left bracket. Occasionally, however, it is necessary to use a reserved
character without its special meaning. For example, a user might want to pass a
semicolon as an argument to a command. The quotation mark character (") is
reserved for this purpose; i.e., reserved characters within a quoted string
(i.e., a string of characters surrounded by quotation marks) are treated as
ordinary characters. Thus:

rename " .It , foo

causes a semicolon to be passed as an argument to the rename command. Also,
since a quotation mark is a reserved character, it may be desirable to suppress
its special meaning. For this purpose, two adjacent quotation marks within a
quoted string are interpreted as a single quotation mark. For example:

delete "A""B"

causes the argument A"B to be passed to the delete command.

Iteration

The iteration facility of the command language provides economy of typing
for the user who wishes to repeat a command with one or more elements changed.
The iteration set consists of one or more elements enclosed by parentheses.
Each element of the set, in turn, replaces the entire iteration set in the
command line. For example:

print (a b c).pl1

is equivalent to the three commands:

print a.pli; print b.pll; print c.p11

More than one iteration set can appear in a command. The corresponding
element from each set is taken. For instance, the compound command:

rename >Smith_dir>(Jones Doe Brown) (Day White Green)

would expand into the commands:

rename >Smith_dir>Jones Day

rename >Smith_dir>Doe White

rename >Smith_dir>Brown Green

3-15 AG91

Nested iteration sets are also allowed. Evaluation of parentheses occurs
from the outside in. The principal use of nested iteration sets is to reduce
typing when subsets of an element are repeated. For example:

create_dir >Smith_dir>(new>(first second) old>third)

would create three directories:

>Smith_dir>new>first

>Smith_dir>new>second

>Smith_dir>old>third

The ability of the Multics command language to perform concatenation
underlies the iteration feature. See "Concatenation" below.

Active Strings

An active string is defined to be a part of a command that is immediately
evaluated (executed) and the resulting value placed back into the command line.
A program explicitly designed to be used in an active string is called an active
function. (See the MPM Commands for a description of the active functions
available on Multics.) An active function must return a varying character
string as its value.

The delimiters of an active string are the left bracket ([) and the right
bracket (]). The following example illustrates the use of active strings in a
command.

delete [oldest_segment]

This command returns its value as a varying character string rather than
printing its value on the terminal. The command processor does the following:
scans the command line; discovers the active string; and evaluates it, placing
the obtained value into the command line. The co~mand processor then: discovers
the terminator (a newline character); and evaluates and executes the remainder
of the command, finding the command name (delete) and the character string
returned by the oldest_segment active function as an argument.

3-16 AG91

Active functions can have arguments of their own, and active strings can be
nested. For example, if there were a random name generating routine called
namer that takes an arbitra~y two~character string as a seed and returns a
varying character string 32 characters or less in length, the command line:

rename [oldest_segment] [namer xz]

causes the least recently used segment to be renamed to whatever random name
emerged from namer when the latter was invoked with xz as an argument. If there
were a random number generator called random for priming namer, the command
line:

rename [oldest_segment] [namer [random]]

is also valid, provided random returns a varying character-string value.

After an active string is evaluated, the value returned is rescanned for
active strings before being inserted into the command line. For example, if
procedure alpha:

x [alpha]

returned [beta] as its value and x were .the name of a command, procedure beta
would be invoked as an active function. The x command would be invoked with
whatever value procedure beta, in turn, returned.

The user may suppress rescanning of the returned string for further active
strings by placing a vertical bar (I) before the active string. For example:

x : [alpha]

results in the invocation of x with [beta] as an argument. All other scanning
(e.g., for spaces) is performed on the returned string.

Iteration can, of course, be combined with
example, if the program "bill" returned the character
fred", the command line:

print ([bill])

expands into:

print (arthur robert fred)

which would be expanded into:

print arthur; print robert; print fred

3-17

the above features. For
string "arthur robert

AG91

The command line finally obtained when all active strings have been
processed is called the expanded command line. The maximum length of the
expanded command line is, by default, 12b characters. This size can be changed
using the set_corn_line command (described in the MPM Commands). For efficiency,
it is recommended that the size be left at 128 characters except when a larger
size is temporarily needed (e.g., to accommodate a large returned string from
some active function).

All of the above examples use active strings consisting of a single active
function. In its most general form, an active string can consist of any number
of valid active functions separated by semicolons. The value of the active
string is the concatenation of the values of the active functions. For example,
if the active string:

returns the value TURN, and the active string:

returns the value OUT, then the active string:

returns the value TURNOUT.

Concatenation

The Multics command language has the ability to form basic elements (e.g.,
character strings) by concatenation·with nonbasic elements (e.g., the values of
active strings). For example, active function home_dir returns the character
string representation of the pathname of the user's home directory. Therefore,
it is possible to perform a command (presumably from some other directory) such
as:

rename [home_dir]>square_root sqrt

and have the first argument to rename be the concatenation of the value of the
home_dir active function with the string >square_root. In the Multics command
language, this facility is furnished in precisely the manner shown. That is,
the value of a delimited element of a command is concatenated with the string or
delimited element adjacent to it when there is no space between the two.

More than one delimited element can be concatenated. For example:

delete [home_dir]>([bill])

deletes the segments arthur, robert, and fred in the user's home directory where
the active function, bill, is defined as above.

AG91

Concatenation is permissible in either direction with regard to the
delimited string and the nondelimited string. For example:

delete >project_dir>Doe>([bill])

deletes the segments arthur, robert, and fred in the directory >project_dir>Doe.

TYPING CONVENTIONS

Three categories of typing conventions are dealt with in this discussion:
canonical form, erase and kill characters, and escape characters.

Canonical Form

A character stream is a representation of one or more printed lines. Since
the same printed line can be produced using different sets of key strokes, there
are several possible character streams that represent the same line .. For
example, the line:

start Ida alpha,4 get first result.

could have been typed with either spaces or horizontal tabs separating the
fields; one cannot tell by looking at the printed image.

A program should be able to compare two character streams easily to see if
they produce the same printed image. It follows that all character input to
Multics must be converted into a standard (canonical) form. Similarly, all
programs producing character output, including editors, must produce canonical
form output streams.

Of all possible ASCII character strings, only certain strings are ever
found within Multics. All strings that produce the equivalent printed effect on
a terminal are represented within Multics as one string, the canonical form for
the printed image. The user, however, is free to type a noncanonical character
stream. This stream is automatically converted to the canonical form before it
reaches his program. If the user wants his program to receive raw or partially
processed input from his terminal, an escape mechanism is provided by the modes
operation of the tty_ I/O module. The subroutine is accessed via a call to the
iox_ subroutine. (See the descriptions of the tty_ I/O module and the iox
subroutine in the MPM Subroutines.) The modes available that apply to
canonicalization are:

ftcan no canonicalization of overstrikes.

esc no canonicalization of escape characters.

fterkl no erase and kill processing.

rawi the specified data is read from the terminal without any conversion
or processing. This includes shift characters and undifferentiated
uppercase and lowercase characters.

Similarly, an I/O module is free to rework a canonical stream on output
into a different form if, for example, the different form happens to print more
rapidly or reliably on the device.

3-19 AG91

The current Multics canonical form is designed for the convenient typing of
aligned tabular information, which requires an ambiguous interpretation of the
tab character. The following three statements describe the current Multics
canonical form.

1. A text line is a sequence of character positions separated by carriage
motion and ending in a newline character.

2. Carriage motion consists of newline, tab, and space characters.

3. A character position consists of a single graphic or several
overstruck graphics. A graphic is a printable character. An
overstruck character position consists of two or more graphics
separated by backspaces. Regardless of the order in which the
graphics are typed, they are always stored in ascending ASCII order.
Therefore, the symbol "I", whether typed as:

or

or

is always stored internally as:

where B is a backspace.

There are any number of ways to type two or more consecutive overstruck
character positions. The graphics in each position are grouped together, so
that "~~,, is always stored as:

Examples of Canonical Form

Several illustrations of canonical form are shown below. Assume that the
typist's terminal has horizontal tab stops set at 11, 21, 31, etc.

Typist: This is ordinary text.N
Typed line: This is ordinary text.
Canonical form: This is ordinary text.N

where N is the newline character. In most cases, the canonical form is the
same as the original key strokes of the typist as above.

Typist: Here fullBBBB ____ means thatN
Typed line: Here full means that
Canonical form: Here _Bf_Bu_Bl_Bl means thatN

where B is a backspace and N is a newline character. This is the most common
type of canonical conversion, done to ensure that overstruck graphics are stored
in a standard pattern.

3-20 AG91

Typist: We see no probSBlemC __ N
Typed line: We see no problem
Canonical form: WB __ Be see no problemN

where B is a backspace, N is a newline character, S is a space, and C is a
carriage return. The space between "prcb" and "lem" was not overstruck; it and
the following backspace were simply removed.

Erase and Kill Characters

Two minimal editing capabilities on the line currently being typed are
available. They are:

1. the ability to delete the latest character or characters.

2. the ability to delete all of the current line.

By applying these two editing functions to the canonical form, it is possible to
unambiguously interpret a typed line in which editing was required.

The first editing convention reserves one graphic, the number sign (#), as
the erase character. Although the erase character is -a printed graphic, it does
not become part of the line. When it is the only graphic in a print position,
it erases itself and the contents of the previous print position. Several
successive erase characters erase an equal number of graphics. One erase
character typed immediately after "white space" causes the entire white space to
be erased. (Any combination of tabs and spaces is called a white space). The
number sign can be struck over another graphic. In this case it erases the
print position on which it appears. For example, typing:

TheSSne###next
or

TheST#next

where S is a space and T is a horizontal tab, produces:

Thenext

Since processing of erase characters takes place after the transformation to
canonical form, there is no ambiguity as to which graphic character has been
erased. The printed image is always the guide.

The second editing convention reserves another graphic, the commercial at
sign (@), as the kill character. When this character is the only graphic in a
print position, the contents of that line up to and including the kill character
are discarded. Again, since kill processing occurs after the conversion to
canonical form, there is no ambiguity about which characters have been
discarded.

By convention, an overstruck erase character is processed before a kill
character, and a kill character is processed before a nonoverstruck erase
character. Therefore, the only way to erase a kill character is to overstrike
it with a number sign.

3-21 AG91

Because of their special meanings to Multics, these two graphics should be
avoided in software.

Examples of Erase and Kill Processing

Typist: abcx#deSBfzz##gN
Typed line: abcx#defzz##g
Canonical form: abcx#defzz##gN
Final input: abcdefgN

Typist: This@The offBBB ___ ##nB_ stateN
Typed line: This@The off##n state
Final input: The _Bo_Bn stateN
Printed line: The Qn state

ASCII CHARACTER SET

The Multics standard character set is the revised U.S. ASCII Standard
(refer to USA Standards Institute, "USA Standard X3.4-1968"). The ASCII set
consists of 12b 7-bit characters. These are stored internally, right-justified,
in four 9-bit fields per word. The two high-order bits in each field are
expressly reserved for expansion of the character set; no system program may use
them. Any hardware device that is unable to accept or create the full character
set should use established escape conventions for representing the set (see
"Escape Characters" below). There are no meaningful subsets of the revised
ASCII character set.

The ASCII character set includes 94 printing graphics, 33 control
characters, and the space. Multics conventions assign precise interpretations
to all the graphics, the space, and 10 of the control characters. The remaining
23 control characters are presently reserved. See Appendix A for a table of the
ASCII character set, a list of printing graphic characters, control characters,
and unused characters.

Escape Characters

Some terminals cannot print all 128 ASCII characters. To maintain
generality and flexibility, standard software escape conventions are used for
all terminals. Each class of terminal has a particular character assigned to
be the software escape character. When this character occurs in an input (or
output) string to (or from) a terminal, the next character (or characters) are
interpreted according to the conventions described below. The standard escape
character in Multics is the left slant (\)j like the erase and kill characters,
it should be avoided in Multics software. The universal escape conventions
are:

1. The string \d1d2d3 represents the octal code d1 d2 d3 where di is a
digit from zero to seven. Any arbitrary character can be represented
this way. The string \d2d3 is equivalent to \d1d2d3 if d1 is zero.
The string \d3 is equivalent to \d1d2d3 if d1 and d2 are zero.

2. Local (i.e., concealed) use of the newline character that does not go
into the computer-stored string on input and is not in the
computer-stored string on output, is effected by typing \<newline
character>.

3-22 AG91

3. The characters \# place an erase character into the input string.

4. The characters \@ place a kill character into the input string.

5. The characters \\ place a left slant character into the input string.

6. The solid vertical bar (I) and the broken vertical bar C:) are
equivalent representations of the graphic corresponding to ASCII code
174.

3-23 AG91

SECTION IV

MULTICS PROGRAMMING ENVIRONMENT

The Multics programming environment is supported by an elaborate set of
system procedures and data structures that are generally invisible to the
programmer but that greatly affect the ways in which programs are written. For
example, because of the Multics virtual memory scheme, a procedure can freely
reference any segment in the storage system (to which it has access privileges)
without knowing either its size or its physical location. Because the normal
mode of program execution uses a stack, most procedures are potentially
recursive, even when written in a programming language that does not support
recursion. While the supported programming languages provide standard
interfaces to the system environment, the programmer is free to use features of
the environment in his own way.

The information presented in this section presents two basic aspects of the
programming environment. One of these, program preparation, presents the steps
involved in implementing a program to run on Multics. The remainder of the
section presents the major internal interfaces between a user program and the
system that are automatically or explicitly activated during program execution.

PROGRAM PREPARATION

The basic steps involved in preparing a program to run in the Multics
environment and the system features available to perform them are presented
below. Specific conventions associated with a particular programm1ng language
are described in the appropriate language manual. The end product of the steps
described is an object segment constructed to interface with Multics facilities
and other object segments. Some of these facilities, such as dynamic linking
and process-related data structures, are presented later in this section.

Programming Languages

The major programming languages currently available on Multics are:

PLII

FORTRAN

COBOL

BASIC

ALK

APL

proposed American National Standards
standard PLII

superset of ANSI standard FORTRAN

subset of the ANSI standard COBOL

Institute

compatible with the Dartmouth Version 6 BASIC

Multics assembly language

interactive interpreter (based on IBM APL)

4-1

(ANSI)

AG91

Each Multics translator can be called as a command and produces executable
object code segments. Such segments can be executed as subroutines or at
command level. For information on designing programs compatible with the
Multics command environment, see "Writing a Command" and "Writing an Active
Function" below.

PL/I is the standard language on Multics (the system itself is written
largely in PL/I). Thus, the system is documented in terms of PL/I calling
sequences, argument declarations, and standard data types. Areas of the system
requiring the use of special hardware instructions are written in ALM.

A program written in any of the Multics programming languages
other programs written in the same language by merely following that
calling conventions. Programs written in different languages produce
object segments. In some cases, it may be necessary to create a PL/I
procedure to handle transmission of arguments between such programs.
language descriptions explain restrictions on calls to programs
different translators and suggest possible interface mechanisms.

Creating and Editing the Source Segment

can call
language's
compatible
interface

Individual
produced by

A source program resides in an online segment of the Multics storage
system. It is initially created and subsequently modified using one of the
Multics text editors, such as edm or qedx. (See the MPM Commands for specific
descriptions of these text editing facilities.)

The name given a source segment must have the form:

source_name.language_name

where:

1. is the name of the user program.

2. language_name is the name of the programming language in which it is
written.

Some sample source segment names are:

square_root.pI1
square_root.fortran
square_root.basic

and the object segments produced from each of these are named square_root.

4-2 AG91

Creating an Object Segment

To translate a source program into object code, the user issues a command
to the appropriate language translator, supplying the source program name as an
argument. To compile the source segment named square_root.pl1, the user issues
the command:

p11 square_root

and an object segment named square_root ale produced and placed in the user!s
working directory.

Unless the user selects optional features, the only output produced by the
translator is the object segment itself and messages describing any errors
detected during translation. The user corrects errors by editing the original
source segment. Object segments produced by different translators are
compatible although, as stated previously, the difference in data types and
representations may require the construction of interfaces to pass arguments
among programs written in different languages.

The optional control arguments used by the language translators are also
standardized. They provide additional output such as program listings and
object maps. When a listing is requested, it is placed in the user's working
directory with the name "source_name.list" (e.g., square_root.list). Of
particular interest to users of high-level programming languages is the control
argument, -table, which causes a symbol table to be placed in the object
segment, thereby enabling the program to be debugged symbolically. (See
"Debugging Facilities" below.) When a program is thoroughly debugged, it should
be recompiled without this argument. .

Object Segment Format

All Multics translators produce a standard object segment that contains
object code, linkage data, and other information that may be required at
execution time. The overall format of an object segment is shown below.

I l} I I
I I
I i
I I

text

I I}

: 1\ t-----;~~~i~--------t
I I T-------------------T I I : : l I I
I I
I I
I I
I I
I I
I I

definitions

linkage

symbol

object map

where:

1. text contains the object code, a binary machine-language program.

2. definitions contains a set of locations within the segment that can be
referenced by name (entry points) and a list of references
made by the program to external segments (in
character-string form).

4-3 AG91

3.

4.

5.

linkage

symbol

object map

is a prototype linkage section, containing PL/I internal
static variables, if any, as well as dynamic linkage
information. The linkage section is copied into a
per-process data base (the combined linkage region) when the
object segment is first referenced and contains information
used by the dynamic linker to resolve external references.

contains relocation bits for the text and linkage areas
(used for binding) and additional information that may be
generated by translation options, such as a symbol table.

contains lengths and offsets for each section of the object
segment.

For a detailed description of an object segment's format and contents, see
ilMultics Standard Object Segment" in the MPM Subsystem Writers' Guide.

Debugging Facilities

Multics provides extensive interactive program debugging facilities through
the two commands, debug and probe. To perform symbolic debugging with these
commands, the user must have compiled his program with a symbol table (i.e.,
specifying the -table control argument). The two commands provide similar
services, but the debug command is oriented more toward the needs of a machine
language programmer while probe is designed with the high-level language
programmer in mind. Multics also provides a trace command that traces the flow
of control through program execution and a trace_stack command that traces the
list of programs active on the program stack. (The debug, probe, trace, and
trace_stack commands are described in the MPM Commands.)

A central feature of both debug and probe is the facility for setting
breakpoints at specified program locations. The program is then executed. When
a preset breakpoint is reached, execution is interrupted and the current state
of variables preserved. The user can then perform other debugging operations
such as examining the values of data items, inserting test values, executing
other programs, and so on. He may then continue execution from the point at
which execution was suspended.

Writing a Command

Any of the standard Multics compilers can be used to create a Multics
command procedure .. A command procedure differs from other procedures in the
following ways:

1. A command procedure is called by the Multics command processor. Since
the input to the command processor is limited to the characters that
the user types in the command line, the command processor can only
pass adjustable, nonvarying, unaligned character-string arguments to
the command procedure. This means that the command procedure may have
to convert these character strings to another data type more
appropriate to its needs.

2. A command procedure can receive only input arguments. An error may
occur if the procedure changes the value of any of its arguments.
Also, the command procedure may not set one of the arguments to
indicate the success or failure of its operation.

4-4 AG91

3. A command procedure must be prepared to handle an arbitrary number of
arguments. Many command procedures accept optional control arguments,
which mayor may not be present. Even command procedures expecting a
fixed number of arguments must be prepared to diagnose an error when
the user mistakenly types too many or too few arguments.

The command processor provides an environment that supports the differences
between command procedures and other procedures. A command procedure can call
the command utility subroutine (cu_) to obtain its arguments and to get other
information about the command environment. A command procedure can call the
command error subroutine (com_err_) to report errors to the user. The example
below shows the portion of a command procedure that obtains the fifth input
argument to the procedure and reports an error to the user if the argument was
not given in the command line.

sample_command: procedure;
declare argl fixed binary(17);
declare argp pointer;
declare arg character (argl) based (argp);
declare code fixed binary(35);
declare cu_$arg_ptr entry (fixed binary(17), pOinter,

fixed binary(17), fixed binary(35»;
declare com_err_ entry options(variable);

call cu_$arg_ptr (5, argp, argl, code);
if code ~= 0 then do; 1* expected arg missing *1

call com_err_ (code, "sample_command",
"Five arguments are required. It);

return;
end;

if arg = It-inputlt then

end sample_command;

Detailed information about the command utility and command error subroutines is
provided in the MPM Subroutines.

Writing an Active Function

Active functions are special command procedures that return a value to the
command processor. The command processor substitutes this value into the
command line in place of the active string that caused the active function to be
called.

ways:
Active function procedures differ from other procedures in the following

1. An active function procedure can receive only adjustable, nonvarying
character-string arguments.

2. An active function procedure can only receive input arguments. An
error may occur if the procedure changes any of its input arguments.

4-5 AG91

3. An active function procedure must be prepared to handle an arbitrary
number of input arguments.

4. An active function procedure returns a value in a varying character
string provided by the command processor. The active function may
assign any character string value (including a null character string)
to this return string. When the active function procedure returns,
the command processor substitutes the value of the return string in
place of the active string which caused the active function procedure
to be called.

An active function procedure can call the command utility subroutine (cu_)
to obtain its input arguments and return string from the command processor. It
can call the active function error subroutine (active_fnc_err_) to report errors
to the user. The example below shows the portion of an active function
procedure that obtains its return string and a count of its input arguments.
The active function reports a command error if it was not called as an active
function. It expects no input arguments and therefore reports an error if any
were given in the active string.

sample_active_function: procedure;
declare arg_count fixed binary(17);
declare return_stringl fixed binary(17);
declare return_stringp pointer;
declare return_string character(return_stringl) varying

based (return_stringp);
declare code fixed binary(35);
declare error_table_$too_many_args fixed binary(35)

external static;
declare cu_$af_return_arg entry (fixed binary(17), pOinter,

fixed binary(17), fixed binary(35»;
declare (active_fnc_err_, com_err_) entry options(variable);

call cu_$af_return_arg (arg_count, return_stringp,
return_stringl, code);

if code ~= 0 then do: 1* error if called as a command,
not as an active function. */

call com_err_ (code, "sample_active_function");
return;
end;

if arg_count ~= 0 then do; 1* error if any args given. */
call active_fnc_err_ (error_table_$too_many_args,

"sample_active_function", "No arguments expected.");
return;
end;

return_string = 'I"; 1* initialize return string. *1

end sample_active_function;

Detailed information about how the command utility and active function error
subroutines can be used from an active function procedure is provided in the MPM
Subroutines.

The same procedure may be programmed to operate both as an active function
and as a command procedure. Typically when such procedures are called as a
command, they print on the user's terminal the value of the string they would
return as an active function. These command/active function procedures are
coded as if they were an active function. However, if an error code is returned
by cu_$af_return_arg, they operate as a command.

4-6 AG91

ADDRESS SPACE MANAGEMENT

When a user logs in, he is assigned a newly created process. Associated
with the process is a collection of segments that can be referenced directly by
system hardware. This collection of segments, called the address space, expands
and contracts during process execution, depending on which segments are used by
the running programs.

Address space management consists of constructing and maintaining a
correspondence between segments and segment numbers, segment numbers being the
means by which the system hardware references segments. Segment numbers are
assigned on a per-process basis, by supplying the pathname of the segment to the
supervisor. This assignment is referred to as "making a segment known."
Segments are made known automatically by the dynamic linker when a program makes
an external reference; making a segment known can also be accomplished by
explicit calls to address management subroutines. In addition, when a segment
is made known, a correspondence can be established between the segment and one
or more reference names (used by the dynamic linker to resolve external
references); this is referred to as "initiating a reference name." When dynamic
linking is the means used to make a segment known, the initiation of at least
one reference name is performed automatically. (For more information on
reference names, see "Reference Names" in Sectiori III and "Making a Segment
Known" below.) A general overview of dynamic linking is given below.

Dynamic Linking

The primary responsibility of the dynamic linker is to transform a symbolic
reference to a procedure or data into an actual address in some procedure or
data segment. In general, this transformation involves the searching of
selected directories in the Multics storage system and the use of other system
resources to make the appropriate segment known. The search for a referenced
segment is undertaken after program execution has begun and is generally
required only the first time a program references the address.

The dynamic linker is activated by traps originally set by the translator in
the linkage section of the object segment. These traps are used by instructions
making external references. When such an instruction is encountered during
execution, a fault (trap) occurs and the dynamic linker is invoked.

The dynamic linker uses information contained in the object segment's
definition and linkage sections to find the symbolic reference name. (For a
detailed description of these sections, see "Multics Standard Object Segment" in
Section I in the MPM Subsystem Writers' Guide.) Using the search rules
currently in effect, the dynamic linker determines the pathname of the segment
being referenced and makes that segment known. The linkage trap is modified so
that the fault does not occur on subsequent references; this is referred to as
snapping the link.

4-7 AG91

Search Rules

In order to resolve external references, the dynamic linker uses a
prescribed search list specifying a subset of the directory hierarchy. The
search for a segment proceeds as follows. If the reference name is found in the
list of initiated segments (item 1 below), that segment is used. Otherwise,
directories are searched in the order in which they appear in the search rules
until the name is found. The standard search rules are given below. These can
be modified using the add_search_rules, delete_search_rules, and
set_search_rules commands (described in the MPM Commands).

1. initiated segments

Reference names for segments that have already been made known to a
specific process are maintained by the system. A reference name is
associated with a segment in one of three ways:

a. use in a dynamically linked external program reference

b. a call to hcs_$initiate, hcs_$initiate_count, or hcs_$make_seg
with a nonnull character string supplied as the ref_name argument
(these hcs_ entry points are described in the MPM Subroutines)

c. a call to hcs_$make_ptr (described in the MPM Subroutines)

2. referencing directory

The referencing directory contains the procedure segment whose call or
reference initiated the search.

3. working directory

The working directory is the one associated with the user at the time
of the search. This may be any directory established as the working
directory by either the change_wdir command or the change_wdir_
subroutine (described in the MPM Commands and MPM Subroutines
respectively). (The initial working directory is the home directory.)

4. system libraries

The system libraries are searched in the following order:

>system_Iibrary_standard
This library contains standard system service modules, i.e., most
system commands and subroutines.

>system_Iibrary_unbundled (if present)
This library contains unbundled software.

>system_Iibrary_1
This library contains a small set of subroutines that are
reloaded each time the system is reinitialized.

>system_library_tccls
This library contains software primarily of interest to system
programmers.

4-8 AG91

>system_library_auth_maint
This library contains the author-maintained and
installation-maintained libraries. The author-maintained library
consists of a collection of procedures contributed by users at a
particular installation. It is maintained for the convenience of
the local user community, as an aid in sharing programs. Users
of author-maintained procedures should be aware of two things:

a. there may have been little or no verification of the
effectiveness or accuracy of the procedures

b. no guarantee is made that the procedures will continue to be
maintained as the system changes (especially a problem in
the case of language translators)

The installation-maintained library contains procedures installed
and maintained by the local installation. It differs from the
author-maintained library in that verification of accuracy and
effectiveness of the procedures has been performed by the
installation, and the installation is committed to maintaining
the procedures.

With the search rules given above, when a program in the user's working
directory has the same name as a system program, the user program will be
invoked (since it is found first). Unless this is intended, the user should
avoid using the names of system commands for his programs, or should change
either his working directory or the search rules in effect. (An exception to
this occurs if the reference is by a program in the same directory as the system
program being searched for; see item 2, above.) If an external reference to a
procedure is not resolved by following the search rules, an error message is
printed. The user can recover from the error in a number of ways (for example,
by initiating the procedure directly or by adding a link to the procedure into
one of the directories included in the search rules).

Binding

Binding is an alternative to dynamic linking that should be used when a set
of object segments is intended to be executed together repeatedly. Using the
bind command, a user can consolidate these segments into a single bound object
segment. Binding can provide a sUbstantial savings in processing time and page
fault overhead.

Binding proceeds as follows. The object code portions of the segments to
be bound are concatenated and relocated as necessary. Intersegment references
are resolved with direct text-to-text or text-to-internal-static references
within the bound segment components. A new set of definitions and linkage
information is created to reflect the interface between a bound segment and
external references. (For more details on binding, see the bind command in the
MPM Commands; for the structure of a bound segment, see the "Structure of Bound
Segments" in Section I in the MPM Subsystem Writers' Guide.)

4-9 AG91

Making a Segment Known

A segment is known to a process when it has been uniquely associated with a
segment number in that process. This association is maintained for the life of
the process unless a user explicitly makes the segment unknown.

Once a segment is known by
using that number are interpreted
as references to that segment. A
linking or by explicit calls
subroutines (described in the MPM

a given segment number, all program references
by the system hardware and associated software
segment can be made known through dynamic
to the hcs_$initiate or hcs_$initiate_count
Subroutines).

When a segment is made known, a reference name can also be associated with
it. Such a name is said to be initiated for the segment. The association
between a reference name and a segment lasts as long as the segment is known
unless explicitly discontinued by the user. The ending of this association is
referred to as terminating the reference name. A segment may be initiated by
more than one reference name, but no two segments can have the same reference
name.

Reference names that have been initiated are the first items examined by
the dynamic linker (see "Search Rules" above) when attempting to find a
referenced procedure or data segment. If the name is not initiated, the dynamic
linker makes the segment known and initiates that name for the segment when it
has successfully completed its search. Referenbe names can also be initiated
using the hcs_$initiate or hcs_$initiate_count subroutines.

The user can remove reference names by using the hcs_$terminate_name
subroutine (described in the MPM Subroutines). If only one reference name
appears for a segment and it is terminated, the segment is also made unknown.
The user may also explicitly make a segment unknown and terminate all its
reference names (see hcs_$terminate_file and hcs_$terminate_seg in the MPM
Subroutines).

At command level, the initiate
initiate and terminate reference names.
of these commands.)

and terminate commands may be used to
(See the MPM Commands for a discussion

Address Space Management Subroutines

The subroutines listed below provide a direct interface between
user-written programs and some of the system mechanisms discussed previously.
The selection of the appropriate routine is based on the form in which the
segment of interest is currently expressed. For example, if an interactive
program accepts the pathname of a segment as an argument, that segment can be
made known using hcs_$initiate.

A brief description of these interface subroutines is given below.
complete description, see the MPM Subroutines.

For a

hcs_$fs_get_path_name

hcs_$fs_get_ref_name

given a pOinter to a segment, returns its pathname

given a pointer to a segment, returns associated
reference names

given a reference name, returns a pointer to the
associated segment

4-10 AG91

hcs_$initiate
hcs_$initiate_count

MULTICS STACK SEGMENTS

given a pathname and, optionally, a reference
name, causes the segment to be made known and the
ref~rence name, if supplied, to be initiated. If
hcs_$initiate_count is used, a bit count of the
segment is also returned.

given a reference name and the name of an entry
point, returns a pointer to the specified entry
point. If the reference name is not yet
initiated, search rules are used to find a segment
with the same name, the segment is made known and
the reference name initiated.

given a pathname, terminates all reference names
of a segment and makes it unknown.

terminates one reference name from a segment. If
it is the only reference name for that segment,
the segment is made unknown.

given a pointer to a segment, makes the segment
unknown if there are no reference names associated
with the segment.

given a pointer to a segment, terminates all
reference names and makes the segment unknown.

The Multics stack segment is a central component of the normal execution
environment. It is essentially a pushdown list where active procedures maintain
private regions, called stack frames, in which their temporary variables reside.
A stack frame is created for a procedure when it is called; the procedure is
subsequently referred to as the owner of the stack frame. Stack frames also
contain information used in interprocedure communication, such as argument lists
and procedure return points. The base of the stack segment, the stack header,
contains pointers to various types of information about the process. Elements
of the stack are described briefly below and in detail in Section II of the MPM
Subsystem Writers' Guide.

Stack Header

The stack header contains pointers to code sequences (used to perform the
standard procedure call and return and stack push and pop functions) and to
operator segments (containing brief code sequences referenced by programs
compiled by system translators). Another set of pointers is maintained to keep
track of the stack frames created and released during the process. Two pointers
in the stack header are used to implement external reference resolutions on an
interprocedure and intersegment basis. These point to the linkage offset table
(LOT) and the internal static offset table (ISOT) for the current ring. The LOT
points to the dynamiC linkage sections allocated in the ring and the ISOT to the
dynamic internal static sections allocated in the ring.

4-11 AG91

Stack Frames

The stack frame is used to store the current state of the calling procedure
and the information used to restore that state when a return from the call is
made. The stack frame also contains data associated with the procedure to be
executed. The stack frame header contains pointers to information required to
activate the called procedure, such as a pointer to the argument list and to the
linkage region of the calling procedure. Since a new stack frame is generally
created at each call, procedures that have variables in the stack frame are
potentially recursive.

Combined Linkage Region

A combined linkage region can consist of one or more segments that contain a
sequence of contiguous linkage sections (pointed to by the LOT), internal static
sections (pointed to by the ISOT), or general storage regions acquired through
system routines for all object segments active in the ring. Additional segments
are created as necessary to contain this information.

CLOCK SERVICES

Two types of clocks are available on Multics: a real-time clock for the
entire system and a process execution timer for each process. The real-time
clock, a hardware calendar clock accessible through a special register on a
system controller, runs whenever the system is in operation; it contains a
double-word integer register that is incremented once per microsecond and
represents the number of microseconds elapsed since January 1, 1901, 0000 hours
Greenwich mean time. A simulated interrupt mechanism is associated with the
calender clock so that a specified process can receive an interprocess wakeup at
any given time.

A process execution timer is maintained as part of the state of each
process. It counts the microseconds used by a process. This timer measures
virtual CPU time (in microseconds) spent by the process. In addition, it can be
used for setting timed wakeups.

An interrupt mechanism associated with the virtual timer allows a process
to receive an interprocess wakeup after a given amount of CPU time has been
used. The timer is compared to the specified value at regular intervals; when
the value is exceeded, an interprocess wakeup is generated for the running
process.

The clocks are available for use by programmers. Some ways in which system
commands use them are given below:

1. Resource monitoring and accounting.

2. Labeling data (e.g., storage system entries) with dates and times of
interest.

3. Computing the date and time for output.

4. Generating a unique bit string.

4-12 AG91

5. Waking up a specified process at a specified time, perhaps causing a
specified procedure to be called.

6. Interrupting a process after a specified amount of CPU time has
elapsed.

Access to System Clocks

Commands and subroutines that permit the user to inspect the real-time
clock and the process execution ~~wer ~re summarized oeLOW. For a detailed
description of each, see the MPM Subroutines. The clock_ subroutine reads the
real-time clock and returns its current value as a fixed bin(71) quantity. This
clock time can. be converted to a more readable form using either date_time_,
which returns a single character string, or decode_clock_value_, which returns
the various components of the time (month, year, etc.) as distinct variables.
The convert_date_to_binary_ subroutine accepts a character string like that
produced by date_time_ and returns a fixed bin(71) equivalent.

The value of the process execution timer is returned by both the
cpu_time_and_paging_ and virtual_cpu_time_ subroutines. The resource_usage
command (described in the MPM Commands) prints a report of the resources used by
the user from the beginning of the current billing period to the time of
creation of the user's current process.

The status command and the hcs_$status_ subroutine both provide dates and
times associated with storage system entries, such as the date and time the
entry was last modified and the date and time last used.

The unique_bits_ subroutine returns a bit·string, generated partly from the
current real-time clock reading, that is guaranteed to be unique among all bit
strings so generated. The unique_chars_ subroutine converts such a value into a
character string that is also guaranteed to be unique among all character
strings so generated.

Facilities for Timed Wakeups

The interprocess communication facility (see the ipc_ subroutine in the MPM
Subsystem Writers' Guide) allows a user to set up channels for sending
interrupts (wakeups) to a specified process. The interrupt can cause that
process to return from the blocked state to whatever it was previously doing, or
it can cause some other procedure to be called in that process. One possible
use of this facility is to wake up a process as the result of some clock
activity. The timer_manager_ subroutine (described in the MPM Subsystem
Writers' Guide) provides the necessary interface. With this subroutine, the
user can specify an event channel for his own or another process, whether the
process should merely be wakened or a specified procedure should be called, and
the nature of the clock activity that should trigger the wakeup (i.e., virtual
CPU or calendar clock time). In specifying the time, the user can further
specify absolute or relative time and can use seconds or microseconds.

4-13 AG91

SECTION V

INPUT AND OUTPUT FACILITIES

This section contains information on the various input and output
facilities available on the Multics system. A general description of the
input/output (I/O) system is contained in "Multics Input/Output System" below.
The section also containS information on programming language I/O, file I/O,
terminal I/O, and Bulk I/O. Appendix C ("Punched Card Input and Output")
explains how to use the punched card facilities available on Multics. Related
documentation is referenced where necessary.

Earlier versions of Multics used a different, but similar, I/O system.
Parts of. the system documentation may still use the terminology of the old I/O
system. In particular, the old system used the term "i/o stream" instead of
"I/O switch" and the terms "DIM" and "IOSIM" instead of "I/O module". Also,
documentation may describe attaching to a device even though the attachment may
be to something other than a device, e.g., a file in the storage system. (A
file is defined as a segment or multisegment file.)

MULTICS INPUT/OUTPUT SYSTEM

Since the Multics input/output (I/O) system handles logical I/O rather than
hardware I/O, I/O on the Multics system is essentially device independent. Most
I/O operations refer only to logical properties (e.g., the next record, the
number of characters in a line) rather than to particular device characteristics
or file formats. The system permits I/O to and from files in the storage
system. This involves only the transfer of data from one memory location to
another. It does not deal with the transfer of pages (paging) between secondary
storage and main memory. This paging is managed invisibly by the Multics
virtual memory and is used by user programs and the I/O system alike. Hardware
I/O is performed by routines that are not normally called by a user.

To facilitate control of the sources and targets for I/O, the system makes
use of a software construction ~alled an I/O switch. An I/O switch is like a
channel in that it controls the flow of data between program accessible storage
and devices,' files, etc. The switch must be attached before it can be used.
The attachmerit. specifies the source/target for I/O operations and the particular
I/O module that performs the operations. For example, a switch may be attached
to the user's terminal through the tty_ I/O module or to a file in the storage
system through the vfile_ I/O module. The basic tool for making attachments and
performing I/O operations is the iox_ subroutine (described in the MPH
Subroutines). All functions of the I/O System are accessible through calls to
this subroutine.

Attachments and I/O operations can also be done from command level, using
the io call command. The print_attach_table command prints descriptions of all
current attachments. Both of these commands are described in the HPH Commands.

5-1 AG91

System Input/Output Modules

The Multics system contains the following I/O modules:

discard_ is a sink for unwanted output

rdisk_ supports I/O from/to removable disk packs

record_stream provides a mechanism for doing record I/O on an unstructured
file, or vice versa.

syn_ establishes one switch as a synonym for another

supports I/O from/to magnetic tape
s~andards proposed by the American
Institute (ANSI)

files according to
National Standards

tape_ibm_ supports I/O from/to magnetic tape files according to
standards established by IBM

tape_mult_ supports I/O from/to magnetic tape files in Multics standard
tape format

ttv_ supports I/O from/to terminals

vfile_ supports 1/0 from/to files in the storage system

These modules are described in Section III of the MPH Subroutines.

User-Written Input/Output Modules

The user may construct his own I/O system interface modules. See "Writing
an I/O Module" in Section IV of the MPM Subsystem Writers' Guide.

How to Perform Input/Output

To perform the I/O, carry out the steps listed below. In general, a step
may be performed by a call to the iox_ subroutine (described in the MPM
Subroutines) or by use of the io call command (described in MPM Commands). The
I/O facilities of the programming languages may also be used to carry out these
steps.

1. Attach an
subsequent
operations.

I/O switch. This step specifies a source/target for
I/O operations and names the I/O module that performs the

Example:

This command line attaches the switch named input_sw to a storage
system file whose relative pathname is some_file. The I/O module that
performs this operation is named vfile_ (described in the MPM
Subroutines). This attachment could also have been performed by a
subroutine call as follows:

call iox_$attach_ioname ("input_sw", iocb_ptr,
"vfile_ some_file", code);

5-2 AG91

2. Open the I/O switch. This step prepares the switch for a particular
mode of processing (e.g., reading records sequentially) using the
already established attachment. Example:

call iox_$open (iocb_ptr, 4, "D"b, code);

The iocb_ptr identifies the switch (see. "Input/Output Switches"
below). The argument 4 means that the opening is for sequential
reading. The "D"b represents an obsolete argument. See the
description of the iox_ subroutine (described in the MPM Subroutines)
for full details. This open step could also have been performed by a
command, as follows:

3. Perform the required data transfer and control I/O operations working
through the switch. For example, read one record at a time until an
end-of-information code is returned by the read operation. Example:

call iox_$read_record (iocb_ptr,
actual_record_length, code);

buffer_length,

4. Close the I/O switch. This step cleans up by writing out buffers,
marking the end of a file, etc. The I/O switch is restored to the
state it was in after step 1. The close could be followed by a repeat
of steps 2-4, perhaps with a different opening mode. Example:

call iox_$close (iocb_ptr, code);

5. Detach the I/O switch. After this step, the switch can be attached
again for some other purpose. Example:

In general, only step 1 (attach) involves peculiarities of a particular
type of device or a particular file format. It is often convenient to have this
step and step 5 (detach) performed from command level, while steps 2 to 4 are
performed by a program. This may be used to make a program device independent.

Input/Output Switches

Each I/O switch has an I/O control block (IOCB) associated with it.
Storage for the control block is automatically allocated when the switch is
attached. The contents of the control block are maintained by the I/O system
and are not usually of interest to the general user. It does, however, contain
two pointers of interest.

1 • iocb. at tach_descrip_ptr is. a pointer to a character string describing the
attachment of the switch. If the pointer is null,
the switch is not attached.

2. iocb.open_descrip_ptr is a pointer to a character string describing the
opening mode of the switch. If the pOinter is
null, the switch is not open.

5-3 AG91

Each I/O switch has a name that is used to refer to the I/O switch at
command level and is also used in other contexts where reference by a character
string name is appropriate. Most calls to the iox_ subroutine reference an I/O
switch by its control block pointer. Given the switch name, the iox_$find_iocb
entry point returns the control block pointer. The switch name is a character
string from one to 32 characters long with no blanks.

Each I/O switch belongs to a particular ring, normally the user ring.
Within a ring, switch names are unique, but switches in different rings may have
the same name.

ATTACHING A SWITCH

To ':l~~':lch a switch, the "io_call attach ... " command or the iox_$attach_iocb
or iox_$attach~ioname entry points should be invoked. (See the MPM Commands
and the MPM Subroutines, respectively.) In all cases, an attach description
must be given. This string has the following form:

module_name -options-

where module_name and each option do not contain blanks but are separated from
one another by one or more blanks.

The module name determines the I/O module for the attachment as follows:
If it does not contain any instances of greater-than or less-than characters (>
or <), it is interpreted as a reference name, and the I/O module is found by the
search rules. If module_name contains any greater-than or less-than characters,
it is interpreted as the pathname (absolute or relative) of the I/O module.

The options must conform to the requirements of the particular I/O module.
The I/O modules are described in Section III of the MPM Subroutines. In
general, the first option listed is the source/target of the attachment (i.e.,
the name of the device or file).

When the attachment is made, if the I/O module is not already initiated by
the specified reference name, it is so initiated. When module_name is given as
a pathname, the reference name is the final entryname in the pathname.

The attach description associated with the attached switch (and accessible
through the print_attach_table command, described in the MPM Commands) may not
be exactly the same as the attach description given to the io_call command or
the iox_$attach_iocb or iox_$attach_ioname entry points. In general, the I/O
module transforms the attach description into a standard form. For example, the
command:

io_call attach foo >ldd>sdd>vfile_ my_file

might generate the attach description:

vfile_ >udd>m>JRDoe>my_file

5-4 AG91

OPENING A SWITCH

The "io_call open ... " command or the iox_$open entry point are used to
open a switch. In either case, one of the opening modes listed in Table 5-1
must be specified. As shown in Table 5-1, the opening mode determines which 1/0
operations may be carried out through the open switch. Whether or not opening
in a particular mode is possible depends on the attachment of the switch. The
relation between opening modes and file attachments is discussed in "File
Input/Output" below. For other types of attachments see the description of the
particular 1/0 module. Table 5-2 shows the type of opening modes supported by
each 1/0 module.

SYNONYM ATTACHMENTS

By means of the syn_ 1/0 module, an 1/0 switch (e.g., switch_1) may be
attached as a synonym for another 1/0 switch (e.g., switch_2). In general,
performing an 1/0 operation through switch_1 then has the same effect as
performing it through switch_2. There are two exceptions:

1. Detaching switch_1 simply breaks the synonymization and has no effect
on switch_2.

2. The attach description for the synonym attachment may specify that
certain operations are to be inhibited. An attempt to perform an
inhibited operation through switch_1 results in a status code that
indicates an error.

Synonym attachments are especially useful when one wishes to switch the
sourceltarget for a set of 1/0 operations. For example, the 1/0 switch
user_output is normally attached as a synonym for user_i/o (which is normally
attached to the user's terminal). The following commands can be used to create
an 1/0 switch named file_switch and attach it to a file, open file_switch for
stream_output, detach the 1/0 switch user_output, and make the 1/0 switch
user_output a synonym attachment to the 1/0 switch file_switch. The result of
these four commands is that output that would normally be sent to a terminal is
written into a file. The file_output command (described in the MPM Commands)
performs this sequence of steps and is the normal way of directing terminal
output to a file.

io_call attach file switch vfile file name -extend
io call open file_switch stream_output-
io-call detach user_output
io:call attach user_output syn_ file_switch

The following commands can be used to undo the effects of the previous four
commands with the result that subsequent output to the I/O switch user_output is
written on the user's terminal. The console_output command (described in the
MPM Commands) performs this sequence of steps and is the normal way of reverting
user_output back to its normal attachment (the 'terminal).

io_call detach user_output
io_call attach user_output syn_ user_i/o
io_call close file_switch
io_call detach file_switch

5-5 AG91

Table 5-1. Opening Modes and Allowed Input/Output Operations

Input/Output Operation

rewrite_record

delete_record

position

close

Opening Mode
I
I

No.! Name

x x 2 x

2 stream_output x x

3 stream_input_output x x x 2 x

4 sequential_input x x x x

5 sequential_output x x

6 sequential_input_output x x x x x

7 sequential_update x x x x x x

8 keyed_sequential_input x x x x x x

9 keyed_sequential_output x x x

10 keyed_sequential_update x x x x x x x x x

11 direct_input x x x x

12 direct_output x x x

13 direct_update x x x x x x x

1 . Depends on the attachment.

2. Allowed if attached to a file in the storage system.

5-6

control
I
I

:modes
I I
I I

AG91

OQe

No.

2

3

4

5

6

7

8

9

10

11

12

13

Table 5-2. Opening Modes Supported by 1/0 Modules

ing Mode

Name

strearrLinput

stream_output

stream_input_output

sequential_input

sequential_output

sequential_input_output

sequential_update

keyed_sequential_input

keyed_sequential_output

keyed_sequential_update

direct_input

direct_output

direct_update

discard

x

X

X

1/0 Module

rdisk_
record_stream

tape_ansi_
: tape_ibm_
: Itape_mult_
I : : tty_
: I I : vfile_

x x x x

x x x x

x X

X X X X

X X X X

X

X

x

X

X

X X

X X

X X

The syn_ 1/0 module is not included in this table because the allowed modes are
a function of the switch to which the syn_ module is being attached.

5-7 AG91

It is possible to have a chain of synonyms; e.g., switch_1 as a synonym for
switch_2 and switch_2 as a synonym for switch_3. The final switch in the chain
is the actual 1/0 switch for all the other switches in the chain. More
precisely, if an 1/0 switch, switch_1, is not attached as a synonym, then its
associated actual 1/0 switch is itself. If switch_1 is attached as a synonym
for switch_2, then the actual 1/0 switch associated with switch_' is the same as
the actual 1/0 switch associated with switch_2.

With the notion of the actual 1/0 switch, the effect of a synonym
attachment of an 1/0 switch, switch_1, can be precisely described as follows:

1. The open_description of switch_1 is the same as the open_description
of the actual 1/0 switch associated with switch_1. (Hence switch_1 is
open or closed according to whether the actual switch is open or
closed.)

2. If the open 1/0 operation or one of the 1/0 operations listed in Table
5-1 is performed through switch_1, then the effect is the same as if
it were performed through the actual 1/0 switch associated with
switch_1, with one exception. The exception is that if any synonym
attachment in the chain (connecting switch_1 to the actual 1/0 switch)
inhibits the operation, then the only effect is to return a status
code that indicates an error.

STANDARD INPUTIOUTPUT SWITCHES

Four 1/0 switches are attached as part of the standard initialization of a
Multics process.

Switch

user ilo
user=input
user_output
error_output

Normal Attachment

the user's terminal
synonym for user_i/o
synonym for user ilo
synonym for user=i/o

These switches may be attached in other ways, but the user must always attach
user_input, user_output, and error_output as synonyms.

The following external pointer variables are initialized to point to the
control blocks for the corresponding 1/0 switches:

dcl iox_$user_io external pointer;
dcl iox_$user_input external pOinter;
dcl iox_$user_output external pointer;
dcl iox_$error_output external pointer;

These variables must never be modified. By using these variables, one can save
time and avoid calls to the iox_$find_iocb entry point to locate these commonly
used control blocks. Thus, a simple and efficient way to write to the user's
terminal is:

5-8 AG91

Interrupted Input/Output Operations

It may happen that an I/O operation being performed on a particular I/O
switch, switch_1, is interrupted, e.g., by a quit signal or an access violation
signal. In general, until the interrupted operation is completed, or until
switch_1 is closed, it is an error (with unpredictable consequences) to perform
any I/O operation except close on switch_1. However, some 1/0 modules (tty_ in
particular) allow other operations on switch_1 in this situation. (See the
module descriptions in Section III of the MPM Subroutines for details.) If the
switch switch_1 is closed while the operation is interrupted, control must not
be returned to the interrupted operation.

PROGRAMMING LANGUAGE INPUT/OUTPUT FACILITIES

It is possible to perform I/O through a particular switch using both the
facilities of a programming language and the facilities of the I/O system
(invoked directly). The following statements about this sort of sharing of
switches apply in most cases:

1. The I/O system may be used to attach a switch or to attach and open
it. The language I/O routines are prepared for this, and they close
(detach) a switch only if they opened (attached) it.

2. A switch opened for stream_input may be used both directly and through
language I/O if care is exercised. In general, the languages read a
line at a time. Thus the order of input may get confused if a direct
call is made to the I/O system while the language routines are
processing a line. Trouble is most likely to arise after issuing a
quit signal (pressing the appropriate key on the terminal, e.g., ATTN,
BRK, etc.).

3. A switch opened for stream_output may be used both directly and
through language I/O if formatting by column number, line number, page
number, etc. is not important. Some shuffling of output may be
expected, especially if a direct call to the I/O system (e.g., by the
issuing of a quit signal) is made while the language I/O routines are
processing an I/O statement.

4. If a switch is opened for record I/O (sequential_, keyed_sequential_,
and direct_ modes), using it both directly and through language I/O is
not recommended.

A direct call to the I/O system has no effect on control blocks and buffers
maintained by the langu~ge I/O routines and is likely to cause garbled input or
output. The close_file command (described in the MPM Commands) closes PL/I and
FORTRAN control blocks used by the language I/O routines. For details on the
facilities of a particular language and for a discussion of the usage of related
Multics commands, see the reference manual and/or user's guide for that
language.

FILE INPUT/OUTPUT

The I/O system distinguishes three types of files: unstructured,
sequential, and indexed. These types pertain to the logical structure of a
file, not to the file's representation in storage, on magnetic tape, etc. For
example, in the storage system a file may be stored as a single segment or as a
multisegment file; but this does not affect the meaning of I/O operations on the
file.

5-9 AG91

unstructured Files

An unstructured file contains a sequence of 9-bit bytes. Normally the
bytes are ASCII characters, but this is not required.

The following 1/0 operations apply to unstructured files:

position

Sequential Files

reads a line from the file, i.e., a sequence of bytes ending
with an ASCII newline character

reads a specified number of bytes

adds bytes at the end of the file

positions to the beginning or end of the file, skips forward
or backward over a specified number of lines

A sequential file contains a sequence of records. Each record is a string
of 9-bit bytes. A record may be zero length.

The following 1/0 operations apply to sequential files:

reads the next record

obtains the length of the next record

adds a record to the file

rewrite_record replaces a record

delete_record deletes a record

position positions to the beginning or end of the file, skips
forward or backward over a specified number of records

Indexed Files

An indexed file contains a sequence of records and an index.
is a string of 9-bit bytes. A record may be zero length.

Each record

The index associates each record with a key. A key is a string of from 0
to 256 ASCII characters containing no trailing blanks. No two records in the
file have the same key. The order of records in the sequence is key order:
record x precedes record y if and only if the key of x is less than the key of y
according to the Multics PL/I rules for string comparision (lexicographic order
using the ASCII collating sequence).

5-10 AG91

All the 1/0 operations applicable to sequential files apply to indexed
files as well. In addition, the following two operations manipulate keys:

read_key obtains the key and length of the next record

seek_key positions to the record with a given key or defines the key
to be associated with a record to be added (by a subsequent
write operation) .

Table 5-3 shows the 1/0 operations that are permitted with each type of
file.

File Opening

\
When an 1/0 switch is attached to a file and is opened for input or update,

the file must exist and must be compatible with the opening mode. Table 5-4
shows the compatibility between file types and opening modes.

When the opening is for output or input_output, and the file does not
exist, a file of the appropriate type is created. The type of file created by a
particular mode of opening is shown in Table 5-4.

When the opening is for output or
exists, it is normally replaced by an empty
However, if either the attachment or the
file, the file is not replaced. In this case
the opening mode.

input_output, and the file already
file of the appropriate type.

opening specifies extension of the
the file must be compatible with

For files, opening for input_output means opening with the intent of first
writing the file and then reading it during the same opening. An existing file
is replaced by an empty file unless extension is specified.

File Closing

When an 1/0 switch attached to a file has been opened for output,
input_output, or update, a close operation should be performed on the switch
before the process is terminated. If not, the file may be left in an
inconsistent state; e.g., an end of file mark may not be written for a tape
file, or the bit count of a segment may not be set for a storage system file.

The d~fault handler for the finish condition closes all 1/0 switches.

5-11 AG91

Table 5-3. File Types and Allowed Input/Output Operations

Type of File

unstructured
(sequence of 9-bit bytes,
usually ASCII characters)

sequential
(sequence of records)

indexed
(sequence of records
and an index)

get_line
I
I

: get_chars
I I

I

Input/Output Operation

: put_chars

x

I
I
I
I
I
I
I
I

x

I
I

x

x

x

rewrite_record

x

x

delete_record

x

x

read_length
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

x

x

position
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

x

x

x

seek_key
I
I
I
I
I
I
I
I
I
I
I
I

x

read_key
I
I

: write_record
I
I
I
I

x

x

x

Each record is a string of bytes; a record may be of zero length. For an
indexed file, a key is a string of 0 to 256 ASCII characters, with no trailing
blanks.

5-12 AG91

Table 5-4. Compatible File Attachments

Opening Mode File Type
I
I

No.1 Name unstructured sequential indexed

x

2 stream_output x3

3 stream_input_output x3

4 sequential_input x x

5 sequential_output x3

6 sequential_input_output x3

7 sequential_update 2 x

8 keyed_sequential_input x

9 keyed_sequential_output x3

10 keyed_sequential_update x

11 direct_input x

12 direct _output x3

13 direct_update x

1. The structure of the file is ignored and everything in it is treated as
data (including control words).

2. The file must be in the storage system.

3. This type of file is created by an output opening for the specified mode
without using the -extend control argument. (See the individual IIO module
descriptions in Section III of the MPM Subroutines to see if the -extend
control argument is applicable.)

5-13 AG91

File Position Designators

The I/O operations on files are defined in terms of four position
designators. In cases where several 1/0 switches are open and attached to the
same file, each opening has its own set of designators. The designators are:

next byte

next record

current record

key for insertion

the first byte to be read by the next get_line or
get_chars operation

the record to be read by the next read_record operation

the record to be replaced or deleted by the next
rewrite_record or delete_record operation

the key to be associated with the record added to an
indexed file by the next write_record operation

The initial values for these designators are shown in Table 5-5.

TERMINAL INPUT/OUTPUT

Terminal I/O is most conveniently done through the appropriate programming
language facilities. Since each language handles I/O in a different manner, the
user should consult the reference manual and/or user's guide of the language in
question.

The set_tty command may be used to control characteristics of terminal I/O
such as the line length, insertion of tabs, and erase and kill processing. See
the descriptions of the set_tty command in the MPM Commands and the tty_ I/O
module in the MPM Subroutines.

The file_output command causes all subsequent output normally printed on
the user's terminal to be written instead to a file in the storage system. The
console_output command causes such output to be directed again to the terminal.
Both of these commands are described in the MPM Commands.

The contents of segments that contain ASCII characters may be printed on
the terminal by invoking the print command. The contents of any segment can be
printed in octal using the dump_segment command or the Multics debug command.
See the descriptions of print, dump_segment, and debug in the MPM Commands.

The ioa_ subroutine provides a convenient means for formatting output to be
printed on the terminal, and it may be used for other output as well. See the
ioa_ subroutine description in the MPM Subroutines.

5-14 AGg1

Table 5-5. File Position Designators at Open

Designator
OQening Mode

I next current I key for I I

No. I Name next byte record record I insertion L
I
I

stream_input Ifirst byte
I
I

2 stream_output lend of file
I
I

3 stream - input_output lend of file

4 sequential_input first record

5 sequential_output

6 sequential_input_output end of file

7 sequential_update first record null

8 keyed_sequential_input first record

9 keyed_sequential_output null

10 keyed_sequential_update first record null null

11 direct_input

12 direct_output null

13 direct_update null null

In the opening where no value is indicated for a designator, the designator is
not relevant.

5-15 AG91

BULK INPUT AND OUTPUT

The Multics system has provisions for three types of bulk 1/0: high-speed
printer output, punched card input, and punched card output.

Printed Output

The dprint command causes the contents of a Multics file (segment or
multisegment file) containing Multics ASCII characters to be printed on a
high-speed printer. See the description of the dprint command in the MPM
Commands.

The printed output has the following parts:

1. Header sheet. This sheet identifies: the requesting User_id; the
person and destination of the person to whom the dprint is sent; the
pathname of the file; the date, time, and day of the week the file was
printed; the physical device on which the file was printed; and the
installation identifier. If more than one copy of the file is
requested, the number of the copy (in the form "copy ill of n" where ill
and n are numbers from 1 to 4) is indicated on the header sheet. Each
corner of the header sheet contains the sequence number of the printed
output. If more than one copy of the file is requested, the header
sheet of each duplicate copy has the same sequence number.

2. Announcement page. This page may be used by the installation to send
a message to all users. The dprint is folded so the header sheet is
always an outside page is and the announcement page is an inside page.
Except for duplicate copies of the same segment, the header sheet and
announcement page are separated by four lines of overstruck characters
printed on the paper perforation; these separator lines and the
sequence number of the printed output assist in filing output.

3. File contents. The contents of the file are printed in a format
determined by the characteristics of the physical device or by control
arguments to the dprint command. See the dprint command in the MPM
Commands for explicit details on formatting output.

4. Summary sheet. This sheet indicates: the date, time, and day the
output was requested; the date, time, and day the output was printed;
the request type; the queue; the physical device; the number of lines
and pages in the printed output; the number of blocks and the cost per
1000 blocks (a block is the bit count of the file divided by 750); the
total cost of the output and the User_id to which it is charged. The
summary sheet also identifies the pathname of the file, the entryname
of the file, and the destination to which the output is sent. The
sequence number of the printed output is also in each corner of the
summary sheet. The printed output is folded so the summary sheet is
always an outside page.

5-16 AG91

Punched Card Input

Facilities are provided to read punched card decks into Multics files.
There are three types of card formats that can be input to Multics: Multics
card codes, 7punch, and raw.

mcc

7punch

raw

The Multics card codes are defined in "Punched Card Codes" in
Appendix C of this document. They consist of a superset of the
EBCDIC card punch codes and can be produced by 029 key punches.
Each column is interpreted as one character. The 12-bit card
codes are converted to 9-bit ASCII codes. Trailing blanks on a
card are ignored. A newline character is inserted after the end
of each card.

The 7punch decks are binary representations of existing files,
and the data portions of the cards are read in exactly as they
were punched out. The format of a 7punch deck is described in
Appendix C.

Raw decks are simply read into Multics files without any
conversion, and without regard to format; that is, the 960 bits
on each card are read into the file in column order. Any desired
conversion can then be performed by the user.

The flip cards prepared when a deck is punched (described in Appendix C)
and other sorts of labeling cards from other systems"are not read correctly and
should be removed from decks. See Appendix C for more information on punched
card input.

Punched Card Output

The dpunch command described in the MPM Commands causes the contents of
Multics files to be punched. The files can be punched under mcc, raw, or 7punch
conversion modes. See Appendix C for more information on punched card output.

5-17 AG91

SECTION VI

ACCESS CONTROL

"Access control" means regulating how a process is allowed to use or refer
to information within the system. Every process is executing on behalf of some
user (and has. associated with it the name of this user). Access rights are
regulated in terms of a particular process or a particular user. That is,
access rights are thought of as being granted on a per-user or a per-process
basis depending on the type of control being discussed.

TYPES OF ACCESS CONTROL

There are three types of access control on Multics: discretionary access
control, which is regulated by an access control list (ACL); nondiscretionary
access control, which is regulated by the access isolation mechanism (AIM); and
intraprocess access control, which is regulated by the ring structure. Each
type of access control is briefly described as follows:

Discretionary access control
allows individual users to grant or deny other users access to their
segments and directories at their own discretion. ACLs, which
regulate this type of access, are of interest primarily to users who
wish to share their programs and data bases with other users.

Nondiscretionary access control
enforces the policies of the system administration and of the
organizations served by the system. (This type of access control is
sometimes referred to as administratiye access control.) By defining
access authorizations for processes and access classes for directories
and segments, the system administration (through AIM) guarantees that
only authorized persons may access certain classes of information. In
general, nondiscretionary controls are used to restrict discretionary
controls; for example, with AIM, users cannot "give away" access to
information or programs even though they themselves have complete
access to the data.

Intraprocess access control
provides the ability for programs to enforce arbitrary access control
policies that go beyond the basic ACL and AIM controls. For example,
the ring structure protects the supervisor programs from actions of
users. Rings are useful for those persons writing subsystems
(containing programs and data bases that will be used by many users)
that require more specifically defined protection than is offered by
the other access controls.

6-1 AG91

EFFECTIVE A~

Viewed separately, each type of access control answers the same question:
what access does a particular process have for a particular item? The access
mode granted a process to an object by discretionary access control (the ACL) is
known as the process' raw access mode or raw mode. Since the several access
control mechanisms operate together, the access modes of a process to an item at
any instant of time are those granted by all controls. For example, if the
discretionary controls grant a process read and write modes to a segment, but
the nondiscretionary (or administrative) controls allow the process read mode,
the process may only read the segment, but may not store into it. Thus, any of
the other controls can restrict, but not extend, the access granted by the
discretionary controls. The actual access mode that the system enforces for
each reference or use of a segment or directory is called the process' effective
access mode to that segment or directory.

DISCRETIONARY ACCESS CONTROL

Discretionary access controls allow individual users to grant access to
directories and segments on a per-user basis. Users can exercise discretionary
control only within those portions of the storage system hierarchy where they
themselves have the proper access rights.

AQcess Identifier

In order· to grant individual users distinct access rights, it is necessary
to be able to identify the different users. For this purpose, each process has
an associated name called an access identifier. The access identifier is fixed
for the life of the process. The identifier is a three-component character
string that must be less than 33 characters where the first component is the
registered name of the person on whose behalf the process was created (i.e., the
user's Person_id); the second component is the name of a project group of which
the person (named in the first component) is a member (i.e., the user's
Project_id); and the third component (called the instance tag) is a single
character used to distinguish different classes of processes. Most processes
have an instance tag of "a" to indicate a standard interactive process, i.e., a
process created for a user who logged in from a terminal. Absentee processes,
i.e., noninteractive processes created by the system in response to queued user
requests, have an instance tag of "m". The instance tag of "zit is used for
certain system processes, e.g., one that runs a line printer. The access
identifier Jones.Mentor.a would be associated with an interactive process
created for Jones on the Mentor project.

The access identifier is considered a "user" by the system. However, it is
important to distinguish between a user and a person: the same person can log
into Multics under two different projects and be considered two different users
(e.g., Jones.Mentor.a and Jones.Demo.a), or one person could log in
interactively and be running an absentee process at the same time and be
considered two different users (e.g., Jones.Mentor.a and Jones.Mentor.m). If a
person on a particular project is granted the ability to log in more than once
so that he has several processes under his control at the same time, each
process has the same access identifier (e.g., Jones.Mentor.a and
Jones.Mentor.a). These processes, by having the same access identifier, have
the same access rights to segments and directories in the storage system.

6-2 AG91

Access Modes

The access rights a process has to segments and directories are described
by access modes. These modes allow a user to stipulate several different kinds
of access on the same item in the storage system if he so desires.

The access modes for segments and directories are listed below. The single
letter in the first column is used by the various access-related system commands
to indicate the respective mode.

The access modes for segments are:

r read

e execute

w write

n null

the process can execute instructions that cause data to be
fetched (loaded) from the segment.

an executing procedure can transfer to this segment
words of this segment can then be interpreted
instructions and executed by a processor.

and
as

the process can execute instructions that cause data in the
segment to be modified.

the process cannot access the segment in any way.

The access modes for directories are:

s status

m modify

a append

n null

the attributes of segments, directories, and links contained
in the directory and certain attributes of the directory
itself can be obtained by the process (for a definition of
attributes, see "Segment, Directory, and Link Attributes" in
Section II).

the attributes of existing segments, directories, and links
contained in the directory and certain attributes of the
directory itself can be modified; and existing segments,
directories, and links contained in the directory can be
deleted.

new segments, directories, and links can be created in the
directory.

the process cannot access the directory in any way.

Null access is implied by default; that is, if a user does not issue a
command to grant other users access to some segment or directory, these other
users cannot access the data in any way.

The access modes described above pertain to all entries in the storage
system. In addition, another group of access modes, known as extended access,
applies to both types of message segments, queue and mailbox. Queue message
segments contain 1/0 requests (from the dprint and dpunch commands) and absentee
requests. Mailbox message segments contain messages sent by many different
users. Extended access provides a way to further control operations on message
segments and ensure privacy among users.

6-3 AG91

The extended access modes for mailboxes are:

a add the process can add a message

d delete the process can delete any message

r read the process can re~d any message

0 own the process can read or delete only its own messages; that
is, those sent by this process

s status the process can find out how many messages are in the
mailbox

n null the process cannot access the mailbox in any way

Access on a newly created mailbox is automatically set to adros for the
user who created it, ao for *.SysDaemon.*, and ao for *.*.*. Access on queue
message segments is controlled by the site, but is usually set to aros for
* * *

Structure of an ACL

The rights that different user processes have- when referring to a segment
or directory are specified as an attribute of that segment or directory in the
form of a list called the access control list (ACL). Each entry of the list
specifies a set of processes (actually a set of access identifiers of processes)
and the access modes that members of that set can use when referring to the
segment or directory. The modes read, write, execute, and null can be specified
in ACLs of segments and the modes status, modify, append, and null can be
specified in ACLs of directories. On directory ACLs, modify mode cannot appear
without status mode. On segment ACLs, write and execute modes cannot appear
without read mode.

Only those access modes actually granted in an ACL entry are given to the
specified user process. For example, if the ACL of a segment contains the modes
read and execute for a specific user, then that user's process can fetch data
from the segment and transfer to and execute instructions in the segment, but it
cannot modify data in the segment (because the write access mode was not
granted).

Each ACL entry designates certain access modes and identifies the users
that have these access modes. Since each user process is identified by an
access identifier when the process is created (explained above), it would seem
logical to use that identifier to designate a user in the ACL entry. However,
if access identifiers were used to specify every user process that could access
a segment or directory, the ACLs would become extremely cumbersome.

6-4 AG9i

For example, to grant read and execute access on a particular segment to
all six members of the Demo project, whether they are using an interactive or
absentee process, would require 12 separate ACL entries:

Jones.Demo.a re
Jones.Demo.m re
Smith.Demo.a re
Smith.Demo.m re

It is clear from this example that a way to define groups of user processes
(rather than giving several individual access identifiers) is needed.

Groups of user processes can be identified by a process class identifier,
which, like the access identifier consists of a three-component name:
Person_id.Project_id.tag. Although it can be identical to an access identifier,
a process identifier generally is used to designate groups of processes by
replacing one or more components with an asterisk' (*). Since the asterisk means
that any string can be in that component position, a process identifier with an
asterisk identifies that group of processes whose access identifiers match the
specifically named components (i.e., those components that are not an asterisk).
For example, rather than the 12 entries needed in the above example, the user
could specify all members of the Demo project, whether using interactive or
absentee processes, by using one entry:

.Demo. re

In addition, this single entry has the advantage of automatically providing for
future members of the Demo project, because any access identifier matching the
named component ("Demo") will have read and execute access to the segment.

Matching Entries on an ACL

A single process can be a member of more than one process class. This
situation can lead to ambiguities on ACLs when more than one entry applies to
the same process. To eliminate this ambiguity and make ACLs more easily
readable, four conventions are imposed on ACLs and their interpretation. First,
no process class identifier can appear more than once on any ACL. Second, the
ACL is ordered as explained below. Third, the entry that applies to a given
process is the first entry on the ordered list whose process class contains the
given process. Finally, if no entry exists on the list for a given process,
that process has no access to the segment or directory. These conventions
ensure that the access for every process is uniquely specified by the ACL.

To properly generate and modify ACLs, it is necessary to have some
understanding of how they are ordered. The ordering rule is to distinguish
between specifically named components and asterisks, beginning with the leftmost
component of the process identifier. The entries to be ordered are first
divided into two groups, those whose first (Person_id) component is specific
(i.e., not an asterisk) and those whose first component is an asterisk. Those
with a specific first component are placed first on the ACL. Within these two
groups, a similar ordering is done by second (Project_id) component with the
specific entries again being first. This produces four groups. Finally, within
each of these four groups, a similar ordering is done on the third (instance
tag) component to produce eight groups.

6-5 AG91

The eight groups of class identifiers are ordered in the following manner:

1. no asterisks

2. an asterisk in the third component only

3. an asterisk in the second component only

4. asterisks in the second and third components only

5. an asterisk in the first component only

6. asterisks in the first and third components only

7. asterisks in the first and second components only

8. all asterisks (*.*.*)

Within each of these groups, the ordering is unimportant because a process
can belong to only one class in a group. The following is a validly ordered
ACL:

Jones.Work.a r (1)

Smith.Lazy.* rw (2)

White.*.a re (3)

Black.*. * rew (4)

*.Faculty.m null (5)

* .Student. * re (6)

* .Lazy.* r (7)

* * .z rew (8)

* * * r (9)

In the above example, a process with access identifier Smith.Lazy.a would be
able to read and write the segment as derived from entry (2), a process with
access identifier Jones.Lazy.a would be able only to read the segment as derived
from entry (7), and a process with access identifier Smith.Faculty.a would be
able to read the segment as derived from entry (9). Despite entry (9), which
apparently grants read access to all processes, Smith.Faculty.m would have no
access since entry (5), which is encountered first, contains a more specific
match (Faculty.m).

Maintenance of ACLs

Users can create and modify ACLs by using standard Multics commands and
subroutines. The specific usage of each of these procedures is described in
either the MPM Commands or MPM Subroutines:

list_acl
set_acl
delete_acl
hcs_$add_acl_entries
hcs_$add_dir_acl_entries

6-6 AG91

hcs_$replace_acl
hcs_$replace_dir_acl
hcs_$delete_acl_entries
hcs_$delete_dir_acl_entries
hcs_$list_acl
hcs_$list_dir_acl

The commands and subroutines enforce the constraints mentioned above; i.e., they
order the ACL and do not permit more than one entry with a given process class
identifier to appear on the ACL.

Consider the example of a segment with an ACL containing the single entry:

Jones.*.* r

A new entry is added for the process class *.Work.* resulting in the ACL:

Jones.*.* r

.Work. rw

This would appear to give all members of the Work project the right to read and
write the segment. Actually, it gives read and write access to all members of
the Work project except Jones (assuming Jones is a member of the Work project).
Jones has only read access. If the user truly wants to give all members of the
Work project write access, he would have to either delete the Jones.*.* entry or
add another entry to produce:

Jones.Work.* rw

Jones.*.* r

.Work. rw

By keeping the Jones.*.* entry, the user continues to specify access for Jones
when he logs in on any project other than Work.

It is important to realize that placing a new entry on an ACL does not
necessarily grant all members of that process class the specified access, for
some members of that process class can also be members of process classes
appearing elsewhere on the ACL. The user should, therefore, be aware of what an
ACL currently contains before modifying it.

Special Entries on an ACL

Several Multics system services are performed by special processes as
opposed to being done by the user's process. These service processes perform
functions such as making backup copies of segments in the storage system and
printing and punching segments at users' requests. In order to perform such
functions, the service processes must have access to the segments to be
serviced. These service processes, and only these service processes, are
members of a single project called SysDaemon.

6-7 AG91

In order to ensure that these service processes have access to the
segments, the storage system subroutines automatically place the ACL entry:

.SysDaemon. rw

on the ACL of every segment, and the ACL entry:

.SysDaemon. sma

on the ACL of every directory when the segment or directory is created or its
ACL is entirely replaced. In this way, members of the SysDaemon project are
automatically granted the necessary access so that they can perform their
functions; individual users need not remember to put the proper entries on all
of their segment and directory ACLs to make use of the service processes.

Under special circumstances, some user might not wish to use the facilities
of a service process on some of his segments. In this case, the user simply
denies that service process access to his segments by modifying the ACL entry
(i.e., giving that service process null aaces~). It is crucial that a user who
elects not to receive such a system service be fully aware of the nature of the
service and the consequences of his choice. For example, if the backup
processes are not permitted access to a segment, backup copies of the segment
cannot be made and the segment will not survive certain types of system failure.

Initial ACLs

In addition to automatically adding a service process entry to the ACLs of
all newly created segments and directories, many system commands and
subroutines, e.g., create, create_dir, and hcs_$append_branch, add an entry for
the creating process to the ACL of a newly created segment or directory. For
convenience, the system allows a user to specify a list of entries to be added
to all newly created segments or directories -- in addition to entries for the
creating process and the service processes. This ability eliminates the need to
explicitly modify an ACL each time a new segment or directory is created.

This list of ACL entries to be added to newly created segments or
directories is called an initial access control list or initial ACL and is an
attribute of a directory. Each directory has two sets of initial ACLs, one set
for segments appended to the directory and one set for directories appended to
the directory. Since each initial ACL is simply a list of ACL entries, an
initial ACL has the appearance of an ACL. When a segment or directory is
created, the service process ACL entry is first placed on the ACL of the segment
or directory. Then, the appropriate initial ACL (i.e., either the one for
segments or the one for directories) of the containing directory is merged with
the ACL. The merging of two ACLs means that the entries are combined and
sorted. If two entries on the resulting ACL contain the same process class
identifier, the entry that was originally on the ACL of the segment is deleted,
leaving the newly added entry. In this way, the service process entry
originally on the segment can be overridden by placing an entry with process
class identifier *.SysDaemon.* on the initial ACL. Finally, any entries
specified in the operation of creating the segment or directory (for most system
commands this is simply one entry for the creating process) are merged into the
ACL. These entries override the service process and initial ACL entries if
duplicate process class identifiers exist.

The default value for the initial ACLs of a newly created directory is
empty, i.e., there are no entries in the initial ACLs.

6-8 AG91

Maintenance of Initial ACLs

The user can manipulate initial ACLs for either segments or directories
using a set of commands and subroutines. The specific usage of each of these
procedures is described in either the MPM Commands or the MPM Subsystem Writers'
Guide:

delete_iacl_dir
delete_iacl_seg
list_iacl_dir
list_iacl_seg
set_iacl_dir
set_iacl_seg
hcs_$add_dir_inacI_entries
hcs_$add_inacl_entries
hcs_$delete_dir_inacl_entries
hcs_$delete_inacl_entries
hcs_$list_dir_inacl
hcs_$list_inacl
hcs_$replace_dir_inacl
hcs_$replace_inacl

NONDISCRETIONARY ACCESS CONTROL

Nondiscretionary access controls allow those responsible for administration
of the organization using Multics to set up and enforce administrative policies
on information access. When dealing with information of a sensitive nature,
whether in the form of data bases or programs, an administrative policy is often
necessary to control which persons may access certain kinds of information in
specified ways. Such a policy could be implemented externally to Multics by
requesting users to be careful about setting their access control lists.
However, programming errors, oversights, and deliberate tampering can lead to
the release or destruction of sensitive information. Multics enforces
administrative policies through the use of the access isolation mechanism (AIM).
Changes to the policies can be made only through administrators recognized by
the system (e.g., system, system security, and project administrators).

As an example, consider a service bureau that serves several competitive
customers. Each customer wishes to maintain and use sensitive information on
the system, and wishes its employees to have access to it. Each customer wishes
to prevent its competitors from accessing any of its sensitive information, as a
result of accidents, carelessness, or by either the customer's or the service
bureau's own employees deliberately "giving away" access to it. Further, the
competitors would like to use the system's and each others' public programs on
their sensitive data without fear of data disclosure or destruction. The
nondiscretionary access control mechanism can be used to implement this policy.

Another example is a corporation that wishes its major divisions to use a
common Multics system. The operating divisions should retain their privacy and
independence, but corporate management requires some access to each operating
division's financial and marketing data for reporting and planning. The
operating divisions should not be able to access each other's data. The
nondiscretionary access controls can be used to provide the desired blend of
information sharing and isolation.

Some installations may not want to use nondiscretionary access controls.
If the administrators feel that their organization does not need the service
provided by AIM, they do not have to "do" anything to their Multics system. The
default value of system_low puts all data at the lowest sensitivity level, which
effectively cancels AIM checking and makes this type of access control invisible
to all users.

6-9 AG91

AIM Attributes

Every segment and directory in the Multics storage hierarchy has associated
with it -- for its lifetime -- an access class denoting the sensitivity of its
contents. Every process (the active agent of a user) ~u the system has
associated with it -- for its lifetime -- an access authorization denoting the
sensitivity range of information it can access.

Because authorizations and access classes are identical in structure, the
terms are often used interchangeably. An authorization or access class consists
of a sensitivity level and a category set.

A sensitivity level is a single number conveying a relative sensitivity
judgment. If the contents of segment A are judged to be "more sensitive" than
the contents of segment B, segment A should have a higher sensitivity level than
segment B. Similarly, if process A is "more trusted" than process B, process A
should have a higher sensitivity level than process B. The assignment of
sensitivity levels is discussed later in this section.

Sensitivity levels are totally ordered. A process at one sensitivity level
may access all segments and directories accessible to a process with a lower
sensitivity level, subject to the other access rules (ACL and ring
restrictions).

A category set is made up of zero or more access categories. An access
category represents a grouping of information for access purposes. To
illustrate how such groupings might be chosen, consider again the service bureau
and corporation examples mentioned earlier. The service bureau might assign a
different access category to each of its customers. This means that segments
created by one customer will have a different access category than segments
created by another customer. In the case of the corporation, a different access
category might be assigned to each division. In this way, the different
customers or the different divisions would all be isolated from one another (see
"Relationships Between AIM Attributes" below for the meaning of isolated).

Category set access rules are based upon set inclusion. A process having a
given category set may access all segments having the same category set or a
subset of access categories, subject to ACL and ring restrictions.

If the category set of a process consists of several categories, this
process has the need to access (and is trusted to access) several separate
information groups. If the category set of a segment or directory consists of
several categories, only processes that can access all of these several
information groups will be allowed to access the contents of this segment or
directory.

For convenience, the sensitivity levels and access categories used in a
particular Multics installation are assigned character-string names by the
system administration. There may be as many as eight different sensitivity
levels and 18 access categories in use at one Multics installation. If an
installation has chosen not to use the AIM access controls, that system is using
only the lowest sensitivity level and no categories. The access classes and
authorization names at such an installation are null strings by default, making
access classes and authorizations "invisible."

6-10 AG91

Relationships Between AIM Attributes

The AIM access rules (described in "AIM Access Rules" below) are based on
the following relationships between authorizations and access classes:

equal to
greater than
less than
isolated from

An authorization or access class A is equal to an authorization or access
class B if:

1. The sensitivity levels of A and B are equal; and

2. The category sets of A and B are identical (neither contains a
category not found in the other).

An authorization or access class A is greater than an authorization or
access class B if:

1. The sensitivity level of A is greater than or equal to the sensitivity
level of B; and

2. The category set of B is a subset of the category set of A or is
identical to the category set of A; and

3. A is not equal to B (according to the above definition of equal to).

An authorization or access class A is less than an authorization or access
class B if B is greater than A.

An authorization or access class A is said to be isolated from
authorization or access class B if A is not equal to, greater than, or less than
B. Isolation is possible only if A and B have disjoint category sets, i.e.,
neither category set is equal to or a subset of the other. (An empty category
set is considered a subset of all nonempty category sets.)

AIM Access Rules

The access rules used by AIM on segments, directories, interprocess
communication, and message segments are described below.

SEGMENTS

The rules for accessing segments are:

1. A process may have read (r) and execute (e) modes to a segment only if
the process authorization is greater than or equal to the segment
access class.

6-11 AG91

2. A process may have write (w) mode to a segment only if the process
authorization is equal to the segment access class.

3. A process has null access to a segment if its authorization is neither
greater than nor equal to the segment access class.

DIRECTORIES

The rules for accessing directories are:

1. A process may have status (s) mode to a directory only if the process
authorization is greater than or equal to the directory access class.

2. A process may have modify (m) and append (a) modes to a directory only
if the process authorization is equal to the directory access class.

3. A process has null access to a directory if its authorization is
neither greater than nor equal to the directory access class.

A newly created segment has the same access class as its containing
directory. A newly created directory may have an access class that is greater
than or equal to the access class of its containing directory. A directory with
an access class greater than its containing directory is known as an upgraded
directory.

INTERPROCESS COMMUNICATION

The interprocess communication (IPC) facility allows one process to pass
information to another process by sending it a wakeup and an associated event
message. Administrative access controls limit the use of this information path.
Process A may send a wakeup (and event message) to process B only if process B's
authorization is greater than or equal to process A's authorization.

MESSAGE SEGMENT

A message segment is a special type of segment that is managed by Multics
supervisor programs and is not directly accessible to the user. A message
segment is simply a convenient repository for interprocess messages. Each
message in a message segment is a separate protection unit itself, and has
associated with it an access class identical in form to segment and directory
access classes. The existence of the individual messages remains invisible to a
process unless the process authorization is greater than or equal to the message
access class. A process may read a message only if the process authorization is
greater than or equal to the access class of the message. A process may delete
messages only if the process authorization is equal to the message access class.
A process may get the count of messages in a message segment, but this count
only reflects those messages to which read access is permitted by AIM.

6-12 AG91

Authorizations

Several authorization parameters are kept for users and .projects in system
and project tables.

For each person registered on the system, a person maximum authorization is
kept (by the system security administrator) in a system table. This maximum
authorization is composed of the highest sensitivity level and all the
categories of information this person may ever access, on any project. Each
installation has its own procedures for assigning and changing person maximum
authorizations.

Each person registered on the system also has a default login
authorization, kept in a system table, and changeable by the person himself (see
login in the MPM Commands). If a person does not specify an authorization at
log-in time, the default authorization is assumed.

For each project on the system, a project
the system security administrator) in a
authorization is composed of the highest
categories of information that any user logged
access. Again, each installation has its
changing project maximum authorizations.

maximum authorization is kept (by
system table. This maximum
sensitivity level and all the
in on this project may ever
own procedures for assigning and

For each person on a project (i.e., for each user), a user maximum
authorization is kept (by the project administrator) in a project table. This
maximum authorization is composed of the highest sensitivity level and all the
categories of information this person may access when logged in on this project.

At the time a process is created (as the result of login or new_proc, both
described in the MPM Commands), its authorization and maximum authorization are
established.

The process maximum authorization is the highest authorization the process
can attain. It is computed directly from the three maximum authorization
parameters:

person maximum authorization

project maximum authorization

user maximum authorization on the project

The maximum authorization has the same form as an authorization or an
access class. The sensitivity level of the process maximum authorization is the
smallest of the sensitivity levels of the three maximums. The category set of
the process maximum authorization is composed only of categories contained in
the category sets of all three maximums. Thus, the process maximum
authorization is the highest authorization that is less than or equal to each of
the three maximum authorization parameters.

6-13 AG91

The process
parameters:

authorization is computed directly from the following

process maximum authorization

terminal access class

-auth argument to login or new_proc (or default)

The sensitivity level of the process authorization is computed in the same
manner as that of the process maximum authorization -- it is the smallest of the
sensitivity levels of the three parameters and its category set is composed only
of categories contained in the category sets of the three parameters.
Therefore, the process authorization is the highest authorization that is less
than or equal to each of the three parameters. If the process authorization is
not less than or equal to the process maximum authorization, then the process is
not created, login or new_proc fails, and the system prints a message.

Access Classes

The access classes assigned by AIM to segments, directories, and message
segments are described below.

SEGMENT

A segment receives its access class, equal to the access class of the
containing directory, at the time it is created. No special commands or control
arguments are needed to assign access classes to segments.

DIRECTORY

Like a segment, a directory receives its access class at the time of
creation. If no access class is explicitly requested, the directory is assigned
an access class equal to the access class of its containing directory. If an
access class is explicitly requested, it must be greater than or equal to the
access class of the containing directory and less than or equal to the process
maximum authorization. A directory with an access class higher than that of its
containing directory is an upgraded directory. All upgraded directories must
have a terminal quota. No directory may have an access class less than that of
its containing directory, so the access class of directories always remains the
same or increases as one descends the hierarchy. This is known as the
"nondecreasing access class" rule.

An upgraded directory must have a terminal quota of one or more storage
records. Quota may be moved to an upgraded directory from its containing
directory by a process whose authorization is equal to the access class of the
containing directory. Quota may not be moved from an upgraded directory back to
its containing directory except by deleting the upgraded directory. An upgraded
directory may be deleted only if it is empty (contains neither segments nor
links) .

6-14 AG91

MESSAGE SEGMENT

As explained earlier, a single message segment can contain messages of
different access classes. The access class of each message in the segment is
equal to the authorization of the process that added the message to the message
segment.

The access class of the message segment itself controls the maximum access
class of the messages in it. Every message must have an access class less than
or equal to the access class of the message segment.

The access class of a message segment is equal to the maximum authorization
of the process that created it. The access class of the message segment must be
greater than or equal to the access class of its containing directory.

Maintenance of AIM

Standard system commands and subroutines allow users to make use of
nondiscretionary access controls. In some cases, administrative personnel are
needed to perform changes or maintenance activities. Also, the use of
nondiscretionary access control imposes some restrictions that the user should
be aware of. Maintenance activities performed by both users and administrators
as well as restrictions under AIM are described below.

USER COMMANDS AND SUBROUTINES

There are several commands and subroutines that deal explicitly with
authorizations and access classes. Each one is described in detail in either
the MPM Commands or the MPM Subroutines:

commands:
create_dir
login
new_proc
print_auth_names
print_proc_auth
status

subroutines:
convert_authorization_
get_authorization_
get_max_authorization_
hcs_$create_branch_
hcs_$get_access_class_seg

SPECIAL SITUATIONS

It is sometimes necessary to lower the access class of some information
(i.e., downgrade it). The nondiscretionary access control rules do not allow
user processes to perform this type of operation. It is necessary for a system
security administrator, whose process has special accessing privileges, to make
the change. Each installation has its own procedures for users to request such
changes.

6-15

Occasionally, through system failure, inconsistencies in the access classes
of directories and segments may develop. Examples of such inconsistencies are a
directory with an access class that is not greater than or equal to that of its
containing directory; or a segment with an access class not equal to that of its
containing directory. Such a situation is reported with the system status code
error_table_$oosw, or the error message "There was an attempt to reference a
directory which is out of service." (See Section VII for a list of error
messages.) In this case, it is necessary to have a system security
administrator examine and correct the inconsistencies, and to place the
directories back in service. Each installation has its own procedures for
reporting such problems.

MAILBOXES

The mail command (described in the MPM Commands) uses message segments to
hold mail, each piece of mail being a single message with an access class equal
to the authorization of the sending process. Nondiscretionary access controls
impose several restrictions on the use of mail. Since a process can read only
messages with access classes less than or equal to its authorization, a process
cannot read mail sent by processes of higher authorizations. Since a process
can only delete messages with access classes equal to its authorization, it
cannot delete mail with an access class not equal to its authorization.

The access class of a mailbox is equal to the maximum authorization of the
process that created it. Since all messages in a mailbox must have an access
class less than or equal to the access class of the mailbox, a user can read all
his mail when his process authorization is equal to his maximum authorization.
However, he may not be able to delete all his mail at this authorization. In
general, mail is easiest to manage if it is only sent and read by processes at
system_low authorization. In this case, a user can read and delete all of his
mail. Users wishing to send and read mail of multiple authorizations may
experience the inconveniences of having messages in their mailbox that they
cannot read or delete at certain authorizations.

GENERAL RESTRICTIONS

AIM imposes restrictions on the use of several system facilities. The
nondiscretionary access controls allow a user to log in a process at different
authorizations. Since AIM enforces access rules based on these authorizations,
a user's access to certain objects may differ at different logins.

Any operation performed by the user that requires write access to a given
segment (or modify or append access to a given directory) can only succeed if
the process authorization is equal to the access class of the segment (or
directory). Likewise, any operation performed by the user that requires read
access to a given segment (or status access to a given directory) can only
succeed if the process authorization is greater than or equal to the access
class of the segment (or directory). For example, if the user creates his
profile segment at his maximum authorization, he will be unable to use it (read
it) at lower authorizations. Therefore, for convenience, most users choose to
create their profile segments at system_low. However, in this case, the user
cannot add or delete abbreviations at any authorizations higher than system_low.
Similar restrictions apply to data segments used by the memo, debug, and probe
commands. Also, general purpose exec_com segments that modify a segment or
directory can only be used when the process authorization equals the segment or
directory access class.

6-16 AG9i

To summarize, the full use of many system facilities is inherently
restricted to a single authorization. Persons who choose to work at more than
one authorization may find these system facilities unusable or only partially
usable at certain authorizations.

INTRAPROCESS ACCESS CONTROL

The ring mechanism permits users to write subsystems that are protected
from other users in much the same way the supervisor is protected from users.
For example, consider a user who has created a segment containing a list of his
employees and their salaries. He wants to permit some users to have access to
the list of employees and allow some other users to know the average salary of
his employees, but he does not want anyone but himself to have access to the
specific salary data for each employee. In other words, he wishes other users
to have access to the data in the segment but only in a controlled manner and he
wants to be able to specify the control. The read, write, and execute access
modes of segments do not provide this capability; however, the ring mechanism
does. In effect, rings permit arbitrarily refined and controlled access to
objects by allowing any user to define arbitrary objects, write procedures that
operate on these objects, and encapsulate these procedures and objects in a
closed, controlled environment that can be ~ntered only at specific entry
points.

One of the important properties of the ring mechanism is that it is
invisible to users of segments protected by it. Only those programmers
actually writing subsystems that need ring protection need be familiar with the
use and operation of rings.

Conceptually, the Multics ring mechanism could be pictured as a series of
concentric circles. All the segments in a process reside somewhere within these
circles; that is, each segment is located either between the boundaries of some
pair of circles, or in the innermost circle. These circles (or rings) are
numbered from 0 to 7, starting with the innermost circle, to denote levels of
privilege; ring 0 is the ring of most privilege and ring 7 is the ring of least
privilege. A process executing in a given ring has free access to other
processes executing in that same ring, subject to any limitations prescribed by
the other access restrictions (ACL and AIM). Access between rings is limited
according to rules given below.

The primary rule of access between rings is that processes executing in
lower-numbered rings have unlimited access to segments in higher-numbered rings,
subject, of course, to ACL and AIM restrictions on particular segments.
Processes executing in higher-numbered rings have no direct access to segments
in lower-numbered rings. Access refers to both the ability to execute a segment
and the ability to read or write it. Thus the ring boundaries are ~.
Within a ring (i.e., between walls) processes are unimpeded by the ring
protection mechanism. It is when a wall must be crossed that the protection
mechanism becomes effective.

Those segments that compose the central supervisor are in ring O. Ring 1
usually contains system routines, largely administrative in nature, that are not
as sensitive as the central supervisor. Rings 3 through 7 are potentially
available for use by users. Most user processes start running in ring 4. Rings
5 through 7 are available for use by programmers who wish to write their own
sUbsystems.

6-17 AG91

In a process, the ring that contains the currently executing segment is
called the current ring of execution and is part of the state of the process.
Control must, of course, be able to pass from ring to ring. By virtue of the
ring structure's basic definitions, passing control outward is legal. That is,
segments in outer rings are accessible to those in inner rings. However. bv
virtue of those same definitions, an inward call cannot be legal. Therefore:
segments in inner rings are inaccessible to those in outer rings. The means of
legitimizing inward calls is to cause one or more entry points of a given
procedure segment to be treated as gates in the protection wall. A gate, then,
is an entry point to an inner ring procedure segment that can be called by an
outer ring segment.

Validation Level

Inner ring procedures are very often called by outer ring procedures in
order to perform some service on behalf of the outer ring. It is, therefore,
necessary that the inner ring procedure know the number of the outer ring on
whose behalf it is performing the service in order to validate the right of the
outer ring to request the service. This requesting ring information is kept by
each process and is known as the validation level. If an outer ring procedure
wishes to request a service from an inner ring procedure, it sets the validation
level to its current ring of execution (the validation level cannot be set lower
than the ring of execution) and calls the inner ring procedure. If a procedure
is calling an inner ring procedure to do work on behalf of an outer ring
procedure, it should not change the validation level, but instead leave it at
the level of the outer ring procedure. Users who write programs that are
executed only in a single ring, usually the outermost ring in which the process
runs, need not be concerned about the validation level since it will be set to
that ring by default.

Segment Ring Brackets

Thus far, it has been indicated that each segment in the system must be a
member of a single ring and, if the segment is executable, execute in that ring.
It is, however, convenient to allow a segment to reside in (be a member of)
several rings so that it can execute in any of these rings with the access
appropriate to that ring. This is accomplished by giving each segment an
execute bracket that delimits the rings in which the segment can be executed (if
it has execute access mode), without having to change the ring of execution of
the process. The execute bracket is specified by means of two ring numbers, for
example, 3, 5. The execute bracket includes all rings between and including the
two ring numbers; in this case, the execute bracket contains rings 3, 4, and 5.

If the process is executing in a ring contained in the execute bracket of a
segment and control is transferred to the segment, then no change of ring of
execution results. If the process is executing in a ring whose number is less
than the lowest ring number in the execute bracket, then when the segment is
transferred to, the ring of execution will be changed to the lowest ring in the
execute bracket. In the example above, if the process is executing in ring 1
and the segment is transferred to, then the ring of execution will become 3. If
the process is executing in a ring whose number is greater than the highest ring
number in the execute bracket, then the ring of execution will become the
highest ring in the execute bracket (5 in the example) when the segment is
transferred to, assuming the segment contains a gate. (As stated earlier, a
gate is an entry point to an inner ring procedure segment that can be called by
an outer ring segment.)

6-18 AG91

In this latter case of gates, it is also useful to specify those rings in
which the segment is accessible through a gate. This gate bracket is specified
by appending a third ring bracket number after the two already used for defining
the execute bracket, e.g., 3,5,6. The gate bracket includes those rings whose
number is greater than the second ring bracket number and less than or equal to
the third bracket number (in the example, only ring 6). An attempt to execute a
segment from a ring greater than the gate bracket is not allowed.

Since a segment must have a nonempty gate bracket in order to contain a
gate, it is convenient to choose a nonempty gate bracket for a segment as the
definition of a gate segment; e.g., an executable segment with ring bracket
numbers 4,5,7 is a gate segment because the gate bracket contains rings 6 and 7,
whereas an executable segment with ring bracket numbers 4,5,5 is not a gate
segment because its gate bracket is empty. Gate segments must also have a
specific format. The above use of ring bracket numbers dictates that they be
increasing; i.e., the first ring bracket number must be less than or equal to
the second ring bracket number which, in turn, must be less than or equal to the
third ring bracket number.

The ring bracket numbers also have meaning with respect to the read and
write access modes. The rings less than or equal to the first of the ring
bracket numbers are termed the write bracket. A process must be executing in a
ring within the write bracket of a segment and have write access mode on that
segment in order to modify data in the segment. If a process is running in a
ring higher than the write bracket, it cannot modify (write into) the segment
even though the process has write access mode on the segment. The rings less
than or equal to the second ring bracket number are called the read bracket.
Processes must be running in the read bracket of a segment and have read access
mode on the segment in order to read it. The list below summarizes the
refinements of access that are controlled by the ring brackets of a segment and
the process' ring of execution, assuming the process has read, write, and
execute access modes specified on the ACL of the segment. Ring brackets do not
grant access to a segment; access to a segment is granted only by the ACL and
AIM controls. Ring brackets only serve to refine, within the process, the
access granted by the ACL and AIM controls.

Ring of Execution

Ring of execution less than first
ring bracket number

Ring of execution equal to first
ring bracket number

Ring of execution greater than
first ring bracket number and
less than or equal to second ring
bracket number

Ring of execution greater than
second ring bracket number and less
than or equal to third ring bracket
number

Ring of execution greater than third
ring bracket number

6-19

Potential Access Rights

read, write, execute
(with ring change)

read, write, execute

read, execute

execute (if a gate only,
with ring change)

no access

AG91

Directory Ring Brackets

Directory ring brackets are in most ways similar to segment ring brackets,
but with two important differences:

1. There are only two directory ring brackets, not three.

2. Since directories are accessed by calling supervisor primitives rather
than by direct reference, the directory ring brackets are evaluated
with respect to the validation level instead of the ring of execution.

The first ring bracket number defines the modify/append bracket. All rings
less than or equal to the first directory ring bracket number are within the
modify/append bracket. In order for a process to modify or add entries to a
directory, the validation level of the process must be within the modify/append
bracket and the process must have modify or append access modes (respectively)
on the directory. The rings less than or equal to the second directory ring
bracket number form the status bracket. In order to get the attributes of
segments in a directory or of inferior directories, the validation level must be
within the status bracket. The first ring bracket number must be less than or
equal to the second ring bracket number. For e~ample, if the ring brackets of a
directory are 4,6 and the validation level is 3, the process can get status of,
modify, or append to the directory (assuming, of course, that it has the status,
modify, and append access modes). If the validation level is 6, it can only get
status of the directory. If the validation level is 7, it cannot access the
attributes of the entries in the directory at all.

The ring brackets of segments or directories can be modified by using a set
of commands or subroutines described in the MPM Subsystem Writers' Guide:

set_ring_brackets
hcs_$set_ring_brackets
hcs_$set_dir_ring_brackets

Modification of Segment Attributes

In order to maintain the integrity of the ring mechanism, the ring brackets
of a segment or directory must control the ability of a process to modify the
attributes (particularly the ACL and ring brackets) of a segment as well as the
ability to write the data of the segment. As stated previously, in order to
modify the attributes of a segment in a directory, or of an inferior directory,
the process must have modify access to the latter directory and the validation
level must be within the modify/append bracket of the directory. A further
qualification is that the validation level must be within the write bracket of a
segment whose attributes are being modified or be within the modify bracket of a
directory whose attributes are being modified. Also, a process cannot set
bracket numbers to values less than the validation level. Finally, to prevent
one protected subsystem from tampering with another protected subsystem in the
same ring, an ACL entry containing a project identifier other than the project
of the executing process cannot be added to the ACL of a gate segment. These
restrictions ensure that there are no means by which a process executing in a
ring outside the write bracket can directly write a segment or do so indirectly
by first modifying the ring brackets or ACL of the segment to give the process
write access and then write it.

The final type of directory entry, the link, has no access control list or
ring brackets of its own. To modify or delete a link, the process must have
modify access mode on the directory containing the link, and the validation
level must be within the modify bracket of the directory.

6-20 AG91

Default Values

When a segment or directory is created and the values for the ring bracket
numbers are not explicitly defined, they will be set to a default value equal to
the validation level. Since most users write programs that operate in a single
ring at a single validation level, this choice of default r~ng brackets makes
the ring mechanism invisible to them, i.e., they will always be within the read,
write, and execute brackets for segments and the status and modify/append
brackets for directories.

As explained in "Dicretionary Access Control" above, when a new segment or
directory is appended to a directory, the default value for the access control
list is determined by the initial ACLs. In each directory, there is a set of
initial ACLs for newly created segments and a set of initial ACLs for newly
created directories. The reason why a set of initial ACLs rather than simply a
single initial ACL is necessary is that the set contains one initial ACL for
each ring. When a segment or directory is created, the initial ACL
corresponding to the validation level is the one used. Since the initial ACL
for a given ring can be modified only by procedures in rings equal to or less
than the given ring, a procedure creating a new segment or directory can be sure
that the initial ACL to be used could not have been modified by a ring less
privileged than the ring on whose behalf the segment or directory is being
created.

The "user ring" is ring 4, because most user processes start running in
ring 4; however, r1ngs 3 through 7 are also available for user processes. The
project administrator may specify both the initial ring for a user process and a
limit on the maximum ring that may be used. A ring attribute of 4,6 would start
the user's process in ring 4 and allow it to execute also in rings 5 and 6.

6-21 AG91

SECTION VII

HANDLING UNUSUAL OCCURRENCES

A procedure may encounter a set of circumstances that prevent it from
continuing normally. Examples of circumstances that prevent a procedure from
continuing execution are an attempt to divide by zero or the inability to find a
necessary segment in the storage system. Clearly, whether or not a particular
set of circumstances, such as those given above, prohibit a procedure from
continuing in a normal manner is dependent upon the procedure in question.
Circumstances that are abnormal for one procedure can be quite normal when
encountered in a different procedure. If a procedure is unable to continue, it
notifies its caller or other of its antecedents. The handling of such
occurrences and the notification mechanisms are described in this section.

The discussion is limited to methods of handling unusual occurrences
reported by system procedures. However, it should help users select appropriate
means for handling and reporting unusual occurrences that arise during the
execution of their own procedures. Printed messages, status codes, conditions,
and faults are discussed.

PRINTED MESSAGES

The type of unusual occurrence reporting that most Multics users first
encounter is a message printed on the user's terminal. Since, in some sense,
the caller of a command is the user himself, printing a message on the user's
terminal is the means by which a command can report an unusual occurrence to its
caller. There are two general types of printed messages used to report unusual
occurrences: statements and questions. A statement describes the occurrence to
the user. The user may then rectify the circumstances by issuing commands. A
question describes the occurrence and requests an immediate response from the
user in the form of a character string entered at the terminal. In this way,
the user must immediately specify one of several courses of action that the
command takes with respect to the occurrence.

Most Multics system commands generate printed messages in a standard
format. This format consists of the name of the command printing the statement
or asking the question and a description of the unusual occurrence and the
question. Two procedures, the com err and command_query_ subroutines, are
provided to help report unusual occurrences through . printed statements and
questions. They provide many facilities besides simple formatting. (See the
MPH Subroutines for descriptions of these subroutines.)

1-1 AG91

STATUS CODES

Because the character string is too cumbersome for passing descriptions of
unusual occurrences between procedures, a coaea description of the unusual
occurrence, called the status code, is used. The status code is either a short
bit string or arithmetic number that takes on a different value for each
possible unusual occurrence. If the status code is a bit string, usually each
bit refers to the occurrence of some circumstance, as in Multics 1/0 system
status codes. If the status code is an arithmetic number, then each different
value corresponds to an unusual occurrence or set of unusual occurrences, as in
the case of the Multics storage system status codes. The status code argument
is passed from a calling procedure to the called procedure. The called
procedure assigns the appropriate value to the argument at some point during its
execution. When the called procedure returns to the calling procedure, the
calling procedure examines the status code to determine what unusual occurrence
has been encountered, if any, and then takes special action, if desired. The
status code is a means by which a called procedure can report an unusual
occurrence only to its immediate caller. However, the first caller may, in
turn, pass the status code to its immediate caller, and so on.

Multics provides a means by which status codes can be generated and
interpreted. The status codes generated are one word arithmetic numbers (fixed
binary(35» whose scope is a single process. The actual values of the codes are
generated dynamically when referenced symbolically from a program, and can be
interpreted (i.e., converted to a character-string description) by calling the
com err subroutine. By using these dynamically generated status codes rather
than status codes with fixed, preassigned values, conflict is avoided between
several separately compiled subsystems that can all use the same status code to
represent different occurrences. In the dynamic scheme, all status codes are
guaranteed to be unique within a process. Status codes cannot be used in a
process other than the one generating them because they do not necessarily have
the same interpretation in another process.

In order to have a status code generated, a Multics standard status code
segment must exist. (A description of how to generate a standard status code
segment is given in the error_table_compiler command description in the MPM
Subsystem Writers' Guide.) This segment contains an externally defined symbol
corresponding to each status code to be generated in the segment, as well as
space for the code itself and the character-string interpretation of the code.
When the status code segment is first referenced in a process, the system
generates a new value for each status code defined in the segment and stores it
in the segment. (Actually, it is stored in the linkage section of the status
code segment, so that a different status code can be generated for each
process.) From then on, all references to that external symbol refer to the
generated status code. The com_err_ subroutine, when given such a status code,
is able to locate and return the associated character-string interpretation.

A program must refer to a status code symbolically. If, for example, a
program wished to return a status code that appears in the status code segment
named mistake and has the external symbol bad_argument, then the following PLII
statements would be needed:

declare mistake$bad_argument fixed bin(35) external;

return (mistake$bad_argument);

7-2 AGg1

If a program wanted to examine a status code for a particular value to determine
if it should take some distinct action, it would contain statements such as:

declare mistake$bad_argument fixed bin(35) external;

if status_code = mistake$bad_argument then do;

All references to the status code are symbolic. The mechanism for generating
the status code is automatic and not visible to the program or programmer.

Most Multics system procedures use standard status codes. A list
(;ontaining the symbolic names, character-string interpretations, and meanings of
the status codes returned by system procedures is given in "List of System
Status Codes and Meanings" below.

LIST OF SYSTEM STATUS CODES AND MEANINGS

Status codes report unusual occurrences encountered by procedures during
execution. The codes are returned by Multics system commands and subroutines.
Printed messages that correspond to these status codes appear on printed output
with the name of the command printing the statement, a description of the
unusual occurrence causing the message to be printed, and more detailed
information when appropriate. Several of the status codes listed below pertain
directly to nondiscretionary access control. (See "Nondiscretionary Access
Control" and "Special Situations" in Section VI for information on the access
isolation mechanism and errors that can occur.)

To test for the return of a particular system-defined status code, the
following approach can be taken in order to avoid compiling particular numeric
values, which might change, into programs:

declare error_table_$entry

if code = error_table_$entry then ...

where:

1. code is a status code (fixed bin(35» returned from a Multics system
command or subroutine.

2. entry is an error_table_ entry taken from the list below.

Storage System Status Codes

a_above_allowed_max
Specified access class/authorization is greater than allowed maximum.

ai_in valid_binary
Unable to convert binary access class/authorization to string.

ai_invalid_string
Unable to convert access class/authorization to binary.

ai_restricted
Improper access class/authorization to perform operation.

argerr
There is an inconsistency in arguments to the storage system.

7-3 AG91

bad_acl_mode
Bad mode specification for ACL.

bad_name
The access name specified has an illegal syntax.

bad_ring_brackets
Ring brackets input to directory control are invalid.

boundviol
Attempt to access beyond end of segment.

clnzero
There was an attempt to move segment to non-zero length entry.

dirseg
This operation is not allowed for a directory.

empty_acl
ACL is empty.

full_hashtbl
The directory hash table is full.

fulldir
There was an attempt to delete a non-empty directory.

incorrect_access
Incorrect access to directory containing entry.

infcnt_non_zero
There was an attempt to make a directory unknown that has inferior
segments.

invalid_ascii
The name specified contains non-ascii characters.

invalid_copy
There was an attempt to create a copy without correct access.

invalid_max_length
Attempt to set max length of a segment less than its current length.

invalid_mode
Invalid mode specified for ACL.

invalid_move_quota
Invalid move of quota would change terminal quota to nonterminal.

invalid_project_for_gate
Invalid project for gate access control list.

invalidsegno .
There was an attempt to use an invalid segment number.

max_depth_exceeded
The maximum depth in the storage system hierarchy has been exceeded.

mod err
Incorrect access on entry.

name_not_found
The name was not found.

namedup
Name duplication.

no_dir
Some directory in path specified does not exist.

no_info
Insufficient access to return any information.

no makeknown
- Unable to make original segment known.

no_move
Unable to move segment because of type, access or quota.

no_s_permission
Status permission missing on directory containing entry.

noalloc
There is no room to make requested allocations.

noentry
Entry not found.

nomatch
Use of star convention resulted in no match.

nonamerr
The operation would leave no names on entry.

nondirseg
This operation is not allowed for a segment.

not_a_branch
Entry is not a branch.

notadir
Entry is not a directory.

7-4 AG91

notalloc
Allocation could not be performed.

nrmkst
There is no more room in the KST.

oldnamerr
Name not found.

refname_count_too_big
The reference name count is greater than the number of reference names.

root
The directory is the ROOT.

rqover
Record quota overflow.

safety_sw_on
Attempt to delete segment whose safety switch is on.

seg_unknown
Segment not known to process.

segknown
Segment already known to process.

segnamedup
Name already on entry.

too_many_sr
Too many search rules.

toomanylinks
There are too many links to get to a branch.

user_not_found
User name not on access control list for branch.

Input/Output System Status Codes

already_assigned
Indicated device assigned to another process.

att_loop
Attachment loop.

bad_arg
Illegal command or subroutine argument.

bad_file
File is not a structured file or is inconsistent.

bad_label
Incorrect detachable medium label.

bad_mode
Improper mode specification for this device.

bad_mount_request
Mount request could not be honored.

bad_tapeid
Invalid volume identifier.

bad_volid
Invalid volume ideritifier.

blank_tape
The rest of the tape is blank.

buffer_big
Specified buffer size too large.

cyclic_syn
Cyclic synonyms.

data_improperly_terminated
Relevant data terminated improperly.

dev_nt_assnd
10 device not currently assigned.

dev_offset_out_of_bounds
Specified offset out of bounds for this device.

device_end
Physical end of device encountered.

device limit exceeded
The process's limit for this device type is exceeded.

device_parity
Unrecoverable data-transmission error on physical device.

7-5 AG91

end_of_info
End of information reached.

file_busy
File already busy for other 1/0 activity.

incompatible_attach
Attach and open are incompatible.

insufficient_open
Insufficient information to open file.

invalid_backs pace_read
Invalid backspace_read order call.

invalid_device
Attempt to attach to an invalid device.

invalid_elsize
Invalid element size.

invalid_read
Attempt to read or move read pointer on device which was not attached as
readable.

invalid_seek_last_bound
Attempt to manipulate last or bound pointers for device that was not
attached as writeable.

invalid_setdelim
Attempt to set delimiters for device while element size is too large to
support search.

invalid_state
Request is inconsistent with current state of device.

invalid_write
Attempt to write or move write pointer on device which was not attached as
writeable.

io_no_permission
Process lacks permission to alter device status.

io_still_assnd
10 device failed to become unassigned.

ioat_err
Error in internal ioat information.

ioname_not_active
Ioname not active.

ioname_not_found
Ioname not found.

ionmat
Ioname already attached and active.

key_order
Key out of order.

long_record
Record is too long.

missent
Missing entry in outer module.

mount_not_ready
Requested volume is not yet mounted.

mount_pending
Mount request pending.

multiple_io_attachment
The stream is attached to more than one device.

negative_nelem
Negative number of elements supplied to data transmission entry.

negative_offset
Negative offset supplied to data transmission entry.

no_backspace
Requested tape backspace unsuccessful.

no device
- No device currently available for attachment.

no_io_interrupt
No interrupt was received on the designated 10 channel.

no_iocb
No 1/0 switch.

no_key
No key given for write_record.

no_operation
Invalid 1/0 operation.

7-6 AG91

no_record
Record not located.

no_wi red_structure
No wired structure could be allocated for this device request.

not_attached
Process not attached to indicated device.

not_closed
1/0 switch is not closed.

not detached -
1/0 switch is not detached.

not _open
1/0 switch is not open.

old dim -
Old DIM cannot accept new 1/0 call.

redundant_mount
Requested volume is already mounted.

short_r'Acord
Record is too short.

tape_error
Tape error.

too_many_buffers
Too many buffers specified.

too_many_read_delimiters
Too many read delimiters specified.

typename_not_found
Typename not found.

unable_to_do_io
Unable to perform critical 1/0.

undefined_order_request
Undefined order request.

unregistered_volume
The specified detachable volume has not been registered.

wakeup_denied
Attempt to wakeup a process of lower authorization.

Other Status Codes

action_not_performed
The requested action was not performed.

arg_ignored
Argument ignored.

bad_arg_acc
Improper access to given argument.

bad_arg_type
Bad gate for entry referenced.

bad_class_def
Bad class code in definition.

bad_command_name
Improper syntax in command name.

bad_entry_point_name
Illegal entry point name in make_ptr call.

bad_equal_name
The equal name specified had illegal syntax.

bad_index
Internal index out of bounds.

bad_Iink_target_init_info
Illegal initialization info passed with create-if-not-found link.

bad_Iink_type
Illegal type code in type pair block.

bad_ms_convert
Attempt to convert directory or link to multisegment file.

bad ms file
- Directory or link found in multisegment file.

bad_processid
Current processid does not match stored value.

7-7 AG91

bad_ptr
Argument is not an ITS pointer.

bad_segment
There is an internal inconsistency in the segment.

bad_self_ref
Illegal self reference type.

bad_string
Unable to process a search rule string.

badcall
Procedure called improperly.

badequal
Illegal use of equals convention.

badopt
Specified control argument is not implemented by this command.

bad path
Bad syntax in pathname.

badstar
Illegal entry name.

bad syntax
Syntax error in ascii segment.

bigarg
Argument too long.

command_line_overflow
Expanded command line is too large.

date_con version_error
Unable to convert character date/time to binary.

defs_loop
Looping searching definitions.

dirlong
Directory pathname too long.

dup_ent_name
Duplicate entry name in bound segment.

ect full
The event channel table was full.

entlong
Entry name too long.

force_bases
No bases supplied in force call.

id_already_exists
Supplied identifier already exists in data base.

improper_data_format
Data not in expected format.

inconsistent
Inconsistent combination of control arguments.

inconsistent_ect
The event channel table was in an inconsistent state.

invalid channel
The event channel specified is not a valid channel.

invalid_lock_reset
The lock was locked by a process that no longer exists, therefore the lock
was reset.

lesserr
Too many "<"'S in pathname.

lock_not locked
Attempt to unlock a lock that was not locked.

lock_wait_time_exceeded
The lock could not be set in the given time.

locked_by_other_process
Attempt to unlock a lock that was locked by another process.

locked_by_this_process
The lock was already locked by this process.

longeql
Equals convention makes entry name too long.

lot err
Error zeroing entry in the linkage offset table.

mismatched_iter
Mismatched iteration sets.

Bad definitions pointer in linkage.

7-8 AG91

no_ext_sym
External symbol not found.

no_linkage
Linkage section not found.

no_restart
Supplied machine conditions are not restartable.

no_sym_seg
Symbol segment not found.

noarg
Expected argument missing.

nodescr
Expected argument descriptor missing.

nolinkag
No/bad linkage info in the lot for this segment.

nolot
No linkage offset table in this ring.

nos tars .
The star convention is not implemented by this procedure.

not_act_fnc
Procedure was not invoked as an active function.

not_bound
Segment is not bound.

not_seg_type
Segment not of type specified.

odd_no_of_args
Odd number of arguments.

out_of_sequence
A call that must be in a sequence of calls was out of sequence.

pathlong
Pathname too long.

recursion_error
Infinite recursion.

request_not_recognized
Request not reoognized.

sameseg
Attempt to specify the same segment as both old and new.

seg_not_found
Segment not found.

smallarg
Argument size too small.

stack_overflow
Not enough room in stack to comple~e processing.

strings_not_equal
Strings are not equal.

too_many_args
Maximum number of arguments for this command exceeded.

translation_aborted
Fatal error. Translation aborted.

translation_failed
Translation failed.

unbalanced_brackets
Brackets do not balance.

unbalanced_parentheses
Parentheses do not balance.

unbalanced_quotes
Quotes do not balance.

unimplemented_version
This procedure does not implement the requested version.

useless restart
The same fault will occur again if restart is attempted.

wrong_channel_ring
An event channel is being used in an incorrect ring.

wrong_no_of_args
Wrong number of arguments supplied.

zel'o_length_seg
Zero length segment.

7-9 AG91

CONDITIONS

Status codes enable a calling procedure to take action on an unusual
occurrence only after the procedure encountering the occurrence has returned.
It is sometimes necessary for a calling procedure to gain control immediately
upon encountering an unusual occurrence, so that it can decide what action to
take. If the calling procedure decides to take corrective action, it can then
continue execution from the point of the occurrence. This is the purpose of the
Multics condition mechanism (described in "Multics Condition Mechanism" below.).

The condition mechanism is also used for error reporting in cases where the
errors a procedure can detect occur too infrequently and speed is too important
to have a status code argument.

The Multics system invokes the condition mechanism upon encountering
certain unusual occurrences during the execution of a program. The Multics
standard user enviroment acts upon these system-generated occurrences, as well
as occurrences generated by user programs if the user programs do not do so
themselves. A list of occurrences that cause the system to invoke the condition
mechanism, and the action taken by the Multics standard user environment if it
is invoked to act upon these occurrences, is given in "List of System Conditions
and Default Handler" below. Methods of signalling conditions from user programs
are discussed in "Signalling Conditions in a User Program" below.

Multics Condition Mechanism

The condition mechanism is a facility of the Multics system that notifies a
program of an exceptional condition detected during its execution. A condition
is a state of the executing process. Each condition that is detected is
identified by a condition name. For example, division by zero is a condition
identified by the condition name, zerodivide; an attempt by a user to exceed
his storage allocation limit is a condition identified by the name,
record_quota_overflow.

A condition can be detected by the system or by a
condition is detected, it is signalled. A signal causes a
the most recently established on unit for the condition.
an on unit, a program arranges with the system to
conditions of interest to it are detected and signalled.

user program. When a
block activation of
Thus, by establishing

receive control when

An on unit can be a begin block or independent statement, or it can be a
procedure entry. A program (an activation of a procedure block or begin block)
can establish a begin block or an independent statement as an on unit for a
particular condition by executing a PLII on statement that names that condition.

When an on unit is activated, it can take any action to handle a condition.
Typically, the on unit might try to rectify the circumstances that caused the
condition and then restart execution of the interrupted program at the point
where the condition was detected; or it might abort execution of the program by
performing a nonlocal transfer to a location within the interrupted program or
to one of its callers.

All of the on units established by a block activation are reverted when
that block activation terminates by returning to its caller or when it is
aborted by a nonlocal transfer. An on unit for a particular condition can be
explicitly reverted by executing a PLII revert statement or by executing another
on statement that names the condition. Therefore, each block activation can
have no more than one on unit established for each condition at any given time;
however, there can be as many on units established for a particular condition as

7-10 AG91

there are block activations. Signalling a condition causes a block activation
of the most recently established on unit for that condition. Normally, this is
the only on unit that is activated, even though other on units for the condition
were established by preceding block activations.

The effect of this scheme is that, once a block activation has established
an on unit for a condition, any occurrence of the condition activates that on
unit. This remains true only until the block activation is terminated or until
the on unit is reverted and while no descendant block activation establishes an
on unit for the condition.

Generally, procedures that can take action when a condition is detected
should establish an on unit for that condition. Of those block activations that
have established an on unit for the condition, the most recently established on
unit is activated.

Example of the Condition Mechanism

The example below is presented to illustrate the mechanism discussed above.
It is not meant to illustrate typical or recommended use of the condition
mechanism.

Example: proc;

Sub1:

declare Sub1 external entry;
declare Sub2 external entry;
declarec fixed bin; .
declare wrong_way condition;

on wrong_way begin;

end;

call Sub1;

c = 2;

call Sub2;

end Example;

proc;

declare a fixed bin;
declare wrong_way condition;

a = 0;

on wrong_way begin;

end;

a = 1;

end Sub1;

7-11

(2)

(3)

(4)

(S1)

(S2)

(S3)

AG91

Sub2: proc;

declare b fixed bin;
declare wrong_way condition;

b = 1;

on wrong_way begin;

end;

b = 2;

revert wrong_way;

b = 3;

end Sub2;

(S4)

(S5)

(S6)

(S7)

(S8)

In the above example, if procedure Example is called, the executable
statements are executed in the order, (1), (2), (Sl), (S2), (S3), (3), (4),
(S4) , (S5) , (S6) , (S7) , (S8), under normal circumstances. However, if the
wrong_way condition is detected and signalled during the execution of (Sl), then
the on unit established for the wrong_way condition by Example is activated
because Sub1 has not established an on unit for the wrong_way condition at this
time. If the on unit simply corrects the circumstances that caused the
wrong_way condition and returns, then execution resumes in (Sl) from the point
of interruption. If the wrong_way condition is detected and signalled during
the execution of statement (S3), then the on unit established in Sub1 is
activated because Sub1 has established the most recent on unit for this
condition. If the wrong_way condition is signalled during (3), the on unit
established by Example is activated because the block activation for Sub1 has
been terminated and its on unit is no longer established. If the wrong_way
condition is signalled during (S8), the on unit established in Example is
activated because Sub2 explicitly reverted the on unit it had previously
established, making Example's on unit the most recently established on unit for
the wrong_way condition.

On Unit Activated by All Conditions

The above description indicates how on units can be established for
specific conditions. It is sometimes desirable to handle any and all conditions
that occur. To do this, a block activation can establish an on unit for the
any_other condition. When a particular condition is signalled, the any_other on
unit established by the block activation is activated if no specific on unit for
the condition was established by the block activation, and if no on unit for
that condition or the any_other condition was established by a more recent block
activation. In other words, when a condition is signalled, each block
activation, starting with the most recent, is inspected for an on unit
established for that specific condition and, if none is found, each block is
inspected for an established any_other on unit. The first such specific or
any_other on unit found is the one that is activated. As is the case with on
units for specific conditions, only one any_other on unit can be established by
a given block activation. Establishing a second any_other on unit simply
overwrites the first.

As a summary, the flow diagram of Figure 7-1 illustrates the algorithm used
by the condition mechanism to determine which on unit to activate when a
condition is signalled. The action taken when no on unit can be found for a
condition is described in "Interaction with the Multics Ring Structure" below.

7-12 AG91

Condition x Raised

Examine
most recent
activation

Is there a handler established in Yes
, this activation for condition x? ~--------------~

No

Examine next
previous

activation

No

... ,

Is there a default handler
established in this activation

for any other?

No
"

'--___ --\ Is this the oldest
activation?

Yes

No handler for
this condition

Figure 7-1. Simplified Handler Algorithm.

7-13

Yes

Invoke the
handler

,\

AG91

Interaction with the Multics Ring Structure

The condition mechanism interacts with the Multics ring structure. The
above description of how an on unit is selected for activation applies only to
block activations within a single ring. When a condition is signalled in a
particular ring, the algorithm of Figure 7-1 is followed for the block
activations in that ring. If no on unit for the condition is found in that
ring, then the ring is abandoned and the same condition is signalled in the
higher ring that called the abandoned ring. This process is repeated until all
existing rings have been abandoned, indicating that this process has not
established an on unit for the condition being signalled, in which case the
process is terminated. For more information, see "Action Taken by the Default
Handler" below.

Action Taken by the Default Handler

Some conditions are routinely handled by the system's default on unit (in
the absence of a user-supplied on unit) by printing a message on the user's
terminal to alert him that the condition has occurred and his process has
returned to command level. These conditions are denoted in "List of System
Conditions and Default Handler" below by the following: "Default action: prints
a message and returns to command level."

In many cases, the subroutine that is executing when a condition is
detected is a system or PL/I support subroutine that is of little interest to
the user. In such cases, the user needs to know the location at which the most
recent nonsupport subroutine was executing before the condition was detected.
To accomplish this, the default on unit hunts through the block activations that
precede the support subroutine until it finds the first nonsupport subroutine;
it then indicates that the condition was detected while executing at a location
within that nonsupport subroutine.

Signalling Conditions in a User Program

A user program can signal a condition by executing a PL/I signal statement
that names that condition. If descriptive arguments are to be passed to the on
unit, the signal_ subroutine (described in the MPM Subsystem Writers' Guide)
should be called with the condition name as an argument. If the on unit
activated by the signal returns, the user program should retry the operation
that was interrupted by the condition.

GbtainiD~_ftdditional Information About a Condition

An on unit usually needs information about the circumstances under which it
was ~ctivated. The find condition info subroutine (described in Section VII of
the MPM Subsystem WriIers' Gui~e) ~akes such information available to an on
u~it. The tnf~rmatiGn might include machine conditions (i.e., the processor
state) ~r ~the information descrlDlng the condition in question. The
information that s available when system-detected conditions are signalled is
listed in I'Mach ne Condition Data Structure" and "Information Header Format"
below.

7-14 AG91

Machine Condition Data Structure

As discussed above, information is available that describes the state of
the processor at the time a hardware condition (fault) was raised. It has the
following declaration:

dcl 1 mc based (mc_ptr) aligned,
2 prs (0:7) ptr,

(2 regs,
3 x (0:7) bit(18),
3 a bit(36),
3 q bit(36),
3 e bit(8),
3 r~served bit(64),

2 scu (0:7) bit(36),
2 reserved1 bite 108),
2 errcode fixed bin(35),
2 reserved2 bit(72),
2 ring bit(18),
2 fault_time bit(54),
2 reserved3 (0:7) bit(36» unaligned;

where:

1.

2.

3.

4.

5.

6.

prs

regs

x

a

q

e

scu

errcode

ring

fault_ time

is the contents of the eight pointer registers at the time
the condition occurred.

is the contents of the other registers at the time the
condition occurred.

is the contents of the eight index registers.

is the accumulator contents.

is the q-register contents.

is the exponent register contents.

is the stored control unit, expanded below.

is the fault error code. Refer to "List of System Status
Codes and Meanings" earlier in this section.

is the ring in which the condition occurred.

is the time the condition occurred.

NOTE: In the above declaration and in the declarations that follow,
"reserved" is reserved for use by the system.

The stored control unit is declared as follows:

dcl 1 scu

/* WORD (0) */

(2 ppr,
3 prr
3 psr
3 p

2 reserved4

aligned,

bit(3) ,
bit (15) ,
bit (1)
bi t (17 ~ ,

7-15 AG91

/* WORD (1) */

2 reserved5 bit(35),
2 fi_flag bi t (1) ,

/* WORD (2) */

2 tpr,
3 trr bit(3) ,
3 tsr bit(15),

2 reserved6 bi t (18) ,

/* WORD (3) */

2 reserved7 bit(30) ,
2 tpr_tbr bit(6),

/* WORD (4) */

2 ilc bit(18),
2 ir,

3 zero bit(1),
3 neg bit(1),
3 carry bi t (1) ,
3 ovfl bi t (1) ,
3 eovf bi t (1) ,
3 eufl bit(1),
3 of 1m bit(1),
3 tro bi t (1) ,
3 par bit(1),
3 parm bit(1),
3 bm bite 1),
3 tru bit(1),
3 mif bi t (1) ,
3 abs bite 1),
3 reserved bit(4),

/* WORD (5) */

2 ca bit(18),
2 reserved8 bi t (18) ,

/* WORD (6) */

2 even_inst bit(36),

/* WORD (7) */

2 odd_inst bit(36» aligned;

7-16 AG91

where:

1.

2.

3.

4.

5.

6.

7.

8.

9.

ppr

prr

psr

p

fi _flag

tpr

trr

tsr

tpr_tbr

ilc

ir

zero

neg

carry

ovfl

eovf

eufl

of 1m

tro

par

parm

bm

tru

mif

abs

ca

even_inst

odd_inst

is the procedure pointer register contents.

is the ring number portion of ppr.

is the segment number portion of ppr.

is the procedure privileged bit.

is the fault/interrupt flag.
"O"b interrupt
"l"b fault

is the temporary pointer register

is the ring number portion of tpr.

contents.

is the segment number portion of tpr.

is the bit offset portion of tpr.

is the instruction counter contents.

is the contents of indicator registers.

zero indicator.

negative indicator.

carry indicator.

overflow indicator.

exponent overflow.

exponent underflow.

overflow mask.

tally runout.

parity error.

parity mask.

not bar mode.

truncation mode.

multiword instruction mode.

absolute mode.

is the computed address.

the instruction causing the fault is stored here.

the next sequential instruction is stored here if ilc (see
above) is even.

7-17 AG91

Information Header Format

A standard header is required at the beginning of each information
structure provided to an on unit. Except for the header. this is oarticular to
the condition in question and varies among conditions. The format of that
header is:

dcl 1 info_structure
2 length
2 version
2 action_flags

3 cant_restart
3 default_restart
3 reserved

2 info_string
2 status_code

aligned,
fixed bin,
fixed bin,
aligned,
bit(1) unaligned,
bit(1) unaligned,
bit(34) unaligned,
char(256) var,
fixed bin(35);

where:

1.

2.

3.

4.

5.

length

version

default_restart

reserved

is the length of the structure in words.

is the version number of this structure.

indicate appropriate behavior for a handler:

indicates that a handler should never attempt to return
to the signalling procedure.

resumes computation with no further action on the
handler's part except a return.

is reserved for use by the system.

is a printable message about the condition.

if nonzero, is a code interpretable by the com_err_
subroutine that further defines the condition.

If neither action flag is set, restarting is possible, but its success
depends on the action taken by the handler.

LIST OF SYSTEM CONDITIONS AND DEFAULT HANDLER

to report certain unusual occurrences encountered by system procedures. The
signalling and handling of conditions in general is described in "Multics
Condition Mechanism" above. The following discussion lists the conditions
signalled by system procedures and the default actions taken for each. The
default on unit is invoked if no other user or system on unit has been
established for the condition. The conditions are listed in alphabetical order
by name.

When present, the parenthetical type designator at the right margin on the
same line with the name indicates that the condition is either:

1. defined by the PL/I language; or

2. due to a hardware fault or an error encountered
hardware fault (indicating that a processor
available).

7-18

while processing a
state description is

AG91

Otherwise, the condition is neither of these.

Four items follow each condition name:

Cause: is the reason the condition is signalled;

Default action: is a brief description of the action taken by the
default on unit;

Restrictions: indicate when the user should not attempt to handle the
condition and note when restarting after an occurrence
of the condition is inappropriate;

Data Str'ucture: is the PL/I declaration of the data that can be pointed
to by info_ptr, the fourth argument available to a
condition handler. Unless otherwise specified, it is
not generally useful for the handler to change the
values of variables in the data structure.

PL/I Condition Data Structure

Most of the PL/I conditions have the data structure described below. Only
the items associated with a particular instance ofa condition are filled in.
The relevant information should be obtained from the PL/I defined ondata
structure (beyond the header) since it is primarily an implementation vehicle
for the ondata functions.

For brevity, the data structure item of PL/I conditions that use this data
structure is listed as "the standard PL/I data structure".

dcl 1 info
2 length
2 version
2 action_flags

3 cant_restart
3 default_restart
3 reserved

2 info_string
2 status_code
2 id
2 content_flags

(3 v1_sw,
3 oncode_sw,
3 onfile_sw,
3 file_ptr_sw,
3 onsource_sw,
3 onchar_sw,
3 onkey_sw,
3 onfield_sw)

2 oncode
2 onfile
2 file_ptr
2 onsource
2 oncharindex
2 onkey_onfield

aligned,
fixed bin,
fixed bin,
aligned,
bite 1),
bit(1),
bit(34),
char(256) var,
fixed bin(35),
char(8) init ("pliocond"),
aligned,

bit(1) unaligned,
fixed bin(35),
char(32) aligned,
ptr,
char(256) var,
fixed bin,
char(256) var;

7-19 AG91

where:

1. 4.

5.

6. id

7. v 1 sw

8.

9.

10.

11 . onsource sw -

12. onchar sw -

13. onkey_sw

14. onfield_sw

15. oncode

16. onfile

17 . file _ptr

18. onsource

19. oncharindex

20. onkey_onfield

is the same as in the information header format above.

is the status code. if any. that caused the condition
to be signalled.

identifies this structure as belonging to a PL/I
condition.

indicates that the condition was raised by a version
PL/I procedure.
"l"b condition was raised
"O"b condition was not raised

indicates that the structure contains a valid oncode.
"1"b oncode valid
"O"b no valid oncode present

indicates that a file name has been copied into the
structure.
"1"b name copied
"O"b name is not copied

indicates that there is a file associated with this
condition.
"1"b file associated
"O"b file is not associated

indicates that there is a valid onsource string for
this condition.
"1"b valid onsource string
"O"b no valid onsource string present

indicates that there is a valid onchar index in this
structure.
"1"b valid on char index
"Q"b no valid on char index present

indicates that there is a valid onkey string in this
structure.
"1"b valid onkey string
"Q"b no valid onkey string present

indicates that there is a valid onfield string in this
structure.
"1"b valid onfield string
"O"b no valid onfield string present

is the condition's oncode if oncode - sw is equal to
"1"b.

is the onfile string if onfile_sw is equal to "1"b.

is a pointer to a file value if file_ptr_sw is equal to
"1"b.

is the onsource string if onsource_sw is equal to "1"b.

is the character offset in onsource of the erroneous
character if onchar_sw is equal to "l"b.

is the onkey string if onkey_sw is equal to "1"b and is
the onfield string if onfield_sw is equal to "1"b.

7-20 AG91

System Conditions

In the list of system
description occurs frequently.

conditions that follow, one
For brevity, it is listed as:

default action

"prints a message and returns to command level"

to mean:

"an error message is printed on the error_output switch, and the user is
placed at command level with a higher level stack frame than before the
condition was signalled".

When a user receives this message, his stack is intact and the history of the
error is preserved. The user can hold the stack for further debugging
activities or he can release it. (See the description of the debug, release,
and start commands in MPM Commands.)

Cause: the user incorrectly used an active function in a command
line. The active_fnc_err_ subroutine (described in the
MPH Subsystem Writers' Guide) signals this condition.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure:

dcl 1 active_function_error info
2 length
2 version
2 action_flags

3 cant_restart
3 default_restart
3 reserved

2 info_string
2 status_code
2
2
2
2
2
2

name_ptr
name_Ith
errmsg_ptr
errmsg_Ith
max_errmsg_Ith
print_sw

aligned,
fixed bin,
fixed bin,
aligned,
bit(1) unaligned,
bit(1) unaligned,
bit(34) unaligned,
char(256).var,
fixed bin(35),
ptr,
fixed bin,
ptr,
fixed bin,
fixed bin,
bit(1);

where:

1. 4.

5.

6.

7.

is the 'same as in the information format header above.

is the status code being
active_fnc_err subroutine.

reported by the

is a pointer to a character string containing the name
of the procedure that called the active_fnc_err
subroutine.

is the length of the name of the procedure that called
the active_fnc_err_ subroutine.

7-21 AG91

d.

9.

1 Q.

11.

is the significant length of the error message prepared
by the active_fnc_err_ subroutine. A handler might
wish to alter that message.

is the significant length of the error message prepared
by the active_fnc_err_ subroutine. This datum can be
changed by the handler.

is the size of
error message
subroutine.

the character
prepared by

string
the

containing the
active_fnc_err_

indicates whether the error message is printed by the
active_fnc_err_ subroutine if and when the handler
returns control to it. This datum can be changed by
the handler.
"1"b message is printed
"Q"b message is not printed

alrm (hardware)

Cause: a real-time alarm occurr~d a specified length of time
after a call by the user to the timer_manager_$alarm_call
entry point (to set the alarm). See the description of
the timer_manager_ subroutine in the MPM Subsystem
Writers' Guide.

Default action: the handler looks up the alarm that is expected at the
time this one occurred, and calls the appropriate
user-specified procedure. When (if) this procedure
returns, the user's process is returned to the point at
which it was interrupted.

Restrictions: the user should not attempt to handle this condition.

Data structure: none.

Note: the any_other condition handlers should pass this on.

area (PL/I)

Cause: the user attempted to either allocate storage in an area
that had insufficient space rema1n1ng to generate the
storage needed; or assign one area to another, and the
second had insufficient space to hold the storage
allocated in the first. first.

Default action: prints a message on the error_output switch and signals
the error condition. Upon a normal return, the attempted
allocation is retried in case the -user has freed some
storage from an area in the interim.

Restrictions: none.

Data structure: none.

7-22 AG91

Cause: the user attempted to make an invalid call to an outer
ring.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Cause: the user incorrectly used a command (such as glvlng it bad
arguments), or a command encountered a situation that
prevented it from completing its operation normally. The
com_err_ subroutine (described in the MPM Subroutines)
signals this condition.

Default action: returns to the com_err subroutine, which then prints a
formatted message on the error-output switch. Other more
sophisticated handlers could reformat the error message to
the individual user's taste, or take some special action
depending on the particular condition in question.

Restrictions: none.

Data structure:

del 1 command error_info
2 length
2 version
2 action_flags

3 cant restart
3 default_restart
3 reserved

2 info_string
2 status_code
2 name_ptr
2 name_Ith
2 errmess_ptr
2 errmess_lth
2 max errmess_Ith
2 print_sw

aligned,
fixed bin,
fixed bin init(2),
aligned,
bit(1) unaligned,
bit(1) unaligned,
bit(34) unaligned,
chac":L..IJ~ var,
fixed bin(35),
ptr,
fixed bin,
ptr,
fixed bin,
fixed bin init(256),
bit(1) init("1"b);

where:

1. 4.

5. status_code

6. name_ptr

7. name - lth

8. errmess_ptr

is the same as in the information header format above.

is the status code reported by the com_err_ subroutine.

is a pointer to a character string containing the name
of the procedure that called the com_err_ subroutine.

is the length of the name of the procedure that called
the com_err_ subroutine.

is a pointer to a character string containing the error
message prepared by the com err_ subroutine. A handler
might wish to alter that message.

7-23 AG91

9.

10,

11.

is the significant length of the error message prepared
by the com_err_ subroutine. This datum can be changed
by the handler.

is the size of the character string containing the
error message prepared by the the com_err_ subroutine.

indicates whether the error message is printed by the
com_err_ subroutine. This datum can be set by the
handler.
"1"b message is printed
"O"b message is not printed

Cause: the user specified a handler for the command_question
condition that did not return a yes or no answer when the
data structure element indicated that a yes or no answer
was required. The command_query_ subroutine (described in
the MPM Subroutines) signals this condition.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

command_question

Cause: a command is asking a question of the user.
command_query_ subroutine signals this condition.

The

Default action: returns to the command_query_ subroutine, which then
prints the question on the user_output switch. Other more
sophisticated handlers could supply a preset answer,
modify the question, or suppress its printing. See the
data structure below for details.

Restrictions: none.

Data structure:

dcl 1 command_Question_info,
2 length
2 version
2 action_flags

3 cant restart
3 default_restart
3 reserved

2 info_string
2 status_code
2 reserved
2 question_sw
2 yes_or_no_sw
2 preset_sw
2 answer_sw
2 name_ptr
2 name_lth
2 question_ptr
2 question_lth
2 max_question_lth
2 answer_ptr
2 answer_Ith
2 max_answer_lth

fixed bin,
fixed bin init(2),
aligned,
bit(1) unaligned,
bit(1) unaligned,
bit(34) unaligned,
char(256) var,
fixed bin(35),
fixed bin(35),.
bit(1) init ("1"b) unaligned,
bit(1) unaligned,
bit(1) init("O"b) unaligned,
bit(1) init("1"b) unaligned,
ptr,
fixed bin,
ptr,
fixed bin,
fixed bin,
ptr,
fixed bin,
fixed bin;

7-24 AG91

where:

1. 4.

5.

6. reserved

7.

8.

9.

1 Q.

11.

12.

13.

14.

15.

16. answer_ptr

17 . answer_Ith

18.

is the same as in the information header format above.

is the status code that prompted the call to the
command_query_ subroutine.

is currently ignored. (A value of zero is always passed
to the handler.)

indicates whether the command_query_ subroutine should
print the question. This datum can be set by the
handler.
"1"b question is printed
"Q"b question is not printed

indicates whether the command_query_ subroutine expects
the preset answer (if any) returned by the handler to
be either yes or no. In this case, if the handler
returns any other string, the command_query_ subroutine
signals the the command_Query_error condition.
"1"b answer either yes or no
"Q"b no answer required

indicates whether the handler is returning in the
character string pointed to by answer_ptr a preset
answer to the command_query_ subroutine. In that case,
the command_query_ subroutine returns the preset answer
to its caller. That is, it does not attempt to obtain
an interactive response by reading from the user_input
switch. Leading and trailing blanks and the terminal
newline character (if present) are removed. This datum
can be changed by the handler.
1I1"b preset answer returned
"Q"b no answer returned

indicates whether the command_query_
print the preset answer (if any).
changed by the handler.
"1"b print answer
lIQ"b no answer printed

subroutine should
This datum can be

is a pointer to a character string containing the error
message prepared by the command_query_ subroutine.

is the length of the name of the procedure that called
the command_query_ subroutine.

is a pointer to a character string containing the
question prepared by the command_query_ subroutine. A
handler might wish to alter that question.

is the significant length of the question pointed to by
question_ptr. This datum can be changed by the
handler.

is the size of the character string
question_ptr.

pointed to by

is a pointer to a character string that can be used by
the handler to return a preset answer.

is the significant length of the preset answer pointed
to by answer_ptr. This datum can be changed by the
handler.

is the size of the character string pointed to by
answer_ptr.

7-25 AG91

conversion (PL/I)

Cause: a PL/I conversion or runtime-I/O routine attempted an
invalid conversion from character string representation to
some other representation. Possible invalid conversions
are a character other than 0 or 1 being converted to bit
string, and nonnumeric characters where only numeric
characters are permitted in a conversion to arithmetic
data.

Default action: prints a message on the error_output switch and signals
the error condition. Upon a normal return, the conversion
is attempted again, using the value of the PL/I onsource
pseudovariable as the input character string.

Restrictions: none.

Data structure: the standard PL/I data structure.

Note: The user can establish a handler that uses the onchar and
onsource builtin functions to alter the invalid character
string.

cput (hardware)

Cause: a CPU-time interrupt occurred after a user-specified
amount of CPU time had passed following a call to the
timer_manager_$cpu_call entry point. (See the description
of the timer_manager_ subroutine in the MPM Subsystem
Writers' Guide.)

Default action: the handler looks up the CPU time interrupt that is
expected at this time and calls the appropriate
user-specified procedure. When (if) this procedure
returns, the process is returned to the point at which it
was interrupted.

Restrictions: the user should not attempt to handle this condition.

Data structure: none.

Note: the any_other condition handlers should pass this on.

Cause: the user attempted to cross ring boundaries using a
transfer instruction. A CALL or RTCD instruction must be
used to cross ring boundaries.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

7-26 AG91

derail (hardware)

Cause: the user attempted to execute a DRL instruction on the
processor.

Default action: prints a message and returns to command level.

Restrictions: usually none. However, some subsystems use it for special
purposes. When operating within such subsystems, the user
should not attempt to handle the condition.

Data Structure: none.

endfile (f) (PL/I)

Cause: a PL/I get or read statement attempted to read past the
end of data on the file f.

Default action: prints a message on the error_output switch and signals
the error condition. Upon return from any handler,
control passes to the PL/I statement following the
statement in which the condition was raised.

Restrictions: none.

Data structure: the standard PL/I data structure.

end page (f) (PL/I)

Cause: PL/I inserted the last newline character of the current
page into the output stream of file f.

Default action: begins the next page on the file f and returns.

Restrictions: none.

Data structure: the standard PL/I data structure.

"Note: the handler can begin a new page via a PL/I statement of
the form: "

put file (f) page ... (... "title" ...) ... ,
or can simply return, permitting the number of lines on
the current page to exceed the number normally occurring.

7-27 AG91

error (PL/I)

Cause: some other (more specific) PL/I condition
its handler signalled the error condition.
some PL/I runtime subroutine (e.g.,
mathematical library) encountered one of
errors.

occurred, and
Alternatively,

one in the
a variety of

Default action: prints a message and returns to command level.

Restrictions: if the error condition is not merely an echo of another
PL/I condition, then restarting (i.e., returning control
to the signaller) is usually undefined. Restarting from
other PL/I conditions is discussed under the individual
conditions.

Data structure: the standard PL/I data structure.

Cause: the user attempted an indirect reference through a word
pair containing either" a fault tag 1 or a fault tag 3
modifier.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

finish

Cause: the user's process is being terminated by a logout (either
voluntary or involuntary) or by a new_proc command
(described in the MPM Commands).

~efault action: closes all open files and returns.

Restrictions: if the process is terminating because of a bump or
resource limit stop, there is only a small grace period
before the process is actually killed. If a user-supplied
handler does not return, the process continues to run but
in some cases a subsequent process termination is fatal.

Data structure: none.

Note: the any_other condition handlers should pass this on.

fixed overflow (hardware)

Cause: the result of a binary fixed-point operation exceeded 71
bits, or the result of a decimal fixed-point operation
exceeded 63 digits.

Default action: prints a message on the error_output switch and signals
the error condition.

Restrictions: a return to the
prohibited since
undefined.

Data structure: none.

point where the signal occurred is
continued execution from this point is

7-28 AG91

Cause: the user attempted an inward wall crossing through a gate
segment with the wrong number of arguments.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

illegal_modifier (hardware)

Cause: an invalid modifier appeared on an indirect word.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Note: in a machine language program this could be a simple
programmer error, a compiler error, or a hardware error.

illegal_opcode (hardware)

Cause: the user attempted to execute an illegal operation code.
In a machine language program this could be a simple
programmer error. It could also be a compiler error or a
hardware error.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

illegal_procedure (hardware)

Cause: the user attempted to execute a privileged instruction,
or tried to execute an instruction in an invalid way.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Note: in a machine language program this could be a programmer
error, a compiler error, or a hardware error.

7-29 AG91

illegal_return

Cause: an attempt was made to restart machine condition with
invalid information.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Cause: an I/O procedure that does not return an I/O system status
code received such a code from an inferior I/O procedure.
The first procedure (e.g., the ioa_ subroutine) reflects
the error by signalling this condition. (The ioa_
subroutine is described in the MPM Subroutines.)

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure:

dcl 1 io_error_info
2 length
2 version
2 action_flags

3 cant_restart
3 default_restart
3 reserved

2 info_string
2 status code
2 stream
2 status

aligned,
fixed bin,
fixed bin init (0),
aligned,
bit(1) unaligned,
bit(1) unaligned,
bit(34) unaligned,
char(256) var,
fixed bin(35),
char(32) ,
bit(72);

where:

1. - 4.

5. status

6. stream

7. status

code -

is the same as in the information header format above.

is the unexpected status code received by an I/O
procedure.

is the name of the switch on which the I/O operation
was performed.

is the I/O system status code describing the error.

7-30 AG91

Cause: the user called an
invalid arguments.

ioa subroutine entry point
The possible incorreot calls are:

1. failed to provide a switch name for:
ioa_$ioa_stream
ioa_$ioa_stream_nnl

2. failed to provide a correct character string descriptor for:
ioa_$rs
ioa_$rsnnl
; I"\~ ~'III"II~W"IIo"""W"'\""" v ... _'1'~"'u}.luu

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none~

key (f) (PL/I)

with

Cause: the user attempted to specify an invalid
record-I/O statement on the file f.
invalid key specifications are:

key in a PL/I
Two examples of

1. a keyed search failed to find the designated key

2. on output, the
pre-existing key

designated key duplicates a

Default action: prints a message on the error_output switch and signals
the error condition. Upon return from any handler,
control passes to the PL/I statement following the
statement in which the condition was raised.

Restrictions: none.

Data structure: the standard PL/I data structure.

Note: the handler can obtain the value of the invalid key by use
of the onkey built1n function. The invalid key cannot,
however, be corrected in the handler.

linkage_error (hardware)

Cause: the user's process encountered a fault tag 2 in a word
pair. It then attempted to reference the external entry
specified by the word pair and failed because either the
segment was not found or the entry point did not exist in
that segment.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

7-31 AG91

lockup (hardware)

Cause: a pending interrupt has not been allowed within a set
interval. This can be caused by a looping instruction
pair, an infinite ina1rect10n chain, or an interrupt
inhibit bit that is on for too long.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Cause: an absentee queue was found by the message segment facilty
to be in an inconsistent state, or a crawlout from the
administrative ring occurred in the message segment
facility.

Default action: prints a message and returns to command level.

Restrictions: since the message segment facility is used only for system
services such as absentee queues, the user should not
attempt to handle this condition.

Data structure: none.

mme1, mme2, mme3, mme4 (hardware)

Cause: the user attempted to execute the processor instruction
mmen, where n is 1, 2, 3, or 4.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Note: the debug command uses the mme2 condition to implement
breakpoints. Thus, the user encounters problems if he
attempts to set breakpoints in a program that handles the
mme2 condition.

name (f) (PL/I)

Cause: an invalid identifier occurred in a PL/I get
statement on the file f.

data

Default action: prints a message on the error_output switch and signals
the error condition. Upon return from any handler, the
invalid identifier and its associated value field are
skipped.

Restrictions: none.

Data structure: the standard PL/I data structure.

al!01 ~., .

no_execute_permission (hardware)

Cause: the user attempted to execute a segment for which he did
not have execute permission.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Cause: the user attempted to read from a segment for which he did
not have read permission.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Cause: the user attempted to write into a segment for which he
did not have write permission.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Cause: the user attempted to call into a gate segment beyond its
call limiter; i.e., beyond the upper bound of the transfer
vector in a gate. .

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Cause: the user attempted to call a ·segment from a ring not
within the segment's call bracket.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

7-33 AG91

Cause: the user attempted to execute a segment from a ring not
within the segment's execute bracket.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Cause: the user attempted to read a segment from a ring not
within the segment's read bracket.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Cause: the user attempted to write into a segment from a ring not
within the segment's write bracket.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

op_not_complete (hardware)

Cause: the processor failed to access memory within approximately
2 ms after its previous memory access.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Note: upon return to the signalling procedure, the processor
attempts to continue execution at the point where the
op_not_complete condition was detected. The processor
usually continues execution correctly but the machine
state might be such that continued execution is at the
user's risk. This condition is a hardware error.

7-34

Cause: the user attempted to refer to a location beyond the end
of the segment specified.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

overflow (hardware)

Cause: the result of a floating-point computation had an exponent
exceeding 127.

Default action: prints a message on the error_output switch and signals
the error condition.

Restrictions: returning to the point where the signal occurred
allowed since continued execution from this
undefined.

Data structure: none.

is not
point is

Cause: the normal paging mechanism of the Multics supervisor
could not bring a referenced page into memory because the
storage system device containing the page could not be
read due to a hardware error that could not be corrected
by the error condition mechanism.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

parity (hardware)

Cause: the process attempted to refer to a location in memory
that has incorrect parity. This condition is a hardware
error.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

7-35 AG91

program_interrupt

quit

Cause: the user issued the program_interrupt (pi) command
(described in the MPM Commands) for the express purpose of
signalling this condition. The condition is used by
several commands to return to their internal request level
(waiting for the next request) after the previous request
is aborted by the user when he issues a quit signal
(presses the appropriate key on the terminal, e.g., ATTN,
BRK, etc.).

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Note: the any_other condition handlers should pass this on.

Cause: an interactive user has requested a quit, e.g., by issuing
the quit signal.

Default action: prints "QUIT" on the terminal, aborts any pending terminal
1/0 activity, reverts the standard 1/0 attachments to
their default settings, and establishes a new command
level saving the current stack history.

Restrictions: none. But, in general, the user's programs should not
handle the quit condition since this condition is normally
intended to bring the process back to command level. In
addition, a program with a quit handler is more difficult
to debug since a bug in the quit handler might make it
impossible to interrupt the execution of the program.
Certain subsystems can, for various reasons, still choose
to make use of the quit condition; but most programs
should, instead, use the program_interrupt condition as
described above.

Data structure: none.

record (f) (PL/I)

Cause: a PL/I read statement on the file f read a record of a
size different from the variable provided to receive it.

Default action: prints a message on the error_output switch and signals
the error condition. Upon return from any handler, data
is copied from the record to the variable by a simple
bit-string copy as though both were the length of the
shorter.

Restrictions: none.

Data structure: the standard PL/I data structure.

7-36 AG91

record_Quota_overflow (hardware)

Cause: the user attempted to increase the number of records taken
up by the segments inferior to a directory to a number
greater than the secondary storage Quota for that
directory.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Cause: the user attempted to use a pointer with an invalid
segment number. This situation arises when a segment is
deleted or terminated after the pOinter is initialized,
the pointer is not initialized in the current process, or
the user's access to the segment has been revoked.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

simfault_nnnnnn (hardware)

Cause: the user attempted to use a null pointer; i.e., a pOinter
with a segment number of -1 (2's complement) and an offset
of nnnnnn. The offset is mapped into the six-character
string nnnnnn that makes up part of the condition name.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Note: if a user references through a null pointer with no offset
modification, the condition simfault_000001 is signalled.

size (PL/I)

Cause: some value was converted to fixed-point with a loss of one
or more high-order bits or digits.

Default action: prints a message on the error_output switch and signals
the error condition.

Restrictions: returning control to the point where the signal occurred
is not allowed since the results of continued execution
are undefined.

Data structure: the standard PL/I data structure.

7-37 AG91

stack

Cause: the user attempted to make a reference within the last
four pages of the stack.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

Note: the any_other condition handlers should pass this on.

storage (PL/I)

Cause: the PL/I system storage has insufficient space for an
attempted allocation.

Default action: 'prints a message on the error_output switch and signals
the error condition. Upon a normal return the allocation
is retried.

Restrictions: none.

Data structure: none.

store (hardware)

Cause: an out_of_bounds error occurred while operating in BAR
mode, or the user referred to a nonexistent memory (e.g.,
by attempting to read a clock on the memory).

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

stringrange (PL/I)

Cause: the substr pseudovariable or builtin function specified a
substring that is not in fact contained in the string
specified.

Default action: prints a message on the error_output switch and signals
the error condition.

Restrictions: returning control to the point where the signal occurred
is not allowed since the results of continued execution
are undefined.

Data structure: the standard PL/I data structure.

7-38 AG91

stringsize (PL/I)

Cause:

Default action:

a string value was assigned to a string variable shorter
than the value.

returns to the point where the
causing a truncated copy of
assigned to the string variable.

condition was signalled,
the string value to be

Restrictions: none.

Data structure: the standard PL/I data structure.

subscriptrange (PL/I)

Cause: the value of a subscript lies outside the range of values
declared for the bounds of the dimension to which it
applies.

Default action: prints a message on the error_output switch and signals
the error condition.

Restrictions: returning control to the point where the signal occurred
is not allowed since the results of continued execution
are undefined.

Data structure: the standard PL/I data structure.

Cause: the event channel on which the timer_manager_ subroutine
would go to sleep could not be created; or the ipc_$block
entry point returned a nonzero status code when the
timer_manager_ subroutine went to sleep on it. Either
internal static storage for the timer_manager_ subroutine
has been destroyed or the system is about to crash. This
condition is also signalled if the timer_manager_
subroutine is called in a ring other than that in which
the process was created, indicating a programming error in
the calling procedure.

Default action: prints a message and returns to command level.

Restrictions: the user should only attempt to handle this in a handler
for otherwise unclaimed signals.

Data structure: none.

7-39 AG91

transmit (f) (PL/I)

Cause: a value was incorrectly transmitted between storage and
the data set corresponding to the file f. In the case of
list-directed input. the condition is si~nalled after each
assignment by the get statement of a value that might have
been in error due to the bad input line.

Default action: prints a message on the error_output switch and signals
the error condition. Upon return from any handler, the
program continues from the point of detection as though
the transmission had been correct.

Restrictions: none.

Data structure: the standard PL/I data structure.

truncation (hardware)

Cause: the user executed an extended instruction set
to move string data with the truncation bit
target string was not large enough to contairt
string; or bit strings were being combined to
right (also EIS instructions) and there was
room to hold the combined string.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure: none.

undefinedfile (f) (PL/I)

Cause: an attempt to open the PL/I file f failed.

instruction
set and the
the source
the left or
not enough

Default action: prints a message on the error_output switch and signals
the error condition.

Restrictions: none.

Data structure: the standard PL/I data structure.

underflow (hardware)

Cause: the result of a floating-point computation had an exponent
less than -128.

Default action: prints a message on the error_output switch and returns.

Restrictions: none.

Data structure: none.

Note: before the underflow condition is signalled
floating-point value in question is set to zero.

7-40

the

AG91

unwinder_error

Cause: the user attempted to perform a nonlocal transfer to an
invalid location.

Default action: prints a message and returns to command level.

Restrictions: none.

Data structure:

declare invalid_label label;

where invalid label is the invalid label to which this
transfer was attempted.

zerodivide (PL/I)

Cause: the user attempted to divide by zero.

Default action: prints a message on the error_output switch and signals
the error condition.

Restrictions: returning control to the point where the signal occurred
is not allowed since the results of continued execution
are undefined.

Data structure: the standard PL/I data structure.

NON LOCAL TRANSFERS AND CLEANUP PROCEDURES

Many languages provide the ability to perform nonlocal transfers. In
Multics, this is a facility by which the currently executing procedure
activation can transfer to a location in an earlier existing procedure
activation and, as a consequence, abort all activations descendant from the
earlier activation. Programmers of certain types of procedures might wish to
have these procedures establish a set of code to be executed if an activation of
one or more of these procedures is aborted in this manner. An example of such a
procedure is a program that references static data that must be reset so that
the procedure can be reentered. This function of executing predefined code when
an activation is aborted by a nonlocal transfer is termed cleaning up. The code
for cleaning up is contained in an on unit for the cleanup condition.

An on unit for cleanup is established and reverted in the same way as any
other condition. Unlike other conditions, however, there is no condition
information associated with the cleanup condition. The cleanup condition is
signalled if the establishing block activation is aborted by a nonlocal
transfer. In this case, the cleanup on unit is automatically reverted when it
returns to its caller.

FAULTS

There is a class of unusual occurrences that are detected by the Multics
hardware processor. These occurrences are called faults and are a subset of the
set of occurrences that cause the system to invoke the condition mechanism.
They are, therefore, also included under "List of System Conditions and Default
Handler" above. "Simulated Faults" below.)

7-41 AG91

Simulated Faults

By convention, the segment number -1 (in 2's complement form) is reserved
for software simulated faults, The segment number is a dummy; i.e.~ no Multics
segment ever has it. Any attempt to reference that segment number results in
the out-of-bounds subcondition of the illegal procedure fault. When this fault
occurs, the fault interceptor signals (in the ring where the fault occurred) the
simfault_nnnnnn condition, where nnnnnn is the offset portion of the segment
address that caused the fault. This convention provides an additional 256K
faults, the first 128K of which are reserved for system use. The remaining 128K
faults are available for user programs.

One of the software simulated faults reserved for system use is currently
assigned. An offset of 1 (simfault_000001) is defined as the null pointer value
for the PL/I pointer data type. Thus, the null pointer has the value (in 2's
complement form) of -1:1. An inadvertent reference by a user to a null pointer
cannot produce an address with an offset of 1. In many cases, the null pointer
is modified by an incremental offset. Thus, a null pointer modified by an
offset of 22 (octal) produces the condition simfault_000023. Users who receive
a message on their terminal indicating that a simfault occurred should check for
inadvertent use of a null pOinter.

Process Termination Fault

By convention, the segment number -2 (in 2's complement form) is reserved
for the process termination fault. Any reference to that segment number causes
the referencing process to be terminated. The offset portion of the segment
address can be used to indicate the reason for the termination. Of the 256K
possible offsets, the last 128K are reserved for interpretation by the system.
The first 128K are available for user programs. Any offset currently recognized
by the system is interpreted in a message printed on the user's terminal after
the process is terminated.

7-42 AG91

SECTION VIII

BACKUP AND RETRIEVAL

The Multics backup system augments the reliability of the online storage
system. It ensures that user segments and directories can be recovered if they
are destroyed due to system failure or user error.

The backup system performs the following two functions:

1. dumping

The backup mechanism searches out, selects, and copies
tape segments and directories from the Multics storage
the same time it produces a map indicating the
directories that have been dumped. The frequency of
length of time for which tapes are kept are determined
locations.

(dumps) onto
hierarchy. At
segments and

dumping and the
at individual

2. reloading

DUMPING

Reloading is the recovering of segments and directories that have been
dumped. Reloading of individual segments and directories can occur
during normal Multics operation (retrieving). The entire contents of
the online storage system can be reloaded after a system crash so that
operation of the system can resume.

The dumping mechanism operates in three different modes -- incremental,
consolidated, and complete. These modes are distinguished by three different
criteria used to select segments and directories for dumping. During each of
the three modes, those portions of the hierarchy specified by a control segment
are searched. The contents of this control segment are determined at each site.
Usually, only two subdirectories of the root directory are not searched. One of
these, >system_Iibrary_1, is always re-created by a Multics bootload and
therefore does not require the services of backup. Parts of the hard core
system, plus that part of the command system needed during reloading, are
contained in >system_Iibrary_1. The other subdirectory, >process_dir_dir,
contains only per-process information that is temporary in nature and hence also
does not require the services of backup. Libraries that never change need not
be included in the search route for incremental dumps (defined below). All
other sections of the hierarchy should be included in the search route of the
backup system.

By convention, the process named Backup.SysDaemon controls the incremental
and consolidated dumps and the process named Dumper.SysDaemon controls complete
dumps. The two processes can run simultaneously, without interfering with each
other.

8-1 AG91

Incremental Dumps

Incremental dumping is the principal technique used to keep the backup
system abreast of changes to online storage. It is the purpose of an
lncremental dump to discover modifications to online information not reflected
in backup tape storage. The incremental dump, starting from a specified search
node, locates and dumps all segments and directories modified more recently than
they have been dumped. This criterion is easily determined by comparing the
date-time-modified and the date-time-dumped attributes found in the branch for
any given segment or directory. Immediately after dumping, the incremental
dumper resets the date-time-dumped attribute. The net effect of the incremental
dumping scheme is to limit the amount of information that can be lost to those
modifications that have occurred since the last incremental dump.

Incremental dumping is triggered periodically by the alarm clock timing
mechanism. In order to minimize the time span during which modifications to
online storage can go unnoticed by the backup system, incremental dumps should
be produced frequently. On the other hand, because the backup daemon competes
with ordinary users and exerts a considerable drain on system resources, it
becomes economically desirable to lower the frequency of incremental dumps.
Therefore, the interval between the incremental dumps at an installation is
chosen as a compromise between these two considerations. This does not imply
that an incremental dump will necessarily finish its search within a single time
interval. In fact, if the incremental dumper is given no scheduling advantage,
several intervals might be required to complete an incremental dl1~p during hours
of heavy system load. If an incremental dump is not completed before the next
incremental dump is scheduled to begin, the "next" dump is deferred until the
prior incremental dump is completed.

The backup system does not guarantee that segments are dumped in a
consistent state. For example, it is possible that while the incremental dumper
is dumping a segment, another process might be writing into that same segment.
Thus, an inconsistent copy of a segment might be produced. However, the
modifications that cause a segment to be inconsistent also cause another dump of
the segment to be produced on the next pass of the incremental dumper.
Therefore, unless the system crashes before the next incremental dump, a
consistent copy is ~ventually produced.

Consolidated Dumps

A consolidated dump, starting from a specified search node, locates and
dumps segments and directories that have been modified after some specified time
in the past. For example, an installation might choose to run a consolidated
dump every midnight to dump all segments and directories modified since the
preceding midnight; i.e., since the preceding consolidated dump. Since a
consolidated dump catches modifications accrued over a period of time
encompassing many incremental dumps, it effectively consolidates the most recent
information from a group of incremental tapes and thereby facilitates the
reloading of this information by decreasing the number of tapes that must be
processed. Also, since tape is susceptible to operational, hardware, and
software errors, a consolidated dump provides the installation with a second
tape copy of the segments and directories dumped during an incremental dump.
Furthermore, the consolidated dump also picks up segments and directories
modified more recently than the last incremental dump. Hence, a consolidated
dump performs the work of an incremental dump as well.

8-2 AG91

Complete Dumps

A complete dump, starting from a specified search node, dumps every segment
and directory in the storage system without regard for modification time.
Unlike incremental and consolidated dumps that attempt to keep the backup tapes
up-to-date with the contents of the storage system, complete dumps are somewhat
different in· purpose and follow a more leisurely schedule. During a complete
dump, the date-time-dumped attribute is not reset. Therefore, complete dumps do
not interact in any way with incremental or consolidated dumps.

A complete dump establishes a checkpoint in time, essentially a snapshot of
the entire Multics storage hierarchy. If it should ever become necessary to
recover the entire contents of online storage, then the tape with the most
recent complete· dump marks a cutoff point beyond which no older backup tapes
need be inspected.

The high production rate of incremental and consolidated tapes makes the
retention of these tapes for long periods of time impractical. Therefore,
incremental and consolidated tapes are kept for some short time, perhaps 3
weeks. Complete backup copy tapes are retained for a longer time, perhaps 6
months, with the exception of one complete dump tape per month that might be
held for a period of 1 year.

RELOADING

The segment and directory recovery mechanism used by the backup system
consists of a group of programs known as the reloader/retriever. The
reloader/retriever is used to recover segments from tapes produced by any of the
dumps. Retrieving occurs during normal Multics operation, while reloading
occurs prior to normal Multics operation.

When a user notices that a segment or directory has been lost or damaged,
he can submit a request to the Multics operations staff for that segment or
directory to be retrieved from a backup tape. The problem he faces is
determining which backup dump operation produced the tape copy of the segment or
directory he wishes to retrieve. Usually the most recently produced copy is
wanted. In the case of a damaged segment, however, the damaged version is
likely to have been dumped as well, and hence the most recent tape copy may not
be wanted. Hopefully, a user knows approximately when his segment was lost or
damaged. Also, he should remember if the segment has been recently modified.
Using these two pieces of information, he can make a reasonable guess as to
which dump tape contains a suitable copy of a given segment.

Once an estimate has been made as to which dump tape contains the desired
copy, this estimate can be verified by examining the corresponding dump map.
The map indicates the tape reel on which the dump was written. A feature of the
dump map that is sometimes helpful is the printing of the date-time-dumped
attribute for the segment, which effectively points to the next most recent tape
copy of the segment.

The user can specify that a single segment, a directory without its
subtree, or a directory including its subtree be reloaded. A directory for
which the subtree is not reloaded contains only the links and access control
information associated with the directory itself.

8-3 AG91

In special cases, a user can specify that the segment or directory be
reloaded with a different pathname. A single segment or a directory without a
subtree can be relocated at any point in the storage system hierarchy. A
directory subtree can be relocated at any point at the same level in the
hierarchy (i.e., the number of greater-than characters in the pathname of the
directory cannot change).

Normally, the most recent copy of an entry on the specified tape is
retrieved. However, the user can specify that the first occurrence or an
occurrence at some specified date is to be retrieved instead.

8-4 AG91

APPENDIX A

ASCII CHARACTER SET

PRINTING GRAPHIC CHARACTERS

The printing graphic characters are the uppercase alphabet, the lowercase
alphabet, digits, and a set of special characters. The special characters are
listed below.

exclamation point ; semicolon
" double quote < less than
I number sign = equals
$ dollar sign > greater than
% percent ? question mark
& ampersand @ commercial at
;* acute accent [left bracket
(left parenthesis \ left slant
) right parenthesis 1 right bracket
• asterisk circumflex
+ plus underline

~ , comma grave accent
- minus { left brace

period I vertical line I

I right slant } right brace
colon - tilde

CONTROL CHARACTERS

The following conventions define the standard meaning of the ASCII control
characters that are given precise interpretations in Multics. These conventions
are followed by all standard 1/0 Modules and by all system software inside the
1/0 system interface. -Since some devices have different interpretations for
some characters, it is the responsibility of the appropriate 1/0 module to
perform the necessary translations.

The characters designated as unused are specifically
assigned definitions at any time. Until defined, unused
output using the octal escape convention in normal output
edited mode. Users wishing to assign interpretations for
must use a nonstandard 1/0 module.

reserved and can be
control characters are
and are not printed in

an unused character

If a device does not perform a function implied by a control character, its
standard 1/0 module provides a reasonable interpretation for the character on
output. This might be substituting one or more characters for the character in
question, printing an octal escape, or ignoring it.

A-1 AG91

The Multics standard control characters are:

BEL Sound an audible alarm.

BS Backspace. Move the carriage back one space. The backspace character
implies overstrike rather than erase.

HT Horizontal tab. Move the carriage to the next horizontal tab stop.

NL

Multics standard tab stops are at 11, 21, 31 ... when the first column
is numbered 1. This character is defined not to appear in a canonical
string. See "Typing Conventions" for a description of canonical form.

Newline. Move the carriage to the left end of
implies a carriage return plus a line feed.
used for this character.

the next line. This
ASCII LF (octal 012) is

VT Vertical tab. Move the carriage to the next vertical tab stop and to
the left of the page. Standard tab stops are at lines 11, 21, 31 ...
when the first line is numbered 1. This character is defined not to
appear in a canonical string.

NP New page. Move the carriage to the top of the next page and to the
left of the line. ASCII FF (octal 014) is used for this character.

CR Carriage return. Move the carriage to the left of the current line.
This character is defined not to appear in a canonical string.

RRS Red ribbon shift. ASCII SO (octal 016) is used for this character.

BRS Black ribbon shift. ASCII SI (octal 017) is used for this character.

PAD Padding character. This is used to fill out words that contain fewer
than four characters and that are not accompanied by character counts.
This character is discarded when encountered in an output line and
cannot appear in a canonical character string. ASCII DEL (octal 177)
is used for this character.

NONSTANDARD CONTROL CHARACTER

One control character, NUL, is recognized under certain conditions by all
Device Interface Modules because of its wide use outside Multics. This
character is handled specially only when the 1/0 module is printing in edited
mode, and is, therefore, ignoring unavailable control functions. The null
character is ASCII character NUL (octal 000). In normal mode, this character
is printed with an octal escape sequence; in edited mode, it is treated exactly
as PAD. This character cannot appear in a canonical character string.
Programmers are warned against using NUL as a routine padding character and
using edited mode on output because all strings of zeros, including mistakenly
uninitialized strings, are discarded.

UNUSED CHARACTERS

These characters are reserved for future use:

SOH 001 ACK 006 DC4 024 SUB 032
STX 002 DLE 020 NAK 025 ESC 033
ETX 003 DCl 021 SIN 026 FS 034
EOT 004 DC2 022 ETB 027 GS 035
ENQ 005 DC3 023 CAN 030 RS 036

EM 031 US 037

A-2 AGgl

Table A-1. ASCII Character Set on Multics

0 2 3 4 5 6 7

000 (l.TTTT , BEL , .nuuJ

010 as HT NL VT NP CR RRS BRS

020

030

040 Space " $ &

050 * + /

060 0 2 3 4 5 6 7

070 8 9 < = > ?

100 @ A B C D E F G

110 H I J K L M N 0

120 P Q R S T U V w

130 X Y Z \]

140 a b c d e f g

150 h i j k 1 m n 0

160 P q r s t u v w

170 x y z PAD

A-3 AG91

APPENDIX B

TERMINAL CHARACTERISTICS

This appendix lists supported terminal types and escape conventions for
various terminals that can be used to access the Multics system. For user
convenience, terminals should support the full (128 characters) ASCII character
set on input and output.· Escape conventions have been provided for terminals
that do not have a full ASCII character set. (See "Escape Conventions on
Various Terminals" below.)

SUPPORTED TERMINAL TYPES

The terminals mentioned below are not the only terminals supported by
Multics. They are, however, representative of the types of terminals that can
be used to access the Multics system.

1. Device similar to an IBM Model 1050

2. Device similar to an IBM Model 2741

3. Device similar to a Teletype Model 37

4. Device similar to a GE TermiNet 300 or 1200

5. Device similar to an Adage, Inc. Advanced Remote Display Station
(ARDS)

6. Device similar to an IBM Model 2741 with correspondence keyboard and
015 typeball

7. Device similar to a Teletype Models 33 or 35

8. Device similar to a Teletype Model 38

9. Device similar to a Computer Devices Inc. (CDI) Model 1030 or a Texas
Instruments (TI) Model 725 or a device with an unrecognized answerback
or a device without an answerback (ASCII device)

ESCAPE CONVENTIONS ON VARIOUS TERMINALS

The following paragraphs below list escape conventions for some of the
terminals that can be used to access the Multics system. See also "Typing
Conventions" in Section III, for information on keyboard input and output
conventions. In general, the conventions described there apply to logging in
and out as well as to all other typing.

B-1 AG91

IBM 1050 and IBM 2741

Each typeball used requires a different set of escape conventions.

With the EBCDIC typeball number 963, the following non-ASCII graphics are
considered to be stylized versions of ASCII characters:

...,
(cent sign)
(apostrophe)
(negation)

for
for
for

\ ,
...

(left slant, software escape)
(acute accent)
(circumflex)

The following escape conventions have been chosen to represent the remainder
of the ASCII graphics.

¢' for
,

(grave accent)
¢< for [(left bracket)
¢) for] (right bracket)
¢(for { (left brace)
¢) for } (right brace)
¢t for - (tilde)

With the correspondence typeball number 029, the following non-ASCII
graphics are considered to be stylized versions of ASCII characters.

±

(cent sign)
(apostrophe)
(plus-minus)

for
for
for

\ (left slant)
(acute accent)
(circumflex)

The following escape conventions have been chosen to represent the
remainder of the ASCII graphics.

¢(for < (less then)
¢) for) (greater than)
¢l for [(left bracket)
¢r for] (right bracket)
¢: for (exclamation point)
¢t for (tilde)
¢' for (grave accent)
¢/ for (vertical bar)

NOTE: The left and right braces ({ and }) must be input using octal
escapes (¢173 and ¢175) when using the correspondence typeball.

Teletype Models 33 and 35

Because these models do not have both uppercase and lowercase characters,
the following typing conventions are necessary to enable users to input the full
ASCII character set:

1. The keys for letters A through Z input lowercase letters a through z,
unless preceded by the escape character \ (left slant). The left
slant is shift-L on the keyboard, although it does not show on all
keyboards. For example, to input "Smith~ABC", type "\SMITH.\A\B\C".

B-2 AG91

2. Numbers and punctuation marks map into themselves whenever possible.
The underscore (_) is represented by the back arrow (~). The
circumflex (R) is repres~nted by the up arrow (f). The acute accent
(~) is represented by the apostrophe (I).

3. The following otner correspondences exist:

Character type in

backspace \-
grave accent (') \'
left brace ({) \(
vertical line ell \1
right brace ()) \)
tilde (-) \=

Execuport 300

010
140
173
174
175
176

The following non-ASCII graphics are considered to be stylized versions of
ASCII character~:

back arrow (~) for underscore (_)

CDI Model 1030

The following non-ASCII graphics are considered to be stylized versions of
the ASCII characters:

back arrow (~) for underscore (~)
up arrow (T) for circumflex ()

B-3 AG91

APPENDIX C

PUNCHED CARD INPUT AND OUTPUT

PUNCHED CARD INPUT

Each deck must begin ~ith two (or more) keypunched control cards: an
access_id card (that may extend to several cards if the information is too long
to fit on one card) and a deck_id card. These cards are used to identify the
submitter to the Multics system and describe the deck name and punch format.
The decks are then submitted to operations personnel, and, in general, are read
in by the next day. For protection, segments are" created in System Pool Storage
rather than in the user's directory. No special access need be given to the
user's directory for any system process. Once the data has been read, the user
may copy the card image segment into his directory with the copy_cards command
(see the description of this command in the MPM Commands.)

Card image segments must be copied from the System Pool Storage within a
reasonable time, as these segments are periodically deleted.

Control Card Formats

The access_id card has the following format:

where:

1.

2.

3.

is the registered name of the submitter. Only
can read the card image segment from the pool.
of "*" is not allowed.

this person
A PERSON_ID

is the project name of the submitter. The Person id is
separated from the Project_id by a period. SpecifyIng the
Project_id is optional.

is the access class of this data. The ACCESS_CLASS field
may contain embedded blanks and commas. If the ACCESS_CLASS
is too long to fit on one card, it may be split between an
access class component and extended onto another card. When
this happens, the last nonblank character of all but the
final access id card must be a comma (,). The final
access id card must have a semicolon as the last nonblank
character.

Omission of the ACCESS_CLASS field indicates the system_low access class at
sites where system_low is unnamed. Failure to correctly format or specify the
access_id information may result in the inability of the user to access the data
from the System Pool Storage. .

C-1 AG91

The deck_id card has the following format:

where:

1 •

2.

is the name used to identify the card image segment in
System Pool Storage. It should be unique among the user's
decks recently submitted. In the event of name
duplications, the system card reading process appends a
numeric component to the end of the supplied name and
creates a duplicate card image segment for DECK_NAME.

is the punch code conversion to use in reading the card
deck. It must be MCC, VIIPUNCH, or RAW. If this field is
omitted, MCC format is assumed.

If name duplications are encountered then there may be more than one deck
in System Pool Storage whose first component is DECK_NAME. The copy_cards
command retrieves all of these copies when invoked.

The control cards should be produced on a standard IBM 029 key punch. The
fields on the control cards are free format with spaces separating the fields.
The only restrictions are:

1. the first access_id card must contain the PERSON_ID, plus the
PROJECT_ID and first component of the ACCESS_CLASS if the PROJECT_ID
and ACCESS_CLASS are specified.

2. the deck_id card must contain the DECK_NAME, plus the PUNCH_FORMAT if
the PUNCH_FORMAT is specified.

All characters on the control cards are mapped to lower case except those
immediately following an escape character (backslash or cent sign). For example
\MY_\DECK.PL1 is mapped to My_Deck.pI1.

Example

Suppose user Doe working on project Proj, wishes to read a FORTRAN source
deck into a segment called alpha. fortran, with an access class of "proprietary,
my_company". The access_id card is:

\DOE.\PROJ PROPRIETARY, MY_COMPANY;

and the deck_id card is:

ALPHA.FORTRAN MCC

where MCC is the format of the data cards. The control cards followed by the
data cards are submitted to operations personnel for reading. When the cards

C-2 AG91

have been read into Multics by operations personnel, the submitter should log in
as Doe.Proj with an access authorization of "proprietary, my_company" and issue
from the terminal the command:

copy_cards alpha. fortran

to copy the deck into the working directory.
an error message explains the problem.
operations to correct the problem.

If the copy does not succeed, then
The user may need to check with

Deck Size

Decks must not exceed the maximum le.ngth of a Multics segment. It is wise
to limit decks to single boxes of cards, although more precise counts can be
made. For raw reading, the actual maximum is 9,792 cards. For Multics card
codes, the actual maximum depends on the number of characters actually read
since trailing blanks on cards are ignored. Assuming all 80 columns are punched
on each card, the maximum would be 13,055 cards. For 7punched decks, the length
of the created segment depends on the length of the original data. The· typical
7punch card represents 22 words, but it may represent as many as 4,096 words if
the original data contained that many consecutive words of identical contents.

Errors

The operator returns a note with the deck if any errors take place during
the read. In general, the error should be corrected and the deck resubmitted.

PUNCHED CARD OUTPUT

The card deck produced as a result of the dpunch command has some
additional punched cards before and after the requested data. These cards are
used to identify the deck and its owner. They are punched with a pattern of
holes that can be easily read when the card ·is flipped over (flip card format).

The complete deck looks like the following:

SEPARATOR CARD·
Info Cards
SEPARATOR CARD
User's Data
END OF DECK
SEPARATOR CARD

punched in flip card format

punched in the requested format
punched in flip card format

All cards punched in flip card format and the separator cards must be removed
before the deck can be read using the Hultics Card Input Facility.

C-3 lG91

Card Conversion Modes

The Multics Card Code (mcc) conversion mode is best suited to files
consisting of ASCII character data. Each character is punched in one card
column. When a newline character is encountered in the file, the remainder of
the current card is left blank and the following line begins on the next card.
Lines longer than 80 characters are punched on several cards. If decks
containing such lines are read back into Multics, additional newline characters
will appear in the file.

The raw conversion mode is suited only for segments that contain complete
binary card images. Any checksums, sequence numbers or bit counts to be punched
must already be contained in the binary card images. The segment punched must
be a multiple of 960 bits long if the deck is to be read back into Multics
correctly.

The 7punch conversion mode essentially furnishes a binary representation of
any file, suitable for subsequent reloading. The 7punch format also provides
sequencing and checksum computation. The format is primarily useful when a file
is being punched in order to serve as additional backup and not for use on any
system other than Multics.

The Multics 7punch format is as follows:

Rows

1- 3 7

4-6 w

7-9 w

10-12 5

where:

1 •

2.

3.

4.

5.

6.

7 and 5 (octal)

wwww

t

sssss

cccccccccccc

dddd ... dddd

2

w

w

t

s

Columns

3 4 5 Q 1 12

s c c c d d

s c c c d d

s c c c d d

s c c c d d

are 7punch format identifYlug codes.

is the number of data words on the card, if less than
27(8); if greater, it is a replication count and
indicates how many times the single data word on the
card is to be replicated on reading back in.

is a last card code. It is 0 on each card of the deck
except on the last card, where it is 3. The bit count
of the file is punched as the last card for Multics
decks.

is the sequence number of the card in the deck,
starting from O.

is the full word logical checksum of all bits on the
card except the checksum itself.

are the data words. On the last card, columns 7-9
contain the bit count (fixed binary(35» and columns
10-72 are O. Notice that the word count is 0 on the
last/bit count card.

C ..
-At AG91

PUNCHED CARD CODES

The card punch codes used with Multics to represent ASCII characters are
based on the card punch codes defined for the IBM EBCDIt standard. The
correspondence between the EBCDIC and ASCII character sets is defined
automatically. The Multics standard card punch code described here is based on
the widely available card handling equipment used with IBM System/360 computers.
The six characters for which the Multics standard card code differs from the
ASCII card code are noted in Table C-3.

The character set used for symbolic source programs and input/output on
Multics is the American Standard Code for Information Interchange, X3.4-1968,
known as ASCII. See the description of this set in Appendix A, "ASCII Character
Set". The character set used for input/output with some devices from a
System/360 computer is the International Business Machines (IBM) standard, known
as EBCDIC. This set is described in IBM Systems Reference Library Manual IBM
System/360 Principles of Operation, A22-6821-7.

Although there are 85 graphics in common between EBCDIC and ASCII, there is
no practical algorithm by which one can deduce an EBCDIC code value from the
ASCII code value or vice versa. There are, however, enough common graphics to
define a correspondence between the graphic parts of the two codes, and thereby
establish conventions for communication between computers using the codes. A
card punch code for ASCII is defined simultaneously. Table C-1 shows this
correspondence as used on Multics. The correspondence between ASCII Code Value
in column one and ASCII Meaning in column two is firmly defined by the ASCII
standard. Similarly, correspondence among Corresponding EBCDIC Meaning in
column three, EBCDIC Code Value in column four, and EBCDIC/Multics Punch Code in
column five is firmly defined by the IBM standard. This table provides a
correspondence between the first two columns on the one hand, and the last three
on the other.

The graphic correspondence in Table C-1 is derived as follows: 85 ASCII
graphic characters correspond directly with identical EBCDIC graphics. Three
ASCII graphics are made to correspond with the three remaining EBCDIC graphics
as follows:

acute accent
left slant
circumflex

EBCDIC

apostrophe
cent sign
negation

Thus all 88 EBCDIC graphics have an equivalent ASCII graphic. The remaining"six
ASCII graphics, namely:

left and right square brackets
left and right braces
grave accent
overline (tilde)

have no EBCDIC graphic equivalent. In Table C-1 they are made to correspond to
unassigned EBCDIC codes that, nevertheless, have well-defined card punch code
equivalents. Where possible, the unassigned EBCDIC codes chosen result in the
same punch card representation as in the proposed ASCII standard card code.
Thus a majority of the Multics standard card codes do, in fact, agree with the
proposed standard.

C-5 AG91

Table C-1. Correspondence Between
ASCII Characters and EBCDIC Characters

ASCII ASCII Corre- EBCDIC EBCDIC/ Comments
Code Meaning sponding Code Multics
Value EBCDIC Value Punch

Meaning Code

000 (NUL) NUL 00 9-12-0-8-1

001 (SOH) SOH 01 9-12-1

002 (STX) STX 02 9-12-2

003 (ETX) ETX 03 9-12-3

004 (EOT) EOT 31 9-1

005 (ENQ) ENQ 2D 9-0-8-5

006 (ACK) ACK 2E '9-0-8-6

001 BEL BEL 2F 9-0-8-1

010 BS BS 16 9-11-6

011 HT HT 05 9-12-5

012 NL(LF) NL 15 9-11-5 (Note 1)

013 VT VT OB 9-12-8-3

014 NP(FF) FF OC 9-12-8-4

015 (CR) CR OD 9-12-8-5

016 RRS(SO) SO OE 9-12-8-6

011 BRS(SI) SI OF 9-12-8-1

020 (DLE) DLE 10 12-11-9-8-1

021 (DC1) DCl 11 9-11- 1

022 HLF(DC2) DC2 12 9-11-2

023 (DC3) TM 13 9-11-3 (Note 3)

024 HLR(DC4) DC4 3C 9-8-4

025 (NAK) NAK 3D 9-8-5

026 (SIN) SIN 32 9-2

021 (ETB) ETB 26 9-0-6

030 (CAN) CAN 18 9-11-8

031 (EM) None 19 9-11-8-1

032 (SUB) SUB 3F 9-8-1

033 (ESC) ESC 21 9-0-1

ASCII code values are in octal; EBCDIC code values are in hexadecimal

C-6 AG91

ASCII ASCII Corre- EBCDIC EBCDIC/ Comments
Code Meaning sponding Code Multics
Value EBCDIC Value Punch

Meaning Code

034 (FS) IFS 1C 9-11-8-4

035 (GS) IGS 1D 9-11-8-5

036 (RS) IRS 1E 9-11-8-6

037 (US) IUS 1F 9-11-8-7

040 Space Space 40 (No punches)

041 5A 11-8-2 (Note 1)

042 " " 7F 8-7

043 II" II 7B 8-3

044 $ $ 5B 11-8-3

045 % % 6C 0-8-4

046 & & 50 12

047 7D 8-5 Maps ASCII
accute accent
into EBCDIC
apostrophe

050 4D 12-8-5

051 5D 11-8-5

052 * * 5C 11-8-4

053 + + 4E 12-8-6

054 6B 0-8-3

055 60 1 1

056 4B 12-8-3

057 / / 61 0-1

060 0 0 FO 0

061 F1

062 2 2 F2 2

063 3 3 F3 3

064 l~ 4 F4 4

065 5 5 F5 5

066 6 6 F6 6

067 7 7 F7 7

070 8 8 F8 8

ASCII code values are in octal; EBCDIC code values are in hexadecimal

C-7 AG91

ASCII ASCII Corre- EBCDIC EBCDIC/ Comments
Code Meaning sponding Code Multics
Value EBCDIC Value Punch

Meaning Code

071 9 9 F9 9

072 7A 8-2

073 5E 11-8-6

074 < < 4C 12-8-4

075 = = 7E 8-6

076 > > 6E 0-8-6

077 ? ? 6F 0-8-7

100 @ @ 7C 8-4

101 A A Cl 12-1

102 B B C2 12-2

103 C C C3 12-3

104 D D C4 12-4

105 E E C5 12-5

106 F F C6 12-6

107 G G C7 12-7

110 H H c8 12-8

111 I I C9 12-9

112 J J D1 11-1

113 K K D2 11-2

114 L L D3 11-3

115 M M D4 11-4

116 N N D5 11-5

117 0 0 D6 11-6

120 P P D7 11-7

121 Q Q D8 11-8

122 R R D9 11-9

123 S S E2 0-2

124 T T E3 0-3

125 u U E4 0-4

126 V V E5 0-5

ASCII code values are in octal; EBCDIC code values are in hexadecimal

C-8 AG9 i

ASCII ASCII Corre- EBCDIC EBCDIC/ Comments
Code Meaning sponding Code Multics
Value EBCDIC Value Punch

Meaning Code

127 W W E6 0-6

130 X X E7 0-7

131 Y Y E8 0-8

132 z Z E9 0-9

133 None 8D 12-0-8-5 (Notes 1,2)

134 \ ~ 4A 12-8-2 (Note 1)

135 None 9D 12-11-8-5 (Notes 1,2)

136 -, 5F 11-8-7 Maps ASCII
circumflex
into EBCDIC
negation.

137 6D 0-8-5

140 None 79 8-1 (Note 2)

141 a a 81 12-0-1

142 b b 82 12-0-2

143 c c 83 12-0-3

144 d d 84 12-0-4

145 e e 85 12-0-5

146 f f 86 12-0-6

147 g g 87 12-0-7

150 h h 88 12-0-8

151 i i 89 12-0-9

152 j j 91 12-11-1

153 k k 92 12-11-2

154 1 1 93 12-11- 3

155 m m 94 12-11-4

156 n n 95 12-11-5

157 0 0 96 12-11-6

160 p p 97 12-11-7

161 q q 98 12-11-8

162 r !" 99 12-11-9

163 s s A2 11-0-2

ASCII code values are in octal; EBCDIC code values are in hexadecimal

C-9 AG91

ASCII ASCII Corre- EBCDIC EBCDIC/ Comments
Code Meaning sponding Code Multics
Value EBCDIC Value Punch

Meaning Code

164 t t A3 11-0-3

165 u u A4 11-0-4

lbb v v A5 11-0-5

167 w w A6 11-0-6

170 x x A7 11-0-7

171 y y A8 11-0-8

172 z z A9 11-0-9

173 None CO 12-0 (Note 2)

174 4F 12-8-7 (Note 1)

175 None DO 11-0 (Note 2)

176 None A1 11-0-1 (Note 2)

177 PAD (DEL) DEL 07 12-7-9

ASCII code values are in octal; EBCDIC values are in hexadecimal

1. In the punched card code proposed for ASCII in the latest proposed
ANSI standard card code, a different card code is used for this
character.

2. This graphic does not appear in (or map into any graphic that appears
in) the EBCDIC set; it is assigned to an otherwise invalid EBCDIC code
value/card code combination.

3. In some applications, the ASCII
might not correspond to the
control character.

meaning of this control character
EBCDIC meaning of the corresponding

4. where the Multics meaning of a control character differs from the
ASCII meaning, the ASCII meaning is given in parentheses.

C-10 AG91

Table C-2. Summary of Extensions to EBCDIC
to Obtain Multics Standard Codes

ASCII
Character

open bracket
left slant
close bracket
grave accent
open brace
close brace
overline/tilde
acute accent
circumflex

Unassigned
EBCDIC Card
Code Chosen

12-0-8-5
12-8-2
12-11-8-5
8-1
12-0
11-0
11-0-1
8-5
11-8-7

* • • • • •

* Same as the ASCII choice for this graphic.

Table C-3. Summary of Differences Between Multics Standard
Card Codes and Proposed ASCII Standard Card Codes

ASCII
Character

newline
exclamation point
open bracket
left slant
close bracket
vertical line

Multics
Standard
Card Code

11-9-5
11-8-2
12-0-8-5
12-8-2
12-11-8-5
12-8-7

C-11

ASCII
Standard
Card Code

0-9-5
12-8-7
12-8-2
0-8-2
11-8-2
12-11

AG91

APPENDIX D

STANDARD DATA TYPE FORMATS

This appendix describes the representation of Multics standard data types.
See nSubroutine Calling Sequences" in Section II of the MPM Subsystem Writers'
Guide for a discussion of data descriptors. In the following discussion let p
be the declared precision of an arithmetic datum. Let n be the declared length
of a string datum, and let k be the declared size of an area datum.

Any scaling factor declared for a fixed-point datum is not stored with the
datum. The scaling factor is applied to the v~lue of the datum when the value
participates in a computation or conversion.

Real Fixed-Point Binary Short (descriptor type 1)

A real, fixed-point, binary, unpacked datum of prec~s~on O<p<36 is
represented as a 2's complement, binary integer stored in a 36-bit word.

A real, fixed-point, binary, packed datum of precision O<p<36 is
represented as a 2's complement, binary integer stored in a string of p+1
bits.

Real Fixed-Point Binary Long (descriptor type 2)

A real, fixed-point, binary, unpacked datum of prec~s~on 35<p<72 is
represented as a 2 l s complement, binary integer stored in a pair of 36-bit
words the first of which has an even address.

A real, fixed-point, binary, packed datum of prec~s~on 35<p<72 is
represented as a 2's complement, binary integer stored in a string of p+1
bits.

Real Floating-Point Binary Short (descriptor type 3)

A real, floating-point, binary, unpacked datum ·of precision O<p<28 is
represented as a 2's complement, binary fraction m and a 2's complement,
binary integer exponent e stored in a 36-bit word of the form:

o 7 8
e m

3
5

The value 0 is represented by m=O and e=-128.
satisfies 1/2i:m:<1.

D-1

For all other values, m

AG91

A real, floating-point, binary, packed datum of precision O<p<28 is
represented as a 2's complement, binary fraction m and a 2's complement,
binary, integer exponent e stored in a string of p+9 bits.

o
e

7 8
I

> I
m

The value 0 is represented by m=O and e=-128.
satisfies 1/2ilml<1.

Real Floating-Point Binary Long (descriptor type 4)

For all other values, m

A real, floating-point, binary, unpacked datum of precision 27<p<64 is
represented as a 2's complement, binary fraction m and a 2's complement,
binary, integer exponent e stored in a pair of 36-bit words the first of
that has an even address.

o 7 8
e m

7
1

The value 0 is represented by m=O and e=-128.
satisfies 1/2ilml<1.

For all other values, m

A real, floating-point, binary, packed datum of precision 27<p<64 is
represented as a 2's complement, binary fraction m and a 2's complement,
binary, integer exponent e stored in a string of p+9 bits.

o 7 8
e m

The value 0 is represented as m=O and e=-128.
satisfies 1/2ilml<1.

Complex Fixed-Point Binary Short (descriptor type 5)

For all other values, m

A complex, fixed-point, binary, unpacked datum of prec1S1on O<p<36 is
represented as a pair of 2's complement, binary integers stored in a pair
of 36-bit words the first of which has an even address. The first integer
is the real part of the complex value and the second integer is the
imaginary part of the complex value.

A complex, fixed-point, binary, packed datum of precision O<p<36 is
represented as a pair 2's complement, binary integers stored in a string of
2(p+1) bits. The first p+l bits contain the integer representation of the
real part and the second p+l bits contain the integer representation of the
imaginary part.

Complex Fixed-Point Binary Long (descriptor type 6)

·A complex, fixed-point, binary, unpacked datum
represented as a pair of 2's complement,
consecutive 36-bit words the first of whi h has
two words contain the integer representat on of
two words contain the integer representat en of

D-2

of precision 35<p<72 is
binary integers stored in 4
an even address. The first
the real part and the last
the imaginary part.

AG91

A complex, fixed-point, binary, packed datum of precision 35<p<72 is
represented as a pair of 2's complement, binary integers stored in a string
of 2(p+1) bits. The first p+1 bits contain the integer representation of
the real part and the last p+1 bits contain the integer representation of
the imaginary part.

Complex Floating-Point Binary Short (descriptor type 7)

A complex, floating-point, binary, unpacked datum of precision 0<p<28 is
represented as a pair of real, floating-point, binary, unpacked data stored
in two 36-bit words the first of which has an even address. The first word
contains the real part of the complex value and the second word contains
the imaginary part of the complex value.

A complex, floating-point, binary, packed datum of precision 0<p<28 is
represented as a pair of real, floating-point, binary, packed data stored
in a string of 2(p+9) bits. The first p+9 bits contain the real part of
the complex value and the last p+9 bits contain the imaginary part of the
complex value.

Complex Floating-Point Binary Long (descriptor type 8)

A complex, floating-point, binary, unpacked datum of precision 27<p<64 is
represented as a pair of real, floating-point, binary, unpacked data stored
in 4 consecutive 36-bit words the first of which has an even address. The
first two words contain the real part of the complex value and the last two
words contain the imaginary part of the complex value.

A complex, floating-point,
represented as a pair of
in 2(p+9) bits. The first
value and the last p+9
value.

binary, packed datum of precision 27<p<64 is
real, floating-point, binary, packed data stored
p+9 bits contain the real part of the complex
bits contain the imaginary part of the complex

Real Fixed-Point Decimal (descriptor type 9)

A real, fixed-point, decimal datum (packed or unpacked) of precision p
(where 0<p~59) is represented as a signed, decimal integer stored as a
string of p+1 characters. The leftmost character is either a plus C+) or a
minus(-), and all other characters are from the set "0123456789".

An unpacked, decimal· datum is aligned on a word boundary and occupies an
integral number of words, the last of which can contain unused bytes.

d1 d2 dp

D-3 AG91

Real Floating-Point Decimal (descriptor type 10)

A real, floating-point, decimal datum (packed or unpacked) of prec1s1on p
(where 0<PS59) is represented as a signed, decimal integer m and a 2's
complement, binary, integer exponent e stored as a string of characters of
the form:

Is d 1 d2 I ••• dp I

~----------VT--~------~ m

I 0 I
~1--"'T~--'1

e

The exponent e is right justified within the last 9-bit character and the
unused bit is zero. The value 0 is represented by m=o and e=+127.

An unpacked, decimal datum is aligned on a word boundary and occupies an
integral number of words, some bytes of which can be unused.

Complex Fixed-Point Decimal (descriptor type 11)

A complex, fixed-point, decimal datum (packed or unpacked) of prec1s10n p
is represented as a pair of real, fixed point, packed, decimal data of
precision p. The first represents the real part of the complex value, and
the second represents the imaginary part of the complex value.

An unpacked, complex, decimal datum is aligned on a word boundary and
occupies an integral number of bytes, some of which can be unused.

Complex Floating-Point Decimal (descriptor type 12)

A complex, floating-point, decimal datum (packed or unpacked) of prec1s10n
p is represented by a pair of real, floating-point, packed, decimal data of
precision p. The first represents the real part of the complex value and
the last represents the imaginary part of the complex value.

An unpacked, complex, decimal datum is aligned on a word boundary and
occupies an integral number of bytes, some of which can be unused.

Pointer (descriptor type 13)

An unpacked pOinter datum is represented by a ring number r, a segment
number s, a word offset w, and a bit offset b, stored in a pair of 36-bit
words the first of which has an even address.

Q
I
1

A packed
w, and a

Q
b

1 1 2 2 2 3 3 3 5 5 5 5 6 6
2 3 '1 8 Q

I S I r 1 1

pointer datum
bit offset

5 Q
s

1 1
'1 8

b,

1 9 Q 5 6 3 4 Q '1 2 3
I 43 w 0 b I
I I

is represented by a segment number
stored as a string of 36-bits.

w

3
5

D-4

6 6 7
5 Q 1

0

s, a word offset

AG91

Offset (descriptor type 14)

An offset datum (always unpacked) is represented by a word offset w, and a
bit offset b, stored in a single 36-bit word.

a
w

1 1
7 8

a

2 2
a 1

Label (descriptor type 15)

2
6

b

3
5

A label datum (always unpacked) is represented by a pair of unpacked
pOinters. The first pointer identifies a statement within a procedure and
the second pOinter identifies a stack frame of an activation of the block
immediately containing the statement identified by the first pointer.

Entry (descriptor type 16)

An entry datum (always unpacked) is represented by a pair of unpacked
pointers. The first pointer identifies an entry to a procedure and the
second identifies a stack frame of an activation of the block immediately
containing the procedure whose entry is identified by the first pointer.
If the first pointer identifies an entry to an external procedure, the
second pOinter is null.

Structure (descriptor type 17)

A structure is an ordered sequence of scalar data. A packed structure
contains only packed data, whereas an unpacked structure contains either
packed or unpacked data or both.

A structure is aligned on a storage boundary that is the most stringent
boundary required by any of its components.

An unpacked member of a structure is aligned on a word or double word
boundary depending on its data type and occupies an integral number of
words.

A packed member of a structure is aligned on the first unused bit following
the previous member, except that up to 8 bits can be unused in order to
ensure that decimal arithmetic or non varying string datum is aligned on a
9-bit byte boundary.

An unpacked structure occupies an integral number of words.

Area (descriptor type 18)

An area datum (always unpacked) whose declared size is k occupies k words
of storage, the first of which has an even address. The maximum space
available for allocations within the area occupies k minus 24 words. The
number of words required for cards allocations is 2+ (2**m) where m is the
event power of 2 that exceeds the size of the items being allocated.

D-5 AG91

Bit-String (descriptor type 19)

A bit string (packed or unpacked) whose length is n occupies n consecutive
bits. The leftmost is bit 1 and the rightmost is bit n. An unpacked bit
string is aligned on a word boundary and occupies an integral number of
words. Some bits of the last word can be unused.

Varying Bit-String (descriptor type 20)

A varying bit string (always unpacked) whose maximum length is n is
represented by a real, fixed-point, binary short, aligned integer followed
by a nonvarying bit string of length n.

m bits

I~I
I I

I m I
I
I
\,

n bits

I

J

The length of the current value is m. A varying bit string is aligned on a
word boundary and occupies an integral number of words, the last of which
can contain unused bits.

Character String (descriptor type 21)

A character string (packed or . unpacked) whose length is n occupies n
consecutive 9-bit bytes. Each byte contains a single 7-bit ASCII character
right justified within the byte. The two unused bits must be zero.

An unpacked character string is aligned on a word boundary and occupies an
integral number of words, the last of which can contain unused bytes.

Varying Character String (descriptor type 22)

A varying character string (always unpacked) whose maximum length is n is
represented by a real, fixed-point, binary, short, unaligned integer
followed by a nonvarying character string of length n.

m characters

r------A
----"""

I I
I I

1m I I I
I I

1\~ ____ ~y~ __ ---J)

n characters

The length of the current value is m.

A varying character string is aligned on a word boundary and occupies an
integral number of words the last of which can contain unused bytes.

D-6 AG91

File (descriptor type 23)

A file datum (packed or unpacked) is represented by a pair of unpacked
pointers, the second of which points to a file state block and the first of
which points to a bit string. Neither the form of the file state block nor
the form of the bit string are defined as Multics standards.

Arrays

An array is an n-dimensional, ordered collection of scalars or structures,
all of which have identical attributes. The elements of an array are stored in
row major orqer. (When accessed sequentially the rightmost subscript varies
most rapidly).

Summary of Data Descriptor Types

1 real fixed-point binary short
2 real fixed-point binary long
3 real floating-point binary short
4 real floating-point binary long
5 complex fixed-point binary short
6 complex fixed-point binary long
7 complex floating-point binary short
8 complex floating-point binary long
9 real fixed-point decimal

10 real floating-point decimal
11 complex fixed-point decimal
12 complex floating-point decimal
13 pointer
14 offset
15 label
16 entry
17 structure
18 area
19 bit string
20 varying bit string
21 character string
22 varying character string
23 file

D-7 AG91

APPENDIX E

LIST OF NAMES WITH SPECIAL MEANINGS

The following names are reserved for special purposes within Multics. The
user should not use them with a different meaning.

RESERVED I/O SWITCH NAMES

By convention, the following I/O switch" names are reserved~
maintained by the standard environment are:

Those

user_input

user_output

is the switch attached to the user's terminal or
absentee input and output segments.

is the switch attached to user_i/o
expressly to read calls.

is the switch attached to user_i/o
expressly to write calls.

and

and

devoted

devoted

is the switch attached to user_i/o and devoted
expressly to write calls under error conditions.

Those maintained by system commands or subroutines are:

filenn

graphic_input

is the switch attached by the exec_com command using
the attach command line where N is a unique sequence
number assigned by the exec_com command. The switch
user_input is attached to this switch through the
syn_ I/O module.

is the switch attached by the file_output command.
The switch user_output is attached to this switch
through the syn_ I/O module.

is the switch attached by the FORTRAN I/O system
where nn is the file reference number.

is the switch used for graphics input.

is the switch used for graphics output.

E-1 AG91

RESERVED SEGMENT NAMES

By convention, the following segment names are reserved. Those maintained
in the home directory are:

Person_id.breaks

is the exec com invoked at the beginning of a process
in the standard environment.

is the break segment used by the debug
(described in the MPM Commands).

command

Person_id.con_msgs is the segment used by the message facility (see the
send_message command in the MPM Commands).

Person_id.memo

Person_id.motd

Person_id.profile

is the segment used by the mail command (described in
the MPM Commands).

is the segment used by the memo command (described in
the MPM Commands).

is the segment used by the
(described in the MPM Commands).

command

is the segment used by the abbrev command (described in
the MPM Commands).

Those maintained in the process directory are:

combined_linkage_N.jk is the user's linkage segment for ring number N
(1<=N<=7). jk is a two digit sequence number. This
segment also contains internal static storage.

kst

pds

pit

(Known Segment Table) is a Hardcore Ring
segment.

data

(Process Data Segment) is a Hardcore Ring data
segment.

is the user's Process Initialization Table. It
should only be referenced through the user_info_
subroutine (described in the MPM Subroutines).

is the user's automatic storage area for ring number
N (1<=N<=7).

is the free storage area used by system commands for
ring number N (1<=N<=7).

In general, users should not create segments whose names end in a trailing
underscore (_). These names are reserved for system subroutines and may cause
errors if they are in the user's search path. (See "Search Rules" in
Section IV.)

RESERVED SEGMENT NAME SUFFIXES

Suffixes are used as in the following example: when creating a PL/I source
program to be named xyz, the user would create a source language segment named
xyz.p11. The PL/I compiler, by convention, translates this segment, producing
the segment xyz.list, containing a printable listing, and the segment xyz,
containing the object program.

B-2 AG91

By convention, the following segment name suffixes are reserved. The
language translator source segment suffixes are:

Language Source Include
Translator Segment Files

PL/I compiler p11 incl.p11

FORTRAN compiler fortran incl. fortran

ALM assembler alm incl.alm

BASIC compiler basic

COBOL compiler cobol

The listing s~gment suffix is:

list is the suffix on printed output listing segments produced by
compilers, the assembler, and the binder.

Other special suffixes are:

absin is the input segment suffix for an absentee process.

absout is the default output segment suffix for an absentee process.

apl is the suffix on the segment containing a saved workspace from
the apl command.

archive is the suffix on the segment created by the archive command.

bind is the suffix on the input control segment for the binder.

ec is the suffix on the input segment to the exec_com command.

gcos is the suffix on a segment that is in GCOS standard system
format.

info is the suffix on a segment, in)documentation)info_segments, f:;:,
use with the help command.

mbx is the suffix on any mailbox segment that the user wants to
create.

ms

qedx

runoff

runout

is the suffix on an administrative ring message segment.

is the suffix concatenated by the qedx command to the entryname
of a segment containing qedx instructions.

is the input segment suffix to the runoff command.

is the output segment suffix from the runoff command.

E-3 AG9 ;

RESERVED OBJECT SEGMENT ENTRY POINT

By convention, the following entry point definition ~n object segments is
reserved.

is the entry point definition which provides the
address of the symbol table produced by the pl1 or
fortran commands.

Since this is a reserved entry point, no user-created program can use this
name. A statement of the form:

symbol_table: procedure .••

is illegal if it is the external procedure block.

E-4 AG91

APPENDIX F

STANDARD MAGNETIC TAPE FORMAT

This appendix describes the standard physical format used on 7-track and
9-track magnetic tapes on Multics. Tapes of this form may be written and read
by the tape_mult_ 1/0 module (described in the MPM Subroutines). Any magnetic
tape not written in the standard format described here is not a Multics standard
tape.

STANDARD TAPE FORMAT

The first record on the tape following the beginning of tape (BOT) mark is
the tape label record. Following the tape record is an end of file (EOF) mark.
Subsequent reels of a multireel sequence also have a tape label followed by EOF.
(An EOF mark is the standard sequence of bits on a tape that is recognized as an
EOF by the hardware.)

Following the tape label and its associated EOF are the data records. An
EOF is written after every 128 data records with the objective of increasing the
reliability and efficiency of reading and positioning within a logical tape.
Records that are repeated because of transmission, parity, or other data alerts,
are not included in the count of 128 records. The first record following the
EOF has a physical record count of 0 mod 128.

An end of reel (EOR) sequence is written at the end of recorded data. An
EOR sequence is:

EOF mark
EOR record
EOF mark
EOF mark

STANDARD RECORD FORMAT

Each physical record consists of a 1024-word. (36864-bit) data space
enclosed by an 8-word header and an 8-word trailer. The total record length is
then 1040 words (37440 bits). The header and trailer are each 288 bits. This
physical record requires 4680 frames on 9-track tape and 6240 frames on 7-track
tape. This is appr~imately 5.85 inches on 9-track tape at 800 bpi and 7.8
inches on 7-track tape at 800 bpi, not including interrecord gaps. (Record
gaps on 9-track tapes are approximately 0.6 inches and on 7-track tapes are
approximately 0.75 inches, at 800 bpi.)

For 1600 bpi 9-track tape, the record length is approximately 2.925 inches
(with an interrecord gap of approximately 0.5 inches).

F-1 AG91

PHYSICAL RECORD HEADER

The following is the format of the physical record header:

Word 0:

Words 1 and 2:

Word 3:

Word 4:

Word 5:

Constant with octal representation 670314355245.

Multics standard unique identifier (70 bits, left
justified). Each r~cord has ~ different unique identifier.

Bits 0-17: the number of this physical record in this
physical file, beginning with record O.

Bits 18-35: the number of this physical file on this
physical reel, beginning with file O.

Bits 0-17: the number of data bits in the data space, not
including padding.

Bits 18-35: the total number of bits in the data space.
(This should be a constant equal to,36864.)

Flags indicating the type of' record. Bits are assigned
considering the leftmost bit to be bit 0 and the rightmost
bit to be bit 35. Word 5 also contains a count of the
rewrite attempt, if any.

Meaning if Bit is 1 Bit

o This is an administrative record
(one of bits 1 through 13 is 1) .

This is a label record.

2 This is an end of reel (EaR) record.

3-13 Reserved.

14 One or more of bits 15-26 are set.

15 This record is a rewritten record.

16 This record contains padding.

17 This record was written following a
hardware end of tape (EaT) condition.

18 This record was written synchronously;
that is control did not return to the
caller until the record was written
out.

19 The logical tape continues on another
reel (defined only for an end of reel
record).

20-26 Reserved.

27-35 If bits 14 and 15 are 1, this quantity
indicates the number of the attempt to
rewrite this record. If bit 15 is 0,
this quantity must be O.

F-2 AG91

Word 6:

Word 7:

Contains the checksum of the header and trailer excluding
word 6; i.e., excluding the checksum word. (See Appendix G,
"Standard Checksum," for a description of standard checksum
computation.)

Constant with octal representation 512556146073.

Physical Record Trailer

The following is the format of the trailer:

Word 0:

Words 1 and 2:

Word 3:

Word 4:

Word 5:

Word 6:

Constant with octal representation 107463422532.

Standard Multics unique identifier (duplicate of header).

Total cumulative number of data bits for this logical tape
(not including padding and administrative records).

Padding bit pattern (described below).

Bits 0-11: reel sequence number
beginning with reel O.

(multireel number),

Bits 12-35: physical file number, beginning with physical
file 0 of reel O.

The number of the physical record for this logical tape,
beginning with record O.

Word 7: Constant with octal representation· 265221631704.

NOTE: The octal constants listed above were chosen to form elements of a
single-error-correcting code whether read as 8-bit tape characters
(9-track tape) or as 6-bit tape characters (7-track tape).

ADMINISTRATIVE RECORDS

The standard tape format includes two types of administrative records: a
tape label record; or, an EaR record.

The administrative records are of standard length:
1024-word data area, and 8-word trailer.

8-word header,

The tape label record is written in the standard record format.
space of the tape label record contains:

The data

Words 0-7:

Words 8-15:

remaining:

32-character ASCII installation code.
installation that labelled the tape.

This identifies the

32-character ASCII reel
identification by which
tape.

identification. This is the reel
the· operator stores and retrieves the

a padding pattern.

F-3 AG91

The end of reel record contains only padding bits in its data space. The
standard record header of the EOR record contains the information that
identifies it as an EOR record (word 5, bits 0 and 2 are 1).

DENSITY AND PARITY

Both 9-track and 7-track standard tapes are recorded in binary mode with
odd ones having lateral parity. Standard densities are 800 frames per inch
(bpi) (recorded in NRZI mode) and 1600 bpi (recorded in PE mode).

DATA PADDING

The padding bit pattern is used to fill administrative records and the last
data record of a reel sequence.

WRITE ERROR RECOVERY

Multics standard tape error recovery procedures differ from the past
standard technique in that no attempt is made to backspace the tape on write
errors. If a data alert occurs while writing a record, the record is rewritten.
If an error occurs while rewriting the record, that record is again rewritten.
Up to 64 attempts can be made to write the record. No backspace record
operation is performed.

The above write error recovery procedure is applied to both administrative
records and data records.

COMPATIBILITY CONSIDERATION

Software shall be capable of reading Multics Standard tapes that are
written with records with less than 1024 words in their data space. In
particular, a previous Hultics standard tape format specified a 256-word
(9216-bit) data space in a tape record.

F-4 AG91

APPENDIX G

STANDARD CHECKSUM

The checksum described in this appendix is the standard Multics technique
for computing a full word checksum on the Honeywell 6180 computer.

ALGORITHM

Checksums are computed using the "awca" instruction followed by an "aIr 1"
instruction. Upon completion of checksum computation, two "awca O,dl"
instructions are executed to include all carries in the checksum.

A typical checksum computation scheme follows:

ldi
sti
Ida
eax1

loop: ldi
awca
sti

aIr
eax1
cmpx1
tnc

ldi
awca
awca

sta

:0004000,dl
indics
O,dl
o

indics
word,1
indics

1
1 , 1
size,du
loop

indics
O,dl
O,dl

cksum

inhibit overflow fault
save indicators
initialize "a" to zero
count locations in x1

restore indicators
add with carry to checksum
save indicators (they get
clobbered by cmpx1)
rotate "a" left
count 1 location and
check for comp~etion
loop

restore indicators
add in carry, if any
in case carry generated by
last instruction
save the checksum

G-1 AG91

INDEX

A

absentee 1-10, 6-2

ACL
see access control

active function 1-10, 3-16ff
argument list 3-17
error messages

access control 1-10, 6-1
access control list (ACL)

6-1

see condition, list of
1-4, 1-10, writing an active function 4-5ff

structure 6-4
matching conventions 6-5ff
maintenance 6-6ff
special entries 6-7ff

access identifier 1-10, 6-2
access isolation mechanism (AIM)

1-4, 1-10, 6-1
access class 1-10, 6-1
AIM access rules 6-10ff
authorization 1-11, 6-10ff

default 6-13
person maximum 6-13
process maximum 6-13
project maximum 6-13
user maximum 6-13

category set 6-10ff
maintenance 6-15ff

general restrictions 6-16ff
mailboxes 6-16
special situations 6-15

sensitivity level 6-9ff
assigning 6-10
system_low 6-9, 6-16

access modes 1-10, 6-1, 6-3ff
administrative access control

see access control, nondiscretionary
discretionary access control 6-1ff
effective access 6-1
extended access 6-3ff
initial ACL 1-14, 6-8

maintenance 6-9
intraprocess access control 6-1,
6-17ff

nondiscretionary access control 6-1,
6-9ff

process identifier 6-5ff
ring structure

see rings

accounting 4-12
obtaining resources 1-5, 1-8
storage quota 1-5, 1-8, 6-14

i-1

active_function_error (condition) 7-21

address space 4-7, 4-10ff
see also linking

administrative access control
see access control, nondiscretionary

administrators
project administrator 1-17, 6-9,

6-13
system administrator 1-19, 6-9
system security administrator 6-9,

6-13

AIM
see access control

ala"rm
see clock

ALM 1-7, 1-10, 4-1ff

alrm (condition) 7-22

any_other (condition) 7-12

APL 1-7, 4-1

archive 1-11
component "1-12

area (condition) 7-22

argument list
see command environment

ASCII
see character set

assembly language 1-7, 1-10, 4-1ff

AG91

asterisk 3-4, 6-5ff

attach operation
see I/O, operations

author
see segment, attributes
see directory, attributes

authorization
see access control, access isolation

mechanism

automatic storage 1-3, 1-8

B

backup 1-9, 1-11, 6-8, 8-1ff
dumping 8-1ff

complete 8-3
consolidated 8-2
incremental 8-2

reloading 8-3ff

bad_outward_call (condition) 7-23

BASIC 1-7, 4-1

binding 1-11, 3-11, 4-9

bit count 1-11
see multisegment file
see segment, attributes

bit count author
see segment, attributes

bound segment 1-11, 3-11, 4-9

branch 1-11, 2-1

breakpoint 4-4

checksum G-1

cleanup 7-41

clock
process CPU usage 4-12ff
real time 4-12ff

close operation
see I/O, operations

closed subsystem 1-11
see also process overseer

COBOL 1-7, 4-1

combined linkage region (CLR) 4-12

command environment 3-13ff, 4-5
active function 3-16ff, 4-5ff
command 1-12, 3-13
command level 1-12, 3-13
command line 3-13, 3-16, 3-18
command processor 1-8, 1-12, 3-13ff,

3-16, 4-5ff
concatenation 3-16, 3-18
control argument 1-12, 3-13ff
iteration 3-15ff
listener 3-13
ready message 1-18, 3-13
validation level

see rings
writing a command 4-4ff

command_error (condition) 7-23

command_Query_error (condition) 7-24

command_question (condition) 7-24

component 1-12
of access identifier 1-10, 6-2
of archive 1-12
of .bound segment 1-11, 3-11, 4-9
of entryname 3-1, 3-4, 3-6

condition 7-10ff
bulk I/O handling 7-14

see I/O list of 7-18ff
machine 7-15
mechanism 7-10ff
signalling 7-14

C

canonicalization 1-11, 3-19ff

character set
ASCII 3-22, A-1ff
ASCII chart A-3
EBCDIC chart C-6ff
escape 3-22ff
reserved 3-15
see terminals

control argument 1-12

convention
escape 3-22ff, B-1ff
equal 1-13, 3-6ff
naming 3-1, 3-12ff, 4-2, 5-4
star 1-19, 3-4
typing 3-19ff

conversion (condition) 7-26

copying
see backup

i-2 AG91

cput (condition) 7-26

cross_ring_transfer (condition) 7-26

daemon 1-12
access for 6-7ff
backup

D

see backup
offline I/O 1-13ff

data types
descriptors D-1ff
formats D-1ff

debugging 4-4

default error handling
see condition, handling

default working directory
see directory

definition section 4-3, 4-7

derail (condition) 7-27

descriptors
see data types

detach operation
see liD, operations

directory 1-12
access control

access class 2-3
ACL 2-3
ini tial ACL 2-J-l
ring brackets 2-5

attributes 2-3ff
author 2-3
date-time 2-4
length 2-4
names 2-5
quota 2-5
safety switch 2-5

default working 1-12
home 1-12
initial working 1-12, 1-14
process 1-17
referencing 4-8
upgraded 6-14

see also access control, access
isolation mechanism, access class

working 1-13, 4-8

discretionary access control
see access control

dump
see backup

dynamic linking 1-13, 4-7, 4-10ff

E

EBCDIC
see character set

endfile (condition) 7-27

endpage (condition) 7-27

entry. 1-13, 2-1

~ntry point 1-13
name 1-13, 3-12

entryname 1-13, 3-1
component 3~1, 3-4, 3-6

equal sign 3-6

error (condition) 7-28

error handling
see condition, handling

error messages
see status codes

error_output liD switch 5-8

escape conventions' 3-22ff, B-1 ff

event channel
see interprocess communication

exec_com 1-13, 6-16

external reference 3-11, 4-7ff

external symbol 3-12, 7-2

F

fault 1-13, 7-41ff
see condition, list of

fault_tag_l, fault_tag_3 (conditions)
7-28

file
definition of 1-14
see multisegment file

finish (condition) 7-28

fixedoverflow (condition) 7-28

i-3 AG91

FORTRAN 1-1, 4-1

frame (paging) 1-3, 1-15

G

gate 1-5, 1-14, 6-18, 6-20

gate_error (condition) 1-29

greater-than character 2-1, 3-2, 3-4,

1/0 (cont)
operations 5-6ff

attach 1-11, 5-2, 5-4
close 5-3
detach 1-12, 5-3
open 5-3, 5-5

programming language facilities 5-9
switch 1-14, 1-19, 5-1ff

names 3-12
standard 5-8

synonym attachments 5-5, 5-8
terminal 1/0 5-14

illegal_modifier (condition) 1-29

3-6, 5-4 illegal_opcode (condition) 1-29

H

handling
see condition

hard core 1-14

hardware faults
see condition, list of

help files 1-14

home directory
see directory

I

1/0
bulk 5-16ff

cards 1-15, 5-11, C-1ff
control card format C-lff
conversion modes C-4
punch codes C-5

offline 1-13, 5-16
control block 5-3
file 1/0

closing 5-11
opening 5-11, 5-13
position designators 5-14, 5-15
types 5-9ff, 5-12

indexed 5-10ff
sequential 5-10
unstructured 5-10

interrupted operations 5-9
module 1-14, 5-2, 5-4, 5-7
opening modes 5-5ff

(cont)

illegal_procedure (condition) 7-29

illegal_return (condition) 1-30

info segments 1-14

initializer 1-14

initiate 1-14, 3-11, 3-14, 4-1ff,
4-10, 5-4

installation maintained library 1-14

instance tag 6-2

internal static offset table (ISOT)
4-11ff

internal static section 4-12

interprocess communication 1-15, 4-13,
6-12

AIM restrictions 6-12, 6-15
extended access 6-3ff
see also interuser communication

interrupt
abort execution

quit (condition) 1-11, 5-9, 7-36
reinstate

program_interrupt (condition) 7-36

intersegment reference 1-13, 4-7,
4-10ff

interuser communication
AIM restrictions 6-16
extended access 6-3ff
mailbox 6-16
see also interprocess communication

io_error (condition) 7-30

ioa_error (condition) 7-31

iocb
see 1/0, control block

i-4 AG91

ISOT
see internal static offset
table (ISOT)

K

key (condition) 7-31

L

languages
command language

see command environment
programming languages 1-6ff, 1-10,
4-1ff

length of segment
see segment, attributes

less-than character 3-2, 5-4

libraries 4-8, 8-1
directory hierarchy 2-8ff
search rules 4-8ff

limited service system 1-15
see also process overseer

link
storage system 1-15, 2-1

attributes
author 2-3
date-time 2-4
names 2-5

interprocedure 1-13, 1-15, 4-7
pair 1-15
snapping 1-19, 4-7
unsnapping 3-11

linkage_error (condition) 7-31

linkage offset table (LOT) 4-11ff

linkage section 1-15, 4-4, 4-7

linking
dynamic 1-13, 4-7, 4-10ff

listener 1-15, 3-13

lockup (condition) 7-32

·login 6-13ff

LOT
see li~kage offset table (LOT)

machine conditions
see conditions

M

magnetic tape F-1ff

mailbox 1-15
AIM restrictions
extended access

6-16
6-3ff

making segment known 1-15, 3-11, 3-14,
4-7, 4-10
see ·also initiate

making segment unknown 3=11
see also terminate

memory units 1-15

mcc (MCC, Multics card code) 1-15

message_segment_error (condition) 7-32

messages
error

see status codes
ready 1-18, 3-13
segments

see interprocess communication

mme1, mme2, mme3, mme4 (conditions)
7-32

mode
see access control, access modes

modes operation
see 1/0, operations

multiple names
see names, alternate

multisegment file 1-16, 2-6
access control 2-6
bit count 2-3, 2-6
MSF indicator 2-5ff
names 2-5ff

N

name (condition) 7-32

names
alternate 1-10
equal 1-13, 3-6ff
external symbol 3-12

(cont)

i-5 AG9 1

names (cont)
naming conventions 3-1, 3-12ff, 4-2,

5-4
primary 1-17
reference 1-18, 3-10, 3-14, 4-7

4-10
reserved 3-12ff, E-1ff
star 1-19, 3-4ff
unique 1-13, 1-18, 1-20

new_proc 6-15

no_execute_permission (condition) 7-33

no_read_permission (condition) 7-33

no_write_permission (condition) 7-33

nonlocal transfer 7-41

not_in_read_bracket (condition) 7-34

not_in_write_bracket (condition) 7-34

°
object map 4-3ff

object segment 1-16, 4-2ff
creation 4-3
format 4-3ff
symbol table 4-3

on unit 7-10ff

op_not_complete (condition)

open operations
see liD, operation

overflow (condition) 7-35

7-34

7-35

.parity (condition) 7-35

pathname 1-16, 3-1
absolute 1-16, ·2-1, 3-2
length of 3-2
relative 1-16, 3-2

per-process data
linkage section 1-15, 4-4, 4-7
see stack

percent sign 3-6

Person_id 1-16, 6-2, 6-5

PDT
see project, definition table

PIT
see process initialization
table (PIT)

PL/I 1-6, 4-1ff

see project, master file

pointer 1-17

printing
see liD, bulk, offline

privileges
see access control, nondiscretionary

procedure segment
see object segment

process 1-17
access privileges 6-1ff, 6-5ff

see also access control
creation 1-4, 6-2, 6-13
directory 1-17

process initialization table (PIT) 1-17

process overseer 1-17
standard service system 1-6, 1-19
limited service system 1-6
closed subsystem 1-6, 1-11

program_interrupt (condition) 7-36

project 1-17
administrator 1-17, 6-9, 6-13
definition table (PDT) 1-17

P master file (PMF) 1-17

page_fault_error (condition) 7-35

paging
frame
fault

1-3, 1-16
1-3, 1-15
1-3

1-6

Project_id 1-17, 6-2, 6-5

protection rings
see rings

punched cards
see liD, bulk

AG91

pure procedure 1-14, 1-17
see also object segment

qedx 1-7

question mark 3-4

quit request 1-17

Q

quit (~ondition) 1-17, 5-9, 7-36

quit signal 1-17, 5-9, 7-36

Quota
storage 1-5, 1-8, 6-14

Quoted strings 3-15

R

ready messages 1-18, 3-13

record 1-18
see also page

record (condition) 7-36

record_Quota_overflow (condition) 7~37

recursion 1-18, 4-1, 4-12

reference name 1-18, 3-10, 3-14, 4-7,
4-10

reload
see backup

retrieval 1-18, 8-1ff
see also backup

rings 1-5, 1-18, 6-1, 6-17ff, 7-14
access control (ring brackets) 1-18,

6-17ff
default values 6-21
directory 6-20
segment 6-18ff

gate 1-5, 1-14, 6-18, 6-20
validation level 6-18, 6-20

root 1-18, 2-1, 3-2

runoff 1-7

i-7

s

safety switch
see segment, attributes
see directory, attributes

scheduler - 1-20

search rules 1-18, 3-11, 3-14, 4-8ff

seg_fault_error (condition) 7-37

segdef 3-12, 7-2

segment 1-2, 1-18, 2-1
access control

access class 2-3
ACL 2-3
ring bra~kets 2-5

attributes 2-3ff
aut-hor 2-3
bit count 2-3
bit count author 2-3
date-time 2-4
length 2-4
maximum length 2-5
names 2-5
safety switch 2-5

wired 1-20

semicolon 3-13ff

service processes
see daemon

7punch 5-17

shriek name
see names, unique

simfault_nnnnnn (condition) 7-37

size (condition) 7-37

source map
see object segment

source segment 4-2ff
debugging 4-4

stack 1-19, 4-1, 4-4, 4-11
frame 4-11ff
frame poin~er 4-11ff
header 4-11ff

standard checksum G-1

star convention 1-19, 3-4ff

start_up.ec 1-19

AG91

status codes
definition 1-13, 1-19
list of 7-2ff

110 7-5
other 6-16, 7-7
storage system 7-3

storage
automatic 1-3, 1-8

storage (condition) 7-38

storage system 1-2ff, 1-13, 2-1,
2-6ff, 3-14, 4-1, 8-1ff

storage quota 1-5, 1-8, 6-14

store (condition) 7-38

stringrange (condition) 7-38

stringsize (condition) 7-39

subscriptrange (condition) 7-39

subsystem 1-19, 3-13, 6-1, 6-17, 6-20

suffix 1-19
see also component

switch
see 110

symbol section 4-4

symbol table 4-3ff

symbol offset 3-12

synonym
see 110, synonym attachment

terminate 1-20, 3-11

text section 4-3

time
see clock

timer_manager_err (condition) 7-39

traffic controller 1-20

translators 1-6ff, 1-20, 4-2ff

transmit (condition) 7-40

trap 4-7

truncation (condition) 7-40

typing conventions
canonicalization
erase character
escape 3-22ff,
kill character

3-19ff
3-19ff

3-21ff
B-1ff
3-21ff

U

unclaimed signal 7-12

undefined file (condition) 7-40

underflow (condition) 7-40

unique name
see name

unsnapped link 3-11

SysDaemon unusual occurrences
see daemon see conditions

see status codes
system administrator 1-19, 6-9

system security administrator 6-9
6-13

T

tape
standard format F-1ff

temporary storage
see stack, frame

terminals 1-8
characteristics 1-20, B-1ff
escape conventions 3-22ff, B-1ff
liD 5-14

unwinder_error (condition) 7-41

User_id 1-20

user_ilo 1/0 switch 5-8

user_input liD switch 5-8

user_output 110 switch 5-8

v

validation level 6-18
directory 6-20
segment 6-18ff

i-B AG91

virtual memory 1-3, 4-1

w

wakeup 4-12ff, 6-12
see clocks
see also interprocess communication

who table 1-20

word 1-20

working directory
see directory

z

zerodivide (condition) 7-41

i-9 AG91

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE MULTICS PROGRAMMERS' MANUAL
REFERENCE GUIDE

ERRORS !N PUBUCAT!ON

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER No·1 AG91, Rev. 1

DATED IDECEMBER 19751

r\ Your comments will be promptly investigated by appropriate technical personnel and action will be taken 0 lI" as required. If you require a written reply, check here and furnish complete mailing address below.

FROM: NAME __ __
DATE~--------------

TITLE __ ___

COMPANY __ ____

ADDRE~ __ __

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

Honeywell

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

14841
i .5176
Printed ;n U.S.A.

The Other Computer Company:

Hone)'"'ell

HONEYWELL INFORMATION SYSTEMS

in the U.S.A.: 200 Smith Street, MS 061, Wai tham, Massachusetts 02154
in Canada: 2025 Sheppard Avenue East; VViiiowu(jie: Ontario AG91, Rev. '1

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	8-01
	8-02
	8-03
	8-04
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	i-07
	i-08
	i-09
	i-10
	replyA
	replyB
	xBack

