HONEYWELL

DPS/LEVEL 68 &

DPS sM

MULTICS

PROCESSOR

MANUAL

HARDWARE

MULTICS PROCESSOR MANUAL

SUBJECT

Description of the Multics Processor

SPECIAL INSTRUCTIONS

This manual supersedes AL39-00, dated April 1976 and Addendum A,
AL39-00A, dated September 1976. The manual has been extensively revised.
Change bars in the margin indicate technical additions and changes; asterisks
denote deletions.

ORDER NUMBER
AL39-01 April 1979

Honeywell

PREFACE

This manual describes the processors us=2d in the Multics system. These are
the DPS/L68, which refers to the DPS, L68 or older model processors (excluding
the GE-645) and DPS 8M, which refers to the DPS 8 family of Multies processors,
i.e. DPS 8/7T0M, DPS 8/62M and DPS 8/524. The reader should be familiar with
the overall modular organization of the Multics system and with the philosophy
of asynchronous operation. In addition, this manual preseats a discussion of
virtual memory addressing concepts including segmentation and paging.

The manual is intended for use by systems programmers responsible for
writing software to 1interface with the virtual memory hardware and with the
fault and interrupt portions of the hardware. It should also prove valuable to
programmers who must use machine instructions (particularly language translator
implementors) and to those persons responsible for analyzing crash conditions in
system dumps.

This manual 1includes the processor capabilities, modes of operation,
functions, and detailed descriptions of machine instructions. Data
representation, program-addressable registers, addressing by means of
segmentation and paging, faults and interrupts, hardware ring implementation,
and cache operation are also covered.

The information and specifications in this document are subject to change without notice. Consult
your Honeywell Marketing Representative for product or service availability.

11/85
©Honeywell Information Systems Inc., 1985 File No.: 1103, 1L53 AL39-01C

CONTENTS

Page
Section 1 Introduction . . e e e e e e e 1-1
Multics Processor Features v e e e e e e e 1-1
Segmentation and Paging . 1-2
Address Modification and Address
Appending . . e e e e e e e . 122
Faults and Interrupts S
Processor Modes of Operation . . 1-3
Instruction Execution Modes . 1=-3
Normal Mode . . . 1-3
Privileged Mode 1-3
Addressing Modes 1=3
Absolute Mode e . . 1-3
Append Mode 1-4
Bar Mode 1=
Processor Unit Functions 1-4
Appending Unit o v o . 1-4
Associative Memory Assembly . e . . 1-4
Control Unit 1-4
Operation Unit 1-5
Decimal Unit 1-5
Section 2 Data Representation 2-1
Information Organization 2-1
Position Numbering 2-1
Number System 2-1
Information Formats . . e 2=2
Data Parity 2-4
Representation of Data e e e e e e e e 2-U
Numeric Data . . . e e e e e e e . 2=
Fixed-point Blnary Data . . e e . . 2-4
Fixed-Point Binary Integers e e e . 2-4
Fixed-point Binary Fractions . . 2-5
Floating-point Binary Data 2-6
Overlength Registers 2-8
Normalized Numbers 2-8
Decimal Data 2=9
Decimal Data Values e e e e e e e . 2=-11
Alphanumeric Data . . e e e e e e e . 2=12
Character String Data - -
Bit String Data 2=12
Section 3 Program Accessible Registers 3-1
Accumulator Register (A) 3=2
Quotient Register (Q) . . . e e « « . 3=3
Accumulator-Quotient Reglster (AQ) e « « « . 3-3
Exponent Register (E)« . 3-4
Exponent-Accumulator-Quotient Reglster (EAQ) 3-4
Index Registers (Xm) 3-5
Indicator Register (IR) 3=5
Base Address Register (BAR) 3-9
Timer Register (TR) . . . e e . . 3-10
Ring Alarm Register (RALR) . . . 3-10
Pointer Registers (PRn) 3-1
Address Registers (ARn) 3-12
Procedure Pointer Register (PPR) e + <« « « . 3-14
Temporary Pointer Register (TPR) 3-15

11/85 iii AL39C

CONTENTS (cont)

Descriptor Segment Base Register (DSBR) . . 3-16
Segment Descriptor Word Associative Msmory

(SDNAM) - DPS/L68 and DPS 8M . . . 3-18
Page Table Word Associative Memory (PTWAM) -
DPS/L68 and DPS 84 A
Fault Register (FR) - DPS/L68 e+« « « « . 3=23

Fault Register (FR) - DPS 8M 3-25
Mode Register (MR) - DPS and L68 3-27

Mode Register (MR) - DPS 84 3=30
Cache Mode Ragister (CMR) - DPS and L68 . . 3-32
Cache Mode Register (CMR) - DPS 8M . . . 3-34
Control Unit (CU) History Registers - DPS

and L68 3-37

Control Unit (CU) Hlstory Reglsters - DPS 8M 3-39
Operations Unit (QU) History Registers . . . 3-41
Decimal Unit (DU) History Registers - DP3

and L68 3-43
Dec1mal/0perat10ns Un1t (DU/OU) Hlstory

Registers - DPS 8M« . 3-U6
Appending Unit (APU) Hlstory Reglsters - DPS

and L68« . 3-49
Appending Unit (APU) Hlstory Reglsters - DPS

8M« 3-51
Conflguratlon Swltch Data - DPS and L68 . . 3-54
Configuration Switch Data - DPS 84 3-56

Control Unit Data . . . « « « ¢« « ¢« + . . . 3-58
Decimal Unit Data . + ¢« ¢« &« « o ¢ & « &+ o « 3-63

Section U Machine Instructions ¢« + ¢« « « .« .
Instruction Repertoire
Arrangement of Instructions
Basic Operations
Extended Instruction Set (els) Operatl
EIS Single-Word Operations .
EIS Multiword Operations
Format of Instruction Description . . .
Definitions of Notation and Symbols
Main Memory Addresses
Index Values . . . e o e o o o
Abbreviations and Symbols . e .
Register Positions and Contents . .
Other Symbols . . . e e e e
Common Attributes of Instructlons . v .
Illegal Modification
Parity Indicator
Instruction Word Formats
Basic and EIS Single-Word Instructlons
Indirect Words . . . e e e e e e e .
EIS Multiword Instruct1ons « e e e e

..m...
L A O D I e I

[}
SOV~ OONVINMEEEENNN= 2 w@aa

-

0--0-0..0000.0.-
LI N |

EIS Modification Fields (MF) . .
MF Coding Examples . . .
EIS Operand Descriptors and Indlrect

© 8 e e 8 e e s e ® s e v e o .

EEEEEEDEEE == P N E- R .-
[}

Pointers e e s . . -11
Operand Doscrlptor Indlrect P01nter
Format e e e -11.1
Alphanumeric Operand Descrlptor Format -12
Numeric Operand Descriptor Format . . -13
Bit-string Operand Descriptor Format . -15
. Fixed-point Arithmetic Instructions -16
Fixed-Point Data Movement Load . e e e -16
Fixed-Point Data Movement Store e e e . =25
Fixed-Point Data Movement Shift -36
Fixed-Point Addition « « . . -42
Fixed-Point Subtraction e e e e e -50

11/85 iv AL39C

CONTENTS (cont)

Fixed-Point Multiplication
Fixed-Point Division
Fixed-Point Negate
Fixed-Point Comparison . .
Fixed-Point Miscellaneous . .
Boolean Operation Instructions . .
Boolean AND+ . .
Boolean Or . . .« ¢« ¢« &« « o
Boolean Exclusive Or . o o .
Boolean Comparative And
Boolean Comparative Not
Floating-Point Arithmetic Instructlons
Floating-Point Data Movement Load
Floating-Point Data Movement Store
Floating-Point Addition
Floating-Point Subtraction .
Floating-Point Multiplication . . .
Floating-Point Division
Floating-Point Negate
Floating-Point Normalize
Floating-Point Round
Floating-Point Compare
Floating-Point Miscellaneous .
Transfer Instructions . . . « s e e .
Pointer Register Instructlons . . .
Pointer Register Data Movement Load .
Pointer Register Data Movement Store
Pointer Register Address Arithmetic .
Pointer Register Miscellaneous . . .
Miscellaneous Instructions
Calendar Clock
Derail
Execute .
Master Mode Entry
No Operation . .
Repeat .
Ring Alarm Reglster . . .
Store Base Address Reglster . .
Translation
Register Load
Privileged Instructions
Privileged - Register Load . . .
Privileged - Register Store . e e .
Privileged - Clear A53001at1ve Memory
Privileged - Configuration and Status
Privileged - System Control
Privileged - Miscellaneous .
Extended Instruction Set (EIS) .
EIS -~ Address Register Load
EIS - Address Register Store
EIS - Address Register Special Arlthm
EIS - Alphanumeric Compare .
EIS - Alphanumeric Move
EIS Numeric Compare . . .
EIS - Numeric Move

e e & o o » @
.

e e s s e & s s .

-

" e s o »

e o e e 0

" e e e e s
.

L T S
« s e e o s s o

.

.
- e
.

« o s e

.
.
.
.

o« o o

* o o * o o

EIS - Bit String Combine . . -
EIS - Bit String Compare
EIS - Bit String Set Indicators . .
EIS - Data Conversion . . . e e e .
EIS - Decimal Addition . e e e e .
EIS - Decimal Subtraction
EIS -~ Decimal Multiplication
EIS - Decimal Division . e e e
Micro Operations For Edit Instruct ions .

11/85 v

¢ » s e e 0+ e »

® & 8 8 8 8 s 8 8 % & 8 * 8t e o s & e e & e ¥ " e s s ¥ s 0 s

........cr.....

¢ e o s o o

-4-157.1

4-.157.1

CONTENTS (cont)

Page
Micro Operation Sequence H4-246
Edit Insertion Table U=24%
Edit Flags . + &4 ¢ ¢ v o ¢ o o o o o« « . U247
Terminating Micro Operations H4-=247
MVNE and MVE Differences H4-248
Numeriec Edit U-248
Alphanumeric Edit U-248
Micro Operations . . e e e e e e . h4-248
Micro Operation Code A531gnme nt Map . . L4257
Section 5 Addressing -- Sa2gmentation And Paging 5-1
Addressing Modes+ . . 5-1
Absolute Mode e« e e s o+ 5=t
Append Mode « ¢ ¢ v ¢ ¢ ¢ v ¢ e e e o 4 . B=2
Segmentation e s e o s+ o . B-2
Paging . . . e+ e o o s s e e e s+ o . 5=3
Changing Addre331ng Modes 5-5
Address Appending ¢ . ¢« . . . B5-b
Address Appending Sequences 5-6
Appending Unit Data Word Formats'. e « + « » 5-9
Page Table Word (ptw) Format 5-10
Section 6 Virtual Address Formation . . 6-1

Definition of Virtual Address .
Types of Virtual Address Formation
Symbology (alm)
Symbolic Fields
Alm Pseudo-Instructions . .
Computed Address Formation . . .
Tne Address Modifier (TAG) Fleld
General Types of Computed Address
Modification « . 6-14
Computed Address Formatlon Flowcharts . .
Register (r) Modification
Examples: . . « e e
Register Then Indlreet (ri) Modlflcatlons
Examples:
Indirect Then R°g1ster (1r) Modlflcatlon
Examples: . .« .
Indirect Then Tally (it) Modlflcatlon .
Special Address Modifiers
Indirect to Pointer (ITP)
Modification . . « + « « . b6-20
Indirect to Segment (ITS)
Modification . . . « 6=21
Effective Segment Number Generatlon e .. 6=22
Virtual Address Formation for Extended
Instruction Set« e e e . . . 6-2%
Character- and Blt-Strlng Addre331ng .« . 6-26
Character- and Bit-String Address
Arithmetic Algorithms 6-26
9-bit Byte String Address Arlthmet1c . 6-27
6-bit Character Strlng Address
Arithmetic . . 6=27
4-bit Byte Strxng Address Arlthmetlc . 6-27
Bit String Address Arithmetic 6-27

e e ® s v e
" e o o ° & 2 =
e s e s e s
D T Y

[=))

)

N

o & o e e 3 e

1
-t wd -k D COONOY

[« Y= A e Yo o N W e}

O - OO

(=)
1

e

O

Section 7 Faults And Interrupts « +« « . . 7-1
Fault Cycle Sequence . . . ¢« +« + & o o o & T7-1

Fault Priority . . . « + ¢ ¢ ¢ ¢« ¢ o« o o & 7-3

Fault Recognition« . T-4

Fault Descriptions e s+ e e . . T-H

Group TFaults . . ¢« ¢ ¢« ¢ v o ¢ o « + o T-4

Group 2 Faults . . ¢« « + ¢« v « o o o & 7-5

11/85 vi AL39C

CONTENTS (cont)

Page
Group 3 Faults . . v +v v ¢« v o « o« o . 7-5
Group 4 Faults « « « « . « « o T-6
> . Group 5 Faults -7
Group 6 Faults -7
Group 7 Faults . . e e e e . 7-8
Interrupts and External Faults c e e e 7-8
Interrupt Sampling 7-8
Interrupt Cycle Sequence 7-9
Section 8 Hardware Ring Implementation 8-1
‘ Ring Protection in Multiecs . B 23
Ring Protection in the Processor 8-2
Appending Unit Operation with Ring Mechanism 8-3
Section 9 DP3/L68 Cache Memory Operation . . 9-1 l
Philosophy of Cache Memory « . . . 9-1
Cache Memory Organization . . e e .. 9-1
Cache Memory/Main Memory Mapplng . . e 9-1
Cache Memory Addressing . .. 9-4
Cache Memory Control 9-5
Enabling and Dlsabllng Caehe Memory .+ . 9-5
Cache Memory Control in Segmenb
Descriptor Words . . . Gt e e 4 e v . . 9-6
Loading the Cache Memory e s s e s e s . 9-6
Clearing the Cache Memory 9-6
General Clear . . « « ¢« « o« « &+ + « « 9=6
Selective Clear . . . ¢« + &« o« o« & « « 9-7
Dumping the Cache Memory 9-7
Appendix A Operation Code Map « . . A-1
Appendix B Al phabetic Operation Code List B-1
Appendix C Address Modifiers O o
Nonstandard Modlflers c-1
Index e e e e e e e e e e e e e e e e e e i-1
ILLUSTRATIONS
Figure 2-1 Unstructured Machine Word Format 2=2
Figure 2-2 Unstructured Word Pair Format 2-3
Figure 2-3 Unstructured 4-bit Byte Format 2-3
Figure 2-4 Unstructured 6-bit Character Format 2-=3
Figure 2-5 Unstructured 9-bit Byte Format 2-3
Figure 2-6 Unstructured 18-bit Half Word Format 2-4
Figure 2-7 Eighteen-bit Half Word Floating-Point Binary
Operand Format 2-T
Figure 2-8 Single-Precision Floatlng P01nt B1nary Operand
Format 2-7
Figure 2-9 Double-Precision Floatlng-P01nt Blnary Operand
Format . . e e e e e . 2=
Figure 3-1 Accumulator Reglster (A) Format e e e s e 4 . . 3=2
Figure 3-2 Quotient Register (Q) Format . . . 3=3
Figure 3-3 Accumulator-Quotient Register (AQ) Format .+« 3-3
Figure 3-4 Exponent Register (E) Format 3-4
Figure 3-5 Exponent-Accumulator-Quotient Reglster (EAQ)
Format e e s e 4 s 4 e s« . 3-4
Figure 3-6 Index Register (Xn) Format e e e e e . 3-5
Figure 3-7 Indicator Register (IR) Format . . . « « + . 3-5
Figure 3-8 Base Address Register (BAR) Format . . . 3-9

11/85 vii AL39C

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

11/85

[}
— et et d el - \D

[}
N

-L—-l
W = AT EWN = O

www w wwwuwwwww

!
\V]
o

3-21
3

3-24

W
11
AV
w

3-25

3-26
3-27

3-28
3-29

3-30
3-31

]
ww
w N

| |
— e O OO~ OUT W N

v—O

EESEFEosEESFEEEESEFOW

4-13
414
4-15
4-16
4-17
4-18
4-19
4-20
4-21

"~ CONTENTS (cont)

Timer Register (TR) Format . . e e e e e e
Ring Alarm Register (RALR) Format e e e e e e
Pointer Register (PRn) Format
Address Register (ARn) Format . . e e e
Procedure Pointer Register (PPR) Format .« e e o
Temporary Pointer Register (TPR) Format
Descriptor Segment Base Register (DSBR) Format
Segment Descriptor Word Associative Memory
(SDAAM) Format DPS/L68 and DPS 8 . . e e .
Page Table Word Associative Memory (PTdAM)
Format DPS/L68 and DPS 84 . . .
Fault Register (FR) Format - DPS and L68 .
Fault Register (FR) Format - DPS 8
Mode Register (MR) Format - DPS and L68
Mode Register (MR) Format - DPS 84 . .
Cache Mode Ragister (CMR) Format - DPS and L68
Cache Mode Register (CMR) Format - DPS 84 . . .
Control Unit (CU) History Register Format - DPS
and L68 . . s e e e e e e e e
antrol Unit (CU) Hlstory Register Format - DPS
M. . . c e e e e s e e e
Operations Unit (OU) History Register Format .
Decimal/Operations (DU/OU) History Register

Format - DPS 84
Appending Unit (APU) Hlstory Reglster Format -
DPS and L68

Appending Unit (APU) Hlstory Reglster Format -
DPS 8M . .
Configuration Sw1tth Data Formats - DPS and L68

Configuration Switch Data Formats - DP3 8M .
Control Unit Data Format
Decimal Unit Data Format . . .
Basic and EIS Single-Word Instruotlon Format
Indirect Word Format . . . e e e e e
EIS Multiword Instruction Format e e e e e

EIS Modification Field (MF) Format
Operand Descriptor Indirect Pointer Format . .
Alphanumeric Operand Descriptor Format
Numeric Operand Descriptor Format
Bit String Operand Descriptor Format . .
Repzat Double (rpd) Instruction Word Format
Repeat Link (rpl) Instruction Word Format .
Repsat (rpt) Instruction Word Format .

EIS Address Register Special Arithmetic

« s e o o

Instruction Format
Compare Alphanumeric Character Strlngs (cmpc)
EIS Multiword Instruction Format

Scan Characters Double (secd) EIS Multlword
Instruction Format . .
Scan with Mask (scm) EIS Multlword Instruction
Format . . e e e
Test Character and Translate (tot) EIS
Multiword Instruction Format . . . e .
Move Alphanumeric Left to Right (mlr) EIS
Multiword Instruction Format . . .
Move Alphanumeric Edited (mve) EIS Multlword
Instruction Format
Move Alphanumeric with Translatlon (mvt) EIS
Multiword Instruction Format . . . e e e .
Compare Numeric (cmpn) EIS Multlword
Instruction Format . . .
Move Numeric (mvn) EIS Mult1word Instructlon
Format . « + ¢ & v ¢ 4 o o ¢« o o o o o o o o

viii

AL39C

Figure'

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table
Table
Table

11/85

4-22
4-23
424
4-25
4-26
4-27
4-28
4-29

i
]
_

VI Ul
[D T T Y N T T TR O I |

N = ed 2 = \O O N OoOONEWNN =000 & W N

- O

- —RYeNecNeo Re N o Ro)) aooOovONONOvTLUT\AY

oo = CVWVMIEWN==N=00NFWIN =

CONTENTS (cont)

Move Numeric Edited (mvne) EIS Multiword
Instruction Format .

Combine Bit Strings Left (esl) EIS Multiword

Instruction Format
Compare Bit Strings (cmpb) EIS Multiword
Instruction Format

Binary to Decimal Convert (BTD) EIS Multlword

Instruction Format .

Decimal to Binary Convert (dtb) EIS Multlword

Instruction Format
Add Using Two Decimal Operands (ad2d) EIS
Multiword Instruction Format . .

Add Using Three Decimal Operands (éd3d) ETS |

Multiword Instruction Format
Micro Operation (MOP) Character Format .
Main Memory Address Generation for Unpaged

Segments e e e e e e e e s
Page Number Formatlon . e
Main Memory Address Generatlon for Paged

Segments . . .
Appending Un1t Operatlon Flowchart
Segment Descriptor Word (SDW) Format .
Page Table Word (PTW) Format . . « e e
Address Modifier (TAG) Field Format e e
Common Computed Address Formation Flowchart
Register Modification Flowchart . . .

Register Then Indirect Modification Flowchart
Indirect Then Register Modification Flowchart

Indirect Then Tally Modification Flowchart
Format of Instruction Word ADDRESS When Bit
=1 C e e e e e e e e e e e e e

ITP Poxnter Pair Format
ITS Pointer Pair Format
Effective Segment Generation Flowchart . .
EIS Virtual Address Formation Flowchart . .
Complete Appending Unit Operation Flowchart
Main Memory/Cache Memory Mapping
Processor Operation Code Map
EIS MF Codes . « « ¢« v o ¢ ¢ o o « o « »

TABLES

Fixed-Point Binary Integer Values
Fixed-Point Binary Fraction Values
Floating-Point Binary Operand Values .

Decimal Sign Character Interpretation . e
Decimal Data Values . . . e e e
Character String Data Length lelts e e e s
Processor Registers
System Controller Illegal Act1on Codes . .
R-type Modifiers for REG Fields . . .
Alphanumeric Character Number (CN) Codes .
Alphanumeric Data Type (TA) Codes . . .
Sign and Decimal Type (S) Codes
Relation Between Data Bits and Indlcators .

é9

o s e o o o

Control Relations for Store Byte Instructions

(9-Bit) e e e e e e e e e e
Control Relations for Store Character
Instructions (6-Bit) . . .

Dafault Edit Insertion Table Characters .« .
Micro Operation Code Assignment Map

ix

e o e s s e v s s e

Page

4-216
4-218
4222
4-226
4-228
4-230

4-233
4-216

]
- L O~J oW =0 WU ww
o

VW IV = o oo —

U
EDWENDNDNDND -

kol diVoNe -Neo ¥ e Yo We Yo, O\('J\O\G\O\O\U'l\)'l\nkﬂ w U

._-_sd_sl\)—tla_n-a@o\m

CONTENTS (cont)

Page
Table 5-1 Appending Unit Cycle Definitions« 5-7
Table 6-1 General Computed Address Modification Types . . 6-5
Table 5-2 . Register Modification Decode 6-8
Table 6-3 Variations of Indirect Then Tally Modlflcatlon 6-13
Table 6-4 Special Address Modifiers « ¢« + « « . 6=20
Table 7-1 7-3

List of Faults . . . ¢ « ¢ ¢« ¢« v ¢ o« « &

11/85 b4 AL39C

SECTION 1

INTRODUCTION

The processor described in this reference manual is a hardware module
designed for use with Multics. The many distinctive features and functions of
Multics are enhanced by the powerful hardware features of the processor. The
addressing features, in particular, are designed to permit the Multics software
to compute relative and absolute addresses, locate data and programs in the
Multies virtual memory, and retrieve such data and programs as necessary.

MULTICS PROCESSOR FEATURES

The Multics processor contains the following general features:

Storage protection to place access restrictions on specified segments.

Capability to interrupt program execution in response to an external
signal (e.g., I/0 termination) at the end of any even/odd instruction
pair (midinstruction interrupts are permitted for some instructions),
to save processor status, and to restore the status at a later time
without loss of continuity of the program.

Capability to fetech instruction pairs and to buffer two instructions
(up to four instructions, depending on certain main memory overlap
conditions) including the one currently in execution.

Overlapping instruction execution, address preparation, and
instruction fetch. While an instruction is being executed, address
preparation for the next operand (or even the operand following it) or
the next instruction pair is taking place. The operations unit can be
executing instruction N, instruction N+1 can be buffered in the
operations unit (with its operand buffered in a main memory port), and
the control unit can be executing instructions N+2 or N+3 (if such
execution does not involve the main memory port or registers of
instructions N or N+1) or preparing the address to fetch instructions
N+4 and N+5. This includes the capability to detect store
instructions that alter the contents of buffered instructions and the
ability to delay preprocessing of an address using register
modification if the instruction currently in execution changes the
register to be used in that modification.

Interlacing capability to direct main memory accesses to interlaced
system controller modules. '

Intermediate storage of address and cohtrol information in high-speed
registers addressable by content (associative memory).

Intermediate storage of base address and control information in
pointer registers that are loaded by the executing program.

Absolute address computation at execution time.

1-1 AL39

9. Ability to hold recently referenced operands and instructions in a
high-speed look-aside memory (cache option).

Segmentation and Paging

A segment 1is a collection of data or instructions that is assigned a
symboliec name and addressed symbolically by the user. Paging is controlled by
the system software; the user need not be aware of the existence of pages.
User-visible address preparation is concerned with the calculation of a virtual
memory address; the processor hardware completes address preparation by
translating the final virtual memory address into an absolute main memory
address. The user may view each of his segments as residing in an independent
main memory unit. Each segment has its own origin that can be addressed as
location zero. The size of each segment varies without affecting the addressing
of the other segments. Each segment can be addressed 1like a conventional main
memory image starting at location zero. Maximum segment size is 262, 144 words.

When viewed from the processor, main memory consists of blocks or page
frames, each of which has a length of "page-size" words. The page size used by
Multics is 1024 words. Each frame begins at an absolute address which is zero
modulo the page size. Any page of a segment can be placed in any available main
memory frame. These pages may be addressed as if they were contiguous, even
though they may be in widely scattered absolute locations. Only currently
referenced pages need be in main memory. A segment need not be paged, in which
case ‘the complete segment is located in contiguous words of main memory. In
Multics, all user segments are paged. See Section 5 for additional discussion.

Address Modification and Address Appending

Before each main memory access, two major phases of address preparation
take place:

1. Address modification by register or indirect word content, if
specified by the instruction word or indirect word.

2. Address appending, in which a virtual memory address is translated
into an absolute address to access main memory.

Although the above two types of modification are combined in most
operations, they are described separately in Sections 5 and 6. The address
modification procedure can go on indefinitely, with one type of modification
leading to repetitions of the same type or to other types of modification prior
to a main memory access for an operand.

Faults and Interrupts

The processor detects certain illegal instruction wusages, faulty
communication with the main memory, programmed faults, certain external events,
and arithmetic faults. Many of the processor fault conditions are deliberately
or inadvertently caused by the software and do not necessarily involve error
conditions. The processor communicates with the other system modules (I/O
multiplexers, bulk store controllers, and other processors) by setting and
answering external interrupts. When a fault or interrupt is recognized, a
"trap" results. The trap causes the forced execution of a pair of instructions
in a main memory location, unique to the fault or interrupt, known as the fault
or interrupt vector. The first of the forced instructions may cause safe
storage of the processor status. The second instruction in a fault vector

1-2 AL39

should be some form of transfer, or the faulting program will be resumed at the
point of interruption. Faults and interrupts are described in Section 7.

Interrupts and certain low-priority faults are recognized only at specific
times during the execution of an instruction pair. If, at these timeés, bit 28
in the instruction word is set ON, the trap is inhibited and program execution
continues. The interrupt or fault signal is saved for future recognition and is
reset only when the trap occurs.

PROCESSOR MODES OF OPERATION

There are three modes of main memory addressing (absolute mode, append
mode, and BAR mode), and two modes of instruction execution (normal mode and
privileged mode).

Instruction Execution Modes

NORMAL MODE

Most instructions can be executed in the normal mode. Certain
instructions, classed as privileged, cannot be executed in normal mode. These
are identified in the 1individual instruction descriptions. An attempt to
execute privileged instructions while in the normal mode results in an illegal
procedure fault. The processor executes instructions in normal mode only if it
is forming addresses in append mode and the segment descriptor word (SDW) for
the executing segment specifies a nonprivileged procedure.

PRIVILEGED MODE

In privileged mode, all instructions can be executed. The processor
executes instructions in privileged mode when forming addresses in absolute mode
or when forming addresses in append mode and the segment descriptor word (SDW)
for the segment in execution specifies a privileged procedure and the execution
ring is equal to zero. See Sections 5 and 7 for additional discussion.

Addressing Modes

ABSOLUTE MODE

In absolute mode, the final computed address is treated as the absolute
main memory address unless the appending hardware mechanism is invoked for a
particular main memory reference. During instruction fetches, the procedure
pointer register is ignored. The processor enters absolute mode when it is
initialized or immediately after a fault or interrupt. It remains in absolute
mode until it executes a transfer instruction whose operand is obtained via
explicit use of the appending hardware mechanism.

The appending hardware mechanism may be invoked for an instruction by
setting bit 29 of the instruction word ON to cause a reference to a properly
loaded pointer register or by the use of indirect-to-segment (its) or
indirect-to-pointer (itp) modification in an indirect word.

1-3 AL39

APPEND MODE

The append mode is the most commonly used main memory addressing mode. In
append mode the final computed address is either combined with the procedure
pointer register, or it is combined with one of the eight pointer registers. If
bit 29 of the instruction word contains a 0, then the procedure pointer register
is =selected; otherwise, the pointer register given by bits 0-2 of the
instruction word is selected.

BAR MODE

In BAR mode, the base address register (BAR) is used. The BAR contains an
address bound and a base address. A1l computed addresses are relocated by
adding the base address. The relocated address is combined with the procedure
pointer register to form the virtual memory address. A program 1is kept within
certain limits by subtracting the unrelocated computed address from the address
bound. If the result is zero or negative, the relocated address is out of
range, and a store fault occurs.

PROCESSOR UNIT FUNCTIONS

Major functions of each principal logic element are listed below and are
described in subsequent sections of this manual.

Appending Unit

Controls data input/output to main memory
Performs main memory selection and interlace
Does address appending

Controls fault recognition

Interfaces with cache

Associative Memory Assembly

This assembly consists of sixteen 51-bit page table word associative memory
(PTWAM) registers and sixteen 108-bit segment descriptor word associative memory
(SDWAM) registers. These registers are used to hold pointers to most recently
used segments (SDWs) and pages (PTWs). This unit reduces the need for possible
multiple main memory accesses before obtaining an absolute main memory address
of an operand or instruction.

Control Unit

Performs address modification
Controls mode of operation (privileged, normal, etc.)

Performs interrupt recognition

1=4 AL39

Decodes instruction words and indirect words

Performs timer register loading and decrementing

Operation Unit

Does fixed- and floating-binary arithmetic

Does shifting and Boolean operations

Decimal Unit

Does decimal arithmetic

Does character-string and bit-string operations

2/82 . 1-5

AL39B

SECTION 2

DATA REPRESENTATION

INFORMATION ORGANIZATION

The processor, like the rest of the Multies system, is organized to deal
with information in basic units of 36-bit words. Other units of 4-, 6-, 9-bit
characters or bytes, 18-bit half words, and 72-bit word pairs can be manipulated
within the processor by use of the instruction set. These bit groupings are
used by the hardware and software to represent a variety of forms of coded data.
Certain processor functions appear to manipulate larger units of 144, 288, 576,
and 1152 bits, but these functions are performed by means of repeated use of
72-bit word pairs. All information is transmitted, stored, and processed as
strings of binary bits. The data values are derived when the bit strings are
interpreted according to the various formats discussed in this section.

POSITION NUMBERING

The numbering of bit positions, character and byte positions, and words
increases from 0 in the direction of conventional reading and writing: from the
most significant to the least significant digit of a number, and from left to
right in conventional alphanumeric text.

Graphic presentations in this manual show registers and data with position
numbers increasing from left to right.

NUMBER SYSTEM

The binary arithmetic functions of the processor are implemented in the
twos complement, binary number system. One of the primary properties of this
number system is that a field (or register) having width n bits may be
interpreted in two different ways; the 1logical case and the arithmetic or
algebraic case.

(

In the logical case, the number is unsigned, positive, and lies in the
range [0,2R-1] where n is the size of the register or the length of the field.
The results of arithmetic operations on numbers for this case are interpreted as
modulo 2B numbers. Overflow is not defined for this case since the range of the
field or register cannot be exceeded. The numbers 0 and 20_1 are consecutive
(not separated) in the set of numbers defined for the field or register.

Iq the arithmetic case, the number is signed and 1lies in the range
(-2(n=1) 5(n-1)_47 " overflow is defined for this case since the range can be
exceeded in either direction (positive or negative). The left-hand-most bit of
the field or register (bit 0) serves as the sign bit and does not contribute to
the magnitude of the number.

2-1 AL39

The main advantage of this implementation is that the hardware arithmetic
algorithms for the two cases are identical; the only distinction lying in the
interpretation of the results by the user. Instruction set features are
provided for performing binary arithmetic with overflow disabled (the so-called
logical instructions) and for comparing numbers in either sense. .

Subtraction is performed by adding the twos complement of the subtrahend to
the minuend. (Note that when the subtrahend is zero the algorithm for forming
the twos complement is still carried out, but, since the twos complement of zero
is zero, the result is correct.)

s

Another important feature of the twos complement number system (with
respect to comparison of numeric values) is that the no borrow condition in true
subtraction is identical to the carry condition in true addition and vice versa.

A statement on the assumed location of the binary point has significance
only for multiplication and division. These two operations are implemented for
the arithmetic case in both integer and fraction modes. Integer means that the
position of the binary point is assumed to the right of the least significant
bit position, that is, to the right of the right-hand-most bit of the field or
register, and fraction means that the position of the binary point is assumed to
the left of the most significant bit position, that is, between bit .0 and bit 1
of the field or register (recall that bit 0 is the sign bit).

INFORMATION FORMATS

The figures that follow show the unstructured formats (templates) for the
various information units defined for the processor. Data transfer between the
processor and main memory is word oriented; a 36-bit machine word is transferred
for single-precision operands and subfields of machine words, and a 72-bit word
pair is transferred for all other cases (multiword operands, instruction
fetches, bit- and character-string operands, etc.). The information unit to be
used and the data transfer mode are determined by the processor according to the
function to be performed.

The 36-bit unstructured machine word shown in Figure 2-1 is the minimum
addressable information wunit in main memory. Its 1location is uniquely
determined by its main memory address, Y. All other information units are
defined relative to the 36-bit machine word.

0 3
0 5
36

Figure 2-1. Unstructured Machine Word Format

Two consecutive machine words as shown in Figure 2-2, the first having an
even main memory address, form a 72-bit word pair. In 72-bit word pair data
transfer mode, the word pair is uniquely located by the main memory address of
either of its constituent 36-bit machine words. Thus, if Y is even, the word
pair at (Y,Y+1) is selected. If Y is odd, the word pair at (Y-1,Y) is selected.
The term Y-pair is used when referring to such a word pair.

2-2 AL39

o W
=

36 36
Even word 0dd word

Figure 2-2. Unstructured Word Pair Format

Four-bit bytes are mapped onto 36-bit machine words as shown in Figure 2-3.
The 0 bits at bit positions 0, 9, 18, and 27 are forced to be 0 by the processor
on data transfers to main memory and are ignored on data transfers from main
memory.

00 00 00 1 11 111 22 222 33 3
0_1 45 8 9 0 3 1 7.8 9 2 3 678 12 5
0 0 0 0

7 m T T T m] T

Figure 2-3. Unstructured 4-bit Byte Format

Six-bit characters are mapped onto 36-bit machine words as shown in Figure

2-4.
0 00 11 11 2 2 23 3
0 5 6 12 1.8 3.4 9 0 5
6 6 6 6 6 6
Figure 2-4. Unstructured 6-bit Character Format
Nine-bit bytes are mapped onto 36-bit machine words as shown in Figure 2-5.
0 00 11 2 2 3
0 8 9 7.8 6 T 5
9 9 9 9

Figure 2-5. Unstructured 9-bit Byte Format

Eighteen-bit half words are mapped onto 36-bit machine words as shown in
Figure 2-6.

2-3 AL39

0 11 3
Q 7.8 2
18 18

Upper half Lower half

Figure 2-6. Unstructured 18-bit Half Word Format

DATA PARITY

0dd parity on each 36-bit machine word transferred to main memory is
generated as it leaves the processor, is verified at several points along the
transmission path, and is held in main memory either as an extra bit in the case
of magnetic core memory or as part of the error detecting and correcting (EDAC)
code in the case of magnetic oxide semiconductor (MOS) memory. If an incorrect
parity 1is detected at any of the various parity check points, the main memory
returns an illegal action signal and a code appropriate to the check point.

On data transfers from main memory, the parity information is retrieved and
transmitted with the data information. The same verification checks are made
and illegal action signalled for errors. The processor makes a final parity
check as the data enters the processor.

Any detected parity error causes the processor parity indicator to be set
ON and (if enabled) a parity fault occurs.

REPRESENTATION OF DATA

Data is defined by imposing an operand structure on the information units
just described. Data is represented in two forms: numeric or alphanumeric. The
form is determined by the processor according to function to be performed.

In the definitions below, a; is the value of the bit in the ith pit
position, either 0 or 1.

Numeric Data

Numeric data is represented in three modes: fixed-point Dbinary,
floating-point binary, and decimal. The mode is determined by the processor
according to the function being performed.

FIXED-POINT BINARY DATA

Fixed-Point Binary Integers

Fixed-point binary integer data is defined by imposing either of the bit
position value expressions shown below on an information unit of n bits.

2.4 AL39

Logical value:

aox2(2—1) . a1x2(n'2> + oee- 4+ aiXZ(ﬂ-i'1) + ... + 2

Arithmetic value:

2(2—1—1) +

-a0x2(ﬂ'1) + a1x2(972) + + ajx eee + A, 4

n

The following fixed-point binary integer data items are defined (also see
Table 2-1 for values):

Operand

size(bits) Operand name
6 6-bit character operand
9 9-bit byte operand
18 Half word operand
36 Single-precision operand
72 Double-precision operand

Note that a 4-bit operand is not defined. This data item is defined only
for decimal data. (See discussion of decimal data later in this section).

The proper operand and its position with respect to a 36-bit machine word
are determined by the processor during preparation of the main memory address
for the operand. If the data width of the operand selected is smaller than the
register involved, the operand is high- or low-order zero filled as necessary.

The values in Table 2-1 are given in terms of the operand sizes. The value
an operand contributes to a larger field or register depends on the alignment of
the operand with respect to the field or register.

Table 2-1. Fixed-Point Binary Integer Values
36-bit 72-bit
Operand 6-bit 9-bit 18-bit single double
character byte half word precision precision
Logical
minimum 0 0)
maximum 2624 29-1 218-1 238_; 278_1
resolution 1 1 1 1 1
Arithmetic
minimum 0 0 0 0 0
maxima
negative —25 §28 -%17 -§35 —%71
positive 251 281 2174 2351 2714
resolution 1 1 1 1 1

Fixed-point Binary Fractions

Fixed-point binary fraction data is defined by imposing the bit position

value expression below on an information unit of n bits.

2/82

2-5

AL39B

Arithmetic value:

—ag + agx271 4 apx272 4 L.+ agx2”ioll s aﬂ_1x2'(ﬂ'1)

Note that 1logical values are not defined for fixed-point binary fraction
data.

The following fixed-point binary fraction data items are defined (also see
Table 2-2 for values):

Operand

size(bits) Operand name
6 6-bit character operand
9 g-bit byte operand
18 Half word operand
36 Single-precision operand
72 Double-precision operand

Note that a 4-bit operand is not defined. This data item is defined only
for decimal data. (See discussion of decimal data- later in this section.)
Fixed-point binary fraction operands are used by the Divide Fraction (dvf) and
Multiply Fraction (mpf) instructions only.

The proper operand and its position with respect to a 36-bit machine word
are determined by the processor during preparation of the main memory address
for the operand. If the data width of the operand selected is smaller than the
register involved, the operand is high- or low-order zero filled as necessary.

The values in Table 2-2 are given in terms of the operand sizes. The value
an operand contributes to a larger field or register depends on the alignment of
the operand with respect to the field or register.

Table 2-2. Fixed-Point Binary Fraction Values
36-bit 72-bit
Operand 6-bit 9-bit 18-bit single double
character byte half word precision precision
Arithmetic
mninimum 0 0 0] 0 0
maxima
negative -1.0 -1.0 -1.0 -1.0 -1.0
positive 1.0-@‘5 1.0-2-8 1.0-;"7 1.0-2-35 1.0-;‘71
resolution 2~ 2 2-17 .27 > 2-T11

FLOATING-POINT BINARY DATA

A floating-point binary number is expressed as:

z =Mx 2E

AL39

where:
M is a fixed-point binary fraction; the mantissa
E is a fixed-point binary integer; the exponent
A floating-point binary number is defined by partitioning an information

unit of n bits into two pieces; an 8-bit fixed-point binary integer exponent and
an (n-8)-bit fixed-point binary fraction mantissa.

The following floating-point data items are defined.

Operand

size(bits) Operand name
18 Half word operand
36 Single-precision operand
72 Double-precision operand

For clarity, the formats of these operands are shown in Figure 2-7 through
Figure 2-9. 1In the figures, the fields labeled S hold sign bits associated with
the exponent, E, and the mantissa, M.

The floating-point binary operands are used only by the floating-point
binary arithmetic instructions (see Section 4). The 18-bit half word operand
has meaning only when used in conjunction with the direct upper (du) address
modification (see Section 6 for a discussion of address modification).

00 000 1
0.1 7.8 9 7
s E S M

7 71 9

Figure 2-7. Eighteen-bit Half Word Floating-Point Binary Operand Format

00 000 3
0_1 7.8 9 2
S E S M

1 71 - 27

Figure 2-8. Single-Precision Floating-Point Binary Operand Format

00 000 7
01 7.89 1
S E S M

7 71 ’ 53

Figure 2-9. Double-Precision Floating-Point Binary Operand Format

2-7 AL39

The proper operand is selected by the processor during preparation of the
main memory address for the operand.

Overlength Registers

The AQ-register is used to hold the mantissa of all floating-point binary
numbers. The AQ-register is said to be overlength with respect to the operands
since it has more bits than are provided by the operands. Operands are low-order
zero filled when loaded and low-order truncated (or rounded, depending on the
instruction) when stored. Thus, the result of all floating-point instructions
has more bits of precision in the AQ-register than may be stored.

Users are cautioned that calculations involving floating-point operands may
suffer from propagation of truncation errors even if the computation algorithms
are designed to hold mantissas in the AQ-register as long as possible. It is
possible to retain full AQ-register precision of intermediate results if they
are saved with the Store AQ (staq) and Store Exponent (ste) instructions but
such saved data are not usable as a floating-point operand.

Normalized Numbers

A floating-point binary number is said to be normalized if the relation
-0.5 >M > -1 or 0.5 < M <1 or [M=0 and E=-128]

is satisfied. This is a result of using a 2's complement mantissa. Bits 8 and
9 are different unless the number is zero. The presence of unnormalized numbers
in any finite mantissa arithmetic can only degrade the accuracy of results. For
example,_in an arithmetic allowing only two digits in the mantissa, the number
0.005x102 has the value zero instead of the value one-half

Normalization is a process of shifting the mantissa and adjusting the exponent
until the relation above is satisfied. Normalization may be used to recover
some or all of the extra bits of the overlength AQ-register after a floating-point
operation.

There are cases where the 1imits of the registers force the use of unnormalized
numbers. For example, in an arithmetic allowingothree digi?i of mantissa and
one digit of exponent, the calculation 0.3x107, - 0.1x10" (the normalized
case) may not be made, but 0.03x1077 - 0.001x10"2 = 0.029x10~9 (the unnormalized
case) is a valid result.

Some examples of normalized and unnormalized floating-point binary numbers
are:
Unnormalized positive binary 0.00011010 x 27
Same number normalized 0.11010000 x 2”
Unnormalized négative binary 1.11010111 x 2-t
Same number normalized 1.61011100 b'e 2‘6

The minimum normalized nonzero floating-point binary number is 2‘128 in all
cases. Table 2-3 gives the values for the floating-point binary operands. :

2/82 2-8 AL39B.

(a)

(b)

Table 2-3. Floating-Point Binary Operand Values
36-bit 72-bit
Operand - 18-bit single double
half word precision precision
Unnormalized
minimum o(a) ola) o(a)
maxima
negative -1.8x21$; -1.8*212127 -1.g§212z27
positive |(1-27)x2)7 (1-272"yx2 ¢ (1-27>3)2
resolution 1:9(b 1:27%b 1:63

There 1is no unique representation for the value zero in floating-point
binary numbers; any number with mantissa zero has the value zero. However,
the processor treats a zero mantissa as a special case in order to preserve
precision in later calculations with a zero intermediate result. Whenever
the processor detects a zero mantissa as the result of a floating-point
binary operation, the AQ-register is cleared to zeros and the E register is
set to -128. This representation is known as a floating-point normalized
zero. The unnormalized zero (any zero mantissa) will be handled correct*x
if enc%%ntered in an operand but precision may be lost. For example, Ax10~

+ 0x10 will not produce desired results §§nce all the precision of A will
be lost when it is aligned to match the 10 exponent of the 0.

A value cannot be given for resolution in these cases since such a value
depends on the value of the exponent, E. The notation used, 1:m, indicates
resolution to 1 bit in a field of m. Thus, the following general statement
on resolution may be made:

The resolution of a floatinqﬁpo%nt binary operand with mantissa length
m and exponent value E is 2'5~M/,

DECIMAL DATA

the operand as used by the Extended Instruction Set (EIS)

Decimal numbers are expressed in the following forms:
Fixed-point, no sign MMMMMM.
Fixed-point, leading sign +MMMMMM.
Fixed-point, trailing sign MMMMMM.+
Floating-point +MMMMMM.x10E

The form is specified by control information in the operand descriptor for
instructions (see

Section 4 for a discussion of the EIS instructions).

A decimal number is defined by imposing any of the byte position value

expressions below on a 4- or 9-bit byte information unit of length n bytes.

Fixed-point, no sign:

11/85

cox10(2’1) + c1x10(2‘2) *ee * C(pa1)

AL39C

Fixed-point, leading sign:

[sign=cj] c1x10(ﬂ'2) + c2x10(2‘3) + ..o+ Cp 1)

Fixed-point, trailing sign:

c0x1o‘£'2) + b1x10(9'3) + eee +C(n2) [sign:c(£_1)]

Floating-point:

[sign=cy] cqx10(B-3) | o x10(m-¥) o |, ¢ 5y [exponent=8 bits]

where:

c¢; is the decimal value of the byte in the ith

i byte position.

[sign:ci] indicates that c; is interpreted as a sign byte.
[exponent=8 bits] indicates that the exponent value is taken from the
last 8 bits of the string. If the data is in 9-bit bytes, the
exponent is bits 1-8 of C(n-1) If the data is in U4-bit bytes, the
exponent is the binary vgiue of the concatenation of C(p-2) and

¢(n-1)-

The decimal number as described above is the only decimal data item
defined. It may begin on any legal byte boundary (without regard to word
boundaries) and has a maximum extent of 63 bytes.

The processor handles decimal data as 4-bit bytes internally. Thus, 9-bit
bytes are high-order truncated as they are transferred from main memory and
high-order filled as they are transferred to main memory. The fill pattern is
"00011"b for digit bytes and "00010" for sign bytes. The floating-point
exponent is a special case and is treated as a fixed-point binary integer.

The processor performs validity checking on decimal data. Only the byte
values [0,11]8 are legal in digit positions and only the byte values [12,17]8
are legal in sign positions. Detection of an illegal byte value causes an
illegal Erocedure fault. The interpretation of decimal sign bytes is shown in
Table 2-4.

Table 2-4. Decimal Sign Character Interpretation

9-bit 4-bit

bytes bytes Interpretation
538(8) 138(b) .
558(8) 158(8) -
578 178 +

2-10 AL39

(a) This value is usad as the default sign byte for storage of results. The
preseace of other values will yield correct results according to the
interpretation.

(b) An optional control bit in the EIS decimal arithmetic instructions (see
Section 4) allows the selection of 13g for the plus sign byte for storage
of results in 4-bit data mode.

D2cimal Data Values

The operand descriptors for decimal data operands have a 6-bit fixed-point
binary integer field for specification of a scaling factor (3F). This scaling
factor has the same effect as the value of E in floating-point decimal operands;
a negative value moves the assumed decimal point to the 1l2ft; a positive value,
to the right. The use of the scaling factor extends the range and resolution of
decimal data operands. The range of the scaling factor is [-32,31]10. See
Table 2-5 for decimal data operand values.

Table 2-5. Decimal Data Values

Fixed-point Fixed-point Floating-point] Floating-point
Operand unsigned signed 9-bit 4-pbit
Arithmetic
minimum 0 o(a) o(a) ~ o(a) -
max inum (1063-1)x1037 [+(1002-1)x1037 |4(1007-1)x107584(1060-1)x10 158
resolution 1:sF(P) 1:sf(b) 1:£(0) 1:£(e)

(a) As in floating-point binary arithmetic, there is no unique represeatation
of the value z2ro except in the cass of fixed-point, unsigned data. Therefore,
the processor detects ?Zﬁero result and foreces a valus of +0. for fixed-point,
signed data and +9.x10 for floating-point data. Again, as in floating-point
binary arithmetic, other representations of the value zz2ro will be handled
correctly except for possible loss of precision durling operand alignment.

(b) A value cannot be given for resolution in these cases since such a value
depends on the value of the scaling fafjgf, SF. The notation used, 1:SF,
indicates resolution to 1 part ian 10'°F/, Thus, the following general
statement on resolution may be made:

The reso%ytion of a fixed-point decimal opzrand with scaling factor
SF is 107%.

(¢) A value cannot be given for resolution in these cases since such a value
depends on the value of exafyent, E. The notation used, 1:EZ, indicates
resolution to 1 part in 10 . Thus, the following general statement on
resolution may be made:

Th?psesolution of a floating-point decimal operand with, exponent E is
10 =7,

The scaling factor is ignored by the hardware.

11/85 2-11 AL39C

Alphanumeric Data

Alphanumeric data is represented in two modes; character-string and
bit-string. The mode is determined by the processor according to the function
being performed.

CHARACTER STRING DATA

Character string data is defined by imposing the character position
structure below on a U-bit, 6-bit, or 9-bit information unit of length n bytes
or characters.

soll er ll - Wl eca-n

where:
ey is the character in the ith character position.
“ indicates the concatenation operation.
The character string described above is the only character string data item

defined. It may begin on any legal character boundary (without regard to word
boundaries) and has a maximum extent as shawn in Table 2-6.

Table 2~6. Character String Data Length Limits

Character size Length limit
9-bit 1048576
6-bit 1572864
4-pbit 2097152

No interpretation of the characters is made except as specified for the
instruction being executed (see Section 4).

BIT STRING DATA

Bit string data is defined by imposing the bit position structure below on
a bit information unit of length n bits.

o ffoa lf ol oo

where:
b; is the value of the bit in the i*M position.

“ indicates the concatenation operation.

2-12 AL39

The bit string described above is the only bit string data item defined.
It may begin at any bit position (without regard to character or word
boundaries) and has a maximum extent of 9437184 bits.

2-13 AL39

SECTION 3

PROGRAM ACCESSIBLE REGISTERS

A processor register is a hardware assembly that holds information for use
in some specified way. An accessible register is a register whose contents are
available to the user for his purposes. Some accessible registers are explicitly
addressed by particular instructions, some are implicitly referenced during the
course of execution of instructions, and some are used in both ways. The accessible
registers are listed in Table 3-1. See Section 4 for a discussion of each
instruction to determine the way in which the registers are used.

Table 3-1. Processor Registers

Length
Register name Mnemonic (bits) Quantity
Accumulator Register A 36 1
Quotient Register - Q 36 1
Accumulator—QuotientuRegister(a) AQ 72 1
Exponent Register E 8 1
Exponent-Accumulator-Quotient Register(a) EAQ 80 1
Index Registers . o Xn 18 8
Indicator Register IR 14 1
Base Address Register . BAR] 18 1
Timer Register - TR 5 27 1
Ring Alarm Register i _ RALR - 3 1
Pointer Registers , PRn : 42 8
Address Registers ARn 24 8
Procedure Pointer Register(b) PPR 37 1
Temporary Pointer Register(b) TPR y2 1
Descriptor Segment Base Register _ DSBR 51 1
Segment Descriptor Word Associative Memory SDWAM 88 16
Page Table Word Associative Memory PTWAM 51 16
Fault Register FR 35 1
Mode Registenr : . MR 33 1
Cache Mode Register CMR 28 1
Control Unit (CU) History Register 72 16
Operations Unit (0U) History Register 72 16
Decimal Unit (DU) .-History Register 72 1 16
Appending Unit (APU) History Register 72 16
Configuration Switch Data 36. 5
Control Unit Data : 288 1
Decimal Unit Data 288" 1

(a) This register is not a separate physical assembly but is a combination of
its constituent registers. '

2/82 3-1 ’ AL39B

(b) This register is not explicitly addressable, but is included because of its
vital role nd DPS 8M"/ p p 980,982P -976,986P in instruction and operand
address preparation.

In the descriptions that follow, the diagrams given for register formats do
not imply that a physical assembly possessing the pictured bit pattern exists.
The diagram is a graphic representation of the form of the register data as it
appears in main memory when the register contents are stored or how data bits
must be assembled for loading into the register.

If the diagrams contain the characters "x" or "0", the values of the bits
in the positions shown are irrelevant to the register. Bits pictured as "x" are
not changed when the register is stored. Bits pictured as "0" are set to 0 when
the register is stored. Neither "x" bits or "O" bits are loaded into the register.

ACCUMULATOR REGISTER (A)

Format: -~ 36 bits
0 11 3
(1] 7 8 5
A-Upper ~ A-Lower
18 18

Figure 3-1. Accumulator Register (A) Format

Description:

A 36-bit physical register located in the operations unit.

Function:

Iﬁ'fixed-point binary instructions, holds operands and results.

In floating-point binary instructions, holds the most significant part of
the mantissa.

In shifting instructions, holds original data and shifted results.

In address preparation, may hold two logically independent word offsets,
A-upper and A-lower, or an extended range bit- or character-string length.

2/82 3-2 ’ AL39B

QUOTIENT REGISTER (Q)

Format: - 36 bits
0 11 3
[0} 7.8)
Q-Upper Q-Lower
18 18

Figure 3-2. Quotient Register (Q) Format

Description:

A 36-bit physical register located in the operations unit.

Function:

In fixed-point binary instructioﬁs, holds operands and results.

In floating-point binary instructions, holds the least significant part of
the mantissa.

In shifting instructions, holds original data and shifted results.

In address preparation, may hold two logically independent word offsets,
Q-upper and Q-lower, or an extended range bit- or character-string length.

ACCUMULATOR-QUOTIENT REGISTER (4Q)

Format: - 72 bits
0 33 7
0 6 1
Even Word 0dd Word
36 36

Figure 3-3. Accumulator-Quotient Register (AQ) Format

Description:

A combination of the accumulator (A) and quotient (Q) registers.

2/82 3-3 AL39B

Function:
In fixed-point binary instructions, holds double-precision operands and
results.
In floating-point binary instructions, holds the mantissa.

In shifting instructions, holds original data and shifted results.

EXPONENT REGISTER (E)

Format: - 8 bits
0 00 3
0 78 5
exponent 000000000000000000000000O0O0O00OQ
a 25

Figure 3-4. Exponent Register (E) Format

Description:

An 8-bit physical register located in the operations unit.

Function:

In floating-point binary instructions, holds the exponent.

EXPONENT-ACCUMULATOR-QUOTIENT REGISTER (EAQ)

Format: -~ 80 bits
0 00 7
[0} 7.8 1
exponent mantissa
6l

Figure 3-5. Exponent-Accumulator-Quotient Register (EAQ) Format

Description:

A combination of the exponen£ (E), accumulator (A), and quotient (Q) registers. .
Although the combined register has a total of 80 bits, only 72 are involved

2/82 ' 3-8 | AL39B

in transfers to and from main memory. The 8 low-order bits are discarded
on store and zero-filled on load.

Function:

In floating-point binary instructions, holds operands and results.

INDEX REGISTERS (Xn)

Format: - 18 bits each

18

Figure 3-6. 1Index Register (Xn) Format

Description:

Eight 18-bit physical registers in the operations unit numbered O through
7. Index register data may occupy the position of either an upper or lower
18-bit half-word operand (see Section 2).

Function:

In fixed-point binary instructions, hold half-word operands and results.

In address preparation, hold word offsets or extended range bit- or
character-string lengths.

INDICATOR REGISTER (IR)

Format: - 14 bits
0 1112222222222333 3
0 7 89 0123485867894012 5

X XX X XXX XXX XXX XX X x xfafblcldijelflgihlililklliminjod0 0 O

1111111111111 11 4

Figure 3-7. 1Indicator Register (IR) Format

2/82 3-5 AL39B

Description:

An assemblage of 15 indicator flags from various units of the processor.
The data occupies the position of a lower 18-bit half word operand (see
Section 2). When interpreted as data, a bit value of 1 corresponds to the
ON state of the indicator, a bit value of 0 corresponds to the OFF state.

Function:

The functions of the individual indicator bits are given below. An "x" in
the column headed "L" indicates that the state of the indicator is not
affected by instructions that load the IR.

key L Indicator name Action
a Zero This indicator is set ON whenever the output

of the main binary adder consists entirely of
zero bits for binary or shifting instructions
or the output of the decimal adder consists
entirely of zero digits for decimal
instructions; otherwise, it is set OFF.

b Negative This indicator is set ON whenever the output
of bit 0 of the main binary adder has value 1
for binary or shifting instructions or the
sign character of the result of a decimal
instruction is the negative sign character;
otherwise, it is set OFF.

c Carry This indicator is set ON for any of the following
conditions; otherwise, it is set OFF.

(1) 1If a bit propagates leftward out of bit
0 of the main binary adder for any binary
or shifting instruction.

(2) 1If |va1ue1| =< |va1ue2| for a decimal
numeric comparison instruction.

(3) If chart =< char2 for a decimal
alphanumeric compare instruction.

d Overflow This indicator is set ON if the arithmetic
range of a register is exceeded in a fixed-point
binary instruction or if the target string of
a decimal numeric instruction is too small to
hold the integer part of the result. It remains
ON until reset by the Transfer On Overflow
(tov) instruction or is reset by some other
instruction that loads the IR. The event that
sets this indicator ON may also cause an overflow
fault. (See overflow mask indicator below.)

e - Exponent overflow This indicator is set ON if the exponent of
the result of a floating-point binary or decimal
numeric instruction is greater than +127. It
remains ON until reset by the Transfer On
Exponent Overflow (teo) instruction or is reset
by some other instruction that loads the IR.
The event that sets this indicator ON may also
cause an overflow fault. (See overflow mask
indicator below.)

2/82 3-6 AL39B

2/82

key L Indicator name

f

g

h

i

k

Exponent underflow

Overflow mask

Tally runout

Parity error

Parity mask

x Not BAR mode

Action

This indicator is set ON if the exponent of
the result of a floating-point binary or decimal
numeric instruction is less than -128. It
remains ON until reset by the Transfer On
Exponent Underflow (teu) instruction or is reset
by some other instruction that loads the IR.
The event that sets this indicator ON may also
cause an overflow fault. (See overflow mask
indicator below.)

This indicator is set ON or OFF only by the
instructions that load the IR. When set ON,
the IR inhibits the generation of the fault
for those events that normally cause an overflow
fault. If the overflow mask indicator is set
OFF after occurrence of an overflow event, an
overflow fault does not occur even though the
indicator for that event is still set ON.
The state of the overflow mask indicator does
not affect the setting, testing, or storing
of any other indicator.

This indicator is set OFF at initialization
of any tallying operation, that is, any repeat
instruction or any indirect then tally address
modification. It is then set ON for any of
the following conditions:

(1) If any repeat instruction terminates
because of tally exhaust.

(2) If a Repeat Link (rpl) instruction
terminates because of a zero link address.

(3) If a tally exhaust is detected for an

indireet then ' tally modifier. The
instruction is executed whether or not
tally exhaust occurs.

(4) If an EIS string scanning instruction
reaches the end of the string without
finding a match condition.

This indicator is set ON whenever a system
controller signals illegal action with a parity
error code or the processor detects an internal
parity error condition.- The indicator is set
OFF only by instructions that load the IR.

This indicator is set ON or OFF only by the
instructions that load the IR and is changed
only when the processor is in privileged or
absolute mode. When it is set ON, the IR
inhibits the generation of the parity fault
for all events that set’ the parity error
indicator. If the parity mask indicator is
set OFF after the occurrence of a parity error
event, a parity fault does not occur even though
the parity error indicator may still be set
ON. The state of the parity mask indicator
does not affect the loading, testing, or storing
of any other indicator.

This indicator is set OFF (placing the processor
in BAR mode) only by execution of the Transfer

3-7 AL39B

2/82

key L Indicator name

1 Truncation

m Mid instruction
interrupt fault

n X Absolute mode

o Hex mode

Action

and Set Slave (tss) instruction or by the operand
data of the Restore Control Unit (rcu)
instruetion and 1is changed only when the
processor is in privileged or absolute mode.
It is set ON (taking the processor out of BAR
mode) by the execution of any transfer
instruction other than tss during a fault or
interrupt trap. (See Section 7.) If a fault
or interrupt trap occurs while in BAR mode
and the IR is stored before any transfer occurs,
then a Return (ret) or Restore Control Unit
(rcu) instruction that reloads the stored data
will return the processor to BAR mode.

This indicator is set ON whenever the target
string of a decimal numeric instruction is
too small to hold all the digits of the result
or the target string of an alphanumeric
instruction is too small to hold all the bits
or characters to be stored. (Also see the
overflow indicator for decimal numeric
instructions.) The event that sets this
indicator ON may also cause an overflow fault.
(See overflow mask indicator above.)

This indicator is set OFF at the start of
execution of each instruction and is set ON
by the events described below. The indicator
has meaning only when determining the proper
restart sequence for the interrupted
instruction. This indicator can be set on:

(1) By any fault during execution of an EIS
instruction; however, the state 1is
safe-stored in the Control Unit Data only
for access violation and directed faults.

(2) By an interrupt signal during execution
of those EIS instructions that allow very
long operand strings.

(3) If the processor is in absolute or
privileged mode, by the execution of a
Load Indicator Register (1di), Return
(ret), or Restore Control Unit (rcu)
instruction with bit 30 set to 1 in the
IR data.

This indicator is set ON (placing the processor
in absolute mode) when the processor is
initialized and by execution of an nonappended
transfer instruction during a fault or interrupt
trap and is set OFF (placing the processor in
append mode) by any execution of an appended
transfer instruction. If the processor is not
in absolute mode when the fault or interrupt
occurs and the transfer instruction is Return
(ret) or Restore Control Unit (recu) and the
appropriate mode bit is properly set in the
IR data, the processor remains in its current
mode.

When the hexadecimal permission indicator (bit

33 of the Mode Register) is set on and this
indicator is also on, then the exponent of a

3-8 AL39B

floating point number has a power of 16 rather
than a power of two (binary floating point).
The state of the hex mode indicator can be
changed by executing a Load TIndicator Register
(1di), Return (ret), or Restore Control Unit
(rcu), instruction with the desired state (1
or 0) set in bit 32 of the IR data. Hexadecimal
mode is only available on DPS 8M processors.
Indicator Register bit 32 is set to a zero
value on DPS/L68 processors

BASE ADDRESS REGISTER (BAR)

Format: - 18 bits
0 00 11 3
0 8 9 7 8 5
BASE BOUND X X X X XX X X X XXX X XX XXX
9 9 18

Figure 3-8. Base Address Register (BAR) Format

Description:

An 18-bit physical register in the control unit.

Function:

The Base Address Register provides automatic hardware Address relocation
and Address range limitation when the processor is in BAR mode.

BAR.BASE Contains the 9 high-order bits of ~an 18-bit address
relocation constant. The low-order bits are generated
as zeros. : v

BAR.BOUND Contains the 9 high-order bits of the unrelocated addréss'

limit. The low-order bits are generated as zeros. An

" attempt to access main memory beyond this limit causes
a store fault, out of bounds. A value of 0 is truly O,
indicating a null memory range.

2/82 ‘ 3-9 AL39B

TIMER REGISTER (TR)

Format: - 27 bits
0 2 2 3
4] 6 7 oY
Timer value 000000C0O0O0
27 9

Figure 3-9. Timer Register (TR) Format

Description:

A 27-bit settable, free-running clock in the control unit. The value decrements
at a rate of 512 kHz. Its range is 1.953125 microseconds to approximately
4,37 minutes.

Function:

The TR may be loaded with any convenient value with the privileged Load
Timer (1dt) instruction. When the value next passes through zero, a timer
runout fault is signalled. If the processor is in normal or BAR mode with
interrupts not inhibited or is stopped at an uninhibited Delay Until Interrupt
Signal (dis) instruction, the fault occurs immediately. If the processor
is in absolute or privileged mode or has interrupts inhibited, the fault is
delayed until the processor returns to uninhibited normal or BAR mode or
stops at an uninhibited Delay Until Interrupt Signal (dis) instruction.

RING ALARM REGISTER (RALR)

Format: - 3 bits
0 33 3
Q ' 2 2.

0000000000000O00COOOOOOOOOOOOOOOOOOO O] RALR
33 3

Figure 3-10. Ring Alarm Register (RALR) Format

Description:

A 3-bit physical register in the appending unit.

2/82 3-10 - AL39B

Function:

If the RALR contains a value other than zero and the effective ring number
(see TPR.TRR below) is greater than or equal to the contents of the RALR
and the instrucuction for which an absolute main memory address 1is being
prepared is a transfer instruction, an access violation, ring alarm, fault
occurs. Operating system software may use this register to detect crossings
from inner rings to outer rings.

POINTER REGISTERS (PRn)

Format: - 42 bits each

Even word of ITS pointer pair

0 00 11 2 2 2 3 3
0 2.3 7.8 0 1 9.0 2
000 SNR RNR JOOOOOOOO0O (43)8
3 15 3 9 6
0dd word of ITS pointer pair
3 55 55 66 66 7
9 3.4 6 7. 2.3 5 6 1
WORDNO 000 BITNO 000 (TAG)
B3 3 T
Data as stored by Store Pointer Register n ?acked (sprpn)
0 00 11 3
Q. 5 6 7.8 5
BITNO : SNR WORDNO

Figure 3-11. Pointer Register (PRn) Format

Description:

Eight combinations of physical registers from the appending unit and decimal
unit numbered 0 through 7. PRn.RNR, PRn.SNR, and PRn.BITNO are located in
the appending unit and PRn.WORDNO is located in the decimal unit. . The
WORDNO registers also form part of the address registers discussed later in
this section.

2/82 . 3-11 AL39B

Funection:

The pointer registers hold information relative to the location in main
memory of data items that may be external to the segment containing the
procedure being executed. The functions of the individual constituent

registers are:

Register
PRn.SNR

PRn.RNR
(43)g
PRn.WORDNO

PRn.BITNO

(TAG)

ADDRESS REGISTERS (ARn)

Format: - 24 bits each

Function

The segment number of the segment containing the data
item described by the pointer register.

The final effective ring number value calculated during
execution of the instruction that last loaded the PR.

This field is not part of the PR but is generated each
time the PR is stored as an ITS pair.

The offset in words from the base or origin of the
segment to the data item.

The number of the bit within PRn.WORDNO that is the
first bit of the data item. Data items aligned on word
boundaries always have the value 0. Unaligned data items
may have any value in the range [1,35].

This field is not part of the PR but, in an ITS pointer
pair, holds an address modifier for use in address
preparation.

Data as stored by Store Address Register n (sarn)

0 1112 2 2 3
Q 7. 890 34 2
WORDNO a BITNGC JO OO0 0O0O0O00O0O00O

Figure 3-12. Address Register (ARn) Format

Description:

Eight combinations of physical registers from the decimal unit numbered O
through 7. The WORDNO registers also form part of the pointer registers
discussed earlier in this section.

Function:

The address registers hold information relative to the location in main
memory of the next bit, character, or byte of an EIS operand to be processed

2/82

3-12 AL39B

by an EIS instruction. The functions of the individual constituent registers

key Register Function

ARn.WORDNO The offset in words relative to the current addressing
base referent (segment origin, BAR.BASE, or absolute 0
depending on addressing mode) to the word containing
the next data item element.

ARn.CHAR The number of the 9-bit byte within ARn.WORDNO containing
the first bit of the next data item element.

ARn.BITNO The number of the bit within ARn.CHAR that' is the first
bit of the next data item element.

NOTE: The reader's attention is directed to the presence of two bit number

registers, PRn.BITNO and ARn.BITNO. Because the Multics processor was
implemented as an enhancement to an existing design, certain apparent
anomalies appear. One of these is the difference in the handling of
unaligned data items by the appending unit and decimal unit. The
decimal unit handles all unaligned data items with a 9-bit byte number
and bit offset within the byte. Conversion from the description given
in the EIS operand descriptor is done automatically by the hardware.
The appending unit maintains compatibility with the earlier generation
Multiecs processor by handling all unaligned data items with a bit
offset from the prior word boundary; again with any necessary conversion
done automatically by the hardware. Thus, a pointer register, PRi,
may be loaded from an ITS pointer pair having a pure bit offset and
modified by one of the EIS address register instructions (alibd, s9bd,
ete.) using character displacement counts. The automatic conversion
performed ensures that the pointer register, PRi, and its matching
address register, ARi, both describe the same physical bit in main
memory.

SPECIAL NOTICE: The decimal unit has built-in hardware checks for illegal bit

2/82

offset values but the appending unit does not except for a single
case for packed pointers. See NOTES for Load Packed Pointers
(1prpn) in Section 4.

3-13 AL39B

PROCEDURE POINTER REGISTER (PPR)

Format: - 37 bits

Shown as part of word 0 of control unit data

0 00 11
Q.0 7 8

PRR PSR P}<----0Other control unit data---->
3 15 1

Shown as part of word 4 of control unit data

IC L Other control unit data----- >

18

Figure 3-13. Procedure Pointer Register (PPR) Format

Description:

A combination of physical registers from the appending unit and the control
unit. PPR.PRR, PPR.PSR, and PPR.P are located in the appending unit and
PRR.IC is located in the control unit.- The PPR is not explicitly addressable
but its data 1s extracted and stored as part of the data stored with the
Store Control Unit (scu) and Store Control Double (sted) instructions. It
is loaded from the control unit data with the Restore Control Unit (rcu)
instruction.

Function:

2/82

The Procedure Pointer Register holds information relative to the location
in main memory of the procedure segment in execution and the 1location of
the current instruction within that segment. The functions of the individual
constituent registers are:

Register Function
PPR.PRR The number of the ring in which the process is executing.

It is set to the effective ring number of the procedure
segment when control is transferred to the procedure.

PPR.PSR The segment number of the procedure being executed.

PPR.P A flag controlling execution of privileged instructions.
Its value 1is 1 (permitting execution of privileged
instructions) if PPR.PRR is 0 and the privileged bit in
the segment “descriptor word (SDW.P) for the procedure
is 1; otherwise, its value is 1.

3-14 AL39B

PPR.IC The word offset from the origin of the procedure segment
to the current instruction.

TEMPORARY POINTER REGISTER (TPR)

Format: - 42 bits

Shown as part of word 2 of control unit data

0 00 1
0] 2.3 7

TRR TSR {ommm Other control unit data----- >
3 15

Shown as part of word 3 of control unit data

3 3
0 >
e Other control unit data------=-——c-ccceeweao > TBR
6
Shown as part of word 5 of control unit data
0 1
i
CA K- Other control unit data----- >
18

Figure 3-14. Temporary Pointer Register (TPR) Format

Description:

A combination of physical registers from the appending unit and the control
unit. TPR.TRR, TPR.TSR, and TPR.TBR are located in the appending unit and
TPR.CA is located in the control unit. The TPR is not explicitly addressable
but its data is extracted and stored as part of the data stored with the
Store Control Unit (scu) instruction. It is loaded from the control unit
data with the Restore Control Unit (rcu) instruction.

Function:

The temporary pointer register holds the current virtual address used by
the processor in performing address preparation for operands, indirect words,
and instructions. At the completion of address preparation, the contents
of the TPR is presented to the appending unit associative memories for

N
~N.
o}
N

3-15 AL39B

translation into the 24-bit absolute main memory address. The functions of
the individual constituent registers are:

Register
TPR.TRR

TPR.TSR

TPR.TBR

TPR.CA

Function

The current effective ring number (see Section 8).
The current effective segment number (see Section 8).

The current bit offset as calculated from ITS and ITP
pointer pairs. (See Section 8.)

The current computed address relative to the origin of
the segment whose segment number is in TPR.TSR. (See
Section 8.) .

DESCRIPTOR SEGMENT BASE REGISTER (DSBR)

Format: - 51 bits

Even word of Y-pair as stored by Store Descriptor Base Register (sdbr)

0 22 3

0 3.4 5

ADDR 000000000000

24 12

0dd word of Y-pair as stored by Store Descriptor Base Register (sdbr)

33 55 555 56 7

6.7 0 1 4 5 6 9 0 1
0 BND 0oo0o ojufoo oo} STACK

1 14 L 12

Figure 3-15.

Description:

Descriptor Segment'Base Register (DSBR) Format

A physical register in the appending unit.

2/82

3-16 : ' AL39B

Function:

2/82

The Descriptor Segment Base Register contains information concerning the
descriptor segment being used by the processor. The descriptor segment
holds the segment descriptor words (SDWs) for all segments accessible by
the processor, that is, the currently defined virtual address space. The
functions of its individual constituent registers are:

.

Register Function
DSBR.ADDR If DSBR.U = 1, the 24-bit absolute main memory address

of the origin of the current descriptor segment; otherwise,
the 2U4-bit absolute main memory address of the page
table for the current descriptor segment.

DSBR.BND The 14 most significant bits of the highest Y-block16
: address of the descriptor segment that can be addressed
without causing an access violation, out of segment bounds,

fault.

DSBR.U A flag specifying whether the descriptor segment is unpaged
(U = 1) or paged (U = 0).

DSBR.STACK The upper 12 bits of the 15-bit stack base segment number.
It is used only during the execution of the callb
instruction. (See Section 8 for a discussion of generation
of the stack segment number.)

3-17 AL39B

SEGMENT DESCRIPTOR WORD ASSOCIATIVE MEMORY (SDWAM) - DPS/L68 and DPS 8M

Format: - 88 bits each

Even word of Y-pafrs as stored by Store Segment Descriptor Ragisters (ssdr)

0 22 22 23 33 3
0 34 67 90 23 5
ADDR R1] R2| R3j0oo00

24 3 3 3 3

0dd word of Y-pairs as stored by Store Segment Descriptor Registers (ssdr)

33 555555555 7
6 7 0 12345671738 1
0 BOUND RIEJWiPJU]JG]C CL
1 1111117 T3
Data as stored by Store Segment Descriptor Pointers (ssdp)
0 11 2222333 3
0 4 5 6789012 5
0 OJUSE L68
POINTER 000000O0CO0OO0OO0OO)JFJOO
USE DPS 8M
15 T2 1 2 2 }

Figure 3-16. Segment Descriptor Word Associative Memory (SDWAM) Format
DPS/L68 and DPS &M

Description:

A combination of 16 registers and flags from the appending unit constitute
the Segment Descriptor Word Associative Memory (3SDWAM). The registers are
numbered consecutively from O through 15 but are not explicitly addressable
by number.

For the DPS/L68 processors, the SDW associative memory will hold the 16
most recently used (MRU) SDWs and have a full associative organization with
least recently used (LRU) replacement.

For the DPS 8M processor, the SDW associative memory will hold the 64 MRU
SDAs and have a 4-way set associative organization with LRU replacement.

Function:

Hardware segmentation in the processor 1is implemented by the appending
unit (see Section 5). In order to permit addressing by segment number
gnd offset as prepared in the temporary pointer register (described

11/85 3-18 AL39C

earlier), a table containing the location and status of each accessible
segment must be kept. This table is the descriptor segment. The descriptor
segment is located by information held in the descriptor segment base register
(DSBR) described earlier.

Every time an effective segment number (TPR.TSR) is prepared, it is used as
an index into the descriptor segment to retrieve the segment descriptor
word (SDW) for the target segment. To reduce the number of main memory
references required for segment addressing, the SDWAM provides a content
addressable memory to hold the sixteen most recently referenced SDUWs.

Whenever a reference to the SDW for a segment is required, the effective
segment number (TPR.TSR) is matched associatively against all 16 SDWAM.POINTER
registers (described below). If the SDWAM match logic circuitry indicates
a hit, all usage counts (SDWAM.USE) greater than the usage count of the
register hit are decremented by one, the usage count of the register hit is
set to 15, and the contents of the register hit are read out into the
address preparation circuitry. If the SDWAM match logic does not indicate
a hit, the SDW is fetched from the descriptor segment in main memory and
loaded into the SDWAM register with usage count 0 (the oldest), all usage
counts are decremented by one with the newly loaded register rolling over
from 0 to 15, and the newly loaded register is read out into the address
preparation circuitry. Faulted SDWs are not loaded into the SDWAM.

The functions of the constituent registers and flags of each SDWAM register
areas follows:

Register Function
SDWAM.ADDR The 24-bit absolute main memory address of the page

table for the target segment if SDWAM.U = 0; otherwise,
the 24-bit absolute main memory address of the origin
of the target segment.

SDWAM.R1 Upper limit of read/write ring bracket (see Section 8).

SDWAM.R2 Upper limit of read/execute ring bracket (see Section
8). :

SDWAM.R3 Upper limit of call ring bracket (see Section 8).

SDWAM.BOUND The 14 high-order bits of the last Y-block16 address

within the segment that can be referenced without an
access violation, out of segment bound, fault.

SDWAM.R Read permission bit. If this bit is set ON, read access
requests are allowed.

SDWAM.E - Execute permission bit. If this bit is set ON, the SDW
may be loaded into the procedure pointer register (PPR)
and instructions fetched from the segment for execution.

SDWAM.W Write permission bit. If this bit is set ON, write
access requests are allowed.

SDWAM.P Privileged flag bit. If this bit is set ON, privileged
instructions from the segment may be executed if PPR.PRR
is 0.

SDWAM.U , Unpaged flag bit. If this bit is set ON, the segment

is unpaged and SDWAM.ADDR is the 24-bit absolute main
memory address of the origin of the segment. If this
bit is set OFF, the segment is paged and SDWAM.ADDR is
the 24-bit absolute main memory address of the page
table for the segment.

3-19 AL39B

Register

SDWAM.G

SDWAM.C

SDWAM.CL

SDWAM.POINTER

SDWAM.F

SDWAM.USE

Function

Gate control bit. If this bit is set OFF, calls and
transfers into the segment must be to an offset no greater
than the value of SDWAM.CL as described below.

Cache control bit. If this bit is set ON, data and/or
instructions from the segment may be placed in the cache
memory.

Call limiter (entry bound) value. If SDWAM.G is set
OFF, transfers of control into the segment must be to
segment addresses no greater than this value.

The effective segment number used to fetch this SDW
from main memory.

Full/empty bit. If this bit is set ON, the SDW in the
register is valid. If this bit is set OFF, a hit is
not possible. A1l SDWAM.F bits are set OFF by the
instructions that clear the SDWAM.

Usage count for the register. The SDWAM.USE field is
used to maintain a striet FIFO queue order among the
SDWs. When an SDW is matched, its USE value is set to
15 (newest) on the DPS/L68 and to 63 on the DPS 8M, and
the queue is reordered. SDWs newly fetched from main
memory replace the SDW with USE value 0 (oldest) and
the queue is reordered.

l PAGE TABLE WORD ASSOCIATIVE MEMORY (PTWAM) - DPS/L68 and DPS 8M

Format: - 51 bits each

Data as stored by Store Page Table Registers (sptr)

fO N
O W
w

11 2
7.8 8

ADDR

0000000O0OOOOIMJOOOO0OO

18 111 6

Data as stored by Store Page Table Pointers (sptp)

0 11 2222333 3
(0] 4 5 6 7890 12 5

0 OJUSE L68

POINTER PAGENO Fjo o

USE DPS 8M

15 12 1 2 2 4
Figure 3-17. Page Table Word Associative Memory (PTWAM) Format
DPS/L68 and DPS 8M
2/82 3-20 AL39B

Descrigtidn:

A combination of 16 registers and flags from the appending unit constitute the
Page Table Word Associative Memory (PTWAM). The registers are numbered
consecutively from 0 through 15 but are not explicitly addressable by number.

For the DPS/L68 processors, the PTW associative memory will hold the 16 most
recently used (MRU) PTWs and have a full associative organization with least
receantly used (LRU) replacement.

For the DPS 8M processors, the PTW associative memory will hold the 64 MRU PTWs
and have a d-way set associative organization with LRU replacement.

ion:

Funct

11/85

Hardware paging in the Multics processor is implemented by the appending unit
(see Section 5 for details). 1In order to permit segment addressing by page
number and page offset as derived from the computed address prepared in the
temporary pointer register (TPR.CA described above), a table containing the
location and status of esach page of an accessible segment must be kept. This
table is the page table for the segment. The page table for an accessible paged
segment is located by information held in the segment descriptor word (SDW) for
the segment.

Every time a computed address (TPR.CA) for a paged segment is prepared, it is
separated into a page number and a page offset. The page number is used as an
index into the page table to retrieve the page table word (PTW) for the target
page. To reduce the number of main memory references required for paging, the
PTWAM provides a content addressable memory to hold the 16 most recently
referenced PTWs.

Whenever areference to the PTW for a page of a paged segment is required, the page
number (as derived from TPR.CA) is matched associatively against all 16
PTWAM.PAGENO registers (described below) and, simultaneously, TPR.TSR is
matched against PTWAM.POINTER (described below). If the PTWAM match logic
circuitry indicates a hit, all usage counts (PTWAM.USE) greater than the usage
count of the register hit are decremented by one, theusage count of theregister
hit is set to 15, and the contents of the register hit are read out into the
address preparation circuitry. If the PTWAMmatch logic does not indicate a hit,
the PTW is fetched from main memory and loaded into the PTWAMregister with usage
count 0 (the oldest), all usage counts are decremented by one with the newly
loaded register rolling over from 0 to 15, and the newly loaded register is read
out into the address preparation circuitry. Faulted PTWs are not loaded into the
PTWAM.

3-21 AL39C

2/82

The functions of the constituent registers and flags of each PTWAM register
are: (See Section 8 for additional details.)

Register
PTWAM.ADDR

PTWAM.M

PTWAM.POINTER

PTWAM.PAGENO -

PTWAM.F

PTWAM.USE

Function

The 18 high-order bits of the 24-bit absolute main memory
address of the page. The hardware ignores low-order
bits of this page address according to page size based
on the following:

Page size ADDR bits

in words ignored
64 none
128 17
256 16-17
512 15-17
1024 1417
2048 13-17
4096 12-17

Page modified flag bit. This bit is set ON whenever
the PTW is used for a store type instruction. When the
bit changes value from O to 1, a special extra cycle is
generated to write it back into the PTW in the page
table in main memory.

~The -effective segment number used to fetch this PTW

from main memory.

The 12 high-order bits of the 18-bit computed address
(TPR.CA) wused to fetch this PTW from main memory.
Low-order bits are forced to zero by the hardware and
not used as part of the page table index according to
page size based on. the following:

Page size PAGENO bits

in words forced
none

128 11
256 10-11
512 - 09-11
1024 08-11
2048 07-11
4096 06-11

Full/empty bit. TIf this bit is set ON, the PTW in the
register is valid. If this bit is set OFF, a hit is
not possible. All PTWAM.F bits are set OFF by the
instructions that clear the PTWAM.

Usage count for the register. The PTWAM.USE field is
used to maintain a strict FIFO queue order among the
PTWs. When an PTW is matched its USE value is set to
15 (newest) on the DPS/L68 and to 63 on the DPS 8M, and
the queue is reordered. PTWs newly fetched from main
memory replace the PTW with USE value 0 (oldest) and
the queue is reordered.

3-22 AL39B

FAULT REGISTER (FR) - DPS/L68

Format: - 72 bits

Even word of Y-pair as stored by Store Central Processor Register (scpr),
TAG = 01

0oo0oo000O0OO0OO0OOCGOTTTI?TIT 11 12 2 2 22 33333
0 123485 67890123456 9.0 3. 4 7.8 1.2.3 4 5
ajbicldjelfiegljhli]ljtklliminfo}o0 IAA IAB IAC IAD " {plalris

T 1111111111711 711 4 [y 411 11

0dd word of Y-pair as stored by Store Central Processor Register (scpr),
TAG = 01

3 7
6 1

000000000000O00D0D0D0OO00OO0D0O0000OO0OO0OO0O0O00OOOODODO
36

Figure 3-18. Fault Register (FR) Format - DPS and L68

Description:

A combination of flags and registers all located in the control unit. The
register is stored and cleared by the Store Central Processor Register
(scpr), TAG = 01, instruction. Note that the data is stored into the word
pair at location Y. The Fault Register cannot be loaded.

Function:

The Fault Register contains the conditions in the processor for several of
the hardware faults. Data is strobed into the Fault Register during a
fault sequence. Once a bit or field in the Fault register is set, it
remains set until the register is stored and cleared. The data is not
overwritten during subsequent fault events.

The functions of the constituent flags and registers are:

Flag or
key register Function
a ILL OP " An illegal operati&n code has been detected.
b ILL MOD An illegal address modifier has been detected.
¢ ILL SLV An illegal BAR mode procedure has been encountered.
d ILL PROC An illegal procedure other than the three above has

been encountered.

2/82 . 3-23 AL39B

Flag or
register

NEM
00B
ILL DIG

PROC PARU
PROC PARL

$CON
$CON

a W o=

$CON
$CON D

DA ERR1

DA ERR2

IAA
IAB
IAC
IAD

CPAR DIR

CPAR STR
CPAR IA

CPAR BLK

Function

A nonexistent main memory address has been requested.
A BAR mode boundary violation has occurred.

An illegal decimal digit or sign has been detected by
the decimal unit.

A parity error has been detected in the upper 36 bits
of data. '

A parity error has been detected in the lower 36 bits
of data.

A $CONNECT signal has been received through port A.

A $CONNECT signal has been received through port B.

A $CONNECT signal has been received through port C.

A $CONNECT signal has been received through port D.
Operation not complete. Processor/system controller
interface sequence error 1 has been detected.
($DATA-AVAIL received with no prior $INTERRUPT sent.)
Operation not completé. Processor/system controller
interface sequence error 2 has been detected. (Multiple
$DATA-AVAIL received or $DATA-AVAIL received out of
order.)

Coded illegal action, port A. (see Table 3-2)

Coded illegal action, port B. (See Table 3-2)

Coded illegal action, port C. (See Table 3-2)

Coded illegal action, port D. (See Table 3-2)

A parity error has been detected in the cache memory
directory.

A data parity error has been detected in the cache memory.
An illegal action has been received from a system
controller during a store operation with cache memory
enabled. This implies that the data are correct in
cache memory and incorrect in main memory.

A cache memory parity error has occurred during a cache
memory data block load.

3-24 - AL39B

Table 3-2. System Controller Illegal Action Codes

Code Priority Fault Reason

00 - No illegal action

01 - Command Unassigned

02 05 Store Nonexistent address

03 01 Command Stop on condition

oy - Command Unassigned

05 12 Parity Data parity, store unit to system controller
06 1 Parity Data parity in store unit :

07 10 Parity Data parity in store unit and

store un%t to system controller

10 04 Command | Not control(2)

11 13 Command Port not enabled

12 03 ~ Command Illegal command

13 o7 Store Store unit not ready

14 02 Parity Zone-address-command parity,

processor to system controller
15 06 Parity Data parity, processor to system controller
16 08 - Parity Zone-address-command parity,
system controller to store unit
17 09 Parity Data parity, system controller to store unit

(a) This illegal action code not relevant to later model system controllers.

FAULT REGISTER (FR) - DPS 8M

Format: - 72 bits

Even word of Y-pair as stored by Store Control Processor Register (scpr),
TAG = 01

00000O0OOOO1TTI1TI1T1 11 1.2 22 22 33333
Q 1 23 4567890123145 6 9.0 3.4 7 8 1.2.3.4 5
alblecldielf]gihlijjilk]lim]njo}oO IAA IAB IAC IAD plajris

T1 111111711111 17171 T i T T 1111

0dd word of Y-pair. is stored by Store Control Processor Register (scpr),
TAG = 01

333344444444y 7
6. 7890121345678 1
tfulv]w]x]ylz]A]BJCIDJEJFJ0 0 000000 00000000000000O00O

25

Figure 3-19. Fault Register (FR) Format - DPS 8M

2/82 - 3-25 AL39B

Function:

The Fault Register contains the conditions in the processor for several of
the hardware faults on the DPS 8M CPU and cache directory buffer overflows.
Data is strobed into the Fault Register during a fault or buffer overflow

fault sequence.

Once a bit or field in the Fault Register is set, it

remains set until the register is stored and cleared. The data is not
overwritten during subsequent fault events.

The functions of the constituent flags and registers are:

An illegal operation code has been detected.
An illegal address modifier has been detected.
An illegal BAR mode procedure has been encountered.

An illegal procedure other than the three above has
been encountered.

A nonexistent main memory address has been requested.
A BAR mode boundary violation has occurred.

An illegal decimal digit or sign has been detected by
the decimal unit.

A parity error has been detected in the upper 36 bits
A parity error has been detected in the lower 36 bits

A $CONNECT signal has been received through port A.

A $CONNECT signal has been received through port B.

A $CONNECT signal has been received through port C.

A $CONNECT signal has been received through port D.
Operation not complete. Processor/system controller
interface sequence error 1 has been detected.
($DATA-AVAIL received with no prior $INTERRUPT sent.)
Operation not completed. Processor/system controller
interface sequence error 2 has been detected. (Multiple
$DATA-AVAIL received or $DATA-AVAIL received out of
Coded illegal action, port A. (See Table 3-2)

Coded illegal action, port B. (See Table 3-2)

Coded illegal action, port C. (See Table 3-2)

Coded illegal action, port D. (see Table 3-2)

A parity error has been detected in the cache memory

Flag or
key register Fault Function
a ILL OP IPR
b ILL MOD IPR
¢ ILL SLV IPR
d ILL PROC TIPR
e NEM ONC
f O0O0B STR
b ILL DIG IPR
h PROC PARU PAR
of data.
i PROC PARL PAR
of data.
J $CON A CON
k $CON B CON
1 $CON C CON
m $CON D CON
n DA ERR1 ONC
o DA ERR2 ONC
order.)
TAA
IAB
IAC
IAD
p CPAR DIR None
~directory.
PAR

g CPAR STR

2/82

A data parity error has been detected in the cache
memory. :

3-26 AL39B

Flag or
key register Fault

Function

r CPAR TIA PAR

s CPAR BLK PAR

None
None
None
None

540

None

b

None

<

None
None
None
None
None

None

s} [z} o QWP N

None

An illegal action has been received from a system
controller during a store operation with cache memory
enabled. This implies that the data are correct in
cache memory and incorrect in main memory.

A cache memory parity error has occurred during a cache
memory data block load.

Cache Duplicate Directory WNO Buffer Overflow
Port
Port
Port
Port

OQawe

Cache Primary Directory WNO Buffer Overflow
Write Notify (WNO) Parity Error on Port A, B, C, or D.
Cache Duplicate Directory Parity Error
Level O
Level 1
Level 2
Level 3
Cache Duplicate Directory Multiple Match
A parity error has been detected in the SDWAM.

A parity error has been detected in the PTWAM.

MODE REGISTER (MR) - DPS and L68

Format: - 33 bits

Even word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 06
0 1111112222222222333333
0 45 67890 123 45678901 22731405
' OPCODE .
FFV Ojalb olale fl 2 n 1o ol* JikilimjO Ofn
12 2 211111 2 1

Figure 3-20.

Description:

2/82

15 111 11

—_

Mode Register (MR) Format - DPS and L68

An assemblage of flags and registers from the control unit. The Mode Register
and the Cache Mode Register are both stored into the Y-pair by the Store
Central Processor Register (sepr), TAG = 06. The Mode Register is loaded
with the Load Central Processor Register (lepr), TAG = 04, instruction.

3-27 AL39B

Function:

2/82

The Mode Register controls the operation of those features of the processor
that are capable of being enabled and disabled.

The functions of the constituent flags and registers are:

Flag or
key register
FFV
a OC TRAP
b ADR TRAP

OPCODE

Function

A floating-fault vector address. The 15 high-order bits
of the Y-block8 address of four word pairs constituting
a floating-fault vector. Traps to these fleoating faults
are generated by other conditions the mode register sets.

Trap on OPCODE match. If this bit is set ON and OPCODE
matches the operation code of the instruction for which
an address is being prepared (including indirect cycles),
generate the second floating fault (xed FFV+2). See
NOTE below.

Trap on ADDRESS match. If this bit is set ON and the
computed address (TPR.CA) matches the setting of the
address switches on the processor maintenance panel,
generate the fourth floating fault (xed FFV+6). See
NOTE below.

The operation code on which to trap if OC TRAP (bit 16,
key a) is set ON or for which to strobe all control
unit cycles into the control unit history registers if
0.C$¢ (bit 29, key j) is set ON.

or

Processor conditions codes as follows if OC TRAP (bit
16, key a) and 0.C$¢ (bit 29, key j) are set OFF and
¢ VOLT (bit 32, key m) is set ON.

Key Condition

c Set control unit overlap inhibit if set ON. The
control unit waits for the operations unit to complete
execution of the even instruction of the current
instruction pair before it begins address preparation
for the associated odd instruction. The control
unit also waits for the operations unit to complete
execution of the odd instruction before it fetches
the next instruction pair.

d Set store overlap inhibit if set ON. The control
unit waits for completion of a current main memory
fetch (read cycles only) before requesting a main
memory access for another fetch.

e Set store incorrect data parity if set ON. The
control unit causes incorrect ‘data parity to be
sent to the system controller for the next store
instruction and then resets bit 20.

f Set store incorrect zone-address-command (ZAC)
parity if set ON. The control unit causes incorrect
zone-address-command (ZAC) parity to be sent to
the system controller for each main memory cycle
of the next store instruction and resets bit 21 at
the end of the instruction.

3-28 AL39B

2/82

Flag or
key register

J 0.C$¢

k STROBE #

1 FAULT RESET

m ¢ VOLT

Function

Key Condition

g Set timing margins if set ON. If ¢ VOLT (bit 32,
key m) is set ON and the margin control switch on
the processor maintenance panel is in PROG position,
set processor timing margins as follows:

22,23 Margin
0,0 normal
0,1 slow
1,0 normal
1,1 fast

h Set +5 voltage margins if set ON. If ¢ VOLT (bit
32, key m) is set ON and the margin control switch
on the processor maintenance panel is in the PROG
position, set +5 voltage margins as follows:

24,25 Margin
0,0 normal
0,1 low
1,0 high
1,1 normal

Trap on control unit history register count overflow if
set ON. If this bit and STROBE ¢ (bit 30, key k) are
set ON and the control unit history register counter
overflows, generate the third floating fault
(xed FFV+4). Further, if FAULT RESET (bit 31, key 1)
is set, reset STROBE ¢ (bit 30, key k), 1locking the
history registers. A Load Central Processor Register
(lepr), TAG = 04, instruction setting bit 28 ON resets
the control unit history register counter to zero. (See
NOTE below.)

Strobe control unit history registers on OPCODE match.
If this bit and STROBE ¢ (bit 30, key k) are set ON and
the operation code of the current instruction matches
OPCODE, strobe the control unit history registers on
all control unit cycles (including indirect cycles).

Enable history registers. If this bit is set ON, all
history registers are strobed at appropriate points in
the various processor cycles. If this bit is set OFF
or MR ENABLE (bit 35, key n) is set OFF, all history
registers are locked. This bit is set OFF with a Load
Central Processor Register (lecpr), TAG = 04, instruction
providing a 0 bit, by an operation not complete fault,
and, conditionally, by other faults (see FAULT RESET
(bit 31, key 1) below). Once set OFF, this bit must be
be set ON with a Load Central Processor Register (lepr),
TAG = 04, instruction providing a 1 bit to re-enable
the history registers.

History register lock control. If this bit is set ON,
set STROBE ¢ (bit 30, key k) OFF, locking the history
registers for all faults including the floating faults.
See NOTE below.

Test mode indicator. This bit is set ON whenever the

TEST/NORMAL switch on the processor maintenance panel
is in TEST position; otherwise, it is set OFF. It serves

3-29 AL39B

Flag or
key register Function

to enable the program control of voltage and timing
margins.

n MR ENABLE Enable mode register. When this bit is set ON, all
other bits and controls of the mode register are active.
When this bit is set OFF, the mode register controls
are disabled.

NOTE: The traps described above (address match, OPCODE match, control unit
history register counter overflow) occur after completion of the next
odd instruction following their detection. They are handled as Group
7 faults in regard to servicing and inhibition. (See Section 7 for
descriptions of these faults.) The complete Group 7 priority sequence
(in increasing order) is:

- Connect

- Time runout

- Shutdown

OPCODE trap

- Control unit history register counter overflow
- Address match trap

- External interrupts

~ OV EWN =
[}

MODE REGISTER (MR) - DPS 8M

Format: - 36 bits

Even word of Y-pair as stored by Store Central Processor Register (scpr),
TAG = 06

0 1112222222222333333
0 7890123 46567890.12314%5
0000000D000O0DO0OO0O0OOGO OO Ofjajbljcjdl e f 0 OfgihjijitkijljOfm

181111 2 2 211111111

Figure 3-21. Mode Register (MR) Format - DPS 8M

Description:

An assemblage of flags and registers from the control unit. The Mode Register
and the Cache Mode Register are both stored into the Y-pair by the Store
Central Processor Register (scpr), TAG = 06. The Mode Register is loaded
with the Load Central Processor Register (lcpr), TAG = OU, instruction.

Function:

The mode register controls the operation of those features of the processor
that are capable of being enabled and disabled.

2/82 3-30 AL39B

The functions of the constituent flags and registers are:

Flag or
key register

a cuolin

b solin
C sdpap
d separ
e tm

f vm

g hrhlt
h hrxfr
i ihr

2/82

Function

Set CU overlap inhibit. The CU waits for the 0OU to
complete execution of the even instruction before it
begins address preparation for the associated odd
instruction. The CU also waits for the 0OU to complete
execution of the odd instruction before it fetches the
next instruction pair.

Set store overlap inhibit. The CU waits for completion
of a current memory fetch (read cycles only) before
requesting a memory access for another fetch.

Set store incorrect data parity. The CU causes incorrect
data parity to be sent to the SC for the next data
store instruction and then resets bit 20.

Set store incorrect ZAC parity. The CU causes incorrect
zone-address-command (ZAC) parity to be sent to the SC
for each memory cycle of the next data store instruction
and resets bit 21 at the end of the instruction.

Set timing margins. If bit 32 key (K) is set and the
margin control switch on the CPU maintenance panel is
in program position, set CPU timing margins as follows:

22,23 margin

0,0 normal
0,1 slow
1,0 normal
1,1 fast

Set +5 voltage margins. If bit 32 (key K) is set and
the margin control switch on the CPU maintenance panel
is in the program position, set +5 voltage margins as
follows:

24,25 margin
0,0 normal
low
high
normal

—_ O
- -

Stop HR Strobe on HR Counter Overflow. (Setting bit 28
shall cause the HR counter to be reset to zero.)

Strobe the HR on Transfer Made. If bits 29,30, and 35
are = 1, the HR will be strobed on all Transfers Made.
Bits 36-53 of the OU/DU register will indicate the "From"
location and bits 36-59 of the CU register will contain
the real address of the final "To" location.

Enable History Registers. If bit 30 = 1, the HRs may
be strobed. If bit 30 = 0 or bit 35 = 0, they will be
locked out. This bit will be reset by either an LCPR
with the bit corresponding to 30 = 0 or by an Op Not
Complete fault. It may be reset by other faults (see
bit 31). After being reset, it must be enabled by another
LCPR instruction before the History Registers may be
strobed again.

3-31 ' AL39B

Flag or

key register Function
j ihrrs Additional resetting of bit 30. If bit 31 = 1, the
following faults also reset bit 30:
- Lock Up
- Parity
- Command
- Store
- Illegal Procedure
- Shutdown

k mrgectl Margin Control. Bit 32 informs the software when it
can control margins. A one indicates that software has
control. When the LOCAL/REMOTE switch on the power supply
is in REMOTE and bit 35 = 1, bit 32 is set to 1 by
occurrence of the following conditions: the NORMAL/TEST
switch is in the TEST position, the Memory and CU Overlap
Inhibit switches are OFF, the Timing Margins for the
0U, CU, DU and VU are NORMAL, and the Forced Data and
ZAC Parity are OFF.

1 hexfp Hexadecimal Exponent Floating Point Arithmetic Mode can
be set. When this bit is set, the Hex mode becomes
effective when the Indicator Register bit 32 is set to
1.

m emr Enable Mode Register. Unless bit 35 = 1, all other bits

in the Mode Register are ignored and the History Register
is ignored and locked.

l CACHE MODE REGISTER (CMR) - DPS and L68

Format: - 28 bits

0dd word of Y-pair as stored by Store Central Processor Register (scpr),
TAG = 06

o U
- U
o\
lo U1
o o
- o
N O
Lo O
lo o
o <
—_

o o v,
(=] o Ul
o) Ul
o 00\

0]
=2
[

e

CACHE DIR ADDRESS a

11111111111 2

Figure 3-22. Cache Mode Register (CMR) Format - DPS and L68

Description:

2/82

An assemblage of flags and registers from the control unit. The Mode Register
and Cache Mode Register are both stored into the Y-pair by the Store Central
Processor Register (sepr), TAG = 06, instruction. The Cache Mode Register
is loaded with the Load Central Processor Register (lcpr), TAG = 02,
instruction.

3-32 AL39B

The data stored from the cache mode register is address-dependent. The
algorithm used to map main memory into the cache memory (see Section 9) is
effective for the Store Central Processor Register (scpr) instruction. In
general, the user may read out data from the directory entry for any cache
memory block by proper selection of certain subfields in the 24-bit absolute
main memory address. In particular, the user may read out the directory
entry for the cache memory block involved in a suspected cache memory error
by ensuring that the required 24-bit absolute main memory address subfields
are the same as those for the access which produced the suspected error.

The fault handling procedure(s) should be unencacheable (SDW.C = 0) and the
history registers and cache memory should be disabled as quickly as possible
in order that vital information concerning the suspected error not be lost.

Function:

2/82

The Cache Mode register provides configuration information and software
control over the operation of the cache memory. Those items with an "x" in
the column headed L are not loaded by the Load Central Processor Register
(lcpr), TAG = 02, instruction.

The functions of the constituent flags and registers are:

key L Register Function
x CACHE DIR 15 high-order bits of the cache memory block address
ADDRESS from the cache directory.

a x PAR BIT Cache memory directory parity bit.

b x LEV FUL The selected column and 1level is loaded with active
data.

c CSH1 ON Enable the upper 1024 words of the cache memory (see
Section 9). .

d CSH2 ON Enable the lower 1024 words of the cache memory (see
Section 9).

e OPND ON Enable the cache memory for operands (see Section 9).

f INST ON Enable the cache memory for instructions (see Section
9).

g CSH REG Enable cache-to-register (dump) mode. When this bit is
set ON, double-precision operations unit read operands
(e.g., Load AQ (ldaq) operands) are read from the cache
memory according to the mapping algorithm and without
regard to matching of the full 24-bit absolute main
memory address. All other operands address main memory
as though the cache memory were disabled. This bit is
reset automatically by the hardware for any fault or
interrupt.

h x STR ASD Enable store aside. When this bit is set ON, the processor
does not wait for main memory cycle completion after a
store operation but proceeds after the cache memory cycle
is complete.

i x COL FUL Selected cache memory column is full.

J x RRO A,B Cache round robin counter (see Section 9).

k LUF MSB,LSB Lockup timer setting. The lockup timer may set to four
different values according to the value of this field.

3-33 AL39B

CACHE

key L Register Function

LUF Lockup
value time
0 2ms
1 4ms
2 8ms
3 16ms

The lockup timer is set to 16ms when the processor is
initialized.

MODE REGISTER (CMR) - DPS 8M

Format: - 36 bits

0dd word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 06.
3 555555565556 6¢666 66677
6 01 2345678901231 7.8 90 1
CACHE DIR ADDRESS albjOjcjdjolejoifiglh} i JO 0 0 O]jj0}f k
5 11111111111 2 411 2

Figure 3-23. Cache Mode Register (CMR) Format - DPS 8M

Description:

2/82

An assemblage of flags and registers from the control unit. The Mode Register
and Cache Mode Register are both stored into the Y-pair by the Store Central
Processor Register (scpr), TAG = 06, instruction. The Cache Mode Register
is 1loaded with the Load Central Processor Register (lecpr), TAG = 02,
instruction.

The data stored from the Cache Mode register is address-dependent. The
algorithm used to map main memory into the cache memory (see Section 9) is
effective for the Store central Processor Register (scpr) instruection. In
general, the user may read out data from the directory entry for any cache
memory block by proper selection of certain subfields in the 24-bit absolute
main memory address. In particular, the user may read out the directory
entry for the cache memory block involved in a suspected cache memory error
by ensuring that the required 24-bit absolute main memory address subfields
are the same as those for the access which produced the suspected error.

The fault handling procedure(s) should be unencacheable (SDW.D = 0) and the

history registers and cache memory should be disabled as quickly as possible
in order that vital information concerning the suspected error not be lost.

3-34 AL39B

Function:

2/82

The Cache Mode Register provides configuration information and software
control over the operation of the cache memory. Those items with an "x" in
the column headed L are not loaded by the Load Central Processor Register
(lepr), TAG = 02, instruction.

The functions of the constituent flags and registers are:

key L Register Function
x CACHE DIR 15 high-order bits of the cache memory bloek address
ADDRESS from the cache directory.

a x PAR BIT Cache memory directory parity bit.

b x LEV FUL The selected column and level is loaded with active
data.

c CSH1 ON Enable the upper 4096 words of the cache memory (see
Section 9).

d CSH2 ON Enable the lower 4096 words of the cache memory (see
Section 9).

e INST ON Enable the cache memory for instructions (see Section
9).

f CSH REG Enable cache-to-register (dump) mode. When this bit is
set ON, double-precision operations unit read operands
(e.g., Load AQ (ldaq) operands) are read from the cache
memory according to the mapping algorithm and without
regard to matching of the full 24-bit absolute main
memory address. All other operands address main memory
as though the cache memory were disabled. This bit is
reset automatically by the hardware for any fault or
interrupt.

g x STR ASD Enable store aside. When this bit is set ON, the processor
does not wait for main memory cycle completion after a
store operation but proceeds after the cache memory cycle
is complete.

h x COL FUL Selected cache memory column is full.

i x RRO A,B Cache round-robin counter (see Section 9).

J Bypass cache bit. Enables the bypass option of SDW.C

when set OFF. See Notes below for further information.

k LUF MSB,LSB Lockup timer setting. The lockup timer may set to four
different values according to the value of this field.

LUF Lockup
value time
0 2ms
1 ims
2 8ms
3 16ms

The lockup timer is set to 16ms when the processor is
initialized.

3-35 AL39B

Notes

2/82

The COL FUL, RRO A, RRO B, and CACHE DIR ADDRESS fields reflect different
locations in cache depending on the final (absolute) address of the
scpr instruction storing this data.

If either cache enable bit ¢ or d changes from disable state to enable
state, the entire cache is cleared.

The DPS 8M processors contain an 8k hardware-controlled cache memory.
When running a mixed configuration of DPS 8M and DPS/L68 processors,
bit 68 of the cmr (reference j) allows the DPS 8M processor to utilize
software compatible with the older 2k software controlled by the DPS/L68
and DPS processors. The following summarizes the operation of the DPS
8M hardware-controlled cache. :

a. The cache bypass option in the segment descriptor word is retained.
An overriding bypass enable, bit 68 of the Cache Mode Register,
is added. The cache mode is set as follows:

SDW.C CMR68 RESULTANT

CACHE MODE

Use Cache X Use Cache
Bypass Cache Bypass Cache Bypass Cache

Bypass Cache Use Cache Use Cache

b. A1l close gate instructions, LDAC, LDQC, STAC, STACQ, and SZNC
automatically bypass cache. Two features are added to ensure
integrity of gated shared data; one is added during the close
gate operation and the other during the open gate operation. The
instruction following the close gate instruction bypasses cache
if the instruction is a Read or a Read-alter-rewrite. The open
gate operation must be performed with either a STC2 or STACQ,
which includes the synchronizing function. The synchronizing
function forces the processor to delay the open gate operation
until it is notified by the SCU that write completes have occurred
and write notifications requesting cache block clears have been
sent to the other processors for all write instructions that the
processor previously issued.

c. Read-alter-rewrite instructions no longer automatically bypass
cache. Cache behavior for these instructions is determined fully
by SDW.C. If the bypass cache mode is set, these instructions
bypass cache and issue read-lock-write-unlock commands to memory.
If a cache directory match occurs, the location is cleared.

d. All accesses to memory by SDW and PTW associative memory hardware
continue to bypass cache. Operations are Reads for SDWs,
Read~alter-rewrites with lock for PTWs and setting the page Used
bit, and Writes for setting the page Modified and Used bits. For
Writes, the hardware also disables the key line so that the SCU
lock is honored. This is consistent with dynamic PTW modification
by software, which also bypasses cache and uses Read-alter-rewrite
instructions.

e. The instructions that cleared the associative memories and also
cleared cache or selective portions of cache are changed to eliminate
the cache clear function. Bit C (TPR.CA)1 , is ignored. These
instructions also include disable/enable gapabilities for each
half of the associative memories.

3-36 AL39B

f. Cache mode register bit 56, which had previously controlled cache
bypass for operands, is disregarded. A1l other cache control
bits are continued. However, maintenance panel cache control
function is restricted to cache half enable/disable functions.

CONTROL UNIT (CU) HISTORY REGISTERS - DPS and L68

The L68 and DPS processors have four sets of 16 history requests. There is
one set for each major unit: the Control Unit, CU; the Operations Unit, OU; the
Decimal Unit, DU; and the Appending Unit, APU. The DPS 8M Processor has four
sets of 64 history registers. There is one set for the CU, two sets for the
APU, and one set that combines the history of the OU and DU. :

Because the history registers for the L68 and DPS and the DPS 8M are different
in number and content, they are described separately. The following section
describes the L68 and DPS history registers first, followed by a description of
the DPS 8M history registers.

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr),
TAG = 20

000000000011 1111111 223 3
0123 456789012345678 8 9 0 5
alolcldlelslelnlililcliinlnlolplalr OPCODE e 13 TAG

T1T1T1T1r1111111111111 10 1 1 6

0dd word of Y-pair as stored by Store Central Processor Register (scpr),
TAG = 20

3 55 55 6 6 6 77
[3.4 8 9 2.3 9.0 1
ADDRESS CMD SEL sltjujviwlixlylz]¥*

18 5 41171111111

Figure 3-24. Control Unit (CU) History Register Format - DPS and L68

Description:

A combination of 16 flags and registers from the control unit. The 16
registers are handled as a rotating queue controlled by the Control Unit
History Register counter. The counter is always set to the number of the
oldest entry and advances by one for each history register reference (data
entry or Store Central Processor Register (scpr) instruction). Multicycle
instructions (such as Load Pointer Registers from ITS Pairs (lpri), Load
Registers (lreg), Restore Control Unit (recu), etc.) have an entry for each
of their cycles.

2/82 3-37 AL39B

Function:

2/82

A control unit history register entry shows the conditions at the end of

‘the control unit cycle to which it applies. The
conditions for the last 16 control unit cycles.
to controls set in the Mode Register.

section.)

16 registers hold the
Entries are made according
(See Mode Register earlier in this

The meanings of the constituent flags and registers are:

key

a

Flag Name

PIA
POA
RIW
SIW
POT
PON
RAW

SAW

|

ADDRESS
CMD
SEL
XEC-INT

INS-FETCH

Meaning

Prepare instruction address

Prepare operand address

Request indirect word

Restore indirect word

Prepare operand tally (indirect tally chain)

Prepare operand no tally (as for POT except no chain)
Request read-alter-rewrite word

Restore read-alter-rewrite word

Transfer GO (conditions met)

Execute even instruction from Execute Double (xed) pair
Execute odd instruction from Execute Double (xed) pair
Execute odd instruction of the current pair

Execute a repeat instruction

Wait for instruction fetch

1 = ADDRESS has valid data

NOT prepare interrupt address

NOT prepare fault address

NOT BAR mode

Operation code from current instruction word

Interrupt inhibit bit from current instruction word
Pointer register flag bit from current instruction word
Current address modifier. This modifier is replaced

by the contents of the TAG fields of indirect words

as they are fetched during indirect chains.

Current computed address (TPR.CA)

System controller command

Port select bits. (Valid only if port A-D is selected)
An interrupt is present

Perform an instruction fetch

3-38 AL39B

key Flag Name Meaning

u CU-~-STORE Control unit store cycle

v OU-STORE Operations unit store cycle
w CU-LOAD Control unit load cycle

x OU-LOAD Operations unit load cycle
y DIRECT Direct cycle

z PC-BUOSY Port control logic not busy
¥ BUSY Port interface busy

CONTROL UNIT (CU) HISTORY REGISTERS - DPS 8M

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 20
ooooc00O0OOGOOTT?TITTI1T1T 111 223 3
0123456 890123456738 8 9 0 5
albfcldlefflglhiililkil]min]olplalr OPCODE IfjP TAG

1

t1T1T111 11111111111 10 1 1 6

0dd word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 20
0 22 22333333
3.4 890123145
ADDRESS CMD sjtjujviwix|jo
24 51111111

Figure 3-25. Control Unit (CU) History Register Format - DPS 8M

Description:

2/82

A combination of 64 flags and registers from the control unit. The 64
registers are handled as a rotating queue, controlled by the control unit
history register counter, in which only the 16 most recently used are stored
(except in the event of a system crash in which case all 64 will be saved).
The counter is always set to the number of the oldest entry and advances by
one for each history register reference (data entry or Store Central Processor
Register (scpr) instruction). Multieycle instructions (such as Load Pointer
Registers from ITS Pairs (1lpri), Load Registers (1lreg), Restore Control
Unit (rcu), etc.) have an entry for each of their cycles.

3-39 AL39B

Function:

A control unit history register entry shows the conditions at the end of
the control unit cycle to which it applies. The 16 registers hold the
conditions for the last 16 control unit cycles. Entries are made according
to controls set in the Mode Register. (See Mode Register earlier in this
section.)

The meanings of the constituent flags and registers are:

key Flag Name Meaning
a PIA Prepare instruction address
b POA Prepare operand address
¢ RIW Request indirect word
d SIW Restore indirect word
e POT Prepare operand tally
f PON Prepare operand no tally
g RAW Request read-alter-rewrite word
h SAW Restore read-alter-rewrite word
i RTRGO Remember transfer GO (condition met)
j XDE XED from even location
k XDO XED from odd location
1 IC Even/odd instruction pair
m RPTS Repeat operation -
n PORTF Memory cycle to port on previous cycle
o INTERNAL Memory cycle to cache or direct on previous cycle
p PAI Prepare interrupt address
q PFA Prepare fault address
r PRIV In privileged mode
OPCODE Opcode of instruction
I Inhibit interrupt bit
P AR reg mod flag
TAG Tag field of instruction
ADDRESS Absolute mean address of instruction
CMD Processor command register
s XINT Execute instruction
t IFT Instruction fetch
u CRD Cache read, this CU cyecle
v MRD Memory read, this CU cycle

2/82 3-40 AL39B

key Flag Name Meaning

w MSTO Memory store, this CU cycle

x PIB Memory port interface busy

OPERATIONS UNIT (OU) HISTORY REGISTERS

Format: - 72 bits each

E

ven word of Y-pair as stored by Store Central Processor Register (scpr),

TAG = 40

0 oot111111111 2222333333
[4) 890 121345678 6789 0123145

RP REG
0 1
9 1 3711 2 1 9111111111

0dd word of Y-pair as stored by Store Central Processor Register (secpr),
TAG = 40

333344440844 1Y41Y41Y445%5 55 7

6 L 8 0012345678901 3 4 1

njolplalr|Z]Q|0|T}Z2|31%1516]7]0o 0 © ICT TRACKER

1111111111111 11 3 1

Figure 3-26. Operations Unit (0U) History Register Format

Description:

A combination of 16 flags and registers from the operation unit and control
unit. The 16 registers are handled as a rotating queue controlled by the
operations unit history register counter. The counter is always set to the
number of the oldest entry and advances by one for each history register
reference (data entry or Store Central Processor Register (sepr) instruction).

tion:

Func

2/82

An Operations Unit History Register entry shows the conditions at the end -

of the operations unit cycle to which it applies. The 16 registers hold

the conditions for the last 16 operations unit cycles. As the operations -

unit performs various cycles in the execution of an instruction, it does
not advance the counter for each such cycle. The counter is advanced only
at successful completion of the instruction or if the instruetion is aborted
for a fault condition. Entries are made according to controls set in the
Mode Register. (See Mode Register earlier in this section.)

3-41 AL39B

2/82

The meanings of the constituent flags and registers are:

key Flag Name

8

N

O] | Q

RP REG

OP CODE

9 CHAR

TAG1,2,3

CR FLG
DR FLG
EAC

RS REG

RBt FULL
RP FULL
RS FULL
GIN

GOS

GD1

GD2

GOE

GOA

GOM

GON

GOF

Meaning

Primary operations unit operation register. RP REG
receives the operation code and other data for the next
instruction from the control unit during the control
unit instruction fetch cycle while the operations unit
may be busy with a prior instruction. RP REG is further
substructured as:

The 9 high-order bits of the 10-bit operation code from
the instruction word. Note that basic (non EIS)
instructions do not involve bit 27 hence ‘the 9-bit field
is sufficient to determine the instruction.

Character size for indirect then tally address modifiers

0
1

6-bit
9-bit

The 3 low-order bits of the address modifier from the
instruction word. This field may contain a character
position for an indirect then tally address modifier.
Character operation flag

Direct operation flag

Address counter for lreg/sreg instructions

Secondary operations unit operation register. OP CODE
is moved from RP REG to RS REG during the operand fetch
cycle and is held until completion of the instruction.
OP CODE buffer is loaded

RP REG is loaded

RS REG is loaded

First cycle for all OU instructions

Second cycle for multicycle OU instructions

First divide cycle

Second divide cycle

Exponent compare cycle

Mantissa alignment cycle

General operations unit cycle

Normalize cycle

Final operations unit cycle

Store (output) data available

Data not available
A register not in use

Q register not is use

3-42 AL39B

key Flag Name

<l
>4
o
!
0
Q

=i
>4
—
1
Y]
Q

o
>4
N
i
=]
Q

& owl
.
2

oN V|
>
]
el
Q

=3

XT7-RG

ICT TRACKER

X0
X1
X2
X3
X4
X5
X6

X7

Meaning

not
not
not
not
not
not
not

not

Since

in
in
in
in
in
in
in

in

the

use

use

use

use

use

use

use

use

The current value of the instruction counter (PPR.IC).
Control

Unit and Operations Unit run
asynchronously and overlap is usually enabled, the value
of ICT TRACKER may not be the address of the operations
unit instruction currently being executed.

DECIMAL UNIT (DU) HISTORY REGISTERS - DPS and L68

Format:

- 72 bits each

Decimal Unit History Register data is stored with the Store Central Processor

Register (scpr), TAG =

Description:

A combination of

10,

instruction.
the data is defined as individual bits.

There is no format diagram because

16 flags from the decimal unit. The

16 registers are

handled as a rotating queue controlled by the decimal unit history register
The counter is always set to the number of the oldest entry and
advances by one for each history register reference (data entry or Store
Central Processor Register (scpr) instruction).

counter.

The decimal unit and the control unit run synchronously.
unit history register entry for every decimal unit history register entry
and vice versa (except for instruction fetch and EIS descriptor fetch cycles).

If the processor is not executing a decimal instruction,

history register entry shows an idle condition.

Function:

There is a control

the decimal unit

A decimal unit history register entry shows the conditions in the decimal
unit at the end of the control unit cycle to which it applies. The 16
registers hold the conditions for the last 16 control unit cycles. Entries
are made according to controls set in the Mode Register.
earlier in this section.)

2/82

3-43

(See Mode Register

AL39B

A minus (-) sign preceding the flag name indicates that the complement of
the flag is shown.

The

o W O N O UV =W

-

-
-

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

2/82

Unused bits are set ON.

meanings of the constituent flags are:

Flag Name

Meaning

-FPOL
-FPOP
-NEED-DESC
-SEL-ADR
-DLEN=DIRECT
-DFRST
-FEXR
-DLAST-FRST
-DDU~LDEA
-DDU-STAE
-DREDO
-DLVL<WD-SZ
-EXH
DEND-SEQ
-DEND
~DU=RD+WRT
-PTRAOO
-PTRAO1
FA/I1
FA/I2
FA/I3
-WRD
-NINE
-SIX
~FOUR

-BIT

Prepare operand length

Prepare operand pointer

Need descriptor

Select address register

Length equals direct

Descriptor processed for first time

Extended register modification

Last cycle of DFRST

Decimal unitrload

Decimal unit store

Redo operation without pointer and length update
Load with count less than word size

Exhaust

End of sequence

End of instruction

Decimal unit write-back

PR address bit 0

PR address bit 1
Descriptor 1 active
Descriptor 2 active
Descriptor 3 active

Word operation

9-bit character operation
6-bit character operation
4_bit character operation
Bit operation

Unused

Unused

Unused

Unused

3-44

AL39B

30 FSAMPL Sample for mid-instruction interrupt

31 ~DFRST-CT Specified first count of a sequence
32 -ADJ-LENGTH Ad just length

33 -INTRPTD Mid-instruction interrupt

34 -INHIB Inhibit STC1 (force "STCO")

35 Unused

36 DUD Decimal unit idle

37 ~GDLDA Descriptor load gate A

38 -GDLDB Descriptor load gate B

39 ~GDLDC Descriptor load gate C

4o NLD1 Prepare alignment count for first numeric operand load
41 GLDP1 Numeric operand one load gate

42 NLD2 Prepare alignment count for second numeric operand load
43 GLDP2 Numeric operand two load gate

4y ANLD1 Alphanumeric operand one load gate
45 ANLD2 Alphanumeric operand two load gate
46 LDWRT1 Load rewrite register one gate

47 LDWRT2 Load rewrite register two gate

48 -DATA-AVLDU Decimal unit data available

49 WRT1 Rewrite register one loaded

50 GSTR Numeric store gate

51 ANSTR Alphanumeric store gate

52 FSTR-OP-AV Operand available to be stored

53 -FEND-SEQ End sequence flag

54 -FLEN<128 Length less than 128

55 FGCH Character operation gate

56 FANPK Alphanumeric packing cycle gate

57 FEXMOP