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PREFACE 

This document consists of three technical papers which describe the theory and 

practice of Multic s virtual memory implementation. Multic s (Multiplexed .!nformation and 

Computing Service) is a general purpose computer system which has been designed to be a 

"computer utility." As such, it is essential that Multics provide its users with sufficient 

resources to do a wide variety of tasks and that the system be protected from destructive 

interac.tions between users. The papers address the theory, the practice, the hardware, 

and the software used to provide an effectively infinite memory to each user and to protect 

both the users and the system. 

The first paper discusses the concept of a virtual memory and explores several ways 

in which such a melnory could be implemented. The method used to implement the Multics 

virtual memory on the Series 600 Model 645 proces.sor is developed in detail~ This paper 

is of historical importance and presents valid Multics design theory although the Model 645 

is no longer used as the Multics processor. 

The second pap er extends the discussion further into the subject of protection. The 

theory of the Multic s ring structure is introduced and its implementation on the Model 645 

is described. This theory is still valid although the Model 645 is no longer used as the 

Multics processor. 

The third paper shows how the features described in the tW() earlier papers are 

handled by hardware under the optional Multics modifications to Series 6000 processors. 

Several new processor features are introduced and described.. Use of these features allows 

Multics to run on the Series 6000 processors, specifically the Model 6180, with greatly 

increased efficiency as compared with the .earlier implementation of Multics on the Series 

600 processors. 
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© Honeywell Information Systems Inc., 1972 File No.: ILW3 



An alphabetized list of abbreviations and acronyms used in all three papers has been 

included aa an aid to the reader. 

Papers in this document were written to further the understanding of the Multics 

design philosophy and practices. They are not intended to be specifications of the Multics 

system or its components. Authors have made simplifying assumptions at times to make the 

main point clearer and easier to understand. ·Persons requiring design specification details 

are requested to contact the Multics development staff for guidance and assistance. 

"The Multics Virtual Memory" was first published as Technical Information Series 

Report R69LSD3, Copyright 1970 by General Electric Company, U. S. A. 

"Access Control to the Multics Virtual Memory" was first published as Technical 

Information Series Report R69LSD4, Copy right 1970 by General Electric Company, U. s. A. 
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PREFACE 

In the past few years several well-known systems have 
implemented large virtual memories which permit the execution 
of programs exceeding the size of available core memory •. These 
implementations have been achieved by demand paging in the 
Atlas computer, allowing a program to be divided physically into 
pages only some of which need reside in core storage at anyone 
time, by segmentation in the B5000 computer allOWing a program 
to be divided logically into segments, only some of which need 
be in core, and by a combination of both segmentation and pag­
ing in the' 645 and the IBM 360/67 for which only a few pages 

. of a few segments need be available in core while a program is 
running. 

As experience has been gained with remote-access, rnultiprogrammed 
systems, however, it has become apparent that, in addition to 
being able to take advantage of the direct addressibility of 
large amounts of information made possible by large virtual 
memories, many applications also require the rapid but controlled 
sharing of information stored on-line at the central facility. 
In Hultics (Multiplexed lnformation and fomputing ~ervice), 
segmentation provides a generalized basis for the direct access­
ing and sharing of on-line information by satisfying two design 
goals: 1) it must be possible for all on-line information 
stored in the system to be addressed directly by a processor and 
hence referenced directly by any computation. 2) it must be 
possible to control access, at each reference, to all on-line 
information in the system. 

The fundamental advantage of direct addressability is that 
information copying is no longer mandatory. Since all instruc­
tions and data items in the system are processor-addressible, 
duplication of procedures and data is unnecessary. This means, 
for example, that core images of programs need not be prepared 
by loading and binding together copies of procedures before 
execution; instead, the original procedures may be used directly 
in a computation. Also,.partial copies of data files need not 
be read, via requests to an I/O system, into core buffers for 
subsequent USE and then returned, by means of another 110 
request, to their original locationsj instead the central 
processor executing a computation can directly address just 
those required data items in the original version of the file. 
This kind of access to information promises a very attractive 
reduction in. program complexity for the programmer. 
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If all on-line infonnation in the system may bt; ad.~t!"~ !:.~ed 
directly by any computation, it becomes imperative L~ De able 
to limit or control access to this information both for the 
self-protection of a computation from its own mishaps, and for 
the mutual protection of computations using the same system 
hardware facilities. Thus it becomes desirable to 
compartmentalize or package all information in a directly­
addressible memory and to attach to these information packages 
access attributes describing the fashion in which each user 
may reference the contained data and procedures. Since all 
such information is processor-addressible, the access attri­
butes of the referencing user must be enforced upon each 
processor reference to any infonnation package. 

Given the ability to directly address all on-line information 
in the system, thereby eliminating the need for copying data 
and procedures, and given the ability to control access to this 
information, then controlled info~ation sharing among several 
computations follows as a natural consequence. 

In Multlcs, segments are packages of information which are 
directly addressed and which are accessed in a controlled 
fashion. Associated with each segment is a set of access 
attributes for each user who may access the segment. These 
attributes are checked by hardware upon each segment reference 
by any user. Furthermore all on-line information in a Multics 
installation can be directly referenced as segments while in 
other systems most on-l i.ne informat ion is referenced as files. 

viii 



Chapter 1 

GENERAL PROPERTIES OF THE MULTICS VIRTUAL MEMORY 

1. INTRODUCTION 

In recent literature the term "virtual memory" has become 
quite familiar. The adjective "virtual" suggests that this 
memory is the image of an ideal memory that one would like 
to have, since it complies with the actual needs of a multi­
progrannning, multiple-access computer utility. Th'is "ideal 
memory" is not available as a hardware device and has been 
simulated by the Multics system using a conventional memory 
with the assistance of additional hardware and software 
features. 

This chapter describes the properties of the ideal memory, 
justifies the desire for these properties, and explains the 
principles of the simulation of this memory. 

2 • THE IDEAL MEMORY 

In order to describe this ideal memory the terms "segment" 
and "segmented memory" need to be defined first. 

2.1. Segments 

A segment is an entity def'ined by: 

1) A ~ which uniquely identifies the segment. 
2) A descriptor which describes the properties or 

"attributes'" associated with the segment. 
3) A body which is an array of consecutive elements. 

The name is a character string of arbitrary length. 

The descriptor contains all attributes the system designer 
needs to attach to the segment: the size and the physical 
location of the body, access rights for different users with 
respect to this segment, the date it was created, etc. 

The body of the segment is an ordered set of elements, called 
words, each of which is identified within the segment body by 
an integer,i, its index. The number of elements in the body 
is called the length of the segment. 
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2.2. Segmented Memory 

A segmented memory will be defined as a memory with the 
following properties: 

1) It is capable of containing segments and only segments. 
2) If it contains a segment named n, then n is the 

address of the descriptor of this segment and the 
pair [n,il is the address of the ith element in the 
body of this segment. 

3) It is capable of performing operations on the 
descriptor and the body of any segment, in accordance 
with the attributes recorded in the descriptor. 

2.3. Ideal Memory 

The ideal memory can now be defined as a large, segmented 
memory directly accessible by the processor, where by "large" 
it is meant that the maximum number of segments that one can 
store in it is adequate for the needs of the system. 

A simple representation of such a memory is shown in Figure 1; 
it comprises a memory controller (MC), a large number of 
descriptors each of which contains the name and the attributes 
of a segment, and a large number of linear memories each of 
which is connected to a descriptor and can contain the body of 
a segment. 

The processor can send two types of requests to the MC: requests 
for operations on descriptors and requests for operations on 
bodies. In both cases the processor must communicate to the 
MC the identification of the user on behalf of whom the 
operation is requested. 

2.4. Operations on Descriptors 

The general form of a request sent by the processor to the Me 
for operations on descriptors is 

where: 

OPCODE n arguments userid 

- OPCODE designates operations, such as "create a 
segment", "change the length of a segment", "change 
access rights"; 
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- n is the name of the segment. TheMe uses it to 
locate the appropriate segment descriptor; 

- arguments are parameters associated with the function 
defined by OPCODE; 

- userid is the identification of the user on behalf 
of whom the operation is requested. The Me uses this 
userid in order to determine from the attributes of 
the segments whether this particular user has the 
right to perform this particular operation. 

2.5. Operations on Segment Bodies 

The general form of a request sent by the processor to the Me 
for operations on segment bodies is 

where: 

OPCODE [n,i] userid 

- OPCODE designates operations, such as "read", "write", 
"instruction fetch"; 

- n is the name of the segment; the Me use~ it to locate 
the appropriate segment descriptor. It then uses the 
segment descriptor to locate the segment body; 

- i is the index of the word within the segment to 
which the operation is to be applied; 

- userid is used by the Me as above. 
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3. JUSTIFICATION OF THE IDEAL MEMORY PROPERTIES 

The ideal memory has been defined as a "large segmented memory 
directly accessible by the processor". The advantages of such 
an ideal memory will be explained by successively introducing 
the advantages of a memory, that is: 1) large (but not 
segmented); 2) segmented (but not large); and finally, 3) 
large and segmented. 

3.1. Large, Unsegmented Memory 

Because the memory is large and directly accessible by the 
processor, the user is provided with a core memory large 
enough for any of his computations. Therefore, he can rtm 
a program without being concerned with its size. However, no 
matter how large the core memory is, if it is a linear memory 
accessible by a single number, no sharing of infonnation in 
core can be tolerated between programs of different users since 
no protection mechanism is irt effect at the time a word is 
accessed. 

3.2. Small, Segmented Memory 

Because the memory is segmented and directly accessible by the 
processor, the user is provided with several independent 
linear core memories in each of which he can store one of his 

. segments, deciding who can access it and how. Therefore, the 
same segment ~an be shared in core by several user programs 
without the danger of unauthorized accessed to this segment. 
However, even though the memory is segmented, if the number 
of segments that one can store in it is small, the user is 
faced with the problem of overlays. 

3.3. Large, Segmented Memory 

By having the two properties "large" and "segmented" a 
directly accessible memory provides the user with: 

a large machine-independent memory. There is a one­
to-one correspondence between the ~ by which the 
user references a one-word datum and the physical 
location in memory where the datum resides. As a 
consequence, users are provided with a simple means 
of writing programs such that, when executed, they 
access common information in core. They merely have 
to reference this information by its name. 
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a protection mechanism. This mechanism is in effect 
during execution at any memory access and protects 
segments from unauthorized access. 

3.4. Note on Information Sharing 

It is worth making some remarks about information sharing. 
Information to be shared consists of data and procedures. 

Sharing data or procedures in core requires: 

a) A mechanism by which a reference to a segment by 
its name X will cause segment X, and not a copy 
segment X, to be referenced during program execu­
tion. 

b) A mechanism by which the shared information can 
be protected from unauthorized access while it is 
in core. 

Sharing procedures in core also requires: 

c) A mechanism by which one can produce pure 
procedures that can be executed simultaneously by 
several programs. 

The memory described here provides a) and b), but not c). 
In fact the memory itself cannot provide c); writing a pure 
procedure implies the ability of communicating as parameters 
to this procedure the names of any information private to the 
program on behalf of which the procedure is executing. These 
names cannot be stored in the memory itself; they have to be 
stored in processor registers whose names are invariant. 
During execution of a pure procedure by a processor on behalf 
of a program, the names of data segments private to the pro­
gram are stored in processor registers whose names are stored 
in the pure procedure. The processor requests the data from 
the memory controller using the name found in the appropriate 
processor register. 
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4. PRINCIPLE OF THE SIMUlATION 

The memory presented here is simulated in the Multics system, 
this simulation being achieved by a- combination of hardware 
and software features. Hardware segmentation has been imple­
mented in the .645 and constitutes the most important of 
the hardware features mentioned above. Paging has also been 
implemented in the 645; although of innnense help to the 
implementation, we do not regard paging as a concept funda­
mental to a description of the prinCiples of the ideal memory 
simulation and shall postpone the discussion of paging until 
the end of this section. 

Let us first examine how much of the ideal memory capability 
has been integrated into the hardware. Then a discussion of 
the software functions needed to compensate for those 
capabilities which are not provided by the hardware will 
follow. 

4.1. Hardware Segmentation in the 645 

Concepts of segment name, segment descriptor, and segment 
body have been integrated into the hardware as follows. 

4.1.1. Segment Names. A segment name for the hardware is an 
integer s, called segment number, such that 0 < s < 218. 

4~1.2. Segment Descristors. The segment descriptor of 
segment "s" is the stentry of a table called a Descriptor 
Segment. The descriptor segment is in core memory and its 
absolute address is kept in a processor register. A descrip­
tor segment entry is called a Segment Descriptor Word (SDW). 
SDW number s will be designated by the notation SDW(s). 

Attributes that can be recorded in an SDW area are: 

The absolute core address of the head of the segment 
body_ 

The length of the segment body. 

Access rights for only ~ user with respect to the 
segment body. 

An invalid attribute flag. F, which, when ON, 
signals the absence of the above attributes in the 
SDW and causes the processor to fault. 
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Since an SDW can contain access rights for one user only, 
each user program must be provided with a private descriptor 
segment. (See Figure 2.) 

Descriptor Segment 
of USER 1 

Descriptor Segment 
of USER 2 

& ...-------4 
I 
I 

sl~ 

core L acc F 

Segment 
body 

Figure 2~ Hardware Segment Descriptors 
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4.1.3. Segment Bodies. The segment body is an array of 
contiguous words in core memory and its maximum length is 
218 words. 

4.1.4. Address Transformations. Word number i of the body 
of segment s is addressed by the pair [s,iJ and is accessed 
through SDW(s) by the processor. 

Provided that the absolute core address rna of word 0 of the 
segment is stored in SDW(s), the processor transforms -

- the processor segment name s into the core memory 
address mo using the descriptor segment which provides 
the mapping rno = Z(s). 

- the processor address [s,i] into the core memory address 
mi by the translation mi = mo+i , that is mi = Z(s)+i. 

4.1.5. Access Rights Checking. Before accessing word mi the 
processor performs a check on -

the length ~f the segment by comparing i to the 
length recorded in SDW(s). 

- The access rights for the user with respect to segment 
s by using the access rights recorded in SDW(s). 

This hardware organization presents the following advantages 
over more conventional hardware. 

The set of processor addresses [s,iJ is sufficiently 
large that all words referenced by a program can be 
assigned unique processor addresses. The user does 
not have to organize a large program into overlays 
provided that he uses no more than 218 segments. 

- Processor addresses are independent of physical memory 
addresses. Addresses which appear in the instructions 
of a program are invariant when segments are moved 
from one location to another in core memory. 

- Each access to core memory is subject to access rights 
checking. 

However, the hardware has only a restricted understanding of 
the concept of segments and needs to be complemented by 
appropriate software features. 
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4.2. Software Segmentation 

Given the foregoing hardware segmentation capabilities, the 
corresponding software segmentation capabilities required 
to implement the Mu1tics virtual memory can be described. 

4.2.1. Segment Names. A segment name is a character string 
called a symbolic segment name. The set of symb~lic seg­
ment names is larger than 218. Therefore, the supervisor 
must map a large set of symbolic segment names into a smaller 
set of segment numbers. 

4.2.2. Segment Descriptors. The hardware does not permit 
one to -

- retrieve attributes of a segment given the 
symbolic name of the segment. The software pro­
vides this capability. 

- store all attributes of a segment in a hardware 
segment descriptor or SDW. The software provides 
complete segment descriptors for each segment and 
stores them in a catalog. See Figure 3. 

Segment 
name Segment Attributes 

a 

b 

core/secondary Access for user 1 other 
c address length Access for user 2 attributes 

A~cess fgr user 3 

d 

Figure 3. Representation of a Catalog 
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4.2.3. Segment Bodies. The body of a segment is an array of 
contiguous words in ~ or in secondary memory. Since the 
processor can fetch data and instructions only from core­
resident segments, the software must intercede when a 
segment is found to be missing from core. 

4.2.4. Address Transfonnations. Assuming for the moment that 
all segments are in core memory, the supervisor performs the 
following three transformations to make segments accessible 
by the processor. 

First, for any segment in the system, the supervisor must 
provide a one to-one mapping from its symbolic name n into 
its memory address mo ' where m is the address of the be­
ginning of the segment. This ~pping mo =X(n)O is recorded 
in the catalog. See Figure 4. 

Next, for each segment referenced by a user program, the 
supervisor must provide a one-to-one mapping from its 
symbolic name n into the segment ntnnber 5 assigned to it in 
this user program. This mapping s = Y (n) is recorded in 
a table associated with the user program and called the 
Known Segment Table (KST). 

Finally, for each segment that has been assigned a segment 
number s in a user program, the supervisor must provide 
a one-to-one mapping between the segment number s and its· 
memory address mo. This mapping mo=Z(s) is recorded in the 
descriptor segment associated with the user program. 

The transformation X is independent of the user program; 
transformations Y and Z for user program u are user­
dependent and will be denoted as Yu and Zu. 
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In order to permit several user programs to share the same 
segment by merely referencing it by the same name, these 
transformations must be such that, for any user program, 
X(n) = Zu(Yu(n». 

Yu 

x Catalogue Zu 

Figure 4. Address Happing Tables 
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To this pOint we have assumed that all segments are in core. 
In fact, core memory being limited, the supervisor has to move 
segments between core and secondary memory. 

The transportation of segment n from core memory address m to 
secondary memory address Mo must be associated with the fo~low­
ing address mapping modifications: 

- "rno must be replaced by Mo in the catalog entry for n. 
- rna must be replaced by an undefined value in any SDW 

in which it appears. This is done by setting the 
invalid attribute flag ON in the SDW. 

Note that the mapping between nand s remains unchanged in 
any user program. 

A subsequent reference to segment n by segment number s in a 
user program will cause the processor to fault since the 
invalid attribute flag is ON in SDW(s). This fault will be 
referred to as a missing segment fault. Using the KST 
associated with this user program, it is possible to determine 
the name n of the segment s. Knowing n, the catalog entry for 
n can be found. The segment must be moved from secondary 
memory address Mo to some (generally different) core memory 
address m~. This move must be associated with the following 
address mapping modifications: 

- Mo must be replaced by m~ in the catalog entry for n. 
- The undefined value (Flag) in SDW(s) must be replaced 

by m~. 

Note again that the mapping between nand s remains unchanged 
by the, move. 

4.2.5. Access Rights Checking. We have seen how the supervisor 
responds to a missing segment fault occurring in a user pro­
gram but the description was not complete. A missing segment 
fault is a signal to evaluate the segment attributes in a 
specific SDW. Only the evaluation of the core address attri­
bute has been described. Moreover, when the supervisor ex­
tracts core address information from the catalog, it also 
ex~racts the length and access rights attributes and stores 
them in the SDW. Each subsequent hardware reference to the 
segment by this user program is made through the SOW with the 
hardware performing access checking. 
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However, when performing operations on segment attributes the 
supervisor itself must do the necessary validation for any 
operation requested by a particular user since the hardware 
does not provide for access checking on attributes. 

4.3. Paging 

In a system in which the maximum size ~of any segment were 
very small compared to the size of the entire core memory, 
the "swapping" of complete segments into,and out of core 
would be feasible. Even in such a system, if all segments 
did not have the same maximum size, or had the same maximum 
size but were allowed to grow from initially smaller sizes, 
there remains the difficult core management problem of 
providing space for segments of different sizes. 

Multics, however, provides for segments of sufficient 
maximum size that only a few can be entirely core-resident 
at anyone time. Also, these segments can grow from any 
initial size smaller than the maximum permissible size. 

By breaking segments into equal-sized parts called pages 
and providing for the transportation of individual pages to 
and from core as demand dictates, several practical problems 
encountered in the implementation of a segmented virtual 
memory are solved. 

First, since only the referenced page of a segment need be 
in core at one instant, segments need not be small compared 
to core memory. 

Second, "demand paging" permits advantage to be taken of any 
locality of references peculiar to a program by transporting 
to core only those pages of segments which are currently 
needed. Any additional overhead associated with demand 
paging should of course be weighed against the alternative 
inefficiencies associated with dedicating core to entire 
segments which have been swapped into core but which may be 
only partly referenced. 

Finally, since pages are all of equal size, space allocation 
is inmensely simplified. The "compaction" of information in 
core and on secondary storage characteristic of systems deal­
ing with variable-sized segments or pages is thereby elimi­
nated. 
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The basic principles of paging in the Multics virtual memory 
may be briefly summarized as follows. 

When a segment is not paged, the memory location of its 
element i is defined by relation (1), where mo is the memory 
location of element o. 

When a segment is paged into pages of K elements, the memory 
location of its element i is defined by relation (2), where 
~K is the memory location of element pK; that is, the memory 
location of the page number p of the segment. 

(2 ) 

mi = npK + j 

j = i mod K 

p = (i-j)/K 

If N is the number of pages in a segment, paging this segment 
requires -

- a segment map with N entries, one for each page. 

- a relocation capability in the hardware. 

In the 645 the N entries of the segment map are provided 
by a "page table" and the relocation is perfonned by the 
processor itself. Furthermore, a page table entry contains 
a missing-~ flag such that, if found ON by the processor 
while attempting to perfonn relocation, causes the processor 
to trap to the supervisor. 

The missing-page flag is ON wh~n the corresponding page is 
not in core. When, upon attempting to access a missing page, 
the processor traps to the supervisor, the supervisor must 
move the requested page into core. In order to do so the 
supervisor must maintain a segment map of N entries in the 
software descriptor, i.e., in the directory entry. Each time 
page p is moved from one location to another, this move must 
be associated with the following address mappiag modifications. 
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- Update the mapping in entry p of the segment map 
located in the directory entry. 

- Update the mapping in entry p of the page table. 

Although paging need not be considered essential to a 
description of the simulation principles of an ideal memory, 
it is a basic feature for the implementation of such a memory. 

The next chapter describes in some detail how the ideal 
memory has been simulated in the Mu1tics system, using hardware 
segmentation and hardware paging as implemented on the GE-645. 

16 



Chapter 2 

IMPLEMENTATION OF THE MULTICS VIRTUAL MEMORY: OVERVIEW 

1. INTRODUCTION 

As we have seen in Chapter 1, the Multics virtual memory is 
a large, segmented memory. Each segment can be referenced by 
its name ,in a user program; a reference by name will cause 
the segment to be accessed by the processor according to the 
access rights of the user with respect to that segment. The 
memory is called "virtual" because it is not available as 
a hardware device. Instead, it is simulated using a conven­
tional non-segmented memory, a set of processor registers 
which provide the second dimension of a segmented memory and 
a supervisor which compensates for the difference in 
capabilities between the 645 hardware and the ideal memory 
described in Chapter 1. 

Although the hardware checks each user's access rights to a 
segment whenever it accesses that segment, a certain number 
of additional functions must be provided by the supervisor 
in order to give the illusion that all segments are directly 
accessible by name by the processor. 

- The hardware cannot retrieve the attributes of a 
segment using its symbolic name; the supervisor 
organizes segment attributes into "directories" 
where it can retrieve them. 

- The hardware cannot interpret access rights for 
segment attributes; all operations on segment 
attributes are done by the supervisor. 

- The hardware cannot reference a segment by a symbolic 
name; it does it by a' segment ntunber. The supervisor 
translates all symbolic segment names into segment 
ntunbers. 

- The hardware cannot access a segment if it is not in 
core memory; each reference to a segment which is 
not in core will cause the supervisor to move the 
segment from secondary memory to core memory. In 
order to help the supervisor in core memory allocation, 
the hardware provides a paging capability. 
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This chapter builds upon the ideas developed in Chapter 1 
to show in some detail how the ideal memory is simulated. 
The major topics covered are: 

2. 

- Segmentation and paging on the 645 processor. 

- The organization of segment attributes into 
hierarchically ordered directories and the 
manipulation of these attributes by the super­
visor. 

- Segment accessing and all the supervisory functions 
needed to make a segment directly accessible by the 
processor. 

- The structure of the supervisor itself, showing how 
parts of the supervisor are able to utilize the 
virtual memory provided for user programs. 

THE 645 PROCESSOR 

This paper discusses only those features of the 645 processor 
which are of interest for the implementation of a virtual 
memory. They can be grouped into two different classes -­
segmentation and paging -- and are treated separately below. 

2.1. Segmentation 

Any address in the 645 consists .of a pair of integers 
[s,iJ. The range of sand i is 0 to 218_1. s is called the 
segment number, i the index within the segment. WOrd rs,!J 
is accessed through a hardware register which is the 5th 
word in a table called a descriptor segment (DS) •. This 
descriptor segment is in core memory and its absolute address 
is recorded in a hardware register called a descriptor base 
register (DBR). Each word of the DS is called a segment 
~os~?4~~n- wn_~ (SDW'· ~he sth cDW w~" be -e~e--~~ ~~ --~ __ ~~~~~4 ~4~' J' ~~ ~ LLL L L LL~U ~v a~ 

SDW(s). See Figure 1. 

The DBR contains the following values: 

- DBR.core which is the absolute core address of the 
DS. 

- DBR.L which is the length of the DS. 
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Segment descriptor word number s contains the following 
values: 

SDW(s).core which is the absolute address of the 
segment s. 
SDW(s).L which is the length of the segment s. 
SDW(s).acc which describes the access rights for 
the segment. 
SDW(s).F which is a flag that can be ON or OFF. 
This is the invalid attribute flag mentioned in 
Chapter 1. 

The algorithm used by the hardware for executing an instruction 
of the type OPCODE Ls,i] is as follows: 

If DBR.L <s, generate a fault. 
Access SDW(s) at absolute location DBR.core + s. 
If SDW(s).F = ON, generate a missing segment 
fault. 
If SDW(s).L< i, generate a fault. 
If SDW(s).acc is incompatible with OPCODE, generate 
a fault. 
Apply OPCODE to the word whose absolute address is 
SDW(s).core+i. 

DS DBR 
I core IL I -.. I 

I 

SEGMENT"s" SDW(s) S 
I 

.-. corelLlacclF • -. 
I 
I 
.. 

-<. 
I 
I --I 

word(s,i) • 

Figure 1. Hardware Segmentation in the 645 

The above description assumes that segments are not paged; 
in fact, paging is implemented in the 645 hardware. 
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2.2 Paging 

A bit in an SDW indicates whether the corresponding segment 
is paged or not. Another bit in the SDW indicates whether 
the page size is 64 or 1024 words. Analogous bits in the 
DBR serve the same purpose for the descriptor segment. 

However, in the Mu1tics implementation, all segments are 
paged and the page size is always 1024 words. Therefore, 
this description makes the following two assumptions: 

All segments are paged. 
The page size is a constant, K, equal to 1024 
words. 

No further reference will be made to these two bits in the 
SDWand DBR. 

Element i of a segment is the yth word of the xth page of 
the segment, x and y being defined by: 

(
y=imodK 
x = (i-y)/K 

where K is the page size. 

Since K = 1024 = 210 , the processor can compute x and y from 
the 18 bit-binary representation of i by merely dividing i 
into two parts. The right part, which consists of the 10 
least significant bits of i, represents the binary value of 
y; the left part, which consists of the 8 most significant 
bits of i, represents the binary value of x. 
See Figure 2. 

17 o 
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~ o· 9 

x y 

Figure 2. Hardware Interpretation of the Word Number 
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The ~ table (PT) of a segment is an array of physically 
contiguous words in core memory. Each element of this array 
is called a ~ table word (PTW). 

Page table word number x contains the following items. 

PTW(x).core which is the absolute core address of 
page Ix. 
PTW(x).F which is a flag that can be ON or OFF. 
This is the missing page flag mentioned in 
Chapter 1. 

The meaning of DBR.core and SDW(s).core is now as follows: 

DBR.core = Absolute address of the PI of the DS. 
SDW(s).core = Absolute address of the PT of 
segment Is. 

The full algorithm used by the hardware to access word [s,iJ 
is (see Figure 3): 

If DBR.L <s, generate a fault. 
Split s into sx and 8y such that sy = s mod K and 
sx = (s-sy)/K. . 
Access PTW(sx) at absolute location DBR.core + sx. 
If PTW(sx).F = ON, generate a missing page fault. 
Access SDW(s) at absolute location PTW(sx).core 
+ sy. 
If SDW(s).F = ON, generate a missing segment fault. 
If SDW(s).L < i, generate a fault. 
If SDW(s).acc is incompatible with OPCODE, generate 
a fault. 
Split i into ix and iy such that iy = i mod K and 
ix = (i-iy)/K. 

- Access PTW(ix) at absolute location SDW(s).core 
+ Ix. 
If PTW(ix).F = ON, generate a missing page fault. 
Apply the OPCODE to the word whose absolute 
location is PTW(ix).core + iy. 
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3. SEGMENT ATTRIBUTES 

3.1. Directory Hierarchy 

The association between the name of a segment and its 
attributes is recorded in a catalogue. This catalogue 
consists of a table with one entry for each segment in the 
system. An entry contains the name of the segment and all 
its attributes (length, memory address, list of users allowed 
to use that segment with their respective access rights, date 
the segment was created, etc.). 

In Multics this catalogue is divided into several segments 
called directories, which are organized into a tree struc­
ture. A naming convention permits one to search the tree 
structure for a given name without having to search all 
directories. 

A segment name is a list of subnames reflecting the position 
of the entry in the tree structure, with respect to the 
beginning of the tree or root directory. By convention, 
sUbnames are separated by the character ">". Each subname 
is called an entryname and the list of entrynames is called 
a pathname. 

There are two types of directory entries called branches and 
links. A branch is a directory entry which contains all 
attributes of a segment while a link is a directory entry 
which contains the pathname of another directory entry. 
This chapter will deal only with entries of the branch type. 

The pathname is the only ~ J2:y which .!! segment .£!ill be 
searched for in the directory hierarchy. 

The attributes associated with a segment whose pathname is 
ROOT> A > B > C are found as follows (see Figure 4): 

Search the root directory for an entry whose entry 
name is A. This entry contains attributes for the 
directory segment whose pathname is Roar> A. These 
attributes permit one to locate the directory 
ROOT> A in memory. 
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Search directory ROOT > A for an entry whose entry 
name is B. This entry contains attributes for the 
directory segment whose pathname is ROOT > A> B. 
These attributes permit one to locate the directory 
ROOT > A > B in memory. 

Search directory ROOT> A> B for an entry whose 
entry name is C. This entry contains attributes for 
the segment ROOT > A > B > C. 
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ROOT>A>B>C 

Figure 4. Directory Hierarchy 
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3.2. Operations on Segment Attributes 

All operations on segment attributes are done by supervisor 
primitives. There is a set of primitives available to the 
user which allow him, for example, to: 

Create a segment. 
Delete a segment. 
Change the entryname of a directory entry. 
Change the access rights of a segment. 
List a directory. 

Any of these operations is performed on behalf of a user by 
the supervisor only if the user has the right to perform 
them. 

Some further details about one of these operations, segment 
creation, are important to an understanding of the topic of 
segment accessing developed in the next section. 

Creating a segment whose pathname is ROOT > A > B > C consists 
basically of taking the following actions: 

Check, by searching the directory hierarchy, that 
this segment does not exist already in the system. 

Allocate space for a branch in directory 
ROOT> A> B. 

Store in the branch the following items: 

• 

• 

• 

• 

The entry name C. 

The access list, given by the creator. 

The segment map which consists of a ·secondary 
storage address for each page of the segment. 
This segment map is manufactured by the 
supervisor. 

The segment status "inactive", meaning that there 
is no page table for this segment. 

Once the segment has been created, the user can reference 
it. Note that no segment number has been assigned to the 
segment at creation time, and the only way to refer to it 
is by the pathname. 
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4. SEGMENT ACCESSING 

We are now in a position to understand a description of 
the functions that are provided by the supervisor in order 
to make accessible by the processor segments which are 
referenced by name in a user program. Figure 5 is key to 
an appreciation of the Multics virtual memory implemen­
tation. Although frequent references to Figure 5 follow, 
the full implications of its contents will not be apparent 
until the entire section has been read. 

4.1. Concept of Process and Address Space 

A process is generally understood as being a program in 
execution. A process is characterized by its state-word 
defining, at any given instant, the history resulting from 
the execution of the program. 

A process is also characterized by its address space. The 
address space is the set of processor addresses that this 
process can use to reference the memory. In Multics the 
address space of a process is defined as the set of segment 
numbers that the process can use to reference segments in 
the virtual memory. As explained in Chapter 1, a segment 
number can be used to reference the virtual memory only 
if it has been associated with a segment name, i.e., a 
pathname. This association [pathname, segment numberJ 
is recorded in a table called the Known Segment Table (KST) 
which defines the address space of the process. There is a 
one-to-one correspondence between Multics processes and 
address spaces. The action of adding a new pair [pathname, 
segment number] in a KST is referred to as making the seg­
ment with that pathname known to the process. 

4.2. Making a Segment Known to a Process 

Each time a segment is referenced in a process by its 
pathname, the pathname must be translated into a segment 
number in order to permit the processor to address the seg­
ment. This translation is done by the supervisor using the 
KST associated with the process. The KST is an array 
organized such that the entry number "s", KSTE(s), contains 
the pathname associated with segment number s. See Figure 5. 
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If the association rpathname, segment numberJ is found 
in the KST for this process, then the segment is known to 
the process and the segment number can be used to reference 
the segment. 

If the association [pathname, segment number] is not found 
it means that this is the first time the segment is refer­
enced in the process and the segment has to be made known. 
This is done by assigning an unused segment number "s" in 
the process and by establishing the pair [pathname, segment 
number] in the KST by recording the pathname in KSTE(s). 
Furthermore, the directory hierarchy is searched for this 
pathname and a pOinter to the corresponding branch is 
entered in KSTE(s) for later use (see Section 4.3.). 

This stage is fundamental because, in the Multics system, 
it is impossible to assign a unique segment number to each 
segment. The reason is that the number of segments in the 
system may be larger than the number of segment numbers 
available in the processor. 

~en a segment is made known to a process by segment number 
"s" its attributes are not placed in SDW(s) of the descrip­
tor segment of that process. SDW(s) has been initialized 
with an invalid attribute flag. Therefore, the first 
reference in this process to that segment by segment number 
"s" will cause the processor to generate a fault. In Multics 
this fault is called a "missing segment fault" and transfers 
control to a supervisor module called the .segment fault 
handler. 

4.3. The Segment Fault Handler 

Upon the occurrence of a missing segment fault, control is 
passed to the segment fault handler whose function is to 
store the proper segment attributes in the appropriate SDW 
and to set the invalid attribute flag OFF in the SDW. 

This information, we recall, consists of: 

The page table address. 
The length of the segment. 
The access rights of the user with respect to the 
segment. 
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The information initially available to the supervisor upon 
occurrence of a missing segment fault is: 

The segment number"s. 
The process identification. 

The only place where the needed information can be found 
1s in the branch of the segment. Using the process 
identification, the supervisor can find the KST for this" 
process. It can then search this KST for the segment number 
s. Having found the KST entry for s, it can find the 
required branch since a pOinter to the branch has been 
stor"ed in the KST entry when the segment was made known to 
that process. See Sectiorl 4.2. 

Using the active switch (see Figure 5) in the branch, the 
supervisor can determine whether or not there is a page table 
for this segment. Recall that this switch was initialized 
in the branch at segment creation time. If there is no page 
table, one must be constructed. A portion of core memory is 
permanently reserved for page tables. All page tables are 
of the same length and the number of them is determined at 
system initialization. 
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The supervisor divides these page tables into ~o lists: 
the "used list" and the "free list". Manufacturing a page 
table (PT) for a segment could consist only of selecting 
a PT from the free list, putting its absolute address in 
the branch and moving it from the free to the used list. 
If this were actually done, however, then the servicing 
of each missing page fault would require access to a 
branch since the segment map is kept there. 

Since all directories cannot be core-resident, page fault 
handling could thereby require a secondary storage access 
in addition to the read required to transport the page 
itself into core. Although this mechanism works, effi­
ciency considerations have led to the "activation" 
convention between the segment fault handler and the page 
fault handler. 

4.3.1. Activation. A portion of core memory i.s pennanently 
reserved for recording attributes needed by the page fault 
handler, i.e., the segment map and the segment length. 
This portion of core is refe~red to as the active segment 
table (AST). The AST contains one entry (ASTE) for any 
segment that has a PI' .·A PT 1s always associated with an 
ASTE, the address of one implying the address of the other. 
They may be regarded as a single entity and will be 
referred to as the [PT,ASTE] of a segment. 

A segment which has a [PT,ASTE] is said to be active. 
The property of being active or not active fs an attribute 
of the segment and, therefore, has to be recorded in the 
branch. When this active switch is set ON it means that 
both the segment map and the segment length are no longer 
in the branch but are to be found in the segment's 
pPT,ASTE] whose address has been recorded in the branch 
during "activation" of the segment. 

To activate a segment the supervisor must: 

Find a free [PT,ASTEJ. Assume temporarily that at 
least one is available. 

Move the segment map and the segment length from 
the branch into the ASTE. 
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Set the active switch in the branch. 

Record the pOinter to [PT,ASTEJ in the branch. 

Having defined activation, the actions taken up to now by 
the segment fault handler can be summarized as: 

Use the segment number s to access the KST entry. 

Use the KST entry to find the branch. 

If the active switch is OFF, activate the segment. 
If it is ON, then activation is unnecessary at this 
time as the segment was already activated for 
another process. 

By pairing an ASTE with a PI in core, the segment fault 
handler has guaranteed that the segment attributes needed 
by the page fault handler are core-resident, thus per­
mitting efficient page fault servicing. 

4.3.2. Connection. Now that the segment is active, the 
corresponding SDW must be "connected" to the segment. 

To connect the SDW to the segment the supervisor must: 

Get the absolute address of the PT, using the 
[PT,ASTEJ pointer kept in the branch, and store 
it in the SDW. 

Get the segment length from the ASTE and store it 
in the SDW. 

Get the access rights for the user from the branch 
and store them in the SDW. 

Turn off the flag which caused the fault from the 
SDW. 
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Having defined activation and connection, segment fault 
handling can finally be summarized as: 

Use the segment number s to access the KST entry. 

Use the KST entry to find the branch. 

If the active switch in the branch is OFF, activate 
the segment. 

Connect the SDW. 

Note that segment sharing in core is "automatically" 
guaranteed by the use of the active switch and [PT,ASTEJ 
pOinter kept in the segment branch since all SDW's describ­
ing this segment will point to the same PT. 

Now that the segment has an SDW pointing to the PT, the 
hardware can access the appropriate page table word. If 
the page is not in core, a missing page fault occurs, 
transferring control to the supervisor module called the 
page fault handler. 

4.4. The Page Fault Handler 

When a page fault occurs the page fault handler is given 
control with the following information: 

The PT address. 
The page number. 

The information needed to bring the page into memory is: 

The address of a free block of c.ore memory into 
which the page can be moved. 

The address of the page in secondary memory. 

A free block of core must be found= This is done by using 
a data base called the core map. The core map is an array 
of elements called core map ent·ries (CME). The nth entry 
contains information about the nth block of core (the size 
of all blocks is 1024 words). The supervisor divides this 
core map in two lists; the used list and the free list. 
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The job of the page fault handler is to: 

Find a free block of core. (Assume temporarily 
that there is at least one free block in the 
free list.) 

Access the ASTE associated with the PT and find 
the address in secondary memory of the missing 
page. 

Issue an" Ilo request to move the page from 
secondary memory into the free block of core. 

upon completion of the Ilo request, store the 
core address in the PTW and remove the fault from 
the PI'W. 

4.5. Page Multiplexing 

It was assumed that a free block of core was available in 
the core map free list; however, this is not always the 
case since there are many more pages in the virtual memory 
than there are blocks of core. Therefore, in order to get 
a free block of core, the page fault handler may have to 
move a page from core to secondary memory. This requires: 

An algorithm to select a page to be removed. 

Knowing the address of the PTW which holds the 
address of the selected page in order to set a 
fault in it. 

Knowing where to put the page in secondary memory. 

The selection algorithm is based upon page usage. The 
hardware provides valuable assistance by the fact that, 
each time a page is accessed, a bit is set ON in the 
corresponding PTW. This bit is called the used bit. 
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The selection algorithm will not be described here; however, 
it should be noted that candidates for removal are those 
pages described in the core map used list. Therefore, each 
core map entry which appears in the used list must contain 
a pointer to the associated PTW in order to permit one to 
examine the used bit. The action of storing the PTW pOinter 
in the core map entry must be added to the list of actions 
taken by the page fault handler when a page is moved into 
core (see Section 4.4.). 

A fault is stored in the PTW. 

The secondary storage address for the page is found 
in the ASTE whose address can be computed from the 
PTWaddress. 

An I/O request is issued to remove the page to 
secondary storage. 

upon completion of the I/O request, the core map 
entry is removed from the used list and put in the 
free list. 

By this mechanism, blocks of core are multiplexed among all 
pages of all active segments in the system. 

It is important to realize that a page is either in core or 
in secondary storage. There is no such thing as a "copy" of 
a page. When a page is moved from secondary storage to core, 
its secondary storage address, located in the ASTE, could be 
freed; it is no longer needed since the address of the page 
is now in the PTW. When the page is to be removed, a free 
block of secondary storage could be assigned to it. It is 
only for practical reasons that the block of secondary 
storage is not freed each time a page is moved into core. 

Page multiplexing maintains a "perpetual motion" between core 
and secondary storage of pages of active segments. If the 
set of active segments in the system were invariant, then 
pages of other segments would never have a chance to be in 
core. 
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4.6. [PTaASTEJ Multiplexing 

In the descript:ion of segment fault handling, when a segment 
had to be activated, a pair [PT,ASTE] was assumed available 
for assigmnent to that segment. In fact, the number of 
[PT,ASTE] pairs is limited in the system and is, by far, 
smaller than the number of segments in the vir·tual memory. 
Therefore, these [PT,ASTEJ pairs must be multiplexed among 
all segments in the virtual memory. 

This means that making a segment active may imply making 
another segment inactive thereby disassociating this other 
segment from its [PT,ASTE]. Since each process sharing the 
same segment will have the address of the PT in an SDW it is 
essential to invalidate this address. in all SDW's before 
removing the page table. It is also essential to move to 
secondary memory all pages of that segment which are in core 
before removing the [PT,ASTE], since the ASTE is needed to 
remove a page. Then, and only then, can [PT,ASTE] be 
disassociated from the segment. 

This operation requires: 

An algorithm to select a segment to be deactivated. 

Knowing all SDW's that contain the address of the 
page table of the selected segment in order to 
invalidate this address. 

The removal of all pages of the selected segment 
that are still in core. 

Moving the attributes contained in the ASTE back to 
the branch and changing the status of the segment 
from active to inactive in the branch. 

The selection algorithm is here again based· on segment usage. 
The only thing of interest at this point is that selection 
is done by scanning the ASTE used list. Therefore, the ASTE 
must provide all the information needed for removing the 
[PT,ASTE]. This means that during activation and connection 
this information must be made available as explained below. 
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During activation, a pOinter to the branch must be placed in 
the ASTE; during connection, a pOinter to the SDW must be 
placed in the ASTE. Since more than one SDW is connected 
to the same PT when the segment is shared by several pro­
cesses the supervisor must maintain a list of pointers to 
connected SDW's. This list is called a connection list. 
See Figure 5. -

Now we are in a position to understand how a [PT,ASTE] can be 
disassociated from a segment. After the selection algorithm 
decides on an ASTE to be freed, actions to be taken consist 
of two steps called "disconnection" and "deactivation". 

Disconnection consists of storing a segment fault in each 
SOW whose address appears in the connection list in the 
ASTE. 

Deactivation consists of removing all pages of this segment 
that may be in core, moving the segment map from the ASTE 
back to the branch, resetting the active switch in the branch 
and putting the [PT,ASTE] in the free list. 

4.7. Segment Number Multiplexing in a Process 

The number of segments that a process can describe in its 
descriptor segment is limited to 218. It is unlikely that 
a process needs to access more than 218 segments from the 
time it is created to the time it is destroyed. However, 
if this should happen, a facility is provided to a process 
to remove an association [pathname, segment-number] by an 
explicit call to the supervisor. This action is referred to 
as making a segment tmknown. When segment A which is known 
to a process by the segment number "s" is made unknown to that 
process, no attempt is made by the supervisor to remove 
residual [s,iJ pairs that may have been generated and stored 
during the time that s was assigned to A. Making segment A 
unknown to the process implies freeing KSTE(s). If sub­
sequently another segment, say B, is made knOwn to the process, 
the supervisor may assign this unused segment number s to 
segment B, entering the pathname B in KSTE(s). From this 
pOint on, any reference by segment number s in this process 
will cause segment B to be accessed. Therefore, it is 
entirely the responsib~lity of the programmer, after segment 
A is made unknown, not~to reuse any residual pair [s,i] that 
was generated for accessing segment A. 
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4.8. Directory Entry Multiplexing 

When a segment is deleted, the branch of that segment is 
deleted. No attempt is made by the supervisor to remove 
residual KST entries that contain a pOinter to this branch. 
However, the supervisor can detect references by residual 
segment numbers, to segments which have been destroyed as 
follows: 

When segment A is created, the supervisor assigns a 
unique number NA to segment A and stores it in the 
branch. 

When segment A is made known to a process P by the 
segment number s, NA is copied from the branch to 
KSTE(s) for process P along with the pOinter to 
branch A. 

If segment A is deleted by any process, the supervisor 
disconnects the corresponding SDW in process P, if 
it was connected, and deletes the branch together with 
NA• 

If the same directory entry is reused to record the 
branch information of another segment B, a new unique 
identifier NB will be stored in the branch. 

Now, if process P uses the segment number s in order 
to access segment A, a segment fault will occur; the 
KST entry contains a pointer to the directory entry 
which is supposed to be the branch A. But by compar­
ing the NA of the KST entry and NB of the directory 
entry, the supervisor can discover that segment A 
has been deleted. 

Therefore, it is possible to detect the deletion of a branch 
e··e- .... ~"·· .... h " .... ". .r:"rme- d': -e-.... "-· ___ t-_. 1... ... S 1...___ --··se~ f--v &.1. ~Iol."'''''& I. ..L.~O ..L."'~" ~ ..L.~ '-~VL7 'C1o" .. L7 Uel "''CCII L'CU U VL 

another segment. 

5. STRUCl'URE OF THE SUPERVISOR 

up to now supervisor functions have been described, but 
supervisor structure has not been discussed. In this section, 
the different components of the supervisor are covered and the 
ability of portions of the supervisor to partially utilize 
the virtual memory is demonstrated. 
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5.1. Functional Modules 

Three functional modules can be identified in the supervisor 
described;.they are called directory control (DC), segment 
control (SC), and page control (PC). 

5.1.1. Directory Control. Directory control is that part of 
the supervisor which can manipulate all segments in the 
system. DC identifies a segment by its pathname which 
uniquely defines a segment in the system. Data bases that 
are manipulated by DC are the directories and KST's of all 
processes (see Figure 6). DC provides all primitives to 
simulate operations on segment attributes; it also provides 
the assignment of a segment number to a segment within a 
process. 

5.1.2. Segment Control. Segment control is that part of 
the supervisor which can manipulate only those segments which 
are mown to at least one process. SC identifies a segment 
by either its segment number within a particular process, 
which uniquely defines a segment in the system, or by its 
[PT,ASTEJ address which uniquely defines an active segment 
in the system. Data bases that are manipulated by SC are 
directories, KST's of all processes, descriptor segments of 
all processes and [PT,ASTEJ pairs of all active segments. 
SC provides the functions of activation, connection, dis­
connection and deactivation. 

5.1.3. Page Control. Page control is that part of the 
supervisor which can manipulate only those segments which 
are active. PC identifies a segment by its [PT,ASTEJ 
address which uniquely defines an active segment in the 
system. Data bases that are manipulated by PC are [PI',ASTEJ 
pairs of all active segments and the core map. PC provides 
the mechanism to move pages of active segments between 
secondary storage and core. 
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5.2. Use of Segmentation in the Supervisor 

Previous to this no assumptions were made about the type of 
addressing used by the supervisor. It could be written so 
as not to use segment addressing of course; but organizing 
the supervisor into procedures and data segments permits one 
to use in the supervisor the same standard conventions that 
are used in a user program. For in'$tance, the CALL-SAVE­
RETURN conventions made for user programs can be used by the 

. supervisor, the standard way to manufacture pure procedures 
in a user program can be used in the supervisor, etc. Thus, 
it seems desirable to use segmentation in the supervisor, 
and the follO\\Fing (temporary) assumption will be made: 

Assumption 1: 

a. The address space of the supervisor is entirely defined 
by a desc~iptor segment. 

b. All segments used by the supervisor are always in core. 

Assumption l.b is not realistic, however, since it generally 
Is not possible to dedicate enough core to contain the entire 
supervisor. It is, therefore, interesting to determine 
whether there is a way to use the page fault handler to 
transport supervisor as well as user pages. 
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5.3. Use of PC in the Supervisor 

For the purpose of this paper, let us assume the validity of 
the following statement. "Page fault handling for a page 
x must be performed without referencing page x". 

It is certainly possible to design a PC module which allows 
recursive page faults provided that the above condition is 
always satisfied. Each recursive invocation of the page 
fault handler should use a set of pages which does not include 
any of the pages that caused the previous invocations; 
furthermore, the number of recursive invocations must be 
guaranteed to be finite. The technique that has been chosen 
in Multics for page fault handling is to fix this finite 
number to 1 and thus no recursive page faults will ever 
occur. This decision has been made for reasons of effi­
ciency and design simplicity. Therefore, it is assumed that 
all segments used in PC are always in core. 

We can observe that the page fault handler need not know if 
a missing page belongs to a user or to the supervisor; it 
only expects to find the information it requires in the 
[PT,ASTEJ of the segment to which the missing page belongs. 
Therefore, if all segments used in SC and DC are always 
active, then their pages need not be in core since PC can 
load them when they are referenced. 

Thus, assumption 1 can be replaced by the following one 
(again temporary): 

Assunption 2: 

a. The address space of the supervisor is entirely defined 
by a descriptor segment. 

b. All segments used in PC are always in core. 

c. All segments used in SC and DC must be active and 
connected. 

This convention turned out to be satisfactory in the Mu1tics 
implementation except for directories. Recall that segments 
used by S.C and DC are: (a) SC and DC procedur~s, (b) KST' s 
and DS's, and (c) Directories. 
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The number of segments in class (a) and (b) is relatively 
small. On the contrary, the number of directory segments 
may be very large and keeping them always active is not a 
realistic appt'Oach, since a large nwnber of [PI',ASTEJ pairs 
would have to be permanently assigned to them. Therefore, 
it is desirable to use SC to activate and connect directory 
segments. 

5.4. Use of Segment Control in the Supervisor 

A necessary condition for handling a segment fault for 
segment x in a process is that segment x be known to that 
process. If SC is to handle segment faults taken by the 
supervisor for directories, all directories must be known 
to the supervisor. This means that the address space of 
the supervisor must be defined not only by its descriptor 
segment but also by KST, which contains one entry for each 
directory. After its KST has been so initialized, the 
supervisor looks like any other process. 

Assumdng that all directories are known to the supervisor 
process, but not necessarily active, a supervisor reference 
to a directory x may cause a segment fault. Recall that 
when handling this fault, the segment fault handler must 
reference the parent directory of segment x, where the 
branch for x is located. This reference to the parent of 
x could, in turn, cause a recursive invocation of the seg­
ment fault handler. Recursive invocations can propagate 
from directory to parent directory up to the root. If there 
is a way of stopping the recursion, then any segment fault 
on directories can be handled. 

One way of stopping the recursion is to keep the root active 
and connected, so that a segment fault never occurs for it. 

Assumption 2 can now be replaced by assumption 3, again 
temporary. 

Assumption 3: 

a. The address space of the supervisor process is defined 
by a descriptor segment and a KST. 

b. All segments used in PC are always in core. 

c. All segments used in SC and DC are always active and 
connected, except directories. 
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d. The root directory is always active and connected. 

e~ All directories are known to the supervisor prc;>cess. 

However, it is tmsatisfactory to keep all directories known. 
We would like to keep known only those which may possib~y be 
used in a segment fault handling, provided that other 
directories can be made known by directory control when 
needed. 

5.5. Use of the Make Known Facility in the Supervisor 

Making a segment x known implies searching for its pathname 
in the KST. If not found, the parent of x must first be 
made known and so on up to the root. If the root di rectory 
is always known to the supervisor, then any directory can 
be made known to the supervisor by the supervisor itself. 

Assumption 3 will now be replaced by the final·assunption: 

Final Assumption: 

a. The address space 'of the supervisor process is defined 
by a descriptor segment and a KST. 

b. All segments used in PC are always in core. 

c. All segments used in SC and DC, except directories, are 
always active and connected. '. 

d. The root di~ectory is always active and connected. 

e. If a segment is known to any process, its parent 
directory must be known to the supervisor process. 

f. The root directory is always known to the supervisor 
process. 

Given the above assumptions, supervisor segments as well as 
user segments can be stored in the virtual memory that the 
supervisor provides. 
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5.6. The Supervisor Address Space 

Unlike most supervisors, the Multics supervisor does not 
operate in a dedicated process or address space. Instead, 
the supervisor procedure and data segments are shared among 
all Multics processes. Whenever a new process is created, 
its descriptor segment is initialized with descriptors for all 
supervisor segments allowing the process to perform all of the 
basic supervisory functions for itself. The execution of the 
supervisor in the address space of each process facilitates 
communication between user procedures and supervisor procedures. 
For example, the user can call a supervisor procedure as if 
he were calling a normal user procedure. Also, the sharing 
of the Multics supervisor facilitates simultaneous execution, 
by several processes, of supervisory functions, just as the 
sharing of user procedures facilitates the simultaneous 
execution of functions written by users. 

Since supervisor segments are in the address space of each 
process, they must be protected against unauthorized 
references by user programs. Multics provides the user 
with a ring protection mechanism which segregates the seg­
ments in his address space into several sets wi.th different 
access privileges. The Multies supervisor takes advantage 
of the existence of this mechanism and uses it, rather than 
some other special mechanism, to protect itself. 

6. SUMMARY 

If only a few points discussed here were to be remembered, 
they should be those mentioned below. They have been separ­
ated into two classes: the point of view of the user of the 
virtual memory, and the pOint of view of the supervisor 
itself. 

User Point of View 

- The Multics virtual memory is capable of containing 
a very large number of segments that can be identified 
by their symbolic names. 

- Segment attributes are stored in special segments 
called directories, which are organized into a tree 
structure; there is a naming convention, of which the 
user must be aware, by which a segment name must be 
the pathname of its branch in the directory tree 
structure. 
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- Any operation on directory segments must be done via 
a call to the supervisor. 

- Any operation on a non-directory segment can be done 
directly in accordance with the access rights that 
the user has for this segment; any word of any 
segment which resides in the virtual memory can be 
referenced with a pair [pathname,i] by the user. 

- A process can have only a limited number of segments 
in its address space. If the programmer wants to . 
overlay a segment A by a segment B in the process 
address space, he can call the supervisor to do it 
but he must be aware of the dangers that this 
operation may present. 

Supervisor Point of View 

- The supervisor must simulate a large segmented 
memory directly addressable by segment name such that 
any access to the memory is submitted to access rights 
checking. 

- It maintains a directory tree where it stores all 
segment attributes. It can retrieve the attributes 
of a segment given the pathname of that segment. 

- The supervisor itself is organized into segments and 
runs in the user process addres~ space. 

- Any segment, be it a directory or a non-directory 
segment, is identified by its pathname but can be 
accessed only using a segment number. For ~ch 
segment name the supervisor must assign a segment 
number by which the processor will address the 
segment in the process. 

- The processor accesses a word of a segment through the 
appropriate SDW and PTW and subject to the access rights 
recorded in the SDW. 

- A segment fault is generated by the processor whenever 
the page table address or access rights are missing 
in the SDW. The supervisor then, using the KST entry 
as a stepping stone, accesses the branch where it 
finds the needed information. If a PT is to be 
assigned, the supervisor may have to deactivate another 
segment. 
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- A page fault is generated by the processor whenever 
a PTW does not contain a core address. The supervisor 
then, using the ASTE associated with the PT, moves the 
missing page from secondary storage to core. This may 
require the removal of another page. 
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1. INTRODUCTION 

Chapter 3 

DIRECTORY STRUCTURE. 

A virtual memory system must include some means of storing 
and retrieving information. A segment is the unit of 
information in the Multics virtual memory which is so stored 
and retrieved. 

All information about a segment such as its length and its 
location are called "attributes" of the segment. If the 
attributes of a segment can be located, then the segment 
itself can be found. 

The attributes of segments are stored in special segments 
called "directories" and the directories are organized into 
a tree structure called "the directory hierarchy". All of 
the attributes of one segment are recorded in one entry in 
a directory. The entries in a directory can be referenced 
by literal string names called "entrynames". 

The discussion which follows gives some of the details of 
the directory hierarchy structure, the naming of entries and 
segments and the contents of directory entries. Segment 
creation and deletion are also described since those 
operations are closely related to the creation and deletion 
of the attributes of a segment. 

Other chapters describe the details of the search for a 
segment and how segments themselves are handled. 

2 e THE DIRECTORY HIERARCHY AND TERMINOLOGY 

2.1. The Structure 

A tree structured directory hierarchy is shown in Figure 1. 
Directory segments are shown as squares and non-directory 
segments are sh~ as circles. The lines between segments 
are branches of the tree structure and in Multics, denote 
the fact that the attributes of a segment at the lower end 
of a line are recorded in an entry in the directory at the 
upper end of the line. Thus th~ attributes of the segment 
labeled C in Figure 1, are recorded in the directory labeled 
B. The directory entries in which the attributes of segments 
are recorded are called "branch entries" or ~branches". 
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A directory is said to be the parent of a segment if it 
contains the branch with the attributes of that segment. 
The parent directory of a segment is said to be "innnediately 
superior to" the segment and the segmerit is "inmediately 
inferior to" its parent. In Figure l~ the directory at the 
top of the structure labeled "root" and called ""the root 
directory" or simply "the root" is the parent of or 
inmediately superior to the segment labeled D. The root 
is superior to the segment labeled E, but not immediately 
superior to E. The segment labeled E is inferior to the 
root and the segment labeled D is immediately inferior 
to the root. 

The root is the starting pOint in the search for segments. 
Note that the root has no branch. Its attributes, among them 
its location, are assumed to be known to the modules which 
perform the search. 

There is one and only one branch per segment in the Multics 
system. This rule arose from the difficulty of finding 
and updating all the branches of a segment if one of its 
attributes should be changed. For cases in which it is 
useful to have a branch in more than one' directory a link 
(see below) can be used. 

2.2. Entrynames and Pathnames 

An entryname is used to locate an entry in a given directory, 
but a "pathname" is needed to search the directory hierarchy 
for a particular entry. In order to uniquely locate a 
particular entry in a directory, an entryname must be unique 
"in that directory. However, an entry can have several 
names (synonyms). 

A pathname is the concatenation of an ordered sequence of 
entrynames§ The entries must be located in the order they 
were named in order to follow the path from the root to the 
desired entry. The entrynames are separated by the character 
,,>" • 

The name of a segment is the p~thname which addresses its 
branch. 
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The names root > A and root > D > E > Z are examples of 
pathnames for segments in the hierarchy shown in Figure 1. 
The name root> A > B > C > Z is the name of the segment 
pOinted to by the vertical arrow. Since all pathnames begin 
with root >, the leading symbol > :I.s used to mean root >. 
The names above become> A, > D > E > Z and> A > B > C > z. 
An example of the search for the attributes of the segment 
> B > Z in Figure 2 is instructive. The root is searched 
for a branch with the name B. The segment > B is accessed 
using the information in this branch. Next, the directory 
segment> B is searched for a branch with the name Z. 
When the branch Z is found in the directory > B then the 
search is finished. 

It must be emphasized that the only way in which the search 
modules can find a segment is through use of a pathname. 

A pathname can have synonyms since the entrynames from which 
it is constructed can have synonyms. However, a given 
pathname cannot lead to more than one segment. 

2.3. Links 

There can exist in a directory a second type of entry in 
addition to the branch entry. This is called a "link entry" 
or a "link". A link entry has a name just as branch entry 
does and like a branch is used to access a segment or its 
attributes. A link contains no attributes but only the 
"pathname" of another entry. In Figure 1, the dotted line 
labeled L is an example of a link. The entryname of the 
link is L. Loops such as might be generated by two links 
which reference each other should not be allowed in the 
directory hierarchy. 

Links are addressed by pathname just as branches are. 
D4~e-e-~~-g the ,~-~ - A - U > ~ > T ~"~4-u-e 1 ~.L41 ... 1 ... ... ~... ... a;&~ ... && & ... ..I.a;&~'" "" ~ '" ..... , .L&& .a:.L5'" ... , w 

cause accessing of the segment > D > E > X, as that path­
name is recorded in the link. 

3. DESIGN CONSIDERATIONS 

A directory is needed as a place to look up the addresses of 
other segments. Once a directory exists, there are other 
advantages to be gained from it. The directory is a 
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convenient place to store the access rights of a user to a 
segment so they may be checked at the same time that the 
address of the segment is located. It may also be useful 
to reference the attributes of a segment without necessarily 
accessing the segment body, e.g., to find the length of a 
segment. For these reasons, all of the attributes of a 
segment are collected into a list and the lists are stored 
together in a directory. Why then have more than one 
directory? 

root 

B Attributes 

·A 
B 

> A 
> B 

Figure 2. Directories and Attributes 

51 



The most important reason for having multiple directories 
is to avoid the problem of naming conflicts. It is very 
likely that many users will attempt to use the same names 
for the different segments they will create. Long and 
complicated unique names are difficult to remember and 
inconvenient to look up both for people and computers. 
If each user is assigned one or more directories then this 
namdng conflict disappears. The key to this simplification 
is to allow the user to reference the segments of a pre­
assigned directory by entryname. Pathnames are constructed 
by prefixing the directory pathname to the user given 
entryname and referencing the desired segments via these 
constructed pathnames. 

There are other ~dvantages t'o be gained with nrultiple 
directories. Directories can be used for classification 
of segments, e.g., all segments of a math library could 
be accessed through a math library directory, > math­
library. Protection is aided since access to directories 
(and, therefore, complete classes of segments) can be 
restricted to specific users. 

The tree structure carries two advantages. It allows an 
even better scheme of classification than a linear or limited 
level structure of directories and it also facilitates an 
efficient directed search for a given segment in the 
hierarchy. 

4. INTERNAL DIRECTORY AND ENTRY STRUCTURE 

Each directory has a small area at its beginning called a 
hea"der which contains pOinters to other areas and items 
in the directory. There is also in the header a count of the 
branches in the directory. The header is followed by an 
array of entries. 

Figure 3 shows a directory with a branch entry and a link 
~.I--'- ... ,.....:I ,,- .... -e ~e+-a.l' All --+--,,-- -0-+--"- +-1...- &_11_._.1 __ -
u.0l-'.&oa}'~u .&..1.1 OVIII u .... .I..I.. ~I.I"""'.ICO "" " .... a.l." .... "IC .V.&o.&o'IW.&o'&&-

a name list painter, 
a unique identifier and 
a branch or link switch. 
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If the entry is a link, it contains a pathname and no 
attributes. If the entry is a branch it also contains 

an access list pOinter, 
a segment map j 

segment length, 
an'active switch, 
a PT-ASTE pOinter and 
a directory flag. 
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4.1. The Name List Pointer 

A branch or link entry can have several names. These are 
stored in a threaded list. Supervisor primitives exist to 
add names to the list and to delete names from it. The name 
list pOinter is a pointer to the threaded list of names of 
the entry. 

4.2. The Unique Identifier 

The unique identifier, uid, is permanently attached to the 
entry. It cannot be changed or destroyed while the entry is 
in use (contains valid branch or link information). All 
uid's are constructed in part from numbers representing the 
date and an instant during the ·creation of the entry, so that 
a uid can never be. repeated. The uniqueness of the uid for 
each entry in the entire directory hierarchy is thus 
guaranteed. The uid is used to assure that the correct 
segment is being accessed when a segment is referenced or 
activated. Its use will be described in more detail in 
Chapters 4 and 5. 

4.3. The Branch or Link Switch 

The branch or link switch is used to tell the search modules 
the kind of information to be found in the entry. 

4.4. Access List Pointer 

The access list painter is a painter to a threaded list of 
user names and associated access rights. As an example, 
user Tom may have the right to execute the contents of a 
segment and to modify the contents of that segment while 
user Frank may only be permitted to execute the contents 
of the segment. The access list contains the names of all 
users permitted to access the segment, and is described in 
detail in a companion paper, "Access Control to the Multics 
Virtual Memory". 

4.5. The Segment Map 

As the name indicates, the segment map gives the address of 
the segment in secondary storage. The segment map consists 
of two parts, the device indentifier, did, and a page address 
list. The did is a number which uniquely identifies the 
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particular drum, disc or other device on which the segment 
resides. For each page up to a maximum of sixty four, there 
is an address in the page address list which locates that 
page on the device. For unused pages, there is an unassigned 
address. The order of the addresses in the address list 
corresponds to the order of the pages in a segment. 

4.6. The Segment Length 

The segment length is given in pages. It is one plus the 
number of the highest page accessed counting from zero. 
There is a maximum of sixty-four pages for any segment. 

4.7. The Active Switch 

The active switch, when ON, indicates that some of the segment 
attributes are to be found in the page table, PT, and its 
associated active segment table entry, ASTE. The segment may 
be in core or secondary storage or partly in both when this 
switch is ON. It is always in secondary storage when the 
active switch is OFF. 

4.8. The PT-ASTE Pointer 

The PT-ASTE pOinter is a pOinter to the location of those 
attributes of the segment in the page and active segment 
tables. It is only valid when the active switch is ON. One 
of the attributes found in the active segment table at that 
time is the segment map. 

4.9. The Directory Switch 

Finally, the directory switch indicates whether the segment 
is a directory or not. This information is used when delet­
ing segments and will also be needed for segment handling 
--h~c1. ~- exrn"-~--~ .1- 1s"''-- .-1. __ ... .-__ 
W IL'" L&':I .. t'" .LGLUCU LU 6Q~CI. \';Lla.,~cl. o. 

Other attributes are found in the branch. Some of these 
will be introduced and explained where needed in later 
chapters. 
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5. SEGMENT CREAT ION 

A segment is created by establishing for it a branch in a 
directory. A module is called with the arguments segment 
name (pathname of the segment to be created), access to the 
segment and directory switch. The parent directory of the 
segment to be created is accessed using the pathname argument 
with the final entryname truncated from it. 

To create a segment, information must be written into its 
parent directory. This requires that a hardware address 
be assigned to that directory and, therefore, that the 
directory be assigned a segment number. The assignment 
of a segment nurnber is called "making a segment known to a 
process" and is described in Chapter 4. Subsequent 
addressing is by segment nurnber and the segment control and 
page control modules handle the problems of activating the 

. segment and bringing its pages into core. 

When the parent directory has been accessed in this manner, 
a free entry is found in it. The entryname to be given this 
new branch is checked to make sure that it is not already 
in use in the parent directory. Space is allotted to the 
name and access lists and they are moved into their allotted 
places. Pointers to the name and access lists are placed 
in the entry. A uid is created for the new branch by a 
special subroutine and the uid is placed in the branch. 
The segment map is initialized by assigning to the segment 
a device identifier and setting all of the page addresses 
to unassigned. Page control will assign addresses to the 
pages as they are referenced. The branch count of the 
parent directory is then incremented by one. 

At this point all that need be done to create a non-directory 
segment has been completed. A test is made to see if a 
directory is being created. If so, the directory being 
created is assigned a segment number and accessed. The 
necessary pOinters are placed in its header and its branch 
count is set to zero. Creation of a directory segment is 
now complete. 

An error return with an appropriate comment would have been 
executed if a free entry had not been found or the entryname 
had already been in use or the name and access list area had 
been full. No segment or entry would have been cr~ated in 
any of those cases. 
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6. SEGMENT DELETION 

As in creation, segment deletion is for the most part 
deletion of a branch entry. However, ,before E: segment may 
be deleted, several checks' must be completed. 

The parent directory of the segment to be deleted is accessed 
as in segment creation. The directory switch is tested to 
see if the segment to be deleted is a directory. If so, it 
is accessed and ;lts branch count is checked. A directory 
cannot be deleted if any branches remain in it since that 
would break the path to all of its inferior segments. If 
there are no branches in the directory to be deleted then 
the execution continues as if it were a non-directory seg­
ment. 

When the directory switch is tested and a non-directory 
segment is to be deleted, then the active switch in the 
branch to be deleted is checked. The segment cannot be 
deleted while this switch is on for that would leave traces of 
the segment in core and possibly even in other processes. 
Therefore, segment control is called to deactivate it. 

Deactivation removes all traces of the segment from core, in 
particular from any descriptor segments and from the page 
table and active segment table entry assigned to this segment. 
(This forces any subsequent reference of the segment by any 
process to execute a segment fault thus referencing the branch 
and seeing that'it has been deleted.) Page Control is called 
to ,free all secondary storage used by the segment to be 
deleted. The branch itself is deleted by zeroing its uid. 
Finally, the branch count of the parent directory is decre­
mented by one and the segment deletion is conplete. 
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Chapter 4 

MAKING A SEGMENT KNOWN TO A PROCESS 

1. INTRODUCTION 

Segments in Multics are identified system-wide, to all users 
and processes, by their pathnames. However, the hardware 
references segments by numbers called segment numbers. 
Therefore, during execution a segment number must be associa= 
ted with each segment. The segment number associated, with any 
particular segment may differ from one process to !lUQther. 
A segment is said to be "known to a process" (or simPly "known") 
while at least one of its pathnames is associated with a seg­
ment number and this association is recorded in a per process 
segment called the Known Segment Table. 

A segment is "unknown to a process" or "unknown" until it has 
been made known and can again be made unknown to a process 
by terndnating it, that is, by erasing the record of the 
pathname-segment number association from the Known Segment 
Table, KST. This breaks the association between pathname and 
segment number since the record in the KST is the only record 
of that association. 

This chapter describes the way in which segments are made known 
to a process and the way in which they are made unknown. 

2. DATA BASES 

There are two major data bases involved in making a segment 
known. These are the directory hierarchy and the Known 
Segment Table, KST. Directory structure and contents are 
discussed in Chapter 3. The KST is discussed in this 
section. 

The KST is a segment with an array of KST entries. Figure 1 
is a diagram of the KST with one KST entry, KSTE, displayed 
in detail. A KSTE contains: 

a name list pOinter 
a segment number 
a unique identifier, uid 
a branch pOinter 
a directory switch 
an inferior count 
and other information. 
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The header shown in Figure 1 contains housekeeping information 
pertinent to the KST such as a pOinter to the next free KSTE. 
The various elements in the KSTE are explained below. 

2.1. The Name List Pointer 

The name list pOinter is a pOinter to a threaded list of 
pathnames. The pathnames are all the different synonyms 
which have so far been used by this process to refer to the 
same segment, the one ass6ciated with this KSTE.I 

2 .2. The Segment Number 

Note that there is no segment number in a KSTE. The index 
of a KSTE in the KSTE array is the segment number associated 
with that KSTE. It is, therefore, the segment number of the 
segment whose name is painted to by the name list pOinter. 
In Figure 1, "sn is the segment number of the segment whose 
names are in the pathname list of the expanded KSTE. 

2.3. The Unique Identifier,uid 

The uid is copied from the branch of the segment when the 
segment is made lmown. The uid· uniquely" "identifies a branch 
and is described in Chapter 3. 

2.4. The Branch Pointer 

When a segment is made known a pOinter to its branch is 
placed in its KSTE. The presence of the branch pOinter in 
the KSTE is necessary since the name of the segment could 
be changed while the segment is known. It also allows the 
segment-fault handler easy access to the attributes of a 
segment without having to repeat. the search for the branch. 
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2.5. The Directory Switch 

The directory switch simply tells whether a segment is a 
directory or not. It "is present because of a special rule 
regarding the handling of directories when making them 
unknown. 

2.6. The Inferior Count 

The inferior count is used for directory segments. It is a 
count of the number of immediately inferior or daughter 
segments known in the process to which this KST belongs. 

2.7. Other Information 

There is other information in a KSTE which is put there for 
use in access control, for example, but which is not perti­
nent to this discussion. No further mention will be made 
of it. 

3. MAKING A SEGMENT KNOWN 

The procedure executed in order to make a segment known is 
illustrated by the flow chart in Figure 2. Entry is through 
a call to MAKE-KNOWN. The pathname of the segment to be 
made mown is passed to MAKE-KNOWN and the segment nunber 
and a code are returned. 

The KST is searched for the pathname and if the pathname is 
found, MAKE-KNOWN returns a segment number. The third 
argument, code, is set to inform the caller whether or not 
the segment just made mown is a directory directory. If 
the pathname passed to MAKE-KNOWN was not found in the KST, 
then it is tested to determine if it is the root directory 
pathname. This step is very important as it assures an end 
to the "recursive loop which is described below. 

If the pathname is not that of the root directory, then the 
path~~me is parsed and is broken into ~JO parts, a n~w path= 
name, and an entry name. The new pathname is the pathnatne 
of the directory in which the new entry name can be found. 
For example, if > A > B > C > D were the original pathname, 
then the parse would yield the new pathname > A > B > C 
and the entry name D. MAKE-KNOWN is then called recursively 
to make the new directory pathname known. This recursive 
loop 1s executed until a directory pathname is fOlDld in the 
KST or lDltil the root directory is encolDltered and made 
known. 
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A call to make the root directory known always terminates 
the recursive loop. Since all pathnames begin with the root 
pathname it is assured that the recursive loop will always 
be terminated. 

When MAKE-KNOWN returns from a recursive call the code 
argument is ·checked to make sure that a directory was found. 
The directory is searched for the entryname separated from 
a previous pathname by the parse. 

An example is useful at this point. Assume that the segment 
with pathname > A > B > C is to be made known and that MAKE­
KNOWN has been called twice (once recursively) for this 
segment. On the initial call the pathname > A > B > C was 
passed to MAKE-KNOWN and on the second call (first recursive 
call) > A > B was passed to it. Assume that directory 
segment > A > B was found to be known, then upon return from 
the last call (the recursive call) the code argument is 
tested to see if > A > B is a directory. If so, then entry 
C is looked up in > A > B. We now return to the description 
of MAKE- KNOWN • 

If the entryname is found in the directory whose segment 
number was just returned, then the entry is tested to deter­
mine if it is a branch or a link. If it is a branch, then 
its uid is looked up in the KST to make sure that the seg­
ment is not already known by some .other name. If the seg­
ment is already known by some other name then the new name 
is added to its pathname list, the segment number is returned 
and the code argument is set from the directory switch in 
its KSTE. If the segment is not known, then a free KSTE is 
found. The pathname is allocated space and placed in that 
space. The name list pOinter is set to point at the 
pathname, the uid and the directory switch are copied from 
the branch into the KSTE and the branch pointer is set in the 
KSTE. The code argument is set from the directory switch 
in the branch and the KSTE inferior count of the parent 
directory is incremented by one. Finally, MAKE-KNOWN returns 
to its caller (itself or some external caller). 

When there is a call to make the root known a special 
procedure in MAKE-KNOWN is used. Special data is entered into 
the KSTE for the root without searching the directory hier­
archy or.attempting to find a branch for it. Its segment 
number and code are returned in the normal manner. 
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When a link entry is found, then MAKE-KNOWN is called with 
the pathname found in the link and the flow continues in 
the normal manner. 

If an error is encountered such as not finding a directory 
on return from a recursive call to MAKE-KNOWN, then an error 
code is set into the code argument and a null segment number 
is returned. 
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Figure 2. MAKE-KNOWN 
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4. MAKING UNKNOWN 

Normally, a user will experience no difficulty because of the 
limited size of the KST. However, since there are many more 
segments in the directory hierarchy than there are KSTE's, 
a user might wish to free a KSTE (making a segment unknown) 
so that it can be reused. In any case, certain precautions 
must be taken before a segment can be made unlmown. 

First, the directory switch in the KSTE is checked. If the 
segment to be made unknown is a directory then its inferior 
count is checked. A directory cannot be made unknown if any 
of its inferior segments are known. This convention is 
stated in Chapter 2. It arises from our desire to be able 
to take segment faults on segments used in tQe Multics 
supervisor and not to distinguish between supervisor and 
user segments. 

Second, segment control must be notified that a segment is 
being made unknown since the KST is prepared for and used by 
segment control. This is done by a special call to segment 
control. Upon receiving this call, segment control will 
disconnect the SDW associated with this segment in this 
process (see Chapter 5). When segment control has been 
notified the segment can be made unknown by freeing the 
area where its name(s) was stored and threading the KSTE 
onto a free KSTE list. The parent directory's KSTE inferior 
count is then decremented by one and the operation of making 
s~gment unknown is complete. 

Finally, a few words must be said about the danger of making 
a segment unknown and reusing its KSTE. Addresses are pre­
pared using segment numbers. All of these addresses cannot 
be found when a KSTE is to be freed. If such an address is 
used after the KSTE has been reused, it will cause informa­
tion in the corresponding KSTE to be used without further 
checking. Incorrect segment referencing would result. 
Therefore, a segment should not be made unknown and its 
KSTE reused unless it is assured that no address which 
references that segment will be used again during the 
existence of the process. 
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5. INITIAL REQUIREMENTS 

The question may be asked, "how much apparatus is required to 
make a segment known for the first time in a process?" 

The data bases used are the directory hierarchy and theKST. 
The procedures used are MAKE-KNOWN and the procedures called 
by it. It has been shown that all directories including the 
root directory may be made known. However, the root directory 
requires special code. The KST must already have a segment 
number in order to make a segment known so the KST cannot be 
made known in this way. Some of the modules called by MAKE­
KNOWN could possibly themselves be made known, however, special 
codes would be necessary to do this. Therefore, MAKE-KNOWN 
and all of the procedures used by it as well as the KST for 
a process are assigned segment numbers before the process . 
begins executing as a part of process initialization. 

6. OTHER MULTICS CONSIDERATIONS 

The fact that some segments must have segment numbers before 
MAKE-KNOWN can be executed gives a clue to the Multics 
implementation of segment numbers. There is a group of 
segments in the Multics supervisor which must have segment 
numbers assigned in a process before the process can begin 
execution. These are called hardcore segments. They have no 
&STEf s • The actual segment numbers assigned to segments when 
they are made known are the KSTE index plus the highest 
segment number assigned to a bardcore segment. 
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Chapter 5 

SEGMENT FAULT HANDLING 

1. INTRODUcrION 

In the Multics Operating System, each process address· space 
is divided into 64K-word items called segments. A segment 
enters a process address space by being "made known to the 
Process" (see Chapter 4). In the course of being made 
known, a segment has a per-process segment number assigned 
to it. A correspondence is established between this segment 
number and the segment's pathname and attributes in a per­
process table called the "Known Segment Table". Once in a 
process address space, a segment may be referred to by seg­
ment number. 

Whenever a 'process references memory, the 645 hardware 
references "per process" and "per system" registers. The 
"per process" information in the hardware accessing path 
is recorded in a Descriptor Segment which contains one word, 
called a Segment Descriptor Word (SDW), pel." segment number. 
The function of the Nth SDW is to point to the Page Table 
(see Chapter 6) of the segment which is known to the process 
as segment IN and to specify the process access rights with 
respect to that segment. . 

The Page Table of a segment (and various other data required 
by the paging mechanism of Multics) must be stored in core. 
Since there are more segments in Multics than places in core 
for Page Tables, not all segments can have Page Tables at the 
same time. When a segment has a·Page Table, the segment is 
called ACTIVE. At other times it is called INACTIVE. 

An SDW can, of course, contain the address of a segment's 
Page Table only if the segment is active. If an SDW contains 
the address .of the segment's Page Table and specifies the 
process access and the segment's length, then the SDW 
is called CONNECTED; otherwise, it is called FAULTED or 
DISCONNECTED. A faulted SDW in fact contains a bit pattern 
which, when encountered by the 645 addressing hardware, 
causes the process to "take a Segment Fault" thereby invok­
ing the Segment Fault Handler. See Figure 1. 
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In view of the above, we may say that: 

The function of the Segment Fault Handler is to provide 
the process with the illusion that all segments known to 
it are active and all SDW's corresponding to known seg­
ments are connected; in short, to render all known seg­
ments directly accessible by segment number. 

Connected 
Page Table 
Address 

Figure 1 • Connected and Disconnected SDW's 

. 2. PREVIEW OF THE SEGMENT FAULT HANDLER (SFH) 

2.1. Procedure 

A segment fault occurs when a process attempts to access a 
"target" segment via a faulted SDW. The Segment Fault 
Handler (SFH), called to repair the faulted SDW, must obtain 
the address of the Page Table for the "target" segment as 
well as the process access rights to the segment and store 
the information in the SDW. 

To do this, the SFH must: 

a. Check the validity of the segment number given to the 
SFH. It may have been incorrectly generated. 

b. Use the segment number of the "target" segment (which 
the SFH is given) to find a pOinter to the segment's 
branch. This "branch pointer" was put' into the 
segment's entry in the process Known Segment Table 
(KST) when the segment was made known. (See Chapter 
4) • 

c. Check the branch to see if it in fact corresponds to 
the "target" segment. This check is necessary due 
to the dynamic nature of the File System in which 
segments can, at any time, be created and destroyed 
or moved from one directory to another. In checking 
the branch, a unique identifier (UID) is used which 
was stored in the segment's KST entry when the seg­
ment was made known. 
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d. Look in the branch, which contains the segment's 
attributes, to find the process access to the seg­
ment and to locate the segment's Page Table.· 

e. Repair the SDW and return. 

2.2. Data: Active Segment Table (AST) 

We have stated tha,t Page Tables and other data describing 
active segments must be stored in core, a requirement imposed 
by the Page Fault Handler (see Chapter 6). Use is, therefore, 
made of a system-wide table, the Active Segment Table (AST), 
which resides permanently in core. The AST is a linear array 
containing one entry per active segment. An active segment's 
AST Entry (ASTE) contains the segment's Page Table and other 
paging data and, as we shall see, other data needed by the 
Segment Fault Handler. 
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Steps (a) through (e) above and the description of the AST 
lead to the picture of the data structures used by the Segment 
Fault Handler and the relations between them shown in Figure 2. 

Descriptor 
Segment 

SDW 

Page Table 

Address 

Segment I 

AST 

ASTE 

Page 
Table 

KST 

KSTE 

-... 

Pointer 

ASTE 

Index 

...... 
" " , , 
/ 

. I , 
I , , 
" ..... 

Directory 

- --

Figure 2. Principal Data Structures Used by the Segment Fault Handler 

2.3. Program of Exposition 

In order to make segment fault handling more easily 
comprehensible, it will be useful to discuss the procedures 
for handling segment faults in three sections corresponding 
to three successively more likely assumptions about the state 
of activity of the segments of the system. 
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These assumptions are: 

1. All segments are active simultaneously. 
2. All segments £!n be active simultaneously. 
3. All segments cannot be active simultaneously. 

3. SEGMENT FAULT HANDLING WHEN ALL SE&"MENTS ARE ACTIVE 

Let us examine the very unlikely case in which all segments 
are active. The Segment Fault Handler (SFH) begins by.find­
ing the "target" segment's KST entry and branch as explained 
in Section 2. Two kinds of errors may happen. First, if no 
segment is "known" by the faulting segment nmnber, then no 
KST entry exists. This error may happen, for example, if a 
memory reference is made via a randomly generated segment 
number. This error is detected through structural details of 
the KST which do not interest us here. 

Second, as mentioned in Section 2, the branch pOinter in the 
KST entry will be incorrect if the "target" segment has been 
destroyed since this process made it known.' To check the 
correctness of the branch pOinter, the SFH compares the unique 
identifier (UID) in the branch with the one in the KST entry. 
If they are the same, then the branch pOinter is alright; 
othel.'Wise, the "target" segment has been destroyed and the 
segment fault cannot be satisfied. 

If the branch pOinter is valid, the SFH gets the process 
access rights to "target" segment and the index of the "target" 
segment's ASTE from the branch. (The branch of an active 
segment must, of course, contain a pOinter to the segment's 
ASTE. The ASTE index is that pointer.) The address of the 
"target" segment's Page Table can be calculated easily from 
the ASTE index. The length of the segment (in pages) can be 
obtained from the ASTE. 

With the table address, the segment length, and the access 
information, the SFH has enough information to correct the 
faulted SDW. The SDW is corrected and the SFH returns. 

4. SEGMENT ACTIVATION 

We wish now to see how segment fault handling must differ if 
it is possible that the "target" segment may not be active. 
We assume that there is room in the AST to make an ASTE for 
any segment. TWo new data structures must be introduced. 

73 



First, a new piece of information must be added to the branch: 
an active switch. This switch indicates whether or not the 
segment is active; i.e., whether the ASTE index in the branch 
may be used. Second, a new data structure must be added to the 
AST - a list of available entries. 

This structure is called the AST free list. In this section, 
we assume that the AST free list is never-exhausted. 

Now let us look at segment fault handling. 
has been accessed, the SFH must inspect the 
If the segment is active, the processing is 
above. If the segment is not active, it is 
activate it, that is, to: 

Onc ~ the branch ' 
"active switch". 
as described 
necessary to 

1. Find an entry in the AST free list. Remove it from 
the AST free list. 

2. Set the ASTE index in the branch to point to this 
entry. 

3. Copy the paging data from the branch to the ASTE. 
Initialize the Page Table in the ASTE. 

4. Set the branch's "active switch" on. 

After activating the segment, the SFH proceeds as before to 
repair the faulted SDW. 

5. SEGMENT DEACTIVATION 

Let us now consider the real case in which the size of the 
AST. limits the number of segments which can be active 
simultaneously. The discussion of this case is sufficiently 
long that we will divide it into two parts. In this section 
we will introduce the pieces of the design. In the follow-
ing section we will put the pieces together. 

The assumption that all segments cannot be active simultaneously 
implies that it may sometimes be necessary to activate a seg­
ment at a time when the AST is "full"; i.e., there are no ASTE's 
in the AST free list. When this happens it becomes necessary 
to: 

a. Choose an active segment to be deactivated. 
b. Deactivate this segment. 
c. Return the ASTE of the deactivated segment to the 

AST free list. 
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Let us defer discussion of how an active segment is chosen 
for deactivation until the mechanism of deactivation has it­
self been discussed. 

Deactivation of a segment may be characterized as doing all 
things necessary to disassociate the segmentis ASTE from 
the segment, thus permitting the ASTE to be used to activate 
another segment. It is important to note at this pOint that 
the segment being deactivated is not necessarily "known" to 
the process performing the deactivation. Many of the details 
of the design arise from this fact. Section 9 discusses the 
matter further. 

Deactivation is done in the follOWing three steps: 

i page removal - forcing the segment's pages out of 
core. 

ii disconnection - seeing that all SDW's associated 
with this segment are faulted. 

iii restoring the branch - moving back to the branch 
the (presumably altered) values of those attributes 
of the segment which were moved to the ASTE when 
the segment was activated. 

'5 • 1. Page Remova I 

A Page Table for a segment can only exist when the segment is 
active; when the segment is deactivated, the Page Table is 
destroyed. Thus, one function of deactivation is to remove 
the segment's pages from core and to inhibit the Page Fault 
Handler from bringing any of its pages into core during 
deactivation. To accomplish this, the SFH calls a special 
entry of the paging module which removes the s'egment' s re­
maining pages fr~ core and causes page faults (in other 
processes) on pages of this segment to be transformed into 
segment faults on this segment~ 

5.2. Disconnection 

Disconnection obviously amounts to faulting all SDW's 
connected to the segment at the time of deactivation. There 
may, of course, be many other SDW's associated with the 
segment, but as they are not connected they must (already)' 
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be faulted. In order to make disconnection possible, a 
data structure must be associated with each segment which 
lists all the SDW's connected to the segment. Since this 
connection !!!S can only be non-empty when the segment is 
active, it can be stored in the segment's ASTE and need 
never appear in the segment's branch. When a segment is 
activated, the connection list is empty. Whenever an 
SDW is connected to a segment, a pointer to the SDW is 
added to the segment's connection list. When the segment 
is deactivated, each of the SDW's on the associated connec­
tion list is faulted. 

5.3. Restoring the Branch 

After page removal and disconnection have been done, all 
that remains of deactivation is to restore the segment's 
branch. It is necessary to move back to the segment's 
branch those attributes which were moved from the branch 
to the ASTE when. the segment was activated (which may have 
changed during the period of activation) and to reset the 
"active switch". In order to manipulate the segment's branch 
in this way, the SFH makes use of another data element in 
the ASTE of each segment, a pOinter to the segment's branch. 
This branch pOinter must be stored in the ASTE when the seg­
ment is activated so that it can be used again when the seg­
ment is deactivated. 

5.4. A Note on Certain Necessarily Active Segments 

The reader can easily convince himself that the main path 
through the SFH (excluding the deactivation path) can only 
be viable if certain segments are perpetually active: for 
example, all segments required by the Page Fault Handler, 
the SFH procedure itself, the per-process KST segment, etc. 
To permit such segments to be held active, another item is 
added to the ASTE, the entry hold switch, which may be set 
to prevent the deactivation of the segment. We will consider 
these matters further in Section 8 on "Recursion snd 
Initialization." Here we wish to consider a different 
problem. 
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During deactivation of a segment the SFH must access all the 
descriptor segments which contain SDW's connected to the 
segment being deactivated; it must fault these SDW's. The 
SFH must also access the segment's branch. In order to assure 
that these segments may be accessed easily, the following 
rules are established: 

Rule 1 - A Descriptor Segment containing a connected 
SDW must be active. 

Rule 2 - A Directory Segmen~ with an active daughter 
segment must be active. 

Rule 1 may be enforced by use of the entry hold switch. The 
enforcing of Rule 2 is more complicated. A new data element 

.is associated with each active segment, the inferior count. 
This is a count of the active daughter segments of the given 
segment. (For non-directory segments the inferior count is 
necessarily zero.) When a segment is activated, its own 
inferior count is set to zero and one is added to its. parent's 
inferior count. When a segment is deactivated, one is sub­
tracted from its parent's inferior count. Needless to say, 
no segment is chosen for deactivation whose inferior count 
is non-zero. To enable the deactivation machinery to access 
the parent directory's inferior count, each ASTE also con­
tains another data element: the parent's ASTE index. 

5.5. The Deactivation Algorithm 

We have now presented all of the data structures needed to 
permit deactivation of a segment. Let us now discuss the 
"deactivation algorithm" which must choose the segment to be 
deactivated. To facilitate deactivation, another list is 
introduced, the AST used list, which contains all of the 
ASTE's corresponding to active segments. 

In order to keep deactivation economical, the deactivation 
algorithm chooses segments with as few pages in core as 
possible. In practice, it is very often able to choose a 
segment with E2 pages in core. The algorithm essentially 
passes through the AST used list as many times as necessary; 
on the Nth pass it looks for a segment with fewer than N 
pages in core whose inferior count and entry hold switch are 
both zero. When such a segment is found, the search stops and 
the segment'is deactivated. 
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6. FLOW OF THE COMPLETE SEGMENT FAULT HANDLER 

Correct Segment Fault 

1. Given segment number, find KST entry. 
Check validity of KST entry. 
In KST entry, obtain pOinter to the branch. 
Check validity of the branch pOinter by comparing 
the KST entry's and the branch's version of the 
unique identifier. 

2. If the "active switch" is set, go to Step 8. 

Activate the Segment 

3. Inspect the free list. If there is a free ASTE, 
then go to Step 7. 

Obtain a Free Entry 

Choose a Segment to be Deactivated 

4. Pass through the AST used list as many times as 
necessary; on the Nth pass look for a segment 
having fewer than N pages in core with inferior count 
and entry hold switch equal to zero. When a segment 
is found in this way, go on to Step 5. 

Deactivate the Segment 

5. Remove the pages of the segment from core by a 
call to the paging module. 
Disconnect all of the SDW's listed in the segment's 
connection list. 
Use the ASTE's branch pOinter to move the segment's 
attributes back to the segment's branch. 
Reset the "active switch" in the branch. 
Use the parent's ~ index in the ASTE to locate 
the parentis inferior count, from which subtract 
one. 

6. Remove this entry from the AST used list. 
Put it in the AST free list. 
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Activate the Segment 

7. Move the ASTE from the AST free list to the AST 
used list. 
Move certain attributes from the branch to the 
ASTE. 
Set the branch's ASTE index and set the "active 
switch". 
Initialize the Page Table in the ASTE. 
Set the segment's inferior count to zero. 
Set the segment's entry hold switch to zero. 
Find the parent's ASTE; store its index in the 
segment's ASTE. '. 
Add one to the parent's inferior count. 

Connect the SDW 

8. Get the page table address and segment length 
from the ASTE. 
Get the access field for the SDW by inspecting the 
Access Control List in the branch. 
Store the page table address, segment length, and 
access field in the SDW. Reset the Segment Fault 
Flag. 

9. Return. 

7. DATA USED IN SEGMENT FAULT HANDLING 

7.1. AST (Active Segment Table) 

The AST consists of a Header and a linearly indexed array 
of AST Entries of which there is one per active segment. 
The AST Header contains: 

a. The head of the AST free list. 
b. The head of the AST used list. 
c. The branch of the root directory. 

Each AST Entry contains, in addition to forward and 
backward pOinters used in threading the entries into the 
various lists, 

a. Paging data 
1. The PAGE TABLE. 
2. The SEGMENT MAP. 
3. Various other paging data. 
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b. Data used in choosing a segment for deactivation. 
1. The INFERIOR COUNT. If the segment is a 

directory segment, the inferior count is the 
number of its active daughter segments. 
Otherwise it is zero. 

2. The NUMBER OF PAGES IN CORE (a counter maintained 
by the paging mechanism). 

3. The ENTRY HOLD SWITCH. When set, this switch 
makes the segment ineligible for deactivation. 

c. Data required to deactivate the segment. 
1. BRANCH-POINTER 

i ASTE index of the segment's parent directory. 
ii Offset of the segment's branch within the 

parent directory. 

2. CONNECTION LIST, "the list of SDW's which point 
to the Page Table of this segment and which 
must be faulted before the segment can be 
deactivated. Each element of the list consists 
of: 

i ASTE index of the descriptor segment containing 
the SOW. 

ii Offset within that descriptor segment of the 
SDW (i.e., the segment number within that 
process of this segment). 

7.2. SOW <Segment Descriptor Word) 

A Descriptor Segment is a linear array whose entries are 
words called SDW's (Segment Descriptor Words). The index 
of an SDW in a process Descriptor Segment in the segment 
number, in that process, of the segment associated with 
the SDW. An SOW consists of: 

a. The ACCESS FIELD 
1. If zero, this field causes a segment fault 

to occur upon an attempted access via this 
SDW. In this case, items (b) and (c) below 
are meaningless. 
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2. If non-zero, this field indicates the accessing 
permission that this process has toward the 
segment associated with this SDW (e.g., "read", 
"write", or "execute" permission). 

b. The PAGE TABLE ADDRESS of the associated segment. 

c. The SEGMENT LENGTH (in pages) of the associated 
segment. 

7.3. KST (Known Segment Table) 
7.4. Branch 
7.5. Page Table, Segment Map 

8. RECURSION AND INITIALIZATION 

See Chapter 4. 
See Chapter 3. 
See Chapter 6. 

The phrase "recursive segment fault" refers to a segment 
fault taken by the SFH. In Section 5, we asked the reader 
to believe that segment faults must not be permitted to 
occur on certain segments; e.g., the.AST. In this section, 
we shall show why this is so and how such segment faults 
can be avoided. We shall then consider the recursive 
segment faults which £!B be permitted and will conclude 
with an example. 

We may regard each segment fault "taken by the user" as the 
first in a sequence of segment faults, the rest of which 
are taken "recursively" by the SFH in handling the first 
one. It is a design requirement that all such sequences 
be finite. This implies that the last segment fault in the 
sequence must be handled entirely by segments which are 
active and connected in the process handling the faults. 
Thus, certain segments must be active and connected in a 
process before the first segment fault is taken. 

Which segments must be active? Certainly all segments must 
be active and connected which are necessarily called in the 
course of handling every segment fault. In the present 
design these comprise the AST, KST, SFH procedure and of 
course all segments required by the paging mechanism (since 
the SFH references segments which do not reside permanently 
in core and may take page faults). 
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Mu1tics initialization must make all of these segments, 
except the per-process KST, active before the first pro­
cess is created. Process creation and initialization must 
create and activate the KST and connect all of these seg­
ments before the first segment fault is taken. These 
segments may be kept active in various ways. Per system 
segments like the AST and SFH procedure may be kept active 
by leaving their ASTE's off the AST used list. The per 
user KST may be kept active by setting the entry hold switch 
in its ASTE while the process itself is active. 

The only segments referenced by the SFH beside those 
discussed above are directories, the segments which contain 
branches. The only way to avoid recursive segment faults 
altogether is to require that every directory, any daughter 
segment of which is known to any process, be active and 
appropriately connected. This idea must be rejected as 
impractical. Hence, recursive segment faults must be 
reckoned with. 

We shall give an example of a sequence of recursive segment 
faults at the end of this section. We shall show there 
that all such sequences can be handled if a segment fault 
on the root directory can be handled. Let us prepare for 
the example by considering the root directory more closely. 

Every segment in Multics except the root directory has a 
branch in a directory; the branch contains the attributes 
of the segment. Since no directory is superior to the 
root, it cannot have a branch in a directory. Nevertheless, 
if the root is to be accessed, its attributes will have to 
be recorded somewhere. Since we normally think of a branch 
as the locus of a segment's attributes, we may provide for 
the root's accessibility by providing it with a branch. 
This branch must itself be accessible; since no process can 
take a segment fault on the AST, it is sufficient that: 

The root directory has a branch which resides in the 
AST segment. 
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Whenever the root directory is "made known" in a process, 
a pOinter to this branch is placed in its KST entry. 
Segment faults on the root can obviously be handled in 
the normal way whether or not the root is active at the 
time of the segment fault. 

NOTE: In' practice, a more efficient (if less straightforward) 
SFH may be obtained by handling segment faults on the 
root with special code. If this is done, the "branch" 
of the root disappears from the AST and, by way of 
trade-off, the SFH procedure segment gets longer. 

We have noted that the only segment fault that the SFH 
can take while handling a segment fault for a segment is a 
fault on that segment's parent directory. Thus, every sequence 
of recursive segment faults corresponds to a path up the 
directory tree structure toward the root directory. Let us 
now discuss the canonical example of a seq~ence of recursive 
segment faults. 

8.1. Example of Recursion 

Let us assume that a segment fault is taken for a segment 
with pathname 

root> dl > d2 > ••• > dN > seg 

Let us further assume that the process SDW's for all the 
directories "root", "dl", etc., are faulted. Early in 
handling the fault on "seg", _the SFH references the branch 
of "seg" which causes a segment fault on "dN". The corres­
ponding reference to the branch of "dN" causes a fault on 
"dN-l" and so it goes until there is a fault on "root". 
Since the branch of "root" lies in the AST which is active 
and connected, this segment fault can be handled without 
another segment fault. With the "root" connected, the 
SFH can go on with handling the fault on "dl". When "dl" 
has been connected, "d2" can be handled, and so on. Thus, 
the only recursive segment fault permitted in the present 
design is that on a segment's parent; and we have shown 
that the recursion terminates due to the special treatment 
of the root directory. 
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9. SPECIAL ADDRESSING IN DEACTIVATION 

9.1. Basic Problem 

The deactivation of a segment requires the accessing of a 
directory (the segment's parent) and of one or more 
Descriptor Segments (those containing SDW's connected to 
the segment). 

I~ is very unlikely that these segments are all "known" to 
the process performing the deactivation. How, then, can 
the branch pOinter and the SOW pOinters in the connection 
list in the ASTE be implemented? 

9.2. The Multics Solution 

In the present design, the parents of active segments and 
all descriptor segments connected to active segments are 
required to be active. This requirement enables the use of 
the ASTE index as segment specifier for all of the special 
addresses needed in deactivation. Thus, the branch pOinter 
and SDW pOinters are all of the form: 

(segment's ASTE index, offset) 

Let us look in detail at the trick by which one of these 
special addresses is used, say the "branch-pointer". A 
special segment number is reserved in each process for use 
by the SFH. To access the branch during deactivation, the 
SFH uses the branch's ASTE index to compute the branch's 
page table address. This page table address and read and 
write access permissions are then stored in the SDW which 
corresponds to the reserved segment number in the deacti­
vating process Descriptor Segment. A pOinter using the 
segment number and the offset given in the "branch-pointer" 
is then constructed and used to access the branch through 
the Just manufactured SDW. 

In effect, the reserved segment number and the corresponding 
SDW constitute.a "window" through which a process can refer­
ence a segment not formally known to it. 

10. SPECIAL ENTRIES OF THE SEGMENT FAULT HANDLER 

There are four functions ·related to segment fault handling 
which are accomplished by special entries of the SFH. 
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10.1. Obtaining a Free ASTE 

Some procedures need to be able to obtain a free ASTE in 
order to activate a segment "by hand". For example, the 
process creation procedure must make up an active descriptor 
segment for a new processe A special entry in the SFH is 
provided which obtains a free ASTE (whether from the AST 
free list ·or by deact'ivation), detaches it from the free 
list, does not thread it into the AST used list, and returns 
its index to the caller. 

10.2. Setting Faults for All Users of a Segment 

Certain procedures wish to fault all SDW's connected to a 
segment. For example, the Access Control Module will do 
this if the access control data in the segment's branch has 
been modified in certain ways. These faults are set by 
using the part of the deactivation code which disconnects 
SDW's. 

10.3. Deactivating a Segment 

Certain procedures must be able to deactivate a segment, for 
example, the procedure which destroys a segment. Deacti va­
tion is accomplished by using the deactivation path in the 
SFH. 

10.4. Disconnecting an SOW from a Segment 

Some procedures, for example, the procedure which makes a 
segment "unknown" to a process, need to be able to disconnect 
an SDW from a segment. Code in a special entry of the SFH 
is provided which faults the SDW and removes it from the 
list of SDW's connected to the segment. 

11. CONCLUDING REMARKS 

The" functions of the Segment Fault Handler (SFH) are: 

• to make (the Page Tables of) all segments which are 
"known" to a process accessible to the pr9cess by 
segment number. 

• to multiplex the system's relatively few AST Entries 
(or, equivalently, Page Tables) among all of the 
segments "known" to all of the processes executing 
in the system. 
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To accomplish these functions, the SFH must establish 
(activate) and dis-establish (deactivate) the pageability 
of segments and must establish (connect) and dis-establish 
(disconnect) the use of such pageability by processes. It 
is instructive to separate these four functions into two 
groups. 

11.1. Connection and Activation - Process Oriented 
Functions 

The primary tasks in handling a segment fault, connection 
and activation, are done on a demand basis according to the 
needs of a process. These functions are performed using 
only data se"gments "known" to the process - the per-process 
KST and Descriptor Segment, the directories superior to the 
"target" segment, and the AST segment. In this part of 
handling a segment fault, two types of error may occur. 
The segment number may (a) not correspond to a segment 
"known" to the process, or (b) may correspond to a segment 
which has been destroyed. In either case, the process is 
trying to access a segment which does not exist and should 
note the error. For all of these reasons, we say that the 
connection and activation aspects of segment fault handling 
are "process oriented functions"; i.e., that the SFH in 
performing them is acting "for the process". 

11.2. Disconnection and Deactivation - System Oriented 
Ftmctions 

The secondary tasks of segment fault handling, disconnection 
and deactivation, are undertaken by the 8FH during activation 
only when the state of the system demands it,the relevant 
state of the system being the emptiness of the AST free list. 
The choosing of the segment to be deactivated is independent 
of the process in which the SFH is executing. Deacti~~tion 
and disconnection of a segment require the SFH to access 
segments not (necessarily) "known" to the process executing 
the SFH: the parent directory of the segment being deacti­
vated and the Descriptor Segments containing SDW's connected 
to the segment. The method by which these segments are 
accessed by the SFH (see Section 9) is clearly independent 
of the address space of the process in which the SFH is 
executing. 
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(The number of directory segments and Descriptor 
Segments in the system may well exceed 218. All of 
these segments are potentially referenceable by any 
process which is executing in the SFH deactivation 
pathe) 

No errors are detected (or caused) during deactivation and 
disconnection and no per-process errors affect their'opera­
tion. For these reasons, we say that the deactivation and 
disconnection aspects of segment fault handling are "system 
oriented functions", i.e., that the SFH in performing them 
is acting "for the system". 
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Chapter 6 

PAGE FAULT HANDLING 

1. INTRODUCTION 

In the Multics Operating System, segments are composed of 
l024-word·contiguous blocks of data called pagess At a 
given time, any number of pages of a segment may be located 
in core memory, but since that memory is limited in si~e, 
the hardware blocks of l024-word core registers must be 
multiplexed among 'the many pages of data and procedures which 
may be referenced. It is the purpose of this chapter to 
detail the structure of the mechanism which accomplishes 
(block or) page multiplexing in Multics. 

The page multiplexing strategy is similar in broad outline 
to the page table multiplexing performed by the segment fault 
handling module (see Chapter 5). However, there are differ-
ences in detail which arise in great part due to the 645 
hardware used in page fault handling. Page fault handling 
is closely bOlDld to the various registers and logic functions 
which the 645 processor can perform; indeed the major purpose 
of the paging.modules is to create the proper environment 
for hardware access to pages. This access is made through 
several registers, but the one which uniquely concerns page 
multiplexing is the page table word (or PTW). This 36-bit 
register, located in the page table for a segment, contains 
all of the information used by the 645 processor to deal 
with a page. The proper maintenance of a PTW is page 
multiplexing's most basic job. 

As a vehicle for carrying the description of page multiplexing, 
there is a convenient set of machine configurations whose 
physical capabilities obviate the need for various parts of 
the page multiplexing function. Considered in order of increas­
ing likelihood they are: 

1) Infinite core storage and no secondary storage, 
2) Infinite core storage, with secondary storage, and 
3) Finite core storage with secondary storage. 

Although no multiplexing is required in the first cwo cases, 
we shall describe the Multics page fault handling strategy 
as it would be performed on each of these three configurations, 
since in this way the real strategy can be described incre­
mentally. 
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Before discussing the handling of page faults in detail, 
we shall describe briefly the environment which allows a 
page fault to occur. It is important to remember that a 
page fault cannot occur if there 1s no page table for the 
segment in question - for a page fault is only generated 
by hardware reference to a page table. The table is 
provided for a segment by the segment fault handler when it 
activates the segment. Also at this time, the Active Segment 
Table Entry for the segment is initialized by the segment 
fault handler with all the information needed by the page 
fault handler. Finally, the page table is set with page 
faults for each page of the segment, so that the page fault 
handler will be invoked upon first reference to each page. 
These actions prepare the environment for page fault handling. 

2. PAGE FAULT HANDLING ON A MACHINE WITH INFINITE CORE 
AND NO SECONDARY STORAGE 

When a process attempts to reference a page whose PTW has 
a fault set, the paging modules are invoked to remove the 
fault and insert the proper core location of ~he page into 
the PTW. The first action, upon receiving notification of 
the fault, is to locate the page being sought. From the 
PTW address, the address of the Active Segment Table Entry 
(ASTE) for the segment can be found. The ASTE contains the 
segment map (the list of page locations) which yields the 
actual address of the page (as described in Chapter 7). 
The segment map is actually split between the ASTE and the 
page table; however, we will ignore this complication for 
the moment. 

Since we are now assuming a configuration involving only 
core, the address must be that of a 1024-word block of 
core. Hence, the paging module need only insert the 
proper core address into the PTW and fill in the page 
fault field of the PTW to Drevent further 082e faults on 
this page. Thereafter, references to the pag~ through the 
PTW would proceed by hardware without interruption. 

The repairing of a page fault in a PTW need be done only 
once in the environment we are assuming, because all Segment 
Descriptor Words (SDW's) for a segment point to the same 
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page table and, therefore, to the same PTW for each page. 
If, however, a segment were deactivated (its page table 
destroyed), then before further references could be made 
to the segment, the page faults set by segment activation 
would have to be satisfied in the way described above. 
Page locations being c.onstant assures us that the informa-
tion stored in a PTW is valid as long as the page table is. 

3. THE ADDITION OF SECONDARY STORAGE 

If we introduce secondary storage into our ~chine 
configuration, we add two problems to the page fault 
handling mechanism. Since the location of a page can now 
be outside of core, there is a need to transport that page 
from its resident device; and also, we must find an appro­
priate core block into which to put it. The page fault path 
becomes slightly longer and necessitates referencing a new 
data base - the core map free list. . For, in order to pick 
an appropriat~ block of core for the page, we must avoid 
those blocks currently in use. Since we are postulating 
infinite core, we need not be concerned with depleting the 
free page supply. The functions required in this configura­
tion are: 

1) Receive the fault, go from the PTW to the ASTE to 
get the segment map and determine the secondary 
storage location of the page. 

2) Access the core map free list to obtain a l024-word 
block and delete it from the list, and 

3) call a Device Interface Module (DIM) to retrieve the 
page and deposit it in the newly acquired block of 
storage. 

The DIM's functions in transporting pages are to queue 
requests for pages, to make the device perform as effi­
ciently as possible in satisfying the requests, to monitor 
the device operation, and to notify the page fault handler 
when input has been completed. 
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The notification function is performed in such a way as to 
allow the process which took the page fault to wait for the 
page without wasting processor time or making unnecessary 
memory accesses. The page fault handler in the faulting 
process, after calling the DIM to initiate page transpor­
tation, calls the System Traffic Controller to wait for the 
page. At some later time, when the page has been imported, 
the Traffic Controller will be called to inform the waiting 
process that it may continue its computation. 

4. RESTRICTION IN CORE SIZE 

When we restrict our configuration to have a firiite amount 
of core, we reach the true Multics case where multiplexing 
is necessary. In addition to the functions previously 
described, the page multiplexor must also be responsible 
for finding a free block of core when all blocks are being 
used. This condition requires a selection algorithm for 
removing pages from core to secondary storage; and this 
algorithm requires a new data base - the core map used block 
list. 

The two lists of core blocks - free and used - are implemented 
by means of an entire core map. The core map consists of one 
core map entry (CME) for each l024-word block of core. Each 
entry serviced by the page fault handler is threaded into one 
of the two queues - free or used - depending upon its current 
status, but the entry and its physical block remain associa­
ted throughout any change in status. The free list is 
singly threaded, since only its first element 1.s ever used, 
but the used list is circularly threaded to allow continuous 
searching. 

The actual information contained in a CME can be deduced from 
the part it plays in the removal algorithm. Clearly 'it must 
allow one to obtain the absolute core location of the 
beginning of the l024-word block. But a pOinter to the PTW 
for the page currently residing in the block is also 
necess8TY if the block is being used, since the removal of 
the page means that access to it should be inhibited by 
setting a page fault in the PTW which controls it. 
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The sequence of actions for handling a page fault in the 
liDdted core environment is: 

1) As before, get the fault, find the device address 
from the segment map in the ASTE. 

2) Access the core map free list to obtain a free 
block: if successful, place a pOinter to the· 
PI'W in the CME selected, tmthread the CME from 
the free list, flag it as being used for rIo and 
thread it into the used list. (Continue at Step 
-6) • 

3) If the free list is empty, perform the replenishment 
algorithm to find a block in which the referenced 
page can be put. 

The replenishment algorithm is driven by a bit in 
the·PI'W called the "Page has been used" or PHU bit. 
This bit is set by the 645 hardware whenever the 
page is accessed. ~eIl a page must be removed, 
the used block list of the core map is accessed 
and the entries are examined in the order of their 
threading, starting where the last search stopped. 
Each entry is examined to determine whether the 
PHU bit has been turned on. Each page's PHU bit is 
turned on by the software when the page is brought 
to core, but after each examination during the 
removal algorithm the page fault handler turns it 
off. Therefore, the effective criterion for removal 
is whether the page has been used since it was last 
examined for removal. (For further information 
about the philosophy of this algorithm, see "A 
paging experiment with the Multics System", F. J. 
Corbato, Multics Repository Document MOI04.) 

4) Having fotmd a candidate for removal, set a page 
fault in the PTW, determine the device address 
from the ASTE and call the DIM to transport the 
page to secondary storage. 
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In order to avoid 1.mnecessary page transportation, 
the 645 hardware maintains a "page has been modified" 
bit in each PTW which is turned on only if the page 
has been written into. Unless this bit is on, the 
page need not be returned to secondary storage. 

5) In contrast to the page important strategy, do not 
wait for this page to be moved, but continue to 
select candidates for removal and call the DIM to 
transport them until a block appears on the free 
list. This block will have been placed on the free 
list by the DIM when a page has been completely 
transported. 

6) Using the device address developed in step 1), call 
the DDM to import the desired page into the newly 
acquired block of core. 

7) Call the Traffic Controller to wait for the page 
to arrive. 

8) Since the PTW's page fault switch and CHE's I/O 
busy switch are reset by the process which called 
the Traffic Controller to awaken the waiting pro­
cess, the page fault has been entirely repaired 
and the page fault handler may return. 

Figure I is a gross flow chart of the page fault handling 
strategy as described in Section 4. Special pOints of 
interest are: 

1) Any call to the DIM, whether for reading or writing, 
causes all transactions to be observed and the com­
pleted ones to be "posted". The posting process 
for a write operation consists of threading the 
CME out of the used list and into the free list. 
For a read, posting requires that the page fault 
switch be reset and tb~t any processes which might 
be waiting for the page to be imported be informed 
of its arrival (through the Traffic Controller). 

2) The call to the Traffic Controller to wait for a 
page to be read is only made for reasons of 
efficiency and plays no logical part in the page 
fault handling strategy. 
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Figure 1. The Page Fault Handler 
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5. RECAPITULATION OF PAGE FAULT DATA BASE USE 

Having followed the basic paths through the page fault 
handler, we have seen all of the data bases used by page 
multiplexing. However, not all of the items in these data 
bases have been specified, only those portions significant 
to a general understanding of page fault handling. This 
section describes all of the data items referenced by the 
page multiplexor and indicates their uses. (See also 
Figures 2 and 3). 

The most basic page multiplexing data base for a segment 
is the page table; which contains the page table words for 
each page. Page tables in Multics are allocated at system 
initialization time in a permanently core-resident system­
wide segment, the System Segment Table (see Figure 3). 
Hence, references to a page table are made through the 
normal segment addressing mechanism - although no page 
faults are ever taken on such references. Each PTW has 
six types of data used by the page fault handler. These 
types can be divided further into hardware referenced data 
and solely sofbware referenced. Both types are important 
to page multiplexing. 

The set of hardware referenced data in a PTW consists of 
three items - the page fault switch, the core address 
field and the page has been modified/used bits. Whenever 
the core address is not meaningful, the page fault switch 
is set to inhibit processor attempts to access through 
that address. Since the address field is not used when 
the page fault switch is on, the page multiplexor makes 
use of the storage thus provided by placing part of the 
device address in that field. Logically, the entire address 
can be considered to be in the Active Segment Table Entry 
as mentioned earlier, but to save storage space, the 
"segment map entry" for a,page is stored in the core address 
field of its PTW when the page is not in core. ·The PHM and 
PHU bits, set' by the hardware and reset by the software 
when appropriate, have already been described. 

The data in thePrW which is only referenced by software 
consists of OwO flags used by the I/O handlers and a bit 
which designates "w:'-red down" status. The latter is 
interpreted by the page fault handler during the page 
removal algorithm to mean that this page may not be removed. 
The two former flags are: one to signify that there is I/O 
pending for this page (and whether read or write) and another 
which is set if an I/O error is encolmtered while transport­
ing the page. 
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Notes for Figur.e 2. 

A. To bring in a page from secondary storage, start with the PTW 
which took the fault. Go to the ASTE to get 'the Device 1.0. 
Use the core map free list to get a suit~ble CME. Fill in the 
pointer to the PTW and transfer the file map to the CME, then 
read in the page and remove the fault. 

B. To remove a page from core, start with the CME picked from the 
core map used list. Go to the PTW by the pointer and set a 
fault; thence to the ASTE for the Device 1.0. to complete the 
secondary address. Move the file map back to the PTW. If the 
page has been modified, write it out. 

NOTE: It may seem that MUltics has two copies of a data page when the 
data is in core. Logically there is only one and we could 
easily free the storage used by the old page each time it was 
read in. There are three reasons of efficiency why we do not 
do so. 

1) Assigning and reassigning secondary storage blocks takes 
processor time. 

2) If the page to be removed from core has not been modified and 
we have retained the old copy, we do not need to write it out. 

l) If the system were to crash, losing core but not secondary 
storage contents, we would still have a (possibly obsolete) 
copy of the data. 
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Figure 3. The System Segment Table 
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A fourth item of information, the address of the segment's 
ASTE, although not contained in the PTW, is implicit in its 
address; the ASTE's (which are fixed in length) are stored 
in an array parallel to the page tables, thereby yielding 
the ASTE address from the page table (or P1W) address. This 
information is necessary to provide the rest of the device 
address for a page when reading it in from s~condary storage. 

Another data base important to page fault handling is the 
Active Segment Table Entry (ASTE) for a segment. The ASTE 
contains more data than is used by the page multiplexor, but 
that portion which is used consists of the device I.D., the 
page fault count, a "no page fault" switch, the number of 
pages in core for the segment and the current segment length, 
in pages. Of these, only the device I.D. (see Chapter 7) is 
crucial to page fault handling - the others are measurements 
,for tuning purposes and aids to Segment Activation and 
Deactivation which can 'be best provided by the page_multi­
plexor. Additional comment is made on these items in Section 
6 of this paper. 

The third, and last data base used by the page fault handler 
is the core map. The core map is also allocated in the System 
Segment Table whose header contains pOinters to the head of 
the free list and to the next entry to be examined on the 
used list. Each core map entry (CME) has two threading 
pointers: the entries in the free list use only the "forward" 
pOinter, since entries are removed from the top and added 
there, while the used list employs both "forward" and 
"backward" pOinters to allow insertion of an entry between 
any Cwo other entries. A CME on the free list has no other 
useful information contained in it. The core location of 
the block controlled by a CME is implicit in its position 
within the core-map, since as many CME's are allocated as 
there are l024-word blocks of core. We note that not all 
CHE's are put on the free ··or used threads - only those 
blocks to be serviced by the page fault handler. All 
permanently core-residen~ pages of core are represented by 
CHE's which are not pOinted to by entries on one of the 
threads. In this way, the removal algorithm need not 
explicitly check entries which could never be removed. 
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Two other items are kept in the eME for a page only if the 
CME is on the used list. First, the segment map entry for 
the page, which was kept in the PTW while the page resided 
in secondary storage, is transferred to the OME before the 
core address is inserted into the PTW. Clearly the core 
address could be kept in this space in the eME when it was 
threaded on the free list if the information were not 
implicitly available. Second, a pOinter to the PTW is 
maintained to permit the segment map entry to be replaced 
and the page fault switch to be reset when the page is 
removed from core. 

We are now in a position to understand the initial 
requirements of the page fault handler in order that it 
be able to function. First, the core map entries for 
multiplexible blocks must all be threaded onto the free 
list. Then, for each segment which is to be referenced, 
each page table word must be filled in with a segment map 
entry and page fault switch setting; and also the Active 
Segment Table Entry must be initialized in its Device I.D. 
and other entries. This work would allow a page fault to 
be serviced for non-page-fault-handling procedures. 

But what of the page multiplexor itself? May it use the 
same page fault mechanism which it provides? Not entirely. 
While selected parts of the data and procedures of the 
multiplexor could be transportable, at least one path 
through the multiplexor must be guaranteed page-fault free 
to prevent infinite recursion. In Multics, the choice has 
been made to prevent any page faults whatever from occurring 
during the handling of a page fault. To this end, all of 
the page fault handling procedures are permanently core­
resident, and for this reason the ASTE is used by the page 
multiplexor. For although all of the necessary information 
about the pages of a segment can be found in the branch for 
that segment, branches are not wired down and are, therefore, 
susceptible to page faults. Hence, that part of the infor­
mation kept in the branch which must be referenced by the 
page£ault handler 1s transferred to the ASTE at segment 
activation time, to keep it in a permanently core-resident 
data base. This choice perDdts Multics to follow a more 
predictable and shorter path while handling page faults. 
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6. ADDITIONAL REMARKS 

Several important functions of the page multiplexor have 
been excluded from the previous discussion since they are 
not necessary to allow page multiplexing. Some of these 
functions receive additional coverage in chapters writ,ten 
to explicate the areas in which they are used, but their 
appearance in thi,s paper is germaine to a better under­
standing of the page fault handler's importance in Multics. 

An especially complex area in any multiplexed computing 
system is that of synchronization of processes. Empirical 
evidence has led Multics to the path of least complexity where 
possible. An example is the synchronization of multiple 
processes, all of which may desire the handling of a page 
fault at the same time. To prevent interference between the 
various processes in handling common data, only one process 
is allowed to execute in the page multiplexor at a time. 
Other processes wishing to deal with a page fault are 
forced to wait their turn. 

It is also necessary to synchronize the physical devices 
which transport pages and the processes which have requested 
the transportation. As we have seen, there is no problem 
of synchrony when writing pages. Any process which needs 
to have a write operation completed in order to continue its 
computation simply loops on the core map free list and calls 
to the DIM until a block appears in the free list. When 
reading pages, synchrony is established through communication 
with the Traffic Controller - both to wait and to notify. 
The only remaining problem is to ensure that the DIM is 
called subsequent to the completion of every read so that 
notification can be performed. 

The DIM is normally called by the next process to take a 
page fault. But if the DIM is not called in a sufficiently 
long time (this could happen if each process were waiting for 
a pagel), the secondary storage devices cause interrupts 
which are directed to a special process whose sole purpose 
is to wait for these interrupts and call the DIM in response 
to them (see Chapter 8). 
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Another function performed by the page multiplexor is 
the assignment of blocks of secondary storage (see 
Chapter 7). No secondary storage is assigned to a page 
until it has been referenced. A special device address 
(the "null" address) is assigned to all pages of a 
segment which have never been referenced. When such an 
address is encountered by the page fault handler, it 
creates a page of zeroes in core rather than reading in 
data. Ideally, then, the page need not be written out 
until the'page-has-been-modified (PHM) bit has been turned 
on by the hardware. In fact, the Multics page fault handler 
causes the assignment of a secondary storage address at 
first reference and sets the PHM bit to force write-out of 
the page. This sometimes results in storing a page of 
zeroes in secondary storage but eliminates a check for "null" 
addresses in the page removal path. 

Actual device storage handling is incorporated into a 
separate module whose' algorithm for assigning storage on a 
particular device can be easily changed to accommodate any 
system discipline (such as directory segments on Drum and 
non-directory segments on Disk). 

The movement of data from one device to another is also 
accomplished in the page multiplexor. Chapter 7 describes 
the function in detail, but ,the basic mechanism used is 
an additional item in the ASTE for a segment which can 
specify a "move device I.D." and a bit in the segment map 
entry which specifies whether or not the page (which must 
be in core) has already been moved. Using these items, a 
segment can be moved by setting the move device to I.D. when 
activating the segment. Then, whenever a page is brought 
to and subsequently removed from core, it is rewritten onto 
the new device. 

The final functional area incorporated into the p.ge 
multiplexing modules is that of services to the segment 
activation and deactivation module. A special set of 
entry-points allows individual page manipulation on demand~ 
Specifically, the functions are: 

1) To read or write a page from/to secondary storage. 

2) To "wire" or "unwire" a page by setting the "wired 
down" bit in the PTW which allows a page to be 
skipped by the removal algorithm (this function is 
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used only for temporary wiring). Pages are 
"wired" (made permanently core-resident) by 
leaving their CME's off the core-map used list. 

3) To truncate a segment by destroying all pages 
beyond a certain page and returning'their 
secondary storage to the free pool~ 

4) To cleanup all traces of a segment in preparation 
for its deactivation. This function consists 
of exporting the entire segment (removing all of 
its p~ges) and waiting until the pages have all 
been exported to their resident secondary storage. 

7. THE HISTORY OF THE MULTICS PAGE MULTIPLEXOR 

The entire Multics file system has gone through two 
incarnations. The original,version carried the Multics 
penchant for elaborate original design to some lengths and 
was successfully 'implemented. Its performance and amenability 
to debugging left something to be desired. Therefore, this 
second attempt was made, using the knowledge gained from the 
first to avoid areas of difficult implementation and slow 
execution. 

There were two principal changes respecting paging. First, 
a single page size of l024-words was chosen, replacing the 
previous strategy in which pages of two sizes, l024-words 
and 64-words, were allowed. This simplification resulted in 
the eliDdnation of elegant but time-consuming algorithms f~r 
page removal and for "change-making" and coalescing free 
blocks in core and.in secondary ,storage. Second, a single 
segment size of 64 pages (implying a single page table size 
of 64 words) was chosen, replacing the previous strategy 
in which segments could vary in size from 64 to 256 pages 
(always in units of 64 pages). This simplification resulted 
in a greatly simplified Page Table-Active Segment Table 
Entry arrangement to the benefit of all the modules involved: 
page control, segment control, core control. As a result of 
these changes, the present implementation has avoided several 
lengthy computations in the most frequently used path in 
page fault handling, achieving a great advantage in average 
execution time over the former implementation. 
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Chapter 7 

SECONDARY STORAGE MANAGEMENT " 

1. INTRODUCTION 

Secondary storage management cuts across many parts of 
the Mu1tics virtual memory system. In this chapter, we 
shall try to minimize repetition by discussing only those 
pOints which have not been discussed elsewhere. 

We shall discuss the assignment of a segment to a secondary" 
storage device and the assignment to its pages of blocks of 
secondary storage. We shall also discuss "moving" a segment 
from one secondary storage device to another, i.e., changing 
a segment's assigned device. 

2. ORGANIZATION OF SECONDARY STORAGE 

The physical devices used for storing information in Multics-­
core, disks, drums--are divided into 1024-word "blocks" 
corresponding to the division of segments into l024-word 
"pages". Addresses of blocks in secondary storage are given 
as pairs: 

block address = (device identifier, block number) 

For the mOst part, the "device identifier" specifies a 
particular physical device. It is possible, however, that 
one device identifier specif"ies part of a large device or 
a collection of small devices. We should, therefore, use 
the phrase "logical device identifier." 

Each (logical) device of secondary storage has an associated 
"Device Map" which records which of its blocks are assigned 
to pages of segments and which-are free. The "Device Map" 
contains one bit per block of the device. This bit is set 
to "1" to indicate that the block is free and to "0" to 
indicate that the block is assigned to a page. 

To assign a block on a device to a page, it suffices to 
search the appropriate Device Map for a bit set to "1", note 
the corresponding block number, and reset the "l""to "0". 
To free a block (when a page is destroyed, for instance) it 
$uffices to reset the corresponding bit in the Device Map 
from "0" to "1". 
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3. SECONDARY STORAGE OF SEGMENTS AND PAGES 

3.1. Strategy for Secondary Storage of Segments and 
Pages 

3.1.1. Seament AssilQrnent. Devices of secondary storage 
are not equivalent. Due to differences of latency and 
transmission timings and to differences in the accessing 
code, some devices prove to be faster than others. For 
example, in the present Multics configuration, the drum is 
faster than the disk. Because of this non-uniformity, each 
segment is assigned to a single secondary device: segments 
expected to be used often are assigned to fast devices, 
segments expected to be used more rarely are relegated to 
slower devices. (When we say that a segment is assigned to 
a device, we mean that the pages of the segment are to be 
stored in blocks of that device.) 

A segment is assigned toa device of secondary storage when 
the segment is created. The algorithm by which segments 'are 
initially assigned to devices of secondary storage is called 
the "Multi-Level Storage Algorithm". The phrase "Multi­
Level" emphasizes the differences in device characteristics. 
A discussion of the Multi-Level Storage Algorithm is beyond 
the scope of this paper. We shall examine only the 
mechanisms used to execute this algorithm's decisions. 

3.1.2. Page Assignment. When a segment is created, its 
64 pages are also, in a sense, created. But before a page 
is referenced for the first time, it cannot contain any 
information. 

Although a few segments may ultimately contain 64 information­
filled pages, ~any segments never contain more than a few 
such pages. It would be wasteful to tie up blocks of secon­
dary storage for pages that contain no information and may 
never be referenced. Therefore, pages are assigned blocks 
in secondary storage only after they have been referenced. 

3.2. Data Relating to Secondary Storage of Segments 
and Pages 
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3.2.1. Segment Map. We may now specify the "Segment Map", 
that attribute of a segment which tells where the pages of 
the segment are s·tored in secondary storage. The Segment 
Map consists of: 

e. device identifier 
• 64 block numbers 

3.2.2. The "Null" Block. A special block number, called the 
"null" block number, is used to indicate that a page has 
not been assigned a block of secondary storage. We often 
say of such a page that it is assigned the "the null block". 
The' null block may be regarded as a page of zeros. 

3.3. Procedural Implications- of Secondary Storage 
Strategy 

3.3.1. Creating a Segment. When a segment is created, the 
Multi-Level Storage Algorithm is used to assign the segment 
to a device of-secondary storage. The segment's 64 pages, 
which have not been referenced, are all assigned the "null" 
block. The device identifier and the 64 "null tt block 
numbers are all recorded in thesegmentts Segment Map. 

3.3.2. Bringing a Page to Core. When a page is referenced 
for the first time, the Page Fault Handler-(PFH) is asked 
to "bring to core" a page which is "stored" in the "null" 
block. The PFH handles such a request by: 

• assigning a block to the page from the segment's 
assigned device. 

• zeroing out the block in core which is to contain 
the n~ page. 

• setting the "page has been modified" switch in the 
page's PTW to make sure that the page will ulti­
mately be- moved to its newly assigned block. 

3.3.3. Removing a Page from Core. When the PFH wishes to 
use a block of core presently occupied by a page, it inspects 
that page's "page has been modified" switch. If the page 
has been modified, then it must be written into its assigned 
block in secondary storage. If the page has not been modi­
fied, then it may be overwritten directly since it is equi­
valent to the information in the assigned block of secondary 
storage.-
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4. MOVING A SEGMENT FROM ONE SECONDARY STORAGE DEVICE 
TO ANOTHER 

4.1. Strategy for Moving a Segment 

It is occasionally necessary to "move" a segment from one 
secondary storage device to another. A "move" is necessary, 
for instance, if a secondary storage device becomes full 
or if a segment's usage changes substantially. The decision 
to re-assign a segment to a new device (to "move" a segment) 
is made by the same Multi-Level Storage Algorithm which 
assigned the segment to a device at segment creation time. 

4.2. The Segment Map Revised to Permit "Moves If 

The Segment Map must be revised if it is to be possible to 
move a segment from one device to another. The Segment Map 
must indicate not only the device to which the segment is 
assigned (in the case of a move, the segment is assigned to 
the new device) but also the device to which the segment 
was assigned. During the move, information must also be 
stored to show to which· of these two devices the segment's 
64 pages are assigned. Last, the Segment Map must show 
whether or not a "move" is in process. 

The revised Segment Map has the form: 

• device identifier (or, in case of a move, 
"old device identifier") 

• new device identifier 

• 64 block numbers 
• 64 "moved" switches 

(non-zero only if a move is 
in progress; thus acts also 
as a "move in progress" switch) 

(a page's "moved" switch shows 
to which of the two devices the 
pages are assigned; the "moved" 
switch is meaningful only when 
a "move" is in progress) 

4.3. Procedural Inplications of "Moves" 
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4.3.1. Bringing a Page to Core. When a page is brought to 
core, it must be brought from its presently-assigned block 
in secondary storage. The Page Fault Handler (PFH), by 
inspecting the "new device identifier", "old device 
identifier", and the page's "moved" switch, can determine 
the device to which the page is assigned. The page's secon­
dary storage address then consists of the device identifier. 
so caleulated and the page's block number. " 

In the case ofa "null" block assignment, the page referenced 
for the first time is assigned to a block of the new device. 

4.3.2. Removing a Page·from Core. When the PFH removes a 
page from core it must see that the page is removed to a 
block in the correct device. This meanstha t : 

(a) If the segment is being moved from one secondary 
storage device to another, and 

. (b) if the page's "moved" swttch·shows that the page 
has NOT been moved; then the PFH"must 

(c) release the block assigned to the page on the 
"old" device, 

(d) assign a block to the page on the "new" device, 

(e) record the new assignment in the Segment Map, 
setting the "moved" switch, and 

(f) move the page from core to its newly assigned 
block in secondary storage. 

4.3.3. Deactivating a Segment - Completing a Change of Devices. 
We know that when a segment is deactivated, the Segment Fault 
Handler calls a special entry of the paging module to force 
the segment's remaining pages out of core. Before it removes 
any pages from core, this procedure checks to see if the 
segment being deactivated is being moved from one device to 
another. If the segment is being moved, code is executed 
which brings to core those pages of the segment which are 
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stored in blocks of the "old" device (that is, pages which 
have non-"null" block numbers and whose "moved" switches say 
"not moved".) When this has been done, the job of removing 
the segment's pages from core is performed. The pages are 
removed from core as described in the previous paragraph. 
Thus, at the end of the page removal, all of the segment's 
pages are necessarily assigned to blocks of the "new" device. 

When the page removal procedure returns to the Segment 
Fault Handler, the latter updates the Segment Map to show 
the correct device identifier, a zero new device identifier, 
and all "moved" switches showing "not moved". With this, 
the move is complete; we see that deactivation completes a 
"move" • 

4.3.4. Performing a "Move". We may now describe the procedure 
which the Multi-Level Storage Algorithm uses to move a segment 
from one device to another. The "new-device" identifier 1s 
placed in the Segment Map·of the segment (in the branch if the 
segment is not active, in the ASTE if the segment is active). 
If the segment is not active, it is made active. Finally, 
the segment is deactivated by means of a call to a special 
entry of the Segment Fault Handler. By supplying a "new­
device" and activating the segment, the "move" is initiated. 
By forcing the deactivation of the segment, the "move" is 
terminated, as described in the previous paragraph. 
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Chapter 8 

DEVICE INTERFACE MODULES 

1. INTRODUCTION 

The responsibility ,of the Device Interface Module (DIM) 
respecting paging is (a) to initiate transfers of pages 
between blocks of core and blocks on secondary storage 
devices as requested by the Page Control Module, and (b) 
to notify the Page Control Module upon the completion'of 
these transfers. In general, there is a considerable time 
lapse between the performance of these two functions. ' 

Page Control uses the DIM by (a) initiating a transfer and 
then (b) waiting to be notified by the DIM of the completion 
of the transfer. The DIM must, therefore, perform its 
notification function with respect to a given transfer 
without being called by the process which requested that 
transfer. ' 

Notification of completed transfers is usually performed 
by the D~ just after the latest transfer is initiated. 
The DIM inspects its data bases, determines which transfers 
(by whatever process requested) have been completed, and 
performs the necessary notifications. It then returns 
to its caller which may in tum wait for notification. 

It may happen that all processes are waiting and, thus, that 
no process will (by taking a page fault) invoke the D~. 
Therefore, as a precaution, the DIM arranges to have an 
interrupt sent to the processor by the secondary storage 
device sometime after it completes its last pending transfer. 
This interrupt will cause a special process to be wakened 
which will call the D~ and cause the required notifications 
to be performed. The DeW (see below) which causes this 
interrupt also disconnects the controller; we call it the 
"last" DeW. 

2. GENERALITIES 

2.1. DeW's 

We are concerned with the I/O transactions of transferring 
a page from a block of core to a block of secondary storage 
(or vice ver~a) involving the GE-645 computer and its peri­
pheral tmits. The Page Control Module "requests" such a 
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transfer by a call to the DIM of the appropriate device. 
The DIM passes the request along to the device·controller 
via a special word, called a DCW - Data Control Word. 
A new contains the following information of interest to 
us in this paper: 

- op-code 

- core address 

- device address 

- disconnect bit 

- interrupt bit 

2.2. DCW Lists 

read, write, or no-op (on ~ome 
devices) 

causes the device to disconnect 
after satisfying the request 
specified in the op-code 

causes the controller to send an 
interrupt to the processor after 
the request has been satisfied 

Each device controller is driven by a list of DeW's which 
it runs through, consecutively, interpreting the new's, 
until it encounters a new with a disconnect bit set after 
satisfying which the controller disconnects itself and 
waits to be reconnected. The new lists are all regarded as 
circular in the sense that the controller accesses the new's 
consecutively, modulo some N. The new lists are finite in 
the sense that the D~'s always store a new with a disconnect 
bit somewhere in each DCW list. This DeW, whose interrupt 
hit is also set, is called the "last" new. 
2.3. Status Queues 

While the device controllers obtain their instructions from 
DCW lists, they record the status of requested transfers 
in special "status queues". A word in the status queue 
is associated with a DOW and written into by the controller 
after the transfer specified by the DCW is begun. The 
status word will show whether the action begun was completed, 
whether there was a parity error, etc. 

112 



2.4. Function of the DIM 

The DIM for a particular device interfaces with the device 
through the two data bases discussed above, the DCW lists 
and the status queues. The DIM interfaces with the user 
(the Page Control Module, in our case) as follows: 

- ~n being called,· the DIM sets up appropriate DeW's, 
... makes sure that the interrupt and disconnect bits 

are set in the proper DeW, and 
- connects the controller if necessary. 

After acting for the particular user, as above, the DTIM 

- inspects the status queue, 
"posts" all completed transfers in the associated 
Page Table Words, . 

- "notifies" the processes waiting for the completed 
transfers ~ and 

- cleans up the SDW list and status queue as required. 

2.5 Normal Operation 

It is expected that enough page faults will occur that 
"requests" for page transfers will, in general, occur while 
each DeW list is non-empty. This means that the controller 
has not yet reached the "last" DeW with its disconnect and 
interrupt bits set. The DTIM accordingly establishes new 
DCW's (as indicated above) and then advances the "last" 
Dew, that is, resets the disconnect and interrupt bits in 
the DOW in which they are presently set and sets them instead 
in the now appropriate DeW, further along on the circular DeW 
list. (We will discuss in detail below just which DeW is 
"last".) In this way, it is expected that the controller 
will run for a long time without reaching the "end" of the 
new list and will consequently remain connected and will 
not have to send interrupts. Since the purpose of the 
interruPts would be to force the invocation of the DIM to 
"notice" the completion of transfers, and since the DIM will 
be called quite often as part of paging, there is no need 
for interrupts. The interrupt associated with the "last" 
DeW takes care of the unlikely case that all processes are 
waiting for page I/O and that no more calls to the DIM from 
the "user" will occur. In this case, the interrupt will 
force a special process to be wakened which will call the 
D~ and so enable the nottcing of completed transfers, 
their "posting", and the associated notification. 
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3.1. Drum Configuration 

The drum contains M*N blocks of 1024 words as shown in Figure 1. 
As the mth row of blocks comes under the read/write head, any of the 
N blocks in the row can become part of a transfer. 

Re'ld/Write Head 

Figure 1. Drum Configuration 

3.2. Drum's DeW List Configuration 

The drum DIM-maintains a circular new list for the drum of 
length L*M where L»N. Each new contains the following 
infonnation: 

(read, write, or no-op), core address, m, n, ("last" 
or "not-last") 

where "last" means the disconnect and interrupt bits are 
set (in one DeW only), m is the row number, and n is the 
number of the block in the row. The drum's DeW list is 
initialized with ill .2! the m's ~, .!n order, so that the 
Dew list consists of L one-entry-per-row coverings of the 
drum. As the drum rotate~ and as the controller advances 
through the DeW list, the number of the drum's "presenting" 
row equals the row number of the DCW then pOinted at by the 
controller. For this reason, the drum DeW may have a no-op 
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op-code to specify that no transfer is to occur involving 
a block on the mth row at this time. See Figure 2. It 
should be emphasized that this L-fold "covering" of the 
drum by the DeW li~t and the consequent parallelism 
bebween the drum's physical position and the words of the 
new list is not required by the hardware but is a software 
construct (of some beauty.) 

pOinter 
( .... 8) 

Drum Physical Position (Rowa8) 

Alternative View of Drum 
new List as L-fold Covering 

Figure 2. Drum DeW List Configuration 

3.3. The "last" Dew 

Whenever it is called J the drum DIM resets the "last" DeW 
to be the new last passed by the controller, that iS J the 
new for which the drum controller has just completed the 
recording of final status. This guarantees that the drum 
controller will never generate an interrupt (and disconnect) 
until L revolutions of the drum after the last call to the 
drum DIM. The drum DIM maintains a pOinter to the "last" 
DeW and, upon being called, erases the "last" infonnation 
from the presently "last" DeW and writes it into the Dew 
just passed by (as explained above), resetting the "last" 
pOinter. 
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3.4. Dew List MalJlsement for the Drum 

When a transfer request is sent to the drum DIM, a pair 
(m,n) is sent as. drum block address. The DnM examines the 
DCW list and finds that unique DCW in the L*M DCW's of the 
list which (a) will first be in the controller's. path,' 
(b) has a no-op op-code, and (c) has the given valu~ of 
m in its row number slot. There are L new t s wi th row nwnber 
m and it is expected that at least one of them is no-ope 
(If all L of them are in real use, the DTIM loops, waiting 
for one of them to come free.) When such a DOW is found, 
the DTIM writes the appropriate value of n into the DCW 
and sets the appropriate op-codc (read or write). The 
DIM then goes through the usual steps of setting the "last" 
position correctly, observing, posting, and notifying for 
completed transactions. One part of cleaning up after com­
pleted transactions is to reset to "no-op" the op-code of 
DeW's whose requests have been serviced. 

It is expected that the drum controller will, in general, 
continuously run through the circular'DCW list, the "last" 
DCW nmning alC)ng L revolutions behind it, with a ba'nd of 
non-null new's just in front of the current controller posi­
tion in the list. See Figure 3. 

ItLast" DeW 

~l /. Requests which are Completed but not 
~l ~./ "Posted" 

.... , \'" f .. ~.-:: .~ Cont:ro~ler's DeW Pointer 
",,1, i.'· h-- Requests not yet Serviced 

Figure 3. Density of Non-Null l)CWis in Drum i s DeW List 
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4. .!!.!§! 

4.1. Disk Configuration 

The "disk" consi,sts of 1 platters each with one movable 
I/O head. The I/O head for any platter may be moved to any 
of J tracks. . Each track has K blocks which come under the 
Ilo head as the disk rotates. A disk DOW specified: 

(read or write), core address, i, j, k, ("last" or 
"not-last") 

4.2. Disk DCW List Configuration 

The disk's DCW list: is circular only in the sense that its 
DOW's are accessed by the controller consecutively modulo 
the list length. new's are put on the list in the order 
received; there are no no-op DCW's, and the last new to be 
put on the list is always the "last" DeW in the sense that 
it contains the disconnect and interrupt bits. 

4.3. Expected Operation 

The Disk DeW list is ordered randomly in the sense that 
requests are put on the list as received and hence without 
regard for the position of the disk (k) or of the I arm 
positions j(i). This technique is chosen because of the 
large amount of processing that would otherwise have to be 
done to keep track of the arm positions, the value of k, 
and the list of unsatisfied DCW's; and because of the low 
probability that such processing would pay off. 

No interrupt and disconnect will occur as long as there is 
at least one request in the queue. Since no reuse of old 
DCW's is made (as in the drum's case), there is no need, 
in cleaning up, to erase· the contents of the DCW's of 
completed requests. 
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B. Access Control to the Multics Virtual l1emory 
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INTROllJCTION 

An important trend in the design of large computer 
systems is the inclusion of hardware and software for 
the sharing of information, both procedure and data. 
Thus, the concept of pure, re-entrant procedure has lost 
its novelty and the sharing of data, as in multiuser 
information retrieval systems, has become commonplaceo 
The introduction of sharing into large systems has, how­
ever, brought the difficult problem of access control 
into the realm of the computer system. The comparatively 
easy problem of protecting the supervisor in a batch 
environment has grown into the complex task of permitting 
the flexible sharing of information between system and 
user and between user and user. 

The MUltics access control system has been described in 
a number of places with a number of purposes. Graham3 
discusses the fundamental reasoning behind the cho!ce of 
the Multics ringed access control system; OrganicK dis­
cusses the details of the implementation and use of this 
system; and the MUltics System Programmers' Manual goes 
into even greater detail on implementation. The purpose 
of the present paper is not to duplicate any of the ex­
cellent material already"available but rather to high­
light certain aspects of the Multics ringed access control 
system which are thought to be of particular interest to 
system programmers. 

In this paper we shall develop the ides of the ringed 
access control system as an approximation of access con­
trol conditioned on the identity of the proc2dure in 
execution, as suggested by Evans and Leclerc ; we shall 
describe "ringed hardware" to support the ringed access 
control system; we shall show how this "ri.nged· hardware" 
is simulated on the 645 processor; and we shall discuss 
at some length the software mechanisms which are implied 
by the concept of "ring". 

This paper was written in conjunction with, and lOfically 
follows, another paper, The MUltics Virtual Memory • 
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Chapter 1 

ACCESS CONTROL PHIU>SOPHY 

In the ttlltics virtual memorY7 the segment is the unit 
of information to which access is controlled. In fact, 
the.possib:i.11ty of controlling access to shared infor­
mation was a principal justification fO.r designing a 
segmented memory system. In MUltics, every segment is 
directly addressable and it is, therefore, necessary, 
upon each attempted memory access, for the accessing 
hardware to answer the question: 

Shall this attempted access be permitted? 

The answer to this question, with respect to a given 
segment, is obtained by interpreting a data base associat­
ed with the segment, the segment's "access control attri­
butes". It is the purpose of this chapter to.discuss the 
basiS on which the hardware might go about answering this 
questton, hence, to specify the content of a segment's 
access control attributes. 

We feel that, at the least, a segment's access control 
attributes should indic~te: 

1. !be may access the segment; a segment may 
be accessible to a single user only or 
shared bya number of users. 

2. .h2!f each of these users may acces s the 
segment; distinct users may have distinct 
access rights. 

3. in what circumstances each user may exercise 
hIs-access rights to a segment; a user's 
rights may be made to depend, in some way, 
on what he is doing. 
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User-Name. Let us look at these points in turn. To 
begin with, it is a process executing on'aprocessor 
which attempts to access memory, not a user. For this 
reason, every process has associated with it the name 
(nuser-name ff ) of the user on whose pehalf it is ex­
ecuting; all access rights of the process derive from 
the process' user-name. 

We note that the ,security of an access control mechanism 
depending in this way on the user-name depends strongly 
on the technique by which a process is assigned a user­
name. 

A simple and perhaps sufficient technique for assigning 
user-names to processes is to require each user, when 
he "logs in", to specify a user-name and then give a 
secret password which validates his right to use the 
given user-name. All processes which subsequently act 
for him as a result of this "login" will then do so 
with the authority of the given, validated user-name. 

Access-Mbde. The basic types of memory access are READ, 
WRITE, and EXECUTE. We use the term "access-mode" to 
refer to any combination of these types including the 
null combination. It is clear that a process' access 
rights respecting a segment are at any moment char­
acterizable in an access-mode. 

If a process' access rights were to be independent of 
its activities, then a segmentts access control attributes 
could be recorded in a list of user-name/access-mode 
pairs. A process' right to access a segment in a given 
way would then be deterDdned by (a) whether the process' 
user-name appeared in the segment's list and (b) whether 
the given access type appeared in the co~responding 
access-mode. This system of access control is illustrated 
in Figure 1. The access control mechanism takes as 
arguments the process' user-name, the type of the attempted 
access, and the name of the target segment. It then 
searches the target segment's access control attributes 
list for the given user-name. If it is found, the 
corresponding access-mode is then searched for the given 
access type. The access is permitted only if the user­
name and access type are found. 
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The system of access control just described is 
already quite powerful. It permits a user who has 
created a segment to grant bimself ~and WRITE­
access to it, to store information in the segment, 
and then to give a number of other users READ-access 
to it. He and these others may now read the segment 
whereas he retains forbimself the right to change it. 

1. target segment 
2. user~ 
3. access-type· access-mode, 

obtain target segmen IS 

access control 
attribute list 

-
user-name. access-mo e. 

is -access-type" in 
the associated 
access-mode? 

no 

cause the appropriate 
access violation 
fault to occur 

J 

Target Segment's Access 
Control Attribute List 

Figure 1. Illustrating an Access Control Mechanism 
Depending on User-name and Access-type 
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Circumstance-Dependence of Access Rights. There are two 
reasons why a process' access rights should somehow be 
made to depend on the process' current business. First, 
the problem of error may suggest that access, particular­
ly WRITE-access, to a segment should be lim! ted to de­
bugged procedures or groups of procedures. Second, the 
problem of intentional misuse of a segment may suggest 
that semi-trusted users be forced to access the segment 
via procedures or groups of procedures specifically 
designed for their use. 

As an example of the latter, consider a Management In­
formation System with a data base including individual 
salary information. This data base would generally be 
"readable" by all users of the system; but the less pri­
vileged users would have to "read" the segment via pro­
cedures designed not to disclose individual salaries. 

In the remainder of this chapter we shall take ~or 
granted the dependence of access rights on user-name and 
shall concentrate on finding a good and workable way to 
make a process' access rights to a segment circumstance­
dependent. 

1. ACCESS CONTROL· BY ·PROCEOORE 

The most obvious way to achieve circumstance dependence 
in access control would be to condition a process' access 
rights on the procedure by which the access is attempted. 
A segment's access control at~ributes would then be 
recorded, in effect, in a user-name versus procedure table 
whose entries are access-modes. 

Figure 2 illustrates this system of access control. The 
access control mechanism takes as arguments the'process' 
user-name, the type of attempted access, the name of the 
procedure in execution~ and the name of the taraet sea­
mente The target segment's access control attribute -
table is then searched for an entry corresponding to the 
given user-name and procedure. If the entry is found, 
the corresponding access-mode is then searched for the 
given access type. The access is permitted only if an 
entry with a suitable access-mode is found. 
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This type of control would permit access control as 
illustrated in the following example: 

user-l "owns" data segment D and procedure P and 
8ivesuser-2 WRITE-access to D only when executing 
P and EXECUTE-access to P only when executing in 
procedure P (and, of course, P itself). 

'1'h1s implies that user-2 can only write in D by calling 
P from P (to which user-2 has access from some source 
other ~han user-l). 

target seament 
• ~ser-name 

access-type 
procedure 

obt. i n ta. raet segmen 's 
ceess control - - - - -
ttribute table 

. no 

no 

"'" 

user-name1 
... 

~ 

.... user:.,.-name j 
. 

..... 

, 

,.- ~ G)' G) 
~ ... 
::J ~ ~ I" G) 
0" 0 o ! 0 
L. ! ~ Q 

I ~w 

I .... 
". 

", 

~ ~- -'-

L~ --' 
". 

, 

is "access-type" in 
the corresponding 
access-mode? " 

.......... ...-. -- .,., 

_______ .:-.:- =i ... _&_c_c_es_s_-nl_o_d ... e .... ik.;..l, 

yes 

permit the 
access 

no 
Targ~t Segmentts Access 
Control· Attribute Table 

cause the appropriate 
access violation 
fault to occur 

Figure 2. Illustrating an Access Control Mechanism 
Depending on User-name, Access-type, and 
Procedure 
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2 • ACCESS CONTROL BY SET 

The idea of conditioning access rights on the proce~ure­
in-execution has been proposed by Evans and Leclerc and 
is an idea that occurs to many system programmers at 
some point when they are struggling with difficult access 
control problems. We would recommend this technique were 
it not for some difficulties which render it infeasible. 
The principal hindrances to the conditioning of access 
rights on the procedure-in-execution are: 

• no hardware presently exists which would perudt 
this type of access control to be practiced in 
any but an interpretive mode 

• too much effort and space must be expended in 
constructing and updating each segment's table 
of access control attributes 

• too much must be foreseen: This technique requires 
knowledge of all of the uses to which each segment 
may legitimately be put. 

A natural idea for approximating the procedure-in­
execution strategy is based on grouping related procedure 
segments into "sets" and basing access rights to segments 
on the identity of the set to which the procedure 
attempting the access belongs. 

There is no reason, by the way, to suppose that these 
sets of procedures would be disjoint; indeed, service 
procedures such as PL/l runtime routines would probably 
be included in every set. 

Access control by procedure-set appears to have two advan­
tages over access control by procedure. First, each seg­
ment would have a somewhat smaller table of access control 
attributes, a practical system presumably having fewer sets 
than procedures in sets. Second, updating the per-segment 
access control attributes tables should be easier, since 
adding another procedure to a set would mean revising the 
definition of the set, not amending the access control 
attribute tables of a large number of segments. 

128 



Figure 3 illustrates access control based on set-in­
execution. The form of a segment's access control at­
tributes and the interpretation of these attributes by 
the access control mechanism are just as in access con· 
trol by procedure, as described in Section 1 above, 
except that "set" replaces "procedure" wherever it 
occurs. 

The concept of "sets" introduces a number of interesting 
problems. Given that each procedure is potentially an 
element of several sets, and stipulating that a change 
of set can only occur upon a change of procedure (i.e., 
upon a call or return), how shall the access control 
mechanism determdne to which set to change (if any) 
upon each transition between procedures? How shall the 
composition (membership) of sets be initially defined 
and by what mechanism shall the composition of sets 
be changed? Shall the composition of sets be determined 
in a system-wide way or per-user or per-project? And 
so on. 

We have introduced this conce'pt of "sets" of procedures 
in order t9 make the definition of "rings" (see. below) 
less abrupt and also to put the concept of "rings" in 
perspective. 

3. ACCESS CONTROL BY RING 

The implementation of an access control strategy based 
on sets, as described above, is judged infeasible due 
to the difficulty of defining sets, of unambiguously 
defining all transitions between sets, etc. It is use­
ful to define a restricted theory which produces the 
more useful concept of "rings". 

We use the term "rings" to refer to "sets" (as described 
above) to which access rights to all segments are 
assigned i.n such a way that the sets can unambiguously 
by ordered by increasing power or privilege. Precisely, 
we say that a collection of !!!! is a collection of 
rings if. the sets can be numbered 0, l, 2, ••• in such 
a way that the possS'~"sion by a particular user of an 
access right to a segment in set k implies the pos­
session by that user of that segment for all sets j, 
j<k. 
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1. target segment 
2. user-name 
3. access-type 

. 4. set 
obtain target segmen 's 
access control - - - - - . 
attribute table 

is "access-type" in 
the corresponding 
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Target Segment's Access 
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cause the appropriate 
access violation 
fault to occur 

Figure 3. Illustrating an Access Control Mechanism 
Depending on User-name, Access-type, and 
Set 
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A corollary of this definition is that a user's 
access rights to a segment can in part be expressed 
as an access-mode and a triple of ring numbers -
r(READ), r(WRITE), and r(EXECUTE) - indicating that 
a given access type, X, if present in the access-mode, 
is to. be available to the user in the rings O-r(X), 
inclusive. We shall defer to the next c.hapter con­
sideration of how a process changes from one ring ·to 
another. 

Figure 4 illustrates access control base on the ring 
in which the process is executing. The essential 
point to notice is that a segment's access control 
attributes can be very concisely recorded. The 
interpretation of the access control attributes is as 
discussed in the preceding paragraph. 

A few comments about rings may be in order. First, 
the introduction of rings greatly simplifies the 
recording of a segment's access control attributes, 
as indicated above. Second, the fact that rings are 
ordered removes the ambiguity about the changing of 
power that was inherent in the idea of a transition 
between sets: when the processor changes from ring 
i to ring j, j>i implies an increase (or at least no 
decrease) of power or privilege with respect to all 
segments; and j<i implies a decrease. This homo­
geneous and evident change of power with the change 
of ring makes it much easier to think about the 
problems of changing rings than it could ever have 
been to think about the changing of sets. As we 
shall see, and notwithstanding the previous remark, 
most of the difficulty in the fully worked out 
strategy of access control by ring nevertheless 
r,esides in the mechanics of changing rings. 

The following points seem to be necessary elements of 
any access control strategy based on the idea of rings: 

• Attempts by the processor to pass control from 
one ring to another must be supervised by the 
access control mechanism. 
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• The transition from one ring to another can 
only occur upon a call or return; the 
transition (if any) associated with every call 
and return must be unambiguously defined. 

• The concept of a "return" from a call must be 
ext.ended to imply returning to the ring from 
which the call was made. 

3.1 MUltics Terminology; Gates 

In MJltics the term "inward" is used to characterize 
a transition from one ring to a more privileged ring, 
the term "outward" to characterize a transition in 
the other direction. Procedures which may be called 
by "inward" calls are called "gate" procedures since 
they are, in effect, gates through which the processor 
may enter the more privileged ring. We shall see 
that the major difficulties in the design of a ringed 
access control system relate to allowing outer ring 
procedures to use inner ring procedures without 
allowing them to defeat the protection purposes 
responsible for the existence of rings. 
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Chapter 2 

MULTICS RING STRUCTURE PHILOSOPHY 

In Chapter 1 we discussed access control and dev­
eloped the idea of rings in a general (i.e., non­
M.lltics) way· We now turn to Multics itself. In 
this chapter we shall enlarge on the subjects of 
rings and gates, state and justify the full Multics 
ring structure strategy, and show how this strategy 
can be implemented with the aid of suitable hard­
ware. 

In this and the following chapters, the emphasis 
in the definition of "ring" will shift slightly. 
We will think of a ring not as a process state de­
fined by a set of procedures, but rather as an 
abstract process' state in which, by virtue of the 
access control rules of the system, a particular 
set of procedures may be permitted to execute. 
There are 64 rings in MJltics which are conventionally 
numbered, in order of decreasing power, from 0 to 63. 

1. THE PRELIMINARY STRATEGY 

A preliminary (and conceptually useful) idea for the 
use of rings is based on specifying a user's access 
rights to a given segment with an access-mode, a 
single ring number "r", and a gate-switch. 

The Rules. The ring number r, gate-switch and access­
mode are interpreted as follows. (Note that all ring 
intervals are inclusive). 

a. If the user's access-mode contains WRITE, 
the user may, in rings (O,r), write in the 
segment. 

b. If the user's access-mode contains READ, 
the user may, in rings (0, r), read the . 
segment. 
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c. If the user's access-mode contains EXECUTE, 
the 

1. 

2. 

3. 

user may, 

in ring r, call and execute the segment 

in ring R<r, call the segment, switching 
to ring r to execute it 

in ring R<r, but only if the gate-switch 
is set, call the segment, switching to 
ring r to execute it 

Every attempt by the process to 
switch to a lower numbered ring 
in this way must pass a legitimacy 
test imposed by the access control 
mechanism and by the procedure 
being entered. 

d. All ring switching must be done under the 
supervision of the access control mechanism. 

e. The concept of "return from a call" must be 
extended to imply a return to caller's ring. 

The Need for "Gates". Since an "inward" call (i.e., 
a call through a "gate") increases the processor's 
power, it is necessary that a test be made to verify 
that the process has attempted to enter the more 
powerful ring on a legitimate errand. For, if the 
process could freely change its ring so as to increase 
its power, the protection offered by the ring aspect 
of the access control mechanism would be wholly 
illusory. The kind of testing is occasioned by an 
attempted inward ring change will be discussed in 
detail in Chapter 3. As an obvious example, we note 
that a call to a gate segment should be permdtted only 
if the target address is in fact an entry point of 
the segment. 

2 • THE "RING BRACKET" STRATEGY 

The principal difficulty with the "preliminary" 
strategy described above is that procedure segments may 
be executed in one ring only. This means that a pro­
cedure likely to be called in several rings will often 
be called from a ring other than its ring of execution, 
occasioning a great deal of ring changing, an expensive 
business as we shall later see. A second difficulty 
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with the "preliminary" strategy is that users with 
both READ- and WRITE-access rights for a segment have 
these rig~ts equally in all of the rings from ° to r. 
Since the ability to write in a segment is intrinsi­
cally more powerful than the ability to read it, it 
would be desirable to be able to grant write permission 
to a user ina (relatively privileged) subset of the 
rings. in which he may read. As a result of these and 
other considerations, Multics has rejected the "pre­
liminary" strategy for a "ring bracket" strategy. " 

Under the "ring bracket" strategy, a user's access 
rights respecting a given segment are encoded in an 
access-mode and a triple of ring numbers, (rl, r2, r3), 
called the user's "ring brackets" for the given segment. 

The Rules. The ring brackets, (rl, r2, r3), which 
muSt satisfy the relations rl~r2~3, are interpreted as 
follows. (Note that all ring intervals are inclusive). 

a.." If the us"ert s access-mode contains WRITE the 
user may, in rings (O,rl), write in the segment. 

b. If the user's access-mode contains READ the 
user may, in rings (O,r2), read the segment. 

c. If the user's access-mode contains EXECUTE 
the user may, 

1. in rings (rl,r2) call the segment without 
changing ring 

2. in rings (O,rl-l), call the segment, 
Switching to ring rl 

3. in rings (r2+l,r3), call the segment, 
Switching to ring r2 

Every attempt by the process to switch 
to a lower numbered ring in this way 
must pass a legitimacy test imposed by 
the access control mechanism and by the 
procedure being entered. 
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d. All ring switching must be done under the 
supervision of the access control mechanism. 

e. The concept of "return from a call" must be 
extended to imply a return to the caller's 
ring. 

Under these rules we see that a utility routine may 
be given ring-brackets (0,63,63) and so be callable 
in all rings, but never occasion a change of rings 
upon being called. On the other hand, a critical 
system procedure mdght have ring brackets (0,0,0) and 
so be callable and executable only in ring 0. 

We also see that a user who has read and write per­
mission for a data segment may be given ring brackets 
(a,b,b) with a<b so that the domain in which he has 
write permission, rings (O,a) is a relatively pri­
vileged subset of the domain in which he has read 
permission, rings (O,b). These comments show how the 
ring bracket strategy corrects the defects which we 
noticed in the preliminary strategy. 

Ring Changing Calls. Let us now discuss inward and 
outward calls. The "rules" provide that every pro­
cedure segment for which O<rl may be entered via an 
outward call (from ring 0, for instance) and that 
those procedure segments for which r2<r3 are "gate" 
segments and may, therefore, be entered via inward 
calls (from ring r3, for instance). What is the 
nature of such calls? 

An inward call is made when a procedure in an outer 
ring wants to increase the power of its process tem­
porarily in order to do a job requiring such increased 
power. For example, a user procedure may call a 
system procedure in ring 0. The. notion of "inward 
c~ll" brings to mind "the tail wagging the dog", since 
lesser power directs the use of greater power. The 
only segments which can be entered via inward calls 
are, therefore, the "gate" segments. The duty of a 
gate segment, as a gate segment, is to perform a test 
of the legitimacy of the inward call, that is, to see 
that the caller has not, by accident or design, asked 
the gate segment to behave irresponsibly. Whether 
or not a segment is a "gate" for a particular user 
depends on that user's ring brackets and access-mode 
respecting that segment. 
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An outward call is made when a procedure executing 
in an inner ring wants a job done which can (and 
perhaps must) be accomplished with the comparatively 
feebler power of an outer ring. For example, a 
process in Multics initializes itself ( a system 
function) in ring 0 but calls out to a user ring when 
ready 'to do the user's work. In this case, the pro­
cess must callout since a MUltics convention forbids 
user work to be d9ne in ring O. For another example, 
a programmer with a collection of more or less 
debugged procedures may use several rings, keeping 
the more debugged procedures and their data in the 
inner rings so that damage from the other procedures 
will be isolated in the outer rings. If these pro­
cedures call each other freely, outward calls will 
presumably occur. 

3. RECORDING AND RECOVERING ACCESS CONTROL RIGHTS 

In "The Multics Virtual Memory"l, we find that all of 
a segment's attributes of interest to the system are 
stored in the segment's "branch" in a "directory" 
segment. The access control attributes of a segment 
are stored in its ,branch in a variable length table 
called the access-control list (ACL). Each entry of 
a segment's ACL specifies a particular user's access 
rights respecting the segment and is of the form: 

user-name, access-mode, ring brackets 

The procedure responsible for determdning a user's 
access rights for a given segment searches that seg­
ment's ACL for the user's user-name. If it is not 
found, then the user has no rights. If it is found, 
then the user's access rights are deterrndned by the 
associated access-mode and ring brackets. 
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4. "RINGED HARDWARE" 

In "'lbe Mlltics Virtual Memory"l we discussed the 
use of the 645's descriptor segment and Segment 
Descriptor Word (SDW) in providing the Virtual 
Memory. It was noted that part of each SDW was 
reserved for an access control field. In this sec­
tion we shall discuss hardware similar to the 
645's which is consistent with the description 
given in "The M.Jltics Virtual Memory" and which per­
mits a simply described implementation of the MUltics 
ringed access control strategy. In Chapter 4, we 
shall describe the actual 645 hardware and discuss 
the software modifications needed to provide for the 
differences from the hardware described here. 

We propose "ringed hardware" with the following 
features: 

1. The processor has a ring register whose value 
defines the process' ring. This register 
may be changed £y instructions only in ring 0, 
that is, when its value is O. 

2. The SDW's access.control field contains the 
process' access-mode and ring brackets. 

3. The processor has an access control mechanism 
which checks attempted memory accesses 
according to the rules stated in Section 2 
and causes the processor to fault (trap) to 
an appropriate procedure in ring 0 in cases 
where the attempted access cannot be (or 
cannot be directly) performed. Such a 
fault causes the hardware to set the ring 
register to O. 

It should be clear that 'a procedure executing in ring 
n should not be able to change the value of the ring 
register to m, mKn, Simply by executing an instruction. 
It might, however, seem that ring changing should be 
accomplished by the hardware itself, during the 
execution of a transfer instruction, by a simple chang~ 
of the contents of the ring register. We have 
avoided specifying such hardware, for, as we shall 
see in Chapter 3, changing rings is quite complex and 
requires considerable software assistance. In light 
of this fact and considering the hardware organization 
described above, we may describe the functioning of 
this system as follows: 
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When a memory access is attempted, t.he type of 
access (read, write, or execute) and the pro­
cessor's ring register are compared, by the pro­
cessor's access checking mechanism, with the 
access-mode and ring brackets fields of the target 
segment's SDW. As a result of the comparison, 
three actions may be taken: 

1. The memory access is perfonned and the 
ring register is unchanged. 

2. The memory access is a ring changing 
transfer; the processor faults to the 
ring changing fault handler, in ring O. 

3. The access attempted is illegal; the pro­
cessor faults to a suitable access violation 
fault handling procedure, in ring O. 

Note that the fault handling mechanism must have the 
power to change the- ring register. This is achieved 
by making the fault handling procedure executable 
in ring-O only, making the hardware enter ring 0 
upon taking a fault, and making the ring register 
changeable (by instruction) in ring 0 only. 
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Chapter 3 

SOFTWARE FUNCTIONS IN RING CHANGING 

We indicated ' .. in Chapter 2,. that ring changing is a 
complex activity requiring.considerable software 
assistance. In this chapter we will discuss vario~s 
aspects of an operatlng system imposed by a ringed 
access control system and will discuss the software 
functions consequently required in ring changing •. 

We will structure our exposition by separately des­
cribing the four types of ring changes, inward and 
outward calls and returns, attending to points of 
interest as they arise. That done, we will conclude 
with a discussion of important facts and concepts and 
a quick once-over of the ring changing software. 

Many of the functions to be described below mdght be 
performed, at least in part, in the inner-ring pro­
cedure involved in the change of ring rather than in 
the procedures of the ring changing mechanism, and 
some of the functions mdght more naturally be per­
formed there. We take the point of view, however, 
that the code required to perform ring changes should 
be concentrated in a single place and we give the ring 
changing mechanism responsibility for performdng all . 
of these functions. In order to handle ring changing 
in this way, it is necessary to establish certain 
conventions between the ring changing mechanism and 
the inner-ring procedures involved in ring changes, as 
we shall see below. 

1. INWARD CALLS 

Detection. An inward ring changing call is detected 
when an inward ring changing fault occurs as the 
result of a "call" (rather than of a "return") type of 
instruction. The fault handler obtains the number of 
the target ring from the process' ring brackets for 
the target segment; according to the rules of Chapter 
3, Section 2, the target ring is "r2". 
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Gate Address Validation. The handler's first business 
is to verify that the address to which the caller wish­
es to transfer is indeed a gate entry point for the 
process. This verification is based on a "gate-list" 
(i.e., a list of gate entry points) associated with the 
target segment; this gate-list may be system-wide in 
the sense that all users who may use the segment as a 
gate may use the same gate entry points or may be per­
user in the sense that each user who may use the seg­
ment as a gate has a private gate-list. In today's 
Multics, the gate-list is system wide and is stored in 
the procedure segment (rather than, for instance, in 
the segment's access control attributes in the seg­
ment's branch). 

Per Ring Data. We must now consider the nature of the 
"workspaces" of the calling and of the called pro­
cedures. In the ringed environment, all data must be 
"ring bracketed", including workspace data, e.g., the 
PL/I static and automatic data. Since a procedure 
executing in ring r may freely copy into the (ring r) 
workspace any data readable in ring r, including all 
such data not readable in ring r+l, it is clear that 
ring r must use a workspace with ring brackets (r,r,r). 
Thus, assuming that any workspace segment has an 
access-mode implying read and write permission, the 
workspace for ring r is readable and writeable in rings 
a to r and cannot be accessed at all in the rings r+l 
to 63. The above considerations imply that the pro­
cess needs distinct workspace segments corresponding 
to the rings in which the process executes. Hence, 
the inward ring changing fault handler will have to 
provide the proper workspace for the called procedure. 

The Environment. We may generalize from the idea of a 
workspace segment to the idea of an environment. Object 
procedures expect to execute and, therefore, to be 
transferred to, in a conventional environment defined 
by various appropriately valued hardware registers and 
data structures. Among other things, the environment 
specifies the workspace to be used by the procedure. 
(Thus, for example, Multics procedures expect certain 
processor base registers to be pointing to appropriate 
"stack" and "linkage" segments). Since this conven­
tional environment is assumed, it is obviously a duty 
of the ring changing mechanism to create the environ­
ment which the procedure being entered will expect to 
use. 
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Argument Validation. Now let us consider the arguments 
which may be passed by the caller to the called (gate) 
procedure. To begin with, providing ~ Suitably ini­
tialized environment for the called procedure involves 
copying the address of the argument-list (or copying 
the argument-list itself) into the environment of the 
called procedure. Certain precautionary measures then 
become necessary which relate to the need for a "gate" 
to act responsibly, as discussed in Sections land 2 
of Chapter 2. Let us motivate the discussion of these 
precautions by considering two examples of inward calls 
which should be aborted by a careful ring changing 
mechanism. 

1. A ring-50 procedure calls a gate procedure in 
ring-32 and specifies a return argument in 
the workspace of ring-40. If the call is not 
aborted, the gate procedure may write in the 
ring-40 segment at the explicit request of 
the ring-50 procedure. The gate procedure' 
would thus in effect permit the ring-50 
procedure to overwrite the ring-40 segment, a 
clear violation of the access control phil­
osophy. 

2. A ring-50 procedure calls a gate procedure in 
ring-32, specifying return arguments in ring-
50 segments and input arguments in ring-40 
segments. If the call is not aborted, the 
gate procedure may copy ring-40 data into ring-
50 segments. The gate procedure would thus in 
effect permit the ring-50 procedure to read 
ring-40 data, another violation of access con­
trol philosophy. 

The responsibility of a gate procedure may be character­
ized as avoiding the improper use, on behalf of an 
outer ring procedure, of that part of its accessing 
power which exceeds that of its caller. To fulfill this 
responsibility, a gate procedure must, before accessing 
memory via an address obtained from its caller (or from 
any other outer ring source), verify that the intended 
type of access could have been performed by the caller. 
We shall refer to this as "validating the address". 
Once all addresses obtained from outer rings have been 
validated, the gate procedure may freely proceed, 
since it is clearly safe to use all other addresses. 

I 
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Although this "address validation" can all be done 
by the gate procedure itself, our point of view 
suggests that as much of it as reasonably possible 
be done by the ring changing mechanism. Since most 
of the addresses supplied to a gate procedure by its 
caller are the addresses of arguments, we assign the 
business of validating these addresses to the ring 
changing mechanism and we leave it to the gate pro­
cedure itself to validate all other suspect addresses. 
Checking the addresses of the arguments is called 
"argument validation". Argument validation should 
include checking that the caller has READ-access for 
all of the arguments being passed and WRITE-access 
for those arguments, including "return" arguments, 
in which the called procedure may write. Argument 
validation implies a further step in inward ring 
changing: argument-list copying. For, if a pointer 
is checked to see that its value may safely be used, 
then the pointer may not safely be left in a seg­
ment where it may be changed by a process executing 
in a ring less privileged than the gate's. Therefore, 
all addresses to be checked must be copied into the 
gate segment's workspace prior to such checking. 

It is clear that the argument validation mechanism 
must make use of an argument-list-descriptor, pre­
sumably coded as data, associated with the gate 
entry point. This descriptor tells how many 
arguments are expected and how they are to be used 
(i.,e., whether they will be read and/or written in). 

The argument-list-descriptor(s) for a gate segment 
may be implemented in many ways, for example, as 
part of the gate segment's gate-list. In any case, 
it is clear that the argument-list-descriptor, like 
the gate-list, must be supplied to the ring changing 
mechanism by the gate (inner-ring) procedure rather 
than by the calling procedure. 

Figure 5 illustrates a gate procedure segment, with 
.~a oarc-liat ann ~~gumenr_14Qr-doQ~~4~~nrs in a ..... iliiii 0 ~~ ..... w: ............. .... ............ '-o-tJ .......... .t' ... "" , ,,& 

straightforward implementation. When this segment 
1s called from an outer ring, the ring changing 
mechanism validates the attempted transfer address 
by finding it on the gate-list and validates arguments· 
by checking that ~he caller has the access rights to­
ward the arguments which are specified in the argument­
list-descriptor associated with the transfer address. 
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2. OUTWARD RETURNS 

The Detection Problem. The detection of an outward 
return is not straightforward. Since the procedure 
to be returned to may well have ring brackets per­
mitting it to execute in the returner's ring and, 
indeed, in a number of other rings, one may well 
wonder how the ring changing fault associated with 
the return is generated and how the ring changing 
mechanism decides which ring to return to. 

An example may make these remarks clearer. Consider 
a call from ring-20 to a procedure P with ring 
brackets 5-10-20 and a call by it to a procedure Q 
with ring brackets 3-7-12. The first call takes the 
process into ring-lO and the second takes it into 
ring-7. It is clear that an ordinary return from 
procedure Q would not cause a ring changing fault. 
It is also clear that if it did cause a fault, the 
fault handler would have to choose a ring to return 
the process to from the interval ring-5 to ring-lO. 

Forcing A Fault. We see that in the case of a ring 
changing return, the ring bracket mechanism cannot 
by itself be dependent upon to cause the necessary 
ring changing fault or to provide the information 
required to identify the caller's ring. A special 
trick is, therefore, used to cause the fault. The 
normal return pointer in the returner's workspace 
is over-written with a conventional replacement so 
that when the process attempts to return via this 
"return pOinter", a fault will occur which is 
associated with the ring changing return fault handler. 
This device for forcing a return fault applies e~~lly 
to inward returns and is also used in that case. 
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The Return Stack. When the artificial ring changing 
return fault occurs, as a result of a "return" type 
of instruction, the ring changing return mechanism 
is invoked. It must not look in the returner's work­
space to find the information that it ·needs to per­
form the return -caller's ring number and the return 
pointer - for these items could be manufactured by 
the "returner" to imply a "return" to a more privileged 
ring. The ring changing mechanism, therefore, main­
tains a ring-Odata base called the "return stack" in 
which it records all the information needed to perform 
all uncompleted ring changing returns, both inward 
and outward. At any time, the last entry on this stack 
specifies the return from the ring in which the pro­
cess is then executi.ng. We may now say that an outward 
ring changing return is a return which causes· a ring 
changing return fault and whose entry in the return 
stack indicates a return to an outer ring. 

Address and Argument Validation. There is no need, 
from an access control viewpoint, to validate a return 
address for an outward return since an inner ring 
procedure may in any case freely enter an outer ring 
at any point. However, to protect against error, the 
return pointer recorded in the return stack may be 
compared against a "validation return pointer" stored 
in the returner's workspace. Both the validation 
return pointer and the return pOinter in the return 
stack would be recorded at the time of the correspond-
'ing call by the ring changing mechanism. If these 
return pointers disagree, then the ring changing 
return can be regarded as an error and treated according-
ly. ' 

There is no need for argument validation at the time of 
an outward return; the work was done at the time of the 
corresponding call. 

The Restoration of the Environment. Finally, let us 
note that it is necessary, in servicing an outward 
return, to re-establish the environment that existed 
at the time of the corresponding call. The caller's 
workspace must be re-established, base registers must 
be restor~, the entry on the return stack must be 
removed, .etc. Any information which may be needed 
for this work must be found in the return stack entry 
for this return and must thus have been stored there 
at the time of the call. 
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3. OUTWARD CALLS 

An outward ring changing call is detected when an 
outward ring changing fault occurs as the result 
of a "call" type of instruction. The ring to be 
entered is determined from the target procedure's 
ring brackets; according to the rules of Chapter 2, 
Section 2, the target ring is "rl". There is no 
need to validate the target address of the call, 
for gates govern inward calls only. As with the 
inward call, there 1s a need to establish the 
environment required by the called procedure. 

Argument Copying. If, as is usual, the caller's 
arguments are stored in the caller's workspace, the 
arguments will be inaccessible to the called pro­
cedure in its outer ring. It is, therefore, 
insufficient to copy only a pointer to the argument­
list or the arg1.DUent-list itself into the work­
space of the called procedure. It is necessary to 
copy the arguments themselves. This in turn 
implies that a new argument-list must be fabricated 
in the workspace of the called procedure which 
contains the addresses of the local copies of the 
arguments. 

There is no need to perform access validation on 
the arguments. The inner ring procedure may judge 
for itself what data to pass to the outer ring. 
The copying of arguments is done, of course, with 
the authority of the calling procedure's ring, if 
not by the calling procedure itself. If the copying 
is actually done in a ring more privileged than the 
caller's, e.g., by the ring changing fault handler 
"(which executes in ring-O), then the arguments must 
be access validated to make sure that no dat~ are 
copied into the workspace of the called procedure 
to which the caller itself does not have access. 

Note that argument copying depends on information, 
represented as a "copying descriptor", associated 
with the outward call (see Figure 6). The copying 
descriptor tells how many arguments ther~ are, how 
they are to be used (i.e., whether or not they are 
to be written into), and what their lengths are (so 
that they c~n be correctly copied). We will dis­
cuss the question of arguments which are to be 
written into by the called procedure in the follow­
ing section. 
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4. INWARD RETURNS 

Inward returns are detected when the artificial 
ring changing fault occurs (see the discussion o'f 
outward returns in Section 2) and the return stack 
entry indicates an inward return. The return 
pointer in the return stack entry may be compared 
with a validation return pointer in the returner's 
workspace in order to avoid erroneous ring changing 
returns. 

The arguments which the outer ring procedure may 
have WTitten in, as identified in the copying des­
criptor, are then copied from the returner's work­
space into the locations specified for them in the 
caller's (original) argument-list. Validation of 
these addresses is only necessary if the copying 
is done in a ring more privileged than that being 
returned to, e.g., by the ring changing fault handler 
which executes in ring O. 

Once these arguments have been copied, the ring 
changing mechanism re-establishes the environment 
of the calling procedure and returns to it. 

5. REVIEW AND DISCUSSION 

Detection. A ring changing transfer is detected when 
the ring changing mechanism is invoked in response to 
a suitable fault. The ring bracket mechanism (i.e., 
a mechanism respecting the rules set forth in Chapter 
2, Section 2) will produce such a fault in the case 
of inward and outward calls; such calls are in fact 
4:0 l'Ie-Finol'l lH n~ chang-l n~ ,..ot-",..nC! t-hn,,~h J:lI,..o 1'10_ .... .... - ... _..... "'-""0 .. & .. -··0 ... -- ............. , -"·"''''0''·' - ..... - .... 

fined as returns from ring changing calls and the ring 
bracket mechanism cannot be depended on to detect these 
returns. The strategy of the "artificial ring changing 
return fault" was introduced (see Section 2) to guar­
antee that these returns would always be detected. 
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Transfer Address Validation. The basic fact about a 
ringed access control system is that a process' power 
depends on the ring in which it executes. This is 
meaningful only because of the rules which govern 
inter-ring transfers. The basic rule is that o~tward 
(power decreasing) transfers may be made at the pro­
cedure's discretion whereas .inward (power increasing) 
transfers may be made only with "the pennission of 
the ring to be entered". T:ransfer address validation, 
which consists of making sure that the target 
address is an address at which the target ring will 
permit entry, thus applies only to inward transfers. 

In the case of an inward call, the target address is 
validated by finding it on the target procedure's 
gate-list, that is, finding it to be the address of 
a gate entry point. In the case of an inward return, 
the target address (which is obtained from the 
return stack) is validated implicitly by virtue of 
the fact that .. it was earlier supplied to the ring 
changing mechanism by the outward calling procedure, 
the very procedure being returned to. 

The Return Stack. The return stack was introduced 
(see Section 2) as the data base in which the ring 
changing mechanism stores the ring number and return 
address of a caller so that the ring changing return 
mechanism can subsequently validate the return. 
The return stack must thus be accessed by the ring 
changing mechanism upon every ring changing call and 
return, being "pushed" at each such call and "popped" 
at each such return. To the extent that the ring 
changing mechanism may profit from storing other 
information from the time of a call to the time of 
the corresponding return, the return stack is 
evidently the "right" data base to use. Without 
going into detail we suggested, for example, that the 
return stack was a good place to record information 
needed for the restoration of the calting procedure's 
environment. 
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Argument Validation. Whenever an inner ring pro­
cedure accesses ~emory via an address obtained from 
an outer ring source, there is the danger that the 
supplier of the address is "using" the more pri­
vileged procedure to "get around" access control. 
restrictions. Addresses obtained from outer rings 
are, therefore, suspect and must be used with 
discretion. 

The most outstanding examples of suspect addresses 
are the addresses of arguments associated with in­
ward calls. "Arg\D1lent validation" is a technique 
by which the ring changing mechanism, acting on 
behalf of the class of gate entry points, does a 
standard and generally sufficient job of checking 
these addresses. 

Argument validation is not only used in the case of 
inward calls but in the case of those outward calls 
where arguments are copied as well. When the 
arguments for an ouoward call are copied into the 
workspace of the called procedure and later, when 
the return arguments are copied back into the work­
space of the calling procedure, the copier of these 
arguments, being part of the ring-O ring changing 
mechanism, obtains its arg\D1lents from the rings of 
the calling and called procedures and must validate 
these addresses. 

Although argument validation doesn't handle all 
cas'es of "suspect" addresses, the existence of argument 
validation does have the useful effect of isolating 
the cases which aren't covered, making life easier 
for the programmer ofa gate procedure. For, if he 
can make sure that all of the suspect addresses to 
be used by the gate procedure and its dyna~ic des­
cendents are the addresses of arguments, he may be 
assured that he has written a proper gate procedure. 
And if there a~e a few other addresses requiring 
checking, he can handle them on a case by case 
basis. 
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6. OUTLINE OF RING CHANGING SOFTWARE 

A. Inward Calls 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Check that the specified address is a gate 
entry point. 

Store information in the "return stack" 
specifying the caller's environment, in­
cluding callerts ring number and the 
return address specified by caller. 

Determdne the ring (NEW-RING) to. be 
entered; that is the value r2 from the 
called procedure's r.ing brackets. 

Create an enviro·nment for the called pro­
cedure in NEW-RING. 

Copy the addresses of the arguments into 
the environment of the called procedure 
and perform "argument validation". 

Associate a ring-changing-return fault 
with the normal return from the called 
procedure. 

Set the ring register to NEW-RING. 

Perform the call. 

B. Outward Returns 

1. Check that this return corresponds to the 
last entry in the "return stack". 

2. Clean up the environment of the returning 
procedure (undo A-4). 

3. Determine the ring to be returned to, 
OLD-RING, from the "return stack". 

4. Restore the caller's environment, as 
specified in the "return stack". 

5. Set the ring register to OLD-RING. 

6. Return to the caller at the address specified 
in the return stack. 
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C. Outward Calls 

1. Store information.in the "return stack" 
describing the caller's environment. 

2. Determine the ring, NEW-RING, to be 
entered; this is the value r1 from the. 
called procedure's ring brackets. 

3. Create an environment for the called pro­
cedure in NEW-RING. 

4. Copy the caller's arguments into the new 
environment and create an argument-list 
pointing to the copied values, also in 
the new environment. 

5. Associate a ring-changing-return fault 
with the normal return from the called 
procedure. 

6. Set the ring register to the value NEW­
RING. 

7. Perform the call. 

D. Inward Returns 

1. Check that this return corresponds to the 
last entry in the "return stack". 

2. Determine the ring, OLD-RING, to be 
returned to from the "return stack". 

3. Copy the return arguments back into the 
caller's environment (in OLD-RING). 

4. Clean 
mente 

111'\ 
-I"'" the returning procedure's env1ron-

5. Restore the caller's environment, as 
specified in the "return stack". 

6. Set the ring register to OLD-RING. 

7. Return to caller at the address specified 
in the return stack. 
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Chapter 4 

SIMULATION OF RINGS USING THE 645 

The 645 differs from the "ringed hardware" 
described in Chapter 2 in Several respects which, 
taken together, add up to the fact that the 645 
is a 2-ring rather than a 64-ring machine. In 
this chapter we shall discuss the relevant aspects 
of the 645 hardware and show how the ringed access 
control strategy described in Chapters 2 and 3 can 
be simulated on the 645. 

1. FEATURES OF THE 645 NEEDED FOR THE SIMULATION 

1.1 The 645 does not have a "ring register" but 
does have two states, called master mode and slave 
mode. -The processor has greater power when in 
master mode than when in slave mode; in particular, 
(a) certain instructions can only be executed when 
the processor is in master mode and (b) the access 
control field of the 645's SOW permdts the specifica­
tion, in addition to the access-mode, of a limiting 
descriptor - "accessible in master mode only." 

1.'2 The access control field of the 645' s SDW con­
tains no information about rings; in particular it 
does not contain ring brackets. It does, however, 
contain either: 

a. access-mode information possibly including 
either of the two descriptors: 

accessible in master mode only 
master mode procedure 

b. the specification of one of eight special 
"directed" faults (traps) which is to 
occur whenever the SOW is accessed. 
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The processor is only "in master mode" when 
executing a procedure whose SIM indicates a "master 
mode procedure." The processor may enter master 
mode while executing a slave mode procedure by: 

faulting 
taking an interrupt 

There is another way of switching from slave mode to 
master mode; it will be discussed later since it 
invokes a hardware feature that is not needed to 
simulate a ringed machine. 

1.3 The 645 processor's access control machinery 
interprets the SDW during the addressing cycle and 
causes an appropriate action to occur depending on 
the SOW and (usually) on the attempted access, as 
follows: 

a. If the SDW implies a particular "directed 
fault", then that fault occurs. 

b. Otherwise, if the SDW does not pe~it the 
attempted access, the appropriate access 
violation fault occurs. 

c. Otherwise, the SDW permdts the attempted 
access and the access is performed. 

When a fault occurs, the 645 enters master mode and 
transfers control to the appropriate master mode 
fault handling procedure. 

1.4 Among the instructions which are "master mode 
only" are those which access the processor's DBR 
(the Descriptor Base Register, which contains the 
absolute address of the descriptor segment currently 
in effect) and all liO connect instructions. 

2. SIt4JLATING THE "RINGED HARIJ.1ARE" ON THE 645 

The technique of simulating the "ringed hardware" on 
the 645 can practically be deduced from the require­
ments of that simulation: 
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1. It musr be possible to simulate being in a 
given ring. 

2. It must be possible to simulate changing 
from one ring to another. 

To simulate being in a ring, it must be possible.to 
set up a 645 descriptor segment to define the same 
set of potential actions in response to potential 
attempted accesses as is defined by any given 
"ringed descriptor segment, ring register" pair. 
'lbe potential actions will be the same in the 645 
as on the "ringed hardware" if (a) pennitted acc­
esses are performed by the 645 without causing a 
fault and (b) if accesses which would cause a 
fault,on the "ringed hardware" cause a fault on 
the 645. 

To simulate changing from one ring to another it 
is obviously necessary to be able to change the 
645 descriptor segment. This may be done in two 
ways. If space is felt to be at a premi~, the 
645'8 master mode fault handlers may "change rings" 
by over-writing the existing descriptor segment 
with the values appropriate to the other ring. On 
the other hand, if processing time is felt to be 
more important than space, the fault handler in 
master mode may "change rings" by altering the DBR 
to point to that descriptor segment (waiting in the 
wings ,so to speak) which corresponds to the ring 
being entered. This second technique, used in 
Multics, requires one descriptor segment per-ring 
for each process. The per-ring descriptor segment 
thus becomes part of the "environment" which 
pertains to each ring, and switching descriptor 
segments becomes part of the job of the ring chang-. 
ing mechanism. 
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3. AN ADDITIONAL FEATURE OF THE 645 

The 645 processor has the ability of switching from 
slave mode to master mode without invoking the trap 
mechanism, as follows: 

A slave mode procedure can transfer to a master mode 
procedure M provided that: 

a) the segment descriptor of M contains the 
"accessible in slave mode" attribute, and 

b) the transfer be directed to location zero 
of M. 

This technique for increasing a process' power differs 
from ring changing in the sense that no fault is 
generated. However, the philosophy remains the same. 
By checking that conditions (a) and (b) are true, 
the hardware perfonns the "gate validation". The 
fact that the transfer is guaranteed to be into 
location zero permits one to code explicitly any type 
of subsequent validation in the procedure M and to 
guarantee that the validation code will be executed. 
(The only system responsibility is to make sure that 
the transfer is directed to a gate; the gate pro­
cedure must take care of the rest.) This feature is 
used in Multics as explained below. 

4. MASTER MODE AND SLAVE K>DE IN RING ZERO 

Master mode is the most powerful state of the 645 
processor; ring zero is the most powerful state of 
the ringed processor simulated on the 645. It 
should follow that executing in ring zero means 
executing in master mode j and it would so follow j 

were it not for the 645 feature discussed in Section 
3 above. That feature is used in order to permit 
the ring zero supervisor to execute partly in master 
mode and partly in slave mode, easily switching . 
from one mode to the other. 
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The Multics ring zero can be regarded as being 
itself composed of two concentric rings. The 
more powerful or "master ring 0" contains all 
master procedures and also all data accessible 
only in master mode. The less powerful or "slave 
ring 0" contains all slave procedures and also 
all data accessible in slave mode. Going from 
slave ring 0 to master ring 0 can be done througQ 
gates provided by master ring 0; these gates are 
in fact master procedures accessible in slave 
mode, with the entry point at location zero of 
the segment. This technique permits efficient 
switching between slave and master mode in the 
supervisor and this is the motivation for this 
additional hardware feature in the GE 645. 

Two questions are raised by this discussion. 
First, why don't "ring zero" and "master mode" 
coincide? And second, why isn't the special 
mechanism for entering master mode more generally 
used? 

The supervisor should use master mode only for 
jobs requiring its special power. To use it for 
other purposes would increase the chance of dis­
astrous errors due to hardware and software bugs 
since, for example, all I/O connect instructions 
are executable in master mode only. But since 
the supervisor must use master mode fairly frequently, 
it is desIrable that the supervisor have a way of 
entering master mode which involves just enough 
validation to prevent accidental entry. Thus the 
special mechanism. And thus the restriction of 
the use of the special mechanism to "slave ring 
zero." 
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Experience to date with the M:xlel 645 hardware and the Multics software 
has uncovered many areas in which systan perfonnance and maintainability 
could be substantially inproved by certain IOOdifications of the 645 
specifications. Fbur areas have been investigated and shown to be of major 
inp:>rtance to the perfonnance of Multics. The Multics extensions of Series 
6000 processors 00th allaY execution of Multics on these processors and 
provide considerable irrprovanents in system performance. These features 
inclu3e: 

1. Hardware aids for iIrproved canpatibili ty with other 
prodoct line software. 

2. Fefinemants of the paging and segmentation hardware to 
inprove the perfonnance of the system software. 

3. !q;>larentation of Multics ring protection mechanism 
entirely in hardware to improve system perfonnance 
and reduce software CCIrq)lexi ty • 

4. Addition of instructions for string manipulation and 
decimal ari thnetic. 

rrhe issue of canpatibility with product line software is really two 
isslES stemning fran two distinctly different rroti vations. One issue 
is that of "stand-alone canpatibili ty ," which allows the running of standard 
produ::t line software (e. g., OCOS, T and D rronitor) on a stand-alone machine. 
The other issue is that of "slave program canpatibili ty ," which allCMs for 
the efficient executioo of Series 600/6000 slave programs under the control 
of the Multics system. A canpatibili ty switch on the processor is used to 
harxlle the prOOlem of stand-alone canpatibili ty, while a program-settable 
roode is used as a software aid in handling the problem of slave program 
canpatibility. '!he iSSU3S of stand-alone and slave program canpatibili ty 
are treated separately in the fbllaving discussion. 

MDIFlCATICI'JS OF P.AGING AND SEG1ENl'ATICN HARIliARE 

'!his paper describes a nunber of IOOdifications of the 645 paging and 
segmentation hardware which improve the perfo:r:rnance of the Multics 
software aId s:implify sane areas nCM felt to have been overdesigned in 
the 645. The changes in 645 specifications are surmarized below (and 
are described in ~tail later in the paper) : 

1. The address field in the segment descriptor word is extended 
to a full 24-bit absolute address to allow page tables (and 
unpaged ~ts) to begin on any legal marory address. '!his 
IOOdification allows the software a great deal nore flexibility 
in the allocation of page table space and greatly reduces the 
arrount of wired-down core storage reserved for page tables. 
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2. '!be processor supJ;X)rts only a single page size rather 
than the two page sizes supported by the 645. Provision 
is made to allcw the page size to be m::xtified by field 
engineering in an orderly and well understood fashion. 

3. Each of the eight pointer registers of the processor is ex­
tended to contain l::x:>th a segment nunber and a word nunber 
portion. The 645 ooncept of internal and external base 
registers and antral fields is dropped. Each of the eight 
pointer registers on the processor behaves as a 645 base 
register pair. In addition, each of the new pointer registers 
contains a bit offset field for use by new instructions for 
string manipulation and decimal arithmetic. 

4. Sate minor changes have been made in the definition of the 
645 master and slave IOOCles, which are renamed respectively 
as the privileged and unprivileged modes to avoid confusion 
with existing terminology. A minor change has also been made 
in the trea1:nent of execute-only segments, to allcw entry at 
locations other than zero. 

5. '!be access control infonnation oontained in the 645 page table 
word (not used in Multics) has been ralDvecl. In the new pro­
cessor, all access cOntrol is inplanented in the segment des­
criptor word. 

HARI:tmRE IMPLEMENrATlOO OF MULTICS RING PRCJI'l!CrICN 

'!he Multics ooncept of protection rings, ring crossing, and argunent 
validation has been inplemented as an integral part of the paging and 
segmentation hardware on the processor. The hardware inplenentation of 
rings is really a further mcxlification of the 645 paging and segmentation 
hardware. However, the m::xlification is intrcduced separately at this point 
since i t involves perhaps the rost significant deviation fran the 645 spec­
ification and, as such, deserves scnewhat more notivation. In the current 
version of Multics running on the 645, the ring protection mechanism is, 
of necessity, CCIl'pletely simulated by the Multics software. '!he current 
system maintains, in parallel, separate descriptor segments for each ring 
of each process. The ring crossing is simulated by a rather costly and 
carplex fault processing mechanism which incltrles the oopying and validation 
of argunent pointers and the switching of descriptor segments to simulate 
the effect of switching rings. The cost of the current simulation arcounts 
to approximately 10-20 percent of the useful chargeable CPU time and con­
tributes substantially to the overall canplexity of the system. In the 
new processor, ring crossing and argunent validation are handled directly 
by the hardware without costly software intervention. As a result, a call 
to an inner ring will require no nore CPU time that a call to a procedure 
in the same ring. 
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Extensicn of the 645 instruction set to incl1.Xle instructions for string 
manipulation and decimal aritmetic allows considerable sinplification of 
both sq:ervisor and user programs. The Series 6000 Extended Instruction 
Set (EIS) provides carmands to directly process bytes, BCD characters, 
packed decimal data, and strings. The supervisor will take full adva.'1tage 
of the savings allowed by these new instructions. The language ccmpilers 
will also take advantage of these space and time saving instructions. 

~CN AND PAGING IN NBi PRXESSOR 

'Ibis section describes in detail the segmentation and paging ha...rdware for 
the new processor. In nost respects, the mechanism is quite similar to the 
645 awending hardware, with the addition of sane refinanents to improve 
the perfozmance of the system software. '!he single substantial deviation 
fran the 645 speclficaticn is the addition of hardware to implarent the 
Multics ring pro~on mechanism. 

Segment Descriptor Word 

In order to accatll'kXlate the hardware-int:>larented ring crossing and 
argurent validation and other changes I the Segment Descriptor \\brd (SLW) 
has been extended to a 72-bit double precision word to be interpreted as 
described below •. 

Word 0 ~~_D_R~n~ ________ ~_Rl~IR_2 __ R3~IF~IF~cl 
Word 1 ~ BOUND lIt...--............ ~I~Eg~dub~· ~'_____CL _ ______' 

ADDR (0-23) 

Rl (24-26) 

R2 (27-29) 

R3 (30-32) 

Is a full 24-bit absolute address and specifies the 
core address of either a page table (for a paged 
segment) or the first location of an unpaged segrrent. 

Specifies the highest ring nunber of the readjwrite 
bracket for this segment (O-Rl) 1. 

Specifies the highest ring nunber of the read/execute 
bracket of this segment (Rl-R2) 1. 

Specifies the highest ring nunber of the call bracket 
of this segment «R2 + 1) - R3) 1. . 

1 . d' ~1,. See folladng section on Rings an Ring Bra'-'J'l.ets. 
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F (33) 

Fe (34-35) 

:ocxJID (1-14) 

R (15) 

E (16) 

W (17) 

Is a directed fault indicator and if off (=0) specifies 
that the processor is to execute the directed fault 
specified in the FC field (see below) . 

Indicates (if F is off) which of the four directed 
faults (DFO-DF3) the processor is to execute. 

Is the boundary field and indicates the highest l6-word 
block of the segment which can be addressed without 
causing an out-of-bo\ID.ds fault. If the high order 14 
hits of an address to this segment is greater than the 
val-qe of the boundary field, an out-of-bo\ID.ds fault is 
generated.. A boundary field of 14 bits is cOOsen be­
cause sane instructions (e. g., the new version of STB) 
reference up to 16 contiguous words. ('!he bo\ID.dary 
field oould be maintained to the nearest word, but 
special checks would have to be made for instructions 
which reference two or more oontigoous words.) A 
further implication is that the software is expected to 
allocate unpaged segments in a zero mode l6-word boundary. 

Is the read-penni t indicator. Data fetches by other 
segments are pennitted to this segment only if this 
indicator is on (=1) and if the processor is executing 
in a ring less than or equal to R2 (i. e., wi thin the 
read/wri te or read/execute bracket) .1 

Is the execute-penni t indicator. Instruction fetches 
fran this segment are pennitted only if this indicator 
is on (=1) and if the processor is executing in a ring 
greater than or equal to Rl and less than or equal to 
R2 (i.e., within the read/execute bracket; see below) . 
Note that when the E indicator is on and the R indicator 
is off, the segment is to be treated as an "execute-only" 
procedure segment. An execute-only procedure segment 
is pennitted to reference data within itself (i.e., within 
the same segment) in spite of the lack of the read in­
dicator. However, read pennission is denied to other 
segments. 

Is the write-pennit indicator. Attempts to'store into 
this segrtent are r-JOnored only if uris indicator is on 
(=1) and if the processor is executing in a ring less 
than or equal to Rl (i.e., within the readjwrite bracket; 
see below). 

lSee follONing section on Rings and Ring Brackets. 
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P (18) 

U (19) 

G (20) 

CL (22-35) 

Page Table It>rd 

Is the privileged m:x1e indicator. If this indicator 
is on (=1) and if the processor is executing in ring 0, 
the procedure segment is penni tted to execute privileged 
instructions and inhibit interrupts under control of 
bit 28. Privileged procedures need no further powers 
and are subject to all other access checking (read, 
wri te pennission bounds checking, etc.). Since pri vi­
leged procedures can be executed only in ring 0, it is 
no longer necessary to limit calls to privileged pro­
cedures to enter via word 0 of the segment. 

Indicates whether the segment is paged (=0) or unpaged 
(=1) • If the segment is unpaged, ADDR is the full 
absolute address of the first word (word 0) of the seg-
ment. If the segment is paged, ADDR is the full ab- . 
solute address of the begirming of the page table for 
the segment. 

Is the gate indicator and if off (=0) any call to this 
segment fran a different segment must be directed to 
an address valus less than the value of the CL field 
(see below) • 

Is the call limiter.. If G is on, any external transfer 
to this segment via the new CALL instruction (described 
below) must be directed to a word nunber less than the 
value of this field. 

'!be fonnat of the page table word (PIW) has been sanewhat sinplified fran 
the 645 version in that no access control is perfonned at the P'IW level. 
'!he PIW fomat is described below. 

ADDR 

ADDR (0-17) 

s 

Is the high order 18 bits of the 24-bit absolute ad­
dress of the first word of the page. The hardware 
assunes that all pages begin on addresses which are zero 
nodulo the page size. For exarrple, if the page size is 
set to 1024 w:>rds, the hardware assunes that each page 
begins on a zero IOOdulo 1024 address and that the low 
order 10 bits of the 24-bit absolute address are zero. 
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S (18-23) 

U (26) 

1-1 (29) 

F (33) 

Is reserved for the use of the system software for the 
maintenance of page status infonnation and is never 
modified (or used) by the hardware. 

Indicates whether (=1) or not (=0) the page has been used 
since the last t.ime this bit was interrogated (and reset) 
by the system software. Whenever this bit is zero and the 
processor addresses any word withir.~ the page (Corresponding 
to this P'IW), the processor sets this bit to I using a 
3-bi t store-by-zone carrnand for bits 24-26. The store-by­
zone is used to avoid a race condition with another pro­
cessor attarpting to set the "rcodified" bit (see helCM) 
for the same page. 'Ibis tedmique is necessitated by 
the lack of a read-a! ter-rewrite ccmnand in the marnry 
controller. A further :iJrplication of the lack of read­
alter-rewrite is that the software must reset this bit 
via a store to the third 9-bi t field (character) in the 
P'lW in order not to disturb the IOOdified bit. Note that 
any usage of the page hebreen the time the used bit is 
read by the software and then reset (if on) is not noticed 
by the software. Since the used bit is used only for 
maintaining the core-usage statistics, this race between 
hardware and software has no effect, insanuch as (1) if 
the page is heavily used (i .e., needed in core) it will 
be used again turning the used bit back on, and (2) the 
software does not reset the bit if it is already zero. 

Indicates whether {=l} or not (=0) the page has been rrod­
ified since the last tine this bit was interrogated (and 
reset) by the system software. Whenever this bit is zero 
and the processor roodifies any word within the page, the 
processor sets this bit and the usage bit to I using a 
6-bit store-by-zone carrnand for bits 24-29. The software 
uses this bit to detennine whether or not the oontents of 
a page must he written on secondary storage before the core 
is released for other usage. As a result, the software is 
expected to store a directed fault in the P'IW and clear the 
associative memories of all processors before the modified 
bit may he safely tested and then reset. In addition, the 
directed fault must be stored using a store to the sixth 
6-bit field (character) of the PIW tc canpensate: for the 
lack of read-alber-rewrite. 

Is the directed fault indicator and if off (=0) indicates 
that the directed fault indicated in the R: field is to he 
executed by the processor. 
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Fe (34-35) Indicates (if F is off) . which of the four directed 
faults (oro-DF3) is to be executed by the processor. 

lbllfying the Page Size 

As indicated by the fonnat of the SIli, the new processor supports only 
a single page size (the 645 allows b«> page sizes). lJa.Jever, it is ex­
tremely desirable to have the ability to change the page size in order 
to allow systan optimizatioo ",,1.th . respect to core: "breakage" and storage 
device access tiIl'les. For exanple, replacing the current· higb..c:q:eed drun 
with a bulk core would llDSt likely give even better perfonnance with a page 
size smaller than 1024 ~. 

Since a decisicn to change the page size is not a casual one and should net be 
made ve:t:y often, the page size is changeable by field IOOdification to any 
~.r of 2 fran 64 words to 4096 wcrds. 

Absolt&te }i1dress Foz:mation 

Fbr each mem:>ry reference we assune the program presents the processor 
with the following address: 

~ _____ S_E_G_N __ O __________ ~I_. __________ W_O_RD __ N __ O __________ I 
SEXN) (15 bits) Specifies the desiroo segment (i.e., index into the 

descriptor segment). The segmE'nt nunber is oonstrained 
to 15 bits (rather than 18) by considerations described 
later in this docunent. 

l«)RtR) 

(18 bits) 
Specifies the desired word address (18 bits) within the 
specified segment. 

We also assune (for discussion ally) that the processor has the following 
two intemal registers: 

PN PO 

IN (12 bits) Is use:l to 0010 the page nunber (i. e., index into page 
table) when fonning an absolute address within a paged 
segment. 

PC (12 bits) Is used to hold the offset wi thin the page when fomaing 
an absolute e.ddress within a paged segment. 

PN is initialized with the high-order portion of ~ to obtain an index 
relative to the base of the page table of the S£9nEmt. PO is ini tialized 
with the rar.aining porticn of WOFtNO am is aUJInellted by the ADDR field of 
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the PIW to fonn the absolute address. The "break" in Vl)RIH) is detennined 
by the current page size. For example, if the page size is 1024 words 
(initial setting), the high order 8 bits of l«>RIH) are used to initialize 

PN and the low order 10 bits of WORrNO are used to initialize PO. 

Figure I sutmarizes the major steps necessary to transfonll. a program gen­
erated address (SEGOO,It-l)RL'NO) into an absolute address (ABSADDR). In roost 
respects, the. address fonnation is simpler than the 645 mechanism, in that 
there is only one page size 'to consider and that no access control is 
sp=cified at the FIW level. . 

Note that Figure I and all the flow chart.s in this paper make use of the 
fGll~'ling PL/l notations: 

1. A.B is used to denote the quantity B contained in A. 
For example, PIW.ADDR denotes the ADDR field within the 
PIW. 

., 
2. The double vertical bar (II) is used to denote con­

catenation (e.g., PIW. ADDR II 000000). 

3. The single vertical bar (I) is used to denote the logical 
inclusive OR. 

Descriptor Segment Base Register 

'Ibe DE:.scriptor Seg1rent Base Register (DSBR) is an internal processor register 
used to locate the current descriptor segment. In the new processor, the 
r:sER has been exter..d.ed to 51 bits to accc:mnodate the longer address and 
1:cund fields and to contain a stack offset. The DSBR is loaded fran and 
stored into a doubleword having the same fonnat as a Segment Descriptor 
Word (Sm) "d.th the excet-'tion that unused fields are ignored during loading 
of the IlSBR and are set to zero when the IISBR is stored. Only the followjng 
four srw fields have meaning wh.en loaded into a OOBR. 

1. ADDR (24 bits) 

2. BOl.}:ID (14 bits) 

3. U (page6/unpaged switch; 1 bit) 

4. STACK (12 bits) 

The STACK field specifies the ~per 12 bits cf the IS-bit stack se~~lt 
nurber. This register is used only dur:ing the execution of a. CALL in­
struction. 

RINGS AND RING BRACRErS 

A Mul tics process oonsists of procedure and data segments which are all 
direct.ly addJ:'essable throu:Jh the descriptor segment of that process. H,,"7-

ever, a process IT'ay access a segment only when the process is rtmning a.t 
an appropriate level of privilege. For example, all the segments of the 
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hardcore supervisor are shared and accessible to all Mul tics processes 
but only when ~~ecuting at the highest level of privilege. . 

'!be 1Jill~ics system allows segments to be grouped into an ord.ered set of 
collect1ons called rings in which segments requiring the highest level 
of privilege to reference can be accessed only fran within the innennost 
ring of the set. Each ring is identified with a ring nunbei designating 
the required level of privilege nece.ssary to access segments in that. ring. 
In Multics, the ring with the highest privilege is ring 0, which contains 
the procedures and data bases of the h.ardcore supervisor. Each user pro­
cess has at least two rings, one for the hardcore supervisor and one for 
user programs and data.. '!he u..qer process xray generate roore rings (levels 
of lesser privilege) if desired. 

Frequently, it is useful to allow a segment to be accessible in nore than 
one ring. Fbr exan:ple, it is often useful for a data base which is writeable 
in an .inner ring to be readable in an outer ring. Fbr this reason, the con­
cept of ring brackets was introduced. 

'!he access of a user to a specific segment is cxmtrolled by two quanti ties: 
the access attributes (e.g., read, execute, write) and the ring brackets. 
The ring brackets of a segment are specified by three integers (Rl, R2, 
and R3) each of which must be greater than or ~ to the preceding 
nunber. The first nunber (Rl) specifies the top (highest ring nunber) 
of the readjwrite bracket, the second nunber (R2) specifies the top of the 
read/execute bracket, and the last nunber (R3) specifies the top of the 
call bracket. 

Read,IWrite Bracket (Rings O-Rl) 

Attanpts to read or write a segment by a procedure executing in a ring 
within the read/write bracket are allcwed if the appropriate (read or 
write) access indicators are on for the segment being referenced. Execution 
of a procedure in a ring within this bracket is pennitted only at the top 
of the readjwrite bracket (Rl), which is also the bottan of the read/execute 
bracket. Note that the highest ring fran which a segment can be written is 
specified by Rl. As a result, the data in the segment is no more reliable 
than the procedure segments which operate in that ring. 

Read/Execute Bracket (Rings Rl-R2) 

Atten:pts to read or execute (transfer to) a segment by a procedure executing 
in a ring within the read/execute bracket are allowed if the appropriate 
(read and execute) indicators are on for the segment being referenced. 
Writing of a segment within its read/execute bracket is pennitted only fran 
the ring at the bottan of the bracket (Rl), which is also the top of the 
readjwrite bracket. If R2 is equal to Rl, the read/execute bracket specifies 
a single ring (Rl). 
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Call Bracket (Rings (R2 + 1) - R3) 

Att:E!rpts to call a (procedure) segment fran a segment executing in a 
ring above the read/execute bracket but within the call bracket of 
the procedure to be called are allCMed if the execute indicator of the 
procedure. to be called is on and if the new CALL instruction (described 
below) is used. When the CALL instruction is directed to a procedure 
in an inner ring which has the appropriate execute access· and call 
bracket, the processor atu:rnatically switches to the ring specified as 
the R2 of the procedure being called. The call bracket and the CALL 
instructicn are the only means (except for faults) by which control 
can be passed fran an outer ring to an imler (IOOre privileged) ring. 
If R3 is equal to R2, the call bracket is null and the procedure 
cannot be called fran an outer ring. 

SUllDal}' 

Assuning that the appropriate (read, execute, or write) indicators are 
00, the follovrlng list sutmarizes the effects of the three ring 
brackets: 

1. Writing is pennitted fran a ring within the read/Write 
brackets only (i.e. , if ring .:: Rl) • 

2. Feading is penni tted fran a ring within the read,lwri te 
bracket or the read/execute bracket (i.e., ring < R2). 

3. Execution (or transfer of control) is pennitted only 
fran a ring wi thin the read/execute bracket (i. e., Rl 
< ring < R2). 

4. calling (via CALL only) is peDnitted fran a ring within the 
read/execute or call brackets (i.e., Rl < ring < R3). 

5. '!he CALL instruction is the only instruction which may be 
used to access a segment in a ring within its call bracket 
(i.e., R2 < ring .s R3) • 

6. No access is pennitted to a segment fran a ring higher than 
the call bracket (i.e., ring > R3) • 

PRO'SSOR ADDRESS REGIS'lERS 

Like the 645, the new processor has 10 address or pointer registers 
(PRs) • Eight of these pointer registers can be directly accessed and 

-Ioodified by the software,one is used to locate the current instruction, 
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and one is used exclusively by the processor for effective address cal­
culations. Unlike the 645, each of the eight program addressable pointer 
registers specifies a full segmented address including the segment nunber 
and the wo:t:d nunber in a single pointer register. These registers have 
also been extended to inclu1e a bit nunber. 

Instruction Pointer Pegister 

'Ihe instruction pointer register (IPR) is used by the processor to locate 
the current instruction and may be nodified by the software to effect a 
transfer of control. The IPR is actually an extension of the PBR and IC 
of the 645. '!he contents of the 36-bit IPR are outlined below. 

PSR Ie 

PRR (3 bits) Is the procedure ring register and specifies the ring 
(level of privilege) in which the processor is currently 
executing. PRR may be set to a higher value only by an 
RI'CD or OCU instru::tion. . It may be set to a lc:Mer value 
only by a CALL instruction (see below) or by a fault or 
interrupt. 

PSR (15 bits) Is the procedure segment register (sane as the PBR in the 
645) and specifies the segment nunber of the current pro­
cedure segment. 

IC (18 bits) Is the instruction counter (sare as in the 645) . 

TalJ?orary Pointer Register 

The talp:)rary pointer register (TPR) is used exclusively by the processor 
for operand address calculations and serves the same general purpose as 
the TBR and canputed address (C.l\.) of the 645" 

TSR CA BITNO 

TRR ( 3 bits) Is the tanporary ring register and is used to maintain 
the lowest level of privilege (i.e., highest ring nun­
ber) encountered during operand address calculation. 
The TRR is initialized with the value of the PRR field 
of the IPR at the beginning of each instruction.. During 
the operand address calculation, TRR is used to record the 
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RN 

TSR (15 bits) 

C'A (18 bits) 

Bl'JN) 

(6 bits) 

highest value of SIM.Rl (the top of the read,lwrite 
bracket) of any segment used, in the address calculation. 
For exaxrple, if an indirect address is fetched fran segment 
X, TRR is set to the larger of TRR (its current value) and 
the Rl field in the SIli for segment X. Note that during 
the operand address calculation, the value of TRR may get 
larger but never smaller. . 

Is the t:eup:>rary segment register (same as the 'lBR in the 
645) and is initialized with the value of the PSR field 
of the IPR at the beginning of each instruction. During 
operand address calculation, TSR contains the segment 
n1.Jt'iJer portion of the current address calculation. 

Is the <XlYg?uted address and serves the same function as 
the 645 register of the same name. The canput.ed address 
is initialized at the beginning of each instruction with 
the contents of the instruction oounter of the IPR. 
During operand address calculatioo, C'A contains the WOrd 
n1.Jt'iJer portion of the current address calculation. 

Is a bit-offset relative to the first bit in the word 
speci~ied by CA. This field is ignored by all instructions 
except the new instructions specifically designed for string 
manipulation or decimal arithmetic. 

Qlee an operand address calculation is canplete, the value of TRR is can­
pared with the ring brackets of the segment ccntaining the operand ad­
dress to detennine whether the operation is to be allowed.. For example, 
if the instruction intends to store into this operand, the. value of TRR 
must be less than or equal to the Rl (in the· SIfi) of the segment to be 
trodified. 

Eight Pointer :Aagisters 

'l1le new processor contains eight program accessible p:>inter registers, which 
replace the eight address base registers (Alms) of the 645. '!he PFs of the 
new processor differ fran the ABFs in that each PR contains both a segment 
nunber and a w:>rd nunber portion. In effect, each PR of the new processor 
behaves as a 645 base register pair. The contents of each 42-bit PR are 
outlined below. 

SEGNO WORDNO BITNO 
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RN (3 bits) 

SEGIO 
(15 bits) 

IDRIl~ 
(18 bits) 

BI'lID 
(6 bits) 

Is used by the software to specify the level of privilege 
(i.e., ring nunber) at which the processor is to treat the 
address contained in the address register. When the pro­
cessor uses the contents of a PR for address m:xli.fication 
(e.g., bit 29 in the instruction word is on) the value of 
TRR is set to the larger of TRR (its current value) and the 
RN field of the specified PRe '!he use of the RN field of 
a PR allCMS the software to save the TRR of an operand ad­
dress calculation - e. g., throtgh the use of an RAP (ef­
fecti ve address to pointer) instruction. 

Specifies the segment nunber portion of the segmented 
address. 

Specifies the word nunber portion of the segmented address. 

Specifies a bit-offset relative to WORDNO and is ignored 
by all instructions except those designed specifically for 
string manipulation or decimal arithmetic. 

'!be software may store the contents of a PR into an ITS (indirect to 
segnent) word pair with the use of an STP (store pointer) instruction. 
The software may then address indirectly throtgh the ITS indirect word 
rather than using the original PRe Altemati vely, the software may reload 
another PR fran the ITS word pair throtgh the use of the FAP instruction. 
In either case, it is necessary to save the vallE of the m of the PR in 
the ITS 'WOrd pair so that the privilege level of the original operand 
address calculation is not lost. As a result, the ITS 'WOrd pair is mod­
ified to incll.rle a ring nunber field as outlined below. 

SEGNO IRN~ ITS 

WORDNO C?<J BITNO 1><1 MOD 

SEGNO (3-17) Is the segment nunber field (as in the 645). Note that 
bits 0-2 of the ITS word pair are set to zero for can­
patibility with 645 programs expecting an IS-bit segment 
nunber in the upper half of the first 'WOrd. 

RN (18-20) Is set to the value of the RN field of the PR during the 
STP instruction. If the processor attanpts to indirect 
throtgh an ITS word pair, TRR is set to the larger of 
TRR, RN (of the ITS), and Rl of the segment containing 
the ITS. Note that an improper value of RN in an ITS Y.Ord 
pair has no ill effect; SiT'lce t.he processor always takes 
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ITS (30-35) 

K)RJN) 

(0-17) 

BI'lNO 
(21-26) 

K>D (30-35) 

the maximun of TRR and m. In other words, it is 
impossible for an ITS word pair to specify a higher 
privilege than the segment in which it resides. 

Specifies the m:xlifier code (octal 43) for the ITS 
roodifier (same as in the 645). 

Is the word nunber lX>rtion of the saved PRe 

Is the bi t-offset of the PR saved by the STP lnstruction. 
The strange placerrent of theBI'INO field is necessary to 
remain cacpatible with the current PL/l software implem=n­
tation of bi t-offsets. 

Is set to zero by the STP instruction but may be set by 
the software. to specify further address nodification 
(same as in the 645). 

Since nost Multics canpilers (notably PL/l) calculate addresses via an 
FAP instructicn, it can be expected that a:npiler generated oode can take 
full advantage of the hardware protection mechanism with little nodification. 
If all addresses of all input parameters are calculated and saved (for use 
as outgoing argment };X>inters) via the use of the EAP and STP instructions, 
it will be-possible for a procedure q;>erating in ring 1 to pass to ring 0 
a pararooter given to the procedure fran ring 2, without checking the address 
of the paraneter. The access checking is fully autanatic as -long-as the 
TRR of the original address calculation continues to be maintained and 
passed along as the RN field of a PR or ITS word pair. 

The STCD (store control double) instruction is m:xlified to store the PRR 
in the same marmer as STP stores the RN field of a PRe The PRR is stored 
by the S'JD) to allCM an- RrCD (return control double) instruction to return 
to the prq>er ring. 

Figures 2 throU3'h 6 attarpt to flCM chart the entire access control mech­
anism fran the instruction fetch up to actual execution of the instruction. 
In order to concentrate on the access control mechanism, many details have 
been left out of the flow charts (indexing, IT IOOdifiers, etc.). If all 
the access control checks are successfully met, control will end up in a 
circle marked "done." The contents of the flCM charts are sunnarized belCM. 

Figure 2 begins with the instruction fetch and -continues throu:Jh the ini­
tial address calculation. 
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Figure 3 ShCMS hew indu-ect addressing affects the access cx::nputation. 
(The notation "Rl (ITS)" is used to denote the Rl of the segment con­
taining the ITS word pair. ) 

Figure 4 shavs the access checks made for all instructions except for 
transfer of control. 

Figure 5 ShCMS the access checks perfonned on all transfer instructions 
with the exception of the CALL instruction. tbte that the PRR carmot 
be changed bya no:r:rnal. transfer instruction (even to a higher value) • 
However, it is possible to set the PRR to a higher value with the rood.­
ified RI'CD (described belav) . 

Figure 6 shCMS the access Checks perfonned by the CALL instruction (the 
only slave instruction pennitted to set the PRR to a lower value). 

CALL INSTRtCI'ICN 

The CALL instruction is 'provided as the only means by which a procedure 
segmant may call a procedure in an inner ring (i. e., set PAA to a la-ler 
value) • '!he CALL instruction is to be used in all standard interprocedure 
calls and is inteIxied to replace the transfer instruction as the last in­
struction of the standard Multics calling s~ce. 

The CALL instruction uses two PRs: PRn and PRn+ I, where n is even. 
'!he value of n is wired into the processor and is currently 6. It is 
possible for a field engineer to dlange this value to 4, 2, or 0 by an 
orderly procedure. It must not be possible, however, to change this valte 
under user program control. {This use of a pair of PRs involves two full 
PRs (RN, SEGNO, WJRrNO, am Br.tm) and should not be confused with a 645 
base register pair.) When the CALL instruction is used to transfer control 
to another ring, the assurg;>tion is made (by convention) that the stack 
segment of the target ring has a segment nunber equal to the ring nunber 
of the target ring (i.e., the stack segment for ring X is a segment nunber 
X). The CALL instruction behaves as a TRA (transfer) instructio.1'l with the 
following exceptions: 

1. The access checking for a CALL instruction allcws PAA 
to be set to a laver value, provided that the call is 
made fran a ring wi thin the call bracket of the target 
segment (see Figure 6). 

2. If an attempt is made to call a procedure in an outer ring 
(a relatively rare case), an access violation occurs. Be­
cause of the necessity of copying all a.IgUl\etlts, the standard 
call, save, and retum s~ces carmot handle calls to an 
outer ring without excessive software overhead. 'Iherefore, 
calls to outer ring procedures will oontinue to cause a fault 
to allow the system software to interpret the call. 
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IPR --TPR 
(TPR.BITNO = 0) 

FETCH SOW FOR 
INSTRUCTION 

FETCH 
INSTRUCTION 
(lNST) 

PRn~EGNO 
TSR 

PRn.BITNO 
- TPR.BITNO 

N 

N 

N 

ACCESS 
VIOLATION 

ACCESS 
VIOLATION 

INST (017) 

- CA 

a • n IS VALUE IN BITS 0.2 OF 
INSTRUCTION WORD 

Figure 2. Instruction ~ch and Initial Mdress Calculation 
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FETCH SOW 
FOR TSR 

FETCH 
INDIRECT 
WOAD 

PAn.WOADNO + 
ITP (36-53t 

- CA 

PAn.BITNO 
_TPR.BITNO 

MAX(TRA. 
R lIITP), 
PRn.RNI- TAR 

N 

N 

Y 

Y 

ACCESS 
VIOLATION 

ITS.wOADNO 
- CA 

ITS.BITNO 
- PTA.BITNO 

MAX(TAA, 
Al (lTS),ITS.AN) 

-TRR 

N 

N 

N 

ACCESS 
VIOLATION 

Figure 3. Indirect Mdressing 
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RETRIEVE SOW 
FOR OPERAND 

y 

N 

N 

N 

N 

ACCESS 
VIOLATION 

ACCESS 
VIOLATION 

y 

N 

y 

81NCLUDING CALl. NOTE 
THAT RTCD IS NOT 
TREATED AS A TRANSFER 
INSTRUCTION, BUT READS 
ITS OPERAND. 

y 

ACCESS 
VIOLATION 

Figure 4. kcess Cllecks for Nootransfer Instructions 
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FETCH SOW 
FOR TSR 

N 

N 

N 

N 

ACCESS 
VIOLATION 

ACCESS 
VIOLATION 

ACCESS 
VIOLATION 

v 

Figure 5. Access Olecks for Transfer Instructions; Except CALI.n 
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FETCH SOW 
FOR TSR 

MIN (TRR,R2) 
-TRR 

N 

y 
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VIOLATION 

ACCESS 
VIOLATION 

ACCESS 
VIOLATION 

ACCESS 
VIOLATION 

N 

Figure 6. Access Cllecks for CALL Instructicn 
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3. At the beginning of the CALL, the contents of PRn are 
assuted to point to a location (i.e., the beginning of the 
current stack frame) within the stack segm:mt of the calling 
ring. During the execution of the CALL, the processor sets 
the contents of PRn+ 1 to point to word 0 of· the stack segm:mt 
of the target ring in one of two ways: 

a. If control is to ranain in the current ring (i. e. , 
TRR = PRR), the SEXl'IO portion of PRn+ 1 is set to 
the SEGNO of PRn and the WORINO portion of PRn+ 1 is 
set to zero. 

b. If control is to be passed to an imler ring (i.e., 
TRR < PRR), the SEX:NO portion of PRn+ 1 is set to the 
value of the target ring nunber (TRR) and the WOROOO 
of PRn+ 1 is set to zero. 

If an attempt is made to call to an outer ring (i. e., TRR > PRR), an 
access violation is generated as indicated in Figure 6. 

Figure 7 details the operation of the CALL instruction after the effective 
address carputation has been c:x:npleted (i.e., TPR has been conputed), and 
TRR is set to the target ring nunber (see Figure 6). 

'!he software stores a pointer to the end of the current (or last used) 
stacX fraroo in the beginning of 1:hat stack. The standard call and save 
sequ;mces might then be nodified as follavs: 

Calling Sequence: ZEro AlG..IST ZERQpoints to ARGLIST 
STQ) 6 I 20 Set return location 
CALL ENTRiPOINr Call external procedure 

Save Sequence: EAPI 7\ NEXT, * load pointer with base 
of new stack frame 

STP6 11 16 Save FOinter to old 
frame 

EAP6 11 0 Swi tch to new frame 

EAPl 6 f TEMP Ccrnpute pointer to neAt 
frame (allocate new frame) 

STPI 61 18 Save pointer to next frame 

STPI 71 NEXl' Update stack base 

STPO 61 26 Save ARGLIST PR 

188 



00 •.. 0 II TRR­

PRn + 1.SEGNO 

N 

TRR -

PRn + 1.RN 

00 ••. 0 -

PRn + 1.WORBNO 

00 ... 0 -

PRn + 1.BITNO 

TRR - PRR 
TSR - PSR 
CA - IC 

y 

PRn.SEGNO -

PRn + 1.SEGNO 

Figure 7 e Execution of CALL Instruction 
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ASSOCIATIVE MEM3R{ 

~ in the 645, the new processor requires a small associative rcenory in 
.)rder to avoid maoory fetches of frequently used sms and PIWs. A series 
of neasurarents and experiments has determined the effectiveness and be­
havior of the 645 associative marory. '11le experinents \Ere conducted and 
measurarents taken during nonnal Multics operation, under varying user 
loads. 

The experments indicate that the current 645 associative marory is quite 
effective. It appears that the ITOst significant aspect of the associative 
rnarory is in the speed of the search, since it is not possible to over lap 
carpletely the associative lookup with other work. '!his aspect su:Jgests 
that a one-pass lookup would be a desirable objective. There are at least 
three ways in which the effect of a one-pass lookup can be achieved: 

1. One approach is derived fran the fact that the "hit rate" 
on SIl'ls for paged segnents on the 645 is extremely low 
(about 0.21 percent). This fact su:Jgests a one-pass search 
of an associative naoory containing only PIWs and srws for 
unpaged segments. The search would look for an unpage:i 
SIM for the referenced page wi thin the segment. The copy 
of the PlW in the associative nerory must be extended to 
inclu:le access control infolltlation fran the original SIM for 
the segment. This approach has the drawback that any change 
in the operating envirorment (e.g., the use of smaller page 
sizes) which causes sIlis for paged segnents to be in higher 
d.anand would begin to degraOe system perfonnance. 

2. Another approach is to achieve the effect of a one-pass search 
using a two-pass search and overlapping the first pass during 
address preparation. In this approach, the single associative 
mennry contains both sms (paged and. unpaged) and PIWs extended 
with access control information. During address preparation, 
the associative maoory is searched for the sr::w of the segnent 
to be referenced. After address preparation, a second pass is 
made to locate the ... PIW for the page to be referenced. Only if 
the second pass fails are the results of the first pass inter­
rogated. If the first pass had succeeded, only the PIW must be 
fetched fran core marory. otherwise, both the SIlV and the P'IW 
must be fetched fran core rraoory. 

3. A third approach is to search two associative mEm)ries in 
parallel, one for SIl-Vs and the other for PlWs. If either the 
srw or PIW is not found in its respecti ve associative narory, 
it is retrieved fran core narory and updated into the appropriate 
associative maoory. Althou;~h this approach requires duplicate 
circui try, it is appealing in its logical sinplici ty and is the 
nethod chosen. 
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ADDR 

AST 

ASTE 

CA 

CM 

CME 

DBR 

DC 

DCW 

DID 

DIM 

DS 

DSBR 

IC 

IPR 

ITP 

ITS 

KST 

KSTE 

MC 

PC 

PHM 

PHU 

PN 

PO 

D. Abbreviations and Acronyms 

Address portion of PTW 

Active Segment Table 

Active Segment Table Entry 

Computed Address 

Core Map 

Core Map Entry 

Descriptor Base Register 

Directory Control 

Data Control Word 

Device Identifier 

Device Interface Module 

Descriptor Segment 

Descriptor Segment Base Register 

Instruction Counter 

Instruction Pointer Register 

Indirect to Pointer Register 

Indirect To Segment 

Known Segment Table 

Known Segment Table Entry 

Memory Controller 

Page Control 

Page Has Been Modified 

Page Has Been Used 

Page Number 

Page Offset 
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PR 

PRR 

PSR 

PT 

PTW 

RA 

RN 

SC 

SOW 

SFH 

SST 

TPR 

TRR 

TSR 

UlD 

Pointer Register 

Procedure Ring Register 

Procedure Segment Register 

Page Table 

Page Table Word 

Ring Alarm register 

Ring Number 

Segment Control 

Segment Descriptor Word 

Segment Fault Handler 

Systems Segment Table 

Temporary Pointer Register 

Temporary Ring Register 

Temporary Segment Register 

Unique Identifier 
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