HONEYWELL

MULTICS |
THE MULTICS

VIRTUAL
MEMORY

Honeywe“ THE MULTICS VIRTUAL MEMORY

MULTICS

SUBJECT:

Technical Papers on the Multics Virtual Memory as Designed for Model 645 Implemen-
tation. .]

SPECIAL INSTRUCTIONS:

These technical papers are reprinted here for theoretical and historical purposes only.

DATE:
June 1972

ORDER NUMBER:
AG95, Rev., 0

PREFACE

This document consists of three technical papers which describe the theory and
practice of Multics virtual memory implenientation. Multics (Multiplexed Information and
Computing Service) is a general purpose computer system which has been designed to be a
'"computer utility.'' As such, it is essential that Multics provide its users with sufficient
resources to do a wide variety of tasks and that the system be protected from destructive
interactions between users. The papers address the theory, the practice, the hardware,
and the software used to provide an effectively infinite memory to each user and to protect

both the users and the system.

The first paper discusses the concept of a virtual memory and explores several ways
in which such a memory could be implemented. The method used to implement the Multics
virtual memory on the Series 600 Model 645 processor is developed in detail. This pa.'per
is of historical importance and presents valid Multics design theory although the Model 645

is no longer used as the Multics processor.

The second paper extends the discussion further into the subject of protection, The
theory of the Multics ring structure is introduced and its implementation on the Model 645
is described. This theory is still valid although the Model 645 is no longer used as the

Multics processor.

The third paper shows how the features described in the two earlier papers are
handled by hardware under the optional Multics modifications to Series 6000 processors.
Several new processor features are introduced and describedt Use of these features allows
Multics to run on the Series 6000 processors, specifically the Model 6180, with greatly
increased efficiency as compared with the earlier implementation of Multics on the Series
600 processors,

The information and specifications in this document are
i S i ot

not be available outside the United States. Consult your
Honeywell Marketing Representative.

© General Electric Company, U.S.A., 1970
© Honeywell Information Systems Inc., 1972 " File No.: 1LW3

An alphabetized list of abbreviations and acronyms used in all three papers has been

included as an aid to the reader.

Papers in this document were written to further the understanding of the Multics
design philosophy and practices. They are not intended to be specifications of the Multics
system or its components. Authors have made simplifying assumptions at times to make the
main point clearer and easier to understand. ‘Persons requiring design specification details

are requested to contact the Multics development staff for guidance and assistance.

"The Multics Virtual Memory' was first published as Technical Information Series

Report R69LSD3, Copyright 1970 by General Electric Company, U.S.A.

""Access Control to the Multics Virtual Memory" was first published as Technical

Information Series Report R69LSD4, Copyright 1970 by General Electric Company, U.S. A.

iii

CONTENTS

The Multics Virtual Memory
Access Control to the Multics Virtual Memory
Series 6000 Features for the Multics Virtual Memory

Abbreviations and Acronyms

iv

Page

ils
165

191

A, The Multics Virtual Memoi:y

Chapter

Title

General Properties of the
Multics Virtual Memory

Overview of the Implementation
Directory Structure

Making a Segment Known to a
Process ~

Segment Fault Handling
Page Fault Handling
Secondary Storage Management

Device Interface Modules

PREFACE

In the past few years several well-known systems have
implemented large virtual memories which permit the execution
of programs exceeding the size of available core memory. These
implementations have been achieved by demand paging in the
Atlas computer, allowing a program to be divided physically into
pages only some of which need reside in core storage at any one
time, by segmentation in the B5000 computer allowing a program
to be divided logically into segments, only some of which need
be in core, and by a combination of both segmentation and pag-
ing in the 645 and the IBM 360/67 for which only a few pages
.of a few segments need be available in core while a program is
running.

As experience has been gained with remote-access, multiprogrammed
systems, however, it has become apparent that, in addition to
being able to take advantage of the direct addressibility of
large amounts of information made possible by large virtual
memories, many applications also require the rapid but controlled
sharing of information stored on-line at the central facility.

In Multics (Multiplexed Information and Computing Service),
segmentation provides a generalized basis for the direct access-
ing and sharing of on-line information by satisfying two design
goals: 1) it must be possible for all on-line information

stored in the system to be addressed directly by a processor and
hence referenced directly by any computation. 2) it must be
possible to control access, at each reference, to all on-line
information in the system.

The fundamental advantage of direct addressability is that
information copying is no longer mandatory. Since all instruc-
tions and data items in the system are processor-addressible,
duplication of procedures and data is unnecessary. This means,
for example, that core images of programs need not be prepared
by loading and binding together copies of procedures before
execution; instead, the original procedures may be used directly
in a computation. Also, . partial copies of data files need not
be read, via requests to an I/0 system, into core buffers for
subsequent use and then returned, by means of another I/O
request, to their original locations; instead the central
processor executing a computation can directly address just
those required data items in the original version of the file.
This kind of access to information promises a very attractive
reduction in program complexity for the programmer.

vii

If all on-line information in the system may be adidrccsed
directly by any computation, it becomes imperative io ve able
to limit or control access to this information both for the
self-protection of a computation from its own mishaps, and for
the mutual protection of computations using the same system
hardware facilities. Thus it becomes desirable to
compartmentalize or package all information in a directly-
addressible memory and to attach to these information packages
access attributes describing the fashion in which each user
may reference the contained data and procedures. Since all
such information is processor-addressible, the access attri-
butes of the referencing user must be enforced upon each
processor reference to any information package.

Given the ability to directly address all on-line information
in the system, thereby eliminating the need for copying data
and procedures, and given the ability to control access to this
information, then controlled information sharing among several
computations follows as a natural consequence.

In Multics, segments are packages of information which are
directly addressed and which are accessed in a controlled
fashion. Associated with each segment is a set of access
attributes for each user who may access the segment. These
attributes are checked by hardware upon each segment reference
- by any user. Furthermore all on-line information in a Multics
installation can be directly referenced as segments while in
other systems most on-line information is referenced as files.

viii

Chapter 1

GENERAL PROPERTIES OF THE MULTICS VIRTUAL MEMORY

1. INTRODUCTION

In recent literature the term "virtual memory" has become
quite familiar. The adjective "virtual" suggests that this
memory is the image of an ideal memory that one would like
to have, since it complies with the actual needs of a multi-
programming, multiple-access computer utility. This "ideal
memory"™ is not available as a hardware device and has been
simulated by the Multics system using a conventional memory
with the assistance of additional hardware and software
features.

This chapter describes the properties of the ideal memory,
justifies the desire for these properties, and explains the
principles of the simulation of this memory.

2. THE IDEAL MEMORY

In order to describe this ideal memory the terms "segment"
and "segmented memory" need to be defined first.

2.1. Segments
A segment is an entity defined by:

1) A name which uniquely identifies the segment.

2) A descriptor which describes the properties or
"attributes" associated with the segment.

3) A body which is an array of consecutive elements.

' The name is a character string of arbitrary length.

The descriptor contains all attributes the system designer
needs to attach to the segment: the size and the physical
location of the body, access rights for different users with
~ respect to this segment, the date it was created, etc.

The body of the segment is an ordered set of elements, called
words, each of which is identified within the segment body by
an integer i, its index. The number of elements in the body
is called the length of the segment.

2.2. Segmented Memory

A segmented memory will be defined as a memory with the
following properties:

1) It is capable of containing segments and only segments.
2) 1If it contains a segment named n, then n is the
address of the descriptor of this segment and the
pair [n,i] is the address of the ith element in the
body of this segment.

3) It is capable of performing operations on the
descriptor and the body of any segment, in accordance
with the attributes recorded in the descriptor.

2.3. Ideal Memory

The ideal memory can now be defined as a large, segmented
memory directly accessible by the processor, where by "large"
it is meant that the maximum number of segments that one can
store in it is adequate for the needs of the system.

A simple representation of such a memory is shown in Figure 1;
it comprises a memory controller (MC), a large number of
descriptors each of which contains the name and the attributes
of a segment, and a large number of linear memories each of
which is connected to a descriptor and can contain the body of
a segment.

The processor can send two types of requests to the MC: requests
for operations on descriptors and requests for operations on
bodies. In both cases the processor must communicate to the

MC the identification of the user on behalf of whom the
operation is requested.

2.4. Operations on Descriptors

The general form of a request sent by the processor to the MC
for operations on descriptors is

OPCODE n arguments userid
where: |
- OPCODE designates operations, such as "create a

segment", "change the length of a segment”, "change
access rights";

- n is the name of the segment. The MC uses it to
locate the appropriate segment descriptor;

- arguments are parameters associated with the function
defined by OPCODE;

- userid is the identification of the user on behalf

. of whom the operation is requested. The MC uses this
userid in order to determine from the attributes of

- the segments whether this particular user has the
right to perform this particular operation.

2.5. Operations on Segment Bodies

The general form of a request sent by the processor to the MC
for operations on segment bodies is

OPCODE [n,i] userid
where:

- OPCODE designates operations, such as "read", "write",
"instruction fetch";

- n is the name of the segment; the MC uses it to locate
the appropriate segment descriptor. It then uses the
segment descriptor to locate the segment body;

- i is the index of the word within the segment to
which the operation is to be applied;

- userid is used by the MC as above.

| 0
— [P

/

N\

NN\

////

3. JUSTIFICATION OF THE IDEAL MEMORY PROPERTIES

The ideal memory has been defined as a "large segmented memory
directly accessible by the processor". The advantages of such
an ideal memory will be explained by successively introducing
the advantages of a memory, that is: 1) large (but not
segmented); 2) segmented (but not large); and finally, 3)
large and segmented.

3.1. Large, Unsegmented Memory

Because the memory is large and directly accessible by the
processor, the user is provided with a core memory large

enough for any of his computations. Therefore, he can run

a program without being concerned with its size. However, no
matter how large the core memory is, if it is a linear memory
accessible by a single number, no sharing of information in
core can be tolerated between programs of different users since
no protection mechanism is in effect at the time a word is
accessed. '

3.2. Small, Segmented Memory

Because the memory is segmented and directly accessible by the
processor, the user is provided with several independent
linear core memories in each of which he can store one of his
. segments, deciding who can access it and how. Therefore, the
same segment can be shared in core by several user programs
without the danger of unauthorized accessed to this segment.
However, even though the memory is segmented, if the number

of segments that one can store in it is small, the user is
faced with the problem of overlays.

3.3. Large, Segmented Memory

By having the two properties "large" and "segmented" a
directly accessible memory provides the user with:

- a large machine-independent memory. There is a one-
to-one correspondence between the name by which the
user references a one-word datum and the physical
location in memory where the datum resides. As a
consequence, users are provided with a simple means
of writing programs such that, when executed, they
access common information in core. They merely have
to reference this information by its name.

- a protection mechanism. This mechanism is in effect
during execution at any memory access and protects
segments from unauthorized access.

3.4. Note on Information Sharing

It is worth making some remarks about information sharing.
Information to be shared consists of data and procedures.

- Sharing data or procedures in core requires:

a) A mechanism by which a reference to a segment by
its name X will cause segment X, and not a copy

segment X, to be referenced during program execu-
tion.

b) A mechanism by which the shared information can
be protected from unauthorized access while it is
in core.

- Sharing procedures in core also requires:

¢c) A mechanism by which one can produce pure

procedures that can be executed simultaneously by
several programs.

The memory described here provides a) and b), but not c).

In fact the memory itself cannot provide c); writing a pure
procedure implies the ability of communicating as parameters
to this procedure the names of any information private to the
program on behalf of which the procedure is executing. These
names cannot be stored in the memory itself; they have to be
stored in processor registers whose names are invariant.
During execution of a pure procedure by a processor on behalf
of a program, the names of data segments private to the pro-
gram are stored in processor registers whose names are stored
in the pure procedure. The processor requests the data from
the memory controller using the name found in the appropriate
processor register.

4, PRINCIPLE OF THE SIMULATION

The memory presented here is simulated in the Multics system,
this simulation being achieved by a combination of hardware
and software features. Hardware segmentation has been imple-
mented in the 645 and constitutes the most important of
the hardware features mentioned above. Paging has also been
implemented in the 645; although of immense help to the
implementation, we do not regard paging as a concept funda-
mental to a description of the principles of the ideal memory
simulation and shall postpone the discussion of paging until
the end of this section.

Let us first examine how much of the ideal memory capability
has been integrated into the hardware. Then a discussion of
the software functions needed to compensate for those
capabilities which are not provided by the hardware will
follow.

4,1. Hardware Segmentation in the 645

Concepts of segment name, segment descriptor, and segment
body have been integrated into the hardware as follows.

4.1.1;'Segggnt Names. A segment name for the hardware is an
integer s, called segment number, such that 0 < s < 218,

4.1.2. Segment Descriptors. The segment descriptor of
segment "s" is the sth entry of a table called a Descriptor
Segment. The descriptor segment is in core memory and its
absolute address is kept in a processor register. A descrip-
tor segment entry is called a Segment Descriptor Word (SDW).
SDW number s will be designated by the notation SDW(s).

Attributes that can be recorded in an SDW area are:

- The absolute core address of the head of the segment
body.

- The length of the segment body.

- Access rights for only one user with respect to the
segment body.

- An invalid attribute flag. F, which, when ON,
signals the absence of the above attributes in the
SDW and causes the processor to fault.

7

Since an SDW can contain access rights for one user only,
each user program must be provided with a private descriptor
segment. (See Figure 2.)

Descriptor Segment Descriptor Segment
of USER 1 of USER 2
A)
| '
| 1
sl‘ 's2
core L acc F core L acc F '
Segment
body

Figure 2. Hardware Segment Descriptors

4.1.3. Segment Bodies. The segment body is an array of
contiguous words in core memory and its maximum length is
2+° words.

4.1.4. Address Transformations. Word number i of the body
of segment s is addressed by the pair [s,i] and is accessed
through SDW(s) by the processor.

Provided that the absolute core address mg of word O of the
segment is stored in SDW(s), the processor transforms -

- the processor segment name s into the core memory
address m, using the descriptor segment which provides
the mapping m, = Z(s).

- the processor address [s,i] into the core memory address
m; by the translation m; = my+i, that is m; = Z(s)+i.

4.1.5. Access Rights Checking. Before accessing word m; the
processor performs a check on -

- the length of the segment by comparing i to the
length recorded in SDW(s). '

- The access rights for the user with respect to segment
s by using the access rights recorded in SDW(s).

This hardware organization presents the following advantages
over more conventional hardware.

- The set of processor addresses [s,i] is sufficiently
large that all words referenced by a program can be
assigned unique processor addresses. The user does
not have to organize a large program_into overlays
provided that he uses no more than 21 segments.

- Processor addresses are independent of physical memory
addresses. Addresses which appear in the instructions
of a program are invariant when segments are moved
from one location to another in core memory.

- Each access to core memory is subject to access rights
checking.

However, the hardware has only a restricted understanding of
the concept of segments and needs to be complemented by
appropriate software features.

4.2. Software Segmentation

Given the foregoing hardware segmentation capabilities, the
corresponding software segmentation capabilities required
to implement the Multics virtual memory can be described.

4.2.1. Segment Names. A segment name is a character string
called a symbolic segment name. The set of symbolic seg-
ment names is larger than 218, Therefore, the supervisor
must map a large set of symbolic segment names into a smaller
set of segment numbers.

4.2.2. Segment Descriptors. The hardware does not permit
one to -

- retrieve attributes of a segment given the
symbolic name of the segment. The software pro-
vides this capability.

- store all attributes of a segment in a hardware
segment descriptor or SDW. The software provides
complete segment descriptors for each segment and
stores them in a catalog. See Figure 3.

Segment
name Segment Attributes
a
b
core/secondary Access for user 1 other
c address length|Access for user 2 |attributes
Access for user 3
d

Figure 3. Representation of a Catalog

10

4.2.3. Segment Bodies. The body of a segment is an array of
contiguous words in core or in secondary memory. Since the
processor can fetch data and instructions only from core-
resident segments, the software must intercede when a
segment is found to be missing from core.

4.2.4. Address Transformations. Assuming for the moment that
all segments are in core memory, the supervisor performs the
following three transformations to make segments accessible
by the processor.

First, for any segment in the system, the supervisor must
provide a one to-one mapping from its symbolic name n into
its memory address m,, where m_ is the address of the be-
ginning of the segment. This mapping m, =X(n)® is recorded
in the catalog. See Figure 4.

Next, for each segment referenced by a user program, the
supervisor must provide a one-to-one mapping from its
symbolic name n into the segment number s assigned to it in
this user program. This mapping s = Y (n) is recorded in

a table associated with the user program and called the
Known Segment Table (KST).

Finally, for each segment that has been assigned a segment
number s in a user program, the supervisor must provide

a one-to-one mapping between the segment number s and its
memory address mg,. This mapping my=Z(s) is recorded in the
descriptor segment associated with the user program.

The transformation X is independent of the user program;
transformations Y and Z for user program u are user-

dependent and will be denoted as Y, and Z,.

11

In order to permit several user programs to share the same

segment by merely referencing it by the same name, these
transformations must be such that, for any user program,

X(n) = Zy(Y,(n)).

Yu

@ KST

X Catalogue

@_

Figure 4. Address Mapping Tables

12

To this point we have assumed that all segments are in core.
In fact, core memory being limited, the supervisor has to move
segments between core and secondary memory.

The transportation of segment n from core memory address m, to
secondary memory address M_must be associated with the foflow—
ing address mapping modifications:

- m, must be replaced by M, in the catalog entry for n.

- m_ must be replaced by an undefined value in any SDW
in which it appears. This is done by setting the
invalid attribute flag ON in the SDW.

Note that the mapping between n and s remains unchanged in
any user program.

A subsequent reference to segment n by segment number s in a
user program will cause the processor to fault since the
invalid attribute flag is ON in SDW(s). This fault will be
referred to as a missing segment fault. Using the KST
associated with this user program, it is possible to determine
the name n of the segment s. Knowing n, the catalog entry for
n can be found. The segment must be moved from secondary
memory address Mo to some (generally different) core memory
address m'. This move must be associated with the following
address mapping modifications:

- My must be replaced by mé in the catalog entry for n.
- The undefined value (Flag) in SDW(s) must be replaced
by mJ.

Note again that the mapping between n and s remains unchanged
by the move.

4.2.5. Access Rights Checking. We have seen how the supervisor
responds to a missing segment fault occurring in a user pro-
gram but the description was not complete. A missing segment
fault is a signal to evaluate the segment attributes in a
specific SDW. Only the evaluation of the core address attri-
bute has been described. Moreover, when the supervisor ex-
tracts core address information from the catalog, it also
extracts the length and access rights attributes and stores
them in the SDW. Each subsequent hardware reference to the
segment by this user program is made through the SDW with the
hardware performing access checking.

13

However, when performing operations on segment attributes the
supervisor itself must do the necessary validation for any
operation requested by a particular user since the hardware
does not provide for access checking on attributes.

4.3, Paging

In a system in which the maximum size of any segment were
very small compared to the size of the entire core memory,
the "swapping" of complete segments into.and out of core
would be feasible. Even in such a system, if all segments
did not have the same maximum size, or had the same maximum
size but were allowed to grow from initially smaller sizes,
there remains the difficult core management problem of
providing space for segments of different sizes.

Multics, however, provides for segments of sufficient
maximum size that only a few can be entirely core-resident
at any one time. Also, these segments can grow from any
initial size smaller than the maximum permissible size.

By breaking segments into equal-sized parts called pages
and providing for the transportation of individual pages to
and from core as demand dictates, several practical problems
encountered in the implementation of a segmented virtual
memory are solved.

First, since only the referenced page of a segment need be
in core at one instant, segments need not be small compared
to core memory.

Second, "demand paging" permits advantage to be taken of any
locality of references peculiar to a program by transporting
to core only those pages of segments which are currently
needed. Any additional overhead associated with demand
paging should of course be weighed against the alternative
inefficiencies associated with dedicating core to entire
segments which have been swapped into core but which may be
only partly referenced.

Finally, since pages are all of equal size, space allocation
is immensely simplified. The "compaction" of information in
core and on secondary storage characteristic of systems deal-
ing with variable-sized segments or pages is thereby elimi-
nated.

14

The basic principles of paging in the Multics virtual memory
may be briefly summarized as follows.

When a segment is not paged, the memory location of its
element i is defined by relation (1), where m_ is the memory
location of element O.

1) m =m, + i

When a segment is paged into pages of K elements, the memory
location of its element i is defined by relation (2), where

K is the memory location of element pK; that is, the memory
location of the page number p of the segment.

mg = mpg tJ
(2) j =1 mod K
p = (i-j)/K

If N is the number of pages in a segment, paging this segment
requires -

- a segment map with N entries, one for each page.

- a relocation capability in the hardware.

In the 645 the N entries of the segment map are provided
by a "page table" and the relocation is performed by the
processor itself. Furthermore, a page table entry contains
a missing-page flag such that, if found ON by the processor
while attempting to perform relocation, causes the processor
to trap to the supervisor.

The missing-page flag is ON when the corresponding page is

not in core. When, upon attempting to access a missing page,
the processor traps to the supervisor, the supervisor must
move the requested page into core. In order to do so the
supervisor must maintain a segment map of N entries in the
software descriptor, i.e., in the directory entry. Each time
page p 1s moved from one location to another, this move must
be associated with the following address mapping modificationms.

15

- Update the mapping in entry p of the segment map
located in the directory entry.

- Update the mapping in entry p of the page table.

Although paging need not be considered essential to a
description of the simulation principles of an ideal memory,
it is a basic feature for the implementation of such a memory.

The next chapter describes in some detail how the ideal

memory has been simulated in the Multics system, using hardware
segmentation and hardware paging as implemented on the GE-645.

16

Chapter 2

IMPLEMENTATION OF THE MULTICS VIRTUAL MEMORY: OVERVIEW

1. INTRODUCT ION

As we have seen in Chapter 1, the Multics virtual memory is

a large, segmented memory. Each segment can be referenced by
its name in a user program; a reference by name will cause
the segment to be accessed by the processor according to the
access rights of the user with respect to that segment. The
memory is called "virtual" because it is not available as

a hardware device. Instead, it is simulated using a conven-
tional non-segmented memory, a set of processor registers
which provide the second dimension of a segmented memory and
a supervisor which compensates for the difference in
capabilities between the 645 hardware and the ideal memory
described in Chapter 1.

Although the hardware checks each user's access rights to a
segment whenever it accesses that segment, a certain number
of additional functions must be provided by the supervisor
in order to give the illusion that all segments are directly
accessible by name by the processor.

- The hardware cannot retrieve the attributes of a
segment using its symbolic name; the supervisor
organizes segment attributes into "directories"
where it can retrieve them.

- The hardware cannot interpret access rights for
segment attributes; all operations on segment
attributes are done by the supervisor.

- The hardware cannot reference a segment by a symbolic
name; it does it by a segment number. The supervisor
translates all symbolic segment names into segment
numbers.

- The hardware cannot access a segment if it is not in
core memory; each reference to a segment which is
not in core will cause the supervisor to move the
segment from secondary memory to core memory. In
order to help the supervisor in core memory allocation,
the hardware provides a paging capability.

17

This chapter builds upon the ideas developed in Chapter 1
to show in some detail how the ideal memory is simulated.
The ma jor topics covered are:

- Segmentation and paging on the 645 processor.

- The organization of segment attributes into
hierarchically ordered directories and the
manipulation of these attributes by the super-
visor.

- Segment accessing and all the supervisory functions
needed to make a segment directly accessible by the
processor.

- The structure of the supervisor itself, showing how
parts of the supervisor are able to utilize the
virtual memory provided for user programs.

2. THE 645 PROCESSOR

This paper discusses only those features of the 645 processor
which are of interest for the implementation of a virtual
memory. They can be grouped into two different classes --
segmentation and paging -- and are treated separately below.

2.1, Segmentation

Any address in the 645 consists of a pair of integers
[s,i]. The range of s and i is 0 to 218-1. s is called the
segment number, i the index within the segment. Word Qs,i]
is accessed through a hardware register which is the s h
word in a table called a descriptor segment (DS). .This
descriptor segment is in core memory and its absolute address
is recorded in a hardware register called a descriptor base
register (DBR). Each word of the DS is called a segment
descriptor word (SDW); the sth sDW will be referred to as

SDW(s). See Figure 1.

The DBR contains the following values:
- DBR.core which is the absolute core address of the

DS.
- DBR.L which is the length of the DS.

18

Segment descriptor word number s contains the following

values:

SDW(s).core which is the absolute address of the
segment s.

SDW(s).L which is the length of the segment s.
SDW(s).acc which describes the access rights for
the segment.

SDW(s).F which is a flag that can be ON or OFF.
This is the invalid attribute flag mentioned in
Chapter 1.

The algorithm used by the hardware for executing an instruction
of the type OPCODE [s,i] is as follows:

SEGMENT"s" SDW(s)

If DBR.L <s, generate a fault.

Access SDW(s) at absolute location DBR.core + s.

If SDW(s).F = ON, generate a missing segment

fault.

If SDW(s).L< i, generate a fault.

If SDW(s).acc is incompatible with OPCODE, generate
a fault. ‘ 7

Apply OPCODE to the word whose absolute address is
SDW(s).core+i,

DBR

core |L

DS

word(s,1)

wn- sk

core |L |acc |F

- - -~

Figure 1. Hardware Segmentation in the 645

' The above description assumes that segments are not paged;
in fact, paging is implemented in the 645 hardware.

19

2.2 Paging

A bit in an SDW indicates whether the corresponding segment
is paged or not. Another bit in the SDW indicates whether
the page size is 64 or 1024 words. Analogous bits in the
DBR serve the same purpose for the descriptor segment.

However, in the Multics implementation, all segments are
paged and the page size is always 1024 words. Therefore,
this description makes the following two assumptions:

- All segments are paged.
- The page size is a constant, K, equal to 1024
words.

No further reference will be made to these two bits in the
SDW and DBR.

Element i of a segment is the yth word of the xth

the segment, x and y being defined by:

I

where K is the page size.

page of

i mod K
(i-y)/K

Since K = 1024 = 210, the processor can compute x and y from
the 18 bit-binary representation of i by merely dividing i
into two parts. The right part, which consists of the 10
least significant bits of i, represents the binary value of
y; the left part, which consists of the 8 most significant
bits of 1, represents the binary value of x.

See Flgure 2.

17 0
L i _]
I |
17 l 9 ¢ 0
L X [Y |

Figure 2. Hardware Interpretation of the Word Number

20

The page table (PT) of a segment is an array of physically
contiguous s words in core memory. Each element of this array
is called a page table word (PTW).

Page table word number x contains the following items.

- PIW(x).core which is the absolute core address of
page #x.

- PIW(x).F which is a flag that can be ON or OFF.
This is the missing page flag mentioned in
Chapter 1.

The meaning of DBR.core and SDW(s).core is now as follows:

- DBR.core = Absolute address of the PT of the DS.
- SDW(s).core = Absolute address of the PT of
segment #s.

The full algorithm used by the hardware to access word [s,i]
is (see Figure 3):

- If DBR.L < s, generate a fault.
- Split s into sx and sy such that sy = s mod K and
sx = (s-sy)/K.
- Access PIW(sx) at absolute location DBR.core + sx.
- If PTW(sx).F = ON, generate a missing page fault.
- Access SDW(s) at absolute location PTW(sx).core
+ sy.
- If SDW(s).F = ON, generate a missing segment fault.
- If SDW(s).L < i, generate a fault.
- If SDW(s).acc is incompatible with OPCODE, generate

a fault.
- Split i into ix and iy such that iy = i mod K and
(1i-iy)/K.
- Access PTW(ix) at absolute location SDW(s).core
+ ix.

- If PIW(ix).F = ON, generate a missing page fault.
- Apply the OPCODE to the word whose absolute
location is PTW(ix).core + iy.

21

(44

PT of
SEGMENT"s"

DBR

core

PAGE"ix"of SEGMENT"s" PTW(ix)

WORD(s,1i)

Figure 3.

core I

D .

Hardware Segmentation and Paging in the

1ix

PT of DS
PAGE"sx" of DS PTW(sx
— ore | F

'

}

sy

]

)

SDW(s) v

|_core|L]acc|F
645

T

3. SEGMENT ATTRIBUTES

3.1. Directory Hierarchy

The association between the name of a segment and its
attributes is recorded in a catalogue. This catalogue
consists of a table with one entry for each segment in the
system. An entry contains the name of the segment and all
its attributes (length, memory address, list of users allowed
to use that segment with their respective access rights, date
the segment was created, etc.).

In Multics this catalogue is divided into several segments
called directories, which are organized into a tree struc-
ture. A naming convention permits one to search the tree
structure for a given name without having to search all
directories.

A segment name is a list of subnames reflecting the position
- of the entry in the tree structure, with respect to the
beginning of the tree or root directory. By convention,
subnames are separated by the character ">". Each subname
is called an entryname and the list of entrynames is called

a pathname.

There are two types of directory entries called branches and
links. A branch is a directory entry which contains all
attributes of a segment while a link is a directory entry
which contains the pathname of another directory entry.

This chapter will deal only with entries of the branch type.

The pathname is the only name by which a segment can be
searched for in the directory hierarchy.

The attributes associated with a segment whose pathname is
ROOT> A> B> C are found as follows (see Figure 4):

- Search the root directory for an entry whose entry
name is A. This entry contains attributes for the
directory segment whose pathname is ROOT > A. These
attributes permit one to locate the directory
ROOT> A in memory.

23

Search directory ROOT > A for an entry whose entry
name is B. This entry contains attributes for the
directory segment whose pathname is ROOT > A> B,
These attributes permit one to locate the directory
ROOT > A > B in memory.

Search directory ROOT > A> B for an entry whose

entry name is C. This entry contains attributes for
the segment ROOT > A > B > C.

24

ROOT > A> B »

C

ROOT > A> B

c_lateribytes |

H lAttributes
empty
empty

1

ROOT > A

A [Attributes \

B| Attributes
X | Attribytes

Y | Attributes

empty

ROOT

A |Attributes

D JAttributes

empty

empty

F I Attributes

empty

Al Attributes |

empty

L X | Attxibutes |
empty

empty

empty

O‘— F lAttributes
empty
empty

Y |Attributes

Attributes |

=]

Attributes |

87

Figure 4. Directory Hierarchy

empty

25

Squares are directory segments,
Circles are non-directory segments.

3.2, Operations on Segment Attributes

All operations on segment attributes are done by supervisor
primitives. There is a set of primitives available to the
user which allow him, for example, to:

- Create a segment.

- Delete a segment.

- Change the entryname of a directory entry.
- Change the access rights of a segment.

- List a directory.

Any of these operations is performed on behalf of a user by

the supervisor only if the user has the right to perform
them.

Some further details about one of these operations, segment
creation, are important to an understanding of the topic of
segment accessing developed in the next section.

Creating a segment whose pathname is ROOT > A > B> C consists
basically of taking the following actions:

- Check, by searching the directory hierarchy, that
this segment does not exist already in the system.

- Allocate space for a branch in directory
ROOT> A> B.

- Store in the branch the following items:
. The entry name C.
. The access list, given by the creator.
. The segment map which consists of a secondary
storage address for each page of the segment.
This segment map is manufactured by the

supervisor.

. The segment status "inactive", meaning that there
is no page table for this segment.

Once the segment has been created, the user can reference
it. Note that no segment number has been assigned to the

segment at creation time, and the only way to refer to it
is by the pathname.

26

4. SEGMENT ACCESSING

We are now in a position to understand a description of
the functions that are provided by the supervisor in order
to make accessible by the processor segments which are
referenced by name in a user program. Figure 5 is key to
an appreciation of the Multics virtual memory implemen-
tation. Although frequent references to Figure 5 follow,
the full implications of its contents will not be apparent
until the entire section has been read.

4.1. Concept of Process and Address Space

A process is generally understood as being a program in
execution. A process is characterized by its state-word
defining, at any given instant, the history resulting from
the execution of the program.

A process is also characterized by its address space. The
address space is the set of processor addresses that this
process can use to reference the memory. In Multics the
address space of a process is defined as the set of segment
numbers that the process can use to reference segments in
the virtual memory. As explained in Chapter 1, a segment
number can be used to reference the virtual memory only

if it has been associated with a segment name, i.e., a
pathname. This association [pathname, segment number)

is recorded in a table called the Known Segment Table (KST)
which defines the address space of the process. There is a
one-to-one correspondence between Multics processes and
address spaces. The action of adding a new pair [pathname,
segment number] in a KST is referred to as making the seg-
ment with that pathname known to the process.

4.2, Making a Segment Known to a Process

Each time a segment is referenced in a process by its
pathname, the pathname must be translated into a segment
number in order to permit the processor to address the seg-
ment. This translation is done by the supervisor using the
KST associated with the process. The KST is an array
organized such that the entry number "s", KSTE(s), contains
the pathname associated with segment number s. See Figure 5.

27

If the association [pathname, segment number)] is found

in the KST for this process, then the segment is known to
the process and the segment number can be used to reference
the segment.

If the association [pathname, segment number] is not found
it means that this is the first time the segment is refer-
enced in the process and the segment has to be made known.
This is done by assigning an unused segment number "s" in
the process and by establishing the pair [pathname, segment
number] in the KST by recording the pathname in KSTE(s).
Furthermore, the directory hierarchy is searched for this
pathname and a pointer to the corresponding branch is
entered in KSTE(s) for later use (see Section 4.3.).

This stage is fundamental because, in the Multics system,
it is impossible to assign a unique segment number to each
segment. The reason is that the number of segments in the
system may be larger than the number of segment numbers
available in the processor.

When a segment is made known to a process by segment number
"s" its attributes are not placed in SDW(s) of the descrip-
tor segment of that process. SDW(s) has been initialized
with an invalid attribute flag. Therefore, the first
reference in this process to that segment by segment number
"s" will cause the processor to generate a fault. In Multics
this fault is called a "missing segment fault" and transfers
control to a supervisor module called the segment fault
handler.

4.3, The Segment Fault Handler

Upon the occurrence of a missing segment fault, control is
passed to the segment fault handler whose function is to
store the proper segment attributes in the appropriate SDW
and to set the invalid attribute flag OFF in the SDW.

This information, we recall, consists of:
- The page table address.
- The length of the segment.

- The access rights of the user with respect to the
segment.,

28

The information initially available to the supervisor upon
occurrence of a missing segment fault is:

- The segment number s.
- The process identification.

The only place where the needed information can be found

is in the branch of the segment. Using the process
identification, the supervisor can find the KST for this:
process. It can then search this KST for the segment number
s. Having found the KST entry for s, it can find the
required branch since a pointer to the branch has been
stored in the KST entry when the segment was made known to
that process. See Section 4.2.

Using the active switch (see Figure 5) in the branch, the
supervisor can determine whether or not there is a page table
for this segment. Recall that this switch was initialized

in the branch at segment creation time. If there is no page
table, one must be constructed. A portion of core memory is
permanently reserved for page tables. All page tables are
of the same length and the number of them is determined at
system initialization.

29

[1
DIRECTORY
Lw J = |
D8 kST
SDH(S) KSTE(S) BRANCH
A'l#] ILF lr o————————f Path
.’ core cc athname ptr ENTRY NAME
‘." Segment map
: - Langth
'. Active switch
v
° ASTE-pt Ptr
USER 1 = Access rights
ASTE USER 2 » Accsss rights
Length USER 3 = Access rights |
LR Y Segment map
Connect, List
Branch ptr
—_— temporary mapping .
et ieueu..... mapping needed to invalidate a temporary cen® ..--"" *
mapping .
& ————————=Dimplicit mapping

NOTE - The page table of the descriptor segment is not shown for the sake of simplicity

Pigure S. Basic Tables Used to Implement the Multics Virtual Memory

The supervisor divides these page tables into two lists:
the "used list" and the "free list". Manufacturing a page
table (PT) for a segment could consist only of selecting

a PT from the free list, putting its absolute address in
the branch and moving it from the free to the used list.
If this were actually done, however, then the servicing

of each missing page fault would require access tc a
branch since the segment map is kept there.

Since all directories cannot be core-resident, page fault
handling could thereby require a secondary storage access
in addition to the read required to transport the page
itself into core. Although this mechanism works, effi-
ciency considerations have led to the "activation"
convention between the segment fault handler and the page
fault handler. '

4.3.1. Activation. A portion of core memory is permanently
reserved for recording attributes needed by the page fault
handler, i.e., the segment map and the segment length.

This portion of core is referred to as the active segment
table (AST). The AST contains one entry (ASTE) for any
segment that has a PT. A PT is always associated with an
ASTE, the address of one implying the address of the other.
They may be regarded as a single entity and will be
referred to as the [PT,ASTE] of a segment.

A segment which has a [PT,ASTE] is said to be active.

The property of being active or not active is an attribute
of the segment and, therefore, has to be recorded in the
branch. When this active switch is set ON it means that
both the segment map and the segment length are no longer
in the branch but are to be found in the segment's
rPT,ASTE] whose address has been recorded in the branch
during "activation" of the segment.

To activate a segment the supervisor must:

- Find a free [PT,ASTE]. Assume temporarily that at
least one is available.

- Move the segment map and the segment length from
the branch into the ASTE.

31

Set the active switch in the branch.

Record the pointer to [PT,ASTE] in the branch.

Having defined activation, the actions taken up to now by
the segment fault handler can be summarized as:

Use the segment number s to access the KST entry.
Use the KST entry to find the branch.

If the active switch is OFF, activate the segment.
If it is ON, then activation is unnecessary at this
time as the segment was already activated for
another process.

By pairing an ASTE with a PT in core, the segment fault
handler has guaranteed that the segment attributes needed
by the page fault handler are core-resident, thus per-
mitting efficient page fault servicing.

4.3.2.

Connection. Now that the segment is active, the

corresponding SDW must be "connected" to the segment.

To connect the SDW to the segment the supervisor must:

Get the absolute address of the PT, using the
[PT,ASTE] pointer kept in the branch, and store
it in the SDW.

Get the segment length from the ASTE and store it
in the SDW.

Get the access rights for the user from the branch
and store them in the SDW.

Turn off the flag which caused the fault from the
SDW.

32

Having defined activation and connection, segment fault
handling can finally be summarized as:

- Use the segment number s to access the KST entry.
- Use the KST entry to find the branch.

- _If the active switch in the branch is OFF, activate
the segment.

- Connect the SDW.

Note that segment sharing in core is "automatically"
guaranteed by the use of the active switch and [PT,ASTE]
pointer kept in the segment branch since all SDW's describ-
ing this segment will point to the same PT.

Now that the segment has an SDW pointing to the PT, the
hardware can access the appropriate page table word. If
the page is not in core, a missing page fault occurs,
transferring control to the supervisor module called the
‘page fault handler.

4.4, The Page Fault Handler

When a page fault occurs the page fault handler is given
control with the following information:

- The PT address.
- The page number.

The information needed to bring the page into memory is:

- The address of a free block of core memory into
which the page can be moved.

- The address of the page in secondary memory.

A free block of core must be found. This is done by using
a data base called the core map. The core map is an array
of elements called core map entries (CME). The nth entry
contains information about the nth block of core (the size
of all blocks is 1024 words). The supervisor divides this
core map in two lists; the used list and the free list.

33

The job of the page fault handler is to:

- Find a free block of core. (Assume temporarily
that there 1s at least one free block in the
free list.)

- Access the ASTE associated with the PT and find
the address in secondary memory of the missing

page.

- Issue an I/O request to move the page from
secondary memory into the free block of core.

- Upon completion of the I/O request, store the
core address in the PTW and remove the fault from
the PTW.

4.5. Page Multiplexing

It was assumed that a free block of core was available in
the core map free list; however, this is not always the
case since there are many more pages in the virtual memory
than there are blocks of core. Therefore, in order to get
a free block of core, the page fault handler may have to
move a page from core to secondary memory. This requires:

- An algorithm to select a page to be removed.

- Knowing the address of the PIW which holds the
address of the selected page in order to set a
fault in it.

- Knowing where to put the page in secondary memory.

The selection algorithm is based upon page usage. The
hardware provides valuable assistance by the fact that,

each time a page is accessed, a bit is set ON in the
corresponding PTW. This bit is called the used bit.

34

The selection algorithm will not be described here; however,
it should be noted that candidates for removal are those
pages described in the core map used list. Therefore, each
core map entry which appears in the used list must contain
a pointer to the associated PIW in order to permit one to
examine the used bit. The action of storing the PTW pointer
in the core map entry must be added to the list of actions
taken by the page fault handler when a page is moved into
core (see Section 4.4.).

A fault is stored in the PIW.

- The secondary storage address for the page is found
in the ASTE whose address can be computed from the
PTW address.

- An I/O request is issued to remove the page to
secondary storage.

- Upon completion of the I/O request, the core map
entry is removed from the used list and put in the
free list.

By this mechanism, blocks of core are multiplexed among all
pages of all active segments in the system. ‘

It is important to realize that a page is either in core or
in secondary storage. There is no such thing as a "copy" of
a page. When a page is moved from secondary storage to core,
its secondary storage address, located in the ASTE, could be
freed; it is no longer needed since the address of the page
is now in the PTW. When the page is to be removed, a free
block of secondary storage could be assigned to it. It is
only for practical reasons that the block of secondary
storage is not freed each time a page is moved into core.

Page multiplexing maintains a "perpetual motion" between core
and secondary storage of pages of active segments. If the
set of active segments in the system were invariant, then
pages of other segments would never have a chance to be in
core L]

35

4.6, [PT,ASTE] Multiglexing

In the description of segment fault handling, when a segment
had to be activated, a pair [PT,ASTE] was assumed available
for assignment to that segment. In fact, the number of
[PT,ASTE] pairs is limited in the system and is, by far,
smaller than the number of segments in the virtual memory.
Therefore, these [PT,ASTE] pairs must be multiplexed among
all segments in the virtual memory.

This means that making a segment active may imply making
another segment inactive thereby disassociating this other
segment from its [PT,ASTE]. Since each process sharing the
same segment will have the address of the PT in an SDW it is
essential to invalidate this address in all SDW's before
removing the page table. It is also essential to move to
secondary memory all pages of that segment which are in core
before removing the [PT,ASTE], since the ASTE is needed to
remove a page. Then, and only then, can [PT,ASTE] be
disassociated from the segment.

This operation requires:
- An algorithm to select a segment to be deactivated.

- Knowing all SDW's that contain the address of the
page table of the selected segment in order to
invalidate this address.

- The removal of all pages of the selected segment
that are still in core.

- Moving the attributes contained in the ASTE back to
the branch and changing the status of the segment
from active to inactive in the branch.

The selection algorithm is here again based- on segment usage.
The only thing of interest at this point is that selection
is done by scanning the ASTE used list. Therefore, the ASTE
must provide all the information needed for removing the
[PT,ASTE]. This means that during activation and connection
this information must be made available as explained below.

36

During activation, a pointer to the branch must be placed in
the ASTE; during connection, a pointer to the SDW must be
placed in the ASTE. Since more than one SDW is connected

to the same PT when the segment is shared by several pro-
cesses the supervisor must maintain a list of pointers to
connected SDW's. This list is called a connection list.

See Figure 5.

Now we are in a position to understand how a [PT,ASTE] can be
disassociated from a segment. After the selection algorithm
decides on an ASTE to be freed, actions to be taken consist
of two steps called "disconnection" and "deactivation".

Disconnection consists of storing a segment fault in each
SDW whose address appears in the connection list in the
ASTE.

Deactivation consists of removing all pages of this segment
that may be in core, moving the segment map from the ASTE
back to the branch, resetting the active switch in the branch
and putting the [PT,ASTE] in the free list.

4.7. Seggent Number Multiplexing in a Process

The number of segments that a proceSS can describe in its
descriptor segment is limited to 2 18, It is unlikely that

a process needs to access more than 218 segments from the
time it is created to the time it is destroyed. However,

if this should happen, a facility is provided to a process
to remove an association [pathname, segment-number] by an
explicit call to the supervisor. This action is referred to
as making a segment unknown. When segment A which is known
to a process by the segment number "s" is made unknown to that
process, no attempt is made by the supervisor to remove
residual [s,i] pairs that may have been generated and stored
during the time that s was assigned to A. Making segment A
unknown to the process implies freeing KSTE(s). If sub-
sequently another segment, say B, is made known to the process,
the supervisor may assign this unused segment number s to
segment B, entering the pathname B in KSTE(s). From this
point on, any reference by segment number s in this process
will cause segment B to be accessed. Therefore, it is
entirely the responsibility of the programmer, after segment
A is made unknown, not to reuse any residual pair [s,i] that
was generated for accessing segment A.

37

4.8. Directory Entry Multiplexing

wWhen a segment is deleted, the branch of that segment is
deleted. No attempt is made by the supervisor to remove
residual KST entries that contain a pointer to this branch.
However, the supervisor can detect references by residual
segment numbers, to segments which have been destroyed as
follows:

- When segment A is created, the sﬁpervisor assigns a
unique number N, to segment A and stores it in the
branch.

- When segment A is made known to a process P by the
segment number s, N, is copied from the branch to
KSTE(s) for process P along with the pointer to
branch A.

- If segment A is deleted by any process, the supervisor
disconnects the corresponding SDW in process P, if

it was connected, and deletes the branch together with
N
A.

- If the same directory entry‘is reused to record the
branch information of another segment B, a new unique
identifier Ng will be stored in the branch.

- Now, if process P uses the segment number s in order
to access segment A, a segment fault will occur; the
KST entry contains a pointer to the directory entry
which is supposed to be the branch A. But by compar-
ing the N, of the KST entry and Ng of the directory
entry, the supervisor can discover that segment A
has been deleted.

Therefore, it is possible to detect the deletion of a branch
even though its former directo ry ha

another segment.

-
ey “b

~
&y <k

5. STRUCTURE OF THE SUPERVISOR

Up to now supervisor functions have been described, but
supervisor structure has not been discussed. In this section,
the different components of the supervisor are covered and the
ability of portions of the supervisor to partially utilize

the virtual memory is demonstrated.

38

5.1. Functional Modules

Three functional modules can be identified in the supervisor
described; .they are called directory control (DC), segment
control (SC), and page control (PC).

5.1.1. Directory Control. Directory control is that part of
the supervisor which can manipulate all segments in the
system. DC identifies a segment by its pathname which
uniquely defines a segment in the system. Data bases that
are manipulated by DC are the directories and KST's of all
processes (see Figure 6). DC provides all primitives to
simulate operations on segment attributes; it also provides
the assignment of a segment number to a segment within a
process.

5.1.2. Segment Control. Segment control is that part of
the supervisor which can manipulate only those segments which
are known to at least one process. SC identifies a segment
by either its segment number within a particular process,
which uniquely defines a segment in the system, or by its
[PT,ASTE] address which uniquely defines an active segment
in the system. Data bases that are manipulated by SC are
directories, KST's of all processes, descriptor segments of
all processes and [PT,ASTE] pairs of all active segments.
SC provides the functions of activation, connection, dis-
connection and deactivation.

5.1.3. Page Control. Page control is that part of the
supervisor which can manipulate only those segments which
are active. PC identifies a segment by its [PT,ASTE]
address which uniquely defines an active segment in the
system. Data bases that are manipulated by PC are [PT,ASTE]
pairs of all active segments and the core map. PC provides
the mechanism to move pages of active segments between
secondary storage and core.

39

Directorie

DIRECTORY SEGMENT sg--| PAGE | --pfcore map
CONTROL CONTROL CONTROL

Figure 6. Supervisor Functional Modules and Data Bases

5.2. Use of Segmentation in the Supervisor

Previous to this no assumptions were made about the type of
addressing used by the supervisor. It could be written so
as not to use segment addressing of course; but organizing
the supervisor into procedures and data segments permits one
to use in the supervisor the same standard conventions that
are used in a user program. For instance, the CALL-SAVE-
RETURN conventions made for user programs can be used by the
.supervisor, the standard way to manufacture pure procedures
in a user program can be used in the supervisor, etc. Thus,
it seems desirable to use segmentation in the supervisor,
and the following (temporary) assumption will be made:

Assumption 1:

a. The address space of the supervisor is entirely defined
by a descriptor segment.

b. All segments used by the supervisor are always in core.

Assumption 1l.b is not realistic, however, since it generally
is not possible to dedicate enough core to contain the entire
supervisor. It is, therefore, interesting to determine
whether there is a way to use the page fault handler to
transport supervisor as well as user pages.

40

5.3. Use of PC in the Supervisor

For the purpose of this paper, let us assume the validity of
the following statement. %Page fault handling for a page
x must be performed without referencing page x".

It is certainly possible to design a PC module which allows
recursive page faults provided that the above condition is
always satisfied. Each recursive invocation of the page
fault handler should use a set of pages which does not include
any of the pages that caused the previous invocations;
furthermore, the number of recursive invocations must be
guaranteed to be finite. The technique that has been chosen
in Multics for page fault handling is to fix this finite
number to 1 and thus no recursive page faults will ever
occur. This decision has been made for reasons of effi-
ciency and design simplicity. Therefore, it is assumed that
all segments used in PC are always in core.

We can observe that the page fault handler need not know if
a missing page belongs to a user or to the supervisor; it
only expects to find the information it requires in the
[PT,ASTE] of the segment to which the missing page belongs.
Therefore, if all segments used in SC and DC are always
active, then their pages need not be in core since PC can
load them when they are referenced.

Thus, assumption 1 can be replaced by the following one
(again temporary):

Assumption 2:

a. The address space of the supervisor is entirely defined
by a descriptor segment.

‘b. All segments used in PC are always in core.

c. All segments used in SC and DC must be active and
connected.

This convention turned out to be satisfactory in the Multics
implementation except for directories. Recall that segments
used by SC and DC are: (a) SC and DC procedures, (b) KST's
and DS's, and (¢) Directories.

41

The number of segments in class (a) and (b) is relatively
small. On the contrary, the number of directory segments
may be very large and keeping them always active is not a
realistic approach, since a large number of [PT,ASTE] pairs
would have to be permanently assigned to them. Therefore,
it is desirable to use SC to activate and connect directory
segments. '

5.4. Use of Segment Control in the Supervisor

A necessary condition for handling a segment fault for
segment X in a process is that segment x be known to that
process. If SC is to handle segment faults taken by the
supervisor for directories, all directories must be known
to the supervisor. This means that the address space of
the supervisor must be defined not only by its descriptor
segment but also by KST, which contains one entry for each
directory. After its KST has been so initialized, the
supervisor looks like any other process.

Assuming that all directories are known to the supervisor
process, but not necessarily active, a supervisor reference
to a directory x may cause a segment fault. Recall that
when handling this fault, the segment fault handler must
reference the parent directory of segment x, where the
branch for x is located. This reference to the parent of

x could, in turn, cause a recursive invocation of the seg-
ment fault handler. Recursive invocations can propagate
from directory to parent directory up to the root. If there
is a way of stopping the recursion, then any segment fault
on directories can be handled.

One way of stopping the recursion is to keep the root active
and connected, so that a segment fault never occurs for it.

Assumption 2 can now be replaced by assumption 3, again
temporary. ,

Assumption 3:

a. The address space of the supervisor process is defined
by a descriptor segment and a KST.

b. All segments used in PC are always in core.

c. All segments used in SC and DC are always active and
connected, except directories.

42

d. The root directory is always active and connected.
e. All directories are known to the superviser process.

However, it is unsatisfactory to keep all directories known.
We would like to keep known only those which may possibly be
used in a segment fault handling, provided that other
directories can be made known by directory control when
needed.

5.5. Use of the Make Known Facility in the Supervisor

Making a segment x known implies searching for its pathname
in the KST. If not found, the parent of x must first be
made known and so on up to the root. If the root directory
is always known to the supervisor, then any directotry can
be made known to the supervisor by the supervisor itself.

Assumption 3 will now be replaced by the final assumption:

Final Assumption:

a. The address space of the supervisor process is defined
by a descriptor segment and a KST.

b. All segments used in PC are always in core.

c. All segments used in SC and DC, except directories, are
- always active and connected.

d. The root directory is always active and connected.

e. If a segment is known to any process, its parent
directory must be known to the supervisor process.

f. The root directory is always known to the supervisor
process.

Given the above assumptions, supervisor segments as well as

user segments can be stored in the virtual memory that the
supervisor provides. :

43

5.6. The Supervisor Address Space

Unlike most supervisors, the Multics supervisor does not
operate in a dedicated process or address space. Instead,

the supervisor procedure and data segments are shared among
all Multics processes. Whenever a new process is created,

its descriptor segment is initialized with descriptors for all
supervisor segments allowing the process to perform all of the
basic supervisory functions for itself. The execution of the
supervisor in the address space of each process facilitates
commumication between user procedures and supervisor procedures.
For example, the user can call a supervisor procedure as if

he were calling a normal user procedure. Also, the sharing

of the Multics supervisor facilitates simultaneous execution,
by several processes, of supervisory functions, just as the
sharing of user procedures facilitates the simultaneous
execution of functions written by users.

Since supervisor segments are in the address space of each
process, they must be protected against unauthorized
references by user programs. Multics provides the user
with a ring protection mechanism which segregates the seg-
ments in his address space into several sets with different
access privileges. The Multics supervisor takes advantage
of the existence of this mechanism and uses it, rather than
some other special mechanism, to protect itself.

6. SUMMARY

If only a few points discussed here were to be remembered,
they should be those mentioned below. They have been separ-
ated into two classes: the point of view of the user of the
virtual memory, and the point of view of the supervisor
itself.

User Point of View

- The Multics virtual memory is capable of containing
a very large number of segments that can be identified
by their symbolic names.

- Segment attributes are stored in special segments
called directories, which are organized into a tree
structure; there is a naming convention, of which the
user must be aware, by which a segment name must be
the pathname of its branch in the directory tree
structure.

44

- Any operation on directory segments must be done via
a call to the supervisor.

- Any operation on a non-directory segment can be done
directly in accordance with the access rights that
the user has for this segment; any word of any
segment which resides in the virtual memory can be
referenced with a pair [pathname,i] by the user.

- A process can have only a limited number of segments
in its address space. If the programmer wants to -
overlay a segment A by a segment B in the process
address space, he can call the supervisor to do it
but he must be aware of the dangers that this
operation may present.

Supervisor Point of View

- The supervisor must simulate a large segmented
memory directly addressable by segment name such that
any access to the memory is submitted to access rights
checking.

- It maintains a directory tree where it stores all
segment attributes. It can retrieve the attributes
of a segment given the pathname of that segment.

- The supervisor itself is organized into segments and
runs in the user process address space.

- Any segment, be it a directory or a non-directory
segment, is identified by its pathname but can be
accessed only using a segment number. For each
segment name the supervisor must assign a segment
number by which the processor will address the
segment in the process.

- The processor accesses a word of a segment through the
appropriate SDW and PTW and subject to the access rights
recorded in the SDW.

- A segment fault is generated by the processor whenever
the page table address or access rights are missing
in the SDW. The supervisor then, using the KST entry
as a stepping stone, accesses the branch where it
finds the needed information. If a PT is to be
‘assigned, the supervisor may have to deactivate another
segment .

45

- A page fault is generated by the processor whenever
a PIW does not contain a core address. The supervisor
then, using the ASTE associated with the PT, moves the

missing page from secondary storage to core. This may
require the removal of another page.

46

Chapter 3
DIRECTORY STRUCTURE

1., INTRODUCTION

A virtual memory system must include some means of storing
and retrieving information. A segment is the unit of
information in the Multics virtual memory which is so stored
and retrieved.

All information about a segment such as its length and its
location are called "attributes" of the segment. If the
attributes of a segment can be located, then the segment
itself can be found.

The attributes of segments are stored in special segments
called "directories" and the directories are organized into
a tree structure called "the directory hierarchy". All of
the attributes of one segment are recorded in one entry in
a directory. The entries in a directory can be referenced
by literal string names called "entrynames".

The discussion which follows gives some of the details of
the directory hierarchy structure, the naming of entries and
segments and the contents of directory entries. Segment
creation and deletion are also described since those
operations are closely related to the creation and deletion
of the attributes of a segment.

Other chapters describe the details of the search for a
segment and how segments themselves are handled.

2. THE DIRECTORY HIERARCHY AND TERMINOLOGY

2.1. The Structure

A tree structured directory hierarchy is shown in Figure 1.
Directory segments are shown as squares and non-directory
segments are shown as circles. The lines between segments
are branches of the tree structure and in Multics, denote

the fact that the attributes of a segment at the lower end
of a line are recorded in an entry in the directory at the
upper end of the line. Thus the attributes of the segment
labeled C in Figure 1, are recorded in the directory labeled
B. The directory entries in which the attributes of segments
are recorded are called "branch entries" or "branches".

47

A directory is said to be the parent of a segment if it
contains the branch with the attributes of that segment.
The parent directory of a segment is said to be "immediately
superior to" the segment and the segment is "immediately
inferior to" its parent. In Figure 1, the directory at the
top of the structure labeled "root" and called "the root
directory" or simply "the root" is the parent of or
immediately superior to the segment labeled D. The root

is superior to the segment labeled E, but not immediately
superior to E. The segment labeled E is inferior to the
root and the segment labeled D is immediately inferior

to the root.

The root is the starting point in the search for segments.
Note that the root has no branch. Its attributes, among them
its location, are assumed to be known to the modules which
perform the search.

There 1s one and only one branch per segment in the Multics
system. This rule arose from the difficulty of finding
and updating all the branches of a segment if one of its
attributes should be changed. For cases in which it is
useful to have a branch in more than one directory a link
(see below) can be used.

2.2. Entrynames and Pathnames

An entryname is used to locate an entry in a given directory,
but a "pathname" is needed to search the directory hierarchy
for a particular entry. In order to uniquely locate a
particular entry in a directory, an entryname must be unique
in that directory. However, an entry can have several

names (synonyms).

A pathname is the concatenation of an ordered sequence of
entrynames. The entries must be located in the order they
were named in order to follow the path from the root to the
desired entry. The entrynames are separated by the character

n>n

The name of a segment is the pathname which addresses its
branch.

48

root

z z z
/
/
/
/
/
~ /
~
~ /
~ . /7
~
~ \ //
~ L 7
\\~_-— -
Non-directory
(::)segments
Directory
segments

Figure 1. Tree structure'directory hierarchy

49

The names root > A and root > D > E > Z are examples of
pathnames for segments in the hierarchy shown in Figure 1.
The name root > A> B > C > Z is the name of the segment
pointed to by the vertical arrow. Since all pathnames begin
with root >, the leading symbol > is used to mean root >.
The names above become > A, > D> E> Z and > A>B>C> Z.

An example of the search for the attributes of the segment
> B> Z in Figure 2 is instructive. The root is searched
for a branch with the name B. The segment > B is accessed
using the information in this branch. Next, the directory
segment > B is searched for a branch with the name Z.

When the branch Z is found in the directory > B then the
search is finished.

It must be emphasized that the only way in which the search
modules can find a segment is through use of a pathname.

A pathname can have synonyms since the entrynames from which
it is constructed can have synonyms. However, a given
pathname cannot lead to more than one segment.

2.3. Links

There can exist in a directory a second type of entry in
addition to the branch entry. This is called a "link entry"
or a "link". A link entry has a name just as branch entry
does and like a branch is used to access a segment or its
attributes. A link contains no attributes but only the
"pathname" of another entry. In Figure 1, the dotted line
labeled L is an example of a link. The entryname of the
link is L. Loops such as might be generated by two links
which reference each other should not be allowed in the
directory hierarchy.

Links are addressed by pathname just as branches are.
Referencing the link, > A> B> C > L, in Figure 1, will
cause accessing of the segment > D > E > X, as that path-
name is recorded in the link.

3. DESIGN CONSIDERATIONS

A directory is needed as a place to look up the addresses of
other segments. Once a directory exists, there are other
advantages to be gained from it. The directory is a

50

convenient place to store the access rights of a user to a
segment so they may be checked at the same time that the
address of the segment is located. It may also be useful

to reference the attributes of a segment without necessarily
accessing the segment body, e.g., to find the length of a
segment. For these reasons, all of the attributes of a
segment are collected into a list and the lists are stored
together in a directory. Why then have more than one
directory? '

root

B| Attributes

Al Attributes

A B
X| Attributes| | ' 7| Attributes |
> A
> B
X yA
> A>X > B> 2Z

Figure 2. Directories and Attributes

51

The most important reason for having multiple directories
is to avoid the problem of naming conflicts. It is very
likely that many users will attempt to use the same names
for the different segments they will create. Long and
complicated unique names are difficult to remember and
inconvenient to look up both for people and computers.

If each user is assigned one or more directories then this
naming conflict disappears. The key to this simplification
is to allow the user to reference the segments of a pre-
assigned directory by entryname. Pathnames are constructed
by prefixing the directory pathname to the user given
entryname and referencing the desired segments via these
constructed pathnames.

There are other advantages to be gained with multiple
directories. Directories can be used for classification
of segments, e.g., all segments of a math library could
be accessed through a math library directory, > math-
library. Protection is aided since access to directories
(and, therefore, complete classes of segments) can be
restricted to specific users.

The tree structure carries two advantages. It allows an
even better scheme of classification than a linear or limited
level structure of directories and it also facilitates an
efficient directed search for a given segment in the
hierarchy.

4. INTERNAL DIRECTORY AND ENTRY STRUCTURE

Each directory has a small area at its beginning called a
header which contains pointers to other areas and items

in the directory. There is also in the header a count of the
branches in the directory. The header is followed by an
array of entries.

Figure 3 shows a directory with a branch entry and a link
displayed in some detail. All entries contain the following:

a name list pointer,
a unique identifier and
a branch or link switch.

52

If the entry is a link, it contains a pathname and no
attributes. If the entry is a branch it also contains

an access list pointer,
a segment map,

segment length,

an active switch,

a PT-ASTE pointer and
a directory flag.

53

BRANCH
P i

LINK

—

HEADER

| Name List

{ Name List Pointer ————<::>—(::>—{:)

Unique Identifier(uid)
Branch Switch

Access List Pointer ——__(::)_4:::}_(::>

Access List

Segment Map

-

| Segment Length
Active Switch

PT-ASTE Pointer
Directory Switch

P |

Name List

+O-0

Name List Pointer
Unique Identifier(uid)

Link Switch

Pathname

Figure 3 - Structure of a Directory

54

4.1. The Name List Pointer

A branch or link entry can have several names. These are
stored in a threaded list. Supervisor primitives exist to
add names to the list and to delete names from it. The name
list pointer is a peinter to the threaded list of names of
the entry.

4.2. The Unique Identifier

The unique identifier, uid, is permanently attached to the
entry. It cannot be changed or destroyed while the entry is
in use (contains valid branch or link information). All
uid's are constructed in part from numbers representing the
date and an instant during the creation of the entry, so that
a uid can never be repeated. The uniqueness of the uid for
each entry in the entire directory hierarchy is thus
guaranteed. The uid is used to assure that the correct
segment is being accessed when a segment is referenced or
activated. Its use will be described in more detail in
Chapters 4 and 5.

4.3. The Branch or Link Switch

The branch or link switch is used to tell the search modules
the kind of information to be found in the entry.

4.4, Access List Pointer

The access list pointer is a pointer to a threaded list of
user names and associated access rights. As an example,
user Tom may have the right to execute the contents of a
segment and to modify the contents of that segment while
user Frank may only be permitted to execute the contents

of the segment. The access list contains the names of all
users permitted to access the segment, and is described in
detail in a companion paper, "Access Control to the Multics
Virtual Memory".

4.5. The Segment Map

As the name indicates, the segment map gives the address of
the segment in secondary storage. The segment map consists
of two parts, the device indentifier, did, and a page address
list. The did is a number which uniquely identifies the

55

particular drum, disc or other device on which the segment
resides. For each page up to a maximum of sixty four, there
is an address in the page address list which locates that
page on the device. For unused pages, there is an unassigned
address. The order of the addresses in the address list
corresponds to the order of the pages in a segment.

4.6. The Segment Length

The segment length is given in pages. It is one plus the
number of the highest page accessed counting from zero.
There is a maximum of sixty-four pages for any segment.

4.7. The Active Switch

The active switch, when ON, indicates that some of the segment
attributes are to be found in the page table, PT, and its
associated active segment table entry, ASTE. The segment may
be in core or secondary storage or partly in both when this
switch is ON. It is always in secondary storage when the
active switch is OFF.

4.8. The PT-ASTE Pointer

The PT-ASTE pointer is a pointer to the location of those
attributes of the segment in the page and active segment
tables. It is only valid when the active switch is ON. One
of the attributes found in the active segment table at that
time is the segment map.

4.9. The Directory Switch

Finally, the directory switch indicates whether the segment
is a directory or not. This information is used when delet-
ing segments and will also be needed for segment handling

which is ek'P.l.cu.ut:d in later chapte:.a. »
Other attributes are found in the branch. Some of these

will be introduced and explained where needed in later
chapters.

56

3. SEGMENT CREATION

A segment is created by establishing for it a branch in a
directory. A module is called with the arguments segment
name (pathname of the segment to be created), access to the
segment and directory switch. The parent directory of the
segment to be created is accessed using the pathname argument
with the final entryname truncated from it.

To create a segment, information must be written into its
parent directory. This requires that a hardware address

be assigned to that directory and, therefore, that the
directory be assigned a segment number. The assignment

of a segment number is called "making a segment known to a
process™ and is described in Chapter 4. Subsequent
addressing is by segment number and the segment control and
page control modules handle the problems of activating the
segment and bringing its pages into core.

When the parent directory has been accessed in this manmer,
a free entry is found in it. The entryname to be given this
new branch is checked to make sure that it is not already

in use in the parent directory. Space is allotted to the
name and access lists and they are moved into their allotted
places. Pointers to the name and access lists are placed
in the entry. A uid is created for the new branch by a
special subroutine and the uid is placed in the branch.

The segment map is initialized by assigning to the segment

a device identifier and setting all of the page addresses

to unassigned. Page control will assign addresses to the
pages as they are referenced. The branch count of the
parent directory is then incremented by one.

At this point all that need be done to create a non-directory
segment has been completed. A test is made to see if a
directory is being created. If so, the directory being
created is assigned a segment number and accessed. The
necessary pointers are placed in its header and its branch
count is set to zero. Creation of a directory segment is
now complete.

An error return with an appropriate comment would have been
executed if a free entry had not been found or the entryname
had already been in use or the name and access list area had
been full. No segment or entry would have been created in
any of those cases.

57

6. SEGMENT DELETION

As in creation, segment deletion is for the most part
deletion of a branch entry. However, before & segment may
be deleted, several checks must be completed.

The parent directory of the segment to be deleted is accessed
as in segment creation. The directory switch is tested to
see if the segment to be deleted is a directory. If so, it
is accessed and its branch count is checked. A directory
cannot be deleted if any branches remain in it since that
would break the path to all of its inferior segments. If
there are no branches in the directory to be deleted then
the execution continues as if it were a non-directory seg-
ment.

When the directory switch is tested and a non-directory
segment is to be deleted, then the active switch in the
branch to be deleted is checked. The segment cannot be
deleted while this switch is on for that would leave traces of
the segment in core and possibly even in other processes.
Therefore, segment control is called to deactivate it.

Deactivation removes all traces of the segment from core, in
particular from any descriptor segments and from the page
table and active segment table entry assigned to this segment.
(This forces any subsequent reference of the segment by any
process to execute a segment fault thus referencing the branch
and seeing that it has been deleted.) Page Control is called
to free all secondary storage used by the segment to be
deleted. The branch itself is deleted by zeroing its uid.
Finally, the branch count of the parent directory is decre-
mented by one and the segment deletion is complete.

58

Chapter 4

MAKING A SEGMENT KNOWN TO A PROCESS

1., INTRODUCTION

Segments in Multics are identified system-wide, to all users
and processes, by their pathnames. However, the hardware
references segments by numbers called segment numbers.
Therefore, during execution a segment number must be associa-
ted with each segment. The segment number associated with any
particular segment may differ from one process to another.

A segment is said to be "known to a process" (or simply "known'")
while at least one of its pathnames is associated with a seg-
ment number and this association is recorded in a per process
segment called the Known Segment Table.

A segment is "unknown to a process" or "unknown" until it has
been made known and can again be made unknown to a process

by terminating it, that is, by erasing the record of the
pathname-segment number association from the Known Segment
Table, KST. This breaks the association between pathname and
segment number since the record in the KST is the only record
of that association.

This chapter describes the way in which segments are made known
to a process and the way in which they are made unknown.

2. DATA BASES

There are two major data bases involved in making a segment
known. These are the directory hierarchy and the Known
Segment Table, KST. Directory structure and contents are
discussed in Chapter 3. The KST is discussed in this
section.

The KST is a segment with an arréy of KST entries. Figure 1
is a diagram of the KST with one KST entry, KSTE, displayed
in detail. A KSTE contains: _ '

name list pointer
segment number

unique identifier, uid
branch pointer
directory switch

an inferior count

and other informatiom.

RN)

59

The header shown in Figure 1 contains housekeeping information
pertinent to the KST such as a pointer to the next free KSTE.
The various elements in the KSTE are explained below.

2.1. The Name List Pointer

. The name list pointer is a pointer to a threaded list of
pathnames. The pathnames are all the different synonyms

which have so far been used by this process to refer to the

same segment, the one associated with this KSTE.

2.2. The Segment Number

~ Note that there is no segment number in a KSTE. The index
of a KSTE in the KSTE array is the segment number associated
with that KSTE. It is, therefore, the segment number of the
segment whose name is pointed to by the name list pointer.
In Figure 1, "s" is the segment number of the segment whose
names are in the pathname list of the expanded KSTE.

2.3. The Unique Identifier, uid

The uid is copied from the branch of the segment when the
segment is made known. The uid uniquely identifies a branch
and is described in Chapter 3.

2.4. The Branch Pointer

When a segment is made known a pointer to its branch is
placed in its KSTE. The presence of the branch pointer in
the KSTE is necessary since the name of the segment could
be changed while the segment is known. It also allows the
segment~-fault handler easy access to the attributes of a
segment without having to repeat the search for the branch.

60

HEADER

Entry #1

Entry #2

e Yo

[} C t

, Pathname List

]
| Name List Pointer ——O—-O—O

Unique Identifier (uid)
Branch Pointer

Entry #s { Directory Switch
Inferior Count

Other

e

Entry #s+2

\
Entry #s+l {

Figure 1. Structure of the Known Segment Table (KST)

6l

2.5. The Directory Switch

The directory switch simply tells whether a segment is a
directory or not. It is present because of a special rule
regarding the handling of directories when making them
unknown.

2.6, The Inferior Count

The inferior count is used for directory segments. It is a
count of the number of immediately inferior or daughter
segments known in the process to which this KST belongs.

2.7. Other Information

There is other information in a KSTE which is put there for
use in access control, for example, but which is not perti-
" nent to this discussion. No further mention will be made
of it.

3. MAKING A SEGMENT KNOWN

The procedure executed in order to make a segment known is
illustrated by the flow chart in Figure 2. Entry is through
a call to MAKE-KNOWN. The pathname of the segment to be
made known is passed to MAKE-KNOWN and the segment number
and a code are returned.

The KST is searched for the pathname and if the pathname is
found, MAKE-KNOWN returns a segment number. The third
argument, code, is set to inform the caller whether or not
the segment just made known is a directory directory. If
the pathname passed to MAKE-KNOWN was not found in the KST,
then it is tested to determine if it is the root directory
pathname. This step is very important as it assures an end
to the recursive loop which is described below.

If the pathname is not that of the root directory, then the
pathname is parsed and is broken inte two parts, a new path-=
name, and an entry name. The new pathname is the pathname
of the directory in which the new entry name can be found.
For example, if > A > B > C > D were the original pathname,
then the parse would yield the new pathname > A > B> C

and the entry name D. MAKE-KNOWN is then called recursively
to make the new directory pathname known. This recursive
loop is executed until a directory pathname is found in the
KST or until the root directory is encountered and made
known.

62

A call to make the root directory known always terminates
the recursive loop. Since all pathnames begin with the root
pathname it is assured that the recursive loop will always
be terminated.

When MAKE-KNOWN returns from a recursive call the code
argument is .checked to make sure that a directory was found.
The directory is searched for the entryname separated from
a previous pathname by the parse.

An example is useful at this point. Assume that the segment
with pathname > A > B > C is to be made known and that MAKE-
KNOWN has been called twice (once recursively) for this
segment. On the initial call the pathname > A > B > C was
passed to MAKE-KNOWN and on the second call (first recursive
call) > A > B was passed to it. Assume that directory
segment > A > B was found to be known, then upon return from
the last call (the recursive call) the code argument is
tested to see if > A > B is a directory. If so, then entry
C is looked up in > A > B. We now return to the description
of MAKE-KNOWN.

If the entryname is found in the directory whose segment
number was just returned, then the entry is tested to deter-
mine if it is a branch or a link. If it is a branch, then
its uid is looked up in the KST to make sure that the seg-
ment is not already known by some other name. If the seg-
ment is already known by some other name then the new name

is added to its pathname list, the segment number is returned
and the code argument is set from the directory switch in

its KSTE. If the segment is not known, then a free KSTE is
found. The pathname is allocated space and placed in that
space. The name list pointer is set to point at the
pathname, the uid and the directory switch are copied from
the branch into the KSTE and the branch pointer is set in the
KSTE. The code argument is set from the directory switch

in the branch and the KSTE inferior count of the parent
directory is incremented by one. Finally, MAKE-KNOWN returns
to its caller (itself or some external caller).

When there is a call to make the root known a special
procedure in MAKE-KNOWN is used. Special data is entered into
the KSTE for the root without searching the directory hier-
archy or attempting to find a branch for it. Its segment
number and code are returned in the normal manner.

63

When a link entry is found, then MAKE-KNOWN is called with
the pathname found in the link and the flow continues in
the normal manner.

If an error is encountered such as not finding a directory
on return from a recursive call to MAKE-KNOWN, then an error

code is set into the code argument and a null segment number
is returned.

64

Is segment Yes

known J

Is segment Yes
the root

Make root
known with
special
data

| Parse PATHNAME to NEW-PATHNAME and NEW-ENTRYNAME B

[F=

No

call MAKE-KNOWN (NEW-PATHNAME,SEGNO, CODE)

(:: Is Directof?\ No

switch ONAI,
. Not Found e
NEW-ENTRYNAME in segment SEGNO '
T this \ Mo ERROR
)
branch
Yes A - -
Yes 7 Is segment Pick up PATHNAME from link entry
___ known

o lcall MAKE-KNOWN (PATHNAME,SEGNO,CODE)]|

b Find a free KST entry

Add a L Copy PATHNAME
pathname » Sét the Name List Pointer
L Copy uid and Directory

switch

Figure 2, MAKE-KNOWN

05

4. MAKING UNKNOWN

Normally, a user will experience no difficulty because of the
limited size of the KST. However, since there are many more
segments in the directory hierarchy than there are KSTE's,

a user might wish to free a KSTE (making a segment unknown)
so that it can be reused. In any case, certain precautions
must be taken before a segment can be made unknown.

First, the directory switch in the KSTE is checked. If the
segment to be made unknown is a directory then its inferior
count is checked. A directory cannot be made unknown if any
of its inferior segments are known. This convention is
stated in Chapter 2. It arises from our desire to be able
to take segment faults on segments used in the Multics
supervisor and not to distinguish between supervisor and
user segments.

Second, segment control must be notified that a segment is
being made unknown since the KST is prepared for and used by
segment control. This is done by a special call to segment
control. Upon receiving this call, segment control will
disconnect the SDW associated with this segment in this
process (see Chapter 5). When segment control has been
notified the segment can be made unknown by freeing the

area where its name(s) was stored and threading the KSTE
onto a free KSTE list. The parent directory's KSTE inferior
count is then decremented by one and the operation of making
segment unknown is complete.

Finally, a few words must be said about the danger of making
a segment unknown and reusing its KSTE. Addresses are pre-
pared using segment numbers. All of these addresses cannot
be found when a KSTE is to be freed. If such an address is
used after the KSTE has been reused, it will cause informa-
tion in the corresponding KSTE to be used without further
checking. Incorrect segment referencing would result.
Therefore, a segment should not be made unknown and its
KSTE reused unless it is assured that no address which
references that segment will be used again during the
existence of the process.

66

5. INITIAL REQUIREMENTS

The question may be asked, "how much apparatus is required to
make a segment known for the first time in a process?"

The data bases used are the directory hierarchy and the KST.
The procedures used are MAKE-KNOWN and the procedures called
by it. It has been shown that all directories including the
root directory may be made known. However, the root directory
requires special code. The KST must already have a segment
number in order to make a segment known so the KST cannot be
made known in this way. Some of the modules called by MAKE-
KNOWN could possibly themselves be made known, however, special
codes would be necessary to do this. Therefore, MAKE-KNOWN
and all of the procedures used by it as well as the KST for

a process are assigned segment numbers before the process
begins executing as a part of process initialization.

6. OTHER MULTICS CONSIDERATIONS

The fact that some segments must have segment numbers before
MAKE-KNOWN can be executed gives a clue to the Multics
implementation of segment numbers. There is a group of
segments in the Multics supervisor which must have segment
numbers assigned in a process before the process can begin
execution. These are called hardcore segments. They have no
KSTE's. The actual segment numbers assigned to segments when
they are made known are the KSTE index plus the highest
segment number assigned to a hardcore segment.

67

Chapter 5

SEGMENT FAULT HANDLING

1. INTRODUCTION

In the Multics Operating System, each process address space
is divided into 64K-word items called segments. A segment

" enters a process address space by being "made known to the
Process" (see Chapter 4). In the course of being made
known, a segment has a per-process segment number assigned
to it. A correspondence is established between this segment
number and the segment's pathname and attributes in a per-
process table called the "Known Segment Table". Once in a
process address space, a segment may be referred to by seg-
- ment number.

Whenever a process references memory, the 645 hardware
references "per process" and "per system" registers. The
"per process" information in the hardware accessing path

is recorded in a Descriptor Segment which contains one word,
called a Segment Descriptor Word (SDW), per segment number.
The function of the Nth SDW is to point to the Page Table
(see Chapter 6) of the segment which is known to the process
as segment #N and to specify the process access rights with
respect to that segment. '

The Page Table of a segment (and various other data required
by the paging mechanism of Multics) must be stored in core.
Since there are more segments in Multics than places in core
for Page Tables, not all segments can have Page Tables at the
same time. When a segment has a Page Table, the segment is
called ACTIVE. At other times it is called INACTIVE.

An SDW can, of course, contain the address of a segment's
Page Table only if the segment is active. If an SDW contains
the address of the segment's Page Table and specifies the
process access and the segment's length, then the SDW

is called CONNECTED; otherwise, it is called FAULTED or
DISCONNECTED. A faulted SDW in fact contains a bit pattern
which, when encountered by the 645 addressing hardware,
causes the process to "take a Segment Fault" thereby invok-
ing the Segment Fault Handler. See Figure 1.

69

In view of the above, we may say that:

The function of the Segment Fault Handler is to provide

the process with the illusion that all segments known to
it are active and all SDW's corresponding to known seg-

ments are connected; in short, to render all known seg-

ments directly accessible by segment number.

Connected SDW . Di sconnected SDW

Page Table| Segment
Address Length | Access F,

Page Table Segment Fault

Figure 1. Connected and Disconnected SDW's

2. PREVIEW OF THE SEGMENT FAULT HANDLER (SFH)

2.1. Procedure

A segment fault occurs when a process attempts to access a
"target" segment via a faulted SDW. The Segment Fault
Handler (SFH), called to repair the faulted SDW, must obtain
the address of the Page Table for the "target" segment as
well as the process access rights to the segment and store
the information in the SDW.

To do this, the SFH must:

a.

b.

Check the validity of the segment number given to the
SFH. It may have been incorrectly generated.

Use the segment number of the "target" segment (which
the SFH is given) to find a pointer to the segment's
branch. This "branch pointer" was put into the
segment's entry in the process Known Segment Table
(§ST) when the segment was made known. (See Chapter
4 L ‘

Check the branch to see if it in fact corresponds to
the "target" segment. This check is necessary due
to the dynamic nature of the File System in which
segments can, at any time, be created and destroyed
or moved from one directory to another. In checking
the branch, a unique identifier (UID) is used which
was stored in the segment's KST entry when the seg-
ment was made known.

70

d. Look in the branch, which contains the segment's
attributes, to find the process access to the seg-
ment and to locate the segment's Page Table.

e. Repair the SDW and return.

2.2. Data: Active Segment Table (AST)

We have stated that Page Tables and other data describing
active segments must be stored in core, a requirement imposed
by the Page Fault Handler (see Chapter 6). Use is, therefore,
made of a system-wide table, the Active Segment Table (AST),
which resides permanently in core. The AST is a linear array
containing one entry per active segment. An active segment's
AST Entry (ASTE) contains the segment's Page Table and other
paging data and, as we shall see, other data needed by the
Segment Fault Handler.

71

Steps (a) through (e) above and the description of the AST
lead to the picture of the data structures used by the Segment
Fault Handler and the relations between them shown in Figure 2.

Descriptor

Segment KST
SDW "KSTE
O |Len|Acc | [®— segment #— UID [~ _
\\
o . K
- 4 Directory
4
AST
\\
—_ \\\\
- \ .
\
ASTE Branchy
Pointer o UID
Page Table Page
& i-*Table ASTE
- :
Address Index ;

Figure 2. Principal Data Structures Used by the Segment Fault Handler

2.3. Program of Exposition

In order to make segment fault handling more easily
comprehensible, it will be useful to discuss the procedures
for handling segment faults in three sections corresponding
to three successively more likely assumptions about the state
of activity of the segments of the system.

72

These assumptions are:
1. All segments are active simultaneously.
2. All segments can be active simultaneously.
3. All segments cannot be active simultaneously.

3. SEGMENT FAULT HANDLING WHEN ALL SEGMENTS ARE ACTIVE

Let us examine the very unlikely case in which all segments
are active. The Segment Fault Handler (SFH) begins by find-
ing the "target" segment's KST entry and branch as explained
in Section 2. Two kinds of errors may happen. First, if no
segment is "known" by the faulting segment number, then no
KST entry exists. This error may happen, for example, if a
memory reference is made via a randomly generated segment
number. This error is detected through structural details of
the KST which do not interest us here.

Second, as mentioned in Section 2, the branch pointer in the
KST entry will be incorrect if the "target" segment has been
destroyed since this process made it known. To check the
correctness of the branch pointer, the SFH compares the unique
identifier (UID) in the branch with the one in the KST entry.
If they are the same, then the branch pointer is alright;
otherwise, the "target" segment has been destroyed and the
segment fault cannot be satisfied.

If the branch pointer is valid, the SFH gets the process

access rights to "target" segment and the index of the "target"
segment's ASTE from the branch. (The branch of an active
segment must, of course, contain a pointer to the segment's
ASTE. The ASTE index is that pointer.) The address of the
"target" segment's Page Table can be calculated easily from
the ASTE index. The length of the segment (in pages) can be
obtained from the ASTE.

With the table address, the segment length, and the access
information, the SFH has enough information to correct the
faulted SDW, The SDW is corrected and the SFH returms.

4. SEGMENT ACTIVATION

We wish now to see how segment fault handling must differ if
it is possible that the "target" segment may not be active.

We assume that there is room in the AST to make an ASTE for

any segment. Two new data structures must be introduced.

73

First, a new piece of information must be added to the branch:
an active switch. This switch indicates whether or not the
segment is active; i.e., whether the ASTE index in the branch
may be used. Second, a new data structure must be added to the
AST - a list of available entries.

This structure is called the AST free list. In this section,
we assume that the AST free list is never exhausted.

Now let us look at segment fault handling. Oncc the branch
has been accessed, the SFH must inspect the "active switch".
If the segment is active, the processing is as described
above. If the segment is not active, it is necessary to
activate it, that is, to:

l. Find an entry in the AST free list. Remove it from
the AST free list.

2. Set the ASTE index in the branch to point to this
entry.

3. Copy the paging data from the branch to the ASTE.
Initialize the Page Table in the ASTE.

4. Set the branch's "active switch" on.

After activating the segment, the SFH proceeds as before to
repair the faulted SDW.

5. SEGMENT DEACTIVATION

Let us now consider the real case in which the size of the
AST limits the number of segments which can be active
simultaneously. The discussion of this case is sufficiently
long that we will divide it into two parts. In this section
we will introduce the pieces of the design. In the follow-
ing section we will put the pieces together.

The assumption that all segments cannot be active simultaneously
implies that it may sometimes be necessary to activate a seg-
ment at a time when the AST is "full"; i.e., there are no ASTE's
in the AST free list. When this happens it becomes necessary
to:

a. Choose an active segment to be deactivated.

b. Deactivate this segment.

c. Return the ASTE of the deactivated segment to the

AST free list.

74

Let us defer discussion of how an active segment is chosen
for deactivation until the mechanism of deactivation has it-
self been discussed.

Deactivation of a segment may be characterized as doing all
things necessary to disassociate the segment's ASTE from

the segment, thus permitting the ASTE to be used to activate
another segment. It is important to note at this point that
- the segment being deactivated is not necessarily "known" to
the process performing the deactivation. Many of the details
of the design arise from this fact. Section 9 discusses the
matter further.

Deactivation is done in the following three steps: -

i page removal - forcing the segment's pages out of
core.

ii disconnection - seeing that all SDW's associated
with this segment are faulted.

iii restoring the branch - moving back to the branch
the (presumably altered) values of those attributes
of the segment which were moved to the ASTE when
the segment was activated.

5.1. Page Removal

A Page Table for a segment can only exist when the segment is
active; when the segment is deactivated, the Page Table is
destroyed. Thus, one function of deactivation is to remove
the segment's pages from core and to inhibit the Page Fault
Handler from bringing any of its pages into core during
deactivation. To accomplish this, the SFH calls a special
entry of the paging module which removes the segment's re-
maining pages from core and causes page faults (in other
processes) on pages of this segment to be transformed into
segment faults on this segment.

5.2. Disconnection

Disconnection obviously amounts to faulting all SDW's
connected to the segment at the time of deactivation. There
may, of course, be many other SDW's associated with the
segment, but as they are not connected they must (already)

75

be faulted. In order to make disconnection possible, a
data structure must be associated with each segment which
lists all the SDW's connected to the segment. Since this
connection list can only be non-empty when the segment is
active, it can be stored in the segment's ASTE and need
never appear in the segment's branch. When a segment is
activated, the connection list is empty. Whenever an
SDW is connected to a segment, a pointer to the SDW is
added to the segment's connection list. When the segment
is deactivated, each of the SDW's on the associated connec-
tion list is faulted.

5.3. Restoring the Branch

After page removal and disconnection have been done, all
that remains of deactivation is to restore the segment's
branch. It is necessary to move back to the segment's
branch those attributes which were moved from the branch

to the ASTE when the segment was activated (which may have
changed during the period of activation) and to reset the
"active switch". In order to manipulate the segment's branch
in this way, the SFH makes use of another data element in
the ASTE of each segment, a pointer to the segment's branch.
This branch pointer must be stored in the ASTE when the seg-
ment is activated so that it can be used again when the seg-
ment is deactivated.

5.4. A Note on Certain Necessarily Active Segments

The reader can easily convince himself that the main path
through the SFH (excluding the deactivation path) can only
be viable if certain segments are perpetually active: for
example, all segments required by the Page Fault Handler,
the SFH procedure itself, the per-process KST segment, etc.
To permit such segments to be held active, another item is
added to the ASTE, the entry hold switch, which may be set
to prevent the deactivation of the segment. We will consider
these matters further in Section 8 on "Recursion and
Initialization." Here we wish to consider a different
problem.

76

During deactivation of a segment the SFH must access all the
descriptor segments which contain SDW's connected to the
segment being deactivated; it must fault these SDW's. The

SFH must also access the segment's branch. In order to assure
that these segments may be accessed easily, the following
rules are established:

Rule 1 - A Descriptor Segment contalnlng a connected
SDW must be active.

Rule 2 - A Directory Segment with an active daughter
segment must be active.

Rule 1 may be enforced by use of the entry hold switch. The
enforcing of Rule 2 is more complicated. A new data element
.1s associated with each active segment, the inferior count.
This is a count of the active daughter segments of the given
segment. (For non-directory segments the inferior count is
necessarily zero.) when a segment is activated, its own
inferior count is set to zero and one is added to its parent's
inferior count. When a segment is deactivated, one is sub-
tracted from its parent's inferior count. Needless to say,
no segment is chosen for deactivation whose inferior count
is non-zero. To enable the deactivation machinery to access
the parent directory's inferior count, each ASTE also con-
tains another data element: the parent's ASTE index.

5.5. The Deactivation Algorithm

We have now presented all of the data structures needed to
permit deactivation of a segment. Let us now discuss the
"deactivation algorithm" which must choose the segment to be
deactivated. To facilitate deactivation, another 1list is
introduced, the AST used list, which contains all of the
ASTE's corresponding to active segments.

In order to keep deactivation economical, the deactivation
algorithm chooses segments with as few pages in core as
possible. In practice, it is very often able to choose a
segment with no pages in core. The algorithm essentially
passes through the AST used list as many times as necessary;
on the Nth pass it looks for a segment with fewer than N
pages 1n core whose inferior count and entry hold switch are
both zero. When such a segment is found, the search stops and
the segment - is deactivated.

77

6. FLOW OF THE COMPLETE SEGMENT FAULT HANDLER

Correct Segment Fault

1.

2.

Activate

Given segment number, find KST entry.

Check validity of KST entry.

In KST entry, obtain pointer to the branch.

Check validity of the branch pointer by comparing
the KST entry's and the branch's version of the
unique identifier.

If the "active switch" is set, go to Step 8.

the Segment

3.

Obtain a_

Inspect the free list. If there is a free ASTE,
then go to Step 7.

Free Entry

Choose a Segment to be Deactivated

4.

Pass through the AST used list as many times as
necessary; on the Nth pass look for a segment

having fewer than N pages in core with inferior count
and entry hold switch equal to zero. When a segment
is found in this way, go on to Step 5.

Deactivate the Segment

5.

Remove the pages of the segment from core by a

call to the paging module.

Disconnect all of the SDW's listed in the segment's
connection list.

Use the ASTE's branch pointer to move the segment's
attributes back to the segment's branch.

Reset the "active switch" in the branch.

Use the parent's ASTE index in the ASTE to locate
the pgrent's lnterior count, from which suntract
one.

Remove this entry from the AST used list.
Put it in the AST free list.

78

Activate the Segment

7.

Move the ASTE from the AST free list to the AST
used list. A

Move certain attributes from the branch to the
ASTE.

Set the branch's ASTE index and set the "active
switch".

Initialize the Page Table in the ASTE.

Set the segment's inferior count to zero.

Set the segment's entry hold switch to zero.
Find the parent's ASTE; store its index in the
segment's ASTE.

Add one to the parent's inferior count.

Connect the SDW

8.

9.

Get the page table address and segment length
from the ASTE.

Get the access field for the SDW by 1nspecting the

Access Control List in the branch.

Store the page table address, segment length, and
access field in the SDW. Reset the Segment Fault

Flag.

Return.

7. DATA USED IN SEGMENT FAULT HANDLING

1. AST (Active Segment Table)

The AST consists of a Header and a linearly indexed array
of AST Entries of which there is one per active segment.
The AST Header contains:

a.
b.
Ce

The head of the AST free list.
The head of the AST used list.
The branch of the root directory.

Each AST Entry contains, in addition to forward and
backward pointers used in threading the entries into the
various lists,

a.

Paging data

1. The PAGE TABLE.

2. The SEGMENT MAP.

3. Various other paging data.

79

b. Data used in choosing a segment for deactivation.

1.

2.

3.

The INFERIOR COUNT. If the segment is a
directory segment, the inferior count is the
number of its active daughter segments.
Otherwise it is zero.

The NUMBER OF PAGES IN CORE (a counter maintained
by the paging mechanism).

The ENTRY HOLD SWITCH. When set, this switch
makes the segment ineligible for deactivation.

c. Data required to deactivate the segment.

1.

BRANCH-POINTER
i ASTE index of the segment's parent directory.

ii Offset of the segment's branch within the

parent directory.

CONNECTION LIST, the list of SDW's which point
to the Page Table of this segment and which
must be faulted before the segment can be
deactivated. Each element of the list consists
of:

i ASTE index of the descriptor segment containing
the SDW.

ii Offset within that descriptor segment of the

SDW (i.e., the segment number within that
process of this segment).

7.2. SDW (Segment Descriptor Word)

A Descriptor Segment is a linear array whose entries are
words called SDW's (Segment Descriptor Words). The index
of an SDW in a process Descriptor Segment in the segment
number, in that process, of the segment associated with
the SDW. An SDW consists of:

a. The ACCESS FIELD

1.

If zero, this field causes a segment fault
to occur upon an attempted access via this
SDW. In this case, items (b) and (¢) below
are meaningless.

80

2. If non-zero, this field indicates the accessing
permission that this process has toward the
segment associated with this SDW (e.g., "read",
"write", or "execute" permission).

- b. The PAGE TABLE ADDRESS of the associated segment.

c. The SEGMENT LENGTH (in pages) of the associated

segment .
7.3. KST (Known Segment Table) - See Chapter 4.
7.4. Branch - See Chapter 3.
7.5. Page Table, Segment Map - See Chapter 6.

8. RECURSION AND INITIALIZATION

The phrase "recursive segment fault" refers to a segment
fault taken by the SFH. In Section 5, we asked the reader
to believe that segment faults must not be permitted to
occur on certain segments; e.g., the AST. In this section,
we shall show why this is so and how such segment faults
can be avoided. We shall then consider the recursive
segment faults which can be permitted and will conclude
with an example.

We may regard each segment fault "taken by the user" as the
first in a sequence of segment faults, the rest of which
are taken "recursively" by the SFH in handling the first
one. It is a design requirement that all such sequences

be finite. This implies that the last segment fault in the
sequence must be handled entirely by segments which are
active and comnected in the process handling the faults.
Thus, certain segments must be active and connected in a
process before the first segment fault is taken.

Which segments must be active? Certainly all segments must
be active and connected which are necessarily called in the
course of handling every segment fault. In the present
design these comprise the AST, KST, SFH procedure and of
course all segments required by the paging mechanism (since
the SFH references segments which do not reside permanently
in core and may take page faults).

Multics initialization must make all of these segments,
except the per-process KST, active before the first pro-
cess is created. Process creation and initialization must
create and activate the KST and connect all of these seg-
ments before the first segment fault is taken. These
segments may be kept active in various ways. Per system
segments like the AST and SFH procedure may be kept active
by leaving their ASTE's off the AST used list. The per
user KST may be kept active by setting the entry hold switch
in its ASTE while the process itself is active.

The only segments referenced by the SFH beside those
discussed above are directories, the segments which contain
branches. The only way to avoid recursive segment faults
altogether is to require that every directory, any daughter
segment of which is known to any process, be active and
appropriately connected. This idea must be rejected as
impractical. Hence, recursive segment faults must be
reckoned with.

We shall give an example of a sequence of recursive segment
faults at the end of this section. We shall show there
that all such sequences can be handled if a segment fault
on the root directory can be handled. Let us prepare for
the example by considering the root directory more closely.

Every segment in Multics except the root directory has a

- branch in a directory; the branch contains the attributes
of the segment. Since no directory is superior to the

root, it cannot have a branch in a directory. Nevertheless,
if the root is to be accessed, its attributes will have to
be recorded somewhere. Since we normally think of a branch
as the locus of a segment's attributes, we may provide for
the root's accessibility by providing it with a branch.

This branch must itself be accessible; since no process can
take a segment fault on the AST, it is sufficient that:

The root directory has a branch which resides in the
AST segment.

82

Whenever the root directory is "made known" in a process,
a pointer to this branch is placed in its KST entry.
Segment faults on the root can obviously be handled in
the normal way whether or not the root is active at the
time of the segment fault.

NOTE: In practice, a more efficient (if less straightforward)
SFH may be obtained by handling segment faults on the
root with special code. If this is done, the "branch"
of the root disappears from the AST and, by way of
trade-off, the SFH procedure segment gets longer.

We have noted that the only segment fault that the SFH

can take while handling a segment fault for a segment is a
fault on that segment's parent directory. Thus, every sequence
of recursive segment faults corresponds to a path up the
directory tree structure toward the root directory. Let us
now discuss the canonical example of a sequence of recursive
segment faults.

8.1. Example of Recursion

Let us assume that a segment fault is taken for a segment
with pathname

root > dl > d2 >...> dN > seg

Let us further assume that the process SDW's for all the
directories "root", "dl", etc., are faulted. Early in
handling the fault on "seg", the SFH references the branch
of "seg" which causes a segment fault on "dN". The corres-
ponding reference to the branch of "dN" causes a fault on
"dN-1" and so it goes until there is a fault on "root".
Since the branch of "root" lies in the AST which is active
and connected, this segment fault can be handled without
another segment fault. With the "root" connected, the

SFH can go on with handling the fault on "dl". When "dl"
has been connected, "d2" can be handled, and so on. Thus,
the only recursive segment fault permitted in the present
design is that on a segment's parent; and we have shown
that the recursion terminates due to the special treatment
of the root directory.

83

9. SPECIAL ADDRESSING IN DEACTIVATION

9.1. Basic Problem

The deactivation of a segment requires the accessing of a
directory (the segment's parent) and of one or more
Descriptor Segments (those containing SDW's connected to
the segment).

It is very unlikely that these segments are all "known" to
the process performing the deactivation. How, then, can
the branch pointer and the SDW pointers in the connection
list in the ASTE be implemented?

9.2. The Multics Solution

In the present design, the parents of active segments and
all descriptor segments connected to active segments are
required to be active. This requirement enables the use of
the ASTE index as segment specifier for all of the special
addresses needed in deactivation. Thus, the branch pointer
and SDW pointers are all of the form:

(segment's ASTE index, offset)

Let us look in detail at the trick by which one of these
special addresses is used, say the "branch-pointer". A
special segment number is reserved in each process for use
by the SFH. To access the branch during deactivation, the
SFH uses the branch's ASTE index to compute the branch's
page table address. This page table address and read and
write access permissions are then stored in the SDW which
corresponds to the reserved segment number in the deacti-
vating process Descriptor Segment. A pointer using the
segment number and the offset given in the "branch-pointer"
is then constructed and used to access the branch through
the just manufactured SDW.

In effect; the reserved segment number and the corresponding
SDW constitute a "window" through which a process can refer-
ence a segment not formally known to it.

10. SPECIAL ENTRIES OF THE SEGMENT FAULT HANDLER

There are four functions related to segment fault handling
which are accomplished by special entries of the SFH.

84

10.1. Obtaining a Free ASTE

Some procedures need to be able to obtain a free ASTE in
order to activate a segment "by hand". For example, the
process creation procedure must make up an active descriptor
segment for a new process. A special entry in the SFH is
provided which obtains a free ASTE (whether from the AST
free list -or by deactivation), detaches it from the free
list, does not thread it into the AST used list, and returns
its index to the caller. ,

10.2. Setting'Faults for All Users of a_ Segment

Certain procedures wish to fault all SDW's commected to a
segment. For example, the Access Control Module will do
this if the access control data in the segment's branch has -
been modified in certain ways. These faults are set by
using the part of the deactivation code which disconnects
SDW's.

10.3. Deactivating a Segment

Certain procedures must be able to deactivate a segment, for
example, the procedure which destroys a segment. Deactiva-
tion is accomplished by using the deactivation path in the
SFH.

10.4. Disconnecting an SDW from a Segment

Some procedures, for example, the procedure which makes a
segment "unknown" to a process, need to be able to disconnect
an SDW from a segment. Code in a special entry of the SFH

is provided which faults the SDW and removes it from the

list of SDW's connected to the segment.

11. CONCLUDING REMARKS

The' functions of the Segment Fault Handler (SFH) are:

e to make (the Page Tables of) all segments which are
"known" to a process accessible to the process by
segment number.

e to multiplex the system's relatively few AST Entries
(or, equivalently, Page Tables) among all of the
segments "known" to all of the processes executing
in the system.

85

To accomplish these functions, the SFH must establish
(activate) and dis-establish (deactivate) the pageability
of segments and must establish (connect) and dis-establish
(disconnect) the use of such pageability by processes. It
is instructive to separate these four functions into two

groups.

11.1. Connection and Activation - Process Oriented
Functions

The primary tasks in handling a segment fault, connection
and activation, are done on a demand basis according to the
needs of a process. These functions are performed using
only data segments "known" to the process - the per-process
KST and Descriptor Segment, the directories superior to the
"target" segment, and the AST segment. In this part of
handling a segment fault, two types of error may occur.

The segment number may (a) not correspond to a segment
"known" to the process, or (b) may correspond to a segment
which has been destroyed. In either case, the process is
trying to access a segment which does not exist and should
note the error. For all of these reasons, we say that the
connection and activation aspects of segment fault handling
are "process oriented functions"; i.e., that the SFH in
performing them is acting "for the process".

11.2. Disconnection and Deactivation - System Oriented
Functions

The secondary tasks of segment fault handling, disconnection
and deactivation, are undertaken by the SFH during activation
only when the state of the system demands it, the relevant
state of the system being the emptiness of the AST free list.
The choosing of the segment to be deactivated is independent
of the process in which the SFH is executing. Deactivation
and disconnection of a segment require the SFH to access
segments not (necessarily%m"known" to the process executing
the SFH: the parent directory of the segment being deacti-
vated and the Descriptor Segments containing SDW's connected
to the segment. The method by which these segments are
accessed by the SFH (see Section 9) is clearly independent
of the address space of the process in which the SFH is
executing.

86

(The number of directory segments and Descriptor
Segments in the system may well exceed 218, " Al1 of
these segments are potentially referenceable by any
proce§s which is executing in the SFH deactivation
path.

No errors are detected (or caused) during deactivation and

disconmnection and no per-process errors affect their opera-
tion. For these reasons, we say that the deactivation and

discomnection aspects of segment fault handling are "system
oriented functions™, i.e., that the SFH in performing them

is acting "for the system".

87

Chapter 6

PAGE FAULT HANDLING

1. INTRODUCTION

In the Multics Operating System, segments are composed of
1024-word- contiguous blocks of data called pages. At a

given time, any number of pages of a segment may be located
in core memory, but since that memory is limited in size,

the hardware blocks of 1024-word core registers must be
multiplexed among the many pages of data and procedures which
may be referenced. It is the purpose of this chapter to
detail the structure of the mechanism which accomplishes
(block or) page multiplexing in Multics.

The page multiplexing strategy is similar in broad outline

to the page table multiplexing performed by the segment fault
handling module (see Chapter 5). However, there are differ-
ences in detail which arise in great part due to the 645
hardware used in page fault handling. Page fault handling

is closely bound to the various registers and logic functions
which the 645 processor can perform; indeed the major purpose
of the paging modules is to create the proper environment

for hardware access to pages. This access is made through
several registers, but the one which uniquely concerns page
multiplexing is the page table word (or PTW). This 36-bit
register, located in the page table for a segment, contains
all of the information used by the 645 processor to deal
with a page. The proper maintenance of a PIW is page
multiplexing's most basic job.

As a vehicle for carrying the description of page multiplexing,
there is a convenient set of machine configurations whose
physical capabilities obviate the need for various parts of

the page multiplexing function. Considered in order of increas-
ing likelihood they are:

1) Infinite core storage and no secondary storage,
2) Infinite core storage, with secondary storage, and
3) Finite core storage with secondary storage.

Although no multiplexing is required in the first two cases,
we shall describe the Multics page fault handling strategy

as it would be performed on each of these three configurations,
since in this way the real strategy can be described incre-
mentally.

89"

Before discussing the handling of page faults in detail,

we shall describe briefly the environment which allows a
page fault to occur. It is important to remember that a
page fault cannot occur if there is no page table for the
segment in question - for a page fault is only generated

by hardware reference to a page table. The table is
provided for a segment by the segment fault handler when it
activates the segment. Also at this time, the Active Segment
Table Entry for the segment is initialized by the segment
fault handler with all the information needed by the page
fault handler. Finally, the page table is set with page
faults for each page of the segment, so that the page fault
handler will be invoked upon first reference to each page.
These actions prepare the environment for page fault handling.

2. PAGE FAULT HANDLING ON A MACHINE WITH INFINITE CORE
AND NO SECONDARY STORAGE

When a process attempts to reference a page whose PIW has
a fault set, the paging modules are invoked to remove the
fault and insert the proper core location of the page into
the PTW. The first action, upon receiving notification of
the fault, is to locate the page being sought. From the
PTW address, the address of the Active Segment Table Entry
(ASTE) for the segment can be found. The ASTE contains the
segment map (the list of page locations) which yields the
actual address of the page (as described in Chapter 7).
The segment map is actually split between the ASTE and the
page table; however, we will ignore this complication for
the moment.

Since we are now assuming a configuration involving only
core, the address must be that of a 1024-word block of
core. Hence, the paging module need only insert the
proper core address into the PTW and fill in the page
fault field of the PIW to prevent further page faults on
this page. Thereafter, references to the page through the
PIW would proceed by hardware without interruption.

The repairing of a page fault in a PTW need be done only

once in the environment we are assuming, because all Segment
Descriptor Words (SDW's) for a segment point to the same

90

page table and, therefore, to the same PTW for each page.
If, however, a segment were deactivated (its page table
destroyed), then before further references could be made
to the segment, the page faults set by segment activation

would have to be satisfied in the way described above.

Page locations being constant assures us that the informa-
tion stored in a PIW is valid as long as the page table is.

3. THE ADDITION OF SECONDARY STORAGE

If we introduce secondary storage into our machine
configuration, we add two problems to the page fault
handling mechanism. Since the location of a page can now
be outside of core, there is a need to transport that page
from its resident device; and also, we must find an appro-
priate core block into which to put it. The page fault path
becomes slightly longer and necessitates referencing a new
data base - the core map free list. For, in order to pick
an appropriate block of core for the page, we must avoid
those blocks currently in use. Since we are postulating
infinite core, we need not be concerned with depleting the
free page supply. The functions required in this configura-
tion are:

1) Receive the fault, go from the PIW to the ASTE to
get the segment map and determine the secondary
storage location of the page. ‘

2) Access the core map free list to obtain a 1024-word
block and delete it from the list, and

3) call a Device Interface Module (DIM) to retrieve the
page and deposit it in the newly acquired block of
storage. '

The DIM's functions in transporting pages are to queue
requests for pages, to make the device perform as effi-
ciently as possible in satisfying the requests, to monitor
the device operation, and to notify the page fault handler
when input has been completed.

91

The notification function is performed in such a way as to
allow the process which took the page fault to wait for the
page without wasting processor time or making umnecessary
memory accesses. The page fault handler in the faulting
process, after calling the DIM to initiate page transpor-
tation, calls the System Traffic Controller to wait for the
page. At some later time, when the page has been imported,
the Traffic Controller will be called to inform the waiting
process that it may continue its computation.

4. RESTRICTION IN CORE SIZE

when we restrict our configuration to have a finite amount
of core, we reach the true Multics case where multiplexing
is necessary. In addition to the functions previously
described, the page multiplexor must also be responsible

for finding a free block of core when all blocks are being
used. This condition requires a selection algorithm for
removing pages from core to secondary storage; and this
algorithm requires a new data base - the core map used block
list.

The two lists of core blocks - free and used - are implemented
by means of an entire core map. The core map consists of one
core map entry (CME) for each 1024-word block of core. Each
entry serviced by the page fault handler is threaded into one
of the two queues - free or used - depending upon its current
status, but the entry and its physical block remain associa-
ted throughout any change in status. The free list is

singly threaded, since only its first element is ever used,
but the used list is circularly threaded to allow continuous
searching.

The actual information contained in a CME can be deduced from
the part it plays in the removal algorithm. Clearly it must
allow one to obtain the absolute core location of the
beginning of the 1024-word block. But a pointer to the PIW
for the page currently residing in the block is also
necessary if the block is being used, since the removal of
the page means that access to it should be inhibited by
setting a page fault in the PIW which controls it.

92

The sequence of actions for handling a page fault in the
limited core enviromment is:

1)

2)

3)

4)

As before, get the fault, find the device address
from the segment map in the ASTE.

Access the core map free list to obtain a free
block: if successful, place a pointer to the:
PTW in the CME selected, unthread the CME from
the free list, flag it as being used for I/O and
thread it into the used list. (Continue at Step
6).

If the free list is empty, perform the replenishment
algorithm to find a block in which the referenced
page can be put.

The replenishment algorithm is driven by a bit in
the PTW called the "Page has been used" or PHU bit.
This bit is set by the 645 hardware whenever the
page is accessed. when a page must be removed,

the used block list of the core map is accessed

and the entries are examined in the order of their
threading, starting where the last search stopped.
Each entry is examined to determine whether the

PHU bit has been turned on. Each page's PHU bit is
turned on by the software when the page is brought
to core, but after each examination during the
removal algorithm the page fault handler turns it
off. Therefore, the effective criterion for removal
is whether the page has been used since it was last
examined for removal. (For further information
about the philosophy of this algorithm, see "A
paging experiment with the Multics System", F. J.

‘Corbato, Multics Repository Document MO104.)

Having found a candidate for removal, set a page
fault in the PIW, determine the device address
from the ASTE and call the DIM to transport the
page to secondary storage.

93

5)

6)

7)

8)

Figure 1
strategy
interest

1)

2)

In order to avoid unnecessary page transportation,
the 645 hardware maintains a "page has been modified"
bit in each PTW which is turned on only if the page
has been written into. Unless this bit is on, the
page need not be returned to secondary storage.

In contrast to the page important strategy, do not
wait for this page to be moved, but continue to
select candidates for removal and call the DIM to
transport them until a block appears on the free
list. This block will have been placed on the free
list by the DIM when a page has been completely
transported. .

Using the device address developed in step 1), call
the DIM to import the desired page into the newly
acquired block of core.

Call the Traffic Controller to wait for the page
to arrive.

Since the PIW's page fault switch and CME's I/0
busy switch are reset by the process which called
the Traffic Controller to awaken the waiting pro-
cess, the page fault has been entirely repaired
and the page fault handler may return.

is a gross flow chart of the page fault handling
as described in Section 4. Special points of
are:

Any call to the DIM, whether for reading or writing,
causes all transactions to be observed and the com-
pleted ones to be "posted". The posting process
for a write operation consists of threading the

CME out of the used list and into the free list.
For a read, posting requires that the page fault
switch be reset and that any processes which might
be waiting for the page to be imported be informed
of its arrival (through the Traffic Controller).

The call to the Traffic Controller to wait for a
page to be read is only made for reasons of
efficiency and plays no logical part in the page
fault handling strategy.

9

Find address

.of page
=3
Is there a'g‘\\\
free block on - No
the free lisf//}
' Yes
~Tnthread From Can next block No
on used list be
free list, flag removed?
for 1/0 and add
to used list Yes
Set page fault
DIM (read) No
as page been
_ modified
Put block
on free DIM (write)
list
Wait via the
traffic ot
controller
Update used list
L___________,. next block pointer

turn

Figure 1, The Page Fault Handler

95

5. RECAPITULATION OF PAGE FAULT DATA BASE USE

Having followed the basic paths through the page fault
handler, we have seen all of the data bases used by page
multiplexing. However, not all of the items in these data
bases have been specified, only those portions significant
to a general understanding of page fault handling. This
section describes all of the data items referenced by the
page multiplexor and indicates their uses. (See also
Figures 2 and 3).

The most basic page multiplexing data base for a segment
is the page table, which contains the page table words for
each page. Page tables in Multics are allocated at system
initialization time in a permanently core-resident system-
wide segment, the System Segment Table (see Figure 3).
Hence, references to a page table are made through the
normal segment addressing mechanism - although no page
faults are ever taken on such references. Each PIW has
six types of data used by the page fault handler. These
types can be divided further into hardware referenced data
and solely software referenced. Both types are important
to page multiplexing.

The set of hardware referenced data in a PTW consists of
three items - the page fault switch, the core address

field and the page has been modified/used bits. Whenever
the core address is not meaningful, the page fault switch

is set to inhibit processor attempts to access through

that address. Since the address field is not used when

the page fault switch is on, the page multiplexor makes

use of the storage thus provided by placing part of the
device address in that field. Logically, the entire address
can be considered to be in the Active Segment Table Entry
as mentioned earlier, but to save storage space, the
"segment map entry" for a page is stored in the core address
field of its PIW when the page is not in core. -The PHM and
PHU bits, set by the hardware and reset by the software
when appropriate, have already been described.

The data in the PTW which is only referenced by software
consists of two flags used by the I/O handlers and a bit
which designates "wired down" status. The latter is
interpreted by the page fault handler during the page

removal algorithm to mean that this page may not be removed.
The two former flags are: one to signify that there is I/O
pending for this page (and whether read or write) and another
which is set if an I/O error is encountered while transport-
ing the page.

96

ASTE ' Page Table

Device I.D,
poatlf——— Tt
PTW
L Segment Map

ata Page - Entry Fault
secondary
storage

CME Core Block
OLD Segment Map N
Data Page Ent:y[i""-' Data Page 1 Core Address L, °
ault
pointer /

Figure 2, Data Base Inter-relationships

Notes for Figure 2,

A, To bring in a page from secondary storage, start with the PIW
which took the fault. Go to the ASTE to get the Device I1,D.

Use the core map free list to get a suitable CME, Fill in the
pointer to the PTW and transfer the file map to the CME, then
read in the page and remove the fault,

B, To remove a page from core, start with the CME picked from the
core map used list, Go to the PTW by the pointer and set a
fault; thence to the ASTE for the Device I.D. to complete the
secondary address, Move the file map back to the PTW, I1If the
page has been modified, write it out.

NOTE: It may seem that Multics has two copies of a data page when the
data is in core, Logically there is only one and we could
easily free the storage used by the old page each time it was
read in, There are three reasons of efficiency why we do not
do so,

1) Assigning and reassigning secondary storage blocks takes
processor time,
2) If the page to be removed from core has not been modified and
- we have retained the old copy, we do not need to write it out,
3) If the system were to crash, losing core but not secondary
storage contents, we would still have a (possibly obsolete)
copy of the data.,

97

Core MAP Free List Pointer

Core

n

The n~ CME refers to nth

1
MAP Used List Pointer 5
AST Page Table Array
Parallel
ASTE A’“"‘ Page Table
Core MAP
® "l—‘- -~ - ~ .
USED N N
\
\

\

\

\

USED [|

I

!

/
//
[USED ,
& e
5~ ' 7
[|
w...|
)
i

th

Figure 3,

The System Segment Table

98

1024-word block of core,

A fourth item of information, the address of the segment's
ASTE, although not contained in the PTW, is implicit in its
address; the ASTE's (which are fixed in length) are stored
in an array parallel to the page tables, thereby yielding
the ASTE address from the page table (or PIW) address. This
information is necessary to provide the rest of the device
address for a page when reading it in from secondary storage.

Another data base important to page fault handling is the
Active Segment Table Entry (ASTE) for a segment. The ASTE
contains more data than is used by the page multiplexor, but
that portion which is used consists of the device I.D., the
page fault count, a "no page fault" switch, the number of
pages in core for the segment and the current segment length,
in pages. Of these, only the device I.D. (see Chapter 7) is
crucial to page fault handling - the others are measurements
for tuning purposes and aids to Segment Activation and
Deactivation which can be best provided by the page multi-
plexor. Additional comment is made on these items in Section
6 of this paper.

The third, and last data base used by the page fault handler
is the core map. The core map is also allocated in the System
Segment Table whose header contains pointers to the head of
the free list and to the next entry to be examined on the
used list. Each core map entry (CME) has two threading
pointers: the entries in the free list use only the "forward"
pointer, since entries are removed from the top and added
there, while the used list employs both "forward" and
"backward" pointers to allow insertion of an entry between
any two other entries. A CME on the free list has no other
useful information contained in it. The core location of

the block controlled by a CME is implicit in its position
within the core map, since as many CME's are allocated as
there are 1024-word blocks of core. We note that not all
CME's are put on the free or used threads - only those

blocks to be serviced by the page fault handler. All
permanently core-resident pages of core are represented by
CME's which are not pointed to by entries on cne of the
threads. In this way, the removal algorithm need not
explicitly check entries which could never be removed.

99

Two other items are kept in the CME for a page only if the
CME is on the used list. First, the segment map entry for
the page, which was kept in the PIW while the page resided
in secondary storage, is transferred to the CME before the
core address is inserted into the PTW. Clearly the core
address could be kept in this space in the CME when it was
threaded on the free list if the information were not
implicitly available. Second, a pointer to the PIW is
maintained to permit the segment map entry to be replaced
and the page fault switch to be reset when the page is
removed from core.

We are now in a position to understand the initial
requirements of the page fault handler in order that it
be able to function. First, the core map entries for
multiplexible blocks must all be threaded onto the free
list. Then, for each segment which is to be referenced,
each page table word must be filled in with a segment map
entry and page fault switch setting; and also the Active
Segment Table Entry must be initialized in its Device I.D.
and other entries. This work would allow a page fault to
be serviced for non-page-fault-handling procedures.

But what of the page multiplexor itself? May it use the
same page fault mechanism which it provides? Not entirely.
While selected parts of the data and procedures of the
multiplexor could be transportable, at least one path
through the multiplexor must be guaranteed page-fault free
to prevent infinite recursion. In Multics, the choice has
been made to prevent any page faults whatever from occurring
during the handling of a page fault. To this end, all of
the page fault handling procedures are permanently core-
resident, and for this reason the ASTE is used by the page
multiplexor. For although all of the necessary information
about the pages of a segment can be found in the branch for
that segment, branches are not wired down and are, therefore,
susceptible to page faults. Hence, that part of the infor-
mation kept in the branch which must be referenced by the
page fault handler is transferred to the ASTE at segment
activation time, to keep it in a permanently core-resident
data base. This choice permits Multics to follow a more
predictable and shorter path while handling page faults.

100

6. ADDITIONAL REMARKS

Several important functions of the page multiplexor have
been excluded from the previous discussion since they are
not necessary to allow page multiplexing. Some of these
functions receive additional coverage in chapters written
to explicate the areas in which they are used, but their
appearance in this paper is germaine to a better under-
standing of the page fault handler's importance in Multics.

An especially complex area in any multiplexed computing
system is that of synchronization of processes. Empirical
evidence has led Multics to the path of least complexity where
possible. An example is the synchronization of multiple
processes, all of which may desire the handling of a page
fault at the same time. To prevent interference between the
various processes in handling common data, only one process

is allowed to execute in the page multiplexor at a time.

Other processes wishing to deal with a page fault are

forced to wait their turn.

It is also necessary to synchronize the physical devices
which transport pages and the processes which have requested
the transportation. As we have seen, there is no problem
of synchrony when writing pages. Any process which needs

to have a write operation completed in order to continue its
computation simply loops on the core map free list and calls
to the DIM until a block appears in the free list. When
reading pages, synchrony is established through communication
with the Traffic Controller - both to wait and to notify.
The only remaining problem is to ensure that the DIM is
called subsequent to the completion of every read so that
notification can be performed.

The DIM is normally called by the next process to take a

page fault. But if the DIM is not called in a sufficiently
long time (this could happen if each process were waiting for
a pagel), the secondary storage devices cause interrupts
which are directed to a special process whose sole purpose

is to wait for these interrupts and call the DIM in response
to them (see Chapter 8).

101

Another function performed by the page multiplexor is

the assignment of blocks of secondary storage (see

Chapter 7). No secondary storage is assigned to a page
until it has been referenced. A special device address

(the ™ull" address) is assigned to all pages of a

segment which have never been referenced. when such an
address is encountered by the page fault handler, it

creates a page of zeroes in core rather than reading in
data. Ideally, then, the page need not be written out

until the page-has-been-modified (PHM) bit has been turned
on by the hardware. In fact, the Multics page fault handler
causes the assignment of a secondary storage address at
first reference and sets the PHM bit to force write-out of
the page. This sometimes results in storing a page of
zeroes in secondary storage but eliminates a check for "null"
addresses in the page removal path.

Actual device storage handling is incorporated into a
separate module whose algorithm for assigning storage on a
particular device can be easily changed to accommodate any
system discipline (such as directory segments on Drum and
non-directory segments on Disk).

The movement of data from one device to another is also
accomplished in the page multiplexor. Chapter 7 describes
the function in detail, but the basic mechanism used is

an additional item in the ASTE for a segment which can
specify a "move device I.D." and a bit in the segment map
entry which specifies whether or not the page (which must
be in core) has already been moved. Using these items, a
segment can be moved by setting the move device to I.D. when
activating the segment. Then, whenever a page is brought
to and subsequently removed from core, it is rewritten onto
the new device.

The final functional area incorporated into the page
multiplexing modules is that of services to the segment
activation and deactivation module. A special set of
entry-points allows individual page manipulation on demand.
Specifically, the functions are:

1) To read or write a page from/to secondary storage.
2) To "wire" or "unwire" a page by setting the "wired

down" bit in the PTW which allows a page to be
skipped by the removal algorithm (this function is

102

used only for temporary wiring). Pages are
"wired" (made permanently core-resident) by
leaving their CME's off the core-map used list.

3) To truncate a segment by destroying all pages
beyond a certain page and returning their
secondary storage to the free pool.

4) To cleanup all traces of a segment in preparation
for its deactivation. This function consists
of exporting the entire segment (removing all of
its pages) and waiting until the pages have all
been exported to their resident secondary storage.

7. THE HISTORY OF THE MULTICS PAGE MULTIPLEXOR

The entire Multics file system has gone through two
incarnations. The original version carried the Multics
penchant for elaborate original design to some lengths and
was successfully implemented. Its performance and amenability
to debugging left something to be desired. Therefore, this
second attempt was made, using the knowledge gained from the
first to avoid areas of difficult implementation and slow
execution.

There were two principal changes respecting paging. First,

a single page size of 1024-words was chosen, replacing the
previous strategy in which pages of two sizes, 1024-words
‘and 64-words, were allowed. This simplification resulted in
the elimination of elegant but time-consuming algorithms for
page removal and for "change-making" and coalescing free
blocks in core and .in secondary storage. Second, a single
segment size of 64 pages (implying a single page table size
of 64 words) was chosen, replacing the previous strategy

in which segments could vary in size from 64 to 256 pages
(always in umits of 64 pages). This simplification resulted
in a greatly simplified Page Table-Active Segment Table
Entry arrangement to the benefit of all the modules involved:
page control, segment control, core control. As a result of
these changes, the present implementation has avoided several
lengthy computations in the most frequently used path in
page fault handling, achieving a great advantage in average
execution time over the former implementation.

103

Chapter 7
SECONDARY STORAGE MANAGEMENT

1. INTRODUCT ION

Secondary storage management cuts across many parts of
the Multics virtual memory system. In this chapter, we
shall try to minimize repetition by discussing only those
points which have not been discussed elsewhere.

We shall discuss the assignment of a segment to a secondary’
storage device and the assignment to its pages of blocks of
secondary storage. We shall also discuss "moving" a segment
from one secondary storage device to another, i.e., changing
a segment's assigned device.

2. ORGANIZATION OF SECONDARY STORAGE

The physical devices used for storing information in Multics--
core, disks, drums--are divided into 1024-word "blocks"
corresponding to the division of segments into 1024-word
"pages". Addresses of blocks in secondary storage are given
as pairs:

block address = (deviCe identifier, block number)

For the most part, the "device identifier" specifies a
particular physical device. It is possible, however, that
one device identifier specifies part of a large device or
a collection of small devices. We should, therefore, use
the phrase "logical device identifier."

Each (logical) device of secondary storage has an associated
"Device Map" which records which of its blocks are assigned
to pages of segments and which are free. The "Device Map"
contains one bit per block of the device. This bit is set
to "1" to indicate that the block is free and to "O" to
indicate that the block is assigned to a page.

To assign a block on a device to a page, it suffices to
search the appropriate Device Map for a bit set to "1", note
the corresponding block number, and reset the "1" to "O",

To free a block (when a page is destroyed, for instance) it
suffices to reset the corresponding bit in the Device Map
from "O" to "1",

105

3. SECONDARY STORAGE OF SEGMENTS AND PAGES

3.1. Strate for Seconda Storage of Segments and
fages '

3.1.1. Segment Assignment. Devices‘of secondary storage

are not equivalent. Due to differences of latency and
transmission timings and to differences in the accessing
¢code, some devices prove to be faster than others. For
example, in the present Multics configuration, the drum is
faster than the disk. Because of this non-uniformity, each
segment is assigned to a single secondary device: segments
expected to be used often are assigned to fast devices,
segments expected to be used more rarely are relegated to
slower devices. (When we say that a segment is assigned to
a device, we mean that the pages of the segment are to be
stored in blocks of that device.)

A segment is assigned to a device of secondary storage when
the segment is created. The algorithm by which segments are
initially assigned to devices of secondary storage is called
the "Multi-Level Storage Algorithm". The phrase "Multi-
Level" emphasizes the differences in device characteristics.
A discussion of the Multi-Level Storage Algorithm is beyond
the scope of this paper. We shall examine only the
mechanisms used to execute this algorithm's decisions.

3.1.2. Page Assignment. When a segment is created, its

64 pages are also, in a sense, created. But before a page
is referenced for the first time, it cannot contain any
information.

Although a few segments may ultimately contain 64 information-
filled pages, many segments never contain more than a few
such pages. It would be wasteful to tie up blocks of secon-
dary storage for pages that contain no information and may
never be referenced. Therefore, pages are assigned blocks

in secondary storage only after they have been referenced.

3.2. Data Relating to Secondary Storage of Segments
and Pages :

106

3.2.1. Segment Map. We may now specify the "Segment Map",
that attribute of a segment which tells where the pages of
the segment are stored in secondary storage. The Segment

Map consists of: _

®. device identifier
® 64 block numbers

3.2.2. The "Null" Block. A special block number, called the
"null" block number, is used to indicate that a page has

not been assigned a block of secondary storage. We often
say of such a page that it is assigned the "the null block".
The null block may be regarded as a page of zeros.

3.3. Procedural Implications of Secondary Storage
Strategy

3.3.1. Creating a Segment. When a segment is created, the
Multi-Level Storage Algorithm is used to assign the segment
to a device of secondary storage. The segment's 64 pages,
which have not been referenced, are all assigned the "null"
block. The device identifier and the 64 "null" block
numbers are all recorded in the segment's Segment Map.

3.3.2. Bringing a Page to Core. When a page is referenced
for the first time, the Page Fault Handler (PFH) is asked
to "bring to core" a page which is "stored" in the "null"
block. The PFH handles such a request by:

® assigning a block to the page from the segment's
assigned device. '

@ zeroing out the block in core which is to contain
the new page. '

e setting the "page has been modified" switch in the
page's PIW to make sure that the page will ulti-
mately be moved to its newly assigned block.

3.3.3. Removing a Page from Core. When the PFH wishes to
use a block of core presently occupied by a page, it inspects
that page's "page has been modified" switch. If the page
has been modified, then it must be written into its assigned
block in secondary storage. If the page has not been modi-
fied, then it may be overwritten directly since it is equi-
valent to the information in the assigned block of secondary
storage..

107

4. MOVING A SEGMENT FROM ONE SECONDARY STORAGE DEVICE
TO ANOTHER

4.1. Strategy'for Moving a Segment

It is occasionally necessary to "move" a segment from one
secondary storage device to another. A "move" is necessary,
for instance, if a secondary storage device becomes full

or if a segment's usage changes substantially. The decision
to re-assign a segment to a new device (to "move" a segment)
is made by the same Multi-Level Storage Algorithm which
assigned the segment to a device at segment creation time.

4.2, The Segment Map Revised to Permit "Moves"

The Segment Map must be revised if it is to be possible to
move a segment from one device to another. The Segment Map
must indicate not only the device to which the segment is
assigned (in the case of a move, the segment is assigned to
the new device) but also the device to which the segment
was assigned. During the move, information must also be
stored to show to which of these two devices the segment's
64 pages are assigned. last, the Segment Map must show
whether or not a "move" is in process.

The revised Segment Map has the form:

e device identifier (or, in case of a move,
"old device identifier")

e new device identifier
(non-zero only if a move is
in progress; thus acts also
as a "move in progress" switch)

® 64 block numbers

® 64 "moved" switches :
(a page's "moved" switch shows
to which of the twc devices the
pages are assigned; the "moved"
switch is meaningful only when
a "move" is in progress)

4.3, Procedural Implications of "Moves"

108

4.3.1., Bringing a Page to Core. When a page is brought to
core, it must be brought from its presently assigned block
in secondary storage. The Page Fault Handler (PFH), by
inspecting the "new device identifier", "old device
identifier™, and the page's "moved" switch, can determine
the device to which the page is assigned. The page's secon-
dary storage address then consists of the device identifier
so calculated and the page s block number.

In the case of a "null" block assignment, the page referenced
for the first time is assigned to a block of the new device.

4.3.2. Removing a Page from Core. When the PFH removes a
page from core it must see that the page is removed to a
block in the correct device. This means that:

(a) If the segment is being moved from one secondary
storage device to another, and

(b) if the page's "moved" switch shows that the page
- has NOT been moved, then the PFH must

(¢) release the block assigned to the page on the
"old" device,

(d) assign a block to the page on the "mew" device,

(e) record the new assignment in the Segment Map,
setting the "moved" switch, and

(f) move the page from core to its newly assigned
block in secondary storage.

4.3.3. Deactivating a Segment - Completing a Change of Devices.
We know that when a segment is deactivated, the Segment Fault

Handler calls a special entry of the paging module to force
the segment'’s remaining pages out of core. Before it removes
any pages from core, this procedure checks to see if the
segment being deactivated is being moved from one device to
another. If the segment is being moved, code is executed
which brings to core those pages of the segment which are

109

stored in blocks of the "old" device (that is, pages which
have non-"null" block numbers and whose "moved" switches say
"not moved".) When this has been done, the job of removing
the segment's pages from core is performed. The pages are
removed from core as described in the previous paragraph.
Thus, at the end of the page removal, all of the segment's
pages are necessarily assigned to blocks of the "new" device.

When the page removal procedure returns to the Segment
Fault Handler, the latter updates the Segment Map to show
the correct device identifier, a zero new device identifier,
and all "moved" switches showing "not moved". With this,
the move is complete; we see that deactivation completes a
"move".

4.3.4. Pexforming a "Move'". We may now describe the procedure
which the Multi-Level Storage Algorithm uses to move a segment
from one device to another. The "new-device" identifier is
placed in the Segment Map of the segment (in the branch if the
segment is not active, in the ASTE if the segment is active).
If the segment is not active, it is made active. Finally,

the segment is deactivated by means of a call to a special
entry of the Segment Fault Handler. By supplying a "new-
device" and activating the segment, the "move" is initiated.
By forcing the deactivation of the segment, the "move" is
terminated, as described in the previous paragraph.

110

Chapter 8

DEVICE INTERFACE MODULES

1. INTRODUCTION

The responsibility of the Device Interface Module (DIM)
respecting paging is (a) to initiate transfers of pages
between blocks of core and blocks on secondary storage
devices as requested by the Page Control Module, and (b)
to notify the Page Control Module upon the completion of
these transfers. In general, there is a considerable time
lapse between the performance of these two functions.

Page Control uses the DIM by (a) initiating a transfer and
then (b) waiting to be notified by the DIM of the completion
of the transfer. The DIM must, therefore, perform its
notification function with respect to a given transfer
without being called by the process which requested that
transfer. '

Notification of completed transfers is usually performed
by the DIM just after the latest transfer is initiated.

The DIM inspects its data bases, determines which transfers
(by whatever process requested) have been completed, and
performs the necessary notifications. It then returns

to its caller which may in turn wait for notification.

It may happen that all processes are waiting and, thus, that
no process will (by taking a page fault) invoke the DIM.
Therefore, as a precaution, the DIM arranges to have an
interrupt sent to the processor by the secondary storage
device sometime after it completes its last pending transfer.
This interrupt will cause a special process to be wakened
which will call the DIM and cause the required notifications
to be performed. The DCW (see below) which causes this
interrupt also disconnects the controller; we call it the
"last"™ DCW. .

2. GENERALITIES
2.1. DCW's

We are concerned with the I/0 transactions of transferring
. a page from a block of core to a block of secondary storage
(or vice versa) involving the GE-645 computer and its peri-
pheral units. The Page Control Module "requests" such a

111

transfer by a call to the DIM of the appropriate device.
The DIM passes the request along to the device controller
via a special word, called a DCW - Data Control Word.

A DCW contains the following information of interest to
us in this paper:

- op-code read, write, or no-op (on some
devices)

- core address
- device address

- disconnect bit causes the device to disconnect
after satisfying the request
specified in the op-code

- interrupt bit causes the controller to send an
interrupt to the processor after
the request has been satisfied

2.2. DCW Lists

Each device controller is driven by a list of DCW's which

it runs through, consecutively, interpreting the DCW's,

until it encounters a DCW with a disconnect bit set after
satisfying which the controller disconnects itself and

waits to be reconnected. The DCW lists are all regarded as
circular in the sense that the controller accesses the DCW's
consecutively, modulo some N. The DCW lists are finite in
the sense that the DIM's always store a DCW with a disconnect
bit somewhere in each DCW list. This DCW, whose interrupt
bit is also set, is called the "last" DCW.

2.3. Status Queues

While the device controllers obtain their instructions from
DCW lists, they record the status of requested transfers

in special "status queues". A word in the status queue

is associated with a DCW and written into by the controller
after the transfer specified by the DCW is begun. The
status word will show whether the action begun was completed,
whether there was a parity error, etc.

112

2.4, Function of the DIM

The DIM for a particular device interfaces with the device
through the two data bases discussed above, the DCW lists
and the status queues. The DIM interfaces with the user
(the Page Control Module, in our case) as follows:

- on being called, the DIM sets up appropriate DCW's,

- makes sure that the interrupt and disconnect bits
are set in the proper DCW, and

- connects the controller if necessary.

After acting for the particular user, as above, the DIM

- inspects the status queue,

- "posts™ all completed transfers in the associated
Page Table Words, '

- "notifies" the processes waiting for the completed
transfers, and

- cleans up the SDW list and status queue as required.

2.5 Normal Operation

It is expected that enough page faults will occur that
"requests" for page transfers will, in general, occur while
each DCW list is non-empty. This means that the controller
has not yet reached the "last" DCW with its disconnect and
interrupt bits set. The DIM accordingly establishes new
DCW's (as indicated above) and then advances the "last"

DCW, that is, resets the disconnect and interrupt bits in
the DCW in which they are presently set and sets them instead
in the now appropriate DCW, further along on the circular DCW
list. (We will discuss in detail below just which DCW is
"last".) In this way, it is expected that the controller
will run for a long time without reaching the "end" of the
DCW list and will consequently remain connected and will

not have to send interrupts. Since the purpose of the
interrupts would be to force the invocation of the DIM to
"notice" the completion of transfers, and since the DIM will
be called quite often as part of paging, there is no need
for interrupts. The interrupt associated with the "last"
DCW takes care of the unlikely case that all processes are
waiting for page I/O and that no more calls to the DIM from
the "user™ will occur. In this case, the interrupt will
force a special process to be wakened which will call the
DIM and so enable the noticing of completed transfers,

their "posting", and the associated notification.

113

3. DRUM

3.1, Drum Configuration

The drum contains M*N blocks of 1024 words as shown in Figure 1.
As the mth row of blocks comes under the read/write head, any of the
N blocks in the row can become part of a transfer, ' :

—_— == Reud/Write Head

Figure 1. Drum Configuration

3.2. Drum's DCW List Configuration

The drum DIM maintains a circular DCW list for the drum of
length L*M where L>>N. Each DCW contains the following
information: : :

(read, write, or no-op), core address, m, n, ("last"
or ™iot-last") :

where "last™ means the discomnect and interrupt bits are
set (in one DCW only), m is the row number, and n is the
number of the block in the row. The drum's DCW list is
initialized with all of the m's set, in order, so that the
DCW list consists of L one-entry-per-row coverings of the
drum. As the drum rotates and as the controller advances
through the DCW list, the number of the drum's "presenting"
row equals the row number of the DCW then pointed at by the
controller. For this reason, the drum DCW may have a no-op

114

op-code to specify that no transfer is to occur involving
a block on the mth row at this time. See Figure 2. It
should be emphasized that this L-fold "covering" of the
drum by the DCW list and the consequent parallelism
between the drum's physical position and the words of the
DCW list is not required by the hardware but is a software
construct (of some beauty.)

@

L
Drum Physical Position (Row=8)
L-1 1 8]
Alféfhatiﬁé View of Druh |
DCW List as L-fold Covering
2
1 { Controller's
DCW 1 2 L

A

Figure 2, Drum DCW List Configuration

3.3, The "last'" DCW

Whenever it is called, the drum DIM resets the "last" DCW
to be the DCW last passed by the controller, that is, the
DCW for which the drum controller has just completed the
recording of final status. This guarantees that the drum
controller will never generate an interrupt (and disconnect)
until L revolutions of the drum after the last call to the
drum DIM. The drum DIM maintains a pointer to the "last"
DCW and, upon being called, erases the "last" information
from the presently "last" DCW and writes it into the DCW
just passed by (as explained above), resetting the "last"
pointer.

115

3.4. DCW List Management for the Drum

wWhen a transfer request is sent to the drum DIM, a pair
(myn) is sent as drum block address. The DIM examines the
DCW list and finds that unique DCW in the L*M DCW's of the
list which (a) will first be in the controller's path,

(b) has a no-op op-code, and (c¢) has the given value of

m in its row number slot. There are L DCW's with row number
m and it is expected that at least one of them is no-op.
(If all L of them are in real use, the DIM loops, waiting
for one of them to come free.) When such a DCW is found,
the DIM writes the appropriate value of n into the DCW

and sets the appropriate op-code (read or write). The

DIM then goes through the usual steps of setting the "last"
position correctly, observing, posting, and notifying for
completed transactions. One part of cleaning up after com-
pleted transactions is to reset to "no-op" the op-code of
DCW's whose requests have been serviced.

It is expected that the drum controller will, in gemneral,
continuously run through the circular DCW list, the "last"
DCW running along L revolutions behind it, with a band of
non-null DCW's just in front of the current controller posi-
tion in the list. See Figure 3.

"Last" DCW

Requests which are Completed but not .
"Posted"
Controller's DCW Pointer

___Requests not yet Serviced

Figure 3. Density of Non-Null DCW's in Drum's DCW List

116

4. DISK

4.1, Disk Configurétion

The "disk" consists of 1 platters each with one movable

I/0 head. The I/0 head for any platter may be moved to any
of J tracks. Each track has K blocks which come under the
1/0 head as the disk rotates. A disk DCW specified:

‘(fead or write), core address, i, j, k, ("last" or
"not~last")

4.2. Disk DCW List Configuration

The disk's DCW list is circular only in the sense that its
DCW's are accessed by the controller consecutively modulo
the list length. DCW's are put on the list in the order
received; there are no no-op DCW's, and the last DCW to be
put on the list is always the "last" DCW in the sense that
it contains the disconnect and interrupt bits.

4.3. Expected Operation

The Disk DCW list is ordered randomly in the sense that
requests are put on the list as received and hence without
regard for the position of the disk (k) or of the 1 arm
positions j(i). This technique is chosen because of the
large amount of processing that would otherwise have to be
done to keep track of the arm positions, the value of k,
and the list of unsatisfied DCW's; and because of the low
probability that such processing would pay off.

No interrupt and disconnect will occur as long as there is
at least one request in the queue. Since no reuse of old
DCW's is made (as in the drum's case), there is no need,
in cleaning up, to erase the contents of the DCW's of
completed requests.

117

B. Access Control to the Multics Virtual Memory

119

Chapter

W N -

CONTENTS

Title

Introduction

Access Control Philosophy

Multics Ring Structure Philosophy
Software Functions in Ring Changing
Simulation of Rings Using the 645

Bibliography

120

INTRODUCTION

An important trend in the design of large computer
systems is the inclusion of hardware and software for

the sharing of information, both procedure and data.
Thus, the concept of pure, re-entrant procedure has lost
its novelty and the sharing of data, as in multiuser
information retrieval systems, has become commonplace.
The introduction of sharing into large systems has, how-
ever, brought the difficult problem of access control
into the realm of the computer system. The comparatively
easy problem of protecting the supervisor in a batch
environment has grown into the complex task of permitting
the flexible sharing of information between system and
user and between user and user.

. The Multics access control system has been described in
a number of places with a number of purposes. Graham3
discusses the fundamental reasoning behind the chojce of
the Multics ringed access control system; Organick™ dis-
cusses the details of the implementation and use of this
system; and the Multics System Programmers' Manual goes
into even greater detail on implementation. The purpose
of the present paper is not to duplicate any of the ex-
cellent material already available but rather to high-
light certain aspects of the Multics ringed access control
system which are thought to be of particular interest to
system programmers.

In this paper we shall develop the ides of the ringed
access control system as an approximation of access con-
trol conditioned on the identity of the procedure in
execution, as suggested by Evans and Leclerc®; we shall
describe "ringed hardware" to support the ringed access
control system; we shall show how this "ringed hardware"
is simulated on the 645 processor; and we shall discuss
at some length the software mechanisms which are implied
by the concept of "ring".

This paper was written in conjunction with, and lo§ica11y
follows, another paper, The Multics Virtual Memory-.

121

Chapter 1
ACCESS CONTROL PHILOSOPHY

In the Multics virtual memory, the segment is the unit
of information to which access is controlled. In fact,
~ the possibility of controlling access to shared infor-
mation was a principal justification for designing a
segmented memory system. In Multics, every segment is
- directly addressable and it is, therefore, necessary,
upon each attempted memory access, for the accessing
hardware to answer the question:

Shall this attempted access be permitted?

The answer to this question, with respect to a given
segment, is obtained by interpreting a data base associat-
ed with the segment, the segment's "access control attri-
butes". It is the purpose of this chapter to discuss the
basis on which the hardware might go about answering this
question, hence, to specify the content of a segment's
access control attributes.

We feel that, at the least, a segment's access control
attributes should indicate:

1. who may access the segment; a segment may
be accessible to a single user only or
shared by a number of users.

2. how each of these users may access the
‘ segment, distinct users may have distinct
access rights.

3. in what circumstances each user may exercise
his access rights to a segment; a user's
rights may be made to depend, in some way,
on what he is doing.

123

User-Name. Let us look at these points in turn. To
begin with, it 1s a process executing on a processor
which attempts to access memory, not a user. For this
reason, every process has associated with it the name
("user-name") of the user on whose pehalf it is ex-
ecuting; all access rights of the process derive from
the process' user-name.

We note that the security of an access control mechanism
depending in this way on the user-name depends strongly
on the technique by which a process is assigned a user-
name.

A simple and perhaps sufficient technique for assigning
user-names to processes is to require each user, when
he "logs in", to specify a user-name and then give a
secret password which validates his right to use the
given user-name. All processes which subsequently act
for him as a result of this "login" will then do so
with the authority of the given, validated user-name.

Access-Mode. The basic types of memory access are READ,
WRITE, and EXECUTE. We use the term "access-mode" to
refer to any combination of these types including the
mull combination. It is clear that a process' access
rights respecting a segment are at any moment char-
acterizable in an access-mode.

If a process' access rights were to be independent of

its activities, then a segment's access control attributes
could be recorded in a list of user-name/access-mode
pairs. A process' right to access a segment in a given
way would then be determined by (a) whether the process!
user-name appeared in the segment's list and (b) whether
the given access type appeared in the corresponding
access-mode. This system of access control is illustrated
in Figure 1. The access control mechanism takes as '
arguments the process' user-name, the type of the attempted
access, and the name of the target segment. It then
searches the target segment's access control attributes
1ist for the given user-name. If it is found, the
corresponding access-mode is then searched for the given
access type. The access is permitted only if the user-
name and access type are found.

124

The system of access control just described is

already quite powerful.

It permits a user who has

created a segment to grant himself READ-and WRITE-
access to it, to store information in the segment,
and then to give & number of other users READ-access

tO ito

He and these others may now read the segment

whereas he retains for himself the right to change it.

- | 1. target

2. user-name :

segment

3. access-type _ - user-name, access-mode1
obtain target segment's _ -
access control — -
attribute list _
: user-name . access-mode .
v \ _ J - J
is "user-name" P -
in the listz \ " _ -~ -
- -
P
¥ yes -7 1
P ”~

is Maccess~type" in A

the associated

P
no

Target Segment's Access
Control Attribute List

access-mode? /’
.‘r‘ yes |
permit the cause the appropriate
access access violation
fault to occur
Figure 1.

Illustrating an Access Control Mechanism

Depending on User-name and Access-type

125

Circumstance-Dependence of Access Rights. There are two

reasons why a process' access rights should somehow be
made to depend on the process' current business. First,
the problem of error may suggest that access, particular-
ly WRITE-access, to a segment should be limited to de-
bugged procedures or groups of procedures. Second, the
problem of intentional misuse of a segment may suggest
that semi-trusted users be forced to access the segment
via procedures or groups of procedures specifically
designed for their use.

As an example of the latter, consider a Management In-
formation System with a data base including individual
salary information. This data base would generally be
"readable" by all users of the system; but the less pri-
vileged users would have to "read" the segment via pro-
cedures designed not to disclose individual salaries.

In the remainder of this chapter we shall take for
granted the dependence of access rights on user-name and
shall concentrate on finding a good and workable way to
make a process' access rights to a segment circumstance-
dependent.

1. ACCESS CONTROL BY PROCEDURE

The most obvious way to achieve circumstance dependence

in access control would be to condition a process' access
rights on the procedure by which the access is attempted.
A segment's access control attributes would then be
recorded, in effect, in a user-name versus procedure table
whose entries are access-modes.

Figure 2 illustrates this system of access control. The
access control mechanism takes as arguments the process'
user-name, the type of attempted access, the name of the
procedure in execution, and the name of the target seg-
ment. The target segment's access control attribute
table is then searched for an entry corresponding to the
given user-name and procedure. If the entry is found,
the corresponding access-mode is then searched for the
given access type. The access is permitted only if an
entry with a suitable access-mode is found.

126

This type of control would permit access control as
illustrated in the following example:

user-1 "owns" data segment D and procedure P and
gives user-2 WRITE-access to D only when executing
P and EXECUTE-access to P only when executing in
procedure P (and, of course, P itself).

This implies that user-2 can only write in D by calling
P from P (to which user-Z2 has access from some source

other than user-_]‘.).

target segment

user-name
access=-type
. 4. procedure | é"- 8—_"
obtain tarfet segment's 2 ol
ccess control @ ——-— - - > 3 8
ttribute table g ' o
: O
_ user-name, Vol T
is "user-name" >T°
an entry in the \ no] e
R N ey B et I 7 o
: ’.u‘)
. K yes re ~ P s
is "procedure" \ _ -~ _ e
an entry in the _"
table? no /.‘/
N
~]
§ Yes e — - access-mode ik‘
is "access-type" in _ _—— -|-- "7 7" v
the °°".'°Zp2"dmg Target Segment's Access
access-mode: Control Attribute Table
. | yes \
permit the dause the appropriate
access access violation
fault to occur
Figure 2. Illustrating an Access Control Mechanism

Depending on User-name, Access-type, and

Procedure

127

2. ACCESS CONTROL BY SET

The idea of conditioning access rights on the procedure-
in-execution has been proposed by Evans and Lecler.“ and
is an idea that occurs to many system programmers at

some point when they are struggling with difficult access
control problems. We would recommend this technique were
it not for some difficulties which render it infeasible.
The principal hindrances to the conditioning of access
rights on the procedure-in-execution are:

e no hardware presently exists which would permit
this type of access control to be practiced in
any but an interpretive mode

e too much effort and space must be expended in
constructing and updating each segment's table
of access control attributes

e too much must be foreseen: This technique requires
knowledge of all of the uses to which each segment
may legitimately be put.

A natural idea for approximating the procedure-in-
execution strategy is based on grouping related procedure
segments into "sets" and basing access rights to segments
on the identity of the set to which the procedure
attempting the access belongs.

There 18 no reason, by the way, to suppose that these
sets of procedures would be disjoint; indeed, service
procedures such as PL/1 runtime routines would probably
be included in every set. ,

Access control by procedure-set appears to have two advan-
tages over access control by procedure. First, each seg-
ment would have a somewhat smaller table of access control
attributes, a practical system presumably having fewer sets
than procedures in sets. Second, updating the per-segment
access control attributes tables should be easier, since
adding another procedure to a set would mean revising the
definition of the set, not amending the access control
attribute tables of a large number of segments.

128

Figure 3 illustrates access control based on set-in-

execution. The form of a segment's access control at-

tributes and the interpretation of these attributes by

the access control mechanism are just as in access con-

trol by procedure, as described in Section 1 above,

except that "set" replaces "procedure" wherever it
occurs.

The concept of "sets" introduces a number of interesting
problems. Given that each procedure is potentially an
element of several sets, and stipulating that a change
of set can only occur upon a change of procedure (i.e.,
upon a call or return), how shall the access control
mechanism determine to which set to change (if any)

upon each transition between procedures? How shall the
composition (membership) of sets be initially defined
and by what mechanism shall the composition of sets

be changed? Shall the composition of sets be determined
in a system-wide way or per-user or per-project? And

so on.

We have introduced this concept of "sets" of procedures
in order to make the definition of "rings" (see below)
less abrupt and also to put the concept of "rings" in
perspective.

3. ACCESS CONTROL BY RING

The implementation of an access control strategy based
on sets, as described above, is judged infeasible due
to the difficulty of defining sets, of unambiguously
defining all transitions between sets, etc. It is use-
ful to define a restricted theory which produces the
more useful concept of "rings".

We use the term "rings" to refer to "sets" (as described
above) to which access rights to all segments are
assigned in such a way that the sets can unambiguously
by ordered by increasing power or privilege. Precisely,
we say that a collection of sets is a collection of
rings if the sets can be numbered 0, 1, 2, ... in such
a way that the possession by a particular user of an
access right to a segment in set k implies the pos-
session by that user of that segment for all sets j,

J<k.

129

| 1. target segment

2, user-name
3. access-type
. 4. set
obtain target segment's . =
access control - - —— == ' - o5
attribute table o o
| ‘ user-name,),—f'
is "user-name" \\\ no T
an entry in the bsar = — '
table? — = - = 4 a]useroname 37//4“-\\
yes L < -
b - /’ N -
is "set" an \/,.” -
entry in the > P
table? / no ; 4
. -
yes -~ <
4 - access-mode "
. : -— - J
is "access-type" in -
the corresponding Target Segment's Access
access~-mode? Control Attribute Table
es
‘y Yy
permit the cause the appropriate
access access violation

fault to occur

Figure 3. Illustrating an Access Control Mechanism
Depending on User-name, Access-type, and

Set

130

A corollary of this definition is that a user's
access rights to a segment can in part be expressed
as an access-mode and & triple of ring numbers -
r{READ), r{WRITE), and r{EXECUTE) - indicating that

a given access type, X, if present in the access-mode,
is to be available to the user in the rings 0-r(X),
inclusive. We shall defer to the next chapter con-
sideration of how a process changes from one ring to
another.

Figure 4 illustrates access control base on the ring
in which the process is executing. The essential
point to notice is that a segment's access control
attributes can be very concisely recorded. The
interpretation of the access control attributes is as
discussed in the preceding paragraph.

A few comments about rings may be in order. First,
the introduction of rings greatly simplifies the
recording of a segment's access control attributes,
as indicated above. Second, the fact that rings are
ordered removes the ambiguity about the changing of
power that was inherent in the idea of a transition
between sets: when the processor changes from ring
i to ring j, j>1 implies an increase (or at least no
decrease) of power or privilege with respect to all
segments; and j<i implies a decrease. This homo-
geneous and evident change of power with the change
of ring makes it much easier to think about the
problems of changing rings than it could ever have
been to think about the changing of sets. As we
shall see, and notwithstanding the previous remark,
most of the difficulty in the fully worked out
strategy of access control by ring nevertheless
resides in the mechanics of changing rings.

The following points seem to be necessary elements of
any access control strategy based on the idea of rings:

e Attempts by the processor to pass control from

one ring to another must be supervised by the
access control mechanism.

131

1. target segment
user -name
3. access~type

.

2,

4:

obtain target segment!'
access control
attribute list

ring

is "user-name" an
entry in the
table?

lyes

is "access-type" \
in the associated

no

_
~
”~

”~

access-mode

r (Read)

r(Write)
r (Execute)

user-name1

Y

ey

no

access=-mode?

1s ring{r(access-type)?
i.e.,if access-type=Rea
is ringgr(Read)?

yes

permit the
access

Figure 4.
Ring

- e wme | e —— — — - — ——

L

cause the appropriate
access violation
fault to occur

132

Target Segment's
Access Control
Attribute List

Illustrating an Access Control Mechanism
Depending on User-name, Access-type, and

e The transition from one ring to another can
only occur upon a call or return; the
transition (1f any) associated with every call
and return must be unambiguously defined.

® The concept of a "return" from a call must be
extended to imply returning to the ring from
which the call was made.

3.1 Multics Terminology; Gates

In Multics the term "inward" is used to characterize
a transition from one ring to a more privileged ring,
the term "outward" to characterize a transition in
the other direction. Procedures which may be called
by "inward" calls are called "gate" procedures since
they are, in effect, gates through which the processor
may enter the more privileged ring. We shall see
that the major difficulties in the design of a ringed
access control system relate to allowing outer ring
procedures to use inner ring procedures without
allowing them to defeat the protection purposes
responsible for the existence of rings.

133

Chapter 2

MIULTICS RING STRUCTURE PHILOSOPHY

In Chapter 1 we discussed access control and dev-
eloped the idea of rings in a general (i.e., non-
‘Multics) way- We now turn to Multics itself. In
this chapter we shall enlarge on the subjects of
rings and gates, state and justify the full Multics
ring structure strategy, and show how this strategy
can be implemented with the aid of suitable hard-
ware.

In this and the following chapters, the emphasis

in the definition of "ring" will shift slightly.

We will think of a ring not as a process state de-
fined by a set of procedures, but rather as an
abstract process state in which, by virtue of the
access control rules of the system, a particular

set of procedures may be permitted to execute.

There are 64 rings in Multics which are conventionally
numbered, in order of decreasing power, from 0 to 63.

1. THE PRELIMINARY STRATEGY

A preliminary (and conceptually useful) idea for the
use of rings is based on specifying a user's access
rights to a given segment with an access-mode, a
single ring number "r", and a gate-switch.

The Rules. The ring number r, gate-switch and access-
mode are interpreted as follows. (Note that all ring
intervals are inclusive).

a. If the user's access-mode contains WRITE,
‘the user may, in rings (0,r), write in the
segment.

b. If the user's access-mode contains'READ,

the user may, in rings (O,r), read the
segment.

135

c. If the user's access-mode contains EXECUTE,
the user may,

1. in ring r, call and execute the segment

2. 1in ring R<r, call the segment, switching
to ring r to execute it '

3. in ring R<«r, but only if the gate-switch
is set, call the segment, switching to
ring r to execute it

Every attempt by the process to
switch to a lower numbered ring

in this way must pass a legitimacy
test imposed by the access control
mechanism and by the procedure
being entered.

d. All ring switching must be done under the
supervision of the access control mechanism.

e. The concept of "return from a call” must be
extended to imply a return to caller's ring.

The Need for "Gates". Since an "inward" call (i.e.,

a call through a "gate") increases the processor's
power, it is necessary that a test be made to verify
that the process has attempted to enter the more
powerful ring on a legitimate errand. For, 1if the
process could freely change its ring so as to increase
its power, the protection offered by the ring aspect
of the access control mechanism would be wholly
illusory. The kind of testing is occasioned by an
attempted inward ring change will be discussed in
detail in Chapter 3. As an obvious example, we note
that a call to a gate segment should be permitted only
if the target address is in fact an entry point of

the segment.

2. THE "RING BRACKET" STRATEGY

The principal difficulty with the "preliminary"
strategy described above is that procedure segments may
be executed in one ring only. This means that a pro-
cedure likely to be called in several rings will often
be called from a ring other than its ring of execution,
occasioning a great deal of ring changing, an expensive
business as we shall later see. A second difficulty

136

with the "preliminary" strategy is that users with
both READ- and WRITE-access rights for a segment have
these rights equally in all of the rings from O to r.
Since the ability to write in a segment is intrinsi-
cally more powerful than the ability to read it, it
would be desirable to be able to grant write permission
to a user in a (relatively privileged) subset of the
rings in which he may read. As a result of these and
other considerations, Multics has rejected the "pre-
liminary" strategy for a "ring bracket" strategy. -

Under the "ring bracket" strategy, a user's access
rights respecting a given segment are encoded in an
access-mode and a triple of ring numbers, (rl, r2, r3),
called the user's "ring brackets" for the given segment.

The Rules. The ring brackets, (rl, r2, r3), which
must satisfy the relations rl<r2<r3, are interpreted as
follows. (Note that all ring intervals are inclusive).

a. If the user's access-mode contains WRITE the
user may, in rings (O,rl), write in the segment.

b. If the user's access-mode contains READ the
user may, in rings (0,r2), read the segment.

c. If the user's access-mode contains EXECUTE
the user may,

1. in rings (rl,r2) call the segment without
changing ring

2. in rings (0,rl-1), call the segment,
switching to ring rl

3. in rings (r2+1,r3), call the segment,
switching to ring r2

Every attempt by the process to switch
to a lower numbered ring in this way
must pass a legitimacy test imposed by
the access control mechanism and by the
procedure being entered.

137

d. All ring switching must be done under the
supervision of the access control mechanism.

"e. The concept of "return from a call" must be
extended to imply a return to the caller's
ring.

Under these rules we see that a utility routine may
be given ring-brackets (0,63,63) and so be callable
in all rings, but never occasion a change of rings
upon being called. On the other hand, a critical
system procedure might have ring brackets (0,0,0) and
so be callable and executable only in ring O.

We also see that a user who has read and write per-
mission for a data segment may be given ring brackets
(a,b,b) with a<b so that the domain in which he has
write permission, rings (0,a) is a relatively pri-
vileged subset of the domain in which he has read
permission, rings (O,b). These comments show how the
ring bracket strategy corrects the defects which we
noticed in the preliminary strategy.

Ring Changing Calls. Let us now discuss inward and
outward calls. The "rules" provide that every pro-
cedure segment for which O<rl may be entered via an
outward call (from ring O, for instance) and that
those procedure segments for which r2<r3 are "gate"
segments and may, therefore, be entered via inward
calls (from ring r3, for instance). What is the
nature of such calls? :

An inward call is made when a procedure in an outer
ring wants to increase the power of its process tem-
porarily in order to do a job requiring such increased
power. For example, a user procedure may call a
system procedure in ring O. The notion of "inward
call" brings to mind "the tail wagging the dog", since
lesser power directs the use of greater power. The
only segments which can be entered via inward calls
are, therefore, the "gate" segments. The duty of a
gate segment, as a gate segment, is to perform a test
of the legitimacy of the inward call, that is, to see
that the caller has not, by accident or design, asked
the gate segment to behave irresponsibly. Whether

or not a segment is a "gate" for a particular user
depends on that user's ring brackets and access-mode
respecting that segment.

138

An outward call is made when a procedure executing
in an inner ring wants a job done which can (and
perhaps must) be accomplished with the comparatively
feebler power of an outer ring. For example, &
process in Multics initializes itseif { a system
function) in ring O but calls out to a user ring when
ready to do the user's work. In this case, the pro-
cess must call out since a Multics convention forbids
user work to be done in ring O. For another example,
a programmer with a collection of more or less
debugged procedures may use several rings, keeping
the more debugged procedures and their data in the
inner rings so that damage from the other procedures
will be isolated in the outer rings. If these pro-
cedures call each other freely, outward calls will
presumably occur.

3. RECORDING AND RECOVERING ACCESS CONTROL RIGHTS

In "The Multics Virtual Memory"l, we find that all of
a segment's attributes of interest to the system are
stored in the segment's "branch" in a "directory"
segment. The access control attributes of a segment
are stored in its branch in a variable length table
called the access control list (ACL). Each entry of
a segment's ACL specifies a particular user's access
rights respecting the segment and is of the form:

user-name, access-mode, ring brackets

The procedure responsible for determining a user's
access rights for a given segment searches that seg-
ment's ACL for the user's user-name. If it is not
found, then the user has no rights. If it is found,
then the user's access rights are determined by the
associated access-mode and ring brackets. '

139

4. "RINGED HARDWARE"

In "The Multics Virtual meory"l we discussed the
use of the 645's descriptor segment and Segment
Descriptor Word (SDW) in providing the Virtual
Memory. It was noted that part of each SDW was
reserved for an access control field. In this sec-
tion we shall discuss hardware similar to the

645's which is consistent with the description

given in "The Multics Virtual Memory" and which per-
mits a simply described implementation of the Multics
ringed access control strategy. In Chapter 4, we
shall describe the actual 645 hardware and discuss
the software modifications needed to provide for the
differences from the hardware described here.

We propose "ringed hardware" with the following
features:

1. The processor has a ring register whose value
defines the process' ring. This register
may be changed by instructions only in ring O,
that is, when its value is O.

2. The SDW's access control field contains the
process' access-mode and ring brackets.

3. The processor has an access control mechanism
which checks attempted memory accesses
according to the rules stated in Section 2
and causes the processor to fault (trap) to
an appropriate procedure in ring O in cases
where the attempted access cannot be (or
cannot be directly) performed. Such a
fault causes the hardware to set the ring
reglister to O.

It should be clear that a procedure executing in ring
n should not be able to change the value of the ring
register to m, m«n, simply by executing an instruction.
It might, however, seem that ring changing should be
accomplished by the hardware itself, during the
execution of a transfer instruction, by a simple change
of the contents of the ring register. We have

avoided specifying such hardware, for, as we shall

see in Chapter 3, changing rings is quite complex and
requires considerable software assistance. In light

of this fact and considering the hardware organization
described above, we may describe the functioning of
this system as follows:

140

When a memory access is attempted, the type of
access (read, write, or execute) and the pro-
cessor's ring register are compared, by the pro-
cessor's access checking mechanism, with the
access-mode and ring brackets fields of the target
segment's SDW. As a result of the comparison,
three actions may be taken:

1. The memory access is performed and the
ring register is unchanged.

2. The memory access is a ring changing
- transfer; the processor faults to the
ring changing fault handler, in ring O.

3. The access attempted is illegal; the pro-
cessor faults to a suitable access violation
fault handling procedure, in ring O.

Note that the fault handling mechanism must have the
power to change the ring register. This is achieved
by making the fault handling procedure executable

in ring-0 only, making the hardware enter ring O
upon taking a fault, and making the ring register
changeable (by instruction) in ring O only.

141

Chapter 3

SOFTWARE FUNCTIONS IN RING CHANGING

We indicated, in Chapter 2, that ring changing is a
complex activity requiring considerable software
assistance. In this chapter we will discuss various
aspects of an operating system imposed by a ringed
access control system and will discuss the software
functions consequently required in ring changing.

We will structure our exposition by separately des-
cribing the four types of ring changes, inward and
outward calls and returns, attending to points of
interest as they arise. That done, we will conclude
with a discussion of important facts and concepts and
a quick once-over of the ring changing software.

Many of the functions to be described below might be
performed, at least in part, in the inner-ring pro-
cedure involved in the change of ring rather than in
the procedures of the ring changing mechanism, and
some of the functions might more naturally be per-
formed there. We take the point of view, however,
that the code required to perform ring changes should
be concentrated in a single place and we give the ring
changing mechanism responsibility for performing all -
of these functions. In order to handle ring changing
in this way, it is necessary to establish certain
conventions between the ring changing mechanism and
the inner-ring procedures involved in ring changes, as
we shall see below.

1. INWARD CALLS

Detection. An inward ring changing call is detected
when an inward ring changing fault occurs as the
result of a "call" (rather than of a "return") type of
instruction. The fault handler obtains the number of
the target ring from the process' ring brackets for
the target segment; according to the rules of Chapter
3, Section 2, the target ring is "r2".

143

Gate Address Validation. The handler's first business
is to verify that the address to which the caller wish-
es to transfer is indeed a gate entry point for the
process. This verification is based on a "gate-list"
(i.e., a list of gate entry points) associated with the
target segment; this gate-list may be system-wide in
the sense that all users who may use the segment as a
gate may use the same gate entry points or may be per-
user in the sense that each user who may use the seg-
ment as a gate has a private gate-list. In today's
Multics, the gate-list is system wide and is stored in
the procedure segment (rather than, for instance, in
the segment's access control attributes in the seg-
ment's branch).

Per Ring Data. We must now consider the nature of the
"workspaces" of the calling and of the called pro-
cedures. In the ringed environmment, all data must be
"ring bracketed", including workspace data, e.g., the
PL/1 static and automatic data. Since a procedure
executing in ring r may freely copy into the (ring r)
workspace any data readable in ring r, including all
such data not readable in ring r+l, it is clear that
ring r must use a workspace with ring brackets (r,r,r).
Thus, assuming that any workspace segment has an
access-mode implying read and write permission, the
workspace for ring r is readable and writeable in rings
O to r and cannot be accessed at all in the rings r+l
to 63. The above considerations imply that the pro-
cess needs distinct workspace segments corresponding
to the rings in which the process executes. Hence,

the inward ring changing fault handler will have to
provide the proper workspace for the called procedure.

The Environment. We may generalize from the idea of a
workspace segment to the idea of an environment. Ob ject
procedures expect to execute and, therefore, to be
transferred to, in a conventional environment defined
by various appropriately valued hardware registers and
data structures. Among other things, the environment
specifies the workspace to be used by the procedure.
(Thus, for example, Multics procedures expect certain
processor base registers to be pointing to appropriate
"stack" and "linkage" segments). Since this conven-
tional environment is assumed, it is obviously a duty
of the ring changing mechanism to create the environ-
ment which the procedure being entered will expect to
use.

144

Argument Validation. Now let us consider the arguments
which may be passed by the caller to the called (gate)
procedure. To begin with, providing a suitably ini-
tialized environment for the called procedure involves
copying the address of the argument-list (or copying
the argument-list itself) into the environment of the
called procedure. Certain precautionary measures then
become necessary which relate to the need for a "gate"
to act responsibly, as discussed in Sections 1 and 2

of Chapter 2. Let us motivate the discussion of these
precautions by considering two examples of inward calls
which should be aborted by a careful ring changing
mechanism.

1. A ring-50 procedure calls a gate procedure in
ring-32 and specifies a return argument in
the workspace of ring-40. If the call is not
aborted, the gate procedure may write in the
ring-40 segment at the explicit request of
the ring-50 procedure. The gate procedure
would thus in effect permit the ring-50
procedure to overwrite the ring-40 segment, a
clear violation of the access control phil-
osophy. '

2. A ring-50 procedure calls a gate procedure in
ring-32, specifying return arguments in ring-
50 segments and input arguments in ring-40
segments. If the call is not aborted, the
gate procedure may copy ring-40 data into ring-
50 segments. The gate procedure would thus in
effect permit the ring-50 procedure to read
ring-40 data, another violation of access con-
trol philosophy.

The responsibility of a gate procedure may be character-
ized as avoiding the improper use, on behalf of an
outer ring procedure, of that part of its accessing
power which exceeds that of its caller. To fulfill this
responsibility, a gate procedure must, before accessing
memory via an address obtained from its caller (or from
any other outer ring source), verify that the intended
type of access could have been performed by the caller.
We shall refer to this as "validating the address".

Once all addresses obtained from outer rings have been
validated, the gate procedure may freely proceed,

since it is clearly safe to use all other addresses.

145

Although this "address validation" can all be done
by the gate procedure itself, our point of view
suggests that as much of it as reasonably possible
be done by the ring changing mechanism. Since most
of the addresses supplied to a gate procedure by its
caller are the addresses of arguments, we assign the
business of validating these addresses to the ring
changing mechanism and we leave it to the gate pro-
cedure itself to validate all other suspect addresses.
Checking the addresses of the arguments is called
"argument validation". Argument validation should
include checking that the caller has READ-access for
all of the arguments being passed and WRITE-access
for those arguments, including "return" arguments,
in which the called procedure may write. Argument
validation implies a further step in inward ring
changing: argument-list copying. For, if a pointer
is checked to see that its value may safely be used,
then the pointer may not safely be left in a seg-
ment where it may be changed by a process executing
in a ring less privileged than the gate's. Therefore,
all addresses to be checked must be copied into the
gate segment's workspace prior to such checking.

It is clear that the argument validation mechanism
must make use of an argument-list-descriptor, pre-
sumably coded as data, associated with the gate
entry point. This descriptor tells how many
arguments are expected and how they are to be used
(i.e., whether they will be read and/or written in).

The argument-list-descriptor(s) for a gate segment
may be implemented in many ways, for example, as
part of the gate segment's gate-list. In any case,

- it is clear that the argument-list-descriptor, like
the gate-list, must be supplied to the ring changing
mechanism by the gate (inner-ring) procedure rather
than by the calling procedure.

Figure 5 illustrates a gate procedure segment, with

its gate-list and argument-list-descriptors, in a
straightforward implementation. When this segment

is called from an outer ring, the ring changing
mechanism validates the attempted transfer address

by finding it on the gate-list and validates arguments
by checking that the caller has the access rights to-
ward the arguments which are specified in the argument-
list-descriptor associated with the transfer address.

146

.-1
‘ 2 Gate-List Showing 2 Gates
: 2

- -

N

N Argument-list-Descriptor
for First Gate

2

R

R ' Constant
Data

Argument-List-Descriptor
for Second Gate

b=2===

(

!

R t
'

|

I

R,W Indicating a
‘ Return Argument

Gate Entry Point #1

_ Executable
Gate Entry Point #2 Procedure

'
- |

Figure 5. A Gate Segment Showing Gate Entry Points,
Gate-List and Argument-List Descriptors

147

2. OUIWARD RETURNS

The Detection Problem. The detection of an outward
return is not straightforward. Since the procedure
to be returned to may well have ring brackets per-
mitting it to execute in the returner's ring and,
indeed, in a number of other rings, one may well
wonder how the ring changing fault associated with
the return is generated and how the ring changing
mechanism decides which ring to return to.

An example may make these remarks clearer. Consider
a call from ring-20 to a procedure P with ring
brackets 5-10-20 and a call by it to a procedure Q
with ring brackets 3-7-12. The first call takes the
process into ring-10 and the second takes it into
ring-7. It is clear that an ordinmary return from
procedure Q would not cause a ring changing fault.
It 1is also clear that if it did cause a fault, the
fault handler would have to choose a ring to return
the process to from the interval ring-5 to ring-10.

Forcing A Fault. We see that in the case of a ring
changing return, the ring bracket mechanism cannot
by itself be dependent upon to cause the necessary
ring changing fault or to provide the information
required to identify the caller's ring. A special
trick is, therefore, used to cause the fault. The
normal return pointer in the returner's workspace
is over-written with a conventional replacement so
that when the process attempts to return via this
"return pointer", a fault will occur which is
associated with the ring changing return fault handler.

This device for forcing a return fault applies equally

to inward returns and is also used in that case.

148

The Return Stack. When the artificial ring changing
return fault occurs, as a result of a "return" type

of instruction, the ring changing return mechanism

is invoked. It must not look in the returner's work-
space to find the information that it needs to per-
form the return - caller's ring number and the return

- pointer - for these items could be manufactured by

the "returner" to imply a "return" to & more privileged
ring. The ring changing mechanism, therefore, main-
tains a ring-0 data base called the "return stack" in
which it records all the information needed to perform
all uncompleted ring changing returns, both inward

and outward. At any time, the last entry on this stack
specifies the return from the ring in which the pro-
cess 1s then executing. We may now say that an outward
ring changing return is a return which causes a ring
changing return fault and whose entry in the return
stack indicates a return to an outer ring.

Address and Argument Validation. There is no need,
from an access control viewpoint, to validate a return
address for an outward return since an inner ring
procedure may in any case freely enter an outer ring
at any point. However, to protect against error, the
return pointer recorded in the return stack may be
compared against a "validation return pointer" stored
in the returner's workspace. Both the validation
return pointer and the return pointer in the return
stack would be recorded at the time of the correspond-
ing call by the ring changing mechanism. If these
return pointers disagree, then the ring changing
return can be regarded as an error and treated according-

ly. '

There is no need for argument validation at the time of
an outward return; the work was done at the time of the
corresponding call.

The Restoration of the Environment. Finally, let us
note that it is necessary, in servicing an outward
return, to re-establish the environment that existed
at the time of the corresponding call. The caller's
workspace must be re-established, base registers must
be restored, the entry on the return stack must be
removed, .etc. Any information which may be needed
for this work must be found in the return stack entry
for this return and must thus have been stored there
at the time of the call.

149

3. OUTWARD CALLS

An outward ring changing call is detected when an
outward ring changing fault occurs as the result
of a "call" type of instruction. The ring to be
entered is determined from the target procedure's
ring brackets; according to the rules of Chapter 2,
Section 2, the target ring is "rl". There is no
need to validate the target address of the call,
for gates govern inward calls only. As with the
inward call, there is a need to establish the
environment required by the called procedure.

Argument Copying. If, as is usual, the caller's
arguments are stored in the caller's workspace, the
arguments will be inaccessible to the called pro-
cedure in its outer ring. It is, therefore,
insufficient to copy only a pointer to the argument-
list or the argument-list itself into the work-
space of the called procedure. It is necessary to
copy the arguments themselves. This in turn
implies that a new argument-list must be fabricated
in the workspace of the called procedure which
contains the addresses of the local copies of the
arguments.

There is no need to perform access validation on
the arguments. The inner ring procedure may judge
for itself what data to pass to the outer ring.

The copying of arguments is done, of course, with
the authority of the calling procedure's ring, if
not by the calling procedure itself. 1If the copying
is actually done in a ring more privileged than the
caller's, e.g., by the ring changing fault handler
(which executes in ring-0), then the arguments must
be access validated to make sure that no data are
coplied into the workspace of the called procedure
to which the caller itself does not have access.

Note that argument copying depends on information,
represented as a "copying descriptor", associated
with the outward call (see Figure 6). The copying
descriptor tells how many arguments there are, how
they are to be used (i.e., whether or not they are
to be written into), and what their lengths are (so
that they can be correctly copied). We will dis-
cuss the question of arguments which are to be
written into by the called procedure in the follow-

ing section.

150

T St
!
i

|~ | First Outward Call Exegzct’:ble

|- | Second Outward Call

—>{ 3 arguments
- =

1 word - R
2 words - R

Copying Descriptor
for First Outward

[
|
' |
...... ———————d 3o
|
I
I
|
|
I
|

Call
"1 word - R,W
Constant
—»| 2 arguments Data ,
6 ds = R - - Copying Descriptor
= — for Second Outward
2 words - R,' Call)

rocedure
Segment

Figure 6. Example of a Procedure which makes two
Outward Calls Showing Copying Descriptors

151

4. INWARD RETURNS

Inward returns are detected when the artificial
ring changing fault occurs (see the discussion of
outward returns in Section 2) and the return stack
entry indicates an inward return. The return
pointer in the return stack entry may be compared
with a validation return pointer in the returner's
workspace in order to avoid erroneous ring changing
returns.

The arguments which the outer ring procedure may

have written in, as identified in the copying des-
criptor, are then copied from the returner's work-
space into the locations specified for them in the
caller's (original) argument-list. Validation of
these addresses is only necessary if the copying

is done in a ring more privileged than that being
returned to, e.g., by the ring changing fault handler
which executes in ring O.

Once these arguments have been copied, the ring
changing mechanism re-establishes the environment
of the calling procedure and returns to it.

5. REVIEW AND DISCUSSION

Detection. A ring changing transfer is detected when
the ring changing mechanism is invoked in response to
a suitable fault. The ring bracket mechanism (i.e.,
a mechanism respecting the rules set forth in Chapter
2, Section 2) will produce such a fault in the case

of inward and outward calls; such calls are in fact

so defined. Ring changing returns, though, are de-
fined as returns from ring changing calls and the ring
bracket mechanism cannot be depended on to detect these
returns. The strategy of the "artificial ring changing
return fault" was introduced (see Section 2) to guar-

antee that these returns would always be detected.

152

Transfer Address Validation. The basic fact about a
ringed access control system is that a process' power
depends on the ring in which it executes. This is
meaningful only because of the rules which govern
inter-ring transfers. The basic rule is that outward
(power decreasing) transfers may be made at the pro-
cedure's discretion whereas inward (power increasing)
transfers may be made only with "the permission of
the ring to be entered". Transfer address validation,
which consists of making sure that the target

address i1s an address at which the target ring will
permit entry, thus applies only to inward transfers.

In the case of an inward call, the target address is
validated by finding it on the target procedure's
gate-list, that is, finding it to be the address of
a gate entry point. In the case of an inward return,
the target address (which is obtained from the
return stack) is validated implicitly by virtue of
the fact that it was earlier supplied to the ring
changing mechanism by the outward calling procedure,
the very procedure being returned to.

The Return Stack. The return stack was introduced
(see Section 2) as the data base in which the ring
changing mechanism stores the ring number and return
address of a caller so that the ring changing return
mechanism can subsequently validate the return.

The return stack must thus be accessed by the ring
changing mechanism upon every ring changing call and
return, being "pushed" at each such call and "popped"
at each such return. To the extent that the ring
changing mechanism may profit from storing other
information from the time of a call to the time of
the corresponding return, the return stack is
evidently the "right" data base to use. Without
going into detail we suggested, for example, that the
return stack was a good place to record information
needed for the restoration of the calling procedure's
enviromment.

153

~Argument Validation. Whenever an inner ring pro-
cedure accesses memory via an address obtained from
an outer ring source, there is the danger that the
supplier of the address is "using" the more pri-
vileged procedure to "get around" access control.
restrictions. Addresses obtained from outer rings
are, therefore, suspect and must be used with
discretion.

The most outstanding examples of suspect addresses
are the addresses of arguments associated with in-
ward calls. "Argument validation" is a technique
by which the ring changing mechanism, acting on
behalf of the class of gate entry points, does a
standard and generally sufficient job of checking
these addresses.

Argument validation is not only used in the case of
inward calls but in the case of those outward calls
where arguments are copied as well. When the
arguments for an outward call are copied into the
workspace of the called procedure and later, when
the return arguments are copied back into the work-
space of the calling procedure, the copier of these
arguments, being part of the ring-O ring changing
mechanism, obtains its arguments from the rings of
the calling and called procedures and must validate
these addresses.

Although argument validation doesn't handle all
cases of "suspect" addresses, the existence of argument
validation does have the useful effect of isolating
the cases which aren't covered, making life easier
for the programmer of a gate procedure. For, if he
can make sure that all of the suspect addresses to
be used by the gate procedure and its dynamic des-
cendents are the addresses of arguments, he may be
assured that he has written a proper gate procedure.
And if there are a few other addresses requiring
checking, he can handle them on & case by case
basis.

154

6.

OUTLINE OF RING CHANGING SOFTWARE

Inward Calls

1. Check that the specified address is a gate
entry point.

2. Store information in the "return stack"
specifying the caller's environment, in-
cluding caller's ring number and the
return address specified by caller.

3. Determine the ring (NEW-RING) to be

. entered; that is the value r2 from the
called procedure's ring brackets.

4. Create an envirdnmeﬁt for the called pro-
cedure in NEW-RING.

5. Copy the addresses of the arguments into

7.
8.

the environment of the called procedure
and perform "argument validation".

Associate a ring-changing-return fault
with the normal return from the called
procedure.

Set the ring register to NEW-RING.

Perform the call.

Outward Returns

1.

2.

Check that this return corresponds to the
last entry in the "return stack".

Clean up the environment of the returning
procedure (undo A-4).

Determine the ring to be returned to,
OLD-RING, from the "return stack".

Restore the caller's enviromment, as
specified in the "return stack".

Set the ring register to OLD-RING.

Return to the caller at the address specified

in the return stack.

155

Outward Calls

1.

2.

7.

Store information in the "return stack"
describing the caller's environment.

Determine the ring, NEW-RING, to be
entered; this is the value rl from the.
called procedure's ring brackets.

Create an environment for the called pro-
cedure in NEW-RING.

Copy the caller's arguments into the new
environment and create an argument-list
pointing to the copied values, also in
the new environment.

Associate a ring-changing-return fault
with the normal return from the called
procedure.

Set the ring register to the value NEW-
RING.

Perform the call.

Inward Returns

1.

2.

Check that this return corresponds to the
last entry in the "return stack".

Determine the ring, OLD-RING, to be
returned to from the "return stack".

Copy the return arguments back into the
caller's environment (in OLD-RING).

Clean up the returning procedure's environ-

ment.

Restore the caller's environment, as
specified in the "return stack".

Set the ring register to OLD-RING.

Return to caller at the address specified
in the return stack.

156

Chapter 4

SIMULATION OF RINGS USING THE 645

The 645 differs from the "ringed hardware"
described in Chapter 2 in several respects which,
taken together, add up to the fact that the 645

is a 2-ring rather than a 64-ring machine. In
this chapter we shall discuss the relevant aspects
of the 645 hardware and show how the ringed access
control strategy described in Chapters 2 and 3 can
be simulated on the 645.

1. FEATURES OF THE 645 NEEDED FOR THE SIMULATION

1.1 The 645 does not have a "ring register" but
does have two states, called master mode and slave
mode. The processor has greater power when in
master mode than when in slave mode; in particular,
(a) certain instructions can only be executed when
the processor is in master mode and (b) the access
control field of the 645's SDW permits the specifica-
tion, in addition to the access-mode, of a limiting
descriptor - "accessible in master mode only."

1.2 The access control field of the 645's SDW con-
tains no information about rings; in particular it

does not contain ring brackets. It does, however,

contain either:

a. access-mode information possibly including
either of the two descriptors:

- accessible in master mode only
- master mode procedure

b. the specification of one of eight special

"directed" faults (traps) which is to
occur whenever the SDW is accessed.

157

The processor is only "in master mode" when
executing a procedure whose SDW indicates a "master
mode procedure." The processor may enter master
mode while executing a slave mode procedure by:

- faulting
- taking an interrupt

There is another way of switching from slave mode to
master mode; it will be discussed later since it
invokes a hardware feature that is not needed to
simulate a ringed machine.

1.3 The 645 processor's access control machinery
interprets the SDW during the addressing cycle and
causes an appropriate action to occur depending on
the SDW and (usually) on the attempted access, as
follows:

a. If the SDW implies a particular "directed
fault", then that fault occurs.

b. Otherwise, if the SDW does not permit the
attempted access, the appropriate access
violation fault occurs. .

c. Otherwise, the SDW permits the attempted
access and the access is performed.

When a fault occurs, the 645 enters master mode and
transfers control to the appropriate master mode
fault handling procedure.

1.4 Among the instructions which are "master mode
only" are those which access the processor's DBR
(the Descriptor Base Register, which contains the
absolute address of the descriptor segment currently
in effect) and all I/0O connect instructions.

2. SIMULATING THE "RINGED HARDWARE" ON THE 645

The technique of simulating the "ringed hardware" on
the 645 can practically be deduced from the require-
ments of that simulation:

-158

1. It must be possible to simulate being in a
given ring. '

2. It must be possible to simulate changing
from one ring to another.

To simulate being in a ring, it must be possible to
set up a 645 descriptor segment to define the same
set of potential actions in response to potential
attempted accesses as is defined by any given
"ringed descriptor segment, ring register" pair.
The potential actions will be the same in the 645
as on the "ringed hardware" if (a) permitted acc-
esses are performed by the 645 without causing a
fault and (b) if accesses which would cause a
fault on the "ringed hardware" cause a fault on
the 645.

To simulate changing from one ring to another it

is obviously necessary to be able to change the

645 descriptor segment. This may be done in two
ways. If space is felt to be at a premium, the
645's master mode fault handlers may "change rings"
by over-writing the existing descriptor segment
with the values appropriate to the other ring. On
the other hand, if processing time is felt to be
more important than space, the fault handler in
master mode may "change rings" by altering the DBR
to point to that descriptor segment (waiting in the
wings, so to speak) which corresponds to the ring
being entered. This second technique, used in
Multics, requires one descriptor segment per-ring
for each process. The per-ring descriptor segment
thus becomes part of the "environment" which
pertains to each ring, and switching descriptor
segments becomes part of the job of the ring chang-.
ing mechanism.

159

3. AN ADDITIONAL FEATURE OF THE 645

The 645 processor has the ability of switching from
slave mode to master mode without invoking the trap
mechanism, as follows: ‘

A slave mode procedure can transfer to a master mode
procedure M provided that:

a) the segment descriptor of M contains the
"accessible in slave mode" attribute, and

b) the transfer be directed to location zero
of M.

This technique for increasing a process' power differs
from ring changing in the sense that no fault is
generated. However, the philosophy remains the same.
By checking that conditions (a) and (b) are true,

the hardware performs the "gate validation". The
fact that the transfer is guaranteed to be into
location zero permits one to code explicitly any type
of subsequent validation in the procedure M and to
guarantee that the validation code will be executed.
(The only system responsibility is to make sure that
the transfer is directed to a gate; the gate pro-
cedure must take care of the rest.) This feature is
used in Multics as explained below.

4. MASTER MODE_AND SLAVE MODE IN RING ZERO

Master mode is the most powerful state of the 645
processor; ring zero is the most powerful state of
the ringed processor simulated on the 645. It
should follow that executing in ring zero means
executing in master mode, and it would so follow,
were it not for the 645 feature discussed in Section
3 above. That feature is used in order to permit
the ring zero supervisor to execute partly in master
mode and partly in slave mode, easily switching
from one mode to the other.

+160 -

The Multics ring zero can be regarded as being
itself composed of two concentric rings. The
more powerful or "master ring O" contains all
master procedures and also all data accessible
only in master mode. The less powerful or "slave
ring O" contains all slave procedures and also
all data accessible in slave mode. Going from
slave ring O to master ring O can be done through
gates provided by master ring O; these gates are
in fact master procedures accessible in slave
mode, with the entry point at location zero of
the segment. This technique permits efficient
switching between slave and master mode in the
supervisor and this is the motivation for this
additional hardware feature in the GE 645.

Two questions are raised by this discussion.
First, why don't "ring zero" and "master mode"
coincide? And second, why isn't the special
mechanism for entering master mode more generally
used? ‘

The supervisor should use master mode only for
jobs requiring its special power. To use it for
other purposes would increase the chance of dis-
astrous errors due to hardware and software bugs
since, for example, all I/0O connect instructions
are executable in master mode only. But since
the supervisor must use master mode fairly frequently,
it is desirable that the supervisor have a way of
entering master mode which involves just enough
validation to prevent accidental entry. Thus the
special mechanism. And thus the restriction of
the use of the special mechanism to "slave ring
zero."

lel

BIBLIOGRAPHY

Bensoussan, A. et al. The Multics Virtual
Memory T.I.S. R69LSD3.

Evans, D.C. and Leclerc, J.Y. Address Mapping
and the Control of Access in an Interactive
Computer SJCC 1967

Graham, R.M. Protection in an Information
Processing Utility, CACM (May 1968)

Organick, E.I. A Guide to Multics for Sub-
system Writers Chapter IV, Access Control and

Protection Multics Repository Document MO106.

163

C. Series 6000 Features for the Multics Virtual Memory

165

Introduction
Hardware Campatibility
Modifications of Paging and Segmentation Hardware
Hardware Implementation of Multics Ring Protection
Instructions for String Manipulation and Decimal Arithmetic
Segmentation and Paging in New Processor
Segment Descriptor Word
Page Table Word
Modifying the Page Size
Absolute Address Formation
Descriptor Segment Base Register
Rings and Ring Brackets
Read/Mrite Bracket (Rings 0-Rl)
Read/Execute Bracket (Rings R1-R2)
Call Bracket (Rings (R2 +1) - R3)
Summary
Processor Address Registers
Instruction Pointer Register
Temporary Pointer Register
Eight Pointer Registers
Access Control Mechanism
CALL Instruction
Associative Memory

ILLUSTRATIONS

Figure 1. Appending Cycle

Figure 2. Instruction Fetch and Initial Address Calculation
Figure 3. Indirect Addressing
Figure 4. Access Checks for Nontransfer Instructions
Figure 5. Access Checks for Transfer Instructions,

Except CALLn
Figure 6. Access Checks for CALL Instruction
Figure 7. Execution of CALL Instruction

166

167
167
167
168
169
169
169
171
173
173
174
174
176
176
177
177
177
178
178
179
181
182
190

175
183
184
185

186
187
189

INTRODUCTION

Experience to date with the Model 645 hardware and the Multics software
has uncovered many areas in which system performance and maintainability
could be substantially improved by certain modifications of the 645
specifications. Four areas have been investigated and shown to be of major
importance to the performance of Multics. The Multics extensions of Series
6000 processors both allow execution of Multics on these processors and
provide considerable improvements in system performance. These features
include:

1. Hardware aids for improved compatibility with other
product line software.

2. Refinements of the paging and segmentation hardware to
improve the performance of the system software.

3. Implementation of Multics ring protection mechanism
entirely in hardware to improve system performance
and reduce software camplexity.

4. Addition of instructions for string manipulation and
decimal arithmetic.

HARDWARE COMPATIBILITY

The issue of campatibility with product line software is really two

issuves stemming fram two distinctly different motivations. One issue

is that of "stand-alone compatibility," which allows the running of standard
product line software (e.g., GOOS, T and D monitor) on a stand-alone machine.
The other issue is that of "slave program campatibility," which allows for
the efficient execution of Series 600/6000 slave programs under the control
of the Multics system. A campatibility switch on the processor is used to
handle the prablem of stand-alone compatibility, while a program-settable
mode is used as a software aid in handling the problem of slave program
campatibility. The issues of stand-alone and slave program campatibility
are treated separately in the following discussion.

MODIFICATIONS OF PAGING AND SEGMENTATION HARDWARE

This paper describes a number of modifications of the 645 paging and
segmentation hardware which improve the performance of the Multics
software and simplify some areas now felt to have been overdesigned in
the 645. The changes in 645 specifications are summarized below (and
are described in detail later in the paper):

1. The address field in the segment descriptor word is extended
to a full 24-bit absolute address to allow page tables (and
unpaged segments) to begin on any legal memory address. This
modification allows the software a great deal more flexibility
in the allocation of page table space and greatly reduces the
amount of wired-down core storage reserved for page tables.

167

. 2. The processor supports only a single page size rather
than the two page sizes supported by the 645. Provision
is made to allow the page size to be modified by field
engineering in an orderly and well understood fashion.

3. Each of the eight pointer registers of the processor is ex-
tended to contain both a segment number and a word number
portion. The 645 concept of internal and external base
registers and control fields is dropped. Each of the eight
pointer registers on the processor behaves as a 645 base
register pair. In addition, each of the new pointer registers
contains a bit offset field for use by new instructions for
string manipulation and decimal arithmetic.

4. Same minor changes have been made in the definition of the
645 master and slave modes, which are renamed respectively
as the privileged and unprivileged modes to avoid confusion
with existing terminology. A minor change has also been made
in the treatment of execute-only segments, to allow entry at
locations other than zero.

5. The access control informmation contained in the 645 page table
word (not used in Multics) has been removed. In the new pro-
cessor, all access control is implemented in the segment des-
criptor word.

HARDWARE IMPLEMENTATION OF MULTICS RING PROTECTICN

The Multics concept of protection rings, ring crossing, and argument
validation has been implemented as an integral part of the paging and
segmentation hardware on the processor. The hardware implementation of
rings is really a further modification of the 645 paging and segmentation
hardware. However, the modification is introduced separately at this point
since it involves perhaps the most significant deviation from the 645 spec-
ification and, as suwch, deserves samewhat more motivation. In the current
version of Multics running on the 645, the ring protection mechanism is,

of necessity, campletely simulated by the Multics software. The current
system maintains, in parallel, separate descriptor segments for each ring
of each process. The ring crossing is simulated by a rather costly and
canplex fault processing mechanism which includes the copying and validation
of argument pointers and the switching of descriptor segments to simulate
the effect of switching rings. The cost of the current simulation amounts
to approximately 10-20 percent of the useful chargeable CPU time and con-
tributes substantially to the overall camplexity of the system. In the
new processor, ring crossing and argument validation are handled directly
by the hardware without costly software intervention. As a result, a call
to an inner rJ.ng will require no more CPU time that a call to a procedure
in the same ring.

INSTRUCTIONS FOR STRING MANTPULATION AND DECIMAL ARITHMETIC

Extension of the 645 instruction set to include instructions for string
manipulation and decimal arithmetic allows considerable simplification of
both supervisor and user programs. The Series 6000 Extended Instruction
Set (EIS) provides cammands to directly process bytes, BCD characters,
packed decimal data, and strings. The supervisor will take full advantage
of the savings allowed by these new instructions. The language campilers
will also take advantage of these space and time saving instructions.

SEGQMENTATION AND PAGING IN NEW PROCESSOR

This section describes in detail the segmentation and paging hardware for

the new processor. In most respects, the mechanism is quite similar to the

645 appending hardware, with the addition of sawe refinements to improve

the performance of the system software. The single substantial deviation

fram the 645 specification is the addition of hardware to implement the
Multics ring protection mechanism.

Segment Descriptor Word

In order to accammodate the hardware-implemented ring crossing and
argument validation and other changes, the Segment Descriptor Word (SDW)
has been extended to a 72-bit double precision word to be interpreted as
described below.

Word 0 ADDR }[R1 |R2 | R3 |F|FC|
Word 1 BOUND j£ R |E(W[P|UIG CcL
ADDR (0-23) . Is a full 24-bit absolute address and specifies the

core address of either a page table (for a paged
segment) or the first location of an unpaged segment.

Rl (24-26) Specifies the highest ring nunber of the read/write
bracket for this segment (0-r1) 1.

R2 (27-29) Specifies the highest ring mmber of the read/execute
bracket of this segment (R1-r2)1

R3 (30-32) Specifies the highest ring nunber of the call bracket
of this segment ((R2 + 1) - R3)1.

1 . :
See following section on Rings and Ring Brackets.

169

F (33)

FC (34-35)

BOWND (1-14)

R (15)

E (16)

W (17)

Is a directed fault indicator and if off (=0) specifies
that the processor is to execute the directed fault
specified in the FC field (see below).

Indicates (if F is off) which of the four directed
faults (DF0-DF3) the processor is to execute.

Is the boundary field and indicates the highest 1l6-word
block of the segment which can be addressed without
causing an out-of-bounds fault. If the high order 14
bits of an address to this segment is greater than the
valye of the boundary field, an out-of-bounds fault is
generated. A boundary field of 14 bits is chosen be-
cause same instructions (e.g., the new version of STB)
reference up to 16 contiguous words. (The boundary
field could be maintained to the nearest word, but
special checks would have to be made for instructions
which reference two or more contiguous words.) A
further implication is that the software is expected to
allocate unpaged segments in a zero mode 16-word boundary.

Is the read-permit indicator. Data fetches by other
segments are permitted to this segment only if this
indicator is on (=1) and if the processor is executing
in a ring less than or equal to R2 (i.e., within the
read/write or read/execute bracket) Rl

Is the execute-pemmit indicator. Instruction fetches
fram this segment are permitted only if this indicator
is on (=1) and if the processor is executing in a ring
greater than or equal to Rl and less than or equal to

R2 (i.e., within the read/execute bracket; see below).
Note that when the E indicator is on and the R indicator
is off, the segment is to be treated as an "execute-only"
procedure segment. An execute-only procedure segment

is permitted to reference data within itself (i.e., within
the same segment) in spite of the lack of the read in-
dicator. However, read permission is denied to other

segments.
Is the write-permit indicator. Attempts to store into

this segment are honored only if this indicator is on
(=1) and if the processor is executing in a ring less
than or equal to Rl (i.e., within the read/write bracket;
see below).

1see following section on Rings and Ring Brackets.

170

P (18)

U (19)

G (20)

CL (22-35)

Page Takle Word

Is the privileged mode indicator. If this indicator

is on (=1) and if the processor is executing in ring 0,
the procedure segment is permitted to execute pr1v11eged
instructions and inhibit interrupts under control of
bit 28. Privileged procedures need no further powers
and are subject to all other access checking (read,

‘write permission bounds checking, etc.). Since pr1v1-

leged procedures can be executed only in ring 0, it is
no longer necessary to limit calls to prlvn.leged pro-
cedures to enter via word 0 of the segment.

Indicates whether the segment is paged (=0) or unpaged
(=1). If the segment is unpaged, ADDR is the full
absolute address of the first word (word 0) of the seg~-
ment. If the segment is paged, ADDR is the full ab- '
solute address of the beginning of the page table for

the segment.

Is the gate indicator and if off (=0) any call to this
segment from a different segment must be directed to
an address value less than the value of the CL field
(see below).

Is the call limiter. If G is on, any external transfer
to this segment via the new CALL instruction (described
below) must be directed to a word number less than the
value of this field.

The format of the page table word (PIW) has been samewhat simplified fram
the 645 version in that no access control is performed at the PIW level.
The PIW format is described below. :

ADDR

S NF FC

ADDR (0-17)

Is the high order 18 bits of the 24-bit absolute ad-
dress of the first word of the page. The hardware
assumes that all pages begin on addresses which are zero
modulo the page size. For example, if the page size is
set to 1024 words, the hardware assumes that each page
begins on a zero modulo 1024 address and that the low
order 10 bits of the 24-bit absolute address are zero.

171

S (18-23)

U (26)

M (29)

F (33)

Is reserved for the use of the system software for the
maintenance of page status information and is never
modified (or used) by the hardware.

Indicates whether (=1) or not (=0) the page has been used
since the last time this bit was interrogated (and reset)
by the system software. Whenever this bit is zero and the
processor addresses any word withir: the page (correspording
to this PIW), the processor sets this bit to 1 using a
3-bit store-by-zone cammand for bits 24-26. The store-by-
zone is used to awvoid a race condition with another pro-
cessor attempting to set the "modified" bit (see below)
for the same page. This technique is necessitated by

the lack of a read-alter-rewrite command in the memory
controller. A further implication of the lack of read-
alter-rewrite is that the software must reset this bit
via a store to the third 9-bit field (character) in the
PIW in order not to disturb the modified bit. Note that
any usage of the page between the time the used bit is
read by the software and then reset (if on) is not noticed
by the software. Since the used bit is used only for
maintaining the core-usage statistics, this race between
hardware and software has no effect, insamuch as (1) if
the page is heavily used (i.e., needed in core) it will
be used again turning the used bit back on, and (2) the
software does not reset the bit if it is already zero.

Indicates whether (=1) or not (=0) the page has been mod-
ified since the last time this bit was interrogated (and
reset) by the system software. Whenever this bit is zero
and the processor modifies any word within the page, the
processor sets this bit and the usage bit to 1 using a
6-bit store-by-zone cammand for bits 24-29. The software
uses this bit to determine whether or not the contents of
a page must be written on secondary storage before the core
is released for other usage. As a result, the software is
expected to store a directed fault in the PIW and clear the
associative memories of all processcrs before the modified
bit may be safely tested and then reset. In addition, the
directed fault must be stored using a store to the sixth
6-bit field (character) of the PIW tc campensate for the
lack of read-alter-rewrite,

Is the directed fault indicator and if off (=0) indicates

that the directed fault indicated in the FC field is to be
executed by the processor.

172

FC (34-35) Indicates (if F is off) which of the four directed
faults (DFO-DF3) is to be executed by the processor.

Modifying the Page Size

As indicated by the format of the SDW, the new processor supports only

a single page size (the 645 allows two page sizes). However, it is ex-
tremely desirable to have the ability to change the page size in order

to allow system optimization with respect to core "breakage" and storage
device access times. For example, replacing the current highspeed drum
with a bulk core would most likely give even better performance with a page
size smaller than 1024 words.

Since a decision to change the page size is not a casual one and should nct be
made very often, the page size is changeable by field modification to any
power of 2 fram 64 words to 4096 wcrds.

Absolute Address Formation

For each memory reference we assume the program presents the processor
with the following address:

SEGNO ' WORDNO

SBGNO (15 bits) Specifies the desired segment (i.e., index into the
descriptor segment). The segment number is constrained
to 15 bits (rather than 18) by considerations described
later in this document.

WORDNC Specifies the desired word address (18 bits) within the
{18 bits) specified segment.

We also assume (for discussion only) that the processor has the following
two internal registers:

PN PO

PN (12 bits) Is used to hold the page number (i.e., index into page
table) when forming an absolute address within a paged
segment.

PC (12 bits) Is used to hold the offset within the page when forming
an absolute address within a paged segment.

PN is initialized with the hLigh-order portion of WORINC tc obtain an index

relative to the base of the page table of the segment. PO is initialized
with the remaining portion of WORINO and is augmented by the ADDR field of

173

the PIW to form the absolute address. The "break" in WORDNO is determined
by the current page size. For example, if the page size is 1024 words
(initial setting), the high order 8 bits of WORDNO are used to initialize
PN and the low order 10 bits of WORDNO are used to initialize PO.

Figure 1 sumarizes the major steps necessary to transfomm a program gen-
erated address (SEGNO/WCRINO) into an absclute address (ABSADDR). In most
respects, the address formmation is simpler than the 645 mechanism, in that
there is only one page size to consider and that no access control is
specified at the PIW level. '

Note that Figure 1 and all the flow charts in this paper make use cof the
fcllowing PL/1 rotations:

1. A.B is used to denote the quantity B contained in A.
For example, PIW.ADDR denotes the ADDR field within the
PIW.

2. " The double vertical bar (II") is used to denote con-

catenation (e.g., PIW. ADDR || 000000).

3. The single vertical bar (l) is used to denote the logical
inclusive OR. ‘

Descriptor Segment Base Register

The Descriptor Segment Base Register (DSBR) is an internal prccessor register
used to lecate the current descriptor segment. In the new processor, the
CSER has been exterded to 51 bkits to accammocate the longer address and
bcund fields and to contain a stack offset. The DSBR is loaded from and
stored intc a doubleword having the same format as a Segment Descriptor

Word (SDW) with the exception that unused fields are ignored during loading
of the DSER and are set to zero when the LCSBER is stored. Only the following
four SOW fields have meaning when loaded into a DSBR.

1. ADDK (24 bits)
2. BOWND (14 bits)
3. U (paged/unpaged switch; 1 bit)
4, STACK (12 bits)

The STACK field specifies the upper 1z bits cf the 15-kit stack segment
nurber. This register is used only during the execution of a CALL in-
struction.

RINGS AND RING BRACKETS

A Multics process consists of procedure and data segments which are all
directly addressable throuwgh the descriptor segment of that process. How-
ever, a process may access a segment only when the process is running at
an appropriate level of privilege. For example, all the segments of the

174

}

FETCH SDW
FOR SEGNO

DIRECTED

FAULT
| SE—
ILLEGAL
WORDNO (0-8) PROCEDURE
> BAR.BOUND FAULT

WORDNO+(BAR.BASE
Il 00..0) = WORDNO

WORDNO (0-135\) Y .| BOUNDARY
> SOW.BOUND VIOLATION

INITIALIZE

ACCESS
VIOLATION

1 PN AND PO
FROM WORDNO

'

SDW.ADDR + PN
-= ABSADDR

.

FETCH PTW FROM
C(ABSADDR)

DIRECTED
FAULT

PTW.ADDR !/
00.0 PO
-= ABSADDR

STORE
INSTRUCTION

1—-PTWU 1 —= PTW.U
AND PTW.M

SDW.ADDR+WORDNO

DONE

—= ABSADDR

Figure 1.

Appending Cycle

hardcore supervisor are shared and accessible to all Multics processes
but only when executing at the highest level of privilege.

The Multics system allows segments to be grouped into an ordered set of
collections called rings in which segments requiring the highest level

of privilege to reference can be accessed only from within the innermost
ring of the set. Each ring is identified with a ring number designating
the required level of privilege necessary to access segments in that ring.
In Multics, the ring with the highest privilege is ring 0, which contains
the procedures and data bases of the hardcore supervisor. Each user pro-
cess has at least two rings, one for the hardccre supervisor and cne for
user programs and data. The user process may generate more rings (levels
of lesser privilege) if desired.

Frequently, it is useful to allow a segment to be accessible in more than
one ring. For example, it is often useful for a data base which is writeable
in an inner ring to be readable in an outer ring. For this reason, the con-
cept of ring brackets was introduced.

The access of a user to a specific segment is controlled by two quantities:
the access attributes (e.g., read, execute, write) and the ring brackets.
The ring brackets of a segment are specified by three integers (R1, R2,
and R3) each of which must be greater than or equal to the preceding
number. The first number (Rl) specifies the top (highest ring number)

of the read/write bracket, the second number (R2) specifies the top of the
read/execute bracket, and the last number (R3) specifies the top of the
call bracket.

Read/Write Bracket (Rings 0-Rl)

Attempts to read or write a segment by a procedure executing in a ring
within the read/write bracket are allowed if the appropriate (read or

write) access indicators are on for the segment being referenced. Execution
of a procedure in a ring within this bracket is permitted only at the top
of the read/write bracket (Rl), which is also the bottam of the read/execute
bracket. Note that the highest ring fram which a segment can be written is
specified by Rl. As a result, the data in the segment is no more reliable
than the procedure segments which operate in that ring.

Read/Execute Bracket (Rings R1-R2)

Attempts to read or execute (transfer to) a segment by a procedure executing
in a ring within the read/execute bracket are allowed if the appropriate
(read and execute) indicators are on for the segment being referenced.
Writing of a segment within its read/execute bracket is permitted only fram
the ring at the bottaom of the bracket (Rl), which is also the top of the
read/write bracket. If R2 is equal to Rl, the read/execute bracket specifies
a single ring (Rl). '

176

Call Bracket (Rings (R2 + 1) - R3)

Attempts to call a (procedure) segment from a segment executing in a
ring above the read/execute bracket but within the call bracket of
the procedure to be called are allowed if the execute indicator of the
procedure to be called is on and if the new CALL instruction (described
below) is used. When the CALL instruction is directed to a procedure
in an inner ring which has the appropriate execute access and call
bracket, the processor atuamatically switches to the ring specified as
the R2 of the procedure being called. The call bracket and the CALL
instruction are the only means (except for faults) by which control
can be passed fram an outer ring to an inner (more privileged) ring.
If R3 is equal to R2, the call bracket is null and the procedure
cannot be called frcm an outer ring.

Summary

Assuning that the appropriate (read, execute, or write) indicators are
on, the following list sumarizes the effects of the three ring
brackets:

1. Writing is permitted fram a ring within the read/write
brackets only (i.e., if ring <Rl).

2. Reading is permitted fram a ring within the read/write
bracket or the read/execute bracket (i.e., ring < R2).

3. Execution (or transfer of control) is pemmitted only
fram a ring within the read/execute bracket (i.e., Rl
< ring < R2).

4. Calling (via CALL only) is permitted from a ring within the
read/execute or call brackets (i.e., Rl < ring < R3).

5. The CALL instruction is the only instruction which may be
used to access a segment in a ring within its call bracket
(i.e., R2 < ring < R3).

6. No access is permitted to a segment fram a ring higher than
the call bracket (i.e., ring > R3).

PROCESSOR ADDRESS REGISTERS

Like the 645, the new processof has 10 address or pointer registers
(PRs). Eight of these pointer registers can be directly accessed and
modified by the software, one is used to locate the current instruction,

177

and one is used exclusively by the processor for effective address cal-
culations. Unlike the 645, each of the eight program addressable pointer
registers specifies a full segmented address including the segment number
and the word number in a single pointer register. These registers have
also been extended to include a bit number.

Instruction Pointer Register

The instruction pointer register (IPR) is used by the processor to locate
the current instruction and may be modified by the software to effect a
transfer of control. The IPR is actually an extension of the PBR and IC
of the 645. The contents of the 36-bit IPR are outlined below.

PRR PSR IC

PRR (3 bits) Is the procedure ring register and specifies the ring
(level of privilege) in which the processor is currently
executing. PRR may be set to a higher value only by an
RICD or RCU instruction. - It may be set to a lower value
only by a CALL instruction (see below) or by a fault or

PSR (15 bits) Is the procedure segment register (same as the PBR in the
645) and specifies the segment number of the current pro-
cedure segment.

IC (18 bits) Is the instruction comnter (same as in the 645).

Temporary Pointer Register

The temporary pointer register (TPR) is used exclusively by the processor
for operand address calculations and serves the same general purpose as
the TBR and camputed address (CR) of the 645.

TRR

TSR CA BITNO

TRR (3 bits) 1Is the temporary ring register and is used to maintain
the lowest level of privilege (i.e., highest ring num-
ber) encountered during operand address calculation.

The TRR is initialized with the value of the PRR field
of the IPR at the beginning of each instruction. During
the operand address calculation, TRR is used to record the

178

highest value of SOW.R1 (the top of the read/write

bracket) of any segment used, in the address calculation.
For example, if an indirect address is fetched fram segment
X, TRR is settothelargerofTRR (its current value) and
the Rl field in the SDW for segment X. Note that during
the operand address calculation, the value of TRR may get
larger but never smaller.

TSR (15 bits) 1Is the temporary segment register (same as the TBR in the
645) and is initialized with the value of the PSR field
of the IPR at the beginning of each instruction. During
operand address calculation, TSR contains the segment
number portion of the current address calculation.

CA (18 bits) Is the camputed address and serves the same function as
the 645 register of the same name. The camputed address
is initialized at the beginning of each instruction with
the contents of the instruction counter of the IPR.
During operand address calculation, CA contains the word
nunber portion of the current address calculation.

BITNO Is a bit-offset relative to the first bit in the word

(6 bits) specified by CA. This field is ignored by all instructions
except the new instructions specifically designed for string
manipulation or decimal arithmetic.

Once an operand address calculation is camplete, the value of TRR is com-
pared with the ring brackets of the segment containing the operand ad-
dress to determine whether the operation is to be allowed. For example,
if the instruction intends to store into this operand, the value of TRR
must be less than or equal to the Rl (in the SDW) of the segment to be
modified.

Eight Pointer Registers

The new processor contains eight program accessible pointer registers, which
replace the eight address base registers (ABRs) of the 645. The PRs of the
new processor differ fram the ABRs in that each PR contains both a segment
number and a word number portion. In effect, each PR of the new processor
behaves as a 645 base register pair. The contents of each 42-bit PR are
outlined below.

SEGNO ' WORDNO BITNO

179

RN (3 bits) Is used by the software to specify the level of privilege
(i.e., ring number) at which the processor is to treat the
address contained in the address register. When the pro-
cessor uses the contents of a PR for address modification
(e.g., bit 29 in the instruction word is on) the value of
TRR is set to the larger of TRR (its current value) and the
RN field of the specified PR. The use of the RN field of
a PR allows the software to save the TRR of an operand ad-
dress calculation — e.g., through the use of an EAP (ef-
fective address to pointer) instruction.

SEGNO Specifies the segment number portion of the segmented

(15 bits) address. _

WORDNO Specifies the word number portion of the segmented address.
(18 bits)

BITNO Specifies a bit-offset relative to WORDNO and is ignored
(6 bits) by all instructions except those designed specifically for

string manipulation or decimal arithmetic.

The software may store the contents of a PR into an ITS (indirect to
segment) word pair with the use of an STP (store pointer) instruction.

The software may then address indirectly through the ITS indirect word
rather than using the original PR. Alternatively, the software may reload
another PR from the ITS word pair through the use of the EAP instruction.
In either case, it is necessary to save the value of the RN of the PR in
the ITS word pair so that the privilege level of the original operand
address calculation is not lost. As a result, the ITS word pair is mod-
ified to include a ring number field as outlined below.

SEGNO RN ITS

WORDNO BITNO MOD

SEQNO (3-17) 1Is the segment number field (as in the 645). Note that
bits 0-2 of the ITS word pair are set to zero for cam-
patibility with 645 programs expecting an 18-bit segment
nunber in the upper half of the first word.

RN (18-20) Is set to the value of the RN field of the PR during the
STP instruction. If the processor attempts to indirect
throuwgh an ITS word pair, TRR is set to the larger of
TRR, RN (of the ITS), and Rl of the segment containing
the ITS. Note that an improper value of RN in an ITS word
pair has nc ill effect, since the processor always takes

180

the maximum of TRR and RN. In other words, it is
impossible for an ITS word palr to specify a higher
privilege than the segment in which it resides.

ITS (30-35) Specifies the modifier code (octal 43) for the ITS
modifier (same as in the 645).

izlgR?;i)) Is the word number portion of the saved PR.
BITNO Is the bit-offset of the PR saved by the STP instruction.
(21-26) The strange placement of the BITNO field is necessary to

remain campatible with the current PL/1 software implemen-
tation of bit-offsets.

MOD (30-35) Is set to zero by the STP instruction but may be set by
the software to specify further address modification
(same as in the 645).

Since most Multics campilers (notably PL/1) calculate addresses via an

EAP instruction, it can be expected that compiler generated code can take
full advantage of the hardware protection mechanism with little modification.
If all addresses of all input parameters are calculated and saved (for use
as outgoing argument pointers) via the use of the EAP and STP instructions,
it will be possmle for a procedure operating in ring 1 to pass to ring O

a parameter given to the procedure from ring 2, without checking the address
of the parameter. The access checking is fully autamatic as ‘longas the -
TRR of the original address calculation continues to be maintained and
passed along as the RN field of a PR or ITS word pair.

The STCD (store control double) instruction is modified to store the PRR
in the same mammer as STP stores the RN field of a PR. The PRR is stored
by the STCD to allow an RICD (return control double) instruction to return

to the proper ring.

ACCESS CONTROL MECHANISM

Figures 2 through 6 attempt to flow chart the entire access control mech-
anism from the instruction fetch wp to actual execution of the instruction.
In order to concentrate on the access control mechanism, many details have
been left out of the flow charts (indexing, IT modifiers, etc.). If all
the access control checks are successfully met, control will end up in a
circle marked "done." The contents of the flow charts are sumarized below.

Figure 2 begins with the instruction fetch and continues through the ini-
tial address calculation.

181

Figure 3 shows how indirect addressing affects the access camputation.
(The notation "Rl (ITS)" is used to denote the Rl of the segment con-
taining the ITS word pair.)

Figure 4 shows the access checks made for all instructions except for
transfer of control.

Figure 5 shows the access checks performed on all transfer instructions
with the exception of the CALL instruction. Note that the PRR cannot
be changed by a nommal transfer instruction (even to a higher value).
However, it is possible to set the PRR to a higher value with the mod-
ified RICD (described below) .

Figure 6 shows the access checks performed by the CALL instruction (the
only slave instruction permitted to set the PRR to a lower value).

CALL INSTRUCTION

The CALL instruction is provided as the only means by which a procedure
segment may call a procedure in an inner ring (i.e., set PRR to a lower
value). The CALL instruction is to be used in all standard interprocedure
calls and is intended to replace the transfer instruction as the last in-
struction of the standard Multics calling seguence.

The CALL instruction uses two PRs: PRn and PRn+l, where n is even.

The value of n is wired into the processor and is currently 6. It is
possible for a field engineer to change this value to 4, 2, or 0 by an
orderly procedure. It must not be possible, however, to change this value
under user program control. (This use of a pair of PRs involves two full
PRs (RN, SEGNO, WORINO, and BITNO) and should not be confused with a 645
base register pair.) When the CALL instruction is used to transfer control
to another ring, the assumption is made (by convention) that the stack
segment of the target ring has a segment number equal to the ring number
of the target ring (i.e., the stack segment for ring X is a segment number
X). The CALL instruction behaves as a TRA (transfer) instruction with the
following exceptions:

1. The access checking for a CALL instruction allows PRR
to be set to a lower value, provided that the call is
made fram a ring within the call bracket of the target
segment (see Figure 6).

2. If an attempt is made to call a procedure in an outer ring
(a relatively rare case), an access violation occurs. Be-
cause of the necessity of copying all arguments, the standard
call, save, and return sequences cannot handle calls to an
outer ring without excessive software overhead. Therefore,
calls to outer ring procedures will continue to cause a fault
to allow the system software to interpret the call.

182

IPR --TPR
(TPR.BITNO = 0)

!
]

FETCH SDW FOR
INSTRUCTION

ACCESS
R1< TRR < R2 VIOLATION
Y
ACCESS
VIOLATION
FETCH
INSTRUCTION
(INST)
INST (29) N
Y
PRNPSEGNO INST (017)
—- TSR —- CA
PRn.WORDNO %
INST (4-17 — CA)
1 a.n IS VALUE IN BITS 0.2 OF
INSTRUCTION WORD
PRn.BITNO
— TPR.BITNO
MAX (TRR,PRn.RN) 3
—- TRR

Figure 2. Instruction Fetch and Initial Address Calculation

183

Y < INDIRECTION

FETCH SOW
FOR TSR

()
NG

ACCESS

FETCH
INDIRECT
WORD

y

VIOLATION

\

ACCESS
VIOLATION

ITP

Y

PRn.SEGNO — TSR

!

PRn.WORDNO +

ITP (36-53)
— CA

y

PRn.BITNO
-TPR.BITNO

s

MAX(TRR,
RI1(ITP),
PRn.RN)— TRR

|

Y
ITS N
Y

ITSSEGNO— TSP

:

ITS.WORDNO
—- CA

y

ITS.BITNO
— PTR.BITNO

l .

MAX(TRR,
R1(1TS),ITS.RN)
—~~TRR

Y FURTHER

Figure 3.

N

C{¥{0-17))
— CA

INDIRECTIO!

Indirect Addressing

184

STORE

"OR READ_

RETRIEVE SDW
FOR OPERAND

ACCESS
VIOLATION

ACCESS
VIOLATION

ANCLUDING CALL. NOTE
THAT RTCD IS NOT
TREATED AS A TRANSFER
INSTRUCTION, BUT READS
ITS OPERAND.

ACCESS
VIOLATION

Figure 4. Access Checks for Nontransfer Instructions

185

CALL

(

FETCH SDW
FOR TSR

ACCESS
1 VIOLATION

ACCESS

R1 TRR R2 —®1 VIOLATION
‘ ACCESS

TRR = PRR 1 VIOLATION

DONE

Figure 5. Access Checks for Transfer Instructions, Except CALLn

186

Y
PAR - TSR
N

FETCH SDW
FOR TSR

ACCESS
VIOLATION

ACCESS

VIOLATION
MIN (TRR,R2)
— TRR
ACCESS
VIOLATION
ACCESS
VIOLATION

Figure 6. Access Checks for CALL Instruction

187

ACCESS
VIOLATION

3. At the beginning of the CALL, the contents of PRn are
assuned to point to a location (i.e., the beginning of the
current stack frame) within the stack segment of the calling
ring. During the execution of the CALL, the processor sets
the contents of PRntl to point to word 0 of the stack segment
of the target ring in one of two ways:

a. If control is to remain in the current ring (i.e.,
TRR = PRR), the SEGQNO portion of PRntl is set to
the SEGNO of PRn and the WORINO portion of PRntl is
set to zero.

b. If control is to be passed to an inner ring (i.e.,
TRR < PRR), the SEGNO portion of PRn+l is set to the
value of the target ring number (TRR) and the WORDNO
of PRn+l is set to zero.

If an attempt is made to call to an outer ring (i.e., TRR > PRR), an
access violation is generated as indicated in Figure 6.

Figure 7 details the operation of the CALL instruction after the effective
address camputation has been campleted (i.e., TPR has been camputed), and
TRR is set to the target ring number (see Figure 6).

- The software stores a poihter to the end of the current (or last used)
stack frame in the beginning of that stack. The standard call and save
sequences might then be modified as follows:

Calling Sequence: ZERO ARGLIST ZEROpoints to ARGLIST
STCD 6| 20 Set return location
CALL ENTRYPOINT Call external procedure
Save Sequence: EAP1 7| NEXT,* Load pointer with base
of new stack frame
STP6 1| 16 Save pointer to old
frame
EAP6 1l 0 Switch to new frame
EAP1 6| TEMP Campute pointer to next
frame (allocate new frame)
STPl 6] 18 Save pointer to next frame
STP1 7| NEXT Update stack base
STPO 6| 26 Save ARGLIST PR

188

N < TRR = PRR

i

00.0 |l TRR—
PRn + 1.SEGNO

Y

~_

L 4

PRn.SEGNO —
PRn + 1.SEGNO

1

TRR -
PRn + 1.RN

1

00.0 -
PRn + 1.WORDNO

00...0 -
PRn + 1.BITNO

1

TRR — PRR
TSR — PSR
CA — |IC

Figure 7.

Execution of CALL Instruction

189

ASSOCIATIVE MEMORY

1s in the 645, the new processor requires a small associative memory in
order to avoid memory fetches of frequently used SDWs and PIWs. A series
of measurements and experiments has determined the effectiveness and be-
havior of the 645 associative memory. The experiments were conducted and
measurements taken during normal Multics operation, under varying user
loads.

The experiments indicate that the current 645 associative memory is quite
effective. It appears that the most significant aspect of the associative
memory is in the speed of the search, since it is not possible to overlap
completely the associative lookup with other work. This aspect suggests
that a one-pass lookup would be a desirable objective. There are at least
three ways in which the effect of a one-pass lookup can be achieved:

1. One approach is derived fram the fact that the "hit rate"
on SDWs for paged segments on the 645 is extremely low
(about 0.21 percent). This fact suggests a one-pass search
of an associative memory containing only PIWs and SDWs for
unpaged segments. The search would lock for an unpaged
SIW for the referenced page within the segment. The copy
of the PIW in the associative memory must be extended to
include access control infomation fram the original SDW for
the segment. This approach has the drawback that any change
in the operating enviromment (e.g., the use of smaller page
sizes) which causes SDWs for paged segments to be in higher
demand would begin to degrade system performance.

2. Another approach is to achieve the effect of a one-pass search
using a two-pass search and overlapping the first pass during
address preparation. In this approach, the single associative
memory contains both SDWs (paged and unpaged) and PIWs extended
with access control information. During address preparation,
the associative memory is searched for the SDW of the segment
to be referenced. After address preparation, a second pass is
made to locate the PIW for the page to be referenced. Only if
the second pass fails are the results of the first pass inter-
rogated. If the first pass had succeeded, only the PITW must be
fetched fram core memory. Otherwise, both the SDW and the PTW
must be fetched fram core memory.

3. A third approach is to search two associative memories in
parallel, one for SDWs and the other for PIWs. If either the
SDW or PIW is not found in its respective associative memory,
it is retrieved fram core memory and updated into the appropriate
associative memory. Although this approach requires duplicate
circuitry, it is appealing in its logical simplicity and is the
method chosen.

190

D. Abbreviations and Acronyms

ADDR Address portion of PTW

AST Active Segment Table

ASTE Active Segment Table Entry
CA Computed Address

CM Core Map

CME Core Map Entry

DBR Descriptor Base Register
DC Directory Control

DCW Data Control Word

DID Device Identifier

DIM Device Interface Module

DS Descriptor Segment

DSBR Descriptor Segment Base Register
Ic Instruction Counter

IPR Inétruction Pointer Register
ITP Indirect to Pointer Register
ITS Indirect To Segment

KST Known Segment Table

KSTE Known Segment Table Entry
MC Memory Controller

PC Page Control

PHM Page Has Been Modified

PHU Page Has Been Used

PN Page Number

PO Page Offset

191

PR

PRR

PSR:

PT

5

2

SDW

SFH

SST

TRR

TSR

UID

Pointer Register

Procedure Ring Register
Procedure Segment Register
Page Table

Page Table Word

Ring Alarm register

Ring Number

Segment Control

Segment Descriptor Word
Segment Fault Handler
Systems Segment Table
Temporary Pointer Register
Temporary Ring Register
Temporary Segment Register

Unique Identifier

192

Honeywell

Honeywel! Information Systems
Inthe U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
InCanada: 155 Gordon Baker Road, Willowdale, Ontario M2H3N7
inthe UK.: GreatWest Road, Brentford, Middiesex TW8 9DH
In Australia: 124 Walker Street, North Sydney, N.S.W. 2060
InMexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

33111,2C1181, Printedin U.S.A.

AGY5, Rev.0

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	xBack

