HONEYWELL

DPS/LEVEL 68 &
DPS 8M
MULTICS
PROCESSOR
MANUAL

HARDWAR

PREFACE

This manual describes the processors used in the Multics system. These are the
DPS/L68, which refers to the DPS, L68 or older model processors (excluding the GE-645)
and DPS 8M, which refers to the DPS 8 family of Multics processors, i.e. DPS 8/70M, DPS
8/62M and DPS 8/52M. The reader should be familiar with the overall modular
organization of the Multics system and with the philosophy of asynchronous operation. In
addition, this manual presents a discussion of virtual memory addressing concepts
including segmentation and paging.

The manual is intended for use by systems programmers responsible for writing
software to interface with the virtual memory hardware and with the fault and interrupt
portions of the hardware. It should also prove valuable to programmers who must use
machine instructions (particularly language translator implementors) and to those persons
responsible for analyzing crash conditions in system dumps.

This manual includes the processor capabilities, modes of operation, functions, and
detailed descriptions of machine instructions. Data representation, program-addressable
registers, addressing by means of segmentation and paging, faults and interrupts, hardware
ring implementation, and cache operation are also covered.

The information and specifications in this document are subject to change without notice. Consult your
Honeywell Marketing Representative for product or service availability.

11/85
©Honeywell Information Systems Inc., 1985 File No.: 1103, 1L53 AL39-01C

CONTENTS

(Y it Lo < P 2
Section 1: INEIOAUCTION.vuiin ittt e e e e e e e e e s e s e s e s erneanennns 8
MulticS ProCeSSOT FRATUTES.cuuiiniiniiniiii ettt e e e e 8
Segmentation and Paging.........cveuiiiiiiieiiiiiiiieie ettt ei e e e e e 8
Address Modification and Address APPEeNnding........cocueeveeeuneeunereeneeneineneeenananns 9
Faults and INEerTUPDES. ...uiiiiiiie e 9
Processor Modes of Operation......o..iuiuiiiieii e e 9
Instruction EXeCUtion MOAES.......c.iuiininiiiniieiiei et e aene e 10
NOIIMAL MOAEB. .. cuniiiiiiiiieee ettt anens 10
Privileged MOAE......ccuoiuniiiiiiiie ettt e ee e e et e e e e e e et et e e ans 10
AdAreSSing MOAES.....c.uiuiiniriiitiiei ettt e e 10
ADSOIULE MO . enieieiiiii e 10

PN o) 01N aTe IV KoY [T PPN 10

N R LY o Ye L= 10
Processor Unit FUNCEIONS.oiuiuiiiiiiiei ettt e e e e e enens 10
ApPending Unit........oouiiiiii e e e et e e e et e et e e e aa e e e ean e e ees 11
Associative Memory ASSEMDLY........c.oiiuiiiiiiiiiiee e e et ae e ees 11
[OF0) a1 a0 N U o 1 P 11
Operation UnNif. ..o e e e e e e et a s 11

| D] Yok an =1 B0 L S TP 11
Section 2: Data RePIeSENEatiON. .. .uiuiiii it e et e e e e e et e e e e e e et e e e aaaaas 12
Information Organization..........cccuuiiiiiiiiiiiee e e e e e e e ans 12
PoSition NUMDETING.....uciuiiiiie i e e et e et e e e e e e e e e e eanans 12
NUIMDET SYSEOIM...ouuiiiiiiiiii et e e e e e et e e e e et e et e st e s e eaaesasnaaans 12
INformation FOTIatS. ..o aas 13
| DNt T oY o TP 14
Representation Of Data........cooeuviiiiiiiiiieiee e e ns 14
NUMETIC DaAt@. . uiniriiiiiiiiii ettt ettt e e e e eeeaaans 15
Fixed-point Binary Data.......c.ccceviiiiiiiiiee e 15
Floating-point Binary Data.........cceeuviiiiiiniiiniiiriie e e e e e 17

DeCIMAl DATA. .. .uiiniiniiiiiii e 19
AlphanumeriC Data.......ciuiiiiiiiiiie e aas 21
Character SEring Data.....c..oeeveiiiiiie e 22

Bit STEING DaAtA...cueuiiiiiiiiiie et a s 22

Section 3: Program AcCesSSibhle REGISTOIS.c.uuuiuiiiiiiiiie et eae e nens 23
Accumulator ReGISEET (A)...cuuiiuiiiniiiiieeie et e e et e et e e e e e et et eae e e e aaaaneenaes 24
Quotient RegiSter (D). ..iuuiiuuiiiiiiieiteit ittt e e ere et et eteeteeerneeaneetaeaaenstneaneneenerneanenns 24
Accumulator-Quotient Redqister (AQ).......vuv et 25
Exponent ReiSTET ().oiuuiiiuiiiiiiiiieeie et et e e ete et et e e et et eetn et ensensaneaeeneenaanenns 25
Exponent-Accumulator-Quotient Redister (EAQ).....couiuvieieiiiiiiiieieeeeeeeeeene 26
Index ReISEETS (XT1)...uuiiuuiiuiiiieiieiie e ie et et et eeeete et e et e e eaneeaneeansennaanaeseensenaaneans 26
Indicator ReqiSter (TR)......c.ciiuiiiniiieiiee et e et et et e e ere et e et e et esae et e sanesnssnassnaesnannns 27
Base Address RediSter (BAR)....c.uoiiuiiiiiiiiiie ettt e e e e e e e et e e e e e e ans 30
Timer RediSter (TR)....c.iiiiiiii ettt et e e et e et e e e et e et e et eeneeneaenanes 30
Ring Alarm Redister (RALR).....ccuiiiuiiiiiieie et e et e et e e e e e e e e e e e et e eaeeneenans 31
Pointer RediSterS (PRIccuiiieiiiiiiiiiiieiieeie et et e e et e ereeeaeseaesenenenens 31
Address ReqiSters (ARI).......ciuiiuiiiiiiiiiee e e e et e e e e e e e e e e e et e et e eaeaee e e eaaees 32
Procedure Pointer Redister (PPR).......ccoviuiiiiiiiieieieeeeeeeeee e 33
Temporary Pointer RediSter (TPR).......ouiuirinieiiiie et eeeeeaeas 34
Descriptor Segment Base Redister (DSBR)....vuiuiinieiiniiiiiieieeeeee e 36
Segment Descriptor Word Associative Memory (SDWAM).....ccccovieiiviniiiiiiiiieenennen 37
Page Table Word Associative Memory (PTWAM).....c.civiiiiiiiiieiieeieeeeeeeeen, 39
Fault Reqgister (FR) — DPS and LB8........ccoiiniiiiiiii e 41
Fault Redister (FR) - DPS 8Mottt eenens 43

Mode Register (MR) - DPS @and LB8........ouiuniniiiiiiiiiiie ettt eeae e 45

Mode Register (MR) - DPS 8M......ciiuiiiiiiieiee ettt e e e e e e e e e e e e e e eae e eenas 48

Cache Mode Register (CMR) - DPS and LB8.........ccccvvviiiiiiiiiiiiiiieeieeeeeceeeen, 49
Cache Mode Register (CMR) - DPS 8M....ccuiiiiiiiiiiiiiiiciieeeee e e e e eeaas 51
Control Unit (CU) History Registers - DPS and L68.........c.ccocvievieiiiiiiniiniiiniieennen, 53
Control Unit (CU) History Registers - DPS 8M.........coouiiuiiiiiiiiiieieeeeeeeeeeeeieaes 55
Operations Unit (OU) History Registers - DPS and L68...........ccccovevviviiiiniininininnnnen. 57
Decimal Unit (DU) History Registers - DPS and L.68............cccccovvviviiiiiiiiininicieennen, 59
Decimal/Operations Unit (DU/OU) History Registers - DPS 8M.........cccccevveniinenen.n. 61
Appending Unit (APU) History Registers - DPS and L.68..........cccoovvivviviiiiiniinininenn.. 64
Appending Unit (APU) History Redisters — DPS 8M.......ccccoiuvieiiiiniiiiiiieeeeeneneann 65
Configuration Switch Data - DPS and LB8..........cccoivviiiiiiiiiiiiiee e 68
Configuration Switch Data - DPS 8M.......cccuiiiiiiiiiiiiiiieeieeieee et e e e aes 69
Control UnNIt Data.....oiuieiniiiiiiiee et e eaeneneaenens 71
Decimal UL Data....c.uiuieieiiin ettt e e e enenens 76
Section 4: Machine INSEIUCHIONIS.uivieiiiiite ettt e e e e e e e e e e e ereneeenanens 79
| HaFs] mab o] mle) M AN=Y 0 1< a0) 1ol Y 79
Arrangement Of INSEIUCEIONS.iiviiiiiiiiii e 79

| Fe R (o @] 0 Y=Y =N (0 o F PR 79
Extended Instruction Set (EIS) Operations........cc.coveiiiiiiiiiiiiiiieieeieeeeeeieieeeaes 79

EIS Single-Word Operations...........coeuueeieiiieiiieieeiee e eee e e e e 79

EIS Multiword OperationsS.......cc.ciuiiiiiiiiiii e 80

Format of Instruction DeSCription......cc.uviueiueiiiiiiiiiiieieeeeeeeeeeeeeee e 80
Definitions of Notation and SymbolS..........c.cciueiiiiiiiiiiii e 82
Main MemOTry AQAIESSES.cuuiunieiieieie ettt e e e e erereeenennes 82
INAEX VAIUES. ...uenieiieeiie ettt et e e e e e e e e nenenens 82
Abbreviations and SYMDOLS........c..oiiiiiiiiiieieeee s 82
Register Positions and Contents.........cccuevuiiiiiiiiiiieiiceie e e 83

(@1 oY) Al h Y111 010) £ T PPN 84
Common Attributes of INStIrUCLIONS.iveiieiieieie e, 84
Ilegal MOdifiCation......c..viuriiiiiiiii et e e ee e e et e et e aie e e s eaneanaans 84
Parity INAIiCAtOT. ...iveiiiiiiii e 84
Instruction Word FOIINats.ocuvuniniiiiiii et eaeaene e 85
Basic and EIS Single-Word InStrucCtions...........ceiueiiiiiniiniiiiieieieeceeeeeeeeaes 85

| aTe RN ol M A0 oo TP 85

EIS Multiword INSEIUCIONS. . ..vvvviiniinii i 86

EIS Modification FieldS (IME)......couieiuiiiiiei et as 87

MF Coding EXAmPLES.....ccueiiuiiiniiieiieiieeiiieineeietieeteeteetneeineeineseenssnesnesnenns 89

EIS Operand Descriptors and Indirect POinters.........ccccoevvveiiiiiiiiiiiiieiiieeinenes 89
Operand Descriptor Indirect Pointer Format...........ccovvviviiiiniiiiniiiniininn, 89
Alphanumeric Operand Descriptor Format.........cccceeviiiiiiiiiiiiiiiiiiiceenen, 90
Numeric Operand Descriptor Format.........ccocvevviiiniiiiiiiiiieiieeeeeeenenes 91
Bit-string Operand Descriptor Format..........ccoceveeiuiiiiniiiiiiinii e 93
Fixed-point Arithmetic INSEtruCtiONS.ccuvviiiiiiiiee e 94
Fixed-Point Data Movement L.oad........c.cc.oiuiiiiniiiiniiie e 94
Fixed-Point Data Movement STOTe........c.vuviiiiiiii e, 100
Fixed-Point Data Movement Shift............cccovivviiiiiiiiiie e 107
Fixed-Point Addition.......cuvenieiniiiiie e 111
Fixed-Point SUDLIaCION.ivniiiiiiii e 117
Fixed-Point MultipliCation........ccuoiuiiuiiiiieie e 122
Fixed-Point DiViSiOM.........iuuiiiiiiiiiiie e e e e 124
Fixed-Point NEQate......ccuiiiniiiiie et e e e e e e e e e e e enaas 126
Fixed-Point COMPATISOMN.vuirieiiireiieiteiieeteeieeterterterternenerernenenerarererernenenens 127
Fixed-Point MiSCEllan@OUS.cuuviuiiniiiiiieiiei e eieeeeeeeeeeeeeeene e neaenans 131
Boolean Operation INSEIUCEIONS.vvuiviiiiiii e e 132
B0OleAN ANA.....ovniiniiii e 132

|3 TeYe) =Y=1 0 1 O U UPSUU 134
B00lean EXCIUSIVE Ouiuuiiniiiiiiiiee ettt e e e ne e 136
Boolean Comparative ANd.........ccouveiuiiiniiiiie e 138
Boolean Comparative INOL.........cc.uvuuiiniiiiiii e e e 140

Floating-point Arithmetic INSETUCEIONS.oivuiiiiiiiiie e 142

Floating-Point Data Movement 1.oad...........ccccoviiiiiiiiiiiiicee e 142

Floating-Point Data Movement StOTe.........ccocviueiiiiiiiieeeeeeeeeeeeeea 143
Floating-Point Addition.........c.evuniiiiieiie e e e e 145
Floating-Point SUbtraction.........cc.viuiiiiiii e 147
Floating-Point MultipliCation.........ccuvvuniiniiiiii e 149
Floating-Point DiVISIOMN.......vuuiuiiniriiiiiiiteiei et et eee e erererenenenenenenens 151
Floating-Point INEGAtE.....c.uovviiiiiieiieieeeee e et e e ae e 154
Floating-Point NOImMAlizZe.........ouviniiiiiiiiii e 155
Floating-Point ROUNA.........couoiuiiiiiiiiiiiieeeeeee et 156
Floating-Point COMPATE.......cuuiiuiiiieiiieieeie et et e ee e e e eteea e e eaeeaaneanees 158
Floating-Point MiSCEllan@OUS.ueiuniiiiiiiiei et e e etee et e e ae e eaaeanas 160
Transfer INSEIUCEIONS. . ..uivie it eea e 162
Pointer Reqister INSTIUCTIONS.oviviiiiiiiiieiei e e er e e e eeenenens 171
Pointer Register Data Movement Load..........coeeuviiuriiniiiiiiineieeieeieeie e e eeeneanas 171
Pointer Register Data Movement StOre.........ccovuiviniiiiiiiiiiiiieeeeeeenen, 175
Pointer Register Address Arithmetic.........ccccuvvieiiiiiiiiii e 178
Pointer Redister MiSCEllan@OUS.........cveuiiuiiiniiieiieiieeieeie e e et eieeneeneananeennes 179
Miscellaneous INSEIUCEIONS.cuuiuieiiiii e e aes 180
OF=1 1<) oV £) ol O Lo Yo 180
|1 = 1 181

B CUE . . et aaaas 182
MaSter MOAe EEIY . ..cvuiiniiiiiiiei et e e e 184

JA Lo @) 0T=Y =1 1 0) o FE PP 186

RS 01T 1 PN 187
Ring Alarm ReQISEET.......iiuiiiii et e e e e e e e e e eeanas 193
Store Base Address ReQiSter.vuuivniiniiiiii e 194
=N 0 1] = 1) TN 195
REISEET LOAM. .. ituiiiniiiii ettt et e et et e e e et e et e et e s teetese s etaeaesaaanns 197
Privileged INStIUCTIONS.cvuiiiiiiiiei et ens 198
Privileged - Reqister 1.oad.........ocoiviiiiiiiiii e e 198
Privileged - RegiSter STOTE......c.uiiniiniiiiiiiiee e 203
Privileged - Clear ASsSOCIiative MEIMIOTY.......c.uvuiirieiiniiiineieiiieieeeeeeeeieeenenens 209
Privileged - Configuration and Status...........ccccceieiiiiiiiiiiiiiii e 212
Privileged — System CoOntrol..........ovuviniiiiiiii e 215
Privileged - MiSCEIIan@OUS.cuuivniiniiniiniiniieiei et e e eaeanenenees 218
Extended Instruction Set (EIS) ..ottt 219
EIS - Address RediSter L.oad........c.ouuveiriiiniiiiiei et eeees 219

EIS - Address ReqiSter StOTE.......ciuuiiiiiiiieiie i e e e e ee e 222

EIS - Address Register Special ArithmeticC.........cccvvvvviiiiiiiiniinieceen 225

EIS - Alphanumeric COMPDATE.uiuuiineieteietete et e tee e tee e e e eeteeaseneaeeenannas 233

EIS - AlphanumeriC IMOVE.cuuiiiieiiei e e e e e e e aeaaes 243

EIS - NUMETIC COMPATE. ..ueuitiiniteiniteieteietteieeneteenetetaeteseteeenesasnesaenesasnerasnsnsnsns 249

EIS - NUIMETIC MOV, ...ttt ettt ettt et e eeeneaeeseneaseneenes 251

EIS - Bit String CoOmbiNe........coiuiiiiie e 255

EIS - Bit SEriNg COMPATE.iuiiniiiiiiiei ettt ettt et et e e e e e e e et eneanenanennes 258

EIS - Bit String Set INdiCatOrS.......ccuuiuiiiiiiiee e 260

| DY ST D o\ ts W O 0) 0 T4=Y 43 (0) PR 262

EIS - Decimal AdAition.cuuienieniiiiiiei e 265

EIS - Decimal SUDEIaCEION. .. .uiviiiniiieie et 270

EIS - Decimal Multiplication.........oivviviiiiiiiiieieeeeeeeeeeeeeee e 272

EIS - Decimal DiViSiOm....ocuiuininiiiiiieiie ettt eeneas 275
Micro Operations for Edit INSEtrUCtiONS.......c.vvviiviiniiiiiii e 278
Micro Operation SEQUEIICE.uviuiiiiiieiiee et e e eae e eeeeaeeeaeaeaans 278
Edit INSertion Table.......cuviniiiiiiiiii e e e 278
o b Lo =T PPN 279
Terminating MicrO OPerationsS........cviuuviuiiiiiiriiireiieeie e eeeee et e eeeaenans 279
MVNE and MVE DifferenCesS.......oouviniiniiiiiiiieieieieeeeee e 279
NUMETIC Bl .vniniininiiiie e e 279
Alphanumeric Edit.......ccoviviiiiii e 280

JAY B Tol o IO) oY= =1 (o) o TSP 280

Micro Operation Code ASSignmMeEent MaD......c.vuiviiiiiiiiiiiieeieeeeeeeeeaenens 287

Section 5: Addressing -- Segmentation and Paging............ceeuiiieiiiiiiiiiiiiie e 288

AddreSSIiNg MOGES.....couiiniiniiiiiteieie ettt e e e e e e e ea e e ereraeenenens 288
ADSOIULE MO . enieiiieiii et as 288
PN o] 1<) 1o MY Ko Yo [T TP 288
SegMENEATION. ...ttt e a e ans 288
o Te 10 Lo PP PPN 289
Changing AddreSSing MOGES........cuuiiniiniiniiiieieiei e e e e e eenenens 292
Address ADPPENAINGcuuiiiiiiiiiie ittt et et et e te et e et e et e ate et e et e et et aaneaana 292
Address Appending SEQUENCES.cuvuniiiiiiieeeee et ereaeananes 292
Appending Unit Data Word FOrmats........ccooiuiiiiiiiiiie e 294
Segment Descriptor Word (SDW) Format.........ccocovevviiiiiiiniiiiiiieeeeeeinens 294
Page Table Word (PTW) FOTmaAt........cuviuiiiiiiiiiiiiie e et e e e ee e 296
Section 6: Virtual AAdress FOrmation.......o.uiuiiniiiiiiiiiiee et eaeeeaeaenenenenenenns 297
Definition of Virtual AAAIESS.......uouiininiiiiei e 297
Types of Virtual Address FOrmation........co.uvuviniiiiniiiiiiii e 297
v 001 0Y0 (o Yo kv 07N 1) P 298
v 001 0T0) Tl Al T=Y Lo 1T PPN 298
AILM Pseudo-INStIUCTIONS.vvieieii e 298
Computed Address FOrmation.......cocueiuiiiiiiiiiiiiee e e e e e e aens 299
The Address Modifier (TAG) Field......ccoviuiiiiniiiiiiie e 299
General Types of Computed Address Modification.............ccceevvvieiiiiiinennn... 299
Computed Address Formation FIOWChArtsS..........cccvvvviiiiiiiiiiiiiiiieeieeeeene, 300
Register (r) Modification...........coeuiiiiiiiiie e e e 300
Register Then Indirect (ri) Modifications...........ccoveviiiiiiiiiiiieieeeeene, 302
Indirect Then Register (ir) Modification............coeoeeviiiiiiiiiiniiiiieeeceeene 303
Indirect Then Tally (it) Modification........cccvveriiriiniiiiiiiii e, 305
Virtual Address Formation Involving Both Segment Number and Computed
AQATESS. . eniieiiii et aas 311
The Use of Bit 29 in the Instruction Word............ccooeeiiiiiiiiiiiiiiiieeeeeeenenns 311
Special AAdress MOAIFIETS.c.iuiuiiniiii e e 312
Indirect to Pointer (ITP) Modification.........cccovuviiiviieiiiiiieieeeeeeeenens 312
Indirect to Segment (ITS) Modification..........ccooovivviuviiiiiiiiiiieieeeee, 313
Effective Segment Number Generation...........c.coeevveiieiiiiiiniiieeiieeiceeeeeeeeaaes 314
Virtual Address Formation for Extended Instruction Set.........ccccovvviviviiiiiininnnnn.n. 316
Character- and Bit-String AddreSSing.......covevvevveriiniiniiniieieieieieeeeeeeeeenenenn 317
Character- and Bit-String Address Arithmetic Algorithms.............cccceeevieinien 318
9-bit Byte String Address Arithmetic.......ccoovviiiiiiiiiiiiiiiiini 318
6-bit Character String Address ArithmetiC.........cccceviveiiiiiiiiniiiiieeeene, 318
4-bit Byte String Address ArithmeticC.........ccoevvviiiiiiiiiiniir e, 319
Bit String Address ATithmetiC.......c.ccuvviiiiiiiiiiee e 319
Section 7: Faults and INtErTUDLScccoiiiiiiiiiiiiii e 320
Fault CYCle SEQUEINICE.uiiiiiiieiieei et e e et et et e et e et e et e et e e eaneaaeaaenasnaanns 320
= LU o 0) 0 PPN 322
Fault RECOGNILION. ... ccuniiiiiiiiii ettt e e e e e e e e e e e e e eneanaanns 322
FaUlt DeSCTIPEIONS . etniiiiiieie et e e e et e et e et ea e e eeneaasaanaans 323
GroUup 1 FaUlES. ...ovniiiiiiiii e e 323
Group 2 FaUlEs. ... 323
GroUuD 3 FAULES. ...cvniiiiii e 324
GIroUD 4 FaUlES. ... e 324
GIroUD 5 FAULES. ...cvniiii e e 325
Group 6 FauUlls....ccuiiiniiiiiieie et e e et e e e e e e e ea e st e e e aneanas 325
GIroUD 7 FAUIES. ...vniiii et ae e 326
Interrupts and External FaultS........ccooviniiiiiiiiiieeee e 326
Interrupt SAMPING.. it e e e 327
INterrupt CYCLE S@QUEIICE.uivniieiieiieieeeeee et e e eaene e 327
Section 8: Hardware Ring Implementation.coiuvviniiiiniii e e e e 329
Ring Protection in MULLICS.iviiiiiiii e 329

Ring Protection in the PrOCESSOT aenens 330

Appending Unit Operation with Ring Mechanism.............cccccoeeiiiiiiiiiinieiiieeenns 330

Section 9: DPS/1.68 Cache Memory OpPeration.........c.uviuiiiiiiiiiieieie e e e e aeanas 342
Philosophy of Cache MeEIMOTY.......cuuiiuiiiieiieiieii et e e et e e e e eeaa e e eneanaanas 342

Cache Memory Organization..........ceeueiiiiiiiie e et ee e e e ee et e e aeeaeanas 342

Cache Memory / Main Memory Mapping......ccceeeueireineineineineineeeeneeneenerneeneenens 342

Cache Memory AAAIESSINg.......cuviniuiiniieiiriiiieieeteee e ereenererererenenenenenens 343

Cache MemoOTy CONEIOL.......oiuiiiiiiiiie et e e e e ans 345

Enabling and Disabling Cache MemMOTIV.........ccouuiiiiriiieiiiiiieeineieeieeieeieeneeneanas 345

Cache Memory Control in Segment Descriptor Words.........cc.cooevevevveininininnn.n. 345

Loading the Cache MeImMOTY......c.vuuiuiiniiiiieiiee et aenenens 346

Clearing the Cache MEeMOTY.....c..vuuiiuiiuiiiiiiiiieiieieeee e eneaerenenens 346

@1y a1 =1 L O 1Y) o 346

SELECEIVE CLBAT ... uuitiiieiiei ettt ettt e e e e enenenns 346

Dumping the Cache MEemMOTY........ccuviiiiiiiiiieeiie e e e e e e e e e e enaanas 347

Appendix A: OpPeration COAE APc.iueiuiiiriiiteieieei et ettt terenereterrteraenerernenerenrarnraraeens 348
Appendix B: Alphabetic Operation Code LiSt.......ccuuiiuiiiiiiiiiiiiiie e et eree e e aaenas 351
EIS MiCIro OPeTIationS.vuiviininiiieiii et et er e e e nenenenns 357

Appendix C: ADAresS MOGIfIBIS. ... cuin i e e e e e e e e e e e et e et e et e et eeteaenesaananas 358

NonsStandard MOGITIETS.uvniiiii ettt e et eeeenenen 358

SECTION 1: INTRODUCTION

The processor described in this reference manual is a hardware module designed for use
with Multics. The many distinctive features and functions of Multics are enhanced by the powerful
hardware features of the processor. The addressing features, in particular, are designed to permit
the Multics software to compute relative and absolute addresses, locate data and programs in the
Multics virtual memory, and retrieve such data and programs as necessary.

MULTICS PROCESSOR FEATURES

The Multics processor contains the following general features:
1. Storage protection to place access restrictions on specified segments.

2. Capability to interrupt program execution in response to an external signal (e.g., I/O
termination) at the end of any even/odd instruction pair (midinstruction interrupts are
permitted for some instructions), to save processor status, and to restore the status at
a later time without loss of continuity of the program.

3. Capability to fetch instruction pairs and to buffer two instructions (up to four
instructions, depending on certain main memory overlap conditions) including the one
currently in execution.

4. Overlapping instruction execution, address preparation, and instruction fetch. While
an instruction is being executed, address preparation for the next operand (or even
the operand following it) or the next instruction pair is taking place. The operations
unit can be executing instruction N, instruction N+1 can be buffered in the operations
unit (with its operand buffered in a main memory port), and the control unit can be
executing instructions N+2 or N+3 (if such execution does not involve the main
memory port or registers of instructions N or N+1) or preparing the address to fetch
instructions N+4 and N+5. This includes the capability to detect store instructions
that alter the contents of buffered instructions and the ability to delay preprocessing
of an address using register modification if the instruction currently in execution
changes the register to be used in that modification.

5. Interlacing capability to direct main memory accesses to interlaced system controller
modules.
6. Intermediate storage of address and control information in high-speed registers

addressable by content (associative memory).

7. Intermediate storage of base address and control information in pointer registers that
are loaded by the executing program.

8. Absolute address computation at execution time.

9. Ability to hold recently referenced operands and instructions in a high-speed look-
aside memory (cache option).

Segmentation and Paging

A segment is a collection of data or instructions that is assigned a symbolic name and
addressed symbolically by the user. Paging is controlled by the system software; the user need not
be aware of the existence of pages. User-visible address preparation is concerned with the
calculation of a virtual memory address; the processor hardware completes address preparation by
translating the final virtual memory address into an absolute main memory address. The user may
view each of his segments as residing in an independent main memory unit. Each segment has its

own origin that can be addressed as location zero. The size of each segment varies without
affecting the addressing of the other segments. Each segment can be addressed like a
conventional main memory image starting at location zero. Maximum segment size is 262,144
words.

When viewed from the processor, main memory consists of blocks or page frames, each of
which has a length of "page-size" words. The page size used by Multics is 1024 words. Each frame
begins at an absolute address which is zero modulo the page size. Any page of a segment can be
placed in any available main memory frame. These pages may be addressed as if they were
contiguous, even though they may be in widely scattered absolute locations. Only currently
referenced pages need be in main memory. A segment need not be paged, in which case the
complete segment is located in contiguous words of main memory. In Multics, all user segments
are paged. See Section 5 for additional discussion.

Address Modification and Address Appending

Before each main memory access, two major phases of address preparation take place:

1. Address modification by register or indirect word content, if specified by the
instruction word or indirect word.

2. Address appending, in which a virtual memory address is translated into an absolute
address to access main memory.

Although the above two types of modification are combined in most operations, they are
described separately in Sections 5 and 6. The address modification procedure can go on
indefinitely, with one type of modification leading to repetitions of the same type or to other types
of modification prior to a main memory access for an operand.

Faults and Interrupts

The processor detects certain illegal instruction usages, faulty communication with the
main memory, programmed faults, certain external events, and arithmetic faults. Many of the
processor fault conditions are deliberately or inadvertently caused by the software and do not
necessarily involve error conditions. The processor communicates with the other system modules
(I/0 multiplexers, bulk store controllers, and other processors) by setting and answering external
interrupts. When a fault or interrupt is recognized, a "trap" results. The trap causes the forced
execution of a pair of instructions in a main memory location, unique to the fault or interrupt,
known as the fault or interrupt vector. The first of the forced instructions may cause safe storage
of the processor status. The second instruction in a fault vector should be some form of transfer,
or the faulting program will be resumed at the point of interruption. Faults and interrupts are
described in Section 7.

Interrupts and certain low-priority faults are recognized only at specific times during the
execution of an instruction pair. If, at these times, bit 28 in the instruction word is set ON, the trap
is inhibited and program execution continues. The interrupt or fault signal is saved for future
recognition and is reset only when the trap occurs.

PROCESSOR MODES OF OPERATION

There are three modes of main memory addressing (absolute mode, append mode, and BAR
mode), and two modes of instruction execution (normal mode and privileged mode).

Instruction Execution Modes

Normal Mode

Most instructions can be executed in the normal mode. Certain instructions, classed as
privileged, cannot be executed in normal mode. These are identified in the individual instruction
descriptions. An attempt to execute privileged instructions while in the normal mode results in an
illegal procedure fault. The processor executes instructions in normal mode only if it is forming
addresses in append mode and the segment descriptor word (SDW) for the executing segment
specifies a nonprivileged procedure.

Privileged Mode

In privileged mode, all instructions can be executed. The processor executes instructions in
privileged mode when forming addresses in absolute mode or when forming addresses in append
mode and the segment descriptor word (SDW) for the segment in execution specifies a privileged
procedure and the execution ring is equal to zero. See Sections 5 and 7 for additional discussion.

Addressing Modes

Absolute Mode

In absolute mode, the final computed address is treated as the absolute main memory
address unless the appending hardware mechanism is invoked for a particular main memory
reference. During instruction fetches, the procedure pointer register is ignored. The processor
enters absolute mode when it is initialized or immediately after a fault or interrupt. It remains in
absolute mode until it executes a transfer instruction whose operand is obtained via explicit use of
the appending hardware mechanism.

The appending hardware mechanism may be invoked for an instruction by setting bit 29 of
the instruction word ON to cause a reference to a properly loaded pointer register or by the use of
indirect-to-segment (its) or indirect-to-pointer (itp) modification in an indirect word.

Append Mode

The append mode is the most commonly used main memory addressing mode. In append
mode the final computed address is either combined with the procedure pointer register, or it is
combined with one of the eight pointer registers. If bit 29 of the instruction word contains a 0,
then the procedure pointer register is selected; otherwise, the pointer register given by bits 0-2 of
the instruction word is selected.

BAR Mode

In BAR mode, the base address register (BAR) is used. The BAR contains an address bound
and a base address. All computed addresses are relocated by adding the base address. The
relocated address is combined with the procedure pointer register to form the virtual memory
address. A program is kept within certain limits by subtracting the unrelocated computed address
from the address bound. If the result is zero or negative, the relocated address is out of range, and
a store fault occurs.

PROCESSOR UNIT FUNCTIONS

Major functions of each principal logic element are listed below and are described in
subsequent sections of this manual.

Appending Unit

Controls data input/output to main memory
Performs main memory selection and interlace
Does address appending

Controls fault recognition

Interfaces with cache

Associative Memory Assembly

This assembly consists of sixteen 51-bit page table word associative memory (PTWAM)
registers and sixteen 108-bit segment descriptor word associative memory (SDWAM) registers.
These registers are used to hold pointers to most recently used segments (SDWs) and pages
(PTWs). This unit reduces the need for possible multiple main memory accesses before obtaining
an absolute main memory address of an operand or instruction.

Control Unit

Performs address modification

Controls mode of operation (privileged, normal, etc.)
Performs interrupt recognition

Decodes instruction words and indirect words

Performs timer register loading and decrementing

Operation Unit

Does fixed- and floating-binary arithmetic

Does shifting and Boolean operations

Decimal Unit

Does decimal arithmetic

Does character-string and bit-string operations

SECTION 2: DATA REPRESENTATION

INFORMATION ORGANIZATION

The processor, like the rest of the Multics system, is organized to deal with information in
basic units of 36-bit words. Other units of 4-, 6-, 9-bit characters or bytes, 18-bit half words, and
72-bit word pairs can be manipulated within the processor by use of the instruction set. These bit
groupings are used by the hardware and software to represent a variety of forms of coded data.
Certain processor functions appear to manipulate larger units of 144, 288, 576, and 1152 bits, but
these functions are performed by means of repeated use of 72-bit word pairs. All information is
transmitted, stored, and processed as strings of binary bits. The data values are derived when the
bit strings are interpreted according to the various formats discussed in this section.

POSITION NUMBERING

The numbering of bit positions, character and byte positions, and words increases from 0 in
the direction of conventional reading and writing: from the most significant to the least significant
digit of a number, and from left to right in conventional alphanumeric text.

Graphic presentations in this manual show registers and data with position numbers
increasing from left to right.

NUMBER SYSTEM

The binary arithmetic functions of the processor are implemented in the twos complement,
binary number system. One of the primary properties of this number system is that a field (or
register) having width n bits may be interpreted in two different ways; the logical case and the
arithmetic or algebraic case.

In the logical case, the number is unsigned, positive, and lies in the range [0,2™-1] where n
is the size of the register or the length of the field. The results of arithmetic operations on numbers

for this case are interpreted as modulo 2™ numbers. Overflow is not defined for this case since the

range of the field or register cannot be exceeded. The numbers 0 and 2"-1 are consecutive (not
separated) in the set of numbers defined for the field or register.

In the arithmetic case, the number is signed and lies in the range [-2®D,2D_1], Overflow
is defined for this case since the range can be exceeded in either direction (positive or negative).
The left-hand-most bit of the field or register (bit 0) serves as the sign bit and does not contribute
to the magnitude of the number.

The main advantage of this implementation is that the hardware arithmetic algorithms for
the two cases are identical; the only distinction lying in the interpretation of the results by the
user. Instruction set features are provided for performing binary arithmetic with overflow disabled
(the so-called logical instructions) and for comparing numbers in either sense.

Subtraction is performed by adding the twos complement of the subtrahend to the minuend.
(Note that when the subtrahend is zero the algorithm for forming the twos complement is still
carried out, but, since the twos complement of zero is zero, the result is correct.)

Another important feature of the twos complement number system (with respect to
comparison of numeric values) is that the no borrow condition in true subtraction is identical to the
carry condition in true addition and vice versa.

A statement on the assumed location of the binary point has significance only for
multiplication and division. These two operations are implemented for the arithmetic case in both
integer and fraction modes. Integer means that the position of the binary point is assumed to the

right of the least significant bit position, that is, to the right of the right-hand-most bit of the field
or register, and fraction means that the position of the binary point is assumed to the left of the
most significant bit position, that is, between bit 0 and bit 1 of the field or register (recall that bit 0
is the sign bit).

INFORMATION FORMATS

The figures that follow show the unstructured formats (templates) for the various
information units defined for the processor. Data transfer between the processor and main
memory is word oriented; a 36-bit machine word is transferred for single-precision operands and
subfields of machine words, and a 72-bit word pair is transferred for all other cases (multiword
operands, instruction fetches, bit- and character-string operands, etc.). The information unit to be
used and the data transfer mode are determined by the processor according to the function to be
performed.

The 36-bit unstructured machine word shown in Figure 2-1 is the minimum addressable
information unit in main memory. Its location is uniquely determined by its main memory address,
Y. All other information units are defined relative to the 36-bit machine word.

0 3
0 5
36

Figure 2-1. Unstructured Machine Word Format

Two consecutive machine words as shown in Figure 2-2, the first having an even main
memory address, form a 72-bit word pair. In 72-bit word pair data transfer mode, the word pair is
uniquely located by the main memory address of either of its constituent 36-bit machine words.
Thus, if Y is even, the word pair at (Y,Y+1) is selected. If Y is odd, the word pair at (Y-1,Y) is
selected. The term Y-pair is used when referring to such a word pair.

0 33 7
0 5 6 1
Even word Odd word

36 36

Figure 2-2. Unstructured Word Pair Format

Four-bit bytes are mapped onto 36-bit machine words as shown in Figure 2-3. The 0 bits at
bit positions 0, 9, 18, and 27 are forced to be 0 by the processor on data transfers to main memory
and are ignored on data transfers from main memory.

00 00 001 11 111 2 2 2 2 2 3 3 3
01 4 5 8 90 3 4 789 2 3 6 7 8 1 2 5
0 0 0 0

1 4 4 1 4 4 1 4 41 4 4

Figure 2-3. Unstructured 4-bit Byte Format

Six-bit characters are mapped onto 36-bit machine words as shown in Figure 2-4.

0 00 11 11 2 2 2 3 3
0 5 6 1 2 7 8 3 4 9 0 5
6 6 6 6 6 6
Figure 2-4. Unstructured 6-bit Character Format
Nine-bit bytes are mapped onto 36-bit machine words as shown in Figure 2-5.

0 00 11 2 2 3
0 8 9 7 8 6 7 5
9 9 9 9

Figure 2-5. Unstructured 9-bit Byte Format

Eighteen-bit half words are mapped onto 36-bit machine words as shown in Figure 2-6.

0 11 3
0 7 8 5
Upper half Lower half
18 18
Figure 2-6. Unstructured 18-bit Half Word Format
DATA PARITY

Odd parity on each 36-bit machine word transferred to main memory is generated as it
leaves the processor, is verified at several points along the transmission path, and is held in main
memory either as an extra bit in the case of magnetic core memory or as part of the error
detecting and correcting (EDAC) code in the case of magnetic oxide semiconductor (MOS)
memory. If an incorrect parity is detected at any of the various parity check points, the main
memory returns an illegal action signal and a code appropriate to the check point.

On data transfers from main memory, the parity information is retrieved and transmitted
with the data information. The same verification checks are made and illegal action signalled for
errors. The processor makes a final parity check as the data enters the processor.

Any detected parity error causes the processor parity indicator to be set ON and (if
enabled) a parity fault occurs.

REPRESENTATION OF DATA

Data is defined by imposing an operand structure on the information units just described.
Data is represented in two forms: numeric or alphanumeric. The form is determined by the
processor according to the function to be performed.

In the definitions below, a; is the value of the bit in the it? bit position, either 0 or 1.

Numeric Data

Numeric data is represented in three modes: fixed-point binary, floating-point binary, and
decimal. The mode is determined by the processor according to the function being performed.

Fixed-point Binary Data

Fixed-point Binary Integers

Fixed-point binary integer data is defined by imposing either of the bit position value
expressions shown below on an information unit of n bits.

Logical value:

agx2®D 4 a,x2M2) ¢4 gx2iD 4 4g
Arithmetic value:

-agx2@™D 4 a;x2m2) 44 gqx2@FD 4 4q

The following fixed-point binary integer data items are defined (also see Table 2-1 for
values):

Operand size (bits) Operand name
6 6-bit character operand
9 9-bit byte operand
18 Half word operand
36 Single-precision operand
72 Double-precision operand

Note that a 4-bit operand is not defined. This data item is defined only for decimal data.
(See discussion of decimal data later in this section).

The proper operand and its position with respect to a 36-bit machine word are determined
by the processor during preparation of the main memory address for the operand. If the data
width of the operand selected is smaller than the register involved, the operand is high- or low-
order zero filled as necessary.

The values in Table 2-1 are given in terms of the operand sizes. The value an operand
contributes to a larger field or register depends on the alignment of the operand with respect to
the field or register.

Table 2-1. Fixed-Point Binary Integer Values

36-bit 72-bit
6-bit 18-bit half single double
Operand character 9-bit byte word precision precision
Logical
minimum 0 0 0 0 0
maximum 261 291 2181 236.1 2721

resolution 1 1 1 1 1

36-bit 72-bit

6-bit 18-bit half single double
Operand character 9-bit byte word precision precision
Arithmetic
minimum 0 0 0 0 0
maxima
negative 25 28 217 235 271
positive 251 281 2171 2351 2711
resolution 1 1 1 1 1

Fixed-point Binary Fractions

Fixed-point binary fraction data is defined by imposing the bit position value expression
below on an information unit of n bits.

Arithmetic value:
-ag+ ag X2 +ayx22 + L+ ax2i+ L+ ayx2- @D
Note that logical values are not defined for fixed-point binary fraction data.

The following fixed-point binary fraction data items are defined (also see Table 2-2 for
values):

Operand size (bits) Operand name
6 6-bit character operand
9 9-bit byte operand
18 Half word operand
36 Single-precision operand
72 Double-precision operand

Note that a 4-bit operand is not defined. This data item is defined only for decimal data.
(See discussion of decimal data later in this section.) Fixed-point binary fraction operands are
used by the Divide Fraction (dvf) and Multiply Fraction (mpf) instructions only.

The proper operand and its position with respect to a 36-bit machine word are determined
by the processor during preparation of the main memory address for the operand. If the data
width of the operand selected is smaller than the register involved, the operand is high- or low-

order zero filled as necessary.

The values in Table 2-2 are given in terms of the operand sizes. The value an operand
contributes to a larger field or register depends on the alignment of the operand with respect to
the field or register.

Table 2-2. Fixed-Point Binary Fraction Values

36-bit 72-bit
6-bit 18-bit half single double
Operand character 9-bit byte word precision precision
Arithmetic
minimum 0 0 0 0 0
maxima
negative -1.0 -1.0 -1.0 -1.0 -1.0
positive 1.0-2° 1.0-2°8 1.0-217 1.0-235 1.0-2771
resolution 20 28 217 2735 2771

Floating-point Binary Data
A floating-point binary number is expressed as:
Z=M x 2F
where:
M is a fixed-point binary fraction; the mantissa
E is a fixed-point binary integer; the exponent
A floating-point binary number is defined by partitioning an information unit of n bits into
two pieces; an 8-bit fixed-point binary integer exponent and an (1-8)-bit fixed-point binary fraction

mantissa.

The following floating-point data items are defined.

Operand size (bits) Operand name
18 Half word operand
36 Single-precision operand
72 Double-precision operand

For clarity, the formats of these operands are shown in Figure 2-7 through Figure 2-9. In
the figures, the fields labeled S hold sign bits associated with the exponent, E, and the mantissa,
M.

The floating-point binary operands are used only by the floating-point binary arithmetic
instructions (see Section 4). The 18-bit half word operand has meaning only when used in
conjunction with the direct upper (du) address modification (see Section 6 for a discussion of
address modification).

00 00O 1
01 789 7
S E S M

1 71 9

Figure 2-7. Eighteen-bit Half Word Floating-Point Binary Operand Format

00 000 3
01 7 89 5
S E S M

1 71 27

Figure 2-8. Single-Precision Floating-Point Binary Operand Format

00 00O 7
01 789 1
S E S M

1 71 63

Figure 2-9. Double-Precision Floating-Point Binary Operand Format

The proper operand is selected by the processor during preparation of the main memory
address for the operand.

Overlength Registers

The AQ-register is used to hold the mantissa of all floating-point binary numbers. The AQ-
register is said to be overlength with respect to the operands since it has more bits than are
provided by the operands. Operands are low-order zero filled when loaded and low-order
truncated (or rounded, depending on the instruction) when stored. Thus, the result of all floating-
point instructions has more bits of precision in the AQ-register than may be stored.

Users are cautioned that calculations involving floating-point operands may suffer from
propagation of truncation errors even if the computation algorithms are designed to hold
mantissas in the AQ-register as long as possible. It is possible to retain full AQ-register precision
of intermediate results if they are saved with the Store AQ (staq) and Store Exponent (ste)
instructions but such saved data are not usable as a floating-point operand.

Normalized Numbers
A floating-point binary number is said to be normalized if the relation
-05>M>-10or0.5=M<1or[M=0and E=-128]
is satisfied. This is a result of using a 2's complement mantissa. Bits 8 and 9 are different unless

the number is zero. The presence of unnormalized numbers in any finite mantissa arithmetic can
only degrade the accuracy of results. For example, in an arithmetic allowing only two digits in the

mantissa, the number 0.005x% 102 has the value zero instead of the value one-half.

Normalization is a process of shifting the mantissa and adjusting the exponent until the
relation above is satisfied. Normalization may be used to recover some or all of the extra bits of
the overlength AQ-register after a floating-point operation.

There are cases where the limits of the registers force the use of unnormalized numbers.
For example, in an arithmetic allowing three digits of mantissa and one digit of exponent, the

calculation 0.3x10°10 - 0.1x10°11 (the normalized case) may not be made, but 0.03x1079 -
0.001%x109 = 0.029%10°° (the unnormalized case) is a valid result.

Some examples of normalized and unnormalized floating-point binary numbers are:

Unnormalized positive binary 0.00011010 x 27

Same number normalized 0.11010000 x 24
Unnormalized negative binary 1.11010111 x 24
Same number normalized 1.01011100 x 26

The minimum normalized nonzero floating-point binary number is 27128 in all cases. Table
2-3 gives the values for the floating-point binary operands.

Table 2-3. Floating-Point Binary Operand Values

18-bit half 36-bit single 72-bit double
Operand word precision precision
Unnormalized
minimum 0 @ 0 @ 0 (@
maxima
negative -1.0x2127 -1.0x2127 -1.0x2127
positive (1-279)x 2127 (1-2727)x 2127 (1-2°63)x 2127
resolution 1.9 @) 1.27 @) 1:63

(a)There is no unique representation for the value zero in floating-point binary numbers; any
number with mantissa zero has the value zero. However, the processor treats a zero mantissa
as a special case in order to preserve precision in later calculations with a zero intermediate
result. Whenever the processor detects a zero mantissa as the result of a floating-point binary
operation, the AQ-register is cleared to zeros and the E register is set to -128. This
representation is known as a floating-point normalized zero. The unnormalized zero (any zero
mantissa) will be handled correctly if encountered in an operand but precision may be lost. For

example, Ax101% + 0x1038 will not produce desired results since all the precision of A will be
lost when it is aligned to match the 1038 exponent of the 0.

(b)A value cannot be given for resolution in these cases since such a value depends on the value of
the exponent, E. The notation used, 1:m, indicates resolution to 1 bit in a field of m. Thus, the
following general statement on resolution may be made:

The resolution of a floating-point binary operand with mantissa length m and exponent
value E is 2(Em),

Decimal Data
Decimal numbers are expressed in the following forms:
Fixed-point, no sign MMMMMM.
Fixed-point, leading sign xMMMMMM.
Fixed-point, trailing sign MMMMMM. +
Floating-point + MMMMMM. x 10E
The form is specified by control information in the operand descriptor for the operand as

used by the Extended Instruction Set (EIS) instructions (see Section 4 for a discussion of the EIS
instructions).

A decimal number is defined by imposing any of the byte position value expressions below
on a 4- or 9-bit byte information unit of length n bytes.

Fixed-point, no sign:
cox100 D + ¢y x100™2) + | + ¢y
Fixed-point, leading sign:
[sign=cq] ¢1x10™2) + ¢;x103) 4+ |+ c(y 1)
Fixed-point, trailing sign:
cox10M2) + ¢y x10®3) + | + ¢y [sign=c(y.1)]
Floating-point:
[sign=cq] ¢;x10®3) + ¢;x104) + . + ¢(.3) [exponent=8 bits]
where:
c; is the decimal value of the byte in the it? byte position.
[sign=c;] indicates that c; is interpreted as a sign byte.
[exponent=8 bits] indicates that the exponent value is taken from the last 8 bits of the
string. If the data is in 9-bit bytes, the exponent is bits 1-8 of ¢(,.1). If the data is in 4-

bit bytes, the exponent is the binary value of the concatenation of ¢(,.p) and ¢(y.1).

The decimal number as described above is the only decimal data item defined. It may begin
on any legal byte boundary (without regard to word boundaries) and has a maximum extent of 63
bytes.

The processor handles decimal data as 4-bit bytes internally. Thus, 9-bit bytes are high-
order truncated as they are transferred from main memory and high-order filled as they are
transferred to main memory. The fill pattern is "00011"b for digit bytes and "00010" for sign
bytes. The floating-point exponent is a special case and is treated as a fixed-point binary integer.

The processor performs validity checking on decimal data. Only the byte values [0,11]g are
legal in digit positions and only the byte values [12,17]g are legal in sign positions. Detection of an

illegal byte value causes an illegal procedure fault. The interpretation of decimal sign bytes is
shown in Table 2-4.

Table 2-4. Decimal Sign Character Interpretation

9-bit 4-bit

bytes bytes Interpretation
525 124 +
53g @ 135 ® +
54g 144 (@) +
55g (a) 15g (@) R

56g 16g +

9-bit 4-bit
bytes bytes Interpretation

578 178 +

(a)This value is used as the default sign byte for storage of results. The presence of other values
will yield correct results according to the interpretation.

(b)An optional control bit in the EIS decimal arithmetic instructions (see Section 4) allows the
selection of 133 for the plus sign byte for storage of results in 4-bit data mode.

Decimal Data Values

The operand descriptors for decimal data operands have a 6-bit fixed-point binary integer
field for specification of a scaling factor (SF). This scaling factor has the same effect as the value
of E in floating-point decimal operands; a negative value moves the assumed decimal point to the
left; a positive value, to the right. The use of the scaling factor extends the range and resolution of
decimal data operands. The range of the scaling factor is [-32,31]1¢. See Table 2-5 for decimal
data operand values.

Table 2-5. Decimal Data Values

Fixed-point Fixed-point Floating-point Floating-point

Operand unsigned signed 9 bit 4 bit
Arithmetic
minimum 0 0@ 0@ 0 @

maximum (1063-1)x1031 +(1062-1)x1031 +(1061-1)x10158 +(1060-1)x10158
resolution 1:SF ® 1:SF ®) 1:E © 1:E ©

(a)As in floating-point binary arithmetic, there is no unique representation of the value zero except
in the case of fixed-point, unsigned data. Therefore, the processor detects a zero result and

forces a value of +0. for fixed-point, signed data and +0.x10!27 for floating-point data. Again,
as in floating-point binary arithmetic, other representations of the value zero will be handled
correctly except for possible loss of precision during operand alignment.

(b)A value cannot be given for resolution in these cases since such a value depends on the value of

the scaling factor, SF. The notation used, 1:SF, indicates resolution to 1 part in 105F). Thus,
the following general statement on resolution may be made:

The resolution of a fixed-point decimal operand with scaling factor SF is 105F.
(c)A value cannot be given for resolution in these cases since such a value depends on the value of

the exponent, E. The notation used, 1:E, indicates resolution to 1 part in 10¥). Thus, the
following general statement on resolution may be made:

The resolution of a floating-point decimal operand with exponent E is 10®),

The scaling factor is ignored by the hardware.

Alphanumeric Data

Alphanumeric data is represented in two modes; character-string and bit-string. The mode
is determined by the processor according to the function being performed.

Character String Data

Character string data is defined by imposing the character position structure below on a 4-
bit, 6-bit, or 9-bit information unit of length n bytes or characters.

collerll - Il cm1)
where:
c; is the character in the i*! character position.

|| indicates the concatenation operation.
The character string described above is the only character string data item defined. It may

begin on any legal character boundary (without regard to word boundaries) and has a maximum
extent as shown in Table 2-6.

Table 2-6. Character String Data Length Limits

Character size Length limit

9-bit 1048576
6-bit 1572864
4-bhit 2097152

No interpretation of the characters is made except as specified for the instruction being
executed (see Section 4).

Bit String Data

Bit string data is defined by imposing the bit position structure below on a bit information
unit of length n bits.

bo [by I] - Il Ba-1)

where:
b is the value of the bit in the i? position.
|| indicates the concatenation operation.

The bit string described above is the only bit string data item defined. It may begin at any
bit position (without regard to character or word boundaries) and has a maximum extent of
9437184 hits.

SECTION 3: PROGRAM ACCESSIBLE REGISTERS

A processor register is a hardware assembly that holds information for use in some
specified way. An accessible register is a register whose contents are available to the user for his
purposes. Some accessible registers are explicitly addressed by particular instructions, some are
implicitly referenced during the course of execution of instructions, and some are used in both
ways. The accessible registers are listed in Table 3-1. See Section 4 for a discussion of each
instruction to determine the way in which the registers are used.

Table 3-1. Processor Registers

Register name Mnemonic | Length (bits) Quantity
Accumulator Register A 36 1
Quotient Register Q 36
Accumulator-Quotient Register @ AQ 72 1
Exponent Register E 8 1
Exponent-Accumulator-Quotient Register () EAQ 80 1
Index Registers Xn 18 8
Indicator Register IR 14 1
Base Address Register BAR 18 1
Timer Register TR 27 1
Ring Alarm Register RALR 3 1
Pointer Reqisters PRn 42 8
Address Registers ARn 24 8
Procedure Pointer Register (P) PPR 37 1
Temporary Pointer Register) TPR 42 1
Descriptor Segment Base Register DSBR 51 1
Segment Descriptor Word Associative Memory SDWAM 88 16
Page Table Word Associative Memory PTWAM 51 16
Fault Register FR 35 1
Mode Register MR 33 1
Cache Mode Register CMR 28 1
Control Unit (CU) History Register 72 16
Operations Unit (OU) History Register 72 16
Decimal Unit (DU) History Register 72 16
Appending Unit (APU) History Register 72 16
Configuration Switch Data 36 5
Control Unit Data 288 1
Decimal Unit Data 288 1

(a)This register is not a separate physical assembly but is a combination of its constituent
registers.

(b)This register is not explicitly addressable, but is included because of its vital role in instruction
and operand address preparation.

In the descriptions that follow, the diagrams given for register formats do not imply that a
physical assembly possessing the pictured bit pattern exists. The diagram is a graphic
representation of the form of the register data as it appears in main memory when the register
contents are stored or how data bits must be assembled for loading into the register.

If the diagrams contain the characters "x" or "0", the values of the bits in the positions
shown are irrelevant to the register. Bits pictured as "x" are not changed when the register is
stored. Bits pictured as "0" are set to 0 when the register is stored. Neither "x" bits or "0" bits are

loaded into the register.

ACCUMULATOR REGISTER (A)

Format: - 36 bits

0 11 3
0 7 8 5
A-Upper A-Lower
18 18
Figure 3-1. Accumulator Register (A) Format
Description:

A 36-bit physical register located in the operations unit.
Function:
In fixed-point binary instructions, holds operands and results.
In floating-point binary instructions, holds the most significant part of the mantissa.
In shifting instructions, holds original data and shifted results.

In address preparation, may hold two logically independent word offsets, A-upper and A-
lower, or an extended range bit- or character-string length.

QUOTIENT REGISTER (Q)

Format: - 36 bits

0 11 3
0 7 8 5
Q-Upper Q-Lower
18 18
Figure 3-2. Quotient Register (Q) Format
Description:

A 36-bit physical register located in the operations unit.

Function:
In fixed-point binary instructions, holds operands and results.
In floating-point binary instructions, holds the least significant part of the mantissa.
In shifting instructions, holds original data and shifted results.

In address preparation, may hold two logically independent word offsets, Q-upper and Q-
lower, or an extended range bit- or character-string length.

ACCUMULATOR-QUOTIENT REGISTER (AQ)

Format: - 72 bits

0 3 3 7
0 5 6 1
A Q
36 36
Even word 0Odd word
Figure 3-3. Accumulator-Quotient Register (AQ) Format
Description:

A combination of the accumulator (A) and quotient (Q) registers.

Function:
In fixed-point binary instructions, holds double-precision operands and results.
In floating-point binary instructions, holds the mantissa.

In shifting instructions, holds original data and shifted results.

EXPONENT REGISTER (E)

Format: - 8 bits

0 00 3
0 7 8 5
exponent 000000O00O0D0ODODO0DO0OO0DODODODOOODOODODOOODOOODO
8 28
Figure 3-4. Exponent Register (E) Format
Description:

An 8-bit physical register located in the operations unit.
Function:

In floating-point binary instructions, holds the exponent.

EXPONENT-ACCUMULATOR-QUOTIENT REGISTER (EAQ)

Format: - 80 bits

0
0

N o
[ocN]
~

exponent mantissa

8 64

Figure 3-5. Exponent-Accumulator-Quotient Register (EAQ) Format

Description:
A combination of the exponent (E), accumulator (A), and quotient (Q) registers. Although

the combined register has a total of 80 bits, only 72 are involved in transfers to and from
main memory. The 8 low-order bits are discarded on store and zero-filled on load.

Function:

In floating-point binary instructions, holds operands and results.

INDEX REGISTERS (Xn)

Format: - 18 bits each

0 1
0 7
18

Figure 3-6. Index Register (Xn) Format

Description:

Eight 18-bit physical registers in the operations unit numbered 0 through 7. Index register

data may occupy the position of either an upper or lower 18-bit half-word operand (see
Section 2).

Function:
In fixed-point binary instructions, hold half-word operands and results.

In address preparation, hold word offsets or extended range bit- or character-string lengths.

INDICATOR REGISTER (IR)

Format: - 14 bits

0 11122222227222333
0 7890123456 789012

X X X X X X X X X X X X X X x X X x|a|blc|d|e|f|g|h|i]j|k|]l[m|[n|[o[O O O

1811111111111 1111 3

Figure 3-7. Indicator Register (IR) Format

Description:

An assemblage of 15 indicator flags from various units of the processor. The data occupies
the position of a lower 18-bit half word operand (see Section 2). When interpreted as data,
a bit value of 1 corresponds to the ON state of the indicator, a bit value of 0 corresponds to
the OFF state.

Function:

The functions of the individual indicator bits are given below. An "x" in the column headed
"L" indicates that the state of the indicator is not affected by instructions that load the IR.

key L Indicator name Action

a Zero This indicator is set ON whenever the output of the main binary
adder consists entirely of zero bits for binary or shifting
instructions or the output of the decimal adder consists entirely
of zero digits for decimal instructions; otherwise, it is set OFF.

b Negative This indicator is set ON whenever the output of bit 0 of the main
binary adder has value 1 for binary or shifting instructions or the
sign character of the result of a decimal instruction is the
negative sign character; otherwise, it is set OFF.

C Carry This indicator is set ON for any of the following conditions;
otherwise, it is set OFF.

(1) If a bit propagates leftward out of bit O of the main binary
adder for any binary or shifting instruction.

(2) If | valuel | <= | value2 | for a decimal numeric
comparison instruction.

(3) If charl <= char2 for a decimal alphanumeric compare
instruction.

d Overflow This indicator is set ON if the arithmetic range of a register is
exceeded in a fixed-point binary instruction or if the target string
of a decimal numeric instruction is too small to hold the integer
part of the result. It remains ON until reset by the Transfer On
Overflow (tov) instruction or is reset by some other instruction
that loads the IR. The event that sets this indicator ON may also
cause an overflow fault. (See overflow mask indicator below.)

key L Indicator name Action

e

Exponent
overflow

Exponent

underflow

Overflow mask

Tally runout

Parity error

Parity mask

This indicator is set ON if the exponent of the result of a
floating-point binary or decimal numeric instruction is greater
than +127. It remains ON until reset by the Transfer On
Exponent Overflow (teo) instruction or is reset by some other
instruction that loads the IR. The event that sets this indicator
ON may also cause an overflow fault. (See overflow mask
indicator below.)

This indicator is set ON if the exponent of the result of a
floating-point binary or decimal numeric instruction is less than
-128. It remains ON until reset by the Transfer On Exponent
Underflow (teu) instruction or is reset by some other instruction
that loads the IR. The event that sets this indicator ON may also
cause an overflow fault. (See overflow mask indicator below.)

This indicator is set ON or OFF only by the instructions that load
the IR. When set ON, the IR inhibits the generation of the fault
for those events that normally cause an overflow fault. If the
overflow mask indicator is set OFF after occurrence of an
overflow event, an overflow fault does not occur even though the
indicator for that event is still set ON. The state of the overflow
mask indicator does not affect the setting, testing, or storing of
any other indicator.

This indicator is set OFF at initialization of any tallying
operation, that is, any repeat instruction or any indirect then
tally address modification. It is then set ON for any of the
following conditions:

(1) If any repeat instruction terminates because of tally
exhaust.

(2) If a Repeat Link (rpl) instruction terminates because of a
zero link address.

(3) If a tally exhaust is detected for an indirect then tally
modifier. The instruction is executed whether or not tally
exhaust occurs.

(4) If an EIS string scanning instruction reaches the end of the
string without finding a match condition.

This indicator is set ON whenever a system controller signals
illegal action with a parity error code or the processor detects an
internal parity error condition. The indicator is set OFF only by
instructions that load the IR.

This indicator is set ON or OFF only by the instructions that load
the IR and is changed only when the processor is in privileged or
absolute mode. When it is set ON, the IR inhibits the generation
of the parity fault for all events that set the parity error
indicator. If the parity mask indicator is set OFF after the
occurrence of a parity error event, a parity fault does not occur
even though the parity error indicator may still be set ON. The
state of the parity mask indicator does not affect the loading,
testing, or storing of any other indicator.

key L Indicator name Action

k

m

n

x Not BAR mode

Truncation

Mid instruction
interrupt fault

x Absolute mode

Hex mode

This indicator is set OFF (placing the processor in BAR mode)
only by execution of the Transfer and Set Slave (tss) instruction
or by the operand data of the Restore Control Unit (rcu)
instruction and is changed only when the processor is in
privileged or absolute mode. It is set ON (taking the processor
out of BAR node) by the execution of any transfer instruction
other than tss during a fault or interrupt trap. (See Section 7.)
If a fault or interrupt trap occurs while in BAR node and the IR is
stored before any transfer occurs, then a Return (ret) or Restore
Control Unit (rcu) instruction that reloads the stored data will
return the processor to BAR mode.

This indicator is set ON whenever the target string of a decimal
numeric instruction is too small to hold all the digits of the result
or the target string of an alphanumeric instruction is too small to
hold all the bits or characters to be stored. (Also see the
overflow indicator for decimal numeric instructions.) The event
that sets this indicator ON may also cause an overflow fault.
(See overflow mask indicator above.)

This indicator is set OFF at the start of execution of each
instruction and is set ON by the events described below. The
indicator has meaning only when determining the proper restart
sequence for the interrupted instruction. This indicator can be
set on:

(1) By any fault during execution of an EIS instruction;
however, the state is safe-stored in the Control Unit Data
only for access violation and directed faults.

(2) By an interrupt signal during execution of those EIS
instructions that allow very long operand strings.

(3) If the processor is in absolute or privileged mode, by the
execution of a Load Indicator Register (1di), Return (ret),
or Restore Control Unit (rcu) instruction with bit 30 set to
1 in the IR data.

This indicator is set ON (placing the processor in absolute mode)
when the processor is initialized and by execution of an
nonappended transfer instruction during a fault or interrupt trap
and is set OFF (placing the processor in append mode) by any
execution of an appended transfer instruction. If the processor
is not in absolute mode when the fault or interrupt occurs and
the transfer instruction is Return (ret) or Restore Control Unit
(rcu) and the appropriate mode bit is properly set in the IR data,
the processor remains in its current mode.

When the hexadecimal permission indicator (bit 33 of the Mode
Register) is set on and this indicator is also on, then the
exponent of a floating point number has a power of 16 rather
than a power of two (binary floating point). The state of the hex
mode indicator can be changed by executing a Load Indicator
Register (ldi), Return (ret), or Restore Control Unit (rcu),
instruction with the desired state (1 or 0) set in bit 32 of the IR
data. Hexadecimal mode is only available on DPS 8M
processors. Indicator Register bit 32 is set to a zero value on
DPS/L68 processors.

BASE ADDRESS REGISTER (BAR)

Format: - 18 bits

0 00 11 3
0 8 9 7 8 5
BASE BOUND X X X X X X X X X X X X X X X XXX
9 9 18
Figure 3-8. Base Address Register (BAR) Format
Description:

An 18-bit physical register in the control unit.
Function:

The Base Address Register provides automatic hardware Address relocation and Address
range limitation when the processor is in BAR mode.

BAR.BASE Contains the 9 high-order bits of an 18-bit address relocation constant.
The low-order bits are generated as zeros.

BAR.BOUND Contains the 9 high-order bits of the unrelocated address limit. The low-
order bits are generated as zeros. An attempt to access main memory
beyond this limit causes a store fault, out of bounds. A value of 0 is truly O,
indicating a null memory range.

TIMER REGISTER (TR)

Format: - 27 bits

0 2 2 3
0 6 7 5
Timer value 00000O0OO0OO0O
27 9
Figure 3-9. Timer Register (TR) Format
Description:

A 27-bit settable, free-running clock in the control unit. The value decrements at a rate of
512 kHz. Its range is 1.953125 microseconds to approximately 4.37 minutes.

Function:

The TR may be loaded with any convenient value with the privileged Load Timer (ldt)
instruction. When the value next passes through zero, a timer runout fault is signalled. If
the processor is in normal or BAR mode with interrupts not inhibited or is stopped at an
uninhibited Delay Until Interrupt Signal (dis) instruction, the fault occurs immediately. If
the processor is in absolute or privileged mode or has interrupts inhibited, the fault is
delayed until the processor returns to uninhibited normal or BAR mode or stops at an
uninhibited Delay Until Interrupt Signal (dis) instruction.

RING ALARM REGISTER (RALR)

Format: - 3 bits

0 3
2

3
0 3

00000000OO0O0ODO0D0OOOO0OOO0OOOOOO0OOO0OO0OO0OOO0OOOOOGO0OO]RALR

33 3

Figure 3-10. Ring Alarm Register (RALR) Format

Description:
A 3-bit physical register in the appending unit.

Function:
If the RALR contains a value other than zero and the effective ring number (see TPR.TRR
below) is greater than or equal to the contents of the RALR and the instruction for which an
absolute main memory address is being prepared is a transfer instruction, an access

violation, ring alarm, fault occurs. Operating system software may use this register to
detect crossings from inner rings to outer rings.

POINTER REGISTERS (PRn)

Format: - 42 bits each

Even word of ITS pointer pair

0 00 11 2 2 2 3 3
0 2 3 7 8 01 9 0 5
000 SNR RNR [0 O OOOO0OOOO (43),
3 15 3 9 6
Odd word of ITS pointer pair
3 55 55 6 6 6 6 7
6 3 4 6 7 2 3 5 6 1
WORDNO 000 BITNO 00O (TAG)

18 3 6 3 6

Data as stored by Store Pointer Register n Packed (sprpn)

0 00 11 3
0 5 6 7 8 5
BITNO SNR WORDNO
6 12 18
Figure 3-11. Pointer Register (PRn) Format
Description:

Eight combinations of physical registers from the appending unit and decimal unit
numbered 0 through 7. PRn.RNR, PRn.SNR, and PRn.BITNO are located in the appending
unit and PRn.WORDNO is located in the decimal unit. The WORDNO registers also form
part of the address registers discussed later in this section.

Function:
The pointer registers hold information relative to the location in main memory of data items

that may be external to the segment containing the procedure being executed. The
functions of the individual constituent registers are:

Register Function

PRn.SNR The segment number of the segment containing the data item described
by the pointer register.

PRn.RNR The final effective ring number value calculated during execution of the
instruction that last loaded the PR.

(43)g This field is not part of the PR but is generated each time the PR is stored

as an ITS pair.

PRn.WORDNO The offset in words from the base or origin of the segment to the data
item.

PRn.BITNO The number of the bit within PRn.WORDNO that is the first bit of the data
item. Data items aligned on word boundaries always have the value O.
Unaligned data items may have any value in the range [1,35].

(TAG) This field is not part of the PR but, in an ITS pointer pair, holds an
address modifier for use in address preparation.

ADDRESS REGISTERS (ARn)

Format: - 24 bits each

Data as stored by Store Address Register n (sarn)

0 1112 22 3
0 7890 3 4 5
WORDNO a BITNO |0 0 00 00O O0O0OO0OOO0OO

18 2 4 12

Figure 3-12. Address Register (ARn) Format

Description:

Eight combinations of physical registers from the decimal unit numbered O through 7. The
WORDNO registers also form part of the pointer registers discussed earlier in this section.

Function:

The address registers hold information relative to the location in main memory of the next
bit, character, or byte of an EIS operand to be processed by an EIS instruction. The
functions of the individual constituent registers are:

key Register Function

ARn.WORDNO The offset in words relative to the current addressing base referent
(segment origin, BAR.BASE, or absolute 0 depending on addressing
mode) to the word containing the next data item element.

a ARn.CHAR The number of the 9-bit byte within ARn.WORDNO containing the
first bit of the next data item element.
ARn.BITNO The number of the bit within ARn.CHAR that is the first bit of the

next data item element.

NOTE: The reader's attention is directed to the presence of two bit number registers,
PRn.BITNO and ARn.BITNO. Because the Multics processor was implemented as an
enhancement to an existing design, certain apparent anomalies appear. One of these is
the difference in the handling of unaligned data items by the appending unit and decimal
unit. The decimal unit handles all unaligned data items with a 9-bit byte number and bit
offset within the byte. Conversion from the description given in the EIS operand
descriptor is done automatically by the hardware. The appending unit maintains
compatibility with the earlier generation Multics processor by handling all unaligned
data items with a bit offset from the prior word boundary; again with any necessary
conversion done automatically by the hardware. Thus, a pointer register, PRn, may be
loaded from an ITS pointer pair having a pure bit offset and modified by one of the EIS
address register instructions (a4bd, s9bd, etc.) using character displacement counts.
The automatic conversion performed ensures that the pointer register, PRi, and its
matching address register, ARi, both describe the same physical bit in main memory.

SPECIAL NOTICE: The decimal unit has built-in hardware checks for illegal bit offset values but

the appending unit does not except for a single case for packed pointers. See NOTES for
Load Packed Pointers (lprpn) in Section 4.

PROCEDURE POINTER REGISTER (PPR)

Format: - 37 bits

Shown as part of word 0 of control unit data

0 00 11
0 2 3 7 8

PRR PSR P |«@——— Other control unit data ——pp»
3 15 1

Shown as part of word 4 of control unit data

0 1
0 7
IC «§——— Other control unit data ——pp»
18
Figure 3-13. Procedure Pointer Register (PPR) Format
Description:

A combination of physical registers from the appending unit and the control unit. PPR.PRR,
PPR.PSR, and PPR.P are located in the appending unit and PPR.IC is located in the control
unit. The PPR is not explicitly addressable but its data is extracted and stored as part of the
data stored with the Store Control Unit (scu) and Store Control Double (stcd) instructions.
It is loaded from the control unit data with the Restore Control Unit (rcu) instruction.

Function:

The Procedure Pointer Register holds information relative to the location in main memory
of the procedure segment in execution and the location of the current instruction within
that segment. The functions of the individual constituent registers are:

Register
PPR.PRR

PPR.PSR
PPR.P

PPR.IC

Function

The number of the ring in which the process is executing. It is set to the
effective ring number of the procedure segment when control is transferred
to the procedure.

The segment number of the procedure being executed.

A flag controlling execution of privileged instructions. Its value is 1
(permitting execution of privileged instructions) if PPR.PRR is 0 and the
privileged bit in the segment descriptor word (SDW.P) for the procedure is 1;
otherwise, its value is 0.

The word offset from the origin of the procedure segment to the current
instruction.

TEMPORARY POINTER REGISTER (TPR)

Format: - 42 bits

Shown as part of word 2 of control unit data

0
0

0
2

0
3

1
7

TRR

TSR | «@——— Other control unit data ———p

3

15

Shown as part of word 3 of control unit data

3 3
0 5
- Other control unit data - TBR

6
Shown as part of word 5 of control unit data
0 1
0 7

CA —— Other control unit data ——
18

Figure 3-14. Temporary Pointer Register (TPR) Format

Description:

A combination of physical registers from the appending unit and the control unit. TPR.TRR,
TPR.TSR, and TPR.TBR are located in the appending unit and TPR.CA is located in the
control unit. The TPR is not explicitly addressable but its data is extracted and stored as
part of the data stored with the Store Control Unit (scu) instruction. It is loaded from the
control unit data with the Restore Control Unit (rcu) instruction.

Function:

The temporary pointer register holds the current virtual address used by the processor in
performing address preparation for operands, indirect words, and instructions. At the
completion of address preparation, the contents of the TPR is presented to the appending
unit associative memories for translation into the 24-bit absolute main memory address.
The functions of the individual constituent registers are:

Register Function

TPR.TRR The current effective ring number (see Section 8).

TPR.TSR The current effective segment number (see Section 8).

TPR.TBR The current bit offset as calculated from ITS and ITP pointer pairs. (See
Section 8.)

TPR.CA The current computed address relative to the origin of the segment whose

segment number is in TPR.TSR. (See Section 8.)

DESCRIPTOR SEGMENT BASE REGISTER (DSBR)

Format: - 51 bits

Even word of Y-pair as stored by Store Descriptor Base Register (sdbr)

0 2 2 3
0 3 4 5
ADDR 0000O0O0OOOO0O0OO0O
24 12
0Odd word of Y-pair as stored by Store Descriptor Base Register (sdbr)
3 3 55 555 5 6 7
6 7 01 4 5 6 9 0 1
0 BND 0 0 0O0O|UIOO0O0DO STACK
1 14 4 1 4 12
Figure 3-15. Descriptor Segment Base Register (DSBR) Format
Description:

A physical register in the appending unit.
Function:

The Descriptor Segment Base Register contains information concerning the descriptor
segment being used by the processor. The descriptor segment holds the segment
descriptor words (SDWs) for all segments accessible by the processor, that is, the currently
defined virtual address space. The functions of its individual constituent registers are:

Register Function

DSBR.ADDR If DSBR.U = 1, the 24-bit absolute main memory address of the origin
of the current descriptor segment; otherwise, the 24-bit absolute main
memory address of the page table for the current descriptor segment.

DSBR.BND The 14 most significant bits of the highest Y-block16 address of the
descriptor segment that can be addressed without causing an access
violation, out of segment bounds, fault.

DSBR.U A flag specifying whether the descriptor segment is unpaged (U = 1) or
paged (U = 0).

DSBR.STACK The upper 12 bits of the 15-bit stack base segment number. It is used
only during the execution of the call6 instruction. (See Section 8 for a
discussion of generation of the stack segment number.)

SEGMENT DESCRIPTOR WORD ASSOCIATIVE MEMORY (SDWAM)

Format: - 88 bits each

Even word of Y-pairs as stored by Store Segment Descriptor Registers (ssdr)

0 2 2 2 2 2 3 3 3 3
0 3 4 6 7 9 0 2 3 5
ADDR R1 R2 R3 00O
24 3 3 3 3
0Odd word of Y-pairs as stored by Store Segment Descriptor Registers (ssdr)
3 3 555555555 7
6 7 0123456738 1
0 BOUND RIE[(W|P|U|G|C CL
1 141111111 14
Data as stored by Store Segment Descriptor Pointers (ssdp)
0 11 2222333 3
0 4 5 6 789012)
0 0| USE L68
POINTER 000O0O0OO0OO0OO0OOOOO|F|IOO
USE DPS 8M
15 12 1 2 2 4

Figure 3-16. Segment Descriptor Word Associative Memory (SDWAM) Format

Description:

A combination of 16 registers and flags from the appending unit constitute the Segment
Descriptor Word Associative Memory (SDWAM). The registers are numbered consecutively
from 0 through 15 but are not explicitly addressable by number.

For the DPS/L68 processors, the SDW associative memory will hold the 16 most recently
used (MRU) SDWs and have a full associative organization with least recently used (LRU)
replacement.

For the DPS 8M processor, the SDW associative memory will hold the 64 MRU SDWs and
have a 4-way set associative organization with LRU replacement.

Function:

Hardware segmentation in the processor is implemented by the appending unit (see Section
5). In order to permit addressing by segment number and offset as prepared in the
temporary pointer register (described earlier), a table containing the location and status of
each accessible segment must be kept. This table is the descriptor segment. The
descriptor segment is located by information held in the descriptor segment base register
(DSBR) described earlier.

Every time an effective segment number (TPR.TSR) is prepared, it is used as an index into
the descriptor segment to retrieve the segment descriptor word (SDW) for the target
segment. To reduce the number of main memory references required for segment
addressing, the SDWAM provides a content addressable memory to hold the sixteen most
recently referenced SDWs.

Whenever a reference to the SDW for a segment is required, the effective segment number
(TPR.TSR) is matched associatively against all 16 SDWAM.POINTER registers (described
below). If the SDWAM match logic circuitry indicates a hit, all usage counts (SDWAM.USE)
greater than the usage count of the register hit are decremented by one, the usage count of
the register hit is set to 15, and the contents of the register hit are read out into the address
preparation circuitry. If the SDWAM match logic does not indicate a hit, the SDW is fetched
from the descriptor segment in main memory and loaded into the SDWAM register with
usage count O (the oldest), all usage counts are decremented by one with the newly loaded
register rolling over from 0 to 15, and the newly loaded register is read out into the address
preparation circuitry. Faulted SDWs are not loaded into the SDWAM.

The functions of the constituent registers and flags of each SDWAM register are as follows:

Register Function

SDWAM.ADDR The 24-bit absolute main memory address of the page table for the
target segment if SDWAM.U = 0; otherwise, the 24-bit absolute main
memory address of the origin of the target segment.

SDWAM.R1 Upper limit of read/write ring bracket (see Section 8).

SDWAM.R2 Upper limit of read/execute ring bracket (see Section 8).

SDWAM.R3 Upper limit of call ring bracket (see Section 8).

SDWAM.BOUND

SDWAM.R

SDWAM.E

SDWAM.W

SDWAM.P

SDWAM.U

SDWAM.G

SDWAM.C

SDWAM.CL

SDWAM.POINTER

The 14 high-order bits of the last Y-blockl6 address within the
segment that can be referenced without an access violation, out of
segment bound, fault.

Read permission bit. If this bit is set ON, read access requests are

allowed.

Execute permission bit. If this bit is set ON, the SDW may be loaded
into the procedure pointer register (PPR) and instructions fetched
from the segment for execution.

Write permission bit. If this bit is set ON, write access requests are
allowed.

Privileged flag bit. If this bit is set ON, privileged instructions from
the segment may be executed if PPR.PRR is 0.

Unpaged flag bit. If this bit is set ON, the segment is unpaged and
SDWAM.ADDR is the 24-bit absolute main memory address of the
origin of the segment. If this bit is set OFF, the segment is paged and
SDWAM.ADDR is the 24-bit absolute main memory address of the
page table for the segment.

Gate control bit. If this bit is set OFF, calls and transfers into the
segment must be to an offset no greater than the value of SDWAM.CL
as described below.

Cache control bit. If this bit is set ON, data and/or instructions from
the segment may be placed in the cache memory.

Call limiter (entry bound) value. If SDWAM.G is set OFF, transfers of
control into the segment must be to segment addresses no greater
than this value.

The effective segment number used to fetch this SDW from main
memory.

Register Function

SDWAM.F Full/empty bit. If this bit is set ON, the SDW in the register is valid.
If this bit is set OFF, a hit is not possible. All SDWAM.F bits are set
OFF by the instructions that clear the SDWAM.

SDWAM.USE Usage count for the register. The SDWAM.USE field is used to
maintain a strict FIFO queue order among the SDWs. When an SDW
is matched, its USE value is set to 15 (newest) on the DPS/L68 and to
63 on the DPS 8M, and the queue is reordered. SDWs newly fetched
from main memory replace the SDW with USE value 0 (oldest) and
the queue is reordered.

PAGE TABLE WORD ASSOCIATIVE MEMORY (PTWAM)

Format: - 51 bits each

Data as stored by Store Page Table Registers (sptr)

0 11 2 23 3
0 7 8 8§ 90 5
ADDR 0o000O0O0OO0OOOOOMIOO0O0OO0OO0ODO
18 11 1 6
Data as stored by Store Page Table Pointers (sptp)

0 11 2222333 3
0 4 5 6 789012 5
0 0| USE L68

POINTER PAGENO F|0 O
USE DPS 8M
15 12 1 2 2 4

Figure 3-17. Page Table Word Associative Memory (PTWAM) Format

Description:

A combination of 16 registers and flags from the appending unit constitute the Page Table
Word Associative Memory (PTWAM). The registers are numbered consecutively from 0
through 15 but are not explicitly addressable by number.

For the DPS/L68 processors, the PTW associative memory will hold the 16 most recently
used (MRU) PTWs and have a full associative organization with least recently used (LRU)
replacement.

For the DPS 8M processors, the PTW associative memory will hold the 64 MRU PTWs and
have a 4-way set associative organization with LRU replacement.

Function:

Hardware paging in the Multics processor is implemented by the appending unit (see
Section 5 for details). In order to permit segment addressing by page number and page
offset as derived from the computed address prepared in the temporary pointer register
(TPR.CA described above), a table containing the location and status of each page of an
accessible segment must be kept. This table is the page table for the segment. The page

table for an accessible paged segment is located by information held in the segment
descriptor word (SDW) for the segment.

Every time a computed address (TPR.CA) for a paged segment is prepared, it is separated
into a page number and a page offset. The page number is used as an index into the page
table to retrieve the page table word (PTW) for the target page. To reduce the number of
main memory references required for paging, the PTWAM provides a content addressable
memory to hold the 16 most recently referenced PTWs.

Whenever a reference to the PTW for a page of a paged segment is required, the page
number (as derived from TPR.CA) is matched associatively against all 16 PTWAM.PAGENO
registers (described below) and, simultaneously, TPR.TSR 1is matched against
PTWAM.POINTER (described below). If the PTWAM match logic circuitry indicates a hit,
all usage counts (PTWAM.USE) greater than the usage count of the register hit are
decremented by one, the usage count of the register hit is set to 15, and the contents of the
register hit are read out into the address preparation circuitry. If the PTWAM match logic
does not indicate a hit, the PTW is fetched from main memory and loaded into the PTWAM
register with usage count O (the oldest), all usage counts are decremented by one with the
newly loaded register rolling over from 0 to 15, and the newly loaded register is read out
into the address preparation circuitry. Faulted PTWs are not loaded into the PTWAM.

The functions of the constituent registers and flags of each PTWAM register are: (See
Section 8 for additional details.)

Register Function

PTWAM.ADDR The 18 high-order bits of the 24-bit absolute main memory address of
the page. The hardware ignores low-order bits of this page address
according to page size based on the following:

Page size in words ADDR bits ignored
64 none
128 17
256 16-17
512 15-17
1024 14-17
2048 13-17
4096 12-17
PTWAM.M Page modified flag bit. This bit is set ON whenever the PTW is used

for a store type instruction. When the bit changes value from 0 to 1, a
special extra cycle is generated to write it back into the PTW in the
page table in main memory.

PTWAM.POINTER The effective segment number used to fetch this PTW from main
memory.

PTWAM.PAGENO The 12 high-order bits of the 18-bit computed address (TPR.CA) used
to fetch this PTW from main memory. Low-order bits are forced to
zero by the hardware and not used as part of the page table index
according to page size based on the following:

Page size in words PAGENO bits forced

64 none

128 11

256 10-11

512 09-11
1024 08-11
2048 07-11
4096 06-11

PTWAM.F Full/empty bit. If this bit is set ON, the PTW in the register is valid. If

this bit is set OFF, a hit is not possible. All PTWAM.F bits are set OFF
by the instructions that clear the PTWAM.

Register Function

PTWAM.USE Usage count for the register. The PTWAM.USE field is used to
maintain a strict FIFO queue order among the PTWs. When an PTW is
matched its USE value is set to 15 (newest) on the DPS/L68 and to 63
on the DPS 8M, and the queue is reordered. PTWs newly fetched
from main memory replace the PTW with USE value 0 (oldest) and the
queue is reordered.

FAULT REGISTER (FR) - DPS AND L68

Format: - 72 bits

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 01

0000O0O0OO0OO0OOO11111111 1 2 2 2 2 2 33333
012345678901 23456 9 0 3 4 7 8 1 2345
albfc|d|e|f]|g|h|i|j|k|]l|m|n]|o]O IAA IAB IAC IAD plalr]s
1111111111111 111 4 4 4 41111
Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 01
3 7
6 1

000000O00OOO0OOODODOODOOOODODOOODOOOOOOOOOOOOO

36

Figure 3-18. Fault Register (FR) Format - DPS and L68

Description:

A combination of flags and registers all located in the control unit. The register is stored
and cleared by the Store Central Processor Register (scpr), TAG = 01, instruction. Note
that the data is stored into the word pair at location Y. The Fault Register cannot be
loaded.

Function:
The Fault Register contains the conditions in the processor for several of the hardware
faults. Data is strobed into the Fault Register during a fault sequence. Once a bit or field in
the Fault register is set, it remains set until the register is stored and cleared. The data is
not overwritten during subsequent fault events.

The functions of the constituent flags and registers are:

Flag or
key register Function
a ILLOP An illegal operation code has been detected.
b ILL MOD An illegal address modifier has been detected.

¢ ILL SLV An illegal BAR mode procedure has been encountered.

Flag or

key register

Function

d ILL PROC An illegal procedure other than the three above has been
encountered.

e NEM A nonexistent main memory address has been requested.

OOB A BAR mode boundary violation has occurred.

g ILL DIG An illegal decimal digit or sign has been detected by the decimal
unit.

h PROC PARU A parity error has been detected in the upper 36 bits of data.

i PROC PARL A parity error has been detected in the lower 36 bits of data.

j $CON A A $CONNECT signal has been received through port A.

k $CONB A $CONNECT signal has been received through port B.

1 $CONC A $CONNECT signal has been received through port C.

m $CON D A $CONNECT signal has been received through port D.

n DA ERRI1 Operation not complete. Processor/system controller interface
sequence error 1 has been detected. ($DATA-AVAIL received with
no prior $INTERRUPT sent.)

o DA ERR2 Operation not complete. Processor/system controller interface
sequence error 2 has been detected. (Multiple $DATA-AVAIL
received or $DATA-AVAIL received out of order.)

IAA Coded illegal action, port A. (see Table 3-2)
IAB Coded illegal action, port B. (See Table 3-2)
IAC Coded illegal action, port C. (See Table 3-2)
IAD Coded illegal action, port D. (See Table 3-2)

p CPARDIR A parity error has been detected in the cache memory directory.

g CPAR STR A data parity error has been detected in the cache memory.

r CPARIA An illegal action has been received from a system controller during
a store operation with cache memory enabled. This implies that the
data are correct in cache memory and incorrect in main memory.

s CPAR BLK A cache memory parity error has occurred during a cache memory
data block load.

Table 3-2. System Controller Illegal Action Codes

Code | Priority | Fault Reason

00 - No illegal action

01 - Command Unassigned

02 05 Store Nonexistent address

03 01 Command Stop on condition

04 - Command Unassigned

05 12 Parity Data parity, store unit to system controller

06 11 Parity Data parity in store unit

07 10 Parity Data parity in store unit and store unit to system controller

10 04 Command Not control @

Code | Priority | Fault Reason
11 13 Command Port not enabled
12 03 Command Illegal command
13 07 Store Store unit not ready
14 02 Parity Zone-address-command parity, processor to system controller
15 06 Parity Data parity, processor to system controller
16 08 Parity Zone-address-command parity, system controller to store unit
17 09 Parity Data parity, system controller to store unit

(a) This illegal action code not relevant to later model system controllers.

FAULT REGISTER (FR) - DPS 8M

Format: - 72 bits

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 01

0000O0O0OOO0OCOO11111111 12 2 2 2 2 33333
0123456789012 3456 9 0 3 4 7 8 1 2345
albfc|d|e|f]|g|h|i|j|k|]l|m|n]o]|O IAA IAB IAC IAD plalr]s
1111111111111 111 4 4 4 41111
Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 01
3333444444444 7
6 789012345678 1
tlu|lv|w|x|y|z|A|B|C|D|E|IFIO 0 0O 0O OO 0O0O0OO0OO0OO0O0OO0OOO0OO0OO0OO0O0OO0OO0OO0OO
1111111111111 25
Figure 3-19. Fault Register (FR) Format - DPS 8M
Function:

The Fault Register contains the conditions in the processor for several of the hardware
faults on the DPS 8M CPU and cache directory buffer overflows. Data is strobed into the
Fault Register during a fault or buffer overflow fault sequence. Once a bit or field in the
Fault Register is set, it remains set until the register is stored and cleared. The data is not

overwritten during subsequent fault events.

The functions of the constituent flags and registers are:

a
b

Flag or

key register
ILL OP IPR
ILL MOD IPR
ILL SLV IPR

C

Fault Function

An illegal operation code has been detected.
An illegal address modifier has been detected.

An illegal BAR mode procedure has been encountered.

key

b

5 8

< % 2 <4 £ o

W > N

Flag or
register

ILL PROC

NEM
OOB
ILL DIG

PROC PARU
PROC PARL
$CON A
$CON B
$CON C
$CON D
DA ERR

DA ERR2

TIAA
IAB
IAC
IAD
CPAR DIR

CPAR STR
CPAR IA

CPAR BLK

Fault
IPR

ONC
STR
IPR

PAR

PAR

CON
CON
CON
CON
ONC

ONC

None

PAR
PAR

PAR

None
None
None
None
None
None
None
None
None

None

Function

An illegal procedure other than the three above has been
encountered.

A nonexistent main memory address has been requested.
A BAR mode boundary violation has occurred.

An illegal decimal digit or sign has been detected by the
decimal unit.

A parity error has been detected in the upper 36 bits of data.
A parity error has been detected in the lower 36 bits of data.
A $CONNECT signal has been received through port A.
A $CONNECT signal has been received through port B.
A $CONNECT signal has been received through port C.
A $CONNECT signal has been received through port D.

Operation not complete. Processor/system controller
interface sequence error 1 has been detected. ($DATA-AVAIL
received with no prior $INTERRUPT sent.)

Operation not completed. Processor/system controller
interface sequence error 2 has been detected. (Multiple
$DATA-AVAIL received or $DATA-AVAIL received out of
order.)

Coded illegal action, port A. (See Table 3-2)
Coded illegal action, port B. (See Table 3-2)
Coded illegal action, port C. (See Table 3-2)
Coded illegal action, port D. (See Table 3-2)

A parity error has been detected in the cache memory
directory.

A data parity error has been detected in the cache memory.

An illegal action has been received from a system controller
during a store operation with cache memory enabled. This
implies that the data are correct in cache memory and
incorrect in main memory.

A cache memory parity error has occurred during a cache
memory data block load.

Cache Duplicate Directory WNO Buffer Overflow

Port A

Port B

Port C

Port D
Cache Primary Directory WNO Buffer Overflow
Write Notify (WNO) Parity Error on Port A, B, C, or D.
Cache Duplicate Directory Parity Error

Level 0

Level 1

Level 2

Flag or

key register Fault Function
C None Level 3
D Cache Duplicate Directory Multiple Match
E None A parity error has been detected in the SDWAM.
F None A parity error has been detected in the PTWAM.

MODE REGISTER (MR) - DPS AND L68

Format: - 33 bits

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 06
0 11111122222222223333333
0 4 567890123456 789012345
OPCODE
FFV Ofal|b ilj[k|1|m[0 Ofn
cldlelfl g | h |O 0
151111111 2 2 211111 21
Figure 3-20. Mode Register (MR) Format - DPS and 168
Description:

An assemblage of flags and registers from the control unit. The Mode Register and the
Cache Mode Register are both stored into the Y-pair by the Store Central Processor
Register (scpr), TAG = 06. The Mode Register is loaded with the Load Central Processor
Register (lcpr), TAG = 04, instruction.

Function:

The Mode Register controls the operation of those features of the processor that are
capable of being enabled and disabled.

The functions of the constituent flags and registers are:

Flag or
key register
FFV
a OCTRAP
b ADR TRAP

Function

A floating-fault vector address. The 15 high-order bits of the Y-
block8 address of four word pairs constituting a floating-fault vector.
Traps to these floating faults are generated by other conditions the
mode register sets.

Trap on OPCODE match. If this bit is set ON and OPCODE matches
the operation code of the instruction for which an address is being
prepared (including indirect cycles), generate the second floating
fault (xed FFV+2). See NOTE below.

Trap on ADDRESS match. If this bit is set ON and the computed
address (TPR.CA) matches the setting of the address switches on the
processor maintenance panel, generate the fourth floating fault (xed
FFV+6). See NOTE below.

Flag or
key register

OPCODE

Function

The operation code on which to trap if OC TRAP (bit 16, key a) is set
ON or for which to strobe all control unit cycles into the control unit
history registers if O.C$¢ (bit 29, key j) is set ON.

or

Processor conditions codes as follows if OC TRAP (bit 16, key a) and
0.Cs$¢ (bit 29, key j) are set OFF and ¢ VOLT (bit 32, key m) is set
ON.

Set control unit overlap inhibit if set ON. The control unit waits
for the operations unit to complete execution of the even
instruction of the current instruction pair before it begins
address preparation for the associated odd instruction. The
control unit also waits for the operations unit to complete
execution of the odd instruction before it fetches the next
instruction pair.

Set store overlap inhibit if set ON. The control unit waits for
completion of a current main memory fetch (read cycles only)
before requesting a main memory access for another fetch.

Set store incorrect data parity if set ON. The control unit causes
incorrect data parity to be sent to the system controller for the
next store instruction and then resets bit 20.

Set store incorrect zone-address-command (ZAC) parity if set
ON. The control unit causes incorrect zone-address-command
(ZAC) parity to be sent to the system controller for each main
memory cycle of the next store instruction and resets bit 21 at
the end of the instruction.

Set timing margins if set ON. If ¢ VOLT (bit 32, key m) is set ON
and the margin control switch on the processor maintenance
panel is in PROG position, set processor timing margins as

follows:
22,23 margin
0,0 normal
0,1 slow
1,0 normal
1,1 fast

Set +5 voltage margins if set ON. If ¢ VOLT (bit 32, key m) is set
ON and the margin control switch on the processor maintenance
panel is in the PROG position, set +5 voltage margins as follows:

24,25 margin
0,0 normal
0,1 low
1,0 high
1,1 normal

Trap on control unit history register count overflow if set ON. If this
bit and STROBE ¢ (bit 30, key k) are set ON and the control unit
history register counter overflows, generate the third floating fault
(xed FFV+4). Further, if FAULT RESET (bit 31, key 1) is set, reset
STROBE ¢ (bit 30, key k), locking the history registers. A Load
Central Processor Register (Lcpr), TAG = 04, instruction setting bit
28 ON resets the control unit history register counter to zero. (See
NOTE below.)

NOTE:

Flag or
key register

j 0.Cs¢

k STROBE ¢

1 FAULT RESET

m ¢ VOLT

n MR ENABLE

Function

Strobe control unit history registers on OPCODE match. If this bit
and STROBE ¢ (bit 30, key k) are set ON and the operation code of
the current instruction matches OPCODE, strobe the control unit
history registers on all control unit cycles (including indirect cycles).

Enable history registers. If this bit is set ON, all history registers are
strobed at appropriate points in the various processor cycles. If this
bit is set OFF or MR ENABLE (bit 35, key n) is set OFF, all history
registers are locked. This bit is set OFF with a Load Central
Processor Register (lcpr), TAG = 04, instruction providing a 0 bit, by
an operation not complete fault, and, conditionally, by other faults
(see FAULT RESET (bit 31, key 1) below). Once set OFF, this bit
must be set ON with a Load Central Processor Register (Lcpr), TAG
= 04, instruction providing a 1 bit to re-enable the history registers.

History register lock control. If this bit is set ON, set STROBE ¢ (bit
30, key k) OFF, locking the history registers for all faults including
the floating faults. See NOTE below.

Test mode indicator. This bit is set ON whenever the TEST/NORMAL
switch on the processor maintenance panel is in TEST position;
otherwise, it is set OFF. It serves to enable the program control of
voltage and timing margins.

Enable mode register. When this bit is set ON, all other bits and
controls of the mode register are active. When this bit is set OFF,
the mode register controls are disabled.

The traps described above (address match, OPCODE match, control unit history register
counter overflow) occur after completion of the next odd instruction following their
detection. They are handled as Group 7 faults in regard to servicing and inhibition. (See
Section 7 for descriptions of these faults.) The complete Group 7 priority sequence (in
increasing order) is:

1 - Connect

2 - Time runout

3 - Shutdown

4 - OPCODE trap

5 - Control unit history register counter overflow

6 - Address match trap

7 - External interrupts

MODE REGISTER (MR) - DPS 8M

Format: - 36 bits

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 06

0
0

1112222222222333333
7890123456789 012345

00000OO0O0O0ODOOOOOOOOGODO|albfcld] e f |0 Ofg|h]ilj|k|l|O|m

181111 2 2 211111111

Figure 3-21. Mode Register (MR) Format - DPS 8M

Description:

An assemblage of flags and registers from the control unit. The Mode Register and the
Cache Mode Register are both stored into the Y-pair by the Store Central Processor
Register (scpr), TAG = 06. The Mode Register is loaded with the Load Central Processor
Register (lcpr), TAG = 04, instruction.

Function:

The mode register controls the operation of those features of the processor that are capable
of being enabled and disabled.

The functions of the constituent flags and registers are:

Flag or
key register

a cuolin

b solin

¢ sdpap

d separ

e tm

f wvm

Function

Set CU overlap inhibit. The CU waits for the OU to complete execution of
the even instruction before it begins address preparation for the
associated odd instruction. The CU also waits for the OU to complete
execution of the odd instruction before it fetches the next instruction pair.

Set store overlap inhibit. The CU waits for completion of a current
memory fetch (read cycles only) before requesting a memory access for
another fetch.

Set store incorrect data parity. The CU causes incorrect data parity to be
sent to the SC for the next data store instruction and then resets bit 20.

Set store incorrect ZAC parity. The CU causes incorrect zone-address-
command (ZAC) parity to be sent to the SC for each memory cycle of the
next data store instruction and resets bit 21 at the end of the instruction.

Set timing margins. If bit 32 key (k) is set and the margin control switch
on the CPU maintenance panel is in program position, set CPU timing
margins as follows:

22,23 margin
0,0 normal
0,1 slow
1,0 normal
1,1 fast

Set +5 voltage margins. If bit 32 (key k) is set and the margin control
switch on the CPU maintenance panel is in the program position, set +5
voltage margins as follows:

Flag or

key register

hrhlt

hrxfr

ihr

ihrrs

mrgctl

hexfp

emr

Function
24,25 margin
0,0 normal
0,1 low
1,0 high
1,1 normal

Stop HR Strobe on HR Counter Overflow. (Setting bit 28 shall cause the
HR counter to be reset to zero.)

Strobe the HR on Transfer Made. If bits 29,30, and 35 are = 1, the HR
will be strobed on all Transfers Made. Bits 36-53 of the OU/DU register
will indicate the "From" location and bits 36-59 of the CU register will
contain the real address of the final "To" location.

Enable History Registers. If bit 30 = 1, the HRs may be strobed. If bit 30
= 0 or bit 35 = 0, they will be locked out. This bit will be reset by either
an LCPR with the bit corresponding to 30 = 0 or by an Op Not Complete
fault. It may be reset by other faults (see bit 31). After being reset, it
must be enabled by another LCPR instruction before the History Registers
may be strobed again.

Additional resetting of bit 30. If bit 31 = 1, the following faults also reset
bit 30:

- Lock Up

- Parity

- Command

- Store

- lllegal Procedure
- Shutdown

Margin Control. Bit 32 informs the software when it can control margins.
A one indicates that software has control. When the LOCAL/REMOTE
switch on the power supply is in REMOTE and bit 35 = 1, bit 32 isset to 1
by occurrence of the following conditions: the NORMAL/TEST switch is in
the TEST position, the Memory and CU Overlap Inhibit switches are OFF,
the Timing Margins for the OU, CU, DU and VU are NORMAL, and the
Forced Data and ZAC Parity are OFF.

Hexadecimal Exponent Floating Point Arithmetic Mode can be set. When
this bit is set, the Hex mode becomes effective when the Indicator
Register bit 32 is set to 1.

Enable Mode Register. Unless bit 35 = 1, all other bits in the Mode
Register are ignored and the History Register is ignored and locked.

CACHE MODE REGISTER (CMR) - DPS AND L68

Format: - 28 bits

Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 06

3 5555555555666 66 6 7 7
6 0123456789012 3414 9 01
CACHE DIR ADDRESS alb|O|c|d|e|f]|O0|g|[h|i] j [0 O O OO0 O] k
111111111111 2 6 2

Figure 3-22. Cache Mode Register (CMR) Format - DPS and 168

Description:

An assemblage of flags and registers from the control unit. The Mode Register and Cache
Mode Register are both stored into the Y-pair by the Store Central Processor Register
(scpr), TAG = 06, instruction. The Cache Mode Register is loaded with the Load Central
Processor Register (lcpr), TAG = 02, instruction.

The data stored from the cache mode register is address-dependent. The algorithm used to
map main memory into the cache memory (see Section 9) is effective for the Store Central

Processor Register (scpr) instruction.

In general, the user may read out data from the

directory entry for any cache memory block by proper selection of certain subfields in the

24-bit absolute main memory address.

In particular, the user may read out the directory

entry for the cache memory block involved in a suspected cache memory error by ensuring
that the required 24-bit absolute main memory address subfields are the same as those for
the access which produced the suspected error.

The fault handling procedure(s) should be unencacheable (SDW.C = 0) and the history
registers and cache memory should be disabled as quickly as possible in order that vital
information concerning the suspected error not be lost.

Function:

The Cache Mode register provides configuration information and software control over the
operation of the cache memory. Those items with an "x" in the column headed L are not
loaded by the Load Central Processor Register (Lcpr), TAG = 02, instruction.

The functions of the constituent flags and registers are:

key L
X
a X
b x
d
e
g
h x
i x
j x
k

Register

CACHE DIR
ADDRESS

PAR BIT
LEV FUL
CSH1 ON

CSH2 ON

OPND ON
INST ON
CSH REG

STR ASD

COL FUL
RRO A,B
LUF MSB,LSB

Function

15 high-order bits of the cache memory block address from the
cache directory.

Cache memory directory parity bit.
The selected column and level is loaded with active data.

Enable the upper 1024 words of the cache memory (see Section
9).

Enable the lower 1024 words of the cache memory (see Section
9).

Enable the cache memory for operands (see Section 9).
Enable the cache memory for instructions (see Section 9).

Enable cache-to-register (dump) mode. When this bit is set ON,
double-precision operations unit read operands (e.g., Load AQ
(ldaq) operands) are read from the cache memory according to
the mapping algorithm and without regard to matching of the full
24-bit absolute main memory address. All other operands
address main memory as though the cache memory were
disabled. This bit is reset automatically by the hardware for any
fault or interrupt.

Enable store aside. When this bit is set ON, the processor does
not wait for main memory cycle completion after a store
operation but proceeds after the cache memory cycle is complete.

Selected cache memory column is full.
Cache round robin counter (see Section 9).

Lockup timer setting. The lockup timer may be set to four
different values according to the value of this field.

LUF value Lockup time

0 2ms
1 4ms
2 8ms
3 16ms

The lockup timer is set to 16ms when the processor is initialized.

CACHE MODE REGISTER (CMR) - DPS 8M

Format: - 36 bits

Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 06.

3 5555555555666 66 6 6 67 7
6 01234567890123414 789 01
CACHE DIR ADDRESS albl0fc|d|O0|e|O|f]g|lh] i |O O O O|j|O| k
1511111111111 2 411 2
Figure 3-23. Cache Mode Register (CMR) Format - DPS 8M
Description:

An assemblage of flags and registers from the control unit. The Mode Register and Cache
Mode Register are both stored into the Y-pair by the Store Central Processor Register
(scpr), TAG = 06, instruction. The Cache Mode Register is loaded with the Load Central
Processor Register (lcpr), TAG = 02, instruction.

The data stored from the Cache Mode register is address-dependent. The algorithm used to
map main memory into the cache memory (see Section 9) is effective for the Store central
Processor Register (scpr) instruction. In general, the user may read out data from the
directory entry for any cache memory block by proper selection of certain subfields in the
24-bit absolute main memory address. In particular, the user may read out the directory
entry for the cache memory block involved in a suspected cache memory error by ensuring
that the required 24-bit absolute main memory address subfields are the same as those for
the access which produced the suspected error.

The fault handling procedure(s) should be unencacheable (SDW.D = 0) and the history
registers and cache memory should be disabled as quickly as possible in order that vital
information concerning the suspected error not be lost.

Function:

The Cache Mode Register provides configuration information and software control over the

operation of the cache memory. Those items with an "x" in the column headed L are not
loaded by the Load Central Processor Register (Lcpr), TAG = 02, instruction.

The functions of the constituent flags and registers are:

key L Register Function
x CACHE DIR 15 high-order bits of the cache memory block address from the
ADDRESS cache directory.
a x PARBIT Cache memory directory parity bit.

b x LEVFUL The selected column and level is loaded with active data.

key L Register

C

d

Notes

CSH1 ON

CSH2 ON

INST ON
CSH REG

STR ASD

COL FUL
RRO A,B

LUF MSB,LSB

Function

Enable the upper 4096 words of the cache memory (see Section
9).

Enable the lower 4096 words of the cache memory (see Section
9).

Enable the cache memory for instructions (see Section 9).

Enable cache-to-register (dump) mode. When this bit is set ON,
double-precision operations unit read operands (e.g., Load AQ
(ldaq) operands) are read from the cache memory according to
the mapping algorithm and without regard to matching of the
full 24-bit absolute main memory address. All other operands
address main memory as though the cache memory were
disabled. This bit is reset automatically by the hardware for any
fault or interrupt.

Enable store aside. When this bit is set ON, the processor does
not wait for main memory cycle completion after a store
operation but proceeds after the cache memory cycle is
complete.

Selected cache memory column is full.
Cache round-robin counter (see Section 9).

Bypass cache bit. Enables the bypass option of SDW.C when set
OFF. See Notes below for further information.

Lockup timer setting. The lockup timer may be set to four
different values according to the value of this field.

LUF value Lockup time
0 2ms
1 4ms
2 8ms
3 16ms

The lockup timer is set to 16ms when the processor is
initialized.

1. The COL FUL, RRO A, RRO B, and CACHE DIR ADDRESS fields reflect different locations in
cache depending on the final (absolute) address of the scpr instruction storing this data.

2. If either cache enable bit ¢ or d changes from disable state to enable state, the entire cache
is cleared.

3. The DPS 8M processors contain an 8k hardware-controlled cache memory. When running a
mixed configuration of DPS 8M and DPS/L68 processors, bit 68 of the CMR (reference j)
allows the DPS 8M processor to utilize software compatible with the older 2k software
controlled by the DPS/L68 and DPS processors. The following summarizes the operation of
the DPS 8M hardware-controlled cache.

a. The cache bypass option in the segment descriptor word is retained. An overriding
bypass enable, bit 68 of the Cache Mode Register, is added. The cache mode is set
as follows:

SDW.C CMRg;q RESULTANT
CACHE MODE

Use Cache X Use Cache

Bypass Cache Bypass Cache Bypass Cache

Bypass Cache Use Cache Use Cache

b. All close gate instructions, LDAC, LDQC, STAC, STACQ, and SZNC automatically bypass
cache. Two features are added to ensure integrity of gated shared data; one is added
during the close gate operation and the other during the open gate operation. The
instruction following the close gate instruction bypasses cache if the instruction is a
Read or a Read-alter-rewrite. The open gate operation must be performed with
either a STC2 or STACQ, which includes the synchronizing function. The
synchronizing function forces the processor to delay the open gate operation until it
is notified by the SCU that write completes have occurred and write notifications
requesting cache block clears have been sent to the other processors for all write
instructions that the processor previously issued.

c. Read-alter-rewrite instructions no longer automatically bypass cache. Cache
behavior for these instructions is determined fully by SDW.C. If the bypass cache
mode is set, these instructions bypass cache and issue read-lock-write-unlock
commands to memory. If a cache directory match occurs, the location is cleared.

d. All accesses to memory by SDW and PTW associative memory hardware continue to
bypass cache. Operations are Reads for SDWs, Read-alter-rewrites with lock for
PTWs and setting the page Used bit, and Writes for setting the page Modified and
Used bits. For Writes, the hardware also disables the key line so that the SCU lock is
honored. This is consistent with dynamic PTW modification by software, which also
bypasses cache and uses Read-alter-rewrite instructions.

e. The instructions that cleared the associative memories and also cleared cache or
selective portions of cache are changed to eliminate the cache clear function. Bit C
(TPR.CA),5, is ignored. These instructions also include disable/enable capabilities

for each half of the associative memories.

f. Cache mode register bit 56, which had previously controlled cache bypass for
operands, is disregarded. All other cache control bits are continued. However,
maintenance panel cache control function is restricted to cache half enable/disable
functions.

CONTROL UNIT (CU) HISTORY REGISTERS - DPS AND L68

The L68 and DPS processors have four sets of 16 history requests. There is one set for each
major unit: the Control Unit, CU; the Operations Unit, OU; the Decimal Unit, DU; and the
Appending Unit, APU. The DPS 8M Processor has four sets of 64 history registers. There is one
set for the CU, two sets for the APU, and one set that combines the history of the OU and DU.

Because the history registers for the L68 and DPS and the DPS 8M are different in number
and content, they are described separately. The following section describes the L68 and DPS
history registers first, followed by a description of the DPS 8M history registers.

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 20

000000OOO0OO0OO0O1I11I111111 223 3

012345678901 23450678 890 5
albfc|dle|flg|h|i|lj|k|[]l|m|n]o|p|g|r OPCODE I|P TAG

1111111111111 11111 10 1 1 6
Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 20

3 55 55 6 6 66 6 66677

6 3 4 8 9 2345678901

ADDRESS CMD SEL s|tlu|lv|w|x|y|z]|*

18 5 4111111111

Figure 3-24. Control Unit (CU) History Register Format - DPS and L68

Description:

A combination of 16 flags and registers from the control unit. The 16 registers are handled
as a rotating queue controlled by the Control Unit History Register counter. The counter is
always set to the number of the oldest entry and advances by one for each history register
reference (data entry or Store Central Processor Register (scpr) instruction). Multicycle
instructions (such as Load Pointer Registers from ITS Pairs (1pri), Load Registers (lreg),
Restore Control Unit (rcu), etc.) have an entry for each of their cycles.

Function:

A control unit history register entry shows the conditions at the end of the control unit cycle
to which it applies. The 16 registers hold the conditions for the last 16 control unit cycles.
Entries are made according to controls set in the Mode Register. (See Mode Register

earlier in this section.)

The meanings of the constituent flags and registers are:

key Flag Name Meaning

a PIA Prepare instruction address
b POA Prepare operand address
c RIW Request indirect word
d SIwW Restore indirect word
e POT Prepare operand tally (indirect tally chain)
f PON Prepare operand no tally (as for POT except no chain)
g RAW Request read-alter-rewrite word
h SAwW Restore read-alter-rewrite word
i TRGO Transfer GO (conditions met)
XDE Execute even instruction from Execute Double (xed) pair

k XDO Execute odd instruction from Execute Double (xed) pair

key Flag Name
IC
RPTS
WI
AR F/E

1

H aQ v o B B

¥ N < % 2 4 2 + o

-XIP

-FLT

-BASE
OPCODE

I
P

TAG

ADDRESS
CMD

SEL
XEC-INT

INS-FETCH

CU-STORE
OU-STORE

CU-LOAD
OU-LOAD

DIRECT

-PC-BUSY

BUSY

Meaning

Execute odd instruction of the current pair
Execute a repeat instruction

Wait for instruction fetch

1 = ADDRESS has valid data

NOT prepare interrupt address

NOT prepare fault address

NOT BAR mode

Operation code from current instruction word
Interrupt inhibit bit from current instruction word
Pointer register flag bit from current instruction word

Current address modifier. This modifier is replaced by the contents of
the TAG fields of indirect words as they are fetched during indirect
chains.

Current computed address (TPR.CA)
System controller command

Port select bits. (Valid only if port A-D is selected)
An interrupt is present

Perform an instruction fetch

Control unit store cycle

Operations unit store cycle

Control unit load cycle

Operations unit load cycle

Direct cycle

Port control logic not busy

Port interface busy

CONTROL UNIT (CU) HISTORY REGISTERS - DPS 8M

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 20

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

3
0

[S) o8]

00111111111 22
890123456738 8 9

a

b

C

d

e

f

g

h

iljlkl[l|m|n]|o|p|alr OPCODE I|P TAG

1111111111111 11111 10 11 6

Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 20

3 56 6 6 666 6 77
6 9 0 4 56 78901
ADDRESS CMD s|tlulv|w|x]|O0
24 51111111
Figure 3-25. Control Unit (CU) History Register Format - DPS 8M
Description:

A combination of 64 flags and registers from the control unit. The 64 registers are handled
as a rotating queue, controlled by the control unit history register counter, in which only the
16 most recently used are stored (except in the event of a system crash in which case all 64
will be saved). The counter is always set to the number of the oldest entry and advances by
one for each history register reference (data entry or Store Central Processor Register
(scpr) instruction). Multicycle instructions (such as Load Pointer Registers from ITS Pairs
(lpri), Load Registers (lreg), Restore Control Unit (rcu), etc.) have an entry for each of
their cycles.

Function:
A control unit history register entry shows the conditions at the end of the control unit cycle
to which it applies. The 16 registers hold the conditions for the last 16 control unit cycles.
Entries are made according to controls set in the Mode Register. (See Mode Register
earlier in this section.)

The meanings of the constituent flags and registers are:

key Flag Name Meaning

a PIA Prepare instruction address

b POA Prepare operand address

¢ RIW Request indirect word

d SIW Restore indirect word

e POT Prepare operand tally

f PON Prepare operand no tally

g RAW Request read-alter-rewrite word

h SAW Restore read-alter-rewrite word

i RTRGO Remember transfer GO (condition met)
j XDE XED from even location

k XDO XED from odd location

1 1IC Even/odd instruction pair

m RPTS Repeat operation

n PORTF Memory cycle to port on previous cycle
o INTERNAL Memory cycle to cache or direct on previous cycle
p PAI Prepare interrupt address

qg PFA Prepare fault address

r PRIV In privileged mode

key Flag Name

OPCODE
I

P

TAG

ADDRESS

CMD
XINT
IFT
CRD
MRD
MSTO
PIB

¥ 2 < g o o

Meaning

Opcode of instruction
Inhibit interrupt bit

AR reg mod flag

Tag field of instruction
Absolute mean address of instruction
Processor command register
Execute instruction
Instruction fetch

Cache read, this CU cycle
Memory read, this CU cycle
Memory store, this CU cycle

Memory port interface busy

OPERATIONS UNIT (OU) HISTORY REGISTERS - DPS AND L68

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 40

0 001 1111111 2222333333
0 890 2345678 6789012345
RP REG
0 RS REG elflglh|i|j]|k|[]l]|m
OP CODE a|l b |c|a|Eac
91 311 21 9111111111

Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 40

3333444444444 455 55 7
6 789012345678901 3 4 1
nlo|p|g|lr|s|t|u|lv|w|x]|y|z|[A|B|O 0O O ICT TRACKER

111111111111111 3 18

Figure 3-26. Operations Unit (OU) History Register Format

Description:

A combination of 16 flags and registers from the operation unit and control unit. The 16
registers are handled as a rotating queue controlled by the operations unit history register
counter. The counter is always set to the number of the oldest entry and advances by one
for each history register reference (data entry or Store Central Processor Register (scpr)

instruction).

Function:

An Operations Unit History Register entry shows the conditions at the end of the operations
unit cycle to which it applies. The 16 registers hold the conditions for the last 16 operations
As the operations unit performs various cycles in the execution of an

unit cycles.

instruction, it does not advance the counter for each such cycle. The counter is advanced
only at successful completion of the instruction or if the instruction is aborted for a fault
condition. Entries are made according to controls set in the Mode Register. (See Maode
Register earlier in this section.)

The meanings of the constituent flags and registers are:

key Flag Name Meaning

RP REG Primary operations unit operation register. RP REG receives the
operation code and other data for the next instruction from the control
unit during the control unit instruction fetch cycle while the operations
unit may be busy with a prior instruction. RP REG is further
substructured as:

OP CODE The 9 high-order bits of the 10-bit operation code from the
instruction word. Note that basic (non EIS) instructions do not
involve bit 27 hence the 9-bit field is sufficient to determine the

instruction.
a 9 CHAR Character size for indirect then tally address modifiers
0 = 6-bit
1 = 9-bit
b TAG1,2,3 The 3 low-order bits of the address modifier from the instruction

word. This field may contain a character position for an indirect
then tally address modifier.

¢ CRFLG Character operation flag
d DRFLG Direct operation flag
EAC Address counter for lreg/sreg instructions
RS REG Secondary operations unit operation register. OP CODE is moved from

RP REG to RS REG during the operand fetch cycle and is held until
completion of the instruction.

e RB1 FULL OP CODE buffer is loaded

f RPFULL RP REG is loaded

g RSFULL RS REG is loaded

h GIN First cycle for all OU instructions
i GOS Second cycle for multicycle OU instructions
j GD1 First divide cycle

k GD2 Second divide cycle

1 GOE Exponent compare cycle

m GOA Mantissa alignment cycle

n GOM General operations unit cycle

o GON Normalize cycle

p GOF Final operations unit cycle

q STROP Store (output) data available

r -DA-AV Data not available

s -A-REG A register not in use

t -Q-REG Q register not in use

u -X0-RG X0 not in use

v X1-RG X1 not in use

w -X2-RG X2 not in use
x -X3-RG X3 not in use
y -X4-RG X4 not in use
z -X5-RG X5 not in use
A -X6-RG X6 not in use
B X7-RG X7 not in use
ICT The current value of the instruction counter (PPR.IC). Since the Control

TRACKER Unit and Operations Unit run asynchronously and overlap is usually
enabled, the value of ICT TRACKER may not be the address of the
operations unit instruction currently being executed.

DECIMAL UNIT (DU) HISTORY REGISTERS - DPS AND L68

Format: - 72 bits each

Decimal Unit History Register data is stored with the Store Central Processor Register
(scpr), TAG = 10, instruction. There is no format diagram because the data is defined as
individual bits.

Description:

A combination of 16 flags from the decimal unit. The 16 registers are handled as a rotating
queue controlled by the decimal unit history register counter. The counter is always set to
the number of the oldest entry and advances by one for each history register reference
(data entry or Store Central Processor Register (scpr) instruction).

The decimal unit and the control unit run synchronously. There is a control unit history
register entry for every decimal unit history register entry and vice versa (except for
instruction fetch and EIS descriptor fetch cycles). If the processor is not executing a
decimal instruction, the decimal unit history register entry shows an idle condition.

Function:
A decimal unit history register entry shows the conditions in the decimal unit at the end of
the control unit cycle to which it applies. The 16 registers hold the conditions for the last
16 control unit cycles. Entries are made according to controls set in the Mode Register.
(See Mode Register earlier in this section.)

A minus (-) sign preceding the flag name indicates that the complement of the flag is shown.
Unused bits are set ON.

The meanings of the constituent flags are:

bit Flag Name Meaning
0 -FPOL Prepare operand length
1 -FPOP Prepare operand pointer
2 -NEED-DESC Need descriptor
3 -SEL-ADR Select address register
4 -DLEN=DIRECT Length equals direct
5 -DFRST Descriptor processed for first time
6 -FEXR Extended register modification
7 -DLAST-FRST Last cycle of DFRST

bit

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Flag Name
-DDU-LDEA
-DDU-STAE
-DREDO
-DLVL<WD-SZ
-EXH
DEND-SEQ
-DEND
-DU=RD+WRT
-PTRA00
-PTRAO1

FA/I

FA/T2

FA/I3

-WRD

-NINE

-SIX

-FOUR

-BIT

FSAMPL
-DFRST-CT
-ADJ-LENGTH
-INTRPTD
-INHIB

DUD
-GDLDA
-GDLDB
-GDLDC
NLD1
GLDP1
NLD2
GLDP2
ANLD1
ANLD2
LDWRT1
LDWRT?2

Meaning

Decimal unit load

Decimal unit store

Redo operation without pointer and length update
Load with count less than word size
Exhaust

End of sequence

End of instruction

Decimal unit write-back

PR address bit 0

PR address bit 1

Descriptor 1 active

Descriptor 2 active

Descriptor 3 active

Word operation

9-bit character operation

6-bit character operation

4-bit character operation

Bit operation

Unused

Unused

Unused

Unused

Sample for mid-instruction interrupt
Specified first count of a sequence
Adjust length

Mid-instruction interrupt

Inhibit STC1 (force "STCO0")

Unused

Decimal unit idle

Descriptor load gate A

Descriptor load gate B

Descriptor load gate C

Prepare alignment count for first numeric operand load
Numeric operand one load gate
Prepare alignment count for second numeric operand load
Numeric operand two load gate
Alphanumeric operand one load gate
Alphanumeric operand two load gate
Load rewrite register one gate

Load rewrite register two gate

bit
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

Flag Name
-DATA-AVLDU
WRT1

GSTR
ANSTR
FSTR-OP-AV
-FEND-SEQ
-FLEN<128
FGCH
FANPK
FEXMOP
FBLNK

DGBD

DGDB

DGSP

FFLTG

FRND
DADD-GATE
DMP+DV-GATE
DXPN-GATE

Meaning

Decimal unit data available
Rewrite register one loaded
Numeric store gate
Alphanumeric store gate
Operand available to be stored
End sequence flag

Length less than 128

Character operation gate
Alphanumeric packing cycle gate
Execute MOP gate

Blanking gate

Unused

Binary to decimal execution gate
Decimal to binary execution gate
Shift procedure gate

Floating result flag

Rounding flag

Add/subtract execute gate
Multiply/divide execution gate
Exponent network execution gate
Unused

Unused

Unused

Unused

DECIMAL/OPERATIONS UNIT (DU/OU) HISTORY REGISTERS -

DPS 8M

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 40
ooo000000OO0OO1T1I1T1T1111112222222222333333
012345678901 234567890123456789012345
alblc|d|e|f|g|[h]i kil [m|n|o|p|a|r]|s|t|u|lv|w|x|y|z|A|B|C|D|E|F|G|H|I|O

Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 40

3 55 6 6 66 66 66 77
6 3 4 2345678901
ICT RS REG JIK|ILIM|IN|O|P|Q[R

18 9111111111

Figure 3-27. Decimal/Operations (DU/OU) History Register Format - DPS 8M

Description:

A combination of 16 flags and registers from the operation unit and decimal unit. The 16
registers are handled as a rotating queue controlled by the operations unit history register
counter. The counter is always set to the number of the oldest entry and advances by one
for each history register reference (data entry or Store Central Processor Register (scpr)
instruction).

The decimal unit and the control unit run synchronously. There is a control unit history
register entry for every decimal unit history register entry and vice versa (except for
instruction fetch and EIS descriptor fetch cycles). If the processor is not executing a
decimal instruction, the decimal unit history register entry shows an idle condition.

Function:

An operations unit history register entry shows the conditions at the end of the operations
unit cycle to which it applies. The 16 registers hold the conditions for the last 16 operations
unit cycles. As the operations unit performs various cycles in the execution of an
instruction, it does not advance the counter for each such cycle. The counter is advanced
only at successful completion of the instruction or if the instruction is aborted for a fault
condition. Entries are made according to controls set in the Mode Register. (See Mode
Register earlier in this section.)

The meanings of the constituent flags and registers are:

key Flag Name Meaning

a FANLDI1 Alpha-num load desc 1 (complemented)

b FANLD2 Alpha-num load desc 2 (complemented)

c¢ FANSTR Alpha-num store (complemented)

d FLDWRT1 Load re-write reg 1 (complemented)

e FLDWRT2 Load re-write reg 2 (complemented)

f FNLD1 Numeric load desc 1 (complemented)

g FNLD2 Numeric load desc 2 (complemented)

h NOSEQF End sequence flag

i FDUD Decimal unit idle (complemented)
FGSTR General store flag (complemented)

k NOSEQ End of sequence (complemented)

1 NINE 9-bit character operation

m SIX 6-bit character operation

n FOUR 4-bit character operation

o DUBIT Bit operation

key Flag Name

NOTE:

b

5 Q

— T O MmO O w P> N < X 2 < 2 o0

mOoO 9o zZ2 PR

Meaning

DUWORD Word operation

PTR1 Select ptrl

PTR2 Select ptr 2

PRT3 Select ptr 3

FPOP Prepare operand pointer

GEAM Add timing gates (complemented)
LPD12 Load pointer 1 or 2 (complemented)
GEMAE Multiply gates A E (complemented)
BTDS Binary to decimal gates (complemented)
SP15 Align cycles (complemented)
FSWEQ Single word sequence flag (complemented)
FGCH Character cycle (complemented)
DFRST Processing descriptor for first time
EXH Exhaust

FGADO Add cycle (complemented)
INTRPTD Interrupted

GLDP2 Load DP2

GEMC Multiply gate C

GBDA Binary to decimal gate A

GSP5 Final align cycle

ICT Instruction counter (See NOTE below.)
RS OU op-code register (RS0-8)

IR Indicator register (IR):

ZERO Zero indicator

NEG Negative indicator

CARRY Carry indicator

OVFL Overflow indicator

EOVFL Exponent overflow indicator

EUFL Exponent underflow indicator
OFLM Overflow mask indicator

HEX Hex mode indicator

DTRGO Transfer go

The current value of the instruction counter (PPR.IC). Since the control unit and
operations unit run asynchronously and overlap is usually enabled, the value of ICT
TRACKER may not be the address of the operations unit instruction currently being
executed.

APPENDING UNIT (APU) HISTORY REGISTERS - DPS AND L68

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 00

0 1111112222222 233 3 3
0 4567890123456 9 01 4 5
ESN a |b|c|d|e|f|g|h|i|j|SDWAMR|k|PTWAMR|1

15 2111111111 41 41

0Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 00

3 5 6 6 6 6 6 6 6 7 7
6 9 0 2 3 5 6 7 9 01
ADD TRR [0 O O|lm|O O O|n|O

24 3 31 311

Figure 3-28. Appending Unit (APU) History Register Format - DPS and L68

Description:

A combination of 16 flags and registers from the appending unit. The 16 registers are
handled as a rotating queue controlled by the appending unit history register counter. The
counter is always set to the number of the oldest entry and advances by one for each history
register reference (data entry or Store Central Processor Register (scpr) instruction).

Function:

An appending unit history register entry shows the conditions in the appending unit at the
end of an address preparation cycle in appending mode. The 16 registers hold the
conditions for the last 16 such address preparation cycles. Entries are made according to
controls set in the Mode Register. (See Mode Register earlier in this section.)

The meanings of the constituent flags and registers are:

key Flag Name Meaning
ESN Effective segment number (TPR.TSR)

a BSY Data source for ESN
00 = from PPR.PSR
01 = from PRn.SNR
10 = from TPR.TSR
11 = not used

b FDSPTW Descriptor segment PTW fetch

¢ MDSPTW Descriptor segment PTW modification

d FSDWP SDW fetch from paged descriptor segment

e FPTW PTW fetch

f FPTW2 PTW+1 fetch (prepaging for certain EIS instructions)
g MPTW PTW modification

key Flag Name Meaning
h FANP Final address fetch from nonpaged segment
i FAP Final address fetch from paged segment
j SDWAMM SDWAM match occurred
SDWAMR SDWAM register number if SDWAMM=1
k PTWAMM PTWAM match occurred
PTWAMR PTWAM register number if PTWAMM=1

1 FLT Access violation or directed fault on this cycle
ADD 24-bit absolute main memory address from this cycle
TRR Ring number from this cycle (TPR.TRR)

m Multiple match error in SDWAM

n CA Segment is encacheable

P Multiple match error in PTWAM

r FHLD An access violation or directed fault is waiting

APPENDING UNIT (APU) HISTORY REGISTERS - DPS 8M

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 00

0 1111112222222222333 33
0 4567890123456 789012 4 5
ESN albfc|dle|f]g|h|i]j|k|[]|BSY|m| ml n o
5111111111111 21 2 31

Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 00

3 56 6 6 66 666677
6 90 2345678901
RMA P ql r [s|t| u |v|w

24 31 211 211

Extended APU History Register:

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 10

0 11 2 2 2 3
0 7 8 7 8 9 5
ZCA Instr I MOD

18 10 1 7

3 7

6 1
NOT USED

36

Figure 3-29. Appending Unit (APU) History Register Format - DPS 8M

Description:

A combination of 64 flags and registers from the appending unit. The 64 registers are
handled as a rotating queue controlled by the appending unit history register counter. The
counter is always set to the number of the oldest entry and advances by one for each history
register reference (data entry or Store Central Processor Register (scpr) instruction).

Function:
An appending unit history register entry shows the conditions in the appending unit at the
end of an address preparation cycle in appending mode. The 64 registers hold the
conditions for the last 64 such address preparation cycles. Entries are made according to
controls set in the Mode Register. (See Mode Register earlier in this section.)

The meanings of the constituent flags and registers are:

key Flag Name Meaning
ESN Effective segment number
a PIA Page overflow
b PIA out of segment bounds
¢ FDSPTW Fetch descriptor segment PTW
d MDSPTW Descriptor segment PTW is modified
e FSDW Fetch SDW
f FPTW Fetch PTW
g FPTW2 Fetch pre-page PTW
h MPTW PTW modified
i FANP Final address nonpaged
j FAP Final address paged
k MTCHSDW SDW match found
1 SDWMF SDW match found and used

key Flag Name

ml

| Q -

< & &+ »m

BSY

MTCHPTW
PTWMF
PTWAM
SDWMF
RMA

RTRR
SDWME
SDWLVL
CACHE

PTWLVL
FLTHLD
ZCA
INSTR

I

MOD

Meaning

Data source for ESN
00 = from ppr.ic
01 = from prn.tsr
10 = from tpr.swr
11 = from tpr.ca

PTW match found (AM)

PTW match found (AM) and used
PTW AM direct address (ZCA bits 4-7)
SDW match found

Read 24 bit memory address
Temporary ring register

SDW match error

SDW match level count (0 = Level A)
Cache used this cycle

PTW match error

PTW match level count (0 = level A)
A directed fault or access violation fault is waiting
Computed address

Instruction executed

Inhibit bit

Instruction modifier

CONFIGURATION SWITCH DATA - DPS AND L68

Format: - 36 bits each

Data read by Read Switches (rsw), y = xxxxx0

0 3
0 5

Maintenance panel data switches

36

Data read by Read Switches (rsw), y = xxxxx2
0 0000 11 112 222 2 3 3 3
0 3456 2 3 8 90 6 7809 2 3 5

0 0O0O0| a FAULTBASE |0 0 0 0 O O|/b|O O O O O O O|c|d| CPUID | CPU

4 2 7 6 1 711 4 3

Data read by Read Switches (rsw), y = xxxxx1 (port A-D) or xxxxx3 (port E-H)

0 00000 0O 11111 11 22222 22 23333 3
0 23456 89 12345 78 01234 67 90123 5
PORT A or E PORT B or F PORT C or G PORT D or H
ADR [c|d|e| MEM | ADR [c|d|e| MEM | ADR [c|d|e| MEM | ADR [c|d]e| MEM

3111 3 3111 3 3111 3 3111 3

Data read by Read Switches (rsw), y = xxxxx4

0

11111111222222272272 3
0 23456789012345678)9 5

00000OO0OO0OOOOOO0ODO 0000O0OO0O

tloltlaltlolflolf]a]f]alt]a]f]
3111111111111 1111 7

«Q

Figure 3-30. Configuration Switch Data Formats - DPS and L68

Description:
The Read Switches (rsw) instruction provides the ability to interrogate various switches and
options on the processor maintenance and configuration panels. The 3 low-order bits of the
computed address (TPR.CA) select the switches to be read. High-order address bits are
ignored. Data are placed in the A Register.

Read Switches (rsw), y = xxxxx1 reads data for ports A, B, C, and D. Read Switches (rsw), y
= xxxxx3 reads data for ports E, F, G, and H.

Function:

The meanings of the constituent fields are:

key Field Name
a CPU-Type
FLT BASE
b dps option

c cache

d ext gcos

CPU ID
CPU

PORT A or E, etc.

ADR
c
d
MEM
A, B, etc.
f
g

Meaning
Equals "00" for a L68 or a DPS processor.
The seven MSB of the 12-bit fault base address

Processor option
0 = L68 processor
1 = DPS processor

2K cache option

0 = disabled
1 = enabled
GCOS mode extended memory option
0 = disabled
1 = enabled

These bit positions have a configuration of "1110" for a L68 or a
DPS CPU.

Processor number from processor configuration panel number
switches.

Port data fields further substructured as:
Address assignment switch setting for port
Port enabled flag
System initialize enabled flag
Interlace enabled flag

Coded memory size . . .

000 32K
001 64K
010 128K
011 256K
100 512K
101 1024K
110 2048K
111 4096K

Port data fields further substructured as:

Interlace mode
0 = 4 word if interlace enabled for port
1 = 2 word if interlace enabled for port

Main memory size
0 = full, all of MEM is configured
1 = half, half of MEM is configured

CONFIGURATION SWITCH DATA - DPS 8M

The following changes apply to the DPS 8M processor.

Format: - 36 bits each

Data read by Read Switches (rsw), y = xxxxx2

0 00O00O0 111 11122222272 2 2 33 3
0 3456 234 7890123456 8 9 2 3 5
A|B|C|D
b FLT BASE c|0 0 0 O|d|e|[f]O Ofg|h)i|O O O| SPEED CPU
a ala
4 2 71 4111 2111 3 4 3

Data read by Read Switches (rsw), y = xxxxx1 (port A-D)

0 00 11 2 2 3
0 8 9 7 8 6 7 5
PORT A PORT B PORT C PORT D
ADR |j|k|1| MEM | apr |j|x|1] MEM | ADR [j[k[1]| MEM | aDR [j[k[1]| MEM

3111 3 3111 3 3111 3 3111 3

Figure 3-31. Configuration Switch Data Formats - DPS 8M

Description:

The Read Switches (rsw) instruction provides the ability to interrogate various switches and
options on the processor maintenance and configuration panels. The two low-order bits of
the computed address (TPR.CA) select the switches to be read. High-order address bits are
ignored. Data are placed in the A Register.

Read Switches (rsw), y = xxxxx1 reads data for ports A, B, C, and D.

Function:

The meanings of the constituent fields are:

key Field Name

a

FLTBASE

Meaning

If the corresponding rsw 1 interface enabled flag, bit (e) is ON, then
0 = 4 word interfaces
1 = 2 word interfaces
For ports A-D

Indicates processor type
00 = L68 or DPS Processor
01 = DPS 8M Processor
10 = reserved for future use
11 = reserved for future use

The seven MSB of the 12-bit fault base address

ID prom
0 = id prom not installed
1 = id prom installed

BCD option (Marketing designation)
1 = BCD option installed

DPS option (Marketing designation)
1 = DPS option

key Field Name Meaning

f

8K cache
1 = 8K cache installed

DPS 8M Processor type designation

1 = DPS 8/xxM
0 = DPS 8/xx

GCOS/VMS switch position
1 = Virtual Mode
0 = GCOS Mode

Current or new product line peripheral type

1 = NPL
0=CPL

SPEED Processor speed options

CPU
ADR

—.

MEM

0000 = 8/70
0100 = 8/52

Processor number

Address assignment switch setting for port

Port enabled flag

System initialize enabled flag
Interface enabled flag

Coded memory size:

000 32K

001 64K

010 128K
011 256K
100 512K
101 1024K
110 2048K
111 4096K

CONTROL UNIT DATA

Format: - 288 bits, 8 machine words

Data as stored by Store Control Unit (scu) instruction

Word
0 00 111 2 2 2222223333 3
0 2 3 789 1234567890123 5
0 [PRR PSR alb d|e g|lhli|j|k|]l|[m[n|o| FCT
3 15 1 1 11 111111111 3
0000000000111 1111111 2 2 2 2 3 33
01234567890123456717809 4 67 90 4 5
1 [a|b|c|d|e|f|g|h]|i]j|k|[]l|m|n|o|p|g|r|s]|t IA IACHN[CNCHN| F/IADDR |u
11111111111111111111 3 3 51

0 00 11122222222 2 3
0 2 3 789 01234567 9 0
PTW SDW
2 [TRR TSR 0| CPU DELTA
abcd|le fgh
3 15 4 4 1 3
0 11 222 22 2 2 23
0 7 8 012 4 5 6 890
TSNA TSNB TSNC
3/10000000000000O0O0O0O0O TEMP BIT
a b a b a b
18 31 31 31
0 1112222222222333
0 789 0123456789012
4 IC al|blcl|d|e|f|g|h]i|lj|k|]l|[m|[n|[O0 O O
181 1111111111111
0 11122222222223
0 78901234567 89020
5 COMPUTED ADDRESS a|lb|c|d|e|f|g|h|i|j|k|1| CTHOLD
8111111111111
0 11 2223
0 7 8 7 8 9 0
6 ADDRESS OPCODE I|P TAG
18 10 1 1
0 11 2223
0 7 8 7 8 9 0
7 ADDRESS OPCODE I|P TAG
18 10 1 1
Figure 3-32. Control Unit Data Format
Description:

A collection of flags and registers from the appending unit and the control unit. In general,
the data has valid meaning only when stored with the Store Control Unit (scu) instruction

as the first instruction of a fault or interrupt trap pair.

Function:

The control unit data allows the processor to restart an instruction at the point of
interruption when it is interrupted by an access violation fault, a directed fault, or (for
Directed faults are intentional, and most access
If the interruption is not recoverable, the

certain EIS instructions) an interrupt.
violation faults and interrupts are recoverable.
control unit data provides enough information to determine the exact nature of the error.

Instruction execution restarts immediately upon execution of a Restore Control Unit (rcu)

instruction referencing the Y-block8 area into which the control unit data was stored.

Fields having an "x" in the column headed L are not restored by the Restore Control Unit

(rcu) instruction.

The meanings of the constituent fields are:

Word key L Field Name Meaning
0 PRR Procedure ring register (PPR.PRR)
0 PSR Procedure segment register (PPR.PSR)
0 a P Privileged bit (PPR.P)
0 b XSF External segment flag
0 ¢ x SDWAMM Match on SDWAM
0 d x SD-ON SDWAM enabled
0 e x PTWAMM Match on PTWAM
0 f x PT-ON PTWAM enabled
0 g x PI-AP Instruction fetch append cycle
0 h x DSPTW Fetch descriptor segment PTW
0 i x SDWNP Fetch SDW - nonpaged
0 x SDWP Fetch SDW - paged
0 x PTW Fetch PTW
0 1 x PTW2 Fetch prepage PTW
0 m x FAP Fetch final address - paged
0 n x FANP Fetch final address - nonpaged
0 o x FABS Fetch final address - absolute
0 FCT Fault counter - counts retries
1 a x IRO For access violation fault - illegal ring order
x ISN For store fault - illegal segment number
1 b x ORB For access violation fault - out of execute bracket
x I0C For illegal procedure fault - illegal op code
1 ¢ x E-OFF For access violation fault - execute bit is OFF
x IA+IM For illegal procedure fault - illegal address or modifier
1 d x ORB For access violation fault - out of read bracket
x ISP For illegal procedure fault - illegal slave procedure
1 e x R-OFF For access violation fault - read bit is OFF
x IPR For illegal procedure fault - illegal EIS digit
1 f x OWB For access violation fault - out of write bracket
x NEA For store fault - nonexistent address
1 g x W-OFF For access violation fault - write bit is OFF
x OOB For store fault - out of bounds (BAR mode)
1 h x NOGA For access violation fault - not a gate
1 i x OCB For access violation fault - out of call bracket
1 j x OCALL For access violation fault - outward call
1 k x BOC For access violation fault - bad outward call
1 1 x PTWAM ER For access violation fault - on DPS 8M processors, a PTW

associative memory error. Not used on DPS/L68
processors.

N O

= R e

NNDNDN

W N N NDNNDN

.0 oW

5Q 0

LT T I

o TR B R

E T T T I

MoK X X

Mo M M

Field Name Meaning

CRT
RALR
SDWAM _ER

OOSB
PARU
PARL
ONC1

ONC2

IA
IACHN
CNCHN
F/I ADDR
F/1

TRR
TSR
PTW

SDW

CPU
DELTA
TSNA

PRNO

TSNB
TSNC

TEMP BIT
IC
ZERO

For access violation fault - cross ring transfer

For access violation fault - ring alarm

For access violation fault - on DPS 8M an SDW associative
memory error. An associative memory error on DPS/L68.

For access violation fault - out of segment bounds
For parity fault - processor parity upper
For parity fault - processor parity lower

For operation not complete fault — processor/system
controller sequence error #1

For operation not complete fault — processor/system
controller sequence error #2

System controller illegal action lines (see Table 3-2)
Illegal action processor port
For connect fault - connect processor port

Modulo 2 fault/interrupt vector address

Fault/interrupt flag
0 = interrupt
1 = fault

Temporary ring register (TPR.TRR)
Temporary segment register (TPR.TSR)

DPS 8M processors only; this field mbz on DPS/L68
processors:

PTWAM levels A, B enabled (enabled = 1)
PTWAM levels C, D enabled

PTWAM levels A, B match (match = 1)
PTWAM levels C, D match

DPS 8M processors only; this field mbz on DPS/L68
processors:

SDWAM levels A, B enabled
SDWAM levels C, D enabled
SDWAM levels A, B match
SDWAM levels C, D match

CPU number

Address increment for repeats

Pointer register number for non-EIS operands or for EIS

operand #1 further substructured as:
Pointer register number
1 = PRNO is valid

Pointer register number for EIS operand #2 further
substructured as for TSNA above

Pointer register number for EIS operand #3 further
substructured as for TSNA above

Current bit offset (TPR.TBR)
Instruction counter (PPR.IC)

Zero indicator

Word key L Field Name Meaning

4

(SIS, BN, BN G RS B T L T T T S~

S o1 o o1 o1 01 U1 Ol

b

5 Q - 0O Q0

o B B

O Q& o o o

NEG
CARY
OVFL
EOVF
EUFL
OFLM
TRO
PAR
PARM
-BM
TRU
MIF
ABS
HEX
CA

RF
RPT
RD

RL
POT

PON

XDE

XDO

ITP

RFI

ITS

FIF

CT HOLD

Negative indicator

Carry indicator

Overflow indicator

Exponent overflow indicator

Exponent underflow indicator

Overflow mask indicator

Tally runout indicator

Parity error indicator

Parity mask indicator

Not BAR mode indicator

EIS truncation indicator

Mid-instruction interrupt indicator
Absolute mode indicator

Hex mode indicator (DPS 8M processors only)
Current computed address (TPR.CA)

First cycle of all repeat instructions
Execute a Repeat (rpt) instruction
Execute a Repeat Double (rpd) instruction
Execute a Repeat Link (rpl) instruction

Prepare operand tally. This flag is up until the indirect
word of an indirect then tally address modifier is
successfully fetched.

Prepare operand no tally. This flag is up until the indirect
word of a return type transfer instruction is successfully
fetched. It indicates that there is no indirect chain even
though an indirect fetch is being performed.

Execute instruction from Execute Double even pair
Execute instruction from Execute Double odd pair
Execute ITP indirect cycle

Restart this instruction

Execute ITS indirect cycle

Fault occurred during instruction fetch

Contents of the modifier holding register

Word 6 is the contents of the working instruction register
and reflects conditions at the exact point of address
preparation when the fault or interrupt occurred. The
ADDRESS and TAG fields are replaced with data from
pointer registers, indirect pointers, and/or indirect words
during each indirect cycle. Each instruction of the current
pair is moved to this register before actual address
preparation begins.

DECIMAL UNIT DATA

Word key L Field Name Meaning

7

Word 7 is the contents of the instruction holding register. It
contains the odd word of the last instruction pair fetched
from main memory. Note that, primarily because of
overlap, this instruction is not necessarily paired with the
instruction in word 6.

Format: - 288 bits, 8 machine words

Data as stored by Store Pointers and Lengths (spl) instruction

Word
0 00111 3
0 89012 5
0Olooo0oo0O0O0OOOO|z|lglo CH TALLY
9111 24
0 3
0 5
1|l00000000000000O0O0O0O0O0O0O0O0O0O0O0OO0OO0O0OO0OOOOOOOTO O
36
0 22222 23333 3
0 34567 901 2 3 5
2 D1 PTR Ol TA|JO O O|I|F|JA]JO O O
24 1 2 3111 3
0 0111 3
0 9012 5
3 LEVEL 1 00 D1 RES
10 2 24
0 22 2 2 2 23333 3
0 34567 901 2 3 5
4 D2 PTR Ol TA |0 O O|R|F|A|O O O
24 1 2 3111 3
0 0111 3
0 9 01 2 5
5 LEVEL 2 00 D2 RES
10 2 24

0 22222 23333 3
0 34567 9 012 3 5
6 D3 PTR Ol TA|O O O|R|F|A| JMP
24 1 2 3111 3
0 11 3
0 1.2 5

710000 00000O0O0O D3 RES
12 24

Figure 3-33. Decimal Unit Data Format
Description:

A collection of flags and registers from the decimal unit.

Function:

The decimal unit data allows the processor to restart an EIS instruction at the point of
interruption when it is interrupted by an access violation fault, a directed fault, or (for

certain EIS instructions) an interrupt.

Directed faults are intentional, and most access

violation faults and interrupts are recoverable.

The data are restored with the Load Pointers and Lengths (1lpl) instruction. Fields having

an 'x

in the column headed L are not restored. When starting (or restarting) execution of

an EIS instruction, the decimal unit registers and flags are not initialized from the operand
descriptors if the mid-instruction interrupt fault (MIF) indicator is set ON.

The meanings of the constituent flags and registers are:

Word L Field Name Meaning

0
0
0

2,4,6

2,4,6
2,4,6

4,6

Z
%]
CHTALLY

D1 PTR

TA
I

F
A
LEVEL1

D1 RES
D2 PTR

R
LEVEL 2

All bit-string instruction results are zero
Negative overpunch found in 6-4 expanded move

The number of characters examined by the scm, scmr, scd,
scdr, tct, or tctr instructions (up to the interrupt or match)

Address of the last double-word accessed by operand descriptor 1;
bits 17-23 (bit-address) valid only for initial access

Alphanumeric type of operand descriptor 1,2,3

Decimal unit interrupted flag; a copy of the mid-instruction
interrupt fault indicator

First time; data in operand descriptor 1,2,3 is valid
Operand descriptor 1,2,3 is active

Difference in the count of characters loaded into the processor
and characters not acted upon

Count of characters remaining in operand descriptor 1

Address of the last double-word accessed by operand descriptor 2;
bits 17-23 (bit-address) valid only for initial access

Last cycle performed must be repeated

Same as LEVEL 1, but used mainly for OP 2 information

Word L Field Name Meaning
5 D2 RES Count of characters remaining in operand descriptor 2

6 D3 PTR Address of the last double-word accessed by operand descriptor 3;
bits 17-23 (bit-address) valid only for initial access

6 JMP Descriptor count; number of words to skip to find the next
instruction following this multiword instruction

7 D3 RES Count of characters remaining in operand descriptor 3

SECTION 4: MACHINE INSTRUCTIONS

This section describes the complete set of machine instructions for the Multics processor.
The presentation assumes that the reader is familiar with the general structure of the processor,
the representation of information, the data formats, and the method of address preparation.
Additional information on these subjects appears near the beginning of this section and in Sections
2,3, 5, and 6.

INSTRUCTION REPERTOIRE

The processor interprets a 10-bit field of the instruction word as the operation code. This
field size yields 1024 possible instructions of which 547 are implemented. There are 456 basic
operations and 91 extended instruction set (EIS) operations.

Arrangement of Instructions

Instructions are presented alphabetically by their mnemonic codes within functional
categories. An overall alphabetic listing of instruction codes and their names appears in
Appendix B.

Basic Operations

The 456 basic operations in the processor all require exactly one 36-bit machine word.
They are categorized as follows:

181 Fixed-point binary arithmetic
85 Boolean operations

34 Floating-point binary arithmetic

36 Transfer of control

75 Pointer reqgister

17 Miscellaneous

28 Privileged

Extended Instruction Set (EIS) Operations

The 91 extended instruction set (EIS) operations are divided into 62 EIS single-word
instructions and 29 EIS multiword instructions.

EIS Single-Word Operations

The 62 EIS single-word instructions load, store, and perform special arithmetic on the
address registers (ARn) used to access bit- and character-string operands, and safe-store decimal
unit (DU) control information required to service a processor fault or interrupt. Like the basic
operations, EIS single-word instructions require exactly one 36-bit machine word.

EIS Multiword Operations
The 29 EIS multiword instructions perform decimal arithmetic and bit- and character-string

operations. They require three or four 36-bit machine words depending on individual operand
descriptor requirements.

FORMAT OF INSTRUCTION DESCRIPTION

Each instruction in the repertoire is described in the following pages of this section. The
descriptions are presented in the format shown below.

MNEMONIC INSTRUCTION NAME OPCODE
FORMAT: Figure or figure reference
SUMMARY: Text and/or bit transfer equations
MODIFICATIONS: Text
INDICATORS: Text and/or logic statements
NOTES: Text

Line 1: MNEMONIC, INSTRUCTION NAME, OPCODE
This line has three parts that contain the following:
1. MNEMONIC -- The mnemonic code for the operation field of the assembler statement.

The Multics assembler, ALM, recognizes this character string value and maps it into the
appropriate binary pattern when generating the actual object code.

2. INSTRUCTION NAME -- The name of the machine instruction from which the mnemonic
was derived.

3. OPCODE -- The octal value of the operation code for the instruction. A 0 or a 1 in
parentheses following an octal code indicates whether bit 27 (opcode extension bit) of
the instruction word is OFF or ON.

Line 2: FORMAT

The layout and definition of the subfields of the instruction word or words are given here
either as a figure or as a reference to a figure.

Line 3: SUMMARY
The change in the state of the processor effected by the execution of the instruction is

described in a short, symbolic form. If reference is made to the state of an indicator in the
summary, it is the state of the indicator before the instruction is executed.

Line 4: MODIFICATIONS

Those modifiers that cannot be used with the instruction are listed explicitly as exceptions.
See Section 6 for a discussion of address modification.

Line 5: INDICATORS

Only those indicators are listed whose state can be changed by the execution of the
instruction. In most cases, a condition for setting ON as well as one for setting OFF is stated. If
only one of the two is stated, then the indicator remains unchanged if the condition is not met.
Unless stated otherwise, the conditions refer to the contents of registers existing after instruction
execution. Refer also to "Common Attributes of Instructions," later in this section.

Line 6: NOTES

This part of the description exists only in those cases where the summary is not sufficient
for in-depth understanding of the instruction.

DEFINITIONS OF NOTATION AND SYMBOLS

Main Memory Addresses

y
Y

Y-pair

Y-blockn

Y-charnk

Y-bitk

Index Values

an 18-bit computed address as generated during address preparation.

a 24-bit main memory address of the instruction operand after all address
preparation (including appending) is complete.

a pair of main memory locations with successive addresses, the smaller
address being even. When Y is even, it designates the pair Y(even), Y+1; and
when it is odd, the pair Y-1, Y(odd). The main memory location with the
smaller (even) address contains the most significant part of a double-word
operand or the first of a pair of instructions.

a block of main memory locations of 4-, 8-, 16-, or 32-word extent. For a block
of n-word extent, the processor forces Y-blockn to a 0 modulo n address and
performs address incrementing through the block accordingly, stopping when
the address next reaches a value 0 modulo n.

a character or string of characters in main memory of character size n bits as
described by the kth operand descriptor. nis specified by the data type field of
operand descriptor k and may have values 4, 6, or 9. See Section 6 for details
of operand descriptors.

a bit or string of bits in main memory as described by the kth operand
descriptor. See Section 6 for details of operand descriptors.

When reference is made to the elements of a string of characters or bits in main memory,
the notation shown in "Register Position and Contents" below is used. The index used to show
traversing a string of extent n may take any of the values in the interval (1,n) unless noted
otherwise. The elements of a main memory block are traversed explicitly by using the index as an
addend to the given block address, (e.g., Y-block8+m and Y-block4+2m+1).

Abbreviations and Symbols

A

ARn

AQ

BAR

C()

CA

DSBR
DSBR.ADDR
DSBR.BND
DSBR.STACK
DSBR.U

Accumulator register

Address register n(n=20, 1, 2, ..., 7)
Combined accumulator-quotient register
Base address register

"Contents of"

Computed address

Descriptor segment base register
Address field of DSBR

Bound field of DSBR

Stack base field of DSBR

Unpaged flag of DSBR

E Exponent register

EA Combined exponent-accumulator register

EAQ Combined exponent-accumulator-quotient register
ERN Effective ring number

ESN Effective segment number

IC Instruction counter

IR Indicator register

PPR Procedure pointer register

PPR.PRR Procedure ring register of PPR

PPR.PSR Procedure segment register of PPR

PPR.IC Instruction counter register of PPR (same as IC above)
PPR.P Privileged flag of PPR

PRn Pointer register n(n =10, 1, 2, ..., 7)

PRn.RNR Ring number register of PRn

PRn.SNR Segment number register of PRn

PRn.WORDNO Word address register of PRn

PRn.CHAR Character address register of PRn

PRn.BITNO Bit offset register of PRn

Q Quotient register

PTWAM Page table word associative memory

SDWAM Segment descriptor word associative memory

RALR Ring alarm register

TPR Temporary pointer register

TPR.CA Computed address register of TPR (same as CA above)
TPR.TRR Temporary ring register of TPR

TPR.TSR Temporary segment register of TPR

TPR.TBR Temporary bit register of TPR

TR Timer register

Xn Index registern(n=0,1, 2, ..., 7)

Z Temporary pseudo-result of a nonstore comparative operation

Register Positions and Contents

In the definitions that follow, "R" stands for any of the registers listed above, as well as for
main memory words, word-pairs, word-blocks, and bit- or character-strings.

R; The i? bit, character, or byte position of R

R(i) The i register of a set of n registers named R

Rj; The bit, character, or byte positions i through j of R

C(R) The contents of the full register R

C(R); The contents of the it! bit, character, or byte of R

C(R); The contents of the bits, characters, or bytes i through j of R
XX...X A string of binary bits (0's or 1's) of any necessary length

When the description of an instruction specifies a change for a part of a register or main
memory location, it is understood that the part of the register or main memory location not
mentioned remains unchanged.

Other Symbols

- replaces
compare with
& the Boolean connective AND

| the Boolean connective OR

& the Boolean connective NON-EQUIVALENCE (or EXCLUSIVE OR)

~XXX the logical inverse (ones complement) of the quantity XXX

not equal

n**m indicates exponentiation (n and m are integers); for example, the fifth power of
2 is represented as 2**5.

X multiplication; for example, C(Y) times C(Q) is represented as C(Y) x C(Q)

/ division; for example, C(Y) divided by C(A) is represented as C(Y) / C(A).

|| concatenation; for example, stringl || string2.

| .o] the absolute value of the value between vertical bars (no algebraic sign). For
example the absolute value of C(A) plus C(Y) is represented as: | C(A) + C(Y) | .

C(R)modn A coined notation for remaindering or modulo arithmetic; for example C(REG)
modulo 9 is represented as C(REG)y049

COMMON ATTRIBUTES OF INSTRUCTIONS

lllegal Modification

If an illegal modifier is used with any instruction, an illegal procedure fault with a subcode
class of illegal modifier occurs.

Parity Indicator

The parity indicator is turned ON at the end of a main memory access that has incorrect
parity.

INSTRUCTION WORD FORMATS

Basic and EIS Single-Word Instructions

The basic instructions and EIS single-word instructions require exactly one 36-bit machine
word and are interpreted according to the format shown in Figure 4-1.

0 11 2223 3

0 7 8 7890 5
ADDRESS OPCODE I1A TAG

18 10 1 1 6
Figure 4-1. Basic and EIS Single-Word Instruction Format
ADDRESS The given address of the operand or indirect word. This address may be:
An 18-bit absolute main memory address if A = 0 (absolute mode only)
An 18-bit offset relative to the base address register if A = 0 (BAR mode
only)
An 18-bit offset relative to the base of the current procedure segment if A
= 0 (appending mode only)
A 3-bit pointer register number (n) and a 15-bit offset relative to
C(PRn.WORDNO) if A = 1 (absolute and appending modes only)
A 3-bit address register number (n) and a 15-bit offset relative to C(ARn) if
A =1 (all modes depending on instruction type)
An 18-bit literal signed or unsigned constant (all modes depending on
instruction type and modifier)
An 8-bit shift operation count (all modes)
An 18-bit offset relative to the current value of the instruction counter
C(PPR.IC) (all modes)
OPCODE Instruction operation code.

I

A

TAG

Interrupt inhibit bit. When this bit is set ON, the processor will defer all
external interrupt signals. See Section 7 for a discussion of interrupts.

Indirect via pointer register flag. See Section 6 for a discussion of the use of
pointer registers.

Instruction address modifier. See Section 6 for a discussion of address
modification.

Machine words in this format are generated by ALM in processing the basic and EIS single-
word instructions (described later in this section) and the arg pseudo-instruction).

Indirect Words

Certain of the basic and EIS single-word instructions permit indirection to be specified as
part of address modification. When such indirection is specified, C(Y) is interpreted as an indirect
word according to the format shown in Figure 4-2.

0 11 2 3 3
0 7 8 9 0 5
ADDRESS TALLY TAG
18 12 6
Figure 4-2. Indirect Word Format
ADDRESS The given address of the operand or next indirect word. This address may be:

An 18-bit absolute main memory address if A = 0 in the instruction word
(absolute mode only)

An 18-bit offset relative to the base address register (BAR) if A = 0 in the
instruction word (BAR mode only)

An 18-bit offset relative to the base of the segment in which the word
resides if A = 0 (appending mode only)

Three zero bits and a 15-bit segment number if TAG = (43)g (ITS
modification) (absolute and appending modes only)

A 3-bit pointer register number and 15 zero bits if TAG = (41)g (ITP
modification) (absolute and appending modes only)

TALLY A count field for use by those address modifiers that involve tallying
TAG This field may be (depending on the TAG value causing the indirection):
A 6-bit address modifier

A 6-bit increment to be added to or subtracted from ADDRESS on each
reference

A 1-bit character mode (6- or 9-bit) flag, two 0 bits, and a 3-bit character
position number

Machine words in this format may be generated by use of the ALM vfd pseudo-instruction.

EIS Multiword Instructions

The EIS multiword instructions require three or four machine words depending on the
operand descriptor requirements of the individual instructions. The words are interpreted
according to the format shown in Figure 4-3. The instruction descriptions (later in this section)
contain ALM coding examples. Refer to the Multics Commands and Active Functions, Order No.
AG92, "alm" command for additional information.

-
0 =

~N N

N
O N

VARIABLE

OPCODE

MF1

18

10

operand descriptor or indirect pointer for operand 1

operand descriptor or indirect pointer for operand 2

operand descriptor or indirect pointer for operand 3

VARIABLE

OPCODE
I
MF1

Machine words in this format are generated by ALM in processing the EIS multiword
instructions described later in this section and their associated operand descriptor or indirect

Figure 4-3. EIS Multiword Instruction Format

This field is interpreted variously according to the requirements of the
individual EIS instructions. Its interpretation is given under FORMAT for each
EIS instruction. The modification fields MF2 and MF3 are contained in this
field if they are required.

Instruction operation code as for basic and EIS single-word instructions.

Interrupt inhibit bit as for basic and EIS single-word instructions.

Modification field for operand descriptor 1.
below for details.

pointer pseudo-operations.

EIS Modification Fields (MF)

Each of the operand descriptors following an EIS multiword instruction word has a
modification field in the instruction word. The modification field controls the interpretation of the
operand descriptor. The modification field is interpreted according to the format shown in Figure

4-4.

key
a AR

Figure 4-4. EIS Modification Field (MF) Format

Address register flag. This flag controls interpretation of the ADDRESS field
of the operand descriptor just as the "A" flag controls interpretation of the
ADDRESS field of the basic and EIS single-word instructions.

[eNe]

- O

N O
w o

o
o

1

1

See EIS modification fields (MF)

RL Register length control. If RL = 0, then the length (N) field of the operand
descriptor contains the length of the operand. If RL = 1, then the length (N)
field of the operand descriptor contains a selector value specifying a register
holding the operand length. Operand length is interpreted as units of the data
size (1-, 4-, 6-, or 9-bit) given in the associated operand descriptor.

ID Indirect descriptor control. If ID = 1 for Mfk, then the kth word following the
instruction word is an indirect pointer to the operand descriptor for the kth
operand; otherwise, that word is the operand descriptor.

REG The register number for R-type modification (if any) of ADDRESS of the
operand descriptor. These modifications are similar to R-type modifications
for basic instructions and are summarized in Table 4-1. Illegal modifiers have
the entry "IPR" and cause an illegal procedure fault.

Table 4-1. R-type Modifiers for REG Fields

Meaning as used in:

Indirect operand

Octal Code R-type MF.REG descriptor-pointer C(operand descriptor)s; 35

a)

b)

c)

00 n n n IPR
01 au au au au
02 qu qu qu qu
03 du IPR IPR du @
04 ic ic ic ic)
05 al a © al a ©
06 gl q © gl q ©
07 dl IPR IPR IPR
10 x0 x0 X0 X0
11 x1 x1 x1 x1
12 X2 X2 X2 X2
13 x3 x3 x3 x3
14 x4 x4 x4 x4
15 x5 x5 x5 x5
16 x6 x6 X6 X6
17 x7 x7 x7 x7

The du modifier is permitted only in the second operand descriptor of the scd, scdr, scnm,
and scmr instructions to specify that the test character(s) reside(s) in bits 0-18 of the operand
descriptor.

The ic modifier is permitted in MFAREG and C (od)3; 35 only if MFARL = 0, that is, if the

contents of the register is an address offset, not the designation of a register containing the
operand length.

The limit of addressing extent of the processor is 2**18 words; that is, given an address, y, a
modifier may be employed to access a main memory word anywhere in the range (y-2**¥17, y
+2*%17-1), provided other address range constraints are not violated. Since it is desirable to
address this same extent as words, characters, and bits it is necessary to provide a register

with range greater than the 12 bits of N or the 18 bits of normal R-type modifiers. This is done
by extending the range of the A and Q modifiers as follows:

Mode Range A, Q bits

9-bit 21 15,35
6-bit 21 15,35
4-bit 22 14,35

bit 24 12,35

The unused high-order bits are ignored.

MF Coding Examples

All of the EIS instruction descriptions in this section give examples of ALM coding formats.
For example, the mlr instruction shows:

mlr (MF1), (MF2)[,fill(octalexpression)][,enablefault]
descna Y-charnl[(CN1)],N1 n=4,6,or9 (TA1 =2,1, or0)
descna Y-charnm2[(CN2)1,N2 n=4,6,or9(TA2=2,1, or0)

where MF1 and MF2 represent the EIS Modifier Fields for the first and second data descriptors,
respectively.

The meanings of the various codes in an MF field are:

If C(MFn) Contains It Means

pr Y-charn is not the memory address of the data but is a reference to a
pointer register pointing to the data.

id The data in descn is not the data descriptor but is the memory address
(or pointer register reference) of the data descriptor.

rl The field Nn is not the data length but is the code for register containing
the data length (see Table 4-1).

EIS Operand Descriptors and Indirect Pointers

The words following an EIS multiword instruction word are either operand descriptors or
indirect pointers to the operand descriptors. The interpretation of the words is performed
according to the settings of the control bits in the associated modification field (MF). The kth word
following the instruction word is interpreted according to the contents of MFk See EIS_
modification fields (MF) above for meaning of the various control bits. See Section 2 and Section 6
for further details.

Operand Descriptor Indirect Pointer Format

If MFkID = 1, then the kth word following an EIS multiword instruction word is not an
operand descriptor, but is an indirect pointer to an operand descriptor and is interpreted as shown
in Figure 4-5.

©O© N
o w
—_ W
N W

w

11 2
0 7 8 8

ADDRESS 0000O0O0OO0OOOO|A

o
o
g
@

18 11 1 2 4

Figure 4-5. Operand Descriptor Indirect Pointer Format

ADDRESS The given address of the operand descriptor. This address may be:
An 18-bit absolute main memory address if A = 0 (absolute mode only)

An 18-bit offset relative to the base address register (BAR) if A = 0 (BAR
mode only)

An 18-bit offset relative to the base of the current procedure segment if A
= 0 (appending mode only)

A 3-bit pointer register number (n) and a 15-bit offset relative to
C(PRn.WORDNO) if A = 1 (all modes)

A Indirect via pointer register flag. This flag controls interpretation of the
ADDRESS field of the indirect pointer just as the "A" flag controls
interpretation of the ADDRESS field of the basic and EIS single-word
instructions.

REG Address modifier for ADDRESS. All register modifiers except du and dl may
be used. If the ic modifier is used, then ADDRESS is an 18-bit offset relative
to value of the instruction counter for the instruction word. C(REG) is
always interpreted as a word offset.

Machine words in this format are generated by the ALM arg pseudo-instruction giving an
appropriate TAG field.

Alphanumeric Operand Descriptor Format

For any operand of an EIS multiword instruction that requires alphanumeric data, the
operand descriptor is interpreted as shown in Figure 4-6.

0 11 22 2 22 3

0 7 8 01234 5
ADDRESS CN TA |0 N

18 3 21 12
Figure 4-6. Alphanumeric Operand Descriptor Format
ADDRESS The given address of the operand. This address may be (for the kth operand):

An 18-bit absolute main memory address if MFk.AR= 0 (absolute mode
only)
An 18-bit offset relative to the base address register if MFkAR = 0 (BAR
mode only)

An 18-bit offset relative to the base of the current procedure segment if
MFk.AR = 0 (appending mode only)

A 3-bit address register number (n) and a 15-bit word offset relative to
C(ARn) if MFk.AR = 1 (all modes)

CN Character number. This field gives the character position relative to
ADDRESS of the first operand character. Its interpretation depends on the
data type (see TA below) of the operand. below shows the interpretation of
the field. A digit in the table indicates the corresponding character position
(see Section 2 for data formats) and an "x" indicates an invalid code for the
data type. Invalid codes cause illegal procedure faults. (For further
explanation, see the Note under ARn.BITNO in Section 3, "Address Registers".)

TA Type alphanumeric. This is the data type code for the operand. The
interpretation of the field is shown in Table 4-3. The code shown as Invalid
causes an illegal procedure fault.

N Operand length. If MFLRL = 0, this field contains the string length of the
operand. If MFkRL = 1, this field contains the code for a register holding the
operand string length. See Table 4-1 and EIS modification fields (MF) above
for a discussion of register codes.

Machine words of this format are generated by ALM when processing the desc4a, descé6a,
and desc9a pseudo-instructions.

Table 4-2. Alphanumeric Character Number (CN) Codes

Data type
C(CN) 4-bit 6-bit 9-bit
000 0 0 0
001 1 1 X
010 2 2 1
011 3 3 X
100 4 4 2
101 5 5 X
110 6 X 3
111 7 X X

Table 4-3. Alphanumeric Data Type (TA) Codes

C(TA) Data type
00 9-bit
01 6-bit
10 4-bit
11 Invalid

Numeric Operand Descriptor Format

For any operand of an EIS multiword instruction that requires numeric data, the operand
descriptor is interpreted as shown in Figure 4-7.

0 11 222272 23 3

0 7 8 01234 90 5
ADDRESS CN Jaf| S SF N

18 31 2 6 6

Figure 4-7. Numeric Operand Descriptor Format

key
ADDRESS The given address of the operand. This address may be (for the kth
operand):
An 18-bit absolute main memory address if MFk.AR= 0 (absolute mode
only)
An 18-bit offset relative to the base address register if MFk.AR = 0 (BAR
mode only)

An 18-bit offset relative to the base of the current procedure segment if
MFk.AR = 0 (appending mode only)

A 3-bit address register number (n) and a 15-bit word offset relative to
C(ARn) if MFk.AR = 1 (all modes)

CN Character number. This field gives the character position relative to
ADDRESS of the first operand digit. Its interpretation depends on the data
type (see TN below) of the operand. Table 4-2 above shows the
interpretation of the field. (For further information, see the Note under

ARn.BITNO in Section 3 on Address Registers.)

a TN Type numeric. This is the data type code for the operand. The codes are:
C(TN) Data type
0 9-bit
1 4-bit
S Sign and decimal type of data. The interpretation of the field is shown in
Table 4-4.
SF Scaling factor. This field contains the two's complement value of the base 10

scaling factor; that is, the value of m for numbers represented as n x 10**m.
The decimal point is assumed to the right of the least significant digit of n.
Negative values move the decimal point to the left; positive values, to the
right. The range of mis (-32,31). The scaling factor is ignored if S=00.

N Operand length. If MFkRL = 0, this field contains the operand length in
digits. If MFk.RL = 1, it contains the REG code for the register holding the
operand length and C(REQG) is treated as a 0 modulo 64 number. See Table
4-1 and EIS modification fields (MF) above for a discussion of register codes.

Machine words in this format are generated by ALM when processing the desc4fl,
desc4ls, desc4ts, descd4ns, desc9fl, desc9ls, desc9ts, and desc9ns pseudo-instructions.

Table 4-4. Sign and Decimal Type (S) Codes

C(S) Sign and decimal type
00 Floating-point, leading sign

C(S) Sign and decimal type

01 Scaled fixed-point, leading sign
10 Scaled fixed-point, trailing sign

11 Scaled fixed-point, unsigned

Bit-string Operand Descriptor Format

For any operand of an EIS multiword instruction that requires bit-string data, the operand
descriptor is interpreted as shown in Figure 4-8.

0 1112 2 2 3
0 7890 3 4 5
ADDRESS C B N
18 2 4 12
Figure 4-8. Bit String Operand Descriptor Format
ADDRESS The given address of the operand. This address may be (for the kth operand):
An 18-bit main memory address if MFk.AR= 0 (absolute mode only)
An 18-bit offset relative to the base address register if MFk.AR = 0 (BAR
mode only)
An 18-bit offset relative to the base of the current procedure segment if
MFkAR = 0 (appending mode only)
A 3-bit address register number (n) and a 15-bit word offset relative to
C(ARn) if MFk.AR = 1 (all modes)
C The character number of the 9-bit character relative to ADDRESS containing
the first bit of the operand. (For further explanation, see the Note under
ARn.BITNO in Section 3 on Address Registers.)
B The bit number within the 9-bit character, C, of the first bit of the operand.

Operand length. If MFLRL = 0, this field contains the string length of the
operand. If MFkRL = 1, this field contains the code for a register holding the
operand string length. See Table 4-1 and EIS modification fields (MF) above
for a discussion of register codes.

Machine words of this format are generated by ALM when processing the descb pseudo-
instruction.

FIXED-POINT ARITHMETIC INSTRUCTIONS

Fixed-Point Data Movement Load

eaa Effective Address to A 635 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(TPR.CA) - C(A)g 17
00...0 - C(A)18,35
MODIFICATIONS: All except du, dl
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON: otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
NOTES: The eaa instruction, and the instructions eaq and eaxn, facilitate
interregister data movements. The data source is specified by the address
modification, and the data destination by the operation code of the
instruction.
Attempted repetition with the rpl instruction causes an illegal procedure
fault.
eaq Effective Address to Q 636 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(TPR.CA) - C(Q)g,17
00...0 - C(Q)18,35
MODIFICATIONS: All except du, dl
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
eaxn Effective Address to Index Register n 62n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=20,1, ..., or 7 as determined by operation code
C(TPR.CA) - C(Xn)
MODIFICATIONS: All except du, dl

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)g = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
lca Load Complement A 335 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: -C(Y) » C(A)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
NOTES: The lca instruction changes the number to its negative while moving it

from Y to A. The operation is executed by forming the twos complement of
the string of 36 bits. In twos complement arithmetic, the value 0 is its own
negative. An overflow condition exists if C(Y) = -2**35.

lcaq Load Complement AQ 337 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: -C(Y-pair) - C(AQ)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)g = 1, then ON; otherwise OFF
Overflow If range of AQ is exceeded, then ON
NOTES: The lcaq instruction changes the number to its negative while moving it

from Y-pair to AQ. The operation is executed by forming the twos
complement of the string of 72 bits. In twos complement arithmetic, the
value 0 is its own negative. An overflow condition exists if C(Y-pair) =

-2%K7 7
lcq Load Complement Q 336 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: -C(Y) - C(Q)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
Overflow If range of Q is exceeded, then ON
NOTES: The 1lcq instruction changes the number to its negative while moving it
from Y to Q The operation is executed by forming the twos complement of
the string of 36 bits. In twos complement arithmetic, the value 0 is its own
negative. An overflow condition exists if C(Y) = -2**35.
lcxn Load Complement Index Register n 32n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code
-C(Y)g,17 = C(Xn)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)g = 1, then ON; otherwise OFF
Overflow If range of Xn is exceeded, then ON
NOTES: The lcxn instruction changes the number to its negative while moving it
from Y17 to Xn The operation is executed by forming the twos
complement of the string of 18 bits. In twos complement arithmetic, the
value O is its own negative. An overflow condition exists if C(Y)g 17 =
-2,
Attempted repetition with the rpl instruction and with the same register
given as target and modifier causes an illegal procedure fault.
lda Load A 235 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Y) - C(A)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
ldac Load A and Clear 034 (0)
FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y) - C(A)
00...0 - C(Y)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
NOTES: The ldac instruction causes a special main memory reference that
performs the load and clear in one cycle. Thus, this instruction can be
used in locking data.
ldaq Load AQ 237 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Y-pair) - C(AQ)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)g = 1, then ON; otherwise OFF
ldi Load Indicator Register 634 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Y)1g31 — C(IR)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)

Parity mask

Not BAR mode

Mid instruction
interrupt fault

Absolute mode

All other
indicators

NOTES:

If C(Y)y7 = 1, and the processor is in absolute or instruction privileged
mode, then ON; otherwise OFF. This indicator is not affected in the
normal or BAR modes.

Cannot be changed by the 1di instruction

If C(Y)3p = 1, and the processor is in absolute or instruction privileged

mode, then ON; otherwise OFF. This indicator is not affected in normal or
BAR modes.

Cannot be changed by the 1di instruction
If corresponding bit in C(Y) is 1, then ON; otherwise, OFF

The relation between C(Y);g 31 and the indicators is given in Table 4-5
below.

The tally runout indicator reflects C(Y);5 regardless of what address
modification is performed on the 1di instruction.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Table 4-5. Relation Between Data Bits and Indicators Bit

Bit Position C(Y) Indicator

18 Zero
19 Negative
20 Carry
21 Overflow
22 Exponent overflow
23 Exponent underflow
24 Overflow mask
25 Tally runout
26 Parity error
27 Parity mask
28 Not BAR mode
29 Truncation
30 Mid instruction interrupt fault
31 Absolute mode
ldq Load Q 236 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Y) - C(Q)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
ldqc Load Q and Clear 032 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Y) - C(Q)
00...0 - C(Y)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) = 0, then ON; otherwise OFF
Negative If C(Y)g = 1, then ON, otherwise OFF
NOTES: The 1ldqc instruction causes a special main memory reference that

performs the load and clear in one cycle. Thus, this instruction can be
used in locking data.

ldxn Load Index Register n 22n (0)

FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code

C(Y)0'17 d C(Xn)
MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)g = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction with the same register given

as target and modifier causes an illegal procedure fault.

lreg Load Registers 073 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Y-block8)g 17 — C(X0) C(Y-block8)g 35 —» C(X1)
C(Y-block8+1)g 17 - C(X2) C(Y-block8+1)1g 35 — C(X3)
C(Y-block8+2)g 17 - C(X4) C(Y-block8+2)1g 35 —» C(X5)
C(Y-block8+3)g 17 — C(X6) C(Y-block8+3)1g 35 = C(X7)
C(Y-block8+4) — C(A) C(Y-block8+5) —» C(Q)

C(Y-block8+6)g 7 = C(E)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

1x1n Load Index Register n from Lower 72n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code

C(Y)18,35 = C(Xn)
MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)y = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction with the same register given

as target and modifier causes an illegal procedure fault.

Fixed-Point Data Movement Store

sreg Store Registers 753 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(X0) — C(Y-block8)g 17 C(X1) — C(Y-block8)13 35
C(X2) — C(Y-block8+1)g 17 C(X3) — C(Y-block8+1)13 35
C(X4) — C(Y-block8+2)¢ 17 C(X5) — C(Y-block8+2)13 35
C(X6) — C(Y-block8+3)¢ 17 C(X7) — C(Y-block8+3)13 35
C(A) — C(Y-block8+4) C(Q) — C(Y-block8+5)
C(E) — C(Y-block8+6)¢ 7 00...0 - C(Y-block8+6)g 35
C(TR) — C(Y-block8+7)g 26 00...0 » C(Y-block8+7)27 32
C(RALR) — C(Y-block8+7)33 35
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
sta Store A 755 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(A) - C(Y)
MODIFICATIONS: All except du, dl
INDICATORS: None affected
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
stac Store A Conditional 354 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If C(Y) = 0, then C(A) — C(Y)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If initial C(Y) = 0O, then ON; otherwise OFF
NOTES: If the initial C(Y) is nonzero, then C(Y) is not changed by the stac

instruction.

The stac instruction uses a special main memory reference that prohibits
such references by other processors between the test and the data
transfer. Thus, it may be used for data locking.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

stacq Store A Conditional on Q 654 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If C(Y) = C(Q), then C(A) = C(Y)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If initial C(Y) = C(Q), then ON; otherwise OFF
NOTES: If the initial C(Y) is = C(Q), then C(Y) is not changed by the stacq
instruction.
The stacq instruction uses a special main memory reference that prohibits
such references by other processors between the test and the data
transfer. Thus, it may be used for shared data locking and unlocking.
On the DPS 8M processor, data shared by more than one processor may, at
any time, be in more than one processor's cache memory. To aid the
integrity of shared data, the stacq instruction will always bypass cache
and obtain its operand from main memory. In addition, a synchronizing
function inhibits completion of the stacq instruction until the processor
executing the stacq instruction is notified by the scu that write completes
have occurred and write notifications requesting cache block clears have
been sent to the other processors for all write instructions that the
processor previously issued. This feature, therefore, makes the stacq
instruction the preferred choice for unlocking shared data bases.
Attempted repetition with the rpl instruction causes an illegal procedure
fault.
staq Store AQ 757 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(AQ) — C(Y-pair)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
stba Store Bytes of A 551 (0)
FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY:

MODIFICATIONS:
INDICATORS:
NOTES:

9-bit bytes of C(A) — corresponding bytes of C(Y), the byte positions
affected being specified in the TAG field.

None (see NOTES below)
None affected

Binary ones in the TAG field of this instruction specify the byte positions of
A and Y that are affected. The control relations are shown in Table 4-6.

ALM treats a given numeric TAG field for this instruction as an octal
number.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Table 4-6. Control Relations for Store Byte Instructions (9-Bit)

Bit position Bit of
within TAG instructi
field on Byte of Aand Y
0 30 Byte 0 (bits 0-8)
1 31 Byte 1 (bits 9-17)
2 32 Byte 2 (bits 18-26)
3 33 Byte 3 (bits 27-35)
sthq Store Bytes of Q 552 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: 9-bit bytes of C(Q) — corresponding bytes of C(Y), the byte positions
affected being specified in the TAG field.
MODIFICATIONS: None (see NOTES below)
INDICATORS: None affected
NOTES: Binary ones in the TAG field of this instruction specify the byte positions of
Q and Y that are affected. The control relations are shown in Table 4-6
above.
ALM treats a given numeric TAG field for this instruction as an octal
number.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
stcl Store Instruction Counter Plus 1 554 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(PPR.IC) + 1 - C(Y)o,17

C(IR) - C(Y)18131
00...0 - C(Y)32[35

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: The contents of the instruction counter C(PPR.IC) and the indicator
register (IR) after address preparation are stored in C(Y)g 17 and C(Y)1g,31,
respectively. C(Y),5 reflects the state of the tally runout indicator prior to
modification. The relations between C(Y);g 31 and the indicators are given
in Table 4-5.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

stc2 Store Instruction Counter Plus 2 750 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(PPR.IC) + 2 - C(Y)o,17

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: The contents of the instruction counter C(PPR.IC) are stored in C(Y)g 17.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

stca Store Characters of A 751 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Characters of C(A) — corresponding characters of C(Y), the character
positions affected being specified in the TAG field.

MODIFICATIONS: None (see NOTES below)

INDICATORS: None affected

NOTES: Binary ones in the TAG field of this instruction specify character positions

of A and Y that are affected. The control relations are shown in Table 4-7.

ALM treats a given numeric TAG field for this instruction as an octal
number.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Table 4-7. Control Relations for Store Character Instructions (6-Bit)

Bit position
within TAG Bit of Character of A and
field instruction Y
0 30 Char 0 (bits 0-5)
1 31 Char 1 (bits 6-11)
2 32 Char 2 (bits 12-17)
3 33 Char 3 (bits 18-23)
4 34 Char 4 (bits 24-29)
5 35 Char 5 (bits 30-35)
stcq Store Characters of Q 752 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Characters of C(Q) — corresponding characters of C(Y), the character
positions affected being specified by the TAG field.
MODIFICATIONS: None (see NOTES below)
INDICATORS: None affected
NOTES: Binary ones in the TAG field of this instruction specify the character
positions of Q and Y that are affected. The control relations are shown in
Table 4-7 above.
ALM treats a given numeric TAG field for this instruction as an octal
number.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
stcd Store Control Double 357 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(PPR) — C(Y-pair) as follows:
000 - C(Y-pair)g 2
C(PPR.PSR) - C(Y-pair)3 17
C(PPR.PRR) — C(Y-pair);g 0
00...0 — C(Y-pair)z1 29
(43)g = C(Y-pair)3g,35
C(PPR.IC)+2 — C(Y-pair)ze,53
00...0 — C(Y-pair)s4 71
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS:

None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sti Store Indicator Register 754 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(IR) - C(Y)18,31

00...0 - C(Y)32'35
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: The contents of the indicator register after address preparation are stored
in C(Y)1831. C(Y)1g 31 reflects the state of the tally runout indicator prior

to address preparation. The relation between C(Y);g 31 and the indicators
is given in Table 4-5.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

stq Store Q 756 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: CQ)-C)
MODIFICATIONS: All except du, dl
INDICATORS: None affected
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
stt Store Timer Register 454 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(TR) - C(Y)o,26

00...0 - C(Y)27I35
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

stxn Store Index Register n 74n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Forn=0,1, ..., or 7 as determined by operation code
C(Xn) - C(Y)g,17
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
stz Store Zero 450 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: 00...0 - C(Y)
MODIFICATIONS: All except du, dl
INDICATORS: None affected
NOTES: fAtt(lampted repetition with the rpl instruction causes an illegal procedure
ault.
sxn Store Index Register n in Lower 44n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0, 1, ..., or 7 as determined by operation code
C(Xn) - C(Y)18,35
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure

fault.

Fixed-Point Data Movement Shift

alr A Left Rotate 775 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(A) left the number of positions given in C(TPR.CA);; 17; entering
each bit leaving A(into Azs.
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
als A Left Shift 735 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(A) left the number of positions given in by C(TPR.CA)1 17; filling
vacated positions with zeros.
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
Carry If C(A)g changes during the shift, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
arl A Right Logical 771 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(A) right the number of positions given in C(TPR.CA)q; 17; filling
vacated positions with zeros.
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure

fault.

ars A Right Shift 731 (0)

FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(A) right the number of positions given in C(TPR.CA)q; 17; filling
vacated positions with initial C(A).
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
1lr Long Left Rotate 777 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(AQ) left by the number of positions given in C(TPR.CA)q 17;
entering each bit leaving AQq into AQ7;.
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
11s Long Left Shift 737 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(AQ) left the number of positions given in C(TPR.CA)q1 17; filling
vacated positions with zeros.
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Carry If C(AQ)o changes during the shift, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure

fault.

1rl Long Right Logical 773 (0)

FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(AQ) right the number of positions given in C(TPR.CA)1 17; filling

vacated positions with zeros.
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
lrs Long Right Shift 733 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(AQ) right the number of positions given in C(TPR.CA)1; 17; filling

vacated positions with initial C(AQ)y.
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
qlr Q Left Rotate 776 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(Q) left the number of positions given in C(TPR.CA);; 17; entering

each bit leaving Qg into Qss.
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
qls Q Left Shift 736 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Shift C(Q) left the number of positions given in C(TPR.CA)q 17; fill vacated
positions with zeros.
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
Carry If C(Q)g changes during the shift, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
qrl Q Right Logical 772 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(Q) right the number of positions specified by Yq 17; fill vacated
positions with zeros.
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
qrs Q Right Shift 732 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(Q) right the number of positions given in C(TPR.CA)yq 17; filling
vacated positions with initial C(Q)y.
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure

fault.

Fixed-Point Addition

ada Add to A 075 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(A) + C(Y) » C(A)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
Carry If a carry out of Ay is generated, then ON; otherwise OFF
adaq Add to AQ 077 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(AQ) + C(Y-pair) —» C(AQ)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Overflow If range of AQ is exceeded, then ON
Carry If a carry out of AQq is generated, then ON; otherwise OFF
adl Add Low to AQ 033 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(AQ) + C(Y) sign extended - C(AQ)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Overflow If range of AQ is exceeded, then ON
Carry If a carry out of AQg is generated, then ON; otherwise OFF
NOTES: A 72-bit number is formed from C(Y) in the following manner:

The lower 36 bits (36,71) are identical to C(Y).
Each of the upper 36 bits (0,35) is identical to C(Y)g.

This 72-bit number is added to the contents of the combined AQ-register.

adla Add Logical to A 035 (0)

FORMAT:

Basic instruction format (see Figure 4-1).

SUMMARY: C(A) + C(Y) » C(A)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
Carry If a carry out of A is generated, then ON; otherwise OFF
NOTES: The adla instruction is identical to the ada instruction with the exception
that the overflow indicator is not affected by the adla instruction, nor does
an overflow fault occur. Operands and results are treated as unsigned,
positive binary integers.
adlaq Add Logical to AQ 037 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(AQ) + C(Y-pair) —» C(AQ)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Carry If a carry out of AQq is generated, then ON; otherwise OFF
NOTES: The adlaqg instruction is identical to the adaq instruction with the
exception that the overflow indicator is not affected by the adlaq
instruction, nor does an overflow fault occur. Operands and results are
treated as unsigned, positive binary integers.
adlq Add Logical to Q 036 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Q) + C(Y) » C(Q)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
Carry If a carry out of Qg is generated, then ON; otherwise OFF

NOTES:

The adlq instruction is identical to the adq instruction with the exception
that the overflow indicator is not affected by the adlq instruction, nor does
an overflow fault occur. Operands and results are treated as unsigned,
positive binary integers.

adlxn Add Logical to Index Register n 02n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code
C(Xn) + C(Y)g,17 — C(Xn)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)g = 1, then ON; otherwise OFF
Carry If a carry out of Xng is generated, then ON; otherwise OFF
NOTES: The adlxn instruction is identical to the adxn instruction with the
exception that the overflow indicator is not affected by the adlxn
instruction, nor does an overflow fault occur. Operands and results are
treated as unsigned, positive binary integers.
adq Add to Q 076 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Q) + C(Y) » C(Q)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
Overflow If range of Q is exceeded, then ON
Carry If a carry out of Qg is generated, then ON; otherwise OFF
adxn Add to Index Register n o6n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code
C(Xn) + C(Y)p,17 — C(Xn)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)g = 1, then ON; otherwise OFF
Overflow If range of Xn is exceeded, then ON
Carry If a carry out of Xng is generated, then ON; otherwise OFF
aos Add One to Storage 054 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: CY) +1 - C(Y)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) = 0, then ON; otherwise OFF
Negative If C(Y)g = 1, then ON; otherwise OFF
Overflow If range of Y is exceeded, then ON
Carry If a carry out of Y is generated, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
asa Add Stored to A 055 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(A) + C(Y) » C(Y)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) = 0, then ON; otherwise OFF
Negative If C(Y)g = 1, then ON; otherwise OFF
Overflow If range of Y is exceeded, then ON
Carry If a carry out of Y is generated, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
asq Add Stored to Q 056 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Q) + C(Y) - C(Y)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) = 0, then ON; otherwise OFF
Negative IF C(Y)g = 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of Yy is generated, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
asxn Add Stored to Index Register n 04n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code

C(Xn) + C(Y)0,17 - C(Y)0117
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Zero If C(Y)p,17 = 0, then ON; otherwise OFF
Negative If C(Y)p = 1, then ON; otherwise OFF
Overflow If range of Yy 17 is exceeded, then ON
Carry If a carry out of Y is generated, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
awca Add with Carry to A 071 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If carry indicator OFF, then C(A) + C(Y) — C(A)

If carry indicator ON, then C(A) + C(Y) + 1 — C(A)
MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
Carry If a carry out of Ay is generated, then ON; otherwise OFF
NOTES: The awca instruction is identical to the ada instruction with the exception

that when the carry indicator is ON at the beginning of the instruction, 1 is
added to the sum of C(A) and C(Y).

awcq Add with Carry to Q 072 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY:

MODIFICATIONS:

INDICATORS:
Zero
Negative
Overflow
Carry

NOTES:

If carry indicator OFF, then C(Q) + C(Y) —» C(Q)

If carry indicator ON, then C(Q) + C(Y) + 1 —» C(Q)

All

(Indicators not listed are not affected)

If C(Q) = 0, then ON; otherwise OFF

If C(Q)g = 1, then ON; otherwise OFF

If range of Q is exceeded, then ON

If a carry out of Qg is generated, then ON; otherwise OFF

The awcq instruction is identical to the adq instruction with the exception
that when the carry indicator is ON at the beginning of the instruction, 1 is
added to the sum of C(Q) and C(Y).

Fixed-Point Subtraction

sha Subtract from A 175 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(A) - C(Y) » CA)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
Carry If a carry out of Ay is generated, then ON; otherwise OFF
sbhaq Subtract from AQ 177 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(AQ) - C(Y-pair) —» C(AQ)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Overflow If range of AQ is exceeded, then ON
Carry If a carry out of AQq is generated, then ON; otherwise OFF
shla Subtract Logical from A 135 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(A) - C(Y) » CA)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
Carry If a carry out of Ay is generated, then ON; otherwise OFF
NOTES: The sbla instruction is identical to the sba instruction with the exception

that the overflow indicator is not affected by the sbla instruction, nor does
an overflow fault occur. Operands and results are treated as unsigned,
positive binary integers.

sbhlaq Subtract Logical from AQ 137 (0)

FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(AQ) - C(Y-pair) —» C(AQ)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Carry If a carry out of AQq is generated, then ON; otherwise OFF
NOTES: The sblaq instruction is identical to the sbaq instruction with the
exception that the overflow indicator is not affected by the sblaq
instruction, nor does an overflow fault occur. Operands and results are
treated as unsigned, positive binary integers.
sblq Subtract Logical from Q 136 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Q)-C(Y) » C(Q)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
Carry If a carry out of Qg is generated, then ON; otherwise OFF
NOTES: The sblq instruction is identical to the sbq instruction with the exception
that the overflow indicator is not affected by the sblq instruction, nor does
an overflow fault occur. Operands and results are treated as unsigned,
positive binary integers.
sblxn Subtract Logical from Index Register n 12n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=20,1, ..., or 7 as determined by operation code
C(Xn) - C(Y)g,17 = C(Xn)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)g = 1, then ON; otherwise OFF
Carry If a carry out of Xng is generated, then ON; otherwise OFF

NOTES The sblxn instruction is identical to the sbxn instruction with the
exception that the overflow indicator is not affected by the sblxn
instruction, nor does an overflow fault occur. Operands and results are
treated as unsigned, positive binary integers.

shq Subtract from Q 176 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Q) - C(Y) » C(Q)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
Overflow If range of Q is exceeded, then ON
Carry If a carry out of Qg is generated, then ON; otherwise OFF
sbxn Subtract from Index Register n 1l6n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code

C(Xn) - C(Y)g,17 —» C(Xn)
MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)g = 1, then ON; otherwise OFF
Overflow If range of Xn is exceeded, then ON
Carry If a carry out of Xng is generated, then ON; otherwise OFF
ssa Subtract Stored from A 155 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(A) - C(Y) = C(Y)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) = 0, then ON; otherwise OFF
Negative If C(Y)p = 1, then ON; otherwise OFF
Overflow If range of Y is exceeded, then ON

Carry If a carry out of Y is generated, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure

fault.
ssq Subtract Stored from Q 156 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Q) - C(Y) = C(Y)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) = 0, then ON; otherwise OFF
Negative If C(Y)p = 1, then ON; otherwise OFF
Overflow If range of Y is exceeded, then ON
Carry If a carry out of Yy is generated, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
ssXn Subtract Stored from Index Register n 14n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code

C(Xn) - C(Y)g,17 = C(Y)o,17
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Zero If C(Y)p,17 = O, then ON; otherwise OFF
Negative If C(Y)g = 1, then ON; otherwise OFF
Overflow If range of Yp 17 exceeded, then ON
Carry If a carry out of Y is generated, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
swca Subtract with Carry from A 171 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If carry indicator ON, then C(A)- C(Y) — C(A)

If carry indicator OFF, then C(A) - C(Y) - 1 - C(A)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)g = 1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
Carry If a carry out of Ay is generated, then ON; otherwise OFF
NOTES: The swca instruction is identical to the sba instruction with the exception
that when the carry indicator is OFF at the beginning of the instruction, +1
is subtracted from the difference of C(A) minus C(Y). The swca instruction
treats the carry indicator as the complement of a borrow indicator due to
the implementation of negative numbers in twos complement form.
swcq Subtract with Carry from Q 172 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If carry indicator ON, then C(Q) - C(Y) —» C(Q)
If carry indicator OFF, then C(Q) - C(Y) -1 - C(Q)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
Overflow If range of Q is exceeded, then ON
Carry If a carry out of Qg is generated, then ON; otherwise OFF
NOTES: The swcq instruction is identical to the sbq instruction with the exception

that when the carry indicator is OFF at the beginning of the instruction, +1
is subtracted from the difference of C(Q) minus C(Y). The swcq instruction
treats the carry indicator as the complement of a borrow indicator due to
the implementation of negative numbers in twos complement form.

Fixed-Point Multiplication

mpf Multiply Fraction 401 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(A) x C(Y) —» C(AQ), left adjusted
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Overflow If range of AQ is exceeded, then ON
NOTES: Two 36-bit fractional factors (including sign) are multiplied to form a 71-
bit fractional product (including sign), which is stored left-adjusted in the
AQ register. AQ-7; contains a zero. Overflow can occur only in the case of
A and Y containing negative 1 and the result exceeding the range of the AQ
register.
00 3 00 3
01 5 01 5
S factor >< s factor
Cc(a) C(Y)
yielding
00 7 7
01 01
S product 0
C(AQ)
mpy Multiply Integer 402 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Q) x C(Y) —» C(AQ), right adjusted
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
NOTES: Two 36-bit integer factors (including sign) are multiplied to form a 71-bit

integer product (including sign), which is stored right-adjusted in the AQ-
register. AQq is filled with an "extended sign bit".

In the case of (-2*35) x (-2**35) = +2**¥70, AQ; is used to represent the
product rather than the sign. No overflow can occur.

00 3 00 3
01 5 01 5
S factor >< S factor

C(Q) C(Y)

yielding

000 7
012 1
s|s product

C(AQ)

Fixed-Point Division

div Divide Integer 506 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Q) / (Y) integer quotient = C(Q)
integer remainder — C(A)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
If division takes place: If no division takes place:
Zero If C(Q) = 0, then ON; If divisor = 0, then ON;
otherwise OFF otherwise OFF
Negative If C(Q)g = 1, then ON; If dividend < 0, then ON;
otherwise OFF otherwise OFF
NOTES: A 36-bit integer dividend (including sign) is divided by a 36-bit integer
divisor (including sign) to form a 36-bit integer quotient (including sign)
and a 36-bit integer remainder (including sign). The remainder sign is
equal to the dividend sign unless the remainder is zero.
If the dividend = -2**35 and the divisor = -1 or if the divisor = 0, then
division does not take place. Instead, a divide check fault occurs, C(Q)
contains the dividend magnitude, and the negative indicator reflects the
dividend sign.
00 3 00 3
0 1) 01 5
S dividend / S divisor
C(Q) C(Y)
yielding
00 3 00 3
01) 01)
S remainder S quotient
C(A) CQ
dvf Divide Fraction 507 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(AQ) / (Y) fractional quotient - C(A)

MODIFICATIONS:

fractional remainder —» C(Q)
All

INDICATORS: (Indicators not listed are not affected)
If division takes place: If no division takes place:
Zero If C(A) = 0, then ON; If divisor = 0, then ON;
otherwise OFF otherwise OFF
Negative If C(A)g = 1, then ON; If dividend < 0, then ON;
otherwise OFF otherwise OFF
NOTES: A 71-bit fractional dividend (including sign) is divided by a 36-bit fractional
divisor yielding a 36-bit fractional quotient (including sign) and a 36-bit
fractional remainder (including sign). C(AQ)7; is ignored; bit position 35
of the remainder corresponds to bit position 70 of the dividend. The
remainder sign is equal to the dividend sign unless the remainder is zero.
If | dividend | >= | divisor | or if the divisor = 0, division does not take
place. Instead, a divide check fault occurs, C(AQ) contains the dividend
magnitude in absolute, and the negative indicator reflects the dividend
sign.
00 7 7
01 01
S dividend X
C(AQ)
00 3
01 5
/ S divisor
C(Y)
yielding
00 3 00 3
01 5 01 5
S quotient S remainder

C(A) C(Q)

Fixed-Point Negate

neg Negate A 531 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: -C(A)-C)ifCca) =0
MODIFICATIONS: All, but none affect instruction execution.
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
Overflow If range of A is exceeded, then ON
NOTES: The neg instruction changes the number in A to its negative (if # 0). The
1(ilitgration is performed by forming the twos complement of the string of 36
Attempted repetition with the rpl instruction causes an illegal procedure
fault.
negl Negate Long 533 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: -C(AQ) » C(AQ)ifCAQ) = 0
MODIFICATIONS: All, but none affect instruction execution.
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Overflow If range of AQ is exceeded, then ON
NOTES: The negl instruction changes the number in AQ to its negative (if = 0).

The operation is performed by forming the twos complement of the string
of 72 bits.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

Fixed-Point Comparison

cmg Compare Magnitude 405 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: [CA) | = | CY)|
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If |CA)| = | C) |, then ON; otherwise OFF
Negative If |CA)| < |C)]|, then ON; otherwise OFF
cmk Compare Masked 211 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Fori=0,1,..,35
C(Z); = ~C(Q); & (C(A); & C(Y);)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Z) = 0, then ON; otherwise OFF
Negative If C(Z)g = 1, then ON; otherwise OFF
NOTES: The cmk instruction compares the contents of bit positions of A and Y for
identity that are not masked by a 1 in the corresponding bit position of Q.
The zero indicator is set ON if the comparison is successful for all bit
positions; i.e., if for alli = 0, 1, ..., 35 there is either: C(A); = C(Y); (the
identical case) or C(Q); = 1 (the masked case); otherwise, the zero
indicator is set OFF.
The negative indicator is set ON if the comparison is unsuccessful for bit
position 0; i.e., if C(A)g ® C(Y)q (they are nonidentical) as well as C(Q)g = 0
(they are unmasked); otherwise, the negative indicator is set OFF.
cmpa Compare with A 115 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(A) :: C(Y)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)

The zero (Z), negative (N), and carry (C) indicators are set as follows:

Algebraic Comparison (Signed Binary Operands)

117 (0)

C(AQ)o = 0, C(Y-pair)g = 1

C(AQ)g = 1, C(Y-pair)g = Q

116 (0)

Z N C Relation Sign
0 0 0 C(A) >CY) CA)p=0,CY)g=1
0 0 1 C(A) > C(Y) C(A)g = C(Y)g
1 0 1 CA) =CE) C(A)g = C(Y)g
0 1 0 C(A) <CY) C(A)g = C(Y)g
0 1 1 CA) < C(Y) CA)p=1,CY)=0
Logical Comparison (Unsigned Positive Binary Operands)
Z C Relation
0 0 C(A) <C(Y)
1 1 C(A) =C(Y)
0 1 C(A) > C(Y)
cmpaqg Compare with AQ
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(AQ) :: C(Y-pair)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
The zero (Z), negative (N), and carry (C) indicators are set as follows:
Algebraic Comparison (Signed Binary Operands)
Z N C Relation Sign
0 0 C(AQ) > C(Y-pair)
0 0 1 C(AQ) > C(Y-pair) C(AQ)o = C(Y-pair)g
1 0 1 C(AQ) = C(Y-pair) C(AQ)g = C(Y-pair)g
0 1 0 C(AQ) < C(Y-pair) C(AQ)g = C(Y-pair)
0 1 1 C(AQ) < C(Y-pair)
Logical Comparison (Unsigned Positive Binary Operands)
Z C Relation
0 0 C(AQ) < C(Y-pair)
1 1 C(AQ) = C(Y-pair)
0 1 C(AQ) > C(Y-pair)
cmpq Compare with Q
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Q) :: C(Y)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)

cmpxn

FORMAT:
SUMMARY:

MODIFICATIONS:
INDICATORS:

The zero (Z), negative (N), and carry (C) indicators are set as follows:

Algebraic Comparison (Signed Binary Operands)

Sign
C(Q)o=0,C(Y) =1
C(Q)o = C(Y)o

C(Q)o = C(Y)o

C(Q)o = C(Y)o
CQp=1,C¥)p=0

Logical Comparison (Unsigned Positive Binary Operands)

Z N C Relation

0 0 C(Q) > C(Y)
0 0 1 CQ=>cC
1 0 1 C@Q=cCwy
0 1 0 C(Q)<cC()
0 1 1 C(Q) < C(Y)
Z C Relation

0 0 C(Q)<cC()

1 1 CQ) =C)

0 1 CQ) > C(Y)

Compare with Index Register n

10n (0)

Basic instruction format (see Figure 4-1).

Forn=20,1, ..., or 7 as determined by operation code

C(Xn) o C(Y)0,17

All except ci, sc, scr

(Indicators not listed are not affected)

The zero (Z), negative (N), and carry (C) indicators are set as follows:

Algebraic Comparison (Signed Binary Operands)

V4
0

0
1
0

0

N

~ O O O

C Relation

C(Xn) > C(Y)o,17
C(Xn) > C(Y)o,17
C(Xn) = C(Y)o,17
C(Xn) < C(Y)o,17
C(Xn) < C(Y)o,17

_ O

Sign
CXn)g=0,C(Y)g=1
C(Xn)g = C(Y)g
C(Xn)g = C(Y)g
C(Xn)g = C(Y)g
CXn)g=1,CY)=0

Logical Comparison (Unsigned Positive Binary Operands)

V4

0
1
0

(o

= =

Relation

C(Xn) < C(Y)g,17
C(Xn) = C(Y)g,17
C(Xn) > C(Y)o,17

111 (0)

Basic instruction format (see Figure 4-1).

If C(A) <= C(Y) <= C(Q) or C(A) >= C(Y) >= C(Q), then ON; otherwise

The negative (N) and carry (C) indicators are set as follows:

Sign
CQ)p=0C(Y)=1
C(Q)o = C(Y)o

C(Q)o = C(Y)o
CQp=1C)p=Q

cwl Compare with Limits
FORMAT:
SUMMARY: C(Y) :: closed interval [C(A);C(Q)]
C(Y) :: C(Q)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero
OFF.
N C Relation
0 0 C(Q)>C®H)
0 1 C(Q) >=C(Y)
1 0 C(Q) <C)
1 1 C(Q) < C(Y)
NOTES:

The cwl instruction tests the value of C(Y) to determine if it is within the
range of values set by C(A) and C(Q). The comparison of C(Y) with C(Q)
locates C(Y) with respect to the interval if C(Y) is not contained within the
interval.

Fixed-Point Miscellaneous

szn Set Zero and Negative Indicators 234 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Set indicators according to C(Y)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) = 0, then ON; otherwise OFF
Negative If C(Y)p = 1, then ON; otherwise OFF
sznc Set Zero and Negative Indicators and Clear 214 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Set indicators according to C(Y)
00...0 = C(Y)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) = 0, then ON, otherwise OFF

Negative If C(Y)p = 1, then ON; otherwise OFF

BOOLEAN OPERATION INSTRUCTIONS

Boolean And

ana AND to A 375 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(A); & C(Y); » C(A);fori= (0, 1, ..., 35)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
anaq AND to AQ 377 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(AQ); & C(Y-pair); » C(AQ); fori= (0, 1, ..., 71)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
anq AND to Q 376 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Q); & C(Y); » C(Q); fori= (0, 1, ..., 35)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
ansa AND to Storage A 355 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: CA); & C(Y);» C(Y);jfori= (0, 1, ..., 35)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF
Negative If C(Y)g = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
ansq AND to Storage Q 356 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Q); & C(Y);—» C(Y);fori= (0, 1, ..., 35)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) = 0, then ON; otherwise OFF
Negative If C(Y)g = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
ansxn AND to Storage Index Register n 34n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code

C(Xn); & C(Y); = C(Y);fori= (0,1, ..., 17)
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Zero If C(Y)g,17 = O, then ON; otherwise OFF
Negative If C(Y)p = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
anxn AND to Index Register n 36n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code

C(Xn); & C(Y); » C(Xn); fori=(0, 1, ..., 17)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)g = 1, then ON; otherwise OFF

Boolean Or

ora OR to A 275 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(A); | C(Y); » C(A)ijfori= (0, 1, ..., 35)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
oraq OR to AQ 277 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(AQ); | C(Y-pair); » C(AQ); fori= (0, 1, ..., 71)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
orq OR to Q 276 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Q); | C(Y); = C(Q); fori= (0, 1, ..., 35)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
orsa OR to Storage A 255 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(A); | C(Y); = C(Y);fori= (0,1, ..., 35)

MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF
Negative If C(Y)g = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
orsq OR to Storage Q 256 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Q); | C(Y); = C(Y); fori = (0, 1, ..., 35)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) = 0, then ON; otherwise OFF
Negative If C(Y)p = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
orsxn OR to Storage Index Register n 24n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=20,1, ..., or 7 as determined by operation code
CXn); | C(Y); = C(Y)jfori=(0, 1, ..., 17)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y)p,17 = O, then ON; otherwise OFF
Negative If C(Y)g = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
orxn OR to Index Register n 26n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code
C(Xn); | C(Y); » CXn); fori= (0, 1, ..., 17)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)y = 1, then ON; otherwise OFF

Boolean Exclusive Or

era EXCLUSIVE OR to A 675 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: CA)i® C(Y);—» C(A);jfori= (0, 1, ..., 35)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
eraq EXCLUSIVE OR to AQ 677 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(AQ); ® C(Y-pair); » C(AQ); fori= (0, 1, ..., 71)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
erq EXCLUSIVE OR to Q 676 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Q);eC(Y);—» C(Q)fori= (0,1, ..., 35)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Q) = 0, then ON; otherwise OFF
Negative If C(Q)g = 1, then ON; otherwise OFF
ersa EXCLUSIVE OR to Storage A 655 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(A); ® C(Y); = C(Y);fori= (0, 1, ..., 35)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)g = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
ersq EXCLUSIVE OR to Storage Q 656 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Q)oC(Y);— C(Y);fori=(0, 1, ..., 35)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) = 0, then ON; otherwise OFF
Negative If C(Y)p = 1, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
ersxn EXCLUSIVE OR to Storage Index Register n 64n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=20,1, ..., or 7 as determined by operation code

CXn);® C(Y); » C(Y);fori= (0, 1, ..., 17)
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Zero If C(Y)p,17 = O, then ON; otherwise OFF
Negative If C(Y)g = 0, then ON; otherwise OFF
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
erxn EXCLUSIVE OR to Index Register n 66n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code

C(Xn); ® C(Y); » C(Xn); fori= (0, 1, ..., 17)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, then ON; otherwise OFF
Negative If C(Xn)y = 1, then ON; otherwise OFF

Boolean Comparative And

cana Comparative AND with A 315 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(2); = C(A); & C(Y)j fori= (0, 1, ..., 35)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Z) = 0, then ON; otherwise OFF
Negative If C(Z)g = 1, then ON; otherwise OFF
canaq Comparative AND with AQ 317 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Z); = C(AQ); & C(Y-pair); fori= (0, 1, ..., 71)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Z) = 0, then ON; otherwise OFF
Negative If C(Z)g = 1, then ON; otherwise OFF
canq Comparative AND with Q 316 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Z); = C(Q); & C(Y); fori= (0, 1, ..., 35)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Z) = 0, then ON; otherwise OFF
Negative If C(Z)g = 1, then ON; otherwise OFF
canxn Comparative AND with Index Register n 30n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code

C(Z); = C(Xn); & C(Y); fori= (0, 1, ..., 17)
MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Zero If C(Z) = 0, then ON; otherwise OFF
Negative If C(Z)g = 1, then ON; otherwise OFF

Boolean Comparative Not

chaa Comparative NOT with A
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Z); = C(A); & ~C(Y);fori= (0, 1, ..., 35)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Z) = 0, then ON; otherwise OFF
Negative If C(Z)g = 1, then ON; otherwise OFF
chaaq Comparative NOT with AQ
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Z); = C (AQ); & ~C(Y-pair); fori = (0, 1, ..., 71)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Z) = 0, then ON; otherwise OFF
Negative If C(Z)g = 1, then ON; otherwise OFF
chaq Comparative NOT with Q
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Z); = C(Q); & ~C(Y);fori=(0, 1, ..., 35)
MODIFICATIONS: All
INDICATORS: (Indicators not listed are not affected)
Zero If C(Z) = 0, then ON; otherwise OFF
Negative If C(Z)g = 1, then ON; otherwise OFF
chaxn Comparative NOT with Index Register n
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code

C(Z); = C(Xn); & ~C(Y); fori = (0, 1, ..., 17)

215 (0)

217 (0)

216 (0)

20n (0)

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Zero If C(Z) = 0, then ON; otherwise OFF
Negative If C(Z)g = 1, then ON; otherwise OFF

FLOATING-POINT ARITHMETIC INSTRUCTIONS

Floating-Point Data Movement Load

dfld Double-Precision Floating Load 433 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Y-pair)g 7 — C(E)
C(Y-pair)g 71 = C(AQ)g 63
00...0 » C(AQ)g4,71
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
fld Floating Load 431 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Y)o,7 — C(E)
C(Y)g,35 = C(AQ)o,27
00...0 - C(AQ)30,71
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF

Floating-Point Data Movement Store

dfst Double-Precision Floating Store 457 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(E) — C(Y-pair)g 7

C(AQ)0,63 g C(Y—pair)8,71
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
dfstr Double-Precision Floating Store Rounded 472 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(EAQ) rounded — C(Y-pair) (as in dfst)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y-pair) = floating point 0, then ON; otherwise OFF
Negative If C(Y-pair)g = 1, then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
NOTES: The dfstr instruction performs a double-precision true round and

normalization on C(EAQ) as it is stored.

The definition of true round is located under the description of the frd
instruction.

The definition of normalization is located under the description of the fno
instruction.

Except for the precision of the stored result, the dfstr instruction is
identical to the fstr instruction.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

fst Floating Store 455 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(E) » C(Y)o,7
C(A)o,27 2 C(Y)g 35
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected
NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.
fstr Floating Store Rounded 470 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(EAQ) rounded — C(Y) (as in fst)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) = floating point 0, then ON; otherwise OFF
Negative If C(Y)g = 1, then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
NOTES: The fstr instruction performs a true round and normalization on C(EAQ)

as it is stored.

The definition of true round is located under the description of the frd
instruction.

The definition of normalization is located under the description of the fno
instruction.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

Floating-Point Addition

dfad Double-Precision Floating Add 477 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: (C(EAQ) + C(Y-pair)) normalized — C(EAQ)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
Carry If a carry out of AQg is generated, then ON; otherwise OFF
NOTES: The dfad instruction may be thought of as a dufa instruction followed by a
fno instruction.
The definition of normalization is located under the description of the fno
instruction.
dufa Double-Precision Unnormalized Floating Add 437 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(EAQ) + C(Y-pair) - C(EAQ)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
Carry If a carry out of AQq is generated, then ON; otherwise OFF
NOTES: Except for the precision of the mantissa of the operand from main memory,
the dufa instruction is identical to the ufa instruction.
fad Floating Add 475 (0)
FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: (C(EAQ) + C(Y)) normalized — C(EAQ)
MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
Carry If a carry out of AQg is generated, then ON; otherwise OFF
NOTES: The fad instruction may be thought of a an ufa instruction followed by a

fno instruction.

The definition of normalization is located under the description of the fno

instruction.
ufa Unnormalized Floating Add 435 (0)

FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(EAQ) + C(Y) —» C(EAQ)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)p = 1, then ON; otherwise OFF

Exponent If exponent is greater than +127, then ON

Overflow

Exponent If exponent is less than -128, then ON

Underflow

Carry If a carry out of AQq is generated, then ON; otherwise OFF
NOTES: The ufa instruction is executed as follows:

The mantissas are aligned by shifting the mantissa of the operand
having the algebraically smaller exponent to the right the number of
places equal to the absolute value of the difference in the two
exponents. Bits shifted beyond the bit position equivalent to AQ71 are
lost.

The algebraically larger exponent replaces C(E).

The sum of the mantissas replaces C(AQ).

If an overflow occurs during addition, then;
C(AQ) are shifted one place to the right.

C(AQ) is inverted to restore the sign.

C(E) is increased by one.

Floating-Point Subtraction

dfsb Double-Precision Floating Subtract 577 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: (C(EAQ) - C(Y-pair)) normalized — C(EAQ)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
Carry If a carry out of AQg is generated, then ON; otherwise OFF
NOTES: The dfsb instruction is identical to the dfad instruction with the exception
that the twos complement of the mantissa of the operand from main
memory is used.
dufs Double-Precision Unnormalized Floating 537 (0)
Subtract
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(EAQ) - C(Y-pair) —» C(EAQ)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)g = 1, then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
Carry If a carry out of AQq is generated, then ON; otherwise OFF
NOTES: Except for the precision of the mantissa of the operand from main memory,
the dufs instruction is identical with the ufs instruction.
fsh Floating Subtract 575 (0)
FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY:

(C(EAQ) - C(Y)) normalized — C(EAQ)

MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
Carry If a carry out of AQg is generated, then ON; otherwise OFF
NOTES: The fsb instruction may be thought of as an ufs instruction followed by a
fno instruction.
The definition of normalization is located under the description of the fno
instruction.
ufs Unnormalized Floating Subtract 535 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(EAQ) - C(Y) —» C(EAQ)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
Carry If a carry out of AQq is generated, then ON; otherwise OFF
NOTES: The ufs instruction is identical to the ufa instruction with the exception

that the twos complement of the mantissa of the operand from main
memory is used.

Floating-Point Multiplication

dfmp Double-Precision Floating Multiply 463 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: (C(EAQ) x C(Y-Pair)) normalized —» C(EAQ)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
NOTES: The dfmp instruction may be thought of as a dufm instruction followed by a
fno instruction.
The definition of normalization is located under the description of the fno
instruction.
dufm Double-Precision Unnormalized Floating 423 (0)
Multiply
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(EAQ) x C(Y-pair) —» C(EAQ)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
NOTES: Except for the precision of the mantissa of the operand from main memory,
the dufm instruction is identical to the ufm instruction.
fmp Floating Multiply 461 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY:

(C(EAQ) x C(Y)) normalized — C(EAQ)

MODIFICATIONS:

All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
NOTES: The fmp instruction may be thought of as a ufm instruction followed by a
fno instruction.
The definition of normalization is located under the description of the fno
instruction.
ufm Unnormalized Floating Multiply 421 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(EAQ) x C(Y) » C(EAQ)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)g = 1, then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
NOTES: The ufm instruction is executed as follows:

C(E) + C(Y)g,7 ~ C(E)

(C(AQ) x C(Y)g 35)o,71 = C(AQ)

A normalization is performed only in the case of both factor mantissas
being 100...0 which is the twos complement approximation to the decimal
value -1.0.

The definition of normalization is located under the description of the fno
instruction.

Floating-Point Division

dfdi Double-Precision Floating Divide Inverted 527 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Y-pair) / C(EAQ) —» C(EAQ)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
If division takes place: If no division takes place:
Zero If C(AQ) = 0, then ON; If divisor mantissa = 0, then ON;
otherwise OFF otherwise OFF
Negative If C(AQ)g = 1, then ON; If dividend < 0, then ON;
otherwise OFF otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
NOTES: Except for the interchange of the roles of the operands, the execution of
the dfdi instruction is identical to the execution of the dfdv instruction.
If the divisor mantissa C(AQ) is zero, the division does not take place.
Instead, a divide check fault occurs and all registers remain unchanged.
dfdv Double-Precision Floating Divide 567 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(EAQ) / C(Y-pair) — C(EAQ)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
If division takes place: If no division takes place:
Zero If C(AQ) = 0, then ON; If divisor mantissa = 0, then ON;
otherwise OFF otherwise OFF
Negative If C(AQ)g = 1, then ON; If dividend < 0, then ON;
otherwise OFF otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
NOTES: The dfdv instruction is executed as follows:

The dividend mantissa C(AQ) is shifted right and the dividend exponent
C(E) increased accordingly until

| C(AQ)o,63 | < | C(Y-pair)g 71 |

C(E) - C(Y-pair)p,; — C(E)
C(AQ) / C(Y-pair)g 71 = C(AQ)o,63
00...0 - C(Q)64’71

If the divisor mantissa C(Y-pair)g7; is zero after alignment, the division
does not take place. Instead, a divide check fault occurs, C(AQ) contains
the dividend magnitude, and the negative indicator reflects the dividend
sign.

fdi Floating Divide Inverted 525 (0)

FORMAT:

Basic instruction format (see Figure 4-1).

SUMMARY: C(Y) / C(EAQ) = C(EA)
00...0 - C(Q)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
If division takes place: If no division takes place:
Zero If C(A) = 0, then ON; If divisor mantissa = 0, then ON;
otherwise OFF otherwise OFF
Negative If C(A)g = 1, then ON; If dividend < 0, then ON;
otherwise OFF otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
NOTES: Except for the interchange of roles of the operands, the execution of the
fdi instruction is identical to the execution of the fdv instruction.
If the divisor mantissa C(AQ) is zero, the division does not take place.
Instead, a divide check fault occurs and all the registers remain
unchanged.
fdv Floating Divide 565 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(EAQ) /C(Y) —» C(EA)
00...0 - C(Q)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
If division takes place: If no division takes place:
Zero If C(A) = 0, then ON; If divisor mantissa = 0, then ON;
otherwise OFF otherwise OFF
Negative If C(A)g = 1, then ON; If dividend < 0, then ON;

otherwise OFF otherwise OFF

Exponent
Overflow

Exponent
Underflow

NOTES:

If exponent is greater than +127, then ON
If exponent is less than -128, then ON

The fdv instruction is executed as follows:

The dividend mantissa C(AQ) is shifted right and the dividend exponent
C(E) increased accordingly until

| C(AQ)o,27 | < | C(Y)g,35 |
C(E) - C(Y)o,7 — C(E)
C(AQ) / C(Y)g 35 = C(A)
00...0 - C(Q)

If the divisor mantissa C(Y)g 35 is zero after alignment, the division does

not take place. Instead, a divide check fault occurs, C(AQ) contains the
dividend magnitude, and the negative indicator reflects the dividend sign.

Floating-Point Negate

fneg Floating Negate 513 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: -C(EAQ) normalized —» C(EAQ)
MODIFICATIONS: All, but none affect instruction execution.
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
NOTES: This instruction changes the number in C(EAQ) to its normalized negative

(if C(AQ) = 0). The operation is executed by first forming the twos
complement of C(AQ), and then normalizing C(EAQ).

Even if originally C(EAQ) were normalized, an exponent overflow can still
occur, namely when C(E) = +127 and C(AQ) = 100...0 which is the twos
complement approximation for the decimal value -1.0.

The definition of normalization may be found under the description of the
fno instruction.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

Floating-Point Normalize

fno Floating Normalize 573 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(EAQ) normalized - C(EAQ)
MODIFICATIONS: All, but none affect instruction execution.
INDICATORS: (Indicators not listed are not affected)
Zero If C(EAQ) = floating point 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
Overflow Set OFF
NOTES: The fno instruction normalizes the number in C(EAQ) if C(AQ) = 0 and the

overflow indicator is OFF.

A normalized floating number is defined as one whose mantissa lies in the
interval [0.5,1.0] such that

0.5 <= | CAQ)| < 1.0
which, in turn, requires that C(AQ)g # C(AQ);.

If the overflow indicator is ON, then C(AQ) is shifted one place to the right,
C(AQ)q is inverted to reconstitute the actual sign, and the overflow

indicator is set OFF. This action makes the fno instruction useful in
correcting overflows that occur with fixed point numbers.

Normalization is performed by shifting C(AQ); 7; one place to the left and
reducing C(E) by 1, repeatedly, until the conditions for C(AQ)y and C(AQ)q
are met. Bits shifted out of AQ; are lost.

If C(AQ) = 0, then C(E) is set to -128 and the zero indicator is set ON.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

Floating-Point Round

dfrd Double-Precision Floating Round 473 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(EAQ) rounded to 64 bits - C(EAQ)
0 - C(AQ)e5,71
MODIFICATIONS: All, but none affect instruction execution.
INDICATORS: (Indicators not listed are not affected)
Zero If C(EAQ) = floating point 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
NOTES: The dfrd instruction is identical to the frd instruction except that the
rounding constant used is (11...1)g5,71 instead of (11...1)29 71.
Attempted repetition with the rpl instruction causes an illegal procedure
fault
frd Floating Round 471 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(EAQ) rounded to 28 bits —» C(EAQ)
0 - C(AQ)29,71
MODIFICATIONS: All, but none affect instruction execution.
INDICATORS: (Indicators not listed are not affected)
Zero If C(EAQ) = floating point 0, then ON; otherwise OFF
Negative If C(AQ)g = 1 then ON; otherwise OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
NOTES: If C(AQ) # 0, the frd instruction performs a true round to a precision of 28

bits and a normalization on C(EAQ).

A true round is a rounding operation such that the sum of the result of
applying the operation to two numbers of equal magnitude but opposite
sign is exactly zero.

The frd instruction is executed as follows:
C(AQ) + (11...1)29,71 — C(AQ)
If C(AQ)g = 0, then a carry is added at AQ71

If overflow occurs, C(AQ) is shifted one place to the right and C(E) is
increased by 1.

If overflow does not occur, C(EAQ) is normalized.
If C(AQ) = 0, C(E) is set to -128 and the zero indicator is set ON.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

Floating-Point Compare

dfcmg Double-Precision Floating Compare Magnitude 427 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(E) :: C(Y-pair)g 7
| C(AQ)o,63 | := | C(Y-pair)g, 71 |

MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)

Zero If | C(EAQ) | = | C(Y-pair) |, then ON; otherwise OFF

Negative If | C(EAQ) | < | C(Y-pair) |, then ON; otherwise OFF
NOTES: The dfcmg instruction is identical to the dfcmp instruction except that the

magnitudes of the mantissas are compared instead of the algebraic values.

dfcmp Double-Precision Floating Compare 517 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(E) :: C(Y—pair)0'7

C(AQ)g,63 :: C(Y-pair)g,71
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Zero If C(EAQ) = C(Y-pair), then ON; otherwise OFF
Negative If C(EAQ) < C(Y-pair), then ON; otherwise OFF
NOTES: The dfcmp instruction is identical to the fcmp instruction except for the

precision of the mantissas actually compared.

fcmg Floating Compare Magnitude 425 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(E) :: C(Y)o,7
| C(AQ)o,27 | = | C(Y)g,35 |

MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)

Zero If | C(EAQ) | = | C(Y) |, then ON; otherwise OFF

Negative If | C(EAQ) | < | C(Y) |, then ON; otherwise OFF
NOTES: The fcmg instruction is identical to the fcmp instruction except that the

magnitudes of the mantissas are compared instead of the algebraic values.

fcmp Floating Compare 515 (0)

FORMAT:
SUMMARY:

MODIFICATIONS:
INDICATORS:
Zero
Negative
NOTES:

Basic instruction format (see Figure 4-1).
C(E) :: C(Y)o,7

C(AQ)g,27 :: C(Y)g 35

All except ci, sc, scr

(Indicators not listed are not affected)

If C(EAQ) = C(Y), then ON; otherwise OFF
If C(EAQ) < C(Y), then ON; otherwise OFF
The fcmp instruction is executed as follows:

The mantissas are aligned by shifting the mantissa of the operand with
the algebraically smaller exponent to the right the number of places
equal to the difference in the two exponents.

The aligned mantissas are compared and the indicators set accordingly.

Floating-Point Miscellaneous

ade Add to Exponent 415 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(E) + C(Y)o,7 — C(E)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero Set OFF
Negative Set OFF
Exponent If exponent is greater than +127, then ON
Overflow
Exponent If exponent is less than -128, then ON
Underflow
fszn Floating Set Zero and Negative Indicators 430 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Set indicators according to C(Y)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y)g 35 = 0, then ON; otherwise OFF
Negative If C(Y)g = 1, then ON; otherwise OFF
lde Load Exponent 411 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Y)g,7 — C(E)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero Set OFF
Negative Set OFF
ste Store Exponent 456 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(E) » C(Y)o,7

00...0 » C(Y)g,17
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

TRANSFER INSTRUCTIONS

callé Call (Using PR6 and PR7) 713 (0)

FORMAT:
SUMMARY:

MODIFICATIONS:

INDICATORS:
NOTES:

Basic instruction format (see Figure 4-1).

If C(TPR.TRR) < C(PPR.PRR) then
C(DSBR.STACK) || C(TPR.TRR) —» C(PR7.SNR)

If C(TPR.TRR) = C(PPR.PRR) then C(PR6.SNR) - C(PR7.SNR)

C(TPR.TRR) — C(PR7.RNR)

If C(TPR.TRR) = 0 then C(SDW.P) — C(PPR.P);
otherwise 0 - C(PPR.P)

00...0 - C(PR7.WORDNO)

00...0 - C(PR7.BITNO)

C(TPR.TRR) — C(PPR.PRR)

C(TPR.TSR) —» C(PPR.PSR)

C(TPR.CA) —» C(PPR.IC)

All except du, dl, ci, sc, scr

None affected

See Section 3 for descriptions of the various registers and Section 8 for a

flowchart of their role in address preparation.

If C(TPR.TRR) > C(PPR.PRR), an access violation fault (outward call)

occurs and the calle6 instruction is not executed.

If the callé instruction is executed with the processor in absolute mode
with bit 29 of the instruction word set OFF and without indirection through

an ITP or ITS pair, then:

the appending mode is entered for the address preparation of the
callé operand address and is retained if the instruction executes
successfully,

and the effective segment number generated for the SDW fetch and
subsequent loading into C(TPR.TSR) is equal to C(PPR.PSR) and may
be undefined in absolute mode,

and the effective ring number loaded into C(TPR.TRR) prior to the SDW

fetch is equal to C(PPR.PRR) (which is 0 in absolute mode) implying
that the access violation checks for outward call and bad outward call
are ineffective and that an access violation (out of call brackets) will
occur if C(SDW.R1) # 0.

Attempted repetition with the rpt, rpd, or rpl instructions causes an

illegal procedure fault.

ret Return 630 (0)

FORMAT:

Basic instruction format (see Figure 4-1).

SUMMARY:

MODIFICATIONS:
INDICATORS:
Parity mask

Not BAR mode

Absolute mode

All other If corresponding bit in C(Y) is 1, then ON; otherwise, OFF
indicators

NOTES: The relation between C(Y);g 37 and the indicators is given in Table 4-5
earlier in this section.
The tally runout indicator reflects C(Y);5 regardless of what address
modification is performed on the ret instruction.
The ret instruction may be thought of as a 1di instruction followed by a
transfer to location C(Y)q 17.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

rtcd Return Control Double 610 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y-pair)3 17 — C(PPR.PSR)
Maximum of

C(Y-pair);g 20; C(TPR.TRR); C(SDW.R1) - C(PPR.PRR)
C(Y-pair)3g 53 —» C(PPR.IC)
If C(PPR.PRR) = 0 then C(SDW.P) — C(PPR.P);
otherwise 0 - C(PPR.P)

C(PPR.PRR) -» C(PRn.RNR) forn = (0, 1, ..., 7)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: See Section 3 for descriptions of the various registers and Section 8 for a

C(Y)g,17 — C(PPR.IC)
C(Y)18,31 = C(IR)
All except du, dl, ci, sc, scr

(Indicators not listed are not affected)

If C(Y)y7 = 1, and the processor is in absolute or mask privileged mode,

then ON; otherwise OFF. This indicator is not affected in the normal or
BAR modes.

Can be set OFF but not ON by the ret instruction
Can be set OFF but not ON by the ret instruction

flowchart of their role in address preparation.

If an access violation fault occurs when fetching the SDW for the Y-pair,
the C(PPR.PSR) and C(PPR.PRR) are not altered.

If the rtcd instruction is executed with the processor in absolute mode
with bit 29 of the instruction word set OFF and without indirection through
an ITP or ITS pair, then:

appending mode is entered for address preparation for the rtcd
operand and is retained if the instruction executes successfully,

and the effective segment number generated for the SDW fetch and
subsequent loading into C(TPR.TSR) is equal to C(PPR.PSR) and may
be undefined in absolute mode,

and the effective ring number loaded into C(TPR.TRR) prior to the SDW
fetch is equal to C(PPR.PRR) (which is 0 in absolute mode) implying
that control is always transferred into ring 0.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

teo Transfer on Exponent Overflow 614 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If exponent overflow indicator ON then

C(TPR.CA) —» C(PPR.IC)
C(TPR.TSR) —» C(PPR.PSR)
otherwise, no change to C(PPR)
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Exponent Set OFF
overflow
NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an

illegal procedure fault.

teu Transfer on Exponent Underflow 615 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If exponent underflow indicator ON then

C(TPR.CA) - C(PPR.IC)
C(TPR.TSR) —» C(PPR.PSR)
otherwise, no change to C(PPR)
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Exponent Set OFF
underflow
NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an

illegal procedure fault.

tmi Transfer on Minus 604 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If negative indicator ON then
C(TPR.CA) - C(PPR.IC)
C(TPR.TSR) —» C(PPR.PSR)
otherwise, no change to C(PPR)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tmoz Transfer on Minus or Zero 604 (1)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If negative or zero indicator ON then

C(TPR.CA) » C(PPR.IC)
C(TPR.TSR) —» C(PPR.PSR)
otherwise, no change to C(PPR)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tnc Transfer on No Carry 602 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If carry indicator OFF then

C(TPR.CA) — C(PPR.IC)
C(TPR.TSR) —» C(PPR.PSR)
otherwise, no change to C(PPR)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tnz Transfer on Nonzero 601 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If zero indicator OFF then
C(TPR.CA) - C(PPR.IC)
C(TPR.TSR) —» C(PPR.PSR)
otherwise, no change to C(PPR)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tov Transfer on Overflow 617 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If overflow indicator ON then

C(TPR.CA) » C(PPR.IC)
C(TPR.TSR) —» C(PPR.PSR)
otherwise, no change to C(PPR)
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Overflow Set OFF
NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an

illegal procedure fault.

tpl Transfer on Plus 605 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If negative indicator OFF, then

C(TPR.CA) —» C(PPR.IC)
C(TPR.TSR) —» C(PPR.PSR)
otherwise, no change to C(PPR)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tpnz Transfer on Plus and Nonzero 605 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If negative and zero indicators are OFF then
C(TPR.CA) - C(PPR.IC)
C(TPR.TSR) —» C(PPR.PSR)
otherwise, no change to C(PPR)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tra Transfer Unconditionally 710 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(TPR.CA) —» C(PPR.IC)

C(TPR.TSR) —» C(PPR.PSR)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

trc Transfer on Carry 603 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If carry indicator ON then

C(TPR.CA) — C(PPR.IC)
C(TPR.TSR) —» C(PPR.PSR)
otherwise, no change to C(PPR)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

trtf Transfer on Truncation Indicator OFF 601 (1)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If truncation indicator OFF then

C(TPR.CA) » C(PPR.IC)
C(TPR.TSR) —» C(PPR.PSR)
otherwise, no change to C(PPR)
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected
NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
trtn Transfer on Truncation Indicator ON 600 (1)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If truncation indicator ON then
C(TPR.CA) — C(PPR.IC)
C(TPR.TSR) —» C(PPR.PSR)
otherwise, no change to C(PPR)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Truncation Set OFF
NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
tspo Transfer and Set Pointer Register 0 270 (0)
tspl Transfer and Set Pointer Register 1 271 (0)
tsp2 Transfer and Set Pointer Register 2 272 (0)
tsp3 Transfer and Set Pointer Register 3 273 (0)
tsp4 Transfer and Set Pointer Register 4 670 (0)
tsp5 Transfer and Set Pointer Register 5 671 (0)
tsp6 Transfer and Set Pointer Register 6 672 (0)
tsp7 Transfer and Set Pointer Register 7 673 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code

C(PPR.PRR) —» C(PRn.RNR)
C(PPR.PSR) — C(PRn.SNR)
C(PPR.IC) + 1 » C(PRn.WORDNO)

00...0 » C(PRn.BITNO)

C(TPR.CA) - C(PPR.IC)
C(TPR.TSR) —» C(PPR.PSR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tss Transfer and Set Slave 715 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(TPR.CA) + (BAR base) —» C(PPR.IC)
C(TPR.TSR) — C(PPR.PSR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Not BAR mode
Absolute mode
NOTES:

Set OFF (see notes below)
Set OFF

If the tss instruction is executed with the processor not in BAR mode the
not BAR mode indicator is set OFF to enable subsequent addressing in the
BAR mode. The base address register (BAR) is used in the address
preparation of the transfer, and the BAR will be used in address
preparation for all subsequent instructions until a fault or interrupt occurs.

If the tss instruction is executed with the not BAR mode indicator already
OFF, it functions as a tra instruction and no indicators are changed.

If C(TPR.CA) >= (BAR bound) the transfer does not take place. Instead, a
store fault (out of bounds) occurs.

Attempted repetition with the rpt,
illegal procedure fault.

rpd, or rpl instructions causes an

tsxn

FORMAT:
SUMMARY:

MODIFICATIONS:

INDICATORS:
NOTES:

Transfer and Set Index Register n

70n (0)

Basic instruction format (see Figure 4-1).

Forn=0,1, ..., or 7 as determined by operation code
C(PPR.IC) + 1 - C(Xn)

C(TPR.CA) » C(PPR.IC)

C(TPR.TSR) —» C(PPR.PSR)

All except du, dl, ci, sc, scr

None affected

Attempted repetition with the rpt,
illegal procedure fault.

rpd, or rpl instructions causes an

ttf Transfer on Tally Runout Indicator OFF 607 (0)

FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If tally runout indicator OFF then

C(TPR.CA) - C(PPR.IC)
C(TPR.TSR) —» C(PPR.PSR)
otherwise, no change to C(PPR)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

ttn Transfer on Tally Runout Indicator ON 606 (1)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If tally runout indicator ON then

C(TPR.CA) - C(PPR.IC)
C(TPR.TSR) —» C(PPR.PSR)
otherwise, no change to C(PPR)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tze Transfer on Zero 600 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: If zero indicator ON then

C(TPR.CA) - C(PPR.IC)
C(TPR.TSR) —» C(PPR.PSR)
otherwise, no change to C(PPR)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

POINTER REGISTER INSTRUCTIONS

Pointer Register Data Movement Load

easpo Effective Address to Segment Number of PRO 311 (0)
easpl Effective Address to Segment Number of PR1l 310 (1)
easp?2 Effective Address to Segment Number of PR2 313 (0)
easp3 Effective Address to Segment Number of PR3 312 (1)
easpd Effective Address to Segment Number of PR4 331 (0)
easpb Effective Address to Segment Number of PR5 330 (1)
easpb Effective Address to Segment Number of PR6 333 (0)
easp7 Effective Address to Segment Number of PR7 332 (1)
FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Forn=0, 1, ..., or 7 as determined by operation code

C(TPR.CA) —» C(PRn.SNR)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

eawp0 Effective Address to Word/Bit Number of PRO 310 (0)
eawpl Effective Address to Word/Bit Number of PR1 311 (1)
eawp2 Effective Address to Word/Bit Number of PR2 312 (0)
eawp3 Effective Address to Word/Bit Number of PR3 313 (1)
eawp4 Effective to Word/Bit Number of PR4 Address 330 (0)

eawp5 Effective Address to Word/Bit Number of PR5 331 (1)

Effective Address to Word/Bit Number of PR6 332 (0)

Effective Address to Word/Bit Number of PR7 333 (1)

Basic instruction format (see Figure 4-1).

Forn=0,1, ..., or 7 as determined by operation code
C(TPR.CA) - C(PRn.WORDNO)

C(TPR.TBR) — C(PRn.BITNO)

None affected

All except du, dl, ci, sc, scr

Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt,
illegal procedure fault.

Pointer

Pointer

Pointer

Pointer

Pointer

Pointer

Pointer

Pointer

at

at

at

at

at

at

at

at

Base

Base

Base

Base

Base

Base

Base

Base

to

to

to

to

to

to

to

to

PRO

PR1

PR2

PR3

PR4

PR5

PR6

PR7

rpd, or rpl instructions causes an

350 (1)

351 (0)

352 (1)

353 (0)

370 (1)

371 (0)

372 (1)

373 (0)

Basic instruction format (see Figure 4-1).

Forn=0,1, ..., or 7 as determined by operation code

C(TPR.TRR) —» C(PRn.RNR)
C(TPR.TSR) —» C(PRn.SNR)
00...0 » C(PRn.WORDNO)

0000- C(PRn.BITNO)

None affected

eawpb6

eawp?

FORMAT:

SUMMARY:
MODIFICATIONS:
INDICATORS:

NOTES:

epbp0 Effective
epbpl Effective
epbp2 Effective
epbp3 Effective
epbp4 Effective
epbp5 Effective
epbp6 Effective
epbp7 Effective
FORMAT:

SUMMARY:
MODIFICATIONS:
INDICATORS:

NOTES:

All except du, dl, ci, sc, scr

Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt,
illegal procedure fault.

rpd, or rpl instructions causes an

Pointer

Pointer

Pointer

Pointer

Pointer

Pointer

Pointer

Pointer

to

to

to

to

to

to

to

to

Pointer

Pointer

Pointer

Pointer

Pointer

Pointer

Pointer

Pointer

Register
Register
Register
Register
Register
Register
Register

Register

Basic instruction format (see Figure 4-1).

Forn=0,1, ..., or 7 as determined by operation code

C(TPR.TRR) — C(PRn.RNR)
C(TPR.TSR) —» C(PRn.SNR)
C(TPR.CA) —» C(PRn.WORDNO)

C(TPR.TBR) —» C(PRn.BITNO)
All except du, dl, ci, sc, scr

None affected

350 (0)

351 (1)

352 (0)

353 (1)

370 (0)

371 (1)

372 (0)

373 (1)

Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt,

illegal procedure fault.

Load Pointer Registers from ITS Pairs

Basic instruction format (see Figure 4-1).

Forn=0,1, ..., 7

Y-pair = Y-block16 + 2n
Maximum of
C(Y-pair);g 20; C(SDW.R1); C(TPR.TRR) -» C(PRn.RNR)
C(Y-pair)3 17 —» C(PRn.SNR)
C(Y-pair)3g 53 ~ C(PRn.WORDNO)
C(Y-pair)57,62 » C(PRn.BITNO)

eppo Effective
eppl Effective
epp2 Effective
epp3 Effective
epp4 Effective
epp5 Effective
epp6 Effective
epp? Effective
FORMAT:

SUMMARY:
MODIFICATIONS:
INDICATORS:

NOTES:

lpri

FORMAT:

SUMMARY:
MODIFICATIONS:

INDICATORS:

None affected

All except du, dl, ci, sc, scr

rpd, or rpl instructions causes an

173 (0)

NOTES: Starting at location Y-block16, the contents of eight word pairs (in ITS pair
format) replace the contents of pointer registers 0 through 7 as shown.
Since C(TPR.TRR) and C(SDW.R1) are both equal to zero in absolute mode,
C(Y-pair),g 29 are loaded into PRn.RNR in absolute mode.
Attempted execution in BAR mode causes an illegal procedure fault.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
lprpn Load Pointer Register n Packed 76n (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code
C(TPR.TRR) —» C(PRn.RNR)
If C(Y)p,1 # 11, then
C(Y)o,5 » C(PRn.BITNO);
otherwise, generate command fault
If C(Y)g,17 = 1...1, then 111 - C(PRn.SNR)g »
otherwise, 000 - C(PRn.SNR) 7
C(Y)g,17 » C(PRn.SNR)3 14
C(Y)18,35 » C(PRn.WORDNO)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: Binary 1s in C(Y)q 1 correspond to an illegal BITNO, that is, a bit position

beyond the extent of C(Y). Detection of these bits causes a command fault.
Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Pointer Register Data Movement Store

spbp0 Store Segment Base Pointer of PRO 250 (1)
spbpl Store Segment Base Pointer of PR1 251 (0)
spbp2 Store Segment Base Pointer of PR2 252 (1)
spbp3 Store Segment Base Pointer of PR3 253 (0)
spbp4 Store Segment Base Pointer of PR4 650 (1)
spbp5 Store Segment Base Pointer of PR5 651 (0)
spbp6 Store Segment Base Pointer of PR6 652 (1)
spbp7 Store Segment Base Pointer of PR7 653 (0)
FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Forn=0,1, ..., or 7 as determined by operation code

C(PRn.SNR) — C(Y-pair)3 17
C(PRn.RNR) — C(Y-pair)1g,20
000 - C(Y-pair)g 2
00...0 = C(Y-pair),1 29
(43)g — C(Y-pair)zo,35
00...0 — C(Y-pair)sg 71
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

spri Store Pointer Registers as ITS Pairs 254 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1,..,7

Y-pair = Y-block16 + 2n
000 — C(Y-pair)g

C(PRn.SNR) — C(Y-pair)3 17
C(PRn.RNR) — C(Y-pair)yg 20
00...0 = C(Y-pair),1 29
(43)g — C(Y-pair)3p 35
C(PRn.WORDNO) - C(Y-pair)3zg 53
000 — C(Y-pair)sg 56
C(PRn.BITNO) — C(Y-pair)s7 62
00...0 — C(Y-pair)g3 71
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Starting at location Y-block16, the contents of pointer registers 0 through
7 replace the contents of eight word pairs (in ITS pair format).

Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sprio Store Pointer Register 0 as ITS Pair 250 (0)
spril Store Pointer Register 1 as ITS Pair 251 (1)
spri2 Store Pointer Register 2 as ITS Pair 252 (0)
spri3 Store Pointer Register 3 as ITS Pair 253 (1)
sprid Store Pointer Register 4 as ITS Pair 650 (0)
spri5 Store Pointer Register 5 as ITS Pair 651 (1)
spri6 Store Pointer Register 6 as ITS Pair 652 (0)
spri7 Store Pointer Register 7 as ITS Pair 653 (1)
FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Forn=0, 1, ..., or 7 as determined by operation code

000 — C(Y-pair)g
C(PRn.SNR) — C(Y-pair)3 17
C(PRn.RNR) — C(Y-pair);g 20
00...0 = C(Y-pair),1 29

(43)g — C(Y-pair)zg,35
C(PRn.WORDNO) — C(Y-pair)3zg 53

000 — C(Y-pair)s4 56
C(PRn.BITNO) - C(Y-pair)s7 g2
00...0 —» C(Y-pair)g3 71

MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: Attempted execution in BAR mode causes an illegal procedure fault.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
sprpn Store Pointer Register n Packed 54n (0
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Forn=0,1, ..., or 7 as determined by operation code
C(PRn.BITNO) — C(Y)g 5
C(PRn.SNR)3 14 = C(Y)g,17
C(PRn.WORDNO) - C(Y)13 35
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: If C(PRn.SNR)g » are nonzero, and C(PRn.SNR) =# 11...1, then a store fault

(illegal pointer) will occur and C(Y) will not be changed.
Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Pointer Register Address Arithmetic

adwp0 Add to Word Number of Pointer Register 0 050 (0)
adwpl Add to Word Number of Pointer Register 1 051 (0)
adwp?2 Add to Word Number of Pointer Register 2 052 (0)
adwp3 Add to Word Number of Pointer Register 3 053 (0)
adwp4 Add to Word Number of Pointer Register 4 150 (0)
adwp5 Add to Word Number of Pointer Register 5 151 (0)
adwp6 Add to Word Number of Pointer Register 6 152 (0)
adwp7 Add to Word Number of Pointer Register 7 153 (0)
FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Forn=0,1, ..., or 7 as determined by operation code

C(Y)o,17 + C(PRn.WORDNO) - C(PRn.WORDNO)
00...0 » C(PRn.BITNO)
MODIFICATIONS: All except dl, ci, sc, scr
INDICATORS: None affected
NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Pointer Register Miscellaneous

epaq Effective Pointer to AQ 213 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: 000 — C(AQ)g »

C(TPR.TSR) — C(AQ)3,17

00...0 —» C(AQ)13,32

C(TPR.TRR) - C(AQ)33 35

C(TPR.CA) - C(AQ)36,53

00...0 = C(AQ)s54,65

C(TPR.TBR) - C(AQ)g6,71
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

MISCELLANEOUS INSTRUCTIONS

Calendar Clock

rccl Read Calendar Clock 633 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: 00...0 - C(AQ)o,19
C(calendar clock) — C(AQ)20 71
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: C(TPR.CA)p2 (C(TPR.CA);, for the DPS 8M processor) specify which

processor port (i.e., which system controller) is to be used. The contents of
the clock in the designated system controller replace the contents of the
AQ-register

Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Derail

drl Derail 002 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Causes a fault which fetches and executes, in absolute mode, the
instruction pair at main memory location C+(14)g. The value of C is
obtained from the FAULT VECTOR switches on the processor
configuration panel.

MODIFICATIONS: All, but none affect instruction execution

INDICATORS: None affected

NOTES: Except for the different constant used for fetching the instruction pair

from main memory, the drl instruction is identical to the mme instruction.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Execute

xec Execute 716 (0)

FORMAT:
SUMMARY:
MODIFICATIONS:
INDICATORS:
NOTES:

Basic instruction format (see Figure 4-1).
Fetch and execute the instruction in C(Y)
All except du, dl, ci, sc, scr

None affected

The xec instruction itself does not affect any indicator. However, the
execution of the instruction from C(Y) may affect indicators.

If the execution of the instruction from C(Y) modifies C(PPR.IC), then a
transfer of control occurs; otherwise, the next instruction to be executed is
fetched from C(PPR.IC)+1.

To execute a rpd instruction, the xec instruction must be in an odd
location. The instruction pair repeated is that instruction pair at C(PPR.IC)
+1, that is, the instruction pair immediately following the xec instruction.
C(PPR.IC) is adjusted during the execution of the repeated instruction pair
so that the next instruction fetched for execution is from the first word
following the repeated instruction pair.

EIS multiword instructions may be executed with the xec instruction but
the required operand descriptors must be located immediately after the
xec instruction, that is, starting at C(PPR.IC)+1. C(PPR.IC) is adjusted
during execution of the EIS multiword instruction so that the next
instruction fetched for execution is from the first word following the EIS
operand descriptors.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

xed Execute Double 717 (0)

FORMAT:
SUMMARY:
MODIFICATIONS:
INDICATORS:
NOTES:

Basic instruction format (see Figure 4-1).

Fetch and execute the instruction pair at C(Y-pair)
All except du, dl, ci, sc, scr

None affected

The xed instruction itself does not affect any indicator. However, the
execution of the instruction pair from C(Y-pair) may affect indicators.

The even instruction from C(Y-pair) must not alter C(Y-pair)3g 71, and must
not be another xed instruction.

If the execution of the instruction pair from C(Y-pair) alters C(PPR.IC),
then a transfer of control occurs; otherwise, the next instruction to be
executed is fetched from C(PPR.IC)+1. If the even instruction from C(Y-
pair) alters C(PPR.IC), then the transfer of control is effective immediately
and the odd instruction is not executed.

To execute an instruction pair having an rpd instruction as the odd
instruction, the xed instruction must be located at an odd address. The
instruction pair repeated is that instruction pair at C PPR.IC)+1, that is,
the instruction pair immediately following the xed instruction. C(PPR.IC)
is adjusted during the execution of the repeated instruction pair so the the
next instruction fetched for execution is from the first word following the
repeated instruction pair.

The instruction pair at C(Y-pair) may cause any of the processor defined
fault conditions, but only the directed faults (0,1,2,3) and the access
violation fault may be restarted successfully by the hardware. Note that
the software induced fault tag (1,2,3) faults cannot be properly restarted.

An attempt to execute an EIS multiword instruction causes an illegal
procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Master Mode Entry

mme Master Mode Entry 001 (0)

FORMAT:
SUMMARY:

MODIFICATIONS:
INDICATORS:
NOTES:

Basic instruction format (see Figure 4-1).

Causes a fault that fetches and executes, in absolute mode, the instruction
pair at main memory location C+4. The value of C is obtained from the
FAULT VECTOR switches on the processor configuration panel.

All, but none affect instruction execution
None affected
Execution of the mme instruction implies the following conditions:

During the execution of the mme instruction and the two instructions
fetched, the processor is temporarily in absolute mode independent of
the value of the absolute mode indicator. The processor stays in
absolute mode if the absolute mode indicator is ON after the execution
of the instructions.

The instruction at C+4 must not alter the contents of main memory
location C+5, and must not be an xed instruction.

If the contents of the instruction counter (PPR.IC) are changed during
execution of the instruction pair at C+4, the next instruction is fetched
from the modified C(PPR.IC); otherwise, the next instruction is fetched
from C(PPR.IC)+1.

If the instruction at C+4 alters C(PPR.IC), then this transfer of control
is effective immediately, and the instruction at C+5 is not executed.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

mme2 Master Mode Entry 2 004 (0)

FORMAT:
SUMMARY:

MODIFICATIONS:
INDICATORS:
NOTES:

Basic instruction format (see Figure 4-1).

Causes a fault that fetches and executes, in absolute mode, the instruction
pair at main memory location C+(52)g. The value of C is obtained from the

FAULT VECTOR switches on the processor configuration panel.

All, but none affect instruction execution

None affected

Attempted execution in BAR mode causes an illegal procedure fault.

Except for the different constant used for fetching the instruction pair
from main memory, the mme2 instruction is identical to the mme instruction.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

mme3 Master Mode Entry 3 005 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Causes a fault that fetches and executes, in absolute mode, the instruction
pair at main memory location C+(54)g. The value of C is obtained from the
FAULT VECTOR switches on the processor configuration panel.

MODIFICATIONS: All, but none affect instruction execution

INDICATORS: None affected

NOTES: Attempted execution in BAR mode causes an illegal procedure fault.
Except for the different constant used for fetching the instruction pair
from main memory, the mme3 instruction is identical to the mme instruction.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

mme4 Master Mode Entry 4 007 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Causes a fault that fetches and executes, in absolute mode, the instruction
pair at main memory location C+(56)g. The value of C is obtained from the
FAULT VECTOR switches on the processor configuration panel.

MODIFICATIONS: All, but none affect instruction execution

INDICATORS: None affected

NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Except for the different constant used for fetching the instruction pair
from main memory, the mme4 instruction is identical to the mme instruction.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

No Operation

nop No Operation 011 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: No operation takes place
MODIFICATIONS: All
INDICATORS: None affected (except as noted below)
NOTES: No operation takes place but address preparation is performed according

pulsl Pulse

FORMAT:
SUMMARY:
MODIFICATIONS:
INDICATORS:
NOTES:

puls2 Pulse

to the specified modifier, if any. If modification other than du or dl is
used, the computed addresses generated may cause faults.

The use of indirect then tally modifiers causes changes in the address and
tally fields of the referenced indirect words and the tally runout indicator
may be set ON as a result.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

One 012 (0)

Basic instruction format (see Figure 4-1).
No operation takes place

All

None affected (except as noted below)

The pulsl instruction is identical to the nop instruction except that it
causes certain unique synchronizing signals to appear in the processor
logic circuitry.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Two 013 (0)

FORMAT:
SUMMARY:
MODIFICATIONS:
INDICATORS:
NOTES:

Basic instruction format (see Figure 4-1).
No operation takes place

All

None affected (except as noted below)

The puls2 instruction is identical to the nop instruction except that it
causes certain unique synchronizing signals to appear in the processor
logic circuitry.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Repeat

rpd Repeat Double 560 (0)
FORMAT:
0 00011 11 22223 3
0 78901 7 8 6 7890 5
TALLY A|B[C| Term. Cond. (560), o|1]0 DELTA
8111 7 911 1 6

Figure 4-9. Repeat Double (rpd) Instruction Word Format

SUMMARY:

MODIFICATIONS:
INDICATORS:

Tally runout

All other
indicators

NOTES:

Execute the pair of instructions at C(PPR.IC)+1 either a specified number
of times or until a specified termination condition is met.

None
(Indicators not listed are not affected)
If C(X0)p 7 = 0 at termination, then ON; otherwise, OFF

None affected. However, the execution of the repeated instructions may
affect indicators.

The rpd instruction must be located in an odd main memory location
except when accessed via the xec or xed instructions, in which case the
xec or xed instruction must itself be in an odd main memory location.

Both repeated instructions must use R or RI modifiers and only X1, X2, ...,
X7 are permitted. For the purposes of this description, the even repeated
instruction shall use X-even and the odd repeated instruction shall use X-
odd. X-even and X-odd may be the same register.

If C = 1, then C(rpd instruction word)g 17 - C(X0); otherwise, C(X0) is
unchanged prior to execution.

The termination condition and tally fields of C(X0) control the repetition of
the instruction pair. An initial tally of zero is interpreted as 256.

The repetition cycle consists of the following steps:
a. Execute the pair of repeated instructions

b. C(XO)OI7 -1- C(XO)OI7
Modify C(X-even) and C(X-odd) as described below.

c. If C(X0)g 7 = 0, then set the tally runout indicator ON and terminate.

d. If a terminate condition has been met, then set the tally runout indicator
OFF and terminate.

e. Go to step a.

If a fault occurs during the execution of the instruction pair, the repetition
loop is terminated and control passes to the instruction pair associated
with the fault according to the conditions for the fault. C(X0), C(X-even),
and C(X-odd) are not updated for the repetition cycle in which the fault
occurs. Note in particular that certain faults occurring during execution of
the even instruction preclude the execution of the odd instruction for the
faulting repetition cycle.

EIS multiword instructions cannot be repeated. All other instructions may
be repeated except as noted for individual instructions or those that
explicitly alter C(X0).

The computed addresses, y-even and y-odd, of the operands (in the case of
R modification) or indirect words (in the case of RI modification) are
determined as follows:

For the first execution of the repeated instruction pair:
C(C(PPR.IC)+ 1)p,17 + C(X-even) — y-even, y-even — C(X-even)
C(C(PPR.IC)+2)g 17 + C(X-0dd) — y-odd, y-odd — C(X-odd)
For all successive executions of the repeated instruction pair:
if C(X0)g = 1, then C(X-even) + Delta — y-even,
y-even — C(X-even);

otherwise, C(X-even) — y-even

if C(X0)g = 1, then C(X-odd) + Delta — y-odd,
y-odd - C(X-odd);

otherwise, C(X-odd) — y-odd

C(X0)g 9 correspond to control bits A and B, respectively, of the rpd
instruction word.

In the case of RI modification, only one indirect reference is made per
repeated execution. The TAG field of the indirect word is not interpreted.
The indirect word is treated as though it had R modification with R = N.

The bit configuration in C(X0);1 7 defines the conditions for which the

repetition loop is terminated. The terminate conditions are examined at
the completion of execution of the odd instruction. If more than one
condition is specified, the repeat terminates if any of the specified
conditions are met.

Bit 17 =0 Ignore all overflows. Do not set the overflow indicator and
inhibit the overflow fault.

Bit17 =1 Process overflows. If the overflow mask indicator is ON,
then set the overflow indicator and terminate; otherwise,
cause an overflow fault.

Bitl6 =1 Terminate if the carry indicator is OFF.
Bit1l5 =1 Terminate if the carry indicator is ON.
Bit14 =1 Terminate if the negative indicator is OFF.
Bit13 =1 Terminate if the negative indicator is ON.
Bit 12 =1 Terminate if the zero indicator is OFF.
Bit11 =1 Terminate if the zero indicator is ON.

At the time of termination:

C(XO0)p 7 contain the tally residue; that is, the number of repeats
remaining until a tally runout would have occurred.

If the rpd instruction is interrupted (by any fault) before termination,
the tally runout indicator is OFF.

C(X-even) and C(X-odd) contain the computed addresses of the next
operands or indirect words that would have been used had the
repetition loop not terminated.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

rpl Repeat Link 500 (0)
FORMAT:
0 00011 11 22223 3
0 7 8 9 01 7 8 6 7890 5
TALLY 0 0|C Term. Cond. (500)8 0[1{0]J]0 O O 0 O O
8 21 7 9111 6
Figure 4-10. Repeat Link (rpl) Instruction Word Format
SUMMARY: Execute the instruction at C(PPR.IC)+1 either a specified number of times
or until a specified termination condition is met.
MODIFICATIONS: None
INDICATORS: (Indicators not listed are not affected)

Tally runout

All other
indicators

NOTES:

If C(X0)p,7 = 0 or link address C(Y)p,17 = 0 at runout termination, then ON;
otherwise OFF.

None affected. However, the execution of the repeated instruction may
affect indicators.

The repeated instruction must use an R modifier and only X1, X2, ..., X7
are permitted. For the purposes of this description, the repeated
instruction shall use Xn.

If C = 1, then C(rpl instruction word)g 17 - C(X0); otherwise, C(X0) is
unchanged prior to execution.

The termination condition and tally fields of C(X0) control the repetition of
the instruction. An initial tally of zero is interpreted as 256.

The repetition cycle consists of the following steps:
a. Execute the repeated instruction

b. C(XO)OI7 -1- C(XO)OI7
Modify C(Xn) as described below.

c. If C(X0)g,7 = 0 or C(Y)p,17 = O, then set the tally runout indicator ON
and terminate.

d. If a terminate condition has been met, then set the tally runout indicator
OFF and terminate.

e. Go to step a.

If a fault occurs during the execution of the instruction, the repetition loop
is terminated and control passes to the instruction pair associated with the
fault according to the conditions for the fault. C(X0) and C(Xn) are not
updated for the repetition cycle in which the fault occurs.

EIS multiword instructions cannot be repeated. All other instructions may
be repeated except as noted for individual instructions or those that
explicitly alter C(X0) or explicitly alter the link address, C(Y)q 17.

The computed address, y, of the operand is determined as follows:

For the first execution of the repeated instruction:
C(C(PPR.IC)+1)p 17 + C(Xn) -y, y » C(Xn)

For all successive executions of the repeated instruction:
CXn) -y
if C(Y)p,17 # 0, then C (y)g,17 » C(Xn);
otherwise, no change to C(Xn)

C(Y)o,17 is known as the link address and is the computed address of the

next entry in a threaded list of operands to be referenced by the repeated
instruction.

The operand is formed as:
(00...0)9,17 Il C(Y)18,p

where p is 35 for single precision operands and 71 for double precision
operands.

The bit configuration in C(X0)11 17 and the link address, C(Y)q 17 define the
conditions for which the repetition loop is terminated. The terminate
conditions are examined at the completion of execution of the instruction.
If more than one condition is specified, the repeat terminates if any of the
specified conditions are met.

C(Y)p,17=0 Set the tally runout indicator ON and terminate.

Bit 17 =0 Ignore all overflows. Do not set the overflow indicator
and inhibit the overflow fault.

Bit17 =1 Process overflows. If the overflow mask indicator is ON,
then set the overflow indicator and terminate; otherwise,
cause an overflow fault.

Bit16 =1 Terminate if the carry indicator is OFF.
Bitl5 =1 Terminate if the carry indicator is ON.
Bit14 =1 Terminate if the negative indicator is OFF.
Bit13 =1 Terminate if the negative indicator is ON.
Bit12 =1 Terminate if the zero indicator is OFF.
Bit11 =1 Terminate if the zero indicator is ON.

At the time of termination:

C(X0)g 7 contain the tally residue; that is, the number of repeats
remaining until a tally runout would have occurred.

If the rpl instruction is interrupted (by any fault) before termination,
the tally runout indicator is OFF.

C(Xn) contain the last link address, that is, the computed address of the
list word containing the last operand and the next link address.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

rpt Repeat 520 (0)
FORMAT:
0 00011 11 22223 3
0 78901 7 8 6 7890 5
TALLY 0 0|C Term. Cond. (520)8 01110 DELTA
8 21 7 9111 6
Figure 4-11. Repeat (rpt) Instruction Word Format
SUMMARY: Execute the instruction at C(PPR.IC)+1 either a specified number of times
or until a specified termination condition is met.
MODIFICATIONS: None
INDICATORS: (Indicators not listed are not affected)
Tally runout If C(X0)g 7 = 0 at termination, then ON; otherwise, OFF
All other None affected. However, the execution of the repeated instruction may
indicators affect indicators.
NOTES: The repeated instruction must use an R or RI modifier and only X1, X2, ...,

X7 are permitted. For the purposes of this description, the repeated
instruction shall use Xn.

If C = 1, then C(rpt instruction word)g 17 — C(X0); otherwise, C(XO0)
unchanged prior to execution.

The termination condition and tally fields of C(X0) control the repetition of
the instruction. An initial tally of zero is interpreted as 256.

The repetition cycle consists of the following steps:
a. Execute the repeated instruction
b. C(X0)g,7 -1 - C(X0)g 7
Modify C(Xn) as described below
c. If C(X0)g 7 = 0, then set the tally runout indicator ON and terminate

d. If a terminate condition has been met, then set the tally runout indicator
OFF and terminate

e. Gotostepa

If a fault occurs during the execution of the instruction, the repetition loop
is terminated and control passes to the instruction pair associated with the
fault according to the conditions for the fault. C(X0) and C(Xn) are not
updated for the repetition cycle in which the fault occurs.

EIS multiword instructions cannot be repeated. All other instructions may
be repeated except as noted for individual instructions or those that
explicitly alter C(X0) or explicitly alter the instruction pair containing the
repeated instruction.

The computed address, y, of the operand (in the case of R modification) or
indirect word (in the case of RI modification) is determined as follows:

For the first execution of the repeated instruction:
C(C(PPR.IC)+1)p 17 + C(Xn) -y, y » C(Xn)

For all successive executions of the repeated instruction:
C(Xn) + Delta » y, y = C(Xn);

In the case of RI modification, only one indirect reference is made per
repeated execution. The TAG field of the indirect word is not interpreted.
The indirect word is treated as though it had R modification with R = N.

The bit configuration in C(X0);; 17 defines the conditions for which the
repetition loop is terminated. The terminate conditions are examined at
the completion of execution of the instruction. If more than one condition
is specified, the repeat terminates if any of the specified conditions are
met. overflow indicator and inhibit the overflow fault.

Bit17=0
Bit17 =1
Bit16 =1
Bit15=1
Bit14 =1
Bit13 =1
Bit12 =1
Bit1l1 =1

Ignore all overflows. Do not set the overflow indicator and
inhibit the overflow fault.

Process overflows. If the overflow mask indicator is ON,
then set the overflow indicator and terminate; otherwise,
cause an overflow fault.

Terminate if the carry indicator is OFF.
Terminate if the carry indicator is ON.
Terminate if the negative indicator is OFF.
Terminate if the negative indicator is ON.
Terminate if the zero indicator is OFF.

Terminate if the zero indicator is ON.

At the time of termination:

C(XO0)p 7 contain the tally residue; that is, the number of repeats
remaining until a tally runout would have occurred.

If the rpt instruction is interrupted (by any fault) before termination,
the tally runout indicator is OFF.

C(Xn) contain the computed address of the next operand or indirect
word that would have been used had the repetition loop not

terminated.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Ring Alarm Register

sra Store Ring Alarm 754 (1)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: 00...0 - C(Y)0,32

C(RALR) - C(Y)33 35
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Store Base Address Register

shar Store Base Address Register 550 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(BAR) - C(Y) ¢.17

MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

Translation

bcd Binary to Binary-Coded-Decimal 505 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Shift C(A) left three positions
| C(A) | /C(Y) — 4-bit quotient plus remainder
Shift C(Q) left six positions
4-bit quotient » C(Q)32 35
remainder —» C(A)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1 before execution, then ON; otherwise OFF
NOTES: The bcd instruction carries out one step in an algorithm for the conversion

of a binary number to a string of Binary-Coded-Decimal (BCD) digits. The
algorithm requires the repeated short division of the binary number or last
remainder by a set of constants = 8**i x 10**(n-i) fori =1, 2, ..., n with n
being defined by:

10**(n-1) <= | <binary number> | <= 10**n- 1.

The values in the table that follows are the conversion constants to be used
with the bcd instruction. Each vertical column represents the set of
constants to be used depending on the initial value of the binary number to
be converted. The instruction is executed once per digit while traversing
the appropriate column from top to bottom.

An alternate use of the table for conversion involves the use of the
constants in the row corresponding to conversion step 1. If, after each
execution, the contents of the accumulator are shifted right 3 positions, the
constants in the first row, starting at the appropriate column, may be used
while traversing the row from left to right.

Because there is a limit on range, a full 36-bit word cannot be converted.
The largest binary number that may be converted correctly is 2**33 - 1
yielding ten decimal digits.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

For 10¥*(n-1) <= [C(A) | <=10**n-1andn =

Step 10 9 8 7 6 5 4 3 21
1 /8000000000 800000000 80000000 8000000 800000 80000 8000 800 80 8
2 6400000000 640000000 64000000 6400000 640000 64000 6400 640 64
3 5120000000 512000000 51200000 5120000 512000 51200 5120 512
4 | 4096000000 409600000 40960000 4096000 409600 40960 4096
5 3276800000 327680000 32768000 3276800 327680 32768
6 2621440000 262144000 26214400 2621440 262144
7 2097152000 209715200 20971520 2097152
8 1677721600 167772160 16777216
9 1342177280 134217728
10 1073741824
gtb Gray to Binary 774 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(A) is converted from Gray Code to a 36-bit binary number
MODIFICATIONS: None
INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF
NOTES: This conversion is defined by the following algorithm:

C(A)g - C(A)g
C(A); ® C(A)i; — C(A); fori=1, 2, ..., 35

fault.

Attempted repetition with the rpl instruction causes an illegal procedure

REGISTER LOAD

lbar Load Base Address Register 230 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Y)o,17 — C(BAR)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: None affected
NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an

illegal procedure fault.

Attempted execution in BAR mode causes a illegal procedure fault.

PRIVILEGED INSTRUCTIONS

Privileged - Register Load

lcpr Load Central Processor Register 674 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Load selected register as noted
MODIFICATIONS: None. The instruction word TAG field is used for register selection as
follows:

C(TAG) Data and Register(s)
02 C(Y) — C(cache mode register)
04 C(Y) —» C(mode register)
03 DPS/L68 processors:
00...0 - C(CU, OU, DU, and APU history register)g 71

DPS 8M processors:

00...0 - C(CU, OU/DU, APU #1 and APU #2 history
register)g 71

07 DPS/L68 processors:
11...1 - C(CU, OU, DU, and APU history register)g 71

DPS 8M processors:

11...1 - C(CU, OU/DU, APU #1 and APU #2 history
register)g 71

INDICATORS: None affected
NOTES: See Section 3 for descriptions and use of the various registers.

For TAG values 03 and 07, the history register loaded is selected by the
current value of a cyclic counter for each unit. All four cyclic counters are
advanced by one count for each execution of the instruction.

Use of TAG values other than those defined above causes an illegal
procedure fault.

Attempted execution in normal or BAR modes causes a illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an illegal
procedure fault.

ldbr Load Descriptor Segment Base Register 232 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If SDWAM is enabled, then
0 - C(SDWAM(@).FULL) fori=0, 1, ..., 15
i > C(SDWAM(i).USE) fori=0, 1, ..., 15
If PTWAM is enabled, then
0 - C(PTWAM().FULL) fori=0, 1, ..., 15
i > C(PTWAM(i).USE) fori=0,1, ..., 15
If cache is enabled, reset all cache column and level full flags
C(Y-pair)g 23 - C(DSBR.ADDR)
C(Y-pair)37,50 ~ C(DSBR.BOUND)
C(Y-pair)55 —» C(DSBR.U)
C(Y-pair)gg,71 — C(DSBR.STACK)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: The associative memories and cache are cleared (full indicators reset) if
they are enabled.
See Section 3 and Section 5 for descriptions and use of the SDWAM,
PTWAM, and DSBR
Attempted execution in normal or BAR modes causes an illegal procedure
fault.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
1dt Load Timer Register 637 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Y)o,26 — C(TR)
MODIFICATIONS: All except ci, sc, scr
INDICATORS: None affected
NOTES: Attempted execution in normal or BAR modes causes a illegal procedure
fault.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
lptp Load Page Table Pointers 257 (1)
FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY:

Fori=0,1, ..., 15
m = C(PTWAM(i).USE)
C(Y-block16+m)g 14 - C(PTWAM(m).POINTER)
C(Y-block16+m)5 26 - C(PTWAM(m).PAGE)
C(Y-block16+m);7 » C(PTWAM(m).F)

MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: The associative memory is ignored (forced to "no match") during address
preparation.
See Section 3 and Section 5 for description and use of the PTWAM.
This instruction is not available on the DPS 8M processor and attempted
execution on a DPS 8M processor causes an illegal procedure fault.
Attempted execution in normal or BAR modes causes an illegal procedure
fault.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
lptr Load Page Table Registers 173 (1)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Fori=0,1, ..., 15
m = C(PTWAM(i).USE)
C(Y-block16+m)g 17 » C(PTWAM(m).ADDR)
C(Y-block164+m);9 - C(PTWAM(m).M)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: The associative memory is ignored (forced to "no match") during address
preparation.
See Section 3 and Section 5 for description and use of the PTWAM.
Attempted execution in normal or BAR modes causes an illegal procedure
fault.
This instruction is not available on the DPS 8M processor and attempted
execution on a DPS 8M processor produces an illegal procedure fault.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
lra Load Ring Alarm Register 774 (1)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Y)33,35 » C(RALR)
MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS:
NOTES:

None affected

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

lsdp Load Segment Descriptor Pointers 257 (0)

FORMAT:
SUMMARY:

MODIFICATIONS:

INDICATORS:
NOTES:

Basic instruction format (see Figure 4-1).
Fori=90,1, ..., 15
m = C(SDWAM(i).USE)
C(Y-block16+m)g 14 » C(SDWAM(m).POINTER)
C(Y-block16+m);7 - C(SDWAM(m).P)
All except du, dl, ci, sc, scr
None affected

The associative memory is ignored (forced to "no match") during address
preparation.

See Section 3 and Section 5 for description and use of the SDWAM.

This instruction is not available on the DPS 8M processor and attempted
execution on a DPS 8M processor produces an illegal procedure fault.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

lsdr Load Segment Descriptor Registers 232 (1)

FORMAT:
SUMMARY:

MODIFICATIONS:

INDICATORS:
NOTES:

Basic instruction format (see Figure 4-1).

Fori=90,1, ..., 15
m = C(SDWAM(i).USE)
Y-pair = Y-block32 + 2m
C(Y-pair)g 23 - C(SDWAM(m).ADDR)
C(Y-pair)y4, 32 » C(SDWAM(m).R1, R2, R3)
C(Y-pair)37 50 ~ C(SDWAM(m).BOUND)
C(Y-pair)s; 57 ~ C(SDWAM(m).R, E, W, P, U, G, C)
C(Y-pair)sg 71 » C(SDWAM(m).CL)

All except du, dl, ci, sc, scr

None affected

The associative memory is ignored (forced to "no-match") during address
preparation.

See Section 3 and Section 5 for description and use of the SDWAM.

This instruction is not available on the DPS 8M processor and attempted
execution on a DPS 8M processor produces an illegal procedure fault.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

rcu Restore Control Unit 613 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: C(Y-block8) words 0 to 7 — (control unit data)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: See Section 3 for description and use of control unit data.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Privileged - Register Store

scpr Store Central Processor Register 452 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Store selected register as noted
MODIFICATIONS: None. The instruction word TAG field is used for register selection word
as follows:
C(TAG) MEANING
00 DPS/L68 processor:

C(APU history register) — C(Y-pair)
DPS 8M processor:
C(APU history register #1) — C(Y-pair)
01 C(fault register) — C(Y-pair)g 35
00...0 — C(Y-pair)ze 71
06 C(mode register) — C(Y-pair)g 35
C(cache mode register) - C(Y-pair)ze 71
10 DPS/L.68 processor:
C(DU history register) — C(Y-pair)
DPS 8M processor:
C(APU history register #2) — C(Y-pair)
20 C(CU history register) — C(Y-pair)
40 DPS/L.68 processor
C(OU history register) — C(Y-pair)
DPS 8M processor:
C(0OU/DU history register) —» C(Y-pair)

INDICATORS: None affected
NOTES: See Section 3 for description and use of the various registers.
The TAG field values shown are octal.

For TAG values 00, 10, 20, and 40, the history register stored is selected
by the current value of a cyclic counter for each unit. The individual cyclic
counters are advanced by one count for each execution of the instruction.

The use of TAG values other than those defined above causes an illegal
procedure fault.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

scu Store Control Unit 657 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: (control unit data) —» C(Y-block8)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: See Section 3 for description and use of control unit data.
The scu instruction safe-stores control information required to service a
fault or interrupt. The control unit data is not, in general, valid at any time
except when safe-stored by the first of the pair of instructions associated
with the fault or interrupt.
Attempted execution in normal or BAR modes causes an illegal procedure
fault.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sdbr Store Descriptor Segment Base Register 154 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(DSBR.ADDR) — C(Y-pair)g 23
00...0 - C(Y-pair)4 36
C(DSBR.BOUND) — C(Y-pair)37 50
0000 — C(Y-pair)s1 54
C(DSBR.U) — C(Y-pair)ss
000 - C(Y-pair)sg 59
C(DSBR.STACK) — C(Y-pair)gg, 71

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: C(DSBR) are unchanged.
See Section 3 and Section 5 for description and use of the DSBR
Attempted execution in normal or BAR modes causes an illegal procedure
fault.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sptp Store Page Table Pointers 557 (1)
FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: DPS/L68 processors:
Fori=90,1, ..., 15
C(PTWAM(i).POINTER) — C(Y-block16+i)g 14
C(PTWAM(i).PAGE) - C(Y-block16+i)15 26
C(PTWAM(i).F) - C(Y-block16+i)y7
0000 — C(Y-block16+i)g 31
C(PTWAM(i).USE) — C(Y-block16+i)33 35
DPS 8M processors:

This instruction stores 16 words from the selected level (j) of the
directory of the Page Table Word associative memory. There are four
levels.

Level j is selected by C(TPR.CA)13 13
Fori=0,1,..,15
C(PTWAM(},j).POINTER) — C(Y-block16+1i)g 14
C(PTWAM(,j).PAGENO) — C(Y-block16+i)15 22
0000 — C(Y-block16+1i)23 26
C(PTWAM(i,j).F) = C(Y-block16+i)y7
00 — C(Y-block16+1i)2g 29
C(PTWAM(,j).LRU) — C(Y-block16+i)30 35
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: The contents of the associative memory remain unchanged.

The associative memory is ignored (forced to "no match") during address
preparation.

See Section 3 and Section 5 for description and use of the PTWAM.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sptr Store Page Table Registers 154 (1)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: DPS/L.68 processors:

Fori=0,1, ..., 15
C(PTWAM(i).ADDR) — C(Y-block16+i)g 17
00...0 - C(Y-block16+i)1g 28
C(PTWAM(i).M) - C(Y-block16+i),g
00...0 = C(Y-block16+i)30 35
DPS 8M processors:

This instruction stores 16 words from the selected level (j) of the
contents of the Page Table Word associative memory. There are four
levels.

Level j is selected by C(TPR.CA)13 13
Fori=0,1,..,15
C(PTWAM(,j).PAGE ADDR) — C(Y-block16+1) 13
00...0 - C(Y-block16+i)14 28
C(PTWAM(i,j).M - C(Y-block16+i);9
000000 — C(Y-block16+i)3¢ 3
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: The contents of the associative memory are unchanged.

The associative memory is ignored (forced to "no match") during address
preparation.

See Section 3 and Section 5 for description and use of the PTWAM.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

ssdp Store Segment Descriptor Pointers 557 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: DPS/L68 processors:

Fori=0,1, ..., 15
C(SDWAM(i).POINTER) — C(Y-block16+i)g 14
00...0 - C(Y-block16+i)15 26
C(SDWAM(i).F) — C(Y-block16+i)y7
0000 — C(Y-block16+i)2g 31
C(SDWAM(i).USE) — C(Y-block16+i)33 35
DPS 8M processors:

This instruction stores 16 words from the selected level (j) of the
directory of the Segment Descriptor Word associative memory. There
are four levels.

Level j is selected by C(TPR.CA)13 13
Fori=20,1, ..., 15
C(SDWAM(i,j).POINTER) — C(Y-block16+i)g 14
00...0 = C(Y-block16+i)15 26
C(SDWAM(i,j).F) » C(Y-block16+i);7
00 — C(Y-block16+i),g 29
C(SDWAM(i,j).LRU) — C(Y-block16+1i)30 35

MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: The contents of the associative memory are unchanged.

The associative memory is ignored (forced to "no match") during address
preparation.

See Section 3 and Section 5 for description and use of the SDWAM.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

ssdr Store Segment Descriptor Registers 254 (1)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: DPS/L68 processors:

Fori=0,1, ..., 15

Y-pair = Y-block32 + 2i
C(SDWAM(i).ADDR) — C(Y-pair) 23
C(SDWAM(i).R1, R2, R3) — C(Y-pair)y4 32
0000 — C(Y-pair)33,36
C(SDWAM(i).BOUND) — C(Y-pair)37 50
C(SDWAM().R, E, P, U, G, C) — C(Y-pair)s1 57
C(SDWAM(i).CL) — C(Y-pair)sg 71

DPS 8M processors:

This instruction stores 16 double-words from the selected level (j) of
the directory of the Segment Descriptor Word associative memory.
There are four levels.

Level j is selected by C(TPR.CA)11,12
Fori=0,1,..,15
C(SDWAM(i,j).ADDR) - (Y-block32+i)g 23
C(SDWAM(i,j).R1,R2,R3) — C(Y-block32+i)24 32
000 — C(Y-block32+i)33 35
0 - C(Y-block32+i)34
C(SDWAM(i,j).BOUND) — C(Y-block32+i)37 50
C(SDWAM(i,j).R,E,W,P,U,G,C) - C(Y-block32+i)s51 57
C(SDWAM(i,j.).CALL LIMIT) — C(Y-block32+i)s5g 71
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: The contents of the associative memory are unchanged.

The associative memory is ignored (forced to "no match") during address
preparation.

See Section 3 and Section 5 for description and use of the SDWAM.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Privileged - Clear Associative Memory

camp Clear Associative Memory Pages 532 (1)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: DPS/L68 processors:
Fori=90,1, ..., 15
0 - C(PTWAM(i).F)
(i) - C(PTWAM(i).USE)
DPS 8M processors:
If the associative memory is enabled
0 - C(PTWAM.F)
C(PTWAM.LRU) is initialized for all PTWAM registers
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: DPS/L68 processors:

The full/empty bit of each PTWAM register is set to 0, and the usage
counters (PTWAM.USE) are set to their pre-assigned values of 0
through 15. The remainder of C PTWAM(i)) is unchanged .

The execution of this instruction enables the PTWAM if it is disabled
and C(TPR.CA)14,17 = 10.

The execution of this instruction disables the PTWAM if C(TPR.CA)1¢ 17
= 01.

If C(TPR.CA) 5 = 1, a selective clear of cache is executed. Any cache
block for which the upper 14 bits of the directory entry equal
C(PTWAM(i).ADDR)g 13 will have its full/empty bit set to empty.

DPS 8M processors:

The full/empty bit of cache PTWAM register is set to zero and the LRU
counters are initialized. The remainder of the contents of the registers
are unchanged. If the associative memory is disabled, F and LRU are
unchanged.

C(TPR.CA)16,17 control disabling or enabling the associative memory.
This may be done to either or both halves.

C(TPR.CA)13,14 Selection

00 both halves
01 lower half, levels C & D
10 upper half, levels A & B
11 both halves

The selected portion of the associative memory is
-disabled if C(TPR.CA)1g 17 = 01

-enabled if C(TPR.CA)16,17 = 10

If the associative memory is disabled, the execution of two instructions
are required to first enable and then clear it.

C(TPR.CA)15 has no effect on the DPS 8M cache. On previous Multics
processors this bit enabled selective cache clearing (see above).

All processors:

See Section 3 and Section 5 for description and use of the PTWAM.

Attempted execution in normal or BAR modes causes an illegal
procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

cams Clear Associative Memory Segments 532 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: DPS/L.68 processors:
Fori=0,1,..,15
0 - C(SDWAM(i).F)
(i) » C(SDWAM(i).USE)
DPS 8M processors:
If the associative memory is enabled
0 - C(SDWAM.F)
C(SDWAM.LRU) is initialized for all PTWAM registers
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: DPS/L68 processors:

The full/empty bit of each SDWAM register is set to zero, and the usage
counters (SDWAM.USE) are initialized to their pre-assigned values of 0
through 15. The remainder of C(SDWAM(i)) are unchanged.

The execution of this instruction enables the SDWAM if it is disabled
and C(TPR.CA)16,17 = 10.

The execution of this instruction disables the SDWAM if C(TPR.CA)1¢ 17
= 01.

The execution of this instruction sets the full/empty bits of all cache
blocks to empty if C(TPR.CA){5 = 1.

DPS 8M processors:

The full/empty bit of each SDWAM register is set to zero and the LRU
counters are initialized. The remainder of the contents of the registers
are unchanged. If the associative memory is disabled, F and LRU are
unchanged.

C(TPR.CA)16,17 control disabling or enabling the associative memory.
This may be done to either or both halves.

C(TPR.CA)13,14 Selection
00 Both halves
01 Lower half levels C & D

C(TPR.CA);13,14 Selection
10 Upper half, levels A & B
11 Both halves
The selected portion of the associative memory is
-disabled if C(TPR.CA)1¢ 17 = 01

-enabled if C(TPR.CA)16,17 = 10

If the associative memory is disabled, the execution of two instructions
are required to first enable and then clear it.

C(TPR.CA)15 has no effect on the DPS 8M cache. On previous Multics
processors this bit enabled a full cache clear (see above).

All processors:
See Section 3 and Section 5 for description and use of the SDWAM.

Attempted execution in normal or BAR modes causes an illegal
procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Privileged - Configuration and Status

rmcm Read Memory Controller Mask Register 233 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: For the selected system controller (see NOTES):
If the processor has a mask register assigned, then
C(assigned mask register) —» C(AQ)
otherwise, 00...0 - C(AQ)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: (Indicators not listed are not affected)
Zero If C(AQ) = 0, then ON; otherwise OFF
Negative If C(AQ)p = 1, then ON; otherwise OFF
NOTES: The contents of the mask register remain unchanged.
C(TPR.CA)p 2 (C(TPR.CA);, for the DPS 8M processor) specify which
processor port (i.e., which system controller) is used.
Attempted execution in normal or BAR modes causes an illegal procedure
fault.
rscr Read System Controller Register 413 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: The final computed address, C(TPR.CA), is used to select a system

controller and the function to be performed as follows:

Effective Address Function

y0000x C(system controller mode register) - C(AQ)
y0001x C(system controller configuration switches) - C(AQ)
y0002x C(mask register assigned to port 0) - C(AQ)
y0012x C(mask register assigned to port 1) - C(AQ)
y0022x C(mask register assigned to port 2) - C(AQ)
y0032x C(mask register assigned to port 3) - C(AQ)
y0042x C(mask register assigned to port 4) - C(AQ)
y0052x C(mask register assigned to port 5) - C(AQ)
y0062x C(mask register assigned to port 6) - C(AQ)
y0072x C(mask register assigned to port 7) - C(AQ)
y0003x C(interrupt cells) - C(AQ)
y0004x

or C(calendar clock) - C(AQ)

y0005x

Effective Address Function

y0006x
or C(store unit mode register) - C(AQ)
y0007x
where: y = value of C(TPR.CA)(> (C(TPR.CA); ; for the DPS

8M processor) used to select the system controller
x = any octal digit

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: See Section 3 for description and use of the various registers.

For computed addresses y0006x and y0007x, store unit selection is done
by the normal address decoding function of the system controller.

Attempted execution in normal or BAR modes causes an illegal procedure

fault.
Attempted repetition with the rpl instruction causes an illegal procedure
fault.
rsw Read Switches 231 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: The final computed address, C(TPR.CA), is used to select certain processor

switches whose settings are read into the A-register.
The switches selected are as follows:

Effective Address Function

xxxxx0 C(data switches) —» C(A)

xxxxx1 C(configuration switches for ports A, B, C, D)
- C(A)

XXXXX2 DPS/L68 processors:

00...0 - C(A)o 5

C(fault base switches) — C(A)g 12

00...0 » C(A)13,22

C(processor ID) — C(A)23,33

C(processor number switches) — C(A)34 35

DPS 8M processors:
C(Port interface, Ports A-D) - C(A)g 3
01 - C(A)s5
C(Fault base switches) —» C(A)g 12
1-C(A)3
0000 - C(A)14,17
111 - C(A)18,20
00 — C(A)21,22

MODIFICATIONS:

INDICATORS:
Zero
Negative

NOTES:

Effective Address Function
1 - C(A)3
C(Processor mode sw) = C(A)yg
1 - C(A)ys
000 — C(A)26,28
C(Processor speed) — C (A)29 32

C(Processor number switches) - C(A)33 35

XXXXX3 C(configuration switches for ports E, F, G, H)
- C(A) (DPS/L68 processors only)
xxxxx4 00...0 = C(A)g 12

C(port interlace and size switches) — C(A)13 28
00...0 = C(A)29 35
(DPS/L68 processors only)
where: x = any octal digit

All, but none affect instruction execution.

(Indicators not listed are not affected)

If C(A) = 0, then ON; otherwise OFF

If C(A)g = 1, then ON; otherwise OFF

See Section 3 for description and use of the various registers.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Privileged - System Control

cioc Connect I/0 Channel 015 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: The system controller addressed by Y (i.e., contains the word at Y) sends a
connect signal to the port specified by C(Y)33 35.
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: Attempted execution in normal or BAR modes causes an illegal procedure
fault.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
smcm Set Memory Controller Mask Register 553 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: For the selected system controller:
If the processor has a mask register assigned, then
C(AQ) — C(assigned mask register)
otherwise a store fault (not control) occurs.
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: C(TPR.CA)p > (C(TPR.CA);, on the DPS 8M processor) specify which
processor port (i.e., which system controller) is used.
Attempted execution in normal or BAR modes causes an illegal procedure
fault.
Attempted repetition with the rpl instruction causes an illegal procedure
fault.
If the SCU is a 4MW type SCU, the illegal action code 1000 (Not Control
Port) is not used.
smic Set Memory Controller interrupt Cells 451 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: Fori=0,1, ..., 15and C(A)35 = 0:

if C(A); = 1, then set interrupt cell i ON
Fori=0,1, ..., 15and C(A)35 = 1:
if C(A); = 1, then set interrupt cell 16+i ON

MODIFICATIONS:

All except du, dl, ci, sc, scr

INDICATORS: None affected
NOTES: C(TPR.CA)p > (C(TPR.CA);, on a DPS 8M processor) specify which
processor port (i.e., which system controller) is used.
If the processor has no assigned mask register in the selected system
controller, a store fault (not control) occurs.
If the SCU is a 4MW type SCU, the illegal action code 1000 (Not Control
Port) is not used.
Attempted execution in normal or BAR modes causes an illegal procedure
fault.
sscr Set System Controller Register 057 (0)
FORMAT: Basic instruction format (see Figure 4-1).
SUMMARY: The final computed address, C(TPR.CA), is used to select a system
controller and the function to be performed as follows:
Effective Address Function
y0000x C(AQ) — C(system controller mode register)
y0001x C(AQ) — system controller configuration register
(AWM SCU only)
y0002x C(AQ) —»C(mask register assigned to port 0)
y0012x C(AQ) —»C(mask register assigned to port 1)
y0022x C(AQ) —»C(mask register assigned to port 2)
y0032x C(AQ) —C(mask register assigned to port 3)
y0042x C(AQ) —C(mask register assigned to port 4)
y0052x C(AQ) —»C(mask register assigned to port 5)
y0062x C(AQ) —»C(mask register assigned to port 6)
y0072x C(AQ) —C(mask register assigned to port 7)
y0003x C(AQ)g, 15 — C(interrupt cells 0-15)
C(AQ)36,51 — C(interrupt cells 16-31)
Yogg‘b‘ C(AQ) — (calendar clock)
y0005x (for AMW SCU only)
y0006x
or C(AQ) — C(store unit mode register)
y0007x
where: y = value of C(TPR.CA)(» (C(TPR.CA); 5 on the DPS
8M processor) used to select the system controller
x = any octal digit
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: If the processor does not have a mask register assigned in the selected

system controller, a store fault (not control) occurs.

For computed addresses y0006x and y0007x, store unit selection is done
by the normal address decoding function of the system controller.

See Section 3 for description and use of the various registers.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Privileged - Miscellaneous

absa Absolute Address to A-Register 212 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Final main memory address, Y — C(A)g 23
00...0 - C(A)24,35

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF
Negative If C(A)g = 1, then ON; otherwise OFF

NOTES: If the absa instruction is executed in absolute mode, C(A) will be
undefined.
Attempted execution in normal or BAR modes causes an illegal procedure
fault.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

dis Delay Until Interrupt Signal 616 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: No operation takes place, and the processor does not continue with the
next instruction; it waits for a external interrupt signal.

MODIFICATIONS: All, but none affect instruction execution

INDICATORS: None affected

NOTES: Attempted execution in normal or BAR modes causes an illegal procedure

fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EXTENDED INSTRUCTION SET (EIS)

EIS - Address Register Load

aarn Alphanumeric Descriptor to Address Register n 56n (1)

FORMAT:
SUMMARY:

MODIFICATIONS:

INDICATORS:
NOTES:

EIS single-word instruction format (see Figure 4-1).
Forn=20,1, ..., or 7 as determined by operation code
C(Y)p,17 » C(ARn.WORDNO)
If C(Y)21 22 = 00 (TA code = 0), then
C(Y)18,19 ~ C(ARn.CHAR)
0000 —» C(ARn.BITNO)
If C(Y)21,22 = 01 (TA code = 1), then
(6 * C(Y)1820) / 9 » C(ARn.CHAR)
(6 * C(Y)18,20)mod9 — C(ARn.BITNO)
If C(Y)21,22 = 10 (TA code = 2), then
C(Y)18,20/ 2 » C(ARn.CHAR)
4 * (C(Y)18,20)mod2 + 1 = C(ARn.BITNO)
All except du, dl, ci, sc, scr
None affected.

An alphanumeric descriptor is fetched from Y and C(Y)y; 22 (TA field) is
examined to determine the data type described.

If TA = 0 (9-bit data), then C(Y)1g19 goes to C(ARn.CHAR) and zeros fill
C(ARn.BITNO).

If TA = 1 (6-bit data) or TA = 2 (4-bit data), C(Y)1g 20 is appropriately

translated into an equivalent character and bit position that goes to
C(ARn.CHAR) and C(ARn.BITNO) .

If C(Y)21,22 = 11 (TA code = 3) an illegal procedure fault occurs.
If C(Y)3 = 1 an illegal procedure fault occurs.

If C (Y)21,22 = 00 (TA code = 0) and C(Y)29 = 1 an illegal procedure fault
occurs.

If C(Y)2122 = 01 (TA code = 1) and C(Y)1820 = 110 or 111 an illegal
procedure fault occurs.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

larn Load Address Register n 76n (1)

FORMAT:

EIS single-word instruction format (see Figure 4-1).

SUMMARY: Forn=0,1, ..., or 7 as determined by operation code
C(Y)0,23 i C(AR_'[])
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected.
NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
lareg Load Address Registers 463 (1)
FORMAT: EIS single-word instruction format (see Figure 4-1).
SUMMARY: Fori=0,1, .., 7
C(Y-block8+i)g 23 = C(ARI)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected.
NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
1pl Load Pointers and Lengths 467 (1)
FORMAT: EIS single-word instruction format (see Figure 4-1).
SUMMARY: C(Y-block8) — C(decimal unit data)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected
NOTES: See Section 3 for description and use of decimal unit data .
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
narn Numeric Descriptor to Address Register n 66n (1)
FORMAT: EIS single-word instruction format (see Figure 4-1).
SUMMARY: Forn=20,1, ..., or 7 as determined by operation code

C(Y)p,17 » C(ARn.WORDNO)
If C(Y)21 = 0 (TN code = 0), then
C(Y)18,20 ~ C(ARn.CHAR)
0000 — C(ARn.BITNO)
If C(Y)y; =1 (TN code = 1), then
(C(Y)18.20) / 2 ~ C(ARn.CHAR)
4 *(C(Y)18,20)mod2 + 1 = C(ARn.BITNO)

MODIFICATIONS:
INDICATORS:
NOTES:

All except du, dl, ci, sc, scr
None affected

A numeric descriptor is fetched from Y and C(Y)y; (TN bit) is examined.

If TN = 0 (9-bit data), then C(Y);g 19 goes to C(ARn.CHAR) and zeros fill
C(ARn.BITNO).

If TN = 1 (4-bit data), C(Y) is appropriately translated to an equivalent
character and bit position that goes to C(ARn.CHAR) and C(ARn.BITNO).

If C(Y)21 = 0 (TN code = 0) and C(Y)y9 = 1 an illegal procedure fault
occurs.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Address Register Store

aran Address Register n to Alphanumeric Descriptor 54n (1)

FORMAT:
SUMMARY:

MODIFICATIONS:

INDICATORS:
NOTES:

EIS single-word instruction format (see Figure 4-1).
Forn=0,1, ..., or 7 as determined by operation code
C(ARn.WORDNO) - C(Y)g 17
If C(Y)21,22 = 00 (TA code = 0), then
C(ARn.CHAR) - C(Y)18,19
0 - C(Y)20
If C(Y)21,22 = 01 (TA code = 1), then
(9 * C(ARn.CHAR) + C(ARn.BITNO)) / 6 » C(Y)18,20
If C(Y)21,22 = 10 (TA code = 2), then
(9 * C(ARn.CHAR) + C(ARn.BITNO) -1) /4 - C(Y)1g20
All except du, dl, ci, sc, scr
None affected
This instruction is the inverse of the aarn instruction.

The alphanumeric descriptor is fetched from Y and C(Y);q 22 (TA field) is
examined to determine the data type described.

If TA = 0 (9-bit data), C(ARn.CHAR) goes to C(Y)1g 19.
If TA = 1 (6-bit data) or TA = 2 (4-bit data), C(ARn.CHAR) and

C(ARn.BITNO) are translated to an equivalent character position that goes
to C(Y)18,20-

If C(Y)2122 = 11 (TA code = 3) or C(Y)y3 = 1 (unused bit), an illegal
procedure fault occurs.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

arnn Address Register n to Numeric Descriptor 64n (1)

FORMAT:
SUMMARY:

EIS single-word instruction format (see Figure 4-1).
Forn=0,1, ..., or 7 as determined by operation code
C(ARn.WORDNO) — C(Y)g 17
If C(Y)21 = 0 (TN code = 0), then
C(ARn.CHAR) - C(Y)18,19
0-C(¥)20
If C(Y)p1 =1 (TN code = 1), then
(9 * C(ARn.CHAR) + C(ARn.BITNO) -1) /4 - C(Y)15,20

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: This instruction is the inverse of the narn instruction.
The numeric descriptor is fetched from Y and C(Y),; (TN bit) is examined.
If TN = 0 (9-bit data), then C(ARn.CHAR) goes to C(Y)1g 19.

If TN = 1 (4-bit data), then C(ARn.CHAR) and C(ARn.BITNO) are
translated to an equivalent character position that goes to C(Y)13 20.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sarn Store Address Register n 74n (1)
FORMAT: EIS single-word instruction format (see Figure 4-1).
SUMMARY: Forn=0, 1, ..., or 7 as determined by operation code

C(ARn) - C(Y)g 23

C(Y)24 35 — unchanged
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sareg Store Address Registers 443 (1)
FORMAT: EIS single-word instruction format (see Figure 4-1).
SUMMARY: Fori=0,1,..,7

C(ARi) — C(Y-block8+i)g 23

00...0 - C(Y-block8+1i)24 35
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

spl Store Pointers and Lengths 447 (1)
FORMAT: EIS single-word instruction format (see Figure 4-1).
SUMMARY: C(decimal unit data) —» C(Y-block8)
MODIFICATIONS: All except du, dl, ci, sc, scr
INDICATORS: None affected

NOTES: See Section 3 for description and use of decimal unit data .

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Address Register Special Arithmetic

adbd Add 4-bit Displacement to Address Register 502 (1)
FORMAT:
0 00 11 222333 3
0 23 7 8 789012 5
ARn ADDRESS OPCODE 1|A|0 0| REG
3 15 1011 2 4

Figure 4-12. EIS Address Register Special Arithmetic Instruction Format

ARn Number of address register selected
ADDRESS Literal word displacement value

OPCODE Instruction operation code

I Interrupt inhibit bit

A Use address register contents flag

REG Any register modification except du, dl, ic

ALM Coding Format:

For A =0,

ForA =1,
SUMMARY:
MODIFICATIONS:
INDICATORS:
NOTES:

adbdx PRn|offset,modifier
adbd PRn|offset,modifier
If A =0, then

ADDRESS + C(REG) /4 - C(ARn.WORDNO)
C(REG)mo0d4 — C(ARn.CHAR)
4 * C(REG)poq2 + 1 » C(ARn.BITNO)
IfA =1, then
C(ARn.WORDNO) + ADDRESS + (9 * C(ARn.CHAR)
+ 4 * C(REG) + C(ARn.BITNO)) / 36 - C(ARn.WORDNO)
((9 * C(ARn.CHAR) + 4 * C(REG) +
C(ARn.BITNO))mod36) / 9 » C(ARn.CHAR)
4 * (C(ARn.CHAR) + 2 * C(REG) +
C(ARn.BITNO) / 4)moq2 + 1 = C(ARn.BITNO)
None except au, qu, al, ql, xn
None affected

The steps described in SUMMARY define special 4-bit addition arithmetic
for ADDRESS, C(REG), C(ARn.WORDNO), C(ARn.CHAR), and
C(ARn.BITNO).

C(REG) is always treated as a count of 4-bit characters.

The use of an address register is inherent; the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

a6hd Add 6-bit Displacement to Address Register 501 (1)
FORMAT: EIS address register special arithmetic instruction format (see Figure
4-12).

ALM Coding Format:

For A =0, abbdx PRn|offset,modifier
ForA =1, abbd PRn|offset,modifier
SUMMARY: If A= 0, then

ADDRESS + C(REG) / 6 - C(ARn.WORDNO)
((6 * C(REG))mod3e) / 9 » C(ARn.CHAR)
(6 * C(REG))p0d9 — C(ARN.BITNO)
IfA =1, then
C(ARn.WORDNO) + ADDRESS + (9 * C(ARn.CHAR) +
6 * C(REG) + C(ARn.BITNO)) / 36 - C(ARn.WORDNO)
((9 * C(ARn.CHAR) + 6 * C(REG) +
C(ARn.BITNO))m0436) / 9 = C(ARn.CHAR)
(9 * C(ARn.CHAR) + 6 * C(REG) +
C(ARn.BITNO))yod9 — C(ARn.BITNO)
MODIFICATIONS: None except au, qu, al, ql, xn
INDICATORS: None affected

NOTES: The steps described in SUMMARY define special 6-bit addition arithmetic
for ADDRESS, C(REG), C(ARn.WORDNO), C(ARn.CHAR), and
C(ARn.BITNO).

C(REQG) is always treated as a count of 6-bit characters.

The use of an address register is inherent; the value of bit 29 in the
instruction word affects address preparation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

a9hd Add 9-bit Displacement to Address Register 500 (1)
FORMAT: EIS address register special arithmetic instruction format (see Figure

4-12).

ALM Coding Format:

For A =0, a9bdx PRn|offset,modifier
For A =1, aghd PRn|offset,modifier
SUMMARY: If A =0, then

ADDRESS + C(REG) / 4 -» C(ARn.WORDNO)
C(REG)p44 — C(ARn.CHAR)
IfA =1, then
C(ARn.WORDNO) + ADDRESS +
(C(REG) + C(ARn.CHAR)) / 4 - C(ARn.WORDNO)
(C(ARn.CHAR) + C(REG))m0d4 — C(ARn.CHAR)

0000 - C(ARn.BITNO)
MODIFICATIONS: None except au, qu, al, ql, xn
INDICATORS: None affected

NOTES: The steps described in SUMMARY define special 9-bit addition arithmetic
for ADDRESS, C(REG), C(ARn.WORDNO), and C(ARn.CHAR).

C(REQG) is always treated as a count of 9-bit bytes.

The use of an address register is inherent; the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

abd Add Bit Displacement to Address Register 503 (1)
FORMAT: EIS address register special arithmetic instruction format (see Figure
4-12).

ALM Coding Format:

For A =0, abdx PRn|offset,modifier
For A =1, abd PRn|offset,modifier
SUMMARY: If A =0, then

ADDRESS + C(REG) / 36 - C(ARn.WORDNO)
(C(REG)m0d36) / 9 = C(ARn.CHAR)

C(REG) 049 — C(ARD.BITNO)

IfA =1, then
C(ARn.WORDNO) + ADDRESS + (9 * C(ARn.CHAR)
+ 36 * C(REG) + C(ARn.BITNO)) / 36 - C(ARn.WORDNO)
((9 * C(ARn.CHAR) + 36 * C(REG) +
C(ARn.BITNO))m0d36) / 9 @ C(ARn.CHAR)
(9 * C(ARn.CHAR) + 36 * C(REG) +
C(ARN.BITNO))n049 — C(ARN.BITNO)
MODIFICATIONS: None except au, qu, al, ql, xn
INDICATORS: None affected

NOTES: The steps described in SUMMARY define special bit addition arithmetic for
ADDRESS, C(REG), C(ARn.WORDNO), C(ARn.CHAR), and C(ARn.BITNO).

C(REG) is always treated as a bit count.

The use of an address register is inherent; the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

awd Add Word Displacement to Address Register 507 (1)
FORMAT: EIS address register special arithmetic instruction format (see Figure
4-12).
ALM Coding Format:
For A =0, awdx PRn|offset,modifier
ForA =1, awd PRn|offset,modifier
SUMMARY: If A =0, then
ADDRESS + C(REG) - C(ARn.WORDNO)
If A =1, then

C(ARn.WORDNO) + ADDRESS + C(REG) - C(ARn.WORDNO)
00 —» C(ARn.CHAR)
0000 - C(ARn.BITNO)
MODIFICATIONS: None except au, qu, al, ql, xn
INDICATORS: None affected

NOTES: The use of an address register is inherent; the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

C(REG) is always treated as a word count.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

s4bd Subtract 4-bit Displacement from Address 522 (1)

Register
FORMAT: EIS address register special arithmetic instruction format (see Figure
4-12).

ALM Coding Format:

For A =0, s4bdx PRn|offset,modifier
For A =1, s4bd PRn|offset,modifier
SUMMARY: If A =0, then

- (ADDRESS + C(REG) / Ah) - C(ARn.WORDNO)

- C(REG)moq4 — C(ARn.CHAR)

-4 * C(REG) 042 + 1 » C(ARn.BITNO)

IfA =1, then

C(ARn.WORDNO) - ADDRESS + (9 * C(ARn.CHAR)
-4 * C(REG) + C(ARn.BITNO)) / 36 - C(ARn.WORDNO)

((9 * C(ARn.CHAR) - 4 * C(REG) +
C(ARn.BITNO))mod36) / 9 = C(ARn.CHAR)

4 * (C(ARn.CHAR) - 2 * C(REG) +
C(ARn.BITNO) / 4)moq2 + 1 = C(ARn.BITNO)

MODIFICATIONS: None except au, qu, al, ql, xn

INDICATORS: None affected

NOTES: The steps described in SUMMARY define special 4-bit subtraction
arithmetic for ADDRESS, C(REG), C(ARn.WORDNO), C(ARn.CHAR), and
C(ARn.BITNO).

C(REG) is always treated as a count of 4-bit characters.

The use of an address register is inherent; the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

s6bd Subtract 6-bit Displacement from Address 521 (1)
Register
FORMAT: EIS address register special arithmetic instruction format (see Figure
4-12).

ALM Coding Format:

For A =0, s6bdx PRn|offset,modifier
For A =1, s6bd PRn|offset,modifier

SUMMARY: If A =0, then
- (ADDRESS + C(REG) / 6) - C(ARn.WORDNO)
- ((6 * C(REG))mod36) / 9 » C(ARn.CHAR)
- (6 * C(REG))modo = C(ARn.BITNO)
IfA =1, then
C(ARn.WORDNO) - ADDRESS + (9 * C(ARn.CHAR)
- 6 * C(REG) + C(ARn.BITNO)) / 36 - C(ARn.WORDNO)
((9 * C(ARn.CHAR) - 6 * C(REG) +
C(ARn.BITNO))mo436) / 9 @ C(ARn.CHAR)
(9 * C(ARn.CHAR) - 6 * C(REG) +
C(ARn.BITNO))m0d49 = C(ARn.BITNO)
MODIFICATIONS: None except au, qu, al, ql, xn
INDICATORS: None affected

NOTES: The steps described in SUMMARY define special 6-bit subtraction
arithmetic for ADDRESS, C(REG), C(ARn.WORDNO), C(ARn.CHAR), and
C(ARn.BITNO).

C(REG) is always treated as a count of 6-bit characters.

The use of an address register is inherent; the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

s9bd Subtract 9-bit Displacement from Address 520 (1)
Register
FORMAT: EIS address register special arithmetic instruction format (see Figure
4-12).

ALM Coding Format:

For A =0, s9bdx PRn|offset,modifier
For A =1, s9bd PRn|offset,modifier
SUMMARY: If A =0, then

- (ADDRESS + C(REG) / 4) - C(ARn.WORDNO)
- C(REG)modq — C(ARN.CHAR)

IfA =1, then
C(ARn.WORDNO) - ADDRESS +

(C(ARn.CHAR) - C(REG)) / 4 - C(ARn.WORDNO)

(C(ARn.CHAR) - C(REG))y0q4 ~ C(ARn.CHAR)

0000 —» C(ARn.BITNO)

MODIFICATIONS: None except au, qu, al, qu, xn

INDICATORS:
NOTES:

None affected

The steps described in SUMMARY define special 9-bit subtraction
arithmetic for ADDRESS, C(REG), C(ARn.WORDNO), and C(ARn.CHAR).

C(REQG) is always treated as a count of 9-bit bytes.

The use of an address register is inherent: the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

shd Subtract Bit Displacement from Address 523 (1)
Register

FORMAT:

EIS address register special arithmetic instruction format (see Figure
4-12).

ALM Coding Format:

For A =0,

For A =1,
SUMMARY:
MODIFICATIONS:
INDICATORS:
NOTES:

sbdx PRn|offset,modifier
sbd PRn|offset,modifier
If A =0, then

- (ADDRESS + C(REG) / 36) » C(ARn.WORDNO)
- (C(REG)pod36) / 9 » C(ARn.CHAR)
- C(REG)0d9 — C(ARn.BITNO)
IfA =1, then
C(ARn.WORDNO) - ADDRESS + (9 * C(ARn.CHAR)
- 36 * C(REG) + C(ARn.BITNO)) / 36 - C(ARn.WORDNO)
((9 * C(ARn.CHAR) - 36 * C(REG) +
C(ARn.BITNO))mo436) / 9 » C(ARn.CHAR)
(9 * C(ARn.CHAR) - 36 * C(REG) +
C(ARn.BITNO))mod9 —» C(ARn.BITNO)
None except au, qu, al, ql, xn
None affected

The steps described in SUMMARY define special bit subtraction arithmetic
for ADDRESS, C(REG), C(ARn.WORDNO), C(ARn.CHAR), and
C(ARn.BITNO).

C(REG) is always treated as a bit count.

The use of an address register is inherent; the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

swd Subtract Word Displacement from Address 527 (1)
Register

FORMAT:

EIS address register special arithmetic instruction format (see Figure
4-12).

ALM Coding Format:

For A =0,

ForA =1,
SUMMARY:
MODIFICATIONS:
INDICATORS:
NOTES:

swdx PRn|offset,modifier
swd PRn|offset,modifier
If A =0, then
- (ADDRESS + C(REG)) - C(ARn.WORDNO)
IfA =1, then

C(ARn.WORDNO) - (ADDRESS + C(REG)) - C(ARn.WORDNO)
00 —» C(ARn.CHAR)
0000 - C(ARn.BITNO)
None except au, qu, al, ql, xn
None affected

The use of an address register is inherent; the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Alphanumeric Compare

cmpc Compare Alphanumeric Character Strings 106 (1)
FORMAT:
0 0011 11 22222 2 22 3
0 8901 7 8 01234 7 89 5
FILL 00 MF2 106 (1) I MF1
9 2 7 10 1 7
Y-charnl CN1 |TA1 (O N1
21
Y-charn2 CN2 |0 0 O N2
18 3 3 12
Figure 4-13. Compare Alphanumeric Character Strings (cmpc)
EIS Multiword Instruction Format
FILL Fill character for string extension
MF1 Modification field for operand descriptor 1
MF2 Modification field for operand descriptor 2
I Interrupt inhibit bit
Y-charnl Address of left-hand string
CN1 First character position of left-hand string
TA1 Data type of left-hand string
N1 Length of left-hand string
Y-charn2 Address of right-hand string
CN2 First character position of right-hand string
N2 Length of right-hand string

AILM Coding Format:

cmpc
descna
descna

SUMMARY:

(MF1), (MF2)[,fill(octalexpression)]
Y-charnl[(CN1)]1,N1
Y-charn2[(CN2)],N2

Fori=1, 2, ..., minimum (N1,N2)

C(Y-charnl);.1 :: C(Y-charn2);

If N1 < N2, then fori = N1+1, N1+2, ..., N2

C(FILL) :: C(Y-charn2);4

n=4,6,or9 (TA1=2,1, or 0)
n=4,6, or 9 (TA2 is ignored)

MODIFICATIONS:

INDICATORS:

Zero
Carry
NOTES:

If N1 > N2, then fori = N2+1, N2+2, ..., N1
C(Y-charnl);1 :: C(FILL)
None except au, qu, al, ql, xn for MF1 and MF2
(Indicators not listed are not affected)
If C(Y-charnl);.; = C(Y-charn2);.; for all i, then ON; otherwise, OFF
If C(Y-charnl);.; < C(Y-charn2);.; for any i, then OFF; otherwise ON

Both strings are treated as the data type given for the left-hand string,
TA1. A data type given for the right-hand string, TA2, is ignored.

Comparison is made on full 9-bit fields. If the given data type is not 9-bit
(TA1 = 0), then characters from C(Y-charnl) and C(Y-charn2) are high-
order zero filled. All 9 bits of C(FILL) are used.

Instruction execution proceeds until an inequality is found or the larger
string length count is exhausted.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

scd Scan Characters Double 120 (1)

FORMAT:

0
0

1 2 2
1 1 2

O N
o w

2 2 2
0 3 4 7 8

-
0 =

1
0

00000OO0OO0OO0OO0OOO MF2 120 (1) I MF1

11 7 10 1 7
Y-charnl CN1 |TA1|O N1

21 12
Y-charn2 CN2 [00OOO0OO0OOO0OO0OOOOOOO

3 15
Y3 000O0OOOOOOOO|A|IOO REG

18 11 1 2 4

Figure 4-14. Scan Characters Double (scd) EIS Multiword Instruction Format

MF1 Modification field for operand descriptor 1
MF?2 Modification field for operand descriptor 2
I Interrupt inhibit bit

Y-charnl Address of string

CN1

TA1

N1
Y-charn2
CN2

Y3

A

REG

First character position of string

Data type of string

Length of string

Address of test character pair

First character position of test character pair
Address of compare count word

Indirect via pointer register flag for Y3

Register modifier for Y3

AILM Coding Format:

scd
descna
descna
arg

SUMMARY:

(MF1), (MF2)

Y-charnl[(CN1)],N1 n=4,6,or9(TA1 =2,1,0r0)
Y-charn2[(CN2)] n=4,6, or9 (TA2 is ignored)
Y3[,tagl

Fori=1, 2, ..., N1-1
C(Y-charnl);.q ; :: C(Y-charn2)g {
On instruction completion, if a match was found:
00...0 - C(Y3)o,11
i-1 - C(Y3)12,35
If no match was found:
00...0 - C(Y3)g,11
N1-1- C(Y3)12,35

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and REG

None except du, au, qu, al, ql, xn for MF2

INDICATORS: (Indicators not listed are not affected)
Tally runout If the string length count is exhausted without a match, or if N1 = 1, then
ON; otherwise OFF
NOTES: Both the string and the test character pair are treated as the data type

given for the string, TAl. A data type given for the test character pair,
TA2, is ignored.

Instruction execution proceeds until a character pair match is found or the
string length count is exhausted.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

If MF2.ID = 0 and MF2.REG = du, then the second word following the
instruction word does not contain an operand descriptor for the test
character pair; instead, it contains the test character pair as a direct upper
operand in bits 0,17.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

scdr Scan Characters Double in Reverse 121 (1)
FORMAT: Same as Scan Characters Double (scd) format (see Figure 4-14).
SUMMARY: Fori=1,2,.., N1-1

C(Y-charnl)yi.j-1 N1-i :: C(Y-charn2)g 1
On instruction completion, if a match was found:
00...0 - C(Y3)0,11
i-1 - C(Y3)12,35
If no match was found:
00...0 - C(Y3)0,11
N1-1 - C(Y3)12,35
MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and REG
None except du, au, qu, al, ql, xn for MF2
INDICATORS: (Indicators not listed are not affected)

Tally runout

NOTES:

If the string length count is exhausted without a match, or if N1 = 1, then
ON; otherwise OFF

Both the string and the test character pair are treated as the data type
given for the string, TAl. A data type given for the test character pair,
TA2, is ignored.

Instruction execution proceeds until a character pair match is found or the
string length count is exhausted.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor .

If MF2.ID = 0 and MF2.REG = du, then the second word following the
instruction word does not contain an operand descriptor for the test
character pair; instead, it contains the test character pair as a direct upper
operand in bits 0, 17.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

scm Scan with Mask 124 (1)

FORMAT:

0 0011 11 222272 222333 3
0 8 901 7 8 01234 789012 5
MASK 00 MF2 124 (1) I MF1
9 2 7 10 1 7

Y-charnl CN1 |TA1|O N1
21 12
Y-charn2 CN2 |1000O0OO0OO0OOOOOOOOOO
3 15
Y3 000O0O0OO0OOOODQOfA]JOO REG
18 11 1 2 4

Figure 4-15. Scan with Mask (scm) EIS Multiword Instruction Format

MASK Comparison bit mask

MF1 Modification field for operand descriptor 1
MF?2 Modification field for operand descriptor 2
I Interrupt inhibit bit

Y-charnl Address of string

CN1 First character position of string

TA1 Data type of string

N1 Length of string

Y- charn2 Address of test character

CN2 First character position of test character
Y3 Address of compare count word

A Indirect via pointer register flag for Y3
REG Register modifier for Y3

AILM Coding Format:

scm (MF1), (MF2)[,mask(octalexpression)]
descna Y-charnl[(CN1)],N1 n=4,6,or9(TA1=2,1,0r0)
descna Y-charn2[(CN2)] n=4,6,or9 (TA2 is ignored)
arg Y3[,tag]

SUMMARY: For charactersi =1, 2, ..., N1

Forbitsj=0,1, ..., 8
C(Z)j = ~C(MASK)J~ & ((C(Y-charnl);q)j ® (C(Y—charnZ)o)j)

If C(Z)g,g = 00...0, then
00...0 - C(Y3)0,11
i-1 - C(Y3)12,35
otherwise, continue scan of C(Y-charnl)
If a masked character match was not found, then
00...0 - C(Y3)0,11
N1 - C(Y3)12,35

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and REG
None except du, au, qu, al, ql, xn for MF2

INDICATORS: (Indicators not listed are not affected)

Tally runout If the string length count exhausts, then ON; otherwise, OFF

NOTES: Both the string and the test character pair are treated as the data type
given for the string, TAl. A data type given for the test character pair,
TA2, is ignored.
1 bits in C(MASK) specify those bits of each character that will not take
part in the masked comparison.
Instruction execution proceeds until a masked character match is found or
the string length count is exhausted.
Masking and comparison is done on full 9-bit fields. If the given data type
is not 9-bit (TA1 = 0), then characters from C(Y-charnl) and C(Y-charn2)
are high-order zero filled. All 9 bits of C(MASK) are used.
If MF1.RL = 1, then N1 does not contain the operand length; instead, it
contains a register code for a register holding the operand length.
If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.
If MF2.ID = 0 and MF2.REG = du, then the second word following the
instruction word does not contain an operand descriptor for the test
character; instead, it contains the test character as a direct upper operand
in bits 0,8.
Attempted execution with the xed instruction causes an illegal procedure
fault.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

scmr Scan with Mask in Reverse 125 (1)
FORMAT: Same as Scan with Mask (scm) format (see Figure 4-15).
SUMMARY: For charactersi =1, 2, ..., N1

Forbitsj=0,1, ..., 8
C(2); = ~C(MASK); & ((C(Y-charnl)n.y); ® (C(Y-charn2)g);)

MODIFICATIONS:

INDICATORS:
Tally runout
NOTES:

If C(Z)g,g = 00...0, then
00...0 - C(Y3)0,11
i-1 - C(Y3)12,35
otherwise, continue scan of C(Y-charnl)
If a masked character match was not found, then
00...0 - C(Y3)0,11
N1 - C(Y3)12,35
None except au, qu, al, ql, xn for MF1 and REG
None except du, au, qu, al, ql, xn for MF2
(Indicators not listed are not affected)
If the string length count exhausts, then ON; otherwise, OFF

Both the string and the test character are treated as the data type given
for the string, TAl. A data type given for the test character, TA2, is
ignored.

1 bits in C(MASK) specify those bits of each character that will not take
part in the masked comparison.

Instruction execution proceeds until a masked character match is found or
the string length count is exhausted.

Masking and comparison is done on full 9-bit fields. If the given data type
is not 9-bit (TA1 = 0), then characters from C(Y-charnl) and C(Y-charn2)
are high-order zero filled. All 9 bits of C(MASK) are used.

If MF1.RL = 1, then N1 does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

If MF2.ID = 0 and MF2.REG = du, then the second word following the
instruction word does not contain an operand descriptor for the test
character; instead, it contains the test character as a direct upper operand
in bits 0,8.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tct Test Character and Translate 164 (1)

FORMAT:
0 11 22222 222333 3
0 7 8 01234 789012 8]
00000O0O0O0D0ODO0ODOOOOOOOODO 164 (1) I MF1
10 1 7
Y-charnl CN1 [TA1]0 N1
3 21 12
Y-char92 00O0O0OO0OOOOO®O[A|[O O REG
Y3 000O0OO0OO0OO0OOOOOJ]A|IOO REG
18 11 1 2 4
Figure 4-16. Test Character and Translate (tct)
EIS Multiword Instruction Format
MF1 Modification field for operand descriptor 1
I Interrupt inhibit bit
Y-charnl Address of string
CN1 First character position of string
TA1 Data type of string
N1 Length of string
Y-char92 Address of character translation table
Y3 Address of result word
A Indirect via pointer register flag for Y2 and Y3
REG Register modifier for Y2 and Y3
ALM Coding Format:
tct (MF1)
descna Y-charnl[(CN1)],N1 n=4,6,or9(TA1=2,1,0r0)
arg Y-char92[,tagl
arg Y3[,tagl
SUMMARY: Fori=1,2,.. N1

m = C(Y-charnl);,

If C(Y-char92),, = 00...0, then
C(Y-char92),, —» C(Y3)ps
000 - C(Y3)9g,11
i-1 - C(Y3)12,35

otherwise, continue scan of C(Y-charnl)

If a non-zero table entry was not found, then
00...0 - C(Y3)0111
Nl - C(Y3)1213

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2
INDICATORS: (Indicators not listed are not affected)
Tally runout If the string length count exhausts, then ON; otherwise, OFF
NOTES: If the data type of the string to be scanned is not 9-bit (TA1 # 0), then
characters from C(Y-charnl) are high-order zero filled in forming the table
index, m.
Instruction execution proceeds until a non-zero table entry is found or the
string length count is exhausted.
If MF1.RL = 1, then N1 does not contain the operand length; instead, it
contains a register code for a register holding the operand length.
If MF1.ID = 1, then the first word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.
Attempted execution with the xed instruction causes an illegal procedure
fault.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
The character number of Y-char92 must be zero, i.e., Y-char92 must start
on a word boundary.
If a non-zero table entry was not found, then
00...0 - C(Y3)0'11
N1 - C(Y3)12,:35
tctr Test Character and Translate in Reverse 165 (1)
FORMAT: Same as Test Character and Translate (tct) format (see Figure 4-16).
SUMMARY: Fori=1, 2, ..., N1
m = C(Y-charnl)yq
If C(Y-char92),, # 00...0, then
C(Y-char92),, — C(Y3)p,8
000 - C(Y3)9,11
i-1 - C(Y3)12,35
otherwise, continue scan of C(Y-charnl)
If a non-zero table entry was not found, then
00...0 - C(Y3)0,11
N1 - C(Y3)12,35
MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and REG
INDICATORS: (Indicators not listed are not affected)

Tally runout

If the string length count exhausts, then ON; otherwise, OFF

NOTES:

If the data type of the string to be scanned is not 9-bit (TA1 % 0), then
characters from C(Y-charnl) are high-order zero filled in forming the table
index, m.

Instruction execution proceeds until a non-zero table entry is found or the
string length count is exhausted.

If MF1.RL = 1, then N1 does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MF1.ID = 1, then the first word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Alphanumeric Move

mlr Move Alphanumeric Left to Right 100 (1)
FORMAT:
0 0011 11 22222 222 3
0 890 1 78 01234 7 89 5
FILL T|0 MF2 100 (1) I MF1

9 1 1 7 10 1 7

Y-charnl CN1 |TA1|O N1

Y-charn2

CN2 |TA2]|0 N2

18 3 21 12

Figure 4-17. Move Alphanumeric Left to Right (mlr)
EIS Multiword Instruction Format

FILL Fill character for string extension

T Truncation fault enable bit

MF1 Modification field for operand descriptor 1
MF?2 Modification field for operand descriptor 2
Y-charnl Address of sending string

CN1 First character position of sending string
TA1 Data type of sending string

N1 Length of sending string

Y- charn2 Address of receiving string

CN2 First character position of receiving string
TA2 Data type of receiving string

N2 Length of receiving string

ALM Coding Format:

mlr (MF1), (MF2)[,fill(octalexpression)][,enablefault]

descna Y-charnl[(CN1)]1,N1 n=4,6,or9(TA1=2,1,0r0)

descna Y-charn2[(CN2)]1,N2 n=4,6,or9(TA2=2,1,0r0)
SUMMARY: Fori=1, 2, ..., minimum (N1,N2)

C(Y-charnl);.; — C(Y-charn2);
If N1 < N2, then fori = N1+1, N1+2, ..., N2
C(FILL) —» C(Y-charn2);

MODIFICATIONS:
INDICATORS:

Truncation
NOTES:

None except au, qu, al, ql, xn for MF1 and MF2
(Indicators not listed are not affected)
If N1 > N2 then ON; otherwise OFF

If data types are dissimilar (TAl1 # TAZ2), each character is high-order
truncated or zero filled, as appropriate, as it is moved. No character
conversion takes place.

If N1 > N2, then (N1-N2) trailing characters of C(Y-charnl) are not moved
and the truncation indicator is set ON.

If N1 < N2 and TA2, = 2 (4-bit data) or 1 (6-bit data), then FILL characters
are high-order truncated as they are moved to C(Y-charn2). No character
conversion takes place.

If N1 < N2, C(FILL)y = 1, TA1l = 1, and TA2 = 2, then C(Y-charnl)yi.1 is
examined for a GBCD overpunch sign. If a negative overpunch sign is
found, then the minus sign character is placed in C(Y-charn2)yy.1;
otherwise, a plus sign character is placed in C(Y-charn2)y;.-1-

If MFkRL = 1,, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charnl) and C(Y-charn2) may be overlapping strings; no check is
made. This feature is useful for replication of substrings within a larger
string, but care must be exercised in the construction of the operand
descriptors so that sending string, C(Y-charnl), data is not inadvertently
destroyed.

The user of string replication or overlaying is warned that the decimal unit
addresses the main memory in unaligned (not on modulo 8 boundary) units
of Y-block8 words and that the overlayed string, C(Y-charn?), is not
returned to main memory until the unit of Y-block8 words is filled or the
instruction completes.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

mrl Move Alphanumeric Right to Left 101 (1)

FORMAT:
SUMMARY:

MODIFICATIONS:
INDICATORS:

Truncation

Same as Move Alphanumeric Left to Right (mlr) format (see Figure 4-17).
Fori=1, 2, ..., minimum (N1,N2)
C(Y-charnl)yg.i = C(Y-charn2)yo.i
If N1 < N2, then fori = N1+1, N1+2, ..., N2
C(FILL) — C(Y-charn2)yo.i
None except au, qu, al, ql, xn for MF1 and MF2
(Indicators not list,ed are not affected)
If N1 > N2 then ON; otherwise OFF

NOTES:

mve

If data types are dissimilar (TAl1 = TAZ2), each character is high-order
truncated or zero filled, as appropriate, as it is moved. No character
conversion takes place.

If N1 > N2, then (N1-N2) leading characters of C(Y-charnl) are not moved
and the truncation indicator is set ON.

If N1 < N2 and TA2 = 2 (4-bit data) or 1 (6-bit data), then FILL characters
are high-order truncated as they are moved to C(Y-charn2). No character
conversion takes place.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charnl) and C(Y-charn2) may be overlapping strings; no check is
made. This feature is useful for replication of substrings within a larger
string, but care must be exercised in the construction of the operand
descriptors so that sending string, C(Y-charnl), data is not inadvertently
destroyed.

The user of string replication or overlaying is warned that the decimal unit
addresses the main memory in unaligned (not on modulo 8 boundary) units
of Y-block8 words and that the overlayed string, C(Y-charn2), is not
returned to main memory until the unit of Y-block8 words is filled or the
instruction completes.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Move Alphanumeric Edited 020 (1)

FORMAT:

[eNe)

—= O
N O

00 1 2 2
8 9 1 1 2

NN
N
O N
(93]

2 2 2
0 3 4

-
0 =

1
0

[e)
[e)

MF3

00 MF2 020 (1) I MF1

7 2 7 10 1 7
Y-charnl CN1 |TA1|O N1

Y-char92 CN2 |0 0 N2

o w|l ©

Y-charn3 CN3 |TA3 N3

18 3 21 12

Figure 4-18. Move Alphanumeric Edited (mve)

EIS Multiword Instruction Format

MF1 Modification field for operand descriptor 1

MF?2 Modification field for operand descriptor 2
MF3 Modification field for operand descriptor 3
I Interrupt inhibit bit

Y-charnl Address of sending string

CN1 First character position of sending string
TA1 Data type of sending string

N1 Length of sending string

Y-char92 Address of MOP control string

CN2 First character position of MOP control string
N2 Length of MOP control string

Y-charn3 Address of receiving string

CN3 First character position of receiving string
TA3 Data type of receiving string

N3 Length of receiving string

ALM Coding Format:

mve
descna
desc9a
descna

SUMMARY:

MODIFICATIONS:
INDICATORS:
NOTES:

(MF1), (MF2), (MF3)

Y-charnl[(CN1)],N1 n=4,6,or9(TA1=2,1,0r0)
Y-char92[(CN2)]1,N2
Y-charn3[(CN3)1,N3 n=4,6,or9(TA3=2,1,0r0)

C(Y-charnl) — C(Y-charn3) under C(Y-char92) MOP control

See "Micro Operations for Edit Instructions" later in this section for details
of editing under MOP control.

None except au, qu, al, ql, xn for MF1, MF2, and MF3
None affected

If data types are dissimilar (TA1 # TA3), each character of C(Y-charnl) is
high-order truncated or zero filled, as appropriate, as it is moved. No
character conversion takes place.

If the data type of the receiving string is not 9-bit (TA3 = 0), then insertion
characters are high-order truncated as they are inserted.

The maximum string length is 63. The count fields N1, N2, and N3 are
treated as modulo 64 numbers.

The instruction completes normally only if N3 is the first tally to exhaust:
otherwise, an illegal procedure fault occurs.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charnl) and C(Y-charn3) may be overlapping strings; no check is
made. This feature is useful for replication of substrings within a larger
string, but care must be exercised in the construction of the operand
descriptors so that sending string, C(Y-charnl), data is not inadvertently
destroyed.

The user of string replication or overlaying is warned that the decimal unit
addresses the main memory in unaligned (not on modulo 8 boundary) units
of Y-block8 words and that the overlayed string, C(Y-charn3), is not
returned to main memory until the unit of Y-block8 words is filled or the
instruction completes.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

mvt Move Alphanumeric with Translation 160 (1)
FORMAT:
00O 0011 11 22222 2 22 3
01 2 8901 7 8 01234 7 89)
00 MF3 00 MF2 020 (1) I MF1
2 7 2 7 10 1 7
Y-charnl CN1 [TA1|0 N1
Y-char92 CN2 |0 0 O N2
3
Y-charn3 CN3 |TA3|O0 N3
18 3 21 12
Figure 4-19. Move Alphanumeric with Translation (mvt)
EIS Multiword Instruction Format
FILL Fill character for string extension
T Truncation fault enable bit
MF1 Modification field for operand descriptor 1
MF?2 Modification field for operand descriptor 2
Y-charnl Address of sending string
CN1 First character position of sending string
TA1 Data type of sending string
N1 Length of sending string
Y- charn2 Address of receiving string
CN2 First character position of receiving string
TA2 Data type of receiving string
N2 Length of receiving string

Y-char93 Address of character translation table

A Indirect via pointer register flag for Y-char93
REG Register modifier for Y-char93

ALM Coding Format:

mvt
descna
descna
arg

SUMMARY:

MODIFICATIONS:
INDICATORS:

Truncation
NOTES:

(MF1), (MF2)[,fill(octalexpression)][,enablefault]
Y-charnl[(CN1)]1,N1 n=4,6,or9 (TAl1 =2,1, or 0)
Y-charn2[(CN2)],N2 n=4,6,or9 (TA1 =2,1,0r0)
Y-char93[, tag]

Fori=1, 2, ..., minimum (N1,N2)
m = C(Y-charnl);
C(Y-char93),, —» C(Y-charn2);;
If N1 < N2, then fori = N1+1, N1+2, ..., N2
m = C(FILL)
C(Y-char93),, —» C(Y-charn2);;
None except au, qu, al, ql, xn for MF1, MF2, and REG
(Indicators not listed are not affected)
If N1 > N2 then ON; otherwise OFF

If the data type of the receiving field is not 9-bit (TA2 = 0), then characters
from C(Y-char93) are high-order truncated, as appropriate, as they are
moved.

If the data type of the sending field is not 9-bit (TA1 # 0), then characters
from C(Y-charnl) are high-order zero filled when forming the table index.

If N1 > N2, then (N1-N2) trailing characters of C(Y-charnl) are not moved
and the truncation indicator is set ON.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charnl) and C(Y-charn2) may be overlapping strings; no check is
made. This feature is useful for replication of substrings within a larger
string, but care must be exercised in the construction of the operand
descriptors so that sending string, C(Y-charnl), data is not inadvertently
destroyed.

The user of string replication or overlaying is warned that the decimal unit
addresses the main memory in unaligned (not on modulo 8 boundary) units
of Y-block8 words and that the overlayed string, C(Y-charn2), is not
returned to main memory until the unit of Y-block8 words is filled or the
instruction completes.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Numeric Compare

cmpn Compare Numeric 303 (1)
FORMAT:
0 11 11 22222 2 223 3
0 01 78 01234 7890 5
00000000O0O0O MF?2 303 (1) I MF1
11 7 10 1 7
Y-charnl CN1 [a] S1 SF1 N1
1 1
Y-charn2 CN2 |b| s2 SF2 N2
18 31 2 6 6

Figure 4-20. Compare Numeric (cmpn) EIS Multiword Instruction Format

key
MF1
MF2
I
Y-charnl
CN1

a TN1
S1
SF1
N1
Y- charn2
CN2

b TN2
S2
SF2
N2

Modification field for operand descriptor 1
Modification field for operand descriptor 2
Interrupt inhibit bit

Address of left-hand number

First character position of left-hand number
Data type of left-hand number

Sign and decimal type of left-hand number
Scaling factor of left-hand number

Length of left-hand number

Address of right-hand number

First character position of right-hand number
Data type of right-hand number

Sign and decimal type of right-hand number
Scaling factor of right-hand number

Length of right-hand string

AILM Coding Format:

cmpn (MF1), (MF2)

descn[fl,1s,ns, ts] Y-charnl[(CN1)]1,N1,SF1 n=4or9

descn[fl,1ls,ns,ts] Y-charn2[(CN2)],N2,SF2 n=4or9
SUMMARY: C(Y-charnl) :: C(Y-charn2) as numeric values

MODIFICATIONS:

INDICATORS:
Zero
Negative
Carry

NOTES:

None except au, qu, al, ql, xn for MF1 and MF2
(Indicators not listed are not affected)

If C(Y-charnl) = C(Y-charn2), then ON; otherwise OFF

If C(Y-charnl) > C(Y-charn2), then ON; otherwise OFF

If | C(Y-charnl) | > | C(Y-charn2) |, then OFF, otherwise ON

Comparison is made on 4-bit numeric values contained in each character of
C(Y-charnk). If either given data type is 9-bit (TNk = 0), characters from
C(Y-char9k) are high-order truncated to 4 bits before comparison.

Sign characters are located according to information in CNk, Sk, and Nk
and interpreted as 4-bit fields; 9-bit sign characters are high-order
truncated before interpretation. The sign character 15g is interpreted as a

minus sign; all other legal sign characters are interpreted as plus signs.

The position of the decimal point in C(Y-charnk) is determined from
information in CNk, Sk, SFk, and Nk.

Comparison begins at the decimal position corresponding to the first digit
of the operand with the larger number of integer digits and ends with the
last digit of the operand with the larger number of fraction digits.

Four-bit numeric zeros are used to represent digits to the left of the first
given digit of the operand with the smaller number of integer digits.

Four-bit numeric zeros are used to represent digits to the right of the last
given digit of the operand with the smaller number of fraction digits.

Instruction execution proceeds until an inequality is found or the larger
string length count is exhausted.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

Detection of a character outside the range [0,11]g in a digit position or a
character outside the range [12,17]g in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Numeric Move

mvn Move Numeric 300 (1)
FORMAT:

00 0011 11 22222 2223 3

01 8 90 1 78 01234 7890 5
Plo 0 0 0 0 0 00|T|R MF2 300 (1) I MF1

1 8 1 1 7 10 1 7
Y-charnl CN1 Ja] S1 SF1 N1

1 1
Y-charn2 CN2 |b| S2 SF2 N2

18 31 2 6 6

key

Figure 4-21. Move Numeric (mvn) EIS Multiword Instruction Format

P

T

R

MF1
MF?2

I
Y-charnl
CN1
TN1

S1

SF1

N1

Y- charn2
CN2
TN2

S2

SF2

N2

4-bit data sign character control
Truncation fault enable bit

Rounding flag

Modification field for operand descriptor 1
Modification field for operand descriptor 2
Interrupt inhibit bit

Address of sending number

First character position of sending number
Data type of sending number

Sign and decimal type of sending number
Scaling factor of sending number

Length of sending number

Address of receiving number

First character position of receiving number
Data type of receiving number

Sign and decimal type of receiving number
Scaling factor of receiving number

Length of receiving string

ALM Coding Format:

mvn (MF1), (MF2) [,enablefault][, round]
descn[fl,1ls,ns, ts] Y-charnl[(CN1)],N1,SF1 n=4o0or9
descn[fl,1ls,ns, ts] Y-charn2[(CN2)],N2,SF2 n=4o0r9
SUMMARY: C(Y-charnl) converted and/or rescaled — C(Y-charn2)
MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y-charn2) = decimal 0, then ON; otherwise OFF
Negative If a minus sign character is moved to C(Y-charn2), then ON; otherwise OFF
Truncation Icfli%w-order digit truncation occurs without rounding, then ON; otherwise
Overflow If fixed-point integer overflow occurs, then ON; otherwise unchanged. (see
NOTES)
Exponent If exponent of floating-point result exceeds +127, then ON; otherwise
overflow unchanged.
Exponent If exponent of floating-point result is less than -128 then ON; otherwise
underflow unchanged.
NOTES: If data types are dissimilar (TN1 # TNZ2), each character is high-order

truncated or filled, as appropriate, as it is moved. The fill data used is
"00011"b for digit characters and "00010"b for sign characters.

If TN2 and S2 specify a 4-bit signed number and P = 1, then a legal plus
sign character in C(Y-charnl) is converted to 13g as it is moved.

If N2 is not large enough to hold the integer part of C(Y-charnl) as
rescaled by SF2, an overflow condition exists; the overflow indicator is set
ON and an overflow fault occurs. This implies that an unsigned fixed-point
receiving field has a minimum length of 1 character; a signed fixed-point
field, 2 characters; and a floating-point field, 3 characters.

If N2 is not large enough to hold all the given digits of C(Y-charnl) as
rescaled by SF2 and R = 0, then a truncation condition exists; data
movement stops when C(Y-charn2) is filled and the truncation indicator is
set ON. If R = 1, then the last digit moved is rounded according to the
absolute value of the remaining digits of C(Y-charnl) and the instruction
completes normally.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charnl) and C(Y-charn?) may be overlapping strings; no check is
made. This feature is useful for replication of substrings within a larger
string, but care must be exercised in the construction of the operand
descriptors so that sending string, C(Y-charnl), data is not inadvertently
destroyed. Difficulties may be encountered because of scaling factors and
the special treatment of sign characters and floating-point exponents.

The user of string replication or overlaying is warned that the decimal unit
addresses the main memory in unaligned (not on modulo 8 boundary) units
of Y-block8 words and that the overlayed string, C(Y-charn2), is not
returned to main memory until the unit of Y-block8 words is filled or the
instruction completes.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Detection of a character outside the range [0,11]g in a digit position or a
character outside the range [12,17]g in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

mvne Move Numeric Edited 024 (1)
FORMAT:
000 0011 11 22222 2223 3
01 2 890 1 78 01234 7890 5
00 MF3 00 MF2 024 (1) I MF1
2 7 2 7 10 1 7
Y-charnl CN1 |a|S1|0 00000 N1
1 2 6
Y-char92 CN2 |0 00000O0O0DO N2
9
Y-charn3 CN3 |TA3|0 0 0 0 0 0 0 N3
18 3 2 7 6

Figure 4-22. Move Numeric Edited (mvne) EIS Multiword Instruction Format

key

MF1
MF2
MF3
I
Y-charnl
CN1
TN1
S1
N1
Y-char92
CN2
N2
Y-charn3
CN3
TA3

Modification field for operand descriptor 1

Modification field for operand descriptor 2

Modification field for operand descriptor 3

Interrupt inhibit bit

Address of sending string

First character position of sending string

Data type of sending string

Sign and decimal type of sending string

Length of sending string
Address of MOP control string

First character position of MOP control string

Length of MOP control string

Address of receiving string

First character position of receiving string

Data type of receiving string

N3 Length of receiving string

ALM Coding Format:

mvhe (MF1), (MF2), (MF3)
descn[fl,1ls,ns, ts] Y-charnl[(CN1)],N1 n=4o0r9
desc9a Y-char92[(CN2)],N2
descna Y-charn3[(CN3)1,N3 n=4,6,or9
SUMMARY: C(Y-charnl) = C(Y-charn3) under C(Y-char92) MOP control
See "Micro Operations for Edit Instructions" later in this section for details
of editing under MOP control.
MODIFICATIONS: None except au, qu, al, ql, xn for MF1, MF2, and MF3
INDICATORS: None affected
NOTES: If data types are dissimilar (TA1 # TA3), each character of C(Y-charnl) is

high-order truncated or zero filled, as appropriate, as it is moved. No
character conversion takes place.

If the data type of the receiving string is not 9-bit (TA3 = = 0), then
insertion characters are high-order truncated as they are inserted.

The maximum string length is 63. The count fields N1, N2, and N3 are
treated as modulo 64 numbers.

The instruction completes normally only if N3 is the first tally to exhaust:
otherwise, an illegal procedure fault occurs.

If MFkRL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charnl) and C(Y-charn3) may be overlapping strings; no check is
made. This feature is useful for replication of substrings within a larger
string, but care must be exercised in the construction of the operand
descriptors so that sending string, C(Y-charnl), data is not inadvertently
destroyed.

The user of string replication or overlaying is warned that the decimal unit
addresses the main memory in unaligned (not on modulo 8 boundary) units
of Y-block8 words and that the overlayed string, C(Y-charn3), is not
returned to main memory until the unit of Y-block8 words is filled or the
instruction completes.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Bit String Combine

csl Combine Bit Strings Left 060 (1)
FORMAT:
00 00 0011 1112 2 2 222 3
0 1 45 8901 7 890 3 4 789 5
Flo 0 0 o] BOLR [T|o MF?2 060 (1) I MF1
1 4 41 1 7 10 1 7
Y-bit1 c1 B1 N1
Y-bit2 c2 B2 N2
18 2 4 12

Figure 4-23. Combine Bit Strings Left (cs1) EIS Multiword Instruction Format

F Fill bit for string extension

BOLR Boolean result control field

T Truncation fault enable bit

MF1 Modification field for operand descriptor 1
MF2 Modification field for operand descriptor 2
I Interrupt inhibit bit

Y-bitl Address of sending string

C1 First character position of sending string
B1 First bit position of sending string

N1 Length of sending string

Y-bit2 Address of receiving string

C2 First character position of receiving string
B2 First bit position of receiving string

N2 Length of receiving string

AILM Coding Format:

csl (MF1), (MF2)[,enablefault][,bool(octalexpression)][,fill(0]1)]
deschb Y-bit1l[(BITNO1)],N1
descb Y-bit2[(BITNO2)]1,N2

SUMMARY: Fori = bits 1, 2, ..., minimum (N1,N2)

m = C(Y-bitl);.q || C(Y-bit2);.1 (a 2-bit number)
C(BOLR),, — C(Y-bit2);.¢

MODIFICATIONS:

INDICATORS:
Zero
Truncation

NOTES:

If N1 < N2, then fori = N1+], N1+42, ..., N2
m = C(F) || C(Y-bit2);.; (a 2-bit number)
C(BOLR), = C(Y-bit2);.q
None except au, qu, al, ql, xn for MF1 and MF2
(Indicators not listed are not affected)
If C(Y-bit2) = 00...0, then ON; otherwise OFF
If N1 > N2, then ON; otherwise OFF

If N1 > N2, the low order (N1-N2) bits of C(Y-bitl) are not processed and
the truncation indicator is set ON.

The bit pattern in C(BOLR) defines the Boolean operation to be performed.
Any of the sixteen possible Boolean operations may be used. Some
common Boolean operations and their BOLR fields are shown below.

Operation C(BOLR)
MOVE 0011
AND 0001
OR 0111
NAND 1110
EXCLUSIVE OR 0110
Clear 0000
Invert 1100

If MFkRL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-bitl) and C(Y-bit2) may be overlapping strings; no check is made. This
feature is useful for replication of substrings within a larger string, but
care must be exercised in the construction of the operand descriptors so
that sending string, C(Y-bitl), data is not inadvertently destroyed.

The user of string replication or overlaying is warned that the decimal unit
addresses the main memory in unaligned (not on modulo 8 boundary) units
of Y-block8 words and that the overlayed string, C(Y-bit2), is not returned
to main memory until the unit of Y-block8 words is filled or the instruction
completes.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

csr Combine Bit Strings Right 061 (1)

FORMAT:

Same as Combine Bit Strings Left (csl) (see Figure 4-23).

SUMMARY:

MODIFICATIONS:

INDICATORS:
Zero
Truncation

NOTES:

Fori = bits 1, 2, ..., minimum (N1,N2)
m = C(Y-bitl)n1.i || C(Y-bit2)n2.; (@ 2-bit number)
C(BOLR)y, = C(Y-bit2)N2-

If N1 < N2, then fori = N1+i, N1+2, ..., N2
m = C(F) || C(Y-bit2)yp9.; (@ 2-bit number)
C(BOLR)y, — C(Y-bit2)n2-i

None except au, qu, al, ql, xn for MF1 and MF2

(Indicators not listed are not affected)

If C(Y-bit2) = 00...0, then ON; otherwise OFF

If N1 > N2, then ON; otherwise OFF

If N1 > N2, the high order (N1-N2) bits of C(Y-bit1l) are not processed and
the truncation indicator is set ON.

The bit pattern in C(BOLR) defines the Boolean operation to be performed.
Any of the sixteen possible Boolean operations may be used. See NOTES
under the Combine Bit Strings Left (cs1) instruction for examples of BOLR

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-bitl) and C(Y-bit2) may be overlapping strings; no check is made. This
feature is useful for replication of substrings within a larger string, but
care must be exercised in the construction of the operand descriptors so
that sending string, C(Y-bitl), data is not inadvertently destroyed.

The user of string replication or overlaying is warned that the decimal unit
addresses the main memory in unaligned (not on modulo 8 boundary) units
of Y-block8 words and that the overlayed string, C(Y-bit2), is not returned
to main memory until the unit of Y-block8 words is filled or the instruction
completes.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Bit String Compare

cmpb Compare Bit Strings 066 (1)
FORMAT:
00 0011 1112 2 2 2 2 2 3
0 1 8901 7890 3 4 789 5
Flo o 00000 ofT|o MF2 066 (1) I MF1

1 8 1 1 7 10 1 7
Y-bit1 c1 B1 N1
Y-bit2 C2 B2 N2

18 2 4 12

Figure 4-24. Compare Bit Strings (cmpb) EIS Multiword Instruction Format

F Fill bit for string extension

T Truncation fault enable bit

MF1 Modification field for operand descriptor 1
MF?2 Modification field for operand descriptor 2
I Interrupt inhibit bit

Y-bitl Address of left-hand string

C1 First character position of left-hand string
B1 First bit position of left-hand string

N1 Length of left-hand string

Y-bit2 Address of right-hand string

C2 First character position of right-hand string
B2 First bit position of right-hand string

N2 Length of right-hand string

ALM Coding Format:

cmpb (MF1), (MF2)[,enablefault][,fill(0]1)]
deschb Y-bitl[(BITNO1)],N1
deschb Y-bit2[(BITNO2)],N2

SUMMARY: Fori=1, 2, ..., minimum (N1,N2)

C(Y-bit1);.q :: C(Y-bit2);1
If N1 < N2, then fori = N1+1, N1+2, ..., N2
C(FILL) :: C(Y-bit2);4

MODIFICATIONS:

INDICATORS:

Zero
Carry
NOTES:

If N1 > N2, then fori = N2+1, N2+2, ..., N1

C(Y-bitl);.q :: C(FILL)
None except au, qu, al, ql, xn for MF1 and MF2
(Indicators not listed are not affected)
If C(Y-bitl); = C(Y-bit2); for all i, then ON; otherwise, OFF
If C(Y-bitl); < C(Y-bit2); for any i, then OFF; otherwise ON

Instruction execution proceeds until an inequality is found or the larger
string length count is exhausted.

If MFkRL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Bit String Set Indicators

sztl Set Zero and Truncation Indicators with Bit 064 (1)
Strings Left

FORMAT: Same as Combine Bit Strings Left (csl) (see Figure 4-23).
SUMMARY: Fori = bits 1, 2, ..., minimum (N1,N2)
m = C(Y-bitl);.q || C(Y-bit2);.1 (a 2-bit number)
If C(BOLR),, # 0, then terminate
If N1 < N2, then fori = N1+i, N1+2, ..., N2
m = C(F) || C(Y-bit2);.1 (a 2-bit number)
If C(BOLR),, # 0, then terminate
MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2
INDICATORS: (Indicators not listed are not affected)
Zero If C(BOLR),, = O for all i, then ON; otherwise OFF
Truncation If N1 > N2, then ON; otherwise OFF
NOTES: If N1 > N2, the low order (N1-N2) bits of C(Y-biti) are not processed and
the truncation indicator is set ON.
The execution of this instruction is identical to the Combine Bit Strings
Left (csl) instruction except that C(BOLR), is not placed into C(Y-bit2); 1.
The bit pattern in C(BOLR) defines the Boolean operation to be performed.
Any of the sixteen possible Boolean operations may be used. See NOTES
under the Combine Bit Strings Left (cs1) instruction for examples of BOLR.
If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.
If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.
If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.
Attempted execution with the xed instruction causes an illegal procedure
fault.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
sztr Set Zero and Truncation Indicators with Bit 065 (1)
Strings Right
FORMAT: Same as Combine Bit Strings Left (csl) (see Figure 4-23).

SUMMARY:

MODIFICATIONS:

INDICATORS:

Zero

Truncation
NOTES:

Fori = bits 1, 2, ..., minimum (N1,N2)
m = C(Y-bitl)n1.i || C(Y-bit2)n2.; (@ 2-bit number)
If C(BOLR), # 0O, then terminate
If N1 < N2, then fori = N1+1, N1+2, ..., N2
m = C(F) || C(Y-bit2)yp9.; (@ 2-bit number)
If C(BOLR),, # 0, then terminate
None except au, qu, al, ql, xn for MF1 and MF2

(Indicators not listed are not affected)
If C(BOLR),, = O for all i, then ON; otherwise OFF

If N1 > N2, then ON; otherwise OFF

If N1 > N2, the low order (N1-N2) bits of C(Y-bit1l) are not processed and
the truncation indicator is set ON.

The execution of this instruction is identical to the Combine Bit Strings
Right (csr) instruction except that C(BOLR),, is not placed into C(Y-

bit2)Noi.

The bit pattern in C(BOLR) defines the Boolean operation to be performed.
Any of the sixteen possible Boolean operations may be used. See NOTES
under the Combine Bit Strings Left (cs1) instruction for examples of BOLR.

If MFkRL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Data Conversion

btd Binary to Decimal Convert 301 (1)
FORMAT:
00 11 11 22222 2 2 3 3
01 01 7 8 01234 7 9 0 5
PI[OOOOOOOOOO MF2 301 (1) MF1
1 10 7 10 7
Y-char91 CN1 [0 OOO0OOOO 0 N1
9
Y-charn2 CN2 [a| S2 |0 0 0 O 0 N2
18 31 2 6 6
Figure 4-25. Binary to Decimal Convert (btd)
EIS Multiword Instruction Format
key
P 4-bit data sign character control
MF1 Modification field for operand descriptor 1
MF?2 Modification field for operand descriptor 2
I Interrupt inhibit bit
Y-char91 Address of binary number
CN1 First byte position of binary number
N1 Length of binary number in 9-bit bytes
Y- charn2 Address of decimal number
CN2 First character position of decimal number
a TN2 Data type of decimal number
S2 Sign and decimal type of decimal number
N2 Length of decimal number
ALM Coding Format:
btd (MF1), (MF2)
desc9a Y-char91l[(CN1)]1,N1
descn[ls,ns,ts] Y-charn2[(CN2)],N2 n=4or9
SUMMARY: C(Y-char91) converted to decimal — C(Y-charn2)
MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y-charn2) = decimal 0, then ON: otherwise OFF

Negative If a minus sign character is moved to C(Y-charn2), then ON; otherwise OFF
Overflow If fixed-point integer overflow occurs, then ON; otherwise unchanged (see
NOTES)
NOTES: C(Y-char91) contains a twos complement binary integer aligned on 9-bit
character boundaries with length 0 < N1 <= 8.
If TN2 and S2 specify a 4-bit signed number and P = 1, then if C(Y-char91)
is positive (bit 0 of C(Y-char91)y = 0), then the 13g plus sign character is
moved to C(Y-charn2) as appropriate.
The scaling factor of C(Y-charn2), SF2, must be 0.
If N2 is not large enough to hold the digits generated by conversion of C(Y-
char91) an overflow condition exists; the overflow indicator is set ON and
an overflow fault occurs. This implies that an unsigned fixed-point
receiving field has a minimum length of 1 character and a signed fixed-
point field, 2 characters.
If MFk.RL = 1, then Nk does not contain the operand length; instead; it
contains a register code for a register holding the operand length.
If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.
C(Y-char91) and C(Y-charn2) may be overlapping strings; no check is
made.
Attempted conversion to a floating-point number (S2 = 0) or attempted use
of a scaling factor (SF2 # 0) causes an illegal procedure fault.
If N1 = 0 or N1 > 8 an illegal procedure fault occurs.
Attempted execution with the xed instruction causes an illegal procedure
fault.
Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.
dtb Decimal to Binary Convert 305 (1)
FORMAT:
0 11 11 22222 2223 3
0 01 7 8 01234 7890 5
0000O0OO0OOOOBODO MF2 305 (1) I MF1
11 7 10 1 7
Y-charnl CN1 |al S1 |0 0 0O 0 0O N1
1 2 6
Y-char92 CN2 [0 OOO0OO0OOOO0OO N2
18 3 9 6

Figure 4-26. Decimal to Binary Convert (dtb)

EIS Multiword Instruction Format

key

MF1 Modification field for operand descriptor 1

MF2 Modification field for operand descriptor 2

I Interrupt inhibit bit

Y-charnl Address of decimal number

CN1 First character position of decimal number
a TN1 Data type of decimal number

S1 Sign and decimal type of decimal number

N1 Length of decimal number

Y-char92 Address of binary number

CN2 First byte position of binary number

N2 Length of binary number in 9-bit bytes

ALM Coding Format:

dtb (MF1), (MF2)
descn[1ls,ns,ts] Y-charnl[(CN1)],N1 n=4or9
desc9a Y-char92[(CN2)],N2
SUMMARY: C(Y-charnl) converted to binary —» C(Y-char92)
MODIFICATIONS: None except au, qu, al, ql, xn for MF1 ad MF2
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y-char92) = 0, then ON: otherwise OFF
Negative If a minus sign character is found in C(Y-charnl), then ON; otherwise OFF
Overflow If fixed-point integer overflow occurs, then ON; otherwise unchanged (see
NOTES)
NOTES: C(Y-char92) will contain a twos complement binary integer aligned on 9-bit

byte boundaries with length 0 < N2 <= 8.
The scaling factor of C(Y-charnl), SF1, must be 0.

If N2 is not large enough to hold the converted value of C(Y-charnl) an
overflow condition exists; the overflow indicator is set ON and an overflow
fault occurs.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charnl) and C(Y-char92) may be overlapping strings; no check is
made.

Attempted conversion of a floating-point number (S1 = 0) or attempted use
of a scaling factor (SF1 # 0) causes an illegal procedure fault.

If N2 = 0 or N2 > 8 an illegal procedure fault occurs.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Decimal Addition

ad2d Add Using Two Decimal Operands 202 (1)
FORMAT:
00 0011 11 22 2 2 2 22 23 3
01 8 901 7 8 01234 7 89 0 5
P|OOOOOOOOITIR MF2 202 (1) I MF1
1 811 7 10 1 7
Y-charnl CN1 [a] S1 SF1 N1
1 1
Y-charn2 CN2 |b]| S2 SF2 N2
18 31 2 6 6
Figure 4-27. Add Using Two Decimal Operands (ad2d)
EIS Multiword Instruction Format
key
P 4-bit data sign character control
T Truncation fault enable bit
R Rounding flag
MF1 Modification field for operand descriptor 1
MF2 Modification field for operand descriptor 2
I Interrupt inhibit bit
Y-charnl Address of augend (ad2d), minuend (sb2d), multiplicand (mp2d), or divisor (dv2d)
CN1 First character position of augend (ad2d), minuend (sb2d), multiplicand (mp2d),
or divisor (dv2d)
a TNI1 Data type of augend (ad2d), minuend (sb2d), multiplicand (mp2d), or divisor
(dv2d)
S1 Sign and decimal type of augend (ad2d), minuend (sb2d), multiplicand (mp2d), or
divisor (dv2d)
SF1 Scaling factor of augend (ad2d), minuend (sb2d), multiplicand (mp2d), or divisor
(dv2d)
N1 Length of augend (ad2d), minuend (sb2d), multiplicand (mp2d), or divisor (dv2d)
Y- charn2 Address of addend and sum (ad2d), subtrahend and difference (sb2d), multiplier
and product (mp2d), or dividend and quotient (dv2d)
CN2 First character position of addend and sum (ad2d), subtrahend and difference
(sb2d), multiplier and product (mp2d), or dividend and quotient (dv2d)
b TN2 Data type of addend and sum (ad2d), subtrahend and difference (sb2d),
multiplier and product (mp2d), or dividend and quotient (dv2d)
S2 Sign and decimal type of addend and sum (ad2d), subtrahend and difference

(sb2d), multiplier and product (mp2d), or dividend and quotient (dv2d)

SF2 Scaling factor of addend and sum (ad2d), subtrahend and difference (sb2d),
multiplier and product (mp2d), or dividend and quotient (dv2d)

N2 Length of addend and sum (ad2d), subtrahend and difference (sb2d), multiplier
and product (mp2d), or dividend and quotient (dv2d)

AILM Coding Format:

ad2d (MF1), (MF2)[,enablefault][, round]
descn[fl,1s,ns, ts] Y-charnl[(CN1)],N1,SF1 n=4or9
descn[fl,1s,ns, ts] Y-charn2[(CN2)]1,N2,SF2 n=4or9
SUMMARY: C(Y-charnl) + C(Y-charn2) —» C(Y-charn2)
MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y-charn2) = decimal 0, then ON; otherwise OFF
Negative If C(Y-charn2) is negative, then ON; otherwise OFF
Truncation If the truncation condition exists without rounding, then ON; otherwise
OFF see NOTES)
Overflow If the overflow condition exists, then ON; otherwise unchanged (see
NOTES)
Exponent If exponent of floating-point result exceeds 127 then ON; otherwise
overflow unchanged.
Exponent If exponent of floating-point result is less than -128 then ON; otherwise
underflow unchanged
NOTES: If TN2 and S2 specify a 4-bit signed number and P = 1, then the 13g plus

sign character is placed appropriately if the result of the operation is
positive.

If N2 is not large enough to hold the integer part of the result as scaled by
SF2, an overflow condition exists; the overflow indicator is set ON and an
overflow fault occurs. This implies that an unsigned fixed-point receiving
field has a minimum length of 1 character; a signed fixed-point field, 2
characters; and a floating-point field, 3 characters.

If N2 is not large enough to hold all the digits of the result as scaled by
SF2 and R = 0, then a truncation condition exists; data movement stops
when. C(Y-charn2) is filled and the truncation indicator is set ON. If R =
1, then the last digit moved is rounded according to the absolute value of
the remaining digits of the result and the instruction completes normally.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charnl) and C(Y-charn2) may be overlapping strings; no check is
made.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Detection of a character outside the range [0,11]g in a digit position or a
character outside the range [12,17]g in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

ad3d Add Using Three Decimal Operands 222 (1)
FORMAT:
000 0011 11 22222 2223 3
012 8 901 7 8 01234 78 90 5
P|O MF3 T|R MF2 222 (1) I MF1
11 711 7 10 1 7
Y-charnl CN1 [a] S1 SF1 N1
Y-charn2 CN2 |b]| S2 SF2 N2
Y-charn3 CN3 |[c| S3 SF3 N3
18 31 2 6 6

Figure 4-28. Add Using Three Decimal Operands (ad3d)
EIS Multiword Instruction Format

key

P 4-bit data sign character control

T Truncation fault enable bit

R Rounding flag

MF1 Modification field for operand descriptor 1

MF?2 Modification field for operand descriptor 2

MF3 Modification field for operand descriptor 3

I Interrupt inhibit bit

Y-charnl Address of augend (ad3d), minuend (sb3d), multiplicand (mp3d), or divisor (dv3d)

CN1 First character position of augend (ad3d), minuend (sb3d), multiplicand (mp3d),
or divisor (dv3d)

a TNI1 Data type of augend (ad3d), minuend (sb3d), multiplicand (mp3d), or divisor

(dv3d)

S1 Sign and decimal type of augend (ad3d), minuend (sb3d), multiplicand (mp3d), or
divisor (dv3d)

SF1 Scaling factor of augend (ad3d), minuend (sb3d), multiplicand (mp3d), or divisor
(dv3d)

N1 Length of augend (ad3d), minuend (sb3d), multiplicand (mp3d), or divisor (dv3d)

Y- charn2 Address of addend (ad3d), subtrahend (sb3d), multiplier (mp3d), or dividend
(dv3d)

key
CN2

b TN2
S2
SF2
N2

Y-charn3
CN3

c TN3
S3

SF3
N3

First character position of addend (ad3d), subtrahend (sb3d), multiplier (mp3d),
or dividend (dv3d)

Data type of addend (ad3d), subtrahend (sb3d), multiplier (mp3d), or dividend
(dv3d)

Sign and decimal type of addend (ad3d), subtrahend (sb3d), multiplier (mp3d), or
dividend (dv3d)

Scaling factor of addend (ad3d), subtrahend (sb3d), multiplier (mp3d), or
dividend (dv3d)

Length of addend (ad3d), subtrahend (sb3d), multiplier (mp3d), or dividend
(dv3d)

Address of sum (ad3d), difference (sb3d), product (mp3d), or quotient (dv3d)

First character position of sum (ad3d), difference (sb3d), product (mp3d), or
quotient (dv3d)

Data type of sum (ad3d), difference (sb3d), product (mp3d), or quotient (dv3d)

Sign and decimal type of sum (ad3d), difference (sb3d), product (mp3d), or
quotient (dv3d)

Scaling factor of sum (ad3d), difference (sb3d), product (mp3d), or quotient (dv3d)
Length of sum (ad3d), difference (sb3d), product (mp3d), or quotient (dv3d)

ALM Coding Format:

ad3d (MF1), (MF2), (MF3)[,enablefault][, round]
descn[fl,1ls,ns, ts] Y-charnl[(CN1)],N1,SF1 n=4or9
descn[fl,1s,ns, ts] Y-charn2[(CN2)1,N2,SF2 n=4or9
descn[fl,1s,ns, ts] Y-charn3[(CN3)1,N3,SF3 n=4or9
SUMMARY: C(Y-charnl) + C(Y-charn2) — C(Y-charn3)
MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y-charn3) = decimal 0, then ON; otherwise OFF
Negative If C(Y-charn3) is negative, then ON; otherwise OFF
Truncation If the truncation condition exists without rounding, then ON; otherwise
OFF (see NOTES)
Overflow If the overflow condition exists, then ON; otherwise unchanged (see
NOTES)
Exponent If exponent of floating-point result exceeds 127 then ON; otherwise
overflow unchanged.
Exponent If exponent of floating-point result is less than -128 then ON; otherwise
underflow unchanged
NOTES: If TN3 and S3 specify a 4-bit signed number and P = 1, then the 13g plus

sign character is placed appropriately if the result of the operation is
positive.

If N3 is not large enough to hold the integer part of the result as scaled by
SF3, an overflow condition exists; the overflow indicator is set ON and an
overflow fault occurs. This implies that an unsigned fixed-point receiving
field has a minimum length of 1 character; a signed fixed-point field, 2
characters; and a floating-point field, 3 characters.

If N3 is not large enough to hold all the digits of the result as scaled by
SF3 and R = 0, then a truncation condition exists; data movement stops
when C(Y-charn3) is filled and the truncation indicator is set ON. IfR =1,
then the last digit moved is rounded according to the absolute value of the
remaining digits of the result and the instruction completes normally.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charnl), C(Y-charn2), and G(Y-charn3) may be overlapping strings; no
check is made.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Detection of a character outside the range [0,11]g in a digit position or a
character outside the range [12,17]g in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Decimal Subtraction

sh2d Subtract Using Two Decimal Operands 203 (1)
FORMAT: Same as Add Using Two Decimal Operands (ad2d) (see Figure 4-27).
SUMMARY: C(Y-charnl) - C(Y-charn2) — C(Y-charn2)

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y-charn2) = decimal 0, then ON; otherwise OFF
Negative If C(Y-charn2) is negative, then ON; otherwise OFF
Truncation If the truncation condition exists without rounding, then ON; otherwise
OFF (see NOTES)
Overflow If the overflow condition exists, then ON; otherwise unchanged (see
NOTES)
Exponent If exponent of floating-point result exceeds 127 then ON; otherwise
overflow unchanged.
Exponent If exponent of floating-point result is less than -128 then ON; otherwise
underflow unchanged
NOTES: If TN2 and S2 specify a 4-bit signed number and P = 1, then the 13g plus

sign character is placed appropriately if the result of the operation is
positive.

If N2 is not large enough to hold the integer part of the result as scaled by
SF2, an overflow condition exists; the overflow indicator is set ON and an
overflow fault occurs. This implies that an unsigned fixed-point receiving
field has a minimum length of 1 character; a signed fixed-point field, 2
characters; and a floating-point field, 3 characters.

If N2 is not large enough to hold all the digits of the result as scaled by
SF2 and R = 0, then a truncation condition exists; data movement stops
when C(Y-charn?) is filled and the truncation indicator is set ON. IfR =1,
then the last digit moved is rounded according to the absolute value of the
remaining digits of the result and the instruction completes normally.

If MFkRL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charnl) and C(Y-charn?) may be overlapping strings; no check is
made.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Detection of a character outside the range [0,11]g in a digit position or a
character outside the range [12,17]g in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

EIS - Decimal Multiplication

mp2d Multiply Using Two Decimal Operands 206 (1)
FORMAT: Same as Add Using Two Decimal Operands (ad2d) (see Figure 4-27).
SUMMARY: C(Y-charnl) x C(Y-charn2) —» C(Y-charn2)

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y-charn2) = decimal 0, then ON; otherwise OFF
Negative If C(Y-charn2) is negative, then ON; otherwise OFF
Truncation If the truncation condition exists without rounding, then ON; otherwise
OFF (see NOTES)
Overflow If the overflow condition exists, then ON; otherwise unchanged (see
NOTES)
Exponent If exponent of floating-point result exceeds 127 then ON; otherwise
overflow unchanged.
Exponent If exponent of floating-point result is less than -128 then ON; otherwise
underflow unchanged
NOTES: If TN2 and S2 specify a 4-bit signed number and P = 1, then the 13g plus

sign character is placed appropriately if the result of the operation is
positive.

If N2 is not large enough to hold the integer part of the result as scaled by
SF2, an overflow condition exists; the overflow indicator is set ON and an
overflow fault occurs. This implies that an unsigned fixed-point receiving
field has a minimum length of 1 character; a signed fixed-point field, 2
characters; and a floating-point field, 3 characters.

If N2 is not large enough to hold all the digits of the result as scaled by
SF2 and R = 0, then a truncation condition exists; data movement stops
when C(Y-charn?) is filled and the truncation indicator is set ON. IfR =1,
then the last digit moved is rounded according to the absolute value of the
remaining digits of the result and the instruction completes normally.

If MFkRL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charnl) and C(Y-charn?) may be overlapping strings; no check is
made.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Detection of a character outside the range [0,11]g in a digit position or a
character outside the range [12,17]g in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

mp3d Multiply Using Three Decimal Operands 226 (1)
FORMAT: Same as Add Using Three Decimal Operands (ad3d) (see Figure 4-28).
SUMMARY: C(Y-charnl) x C(Y-charn2) — C(Y-charn3)

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y-charn3) = decimal 0, then ON; otherwise OFF
Negative If C(Y-charn3) is negative, then ON; otherwise OFF
Truncation If the truncation condition exists without rounding, then ON; otherwise
OFF (see NOTES)
Overflow If the overflow condition exists, then ON; otherwise unchanged (see
NOTES)
Exponent If exponent of floating-point result exceeds 127 then ON; otherwise
overflow unchanged.
Exponent If exponent of floating-point result is less than -128 then ON; otherwise
underflow unchanged
NOTES: If TN3 and S3 specify a 4-bit signed number and P = 1, then the 13g plus

sign character is placed appropriately if the result of the operation is
positive.

If N3 is not large enough to hold the integer part of the result as scaled by
SF3, an overflow condition exists; the overflow indicator is set ON and an
overflow fault occurs. This implies that an unsigned fixed-point receiving
field has a minimum length of 1 character; a signed fixed-point field, 2
characters; and a floating-point field, 3 characters.

If N3 is not large enough to hold all the digits of the result as scaled by
SF3 and R = 0, then a truncation condition exists; data movement stops
when C(Y-charn3) is filled and the truncation indicator is set ON. IfR =1,
then the last digit moved is rounded according to the absolute value of the
remaining digits of the result and the instruction completes normally.

If MFkRL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charnl), C(Y-charn2), and C(Y-charn3) may be overlapping strings; no
check is made.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Detection of a character outside the range [0,11]g in a digit position or a
character outside the range [12,17]g in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Decimal Division

dv2d Divide Using Two Decimal Operands 207 (1)
FORMAT: Same as Add Using Two Decimal Operands (ad2d) (see Figure 4-27).
SUMMARY: C(Y-charn?) / C(Y-charnl) — C(Y-charn2)

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y-charn2) = decimal 0, then ON; otherwise OFF
Negative If C(Y-charn2) is negative, then ON; otherwise OFF
Overflow If the overflow condition exists, then ON; otherwise unchanged (see
NOTES)
Exponent If exponent of floating-point result exceeds 127 then ON; otherwise
overflow unchanged.
Exponent If exponent of floating-point result is less than -128 then ON; otherwise
Underflow unchanged
NOTES: This instruction performs continued long division on the operands until it

has produced enough output digits to satisfy the requirements of the
quotient field. The number of required quotient digits, NQ, is determined
before division begins as follows:

1) Floating-point quotient

NQ = N2, but if the divisor is greater than the dividend after operand
alignment, the leading zero digit produced is counted and the effective
precision of the result is reduced by one.

2) Fixed-point quotient
NQ = (N2-LZ2+1) - (N1-LZ1) + (E2-E1-SF2)
where: Nn = given operand field length
LZn = leading zero count for operand n
En = exponent of operand n
SF2 = scaling factor of quotient
3) Rounding

If rounding is specified (R = 1), then one extra quotient digit is
produced.

If C(Y-charnl) = decimal 0 or NQ > 63, then division does not take place,
C(Y-charn2) are unchanged, and a divide check fault occurs.

If TN2 and S2 specify a 4-bit signed number and P = 1, then the 13g plus

sign character is placed appropriately if the result of the operation is
positive.

If N2 is not large enough to hold the integer part of the result as scaled by
SF2, an overflow condition exists; the overflow indicator is set ON and an
overflow fault occurs. This implies that an unsigned fixed-point receiving
field has a minimum length of 1 character; a signed fixed-point field, 2
characters; and a floating-point field, 3 characters.

If N2 is not large enough to hold all the digits of the result as scaled by
SF2 and R = 0, then a truncation condition exists; data movement stops
when C(Y-charn?) is filled and the truncation indicator is set ON. IfR =1,
then the last digit moved is rounded according to the absolute value of the
extra quotient digit and the instruction completes normally.

If MFkRL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charnl) and C(Y-charn2) may be overlapping strings; no check is
made.

Detection of a character outside the range [0,11]g in a digit position or a
character outside the range [12,17]g in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

dv3d Divide Using Three Decimal Operands 227 (1)
FORMAT: Same as Add Using Three Decimal Operands (ad3d) (see Figure 4-28).
SUMMARY: C(Y-charn2) / C(Y-charnl) —» C(Y-charn3)

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2
INDICATORS: (Indicators not listed are not affected)
Zero If C(Y-charn3) = decimal 0, then ON; otherwise OFF
Negative If C(Y-charn3) is negative, then ON; otherwise OFF
Overflow If the overflow condition exists, then ON; otherwise unchanged (see
NOTES)
Exponent If exponent of floating-point result exceeds 127 then ON; otherwise
overflow unchanged.
Exponent If exponent of floating-point result is less than -128 then ON; otherwise
underflow unchanged
NOTES: This instruction performs continued long division on the operands until it

has produced enough output digits to satisfy the requirements of the
quotient field. The number of required quotient digits, NQ, is determined
before division begins as follows:

1) Floating-point quotient

NQ = N3, but if the divisor is greater than the dividend after operand
alignment, the leading zero digit produced is counted and the effective
precision of the result is reduced by one.

2) Fixed-point quotient
NQ = (N2-LZ2+1) - (N1-LZ1) + (E2-E1-SF3)

where: Nn = given operand field length
LZn = leading zero count for operand n
En = exponent of operand n
SF3 = scaling factor of quotient
3) Rounding

If rounding is specified (R = 1), then one extra quotient digit is
produced.

If C(Y-charnl) = decimal 0 or NQ > 63, then division does not take place,
C(Y-charn3) are unchanged, and a divide check fault occurs.

If TN3 and S3 specify a 4-bit signed number and P = 1 , then the 133 plus

sign character is placed appropriately if the result of the operation is
positive.

If N3 is not large enough to hold the integer part of the result as scaled by
SF3, an overflow condition exists; the overflow indicator is set ON and an
overflow fault occurs. This implies that an unsigned fixed-point receiving
field has a minimum length of 1 character; a signed fixed-point field, 2
characters; and a floating-point field, 3 characters.

If N3 is not large enough to hold all the digits of the result as scaled by
SF3 and R = 0, then a truncation condition exists; data movement stops
when C(Y-charn3) is filled and the truncation indicator is set ON. IfR =1,
then the last digit moved is rounded according to the absolute value of the
extra quotient digit and the instruction completes normally.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFLID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charnl), G(Y-charn2?), and C(Y-charn3) may be overlapping strings; no
check is made.

Detection of a character outside the range [0,11]g in a digit position or a
character outside the range [12,17]g in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

MICRO OPERATIONS FOR EDIT INSTRUCTIONS

The Move Alphanumeric Edited (mve) and Move Numeric Edited (mvne) instructions require
micro operations to perform the editing functions in an efficient manner. The sequence of micro
operation steps to be executed is contained in main memory and is referenced by the second
operand descriptor of the mve or mvne instructions. Some of the micro operations require special
characters for insertion into the string of characters being edited. These special characters are
shown in the "Edit Insertion Table" discussion below.

Micro Operation Sequence

The micro operation string operand descriptor points to a string of 9-bit bytes that specify
the micro operations to be performed during an edited move. Each of the 9-bit bytes defines a
micro operation and has the following format:

0 00 0
0 4 5 8
MOP IF

5 4

Figure 4-29. Micro Operation (MOP) Character Format

MOP 5-bit code specifying the micro operator
IF Information field containing one of the following:
1) A sending string character count. A value of 0 is interpreted as 16.

2) The index of an entry in the edit insertion table to be used. Permissible values
are 1 through 8.

3) An interpretation of the "blank-when-zero" operation

Edit Insertion Table

While executing an edit instruction, the processor provides a register of eight 9-bit bytes to
hold insertion information. This register, called the edit insertion table, is not maintained after
execution of an edit instruction. At the start of each edit instruction, the processor initializes the
table to the values given in Table 4-8, where each symbol refers to the corresponding standard
ASCII character.

Table 4-8. Default Edit Insertion Table Characters

Table Entry
Number Character

1 blank

2 *

3 +

4 -

5 $

6

Table Entry

Number Character
7
8 0 (zero)

One or all of the table entries can be changed by the Load Table Entry (lte) or the Change

Table (cht) micro operations to provide different insertion characters.

Edit Flags

ES

SN

BZ

The processor provides the following four edit flags for use by the micro operations.

End suppression flag; initially OFF and set ON by a micro operation when zero
suppression ends.

Sign flag; initially set OFF if the sending string is alphanumeric or unsigned numeric. If
the sending string is signed numeric, the sending string sign character is tested and SN
is set OFF if positive, and ON if negative.

Zero flag; initially set ON. It is set OFF whenever a sending string character that is not
decimal zero is moved into the receiving string.

Blank-when-zero flag; initially set OFF and is set ON by either the enf or ses micro
operation. If, at the completion of a move, both the Z and BZ are ON, the receiving
string is filled with character 1 of the edit insertion table.

Terminating Micro Operations

The micro operation sequence is terminated normally when the receiving string length

becomes exhausted. The micro operation sequence is terminated abnormally (with an illegal
procedure fault) if a move from an exhausted sending string or the use of an exhausted MOP string
is attempted.

MVNE and MVE Differences

The processor executes mvne in a slightly different manner than it executes mve. This is due

to the inherent differences in the way numeric and alphanumeric data are handled. The following
are brief descriptions of the hardware operations for mvne and mve.

Numeric Edit

1.

Load the entire sending string number (maximum length 63 characters) into the decimal unit
input buffer as 4-bit digits (high-order truncating 9-bit data). Strip the sign and exponent
characters (if any), put them aside into special holding registers and decrease the input
buffer count accordingly.

2. Test sign and, if required, set the SN flag.

3. Execute micro operation string, starting with first (4-bit) digit.

4. If an edit insertion table entry or MOP insertion character is to be stored, ANDed, or ORed

into a receiving string of 4- or 6-bit characters, high-order truncate the character
accordingly.

If the receiving string is 9-bit characters, high-order fill the (4-bit) digits from the input
buffer with bits 0-4 of character 8 of the edit insertion table. If the receiving string is 6-bit
characters, high-order fill the digits with "00"b.

Alphanumeric Edit

1. Load decimal unit input buffer with sending string characters. Data is read from main
memory in unaligned units (not modulo 8 boundary) of Y-block8 words. The number of
characters loaded is the minimum of the remaining sending string count, the remaining
receiving string count, and 64.

2. Execute micro operation string, starting with the first receiving string character.

3. If an edit insertion table entry or MOP insertion character is to be stored, ANDed, or ORed
into a receiving string of 4- or 6-bit characters, high-order truncate the character
accordingly.

Micro Operations

A description of the 17 micro operations (MOPs) follows. The mnemonic, name, octal value,
and the function performed is given for each MOP in a format similar to that for processor
instructions. These micro operations are included in the alphabetic list of instructions in Appendix
B, identified by the code MOP.

Checks for termination are made during and after each micro operation. All MOPs that
make a zero test of a sending string character test only the four least significant bits of the
character.

The following additional abbreviations and symbols are used in the description of the MOPs.

EIT edit insertion table

pin current position in the sending string

pmop current position in the micro operation string
pout current position in the receiving string

After each MOP, add one to pmop.

cht Change Table 21

SUMMARY: Fori=1,2,..,8
C(Y-char92)pmep+i = C(EIT);
pmop = pmop + 8

FLAGS: None affected
NOTES: C(IF) is not interpreted for this operation.
enf End Floating Suppression 02

SUMMARY: If C(IF)g = 0, then

FLAGS:
ES
BZ

ign

SUMMARY:

FLAGS:

insa

SUMMARY:

FLAGS:
NOTES:

If ES is OFF, then
If SN is OFF, then C(EIT)3 — C(Y-charn3)pout
If SN is ON, then C(EIT)4 — C(Y-charn3)pout
pout = pout + 1
ES set ON
If ES is ON, then no action
If C(IF)g = 1, then
If ES is OFF, then
C(EIT)5 — C(Y-charn3)pout
pout = pout + 1
ES set ON
If ES is ON, then no action
If C(IF); = 1, then BZ set ON; otherwise no action
(Flags not listed are not affected)
If OFF, then set ON
If C(IF) = 1, then set ON; otherwise no change

Ignore Source Character

pin = pin + C(IF)

None affected

Insert Asterisk on Suppression

If ES is OFF, then
C(EIT); — C(Y-charn3)pout
If C(IF) = 0, then pmop = pmop
If ES is ON, then
If C(IF) = 0, then
m = C(IF)
C(EIT)y, — C(Y-charn3)pout
If C(IF) = 0, then
C(Y-char92)pmep+1 = C(Y-charn3)pout
pmop = pmop + 1
pout = pout + 1
None affected

If C(IF) > 8 an illegal procedure fault occurs.

14

11

insb Insert Blank on Suppression

SUMMARY: If ES is OFF, then
C(EIT); = C(Y-charn3)pout
If C(IF) = 0, then pmop = pmop + 1
If ES is ON, then
If C(IF) = 0, then
m = C(IF)
C(EIT)y — C(Y—charn3)pout
If C(IF) = 0, then
C(Y-char92)pmep+1 = C(Y-charn3)pout
pmop = pmop + 1
pout = pout + 1

FLAGS: None affected

NOTES: If C(IF) > 8 an illegal procedure fault occurs.
insm Insert Table Entry One Multiple

SUMMARY: Fori=20,1, ..., C(F)-1

C(EIT); — C(Y—charnS)pouHi
pout = pout + C(IF)

FLAGS: None affected
insn Insert On Negative
SUMMARY: If SN is OFF, then

C(EIT); — C(Y—charnS)pout
If C(IF) = 0, then pmop = pmop + 1
If SN is ON, then
If C(IF) = 0, then
m = C(IF)
C(EIT)y, — C(Y-charn3)pout
If C(IF) = 0, then
C(Y—char92)pmop+1 - C(Y—charnS)pout
pmop = pmop + 1
pout = pout + 1
FLAGS: None affected
NOTES: If C(IF) > 8 an illegal procedure fault occurs.

insp Insert On Positive 13

SUMMARY: If SN is ON, then
C(EIT); = C(Y-charn3)pout
If C(IF) = 0, then pmop = pmop + 1
If SN is OFF, then
If C(IF) = 0, then
m = C(IF)
C(EIT)y — C(Y—charn3)pout
If C(IF) = 0, then
C(Y-char92)pmep+1 = C(Y-charn3)pout
pmop = pmop + 1
pout = pout + 1

FLAGS: None affected
NOTES: If C(IF) > 8 an illegal procedure fault occurs.

lte Load Table Entry 20
SUMMARY: m = C(IF)

C(Y-char92)pmep+1 = C(EIT)y
pmop = pmop + 1

FLAGS: None affected
NOTES: If C(IF) = 0 or C(IF) > 8 an illegal procedure fault occurs.

mflc Move with Floating Currency Symbol Insertion 07
SUMMARY: Fori=0,1, .. C(IF)-1

If ES is ON, then C(Y-charnl)yiy+i = C(Y-charn3)pout+i
If ES is OFF and C(Y-charnl)piy+i = decimal O, then
C(EIT); — C(Y—charnB)poutH
If ES is OFF and C(Y-charnl)pin i # decimal 0, then
C(EIT)s —» C(Y—charnB)poutH
C(Y-charnl)pin+i = C(Y-charn3)pout+i+1
pout = pout + 1
ES set ON
pin = pin + C(IF)
pout = pout + C(IF)

FLAGS:

(Flags not listed are not affected)

ES If OFF and any of C(Y-charnl)ynii # decimal 0, then ON; otherwise
unchanged
Z See the "Edit Flags" section.
NOTES: The number of characters moved to the receiving string is data dependent.
If the entire C(Y-charnl) are decimal 0s, C(IF) characters are moved to
C(Y-charn3). However, if the sending string contains a non-zero character,
then C(IF)+1 characters are moved to C(Y-charn3); the insertion character
plus C(Y-charnl). A possible illegal procedure fault due to this condition
may be avoided by assuring that the Z and BZ flags are ON.
mfls Move with Floating Sign Insertion 06
SUMMARY: Fori=0,1, ..., C(IF)-1
If ES is ON, then C(Y-charnl)yiy+i = C(Y-charn3)pout+i
If ES is OFF and C(Y-charnl)y;y 4 = decimal O, then
C(EIT); — C(Y-charn3)pout+i
If ES is OFF and C(Y-charnl)piy+; # decimal O, then
If SN is OFF, then C(EIT)3 — C(Y-charn3)pout+i
If SN is ON, then C(EIT)4 — C(Y-charn3)pout+i
C(Y-charnl)pin+i = C(Y-charn3)pout+i+1
pout = pout + 1
ES set On
pin = pin + C(IF)
pout = pout + C(IF)
FLAGS: (Flags not listed are not affected)
ES If OFF and any of C(Y-charnml)pyjy4; # decimal O, then ON; otherwise
unchanged
Z See the "Edit Flags" section
NOTES: The number of characters moved to the receiving string is data dependent.
If the entire C(Y-charnl) are decimal Os, C(IF) characters are moved to
C(Y-charn3). However, if the sending string contains a non-zero character,
then C(IF)+1 characters are moved to C(Y-charn3); the insertion character
plus C(Y-charnl) A possible illegal procedure fault due to this condition
may be avoided by assuring that the Z and BZ flags are ON.
mors Move and OR Sign 17
SUMMARY: Fori=0,1, ..., C(IF)-1

If SN is OFF, then
C(Y-charnl)pin4i | C(EIT)3 = C(Y-charn3)pout+i

If SN is ON, then
C(Y-charnl)pini | C(EIT)4 — C(Y-charn3)pout+i
pin = pin + C(IF)
pout = pout + C(IF)

FLAGS: (Flags not listed are not affected)
Z See the "Edit Flags" section
mses Move and Set Sign 16
SUMMARY: For mvne
Fori=0,1, ..., C(IF) -1
C(Y-charnl)pin+i = C(Y-charn3)pout+i
pin = pin + C(IF)
pout = pout + C(IF)
For mve
C(z)y=0
Fori=0,1, ..., C(IF)-1
C(Y-charnl)pin+i = C(Y-charn3)pout+i
If C(Z) = 0, then
C(Z) = C(Y-charnl)pin+i & C(EIT)3
If C(Z) = 0, then
C(Z) = C(Y-charnl)pin+i & C(EIT)4
If C(Z) # 0, then SN set ON
pin = pin + C(IF)
pout = pout + C(IF)
FLAGS: (Flags not listed are not affected)
SN If C(EIT)4 found in C(Y-charnl), then ON; otherwise no change
Z See the "Edit Flags" section
mvc Move Source Characters 15
SUMMARY: Fori=0,1, ... C(IF)-1
C(Y-charnl)pin+i = C(Y-charn3)pout+i
pin = pin + C(IF)
pout = pout + C(IF)
FLAGS: (Flags not listed are not affected)
Z See the "Edit Flags" section

mvza

SUMMARY:

FLAGS:
ES

mvzb

SUMMARY:

FLAGS:
ES

Move with Zero Suppression and Asterisk 05
Replacement

Fori=0,1, .. C(F)-1
If ES is ON, then C(Y-charnl)yiy+i = C(Y-charn3)pout+i
If ES is OFF and C(Y-charnl)yiy 4 = decimal O, then
C(EIT), — C(Y-charn3)pout+i
If ES is OFF and C(Y-charnl)piy+i # decimal O, then
C(Y-charnl)pin+i = C(Y-charn3)pout+i
ES set On
pin = pin + C(IF)
pout = pout + C(IF)
(Flags not listed are not affected)

If OFF and any of C(Y-charnl)ynii # decimal 0, then ON; otherwise
unchanged

See the "Edit Flags" section

Move with Zero Suppression and Blank 04
Replacement

Fori=0,1, ... C(F)-1
If ES is ON, then C(Y-charnl)yin4i = C(Y-charn3)pout+i
If ES is OFF and C(Y-charnl)pi,+i = decimal O, then
C(EIT)q — C(Y-charn3)pout+i
If ES is OFF and C(Y-charnl)piy+i # decimal O, then
C(Y-charnl)pin+i = C(Y-charn3d)pout+i
ES set ON
pin = pin + C(IF)
pout = pout + C(IF)
(Flags not listed are not affected)

If OFF and any of C(Y-charnl)pini; # decimal O, then ON; otherwise
unchanged

See the "Edit Flags" section

ses Set End Suppression 03

SUMMARY: If C(IF)g = 0, then ES set OFF
If C(IF)y = 1, then ES set ON
If C(IF); = 1, then BZ set ON; otherwise no action

FLAGS: (Flags not listed are not affected)
ES Set by this micro operation
BZ If C(IF); = 1, then ON; otherwise no change

Micro Operation Code Assignment Map

Operation code assignments for the micro operations are shown in Table 4-9. A dash (---)
indicates an unassigned code. All unassigned codes cause an illegal procedure fault.

Table 4-9. Micro Operation Code Assignment Map

0 1 2 3 4 5 6 7
00 ---- insm enf ses 'mvzb mvza mfls mflc
10 insb insa insn insp ign |mvc mses mors
20 lte cht @ ---- ---- oo oiin oo oot

SECTION 5: ADDRESSING -- SEGMENTATION AND PAGING

ADDRESSING MODES

The Multics processor is able to access the main memory in either absolute mode or append
mode. The processor prepares an 18-bit computed address (TPR.CA) for each main memory
reference for instructions or operands using the address preparation algorithms described in
Section 6. This computed address is a scalar index into a virtual memory with an extent of 262,144
words.

Absolute Mode

In absolute mode, the appending unit is bypassed for instruction fetches and most operand
fetches and the final 18-bit computed address (TPR.CA) from address preparation becomes the
absolute main memory address.

Thus, all instructions to be executed in absolute mode must reside in the low-order 262,144
words of main memory, that is, main memory addresses 0 through 262,143. Operands normally
also reside in the low-order 262,144 words of main memory but, by specifying in an instruction
word that the appending unit be used for the main memory access, operands may reside anywhere
in main memory. An appended operand fetch may be specified by:

1. Specifying register then indirect (ri) address modification in the instruction word and
indirect to segment (its) or indirect to pointer (itp) address modification in the indirect
word.

2. Specifying pointer register modification in the instruction word (bit 29 = 1) and giving a
pointer register number in the instruction address C(y)g ».

3. Specifying pointer register modification (MFk.AR = 1) in the modification field for an EIS
operand descriptor.

The use of any of the above constructs in absolute mode places the processor in append
mode for one or more address preparation cycles. All necessary registers must be properly loaded,
all tables of segment descriptor words (SDWs) and page table words (PTWs) expected by the
appending unit must exist and be properly described, and all fault conditions must be considered
(see append mode below).

If a transfer of control is made with any of the above constructs, the processor remains in
append mode after the transfer and subsequent instruction fetches are made in append mode.

Although no segment is defined for absolute mode, it may be helpful to visualize a virtual,
unpaged segment overlaying the first 262,144 words of main memory.

Append Mode

In append mode, the appending unit is employed for all main memory references. The
appending unit is described later in this section.

SEGMENTATION

In Multics, a segment is defined as an array of arbitrary (but limited) size of machine words
containing arbitrary data. A segment is identified within the processor by a segment number
(segno) unique to the segment.

To simplify this discussion, the operation of the hardware ring mechanism is not described
although it is an integral part of address preparation. See Section 8 for a discussion of the ring
mechanism hardware.

A virtual memory address in the processor consists of a pair of integers, (segno,offset) The
range of segno is [0,21°-1] and the range of offset is [0,2!8-1]. The description of the segment

whose segno value is n is kept in the n® word-pair in a table known as the descriptor segment.
The location of the descriptor segment is held by the processor in the descriptor segment base
register (DSBR) (see Section 3). Each word-pair of a descriptor segment is known as a segment
descriptor word (SDW) and is 72 bits long (see Figure 5-5).

A bit in the SDW for a segment (SDW.U) specifies whether the segment is paged or
unpaged. The following is a simplified description of the appending process for unpaged segments
(also using an unpaged descriptor segment) (refer to Figures 3-15 and 5-5).

1. If 2 * segno >= 16 * (DSBR.BND + 1), then generate an access violation, out of segment
bounds, fault.

2. Fetch the target segment SDW from DSBR.ADDR + 2 * segno.
3. If SDW.F = 0, then generate directed fault n where nis given in SDW.FC. The value of n
used here is the value assigned to define a missing segment fault or, simply, a segment

fault.

4. If offset >= 16 * (SDW.BOUND + 1), then generate an access violation, out of segment
bounds, fault.

5. If the access bits (SDW.R, SDW.E, etc.) of the segment are incompatible with the
reference, generate the appropriate access violation fault.

6. Generate 24-bit absolute main memory address SDW.ADDR + offset.

Figure 5-1 depicts the relationships just described.

descriptor
target segment . —— DSBRADDR
segment T '
T 2 * segno
offset
SDW SDW(segno)
data
<4 16*(DSBR..BND + 1)
& 16*(SDW..BOUND + 1)

Figure 5-1. Main Memory Address Generation for Unpaged Segments

PAGING

In Multics, a page is defined as a block of virtual memory with a size of 219 machine words.
The processor is designed in such a way that the page size is adjustable over the range [26, 212]

but no basis has been found to justify an assertion that any page size is more efficient than 219 or
1024 words.

The processor divides a k-bit offset or segno value into two parts; the high-order (k-n) bits
forming a page number, %, and the low-order n bits forming a word number, y. This may be stated
as:

y = (value) modulo (page size)

x = (value -y) / (page size)

The symbols x and y are used in this context throughout this section. An example of page
number formation is shown in Figure 5-2.

0 1
0 7
offset

18

0 00 1

0 7 8 7
X y

8 10

Figure 5-2. Page Number Formation

A bit in the SDW for a segment (SDW.U) specifies whether the segment is paged or
unpaged. A paged segment may be defined as an array of arbitrary (but limited) size of pages and
a page may be defined as an array of 1024 machine words. Thus, x is a scalar index into the array
of pages, y is a scalar index into the page, and a reference to a word of a paged segment may be
treated as a reference to word y of page x of the segment.

Multics subdivides the virtual memory into page size blocks of 1024 words each. Such a
subdivision of space allows a segment page to be handled as a physical block independently from
the other pages of the segment and from other segments. In main memory, the blocks are known
as frames; on secondary storage, they are known as records. When a reference to a word in a
paged segment is required (and the page containing the word is not already in main memory), a
main memory frame is allocated and the page is read in from secondary storage. Unneeded pages
need not occupy space in main memory.

The location and status of page x of a paged segment is kept in the x'® word of a table
known as the page table for the segment. The words in this table are known as page table words
(PTWSs) (see Figure 5-6).

Any segment may be paged as appropriate and convenient. The address field of the
segment descriptor word (SDW.ADDR) for a paged segment contains the 24-bit absolute main
memory address of the page table for the segment instead of the address of the origin of the
segment. If the descriptor segment is paged, the address field of the descriptor segment base
register (DSBR.ADDR) contains the 24-bit absolute main memory address of the page table for the
descriptor segment.

The full algorithm used by the processor to access word offset of paged segment segno
(including descriptor segment paging) is as follows. (Refer to Figures 3-15, 5-5, and 5-6.)

1. If 2 * segno >= 16 * (DSBR.BND + 1), then generate an access violation, out of segment
bounds, fault.

2. Form the quantities:

y1 = (2 * segno) modulo 1024

x1 = (2 *segno-yl) /1024
3. Fetch the descriptor segment PTW(x1) from DSBR.ADR + x1.
4. If PTW(x1).F = 0, then generate directed fault n where n is given in PTW(x1).FC. The
value of n used here is the value assigned to define a missing page fault or, simply, a

page fault.

5. Fetch the target segment SDW, SDW(segno), from the descriptor segment page at
PTW(x1).ADDR + y1.

6. If SDW(segno).F = 0, then generate directed fault n where n is given in SDW(segno).FC.
This is a segment fault as discussed earlier in this section.

7. If offset >= 16 * (SDW(segno).BOUND + 1), then generate an access violation, out of
segment bounds, fault.

8. If the access bits (SDW(segno).R, SDW(segno).E, etc.) of the segment are incompatible
with the reference, generate the appropriate access violation fault.

9. Form the quantities:
y2 = offset modulo 1024
x2 = (offset - y2) /1024
10.Fetch the target segment PTW(x2) from SDW(segno).ADDR + x2.

11.If PTW(x2).F = 0, then generate directed fault n where nis given in PTW(x2).FC. This is
a page fault as in Step 4 above.

12.Generate the 24-bit absolute main memory address PTW(x2).ADDR + y2.

Figure 5-3 depicts the relationships described above.

yl = (2*segno) modulo 1024 descriptor
x1 = (2 *segno -y1) / 1024 segment
y2 = offset modulo 1024 descriptor page table
x2 = (offset - y2) / 1024 segment :L
target pbage ? DSBR.ADDR
segment <1
page table T i
target
segment T y1

PTW | PTW(x1)

S —

SDW | SDW(segno)
PTW | PTW(x2)

data :‘/_1024

1024

Figure 5-3. Main Memory Address Generation for Paged Segments

CHANGING ADDRESSING MODES

The processor is placed in absolute mode by the initialize, initialize and clear, or system
initialize functions. The first response to faults and interrupts is in absolute mode and the mode
thereafter is determined by the instruction sequence entered through the fault or interrupt trap
pair. The processor remains in absolute mode until a transfer of control via the appending unit
takes place. Note that a Return (ret) or Restore Control Unit (rcu) instruction that sets the
absolute indicator OFF (see Section 3 for a discussion of the indicators) or a Return Control Double
(rtcd) instruction also places the processor in append mode.

When it responds to a fault or interrupt, the processor enters absolute mode temporarily for
the fetch and execution of the trap pair. If an unappended transfer is executed while in the trap
pair, the processor remains in absolute mode, otherwise it returns to append mode.

ADDRESS APPENDING

At the completion of the formation of the virtual memory address (see Section 6) an
effective segment number (segno) is in the segment number register of the temporary pointer
register (TPR.SNR) and a computed address (offset) is in the computed address register of the
temporary pointer register (TPR.CA). (See Section 3 for a discussion of the temporary pointer
register.)

Address Appending Sequences

Once segno and offset are formed in TPR.SNR and TPR.CA, respectively, the process of
generating the 24-bit absolute main memory address can involve a number of different and distinct
appending unit cycles.

The operation of the appending unit is shown in the flowchart in Figure 5-4. This flowchart
assumes that directed faults, store faults, and parity faults do not occur.

A segment boundary check is made in every cycle except PSDW. If a boundary violation is
detected, an access violation, out of segment bounds, fault is generated and the execution of the
instruction interrupted. The occurrence of any fault interrupts the sequence at the point of
occurrence. The operating system software should store the control unit data for possible later
continuation and attempt to resolve the fault condition.

The value of the associative memories may be seen in the flowchart by observing the
number of appending unit cycles bypassed if an SDW or PTW is found in the associative memories.

There are nine different appending unit cycles that involve accesses to main memory. Two
of these (FANP, FAP) generate the 24-bit absolute main memory address and initiate a main
memory access for the operand, indirect word, or instruction pair; five (NSDW, PSDW, PTW,
PTW2, and DSPTW) generate a main memory access to fetch an SDW or PTW; and two (MDSPTW
and MPTW) generate a main memory access to update page status bits (PTW.U and PTW.M) in a
PTW. The cycles are defined in Table 5-1.

Table 5-1. Appending Unit Cycle Definitions

Cycle name Function

FANP Final address nonpaged

Generates the 24-bit absolute main memory address and initiates a main memory
access to an unpaged segment for operands, indirect words, or instructions.

FAP Final address paged

Cycle name Function

NSDW

PSDW

PTW

PTW2

DSPTW

MDSPTW

MPTW

Generates the 24-bit absolute main memory address and initiates a main memory
access to a paged segment for operands, indirect words, or instructions.

Nonpaged SDW Fetch

Fetches an SDW from an unpaged descriptor segment.
Paged SDW Fetch

Fetches an SDW from a paged descriptor segment.
PTW fetch

Fetches a PTW from a page table other than a descriptor segment page table and
sets the page accessed bit (PTW.U).

Prepage PTW fetch

Fetches the next PTW from a page table other than a descriptor segment page
table during hardware prepaging for certain uninterruptible EIS instructions.
This cycle does not load the next PTW into the appending unit. It merely assures
that the PTW is not faulted (PTW.F = 1) and that the target page will be in main
memory when and if needed by the instruction.

Descriptor segment PTW fetch
Fetches a PTW from a descriptor segment page table.
Modify DSPTW

Sets the page accessed bit (PTW.U) in the PTW for a page in a descriptor
segment page table. This cycle always immediately follows a DSPTW cycle.

Modify PTW

Sets the page modified bit (PTW.M) in the PTW for a page in other than a
descriptor segment page table.

START APPEND

¢ SDWAMy A

No

No

is segment
paged?

is descriptor
egment paged?}

FANP
cycle

DSPTW
cycle

PTW
cycle

is DSPTW.U

set on?
Yes MDSPTW
cycle
h 4 PTW2
PSDW NSDW cycle
cycle cycle
Load
SDWAM

| MPTW
cycle

Note: A STR-OP is any processor function
that writes data to main memory.

FAP

cycle

END APPEND

Figure 5-4. Appending Unit Operation Flowchart

APPENDING UNIT DATA WORD FORMATS

Segment Descriptor Word (SDW) Format

The segment descriptor word (SDW) pair contains information that controls the access to a
segment. The SDW for segment n is located at offset 2n in the descriptor segment whose
description is currently loaded into the descriptor segment base register (DSBR).

Even word

0 2 2 2 2 2 3 3333
0 3 4 6 7 9 0 2345
ADDR R1 R2 R3 F| FC
24 3 3 31 2
Odd word
00 111111222 3
01 4 56 789012 S
0 BOUND RI|E|W|P|U|G|C ER
1 141111111 14
Figure 5-5. Segment Descriptor Word (SDW) Format
Field Name Description
ADDR 24-bit absolute main memory address of unpaged segment (U=1) or segment page
table (U=0)
R1,R2,R3 Ring brackets (see Section 8)
F Directed fault flag
0 = execute the directed fault specified in FC
1 = the unpaged segment or segment page table is in main memory
FC The number of the directed fault (df0-df3) to be executed if F=0
BOUND 14 high-order bits of the largest 18-bit modulo 16 offset that may be accessed
without causing a descriptor violation, out of segment bounds, fault.
R Read permission bit
E Execute permission bit (xec and xed instructions excluded)
W Write permission bit
P Privileged mode bit
0 = privileged instructions cannot be executed
1 = privileged instructions may be executed if in ring 0
U Paged/unpaged control bit
0 = segment is paged; ADDR is the 24-bit main memory address of the
page table
1 = segment is unpaged; ADDR is the 24-bit main memory address of the
origin of the segment
G Gate indicator bit
0 = any call into the segment must be to an offset less than the value of EB
1 = any legal segment offset may be called
C Cache control bit
0 = words (operands or instructions) from this segment may not be placed
in the cache memory
1 = words from this segment may be placed in the cache memory
EB Entry bound

Any call into this segment must be to an offset less than EB if G=0

Page Table Word (PTW) Format

The page table word (PTW) contains main memory address and status information for a
page of a paged segment.

0 11 22222223 3333
0 7 8 345678920 2 345
ADDR X X Xx x x x|0 O|U|0 O|M|x x x|F| FC

18 6 21 21 31 2

Figure 5-6. Page Table Word (PTW) Format

Bits pictured as "x" are ignored by the hardware and may be used by the operating system
software.

Field Name Description

ADDR 18-bit modulo 64 absolute main memory address of page
The hardware ignores low order bits of the main memory page address according
to page size based on the following:

Page Size in words ADDR Bits ignored

64 none
128 17
256 16-17
512 15-17
1024 14-17
2048 13-17
4096 12-17
U 1 = page has been used (referenced)

<

1 = page has been modified

F Directed fault flag
0 = page not in main memory; execute directed fault FC
1 = page is in main memory

FC directed fault number for page fault.

SECTION 6: VIRTUAL ADDRESS FORMATION

DEFINITION OF VIRTUAL ADDRESS

The virtual address in the Multics processor is the user's specification of the location of a
data item in the Multics virtual memory. Each reference to the virtual memory for operands,
indirect words, indirect pointers, operand descriptors, or instructions must provide a virtual
address. The hardware and the operating system translate the virtual address into the true
location of the data item and assure that the data item is in main memory for the reference.

The virtual address consists of two parts, an effective segment number and an offset or
computed address. The value of each part is the result of the evaluation of a hardware algorithm
(expression) of one or more terms. The selection of the algorithm is made by the use of control
bits in the instruction word; for example, bit 29 for modification by pointer register and bits 30-35
(the TAG field) for modification by index register or indirect word. For certain modifications by
indirect word, the TAG field of the indirect word is also treated as an address modifier, thus
establishing a continuing "indirect chain". Bit 29 of an indirect word has no meaning in the context
of virtual address formation.

The results of evaluation of the virtual address formation algorithms are stored in
temporary registers used as working registers by the processor. The effective segment number is
stored in the temporary segment register, TPR.TSR. The offset is stored in the computed address
register, TPR.CA. When each virtual address computation has been completed, C(TPR.TSR) and
C(TPR.CA) are presented to the appending unit for translation to a 24-bit absolute main memory
address (see Section 5).

TYPES OF VIRTUAL ADDRESS FORMATION

There are two types of virtual address formation. The first type does not make explicit use
of segment numbers. The algorithms produce values for the computed address, C(TPR.CA), only.
The effective segment number in C(TPR.TSR) does not change from the value used to fetch the
current instruction. In this case, all references are said to be "local" to the procedure segment
pointed to by the procedure pointer register (PPR).

The second type makes use of a segment number in an indirect word-pair in main memory
or in a pointer register (PRn). The algorithms produce values for both the effective segment
number, C(TPR.TSR), and the computed address, C(TPR.CA). The effective segment number in
C(TPR.TSR) may change and, if it changes, references are said to be "external" to the procedure
segment.

Both types of virtual address formation for the operand of a basic or EIS single-word
instruction begin with a preliminary step of loading TPR.CA with the ADDRESS field of the
instruction word. This preliminary step takes place during instruction decode.

The two types of virtual address formation can be intermixed. In cases where virtual
address calculations are chained together through pointer registers or indirect words, each virtual
address is translated to a 24-bit absolute main memory address to fetch the next item in the chain.

This description of virtual address formation is divided into two parts corresponding to the
two types. The first part describes the type that involves only the computed address, C(TPR.CA).
The effective segment number is constant. In append mode its value is equal to C(PPR.PSR) (a
local reference) and in absolute mode its value is undefined.

The second part describes the type that involves both the effective segment number,
C(TPR.TSR), and the computed address, C(TPR.CA).

SYMBOLOGY (ALM)

In many instances in the discussions that follow, references to the features of the ALM
assembly program are unavoidable. Such references are explained briefly here. The reader is
advised to consult the appropriate software documentation for further details and for possible
changes in the various features.

Symbolic Fields

A symbolic field is an expression consisting of variables, constants, literals, and operators
that is evaluated by ALM to produce a value for the corresponding field of a machine word. The
values of the variables and constants are either known or assignable and the operators are defined
for the mode of the evaluation (algebraic, logical, etc.). The necessary fields for a machine
instruction or ALM pseudo-instruction are given as a comma-separated string of expressions.

ALM Pseudo-Instructions

The following ALM pseudo-instructions are used in this section:

aci string
This pseudo-instruction generates a sequence of 9-bit byte fields each of which contains the
ASCII octal value for the corresponding graphic character in string. The last machine word
generated is low-order filled with binary Os to the next word boundary.

arg address,tag

This pseudo-instruction generates a machine word with the same format as the basic and
EIS single-word instructions but having binary Os in the operation code field.

bci string

This pseudo-instruction generates a sequence of 6-bit character fields each of which
contains the binary coded decimal (BCD) octal value for the corresponding graphic
character in string. The last machine word generated is low-order filled with binary Os to
the next word boundary.

vfd fieldl,field2, ... ,fieldn

This pseudo-instruction generates a machine word (or word-pair) containing an arbitrary
number of fields of arbitrary length up to a total bit count of 72. The data generated is left-
justified in the machine word (or word-pair) and zero filled to the next word boundary as
necessary.

Each fieldiis given as:

md/expr

where: mis the data conversion mode and may be:

null for arithmetic operators and decimal literals,

0 for Boolean operators and octal literals,

h for 6-bit character binary coded decimal (BCD) character strings, or
a for 9-bit byte ASCII character strings.

dis a literal giving the field width in bits and may have any value from 1 to 72.

expr is the expression to be evaluated or converted. Conversion is done with
full 36-bit precision and the field value is the conversion result modulo the field
width.

COMPUTED ADDRESS FORMATION

The address formation algorithms described here produce values only for the computed
address. The effective segment number is constant and equal to C(PPR.PSR) if the processor is in
append mode or is undefined if the processor is in absolute mode.

The Address Modifier (TAG) Field

Bits 30-35 of an instruction word or indirect word constitute the address modifier or TAG
field. The format of the TAG field is:

333 3
012 5
Tm Tq

2 4

Figure 6-1. Address Modifier (TAG) Field Format

Field Name Function

Tm modifier field, specifies one of four general types of computed address
modification
Tq designator field, selects among several variations available for the general

type given with Ty,

General Types of Computed Address Modification

There are four general types of computed address modification: register, register then
indirect, indirect then register, and indirect then tally. The general types are described in Table
6-1. The value loaded into TPR.CA is symbolized by "y" in the descriptions following.

Table 6-1. General Computed Address Modification Types

T
value Type Description

0 Register The contents of the register specified in C(Ty) are added to the current

(r) computed address, C(TPR.CA), to form the modified computed address.
Addition is twos complement, modulo 218, and overflow does not occur.

1 Register The contents of the register specified in C(Tyq) are added to the current
Fhe_n computed address, C(TPR.CA), to form the modified computed address as for
1nd1rect register modification. The modified C(TPR.CA) is then used to fetch an
(ri) indirect word. The TAG field of the indirect word specifies the next step in

computed address formation. The use of du or dl as the designator in this
modification type will cause an illegal procedure, illegal modifier, fault.

T
value Type

Description

2 Indirect
then
tally (it)

3 Indirect
then
register

(ir)

The indirect word at C(TPR.CA) is fetched and the modification performed
according to the variation specified in C(T4) of the instruction word and the

contents of the indirect word. This modification type allows automatic
incrementing and decrementing of addresses and tally counting.

The register designator, C(Ty), is safe-stored in a special holding register, CT-
HOLD. The word at C(TPR.CA) is fetched and interpreted as an indirect
word. The TAG field of the indirect word specifies the next step in computed
address formation as follows:

Indirect
TAG Next step

rorit Perform register modification using Tq from CT-HOLD.()

ri Perform the register then indirect modification immediately and
fetch the next indirect word from the result of that modification.

ir Replace the safe-stored Ty value in CT-HOLD with the Ty value
from the indirect word TAG field and use the ADDRESS field of
the indirect word as a computed address value to fetch the next
indirect word.

(1)In this instance, the indirect then tally variations fault tag 1, fault tag 2, and fault tag 3 are
treated differently. The fault tag 1 variation results in the action described here but fault tag 2

and fault tag 3 result in the generation of a fault.

See the discussion of indirect then tally

modification later in this section.

Computed Address Formation Flowcharts

The flowcharts depicting the computed address formation process are scattered throughout
this section and are linked together by figure references. The flowcharts start with Figure 6-2.

START CA

(Figure 6-3) (Figure 6-4) (Figure 6-5) (Figure 6-6)

Figure 6-2. Common Computed Address Formation Flowchart

Register (r) Modification

In register modification (T}, = 0) the value of T4 designates a register whose contents are to

be added to C(TPR.CA) to form a modified C(TPR.CA).

This modified C(TPR.CA) becomes the

computed address of the operand. See Figure 6-3, Table 6-2, and the examples following.

Yes

or 7? l
No

Set direct operand flag
Form operand

C(TPR.CA) + C(r) —» C(TPR.CA)

END CA

Figure 6-3. Register Modification Flowchart

Table 6-2. Register Modification Decode

Ty Coding
value Register Symbol Computed Address

0 none n, nul 'y

1 Ao,17 au y + C(A)o,17

2 Qo,17 qu y + C(Q)o,17

3 none du none; v becomes the upper 18 bits of the 36-bit zero
filled operand

4 PPR.IC ic y +C(PPR.IC)

5 A1g,35 al y +C(A)18,35

6 Q18,35 ql y +C(Q)18,35

7 none dl none; y becomes the lower 18 bits of the 36-bit zero

filled operand

10 X0 0, x0 y +C(X0)
11 X1 1, x1 y +C(X1)
12 X2 2, x2 y +C(X2)
13 X3 3, x3 y +C(X3)
14 X4 4, x4 y +C(X4)
15 X5 5, x5 y +C(Xb)
16 X6 6, x6 y +C(X6)
17 X7 7, x7 y +C(X7)

Examples:

Location Instruction Computed address

1. a lda vy y

2. a sta vy,n y

3. a ldaq y,au y + C(A)g,17

4. tra 3,ic a+3

5. a ldg vy,du none; operand has the form y || (00...0)1g
6. a 1x14 y,dl none; operand has the form (00...0)1g || ¥
7. a mpy vy,1 y + C(X1)

8. a stx4 y,7 y + C(X7)

Register Then Indirect (ri) Modifications

In register then indirect modification (T, = 1) the value of T4 designates a register whose
contents are to be added to C(TPR.CA) to form a modified C(TPR.CA). This modified C(TPR.CA) is
used as a computed address to fetch an indirect word. The ADDRESS field of the indirect word is
loaded into TPR.CA and the TAG field of the indirect word is interpreted in the next step of an
indirect chain. The TALLY field of the indirect word is ignored.

The indirect chain continues until an indirect word TAG field specifies a modification
without indirection.

The coding symbol for register then indirect modification is r* where ris any of the coding
symbols for register modification as given in Table 6-1 above except du and dl. The du and dl
register codes are illegal and and their use causes an illegal procedure, illegal modifier, fault. See
Figure 6-4, Table 6-1, and the examples following.

No ABORT

Ta = 0? No illegal procedure,
== ¢ illegal modifier, fault

Yes r="Ty
C(TPR.CA) + C(r) — C(TPR.CA)

Indirect word fetch
APPEND CYCLE
(Figure 5-4)

v

Indirect word ADDRESS
— C(TPR.CA)

START CA

i

(Figure 6-2)

Figure 6-4. Register Then Indirect Modification Flowchart

Examples:

Location Instruction Computed address

1. a lda b,* (r=null)
b arg y y
2. a ldg b,1*

b+C((X1) arg y,au y + C(A)g 17

3. a tra 4,ic*
a+4 arg c,*
C arg vy y
4. a 1x14 b,0*

b+C(X0) arg c,1*
c+C(X1) arg vy,dl none; operand has the form (00...0)1g || ¥

Indirect Then Register (ir) Modification

In indirect then register modification (T, = 3) the value of T4 designates a register whose
contents are to be added to C(TPR.CA) to form the final modified C(TPR.CA) during the last step in
the indirect chain. The value of T4 is held in a special holding register, CT-HOLD. The initial
C(TPR.CA) is used as computed address to fetch an indirect word. The ADDRESS of the indirect

word is loaded into TPR.CA and the TAG field of the indirect word is interpreted in the next step of
an indirect chain. The TALLY field of the indirect word is ignored.

If the indirect word TAG field specifies a register then indirect modification, that
modification is performed and the indirect chain continues.

If the indirect word TAG field specifies indirect then register modification, the T4 value from
that TAG field replaces the T4 value in CT-HOLD and the indirect chain continues.

If the indirect word TAG specifies register or indirect then tally modification, that
modification is replaced with a register modification using the Ty value in CT-HOLD and the

indirect chain ends.

The coding symbol for indirect then register modification is *r where ris any of the coding
symbols for register modification as given in Table 6-2 except null. See Figure 6-5, Table 6-1, and

the examples following.
(IRMOD)

Indirect word fetch
APPEND CYCLE
(Figure 5-4)

v

Indirect word ADDRESS
- C(TPR.CA)

Tp=ri Tp=ir Tp=r" Tp=it
A 4
r=T4 <
C(TPR.CA) + C(r) » C(TPR.CA) v
r= CT-HOLD

C(TPR.CA) + C(r) — C(TPR.CA)

END CA fault tag 2

or 3 fault

Figure 6-5. Indirect Then Register Modification Flowchart

Examples:

Location Instruction Computed address

1. a lda b,*n (CT-HOLD = n)
b arg vy,2 y

2. a 1x12 b,*dl (CT-HOLD = dl)
b sta y,au none; operand has the form (00...0)1g || v

3. a lda b,*1 (CT-HOLD = x1)
b arg c,n*
o arg d,*4 (CT-HOLD = x4)
d arg vy,ql y + C(X4)

4. a 1dx0 b, 1*
b+C(X1) arg c,*ic (CT-HOLD = ic)
o arg 5,dl a+5

Indirect Then Tally (it) Modification

In indirect then tally modification (T,, = 2) the value of T4 specifies a variation. The initial
C(TPR.CA) is used an as computed address to fetch an indirect word. The indirect word is
interpreted and possibly altered as the modification is performed. If the specified variation
involves alteration of the indirect word, the indirect word is fetched with a special main memory
cycle that prevents other processors from accessing it until the alteration is complete.

The TALLY field of the indirect word is used to count references made to the indirect word.
It has a maximum range of 4096. If the TALLY field has the value O after a reference to the
indirect word, the tally runout indicator will be set ON, otherwise the tally runout indicator is set
OFF. The value of the TALLY field and the state of the tally runout indicator have no effect on
computed address formation.

If there is more than one indirect word in an indirect chain that is referenced by a tally
counting variation, only the state of the TALLY field of the last such word is reflected in the tally
runout indicator.

The variations of the indirect then tally modification are given in Table 6-3 and explained in
detail in the paragraphs following. Those entries given as "Undefined" cause an illegal procedure,
illegal modifier, fault. See Figure 6-6, Table 6-1, and the examples following.

Table 6-3. Variations of Indirect Then Tally Modification

Ty Coding
value symbol Computed address

0 fl Fault tag 1
Undefined (see itp modification later in this section)
Undefined

Undefined (see its modification later in this section)

B~ W N e

sd Subtract delta

Ty Coding
value symbol Computed address

5 scr Sequence character reverse

6 f2 Fault tag 2

7 f3 Fault tag 3

10 ci Character indirect

11 i Indirect

12 scC Sequence character

13 ad Add delta

14 di Decrement address, increment tally

15 dic Decrement address, increment tally, and continue
16 id Increment address, decrement tally

17 idc Increment address, decrement tally, and continue

Fault tag 1 (T4 = 0)

If this variation appears in an indirect word and the TAG of the instruction word or
preceding indirect word is indirect then register (ir), then terminate computed address
formation with a register (r) modification using the register held in CT-HOLD. If this
variation appears in an instruction word or in an indirect word and the TAG of the
instruction word or preceding indirect word is not indirect then register (ir), then generate
a fault tag 1 fault.

C(TPR.CA) at the time of the fault contains the computed address of the word containing
the fault tag 1 variation. Thus, the ADDRESS and TALLY fields of that word may contain
information relative to recovery from the fault.

Subtract delta (T4 = 4)

The TAG field of the indirect word is interpreted as a 6-bit, unsigned, positive address
increment value, delta. For each reference to the indirect word, the ADDRESS field is
reduced by delta and the TALLY field is increased by 1 before the computed address is
formed. ADDRESS arithmetic is modulo 28, TALLY arithmetic is modulo 4096. If the
TALLY field overflows to 0, the tally runout indicator is set ON, otherwise it is set OFF. The
computed address is the value of the decremented ADDRESS field of the indirect word.

Example:
Location Instruction Reference Computed Tally value
count address
a lda b,sd 1 c-d t+1
b vfd 18/c,12/t,6/d 2 c-2d t+2
3 c-3d t+3
n c-nd t+n

Sequence character reverse (T4 = 5)

Bit 30 of the TAG field of the indirect word is interpreted as a character size flag, tb, with
the value 0 indicating 6-bit characters and the value 1 indicating 9-bit bytes. Bits 33-35 of

the TAG field are interpreted as a 3-bit character/byte position counter, cf. Bits 31-32 of the
TAG field must be zero.

For each reference to the indirect word, the character counter, cf, is reduced by 1 and the
TALLY field is increased by 1 before the computed address is formed. Character count
arithmetic is modulo 6 for 6-bit characters and modulo 4 for 9-bit bytes. If the character
count, cf, underflows to -1, it is reset to 5 for 6-bit characters or to 3 for 9-bit bytes and
ADDRESS is reduced by 1. ADDRESS arithmetic is modulo 218, TALLY arithmetic is
modulo 4096. If the TALLY field overflows to 0, the tally runout indicator is set ON,
otherwise it is set OFF. The computed address is the (possibly) decremented value of the
ADDRESS field of the indirect word. The effective character/byte number is the
decremented value of the character position count, cf, field of the indirect word.

A 36-bit operand is formed by high-order zero filling the value of character cf-l of
C(computed address) with an appropriate number of bits .

Examples:
Reference Computed Tally
Location Instruction count cf address value Operand
a lda b,scr 1 2 c+l t+1 (00...0)3¢ || "I"
b vfd 18/c+1,12/t,1/0,5/3 2 1 c+l t+2 (00...0)30 || "H"
C bci "ABCDEFGHIJKL" 3 0 c+l t+3 (00...0)3¢ || "G"
4 5 o t+4 (00...0)3¢ || "F"
5 4 C t+5 (00...0)3¢ || "E"
a lda b,scr 1 2 c+l t+1 (00...0)57 || "g"
b vfd 18/c+1,12/t,1/1,5/3 2 1 c+l t+2 (00...0)27 || "
c aci ‘"abcdefgh" 3 0 c+l t+3 (00...0)37 || "e"
4 3 o t+4 (00...0)y7 || "d"
5 2 o t+5 (00...0)37 || "c"

Fault tag 2 (T4 = 6)

Terminate computed address formation immediately and generate a fault tag 2 fault.

C(TPR.CA) at the time of the fault contains the computed address of the word containing
the fault tag 2 variation. Thus, the ADDRESS and TALLY fields of that word may contain
information relative to recovery from the fault.

Fault tag 3 (Tq = 7)

Terminate computed address formation immediately and generate a fault tag 3 fault.

C(TPR.CA) at the time of the fault contains the computed address of the word containing
the fault tag 3 variation. Thus, the ADDRESS and TALLY fields of that word may contain
information relative to recovery from the fault.

Character indirect (T4 = 10)

Bit 30 of the TAG field of the indirect word is interpreted as a character size flag, tb, with
the value 0 indicating 6-bit characters and the value 1 indicating 9-bit bytes. Bits 33-35 of
the TAG field are interpreted as a 3-bit character/byte position value, cf. Bits 31-32 of the
TAG field must be zero.

If the character position value is greater than 5 for 6-bit characters or greater than 3 for 9-
bit bytes, an illegal procedure, illegal modifier, fault will occur. The TALLY field is ignored.
The computed address is the value of the ADDRESS field of the indirect word. The effective
character/byte number is the value of the character position count, cf, field of the indirect
word.

A 36-bit operand is formed by high-order zero filling the value of character cf of
C(computed address) with an appropriate number of bits .

Examples:
Location Instruction Operand
a lda b,ci
b vfd 18/c+1,12/0,1/0,5/2 (00...0)30 || "I"
c bci "ABCDEFGHIJKL"
a lda d,ci
d vfd 18/c,12/0,1/0,5/1 (00...0)3¢ || "B"
a lda e,ci
e vfd 18/f,12/0,1/1,5/3 (00...0)27 || "a"
f aci "abcdefgh"
a lda g,ci
g vfd 18/f+1,12/0,1/1,5/0 (00...0)27 || "e"

Indirect (T4 = 11)

The computed address is the value of the ADDRESS field of the indirect word. The TALLY
and TAG fields of the indirect word are ignored.

Sequence character (Tgq = 12)

Bit 30 of the TAG field of the indirect word is interpreted as a character size flag, tb, with
the value 0 indicating 6-bit characters and the value 1 indicating 9-bit bytes. Bits 33-35 of
the TAG field are interpreted as a 3-bit character position counter, cf. Bits 31-32 of the TAG
field must be zero.

For each reference to the indirect word, the character counter, cf, is increased by 1 and the
TALLY field is reduced by 1 after the computed address is formed. Character count
arithmetic is modulo 6 for 6-bit characters and modulo 4 for 9-bit bytes. If the character
count, cf, overflows to 6 for 6-bit characters or to 4 for 9-bit bytes, it is reset to 0 and
ADDRESS is increased by 1. ADDRESS arithmetic is modulo 218, TALLY arithmetic is
modulo 4096. If the TALLY field is reduced to 0, the tally runout indicator is set ON,
otherwise it is set OFF. The computed address is the unmodified value of the ADDRESS
field. The effective character/byte number is the unmodified value of the character position
counter, cf, field of the indirect word.

A 36-bit operand is formed by high-order zero filling the value of character of of
C(computed address) with an appropriate number of bits .

Examples:

Reference Computed Tally
Location Instruction count cf address value Operand
a lda b,sc 1 4 c t-1 (00...0)30 || "E"
b vfd 18/c,12/t,1/0,5/4 2 5 o t-2 (00...0)30 || "F"
o bci "ABCDEFGHIJKL" 3 0 c+l t-3 (00...0)30 || "G"
4 1 c+l t-4 (00...0)30 || "H"
5 2 c+l t-5 (00...0)30 || "I"
a lda b,sc 1 2 o t-1 (00...0)97 || "c"
b vfd 18/c,12/t,1/1,5/2 2 3 o t-2 (00...0)97 || "d"
c aci "abcdefgh" 3 0 c+l t-3 (00...0)p7 || "e"
4 1 c+l t-4 (00...0)97 || "t"
5 2 c+l t-5 (00...0)57 || "g"

Add delta (T4 = 13)

The TAG field of the indirect word is interpreted as a 6-bit, unsigned, positive address
increment value, delta. For each reference to the indirect word, the ADDRESS field is
increased by delta and the TALLY field is reduced by 1 after the computed address is
formed. ADDRESS arithmetic is modulo 2'8. TALLY arithmetic is modulo 4096. If the
TALLY field is reduced to O, the tally runout indicator is set ON, otherwise it is set OFF.
The computed address is the value of the unmodified ADDRESS field of the indirect word.

Example:
Location Instruction Reference count Computed Tally value
address
a lda b,ad 1 o t-1
b vfd 18/c,1/t,6/d 2 c+d t-2
3 c+2d t-3
n c+(ad t-n

Decrement address, increment tally (T4 = 14)

For each reference to the indirect word, the ADDRESS field is reduced by 1 and the TALLY
field is increased by 1 before the computed address is formed. ADDRESS arithmetic is
modulo 218, TALLY arithmetic is modulo 4096. If the TALLY field overflows to 0, the tally
runout indicator is set ON, otherwise it is set OFF. The TAG field of the indirect word is
ignored. The computed address is the value of the decremented ADDRESS field.

Example:
Location Instruction Reference Computed Tally value
count address
a lda b,di 1 c-1 t+1
b vfd 18/c,12/t 2 c-2 t+2
3 c-3 t+3

n c-n t+n

Decrement address, increment tally, and continue (T4 = 15)

The action for this variation is identical to that for the decrement address, increment tally
variation except that the TAG field of the indirect word is interpreted and continuation of
the indirect chain is possible. If the TAG of the indirect word invokes a register, that is,
specifies 1, ri, or ir modification, the effective Ty value for the register is forced to "null"
before the next computed address is formed .

Increment address, decrement tally (T4 = 16)

For each reference to the indirect word, the ADDRESS field is increased by 1 and the
TALLY field is reduced by 1 after the computed address is formed. ADDRESS arithmetic is
modulo 218, TALLY arithmetic is modulo 4096. If the TALLY field is reduced to 0, the tally
runout indicator is set ON, otherwise it is set OFF. The TAG field of the indirect word is
ignored. The computed address is the value of the unmodified ADDRESS field.

Example:
Location Instruction Reference Computed Tally value
count address
a lda b,id 1 o t-1
b vfd 18/c,1/t 2 c+1 t-2
3 c+2 t-3
n c+(n-1) t-n

Increment address, decrement tally, and continue (Tgq = 17)

The action for this variation is identical to that for the increment address, decrement tally
variation except that the TAG field of the indirect word is interpreted and continuation of
the indirect chain is possible. If the TAG of the indirect word invokes a register, that is,
specifies 1, ri, or ir modification, the effective T4 value for the register is forced to "null"

before the next computed address is formed.

Interpret
Ta

Tq=0,6,7
(f1, f2, f3)

ABORT

fault tag 1,
2, or 3 fault

Ta=1,2,3 |[Tqg=10,12,5

(undef) (ci, sc,

scr) (i, ad,

Tq=11, 13, 4, 14, 16

Tq= 15,17

sd, di, id) (dic, idc)

Indirect word fetch
APPEND CYCLE
(Figure 5-4)

Indirect word fetch
APPEND CYCLE
(Figure 5-4)

Indirect word fetch
APPEND CYCLE
(Figure 5-4)

No is the cf

ABORT

illegal procedure,
illegal modifier, fault

value legal?

??7?
cf field, and
ADDRESS. Form
computed address

Adjust TALLY
and form
computed address

Interpret
indirect TAG

END CA

Ty =irorit Ty =ri

Indirect word fetch
APPEND CYCLE
(Figure 5-4)

START CA

(Figure 6-2)

Figure 6-6. Indirect Then Tally Modification Flowchart

VIRTUAL ADDRESS FORMATION INVOLVING BOTH SEGMENT

NUMBER AND COMPUTED ADDRESS

The second type of virtual address formation generates an effective segment number and a

computed address simultaneously.

The Use of Bit 29 in the Instruction Word

The reader is reminded that there is a preliminary step of loading TPR.CA with the

ADDRESS field of the instruction word during instruction decode.

If bit 29 of the instruction word is set to 1, modification by pointer register is invoked and

the preliminary step is executed as follows:

1. The ADDRESS field of the instruction word is interpreted as shown in Figure 6-7 below.

2. C(PRn.SNR) - C(TPR.TSR)

3. maximum of (C(PRn.RNR), C(TPR.TRR), C(PPR.PRR)) — C(TPR.TRR)
4. C(PRn.WORDNO) + OFFSET — C(TPR.CA)

(NOTE: OFFSET is a signed binary number.)
5. C(PRn.BITNO) —» TPR.BITNO

0 0
2

0
0 3

PRn OFFSET

3 15

Figure 6-7. Format of Instruction Word ADDRESS When Bit 29 =1

After this preliminary step is performed, virtual address formation proceeds as discussed
above or as discussed for the special address modifiers below.

Special Address Modifiers

Whenever the processor is forming a virtual address two special address modifiers may be
specified and are effective under certain restrictive conditions. The special address modifiers are
shown in Table 6-4 and discussed in the paragraphs below.

The conditions for which the special address modifiers are effective are as follows:

1. The instruction word (or preceding indirect word) must specify indirect then register or
register then indirect modification.

2. The computed address for the indirect word must be even.

If these conditions are satisfied, the processor examines the indirect word TAG field for the
special address modifiers.

If either condition is violated, the indirect word TAG field is interpreted as a normal address

modifier and the presence of a special address modifier will cause an illegal procedure, illegal
modifier, fault.

Table 6-4. Special Address Modifiers

TAG Value Coding Symbol Name

41 itp Indirect to pointer

43 its Indirect to segment

Indirect to Pointer (ITP) Modification

If the value for indirect to pointer modification is found in the test for special modifiers, the
indirect word-pair is interpreted as an ITP pointer pair (see Figure 6-8 for format) and the
following actions take place:

For n = C(ITP.PRNUM):

C(PRn.SNR) —» C(TPR.TSR)

maximum of (C(PRn.RNR), C(SDW.R1), C(TPR.TRR)) — C(TPR.TRR)
C(ITP.BITNO) - C(TPR.TBR)
C(PRn.WORDNO) + C(ITP.WORDNO) + C(r) » C(TPR.CA)

where:

1. r= C(CT-HOLD) if the instruction word or preceding indirect word specified
indirect then register modification, or

2. r= C(ITP.MOD.Ty) if the instruction word or preceding indirect word specified
register then indirect modification and ITP.MOD.T}, specifies either register or
register then indirect modification.

3. SDW.R1 is the upper limit of the read/write ring bracket for the segment
C(TPR.TSR) (see Section 8).

Even word
0 00 23 3
0 2 3 9 0 5
PRNUMJO 0 0O 00O OO OO0O0O0OO00O0OO0OO0OO0OOOOOOOOOOOOO 41g
3 27 6
Odd word
0 11 2 2 2 2 2333 3
0 7 8 01 6 7 9 012 5
MOD
WORDNO 000 BITNO 000
Tm Tq
18 3 6 3 2 4
Figure 6-8. ITP Pointer Pair Format
Field Name Meaning
PRNUM The number of the pointer register through which to make the

segment reference
WORDNO A word offset value to be added to C(PRn.WORDNO)
BITNO A bit offset value for the data item
MOD Any normal address modifier (not ITP or ITS)

Indirect to Segment (ITS) Modification

If the value for indirect to segment modification is found in the test for special modifiers,
the indirect word-pair is interpreted as an ITS pointer pair (see Figure 6-9 for format) and the
following actions take place:

C(ITS.SEGNO) — C(TPR.TSR)

maximum of (C(ITS. RN), C(SDW.R1), C(TPR.TRR)) —» C(TPR.TRR)
C(ITS.BITNO) — C(TPR.TBR)
C(ITS.WORDNO) + C(r) —» C(TPR.CA)

where:

1. r= C(CT-HOLD) if the instruction word or preceding indirect word specified
indirect then register modification, or

2. r= C(ITS.MOD.Ty) if the instruction word or preceding indirect word specified
register then indirect modification and ITS.MOD.T,, specifies either register or
register then indirect modification.

3. SDW.RI is the upper limit of the read/write ring bracket for the segment
C(TPR.TSR) (see Section 8).

Even word
0 00 11 2 2 2 3 3
0 2 3 7 8 01 9 0 5
000 SEGNO RN 000O0OO0OO0O0ODO 43g
3 15 3 9 6
Odd word
0 11 2 2 2 2 2 333 3
0 7 8 01 6 7 901 2 5
MOD
WORDNO 00O BITNO 00O
Tm Td
18 3 6 3 2 4

Figure 6-9. ITS Pointer Pair Format

Field Name Meaning

SEGNO The number of the segment to be referenced

WORDNO Word offset to be used in the computed address formation
BITNO The bit offset for the data item

MOD Any valid normal address modifier (not ITS or ITP)

Effective Segment Number Generation

A simplified flowchart for effective segment number generation is given in Figure 6-10.
Although effective ring number generation and access checking are an integral part of this
process, their treatment is deferred to Section 8.

START ESN
Was last cycle an
indirect word?

No

Was it a
équential instructicbNO

fetch?

Yes Is bit Yes
29 ON?
No

C(PPR.PSR) —» C(TPR.TSR)

n = C(instruction word)g 2
C(PRn .SNR) —» C(TPR.TSR)

¥

CA CYCLE
(Figure 6-2)

Indirect
word fetch?

No

No

riorir & Yes
TPR.CA even?

Figure 6-10. Effective Segment Generation Flowchart

™ (®
No TAG = Yes
ITS? ¢

TAG = \Yes C(Y)3,17 — C(TPR.TSR)
ITP? C(Y+1)g 17 = C(TPR.CA)
i C(ITS.MOD) — TAG
No
n = C(Y)0,2
Yes C(PRn .SNR) — C(TPR.TSR)
C(PRn .WORDNO) + C(Y+1)0,17
— C(TPR.CA)
lNo C(ITP.MOD) — TAG

P
< rtcd No
?
gperands START ESN
Yes call6 or

transfer

operand?
Yes
C(Y)317 — C(PPR.PSR) C(TPR.TSR) — C(PPR.PSR) appending N\ Yes
C(Y+1)0,17 — C(PPR.IC) C(TPR.CA) - C(PPR.IC)' movement?
| No

EXECUTE
END ESN (Not shown)

Figure 6-10(cont). Effective Segment Number Generation Flowchart

VIRTUAL ADDRESS FORMATION FOR EXTENDED INSTRUCTION
SET

The steps involved in virtual address formation for the operand of an EIS instruction are
shown in Figure 6-11. The flowchart depicts the virtual address formation for operand k as
described by its modification field, MFk. This virtual address formation is performed for each
operand as its operand descriptor is decoded.

START EIS CA

MFk .ID \ Yes
=1? ¢

ESN CYCLE
(Figure 6-10)

v

operand descriptor
APPEND CYCLE
(Figure 5-4)

No /MFk .AR\ Yes

¢ -0) l
n=C{)o2
(NOTE 1)

n = null

v -0/ v

r=null r = Mfk .REG

Form effective word/char/bit
address from
Y, CN, C, B, C(PRn), C(r)
(NOTE 1, 2)

END EIS CA

Figure 6-11. EIS Virtual Address Formation Flowchart

NOTE 1: The symbol "Y" stands for the contents of the ADDRESS field of the operand descriptor.
The symbols ""CN" and "C" stand for the contents of the character number field. The
symbol "B" stands for the contents of the bit number field.

NOTE 2: The algorithms used in the formation of the effective word/char/bit address are described
below.

Character- and Bit-String Addressing

The processor represents the effective address of a character- or bit-string operand in three
different forms as follows:

1. Pointer register form
This form consists of a word value (PRn.WORDNO) and a bit value (PRn.BITNO). The

word value is the word offset of the word containing the first character or bit of the
operand and the bit value is the bit position of that character or bit within the word. This

form is seen when C(PRn) are stored as an ITS pointer pair or as a packed pointer (see
discussion of ITS pointers earlier in this section and the Store Pointer Register n Packed
(sprpn) instruction in Section 4).

2. Address register form

This form consists of a word value (ARn.WORDNO), a byte number (ARn.CHAR), and a
bit value (ARn.BITNO). The word value is the word offset of the word containing the first
character or bit of the operand. The byte number is the number of the 9-bit byte
containing the first character or bit. The bit value is the bit position within ARn.CHAR of
the first character or bit. This form is seen when C(ARn) are stored with the Store
Address Register n (sarn) instruction (see Section 4).

3. Operand Descriptor Form

This form is valid for character-string operands only. It consists of a word value
(ADDRESS) and a character number (CN). The word value is the word offset of the word
containing the first character of the operand and the character number is the number of
that character within the word. This form is seen when C(ARn) are stored with the
Address Register n to Alphanumeric Descriptor (aran) or Address Register n to Numeric
Descriptor (arnn) instructions. (The operand descriptor form for bit-string operands is
identical to the address register form.)

The terms "pointer register" and "address register" both apply to the same physical
hardware. The distinction arises from the manner in which the register is used and in the
interpretation of the register contents. "Pointer register" refers to the register as used by the
appending unit and "address register" refers to the register as used by the decimal unit.

The three forms are compatible and may be freely intermixed. For example, PRn may be
loaded in pointer register form with the Effective Pointer to Pointer Register n (eppn) instruction,
then modified in pointer register form with the Effective Address to Word/Bit Number of Pointer
Register n (eawpn) instruction, then further modified in address register form (assuming character
size k) with the Add kBit Displacement to Address Register (akbd) instruction, and finally invoked
in operand descriptor form by the use of MF.AR in an EIS multiword instruction .

Character- and Bit-String Address Arithmetic Algorithms

The arithmetic algorithms for calculating character- and bit-string addresses are presented below.
The symbols "ADDRESS" and "CN" represent the ADDRESS and CN fields of the operand
descriptor being decoded. "r" and "n" are set according to the flowchart in Figure 6-11. If either
has the value "null", the contents of all associated fields are identically zero.

9-bit Byte String Address Arithmetic

Effective BITNO = 0000
Effective CHAR = (CN + C(ARn.CHAR) + C(D0)[4]
Effective WORDNO = ADDRESS + C(ARn.WORDNO) +

(CN + C(ARn.CHAR) + C(1)) / 4

6-bit Character String Address Arithmetic

Effective BITNO = (9*C(ARn.CHAR) + 6*C(r) + C(ARn.BITNO))[g;
Effective CHAR = ((9*C(ARn.CHAR) + 6*C(r) + C(ARn.BITNO))[367) / 9
Effective WORDNO = ADDRESS + C(ARn.WORDNO) +

(9*C(ARn.CHAR) + 6*C(rn) + C(ARn.BITNO)) / 36

4-bit Byte String Address Arithmetic

Effective BITNO = 4 * (C(ARn.CHAR) + 2*C(r) + C(ARn.BITNO)/4)21 + 1
Effective CHAR = ((9*C(ARn.CHAR) + 4*C(r) + C(ARn.BITNO))(367/ 9
Effective WORDNO = ADDRESS + C(ARn.WORDNO) +

(9*C(ARn.CHAR) + 4*C(rn) + C(ARn.BITNO)) / 36

Bit String Address Arithmetic

Effective BITNO = (9*C(ARn.CHAR) + 36*C(r) + C(ARn.BITNO)))g;
Effective CHAR = ((9*C(ARn.CHAR) + 36*C(r) + C(ARn.BITNO))(367) / 9
Effective WORDNO = ADDRESS + C(ARn.WORDNO) +

(9*C(ARn.CHAR) + 36*C(r) + C(ARn.BITNO)) / 36

SECTION 7: FAULTS AND INTERRUPTS

Faults and interrupts both result in an interruption of normal sequential processing, but
there is a difference in how they originate. Generally, faults are caused by events or conditions
that are internal to the processor and interrupts are caused by events or conditions that are
external to the processor. Faults and interrupts enable the processor to respond promptly when
conditions occur that require system attention.

A unique word-pair is dedicated for the instructions to service each fault and interrupt
condition. The instruction pair associated with a fault or interrupt is called the trap pair for that
fault or interrupt. The set of all interrupt trap pairs is called the interrupt vector and is located at
absolute main memory address 0. The set of all fault trap pairs is called the fault vector and is
located at a 0 modulo 32 absolute main memory address whose high-order bits are given by the
setting of the FAULT BASE switches on the processor configuration panel. The fault vector is
constrained to lie within the lowest 4096 words of main memory.

FAULT CYCLE SEQUENCE

Following the detection of a fault condition, the control unit determines the proper time to
initiate the fault sequence according to the fault group (Fault groups are discussed later in this
section). At that time, the control unit interrupts normal sequential processing with an ABORT
CYCLE. The ABORT CYCLE brings all overlapped and asynchronous functions within the
processor to an orderly halt. At the end of the ABORT CYCLE, the control unit initiates a FAULT
CYCLE.

In the FAULT CYCLE, the processor safe-stores the Control Unit Data (see Section 3) into
program-invisible holding registers in preparation for a Store Control Unit (scu) instruction, then
enters temporary absolute mode, forces the current ring of execution C(PPR.PRR) to 0, and
generates a computed address for the fault trap pair by concatenating the setting of the FAULT
BASE switches on the processor configuration panel with twice the fault number (see Table 7-1).
This computed address and the operation code for the Execute Double (xed) instruction are forced
into the instruction register and executed as an instruction. Note that the execution of the
instruction is not done in a normal EXECUTE CYCLE but in the FAULT CYCLE with the processor
in temporary absolute mode.

If the attempt to fetch and execute the instruction pair at the fault trap pair results in
another fault, the current FAULT CYCLE is aborted and a new FAULT CYCLE for the trouble fault
(fault number 31) is initiated. In the FAULT CYCLE for a trouble fault, the processor does not
safe-store the Control Unit Data. Therefore, it may be possible to recover the conditions for the
original fault (except the fault number) by use of the Store Control Unit (scu) instruction. The fault
number may usually be recovered by analysis of the computed address for the original fault trap
pair stored in the control unit history registers.

If either of the two instructions in the fault trap pair results in a transfer of control to a
computed address generated in absolute mode, the absolute mode indicator is set ON for the
transfer and remains ON thereafter until changed by program action.

If either of the two instructions in the fault trap pair results in a transfer of control to a
computed address generated in append mode (through the use of bit 29 of the instruction word or
by use of the its or itp modifiers), the transfer is made in the append mode and the processor
remains in append mode thereafter.

If no transfer of control takes place, the processor returns to the mode in effect at the time
of the fault and resumes normal sequential execution with the instruction following the faulting
instruction (C(PPR.IC) + 1). Note that the current ring of execution C(PPR.PRR) was forced to 0
during the FAULT CYCLE and that normal sequential execution will resume in ring 0.

Many of the fault conditions are deliberately or inadvertently caused by the software and do
not necessarily involve error conditions. The operating supervisor determines the proper action
for each fault condition by analyzing the detailed state of the processor at the time of the fault. In
order to accomplish this analysis, it is necessary that the first instruction in each of the fault trap
pairs be the Store Control Unit (scu) instruction and the second be a transfer to a fault analysis
routine. If a fault condition is to be intentionally ignored, the fault trap pair for that condition
should contain an scu/rcu pair referencing a unique Y-block8. By using this pair to ignore a fault,
the state of the processor for the ignored fault condition may be recovered if the ignored fault
causes a trouble fault. The use of the scu/rcu pair also ensures that execution is resumed in the
original ring of execution.

Table 7-1. List of Faults

Octal)
Decimal fault fault Fault
number address mnemonic Fault name Priority Group
0 0 sdf Shutdown 27 7
1 2 str Store 10 4
2 4 mme Master mode entry 1 11 5
3 6 f1 Fault tag 1 17 5
4 10 tro Timer runout 26 7
5 12 cmd Command 9 4
6 14 drl Derail 15 5
7 16 Iuf Lockup 5 4
8 20 con Connect 25 7
9 22 par Parity 8 4
10 24 ipr Illegal procedure 16 5
11 26 onc Operation not 4 2
complete
12 30 suf Startup 1 1
13 32 ofl Overflow 7 3
14 34 div Divide check 6 3
15 36 exf Execute 2 1
16 40 dfo Directed fault 0 20 6
17 42 dfl Directed fault 1 21 6
18 44 df2 Directed fault 2 22 6
19 46 df3 Directed fault 3 23 6
20 50 acv Access violation 24 6
21 52 mme?2 Master mode entry 2 12 5
22 54 mme3 Master mode entry 3 13 5
23 56 mme4 Master mode entry 4 14 5
24 60 2 Fault tag 2 18 5
25 62 3 Fault tag 3 19 5
26 64 Unassigned

27 66 Unassigned

Octal ¥

Decimal fault fault Fault
number address n mnemonic Fault name Priority Group
28 70 Unassigned
29 72 Unassigned
30 74 Unassigned
31 76 trb Trouble 3 2

(1)The octal fault address value is the value concatenated with the FAULT BASE switch setting in
forming the computed address for the fault trap pair.

FAULT PRIORITY

The processor has provision for 32 faults of which 27 are implemented. The faults are
classified into seven fault priority groups that roughly correspond to the severity of the faults.
Fault priority groups are defined so that fault recognition precedence may be established when
two or more faults exist concurrently. Overlapped and asynchronous functions in the processor
allow the simultaneous occurrence of faults. Group 1 has the highest priority and group 7 has the
lowest. In groups 1 through 6, only one fault within each group is allowed to be active at any one
time. The first fault within a group occurring through the normal program sequence is the one
serviced.

Group 7 faults are saved by the hardware for eventual recognition. In the case of
simultaneous faults within group 7, shutdown has the highest priority with timer runout next and
connect the lowest.

There is a single exception to the handling of faults in priority group order. If an operand
fetch generates a parity fault and the use of the operand in "closing out" instruction execution
generates an overflow fault or a divide check fault, these faults are considered simultaneous but
the parity fault takes precedence.

FAULT RECOGNITION

For the discussion following, the term "function" is defined as a major processor functional
cycle. Examples are: APPEND CYCLE, CA CYCLE, INSTRUCTION FETCH CYCLE, OPERAND
STORE CYCLE, DIVIDE EXECUTION CYCLE. Some of these cycles are discussed in various
sections of this manual.

Faults in groups 1 and 2 cause the processor to abort all functions immediately by entering
a FAULT CYCLE.

Faults in group 3 cause the processor to "close out" current functions without taking any
irrevocable action (such as setting PTW.U in an APPEND CYCLE or modifying an indirect word in a
CA CYCLE), then to discard any pending functions (such as an APPEND CYCLE needed during a
CA CYCLE), and to enter a FAULT CYCLE.

Faults in group 4 cause the processor to suspend overlapped operation, to complete current
and pending functions for the current instruction, and then to enter a FAULT CYCLE.

Faults in groups 5 or 6 are normally detected during virtual address formation and
instruction decode. These faults cause the processor to suspend overlapped operation, to complete
the current and pending instructions, and to enter a FAULT CYCLE. If a fault in a higher priority
group is generated by the execution of the current or pending instructions, that higher priority
fault will take precedence and the group 5 or 6 fault will be lost. If a group 5 or 6 fault is detected
during execution of the current instruction (e.g., an access violation, out of segment bounds, fault

during certain interruptible EIS instructions), the instruction is considered "complete" upon
detection of the fault.

Faults in group 7 are held and processed (with interrupts) at the completion of the current
instruction pair. Group 7 faults are inhibitable by setting bit 28 of the instruction word.

Faults in groups 3 through 6 must wait for the system controller to acknowledge the last
access request before entering the FAULT CYCLE.

FAULT DESCRIPTIONS

Group 1 Faults

Startup

DC POWER has been turned on. When the POWER ON button is pressed, the
processor is first initialized and then the startup fault is generated.

Execute
1. The EXECUTE pushbutton on the processor maintenance panel has been pressed.
2. An external gate signal has been substituted for the EXECUTE pushbutton.

The selection between the above conditions is made by settings of various switches on
the processor maintenance panel.

Group 2 Faults

Operation Not Complete
Any of the following will cause an operation not complete fault:

1. The processor has addressed a system controller to which it is not attached, that is,
there is no main memory interface port having its ADDRESS ASSIGNMENT
switches set to a value including the main memory address desired.

2. The addressed system controller has failed to acknowledge the processor.

3. The processor has not generated a main memory access request or a direct
operand within 1 to 2 milliseconds and is not executing the Delay Until Interrupt
Signal (dis) instruction.

4. A main memory interface port received a data strobe without a preceding
acknowledgment from the system controller that it had received the access
request.

5. A main memory interface port received a data strobe before the data previously
sent to it was unloaded.

Trouble

The trouble fault is defined as the occurrence of a fault during the fetch or execution
of a fault trap pair or interrupt trap pair. Such faults may be hardware generated (for
example, operation not complete or parity), or operating system generated (e.g., the
page containing a trap pair instruction operand is missing).

Group 3 Faults

Overflow

An arithmetic overflow, exponent overflow, exponent underflow, or EIS truncation
fault has been generated. The generation of this fault is inhibited when the overflow
mask indicator is ON. Resetting of the overflow mask indicator to OFF does not
generate a fault from previously set indicators. The overflow mask state does not
affect the setting, testing or storing of indicators. The determination of the specific
overflow condition is by indicator testing by the operating supervisor.

Divide Check

A divide check fault occurs when the actual division cannot be carried out for one of
the reasons specified with individual divide instructions.

Group 4 Faults

Store

Command

Lockup

Parity

The processor attempted to select a disabled port, an out-of-bounds address was
generated in the BAR mode or absolute mode, or an attempt was made to access a
store unit that was not ready.

1. The processor attempted to load or read the interrupt mask register in a system
controller in which it did not have an interrupt mask assigned.

2. The processor issued an XEC system controller command to a system controller in
which it did not have an interrupt mask assigned.

3. The processor issued a connect to a system controller port that is masked OFF.

4. The selected system controller is in TEST mode and a condition determined by
certain system controller maintenance panel switches has been trapped.

5. An attempt was made to load a pointer register with packed pointer data in which
the BITNO field value was greater than or equal to 60(8).

The program is in a code sequence which has inhibited sampling for interrupts
(whether present or not) and group 7 faults for longer than the prescribed time. In
absolute mode or privileged mode the lockup time is 32 milliseconds. In normal mode
or BAR mode the lockup time is specified by the setting for the lockup time in the
cache mode register. The lockup time is program settable to 2, 4, 8, or 16
milliseconds.

While in absolute mode or privileged mode the lockup fault is signalled at the end of
the time limit set in the lockup timer but is not recognized until the 32 millisecond
limit. If the processor returns to normal mode or BAR mode after the fault has been
signalled but before the 32 millisecond limit, the fault is recognized before any
instruction in the new mode is executed.

1. The selected system controller has returned an illegal action signal with an illegal
action code for one of the various main memory parity error conditions.

2. A cache memory data or directory parity error has occurred either for read, write,
or block load. Cache status bits for the condition have been set in the cache mode
register.

3. The processor has detected a parity error in the system controller interface port
while either generating outgoing parity or verifying incoming parity.

Group 5 Faults

Master Mode Entries 1-4
The corresponding Master Mode Entry instruction has been decoded.
Fault Tags 1-3

The corresponding indirect then tally variation has been detected during virtual
address formation.

Derail
The Derail instruction has been decoded.
Illegal Procedure

1. An illegal operation code has been decoded or an illegal instruction sequence has
been encountered.

2. An illegal modifier or modifier sequence has been encountered during virtual
address formation.

3. An illegal address has been given in an instruction for which the ADDRESS field is
used for register selection.

4. An attempt was made to execute a privileged instruction in normal mode or BAR
mode.

5. An illegal digit was encountered in a decimal numeric operand.
6. An illegal specification was found in an EIS operand descriptor.

The conditions for the fault will be set in the fault register, word 1 of the Control Unit
Data, or in both.

Group 6 Faults

Directed Faults 0-3

A faulted segment descriptor word (SDW) or page table word (PTW) with the
corresponding directed fault number has been fetched by the appending unit.

Access Violation

The appending unit has detected one of the several access violations below. Word 1 of
the Control Unit Data contains status bits for the condition.

1. Not in read bracket (ACV3=0RB)

2. Not in write bracket (ACV5=0WB)

3. Not in execute bracket (ACV1=0EB)
4. No read permission (ACV4=R-OFF)

5. No write permission (ACV6=W-OFF)
6. No execute permission (ACV2=E-OFF)
7. Invalid ring crossing (ACV12=CRT)

8. Call limiter fault (ACV7=NO GA)

9. Outward call (ACV9=0CALL)

10.Bad outward call (ACV10=BOC)
11.Inward return (ACV11=INRET)
12.Ring alarm (ACV13=RALR)
13.Associative memory error

14.0ut of segment bounds (ACV15=00SB)
15.1llegal ring order (ACV0O=IRO)

16.0ut of call brackets (ACV8=0CB)

Group 7 Faults

Shutdown

An external power shutdown condition has been detected. DC POWER shutdown will
occur in approximately one millisecond.

Timer Runout
The timer register has decremented to or through the value zero. If the processor is
in privileged mode or absolute mode, recognition of this fault is delayed until a return
to normal mode or BAR mode. Counting in the timer register continues.

Connect
A connect signal ($CON strobe) has been received from a system controller. This
event is to be distinguished from a Connect Input/Output Channel (cioc) instruction

encountered in the program sequence.

(See the discussion of the floating faults in Section 3).

INTERRUPTS AND EXTERNAL FAULTS

Each system controller contains 32 interrupt cells that are used for communication among
the active system modules (processors, I/O multiplexers, etc.). The interrupt cells are organized in
a numbered priority chain. Any active system module connected to a system controller port may
request the setting of an interrupt cell with the SXC system controller command.

When one or more interrupt cells in a system controller is set, the system controller
activates the interrupt present (XIP) line to all system controller ports having an assigned interrupt

mask in which one or more of the interrupt cells that are set is unmasked. Interrupt masks should
be assigned only to processors. Each interrupt cell has associated with it a unique interrupt trap
pair located at an absolute main memory address equal to twice the cell number.

Interrupt Sampling

The processor always fetches instructions in pairs. At an appropriate point (as early as
possible) in the execution of a pair of instructions, the next sequential instruction pair is fetched
and held in a special instruction buffer register. The exact point depends on instruction sequence
and other conditions

If the interrupt inhibit bit (bit 28) is not set in the current instruction word at the point of
next sequential instruction pair virtual address formation, the processor samples the group 7
faults. If any of the group 7 faults is found an internal flag is set reflecting the presence of the
fault. The processor next samples the interrupt present lines from all eight memory interface ports
and loads a register with bits corresponding to the states of the lines. If any bit in the register is
set ON an internal flag is set to reflect the presence of the bit(s) in the register.

If the instruction pair virtual address being formed is the result of a transfer of control
condition or if the current instruction is Execute (xec), Execute Double (xed), Repeat (rpt), Repeat
Double (rpd), or Repeat Link (rpl), the group 7 faults and interrupt present lines are not sampled.

At an appropriate point in the execution of the current instruction pair, the processor
fetches the next instruction pair. At this point, it first tests the internal flags for group 7 faults and
interrupts. If either flag is set it does not fetch the next instruction pair.

At the completion of the current instruction pair the processor once again checks the
internal flags. If neither flag is set, execution of the next instruction pair proceeds. If the internal
flag for group 7 faults is set, the processor enters a FAULT CYCLE for the highest priority group 7
fault present. If the internal flag for interrupts is set, the processor enters an INTERRUPT CYCLE.

Interrupt Cycle Sequence

In the INTERRUPT CYCLE, the processor safe-stores the Control Unit Data (see Section 3)
into program-invisible holding registers in preparation for a Store Control Unit (scu) instruction,
enters temporary absolute mode, and forces the current ring of execution C(PPR.PRR) to 0. It then
issues an XEC system controller command to the system controller on the highest priority port for
which there is a bit set in the interrupt present register.

The selected system controller responds by clearing its highest priority interrupt cell and
returning the interrupt trap pair address for that cell to the processor.

If there is no interrupt cell set in the selected system controller (implying that all have been
cleared in response to XEC system controller commands from other processors), the system
controller returns the address value 1, which is not a valid interrupt trap pair address. The
processor senses this value, aborts the INTERRUPT CYCLE, and returns to normal sequential
instruction processing.

The interrupt trap pair address returned and the operation code for the Execute Double
(xed) instruction are forced into the instruction register and executed as an instruction. Note that
the execution of the instruction is not done in a normal EXECUTE CYCLE but in the INTERRUPT
CYCLE with the processor in temporary absolute mode.

If the attempt to fetch and execute the instruction pair at the interrupt trap pair results in a
fault, the INTERRUPT CYCLE is aborted and a FAULT CYCLE for the trouble fault (fault number
31) is initiated. In the FAULT CYCLE for a trouble fault, the processor does not safe-store the
Control Unit Data. Therefore, it may be possible to recover the conditions for the interrupt (except
the interrupt number) by use of the Store Control Unit (scu) instruction. The interrupt number

may usually be recovered by analysis of the computed address for the interrupt trap pair stored in
the control unit history registers.

If either of the two instructions in the interrupt trap pair results in a transfer of control to a
computed address generated in absolute mode, the absolute mode indicator is set ON for the
transfer and remains ON thereafter until changed by program action.

If either of the two instructions in the interrupt trap pair results in a transfer of control to a
computed address generated in append mode (through the use of bit 29 of the instruction word or
by use of the itp or its modifiers), the transfer is made in the append mode and and the processor
remains in append mode thereafter.

If no transfer of control takes place, the processor returns to the mode in effect at the time
of the interrupt and resumes normal sequential execution with the instruction following the
interrupted instruction (C(PPR.IC) + 1). Note that the current ring of execution C(PPR.PRR) was
forced to 0 during the INTERRUPT CYCLE and that normal sequential execution will resume in
ring 0.

Due to the time required for many of the EIS data movement instructions, additional group
7 fault and interrupt sampling is done during these instructions. After the initial load of the
decimal unit input data buffer, group 7 faults and interrupts are sampled for each input operand
virtual address formation. The instruction in execution is interrupted before the operand is
fetched and flags are set into Control Unit Data and Decimal Unit Data to allow the restart of the
instruction.

NOTE: The execution of a Store Pointers and Lengths (spl) instruction is required before an
interrupted EIS instruction may be restarted. Therefore, a fault or interrupt handling
routine must execute this instruction even though it does not use the decimal unit for its
processing.

Many of the interrupts are deliberately or inadvertently caused by the software and do not
necessarily involve error conditions. The operating supervisor determines the proper action for
each interrupt by analyzing the detailed state of the processor at the time of the interrupt. In
order to accomplish this analysis, it is necessary that the first instruction in each of the interrupt
trap pairs be the Store Control Unit (scu) instruction and the second be a transfer to an interrupt
analysis routine. If an interrupt is to be intentionally ignored, the trap pair for that interrupt
should contain an scu/rcu pair referencing a unique Y-block8. By using this pair to ignore an
interrupt, the state of the processor for the ignored interrupt may be recovered if the ignored
interrupt causes a trouble fault. The use of the scu/rcu pair also ensures that execution is
resumed in the original ring of execution.

SECTION 8: HARDWARE RING IMPLEMENTATION

The philosophy of ring protection is based on the existence of a set of hierarchical levels of
protection. This concept can be illustrated by a set of N concentric circles, numbered O, 1, 2, ...,
N-1 from the inside out. The space included in circle 0 is called ring 0, the space included between
circle i-1 and i is called ring i. Any segment in the system is placed in one and only one ring. The
closer a segment to the center, the greater its protection and privilege.

When a program is executing a procedure segment placed in ring R, the program is said to
be in ring R, or that the ring of execution or current ring is ring R. A program in ring R potentially
has access to any segment located in ring R and in outer rings. The word "potentially" is used
because the final decision is subject to what access rights the user has for the target segment.
This same program in ring R has no access to any segment located in inner rings, except to special
procedures called gates.

Gates are procedures residing in a given ring and intended to provide controlled access to
the ring. A program that is in ring R can enter an inner ring r only by calling one of the gate
procedures associated with this inner ring r. Gates must be carefully coded and must not trust any
data that has been manufactured or modified by the caller in a less privileged ring. In particular,
gates must validate all arguments passed to them by the caller so as not to compromise the
protection of any segment residing in the inner ring.

Calls from an outer ring to an inner ring are referred to as inward calls. They are
associated with an increase in the access capability of the program and are controlled by gates.
Calls from an inner ring to an outer ring, referred to as outward calls, are associated with a
decrease in the access capability of the program and do not need to be controlled.

RING PROTECTION IN MULTICS

The ring protection designed for Multics uses the foregoing philosophy, extended to obtain
more flexibility and better efficiency.

First, the assignment of a segment to one and only one ring is inconvenient for a class of
procedure segments, such as library routines. Such procedures operate in whatever the ring of
execution the program is at the time they are called; they need no more access than the caller.
One solution could have been to have a copy of the library in each ring. Instead, the solution
adopted by Multics is to relax the condition that a segment can be assigned to only one ring and
allow a procedure segment to be assigned to a set of consecutive rings defined by two integers (rl,
r2), with r1 <= r2. If such a segment is called from ring R such that rl <= R <= r2, it behaves as
if it were in ring R, and executes without changing the current ring of the program. If it is called
from ring R such that R > r2, it behaves likes a gate associated with ring r2, accepting the call as
an inward call and decreasing the current ring of the program from R to r2. Upon return to the
caller, the current ring is restored to R.

Second, the maximum ring number from which a gate can be called may be specified. A
third integer, r3, is added to the pair of integers already associated with a segment. Any
procedure segment has associated with it three ring numbers (rl, r2, r3), called its ring brackets,
such that r1 <=r2 <=r3. If r3 > r2, the procedure is a gate for ring r2, accessible from rings no
higher than r3; if r2 = r3, the procedure is not a gate. Because outward calls are declared illegal
in Multics, a segment may be called from a ring R only if r1 <= R <= r3. Such a segment is said to
have the call bracket [r1,r3].

Third, data segments may also be used in more than one ring. A segment resides in ring rl
for write purposes but resides in a less privileged ring r2 for read purposes. Such a segment is
said to have the write bracket [0,r1] and the read bracket [0,r2].

In summary, the operations that are potentially permitted to a program in ring R on a
segment whose ring brackets are (rl, r2, r3) are as follows:

Write if0<=R<=rl
Read if0<=R<=12
Execute if rl1 <= R <= 12 (execution in ring R)

Inward call if r2 < R <= r3 (execution in ring r2)

RING PROTECTION IN THE PROCESSOR

The processor provides hardware support for the implementation of Multics ring protection.
A particular effort was made to minimize the overhead associated with all authorized ring
crossings, which the processor performs without operating system intervention; and also to
minimize the overhead associated with the validation of arguments, for which the processor
provides assistance.

The number of rings available in the processor is eight, numbered from 0 to 7. The current
ring R of a program is recorded in the procedure ring register (PPR.PRR).

The ring brackets (rl, r2, r3) of a segment are recorded in the segment descriptor word
(SDW) used by the hardware to access the segment. In addition, the SDW contains the number of
legal gate entries (SDW.CL) existing in the segment. The hardware assumes that all gate entries
are located from word 0 to word (CL-1) and does not permit an inward call to the segment if the
word number specified in the call is greater than (CL-1). The SDW also contains the access rights
for the user on the segment. If the same segment is used by several users, who may have different
access rights to the segment, there is an SDW describing the segment in the descriptor segment
for each user.

In order to provide assistance in argument validation, any pointer being stored into an ITS
pointer pair or loaded into a pointer register also contains a ring number. A program in ring R
may write any value into the ring number field of an ITS pointer pair; the hardware assures that,
when a pointer register is loaded from an ITS pointer pair, the ring number loaded is equal to or
greater than R, but never smaller.

During the execution of an instruction, the hardware may examine several SDWs, ITS
pointer pairs and pointer registers. For any given examination, the hardware records the
maximum of the current ring, the rl value found in an SDW, the ring number found in an ITS
pointer pair, and the ring number found in a pointer register. This maximum is kept in the
temporary ring register (TPR.TRR) and is updated at each such examination. The reason for
having this temporary ring number available at any point of instruction execution is that it
represents the highest ring (least privileged) that might have created or modified any information
that led the hardware to the target segment it is about to reference. Although the current ring is
R, the hardware evaluates references as if the current ring were C(TPR.TRR), which is always
equal to or greater than R. The hardware uses C(TPR.TRR) instead of R in all comparisons with
the ring brackets involved in the enforcement of the ring protection rules given in the previous
paragraph.

The use of C(TPR.TRR) by the hardware allows gate procedures to rely on the hardware to
perform the validation of all addresses passed to the gate by the less privileged ring. The rule
enforced by the hardware regarding argument validation can be stated as follows:

Whenever an inner ring performs an operation on a given segment and references that

segment through pointers manufactured by an outer ring, the operation is considered valid
only if it could have been performed while in the outer ring.

APPENDING UNIT OPERATION WITH RING MECHANISM

The complete flow chart for effective segment number generation, including the hardware
ring mechanism, is shown in Figure 8-1 below. See the description of the access violation fault in

Section 7 for the meanings of the coded faults. The current instruction is in the instruction

working buffer (IWB).
C START APPEND>

Was the last
cycle an indirect
word fetch?

No Yes

Was it an

No " rted operand Yes g
¢ fetch?
Was it a
sequential instruction
fetch?
Yes
n=C(IWB)g>
< |
C(PRn .RNR) >\ Yes
C(PPR.PRR)?
C(PPR.PRR) — C(TPR.TRR) | | C(PRn .RNR) - C(TPR.TRR)
Y T
C(PPR.PRR) — C(TPR.TRR)
C(PPR.PSR) — C(TPR.TSR) | C(PRn .SNR) - C(TPR.TSR) |

Figure 8-1. Complete Appending Unit Operation Flowchart

is SDW for
C(TPR.TSR)
in SDWAM?

Yes
DSPTW.U iti
Initiate a
set ON? directed fault
Yes MDSPTW
cycle
A 4
NSDW PSDW
cycle cycle
Load SDWAM Initiate a
‘ directed fault
C(SDW.R1) -
C(RSDWH.R1)

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

C(SDW.R1) =
C(SDW.R2) =
C(SDW.R3)?

Yes

Set fault
ACV0 = IRO

Was last
cycle an rtcd
operand fetch?

Yes

Transfer or
instruction
fetch?

C(TPR.TRR) >\ Yes C(TPR.TRR) >\ Yes

C(SDW.R2)? ¢ C(SDW.R2)? ¢

No Set fault No Set fault
ACV3 = ORB ACV5 = OWB

Yes Set fault
ACV6 = W-OFF

C(PPR.PSR) =
C(TPR.TSR)?

Set fault
ACV4 = R-OFF

v >

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

@ (instruction fetch)

C(TPR.TRR) >\ Yes
C(SDW.R2)?

Set fault
ACV1 = OEB

SDW.E No
set ON? ¢

Yes Set fault
ACV2 = E-OFF

Set fault
ACV11 = INRET

C(PPR.PRR)
< RALR?

Yes Set fault
ACV13 = RALR

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

C(PPR.PSR) =
C(TPR.TSR)?

SDW.E
set ON?

(calle)

v

Set fault
ACV2 = E-OFF

SDW.G
set ON?

> SDW.CL?

l Yes

Set fault
ACV7 = NO GA

Set fault
ACV8 = OCB

Set fault
ACV9 = OCALL

C(TPR.TRR) >
C(PPR.PRR)?

Yes

v

Set fault
ACV10 = BOC

SDW.R2 - C(TPR.TRR)

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

e (transfer or instruction fetch)

C(TPR.TRR) <
C(SDW.R1)?

Yes

C(TPR.TRR) >
C(SDW.R2)?

Set fault
ACV1 = OEB

SDW.E
set ON?

Yes Set fault
ACV2 = E-OFF

C(PPR.PRR) =
C(TPR.TRR)?
Set fault Yes
ACV12 = CRT

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

C(TPR.CA)p,13
> SDW.BOUND? ¢

Yes

No Set fault
ACV15 = O0OSB

No /Any ACV \(Yes

\faults?

Initiate an access
viloation fault

is segment
C(TPR.TSR)
aged?

Yes

is PTW for
Yes /' o(TPR.CA) DD

in PTWAM? ¢
PTW
cycle

Yes /Is PTW.F\ No
¢ set ON?
Load Initiate a
PTWAM directed fault
y |

Prepage \|Yes
Mode?

No

Initiate a
directed fault

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

STR-OP &
TW.M = 07,

MPTW No
cycle
h 4 k
FANP FAP
cycle cycle

Was this
an indirect
word fetch?

Yes

Was it an
rtcd operand
fetch?

Yes Is OPCODE \ No
calle?
Transfer or
< instruction \
fetch? ¢
APU data

movement?

Load/store
APU data

END APPEND

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

riorir & Yes

TPR.CA even?

Yes C(Y)30,35 =
¢ &ther indirect?
C(Y)o,17 — CAWB)g,17 No
C(Y)30,35 » C(IWB)30,35
0 - C(IWB)y9
4

END APPEND

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

C(Y)317 — C(IPR.TSR)
C(Y+1)g 17 — C(TPR.CA)

Is
OPCODE
tspn?

Yes

v

C(PPR.PRR) —» C(PRn .RNR)
C(PPR.PSR) —» C(PRn .SNR)
C(PPR.IC) —» C(PRn .WORDNO)
000000 —» C(PRn .BITNO)

C(TPR.TRR) = \ Yes No
C(PPR.PRR)? / ¢
No C(TPR.TRR) — C(PRi .RNR)
fori=0,7
<
C(TPR.TRR) — C(PPR.PRR) |
' >
v

C(TPR.TSR) —» C(PPR.PSR)
C(TPR.CA) —» C(PPR.IC)

C(SDW.P) —» C(PPR.P)
L

[0-ceprP) |

Is this an
rtcd operand
fetch?

Yes

END APPEND

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

Yes /C(TPR.TRR) =\No

¢ C(PPR.PRR)?

v

C(PR6.SNR) —» C(PR7.SNR)

C(DSBR.STACK) || C(TPR.TRR)

- C(PR7.SNR)

d

C(TPR.TRR) —» C(PR7.RNR)
00...0 » C(PR7.WORDNO)
000000 —» C(PR7.BITNO)
C(TPR.TRR) — C(PPR.PRR)
C(TPR.TSR) — C(PPR.PSR)
C(TPR.CA) - C(PPR.IC)

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

No C(TPR.TRR) = Yes

{ RSDWH.R1? 1
No C(Y)18,20 = Yes NO/C(TPR.TRR) =
l \. RSDWH.R1? C(Y)18,20?
RSDWH.R1 — C(TPR.TRR) | [C1g20 » C(TPRTRR) |
END APPEND
No /~ C(TPR.TRR) = \ Yes
{ RSDWH.R1? 1
No / C(PRn .RNR) = \ Yes No /~ C(TPR.TRR) =
RSDWH.R1? C(PRn .RNR)?
Yes
RSDWH.R1 — C(TPR.TRR) | | C(PRn .RNR) — C(TPR.TRR) |

| v

END APPEND

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

SECTION 9: DPS/L68 CACHE MEMORY OPERATION

The Multics processor may be fitted with an optional cache memory. The operation of this
cache memory is described in this section.

PHILOSOPHY OF CACHE MEMORY

The cache memory is a high speed buffer memory located within the processor that is
intended to hold operands and/or instructions in expectation of their immediate use. This concept
is different from that of holding a single operand (such as the divisor for a divide instruction) in the
processor during execution of a single instruction. A cache memory depends on the locality of
reference principle. Locality of reference involves the calculation of the probability, for any value
of d, that the next instruction or operand reference after a reference to the instruction or operand
at location A is to location A+d.

The calculation of probabilities for a set of values of d requires the statistical analysis of
large volumes of real and simulated instruction sequences and data organizations. If it can be
shown that the average expected data/instruction access time reduction (over the range 1 to d) is
statistically significant in comparison to the fixed main memory access time, then the
implementation of a cache memory with block size d will contribute a significant improvement in
performance.

The results of such studies for the Multics processor with a cache memory as described

below (with d!'=!4) show a hit probability ranging between 80 and 95 percent (depending on
instruction mix and data organization) and a performance improvement ranging up to 30 percent.

CACHE MEMORY ORGANIZATION

The cache memory is implemented as 2048 36-bit words of high-speed register storage with
associated control and content directory circuitry within the processor. It is fully integrated with
the normal data path circuitry and is virtually invisible to all programming sequences. Parity is
generated, stored, and/or checked on each data reference. The total storage is divided into 512
blocks of 4 words each and the blocks are organized into 128 columns of four levels each.

Cache Memory / Main Memory Mapping

Main memory is mapped into the cache memory as described below and shown in Figure
9-1.

Main memory is divided into N blocks of 4 words each arranged in ascending order
and numbered with the value of Y5 5 of the first word of the block.

All main memory blocks with numbers n modulo 128 are grouped associatively with
cache memory column n.

Each cache memory column may hold any four blocks of the associated set of main
memory blocks.

Each cache memory column has associated with it a four entry directory (one entry for
each level) and a 2-bit round robin counter. Parity is generated, stored, and checked
on each directory entry.

A cache directory entry consists of a 15-bit ADDRESS register, a pre-set, 2-bit level
number value and a level full flag bit.

When a main memory block is loaded into a cache memory block at some level in the
associated column, the directory ADDRESS register for that column and level is
loaded with Yg 14. (Level selection is discussed in "Cache Memory Control" later in

this section.)

Block Block Block Block Block
0 1 2 126 127
Words Words Words Words Words
0,3 4,7 8,11 504,507 508,511
Block Block Block Block Block
128 129 130 254 255
Words Words Words Words Words
512,515 516,519 520,523 1016,1019 | 1020,1023
Main
Memory
Block Block Block Block Block
N-128 N-127 N-126 N-2 N-1
Words Words Words Words Words
-512,-509 -508,-505 -504,-501 -8,-5 -4,-1
Column Column Column Column Column
0 1 2 126 127
Level Level Level Level Level
0 0 0 0 0
Column Column Column Column Column
0 1 2 126 127
Level Level Level Level Level
1 1 1 1 1
Cache
Memory Column Column Column Column Column
0 1 2 126 127
Level Level Level Level Level
2 2 2 2 2
Column Column Column Column Column
0 1 2 126 127
Level Level Level Level Level
3 3 3 3 3

Figure 9-1. Main Memory/Cache Memory Mapping

Cache Memory Addressing

For a read operation, the 24-bit absolute main memory address prepared by the appending
unit is presented simultaneously to the cache control and to the main memory port selection
circuitry. While port selection is being accomplished, the cache memory is accessed as follows.

Y}5,21 are used to select a cache memory column.

Yo,14 are matched associatively against the four directory ADDRESS registers for the
selected column.

If a match occurs for a level whose full flag is ON, a hit is signaled, the main memory
reference cycle is canceled, and the level number value is read out.

The level number value and Y5 73 are used to select the level and word in the selected
column and the cache memory data is read out into the data circuitry.

If no hit is signaled, the main memory reference cycle proceeds and a cache memory
block load cycle is initiated (see "Cache Memory Control" below).

For a write operation, the 24-bit absolute main memory address prepared by the appending
unit is presented simultaneously to the cache control and to the main memory port selection
circuitry. While port selection is being accomplished, the cache memory is accessed as follows.

Y1521 are used to select a cache memory column.

Y(14 are matched associatively against the four directory ADDRESS registers for the
selected column.

If a match occurs for a level whose full flag is ON, a hit is signaled and the level
number value is read out.

The level number value and Y;; 73 are used to select the level and word in the selected

column, a cache memory write cycle is enabled, and the data is written to the main
memory and the cache memory simultaneously.

If no hit is signaled, the main memory reference cycle proceeds with no further cache
memory action.

CACHE MEMORY CONTROL

Enabling and Disabling Cache Memory

The cache memory is controlled by the state of several bits in the cache mode register (see
Section 3). The cache mode register may be loaded with the Load Central Processor Register
(Lcpr) instruction. The cache memory control bits are as follows:

bit Value Action

54 0 The lower half of the cache memory (levels 0 and 1) is disabled.
1 The lower half of the cache memory is active and enabled as per the state of bits
56-57.
55 0 The upper half of the cache memory (levels 2 and 3) is disabled.

The upper half of the cache memory is active and enabled as per the state of bits
56-57.

56 0 The cache memory (if active) is not used for operands and indirect words.
1 The cache memory (if active) is used for operands and indirect words.
57 0 The cache memory (if active) is not used for instructions.
1 The cache memory (if active) is used for instructions.
59 0 The cache-to-register mode is not in effect (see "Dumping the Cache Memory"
later in this section).
1 The cache-to-register mode is in effect.

NOTE: The cache memory option furnishes a switch panel maintenance aid that attaches to the
free edge of the cache memory control logic board. The switch panel provides six
switches for manual control of the cache memory:

Four of the switches inhibit the control functions of bits 54-57 of the cache mode
register and have the effect of forcing the corresponding function to be disabled.

The fifth switch inhibits the store-aside feature wherein the processor is permitted to
proceed immediately after the cache memory write cycle on write operations without
waiting for a data acknowledgment from main memory. (There is no software control
corresponding to this switch).

The sixth switch forces the enabled condition on all cache memory controls (except
cache-to-register mode) without regard to the corresponding cache mode register
control bit.

There is no switch corresponding to the cache-to-register control bit.
While these switches are intended primarily for maintenance sessions, they have been
found useful in testing the cache memory during normal operation and in permitting

operation of the processor with the cache memory in degraded or partially disabled
mode.

Cache Memory Control in Segment Descriptor Words

Certain data have characteristics such that they should never be loaded into the cache
memory. Primary examples of such data are hardware mailboxes for the I/O multiplexer, bulk
store controller, etc., status return words, and various dynamic operating system data base
segments. In general, any data that is modified by an agency external to a processor with the
intent to convey information to that processor should never be loaded into cache memory.

Bit 57 of the segment descriptor word is used to reflect this property of "encacheability" for
each segment. (See Section 5 for a discussion of the segment descriptor word.) If the bit is set
ON, data from the segment may be loaded into the cache memory; if the bit is OFF, they may not.
The operating system may set bit 57 ON or OFF as appropriate for the use of the segment.

Loading the Cache Memory

The cache memory is loaded with data implicitly whenever a cache memory block load is
required. (See the discussion of read operations in "Cache Memory Addressing" earlier in this
section.) There is no explicit method or instruction to load data into the cache memory.

When a cache memory block load is required, the level is selected from the value of the
round robin counter for the selected column, and the cache memory write function is enabled.
(The round robin counter contains the number of the least recently loaded level.) When the data
arrives from main memory, it is written into the cache memory and entered into the data circuitry.
The processor proceeds with the execution of the instruction requiring the operand if appropriate.

When the cache memory write is complete, further virtual address formation is inhibited,
Y,y is inverted, and a second main memory access for the other half of the block is made. When

the second half data arrives from main memory, it is written into the cache memory, Y(14 are

loaded into the directory ADDRESS register, the level full flag is set ON, the round robin counter is
advanced by 1, and virtual address formation is permitted to proceed.

If all four level full flags for a column are set ON, a column full flag is also set ON and
remains ON until one or more levels in the column are cleared.

Clearing the Cache Memory

Cache memory can be cleared in two ways; general clear and selective clear. The clearing
action is the same in both cases, namely, the full flags of the selected column(s) and/or level(s) are
set OFF.

General Clear

The entire cache memory is cleared by setting all column and level full flags to OFF in the
following situations:

Upper or lower cache memory or both becoming enabled by appropriate bits in the
operand of the Load Central Processor Register (Lcpr) instruction or by action of the
cache memory control logic board free edge switches.

Execution of a Clear Associative Memory Segments (cams) instruction with bit 15 of
the address field set ON.

Selective Clear
The cache memory is cleared selectively as follows:

If a read-and-clear operation (ldac, sznc, etc.) results in a hit on the cache memory,
that cache memory block hit is cleared.

Execution of a Clear Associative Memory Pages (camp) instruction with address bit 15
set ON causes Y;3 14 to be matched against all cache directory ADDRESS registers.

All cache memory blocks hit are cleared.

Dumping the Cache Memory

When the cache-to-register mode flag (bit 59 of the cache mode register) is set ON, the
processor is forced to fetch the operands of all double-precision operations unit load operations
from the cache memory. Y 1, are ignored, Y;521 select a column, and Yj3 14 select a level. All

other operations (e.g., instruction fetches, single-precision operands, etc.) are treated normally.

Note that the phrase "treated normally" as used here includes the case where the cache
memory is enabled. If the cache memory is enabled, the "other" operations causes normal block
loads and cache memory writes thus destroying the original contents of the cache memory. The
cache memory should be disabled before dumping is attempted.

An indexed program loop involving the ldaq and staq instructions with the cache-to-
register mode bit set ON serves to dump any or all of the cache memory.

The occurrence of a fault or interrupt sets the cache-to-register mode bit to OFF.

APPENDIX A: OPERATION CODE MAP

This appendix contains the operation code map for the processor in Figure A-1. The second
portion of the map includes extended instruction set (EIS) instructions. Also see Appendix B for an
alphabetical instruction list.

000
020
040
060

100
120
140
160

200
220
240
260

300
320
340
360

400
420
440
460

500
520
540
560

600
620
640
660

700
720
740
760

OPERATION CODE MAP (BIT 27 = 0)

000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017
mme drl mme2 mme3 mme4 nop pulsl puls2 cioc
adlx0 adlxl adlx2 adlx3 adlx4 adlx5 adlx6 adlx7 ldgc adl ldac adla adlg adlaq
asx0 asxl asx2 asx3 asx4 asx5 asx6 asx7 adwp0® adwpl adwp2 adwp3 aos asa asq sscr
adx0 adxl adx2 adx3 adx4 adx5 adx6 adx7 awca |awcqg lreg ada adq adaq
cmpx0® cmpxl cmpx2 cmpx3 cmpx4 cmpx5 cmpx6 cmpx7 cwl cmpa cmpg cmpaq
sb1x0 sblxl sblx2 sblx3 sblx4 sblx5 sblx6 sblx7 sbla sblg sblaq
ssx@ ssx1 ssx2 ssx3 ssx4 ssx5 ssx6 ssx7 adwp4 adwp5 adwp6 adwp7 sdbr ssa ssq
sbx® sbxl sbx2 sbx3 sbx4 sbx5 sbx6 sbx7 swca swcq lpri sha sbq sbaq
cnax0 cnaxl cnax2 cnax3 cnax4 cnax5 cnax6 cnax7 cmk absa |epag |sznc |cnaa |cnag chaaq
1dx0 1dx1 ldx2 1dx3 1ldx4 1dx5 ldx6 1dx7 lbar rsw ldbr rmcm szn lda 1dq ldaq
orsx@ orsxl orsx2 orsx3 orsx4 orsx5 orsx6 orsx7 spri® spbpl spri2 spbp3 spri orsa orsq lsdp
orx0 orxl orx2 orx3 orx4 orx5 orx6 orx7 tsp® tspl |tsp2 tsp3 ora orq oraq
canx@ canxl canx2 canx3 canx4 canx5 canx6 canx7 eawpQ easp0 eawp2 easp2 cana cang canaq
lex0 Texl 1Tex2 lex3 lex4d lex5 lexb [lex7 eawpd easpd eawpb easpb lca lcq lcaq
ansx0 ansxl ansx2 ansx3 ansx4 ansx5 ansx6 ansx7 epp0® epbpl epp2 epbp3 stac ansa |ansq stcd
anx0@ anxl anx2 anx3 anx4 anx5 anx6 |anx7 | epp4 epbp5 epp6 epbp7 ana anq anaq
mpf mpy cmg lde rscr ade
ufm dufm fcmg dfcmg fszn fld dfld ufa dufa
sx1®0 sx11 sx12 sx13 sx14 sx15 sx1l6 sx17 stz smic scpr stt fst ste dfst
fmp dfmp fstr frd dfstr dfrd fad dfad
rpl bcd div dvf fneg fcmp dfcmp
rpt fdi dfdi neg cams negl ufs dufs
sprp® sprpl sprp2 sprp3 sprp4 sprp5 sprp6 sprp7 sbar stba stbg smcm stcl ssdp
rpd fdv dfdv fno fsb dfsb
tze tnz tnc trc tmi tpl ttf rtcd rcu teo teu dis tov
eax® eaxl |eax2 eax3 eax4 eax5 | eaxb eax7 ret rccl 1di eaa eaq 1dt
ersx@ ersxl ersx2 ersx3 ersx4 ersx5 ersx6 ersx7 spri4 spbp5 spri6 spbp7 stacq ersa ersq scu
erxd erxl |erx2 erx3 erx4 erx5 erx6 erx7 tsp4 tsp5 tsp6 tsp7 lcpr | era erq eraq
tsx0 tsx1l tsx2 tsx3 tsx4 tsx5 tsx6 tsx7 tra callé6 tss xec xed
x1e 1x11 1x12 1x13 x4 1x15 1xle 1x17 ars qrs lrs als gls 11s
stx0@ stxl stx2 |stx3 stx4 stx5 stx6 | stx7 stc2 |stca stcqg |sreg sti sta stq staq
lprp®@ 1prpl 1lprp2 1lprp3 1prp4 1lprp5 1lprp6 lprp7 arl grl 1rl gtb alr qlr 1lr

Figure A-1. Processor Operation Code Map

000
020
040
060

100
120
140
160

200
220
240
260

300
320
340
360

400
420
440
460

500
520
540
560

600
620
640
660

700
720
740
760

OPERATION CODE MAP (BIT 27 = 1)

000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017
mve mvne
csl csr sztl sztr cmpb
mlr mrl cmpc
scd scdr scm scmr
sptr
mvt tct tctr lptr
ad2d | sb2d mp2d dv2d
ad3d sb3d mp3d dv3d lsdr
spbp0® spril spbp2 |spri3 |ssdr lptp
mvn btd cmpn dtb easpl eawpl easp3 eawp3
easp5 eawp5 easp7 eawp7
epbp0 eppl epbp2 epp3
epbp4 epp5 epbp6 epp7
sareg spl
lareg 1pl
a9bd abbd |a4bd abd awd
s9bd s6bd s4bd sbhd swd camp
ara@ aral ara2 ara3 ara4 ara5 arab ara7 sptp
aar®@ aarl aar2 aar3 aar4d aar5 aar6 aar7
trtn trtf tmoz tpnz ttn
arn@ arnl arn2 arn3 arn4 arn5 arn6 |arn7 | spbp4 spri5 spbp6 spri7
nar@ narl nar2 nar3 nar4d nar5 nar6 nar7
sar@ |sarl sar2 sar3 sar4 sar5 sar6 sar7 sra
lar@ larl lar2 1lar3 lar4d lar5 1lar6 lar7 lra

Figure A-1(cont). Processor Operation Code Map

APPENDIX B: ALPHABETIC OPERATION CODE LIST

This appendix presents a listing of all processor instruction operation codes sorted
alphabetically on mnemonic. It also includes the micro operations required by the mve and mvne
edit instructions. The columns from left to right list the mnemonic, octal operation code value, the
functional class, the page number in Section 4 of the instruction description, and the instruction
name.

The functional class codes are:

FIX Fixed Point
BOOL Boolean Operations
FLT Floating Point

PREG Pointer Register

PRIV Privileged

MISC Miscellaneous

EIS Extended Instruction Set
TXFR Transfer of Control

MOP EIS Micro Operations

Mnemonic Code Class Page Name

adbd 502 (1) EIS 225 Add 4-bit Displacement to Address Register
abbd 501 (1) EIS 226 Add 6-bit Displacement to Address Register
a9bd 500 (1) EIS 226 Add 9-bit Displacement to Address Register
aarn 56n (1) EIS 219 Alphanumeric Descriptor to Address Register n
abd 503 (1) EIS 227 Add Bit Displacement to Address Register

absa 212 (0) PRIV 218 Absolute Address to A-Register

ad2d 202 (1) EIS 265 Add Using Two Decimal Operands

ad3d 222 (1) EIS 267 Add Using Three Decimal Operands

ada 075 (0) FIX 111 Addto A

ada 077 (0) FIX 111 Add to AQ

ade 415 (0) FLT 160 Add to Exponent

adl 033 (0) FIX 111 Add Low to AQ

adla 035 (0) FIX 112 Add Logical to A

adlag 037 (0) FIX 112 Add Logical to AQ

adlqg 036 (0) FIX 112 Add Logical to Q

adlxn 02n(0) FIX 113 Add Logical to Index Register n

adg 076 (0) FIX 113 AddtoQ

adwp0 050 (0) PREG 178 Add to Word Number of Pointer Register 0
adwpl 051 (0) PREG 178 Add to Word Number of Pointer Register 1
adwp?2 052 (0) PREG 178 Add to Word Number of Pointer Register 2
adwp3 053 (0) PREG 178 Add to Word Number of Pointer Register 3
adwp4 150 (0) PREG 178 Add to Word Number of Pointer Register 4
adwp5 151 (0) PREG 178 Add to Word Number of Pointer Register 5
adwp6 152 (0) PREG 178 Add to Word Number of Pointer Register 6
adwp? 153 (0) PREG 178 Add to Word Number of Pointer Register 7
adxn 06n (0) FIX 113 Add to Index Register n

alr 775 (0) FIX 107 A Left Rotate

als 735 (0) FIX 107 A Left Shift

ana 375(0) BOOL 132 ANDtoA

ana 377 (0) BOOL 132 AND to AQ

ang 376 (0) BOOL 132 ANDtoQ

ansa 355(0) BOOL 132 AND to Storage A

Mnemonic Code Class Page Name

ansg 356 (0) BOOL 133 AND to Storage Q

ansxn 34n(0) BOOL 133 AND to Storage Index Register n

anxn 36n(0) BOOL 133 AND to Index Register n

aos 054 (0) FIX 114 Add One to Storage

aran 54n (1) EIS 222 Address Register n to Alphanumeric Descriptor
arl 771 (0) FIX 107 A Right Logical

arnn 64n (1) EIS 222 Address Register n to Numeric Descriptor
ars 731 (0) FIX 108 A Right Shift

asa 055 (0) FIX 114 Add Stored to A

asq 056 (0) FIX 114 Add Stored to Q

asxn 04n(0) FIX 115 Add Stored to Index Register n

awca 071 (0) FIX 115 Add with Carry to A

awc 072 (0) FIX 115 Add with Carry to Q

awd 507 (1) EIS 228 Add Word Displacement to Address Register
bcd 505 (0) MISC 195 Binary to Binary-Coded-Decimal

btd 301 (1) EIS 262 Binary to Decimal Convert

callé6 713 (0) TXFR 162 Call (Using PR6 and PR7)

cam 532 (1) PRIV 209 Clear Associative Memory Pages

cams 532 (0) PRIV 210 Clear Associative Memory Segments

cana 315(0) BOOL 138 Comparative AND with A

canaq 317 (0) BOOL 138 Comparative AND with AQ

can 316 (0) BOOL 138 Comparative AND with Q

canxn 30n(0) BOOL 138 Comparative AND with Index Register n
cioc 015 (0) PRIV 215 Connect I/O Channel

cmg 405 (0) FIX 127 Compare Magnitude

cmk 211 (0) FIX 127 Compare Masked

cmpa 115 (0) FIX 127 Compare with A

cmpagq 117 (0) FIX 128 Compare with AQ

cmpb 066 (1) EIS 258 Compare Bit Strings

cmpc 106 (1) EIS 233 Compare Alphanumeric Character Strings
cmpn 303 (1) EIS 249 Compare Numeric

cmpq 116 (0) FIX 128 Compare with Q

cmpxn 10n(0) FIX 129 Compare with Index Register n

chaa 215(0) BOOL 140 Comparative NOT with A

cnaa 217 (0) BOOL 140 Comparative NOT with AQ

cnha 216 (0) BOOL 140 Comparative NOT with Q

chaxn 20n(0) BOOL 140 Comparative NOT with Index Register n
csl 060 (1) EIS 255 Combine Bit Strings Left

csr 061 (1) EIS 256 Combine Bit Strings Right

cwl 111 (0) FIX 130 Compare with Limits

dfad 477 (0) FLT 145 Double-Precision Floating Add

dfcmg 427 (0) FLT 158 Double-Precision Floating Compare Magnitude
dfcmp 517 (0) FLT 158 Double-Precision Floating Compare

dfdi 527 (0) FLT 151 Double-Precision Floating Divide Inverted
dfdv 567 (0) FLT 151 Double-Precision Floating Divide

dfld 433 (0) FLT 142 Double-Precision Floating Load

dfmp 463 (0) FLT 149 Double-Precision Floating Multiply

dfrd 473 (0) FLT 156 Double-Precision Floating Round

dfsb 577 (0) FLT 147 Double-Precision Floating Subtract

dfst 457 (0) FLT 143 Double-Precision Floating Store

dfstr 472 (0) FLT 143 Double-Precision Floating Store Rounded
dis 616 (0) PRIV 218 Delay Until Interrupt Signal

div 506 (0) FIX 124 Divide Integer

drl 002 (0) MISC 181 Derail

dtb 305 (1) EIS 263 Decimal to Binary Convert

dufa 437 (0) FLT 145 Double-Precision Unnormalized Floating Add
dufm 423 (0) FLT 149 Double-Precision Unnormalized Floating Multiply
dufs 537 (0) FLT 147 Double-Precision Unnormalized Floating Subtract
dv2d 207 (1) EIS 275 Divide Using Two Decimal Operands

Mnemonic Code

dv3d
dvf

D
Q)
Q)

(D
Q

D |D D |D |D|D |D |D |D |D
0w wowwooo
RO NIOIUVRIWN RIS

D |D [D |D
Q| (L ([
}é}é}éi
U (W IN

D
(o]
=
o))

D |
|
X =
S
~

(D
o O
()]

(D
-
[¢}]

(D
—
Q)

D |
= |
n
Q)

D |D
=S [
n [
X
S

D
=
X
S

_h
Q
o

—h |—h |—h
o |0 |0
oy ==

—
(o
<

—h
—
o

—h |—h [—h
S S |3
o |

—h
=
o

—h
(2]
(ox

—h
(%]
—+

—h
(%]
—+
-

—h
(%]
N
>

227 (1)
507 (0)
635 (0)
636 (0)
311 (0)
310 (1)
313 (0)
312 (1)
331 (0)
330 (1)
333 (0)
332 (1)
310 (0)
311 (1)
312 (0)
313 (1)
330 (0)
331 (1)
332 (0)
333 (1)
62n (0)
213 (0)
350 (1)
351 (0)
352 (1)
353 (0)
370 (1)
371 (0)
372 (1)
373 (0)
350 (0)
351 (1)
352 (0)
353 (1)
370 (0)
371 (1)
372 (0)
373 (1)
675 (0)
677 (0)
676 (0)
655 (0)
656 (0)
64n (0)
66n (0)
475 (0)
425 (0)
515 (0)
525 (0)
565 (0)
431 (0)
461 (0)
513 (0)
573 (0)
471 (0)
575 (0)
455 (0)
470 (0)
430 (0)

Class Page
EIS 276
FIX 124
FIX 94
FIX 94
PREG 171
PREG 171
PREG 171
PREG 171
PREG 171
PREG 171
PREG 171
PREG 171
PREG 171
PREG 171
PREG 171
PREG 171
PREG 171
PREG 171
PREG 172
PREG 172
FIX 94
PREG 179
PREG 172
PREG 172
PREG 172
PREG 172
PREG 172
PREG 172
PREG 172
PREG 172
PREG 173
PREG 173
PREG 173
PREG 173
PREG 173
PREG 173
PREG 173
PREG 173
BOOL 136
BOOL 136
BOOL 136
BOOL 136
BOOL 137
BOOL 137
BOOL 137
FLT 145
FLT 158
FLT 159
FLT 152
FLT 152
FLT 142
FLT 149
FLT 154
FLT 155
FLT 156
FLT 147
FLT 143
FLT 144
FLT 160

Name

Divide Using Three Decimal Operands

Divide Fraction

Effective Address to A

Effective Address to Q

Effective Address to Segment Number of 0
Effective Address to Segment Number of PR1
Effective Address to Segment Number of PR2
Effective Address to Segment Number of PR3
Effective Address to Segment Number of PR4
Effective Address to Segment Number of PR5
Effective Address to Segment Number of PR6
Effective Address to Segment Number of PR7
Effective Address to Word/Bit Number of PRO
Effective Address to Word/Bit Number of PR1
Effective Address to Word/Bit Number of PR2
Effective Address to Word/Bit Number of PR3
Effective to Word/Bit Number of PR4 Address
Effective Address to Word/Bit Number of PR5
Effective Address to Word/Bit Number of PR6
Effective Address to Word/Bit Number of PR7
Effective Address to Index Register n
Effective Pointer to AQ

Effective Pointer at Base to Pointer Register 0
Effective Pointer at Base to Pointer Register 1
Effective Pointer at Base to Pointer Register 2
Effective Pointer at Base to Pointer Register 3
Effective Pointer at Base to Pointer Register 4
Effective Pointer at Base to Pointer Register 5
Effective Pointer at Base to Pointer Register 6
Effective Pointer at Base to Pointer Register 7
Effective Pointer to Pointer Register 0
Effective Pointer to Pointer Register 1
Effective Pointer to Pointer Register 2
Effective Pointer to Pointer Register 3
Effective Pointer to Pointer Register 4
Effective Pointer to Pointer Register 5
Effective Pointer to Pointer Register 6
Effective Pointer to Pointer Register 7
EXCLUSIVE OR to A

EXCLUSIVE OR to AQ

EXCLUSIVE OR to Q

EXCLUSIVE OR to Storage A

EXCLUSIVE OR to Storage Q

EXCLUSIVE OR to Storage Index Register n
EXCLUSIVE OR to Index Register n

Floating Add

Floating Compare Magnitude

Floating Compare

Floating Divide Inverted

Floating Divide

Floating Load

Floating Multiply

Floating Negate

Floating Normalize

Floating Round

Floating Subtract

Floating Store

Floating Store Rounded

Floating Set Zero and Negative Indicators

Mnemonic Code

RE

are
larn
lbar

—
(@)
Q)

— |~ |—
0|0 o
[

S

—
(@]
x
S

—
[oX
Q

—
o
Q
(@}

f_'f_l
Q. (.
(@ ()]
=

—
o
(D

— |~ |~ |—

o oo

~+ -
3

—
o
X<
>

—
—
-

—
—
N

— |~ |~ |~ ||~
o
Q |+ [+ |5 [
B -
S

— |—
= |7
— |D

—
-
(7]

— |~
n |n
o o

-

—
X
—
S

=
—
=

E
=
D

=
=
D
N

=
=
(D
(O8]

=
=
(D
~

‘g
W [N
o O

EEE

=
=
—

=
<
D

=
< [<
S IS

E]
(D

=
<
—+

>
Q
=
>

(=]
=
Q

(=]
=
Q

o |O
=S D
wn
Q)

O |O
S0
n
X
S

o
=
x
=]

c
—
wn
=

774 (0)
463 (1)
76n (1)
230 (0)
335 (0)
337 (0)
674 (0)
336 (0)
32n(0)
235 (0)
034 (0)
237 (0)
232 (0)
411 (0)
634 (0)
236 (0)
032 (0)
637 (0)
22n(0)
777 (0)
737 (0)
467 (1)
173 (0)
76n (0)
257 (1)
173 (1)
774 (1)
073 (0)
773 (0)
733 (0)
257 (0)
232 (1)
72n (0)
100 (1)
001 (0)
004 (0)
005 (0)
007 (0)
206 (1)
226 (1)
401 (0)
402 (0)
101 (1)
020 (1)
300 (1)
024 (1)
160 (1)
66n (1)
531 (0)
533 (0)
011 (0)
275 (0)
277 (0)
276 (0)
255 (0)
256 (0)
24n (0)
26n (0)
012 (0)

Class Page
MISC 196
EIS 220
EIS 219
FIX 197
FIX 95
FIX 95
PRIV 198
FIX 95
FIX 96
FIX 96
FIX 96
FIX 97
PRIV 198
FLT 160
FIX 97
FIX 98
FIX 98
PRIV 199
FIX 99
FIX 108
FIX 108
EIS 220
PREG 173
PREG 174
PRIV 199
PRIV 200
PRIV 200
FIX 99
FIX 109
FIX 109
PRIV 201
PRIV 201
FIX 99
EIS 89
MISC 184
MISC 184
MISC 185
MISC 185
EIS 272
EIS 273
FIX 122
FIX 122
EIS 244
EIS 245
EIS 251
EIS 253
EIS 247
EIS 220
FIX 126
FIX 126
MISC 186
BOOL 134
BOOL 134
BOOL 134
BOOL 134
BOOL 135
BOOL 135
BOOL 135
MISC 186

Name

Gray to Binary

Load Address Registers

Load Address Register n

Load Base Address Register

Load Complement A

Load Complement AQ

Load Central Processor Register
Load Complement Q

Load Complement Index Register n
Load A

Load A and Clear

Load AQ

Load Descriptor Segment Base Register
Load Exponent

Load Indicator Register

Load Q

Load Q and Clear

Load Timer Register

Load Index Register n

Long Left Rotate

Long Left Shift

Load Pointers and Lengths

Load Pointer Registers from ITS Pairs
Load Pointer Register n Packed
Load Page Table Pointers

Load Page Table Registers

Load Ring Alarm Register

Load Registers

Long Right Logical

Long Right Shift

Load Segment Descriptor Pointers
Load Segment Descriptor Registers
Load Index Register n from Lower
Move Alphanumeric Left to Right
Master Mode Entry

Master Mode Entry 2

Master Mode Entry 3

Master Mode Entry 4

Multiply Using Two Decimal Operands
Multiply Using Three Decimal Operands
Multiply Fraction

Multiply Integer

Move Alphanumeric Right to Left
Move Alphanumeric Edited

Move Numeric

Move Numeric Edited

Move Alphanumeric with Translation
Numeric Descriptor to Address Register n
Negate A

Negate Long

No Operation

ORto A

OR to AQ

ORto Q

OR to Storage A

OR to Storage Q

OR to Storage Index Register n

OR to Index Register n

Pulse One

Mnemonic Code

puls2 013 (0)
alr 776 (0)
aqls 736 (0)
arl 772 (0)
qrs 732 (0)
rccl 633 (0)
rcu 613 (0)
ret 630 (0)
rmcm 233 (0)
rpd 560 (0)
rpl 500 (0)
rpt 520 (0)
rscr 413 (0)
rsw 231 (0)
rtcd 610 (0)
s4bd 522 (1)
s6bd 521 (1)
s9bd 520 (1)
sareg 443 (1)
sarn 74n (1)
sb2d 203 (1)
sb3d 223 (1)
sba 175 (0)
sba 177 (0)
sbar 550 (0)
sbd 523 (1)
sbla 135 (0)
sblag 137 (0)
sblg 136 (0)
sblxn 12n (0)
sbq 176 (0)
sbxn 16n (0)
scd 120 (1)
scdr 121 (1)
scm 124 (1)
scmr 125 (1)
scpr 452 (0)
scu 657 (0)
sdbr 154 (0)
smcm 553 (0)
smic 451 (0)
spbp0 250 (1)
spbpl 251 (0)
spbp2 252 (1)
spbp3 253 (0)
spbp4 650 (1)
spbp5 651 (0)
spbp6 652 (1)
spbp7? 653 (0)
spl 447 (1)
spri 254 (0)
spri@ 250 (0)
spril 251 (1)
spri2 252 (0)
spri3 253 (1)
sprid 650 (0)
sprib5 651 (1)
spri6 652 (0)
spri? 653 (1)

Class Page
MISC 186
FIX 109
FIX 109
FIX 110
FIX 110
MISC 180
PRIV 202
TXFR 162
PRIV 212
MISC 187
MISC 189
MISC 191
PRIV 212
PRIV 213
TXFR 163
EIS 229
EIS 229
EIS 230
EIS 223
EIS 223
EIS 270
EIS 271
FIX 117
FIX 117
MISC 194
EIS 231
FIX 117
FIX 118
FIX 118
FIX 118
FIX 119
FIX 119
EIS 234
EIS 236
EIS 237
EIS 238
PRIV 203
PRIV 204
PRIV 204
PRIV 215
PRIV 215
PREG 175
PREG 175
PREG 175
PREG 175
PREG 175
PREG 175
PREG 175
PREG 175
EIS 223
PREG 175
PREG 176
PREG 176
PREG 176
PREG 176
PREG 176
PREG 176
PREG 176
PREG 176

Name

Pulse Two

Q Left Rotate

Q Left Shift

Q Right Logical

Q Right Shift

Read Calendar Clock

Restore Control Unit

Return

Read Memory Controller Mask Register

Repeat Double

Repeat Link

Repeat

Read System Controller Register

Read Switches

Return Control Double

Subtract 4-bit Displacement from Address Register
Subtract 6-bit Displacement from Address Register
Subtract 9-bit Displacement from Address Register
Store Address Registers

Store Address Register n

Subtract Using Two Decimal Operands

Subtract Using Three Decimal Operands
Subtract from A

Subtract from AQ

Store Base Address Register

Subtract Bit Displacement from Address Register
Subtract Logical from A

Subtract Logical from AQ

Subtract Logical from Q

Subtract Logical from Index Register n

Subtract from Q

Subtract from Index Register n

Scan Characters Double

Scan Characters Double in Reverse

Scan with Mask

Scan with Mask in Reverse

Store Central Processor Register

Store Control Unit

Store Descriptor Segment Base Register

Set Memory Controller Mask Register

Set Memory Controller interrupt Cells

Store Segment Base Pointer of Pointer Register 0
Store Segment Base Pointer of Pointer Register 1
Store Segment Base Pointer of Pointer Register 2
Store Segment Base Pointer of Pointer Register 3
Store Segment Base Pointer of Pointer Register 4
Store Segment Base Pointer of Pointer Register 5
Store Segment Base Pointer of Pointer Register 6
Store Segment Base Pointer of Pointer Register 7
Store Pointers and Lengths

Store Pointer Registers as ITS Pairs

Store Pointer Register 0 as ITS Pair

Store Pointer Register 1 as ITS Pair

Store Pointer Register 2 as ITS Pair

Store Pointer Register 3 as ITS Pair

Store Pointer Register 4 as ITS Pair

Store Pointer Register 5 as ITS Pair

Store Pointer Register 6 as ITS Pair

Store Pointer Register 7 as ITS Pair

Mnemonic Code

sprpn 54n (0)
sptp 557 (1)
sptr 154 (1)
sra 754 (1)
sre 753 (0)
ssa 155 (0)
sscr 057 (0)
ssdp 557 (0)
ssdr 254 (1)
ssq 156 (0)
SSxn 14n (0)
sta 755 (0)
stac 354 (0)
stacq 654 (0)
staq 757 (0)
stba 551 (0)
stbg 552 (0)
stcl 554 (0)
stc2 750 (0)
stca 751 (0)
stcd 357 (0)
stcqg 752 (0)
ste 456 (0)
sti 754 (0)
st 756 (0)
stt 454 (0)
stxn 74n (0)
stz 450 (0)
swca 171 (0)
SwcC 172 (0)
swd 527 (1)
sxln 44n (0)
szn 234 (0)
sznc 214 (0)
sztl 064 (1)
sztr 065 (1)
tct 164 (1)
tctr 165 (1)
teo 614 (0)
teu 615 (0)
tmi 604 (0)
tmoz 604 (1)
Inc 602 (0)
inz 601 (0)
tov 617 (0)
tpl 605 (0)
tpnz 605 (1)
tra 710 (0)
Irc 603 (0)
trtf 601 (1)
trtn 600 (1)
tspo 270 (0)
tspl 271 (0)
tsp2 272 (0)
tsp3 273 (0)
tsp4d 670 (0)
tsp5 671 (0)
tspb 672 (0)
tsp7 673 (0)

Class Page
PREG 177
PRIV 204
PRIV 205
MISC 193
FIX 100
FIX 119
PRIV 216
PRIV 206
PRIV 207
FIX 120
FIX 120
FIX 100
FIX 100
FIX 101
FIX 101
FIX 101
FIX 102
FIX 102
FIX 103
FIX 103
FIX 104
FIX 104
FLT 160
FIX 105
FIX 105
FIX 105
FIX 105
FIX 106
FIX 120
FIX 121
EIS 232
FIX 106
FIX 131
FIX 131
EIS 260
EIS 260
EIS 240
EIS 241
TXFR 164
TXFR 164
TXFR 164
TXFR 165
TXFR 165
TXFR 165
TXFR 166
TXFR 166
TXFR 166
TXFR 167
TXFR 167
TXFR 167
TXFR 168
TXFR 168
TXFR 168
TXFR 168
TXFR 168
TXFR 168
TXFR 168
TXFR 168
TXFR 168

Name

Store Pointer Register n Packed
Store Page Table Pointers

Store Page Table Registers

Store Ring Alarm

Store Registers

Subtract Stored from A

Set System Controller Register
Store Segment Descriptor Pointers
Store Segment Descriptor Registers
Subtract Stored from Q

Subtract Stored from Index Register n
Store A

Store A Conditional

Store A Conditional on Q

Store AQ

Store Bytes of A

Store Bytes of Q

Store Instruction Counter Plus 1
Store Instruction Counter Plus 2
Store Characters of A

Store Control Double

Store Characters of Q

Store Exponent

Store Indicator Register

Store Q

Store Timer Register

Store Index Register n

Store Zero

Subtract with Carry from A
Subtract with Carry from Q

Subtract Word Displacement from Address Register

Store Index Register nin Lower
Set Zero and Negative Indicators

Set Zero and Negative Indicators and Clear
Set Zero and Truncation Indicators with Bit Strings Left
Set Zero and Truncation Indicators with Bit Strings Right

Test Character and Translate

Test Character and Translate in Reverse

Transfer on Exponent Overflow
Transfer on Exponent Underflow
Transfer on Minus

Transfer on Minus or Zero
Transfer on No Carry

Transfer on Nonzero

Transfer on Overflow

Transfer on Plus

Transfer on Plus and Nonzero
Transfer Unconditionally

Transfer on Carry

Transfer on Truncation Indicator OFF
Transfer on Truncation Indicator ON
Transfer and Set Pointer Register O
Transfer and Set Pointer Register 1
Transfer and Set Pointer Register 2
Transfer and Set Pointer Register 3
Transfer and Set Pointer Register 4
Transfer and Set Pointer Register 5
Transfer and Set Pointer Register 6
Transfer and Set Pointer Register 7

Mnemonic

—
(2]
n

—+
n
X
S

—h

~+
—+
>

~+
N
D

ufa
ufm
ufs

Pl
D
(@]

X
(D
o

Code

715 (0)
70n (0)
607 (0)
606 (1)
600 (0)
435 (0)
421 (0)
535 (0)
716 (0)
717 (0)

Class Page
TXFR 169
TXFR 169
TXFR 170
TXFR 170
TXFR 170
FLT 146
FLT 150
FLT 148
MISC 182
MISC 182

EIS Micro Operations

Mnemonic

(@)
>
—+

- |- [
S s
» 5 [
)

~
=]
(2]
(op

=
>
(7]
=

-
>
(7]
>

— |~
=]
D [

=
—
’—I
'e)

=
—
’—I
(7]

=
(]
=
n

=
n
D
@]

=
<
(@]

=
<
N
[e)]

=
<
N
o

(7]
(D
(7]

Code

21
02
14
11
10
01
12
13
20
07
06
17
16
15
05
04
03

Class

MOP
MOP
MOP
MOP
MOP
MOP
MOP
MOP
MOP
MOP
MOP
MOP
MOP
MOP
MOP
MOP
MOP

Page

280
280
281
281
282
282
282
283
283
283
284
284
285
285
286
286
287

Name

Transfer and Set Slave

Transfer and Set Index Register n
Transfer on Tally Runout Indicator OFF
Transfer on Tally Runout Indicator ON
Transfer on Zero

Unnormalized Floating Add
Unnormalized Floating Multiply
Unnormalized Floating Subtract
Execute

Execute Double

Name

Change Table

End Floating Suppression

Ignore Source Character

Insert Asterisk on Suppression

Insert Blank on Suppression

Insert Table Entry One Multiple

Insert On Negative

Insert On Positive

Load Table Entry

Move with Floating Currency Symbol Insertion
Move with Floating Sign Insertion

Move and OR Sign

Move and Set Sign

Move Source Characters

Move with Zero Suppression and Asterisk Replacement
Move with Zero Suppression and Blank Replacement
Set End Suppression

APPENDIX C: ADDRESS MODIFIERS

00 01 02 03 04 05 06 07
00 au qu du ic al gl dl
10 0 1 2 3 4 5 6 7
20 n* au* qu* ic* al* ql*
30 0* 1* 2% 3% 4% 5% 6* 7*
40 fl itp its sd scr f2 f3
50 ci i sC ad di dic id idc
60 *n *au *qu *du *ic *al *ql *dl
70 *0 *1 *2 *3 *4 *5 *6 *7

NONSTANDARD MODIFIERS

Instruction Tag Meaning
scpr 00 Store appending unit history register
01 Store fault register
06 Store mode register
10 Store decimal unit history register
20 Store control unit history register
40 Store operations unit history register
lcpr 02 Load cache mode register
03 Load Os into all history registers
04 Load mode register
07 Load 1s into all history registers
stca See description in Section 4
stcq See description in Section 4
stba See description in Section 4

sthq

See description in Section 4

ri

it

ir

	Preface
	Section 1: Introduction
	Multics Processor Features
	Segmentation and Paging
	Address Modification and Address Appending
	Faults and Interrupts

	Processor Modes of Operation
	Instruction Execution Modes
	Normal Mode
	Privileged Mode

	Addressing Modes
	Absolute Mode
	Append Mode
	BAR Mode

	Processor Unit Functions
	Appending Unit
	Associative Memory Assembly
	Control Unit
	Operation Unit
	Decimal Unit

	Section 2: Data Representation
	Information Organization
	Position Numbering
	Number System
	Information Formats
	Data Parity
	Representation of Data
	Numeric Data
	Fixed-point Binary Data
	Fixed-point Binary Integers
	Fixed-point Binary Fractions

	Floating-point Binary Data
	Overlength Registers
	Normalized Numbers

	Decimal Data
	Decimal Data Values

	Alphanumeric Data
	Character String Data
	Bit String Data

	Section 3: Program Accessible Registers
	Accumulator Register (A)
	Format: - 36 bits
	Description:
	Function:

	Quotient Register (Q)
	Format: - 36 bits
	Description:
	Function:

	Accumulator-Quotient Register (AQ)
	Format: - 72 bits
	Description:
	Function:

	Exponent Register (E)
	Format: - 8 bits
	Description:
	Function:

	Exponent-Accumulator-Quotient Register (EAQ)
	Format: - 80 bits
	Description:
	Function:

	Index Registers (Xn)
	Format: - 18 bits each
	Description:
	Function:

	Indicator Register (IR)
	Format: - 14 bits
	Description:
	Function:

	Base Address Register (BAR)
	Format: - 18 bits
	Description:
	Function:

	Timer Register (TR)
	Format: - 27 bits
	Description:
	Function:

	Ring Alarm Register (RALR)
	Format: - 3 bits
	Description:
	Function:

	Pointer Registers (PRn)
	Format: - 42 bits each
	Even word of ITS pointer pair
	Odd word of ITS pointer pair
	Data as stored by Store Pointer Register n Packed (sprpn)
	Description:
	Function:

	Address Registers (ARn)
	Format: - 24 bits each
	Data as stored by Store Address Register n (sarn)
	Description:
	Function:

	Procedure Pointer Register (PPR)
	Format: - 37 bits
	Shown as part of word 0 of control unit data
	Shown as part of word 4 of control unit data
	Description:
	Function:

	Temporary Pointer Register (TPR)
	Format: - 42 bits
	Shown as part of word 2 of control unit data
	Shown as part of word 3 of control unit data
	Shown as part of word 5 of control unit data
	Description:
	Function:

	Descriptor Segment Base Register (DSBR)
	Format: - 51 bits
	Even word of Y-pair as stored by Store Descriptor Base Register (sdbr)
	Odd word of Y-pair as stored by Store Descriptor Base Register (sdbr)
	Description:
	Function:

	Segment Descriptor Word Associative Memory (SDWAM)
	Format: - 88 bits each
	Even word of Y-pairs as stored by Store Segment Descriptor Registers (ssdr)
	Odd word of Y-pairs as stored by Store Segment Descriptor Registers (ssdr)
	Data as stored by Store Segment Descriptor Pointers (ssdp)
	Description:
	Function:

	Page Table Word Associative Memory (PTWAM)
	Format: - 51 bits each
	Data as stored by Store Page Table Registers (sptr)
	Data as stored by Store Page Table Pointers (sptp)
	Description:
	Function:

	Fault Register (FR) – DPS and L68
	Format: - 72 bits
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 01
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 01
	Description:
	Function:

	Fault Register (FR) - DPS 8M
	Format: - 72 bits
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 01
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 01
	Function:

	Mode Register (MR) - DPS and L68
	Format: - 33 bits
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 06
	Description:
	Function:

	Mode Register (MR) - DPS 8M
	Format: - 36 bits
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 06
	Description:
	Function:

	Cache Mode Register (CMR) - DPS and L68
	Format: - 28 bits
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 06
	Description:
	Function:

	Cache Mode Register (CMR) - DPS 8M
	Format: - 36 bits
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 06.
	Description:
	Function:

	Control Unit (CU) History Registers - DPS and L68
	Format: - 72 bits each
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 20
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 20
	Description:
	Function:

	Control Unit (CU) History Registers - DPS 8M
	Format: - 72 bits each
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 20
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 20
	Description:
	Function:

	Operations Unit (OU) History Registers - DPS and L68
	Format: - 72 bits each
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 40
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 40
	Description:
	Function:

	Decimal Unit (DU) History Registers - DPS and L68
	Format: - 72 bits each
	Description:
	Function:

	Decimal/Operations Unit (DU/OU) History Registers - DPS 8M
	Format: - 72 bits each
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 40
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 40
	Description:
	Function:

	Appending Unit (APU) History Registers - DPS and L68
	Format: - 72 bits each
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 00
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 00
	Description:
	Function:

	Appending Unit (APU) History Registers – DPS 8M
	Format: - 72 bits each
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 00
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 00
	Extended APU History Register:
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 10
	Description:
	Function:

	Configuration Switch Data - DPS and L68
	Format: - 36 bits each
	Data read by Read Switches (rsw), y = xxxxx0
	Data read by Read Switches (rsw), y = xxxxx2
	Data read by Read Switches (rsw), y = xxxxx1 (port A-D) or xxxxx3 (port E-H)
	Data read by Read Switches (rsw), y = xxxxx4
	Description:
	Function:

	Configuration Switch Data - DPS 8M
	Format: - 36 bits each
	Data read by Read Switches (rsw), y = xxxxx2
	Data read by Read Switches (rsw), y = xxxxx1 (port A-D)
	Description:
	Function:

	Control Unit Data
	Format: - 288 bits, 8 machine words
	Data as stored by Store Control Unit (scu) instruction
	Description:
	Function:

	Decimal Unit Data
	Format: - 288 bits, 8 machine words
	Data as stored by Store Pointers and Lengths (spl) instruction
	Description:
	Function:

	Section 4: Machine Instructions
	Instruction Repertoire
	Arrangement of Instructions
	Basic Operations
	Extended Instruction Set (EIS) Operations
	EIS Single-Word Operations
	EIS Multiword Operations

	Format of Instruction Description
	MNEMONIC
	INSTRUCTION NAME
	OPCODE
	Line 1: MNEMONIC, INSTRUCTION NAME, OPCODE
	Line 2: FORMAT
	Line 3: SUMMARY
	Line 4: MODIFICATIONS
	Line 5: INDICATORS
	Line 6: NOTES

	Definitions of Notation and Symbols
	Main Memory Addresses
	Index Values
	Abbreviations and Symbols
	Register Positions and Contents
	Other Symbols

	Common Attributes of Instructions
	Illegal Modification
	Parity Indicator

	Instruction Word Formats
	Basic and EIS Single-Word Instructions
	Indirect Words
	EIS Multiword Instructions
	EIS Modification Fields (MF)
	MF Coding Examples

	EIS Operand Descriptors and Indirect Pointers
	Operand Descriptor Indirect Pointer Format
	Alphanumeric Operand Descriptor Format
	Numeric Operand Descriptor Format
	Bit-string Operand Descriptor Format

	Fixed-point Arithmetic Instructions
	Fixed-Point Data Movement Load
	Fixed-Point Data Movement Store
	Fixed-Point Data Movement Shift
	Fixed-Point Addition
	Fixed-Point Subtraction
	Fixed-Point Multiplication
	Fixed-Point Division
	Fixed-Point Negate
	Fixed-Point Comparison
	Fixed-Point Miscellaneous

	Boolean Operation Instructions
	Boolean And
	Boolean Or
	Boolean Exclusive Or
	Boolean Comparative And
	Boolean Comparative Not

	Floating-point Arithmetic Instructions
	Floating-Point Data Movement Load
	Floating-Point Data Movement Store
	Floating-Point Addition
	Floating-Point Subtraction
	Floating-Point Multiplication
	Floating-Point Division
	Floating-Point Negate
	Floating-Point Normalize
	Floating-Point Round
	Floating-Point Compare
	Floating-Point Miscellaneous

	Transfer Instructions
	Pointer Register Instructions
	Pointer Register Data Movement Load
	Pointer Register Data Movement Store
	Pointer Register Address Arithmetic
	Pointer Register Miscellaneous

	Miscellaneous Instructions
	Calendar Clock
	Derail
	Execute
	Master Mode Entry
	No Operation
	Repeat
	Ring Alarm Register
	Store Base Address Register
	Translation

	Register Load
	Privileged Instructions
	Privileged - Register Load
	Privileged - Register Store
	Privileged - Clear Associative Memory
	Privileged - Configuration and Status
	Privileged – System Control
	Privileged - Miscellaneous

	Extended Instruction Set (EIS)
	EIS - Address Register Load
	EIS - Address Register Store
	EIS - Address Register Special Arithmetic
	EIS - Alphanumeric Compare
	EIS - Alphanumeric Move
	EIS - Numeric Compare
	EIS - Numeric Move
	EIS - Bit String Combine
	EIS - Bit String Compare
	EIS - Bit String Set Indicators
	EIS - Data Conversion
	EIS - Decimal Addition
	EIS - Decimal Subtraction
	EIS - Decimal Multiplication
	EIS - Decimal Division

	Micro Operations for Edit Instructions
	Micro Operation Sequence
	Edit Insertion Table
	Edit Flags
	Terminating Micro Operations
	MVNE and MVE Differences
	Numeric Edit
	Alphanumeric Edit

	Micro Operations
	Micro Operation Code Assignment Map

	Section 5: Addressing -- Segmentation and Paging
	Addressing Modes
	Absolute Mode
	Append Mode

	Segmentation
	Paging
	Changing Addressing Modes
	Address Appending
	Address Appending Sequences

	Appending Unit Data Word Formats
	Segment Descriptor Word (SDW) Format
	Even word
	Odd word

	Page Table Word (PTW) Format

	Section 6: Virtual Address Formation
	Definition of Virtual Address
	Types of Virtual Address Formation
	Symbology (ALM)
	Symbolic Fields
	ALM Pseudo-Instructions

	Computed Address Formation
	The Address Modifier (TAG) Field
	General Types of Computed Address Modification
	Computed Address Formation Flowcharts
	Register (r) Modification
	Examples:

	Register Then Indirect (ri) Modifications
	Examples:

	Indirect Then Register (ir) Modification
	Examples:

	Indirect Then Tally (it) Modification
	Fault tag 1 (Td = 0)
	Subtract delta (Td = 4)
	Example:
	Sequence character reverse (Td = 5)
	Examples:
	Fault tag 2 (Td = 6)
	Fault tag 3 (Td = 7)
	Character indirect (Td = 10)
	Examples:
	Indirect (Td = 11)
	Sequence character (Td = 12)
	Examples:
	Add delta (Td = 13)
	Example:
	Decrement address, increment tally (Td = 14)
	Example:
	Decrement address, increment tally, and continue (Td = 15)
	Increment address, decrement tally (Td = 16)
	Example:
	Increment address, decrement tally, and continue (Td = 17)

	Virtual Address Formation Involving Both Segment Number and Computed Address
	The Use of Bit 29 in the Instruction Word
	Special Address Modifiers
	Indirect to Pointer (ITP) Modification
	Even word
	Odd word

	Indirect to Segment (ITS) Modification
	Even word
	Odd word

	Effective Segment Number Generation

	Virtual Address Formation for Extended Instruction Set
	Character- and Bit-String Addressing
	Character- and Bit-String Address Arithmetic Algorithms
	9-bit Byte String Address Arithmetic
	6-bit Character String Address Arithmetic
	4-bit Byte String Address Arithmetic
	Bit String Address Arithmetic

	Section 7: Faults and Interrupts
	Fault Cycle Sequence
	Fault Priority
	Fault Recognition
	Fault Descriptions
	Group 1 Faults
	Startup
	Execute

	Group 2 Faults
	Operation Not Complete
	Trouble

	Group 3 Faults
	Overflow	
	Divide Check

	Group 4 Faults
	Store
	Command
	Lockup
	Parity

	Group 5 Faults
	Master Mode Entries 1-4
	Fault Tags 1-3
	Derail
	Illegal Procedure

	Group 6 Faults
	Directed Faults 0-3
	Access Violation

	Group 7 Faults
	Shutdown
	Timer Runout
	Connect

	Interrupts and External Faults
	Interrupt Sampling
	Interrupt Cycle Sequence

	Section 8: Hardware Ring Implementation
	Ring Protection in Multics
	Ring Protection in the Processor
	Appending Unit Operation with Ring Mechanism

	Section 9: DPS/L68 Cache Memory Operation
	Philosophy of Cache Memory
	Cache Memory Organization
	Cache Memory / Main Memory Mapping
	Cache Memory Addressing

	Cache Memory Control
	Enabling and Disabling Cache Memory
	Cache Memory Control in Segment Descriptor Words
	Loading the Cache Memory
	Clearing the Cache Memory
	General Clear
	Selective Clear

	Dumping the Cache Memory

	Appendix A: Operation Code Map
	Appendix B: Alphabetic Operation Code List
	EIS Micro Operations

	Appendix C: Address Modifiers
	Nonstandard Modifiers

