
 HONEYWELL

DPS/LEVEL 68 &
DPS 8M
MULTICS
PROCESSOR
MANUAL

HARDWARE

PREFACE

This manual describes the processors used in the Multics system. These are the
DPS/L68, which refers to the DPS, L68 or older model processors (excluding the GE-645)
and DPS 8M, which refers to the DPS 8 family of Multics processors, i.e. DPS 8/70M, DPS
8/62M and DPS 8/52M. The reader should be familiar with the overall modular
organization of the Multics system and with the philosophy of asynchronous operation. In
addition, this manual presents a discussion of virtual memory addressing concepts
including segmentation and paging.

The manual is intended for use by systems programmers responsible for writing
software to interface with the virtual memory hardware and with the fault and interrupt
portions of the hardware. It should also prove valuable to programmers who must use
machine instructions (particularly language translator implementors) and to those persons
responsible for analyzing crash conditions in system dumps.

This manual includes the processor capabilities, modes of operation, functions, and
detailed descriptions of machine instructions. Data representation, program-addressable
registers, addressing by means of segmentation and paging, faults and interrupts, hardware
ring implementation, and cache operation are also covered.

The information and specifications in this document are subject to change without notice. Consult your
Honeywell Marketing Representative for product or service availability.

11/85
©Honeywell Information Systems Inc., 1985 File No.: 1L03, 1L53 AL39-01C

CONTENTS

Preface...2

Section 1: Introduction...8
Multics Processor Features...8

Segmentation and Paging...8
Address Modification and Address Appending...9
Faults and Interrupts..9

Processor Modes of Operation..9
Instruction Execution Modes..10

Normal Mode...10
Privileged Mode...10

Addressing Modes..10
Absolute Mode...10
Append Mode...10
BAR Mode..10

Processor Unit Functions..10
Appending Unit...11
Associative Memory Assembly..11
Control Unit..11
Operation Unit..11
Decimal Unit...11

Section 2: Data Representation..12
Information Organization..12
Position Numbering...12
Number System...12
Information Formats...13
Data Parity..14
Representation of Data..14

Numeric Data...15
Fixed-point Binary Data...15
Floating-point Binary Data...17
Decimal Data...19

Alphanumeric Data...21
Character String Data..22
Bit String Data...22

Section 3: Program Accessible Registers...23
Accumulator Register (A)..24
Quotient Register (Q)..24
Accumulator-Quotient Register (AQ)...25
Exponent Register (E)...25
Exponent-Accumulator-Quotient Register (EAQ)...26
Index Registers (Xn)..26
Indicator Register (IR)...27
Base Address Register (BAR)..30
Timer Register (TR)...30
Ring Alarm Register (RALR)..31
Pointer Registers (PRn)...31
Address Registers (ARn)..32
Procedure Pointer Register (PPR)...33
Temporary Pointer Register (TPR)..34
Descriptor Segment Base Register (DSBR)...36
Segment Descriptor Word Associative Memory (SDWAM)......................................37
Page Table Word Associative Memory (PTWAM)..39
Fault Register (FR) – DPS and L68..41
Fault Register (FR) - DPS 8M..43
Mode Register (MR) - DPS and L68...45

Mode Register (MR) - DPS 8M..48
Cache Mode Register (CMR) - DPS and L68...49
Cache Mode Register (CMR) - DPS 8M...51
Control Unit (CU) History Registers - DPS and L68..53
Control Unit (CU) History Registers - DPS 8M..55
Operations Unit (OU) History Registers - DPS and L68..57
Decimal Unit (DU) History Registers - DPS and L68...59
Decimal/Operations Unit (DU/OU) History Registers - DPS 8M..............................61
Appending Unit (APU) History Registers - DPS and L68...64
Appending Unit (APU) History Registers – DPS 8M..65
Configuration Switch Data - DPS and L68...68
Configuration Switch Data - DPS 8M..69
Control Unit Data..71
Decimal Unit Data...76

Section 4: Machine Instructions...79
Instruction Repertoire...79

Arrangement of Instructions...79
Basic Operations...79
Extended Instruction Set (EIS) Operations...79

EIS Single-Word Operations..79
EIS Multiword Operations...80

Format of Instruction Description...80
Definitions of Notation and Symbols...82

Main Memory Addresses..82
Index Values...82
Abbreviations and Symbols...82
Register Positions and Contents...83
Other Symbols..84

Common Attributes of Instructions...84
Illegal Modification...84
Parity Indicator...84

Instruction Word Formats...85
Basic and EIS Single-Word Instructions...85
Indirect Words..85
EIS Multiword Instructions..86
EIS Modification Fields (MF)..87

MF Coding Examples...89
EIS Operand Descriptors and Indirect Pointers...89

Operand Descriptor Indirect Pointer Format...89
Alphanumeric Operand Descriptor Format..90
Numeric Operand Descriptor Format..91
Bit-string Operand Descriptor Format...93

Fixed-point Arithmetic Instructions...94
Fixed-Point Data Movement Load...94
Fixed-Point Data Movement Store..100
Fixed-Point Data Movement Shift...107
Fixed-Point Addition...111
Fixed-Point Subtraction..117
Fixed-Point Multiplication..122
Fixed-Point Division..124
Fixed-Point Negate...126
Fixed-Point Comparison...127
Fixed-Point Miscellaneous..131

Boolean Operation Instructions...132
Boolean And..132
Boolean Or..134
Boolean Exclusive Or..136
Boolean Comparative And..138
Boolean Comparative Not...140

Floating-point Arithmetic Instructions..142

Floating-Point Data Movement Load..142
Floating-Point Data Movement Store..143
Floating-Point Addition...145
Floating-Point Subtraction..147
Floating-Point Multiplication..149
Floating-Point Division...151
Floating-Point Negate...154
Floating-Point Normalize..155
Floating-Point Round..156
Floating-Point Compare..158
Floating-Point Miscellaneous..160

Transfer Instructions...162
Pointer Register Instructions..171

Pointer Register Data Movement Load...171
Pointer Register Data Movement Store..175
Pointer Register Address Arithmetic..178
Pointer Register Miscellaneous..179

Miscellaneous Instructions..180
Calendar Clock...180
Derail..181
Execute...182
Master Mode Entry...184
No Operation..186
Repeat..187
Ring Alarm Register...193
Store Base Address Register..194
Translation..195

Register Load..197
Privileged Instructions..198

Privileged - Register Load..198
Privileged - Register Store..203
Privileged - Clear Associative Memory...209
Privileged - Configuration and Status...212
Privileged – System Control..215
Privileged - Miscellaneous..218

Extended Instruction Set (EIS)..219
EIS - Address Register Load...219
EIS - Address Register Store..222
EIS - Address Register Special Arithmetic...225
EIS - Alphanumeric Compare...233
EIS - Alphanumeric Move...243
EIS - Numeric Compare..249
EIS - Numeric Move...251
EIS - Bit String Combine..255
EIS - Bit String Compare..258
EIS - Bit String Set Indicators..260
EIS - Data Conversion...262
EIS - Decimal Addition..265
EIS - Decimal Subtraction..270
EIS - Decimal Multiplication...272
EIS - Decimal Division..275

Micro Operations for Edit Instructions..278
Micro Operation Sequence...278
Edit Insertion Table..278
Edit Flags...279
Terminating Micro Operations...279
MVNE and MVE Differences..279

Numeric Edit..279
Alphanumeric Edit...280

Micro Operations..280
Micro Operation Code Assignment Map...287

Section 5: Addressing -- Segmentation and Paging..288
Addressing Modes...288

Absolute Mode..288
Append Mode..288

Segmentation..288
Paging...289
Changing Addressing Modes...292
Address Appending..292

Address Appending Sequences...292
Appending Unit Data Word Formats...294

Segment Descriptor Word (SDW) Format..294
Page Table Word (PTW) Format...296

Section 6: Virtual Address Formation..297
Definition of Virtual Address...297
Types of Virtual Address Formation..297
Symbology (ALM)..298

Symbolic Fields..298
ALM Pseudo-Instructions..298

Computed Address Formation...299
The Address Modifier (TAG) Field..299
General Types of Computed Address Modification...299
Computed Address Formation Flowcharts...300
Register (r) Modification..300
Register Then Indirect (ri) Modifications...302
Indirect Then Register (ir) Modification...303
Indirect Then Tally (it) Modification...305

Virtual Address Formation Involving Both Segment Number and Computed
Address..311

The Use of Bit 29 in the Instruction Word..311
Special Address Modifiers..312

Indirect to Pointer (ITP) Modification..312
Indirect to Segment (ITS) Modification..313

Effective Segment Number Generation..314
Virtual Address Formation for Extended Instruction Set......................................316

Character- and Bit-String Addressing...317
Character- and Bit-String Address Arithmetic Algorithms..............................318

9-bit Byte String Address Arithmetic...318
6-bit Character String Address Arithmetic..318
4-bit Byte String Address Arithmetic...319
Bit String Address Arithmetic..319

Section 7: Faults and Interrupts ..320
Fault Cycle Sequence..320
Fault Priority...322
Fault Recognition..322
Fault Descriptions...323

Group 1 Faults..323
Group 2 Faults..323
Group 3 Faults..324
Group 4 Faults..324
Group 5 Faults..325
Group 6 Faults..325
Group 7 Faults..326

Interrupts and External Faults..326
Interrupt Sampling...327
Interrupt Cycle Sequence...327

Section 8: Hardware Ring Implementation..329
Ring Protection in Multics...329
Ring Protection in the Processor...330

Appending Unit Operation with Ring Mechanism...330

Section 9: DPS/L68 Cache Memory Operation...342
Philosophy of Cache Memory..342
Cache Memory Organization...342

Cache Memory / Main Memory Mapping..342
Cache Memory Addressing...343

Cache Memory Control..345
Enabling and Disabling Cache Memory..345
Cache Memory Control in Segment Descriptor Words...................................345
Loading the Cache Memory..346
Clearing the Cache Memory...346

General Clear...346
Selective Clear...346

Dumping the Cache Memory..347

Appendix A: Operation Code Map..348

Appendix B: Alphabetic Operation Code List...351
EIS Micro Operations...357

Appendix C: Address Modifiers..358
Nonstandard Modifiers..358

SECTION 1: INTRODUCTION

The processor described in this reference manual is a hardware module designed for use
with Multics. The many distinctive features and functions of Multics are enhanced by the powerful
hardware features of the processor. The addressing features, in particular, are designed to permit
the Multics software to compute relative and absolute addresses, locate data and programs in the
Multics virtual memory, and retrieve such data and programs as necessary.

MULTICS PROCESSOR FEATURES

The Multics processor contains the following general features:

1. Storage protection to place access restrictions on specified segments.

2. Capability to interrupt program execution in response to an external signal (e.g., I/O
termination) at the end of any even/odd instruction pair (midinstruction interrupts are
permitted for some instructions), to save processor status, and to restore the status at
a later time without loss of continuity of the program.

3. Capability to fetch instruction pairs and to buffer two instructions (up to four
instructions, depending on certain main memory overlap conditions) including the one
currently in execution.

4. Overlapping instruction execution, address preparation, and instruction fetch. While
an instruction is being executed, address preparation for the next operand (or even
the operand following it) or the next instruction pair is taking place. The operations
unit can be executing instruction N, instruction N+1 can be buffered in the operations
unit (with its operand buffered in a main memory port), and the control unit can be
executing instructions N+2 or N+3 (if such execution does not involve the main
memory port or registers of instructions N or N+1) or preparing the address to fetch
instructions N+4 and N+5. This includes the capability to detect store instructions
that alter the contents of buffered instructions and the ability to delay preprocessing
of an address using register modification if the instruction currently in execution
changes the register to be used in that modification.

5. Interlacing capability to direct main memory accesses to interlaced system controller
modules.

6. Intermediate storage of address and control information in high-speed registers
addressable by content (associative memory).

7. Intermediate storage of base address and control information in pointer registers that
are loaded by the executing program.

8. Absolute address computation at execution time.

9. Ability to hold recently referenced operands and instructions in a high-speed look-
aside memory (cache option).

Segmentation and Paging

A segment is a collection of data or instructions that is assigned a symbolic name and
addressed symbolically by the user. Paging is controlled by the system software; the user need not
be aware of the existence of pages. User-visible address preparation is concerned with the
calculation of a virtual memory address; the processor hardware completes address preparation by
translating the final virtual memory address into an absolute main memory address. The user may
view each of his segments as residing in an independent main memory unit. Each segment has its

own origin that can be addressed as location zero. The size of each segment varies without
affecting the addressing of the other segments. Each segment can be addressed like a
conventional main memory image starting at location zero. Maximum segment size is 262,144
words.

When viewed from the processor, main memory consists of blocks or page frames, each of
which has a length of "page-size" words. The page size used by Multics is 1024 words. Each frame
begins at an absolute address which is zero modulo the page size. Any page of a segment can be
placed in any available main memory frame. These pages may be addressed as if they were
contiguous, even though they may be in widely scattered absolute locations. Only currently
referenced pages need be in main memory. A segment need not be paged, in which case the
complete segment is located in contiguous words of main memory. In Multics, all user segments
are paged. See Section 5 for additional discussion.

Address Modification and Address Appending

Before each main memory access, two major phases of address preparation take place:

1. Address modification by register or indirect word content, if specified by the
instruction word or indirect word.

2. Address appending, in which a virtual memory address is translated into an absolute
address to access main memory.

Although the above two types of modification are combined in most operations, they are
described separately in Sections 5 and 6. The address modification procedure can go on
indefinitely, with one type of modification leading to repetitions of the same type or to other types
of modification prior to a main memory access for an operand.

Faults and Interrupts

The processor detects certain illegal instruction usages, faulty communication with the
main memory, programmed faults, certain external events, and arithmetic faults. Many of the
processor fault conditions are deliberately or inadvertently caused by the software and do not
necessarily involve error conditions. The processor communicates with the other system modules
(I/O multiplexers, bulk store controllers, and other processors) by setting and answering external
interrupts. When a fault or interrupt is recognized, a "trap" results. The trap causes the forced
execution of a pair of instructions in a main memory location, unique to the fault or interrupt,
known as the fault or interrupt vector. The first of the forced instructions may cause safe storage
of the processor status. The second instruction in a fault vector should be some form of transfer,
or the faulting program will be resumed at the point of interruption. Faults and interrupts are
described in Section 7.

Interrupts and certain low-priority faults are recognized only at specific times during the
execution of an instruction pair. If, at these times, bit 28 in the instruction word is set ON, the trap
is inhibited and program execution continues. The interrupt or fault signal is saved for future
recognition and is reset only when the trap occurs.

PROCESSOR MODES OF OPERATION

There are three modes of main memory addressing (absolute mode, append mode, and BAR
mode), and two modes of instruction execution (normal mode and privileged mode).

Instruction Execution Modes

Normal Mode

Most instructions can be executed in the normal mode. Certain instructions, classed as
privileged, cannot be executed in normal mode. These are identified in the individual instruction
descriptions. An attempt to execute privileged instructions while in the normal mode results in an
illegal procedure fault. The processor executes instructions in normal mode only if it is forming
addresses in append mode and the segment descriptor word (SDW) for the executing segment
specifies a nonprivileged procedure.

Privileged Mode

In privileged mode, all instructions can be executed. The processor executes instructions in
privileged mode when forming addresses in absolute mode or when forming addresses in append
mode and the segment descriptor word (SDW) for the segment in execution specifies a privileged
procedure and the execution ring is equal to zero. See Sections 5 and 7 for additional discussion.

Addressing Modes

Absolute Mode

In absolute mode, the final computed address is treated as the absolute main memory
address unless the appending hardware mechanism is invoked for a particular main memory
reference. During instruction fetches, the procedure pointer register is ignored. The processor
enters absolute mode when it is initialized or immediately after a fault or interrupt. It remains in
absolute mode until it executes a transfer instruction whose operand is obtained via explicit use of
the appending hardware mechanism.

The appending hardware mechanism may be invoked for an instruction by setting bit 29 of
the instruction word ON to cause a reference to a properly loaded pointer register or by the use of
indirect-to-segment (its) or indirect-to-pointer (itp) modification in an indirect word.

Append Mode

The append mode is the most commonly used main memory addressing mode. In append
mode the final computed address is either combined with the procedure pointer register, or it is
combined with one of the eight pointer registers. If bit 29 of the instruction word contains a 0,
then the procedure pointer register is selected; otherwise, the pointer register given by bits 0-2 of
the instruction word is selected.

BAR Mode

In BAR mode, the base address register (BAR) is used. The BAR contains an address bound
and a base address. All computed addresses are relocated by adding the base address. The
relocated address is combined with the procedure pointer register to form the virtual memory
address. A program is kept within certain limits by subtracting the unrelocated computed address
from the address bound. If the result is zero or negative, the relocated address is out of range, and
a store fault occurs.

PROCESSOR UNIT FUNCTIONS

Major functions of each principal logic element are listed below and are described in
subsequent sections of this manual.

Appending Unit

Controls data input/output to main memory

Performs main memory selection and interlace

Does address appending

Controls fault recognition

Interfaces with cache

Associative Memory Assembly

This assembly consists of sixteen 51-bit page table word associative memory (PTWAM)
registers and sixteen 108-bit segment descriptor word associative memory (SDWAM) registers.
These registers are used to hold pointers to most recently used segments (SDWs) and pages
(PTWs). This unit reduces the need for possible multiple main memory accesses before obtaining
an absolute main memory address of an operand or instruction.

Control Unit

Performs address modification

Controls mode of operation (privileged, normal, etc.)

Performs interrupt recognition

Decodes instruction words and indirect words

Performs timer register loading and decrementing

Operation Unit

Does fixed- and floating-binary arithmetic

Does shifting and Boolean operations

Decimal Unit

Does decimal arithmetic

Does character-string and bit-string operations

SECTION 2: DATA REPRESENTATION

INFORMATION ORGANIZATION

The processor, like the rest of the Multics system, is organized to deal with information in
basic units of 36-bit words. Other units of 4-, 6-, 9-bit characters or bytes, 18-bit half words, and
72-bit word pairs can be manipulated within the processor by use of the instruction set. These bit
groupings are used by the hardware and software to represent a variety of forms of coded data.
Certain processor functions appear to manipulate larger units of 144, 288, 576, and 1152 bits, but
these functions are performed by means of repeated use of 72-bit word pairs. All information is
transmitted, stored, and processed as strings of binary bits. The data values are derived when the
bit strings are interpreted according to the various formats discussed in this section.

POSITION NUMBERING

The numbering of bit positions, character and byte positions, and words increases from 0 in
the direction of conventional reading and writing: from the most significant to the least significant
digit of a number, and from left to right in conventional alphanumeric text.

Graphic presentations in this manual show registers and data with position numbers
increasing from left to right.

NUMBER SYSTEM

The binary arithmetic functions of the processor are implemented in the twos complement,
binary number system. One of the primary properties of this number system is that a field (or
register) having width n bits may be interpreted in two different ways; the logical case and the
arithmetic or algebraic case.

In the logical case, the number is unsigned, positive, and lies in the range [0,2n-1] where n
is the size of the register or the length of the field. The results of arithmetic operations on numbers
for this case are interpreted as modulo 2n numbers. Overflow is not defined for this case since the
range of the field or register cannot be exceeded. The numbers 0 and 2n-1 are consecutive (not
separated) in the set of numbers defined for the field or register.

In the arithmetic case, the number is signed and lies in the range [-2(n-1),2(n-1)-1]. Overflow
is defined for this case since the range can be exceeded in either direction (positive or negative).
The left-hand-most bit of the field or register (bit 0) serves as the sign bit and does not contribute
to the magnitude of the number.

The main advantage of this implementation is that the hardware arithmetic algorithms for
the two cases are identical; the only distinction lying in the interpretation of the results by the
user. Instruction set features are provided for performing binary arithmetic with overflow disabled
(the so-called logical instructions) and for comparing numbers in either sense.

Subtraction is performed by adding the twos complement of the subtrahend to the minuend.
(Note that when the subtrahend is zero the algorithm for forming the twos complement is still
carried out, but, since the twos complement of zero is zero, the result is correct.)

Another important feature of the twos complement number system (with respect to
comparison of numeric values) is that the no borrow condition in true subtraction is identical to the
carry condition in true addition and vice versa.

A statement on the assumed location of the binary point has significance only for
multiplication and division. These two operations are implemented for the arithmetic case in both
integer and fraction modes. Integer means that the position of the binary point is assumed to the

right of the least significant bit position, that is, to the right of the right-hand-most bit of the field
or register, and fraction means that the position of the binary point is assumed to the left of the
most significant bit position, that is, between bit 0 and bit 1 of the field or register (recall that bit 0
is the sign bit).

INFORMATION FORMATS

The figures that follow show the unstructured formats (templates) for the various
information units defined for the processor. Data transfer between the processor and main
memory is word oriented; a 36-bit machine word is transferred for single-precision operands and
subfields of machine words, and a 72-bit word pair is transferred for all other cases (multiword
operands, instruction fetches, bit- and character-string operands, etc.). The information unit to be
used and the data transfer mode are determined by the processor according to the function to be
performed.

The 36-bit unstructured machine word shown in Figure 2-1 is the minimum addressable
information unit in main memory. Its location is uniquely determined by its main memory address,
Y. All other information units are defined relative to the 36-bit machine word.

Figure 2-1. Unstructured Machine Word Format

Two consecutive machine words as shown in Figure 2-2, the first having an even main
memory address, form a 72-bit word pair. In 72-bit word pair data transfer mode, the word pair is
uniquely located by the main memory address of either of its constituent 36-bit machine words.
Thus, if Y is even, the word pair at (Y,Y+1) is selected. If Y is odd, the word pair at (Y-1,Y) is
selected. The term Y-pair is used when referring to such a word pair.

Figure 2-2. Unstructured Word Pair Format

Four-bit bytes are mapped onto 36-bit machine words as shown in Figure 2-3. The 0 bits at
bit positions 0, 9, 18, and 27 are forced to be 0 by the processor on data transfers to main memory
and are ignored on data transfers from main memory.

Figure 2-3. Unstructured 4-bit Byte Format

Six-bit characters are mapped onto 36-bit machine words as shown in Figure 2-4.

0
0

36

3
5

0
0

3
5

36

3
6

7
1

36

Even word Odd word

0
0

0

1

0
1

0
4

4

0
5

0
8

4

0
9

0

1

1
0

1
3

4

1
4

1
7

4

1
8

0

1

1
9

2
2

4

2
3

2
6

4

2
7

0

1

2
8

3
1

4

3
2

3
5

4

Figure 2-4. Unstructured 6-bit Character Format

Nine-bit bytes are mapped onto 36-bit machine words as shown in Figure 2-5.

Figure 2-5. Unstructured 9-bit Byte Format

Eighteen-bit half words are mapped onto 36-bit machine words as shown in Figure 2-6.

Figure 2-6. Unstructured 18-bit Half Word Format

DATA PARITY

Odd parity on each 36-bit machine word transferred to main memory is generated as it
leaves the processor, is verified at several points along the transmission path, and is held in main
memory either as an extra bit in the case of magnetic core memory or as part of the error
detecting and correcting (EDAC) code in the case of magnetic oxide semiconductor (MOS)
memory. If an incorrect parity is detected at any of the various parity check points, the main
memory returns an illegal action signal and a code appropriate to the check point.

On data transfers from main memory, the parity information is retrieved and transmitted
with the data information. The same verification checks are made and illegal action signalled for
errors. The processor makes a final parity check as the data enters the processor.

Any detected parity error causes the processor parity indicator to be set ON and (if
enabled) a parity fault occurs.

REPRESENTATION OF DATA

Data is defined by imposing an operand structure on the information units just described.
Data is represented in two forms: numeric or alphanumeric. The form is determined by the
processor according to the function to be performed.

In the definitions below, ai is the value of the bit in the ith bit position, either 0 or 1.

0
0

0
5

6

0
6

1
1

6

1
2

1
7

6

1
8

2
3

6

2
4

2
9

6

3
0

3
5

6

0
0

0
8

9

0
9

1
7

9

1
8

2
6

9

2
7

3
5

9

Upper half Lower half

0
0

1
7

18

1
8

3
5

18

Numeric Data

Numeric data is represented in three modes: fixed-point binary, floating-point binary, and
decimal. The mode is determined by the processor according to the function being performed.

Fixed-point Binary Data

Fixed-point Binary Integers

Fixed-point binary integer data is defined by imposing either of the bit position value
expressions shown below on an information unit of n bits.

Logical value:

a0×2(n-1) + a1×2(n-2) + ... + ai×2(n-i-l) + ... + an-1

Arithmetic value:

-a0×2(n-l) + a1×2(n-2) + ... + ai×2(n-i-l) + ... + an-l

The following fixed-point binary integer data items are defined (also see Table 2-1 for
values):

Operand size (bits) Operand name

6 6-bit character operand

9 9-bit byte operand

18 Half word operand

36 Single-precision operand

72 Double-precision operand

Note that a 4-bit operand is not defined. This data item is defined only for decimal data.
(See discussion of decimal data later in this section).

The proper operand and its position with respect to a 36-bit machine word are determined
by the processor during preparation of the main memory address for the operand. If the data
width of the operand selected is smaller than the register involved, the operand is high- or low-
order zero filled as necessary.

The values in Table 2-1 are given in terms of the operand sizes. The value an operand
contributes to a larger field or register depends on the alignment of the operand with respect to
the field or register.

Table 2-1. Fixed-Point Binary Integer Values

Operand
6-bit

character 9-bit byte
18-bit half

word

36-bit
single

precision

72-bit
double

precision

Logical

minimum 0 0 0 0 0

maximum 26-1 29-1 218-1 236-1 272-1

resolution 1 1 1 1 1

Operand
6-bit

character 9-bit byte
18-bit half

word

36-bit
single

precision

72-bit
double

precision

Arithmetic

minimum 0 0 0 0 0

maxima

negative -25 -28 -217 -235 -271

positive 25-1 28-1 217-1 235-1 271-1

resolution 1 1 1 1 1

Fixed-point Binary Fractions

Fixed-point binary fraction data is defined by imposing the bit position value expression
below on an information unit of n bits.

Arithmetic value:

-a0 + a1×2-1 + a2×2-2 + ... + ai×2-i + ... + an-l×2-(n-l)

Note that logical values are not defined for fixed-point binary fraction data.

The following fixed-point binary fraction data items are defined (also see Table 2-2 for
values):

Operand size (bits) Operand name

6 6-bit character operand

9 9-bit byte operand

18 Half word operand

36 Single-precision operand

72 Double-precision operand

Note that a 4-bit operand is not defined. This data item is defined only for decimal data.
(See discussion of decimal data later in this section.) Fixed-point binary fraction operands are
used by the Divide Fraction (dvf) and Multiply Fraction (mpf) instructions only.

The proper operand and its position with respect to a 36-bit machine word are determined
by the processor during preparation of the main memory address for the operand. If the data
width of the operand selected is smaller than the register involved, the operand is high- or low-
order zero filled as necessary.

The values in Table 2-2 are given in terms of the operand sizes. The value an operand
contributes to a larger field or register depends on the alignment of the operand with respect to
the field or register.

Table 2-2. Fixed-Point Binary Fraction Values

Operand
6-bit

character 9-bit byte
18-bit half

word

36-bit
single

precision

72-bit
double

precision

Arithmetic

minimum 0 0 0 0 0

maxima

negative -1.0 -1.0 -1.0 -1.0 -1.0

positive 1.0-2-5 1.0-2-8 1.0-2-17 1.0-2-35 1.0-2-71

resolution 2-5 2-8 2-17 2-35 2-71

Floating-point Binary Data

A floating-point binary number is expressed as:

Z = M × 2E

where:

M is a fixed-point binary fraction; the mantissa

E is a fixed-point binary integer; the exponent

A floating-point binary number is defined by partitioning an information unit of n bits into
two pieces; an 8-bit fixed-point binary integer exponent and an (n-8)-bit fixed-point binary fraction
mantissa.

The following floating-point data items are defined.

Operand size (bits) Operand name

18 Half word operand

36 Single-precision operand

72 Double-precision operand

For clarity, the formats of these operands are shown in Figure 2-7 through Figure 2-9. In
the figures, the fields labeled S hold sign bits associated with the exponent, E, and the mantissa,
M.

The floating-point binary operands are used only by the floating-point binary arithmetic
instructions (see Section 4). The 18-bit half word operand has meaning only when used in
conjunction with the direct upper (du) address modification (see Section 6 for a discussion of
address modification).

Figure 2-7. Eighteen-bit Half Word Floating-Point Binary Operand Format

0
0

S

1

0
1

E

0
7

7

0
8

S

1

0
9

M

1
7

9

Figure 2-8. Single-Precision Floating-Point Binary Operand Format

Figure 2-9. Double-Precision Floating-Point Binary Operand Format

The proper operand is selected by the processor during preparation of the main memory
address for the operand.

Overlength Registers

The AQ-register is used to hold the mantissa of all floating-point binary numbers. The AQ-
register is said to be overlength with respect to the operands since it has more bits than are
provided by the operands. Operands are low-order zero filled when loaded and low-order
truncated (or rounded, depending on the instruction) when stored. Thus, the result of all floating-
point instructions has more bits of precision in the AQ-register than may be stored.

Users are cautioned that calculations involving floating-point operands may suffer from
propagation of truncation errors even if the computation algorithms are designed to hold
mantissas in the AQ-register as long as possible. It is possible to retain full AQ-register precision
of intermediate results if they are saved with the Store AQ (staq) and Store Exponent (ste)
instructions but such saved data are not usable as a floating-point operand.

Normalized Numbers

A floating-point binary number is said to be normalized if the relation

-0.5 > M > -1 or 0.5 ≤ M < 1 or [M=0 and E=-128]

is satisfied. This is a result of using a 2's complement mantissa. Bits 8 and 9 are different unless
the number is zero. The presence of unnormalized numbers in any finite mantissa arithmetic can
only degrade the accuracy of results. For example, in an arithmetic allowing only two digits in the
mantissa, the number 0.005×102 has the value zero instead of the value one-half.

Normalization is a process of shifting the mantissa and adjusting the exponent until the
relation above is satisfied. Normalization may be used to recover some or all of the extra bits of
the overlength AQ-register after a floating-point operation.

There are cases where the limits of the registers force the use of unnormalized numbers.
For example, in an arithmetic allowing three digits of mantissa and one digit of exponent, the
calculation 0.3×10-10 - 0.1×10-11 (the normalized case) may not be made, but 0.03×10-9 –
0.001×10-9 = 0.029×10-9 (the unnormalized case) is a valid result.

Some examples of normalized and unnormalized floating-point binary numbers are:

Unnormalized positive binary 0.00011010 × 27

0
0

S

1

0
1

E

0
7

7

0
8

S

1

0
9

M

3
5

27

0
0

S

1

0
1

E

0
7

7

0
8

S

1

0
9

M

7
1

63

Same number normalized 0.11010000 × 24

Unnormalized negative binary 1.11010111 × 2-4

Same number normalized 1.01011100 × 2-6

The minimum normalized nonzero floating-point binary number is 2-128 in all cases. Table
2-3 gives the values for the floating-point binary operands.

Table 2-3. Floating-Point Binary Operand Values

Operand
18-bit half

word
36-bit single

precision
72-bit double

precision

Unnormalized

minimum 0 (a) 0 (a) 0 (a)

maxima

negative -1.0×2127 -1.0×2127 -1.0×2127

positive (1-2-9)×2127 (1-2-27)×2127 (1-2-63)×2127

resolution 1:9 (b) 1:27 (b) 1:63 (b)

(a)There is no unique representation for the value zero in floating-point binary numbers; any
number with mantissa zero has the value zero. However, the processor treats a zero mantissa
as a special case in order to preserve precision in later calculations with a zero intermediate
result. Whenever the processor detects a zero mantissa as the result of a floating-point binary
operation, the AQ-register is cleared to zeros and the E register is set to -128. This
representation is known as a floating-point normalized zero. The unnormalized zero (any zero
mantissa) will be handled correctly if encountered in an operand but precision may be lost. For
example, A×10-14 + 0×1038 will not produce desired results since all the precision of A will be
lost when it is aligned to match the 1038 exponent of the 0.

(b)A value cannot be given for resolution in these cases since such a value depends on the value of
the exponent, E. The notation used, l:m, indicates resolution to 1 bit in a field of m. Thus, the
following general statement on resolution may be made:

The resolution of a floating-point binary operand with mantissa length m and exponent
value E is 2(E-m).

Decimal Data

Decimal numbers are expressed in the following forms:

Fixed-point, no sign MMMMMM.

Fixed-point, leading sign ±MMMMMM.

Fixed-point, trailing sign MMMMMM.±

Floating-point ±MMMMMM.×10E

The form is specified by control information in the operand descriptor for the operand as
used by the Extended Instruction Set (EIS) instructions (see Section 4 for a discussion of the EIS
instructions).

A decimal number is defined by imposing any of the byte position value expressions below
on a 4- or 9-bit byte information unit of length n bytes.

Fixed-point, no sign:

c0×10(n-1) + c1×10(n-2) + ... + c(n-1)

Fixed-point, leading sign:

[sign=c0] c1×10(n-2) + c2×10(n-3) + ... + c(n-1)

Fixed-point, trailing sign:

c0×10(n-2) + c1×10(n-3) + ... + c(n-2) [sign=c(n-1)]

Floating-point:

[sign=c0] c1×10(n-3) + c2×10(n-4) + ... + c(n-3) [exponent=8 bits]

where:

ci is the decimal value of the byte in the ith byte position.

[sign=ci] indicates that ci is interpreted as a sign byte.

[exponent=8 bits] indicates that the exponent value is taken from the last 8 bits of the
string. If the data is in 9-bit bytes, the exponent is bits 1-8 of c(n-1). If the data is in 4-
bit bytes, the exponent is the binary value of the concatenation of c(n-2) and c(n-1).

The decimal number as described above is the only decimal data item defined. It may begin
on any legal byte boundary (without regard to word boundaries) and has a maximum extent of 63
bytes.

The processor handles decimal data as 4-bit bytes internally. Thus, 9-bit bytes are high-
order truncated as they are transferred from main memory and high-order filled as they are
transferred to main memory. The fill pattern is "00011"b for digit bytes and "00010" for sign
bytes. The floating-point exponent is a special case and is treated as a fixed-point binary integer.

The processor performs validity checking on decimal data. Only the byte values [0,11]8 are
legal in digit positions and only the byte values [12,17]8 are legal in sign positions. Detection of an
illegal byte value causes an illegal procedure fault. The interpretation of decimal sign bytes is
shown in Table 2-4.

Table 2-4. Decimal Sign Character Interpretation

9-bit
bytes

4-bit
bytes Interpretation

528 128 +

538
(a) 138

(b) +

548 148
(a) +

558
(a) 158

(a) -

568 168 +

9-bit
bytes

4-bit
bytes Interpretation

578 178 +

(a)This value is used as the default sign byte for storage of results. The presence of other values
will yield correct results according to the interpretation.

(b)An optional control bit in the EIS decimal arithmetic instructions (see Section 4) allows the
selection of 138 for the plus sign byte for storage of results in 4-bit data mode.

Decimal Data Values

The operand descriptors for decimal data operands have a 6-bit fixed-point binary integer
field for specification of a scaling factor (SF). This scaling factor has the same effect as the value
of E in floating-point decimal operands; a negative value moves the assumed decimal point to the
left; a positive value, to the right. The use of the scaling factor extends the range and resolution of
decimal data operands. The range of the scaling factor is [-32,31]10. See Table 2-5 for decimal
data operand values.

Table 2-5. Decimal Data Values

Operand
Fixed-point
unsigned

Fixed-point
signed

Floating-point
9 bit

Floating-point
4 bit

Arithmetic

minimum 0 0 (a) 0 (a) 0 (a)

maximum (1063-1)×1031 ±(1062-1)×1031 ±(1061-1)×10158 ±(1060-1)×10158

resolution 1:SF (b) 1:SF (b) 1:E (c) 1:E (c)

(a)As in floating-point binary arithmetic, there is no unique representation of the value zero except
in the case of fixed-point, unsigned data. Therefore, the processor detects a zero result and
forces a value of +0. for fixed-point, signed data and +0.×10127 for floating-point data. Again,
as in floating-point binary arithmetic, other representations of the value zero will be handled
correctly except for possible loss of precision during operand alignment.

(b)A value cannot be given for resolution in these cases since such a value depends on the value of
the scaling factor, SF. The notation used, 1:SF, indicates resolution to 1 part in 10(SF). Thus,
the following general statement on resolution may be made:

The resolution of a fixed-point decimal operand with scaling factor SF is 10SF.

(c)A value cannot be given for resolution in these cases since such a value depends on the value of
the exponent, E. The notation used, 1:E, indicates resolution to 1 part in 10(E). Thus, the
following general statement on resolution may be made:

The resolution of a floating-point decimal operand with exponent E is 10(E).

The scaling factor is ignored by the hardware.

Alphanumeric Data

Alphanumeric data is represented in two modes; character-string and bit-string. The mode
is determined by the processor according to the function being performed.

Character String Data

Character string data is defined by imposing the character position structure below on a 4-
bit, 6-bit, or 9-bit information unit of length n bytes or characters.

c0 || c1 || ... || c(n-1)

where:

ci is the character in the ith character position.

|| indicates the concatenation operation.

The character string described above is the only character string data item defined. It may
begin on any legal character boundary (without regard to word boundaries) and has a maximum
extent as shown in Table 2-6.

Table 2-6. Character String Data Length Limits

Character size Length limit

9-bit 1048576

6-bit 1572864

4-bit 2097152

No interpretation of the characters is made except as specified for the instruction being
executed (see Section 4).

Bit String Data

Bit string data is defined by imposing the bit position structure below on a bit information
unit of length n bits.

b0 || b1 || ... || b(n-1)

where:

bi is the value of the bit in the ith position.

|| indicates the concatenation operation.

The bit string described above is the only bit string data item defined. It may begin at any
bit position (without regard to character or word boundaries) and has a maximum extent of
9437184 bits.

SECTION 3: PROGRAM ACCESSIBLE REGISTERS

A processor register is a hardware assembly that holds information for use in some
specified way. An accessible register is a register whose contents are available to the user for his
purposes. Some accessible registers are explicitly addressed by particular instructions, some are
implicitly referenced during the course of execution of instructions, and some are used in both
ways. The accessible registers are listed in Table 3-1. See Section 4 for a discussion of each
instruction to determine the way in which the registers are used.

Table 3-1. Processor Registers

Register name Mnemonic Length (bits) Quantity

Accumulator Register A 36 1

Quotient Register Q 36 1

Accumulator-Quotient Register (a) AQ 72 1

Exponent Register E 8 1

Exponent-Accumulator-Quotient Register (a) EAQ 80 1

Index Registers Xn 18 8

Indicator Register IR 14 1

Base Address Register BAR 18 1

Timer Register TR 27 1

Ring Alarm Register RALR 3 1

Pointer Registers PRn 42 8

Address Registers ARn 24 8

Procedure Pointer Register (b) PPR 37 1

Temporary Pointer Register (b) TPR 42 1

Descriptor Segment Base Register DSBR 51 1

Segment Descriptor Word Associative Memory SDWAM 88 16

Page Table Word Associative Memory PTWAM 51 16

Fault Register FR 35 1

Mode Register MR 33 1

Cache Mode Register CMR 28 1

Control Unit (CU) History Register 72 16

Operations Unit (OU) History Register 72 16

Decimal Unit (DU) History Register 72 16

Appending Unit (APU) History Register 72 16

Configuration Switch Data 36 5

Control Unit Data 288 1

Decimal Unit Data 288 1

(a)This register is not a separate physical assembly but is a combination of its constituent
registers.

(b)This register is not explicitly addressable, but is included because of its vital role in instruction
and operand address preparation.

In the descriptions that follow, the diagrams given for register formats do not imply that a
physical assembly possessing the pictured bit pattern exists. The diagram is a graphic
representation of the form of the register data as it appears in main memory when the register
contents are stored or how data bits must be assembled for loading into the register.

If the diagrams contain the characters "x" or "0", the values of the bits in the positions
shown are irrelevant to the register. Bits pictured as "x" are not changed when the register is
stored. Bits pictured as "0" are set to 0 when the register is stored. Neither "x" bits or "0" bits are
loaded into the register.

ACCUMULATOR REGISTER (A)

Format: - 36 bits

Figure 3-1. Accumulator Register (A) Format

Description:

A 36-bit physical register located in the operations unit.

Function:

In fixed-point binary instructions, holds operands and results.

In floating-point binary instructions, holds the most significant part of the mantissa.

In shifting instructions, holds original data and shifted results.

In address preparation, may hold two logically independent word offsets, A-upper and A-
lower, or an extended range bit- or character-string length.

QUOTIENT REGISTER (Q)

Format: - 36 bits

Figure 3-2. Quotient Register (Q) Format

Description:

A 36-bit physical register located in the operations unit.

A-Upper A-Lower

0
0

1
7

18

1
8

3
5

18

Q-Upper Q-Lower

0
0

1
7

18

1
8

3
5

18

Function:

In fixed-point binary instructions, holds operands and results.

In floating-point binary instructions, holds the least significant part of the mantissa.

In shifting instructions, holds original data and shifted results.

In address preparation, may hold two logically independent word offsets, Q-upper and Q-
lower, or an extended range bit- or character-string length.

ACCUMULATOR-QUOTIENT REGISTER (AQ)

Format: - 72 bits

Figure 3-3. Accumulator-Quotient Register (AQ) Format

Description:

A combination of the accumulator (A) and quotient (Q) registers.

Function:

In fixed-point binary instructions, holds double-precision operands and results.

In floating-point binary instructions, holds the mantissa.

In shifting instructions, holds original data and shifted results.

EXPONENT REGISTER (E)

Format: - 8 bits

Figure 3-4. Exponent Register (E) Format

Description:

An 8-bit physical register located in the operations unit.

Function:

In floating-point binary instructions, holds the exponent.

Even word Odd word

A Q

0
0

3
5

36

3
6

7
1

36

0
0

8

0
7

0
8

0 0

3
5

0

28

exponent

EXPONENT-ACCUMULATOR-QUOTIENT REGISTER (EAQ)

Format: - 80 bits

Figure 3-5. Exponent-Accumulator-Quotient Register (EAQ) Format

Description:

A combination of the exponent (E), accumulator (A), and quotient (Q) registers. Although
the combined register has a total of 80 bits, only 72 are involved in transfers to and from
main memory. The 8 low-order bits are discarded on store and zero-filled on load.

Function:

In floating-point binary instructions, holds operands and results.

INDEX REGISTERS (X n)

Format: - 18 bits each

Figure 3-6. Index Register (Xn) Format

Description:

Eight 18-bit physical registers in the operations unit numbered 0 through 7. Index register
data may occupy the position of either an upper or lower 18-bit half-word operand (see
Section 2).

Function:

In fixed-point binary instructions, hold half-word operands and results.

In address preparation, hold word offsets or extended range bit- or character-string lengths.

0
0

8

0
7

0
8

7
1

64

exponent mantissa

0
0

1
7

18

INDICATOR REGISTER (IR)

Format: - 14 bits

Figure 3-7. Indicator Register (IR) Format

Description:

An assemblage of 15 indicator flags from various units of the processor. The data occupies
the position of a lower 18-bit half word operand (see Section 2). When interpreted as data,
a bit value of 1 corresponds to the ON state of the indicator, a bit value of 0 corresponds to
the OFF state.

Function:

The functions of the individual indicator bits are given below. An "x" in the column headed
"L" indicates that the state of the indicator is not affected by instructions that load the IR.

key L Indicator name Action

a Zero This indicator is set ON whenever the output of the main binary
adder consists entirely of zero bits for binary or shifting
instructions or the output of the decimal adder consists entirely
of zero digits for decimal instructions; otherwise, it is set OFF.

b Negative This indicator is set ON whenever the output of bit 0 of the main
binary adder has value 1 for binary or shifting instructions or the
sign character of the result of a decimal instruction is the
negative sign character; otherwise, it is set OFF.

c Carry This indicator is set ON for any of the following conditions;
otherwise, it is set OFF.

(1) If a bit propagates leftward out of bit 0 of the main binary
adder for any binary or shifting instruction.

(2) If | value1 | <= | value2 | for a decimal numeric
comparison instruction.

(3) If char1 <= char2 for a decimal alphanumeric compare
instruction.

d Overflow This indicator is set ON if the arithmetic range of a register is
exceeded in a fixed-point binary instruction or if the target string
of a decimal numeric instruction is too small to hold the integer
part of the result. It remains ON until reset by the Transfer On
Overflow (tov) instruction or is reset by some other instruction
that loads the IR. The event that sets this indicator ON may also
cause an overflow fault. (See overflow mask indicator below.)

0
0

x x x x x x x x x x x x x x x x x

1
7

x

18

1
8

a

1

1
9

b

1

2
0

c

1

2
1

d

1

2
2

e

1

2
3

f

1

2
4

g

1

2
5

h

1

2
6

i

1

2
7

j

1

2
8

k

1

2
9

l

1

3
0

m

1

3
1

n

1

3
2

o

1

0 0

3
5

0

3

key L Indicator name Action

e Exponent
overflow

This indicator is set ON if the exponent of the result of a
floating-point binary or decimal numeric instruction is greater
than +127. It remains ON until reset by the Transfer On
Exponent Overflow (teo) instruction or is reset by some other
instruction that loads the IR. The event that sets this indicator
ON may also cause an overflow fault. (See overflow mask
indicator below.)

f Exponent
underflow

This indicator is set ON if the exponent of the result of a
floating-point binary or decimal numeric instruction is less than
-128. It remains ON until reset by the Transfer On Exponent
Underflow (teu) instruction or is reset by some other instruction
that loads the IR. The event that sets this indicator ON may also
cause an overflow fault. (See overflow mask indicator below.)

g Overflow mask This indicator is set ON or OFF only by the instructions that load
the IR. When set ON, the IR inhibits the generation of the fault
for those events that normally cause an overflow fault. If the
overflow mask indicator is set OFF after occurrence of an
overflow event, an overflow fault does not occur even though the
indicator for that event is still set ON. The state of the overflow
mask indicator does not affect the setting, testing, or storing of
any other indicator.

h Tally runout This indicator is set OFF at initialization of any tallying
operation, that is, any repeat instruction or any indirect then
tally address modification. It is then set ON for any of the
following conditions:

(1) If any repeat instruction terminates because of tally
exhaust.

(2) If a Repeat Link (rpl) instruction terminates because of a
zero link address.

(3) If a tally exhaust is detected for an indirect then tally
modifier. The instruction is executed whether or not tally
exhaust occurs.

(4) If an EIS string scanning instruction reaches the end of the
string without finding a match condition.

i Parity error This indicator is set ON whenever a system controller signals
illegal action with a parity error code or the processor detects an
internal parity error condition. The indicator is set OFF only by
instructions that load the IR.

j Parity mask This indicator is set ON or OFF only by the instructions that load
the IR and is changed only when the processor is in privileged or
absolute mode. When it is set ON, the IR inhibits the generation
of the parity fault for all events that set the parity error
indicator. If the parity mask indicator is set OFF after the
occurrence of a parity error event, a parity fault does not occur
even though the parity error indicator may still be set ON. The
state of the parity mask indicator does not affect the loading,
testing, or storing of any other indicator.

key L Indicator name Action

k x Not BAR mode This indicator is set OFF (placing the processor in BAR mode)
only by execution of the Transfer and Set Slave (tss) instruction
or by the operand data of the Restore Control Unit (rcu)
instruction and is changed only when the processor is in
privileged or absolute mode. It is set ON (taking the processor
out of BAR node) by the execution of any transfer instruction
other than tss during a fault or interrupt trap. (See Section 7.)
If a fault or interrupt trap occurs while in BAR node and the IR is
stored before any transfer occurs, then a Return (ret) or Restore
Control Unit (rcu) instruction that reloads the stored data will
return the processor to BAR mode.

l Truncation This indicator is set ON whenever the target string of a decimal
numeric instruction is too small to hold all the digits of the result
or the target string of an alphanumeric instruction is too small to
hold all the bits or characters to be stored. (Also see the
overflow indicator for decimal numeric instructions.) The event
that sets this indicator ON may also cause an overflow fault.
(See overflow mask indicator above.)

m Mid instruction
interrupt fault

This indicator is set OFF at the start of execution of each
instruction and is set ON by the events described below. The
indicator has meaning only when determining the proper restart
sequence for the interrupted instruction. This indicator can be
set on:

(1) By any fault during execution of an EIS instruction;
however, the state is safe-stored in the Control Unit Data
only for access violation and directed faults.

(2) By an interrupt signal during execution of those EIS
instructions that allow very long operand strings.

(3) If the processor is in absolute or privileged mode, by the
execution of a Load Indicator Register (ldi), Return (ret),
or Restore Control Unit (rcu) instruction with bit 30 set to
1 in the IR data.

n x Absolute mode This indicator is set ON (placing the processor in absolute mode)
when the processor is initialized and by execution of an
nonappended transfer instruction during a fault or interrupt trap
and is set OFF (placing the processor in append mode) by any
execution of an appended transfer instruction. If the processor
is not in absolute mode when the fault or interrupt occurs and
the transfer instruction is Return (ret) or Restore Control Unit
(rcu) and the appropriate mode bit is properly set in the IR data,
the processor remains in its current mode.

o Hex mode When the hexadecimal permission indicator (bit 33 of the Mode
Register) is set on and this indicator is also on, then the
exponent of a floating point number has a power of 16 rather
than a power of two (binary floating point). The state of the hex
mode indicator can be changed by executing a Load Indicator
Register (ldi), Return (ret), or Restore Control Unit (rcu),
instruction with the desired state (1 or 0) set in bit 32 of the IR
data. Hexadecimal mode is only available on DPS 8M
processors. Indicator Register bit 32 is set to a zero value on
DPS/L68 processors.

BASE ADDRESS REGISTER (BAR)

Format: - 18 bits

Figure 3-8. Base Address Register (BAR) Format

Description:

An 18-bit physical register in the control unit.

Function:

The Base Address Register provides automatic hardware Address relocation and Address
range limitation when the processor is in BAR mode.

BAR.BASE Contains the 9 high-order bits of an 18-bit address relocation constant.
The low-order bits are generated as zeros.

BAR.BOUND Contains the 9 high-order bits of the unrelocated address limit. The low-
order bits are generated as zeros. An attempt to access main memory
beyond this limit causes a store fault, out of bounds. A value of 0 is truly 0,
indicating a null memory range.

TIMER REGISTER (TR)

Format: - 27 bits

Figure 3-9. Timer Register (TR) Format

Description:

A 27-bit settable, free-running clock in the control unit. The value decrements at a rate of
512 kHz. Its range is 1.953125 microseconds to approximately 4.37 minutes.

Function:

The TR may be loaded with any convenient value with the privileged Load Timer (ldt)
instruction. When the value next passes through zero, a timer runout fault is signalled. If
the processor is in normal or BAR mode with interrupts not inhibited or is stopped at an
uninhibited Delay Until Interrupt Signal (dis) instruction, the fault occurs immediately. If
the processor is in absolute or privileged mode or has interrupts inhibited, the fault is
delayed until the processor returns to uninhibited normal or BAR mode or stops at an
uninhibited Delay Until Interrupt Signal (dis) instruction.

0
0

0
8

9

0
9

1
7

9

1
8

x x x x x x x x x x x x x x x x x

3
5

x

18

BASE BOUND

0
0

2
6

27

2
7

0 0 0 0 0 0 0 0

3
5

0

9

Timer value

RING ALARM REGISTER (RALR)

Format: - 3 bits

Figure 3-10. Ring Alarm Register (RALR) Format

Description:

A 3-bit physical register in the appending unit.

Function:

If the RALR contains a value other than zero and the effective ring number (see TPR.TRR
below) is greater than or equal to the contents of the RALR and the instruction for which an
absolute main memory address is being prepared is a transfer instruction, an access
violation, ring alarm, fault occurs. Operating system software may use this register to
detect crossings from inner rings to outer rings.

POINTER REGISTERS (PR n)

Format: - 42 bits each

Even word of ITS pointer pair

Odd word of ITS pointer pair

0
0

0 0

3
2

0

33

3
3

RALR

3
5

3

15

0
0

0 0

0
2

0

3

0
3

1
7

1
8

SNR

2
0

3

2
1

0 0 0 0 0 0 0 0

2
9

0

9

3
0

(43)8

3
5

6

RNR

3
6

5
3

18

5
4

0 0

5
6

0

3

5
7

6
2

6

6
3

0 0

6
5

0

3

6
6

7
1

6

(TAG)BITNOWORDNO

Data as stored by Store Pointer Register n Packed (sprpn)

Figure 3-11. Pointer Register (PRn) Format

Description:

Eight combinations of physical registers from the appending unit and decimal unit
numbered 0 through 7. PRn.RNR, PRn.SNR, and PRn.BITNO are located in the appending
unit and PRn.WORDNO is located in the decimal unit. The WORDNO registers also form
part of the address registers discussed later in this section.

Function:

The pointer registers hold information relative to the location in main memory of data items
that may be external to the segment containing the procedure being executed. The
functions of the individual constituent registers are:

Register Function

PRn.SNR The segment number of the segment containing the data item described
by the pointer register.

PRn.RNR The final effective ring number value calculated during execution of the
instruction that last loaded the PR.

(43)8 This field is not part of the PR but is generated each time the PR is stored
as an ITS pair.

PRn.WORDNO The offset in words from the base or origin of the segment to the data
item.

PRn.BITNO The number of the bit within PRn.WORDNO that is the first bit of the data
item. Data items aligned on word boundaries always have the value 0.
Unaligned data items may have any value in the range [1,35].

(TAG) This field is not part of the PR but, in an ITS pointer pair, holds an
address modifier for use in address preparation.

ADDRESS REGISTERS (AR n)

Format: - 24 bits each

Data as stored by Store Address Register n (sarn)

Figure 3-12. Address Register (ARn) Format

0
0

0
5

6

0
6

1
7

WORDNO

12

1
8

3
5

18

SNRBITNO

0
0

1
7

18

1
8

a

1
9

2

2
0

2
3

BITNO

4

2
4

0 0 0 0 0 0 0 0 0 0 0

3
5

0

12

WORDNO

Description:

Eight combinations of physical registers from the decimal unit numbered 0 through 7. The
WORDNO registers also form part of the pointer registers discussed earlier in this section.

Function:

The address registers hold information relative to the location in main memory of the next
bit, character, or byte of an EIS operand to be processed by an EIS instruction. The
functions of the individual constituent registers are:

key Register Function

ARn.WORDNO The offset in words relative to the current addressing base referent
(segment origin, BAR.BASE, or absolute 0 depending on addressing
mode) to the word containing the next data item element.

a ARn.CHAR The number of the 9-bit byte within ARn.WORDNO containing the
first bit of the next data item element.

ARn.BITNO The number of the bit within ARn.CHAR that is the first bit of the
next data item element.

NOTE: The reader's attention is directed to the presence of two bit number registers,
PRn.BITNO and ARn.BITNO. Because the Multics processor was implemented as an
enhancement to an existing design, certain apparent anomalies appear. One of these is
the difference in the handling of unaligned data items by the appending unit and decimal
unit. The decimal unit handles all unaligned data items with a 9-bit byte number and bit
offset within the byte. Conversion from the description given in the EIS operand
descriptor is done automatically by the hardware. The appending unit maintains
compatibility with the earlier generation Multics processor by handling all unaligned
data items with a bit offset from the prior word boundary; again with any necessary
conversion done automatically by the hardware. Thus, a pointer register, PRn, may be
loaded from an ITS pointer pair having a pure bit offset and modified by one of the EIS
address register instructions (a4bd, s9bd, etc.) using character displacement counts.
The automatic conversion performed ensures that the pointer register, PRi, and its
matching address register, ARi, both describe the same physical bit in main memory.

SPECIAL NOTICE: The decimal unit has built-in hardware checks for illegal bit offset values but
the appending unit does not except for a single case for packed pointers. See NOTES for
Load Packed Pointers (lprpn) in Section 4.

PROCEDURE POINTER REGISTER (PPR)

Format: - 37 bits

Shown as part of word 0 of control unit data

0
0

PRR

0
2

3

0
3

PSR

1
7

15

1
8

P

1

Other control unit data

Shown as part of word 4 of control unit data

Figure 3-13. Procedure Pointer Register (PPR) Format

Description:

A combination of physical registers from the appending unit and the control unit. PPR.PRR,
PPR.PSR, and PPR.P are located in the appending unit and PPR.IC is located in the control
unit. The PPR is not explicitly addressable but its data is extracted and stored as part of the
data stored with the Store Control Unit (scu) and Store Control Double (stcd) instructions.
It is loaded from the control unit data with the Restore Control Unit (rcu) instruction.

Function:

The Procedure Pointer Register holds information relative to the location in main memory
of the procedure segment in execution and the location of the current instruction within
that segment. The functions of the individual constituent registers are:

Register Function

PPR.PRR The number of the ring in which the process is executing. It is set to the
effective ring number of the procedure segment when control is transferred
to the procedure.

PPR.PSR The segment number of the procedure being executed.

PPR.P A flag controlling execution of privileged instructions. Its value is 1
(permitting execution of privileged instructions) if PPR.PRR is 0 and the
privileged bit in the segment descriptor word (SDW.P) for the procedure is 1;
otherwise, its value is 0.

PPR.IC The word offset from the origin of the procedure segment to the current
instruction.

TEMPORARY POINTER REGISTER (TPR)

Format: - 42 bits

Shown as part of word 2 of control unit data

0
0

IC

1
7

18

Other control unit data

0
0

TRR

0
2

3

0
3

TSR

1
7

15

Other control unit data

Shown as part of word 3 of control unit data

Shown as part of word 5 of control unit data

Figure 3-14. Temporary Pointer Register (TPR) Format

Description:

A combination of physical registers from the appending unit and the control unit. TPR.TRR,
TPR.TSR, and TPR.TBR are located in the appending unit and TPR.CA is located in the
control unit. The TPR is not explicitly addressable but its data is extracted and stored as
part of the data stored with the Store Control Unit (scu) instruction. It is loaded from the
control unit data with the Restore Control Unit (rcu) instruction.

Function:

The temporary pointer register holds the current virtual address used by the processor in
performing address preparation for operands, indirect words, and instructions. At the
completion of address preparation, the contents of the TPR is presented to the appending
unit associative memories for translation into the 24-bit absolute main memory address.
The functions of the individual constituent registers are:

Register Function

TPR.TRR The current effective ring number (see Section 8).

TPR.TSR The current effective segment number (see Section 8).

TPR.TBR The current bit offset as calculated from ITS and ITP pointer pairs. (See
Section 8.)

TPR.CA The current computed address relative to the origin of the segment whose
segment number is in TPR.TSR. (See Section 8.)

3
0

3
5

TBR

6

Other control unit data

0
0

CA

1
7

18

Other control unit data

DESCRIPTOR SEGMENT BASE REGISTER (DSBR)

Format: - 51 bits

Even word of Y-pair as stored by Store Descriptor Base Register (sdbr)

Odd word of Y-pair as stored by Store Descriptor Base Register (sdbr)

Figure 3-15. Descriptor Segment Base Register (DSBR) Format

Description:

A physical register in the appending unit.

Function:

The Descriptor Segment Base Register contains information concerning the descriptor
segment being used by the processor. The descriptor segment holds the segment
descriptor words (SDWs) for all segments accessible by the processor, that is, the currently
defined virtual address space. The functions of its individual constituent registers are:

Register Function

DSBR.ADDR If DSBR.U = 1, the 24-bit absolute main memory address of the origin
of the current descriptor segment; otherwise, the 24-bit absolute main
memory address of the page table for the current descriptor segment.

DSBR.BND The 14 most significant bits of the highest Y-block16 address of the
descriptor segment that can be addressed without causing an access
violation, out of segment bounds, fault.

DSBR.U A flag specifying whether the descriptor segment is unpaged (U = 1) or
paged (U = 0).

DSBR.STACK The upper 12 bits of the 15-bit stack base segment number. It is used
only during the execution of the call6 instruction. (See Section 8 for a
discussion of generation of the stack segment number.)

24 12

0
0

2
3

2
4

0 0 0 0 0 0 0 0 0 0 0

3
5

0ADDR

3
6

0

1

3
7

5
0

14

5
1

0 0 0

5
4

0

4

5
5

U

1

5
6

0 0 0

5
9

0

4

6
0

7
1

BND

12

STACK

SEGMENT DESCRIPTOR WORD ASSOCIATIVE MEMORY (SDWAM)

Format: - 88 bits each

Even word of Y-pairs as stored by Store Segment Descriptor Registers (ssdr)

Odd word of Y-pairs as stored by Store Segment Descriptor Registers (ssdr)

Data as stored by Store Segment Descriptor Pointers (ssdp)

Figure 3-16. Segment Descriptor Word Associative Memory (SDWAM) Format

Description:

A combination of 16 registers and flags from the appending unit constitute the Segment
Descriptor Word Associative Memory (SDWAM). The registers are numbered consecutively
from 0 through 15 but are not explicitly addressable by number.

For the DPS/L68 processors, the SDW associative memory will hold the 16 most recently
used (MRU) SDWs and have a full associative organization with least recently used (LRU)
replacement.

For the DPS 8M processor, the SDW associative memory will hold the 64 MRU SDWs and
have a 4-way set associative organization with LRU replacement.

Function:

Hardware segmentation in the processor is implemented by the appending unit (see Section
5). In order to permit addressing by segment number and offset as prepared in the
temporary pointer register (described earlier), a table containing the location and status of
each accessible segment must be kept. This table is the descriptor segment. The
descriptor segment is located by information held in the descriptor segment base register
(DSBR) described earlier.

0
0

2
3

ADDR

24

2
4

R1

2
6

3

2
7

R2

2
9

3

3
0

R3

3
2

3

3
3

0 0

3
5

0

3

3
6

0

1

3
7

5
0

BOUND

14

5
1

R

1

5
2

E

1

5
3

W

1

5
4

P

1

5
5

U

1

5
6

G

1

5
7

C

1

5
8

7
1

CL

14

0
0

1
4

POINTER

15

1
5

0 0 0 0 0 0 0 0 0 0 0

2
6

0

12

2
7

F

1

2
8

0

2
9

0

2

3
0

0

3
1

0

2

3
2

USE L68

3
5

4
USE DPS 8M

Every time an effective segment number (TPR.TSR) is prepared, it is used as an index into
the descriptor segment to retrieve the segment descriptor word (SDW) for the target
segment. To reduce the number of main memory references required for segment
addressing, the SDWAM provides a content addressable memory to hold the sixteen most
recently referenced SDWs.

Whenever a reference to the SDW for a segment is required, the effective segment number
(TPR.TSR) is matched associatively against all 16 SDWAM.POINTER registers (described
below). If the SDWAM match logic circuitry indicates a hit, all usage counts (SDWAM.USE)
greater than the usage count of the register hit are decremented by one, the usage count of
the register hit is set to 15, and the contents of the register hit are read out into the address
preparation circuitry. If the SDWAM match logic does not indicate a hit, the SDW is fetched
from the descriptor segment in main memory and loaded into the SDWAM register with
usage count 0 (the oldest), all usage counts are decremented by one with the newly loaded
register rolling over from 0 to 15, and the newly loaded register is read out into the address
preparation circuitry. Faulted SDWs are not loaded into the SDWAM.

The functions of the constituent registers and flags of each SDWAM register are as follows:

Register Function

SDWAM.ADDR The 24-bit absolute main memory address of the page table for the
target segment if SDWAM.U = 0; otherwise, the 24-bit absolute main
memory address of the origin of the target segment.

SDWAM.R1 Upper limit of read/write ring bracket (see Section 8).

SDWAM.R2 Upper limit of read/execute ring bracket (see Section 8).

SDWAM.R3 Upper limit of call ring bracket (see Section 8).

SDWAM.BOUND The 14 high-order bits of the last Y-block16 address within the
segment that can be referenced without an access violation, out of
segment bound, fault.

SDWAM.R Read permission bit. If this bit is set ON, read access requests are
allowed.

SDWAM.E Execute permission bit. If this bit is set ON, the SDW may be loaded
into the procedure pointer register (PPR) and instructions fetched
from the segment for execution.

SDWAM.W Write permission bit. If this bit is set ON, write access requests are
allowed.

SDWAM.P Privileged flag bit. If this bit is set ON, privileged instructions from
the segment may be executed if PPR.PRR is 0.

SDWAM.U Unpaged flag bit. If this bit is set ON, the segment is unpaged and
SDWAM.ADDR is the 24-bit absolute main memory address of the
origin of the segment. If this bit is set OFF, the segment is paged and
SDWAM.ADDR is the 24-bit absolute main memory address of the
page table for the segment.

SDWAM.G Gate control bit. If this bit is set OFF, calls and transfers into the
segment must be to an offset no greater than the value of SDWAM.CL
as described below.

SDWAM.C Cache control bit. If this bit is set ON, data and/or instructions from
the segment may be placed in the cache memory.

SDWAM.CL Call limiter (entry bound) value. If SDWAM.G is set OFF, transfers of
control into the segment must be to segment addresses no greater
than this value.

SDWAM.POINTER The effective segment number used to fetch this SDW from main
memory.

Register Function

SDWAM.F Full/empty bit. If this bit is set ON, the SDW in the register is valid.
If this bit is set OFF, a hit is not possible. All SDWAM.F bits are set
OFF by the instructions that clear the SDWAM.

SDWAM.USE Usage count for the register. The SDWAM.USE field is used to
maintain a strict FIFO queue order among the SDWs. When an SDW
is matched, its USE value is set to 15 (newest) on the DPS/L68 and to
63 on the DPS 8M, and the queue is reordered. SDWs newly fetched
from main memory replace the SDW with USE value 0 (oldest) and
the queue is reordered.

PAGE TABLE WORD ASSOCIATIVE MEMORY (PTWAM)

Format: - 51 bits each

Data as stored by Store Page Table Registers (sptr)

Data as stored by Store Page Table Pointers (sptp)

Figure 3-17. Page Table Word Associative Memory (PTWAM) Format

Description:

A combination of 16 registers and flags from the appending unit constitute the Page Table
Word Associative Memory (PTWAM). The registers are numbered consecutively from 0
through 15 but are not explicitly addressable by number.

For the DPS/L68 processors, the PTW associative memory will hold the 16 most recently
used (MRU) PTWs and have a full associative organization with least recently used (LRU)
replacement.

For the DPS 8M processors, the PTW associative memory will hold the 64 MRU PTWs and
have a 4-way set associative organization with LRU replacement.

Function:

Hardware paging in the Multics processor is implemented by the appending unit (see
Section 5 for details). In order to permit segment addressing by page number and page
offset as derived from the computed address prepared in the temporary pointer register
(TPR.CA described above), a table containing the location and status of each page of an
accessible segment must be kept. This table is the page table for the segment. The page

0
0

ADDR

1
7

18

1
8

0 0 0 0 0 0 0 0 0 0

2
8

0

11

2
9

M

1

3
0

0 0 0 0 0

3
5

0

6

0
0

1
4

POINTER

15

1
5

PAGENO

2
6

12

2
7

F

1

2
8

0

2
9

0

2

3
0

0

3
1

0

2

3
2

USE L68

3
5

4
USE DPS 8M

table for an accessible paged segment is located by information held in the segment
descriptor word (SDW) for the segment.

Every time a computed address (TPR.CA) for a paged segment is prepared, it is separated
into a page number and a page offset. The page number is used as an index into the page
table to retrieve the page table word (PTW) for the target page. To reduce the number of
main memory references required for paging, the PTWAM provides a content addressable
memory to hold the 16 most recently referenced PTWs.

Whenever a reference to the PTW for a page of a paged segment is required, the page
number (as derived from TPR.CA) is matched associatively against all 16 PTWAM.PAGENO
registers (described below) and, simultaneously, TPR.TSR is matched against
PTWAM.POINTER (described below). If the PTWAM match logic circuitry indicates a hit,
all usage counts (PTWAM.USE) greater than the usage count of the register hit are
decremented by one, the usage count of the register hit is set to 15, and the contents of the
register hit are read out into the address preparation circuitry. If the PTWAM match logic
does not indicate a hit, the PTW is fetched from main memory and loaded into the PTWAM
register with usage count 0 (the oldest), all usage counts are decremented by one with the
newly loaded register rolling over from 0 to 15, and the newly loaded register is read out
into the address preparation circuitry. Faulted PTWs are not loaded into the PTWAM.

The functions of the constituent registers and flags of each PTWAM register are: (See
Section 8 for additional details.)

Register Function

PTWAM.ADDR The 18 high-order bits of the 24-bit absolute main memory address of
the page. The hardware ignores low-order bits of this page address
according to page size based on the following:

Page size in words
64

128
256
512

1024
2048
4096

ADDR bits ignored
none
17

16-17
15-17
14-17
13-17
12-17

PTWAM.M Page modified flag bit. This bit is set ON whenever the PTW is used
for a store type instruction. When the bit changes value from 0 to 1, a
special extra cycle is generated to write it back into the PTW in the
page table in main memory.

PTWAM.POINTER The effective segment number used to fetch this PTW from main
memory.

PTWAM.PAGENO The 12 high-order bits of the 18-bit computed address (TPR.CA) used
to fetch this PTW from main memory. Low-order bits are forced to
zero by the hardware and not used as part of the page table index
according to page size based on the following:

Page size in words
64

128
256
512

1024
2048
4096

PAGENO bits forced
none
11

10-11
09-11
08-11
07-11
06-11

PTWAM.F Full/empty bit. If this bit is set ON, the PTW in the register is valid. If
this bit is set OFF, a hit is not possible. All PTWAM.F bits are set OFF
by the instructions that clear the PTWAM.

Register Function

PTWAM.USE Usage count for the register. The PTWAM.USE field is used to
maintain a strict FIFO queue order among the PTWs. When an PTW is
matched its USE value is set to 15 (newest) on the DPS/L68 and to 63
on the DPS 8M, and the queue is reordered. PTWs newly fetched
from main memory replace the PTW with USE value 0 (oldest) and the
queue is reordered.

FAULT REGISTER (FR) – DPS AND L68

Format: - 72 bits

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 01

Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 01

Figure 3-18. Fault Register (FR) Format - DPS and L68

Description:

A combination of flags and registers all located in the control unit. The register is stored
and cleared by the Store Central Processor Register (scpr), TAG = 01, instruction. Note
that the data is stored into the word pair at location Y. The Fault Register cannot be
loaded.

Function:

The Fault Register contains the conditions in the processor for several of the hardware
faults. Data is strobed into the Fault Register during a fault sequence. Once a bit or field in
the Fault register is set, it remains set until the register is stored and cleared. The data is
not overwritten during subsequent fault events.

The functions of the constituent flags and registers are:

key
Flag or
register Function

a ILL OP An illegal operation code has been detected.

b ILL MOD An illegal address modifier has been detected.

c ILL SLV An illegal BAR mode procedure has been encountered.

0
0

a

1

0
1

b

1

0
2

c

1

0
3

d

1

0
4

e

1

0
5

f

1

0
6

g

1

0
7

h

1

0
8

i

1

0
9

j

1

1
0

k

1

1
1

l

1

1
2

m

1

1
3

n

1

1
4

o

1

1
5

0

1

1
6

IAA

1
9

4

2
0

2
3

4

2
4

2
7

4

2
8

3
1

4

3
2

p

1

3
3

q

1

3
4

r

1

3
5

s

1

IAB IAC IAD

3
6

0 0

7
1

0

36

key
Flag or
register Function

d ILL PROC An illegal procedure other than the three above has been
encountered.

e NEM A nonexistent main memory address has been requested.

f OOB A BAR mode boundary violation has occurred.

g ILL DIG An illegal decimal digit or sign has been detected by the decimal
unit.

h PROC PARU A parity error has been detected in the upper 36 bits of data.

i PROC PARL A parity error has been detected in the lower 36 bits of data.

j $CON A A $CONNECT signal has been received through port A.

k $CON B A $CONNECT signal has been received through port B.

1 $CON C A $CONNECT signal has been received through port C.

m $CON D A $CONNECT signal has been received through port D.

n DA ERR1 Operation not complete. Processor/system controller interface
sequence error 1 has been detected. ($DATA-AVAIL received with
no prior $INTERRUPT sent.)

o DA ERR2 Operation not complete. Processor/system controller interface
sequence error 2 has been detected. (Multiple $DATA-AVAIL
received or $DATA-AVAIL received out of order.)

IAA Coded illegal action, port A. (see Table 3-2)

IAB Coded illegal action, port B. (See Table 3-2)

IAC Coded illegal action, port C. (See Table 3-2)

IAD Coded illegal action, port D. (See Table 3-2)

p CPAR DIR A parity error has been detected in the cache memory directory.

q CPAR STR A data parity error has been detected in the cache memory.

r CPAR IA An illegal action has been received from a system controller during
a store operation with cache memory enabled. This implies that the
data are correct in cache memory and incorrect in main memory.

s CPAR BLK A cache memory parity error has occurred during a cache memory
data block load.

Table 3-2. System Controller Illegal Action Codes

Code Priority Fault Reason

00 -- No illegal action

01 -- Command Unassigned

02 05 Store Nonexistent address

03 01 Command Stop on condition

04 -- Command Unassigned

05 12 Parity Data parity, store unit to system controller

06 11 Parity Data parity in store unit

07 10 Parity Data parity in store unit and store unit to system controller

10 04 Command Not control (a)

Code Priority Fault Reason

11 13 Command Port not enabled

12 03 Command Illegal command

13 07 Store Store unit not ready

14 02 Parity Zone-address-command parity, processor to system controller

15 06 Parity Data parity, processor to system controller

16 08 Parity Zone-address-command parity, system controller to store unit

17 09 Parity Data parity, system controller to store unit

(a) This illegal action code not relevant to later model system controllers.

FAULT REGISTER (FR) - DPS 8M

Format: - 72 bits

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 01

Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 01

Figure 3-19. Fault Register (FR) Format - DPS 8M

Function:

The Fault Register contains the conditions in the processor for several of the hardware
faults on the DPS 8M CPU and cache directory buffer overflows. Data is strobed into the
Fault Register during a fault or buffer overflow fault sequence. Once a bit or field in the
Fault Register is set, it remains set until the register is stored and cleared. The data is not
overwritten during subsequent fault events.

The functions of the constituent flags and registers are:

key
Flag or
register Fault Function

a ILL OP IPR An illegal operation code has been detected.

b ILL MOD IPR An illegal address modifier has been detected.

c ILL SLV IPR An illegal BAR mode procedure has been encountered.

0
0

a

1

0
1

b

1

0
2

c

1

0
3

d

1

0
4

e

1

0
5

f

1

0
6

g

1

0
7

h

1

0
8

i

1

0
9

j

1

1
0

k

1

1
1

l

1

1
2

m

1

1
3

n

1

1
4

o

1

1
5

0

1

1
6

IAA

1
9

4

2
0

2
3

4

2
4

2
7

4

2
8

3
1

4

3
2

p

1

3
3

q

1

3
4

r

1

3
5

s

1

IAB IAC IAD

3
6

t

1

3
7

u

1

3
8

v

1

3
9

w

1

4
0

x

1

4
1

y

1

4
2

z

1

4
3

A

1

4
4

B

1

4
5

C

1

4
6

D

1

4
7

E

1

4
8

F

1

0 0

7
1

0

25

key
Flag or
register Fault Function

d ILL PROC IPR An illegal procedure other than the three above has been
encountered.

e NEM ONC A nonexistent main memory address has been requested.

f OOB STR A BAR mode boundary violation has occurred.

g ILL DIG IPR An illegal decimal digit or sign has been detected by the
decimal unit.

h PROC PARU PAR A parity error has been detected in the upper 36 bits of data.

i PROC PARL PAR A parity error has been detected in the lower 36 bits of data.

j $CON A CON A $CONNECT signal has been received through port A.

k $CON B CON A $CONNECT signal has been received through port B.

l $CON C CON A $CONNECT signal has been received through port C.

m $CON D CON A $CONNECT signal has been received through port D.

n DA ERR ONC Operation not complete. Processor/system controller
interface sequence error 1 has been detected. ($DATA-AVAIL
received with no prior $INTERRUPT sent.)

o DA ERR2 ONC Operation not completed. Processor/system controller
interface sequence error 2 has been detected. (Multiple
$DATA-AVAIL received or $DATA-AVAIL received out of
order.)

IAA Coded illegal action, port A. (See Table 3-2)

IAB Coded illegal action, port B. (See Table 3-2)

IAC Coded illegal action, port C. (See Table 3-2)

IAD Coded illegal action, port D. (See Table 3-2)

p CPAR DIR None A parity error has been detected in the cache memory
directory.

q CPAR STR PAR A data parity error has been detected in the cache memory.

r CPAR IA PAR An illegal action has been received from a system controller
during a store operation with cache memory enabled. This
implies that the data are correct in cache memory and
incorrect in main memory.

s CPAR BLK PAR A cache memory parity error has occurred during a cache
memory data block load.

Cache Duplicate Directory WNO Buffer Overflow

t None Port A

u None Port B

v None Port C

w None Port D

x None Cache Primary Directory WNO Buffer Overflow

y None Write Notify (WNO) Parity Error on Port A, B, C, or D.

None Cache Duplicate Directory Parity Error

z None Level 0

A None Level 1

B None Level 2

key
Flag or
register Fault Function

C None Level 3

D Cache Duplicate Directory Multiple Match

E None A parity error has been detected in the SDWAM.

F None A parity error has been detected in the PTWAM.

MODE REGISTER (MR) - DPS AND L68

Format: - 33 bits

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 06

Figure 3-20. Mode Register (MR) Format - DPS and L68

Description:

An assemblage of flags and registers from the control unit. The Mode Register and the
Cache Mode Register are both stored into the Y-pair by the Store Central Processor
Register (scpr), TAG = 06. The Mode Register is loaded with the Load Central Processor
Register (lcpr), TAG = 04, instruction.

Function:

The Mode Register controls the operation of those features of the processor that are
capable of being enabled and disabled.

The functions of the constituent flags and registers are:

key
Flag or
register Function

FFV A floating-fault vector address. The 15 high-order bits of the Y-
block8 address of four word pairs constituting a floating-fault vector.
Traps to these floating faults are generated by other conditions the
mode register sets.

a OC TRAP Trap on OPCODE match. If this bit is set ON and OPCODE matches
the operation code of the instruction for which an address is being
prepared (including indirect cycles), generate the second floating
fault (xed FFV+2). See NOTE below.

b ADR TRAP Trap on ADDRESS match. If this bit is set ON and the computed
address (TPR.CA) matches the setting of the address switches on the
processor maintenance panel, generate the fourth floating fault (xed
FFV+6). See NOTE below.

0
0

1
4

FFV

15

1
5

0

1

1
6

a

1

1
7

b

1

1
8

c
1

1
9

d
1

2
0

e
1

2
1

f
1

2
2

g

2
3

2

2
4

h

2
5

2

2
6

0

2
7

0
2

2
8

i

1

2
9

j

1

3
0

k

1

3
1

l

1

3
2

m

1

3
3

0

3
4

0

2

3
5

n

1

OPCODE

key
Flag or
register Function

OPCODE The operation code on which to trap if OC TRAP (bit 16, key a) is set
ON or for which to strobe all control unit cycles into the control unit
history registers if O.C$¢ (bit 29, key j) is set ON.

or

Processor conditions codes as follows if OC TRAP (bit 16, key a) and
O.C$¢ (bit 29, key j) are set OFF and ¢ VOLT (bit 32, key m) is set
ON.

c Set control unit overlap inhibit if set ON. The control unit waits
for the operations unit to complete execution of the even
instruction of the current instruction pair before it begins
address preparation for the associated odd instruction. The
control unit also waits for the operations unit to complete
execution of the odd instruction before it fetches the next
instruction pair.

d Set store overlap inhibit if set ON. The control unit waits for
completion of a current main memory fetch (read cycles only)
before requesting a main memory access for another fetch.

e Set store incorrect data parity if set ON. The control unit causes
incorrect data parity to be sent to the system controller for the
next store instruction and then resets bit 20.

f Set store incorrect zone-address-command (ZAC) parity if set
ON. The control unit causes incorrect zone-address-command
(ZAC) parity to be sent to the system controller for each main
memory cycle of the next store instruction and resets bit 21 at
the end of the instruction.

g Set timing margins if set ON. If ¢ VOLT (bit 32, key m) is set ON
and the margin control switch on the processor maintenance
panel is in PROG position, set processor timing margins as
follows:

22,23
0,0
0,1
1,0
1,1

margin
normal

slow
normal

fast

h Set +5 voltage margins if set ON. If ¢ VOLT (bit 32, key m) is set
ON and the margin control switch on the processor maintenance
panel is in the PROG position, set +5 voltage margins as follows:

24,25
0,0
0,1
1,0
1,1

margin
normal

low
high

normal

i Trap on control unit history register count overflow if set ON. If this
bit and STROBE ¢ (bit 30, key k) are set ON and the control unit
history register counter overflows, generate the third floating fault
(xed FFV+4). Further, if FAULT RESET (bit 31, key 1) is set, reset
STROBE ¢ (bit 30, key k), locking the history registers. A Load
Central Processor Register (lcpr), TAG = 04, instruction setting bit
28 ON resets the control unit history register counter to zero. (See
NOTE below.)

key
Flag or
register Function

j O.C$¢ Strobe control unit history registers on OPCODE match. If this bit
and STROBE ¢ (bit 30, key k) are set ON and the operation code of
the current instruction matches OPCODE, strobe the control unit
history registers on all control unit cycles (including indirect cycles).

k STROBE ¢ Enable history registers. If this bit is set ON, all history registers are
strobed at appropriate points in the various processor cycles. If this
bit is set OFF or MR ENABLE (bit 35, key n) is set OFF, all history
registers are locked. This bit is set OFF with a Load Central
Processor Register (lcpr), TAG = 04, instruction providing a 0 bit, by
an operation not complete fault, and, conditionally, by other faults
(see FAULT RESET (bit 31, key 1) below). Once set OFF, this bit
must be set ON with a Load Central Processor Register (lcpr), TAG
= 04, instruction providing a 1 bit to re-enable the history registers.

l FAULT RESET History register lock control. If this bit is set ON, set STROBE ¢ (bit
30, key k) OFF, locking the history registers for all faults including
the floating faults. See NOTE below.

m ¢ VOLT Test mode indicator. This bit is set ON whenever the TEST/NORMAL
switch on the processor maintenance panel is in TEST position;
otherwise, it is set OFF. It serves to enable the program control of
voltage and timing margins.

n MR ENABLE Enable mode register. When this bit is set ON, all other bits and
controls of the mode register are active. When this bit is set OFF,
the mode register controls are disabled.

NOTE: The traps described above (address match, OPCODE match, control unit history register
counter overflow) occur after completion of the next odd instruction following their
detection. They are handled as Group 7 faults in regard to servicing and inhibition. (See
Section 7 for descriptions of these faults.) The complete Group 7 priority sequence (in
increasing order) is:

1 - Connect

2 - Time runout

3 - Shutdown

4 - OPCODE trap

5 - Control unit history register counter overflow

6 - Address match trap

7 - External interrupts

MODE REGISTER (MR) - DPS 8M

Format: - 36 bits

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 06

Figure 3-21. Mode Register (MR) Format - DPS 8M

Description:

An assemblage of flags and registers from the control unit. The Mode Register and the
Cache Mode Register are both stored into the Y-pair by the Store Central Processor
Register (scpr), TAG = 06. The Mode Register is loaded with the Load Central Processor
Register (lcpr), TAG = 04, instruction.

Function:

The mode register controls the operation of those features of the processor that are capable
of being enabled and disabled.

The functions of the constituent flags and registers are:

key
Flag or
register Function

a cuolin Set CU overlap inhibit. The CU waits for the OU to complete execution of
the even instruction before it begins address preparation for the
associated odd instruction. The CU also waits for the OU to complete
execution of the odd instruction before it fetches the next instruction pair.

b solin Set store overlap inhibit. The CU waits for completion of a current
memory fetch (read cycles only) before requesting a memory access for
another fetch.

c sdpap Set store incorrect data parity. The CU causes incorrect data parity to be
sent to the SC for the next data store instruction and then resets bit 20.

d separ Set store incorrect ZAC parity. The CU causes incorrect zone-address-
command (ZAC) parity to be sent to the SC for each memory cycle of the
next data store instruction and resets bit 21 at the end of the instruction.

e tm Set timing margins. If bit 32 key (k) is set and the margin control switch
on the CPU maintenance panel is in program position, set CPU timing
margins as follows:

22,23
0,0
0,1
1,0
1,1

margin
normal

slow
normal

fast

f vm Set +5 voltage margins. If bit 32 (key k) is set and the margin control
switch on the CPU maintenance panel is in the program position, set +5
voltage margins as follows:

0
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
7

0

18

1
8

a

1

1
9

b

1

2
0

c

1

2
1

d

1

2
2

e

2
3

2

2
4

f

2
5

2

2
6

0

2
7

0

2

2
8

g

1

2
9

h

1

3
0

i

1

3
1

j

1

3
2

k

1

3
3

l

1

3
4

0

1

3
5

m

1

key
Flag or
register Function

24,25
0,0
0,1
1,0
1,1

margin
normal

low
high

normal

g hrhlt Stop HR Strobe on HR Counter Overflow. (Setting bit 28 shall cause the
HR counter to be reset to zero.)

h hrxfr Strobe the HR on Transfer Made. If bits 29,30, and 35 are = 1, the HR
will be strobed on all Transfers Made. Bits 36-53 of the OU/DU register
will indicate the "From" location and bits 36-59 of the CU register will
contain the real address of the final "To" location.

i ihr Enable History Registers. If bit 30 = 1, the HRs may be strobed. If bit 30
= 0 or bit 35 = 0, they will be locked out. This bit will be reset by either
an LCPR with the bit corresponding to 30 = 0 or by an Op Not Complete
fault. It may be reset by other faults (see bit 31). After being reset, it
must be enabled by another LCPR instruction before the History Registers
may be strobed again.

j ihrrs Additional resetting of bit 30. If bit 31 = 1, the following faults also reset
bit 30:

- Lock Up
- Parity
- Command
- Store
- Illegal Procedure
- Shutdown

k mrgctl Margin Control. Bit 32 informs the software when it can control margins.
A one indicates that software has control. When the LOCAL/REMOTE
switch on the power supply is in REMOTE and bit 35 = 1, bit 32 is set to 1
by occurrence of the following conditions: the NORMAL/TEST switch is in
the TEST position, the Memory and CU Overlap Inhibit switches are OFF,
the Timing Margins for the OU, CU, DU and VU are NORMAL, and the
Forced Data and ZAC Parity are OFF.

l hexfp Hexadecimal Exponent Floating Point Arithmetic Mode can be set. When
this bit is set, the Hex mode becomes effective when the Indicator
Register bit 32 is set to 1.

m emr Enable Mode Register. Unless bit 35 = 1, all other bits in the Mode
Register are ignored and the History Register is ignored and locked.

CACHE MODE REGISTER (CMR) - DPS AND L68

Format: - 28 bits

Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 06

Figure 3-22. Cache Mode Register (CMR) Format - DPS and L68

3
6

5
0

CACHE DIR ADDRESS

1

5
1

a

1

5
2

b

1

5
3

0

1

5
4

c

1

5
5

d

1

5
6

e

1

5
7

f

1

5
8

0

1

5
9

g

1

6
0

h

1

6
1

i

1

6
2

j

6
3

2

6
4

0 0 0 0 0

6
9

0

6

7
0

k

7
1

2

Description:

An assemblage of flags and registers from the control unit. The Mode Register and Cache
Mode Register are both stored into the Y-pair by the Store Central Processor Register
(scpr), TAG = 06, instruction. The Cache Mode Register is loaded with the Load Central
Processor Register (lcpr), TAG = 02, instruction.

The data stored from the cache mode register is address-dependent. The algorithm used to
map main memory into the cache memory (see Section 9) is effective for the Store Central
Processor Register (scpr) instruction. In general, the user may read out data from the
directory entry for any cache memory block by proper selection of certain subfields in the
24-bit absolute main memory address. In particular, the user may read out the directory
entry for the cache memory block involved in a suspected cache memory error by ensuring
that the required 24-bit absolute main memory address subfields are the same as those for
the access which produced the suspected error.

The fault handling procedure(s) should be unencacheable (SDW.C = 0) and the history
registers and cache memory should be disabled as quickly as possible in order that vital
information concerning the suspected error not be lost.

Function:

The Cache Mode register provides configuration information and software control over the
operation of the cache memory. Those items with an "x" in the column headed L are not
loaded by the Load Central Processor Register (lcpr), TAG = 02, instruction.

The functions of the constituent flags and registers are:

key L Register Function

x CACHE DIR
ADDRESS

15 high-order bits of the cache memory block address from the
cache directory.

a x PAR BIT Cache memory directory parity bit.

b x LEV FUL The selected column and level is loaded with active data.

c CSH1 ON Enable the upper 1024 words of the cache memory (see Section
9).

d CSH2 ON Enable the lower 1024 words of the cache memory (see Section
9).

e OPND ON Enable the cache memory for operands (see Section 9).

f INST ON Enable the cache memory for instructions (see Section 9).

g CSH REG Enable cache-to-register (dump) mode. When this bit is set ON,
double-precision operations unit read operands (e.g., Load AQ
(ldaq) operands) are read from the cache memory according to
the mapping algorithm and without regard to matching of the full
24-bit absolute main memory address. All other operands
address main memory as though the cache memory were
disabled. This bit is reset automatically by the hardware for any
fault or interrupt.

h x STR ASD Enable store aside. When this bit is set ON, the processor does
not wait for main memory cycle completion after a store
operation but proceeds after the cache memory cycle is complete.

i x COL FUL Selected cache memory column is full.

j x RRO A,B Cache round robin counter (see Section 9).

k LUF MSB,LSB Lockup timer setting. The lockup timer may be set to four
different values according to the value of this field.

LUF value

0
1
2
3

Lockup time

2ms
4ms
8ms
16ms

The lockup timer is set to 16ms when the processor is initialized.

CACHE MODE REGISTER (CMR) - DPS 8M

Format: - 36 bits

Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 06.

Figure 3-23. Cache Mode Register (CMR) Format - DPS 8M

Description:

An assemblage of flags and registers from the control unit. The Mode Register and Cache
Mode Register are both stored into the Y-pair by the Store Central Processor Register
(scpr), TAG = 06, instruction. The Cache Mode Register is loaded with the Load Central
Processor Register (lcpr), TAG = 02, instruction.

The data stored from the Cache Mode register is address-dependent. The algorithm used to
map main memory into the cache memory (see Section 9) is effective for the Store central
Processor Register (scpr) instruction. In general, the user may read out data from the
directory entry for any cache memory block by proper selection of certain subfields in the
24-bit absolute main memory address. In particular, the user may read out the directory
entry for the cache memory block involved in a suspected cache memory error by ensuring
that the required 24-bit absolute main memory address subfields are the same as those for
the access which produced the suspected error.

The fault handling procedure(s) should be unencacheable (SDW.D = 0) and the history
registers and cache memory should be disabled as quickly as possible in order that vital
information concerning the suspected error not be lost.

Function:

The Cache Mode Register provides configuration information and software control over the
operation of the cache memory. Those items with an "x" in the column headed L are not
loaded by the Load Central Processor Register (lcpr), TAG = 02, instruction.

The functions of the constituent flags and registers are:

key L Register Function

x CACHE DIR
ADDRESS

15 high-order bits of the cache memory block address from the
cache directory.

a x PAR BIT Cache memory directory parity bit.

b x LEV FUL The selected column and level is loaded with active data.

3
6

5
0

CACHE DIR ADDRESS

15

5
1

a

1

5
2

b

1

5
3

0

1

5
4

c

1

5
5

d

1

5
6

0

1

5
7

e

1

5
8

0

1

5
9

f

1

6
0

g

1

6
1

h

1

6
2

i

6
3

2

6
4

0 0 0

6
7

0

4

6
8

j

1

6
9

0

1

7
0

k

7
1

2

key L Register Function

c CSH1 ON Enable the upper 4096 words of the cache memory (see Section
9).

d CSH2 ON Enable the lower 4096 words of the cache memory (see Section
9).

e INST ON Enable the cache memory for instructions (see Section 9).

f CSH REG Enable cache-to-register (dump) mode. When this bit is set ON,
double-precision operations unit read operands (e.g., Load AQ
(ldaq) operands) are read from the cache memory according to
the mapping algorithm and without regard to matching of the
full 24-bit absolute main memory address. All other operands
address main memory as though the cache memory were
disabled. This bit is reset automatically by the hardware for any
fault or interrupt.

g x STR ASD Enable store aside. When this bit is set ON, the processor does
not wait for main memory cycle completion after a store
operation but proceeds after the cache memory cycle is
complete.

h x COL FUL Selected cache memory column is full.

i x RRO A,B Cache round-robin counter (see Section 9).

j Bypass cache bit. Enables the bypass option of SDW.C when set
OFF. See Notes below for further information.

k LUF MSB,LSB Lockup timer setting. The lockup timer may be set to four
different values according to the value of this field.

LUF value

0
1
2
3

Lockup time

2ms
4ms
8ms
16ms

The lockup timer is set to 16ms when the processor is
initialized.

Notes

1. The COL FUL, RRO A, RRO B, and CACHE DIR ADDRESS fields reflect different locations in
cache depending on the final (absolute) address of the scpr instruction storing this data.

2. If either cache enable bit c or d changes from disable state to enable state, the entire cache
is cleared.

3. The DPS 8M processors contain an 8k hardware-controlled cache memory. When running a
mixed configuration of DPS 8M and DPS/L68 processors, bit 68 of the CMR (reference j)
allows the DPS 8M processor to utilize software compatible with the older 2k software
controlled by the DPS/L68 and DPS processors. The following summarizes the operation of
the DPS 8M hardware-controlled cache.

a. The cache bypass option in the segment descriptor word is retained. An overriding
bypass enable, bit 68 of the Cache Mode Register, is added. The cache mode is set
as follows:

SDW.C CMR68 RESULTANT
CACHE MODE

Use Cache X Use Cache

Bypass Cache Bypass Cache Bypass Cache

Bypass Cache Use Cache Use Cache

b. All close gate instructions, LDAC, LDQC, STAC, STACQ, and SZNC automatically bypass
cache. Two features are added to ensure integrity of gated shared data; one is added
during the close gate operation and the other during the open gate operation. The
instruction following the close gate instruction bypasses cache if the instruction is a
Read or a Read-alter-rewrite. The open gate operation must be performed with
either a STC2 or STACQ, which includes the synchronizing function. The
synchronizing function forces the processor to delay the open gate operation until it
is notified by the SCU that write completes have occurred and write notifications
requesting cache block clears have been sent to the other processors for all write
instructions that the processor previously issued.

c. Read-alter-rewrite instructions no longer automatically bypass cache. Cache
behavior for these instructions is determined fully by SDW.C. If the bypass cache
mode is set, these instructions bypass cache and issue read-lock-write-unlock
commands to memory. If a cache directory match occurs, the location is cleared.

d. All accesses to memory by SDW and PTW associative memory hardware continue to
bypass cache. Operations are Reads for SDWs, Read-alter-rewrites with lock for
PTWs and setting the page Used bit, and Writes for setting the page Modified and
Used bits. For Writes, the hardware also disables the key line so that the SCU lock is
honored. This is consistent with dynamic PTW modification by software, which also
bypasses cache and uses Read-alter-rewrite instructions.

e. The instructions that cleared the associative memories and also cleared cache or
selective portions of cache are changed to eliminate the cache clear function. Bit C
(TPR.CA)15, is ignored. These instructions also include disable/enable capabilities

for each half of the associative memories.

f. Cache mode register bit 56, which had previously controlled cache bypass for
operands, is disregarded. All other cache control bits are continued. However,
maintenance panel cache control function is restricted to cache half enable/disable
functions.

CONTROL UNIT (CU) HISTORY REGISTERS - DPS AND L68

The L68 and DPS processors have four sets of 16 history requests. There is one set for each
major unit: the Control Unit, CU; the Operations Unit, OU; the Decimal Unit, DU; and the
Appending Unit, APU. The DPS 8M Processor has four sets of 64 history registers. There is one
set for the CU, two sets for the APU, and one set that combines the history of the OU and DU.

Because the history registers for the L68 and DPS and the DPS 8M are different in number
and content, they are described separately. The following section describes the L68 and DPS
history registers first, followed by a description of the DPS 8M history registers.

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 20

Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 20

Figure 3-24. Control Unit (CU) History Register Format - DPS and L68

Description:

A combination of 16 flags and registers from the control unit. The 16 registers are handled
as a rotating queue controlled by the Control Unit History Register counter. The counter is
always set to the number of the oldest entry and advances by one for each history register
reference (data entry or Store Central Processor Register (scpr) instruction). Multicycle
instructions (such as Load Pointer Registers from ITS Pairs (lpri), Load Registers (lreg),
Restore Control Unit (rcu), etc.) have an entry for each of their cycles.

Function:

A control unit history register entry shows the conditions at the end of the control unit cycle
to which it applies. The 16 registers hold the conditions for the last 16 control unit cycles.
Entries are made according to controls set in the Mode Register. (See Mode Register
earlier in this section.)

The meanings of the constituent flags and registers are:

key Flag Name Meaning

a PIA Prepare instruction address

b POA Prepare operand address

c RIW Request indirect word

d SIW Restore indirect word

e POT Prepare operand tally (indirect tally chain)

f PON Prepare operand no tally (as for POT except no chain)

g RAW Request read-alter-rewrite word

h SAW Restore read-alter-rewrite word

i TRGO Transfer GO (conditions met)

j XDE Execute even instruction from Execute Double (xed) pair

k XDO Execute odd instruction from Execute Double (xed) pair

0
0

a

1

0
1

b

1

0
2

c

1

0
3

d

1

0
4

e

1

0
5

f

1

0
6

g

1

0
7

h

1

0
8

i

1

0
9

j

1

1
0

k

1

1
1

l

1

1
2

m

1

1
3

n

1

1
4

o

1

1
5

p

1

1
6

q

1

1
7

r

1

1
8

2
8

OPCODE

1

2
9

P

1

3
0

3
5

TAG

6

I

10

3
6

5
3

ADDRESS

18

5
4

5
8

CMD

5

5
9

6
2

SEL

4

6
3

s

1

6
4

t

1

6
5

u

1

6
6

v

1

6
7

w

1

6
8

x

1

6
9

y

1

7
0

z

1

7
1

*

1

key Flag Name Meaning

l IC Execute odd instruction of the current pair

m RPTS Execute a repeat instruction

n WI Wait for instruction fetch

o AR F/E 1 = ADDRESS has valid data

p -XIP NOT prepare interrupt address

q -FLT NOT prepare fault address

r -BASE NOT BAR mode

OPCODE Operation code from current instruction word

I Interrupt inhibit bit from current instruction word

P Pointer register flag bit from current instruction word

TAG Current address modifier. This modifier is replaced by the contents of
the TAG fields of indirect words as they are fetched during indirect
chains.

ADDRESS Current computed address (TPR.CA)

CMD System controller command

SEL Port select bits. (Valid only if port A-D is selected)

s XEC-INT An interrupt is present

t INS-FETCH Perform an instruction fetch

u CU-STORE Control unit store cycle

v OU-STORE Operations unit store cycle

w CU-LOAD Control unit load cycle

x OU-LOAD Operations unit load cycle

y DIRECT Direct cycle

z -PC-BUSY Port control logic not busy

* BUSY Port interface busy

CONTROL UNIT (CU) HISTORY REGISTERS - DPS 8M

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 20

0
0

a

1

0
1

b

1

0
2

c

1

0
3

d

1

0
4

e

1

0
5

f

1

0
6

g

1

0
7

h

1

0
8

i

1

0
9

j

1

1
0

k

1

1
1

l

1

1
2

m

1

1
3

n

1

1
4

o

1

1
5

p

1

1
6

q

1

1
7

r

1

1
8

2
8

OPCODE

1

2
9

P

1

3
0

3
5

TAG

6

I

10

Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 20

Figure 3-25. Control Unit (CU) History Register Format - DPS 8M

Description:

A combination of 64 flags and registers from the control unit. The 64 registers are handled
as a rotating queue, controlled by the control unit history register counter, in which only the
16 most recently used are stored (except in the event of a system crash in which case all 64
will be saved). The counter is always set to the number of the oldest entry and advances by
one for each history register reference (data entry or Store Central Processor Register
(scpr) instruction). Multicycle instructions (such as Load Pointer Registers from ITS Pairs
(lpri), Load Registers (lreg), Restore Control Unit (rcu), etc.) have an entry for each of
their cycles.

Function:

A control unit history register entry shows the conditions at the end of the control unit cycle
to which it applies. The 16 registers hold the conditions for the last 16 control unit cycles.
Entries are made according to controls set in the Mode Register. (See Mode Register
earlier in this section.)

The meanings of the constituent flags and registers are:

key Flag Name Meaning

a PIA Prepare instruction address

b POA Prepare operand address

c RIW Request indirect word

d SIW Restore indirect word

e POT Prepare operand tally

f PON Prepare operand no tally

g RAW Request read-alter-rewrite word

h SAW Restore read-alter-rewrite word

i RTRGO Remember transfer GO (condition met)

j XDE XED from even location

k XDO XED from odd location

l IC Even/odd instruction pair

m RPTS Repeat operation

n PORTF Memory cycle to port on previous cycle

o INTERNAL Memory cycle to cache or direct on previous cycle

p PAI Prepare interrupt address

q PFA Prepare fault address

r PRIV In privileged mode

3
6

5
9

ADDRESS

24

6
0

CMD

6
4

5

6
5

s

1

6
6

t

1

6
7

u

1

6
8

v

1

6
9

w

1

7
0

x

1

7
1

0

1

key Flag Name Meaning

OPCODE Opcode of instruction

I Inhibit interrupt bit

P AR reg mod flag

TAG Tag field of instruction

ADDRESS Absolute mean address of instruction

CMD Processor command register

s XINT Execute instruction

t IFT Instruction fetch

u CRD Cache read, this CU cycle

v MRD Memory read, this CU cycle

w MSTO Memory store, this CU cycle

x PIB Memory port interface busy

OPERATIONS UNIT (OU) HISTORY REGISTERS - DPS AND L68

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 40

Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 40

Figure 3-26. Operations Unit (OU) History Register Format

Description:

A combination of 16 flags and registers from the operation unit and control unit. The 16
registers are handled as a rotating queue controlled by the operations unit history register
counter. The counter is always set to the number of the oldest entry and advances by one
for each history register reference (data entry or Store Central Processor Register (scpr)
instruction).

Function:

An Operations Unit History Register entry shows the conditions at the end of the operations
unit cycle to which it applies. The 16 registers hold the conditions for the last 16 operations
unit cycles. As the operations unit performs various cycles in the execution of an

0
0

0
8

OP CODE
9

0
9

a
1

1
0

b

1
2

3

1
3

c
1

1
4

d
1

1
5

1
6

EAC
2

1
7

0

1

1
8

2
6

RS REG

9

2
7

e

1

2
8

f

1

2
9

g

1

3
0

h

1

3
1

i

1

3
2

j

1

3
3

k

1

3
4

l

1

3
5

m

1

RP REG

3
6

n

1

3
7

o

1

3
8

p

1

3
9

q

1

4
0

r

1

4
1

1

4
2

1

4
3

1

4
4

1

4
5

1

4
6

1

4
7

1

4
8

1

4
9

1

5
0

1

5
1

0 0

5
3

0

3

5
4

7
1

ICT TRACKER

18

s t u v w x y z A B

instruction, it does not advance the counter for each such cycle. The counter is advanced
only at successful completion of the instruction or if the instruction is aborted for a fault
condition. Entries are made according to controls set in the Mode Register. (See Mode
Register earlier in this section.)

The meanings of the constituent flags and registers are:

key Flag Name Meaning

RP REG Primary operations unit operation register. RP REG receives the
operation code and other data for the next instruction from the control
unit during the control unit instruction fetch cycle while the operations
unit may be busy with a prior instruction. RP REG is further
substructured as:

OP CODE The 9 high-order bits of the 10-bit operation code from the
instruction word. Note that basic (non EIS) instructions do not
involve bit 27 hence the 9-bit field is sufficient to determine the
instruction.

a 9 CHAR Character size for indirect then tally address modifiers
0 = 6-bit
1 = 9-bit

b TAG1,2,3 The 3 low-order bits of the address modifier from the instruction
word. This field may contain a character position for an indirect
then tally address modifier.

c CR FLG Character operation flag

d DR FLG Direct operation flag

EAC Address counter for lreg/sreg instructions

RS REG Secondary operations unit operation register. OP CODE is moved from
RP REG to RS REG during the operand fetch cycle and is held until
completion of the instruction.

e RB1 FULL OP CODE buffer is loaded

f RP FULL RP REG is loaded

g RS FULL RS REG is loaded

h GIN First cycle for all OU instructions

i GOS Second cycle for multicycle OU instructions

j GD1 First divide cycle

k GD2 Second divide cycle

l GOE Exponent compare cycle

m GOA Mantissa alignment cycle

n GOM General operations unit cycle

o GON Normalize cycle

p GOF Final operations unit cycle

q STR OP Store (output) data available

r -DA-AV Data not available

s -A-REG A register not in use

t -Q-REG Q register not in use

u -X0-RG X0 not in use

v -X1-RG X1 not in use

w -X2-RG X2 not in use

x -X3-RG X3 not in use

y -X4-RG X4 not in use

z -X5-RG X5 not in use

A -X6-RG X6 not in use

B -X7-RG X7 not in use

ICT
TRACKER

The current value of the instruction counter (PPR.IC). Since the Control
Unit and Operations Unit run asynchronously and overlap is usually
enabled, the value of ICT TRACKER may not be the address of the
operations unit instruction currently being executed.

DECIMAL UNIT (DU) HISTORY REGISTERS - DPS AND L68

Format: - 72 bits each

Decimal Unit History Register data is stored with the Store Central Processor Register
(scpr), TAG = 10, instruction. There is no format diagram because the data is defined as
individual bits.

Description:

A combination of 16 flags from the decimal unit. The 16 registers are handled as a rotating
queue controlled by the decimal unit history register counter. The counter is always set to
the number of the oldest entry and advances by one for each history register reference
(data entry or Store Central Processor Register (scpr) instruction).

The decimal unit and the control unit run synchronously. There is a control unit history
register entry for every decimal unit history register entry and vice versa (except for
instruction fetch and EIS descriptor fetch cycles). If the processor is not executing a
decimal instruction, the decimal unit history register entry shows an idle condition.

Function:

A decimal unit history register entry shows the conditions in the decimal unit at the end of
the control unit cycle to which it applies. The 16 registers hold the conditions for the last
16 control unit cycles. Entries are made according to controls set in the Mode Register.
(See Mode Register earlier in this section.)

A minus (-) sign preceding the flag name indicates that the complement of the flag is shown.
Unused bits are set ON.

The meanings of the constituent flags are:

bit Flag Name Meaning

0 -FPOL Prepare operand length

l -FPOP Prepare operand pointer

2 -NEED-DESC Need descriptor

3 -SEL-ADR Select address register

4 -DLEN=DIRECT Length equals direct

5 -DFRST Descriptor processed for first time

6 -FEXR Extended register modification

7 -DLAST-FRST Last cycle of DFRST

bit Flag Name Meaning

8 -DDU-LDEA Decimal unit load

9 -DDU-STAE Decimal unit store

10 -DREDO Redo operation without pointer and length update

11 -DLVL<WD-SZ Load with count less than word size

12 -EXH Exhaust

13 DEND-SEQ End of sequence

14 -DEND End of instruction

15 -DU=RD+WRT Decimal unit write-back

16 -PTRA00 PR address bit 0

17 -PTRA01 PR address bit l

18 FA/Il Descriptor l active

19 FA/I2 Descriptor 2 active

20 FA/I3 Descriptor 3 active

21 -WRD Word operation

22 -NINE 9-bit character operation

23 -SIX 6-bit character operation

24 -FOUR 4-bit character operation

25 -BIT Bit operation

26 Unused

27 Unused

28 Unused

29 Unused

30 FSAMPL Sample for mid-instruction interrupt

31 -DFRST-CT Specified first count of a sequence

32 -ADJ-LENGTH Adjust length

33 -INTRPTD Mid-instruction interrupt

34 -INHIB Inhibit STC1 (force "STC0")

35 Unused

36 DUD Decimal unit idle

37 -GDLDA Descriptor load gate A

38 -GDLDB Descriptor load gate B

39 -GDLDC Descriptor load gate C

40 NLD1 Prepare alignment count for first numeric operand load

41 GLDP1 Numeric operand one load gate

42 NLD2 Prepare alignment count for second numeric operand load

43 GLDP2 Numeric operand two load gate

44 ANLD1 Alphanumeric operand one load gate

45 ANLD2 Alphanumeric operand two load gate

46 LDWRT1 Load rewrite register one gate

47 LDWRT2 Load rewrite register two gate

bit Flag Name Meaning

48 -DATA-AVLDU Decimal unit data available

49 WRT1 Rewrite register one loaded

50 GSTR Numeric store gate

51 ANSTR Alphanumeric store gate

52 FSTR-OP-AV Operand available to be stored

53 -FEND-SEQ End sequence flag

54 -FLEN<128 Length less than 128

55 FGCH Character operation gate

56 FANPK Alphanumeric packing cycle gate

57 FEXMOP Execute MOP gate

58 FBLNK Blanking gate

59 Unused

60 DGBD Binary to decimal execution gate

61 DGDB Decimal to binary execution gate

62 DGSP Shift procedure gate

63 FFLTG Floating result flag

64 FRND Rounding flag

65 DADD-GATE Add/subtract execute gate

66 DMP+DV-GATE Multiply/divide execution gate

67 DXPN-GATE Exponent network execution gate

68 Unused

69 Unused

70 Unused

71 Unused

DECIMAL/OPERATIONS UNIT (DU/OU) HISTORY REGISTERS -
DPS 8M

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 40

0
0

a

0
1

b

0
2

c

0
3

d

0
4

e

0
5

f

0
6

g

0
7

h

0
8

i

0
9

j

1
0

k

1
1

l

1
2

m

1
3

n

1
4

o

1
5

p

1
6

q

1
7

r

1
8

s

1
9

t

2
0

u

2
1

v

2
2

w

2
3

x

2
4

y

2
5

z

2
6

A

2
7

B

2
8

C

2
9

D

3
0

E

3
1

F

3
2

G

3
3

H

3
4

I

35

3
5

0

1

Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 40

Figure 3-27. Decimal/Operations (DU/OU) History Register Format - DPS 8M

Description:

A combination of 16 flags and registers from the operation unit and decimal unit. The 16
registers are handled as a rotating queue controlled by the operations unit history register
counter. The counter is always set to the number of the oldest entry and advances by one
for each history register reference (data entry or Store Central Processor Register (scpr)
instruction).

The decimal unit and the control unit run synchronously. There is a control unit history
register entry for every decimal unit history register entry and vice versa (except for
instruction fetch and EIS descriptor fetch cycles). If the processor is not executing a
decimal instruction, the decimal unit history register entry shows an idle condition.

Function:

An operations unit history register entry shows the conditions at the end of the operations
unit cycle to which it applies. The 16 registers hold the conditions for the last 16 operations
unit cycles. As the operations unit performs various cycles in the execution of an
instruction, it does not advance the counter for each such cycle. The counter is advanced
only at successful completion of the instruction or if the instruction is aborted for a fault
condition. Entries are made according to controls set in the Mode Register. (See Mode
Register earlier in this section.)

The meanings of the constituent flags and registers are:

key Flag Name Meaning

a FANLD1 Alpha-num load desc l (complemented)

b FANLD2 Alpha-num load desc 2 (complemented)

c FANSTR Alpha-num store (complemented)

d FLDWRT1 Load re-write reg l (complemented)

e FLDWRT2 Load re-write reg 2 (complemented)

f FNLD1 Numeric load desc l (complemented)

g FNLD2 Numeric load desc 2 (complemented)

h NOSEQF End sequence flag

i FDUD Decimal unit idle (complemented)

j FGSTR General store flag (complemented)

k NOSEQ End of sequence (complemented)

l NINE 9-bit character operation

m SIX 6-bit character operation

n FOUR 4-bit character operation

o DUBIT Bit operation

3
6

5
3

ICT

18

5
4

6
2

RS REG

9

6
3

J

1

6
4

K

1

6
5

L

1

6
6

M

1

6
7

N

1

6
8

O

1

6
9

P

1

7
0

Q

1

7
1

R

1

key Flag Name Meaning

p DUWORD Word operation

q PTR1 Select ptr l

r PTR2 Select ptr 2

s PRT3 Select ptr 3

t FPOP Prepare operand pointer

u GEAM Add timing gates (complemented)

v LPD12 Load pointer l or 2 (complemented)

w GEMAE Multiply gates A E (complemented)

x BTDS Binary to decimal gates (complemented)

y SP15 Align cycles (complemented)

z FSWEQ Single word sequence flag (complemented)

A FGCH Character cycle (complemented)

B DFRST Processing descriptor for first time

C EXH Exhaust

D FGADO Add cycle (complemented)

E INTRPTD Interrupted

F GLDP2 Load DP2

G GEMC Multiply gate C

H GBDA Binary to decimal gate A

I GSP5 Final align cycle

ICT Instruction counter (See NOTE below.)

RS OU op-code register (RS0-8)

IR Indicator register (IR):

J ZERO Zero indicator

K NEG Negative indicator

L CARRY Carry indicator

M OVFL Overflow indicator

N EOVFL Exponent overflow indicator

O EUFL Exponent underflow indicator

P OFLM Overflow mask indicator

Q HEX Hex mode indicator

R DTRGO Transfer go

NOTE: The current value of the instruction counter (PPR.IC). Since the control unit and
operations unit run asynchronously and overlap is usually enabled, the value of ICT
TRACKER may not be the address of the operations unit instruction currently being
executed.

APPENDING UNIT (APU) HISTORY REGISTERS - DPS AND L68

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 00

Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 00

Figure 3-28. Appending Unit (APU) History Register Format - DPS and L68

Description:

A combination of 16 flags and registers from the appending unit. The 16 registers are
handled as a rotating queue controlled by the appending unit history register counter. The
counter is always set to the number of the oldest entry and advances by one for each history
register reference (data entry or Store Central Processor Register (scpr) instruction).

Function:

An appending unit history register entry shows the conditions in the appending unit at the
end of an address preparation cycle in appending mode. The 16 registers hold the
conditions for the last 16 such address preparation cycles. Entries are made according to
controls set in the Mode Register. (See Mode Register earlier in this section.)

The meanings of the constituent flags and registers are:

key Flag Name Meaning

ESN Effective segment number (TPR.TSR)

a BSY Data source for ESN
00 = from PPR.PSR
01 = from PRn.SNR
10 = from TPR.TSR
11 = not used

b FDSPTW Descriptor segment PTW fetch

c MDSPTW Descriptor segment PTW modification

d FSDWP SDW fetch from paged descriptor segment

e FPTW PTW fetch

f FPTW2 PTW+1 fetch (prepaging for certain EIS instructions)

g MPTW PTW modification

0
0

1
4

ESN

15

1
5

1
6

a

2

1
7

b

1

1
8

c

1

1
9

d

1

2
0

e

1

2
1

f

1

2
2

g

1

2
3

h

1

2
4

i

1

2
5

j

1

2
6

2
9

SDWAMR

4

3
0

k

1

3
1

3
4

PTWAMR

4

3
5

l

1

3
6

5
9

ADD

24

6
0

TRR

6
2

3

6
3

0 0

6
5

0

3

6
6

m

1

6
7

0 0

6
9

0

3

7
0

n

1

7
1

0

1

key Flag Name Meaning

h FANP Final address fetch from nonpaged segment

i FAP Final address fetch from paged segment

j SDWAMM SDWAM match occurred

SDWAMR SDWAM register number if SDWAMM=1

k PTWAMM PTWAM match occurred

PTWAMR PTWAM register number if PTWAMM=1

l FLT Access violation or directed fault on this cycle

ADD 24-bit absolute main memory address from this cycle

TRR Ring number from this cycle (TPR.TRR)

m Multiple match error in SDWAM

n CA Segment is encacheable

p Multiple match error in PTWAM

r FHLD An access violation or directed fault is waiting

APPENDING UNIT (APU) HISTORY REGISTERS – DPS 8M

Format: - 72 bits each

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 00

Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 00

0
0

1
4

ESN

15

1
5

a

1

1
6

b

1

1
7

c

1

1
8

d

1

1
9

e

1

2
0

f

1

2
1

g

1

2
2

h

1

2
3

i

1

2
4

j

1

2
5

k

1

2
6

l

1

2
7

2
8

BSY

2

2
9

m

1

3
0

m1

3
1

2

3
2

n

3
4

3

3
5

o

1

3
6

5
9

RMA

24

6
0

p

6
2

3

6
3

q

1

6
4

r

6
5

2

6
6

s

1

6
7

t

1

6
8

6
9

u

2

7
0

v

1

7
1

w

1

Extended APU History Register:

Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 10

Figure 3-29. Appending Unit (APU) History Register Format - DPS 8M

Description:

A combination of 64 flags and registers from the appending unit. The 64 registers are
handled as a rotating queue controlled by the appending unit history register counter. The
counter is always set to the number of the oldest entry and advances by one for each history
register reference (data entry or Store Central Processor Register (scpr) instruction).

Function:

An appending unit history register entry shows the conditions in the appending unit at the
end of an address preparation cycle in appending mode. The 64 registers hold the
conditions for the last 64 such address preparation cycles. Entries are made according to
controls set in the Mode Register. (See Mode Register earlier in this section.)

The meanings of the constituent flags and registers are:

key Flag Name Meaning

ESN Effective segment number

a PIA Page overflow

b PIA out of segment bounds

c FDSPTW Fetch descriptor segment PTW

d MDSPTW Descriptor segment PTW is modified

e FSDW Fetch SDW

f FPTW Fetch PTW

g FPTW2 Fetch pre-page PTW

h MPTW PTW modified

i FANP Final address nonpaged

j FAP Final address paged

k MTCHSDW SDW match found

l SDWMF SDW match found and used

0
0

1
7

ZCA

18

1
8

2
7

Instr

10

2
8

I

1

2
9

3
5

MOD

7
3
6

36

7
1

NOT USED

key Flag Name Meaning

BSY Data source for ESN
00 = from ppr.ic
01 = from prn.tsr
10 = from tpr.swr
11 = from tpr.ca

m MTCHPTW PTW match found (AM)

m1 PTWMF PTW match found (AM) and used

n PTWAM PTW AM direct address (ZCA bits 4-7)

o SDWMF SDW match found

RMA Read 24 bit memory address

p RTRR Temporary ring register

q SDWME SDW match error

r SDWLVL SDW match level count (0 = Level A)

s CACHE Cache used this cycle

t PTW match error

u PTWLVL PTW match level count (0 = level A)

v FLTHLD A directed fault or access violation fault is waiting

ZCA Computed address

INSTR Instruction executed

I Inhibit bit

MOD Instruction modifier

CONFIGURATION SWITCH DATA - DPS AND L68

Format: - 36 bits each

Data read by Read Switches (rsw), y = xxxxx0

Data read by Read Switches (rsw), y = xxxxx2

Data read by Read Switches (rsw), y = xxxxx1 (port A-D) or xxxxx3 (port E-H)

Data read by Read Switches (rsw), y = xxxxx4

Figure 3-30. Configuration Switch Data Formats - DPS and L68

Description:

The Read Switches (rsw) instruction provides the ability to interrogate various switches and
options on the processor maintenance and configuration panels. The 3 low-order bits of the
computed address (TPR.CA) select the switches to be read. High-order address bits are
ignored. Data are placed in the A Register.

Read Switches (rsw), y = xxxxx1 reads data for ports A, B, C, and D. Read Switches (rsw), y
= xxxxx3 reads data for ports E, F, G, and H.

Function:

The meanings of the constituent fields are:

0
0

36

3
5

Maintenance panel data switches

0
0

0 0 0

0
3

0

4

0
4

0
5

a

2

0
6

FAULT BASE

1
2

7

1
3

0 0 0 0 0

1
8

0

6

1
9

b

1

2
0

0 0 0 0 0 0

2
6

0

7

2
7

c

1

2
8

d

1

2
9

CPU ID

3
2

4

3
3

CPU

3
5

3

0
0

ADR

0
2

3

0
3

c
1

0
4

d
1

0
5

e
1

0
6

MEM

0
8

3

0
9

ADR

1
1

3

1
2

c
1

1
3

d
1

1
4

e
1

1
5

MEM

1
7

3

1
8

ADR

2
0

3

2
1

c
1

2
2

d
1

2
3

e
1

2
4

MEM

2
6

3

2
7

ADR

2
9

3

3
0

c
1

3
1

d
1

3
2

e
1

3
3

MEM

3
5

3

PORT A or E PORT B or F PORT C or G PORT D or H

0
0

0 0 0 0 0 0 0 0 0 0 0 0

1
2

0

13

1
3

f
1

1
4

g
1

1
5

f
1

1
6

g
1

1
7

f
1

1
8

g
1

1
9

f
1

2
0

g
1

2
1

f
1

2
2

g
1

2
3

f
1

2
4

g
1

2
5

f
1

2
6

g
1

2
7

f
1

2
8

g
1

2
9

0 0 0 0 0 0

3
5

0

7

A B C D E F G H

key Field Name Meaning

a CPU-Type Equals "00" for a L68 or a DPS processor.

FLT BASE The seven MSB of the 12-bit fault base address

b dps_option Processor option
0 = L68 processor
1 = DPS processor

c cache 2K cache option
0 = disabled
1 = enabled

d ext_gcos GCOS mode extended memory option
0 = disabled
1 = enabled

CPU_ID These bit positions have a configuration of "1110" for a L68 or a
DPS CPU.

CPU Processor number from processor configuration panel number
switches.

PORT A or E, etc. Port data fields further substructured as:

ADR Address assignment switch setting for port

c Port enabled flag

d System initialize enabled flag

e Interlace enabled flag

MEM Coded memory size . . .

000
001
010
011
100
101
110
111

32K
64K
128K
256K
512K
1024K
2048K
4096K

A, B, etc. Port data fields further substructured as:

f Interlace mode
0 = 4 word if interlace enabled for port
1 = 2 word if interlace enabled for port

g Main memory size
0 = full, all of MEM is configured
1 = half, half of MEM is configured

CONFIGURATION SWITCH DATA - DPS 8M

The following changes apply to the DPS 8M processor.

Format: - 36 bits each

Data read by Read Switches (rsw), y = xxxxx2

Data read by Read Switches (rsw), y = xxxxx1 (port A-D)

Figure 3-31. Configuration Switch Data Formats - DPS 8M

Description:

The Read Switches (rsw) instruction provides the ability to interrogate various switches and
options on the processor maintenance and configuration panels. The two low-order bits of
the computed address (TPR.CA) select the switches to be read. High-order address bits are
ignored. Data are placed in the A Register.

Read Switches (rsw), y = xxxxx1 reads data for ports A, B, C, and D.

Function:

The meanings of the constituent fields are:

key Field Name Meaning

a If the corresponding rsw 1 interface enabled flag, bit (e) is ON, then
0 = 4 word interfaces
1 = 2 word interfaces
For ports A - D

b Indicates processor type
00 = L68 or DPS Processor
01 = DPS 8M Processor
10 = reserved for future use
11 = reserved for future use

FLTBASE The seven MSB of the 12-bit fault base address

c ID prom
0 = id prom not installed
1 = id prom installed

d BCD option (Marketing designation)
1 = BCD option installed

e DPS option (Marketing designation)
1 = DPS option

0
0

a a a

0
3

a
4

0
4

0
5

b

2

0
6

FLT BASE

1
2

7

1
3

c

1

1
4

0 0 0

1
7

0

4

1
8

d

1

1
9

e

1

2
0

f

1

2
1

0

2
2

0

2

2
3

g

1

2
4

h

1

2
5

i

1

2
6

0 0

2
8

0

3

2
9

SPEED

3
2

4

3
3

CPU

3
5

3

A B C D

0
0

ADR
3

j
1

k
1

l
1

MEM

0
8

3

0
9

ADR
3

j
1

k
1

l
1

MEM

1
7

3

1
8

ADR
3

j
1

k
1

l
1

MEM

2
6

3

2
7

ADR
3

j
1

k
1

l
1

MEM

3
5

3

PORT A PORT B PORT C PORT D

key Field Name Meaning

f 8K cache
1 = 8K cache installed

g DPS 8M Processor type designation
1 = DPS 8/xxM
0 = DPS 8/xx

h GCOS/VMS switch position
1 = Virtual Mode
0 = GCOS Mode

i Current or new product line peripheral type
1 = NPL
0 = CPL

SPEED Processor speed options
0000 = 8/70
0100 = 8/52

CPU Processor number

ADR Address assignment switch setting for port

j Port enabled flag

k System initialize enabled flag

l Interface enabled flag

MEM Coded memory size:

000
001
010
011
100
101
110
111

32K
64K
128K
256K
512K
1024K
2048K
4096K

CONTROL UNIT DATA

Format: - 288 bits, 8 machine words

Data as stored by Store Control Unit (scu) instruction

Word

0
0

PRR

0
2

3

0
3

1
7

PSR

15

1
8

a

1

1
9

b

1

2
0

c

1

2
1

d

1

2
2

e

1

2
3

f

1

2
4

g

1

2
5

h

1

2
6

i

1

2
7

j

1

2
8

k

1

2
9

l

1

3
0

m

1

3
1

n

1

3
2

o

1

3
3

FCT

3
5

3

 0

0
0

a

1

0
1

b

1

0
2

c

1

0
3

d

1

0
4

e

1

0
5

f

1

0
6

g

1

0
7

h

1

0
8

i

1

0
9

j

1

1
0

k

1

1
1

l

1

1
2

m

1

1
3

n

1

1
4

o

1

1
5

p

1

1
6

q

1

1
7

r

1

1
8

s

1

1
9

t

1

2
0

IA

2
3

4

2
4

IACHN

2
6

3

2
7

CNCHN

2
9

3

3
0

F/I ADDR

3
4

5

3
5

u

1

 1

Figure 3-32. Control Unit Data Format

Description:

A collection of flags and registers from the appending unit and the control unit. In general,
the data has valid meaning only when stored with the Store Control Unit (scu) instruction
as the first instruction of a fault or interrupt trap pair.

Function:

The control unit data allows the processor to restart an instruction at the point of
interruption when it is interrupted by an access violation fault, a directed fault, or (for
certain EIS instructions) an interrupt. Directed faults are intentional, and most access
violation faults and interrupts are recoverable. If the interruption is not recoverable, the
control unit data provides enough information to determine the exact nature of the error.

Instruction execution restarts immediately upon execution of a Restore Control Unit (rcu)
instruction referencing the Y-block8 area into which the control unit data was stored.

0
0

TRR

0
2

3

0
3

1
7

TSR

15

1
8

a

1
9

b

2
0

c

2
1

d
4

2
2

e

2
3

f

2
4

2
5

4

2
6

0

1

2
7

CPU

2
9

3

3
0

3
5

DELTA

6

 2
PTW SDW

g h

0
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
7

0

18

1
8

a

2
0

3

2
1

b
1

2
2

a

2
4

3

2
5

b
1

2
6

a

2
8

3

2
9

b
1

3
0

TEMP BIT

3
5

6

 3
TSNA TSNB TSNC

0
0

1
7

IC

18

1
8

a

1

1
9

b

1

2
0

c

1

2
1

d

1

2
2

e

1

2
3

f

1

2
4

g

1

2
5

h

1

2
6

i

1

2
7

j

1

2
8

k

1

2
9

l

1

3
0

m

1

3
1

n

1

3
2

0 0 0

3
5

0

4

 4

0
0

1
7

COMPUTED ADDRESS

18

1
8

a

1

1
9

b

1

2
0

c

1

2
1

d

1

2
2

e

1

2
3

f

1

2
4

g

1

2
5

h

1

2
6

i

1

2
7

j

1

2
8

k

1

2
9

l

1

3
0

3
5

CT HOLD

6

 5

0
0

1
7

ADDRESS

18

1
8

2
7

OPCODE

10

2
8

I

1

2
9

P

1

3
0

3
5

TAG

6

 6

0
0

1
7

ADDRESS

18

1
8

2
7

OPCODE

10

2
8

I

1

2
9

P

1

3
0

3
5

TAG

6

 7

Fields having an "x" in the column headed L are not restored by the Restore Control Unit
(rcu) instruction.

The meanings of the constituent fields are:

Word key L Field Name Meaning

0 PRR Procedure ring register (PPR.PRR)

0 PSR Procedure segment register (PPR.PSR)

0 a P Privileged bit (PPR.P)

0 b XSF External segment flag

0 c x SDWAMM Match on SDWAM

0 d x SD-ON SDWAM enabled

0 e x PTWAMM Match on PTWAM

0 f x PT-ON PTWAM enabled

0 g x PI-AP Instruction fetch append cycle

0 h x DSPTW Fetch descriptor segment PTW

0 i x SDWNP Fetch SDW - nonpaged

0 j x SDWP Fetch SDW - paged

0 k x PTW Fetch PTW

0 l x PTW2 Fetch prepage PTW

0 m x FAP Fetch final address - paged

0 n x FANP Fetch final address - nonpaged

0 o x FABS Fetch final address - absolute

0 FCT Fault counter - counts retries

1 a x
x

IRO
ISN

For access violation fault - illegal ring order
For store fault - illegal segment number

1 b x
x

ORB
IOC

For access violation fault - out of execute bracket
For illegal procedure fault - illegal op code

1 c x
x

E-OFF
IA+IM

For access violation fault - execute bit is OFF
For illegal procedure fault - illegal address or modifier

1 d x
x

ORB
ISP

For access violation fault - out of read bracket
For illegal procedure fault - illegal slave procedure

1 e x
x

R-OFF
IPR

For access violation fault - read bit is OFF
For illegal procedure fault - illegal EIS digit

1 f x
x

OWB
NEA

For access violation fault - out of write bracket
For store fault - nonexistent address

1 g x
x

W-OFF
OOB

For access violation fault - write bit is OFF
For store fault - out of bounds (BAR mode)

1 h x NO GA For access violation fault - not a gate

1 i x OCB For access violation fault - out of call bracket

1 j x OCALL For access violation fault - outward call

1 k x BOC For access violation fault - bad outward call

1 l x PTWAM_ER For access violation fault - on DPS 8M processors, a PTW
associative memory error. Not used on DPS/L68
processors.

Word key L Field Name Meaning

1 m x CRT For access violation fault - cross ring transfer

1 n x RALR For access violation fault - ring alarm

1 o x SDWAM_ER For access violation fault - on DPS 8M an SDW associative
memory error. An associative memory error on DPS/L68.

1 p x OOSB For access violation fault - out of segment bounds

1 q x PARU For parity fault - processor parity upper

1 r x PARL For parity fault - processor parity lower

1 s x ONC1 For operation not complete fault – processor/system
controller sequence error #1

1 t x ONC2 For operation not complete fault – processor/system
controller sequence error #2

1 x IA System controller illegal action lines (see Table 3-2)

1 x IACHN Illegal action processor port

1 x CNCHN For connect fault - connect processor port

1 x F/I ADDR Modulo 2 fault/interrupt vector address

1 u x F/I Fault/interrupt flag
0 = interrupt
1 = fault

2 TRR Temporary ring register (TPR.TRR)

2 TSR Temporary segment register (TPR.TSR)

PTW DPS 8M processors only; this field mbz on DPS/L68
processors:

2
2
2
2

a
b
c
d

x
x
x
x

PTWAM levels A, B enabled (enabled = 1)
PTWAM levels C, D enabled
PTWAM levels A, B match (match = 1)
PTWAM levels C, D match

SDW DPS 8M processors only; this field mbz on DPS/L68
processors:

2
2
2
2

e
f
g
h

x
x
x
x

SDWAM levels A, B enabled
SDWAM levels C, D enabled
SDWAM levels A, B match
SDWAM levels C, D match

2 CPU CPU number

2 DELTA Address increment for repeats

3 TSNA Pointer register number for non-EIS operands or for EIS
operand #1 further substructured as:

3 a PRNO Pointer register number

3 b ---- 1 = PRNO is valid

3 TSNB Pointer register number for EIS operand #2 further
substructured as for TSNA above

3 TSNC Pointer register number for EIS operand #3 further
substructured as for TSNA above

3 TEMP BIT Current bit offset (TPR.TBR)

4 IC Instruction counter (PPR.IC)

4 a ZERO Zero indicator

Word key L Field Name Meaning

4 b NEG Negative indicator

4 c CARY Carry indicator

4 d OVFL Overflow indicator

4 e EOVF Exponent overflow indicator

4 f EUFL Exponent underflow indicator

4 g OFLM Overflow mask indicator

4 h TRO Tally runout indicator

4 i PAR Parity error indicator

4 j PARM Parity mask indicator

4 k -BM Not BAR mode indicator

4 l TRU EIS truncation indicator

4 m MIF Mid-instruction interrupt indicator

4 n ABS Absolute mode indicator

4 o HEX Hex mode indicator (DPS 8M processors only)

5 x CA Current computed address (TPR.CA)

5 a RF First cycle of all repeat instructions

5 b RPT Execute a Repeat (rpt) instruction

5 c RD Execute a Repeat Double (rpd) instruction

5 d RL Execute a Repeat Link (rpl) instruction

5 e POT Prepare operand tally. This flag is up until the indirect
word of an indirect then tally address modifier is
successfully fetched.

5 f PON Prepare operand no tally. This flag is up until the indirect
word of a return type transfer instruction is successfully
fetched. It indicates that there is no indirect chain even
though an indirect fetch is being performed.

5 g XDE Execute instruction from Execute Double even pair

5 h XDO Execute instruction from Execute Double odd pair

5 i ITP Execute ITP indirect cycle

5 j RFI Restart this instruction

5 k ITS Execute ITS indirect cycle

5 l FIF Fault occurred during instruction fetch

5 CT HOLD Contents of the modifier holding register

6 Word 6 is the contents of the working instruction register
and reflects conditions at the exact point of address
preparation when the fault or interrupt occurred. The
ADDRESS and TAG fields are replaced with data from
pointer registers, indirect pointers, and/or indirect words
during each indirect cycle. Each instruction of the current
pair is moved to this register before actual address
preparation begins.

Word key L Field Name Meaning

7 Word 7 is the contents of the instruction holding register. It
contains the odd word of the last instruction pair fetched
from main memory. Note that, primarily because of
overlap, this instruction is not necessarily paired with the
instruction in word 6.

DECIMAL UNIT DATA

Format: - 288 bits, 8 machine words

Data as stored by Store Pointers and Lengths (spl) instruction

Word

0
0

0 0 0 0 0 0 0 0

0
8

0

9

0
9

Z

1

1
0

Ø

1

1
1

0

1

3
5

CH TALLY

24

 0

1
2

0
0

0 0

3
5

0

36

 1

0
0

2
3

D1 PTR

24

2
4

0

1

2
5

2
6

TA

2

2
7

0 0

2
9

0

3

3
0

I

1

3
1

F

1

3
2

A

1

3
3

0 0

3
5

0

3

 2

0
0

0
9

LEVEL 1

10

1
0

0

1
1

0

2

1
2

3
5

D1 RES

24

 3

0
0

2
3

D2 PTR

24

2
4

0

1

2
5

2
6

TA

2

2
7

0 0

2
9

0

3

3
0

R

1

3
1

F

1

3
2

A

1

3
3

0 0

3
5

0

3

 4

0
0

0
9

LEVEL 2

10

1
0

0

1
1

0

2

1
2

3
5

D2 RES

24

 5

Figure 3-33. Decimal Unit Data Format

Description:

A collection of flags and registers from the decimal unit.

Function:

The decimal unit data allows the processor to restart an EIS instruction at the point of
interruption when it is interrupted by an access violation fault, a directed fault, or (for
certain EIS instructions) an interrupt. Directed faults are intentional, and most access
violation faults and interrupts are recoverable.

The data are restored with the Load Pointers and Lengths (lpl) instruction. Fields having
an "x" in the column headed L are not restored. When starting (or restarting) execution of
an EIS instruction, the decimal unit registers and flags are not initialized from the operand
descriptors if the mid-instruction interrupt fault (MIF) indicator is set ON.

The meanings of the constituent flags and registers are:

Word L Field Name Meaning

0 Z All bit-string instruction results are zero

0 Ø Negative overpunch found in 6-4 expanded move

0 CHTALLY The number of characters examined by the scm, scmr, scd,
scdr, tct, or tctr instructions (up to the interrupt or match)

2 D1 PTR Address of the last double-word accessed by operand descriptor 1;
bits 17-23 (bit-address) valid only for initial access

2,4,6 TA Alphanumeric type of operand descriptor 1,2,3

2 x I Decimal unit interrupted flag; a copy of the mid-instruction
interrupt fault indicator

2,4,6 F First time; data in operand descriptor 1,2,3 is valid

2,4,6 A Operand descriptor 1,2,3 is active

3 LEVEL l Difference in the count of characters loaded into the processor
and characters not acted upon

3 D1 RES Count of characters remaining in operand descriptor l

4 D2 PTR Address of the last double-word accessed by operand descriptor 2;
bits 17-23 (bit-address) valid only for initial access

4,6 x R Last cycle performed must be repeated

5 LEVEL 2 Same as LEVEL 1, but used mainly for OP 2 information

0
0

2
3

D3 PTR

24

2
4

0

1

2
5

2
6

TA

2

2
7

0 0

2
9

0

3

3
0

R

1

3
1

F

1

3
2

A

1

3
3

JMP

3
5

3

 6

0
0

0 0 0 0 0 0 0 0 0 0 0

1
1

0

12

1
2

3
5

D3 RES

24

 7

Word L Field Name Meaning

5 D2 RES Count of characters remaining in operand descriptor 2

6 D3 PTR Address of the last double-word accessed by operand descriptor 3;
bits 17-23 (bit-address) valid only for initial access

6 JMP Descriptor count; number of words to skip to find the next
instruction following this multiword instruction

7 D3 RES Count of characters remaining in operand descriptor 3

SECTION 4: MACHINE INSTRUCTIONS

This section describes the complete set of machine instructions for the Multics processor.
The presentation assumes that the reader is familiar with the general structure of the processor,
the representation of information, the data formats, and the method of address preparation.
Additional information on these subjects appears near the beginning of this section and in Sections
2, 3, 5, and 6.

INSTRUCTION REPERTOIRE

The processor interprets a 10-bit field of the instruction word as the operation code. This
field size yields 1024 possible instructions of which 547 are implemented. There are 456 basic
operations and 91 extended instruction set (EIS) operations.

Arrangement of Instructions

Instructions are presented alphabetically by their mnemonic codes within functional
categories. An overall alphabetic listing of instruction codes and their names appears in
Appendix B.

Basic Operations

The 456 basic operations in the processor all require exactly one 36-bit machine word.
They are categorized as follows:

181 Fixed-point binary arithmetic

85 Boolean operations

34 Floating-point binary arithmetic

36 Transfer of control

75 Pointer register

17 Miscellaneous

28 Privileged

Extended Instruction Set (EIS) Operations

The 91 extended instruction set (EIS) operations are divided into 62 EIS single-word
instructions and 29 EIS multiword instructions.

EIS Single-Word Operations

The 62 EIS single-word instructions load, store, and perform special arithmetic on the
address registers (ARn) used to access bit- and character-string operands, and safe-store decimal
unit (DU) control information required to service a processor fault or interrupt. Like the basic
operations, EIS single-word instructions require exactly one 36-bit machine word.

EIS Multiword Operations

The 29 EIS multiword instructions perform decimal arithmetic and bit- and character-string
operations. They require three or four 36-bit machine words depending on individual operand
descriptor requirements.

FORMAT OF INSTRUCTION DESCRIPTION

Each instruction in the repertoire is described in the following pages of this section. The
descriptions are presented in the format shown below.

MNEMONIC INSTRUCTION NAME OPCODE

FORMAT: Figure or figure reference

SUMMARY: Text and/or bit transfer equations

MODIFICATIONS: Text

INDICATORS: Text and/or logic statements

NOTES: Text

Line 1: MNEMONIC, INSTRUCTION NAME, OPCODE

This line has three parts that contain the following:

1. MNEMONIC -- The mnemonic code for the operation field of the assembler statement.
The Multics assembler, ALM, recognizes this character string value and maps it into the
appropriate binary pattern when generating the actual object code.

2. INSTRUCTION NAME -- The name of the machine instruction from which the mnemonic
was derived.

3. OPCODE -- The octal value of the operation code for the instruction. A 0 or a 1 in
parentheses following an octal code indicates whether bit 27 (opcode extension bit) of
the instruction word is OFF or ON.

Line 2: FORMAT

The layout and definition of the subfields of the instruction word or words are given here
either as a figure or as a reference to a figure.

Line 3: SUMMARY

The change in the state of the processor effected by the execution of the instruction is
described in a short, symbolic form. If reference is made to the state of an indicator in the
summary, it is the state of the indicator before the instruction is executed.

Line 4: MODIFICATIONS

Those modifiers that cannot be used with the instruction are listed explicitly as exceptions.
See Section 6 for a discussion of address modification.

Line 5: INDICATORS

Only those indicators are listed whose state can be changed by the execution of the
instruction. In most cases, a condition for setting ON as well as one for setting OFF is stated. If
only one of the two is stated, then the indicator remains unchanged if the condition is not met.
Unless stated otherwise, the conditions refer to the contents of registers existing after instruction
execution. Refer also to "Common Attributes of Instructions," later in this section.

Line 6: NOTES

This part of the description exists only in those cases where the summary is not sufficient
for in-depth understanding of the instruction.

DEFINITIONS OF NOTATION AND SYMBOLS

Main Memory Addresses

y an 18-bit computed address as generated during address preparation.

Y a 24-bit main memory address of the instruction operand after all address
preparation (including appending) is complete.

Y-pair a pair of main memory locations with successive addresses, the smaller
address being even. When Y is even, it designates the pair Y(even), Y+1; and
when it is odd, the pair Y-1, Y(odd). The main memory location with the
smaller (even) address contains the most significant part of a double-word
operand or the first of a pair of instructions.

Y-blockn a block of main memory locations of 4-, 8-, 16-, or 32-word extent. For a block
of n-word extent, the processor forces Y-blockn to a 0 modulo n address and
performs address incrementing through the block accordingly, stopping when
the address next reaches a value 0 modulo n.

Y-charnk a character or string of characters in main memory of character size n bits as
described by the kth operand descriptor. n is specified by the data type field of
operand descriptor k and may have values 4, 6, or 9. See Section 6 for details
of operand descriptors.

Y-bitk a bit or string of bits in main memory as described by the kth operand
descriptor. See Section 6 for details of operand descriptors.

Index Values

When reference is made to the elements of a string of characters or bits in main memory,
the notation shown in "Register Position and Contents" below is used. The index used to show
traversing a string of extent n may take any of the values in the interval (1,n) unless noted
otherwise. The elements of a main memory block are traversed explicitly by using the index as an
addend to the given block address, (e.g., Y-block8+m and Y-block4+2m+1).

Abbreviations and Symbols

A Accumulator register

ARn Address register n (n = 0, 1, 2, ..., 7)

AQ Combined accumulator-quotient register

BAR Base address register

C() "Contents of"

CA Computed address

DSBR Descriptor segment base register

DSBR.ADDR Address field of DSBR

DSBR.BND Bound field of DSBR

DSBR.STACK Stack base field of DSBR

DSBR.U Unpaged flag of DSBR

E Exponent register

EA Combined exponent-accumulator register

EAQ Combined exponent-accumulator-quotient register

ERN Effective ring number

ESN Effective segment number

IC Instruction counter

IR Indicator register

PPR Procedure pointer register

PPR.PRR Procedure ring register of PPR

PPR.PSR Procedure segment register of PPR

PPR.IC Instruction counter register of PPR (same as IC above)

PPR.P Privileged flag of PPR

PRn Pointer register n (n = 0, 1, 2, ..., 7)

PRn.RNR Ring number register of PRn

PRn.SNR Segment number register of PRn

PRn.WORDNO Word address register of PRn

PRn.CHAR Character address register of PRn

PRn.BITNO Bit offset register of PRn

Q Quotient register

PTWAM Page table word associative memory

SDWAM Segment descriptor word associative memory

RALR Ring alarm register

TPR Temporary pointer register

TPR.CA Computed address register of TPR (same as CA above)

TPR.TRR Temporary ring register of TPR

TPR.TSR Temporary segment register of TPR

TPR.TBR Temporary bit register of TPR

TR Timer register

Xn Index register n (n = 0, 1, 2, ..., 7)

Z Temporary pseudo-result of a nonstore comparative operation

Register Positions and Contents

In the definitions that follow, "R" stands for any of the registers listed above, as well as for
main memory words, word-pairs, word-blocks, and bit- or character-strings.

Ri The ith bit, character, or byte position of R

R(i) The ith register of a set of n registers named R

Ri,j The bit, character, or byte positions i through j of R

C(R) The contents of the full register R

C(R)i The contents of the ith bit, character, or byte of R

C(R)i,j The contents of the bits, characters, or bytes i through j of R

xx...x A string of binary bits (0's or l's) of any necessary length

When the description of an instruction specifies a change for a part of a register or main
memory location, it is understood that the part of the register or main memory location not
mentioned remains unchanged.

Other Symbols

→ replaces

:: compare with

& the Boolean connective AND

| the Boolean connective OR

⊕ the Boolean connective NON-EQUIVALENCE (or EXCLUSIVE OR)

~XXX the logical inverse (ones complement) of the quantity XXX

≠ not equal

n**m indicates exponentiation (n and m are integers); for example, the fifth power of
2 is represented as 2**5.

× multiplication; for example, C(Y) times C(Q) is represented as C(Y) × C(Q)

/ division; for example, C(Y) divided by C(A) is represented as C(Y) / C(A).

|| concatenation; for example, string1 || string2.

| ... | the absolute value of the value between vertical bars (no algebraic sign). For
example the absolute value of C(A) plus C(Y) is represented as: | C(A) + C(Y) | .

C(R)modn A coined notation for remaindering or modulo arithmetic; for example C(REG)
modulo 9 is represented as C(REG)mod9

COMMON ATTRIBUTES OF INSTRUCTIONS

Illegal Modification

If an illegal modifier is used with any instruction, an illegal procedure fault with a subcode
class of illegal modifier occurs.

Parity Indicator

The parity indicator is turned ON at the end of a main memory access that has incorrect
parity.

INSTRUCTION WORD FORMATS

Basic and EIS Single-Word Instructions

The basic instructions and EIS single-word instructions require exactly one 36-bit machine
word and are interpreted according to the format shown in Figure 4-1.

Figure 4-1. Basic and EIS Single-Word Instruction Format

ADDRESS The given address of the operand or indirect word. This address may be:

An 18-bit absolute main memory address if A = 0 (absolute mode only)

An 18-bit offset relative to the base address register if A = 0 (BAR mode
only)

An 18-bit offset relative to the base of the current procedure segment if A
= 0 (appending mode only)

A 3-bit pointer register number (n) and a 15-bit offset relative to
C(PRn.WORDNO) if A = 1 (absolute and appending modes only)

A 3-bit address register number (n) and a 15-bit offset relative to C(ARn) if
A = 1 (all modes depending on instruction type)

An 18-bit literal signed or unsigned constant (all modes depending on
instruction type and modifier)

An 8-bit shift operation count (all modes)

An 18-bit offset relative to the current value of the instruction counter
C(PPR.IC) (all modes)

OPCODE Instruction operation code.

I Interrupt inhibit bit. When this bit is set ON, the processor will defer all
external interrupt signals. See Section 7 for a discussion of interrupts.

A Indirect via pointer register flag. See Section 6 for a discussion of the use of
pointer registers.

TAG Instruction address modifier. See Section 6 for a discussion of address
modification.

Machine words in this format are generated by ALM in processing the basic and EIS single-
word instructions (described later in this section) and the arg pseudo-instruction).

Indirect Words

Certain of the basic and EIS single-word instructions permit indirection to be specified as
part of address modification. When such indirection is specified, C(Y) is interpreted as an indirect
word according to the format shown in Figure 4-2.

0
0

1
7

ADDRESS

18

1
8

OPCODE

2
7

10

2
8

I

1

2
9

A

1

3
0

3
5

TAG

6

Figure 4-2. Indirect Word Format

ADDRESS The given address of the operand or next indirect word. This address may be:

An 18-bit absolute main memory address if A = 0 in the instruction word
(absolute mode only)

An 18-bit offset relative to the base address register (BAR) if A = 0 in the
instruction word (BAR mode only)

An 18-bit offset relative to the base of the segment in which the word
resides if A = 0 (appending mode only)

Three zero bits and a 15-bit segment number if TAG = (43)8 (ITS
modification) (absolute and appending modes only)

A 3-bit pointer register number and 15 zero bits if TAG = (41)8 (ITP
modification) (absolute and appending modes only)

TALLY A count field for use by those address modifiers that involve tallying

TAG This field may be (depending on the TAG value causing the indirection):

A 6-bit address modifier

A 6-bit increment to be added to or subtracted from ADDRESS on each
reference

A 1-bit character mode (6- or 9-bit) flag, two 0 bits, and a 3-bit character
position number

Machine words in this format may be generated by use of the ALM vfd pseudo-instruction.

EIS Multiword Instructions

The EIS multiword instructions require three or four machine words depending on the
operand descriptor requirements of the individual instructions. The words are interpreted
according to the format shown in Figure 4-3. The instruction descriptions (later in this section)
contain ALM coding examples. Refer to the Multics Commands and Active Functions, Order No.
AG92, "alm" command for additional information.

0
0

1
7

18

1
8

2
9

12

3
0

3
5

6

ADDRESS TALLY TAG

Figure 4-3. EIS Multiword Instruction Format

VARIABLE This field is interpreted variously according to the requirements of the
individual EIS instructions. Its interpretation is given under FORMAT for each
EIS instruction. The modification fields MF2 and MF3 are contained in this
field if they are required.

OPCODE Instruction operation code as for basic and EIS single-word instructions.

I Interrupt inhibit bit as for basic and EIS single-word instructions.

MF1 Modification field for operand descriptor 1. See EIS modification fields (MF)
below for details.

Machine words in this format are generated by ALM in processing the EIS multiword
instructions described later in this section and their associated operand descriptor or indirect
pointer pseudo-operations.

EIS Modification Fields (MF)

Each of the operand descriptors following an EIS multiword instruction word has a
modification field in the instruction word. The modification field controls the interpretation of the
operand descriptor. The modification field is interpreted according to the format shown in Figure
4-4.

Figure 4-4. EIS Modification Field (MF) Format

key

a AR Address register flag. This flag controls interpretation of the ADDRESS field
of the operand descriptor just as the "A" flag controls interpretation of the
ADDRESS field of the basic and EIS single-word instructions.

0
0

1
7

1
8

2
7

2
8

2
9

3
5

VARIABLE

18

OPCODE I MF1

7
operand descriptor or indirect pointer for operand 1

operand descriptor or indirect pointer for operand 2

operand descriptor or indirect pointer for operand 3

36

10 1

0
0

a

1

0
1

b

1

0
2

c

1

0
3

0
6

REG

4

b RL Register length control. If RL = 0, then the length (N) field of the operand
descriptor contains the length of the operand. If RL = 1, then the length (N)
field of the operand descriptor contains a selector value specifying a register
holding the operand length. Operand length is interpreted as units of the data
size (1-, 4-, 6-, or 9-bit) given in the associated operand descriptor.

c ID Indirect descriptor control. If ID = 1 for Mfk, then the kth word following the
instruction word is an indirect pointer to the operand descriptor for the kth
operand; otherwise, that word is the operand descriptor.

REG The register number for R-type modification (if any) of ADDRESS of the
operand descriptor. These modifications are similar to R-type modifications
for basic instructions and are summarized in Table 4-1. Illegal modifiers have
the entry "IPR" and cause an illegal procedure fault.

Table 4-1. R-type Modifiers for REG Fields

Octal Code R-type MF.REG

Meaning as used in:

Indirect operand
descriptor-pointer C(operand descriptor)32,35

00 n n n IPR

01 au au au au

02 qu qu qu qu

03 du IPR IPR du (a)

04 ic ic ic ic (b)

05 al a (c) al a (c)

06 ql q (c) ql q (c)

07 dl IPR IPR IPR

10 x0 x0 x0 x0

11 x1 x1 x1 x1

12 x2 x2 x2 x2

13 x3 x3 x3 x3

14 x4 x4 x4 x4

15 x5 x5 x5 x5

16 x6 x6 x6 x6

17 x7 x7 x7 x7

a) The du modifier is permitted only in the second operand descriptor of the scd, scdr, scm,
and scmr instructions to specify that the test character(s) reside(s) in bits 0-18 of the operand
descriptor.

b) The ic modifier is permitted in MFk.REG and C (od)32,35 only if MFk.RL = 0, that is, if the
contents of the register is an address offset, not the designation of a register containing the
operand length.

c) The limit of addressing extent of the processor is 2**18 words; that is, given an address, y, a
modifier may be employed to access a main memory word anywhere in the range (y-2**17, y
+2**17-1), provided other address range constraints are not violated. Since it is desirable to
address this same extent as words, characters, and bits it is necessary to provide a register

with range greater than the 12 bits of N or the 18 bits of normal R-type modifiers. This is done
by extending the range of the A and Q modifiers as follows:

Mode Range A,Q bits

9-bit 21 15,35

6-bit 21 15,35

4-bit 22 14,35

bit 24 12,35

The unused high-order bits are ignored.

MF Coding Examples

All of the EIS instruction descriptions in this section give examples of ALM coding formats.
For example, the mlr instruction shows:

mlr (MF1),(MF2)[,fill(octalexpression)][,enablefault]

descna Y-charn1[(CN1)],N1 n = 4, 6, or 9 (TA1 = 2, 1, or 0)

descna Y-charn2[(CN2)],N2 n = 4, 6, or 9 (TA2 = 2, 1, or 0)

where MF1 and MF2 represent the EIS Modifier Fields for the first and second data descriptors,
respectively.

The meanings of the various codes in an MF field are:

If C(MFn) Contains It Means

pr Y-charn is not the memory address of the data but is a reference to a
pointer register pointing to the data.

id The data in descn is not the data descriptor but is the memory address
(or pointer register reference) of the data descriptor.

rl The field Nn is not the data length but is the code for register containing
the data length (see Table 4-1).

EIS Operand Descriptors and Indirect Pointers

The words following an EIS multiword instruction word are either operand descriptors or
indirect pointers to the operand descriptors. The interpretation of the words is performed
according to the settings of the control bits in the associated modification field (MF). The kth word
following the instruction word is interpreted according to the contents of MFk. See EIS
modification fields (MF) above for meaning of the various control bits. See Section 2 and Section 6
for further details.

Operand Descriptor Indirect Pointer Format

If MFk.ID = 1, then the kth word following an EIS multiword instruction word is not an
operand descriptor, but is an indirect pointer to an operand descriptor and is interpreted as shown
in Figure 4-5.

Figure 4-5. Operand Descriptor Indirect Pointer Format

ADDRESS The given address of the operand descriptor. This address may be:

An 18-bit absolute main memory address if A = 0 (absolute mode only)

An 18-bit offset relative to the base address register (BAR) if A = 0 (BAR
mode only)

An 18-bit offset relative to the base of the current procedure segment if A
= 0 (appending mode only)

A 3-bit pointer register number (n) and a 15-bit offset relative to
C(PRn.WORDNO) if A = 1 (all modes)

A Indirect via pointer register flag. This flag controls interpretation of the
ADDRESS field of the indirect pointer just as the "A" flag controls
interpretation of the ADDRESS field of the basic and EIS single-word
instructions.

REG Address modifier for ADDRESS. All register modifiers except du and dl may
be used. If the ic modifier is used, then ADDRESS is an 18-bit offset relative
to value of the instruction counter for the instruction word. C(REG) is
always interpreted as a word offset.

Machine words in this format are generated by the ALM arg pseudo-instruction giving an
appropriate TAG field.

Alphanumeric Operand Descriptor Format

For any operand of an EIS multiword instruction that requires alphanumeric data, the
operand descriptor is interpreted as shown in Figure 4-6.

Figure 4-6. Alphanumeric Operand Descriptor Format

ADDRESS The given address of the operand. This address may be (for the kth operand):

An 18-bit absolute main memory address if MFk.AR= 0 (absolute mode
only)

An 18-bit offset relative to the base address register if MFk.AR = 0 (BAR
mode only)

An 18-bit offset relative to the base of the current procedure segment if
MFk.AR = 0 (appending mode only)

0
0

1
7

ADDRESS

18

1
8

0 0 0 0 0 0 0 0 0 0

2
8

0

11

2
9

A

1

3
0

0

3
1

0

2

3
2

3
5

REG

4

0
0

1
7

ADDRESS

18

1
8

CN

2
0

3

2
1

2
2

TA

2

2
3

0

1

2
4

3
5

N

12

A 3-bit address register number (n) and a 15-bit word offset relative to
C(ARn) if MFk.AR = 1 (all modes)

CN Character number. This field gives the character position relative to
ADDRESS of the first operand character. Its interpretation depends on the
data type (see TA below) of the operand. below shows the interpretation of
the field. A digit in the table indicates the corresponding character position
(see Section 2 for data formats) and an "x" indicates an invalid code for the
data type. Invalid codes cause illegal procedure faults. (For further
explanation, see the Note under ARn.BITNO in Section 3, "Address Registers".)

TA Type alphanumeric. This is the data type code for the operand. The
interpretation of the field is shown in Table 4-3. The code shown as Invalid
causes an illegal procedure fault.

N Operand length. If MFk.RL = 0, this field contains the string length of the
operand. If MFk.RL = 1, this field contains the code for a register holding the
operand string length. See Table 4-1 and EIS modification fields (MF) above
for a discussion of register codes.

Machine words of this format are generated by ALM when processing the desc4a, desc6a,
and desc9a pseudo-instructions.

Table 4-2. Alphanumeric Character Number (CN) Codes

Data type

C(CN) 4-bit 6-bit 9-bit

000 0 0 0

001 1 1 x

010 2 2 1

011 3 3 x

100 4 4 2

101 5 5 x

110 6 x 3

111 7 x x

Table 4-3. Alphanumeric Data Type (TA) Codes

C(TA) Data type

00 9-bit

01 6-bit

10 4-bit

11 Invalid

Numeric Operand Descriptor Format

For any operand of an EIS multiword instruction that requires numeric data, the operand
descriptor is interpreted as shown in Figure 4-7.

Figure 4-7. Numeric Operand Descriptor Format

key

ADDRESS The given address of the operand. This address may be (for the kth
operand):

An 18-bit absolute main memory address if MFk.AR= 0 (absolute mode
only)

An 18-bit offset relative to the base address register if MFk.AR = 0 (BAR
mode only)

An 18-bit offset relative to the base of the current procedure segment if
MFk.AR = 0 (appending mode only)

A 3-bit address register number (n) and a 15-bit word offset relative to
C(ARn) if MFk.AR = 1 (all modes)

CN Character number. This field gives the character position relative to
ADDRESS of the first operand digit. Its interpretation depends on the data
type (see TN below) of the operand. Table 4-2 above shows the
interpretation of the field. (For further information, see the Note under
ARn.BITNO in Section 3 on Address Registers.)

a TN Type numeric. This is the data type code for the operand. The codes are:

C(TN) Data type

0 9-bit

1 4-bit

S Sign and decimal type of data. The interpretation of the field is shown in
Table 4-4.

SF Scaling factor. This field contains the two's complement value of the base 10
scaling factor; that is, the value of m for numbers represented as n × 10**m.
The decimal point is assumed to the right of the least significant digit of n.
Negative values move the decimal point to the left; positive values, to the
right. The range of m is (-32,31). The scaling factor is ignored if S=00.

N Operand length. If MFk.RL = 0, this field contains the operand length in
digits. If MFk.RL = 1, it contains the REG code for the register holding the
operand length and C(REG) is treated as a 0 modulo 64 number. See Table
4-1 and EIS modification fields (MF) above for a discussion of register codes.

Machine words in this format are generated by ALM when processing the desc4fl,
desc4ls, desc4ts, desc4ns, desc9fl, desc9ls, desc9ts, and desc9ns pseudo-instructions.

Table 4-4. Sign and Decimal Type (S) Codes

C(S) Sign and decimal type

00 Floating-point, leading sign

0
0

1
7

ADDRESS

18

1
8

CN

2
0

3

2
1

a

1

2
2

2
3

S

2

2
4

SF

2
9

6

3
0

3
5

N

6

C(S) Sign and decimal type

01 Scaled fixed-point, leading sign

10 Scaled fixed-point, trailing sign

11 Scaled fixed-point, unsigned

Bit-string Operand Descriptor Format

For any operand of an EIS multiword instruction that requires bit-string data, the operand
descriptor is interpreted as shown in Figure 4-8.

Figure 4-8. Bit String Operand Descriptor Format

ADDRESS The given address of the operand. This address may be (for the kth operand):

An 18-bit main memory address if MFk.AR= 0 (absolute mode only)

An 18-bit offset relative to the base address register if MFk.AR = 0 (BAR
mode only)

An 18-bit offset relative to the base of the current procedure segment if
MFk.AR = 0 (appending mode only)

A 3-bit address register number (n) and a 15-bit word offset relative to
C(ARn) if MFk.AR = 1 (all modes)

C The character number of the 9-bit character relative to ADDRESS containing
the first bit of the operand. (For further explanation, see the Note under
ARn.BITNO in Section 3 on Address Registers.)

B The bit number within the 9-bit character, C, of the first bit of the operand.

N Operand length. If MFk.RL = 0, this field contains the string length of the
operand. If MFk.RL = 1, this field contains the code for a register holding the
operand string length. See Table 4-1 and EIS modification fields (MF) above
for a discussion of register codes.

Machine words of this format are generated by ALM when processing the descb pseudo-
instruction.

0
0

1
7

ADDRESS

18

1
8

1
9

C

2

2
0

B

2
3

4

2
4

3
5

N

12

FIXED-POINT ARITHMETIC INSTRUCTIONS

Fixed-Point Data Movement Load

eaa Effective Address to A 635 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(TPR.CA) C(A)→ 0,17

00...0 C(A)→ 18,35

MODIFICATIONS: All except du, dl

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON: otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

NOTES: The eaa instruction, and the instructions eaq and eaxn, facilitate
interregister data movements. The data source is specified by the address
modification, and the data destination by the operation code of the
instruction.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

eaq Effective Address to Q 636 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(TPR.CA) C(Q)→ 0,17

00...0 C(Q)→ 18,35

MODIFICATIONS: All except du, dl

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

eaxn Effective Address to Index Register n 62n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(TPR.CA) C(Xn)→

MODIFICATIONS: All except du, dl

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

lca Load Complement A 335 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: -C(Y) C(A)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON

NOTES: The lca instruction changes the number to its negative while moving it
from Y to A. The operation is executed by forming the twos complement of
the string of 36 bits. In twos complement arithmetic, the value 0 is its own
negative. An overflow condition exists if C(Y) = -2**35.

lcaq Load Complement AQ 337 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: -C(Y-pair) C(AQ)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

NOTES: The lcaq instruction changes the number to its negative while moving it
from Y-pair to AQ. The operation is executed by forming the twos
complement of the string of 72 bits. In twos complement arithmetic, the
value 0 is its own negative. An overflow condition exists if C(Y-pair) =
-2**71.

lcq Load Complement Q 336 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: -C(Y) C(Q)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

NOTES: The lcq instruction changes the number to its negative while moving it
from Y to Q The operation is executed by forming the twos complement of
the string of 36 bits. In twos complement arithmetic, the value 0 is its own
negative. An overflow condition exists if C(Y) = -2**35.

lcxn Load Complement Index Register n 32n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

-C(Y)0,17 C(Xn)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)0 = 1, then ON; otherwise OFF

Overflow If range of Xn is exceeded, then ON

NOTES: The lcxn instruction changes the number to its negative while moving it
from Y0,17 to Xn The operation is executed by forming the twos
complement of the string of 18 bits. In twos complement arithmetic, the
value 0 is its own negative. An overflow condition exists if C(Y)0,17 =
-2**17.

Attempted repetition with the rpl instruction and with the same register
given as target and modifier causes an illegal procedure fault.

lda Load A 235 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y) C(A)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

ldac Load A and Clear 034 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y) C(A)→

00...0 C(Y)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

NOTES: The ldac instruction causes a special main memory reference that
performs the load and clear in one cycle. Thus, this instruction can be
used in locking data.

ldaq Load AQ 237 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y-pair) C(AQ)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

ldi Load Indicator Register 634 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y)18,31 C(IR)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Parity mask If C(Y)27 = 1, and the processor is in absolute or instruction privileged
mode, then ON; otherwise OFF. This indicator is not affected in the
normal or BAR modes.

Not BAR mode Cannot be changed by the ldi instruction

Mid instruction
interrupt fault

If C(Y)30 = 1, and the processor is in absolute or instruction privileged
mode, then ON; otherwise OFF. This indicator is not affected in normal or
BAR modes.

Absolute mode Cannot be changed by the ldi instruction

All other
indicators

If corresponding bit in C(Y) is 1, then ON; otherwise, OFF

NOTES: The relation between C(Y)18,31 and the indicators is given in Table 4-5
below.

The tally runout indicator reflects C(Y)25 regardless of what address
modification is performed on the ldi instruction.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Table 4-5. Relation Between Data Bits and Indicators Bit

Bit Position C(Y) Indicator

18 Zero

19 Negative

20 Carry

21 Overflow

22 Exponent overflow

23 Exponent underflow

24 Overflow mask

25 Tally runout

26 Parity error

27 Parity mask

28 Not BAR mode

29 Truncation

30 Mid instruction interrupt fault

31 Absolute mode

ldq Load Q 236 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y) C(Q)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

ldqc Load Q and Clear 032 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y) C(Q)→

00...0 C(Y)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON, otherwise OFF

NOTES: The ldqc instruction causes a special main memory reference that
performs the load and clear in one cycle. Thus, this instruction can be
used in locking data.

ldxn Load Index Register n 22n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Y)0,17 C(Xn)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction with the same register given
as target and modifier causes an illegal procedure fault.

lreg Load Registers 073 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y-block8)0,17 C(X0)→ C(Y-block8)18,35 C(X1)→

C(Y-block8+1)0,17 C(X2)→ C(Y-block8+1)18,35 C(X3)→

C(Y-block8+2)0,17 C(X4)→ C(Y-block8+2)18,35 C(X5)→

C(Y-block8+3)0,17 C(X6)→ C(Y-block8+3)18,35 C(X7)→

C(Y-block8+4) C(A)→ C(Y-block8+5) C(Q)→

C(Y-block8+6)0,7 C(E)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

lxln Load Index Register n from Lower 72n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Y)18,35 C(Xn)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction with the same register given
as target and modifier causes an illegal procedure fault.

Fixed-Point Data Movement Store

sreg Store Registers 753 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(X0) C(Y-block8)→ 0,17 C(X1) C(Y-block8)→ 18,35

C(X2) C(Y-block8+1)→ 0,17 C(X3) C(Y-block8+1)→ 18,35

C(X4) C(Y-block8+2)→ 0,17 C(X5) C(Y-block8+2)→ 18,35

C(X6) C(Y-block8+3)→ 0,17 C(X7) C(Y-block8+3)→ 18,35

C(A) C(Y-block8+4)→ C(Q) C(Y-block8+5)→

C(E) C(Y-block8+6)→ 0,7 00...0 C(Y-block8+6)→ 8,35

C(TR) C(Y-block8+7)→ 0,26 00...0 C(Y-block8+7)→ 27,32

C(RALR) C(Y-block8+7)→ 33,35

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sta Store A 755 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A) C(Y)→

MODIFICATIONS: All except du, dl

INDICATORS: None affected

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

stac Store A Conditional 354 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If C(Y) = 0, then C(A) C(Y)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If initial C(Y) = 0, then ON; otherwise OFF

NOTES: If the initial C(Y) is nonzero, then C(Y) is not changed by the stac
instruction.

The stac instruction uses a special main memory reference that prohibits
such references by other processors between the test and the data
transfer. Thus, it may be used for data locking.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

stacq Store A Conditional on Q 654 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If C(Y) = C(Q), then C(A) C(Y)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If initial C(Y) = C(Q), then ON; otherwise OFF

NOTES: If the initial C(Y) is ≠ C(Q), then C(Y) is not changed by the stacq
instruction.

The stacq instruction uses a special main memory reference that prohibits
such references by other processors between the test and the data
transfer. Thus, it may be used for shared data locking and unlocking.

On the DPS 8M processor, data shared by more than one processor may, at
any time, be in more than one processor's cache memory. To aid the
integrity of shared data, the stacq instruction will always bypass cache
and obtain its operand from main memory. In addition, a synchronizing
function inhibits completion of the stacq instruction until the processor
executing the stacq instruction is notified by the scu that write completes
have occurred and write notifications requesting cache block clears have
been sent to the other processors for all write instructions that the
processor previously issued. This feature, therefore, makes the stacq
instruction the preferred choice for unlocking shared data bases.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

staq Store AQ 757 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(AQ) C(Y-pair)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

stba Store Bytes of A 551 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: 9-bit bytes of C(A) corresponding bytes of C(Y), the byte positions→
affected being specified in the TAG field.

MODIFICATIONS: None (see NOTES below)

INDICATORS: None affected

NOTES: Binary ones in the TAG field of this instruction specify the byte positions of
A and Y that are affected. The control relations are shown in Table 4-6.

ALM treats a given numeric TAG field for this instruction as an octal
number.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Table 4-6. Control Relations for Store Byte Instructions (9-Bit)

Bit position
within TAG

field

Bit of
instructi

on Byte of A and Y

0 30 Byte 0 (bits 0-8)

1 31 Byte 1 (bits 9-17)

2 32 Byte 2 (bits 18-26)

3 33 Byte 3 (bits 27-35)

stbq Store Bytes of Q 552 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: 9-bit bytes of C(Q) corresponding bytes of C(Y), the byte positions→
affected being specified in the TAG field.

MODIFICATIONS: None (see NOTES below)

INDICATORS: None affected

NOTES: Binary ones in the TAG field of this instruction specify the byte positions of
Q and Y that are affected. The control relations are shown in Table 4-6
above.

ALM treats a given numeric TAG field for this instruction as an octal
number.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

stc1 Store Instruction Counter Plus 1 554 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(PPR.IC) + 1 C(Y)→ 0,17

C(IR) C(Y)→ 18,31

00...0 C(Y)→ 32,35

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: The contents of the instruction counter C(PPR.IC) and the indicator
register (IR) after address preparation are stored in C(Y)0,17 and C(Y)18,31,
respectively. C(Y)25 reflects the state of the tally runout indicator prior to
modification. The relations between C(Y)18,31 and the indicators are given
in Table 4-5.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

stc2 Store Instruction Counter Plus 2 750 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(PPR.IC) + 2 C(Y)→ 0,17

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: The contents of the instruction counter C(PPR.IC) are stored in C(Y)0,17.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

stca Store Characters of A 751 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Characters of C(A) corresponding characters of C(Y), the character→
positions affected being specified in the TAG field.

MODIFICATIONS: None (see NOTES below)

INDICATORS: None affected

NOTES: Binary ones in the TAG field of this instruction specify character positions
of A and Y that are affected. The control relations are shown in Table 4-7.

ALM treats a given numeric TAG field for this instruction as an octal
number.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Table 4-7. Control Relations for Store Character Instructions (6-Bit)

Bit position
within TAG

field
Bit of

instruction
Character of A and

Y

0 30 Char 0 (bits 0-5)

1 31 Char 1 (bits 6-11)

2 32 Char 2 (bits 12-17)

3 33 Char 3 (bits 18-23)

4 34 Char 4 (bits 24-29)

5 35 Char 5 (bits 30-35)

stcq Store Characters of Q 752 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Characters of C(Q) corresponding characters of C(Y), the character→
positions affected being specified by the TAG field.

MODIFICATIONS: None (see NOTES below)

INDICATORS: None affected

NOTES: Binary ones in the TAG field of this instruction specify the character
positions of Q and Y that are affected. The control relations are shown in
Table 4-7 above.

ALM treats a given numeric TAG field for this instruction as an octal
number.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

stcd Store Control Double 357 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(PPR) C(Y-pair) as follows:→

000 C(Y-pair)→ 0,2

C(PPR.PSR) C(Y-pair)→ 3,17

C(PPR.PRR) C(Y-pair)→ 18,20

00...0 C(Y-pair)→ 21,29

(43)8 C(Y-pair)→ 30,35

C(PPR.IC)+2 C(Y-pair)→ 36,53

00...0 C(Y-pair)→ 54,71

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sti Store Indicator Register 754 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(IR) C(Y)→ 18,31

00...0 C(Y)→ 32,35

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: The contents of the indicator register after address preparation are stored
in C(Y)18,31. C(Y)18,31 reflects the state of the tally runout indicator prior
to address preparation. The relation between C(Y)18,31 and the indicators
is given in Table 4-5.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

stq Store Q 756 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q) C(Y)→

MODIFICATIONS: All except du, dl

INDICATORS: None affected

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

stt Store Timer Register 454 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(TR) C(Y)→ 0,26

00...0 C(Y)→ 27,35

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

stxn Store Index Register n 74n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Xn) C(Y)→ 0,17

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

stz Store Zero 450 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: 00...0 C(Y)→

MODIFICATIONS: All except du, dl

INDICATORS: None affected

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

sxln Store Index Register n in Lower 44n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Xn) C(Y)→ 18,35

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

Fixed-Point Data Movement Shift

alr A Left Rotate 775 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Shift C(A) left the number of positions given in C(TPR.CA)11,17; entering
each bit leaving A0 into A35.

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

als A Left Shift 735 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Shift C(A) left the number of positions given in by C(TPR.CA)11,17; filling
vacated positions with zeros.

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

Carry If C(A)0 changes during the shift, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

arl A Right Logical 771 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Shift C(A) right the number of positions given in C(TPR.CA)11,17; filling
vacated positions with zeros.

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

ars A Right Shift 731 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Shift C(A) right the number of positions given in C(TPR.CA)11,17; filling
vacated positions with initial C(A)0.

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

llr Long Left Rotate 777 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Shift C(AQ) left by the number of positions given in C(TPR.CA)11,17;
entering each bit leaving AQ0 into AQ71.

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

lls Long Left Shift 737 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Shift C(AQ) left the number of positions given in C(TPR.CA)11,17; filling
vacated positions with zeros.

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Carry If C(AQ)0 changes during the shift, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

lrl Long Right Logical 773 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Shift C(AQ) right the number of positions given in C(TPR.CA)11,17; filling
vacated positions with zeros.

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

lrs Long Right Shift 733 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Shift C(AQ) right the number of positions given in C(TPR.CA)11,17; filling
vacated positions with initial C(AQ)0.

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

qlr Q Left Rotate 776 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Shift C(Q) left the number of positions given in C(TPR.CA)11,17; entering
each bit leaving Q0 into Q35.

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

qls Q Left Shift 736 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Shift C(Q) left the number of positions given in C(TPR.CA)11,17; fill vacated
positions with zeros.

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

Carry If C(Q)0 changes during the shift, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

qrl Q Right Logical 772 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Shift C(Q) right the number of positions specified by Y11,17; fill vacated
positions with zeros.

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

qrs Q Right Shift 732 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Shift C(Q) right the number of positions given in C(TPR.CA)11,17; filling
vacated positions with initial C(Q)0.

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

Fixed-Point Addition

ada Add to A 075 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A) + C(Y) C(A)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON

Carry If a carry out of A0 is generated, then ON; otherwise OFF

adaq Add to AQ 077 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(AQ) + C(Y-pair) C(AQ)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

adl Add Low to AQ 033 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(AQ) + C(Y) sign extended C(AQ)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

NOTES: A 72-bit number is formed from C(Y) in the following manner:

The lower 36 bits (36,71) are identical to C(Y).
Each of the upper 36 bits (0,35) is identical to C(Y)0.

This 72-bit number is added to the contents of the combined AQ-register.

adla Add Logical to A 035 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A) + C(Y) C(A)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

Carry If a carry out of A0 is generated, then ON; otherwise OFF

NOTES: The adla instruction is identical to the ada instruction with the exception
that the overflow indicator is not affected by the adla instruction, nor does
an overflow fault occur. Operands and results are treated as unsigned,
positive binary integers.

adlaq Add Logical to AQ 037 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(AQ) + C(Y-pair) C(AQ)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

NOTES: The adlaq instruction is identical to the adaq instruction with the
exception that the overflow indicator is not affected by the adlaq
instruction, nor does an overflow fault occur. Operands and results are
treated as unsigned, positive binary integers.

adlq Add Logical to Q 036 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q) + C(Y) C(Q)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

Carry If a carry out of Q0 is generated, then ON; otherwise OFF

NOTES: The adlq instruction is identical to the adq instruction with the exception
that the overflow indicator is not affected by the adlq instruction, nor does
an overflow fault occur. Operands and results are treated as unsigned,
positive binary integers.

adlxn Add Logical to Index Register n 02n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Xn) + C(Y)0,17 C(Xn)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)0 = 1, then ON; otherwise OFF

Carry If a carry out of Xn0 is generated, then ON; otherwise OFF

NOTES: The adlxn instruction is identical to the adxn instruction with the
exception that the overflow indicator is not affected by the adlxn
instruction, nor does an overflow fault occur. Operands and results are
treated as unsigned, positive binary integers.

adq Add to Q 076 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q) + C(Y) C(Q)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

Carry If a carry out of Q0 is generated, then ON; otherwise OFF

adxn Add to Index Register n 06n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Xn) + C(Y)0,17 C(Xn)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)0 = 1, then ON; otherwise OFF

Overflow If range of Xn is exceeded, then ON

Carry If a carry out of Xn0 is generated, then ON; otherwise OFF

aos Add One to Storage 054 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y) + 1 C(Y)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of Y0 is generated, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

asa Add Stored to A 055 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A) + C(Y) C(Y)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of Y0 is generated, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

asq Add Stored to Q 056 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q) + C(Y) C(Y)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative IF C(Y)0 = 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of Y0 is generated, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

asxn Add Stored to Index Register n 04n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Xn) + C(Y)0,17 C(Y)→ 0,17

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y)0,17 = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

Overflow If range of Y0,17 is exceeded, then ON

Carry If a carry out of Y0 is generated, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

awca Add with Carry to A 071 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If carry indicator OFF, then C(A) + C(Y) C(A)→

If carry indicator ON, then C(A) + C(Y) + 1 C(A)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON

Carry If a carry out of A0 is generated, then ON; otherwise OFF

NOTES: The awca instruction is identical to the ada instruction with the exception
that when the carry indicator is ON at the beginning of the instruction, 1 is
added to the sum of C(A) and C(Y).

awcq Add with Carry to Q 072 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If carry indicator OFF, then C(Q) + C(Y) C(Q)→

If carry indicator ON, then C(Q) + C(Y) + 1 C(Q)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

Carry If a carry out of Q0 is generated, then ON; otherwise OFF

NOTES: The awcq instruction is identical to the adq instruction with the exception
that when the carry indicator is ON at the beginning of the instruction, 1 is
added to the sum of C(Q) and C(Y).

Fixed-Point Subtraction

sba Subtract from A 175 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A) - C(Y) C(A)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON

Carry If a carry out of A0 is generated, then ON; otherwise OFF

sbaq Subtract from AQ 177 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(AQ) - C(Y-pair) C(AQ)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

sbla Subtract Logical from A 135 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A) - C(Y) C(A)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

Carry If a carry out of A0 is generated, then ON; otherwise OFF

NOTES: The sbla instruction is identical to the sba instruction with the exception
that the overflow indicator is not affected by the sbla instruction, nor does
an overflow fault occur. Operands and results are treated as unsigned,
positive binary integers.

sblaq Subtract Logical from AQ 137 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(AQ) - C(Y-pair) C(AQ)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

NOTES: The sblaq instruction is identical to the sbaq instruction with the
exception that the overflow indicator is not affected by the sblaq
instruction, nor does an overflow fault occur. Operands and results are
treated as unsigned, positive binary integers.

sblq Subtract Logical from Q 136 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q) - C(Y) C(Q)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

Carry If a carry out of Q0 is generated, then ON; otherwise OFF

NOTES: The sblq instruction is identical to the sbq instruction with the exception
that the overflow indicator is not affected by the sblq instruction, nor does
an overflow fault occur. Operands and results are treated as unsigned,
positive binary integers.

sblxn Subtract Logical from Index Register n 12n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Xn) - C(Y)0,17 C(Xn)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)0 = 1, then ON; otherwise OFF

Carry If a carry out of Xn0 is generated, then ON; otherwise OFF

NOTES The sblxn instruction is identical to the sbxn instruction with the
exception that the overflow indicator is not affected by the sblxn
instruction, nor does an overflow fault occur. Operands and results are
treated as unsigned, positive binary integers.

sbq Subtract from Q 176 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q) - C(Y) C(Q)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

Carry If a carry out of Q0 is generated, then ON; otherwise OFF

sbxn Subtract from Index Register n 16n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Xn) - C(Y)0,17 C(Xn)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)0 = 1, then ON; otherwise OFF

Overflow If range of Xn is exceeded, then ON

Carry If a carry out of Xn0 is generated, then ON; otherwise OFF

ssa Subtract Stored from A 155 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A) - C(Y) C(Y)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of Y0 is generated, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

ssq Subtract Stored from Q 156 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q) - C(Y) C(Y)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of Y0 is generated, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

ssxn Subtract Stored from Index Register n 14n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Xn) - C(Y)0,17 C(Y)→ 0,17

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y)0,17 = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

Overflow If range of Y0,17 exceeded, then ON

Carry If a carry out of Y0 is generated, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

swca Subtract with Carry from A 171 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If carry indicator ON, then C(A)- C(Y) C(A)→

If carry indicator OFF, then C(A) - C(Y) - 1 C(A)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON

Carry If a carry out of A0 is generated, then ON; otherwise OFF

NOTES: The swca instruction is identical to the sba instruction with the exception
that when the carry indicator is OFF at the beginning of the instruction, +1
is subtracted from the difference of C(A) minus C(Y). The swca instruction
treats the carry indicator as the complement of a borrow indicator due to
the implementation of negative numbers in twos complement form.

swcq Subtract with Carry from Q 172 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If carry indicator ON, then C(Q) - C(Y) C(Q)→

If carry indicator OFF, then C(Q) - C(Y) - 1 C(Q)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

Carry If a carry out of Q0 is generated, then ON; otherwise OFF

NOTES: The swcq instruction is identical to the sbq instruction with the exception
that when the carry indicator is OFF at the beginning of the instruction, +1
is subtracted from the difference of C(Q) minus C(Y). The swcq instruction
treats the carry indicator as the complement of a borrow indicator due to
the implementation of negative numbers in twos complement form.

Fixed-Point Multiplication

mpf Multiply Fraction 401 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A) × C(Y) C(AQ), left adjusted→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

NOTES: Two 36-bit fractional factors (including sign) are multiplied to form a 71-
bit fractional product (including sign), which is stored left-adjusted in the
AQ register. AQ71 contains a zero. Overflow can occur only in the case of
A and Y containing negative l and the result exceeding the range of the AQ
register.

mpy Multiply Integer 402 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q) × C(Y) C(AQ), right adjusted→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

NOTES: Two 36-bit integer factors (including sign) are multiplied to form a 71-bit
integer product (including sign), which is stored right-adjusted in the AQ-
register. AQ0 is filled with an "extended sign bit".

0
0

factor factor

3
5

ss

0
1

3
5

0
0

0
1

╳

C(A) C(Y)

yielding

s 0

0
0

0
1

7
1

product

C(AQ)

7
0

In the case of (-2*35) × (-2**35) = +2**70, AQ1 is used to represent the
product rather than the sign. No overflow can occur.

0
0

factor factor

3
5

ss

0
1

3
5

0
0

0
1

╳

C(Q) C(Y)

yielding

s s

0
0

0
1

7
1

product

C(AQ)

0
2

Fixed-Point Division

div Divide Integer 506 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q) / (Y) integer quotient C(Q)→

integer remainder C(A)→

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

If division takes place: If no division takes place:

Zero If C(Q) = 0, then ON;
otherwise OFF

If divisor = 0, then ON;
otherwise OFF

Negative If C(Q)0 = 1, then ON;
otherwise OFF

If dividend < 0, then ON;
otherwise OFF

NOTES: A 36-bit integer dividend (including sign) is divided by a 36-bit integer
divisor (including sign) to form a 36-bit integer quotient (including sign)
and a 36-bit integer remainder (including sign). The remainder sign is
equal to the dividend sign unless the remainder is zero.

If the dividend = -2**35 and the divisor = -1 or if the divisor = 0, then
division does not take place. Instead, a divide check fault occurs, C(Q)
contains the dividend magnitude, and the negative indicator reflects the
dividend sign.

dvf Divide Fraction 507 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(AQ) / (Y) fractional quotient C(A)→

fractional remainder C(Q)→

MODIFICATIONS: All

s

0
0

dividend divisor

3
5

s

0
1

3
5

0
0

0
1

╱

C(Q) C(Y)

yielding

0
0

remainder quotient

3
5

s

0
1

3
5

0
0

0
1

C(A) C(Q)

s

INDICATORS: (Indicators not listed are not affected)

If division takes place: If no division takes place:

Zero If C(A) = 0, then ON;
otherwise OFF

If divisor = 0, then ON;
otherwise OFF

Negative If C(A)0 = 1, then ON;
otherwise OFF

If dividend < 0, then ON;
otherwise OFF

NOTES: A 71-bit fractional dividend (including sign) is divided by a 36-bit fractional
divisor yielding a 36-bit fractional quotient (including sign) and a 36-bit
fractional remainder (including sign). C(AQ)71 is ignored; bit position 35
of the remainder corresponds to bit position 70 of the dividend. The
remainder sign is equal to the dividend sign unless the remainder is zero.

If | dividend | >= | divisor | or if the divisor = 0, division does not take
place. Instead, a divide check fault occurs, C(AQ) contains the dividend
magnitude in absolute, and the negative indicator reflects the dividend
sign.

divisor

3
5

s

0
0

0
1

╱

C(Y)

yielding

s

0
0

0
1

7
1

dividend

C(AQ)

7
0

x

0
0

quotient remainder

3
5

s

0
1

3
5

0
0

0
1

C(A) C(Q)

s

Fixed-Point Negate

neg Negate A 531 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: -C(A) C(A) if C(A) ≠ 0→

MODIFICATIONS: All, but none affect instruction execution.

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON

NOTES: The neg instruction changes the number in A to its negative (if ≠ 0). The
operation is performed by forming the twos complement of the string of 36
bits.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

negl Negate Long 533 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: -C(AQ) C(AQ) if C(AQ) ≠ 0→

MODIFICATIONS: All, but none affect instruction execution.

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

NOTES: The negl instruction changes the number in AQ to its negative (if ≠ 0).
The operation is performed by forming the twos complement of the string
of 72 bits.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

Fixed-Point Comparison

cmg Compare Magnitude 405 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: | C(A) | :: | C(Y) |

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If | C(A) | = | C(Y) | , then ON; otherwise OFF

Negative If | C(A) | < | C(Y) | , then ON; otherwise OFF

cmk Compare Masked 211 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For i = 0, 1, ..., 35

C(Z)i = ~C(Q)i & (C(A)i C(Y)⊕ i)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Z) = 0, then ON; otherwise OFF

Negative If C(Z)0 = 1, then ON; otherwise OFF

NOTES: The cmk instruction compares the contents of bit positions of A and Y for
identity that are not masked by a 1 in the corresponding bit position of Q.

The zero indicator is set ON if the comparison is successful for all bit
positions; i.e., if for all i = 0, 1, ..., 35 there is either: C(A)i = C(Y)i (the
identical case) or C(Q)i = 1 (the masked case); otherwise, the zero
indicator is set OFF.

The negative indicator is set ON if the comparison is unsuccessful for bit
position 0; i.e., if C(A)0 C(Y)⊕ 0 (they are nonidentical) as well as C(Q)0 = 0
(they are unmasked); otherwise, the negative indicator is set OFF.

cmpa Compare with A 115 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A) :: C(Y)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

The zero (Z), negative (N), and carry (C) indicators are set as follows:

Algebraic Comparison (Signed Binary Operands)

Z N C Relation Sign

0 0 0 C(A) > C(Y) C(A)0 = 0, C(Y)0 = 1

0 0 1 C(A) > C(Y) C(A)0 = C(Y)0

1 0 1 C(A) = C(Y) C(A)0 = C(Y)0

0 1 0 C(A) < C(Y) C(A)0 = C(Y)0

0 1 1 C(A) < C(Y) C(A)0 = 1, C(Y)0 = 0

Logical Comparison (Unsigned Positive Binary Operands)

Z C Relation

0 0 C(A) < C(Y)

1 1 C(A) = C(Y)

0 1 C(A) > C(Y)

cmpaq Compare with AQ 117 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(AQ) :: C(Y-pair)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

The zero (Z), negative (N), and carry (C) indicators are set as follows:

Algebraic Comparison (Signed Binary Operands)

Z N C Relation Sign

0 0 0 C(AQ) > C(Y-pair) C(AQ)0 = 0, C(Y-pair)0 = 1

0 0 1 C(AQ) > C(Y-pair) C(AQ)0 = C(Y-pair)0

1 0 1 C(AQ) = C(Y-pair) C(AQ)0 = C(Y-pair)0

0 1 0 C(AQ) < C(Y-pair) C(AQ)0 = C(Y-pair)0

0 1 1 C(AQ) < C(Y-pair) C(AQ)0 = 1, C(Y-pair)0 = Q

Logical Comparison (Unsigned Positive Binary Operands)

Z C Relation

0 0 C(AQ) < C(Y-pair)

1 1 C(AQ) = C(Y-pair)

0 1 C(AQ) > C(Y-pair)

cmpq Compare with Q 116 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q) :: C(Y)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

The zero (Z), negative (N), and carry (C) indicators are set as follows:

Algebraic Comparison (Signed Binary Operands)

Z N C Relation Sign

0 0 0 C(Q) > C(Y) C(Q)0 = 0, C(Y)0 = 1

0 0 1 C(Q) > C(Y) C(Q)0 = C(Y)0

1 0 1 C(Q) = C(Y) C(Q)0 = C(Y)0

0 1 0 C(Q) < C(Y) C(Q)0 = C(Y)0

0 1 1 C(Q) < C(Y) C(Q)0 = 1, C(Y)0 = 0

Logical Comparison (Unsigned Positive Binary Operands)

Z C Relation

0 0 C(Q) < C(Y)

1 1 C(Q) = C(Y)

0 1 C(Q) > C(Y)

cmpxn Compare with Index Register n l0n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Xn) :: C(Y)0,17

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

The zero (Z), negative (N), and carry (C) indicators are set as follows:

Algebraic Comparison (Signed Binary Operands)

Z N C Relation Sign

0 0 0 C(Xn) > C(Y)0,17 C(Xn)0 = 0, C(Y)0 = 1

0 0 1 C(Xn) > C(Y)0,17 C(Xn)0 = C(Y)0

1 0 1 C(Xn) = C(Y)0,17 C(Xn)0 = C(Y)0

0 1 0 C(Xn) < C(Y)0,17 C(Xn)0 = C(Y)0

0 1 1 C(Xn) < C(Y)0,17 C(Xn)0 = 1, C(Y)0 = 0

Logical Comparison (Unsigned Positive Binary Operands)

Z C Relation

0 0 C(Xn) < C(Y)0,17

1 1 C(Xn) = C(Y)0,17

0 1 C(Xn) > C(Y)0,17

cwl Compare with Limits 111 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y) :: closed interval [C(A);C(Q)]
C(Y) :: C(Q)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) <= C(Y) <= C(Q) or C(A) >= C(Y) >= C(Q), then ON; otherwise
OFF.

The negative (N) and carry (C) indicators are set as follows:

N C Relation Sign

0 0 C(Q) > C(Y) C(Q)0 = 0, C(Y)0 = 1

0 1 C(Q) >= C(Y) C(Q)0 = C(Y)0

1 0 C(Q) < C(Y) C(Q)0 = C(Y)0

1 1 C(Q) < C(Y) C(Q)0 = 1, C(Y)0 = Q

NOTES: The cwl instruction tests the value of C(Y) to determine if it is within the
range of values set by C(A) and C(Q). The comparison of C(Y) with C(Q)
locates C(Y) with respect to the interval if C(Y) is not contained within the
interval.

Fixed-Point Miscellaneous

szn Set Zero and Negative Indicators 234 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Set indicators according to C(Y)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

sznc Set Zero and Negative Indicators and Clear 214 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Set indicators according to C(Y)

00...0 C(Y)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON, otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

BOOLEAN OPERATION INSTRUCTIONS

Boolean And

ana AND to A 375 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A)i & C(Y)i C(A)→ i for i = (0, 1, ..., 35)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

anaq AND to AQ 377 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(AQ)i & C(Y-pair)i C(AQ)→ i for i = (0, 1, ..., 71)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

anq AND to Q 376 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q)i & C(Y)i C(Q)→ i for i = (0, 1, ..., 35)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

ansa AND to Storage A 355 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A)i & C(Y)i C(Y)→ i for i = (0, 1, ..., 35)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

ansq AND to Storage Q 356 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q)i & C(Y)i C(Y)→ i for i = (0, 1, ..., 35)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

ansxn AND to Storage Index Register n 34n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Xn)i & C(Y)i C(Y)→ i for i = (0, 1, ..., 17)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y)0,17 = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

anxn AND to Index Register n 36n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Xn)i & C(Y)i C(Xn)→ i for i = (0, 1, ..., 17)

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)0 = 1, then ON; otherwise OFF

Boolean Or

ora OR to A 275 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A)i | C(Y)i C(A)→ i for i = (0, 1, ..., 35)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

oraq OR to AQ 277 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(AQ)i | C(Y-pair)i C(AQ)→ i for i = (0, 1, ..., 71)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

orq OR to Q 276 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q)i | C(Y)i C(Q)→ i for i = (0, 1, ..., 35)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

orsa OR to Storage A 255 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A)i | C(Y)i C(Y)→ i for i = (0, 1, ..., 35)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

orsq OR to Storage Q 256 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q)i | C(Y)i C(Y)→ i for i = (0, 1, ..., 35)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

orsxn OR to Storage Index Register n 24n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Xn)i | C(Y)i C(Y)→ i for i = (0, 1, ..., 17)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y)0,17 = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

orxn OR to Index Register n 26n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Xn)i | C(Y)i C(Xn)→ i for i = (0, 1, ..., 17)

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)0 = 1, then ON; otherwise OFF

Boolean Exclusive Or

era EXCLUSIVE OR to A 675 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A)i C(Y)⊕ i C(A)→ i for i = (0, 1, ..., 35)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

eraq EXCLUSIVE OR to AQ 677 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(AQ)i C(Y-pair)⊕ i C(AQ)→ i for i = (0, 1, ..., 71)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

erq EXCLUSIVE OR to Q 676 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q)i C(Y)⊕ i C(Q)→ i for i = (0, 1, ..., 35)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

ersa EXCLUSIVE OR to Storage A 655 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A)i C(Y)⊕ i C(Y)→ i for i = (0, 1, ..., 35)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

ersq EXCLUSIVE OR to Storage Q 656 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Q)i C(Y)⊕ i C(Y)→ i for i = (0, 1, ..., 35)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

ersxn EXCLUSIVE OR to Storage Index Register n 64n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Xn)i C(Y)⊕ i C(Y)→ i for i = (0, 1, ..., 17)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y)0,17 = 0, then ON; otherwise OFF

Negative If C(Y)0 = 0, then ON; otherwise OFF

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

erxn EXCLUSIVE OR to Index Register n 66n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Xn)i C(Y)⊕ i C(Xn)→ i for i = (0, 1, ..., 17)

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)0 = 1, then ON; otherwise OFF

Boolean Comparative And

cana Comparative AND with A 315 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Z)i = C(A)i & C(Y)i for i = (0, 1, ..., 35)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Z) = 0, then ON; otherwise OFF

Negative If C(Z)0 = 1, then ON; otherwise OFF

canaq Comparative AND with AQ 317 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Z)i = C(AQ)i & C(Y-pair)i for i = (0, 1, ..., 71)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Z) = 0, then ON; otherwise OFF

Negative If C(Z)0 = 1, then ON; otherwise OFF

canq Comparative AND with Q 316 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Z)i = C(Q)i & C(Y)i for i = (0, 1, ..., 35)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Z) = 0, then ON; otherwise OFF

Negative If C(Z)0 = 1, then ON; otherwise OFF

canxn Comparative AND with Index Register n 30n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Z)i = C(Xn)i & C(Y)i for i = (0, 1, ..., 17)

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Z) = 0, then ON; otherwise OFF

Negative If C(Z)0 = 1, then ON; otherwise OFF

Boolean Comparative Not

cnaa Comparative NOT with A 215 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Z)i = C(A)i & ~C(Y)i for i = (0, 1, ..., 35)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Z) = 0, then ON; otherwise OFF

Negative If C(Z)0 = 1, then ON; otherwise OFF

cnaaq Comparative NOT with AQ 217 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Z)i = C (AQ)i & ~C(Y-pair)i for i = (0, 1, ..., 71)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Z) = 0, then ON; otherwise OFF

Negative If C(Z)0 = 1, then ON; otherwise OFF

cnaq Comparative NOT with Q 216 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Z)i = C(Q)i & ~C(Y)i for i = (0, 1, ..., 35)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Z) = 0, then ON; otherwise OFF

Negative If C(Z)0 = 1, then ON; otherwise OFF

cnaxn Comparative NOT with Index Register n 20n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Z)i = C(Xn)i & ~C(Y)i for i = (0, 1, ..., 17)

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Z) = 0, then ON; otherwise OFF

Negative If C(Z)0 = 1, then ON; otherwise OFF

FLOATING-POINT ARITHMETIC INSTRUCTIONS

Floating-Point Data Movement Load

dfld Double-Precision Floating Load 433 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y-pair)0,7 C(E)→

C(Y-pair)8,71 C(AQ)→ 0,63

00...0 C(AQ)→ 64,71

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

fld Floating Load 431 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y)0,7 C(E)→

C(Y)8,35 C(AQ)→ 0,27

00...0 C(AQ)→ 30,71

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Floating-Point Data Movement Store

dfst Double-Precision Floating Store 457 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(E) C(Y-pair)→ 0,7

C(AQ)0,63 C(Y-pair)→ 8,71

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

dfstr Double-Precision Floating Store Rounded 472 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(EAQ) rounded C(Y-pair) (as in → dfst)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y-pair) = floating point 0, then ON; otherwise OFF

Negative If C(Y-pair)8 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

NOTES: The dfstr instruction performs a double-precision true round and
normalization on C(EAQ) as it is stored.

The definition of true round is located under the description of the frd
instruction.

The definition of normalization is located under the description of the fno
instruction.

Except for the precision of the stored result, the dfstr instruction is
identical to the fstr instruction.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

fst Floating Store 455 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(E) C(Y)→ 0,7

C(A)0,27 C(Y)→ 8,35

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpl instruction causes an illegal procedure
fault.

fstr Floating Store Rounded 470 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(EAQ) rounded C(Y) (as in → fst)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = floating point 0, then ON; otherwise OFF

Negative If C(Y)8 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

NOTES: The fstr instruction performs a true round and normalization on C(EAQ)
as it is stored.

The definition of true round is located under the description of the frd
instruction.

The definition of normalization is located under the description of the fno
instruction.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

Floating-Point Addition

dfad Double-Precision Floating Add 477 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: (C(EAQ) + C(Y-pair)) normalized C(EAQ)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

NOTES: The dfad instruction may be thought of as a dufa instruction followed by a
fno instruction.

The definition of normalization is located under the description of the fno
instruction.

dufa Double-Precision Unnormalized Floating Add 437 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(EAQ) + C(Y-pair) C(EAQ)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

NOTES: Except for the precision of the mantissa of the operand from main memory,
the dufa instruction is identical to the ufa instruction.

fad Floating Add 475 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: (C(EAQ) + C(Y)) normalized C(EAQ)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

NOTES: The fad instruction may be thought of a an ufa instruction followed by a
fno instruction.

The definition of normalization is located under the description of the fno
instruction.

ufa Unnormalized Floating Add 435 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(EAQ) + C(Y) C(EAQ)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

NOTES: The ufa instruction is executed as follows:

The mantissas are aligned by shifting the mantissa of the operand
having the algebraically smaller exponent to the right the number of
places equal to the absolute value of the difference in the two
exponents. Bits shifted beyond the bit position equivalent to AQ71 are
lost.

The algebraically larger exponent replaces C(E).

The sum of the mantissas replaces C(AQ).

If an overflow occurs during addition, then;

C(AQ) are shifted one place to the right.

C(AQ)0 is inverted to restore the sign.

C(E) is increased by one.

Floating-Point Subtraction

dfsb Double-Precision Floating Subtract 577 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: (C(EAQ) – C(Y-pair)) normalized C(EAQ)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

NOTES: The dfsb instruction is identical to the dfad instruction with the exception
that the twos complement of the mantissa of the operand from main
memory is used.

dufs Double-Precision Unnormalized Floating
Subtract

537 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(EAQ) - C(Y-pair) C(EAQ)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

NOTES: Except for the precision of the mantissa of the operand from main memory,
the dufs instruction is identical with the ufs instruction.

fsb Floating Subtract 575 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: (C(EAQ) – C(Y)) normalized C(EAQ)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

NOTES: The fsb instruction may be thought of as an ufs instruction followed by a
fno instruction.

The definition of normalization is located under the description of the fno
instruction.

ufs Unnormalized Floating Subtract 535 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(EAQ) - C(Y) C(EAQ)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

NOTES: The ufs instruction is identical to the ufa instruction with the exception
that the twos complement of the mantissa of the operand from main
memory is used.

Floating-Point Multiplication

dfmp Double-Precision Floating Multiply 463 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: (C(EAQ) × C(Y-Pair)) normalized C(EAQ)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

NOTES: The dfmp instruction may be thought of as a dufm instruction followed by a
fno instruction.

The definition of normalization is located under the description of the fno
instruction.

dufm Double-Precision Unnormalized Floating
Multiply

423 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(EAQ) × C(Y-pair) C(EAQ)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

NOTES: Except for the precision of the mantissa of the operand from main memory,
the dufm instruction is identical to the ufm instruction.

fmp Floating Multiply 461 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: (C(EAQ) × C(Y)) normalized C(EAQ)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

NOTES: The fmp instruction may be thought of as a ufm instruction followed by a
fno instruction.

The definition of normalization is located under the description of the fno
instruction.

ufm Unnormalized Floating Multiply 421 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(EAQ) × C(Y) C(EAQ)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

NOTES: The ufm instruction is executed as follows:

C(E) + C(Y)0,7 C(E)→

(C(AQ) × C(Y)8,35)0,71 C(AQ)→

A normalization is performed only in the case of both factor mantissas
being 100...0 which is the twos complement approximation to the decimal
value -1.0.

The definition of normalization is located under the description of the fno
instruction.

Floating-Point Division

dfdi Double-Precision Floating Divide Inverted 527 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y-pair) / C(EAQ) C(EAQ)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

If division takes place: If no division takes place:

Zero If C(AQ) = 0, then ON;
otherwise OFF

If divisor mantissa = 0, then ON;
otherwise OFF

Negative If C(AQ)0 = 1, then ON;
otherwise OFF

If dividend < 0, then ON;
otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

NOTES: Except for the interchange of the roles of the operands, the execution of
the dfdi instruction is identical to the execution of the dfdv instruction.

If the divisor mantissa C(AQ) is zero, the division does not take place.
Instead, a divide check fault occurs and all registers remain unchanged.

dfdv Double-Precision Floating Divide 567 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(EAQ) / C(Y-pair) C(EAQ)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

If division takes place: If no division takes place:

Zero If C(AQ) = 0, then ON;
otherwise OFF

If divisor mantissa = 0, then ON;
otherwise OFF

Negative If C(AQ)0 = 1, then ON;
otherwise OFF

If dividend < 0, then ON;
otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

NOTES: The dfdv instruction is executed as follows:

The dividend mantissa C(AQ) is shifted right and the dividend exponent
C(E) increased accordingly until

 | C(AQ)0,63 | < | C(Y-pair)8,71 |

C(E) - C(Y-pair)0,7 C(E)→

C(AQ) / C(Y-pair)8,71 C(AQ)→ 0,63

00...0 C(Q)→ 64,71

If the divisor mantissa C(Y-pair)8,71 is zero after alignment, the division
does not take place. Instead, a divide check fault occurs, C(AQ) contains
the dividend magnitude, and the negative indicator reflects the dividend
sign.

fdi Floating Divide Inverted 525 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y) / C(EAQ) C(EA)→

00...0 C(Q)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

If division takes place: If no division takes place:

Zero If C(A) = 0, then ON;
otherwise OFF

If divisor mantissa = 0, then ON;
otherwise OFF

Negative If C(A)0 = 1, then ON;
otherwise OFF

If dividend < 0, then ON;
otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

NOTES: Except for the interchange of roles of the operands, the execution of the
fdi instruction is identical to the execution of the fdv instruction.

If the divisor mantissa C(AQ) is zero, the division does not take place.
Instead, a divide check fault occurs and all the registers remain
unchanged.

fdv Floating Divide 565 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(EAQ) /C(Y) C(EA)→

00...0 C(Q)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

If division takes place: If no division takes place:

Zero If C(A) = 0, then ON;
otherwise OFF

If divisor mantissa = 0, then ON;
otherwise OFF

Negative If C(A)0 = 1, then ON;
otherwise OFF

If dividend < 0, then ON;
otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

NOTES: The fdv instruction is executed as follows:

The dividend mantissa C(AQ) is shifted right and the dividend exponent
C(E) increased accordingly until

 | C(AQ)0,27 | < | C(Y)8,35 |

C(E) - C(Y)0,7 C(E)→

C(AQ) / C(Y)8,35 C(A)→

00...0 C(Q)→

If the divisor mantissa C(Y)8,35 is zero after alignment, the division does
not take place. Instead, a divide check fault occurs, C(AQ) contains the
dividend magnitude, and the negative indicator reflects the dividend sign.

Floating-Point Negate

fneg Floating Negate 513 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: -C(EAQ) normalized C(EAQ)→

MODIFICATIONS: All, but none affect instruction execution.

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

NOTES: This instruction changes the number in C(EAQ) to its normalized negative
(if C(AQ) ≠ 0). The operation is executed by first forming the twos
complement of C(AQ), and then normalizing C(EAQ).

Even if originally C(EAQ) were normalized, an exponent overflow can still
occur, namely when C(E) = +127 and C(AQ) = 100...0 which is the twos
complement approximation for the decimal value -1.0.

The definition of normalization may be found under the description of the
fno instruction.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

Floating-Point Normalize

fno Floating Normalize 573 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(EAQ) normalized C(EAQ)→

MODIFICATIONS: All, but none affect instruction execution.

INDICATORS: (Indicators not listed are not affected)

Zero If C(EAQ) = floating point 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

Overflow Set OFF

NOTES: The fno instruction normalizes the number in C(EAQ) if C(AQ) ≠ 0 and the
overflow indicator is OFF.

A normalized floating number is defined as one whose mantissa lies in the
interval [0.5,1.0] such that

0.5 <= | C(AQ) | < 1.0

which, in turn, requires that C(AQ)0 ≠ C(AQ)1.

If the overflow indicator is ON, then C(AQ) is shifted one place to the right,
C(AQ)0 is inverted to reconstitute the actual sign, and the overflow
indicator is set OFF. This action makes the fno instruction useful in
correcting overflows that occur with fixed point numbers.

Normalization is performed by shifting C(AQ)1,71 one place to the left and
reducing C(E) by 1, repeatedly, until the conditions for C(AQ)0 and C(AQ)1
are met. Bits shifted out of AQ1 are lost.

If C(AQ) = 0, then C(E) is set to -128 and the zero indicator is set ON.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

Floating-Point Round

dfrd Double-Precision Floating Round 473 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(EAQ) rounded to 64 bits C(EAQ)→

0 C(AQ)→ 65,71

MODIFICATIONS: All, but none affect instruction execution.

INDICATORS: (Indicators not listed are not affected)

Zero If C(EAQ) = floating point 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

NOTES: The dfrd instruction is identical to the frd instruction except that the
rounding constant used is (11...1)65,71 instead of (11...1)29,71.

Attempted repetition with the rpl instruction causes an illegal procedure
fault

frd Floating Round 471 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(EAQ) rounded to 28 bits C(EAQ)→

0 C(AQ)→ 29,71

MODIFICATIONS: All, but none affect instruction execution.

INDICATORS: (Indicators not listed are not affected)

Zero If C(EAQ) = floating point 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1 then ON; otherwise OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

NOTES: If C(AQ) ≠ 0, the frd instruction performs a true round to a precision of 28
bits and a normalization on C(EAQ).

A true round is a rounding operation such that the sum of the result of
applying the operation to two numbers of equal magnitude but opposite
sign is exactly zero.

The frd instruction is executed as follows:

C(AQ) + (11...1)29,71 C(AQ)→

If C(AQ)0 = 0, then a carry is added at AQ71

If overflow occurs, C(AQ) is shifted one place to the right and C(E) is
increased by 1.

If overflow does not occur, C(EAQ) is normalized.

If C(AQ) = 0, C(E) is set to -128 and the zero indicator is set ON.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

Floating-Point Compare

dfcmg Double-Precision Floating Compare Magnitude 427 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(E) :: C(Y-pair)0,7

| C(AQ)0,63 | :: | C(Y-pair)8,71 |

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If | C(EAQ) | = | C(Y-pair) | , then ON; otherwise OFF

Negative If | C(EAQ) | < | C(Y-pair) | , then ON; otherwise OFF

NOTES: The dfcmg instruction is identical to the dfcmp instruction except that the
magnitudes of the mantissas are compared instead of the algebraic values.

dfcmp Double-Precision Floating Compare 517 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(E) :: C(Y-pair)0,7

C(AQ)0,63 :: C(Y-pair)8,71

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(EAQ) = C(Y-pair), then ON; otherwise OFF

Negative If C(EAQ) < C(Y-pair), then ON; otherwise OFF

NOTES: The dfcmp instruction is identical to the fcmp instruction except for the
precision of the mantissas actually compared.

fcmg Floating Compare Magnitude 425 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(E) :: C(Y)0,7

| C(AQ)0,27 | :: | C(Y)8,35 |

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If | C(EAQ) | = | C(Y) | , then ON; otherwise OFF

Negative If | C(EAQ) | < | C(Y) | , then ON; otherwise OFF

NOTES: The fcmg instruction is identical to the fcmp instruction except that the
magnitudes of the mantissas are compared instead of the algebraic values.

fcmp Floating Compare 515 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(E) :: C(Y)0,7

C(AQ)0,27 :: C(Y)8,35

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(EAQ) = C(Y), then ON; otherwise OFF

Negative If C(EAQ) < C(Y), then ON; otherwise OFF

NOTES: The fcmp instruction is executed as follows:

The mantissas are aligned by shifting the mantissa of the operand with
the algebraically smaller exponent to the right the number of places
equal to the difference in the two exponents.

The aligned mantissas are compared and the indicators set accordingly.

Floating-Point Miscellaneous

ade Add to Exponent 415 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(E) + C(Y)0,7 C(E)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero Set OFF

Negative Set OFF

Exponent
Overflow

If exponent is greater than +127, then ON

Exponent
Underflow

If exponent is less than -128, then ON

fszn Floating Set Zero and Negative Indicators 430 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Set indicators according to C(Y)

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y)8,35 = 0, then ON; otherwise OFF

Negative If C(Y)8 = 1, then ON; otherwise OFF

lde Load Exponent 411 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y)0,7 C(E)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero Set OFF

Negative Set OFF

ste Store Exponent 456 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(E) C(Y)→ 0,7

00...0 C(Y)→ 8,17

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

TRANSFER INSTRUCTIONS

call6 Call (Using PR6 and PR7) 713 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If C(TPR.TRR) < C(PPR.PRR) then

C(DSBR.STACK) || C(TPR.TRR) C(PR7.SNR)→

If C(TPR.TRR) = C(PPR.PRR) then C(PR6.SNR) C(PR7.SNR)→

C(TPR.TRR) C(PR7.RNR)→

If C(TPR.TRR) = 0 then C(SDW.P) C(PPR.P);→

otherwise 0 C(PPR.P)→

00...0 C(PR7.WORDNO)→

00...0 C(PR7.BITNO)→

C(TPR.TRR) C(PPR.PRR)→

C(TPR.TSR) C(PPR.PSR)→

C(TPR.CA) C(PPR.IC)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: See Section 3 for descriptions of the various registers and Section 8 for a
flowchart of their role in address preparation.

If C(TPR.TRR) > C(PPR.PRR), an access violation fault (outward call)
occurs and the call6 instruction is not executed.

If the call6 instruction is executed with the processor in absolute mode
with bit 29 of the instruction word set OFF and without indirection through
an ITP or ITS pair, then:

the appending mode is entered for the address preparation of the
call6 operand address and is retained if the instruction executes
successfully,

and the effective segment number generated for the SDW fetch and
subsequent loading into C(TPR.TSR) is equal to C(PPR.PSR) and may
be undefined in absolute mode,

and the effective ring number loaded into C(TPR.TRR) prior to the SDW
fetch is equal to C(PPR.PRR) (which is 0 in absolute mode) implying
that the access violation checks for outward call and bad outward call
are ineffective and that an access violation (out of call brackets) will
occur if C(SDW.R1) ≠ 0.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

ret Return 630 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y)0,17 C(PPR.IC)→

C(Y)18,31 C(IR)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Parity mask If C(Y)27 = 1, and the processor is in absolute or mask privileged mode,
then ON; otherwise OFF. This indicator is not affected in the normal or
BAR modes.

Not BAR mode Can be set OFF but not ON by the ret instruction

Absolute mode Can be set OFF but not ON by the ret instruction

All other
indicators

If corresponding bit in C(Y) is 1, then ON; otherwise, OFF

NOTES: The relation between C(Y)18,31 and the indicators is given in Table 4-5
earlier in this section.

The tally runout indicator reflects C(Y)25 regardless of what address
modification is performed on the ret instruction.

The ret instruction may be thought of as a ldi instruction followed by a
transfer to location C(Y)0,17.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

rtcd Return Control Double 610 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y-pair)3,17 C(PPR.PSR)→

Maximum of

C(Y-pair)18,20; C(TPR.TRR); C(SDW.R1) C(PPR.PRR)→

C(Y-pair)36,53 C(PPR.IC)→

If C(PPR.PRR) = 0 then C(SDW.P) C(PPR.P);→

otherwise 0 C(PPR.P)→

C(PPR.PRR) C(PRn.RNR) for n = (0, 1, ..., 7)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: See Section 3 for descriptions of the various registers and Section 8 for a
flowchart of their role in address preparation.

If an access violation fault occurs when fetching the SDW for the Y-pair,
the C(PPR.PSR) and C(PPR.PRR) are not altered.

If the rtcd instruction is executed with the processor in absolute mode
with bit 29 of the instruction word set OFF and without indirection through
an ITP or ITS pair, then:

appending mode is entered for address preparation for the rtcd
operand and is retained if the instruction executes successfully,

and the effective segment number generated for the SDW fetch and
subsequent loading into C(TPR.TSR) is equal to C(PPR.PSR) and may
be undefined in absolute mode,

and the effective ring number loaded into C(TPR.TRR) prior to the SDW
fetch is equal to C(PPR.PRR) (which is 0 in absolute mode) implying
that control is always transferred into ring 0.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

teo Transfer on Exponent Overflow 614 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If exponent overflow indicator ON then

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

otherwise, no change to C(PPR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Exponent
overflow

Set OFF

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

teu Transfer on Exponent Underflow 615 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If exponent underflow indicator ON then

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

otherwise, no change to C(PPR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Exponent
underflow

Set OFF

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tmi Transfer on Minus 604 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If negative indicator ON then

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

otherwise, no change to C(PPR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tmoz Transfer on Minus or Zero 604 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If negative or zero indicator ON then

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

otherwise, no change to C(PPR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tnc Transfer on No Carry 602 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If carry indicator OFF then

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

otherwise, no change to C(PPR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tnz Transfer on Nonzero 601 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If zero indicator OFF then

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

otherwise, no change to C(PPR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tov Transfer on Overflow 617 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If overflow indicator ON then

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

otherwise, no change to C(PPR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Overflow Set OFF

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tpl Transfer on Plus 605 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If negative indicator OFF, then

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

otherwise, no change to C(PPR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tpnz Transfer on Plus and Nonzero 605 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If negative and zero indicators are OFF then

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

otherwise, no change to C(PPR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tra Transfer Unconditionally 710 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

trc Transfer on Carry 603 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If carry indicator ON then

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

otherwise, no change to C(PPR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

trtf Transfer on Truncation Indicator OFF 601 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If truncation indicator OFF then

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

otherwise, no change to C(PPR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

trtn Transfer on Truncation Indicator ON 600 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If truncation indicator ON then

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

otherwise, no change to C(PPR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Truncation Set OFF

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tsp0 Transfer and Set Pointer Register 0 270 (0)

tsp1 Transfer and Set Pointer Register 1 271 (0)

tsp2 Transfer and Set Pointer Register 2 272 (0)

tsp3 Transfer and Set Pointer Register 3 273 (0)

tsp4 Transfer and Set Pointer Register 4 670 (0)

tsp5 Transfer and Set Pointer Register 5 671 (0)

tsp6 Transfer and Set Pointer Register 6 672 (0)

tsp7 Transfer and Set Pointer Register 7 673 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(PPR.PRR) C(PRn.RNR)→

C(PPR.PSR) C(PRn.SNR)→

C(PPR.IC) + 1 C(PRn.WORDNO)→

00...0 C(PRn.BITNO)→

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tss Transfer and Set Slave 715 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(TPR.CA) + (BAR base) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Not BAR mode Set OFF (see notes below)

Absolute mode Set OFF

NOTES: If the tss instruction is executed with the processor not in BAR mode the
not BAR mode indicator is set OFF to enable subsequent addressing in the
BAR mode. The base address register (BAR) is used in the address
preparation of the transfer, and the BAR will be used in address
preparation for all subsequent instructions until a fault or interrupt occurs.

If the tss instruction is executed with the not BAR mode indicator already
OFF, it functions as a tra instruction and no indicators are changed.

If C(TPR.CA) >= (BAR bound) the transfer does not take place. Instead, a
store fault (out of bounds) occurs.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tsxn Transfer and Set Index Register n 70n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(PPR.IC) + 1 C(Xn)→

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

ttf Transfer on Tally Runout Indicator OFF 607 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If tally runout indicator OFF then

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

otherwise, no change to C(PPR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

ttn Transfer on Tally Runout Indicator ON 606 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If tally runout indicator ON then

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

otherwise, no change to C(PPR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tze Transfer on Zero 600 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If zero indicator ON then

C(TPR.CA) C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→

otherwise, no change to C(PPR)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

POINTER REGISTER INSTRUCTIONS

Pointer Register Data Movement Load

easp0 Effective Address to Segment Number of PR0 311 (0)

easp1 Effective Address to Segment Number of PR1 310 (1)

easp2 Effective Address to Segment Number of PR2 313 (0)

easp3 Effective Address to Segment Number of PR3 312 (1)

easp4 Effective Address to Segment Number of PR4 331 (0)

easp5 Effective Address to Segment Number of PR5 330 (1)

easp6 Effective Address to Segment Number of PR6 333 (0)

easp7 Effective Address to Segment Number of PR7 332 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(TPR.CA) C(PRn.SNR)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

eawp0 Effective Address to Word/Bit Number of PR0 310 (0)

eawp1 Effective Address to Word/Bit Number of PR1 311 (1)

eawp2 Effective Address to Word/Bit Number of PR2 312 (0)

eawp3 Effective Address to Word/Bit Number of PR3 313 (1)

eawp4 Effective to Word/Bit Number of PR4 Address 330 (0)

eawp5 Effective Address to Word/Bit Number of PR5 331 (1)

eawp6 Effective Address to Word/Bit Number of PR6 332 (0)

eawp7 Effective Address to Word/Bit Number of PR7 333 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(TPR.CA) C(PRn.WORDNO)→

C(TPR.TBR) C(PRn.BITNO)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

epbp0 Effective Pointer at Base to PR0 350 (1)

epbp1 Effective Pointer at Base to PR1 351 (0)

epbp2 Effective Pointer at Base to PR2 352 (1)

epbp3 Effective Pointer at Base to PR3 353 (0)

epbp4 Effective Pointer at Base to PR4 370 (1)

epbp5 Effective Pointer at Base to PR5 371 (0)

epbp6 Effective Pointer at Base to PR6 372 (1)

epbp7 Effective Pointer at Base to PR7 373 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(TPR.TRR) C(PRn.RNR)→

C(TPR.TSR) C(PRn.SNR)→

00...0 C(PRn.WORDNO)→

0000 C(PRn.BITNO)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

epp0 Effective Pointer to Pointer Register 0 350 (0)

epp1 Effective Pointer to Pointer Register 1 351 (1)

epp2 Effective Pointer to Pointer Register 2 352 (0)

epp3 Effective Pointer to Pointer Register 3 353 (1)

epp4 Effective Pointer to Pointer Register 4 370 (0)

epp5 Effective Pointer to Pointer Register 5 371 (1)

epp6 Effective Pointer to Pointer Register 6 372 (0)

epp7 Effective Pointer to Pointer Register 7 373 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(TPR.TRR) C(PRn.RNR)→

C(TPR.TSR) C(PRn.SNR)→

C(TPR.CA) C(PRn.WORDNO)→

C(TPR.TBR) C(PRn.BITNO)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

lpri Load Pointer Registers from ITS Pairs 173 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., 7

Y-pair = Y-block16 + 2n

Maximum of

C(Y-pair)18,20; C(SDW.R1); C(TPR.TRR) C(PRn.RNR)→

C(Y-pair)3,17 C(PRn.SNR)→

C(Y-pair)36,53 C(PRn.WORDNO)→

C(Y-pair)57,62 C(PRn.BITNO)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Starting at location Y-block16, the contents of eight word pairs (in ITS pair
format) replace the contents of pointer registers 0 through 7 as shown.

Since C(TPR.TRR) and C(SDW.R1) are both equal to zero in absolute mode,
C(Y-pair)18,20 are loaded into PRn.RNR in absolute mode.

Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

lprpn Load Pointer Register n Packed 76n (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(TPR.TRR) C(PRn.RNR)→

If C(Y)0,1 ≠ 11, then

C(Y)0,5 C(PRn.BITNO);→

otherwise, generate command fault

If C(Y)6,17 = ll...1, then 111 C(PRn.SNR)→ 0,2

otherwise, 000 C(PRn.SNR)→ 0,2

C(Y)6,17 C(PRn.SNR)→ 3,14

C(Y)18,35 C(PRn.WORDNO)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Binary 1s in C(Y)0,1 correspond to an illegal BITNO, that is, a bit position
beyond the extent of C(Y). Detection of these bits causes a command fault.

Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Pointer Register Data Movement Store

spbp0 Store Segment Base Pointer of PR0 250 (1)

spbp1 Store Segment Base Pointer of PR1 251 (0)

spbp2 Store Segment Base Pointer of PR2 252 (1)

spbp3 Store Segment Base Pointer of PR3 253 (0)

spbp4 Store Segment Base Pointer of PR4 650 (1)

spbp5 Store Segment Base Pointer of PR5 651 (0)

spbp6 Store Segment Base Pointer of PR6 652 (1)

spbp7 Store Segment Base Pointer of PR7 653 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(PRn.SNR) C(Y-pair)→ 3,17

C(PRn.RNR) C(Y-pair)→ 18,20

000 C(Y-pair)→ 0,2

00...0 C(Y-pair)→ 21,29

(43)8 C(Y-pair)→ 30,35

00...0 C(Y-pair)→ 36,71

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

spri Store Pointer Registers as ITS Pairs 254 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., 7

Y-pair = Y-block16 + 2n

000 C(Y-pair)→ 0,2

C(PRn.SNR) C(Y-pair)→ 3,17

C(PRn.RNR) C(Y-pair)→ 18,20

00...0 C(Y-pair)→ 21,29

(43)8 C(Y-pair)→ 30,35

C(PRn.WORDNO) C(Y-pair)→ 36,53

000 C(Y-pair)→ 54,56

C(PRn.BITNO) C(Y-pair)→ 57,62

00...0 C(Y-pair)→ 63,71

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Starting at location Y-block16, the contents of pointer registers 0 through
7 replace the contents of eight word pairs (in ITS pair format).

Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

spri0 Store Pointer Register 0 as ITS Pair 250 (0)

spri1 Store Pointer Register 1 as ITS Pair 251 (1)

spri2 Store Pointer Register 2 as ITS Pair 252 (0)

spri3 Store Pointer Register 3 as ITS Pair 253 (1)

spri4 Store Pointer Register 4 as ITS Pair 650 (0)

spri5 Store Pointer Register 5 as ITS Pair 651 (1)

spri6 Store Pointer Register 6 as ITS Pair 652 (0)

spri7 Store Pointer Register 7 as ITS Pair 653 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

000 C(Y-pair)→ 0,2

C(PRn.SNR) C(Y-pair)→ 3,17

C(PRn.RNR) C(Y-pair)→ 18,20

00...0 C(Y-pair)→ 21,29

(43)8 C(Y-pair)→ 30,35

C(PRn.WORDNO) C(Y-pair)→ 36,53

000 C(Y-pair)→ 54,56

C(PRn.BITNO) C(Y-pair)→ 57,62

00...0 C(Y-pair)→ 63,71

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sprpn Store Pointer Register n Packed 54n (0

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(PRn.BITNO) C(Y)→ 0,5

C(PRn.SNR)3,14 C(Y)→ 6,17

C(PRn.WORDNO) C(Y)→ 18,35

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: If C(PRn.SNR)0,2 are nonzero, and C(PRn.SNR) ≠ 11...1, then a store fault
(illegal pointer) will occur and C(Y) will not be changed.

Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Pointer Register Address Arithmetic

adwp0 Add to Word Number of Pointer Register 0 050 (0)

adwp1 Add to Word Number of Pointer Register 1 051 (0)

adwp2 Add to Word Number of Pointer Register 2 052 (0)

adwp3 Add to Word Number of Pointer Register 3 053 (0)

adwp4 Add to Word Number of Pointer Register 4 150 (0)

adwp5 Add to Word Number of Pointer Register 5 151 (0)

adwp6 Add to Word Number of Pointer Register 6 152 (0)

adwp7 Add to Word Number of Pointer Register 7 153 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Y)0,17 + C(PRn.WORDNO) C(PRn.WORDNO)→

00...0 C(PRn.BITNO)→

MODIFICATIONS: All except dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Pointer Register Miscellaneous

epaq Effective Pointer to AQ 213 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: 000 C(AQ)→ 0,2

C(TPR.TSR) C(AQ)→ 3,17

00...0 C(AQ)→ 18,32

C(TPR.TRR) C(AQ)→ 33,35

C(TPR.CA) C(AQ)→ 36,53

00...0 C(AQ)→ 54,65

C(TPR.TBR) C(AQ)→ 66,71

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

MISCELLANEOUS INSTRUCTIONS

Calendar Clock

rccl Read Calendar Clock 633 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: 00...0 C(AQ)→ 0,19

C(calendar clock) C(AQ)→ 20,71

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: C(TPR.CA)0,2 (C(TPR.CA)1,2 for the DPS 8M processor) specify which
processor port (i.e., which system controller) is to be used. The contents of
the clock in the designated system controller replace the contents of the
AQ-register

Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Derail

drl Derail 002 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Causes a fault which fetches and executes, in absolute mode, the
instruction pair at main memory location C+(14)8. The value of C is
obtained from the FAULT VECTOR switches on the processor
configuration panel.

MODIFICATIONS: All, but none affect instruction execution

INDICATORS: None affected

NOTES: Except for the different constant used for fetching the instruction pair
from main memory, the drl instruction is identical to the mme instruction.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Execute

xec Execute 716 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Fetch and execute the instruction in C(Y)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: The xec instruction itself does not affect any indicator. However, the
execution of the instruction from C(Y) may affect indicators.

If the execution of the instruction from C(Y) modifies C(PPR.IC), then a
transfer of control occurs; otherwise, the next instruction to be executed is
fetched from C(PPR.IC)+1.

To execute a rpd instruction, the xec instruction must be in an odd
location. The instruction pair repeated is that instruction pair at C(PPR.IC)
+1, that is, the instruction pair immediately following the xec instruction.
C(PPR.IC) is adjusted during the execution of the repeated instruction pair
so that the next instruction fetched for execution is from the first word
following the repeated instruction pair.

EIS multiword instructions may be executed with the xec instruction but
the required operand descriptors must be located immediately after the
xec instruction, that is, starting at C(PPR.IC)+1. C(PPR.IC) is adjusted
during execution of the EIS multiword instruction so that the next
instruction fetched for execution is from the first word following the EIS
operand descriptors.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

xed Execute Double 717 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Fetch and execute the instruction pair at C(Y-pair)

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: The xed instruction itself does not affect any indicator. However, the
execution of the instruction pair from C(Y-pair) may affect indicators.

The even instruction from C(Y-pair) must not alter C(Y-pair)36,71, and must
not be another xed instruction.

If the execution of the instruction pair from C(Y-pair) alters C(PPR.IC),
then a transfer of control occurs; otherwise, the next instruction to be
executed is fetched from C(PPR.IC)+1. If the even instruction from C(Y-
pair) alters C(PPR.IC), then the transfer of control is effective immediately
and the odd instruction is not executed.

To execute an instruction pair having an rpd instruction as the odd
instruction, the xed instruction must be located at an odd address. The
instruction pair repeated is that instruction pair at C PPR.IC)+1, that is,
the instruction pair immediately following the xed instruction. C(PPR.IC)
is adjusted during the execution of the repeated instruction pair so the the
next instruction fetched for execution is from the first word following the
repeated instruction pair.

The instruction pair at C(Y-pair) may cause any of the processor defined
fault conditions, but only the directed faults (0,1,2,3) and the access
violation fault may be restarted successfully by the hardware. Note that
the software induced fault tag (1,2,3) faults cannot be properly restarted.

An attempt to execute an EIS multiword instruction causes an illegal
procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Master Mode Entry

mme Master Mode Entry 001 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Causes a fault that fetches and executes, in absolute mode, the instruction
pair at main memory location C+4. The value of C is obtained from the
FAULT VECTOR switches on the processor configuration panel.

MODIFICATIONS: All, but none affect instruction execution

INDICATORS: None affected

NOTES: Execution of the mme instruction implies the following conditions:

During the execution of the mme instruction and the two instructions
fetched, the processor is temporarily in absolute mode independent of
the value of the absolute mode indicator. The processor stays in
absolute mode if the absolute mode indicator is ON after the execution
of the instructions.

The instruction at C+4 must not alter the contents of main memory
location C+5, and must not be an xed instruction.

If the contents of the instruction counter (PPR.IC) are changed during
execution of the instruction pair at C+4, the next instruction is fetched
from the modified C(PPR.IC); otherwise, the next instruction is fetched
from C(PPR.IC)+1.

If the instruction at C+4 alters C(PPR.IC), then this transfer of control
is effective immediately, and the instruction at C+5 is not executed.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

mme2 Master Mode Entry 2 004 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Causes a fault that fetches and executes, in absolute mode, the instruction
pair at main memory location C+(52)8. The value of C is obtained from the
FAULT VECTOR switches on the processor configuration panel.

MODIFICATIONS: All, but none affect instruction execution

INDICATORS: None affected

NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Except for the different constant used for fetching the instruction pair
from main memory, the mme2 instruction is identical to the mme instruction.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

mme3 Master Mode Entry 3 005 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Causes a fault that fetches and executes, in absolute mode, the instruction
pair at main memory location C+(54)8. The value of C is obtained from the
FAULT VECTOR switches on the processor configuration panel.

MODIFICATIONS: All, but none affect instruction execution

INDICATORS: None affected

NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Except for the different constant used for fetching the instruction pair
from main memory, the mme3 instruction is identical to the mme instruction.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

mme4 Master Mode Entry 4 007 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Causes a fault that fetches and executes, in absolute mode, the instruction
pair at main memory location C+(56)8. The value of C is obtained from the
FAULT VECTOR switches on the processor configuration panel.

MODIFICATIONS: All, but none affect instruction execution

INDICATORS: None affected

NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Except for the different constant used for fetching the instruction pair
from main memory, the mme4 instruction is identical to the mme instruction.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

No Operation

nop No Operation 011 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: No operation takes place

MODIFICATIONS: All

INDICATORS: None affected (except as noted below)

NOTES: No operation takes place but address preparation is performed according
to the specified modifier, if any. If modification other than du or dl is
used, the computed addresses generated may cause faults.

The use of indirect then tally modifiers causes changes in the address and
tally fields of the referenced indirect words and the tally runout indicator
may be set ON as a result.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

puls1 Pulse One 012 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: No operation takes place

MODIFICATIONS: All

INDICATORS: None affected (except as noted below)

NOTES: The puls1 instruction is identical to the nop instruction except that it
causes certain unique synchronizing signals to appear in the processor
logic circuitry.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

puls2 Pulse Two 013 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: No operation takes place

MODIFICATIONS: All

INDICATORS: None affected (except as noted below)

NOTES: The puls2 instruction is identical to the nop instruction except that it
causes certain unique synchronizing signals to appear in the processor
logic circuitry.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Repeat

rpd Repeat Double 560 (0)

FORMAT:

Figure 4-9. Repeat Double (rpd) Instruction Word Format

SUMMARY: Execute the pair of instructions at C(PPR.IC)+1 either a specified number
of times or until a specified termination condition is met.

MODIFICATIONS: None

INDICATORS: (Indicators not listed are not affected)

Tally runout If C(X0)0,7 = 0 at termination, then ON; otherwise, OFF

All other
indicators

None affected. However, the execution of the repeated instructions may
affect indicators.

NOTES: The rpd instruction must be located in an odd main memory location
except when accessed via the xec or xed instructions, in which case the
xec or xed instruction must itself be in an odd main memory location.

Both repeated instructions must use R or RI modifiers and only X1, X2, ...,
X7 are permitted. For the purposes of this description, the even repeated
instruction shall use X-even and the odd repeated instruction shall use X-
odd. X-even and X-odd may be the same register.

If C = 1, then C(rpd instruction word)0,17 C(X0); otherwise, C(X0) is→
unchanged prior to execution.

The termination condition and tally fields of C(X0) control the repetition of
the instruction pair. An initial tally of zero is interpreted as 256.

The repetition cycle consists of the following steps:

a. Execute the pair of repeated instructions

b. C(X0)0,7 - 1 C(X0)→ 0,7
Modify C(X-even) and C(X-odd) as described below.

c. If C(X0)0,7 = 0, then set the tally runout indicator ON and terminate.

d. If a terminate condition has been met, then set the tally runout indicator
OFF and terminate.

e. Go to step a.

0
0

0
7

TALLY

8

0
8

A

1

0
9

B

1

1
0

C

1

1
1

1
7

Term. Cond.

7

1
8

2
6

(560)
8

9

2
7

0

1

2
8

1

1

2
9

0

1

3
0

3
5

DELTA

6

If a fault occurs during the execution of the instruction pair, the repetition
loop is terminated and control passes to the instruction pair associated
with the fault according to the conditions for the fault. C(X0), C(X-even),
and C(X-odd) are not updated for the repetition cycle in which the fault
occurs. Note in particular that certain faults occurring during execution of
the even instruction preclude the execution of the odd instruction for the
faulting repetition cycle.

EIS multiword instructions cannot be repeated. All other instructions may
be repeated except as noted for individual instructions or those that
explicitly alter C(X0).

The computed addresses, y-even and y-odd, of the operands (in the case of
R modification) or indirect words (in the case of RI modification) are
determined as follows:

For the first execution of the repeated instruction pair:

C(C(PPR.IC)+ 1)0,17 + C(X-even) y-even, y-even C(X-even)→ →

C(C(PPR.IC)+2)0,17 + C(X-odd) y-odd, y-odd C(X-odd)→ →

For all successive executions of the repeated instruction pair:

if C(X0)8 = 1, then C(X-even) + Delta y-even,→

y-even C(X-even);→

otherwise, C(X-even) y-even→

if C(X0)9 = 1, then C(X-odd) + Delta y-odd,→

y-odd C(X-odd);→

otherwise, C(X-odd) y-odd→

C(X0)8,9 correspond to control bits A and B, respectively, of the rpd
instruction word.

In the case of RI modification, only one indirect reference is made per
repeated execution. The TAG field of the indirect word is not interpreted.
The indirect word is treated as though it had R modification with R = N.

The bit configuration in C(X0)11,17 defines the conditions for which the
repetition loop is terminated. The terminate conditions are examined at
the completion of execution of the odd instruction. If more than one
condition is specified, the repeat terminates if any of the specified
conditions are met.

Bit 17 = 0 Ignore all overflows. Do not set the overflow indicator and
inhibit the overflow fault.

Bit 17 = 1 Process overflows. If the overflow mask indicator is ON,
then set the overflow indicator and terminate; otherwise,
cause an overflow fault.

Bit 16 = 1 Terminate if the carry indicator is OFF.

Bit 15 = 1 Terminate if the carry indicator is ON.

Bit 14 = 1 Terminate if the negative indicator is OFF.

Bit 13 = 1 Terminate if the negative indicator is ON.

Bit 12 = 1 Terminate if the zero indicator is OFF.

Bit 11 = 1 Terminate if the zero indicator is ON.

At the time of termination:

C(X0)0,7 contain the tally residue; that is, the number of repeats
remaining until a tally runout would have occurred.

If the rpd instruction is interrupted (by any fault) before termination,
the tally runout indicator is OFF.

C(X-even) and C(X-odd) contain the computed addresses of the next
operands or indirect words that would have been used had the
repetition loop not terminated.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

rpl Repeat Link 500 (0)

FORMAT:

Figure 4-10. Repeat Link (rpl) Instruction Word Format

SUMMARY: Execute the instruction at C(PPR.IC)+1 either a specified number of times
or until a specified termination condition is met.

MODIFICATIONS: None

INDICATORS: (Indicators not listed are not affected)

Tally runout If C(X0)0,7 = 0 or link address C(Y)0,17 = 0 at runout termination, then ON;
otherwise OFF.

All other
indicators

None affected. However, the execution of the repeated instruction may
affect indicators.

NOTES: The repeated instruction must use an R modifier and only X1, X2, ..., X7
are permitted. For the purposes of this description, the repeated
instruction shall use Xn.

If C = 1, then C(rpl instruction word)0,17 C(X0); otherwise, C(X0) is→
unchanged prior to execution.

The termination condition and tally fields of C(X0) control the repetition of
the instruction. An initial tally of zero is interpreted as 256.

The repetition cycle consists of the following steps:

a. Execute the repeated instruction

b. C(X0)0,7 - 1 C(X0)→ 0,7
Modify C(Xn) as described below.

c. If C(X0)0,7 = 0 or C(Y)0,17 = 0, then set the tally runout indicator ON
and terminate.

d. If a terminate condition has been met, then set the tally runout indicator
OFF and terminate.

e. Go to step a.

0
0

0
7

TALLY

8

0
8

0

0
9

0

2

1
0

C

1

1
1

1
7

Term. Cond.

7

1
8

2
6

(500)
8

9

2
7

0

1

2
8

1

1

2
9

0

1

3
0

0 0 0 0 0

3
5

0

6

If a fault occurs during the execution of the instruction, the repetition loop
is terminated and control passes to the instruction pair associated with the
fault according to the conditions for the fault. C(X0) and C(Xn) are not
updated for the repetition cycle in which the fault occurs.

EIS multiword instructions cannot be repeated. All other instructions may
be repeated except as noted for individual instructions or those that
explicitly alter C(X0) or explicitly alter the link address, C(Y)0,17.

The computed address, y, of the operand is determined as follows:

For the first execution of the repeated instruction:

C(C(PPR.IC)+1)0,17 + C(Xn) y, y C(Xn)→ →

For all successive executions of the repeated instruction:

C(Xn) y→

if C(Y)0,17 ≠ 0, then C (y)0,17 C(Xn);→

otherwise, no change to C(Xn)

C(Y)0,17 is known as the link address and is the computed address of the
next entry in a threaded list of operands to be referenced by the repeated
instruction.

The operand is formed as:

(00...0)0,17 || C(Y)18,p

where p is 35 for single precision operands and 71 for double precision
operands.

The bit configuration in C(X0)11,17 and the link address, C(Y)0,17 define the
conditions for which the repetition loop is terminated. The terminate
conditions are examined at the completion of execution of the instruction.
If more than one condition is specified, the repeat terminates if any of the
specified conditions are met.

C(Y)0,17 = 0 Set the tally runout indicator ON and terminate.

Bit 17 = 0 Ignore all overflows. Do not set the overflow indicator
and inhibit the overflow fault.

Bit 17 = 1 Process overflows. If the overflow mask indicator is ON,
then set the overflow indicator and terminate; otherwise,
cause an overflow fault.

Bit 16 = 1 Terminate if the carry indicator is OFF.

Bit 15 = 1 Terminate if the carry indicator is ON.

Bit 14 = 1 Terminate if the negative indicator is OFF.

Bit 13 = 1 Terminate if the negative indicator is ON.

Bit 12 = 1 Terminate if the zero indicator is OFF.

Bit 11 = 1 Terminate if the zero indicator is ON.

At the time of termination:

C(X0)0,7 contain the tally residue; that is, the number of repeats
remaining until a tally runout would have occurred.

If the rpl instruction is interrupted (by any fault) before termination,
the tally runout indicator is OFF.

C(Xn) contain the last link address, that is, the computed address of the
list word containing the last operand and the next link address.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

rpt Repeat 520 (0)

FORMAT:

Figure 4-11. Repeat (rpt) Instruction Word Format

SUMMARY: Execute the instruction at C(PPR.IC)+1 either a specified number of times
or until a specified termination condition is met.

MODIFICATIONS: None

INDICATORS: (Indicators not listed are not affected)

Tally runout If C(X0)0,7 = 0 at termination, then ON; otherwise, OFF

All other
indicators

None affected. However, the execution of the repeated instruction may
affect indicators.

NOTES: The repeated instruction must use an R or RI modifier and only X1, X2, ...,
X7 are permitted. For the purposes of this description, the repeated
instruction shall use Xn.

If C = 1, then C(rpt instruction word)0,17 C(X0); otherwise, C(X0)→
unchanged prior to execution.

The termination condition and tally fields of C(X0) control the repetition of
the instruction. An initial tally of zero is interpreted as 256.

The repetition cycle consists of the following steps:

a. Execute the repeated instruction

b. C(X0)0,7 - 1 C(X0)→ 0,7
Modify C(Xn) as described below

c. If C(X0)0,7 = 0, then set the tally runout indicator ON and terminate

d. If a terminate condition has been met, then set the tally runout indicator
OFF and terminate

e. Go to step a

If a fault occurs during the execution of the instruction, the repetition loop
is terminated and control passes to the instruction pair associated with the
fault according to the conditions for the fault. C(X0) and C(Xn) are not
updated for the repetition cycle in which the fault occurs.

EIS multiword instructions cannot be repeated. All other instructions may
be repeated except as noted for individual instructions or those that
explicitly alter C(X0) or explicitly alter the instruction pair containing the
repeated instruction.

The computed address, y, of the operand (in the case of R modification) or
indirect word (in the case of RI modification) is determined as follows:

0
0

0
7

TALLY

8

0
8

0

0
9

0

2

1
0

C

1

1
1

1
7

Term. Cond.

7

1
8

2
6

(520)
8

9

2
7

0

1

2
8

1

1

2
9

0

1

3
0

3
5

DELTA

6

For the first execution of the repeated instruction:

C(C(PPR.IC)+1)0,17 + C(Xn) y, y C(Xn)→ →

For all successive executions of the repeated instruction:

C(Xn) + Delta y, y C(Xn);→ →

In the case of RI modification, only one indirect reference is made per
repeated execution. The TAG field of the indirect word is not interpreted.
The indirect word is treated as though it had R modification with R = N.

The bit configuration in C(X0)11,17 defines the conditions for which the
repetition loop is terminated. The terminate conditions are examined at
the completion of execution of the instruction. If more than one condition
is specified, the repeat terminates if any of the specified conditions are
met. overflow indicator and inhibit the overflow fault.

Bit 17 = 0 Ignore all overflows. Do not set the overflow indicator and
inhibit the overflow fault.

Bit 17 = 1 Process overflows. If the overflow mask indicator is ON,
then set the overflow indicator and terminate; otherwise,
cause an overflow fault.

Bit 16 = 1 Terminate if the carry indicator is OFF.

Bit 15 = 1 Terminate if the carry indicator is ON.

Bit 14 = 1 Terminate if the negative indicator is OFF.

Bit 13 = 1 Terminate if the negative indicator is ON.

Bit 12 = 1 Terminate if the zero indicator is OFF.

Bit 11 = 1 Terminate if the zero indicator is ON.

At the time of termination:

C(X0)0,7 contain the tally residue; that is, the number of repeats
remaining until a tally runout would have occurred.

If the rpt instruction is interrupted (by any fault) before termination,
the tally runout indicator is OFF.

C(Xn) contain the computed address of the next operand or indirect
word that would have been used had the repetition loop not
terminated.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Ring Alarm Register

sra Store Ring Alarm 754 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: 00...0 C(Y)→ 0,32

C(RALR) C(Y)→ 33,35

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted execution in BAR mode causes an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Store Base Address Register

sbar Store Base Address Register 550 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(BAR) C(Y) → 0,17

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

Translation

bcd Binary to Binary-Coded-Decimal 505 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Shift C(A) left three positions

| C(A) | / C(Y) 4-bit quotient plus remainder→

Shift C(Q) left six positions

4-bit quotient C(Q)→ 32,35

remainder C(A)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1 before execution, then ON; otherwise OFF

NOTES: The bcd instruction carries out one step in an algorithm for the conversion
of a binary number to a string of Binary-Coded-Decimal (BCD) digits. The
algorithm requires the repeated short division of the binary number or last
remainder by a set of constants = 8**i x 10**(n-i) for i = 1, 2, ..., n with n
being defined by:

10**(n-1) <= | <binary number> | <= 10**n - 1.

The values in the table that follows are the conversion constants to be used
with the bcd instruction. Each vertical column represents the set of
constants to be used depending on the initial value of the binary number to
be converted. The instruction is executed once per digit while traversing
the appropriate column from top to bottom.

An alternate use of the table for conversion involves the use of the
constants in the row corresponding to conversion step 1. If, after each
execution, the contents of the accumulator are shifted right 3 positions, the
constants in the first row, starting at the appropriate column, may be used
while traversing the row from left to right.

Because there is a limit on range, a full 36-bit word cannot be converted.
The largest binary number that may be converted correctly is 2**33 - 1
yielding ten decimal digits.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

For 10**(n-1) <= | C(A) | <= 10**n - 1 and n =

Step 10 9 8 7 6 5 4 3 2 1

1 8000000000 800000000 80000000 8000000 800000 80000 8000 800 80 8

2 6400000000 640000000 64000000 6400000 640000 64000 6400 640 64
3 5120000000 512000000 51200000 5120000 512000 51200 5120 512

4 4096000000 409600000 40960000 4096000 409600 40960 4096
5 3276800000 327680000 32768000 3276800 327680 32768

6 2621440000 262144000 26214400 2621440 262144
7 2097152000 209715200 20971520 2097152

8 1677721600 167772160 16777216
9 1342177280 134217728

10 1073741824

gtb Gray to Binary 774 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(A) is converted from Gray Code to a 36-bit binary number

MODIFICATIONS: None

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

NOTES: This conversion is defined by the following algorithm:

C(A)0 C(A)→ 0

C(A)i C(A)⊕ i-1 C(A)→ i for i = 1, 2, ..., 35

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

REGISTER LOAD

lbar Load Base Address Register 230 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y)0,17 C(BAR)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Attempted execution in BAR mode causes a illegal procedure fault.

PRIVILEGED INSTRUCTIONS

Privileged - Register Load

lcpr Load Central Processor Register 674 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Load selected register as noted

MODIFICATIONS: None. The instruction word TAG field is used for register selection as
follows:

C(TAG) Data and Register(s)

02 C(Y) C(cache mode register)→

04 C(Y) C(mode register)→

03 DPS/L68 processors:

00...0 C(CU, OU, DU, and APU history register)→ 0,71

DPS 8M processors:

00...0 C(CU, OU/DU, APU #1 and APU #2 history→
register)0,71

07 DPS/L68 processors:

11...1 C(CU, OU, DU, and APU history register)→ 0,71

DPS 8M processors:

11...1 C(CU, OU/DU, APU #1 and APU #2 history→
register)0,71

INDICATORS: None affected

NOTES: See Section 3 for descriptions and use of the various registers.

For TAG values 03 and 07, the history register loaded is selected by the
current value of a cyclic counter for each unit. All four cyclic counters are
advanced by one count for each execution of the instruction.

Use of TAG values other than those defined above causes an illegal
procedure fault.

Attempted execution in normal or BAR modes causes a illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an illegal
procedure fault.

ldbr Load Descriptor Segment Base Register 232 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: If SDWAM is enabled, then

0 C(SDWAM(i).FULL) for i = 0, 1, ..., 15→

i C(SDWAM(i).USE) for i = 0, 1, ..., 15→

If PTWAM is enabled, then

0 C(PTWAM(i).FULL) for i = 0, 1, ..., 15→

i C(PTWAM(i).USE) for i = 0, 1, ..., 15→

If cache is enabled, reset all cache column and level full flags

C(Y-pair)0,23 C(DSBR.ADDR)→

C(Y-pair)37,50 C(DSBR.BOUND)→

C(Y-pair)55 C(DSBR.U)→

C(Y-pair)60,71 C(DSBR.STACK)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: The associative memories and cache are cleared (full indicators reset) if
they are enabled.

See Section 3 and Section 5 for descriptions and use of the SDWAM,
PTWAM, and DSBR

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

ldt Load Timer Register 637 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y)0,26 C(TR)→

MODIFICATIONS: All except ci, sc, scr

INDICATORS: None affected

NOTES: Attempted execution in normal or BAR modes causes a illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

lptp Load Page Table Pointers 257 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For i = 0, 1, ..., 15

m = C(PTWAM(i).USE)

C(Y-block16+m)0,14 C(PTWAM(m).POINTER)→

C(Y-block16+m)15,26 C(PTWAM(m).PAGE)→

C(Y-block16+m)27 C(PTWAM(m).F)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: The associative memory is ignored (forced to "no match") during address
preparation.

See Section 3 and Section 5 for description and use of the PTWAM.

This instruction is not available on the DPS 8M processor and attempted
execution on a DPS 8M processor causes an illegal procedure fault.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

lptr Load Page Table Registers 173 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For i = 0, 1, ..., 15

m = C(PTWAM(i).USE)

C(Y-block16+m)0,17 C(PTWAM(m).ADDR)→

C(Y-block16+m)29 C(PTWAM(m).M)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: The associative memory is ignored (forced to "no match") during address
preparation.

See Section 3 and Section 5 for description and use of the PTWAM.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

This instruction is not available on the DPS 8M processor and attempted
execution on a DPS 8M processor produces an illegal procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

lra Load Ring Alarm Register 774 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y)33,35 C(RALR)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

lsdp Load Segment Descriptor Pointers 257 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For i = 0, 1, ..., 15

m = C(SDWAM(i).USE)

C(Y-block16+m)0,14 C(SDWAM(m).POINTER)→

C(Y-block16+m)17 C(SDWAM(m).P)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: The associative memory is ignored (forced to "no match") during address
preparation.

See Section 3 and Section 5 for description and use of the SDWAM.

This instruction is not available on the DPS 8M processor and attempted
execution on a DPS 8M processor produces an illegal procedure fault.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

lsdr Load Segment Descriptor Registers 232 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For i = 0, 1, ..., 15

m = C(SDWAM(i).USE)

Y-pair = Y-block32 + 2m

C(Y-pair)0,23 C(SDWAM(m).ADDR)→

C(Y-pair)24,32 C(SDWAM(m).R1, R2, R3)→

C(Y-pair)37,50 C(SDWAM(m).BOUND)→

C(Y-pair)52,57 C(SDWAM(m).R, E, W, P, U, G, C)→

C(Y-pair)58,71 C(SDWAM(m).CL)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: The associative memory is ignored (forced to "no-match") during address
preparation.

See Section 3 and Section 5 for description and use of the SDWAM.

This instruction is not available on the DPS 8M processor and attempted
execution on a DPS 8M processor produces an illegal procedure fault.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

rcu Restore Control Unit 613 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(Y-block8) words 0 to 7 (control unit data)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: See Section 3 for description and use of control unit data.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Privileged - Register Store

scpr Store Central Processor Register 452 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Store selected register as noted

MODIFICATIONS: None. The instruction word TAG field is used for register selection word
as follows:

C(TAG) MEANING

00 DPS/L68 processor:

C(APU history register) C(Y-pair)→

DPS 8M processor:

C(APU history register #1) C(Y-pair)→

01 C(fault register) C(Y-pair)→ 0,35

00...0 C(Y-pair)→ 36,71

06 C(mode register) C(Y-pair)→ 0,35

C(cache mode register) C(Y-pair)→ 36,71

10 DPS/L68 processor:

C(DU history register) C(Y-pair)→

DPS 8M processor:

C(APU history register #2) C(Y-pair)→

20 C(CU history register) C(Y-pair)→

40 DPS/L68 processor

C(OU history register) C(Y-pair)→

DPS 8M processor:

C(OU/DU history register) C(Y-pair)→

INDICATORS: None affected

NOTES: See Section 3 for description and use of the various registers.

The TAG field values shown are octal.

For TAG values 00, 10, 20, and 40, the history register stored is selected
by the current value of a cyclic counter for each unit. The individual cyclic
counters are advanced by one count for each execution of the instruction.

The use of TAG values other than those defined above causes an illegal
procedure fault.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

scu Store Control Unit 657 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: (control unit data) C(Y-block8)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: See Section 3 for description and use of control unit data.

The scu instruction safe-stores control information required to service a
fault or interrupt. The control unit data is not, in general, valid at any time
except when safe-stored by the first of the pair of instructions associated
with the fault or interrupt.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sdbr Store Descriptor Segment Base Register 154 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: C(DSBR.ADDR) C(Y-pair)→ 0,23

00...0 C(Y-pair)→ 24,36

C(DSBR.BOUND) C(Y-pair)→ 37,50

0000 C(Y-pair)→ 51,54

C(DSBR.U) C(Y-pair)→ 55

000 C(Y-pair)→ 56,59

C(DSBR.STACK) C(Y-pair)→ 60,71

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: C(DSBR) are unchanged.

See Section 3 and Section 5 for description and use of the DSBR

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sptp Store Page Table Pointers 557 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: DPS/L68 processors:

For i = 0, 1, ..., 15

C(PTWAM(i).POINTER) C(Y-block16+i)→ 0,14

C(PTWAM(i).PAGE) C(Y-block16+i)→ 15,26

C(PTWAM(i).F) C(Y-block16+i)→ 27

0000 C(Y-block16+i)→ 8,31

C(PTWAM(i).USE) C(Y-block16+i)→ 32,35

DPS 8M processors:

This instruction stores 16 words from the selected level (j) of the
directory of the Page Table Word associative memory. There are four
levels.

Level j is selected by C(TPR.CA)12,13

For i = 0, 1, ..., 15

C(PTWAM(i,j).POINTER) C(Y-block16+i)→ 0,14

C(PTWAM(i,j).PAGENO) C(Y-block16+i)→ 15,22

0000 C(Y-block16+i)→ 23,26

C(PTWAM(i,j).F) C(Y-block16+i)→ 27

00 C(Y-block16+i)→ 28,29

C(PTWAM(i,j).LRU) C(Y-block16+i)→ 30,35

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: The contents of the associative memory remain unchanged.

The associative memory is ignored (forced to "no match") during address
preparation.

See Section 3 and Section 5 for description and use of the PTWAM.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sptr Store Page Table Registers 154 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: DPS/L68 processors:

For i = 0, 1, ..., 15

C(PTWAM(i).ADDR) C(Y-block16+i)→ 0,17

00...0 C(Y-block16+i)→ 18,28

C(PTWAM(i).M) C(Y-block16+i)→ 29

00...0 C(Y-block16+i)→ 30,35

DPS 8M processors:

This instruction stores 16 words from the selected level (j) of the
contents of the Page Table Word associative memory. There are four
levels.

Level j is selected by C(TPR.CA)12,13

For i = 0, 1, ..., 15

C(PTWAM(i,j).PAGE ADDR) C(Y-block16+1)→ 0,13

00...0 C(Y-block16+i)→ 14,28

C(PTWAM(i,j).M C(Y-block16+i)→ 29

000000 C(Y-block16+i)→ 30,3

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: The contents of the associative memory are unchanged.

The associative memory is ignored (forced to "no match") during address
preparation.

See Section 3 and Section 5 for description and use of the PTWAM.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

ssdp Store Segment Descriptor Pointers 557 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: DPS/L68 processors:

For i = 0, 1, ..., 15

C(SDWAM(i).POINTER) C(Y-block16+i)→ 0,14

00...0 C(Y-block16+i)→ 15,26

C(SDWAM(i).F) C(Y-block16+i)→ 27

0000 C(Y-block16+i)→ 28,31

C(SDWAM(i).USE) C(Y-block16+i)→ 32,35

DPS 8M processors:

This instruction stores 16 words from the selected level (j) of the
directory of the Segment Descriptor Word associative memory. There
are four levels.

Level j is selected by C(TPR.CA)12,13

For i = 0, 1, ..., 15

C(SDWAM(i,j).POINTER) C(Y-block16+i)→ 0,14

00...0 C(Y-block16+i)→ 15,26

C(SDWAM(i,j).F) C(Y-block16+i)→ 27

00 C(Y-block16+i)→ 28,29

C(SDWAM(i,j).LRU) C(Y-block16+i)→ 30,35

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: The contents of the associative memory are unchanged.

The associative memory is ignored (forced to "no match") during address
preparation.

See Section 3 and Section 5 for description and use of the SDWAM.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

ssdr Store Segment Descriptor Registers 254 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: DPS/L68 processors:

For i = 0, 1, ..., 15

Y-pair = Y-block32 + 2i

C(SDWAM(i).ADDR) C(Y-pair)→ 0,23

C(SDWAM(i).R1, R2, R3) C(Y-pair)→ 24,32

0000 C(Y-pair)33,36→

C(SDWAM(i).BOUND) C(Y-pair)→ 37,50

C(SDWAM(i).R, E, P, U, G, C) C(Y-pair)→ 51,57

C(SDWAM(i).CL) C(Y-pair)→ 58,71

DPS 8M processors:

This instruction stores 16 double-words from the selected level (j) of
the directory of the Segment Descriptor Word associative memory.
There are four levels.

Level j is selected by C(TPR.CA)11,12

For i = 0, 1, ..., 15

C(SDWAM(i,j).ADDR) (Y-block32+i)→ 0,23

C(SDWAM(i,j).R1,R2,R3) C(Y-block32+i)→ 24,32

000 C(Y-block32+i)→ 33,35

0 C(Y-block32+i)→ 36

C(SDWAM(i,j).BOUND) C(Y-block32+i)→ 37,50

C(SDWAM(i,j).R,E,W,P,U,G,C) C(Y-block32+i)→ 51,57

C(SDWAM(i,j.).CALL LIMIT) C(Y-block32+i)→ 58,71

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: The contents of the associative memory are unchanged.

The associative memory is ignored (forced to "no match") during address
preparation.

See Section 3 and Section 5 for description and use of the SDWAM.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Privileged - Clear Associative Memory

camp Clear Associative Memory Pages 532 (1)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: DPS/L68 processors:

For i = 0, 1, ..., 15

0 C(PTWAM(i).F)→

(i) C(PTWAM(i).USE)→

DPS 8M processors:

If the associative memory is enabled

0 C(PTWAM.F)→

C(PTWAM.LRU) is initialized for all PTWAM registers

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: DPS/L68 processors:

The full/empty bit of each PTWAM register is set to 0, and the usage
counters (PTWAM.USE) are set to their pre-assigned values of 0
through 15. The remainder of C PTWAM(i)) is unchanged .

The execution of this instruction enables the PTWAM if it is disabled
and C(TPR.CA)16,17 = 10.

The execution of this instruction disables the PTWAM if C(TPR.CA)16,17
= 01.

If C(TPR.CA)15 = 1, a selective clear of cache is executed. Any cache
block for which the upper 14 bits of the directory entry equal
C(PTWAM(i).ADDR)0,13 will have its full/empty bit set to empty.

DPS 8M processors:

The full/empty bit of cache PTWAM register is set to zero and the LRU
counters are initialized. The remainder of the contents of the registers
are unchanged. If the associative memory is disabled, F and LRU are
unchanged.

C(TPR.CA)16,17 control disabling or enabling the associative memory.
This may be done to either or both halves.

C(TPR.CA)13,14 Selection

00 both halves

01 lower half, levels C & D

10 upper half, levels A & B

11 both halves

The selected portion of the associative memory is

-disabled if C(TPR.CA)16,17 = 01

-enabled if C(TPR.CA)16,17 = 10

If the associative memory is disabled, the execution of two instructions
are required to first enable and then clear it.

C(TPR.CA)15 has no effect on the DPS 8M cache. On previous Multics
processors this bit enabled selective cache clearing (see above).

All processors:

See Section 3 and Section 5 for description and use of the PTWAM.

Attempted execution in normal or BAR modes causes an illegal
procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

cams Clear Associative Memory Segments 532 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: DPS/L68 processors:

For i = 0, 1, ..., 15

0 C(SDWAM(i).F)→

(i) C(SDWAM(i).USE)→

DPS 8M processors:

If the associative memory is enabled

0 C(SDWAM.F)→

C(SDWAM.LRU) is initialized for all PTWAM registers

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: DPS/L68 processors:

The full/empty bit of each SDWAM register is set to zero, and the usage
counters (SDWAM.USE) are initialized to their pre-assigned values of 0
through 15. The remainder of C(SDWAM(i)) are unchanged.

The execution of this instruction enables the SDWAM if it is disabled
and C(TPR.CA)16,17 = 10.

The execution of this instruction disables the SDWAM if C(TPR.CA)16,17
= 01.

The execution of this instruction sets the full/empty bits of all cache
blocks to empty if C(TPR.CA)15 = 1.

DPS 8M processors:

The full/empty bit of each SDWAM register is set to zero and the LRU
counters are initialized. The remainder of the contents of the registers
are unchanged. If the associative memory is disabled, F and LRU are
unchanged.

C(TPR.CA)16,17 control disabling or enabling the associative memory.
This may be done to either or both halves.

C(TPR.CA)13,14 Selection

00 Both halves

01 Lower half levels C & D

C(TPR.CA)13,14 Selection

10 Upper half, levels A & B

11 Both halves

The selected portion of the associative memory is

-disabled if C(TPR.CA)16,17 = 01

-enabled if C(TPR.CA)16,17 = 10

If the associative memory is disabled, the execution of two instructions
are required to first enable and then clear it.

C(TPR.CA)15 has no effect on the DPS 8M cache. On previous Multics
processors this bit enabled a full cache clear (see above).

All processors:

See Section 3 and Section 5 for description and use of the SDWAM.

Attempted execution in normal or BAR modes causes an illegal
procedure fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Privileged - Configuration and Status

rmcm Read Memory Controller Mask Register 233 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For the selected system controller (see NOTES):

If the processor has a mask register assigned, then

C(assigned mask register) C(AQ)→

otherwise, 00...0 C(AQ)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

NOTES: The contents of the mask register remain unchanged.

C(TPR.CA)0,2 (C(TPR.CA)1,2 for the DPS 8M processor) specify which
processor port (i.e., which system controller) is used.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

rscr Read System Controller Register 413 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: The final computed address, C(TPR.CA), is used to select a system
controller and the function to be performed as follows:

Effective Address Function

y0000x C(system controller mode register) C(AQ)→

y0001x C(system controller configuration switches) C(AQ)→

y0002x C(mask register assigned to port 0) C(AQ)→

y0012x C(mask register assigned to port 1) C(AQ)→

y0022x C(mask register assigned to port 2) C(AQ)→

y0032x C(mask register assigned to port 3) C(AQ)→

y0042x C(mask register assigned to port 4) C(AQ)→

y0052x C(mask register assigned to port 5) C(AQ)→

y0062x C(mask register assigned to port 6) C(AQ)→

y0072x C(mask register assigned to port 7) C(AQ)→

y0003x C(interrupt cells) C(AQ)→

y0004x
or

y0005x
C(calendar clock) C(AQ)→

Effective Address Function

y0006x
or

y0007x
C(store unit mode register) C(AQ)→

where: y = value of C(TPR.CA)0,2 (C(TPR.CA)1,2 for the DPS
8M processor) used to select the system controller

x = any octal digit

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: See Section 3 for description and use of the various registers.

For computed addresses y0006x and y0007x, store unit selection is done
by the normal address decoding function of the system controller.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

rsw Read Switches 231 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: The final computed address, C(TPR.CA), is used to select certain processor
switches whose settings are read into the A-register.

The switches selected are as follows:

Effective Address Function

xxxxx0 C(data switches) C(A)→

xxxxxl C(configuration switches for ports A, B, C, D)

 C(A)→

xxxxx2 DPS/L68 processors:

00...0 C(A)→ 0,5

C(fault base switches) C(A)→ 6,12

00...0 C(A)→ 13,22

C(processor ID) C(A)→ 23,33

C(processor number switches) C(A)→ 34,35

DPS 8M processors:

C(Port interface, Ports A-D) C(A)→ 0,3

01 C(A)→ 4,5

C(Fault base switches) C(A)→ 6,12

1 C(A)→ 13

0000 C(A)→ 14,17

111 C(A)→ 18,20

00 C(A)→ 21,22

Effective Address Function

1 C(A)→ 23

C(Processor mode sw) C(A)→ 24

1 C(A)→ 25

000 C(A)→ 26,28

C(Processor speed) C (A)→ 29,32

C(Processor number switches) C(A)→ 33,35

xxxxx3 C(configuration switches for ports E, F, G, H)

 C(A) (DPS/L68 processors only)→

xxxxx4 00...0 C(A)→ 0,12

C(port interlace and size switches) C(A)→ 13,28

00...0 C(A)→ 29,35

(DPS/L68 processors only)

where: x = any octal digit

MODIFICATIONS: All, but none affect instruction execution.

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

NOTES: See Section 3 for description and use of the various registers.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

Privileged – System Control

cioc Connect I/O Channel 015 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: The system controller addressed by Y (i.e., contains the word at Y) sends a
connect signal to the port specified by C(Y)33,35.

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

smcm Set Memory Controller Mask Register 553 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For the selected system controller:

If the processor has a mask register assigned, then

C(AQ) C(assigned mask register)→

otherwise a store fault (not control) occurs.

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: C(TPR.CA)0,2 (C(TPR.CA)1,2 on the DPS 8M processor) specify which
processor port (i.e., which system controller) is used.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpl instruction causes an illegal procedure
fault.

If the SCU is a 4MW type SCU, the illegal action code 1000 (Not Control
Port) is not used.

smic Set Memory Controller interrupt Cells 451 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: For i = 0, 1, ..., 15 and C(A)35 = 0:

if C(A)i = 1, then set interrupt cell i ON

For i = 0, 1, ..., 15 and C(A)35 = 1:

if C(A)i = 1, then set interrupt cell 16+i ON

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: C(TPR.CA)0,2 (C(TPR.CA)1,2 on a DPS 8M processor) specify which
processor port (i.e., which system controller) is used.

If the processor has no assigned mask register in the selected system
controller, a store fault (not control) occurs.

If the SCU is a 4MW type SCU, the illegal action code 1000 (Not Control
Port) is not used.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

sscr Set System Controller Register 057 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: The final computed address, C(TPR.CA), is used to select a system
controller and the function to be performed as follows:

Effective Address Function

y0000x C(AQ) C(system controller mode register)→

y0001x C(AQ) system controller configuration register→
 (4WM SCU only)

y0002x C(AQ) C(mask register assigned to port 0)→

y0012x C(AQ) C(mask register assigned to port 1)→

y0022x C(AQ) C(mask register assigned to port 2)→

y0032x C(AQ) C(mask register assigned to port 3)→

y0042x C(AQ) C(mask register assigned to port 4)→

y0052x C(AQ) C(mask register assigned to port 5)→

y0062x C(AQ) C(mask register assigned to port 6)→

y0072x C(AQ) C(mask register assigned to port 7)→

y0003x C(AQ)0,15 C(interrupt cells 0-15)→
C(AQ)36,51 C(interrupt cells 16-31)→

y0004x
or

y0005x

C(AQ) (calendar clock)→
(for 4MW SCU only)

y0006x
or

y0007x
C(AQ) C(store unit mode register)→

where: y = value of C(TPR.CA)0,2 (C(TPR.CA)1,2 on the DPS
8M processor) used to select the system controller

x = any octal digit

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: If the processor does not have a mask register assigned in the selected
system controller, a store fault (not control) occurs.

For computed addresses y0006x and y0007x, store unit selection is done
by the normal address decoding function of the system controller.

See Section 3 for description and use of the various registers.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Privileged - Miscellaneous

absa Absolute Address to A-Register 212 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: Final main memory address, Y C(A)→ 0,23

00...0 C(A)→ 24,35

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

NOTES: If the absa instruction is executed in absolute mode, C(A) will be
undefined.

Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

dis Delay Until Interrupt Signal 616 (0)

FORMAT: Basic instruction format (see Figure 4-1).

SUMMARY: No operation takes place, and the processor does not continue with the
next instruction; it waits for a external interrupt signal.

MODIFICATIONS: All, but none affect instruction execution

INDICATORS: None affected

NOTES: Attempted execution in normal or BAR modes causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EXTENDED INSTRUCTION SET (EIS)

EIS - Address Register Load

aarn Alphanumeric Descriptor to Address Register n 56n (1)

FORMAT: EIS single-word instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Y)0,17 C(ARn.WORDNO)→

If C(Y)21,22 = 00 (TA code = 0), then

C(Y)18,19 C(ARn.CHAR)→

0000 C(ARn.BITNO)→

If C(Y)21,22 = 0l (TA code = 1), then

(6 * C(Y)18,20) / 9 C(ARn.CHAR)→

(6 * C(Y)18,20)mod9 C(ARn.BITNO)→

If C(Y)21,22 = 10 (TA code = 2), then

C(Y)18,20 / 2 C(ARn.CHAR)→

4 * (C(Y)18,20)mod2 + 1 C(ARn.BITNO)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected.

NOTES: An alphanumeric descriptor is fetched from Y and C(Y)21,22 (TA field) is
examined to determine the data type described.

If TA = 0 (9-bit data), then C(Y)18,19 goes to C(ARn.CHAR) and zeros fill
C(ARn.BITNO).

If TA = 1 (6-bit data) or TA = 2 (4-bit data), C(Y)18,20 is appropriately
translated into an equivalent character and bit position that goes to
C(ARn.CHAR) and C(ARn.BITNO) .

If C(Y)21,22 = 11 (TA code = 3) an illegal procedure fault occurs.

If C(Y)23 = 1 an illegal procedure fault occurs.

If C (Y)21,22 = 00 (TA code = 0) and C(Y)20 = 1 an illegal procedure fault
occurs.

If C(Y)21,22 = 01 (TA code = 1) and C(Y)18,20 = 110 or 111 an illegal
procedure fault occurs.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

larn Load Address Register n 76n (1)

FORMAT: EIS single-word instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Y)0,23 C(ARn)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected.

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

lareg Load Address Registers 463 (1)

FORMAT: EIS single-word instruction format (see Figure 4-1).

SUMMARY: For i = 0, 1, ..., 7

C(Y-block8+i)0,23 C(ARi)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected.

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

lpl Load Pointers and Lengths 467 (1)

FORMAT: EIS single-word instruction format (see Figure 4-1).

SUMMARY: C(Y-block8) C(decimal unit data)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: See Section 3 for description and use of decimal unit data .

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

narn Numeric Descriptor to Address Register n 66n (1)

FORMAT: EIS single-word instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(Y)0,17 C(ARn.WORDNO)→

If C(Y)21 = 0 (TN code = 0), then

C(Y)18,20 C(ARn.CHAR)→

0000 C(ARn.BITNO)→

If C(Y)21 = 1 (TN code = 1), then

(C(Y)18,20) / 2 C(ARn.CHAR)→

4 * (C(Y)18,20)mod2 + 1 C(ARn.BITNO)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: A numeric descriptor is fetched from Y and C(Y)21 (TN bit) is examined.

If TN = 0 (9-bit data), then C(Y)18,19 goes to C(ARn.CHAR) and zeros fill
C(ARn.BITNO).

If TN = 1 (4-bit data), C(Y) is appropriately translated to an equivalent
character and bit position that goes to C(ARn.CHAR) and C(ARn.BITNO).

If C(Y)21 = 0 (TN code = 0) and C(Y)20 = 1 an illegal procedure fault
occurs.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Address Register Store

aran Address Register n to Alphanumeric Descriptor 54n (1)

FORMAT: EIS single-word instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(ARn.WORDNO) C(Y)→ 0,17

If C(Y)21,22 = 00 (TA code = 0), then

C(ARn.CHAR) C(Y)→ 18,19

0 C(Y)→ 20

If C(Y)21,22 = 0l (TA code = 1), then

(9 * C(ARn.CHAR) + C(ARn.BITNO)) / 6 C(Y)→ 18,20

If C(Y)21,22 = 10 (TA code = 2), then

(9 * C(ARn.CHAR) + C(ARn.BITNO) – 1) / 4 C(Y)→ 18,20

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: This instruction is the inverse of the aarn instruction.

The alphanumeric descriptor is fetched from Y and C(Y)21,22 (TA field) is
examined to determine the data type described.

If TA = 0 (9-bit data), C(ARn.CHAR) goes to C(Y)18,19.

If TA = 1 (6-bit data) or TA = 2 (4-bit data), C(ARn.CHAR) and
C(ARn.BITNO) are translated to an equivalent character position that goes
to C(Y)18,20.

If C(Y)21,22 = 11 (TA code = 3) or C(Y)23 = 1 (unused bit), an illegal
procedure fault occurs.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

arnn Address Register n to Numeric Descriptor 64n (1)

FORMAT: EIS single-word instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(ARn.WORDNO) C(Y)→ 0,17

If C(Y)21 = 0 (TN code = 0), then

C(ARn.CHAR) C(Y)→ 18,19

0 C(Y)→ 20

If C(Y)21 = 1 (TN code = 1), then

(9 * C(ARn.CHAR) + C(ARn.BITNO) – 1) / 4 C(Y)→ 18,20

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: This instruction is the inverse of the narn instruction.

The numeric descriptor is fetched from Y and C(Y)21 (TN bit) is examined.

If TN = 0 (9-bit data), then C(ARn.CHAR) goes to C(Y)18,19.

If TN = 1 (4-bit data), then C(ARn.CHAR) and C(ARn.BITNO) are
translated to an equivalent character position that goes to C(Y)18,20.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sarn Store Address Register n 74n (1)

FORMAT: EIS single-word instruction format (see Figure 4-1).

SUMMARY: For n = 0, 1, ..., or 7 as determined by operation code

C(ARn) C(Y)→ 0,23

C(Y)24,35 unchanged→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sareg Store Address Registers 443 (1)

FORMAT: EIS single-word instruction format (see Figure 4-1).

SUMMARY: For i = 0, 1, ..., 7

C(ARi) C(Y-block8+i)→ 0,23

00...0 C(Y-block8+i)→ 24,35

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

spl Store Pointers and Lengths 447 (1)

FORMAT: EIS single-word instruction format (see Figure 4-1).

SUMMARY: C(decimal unit data) C(Y-block8)→

MODIFICATIONS: All except du, dl, ci, sc, scr

INDICATORS: None affected

NOTES: See Section 3 for description and use of decimal unit data .

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Address Register Special Arithmetic

a4bd Add 4-bit Displacement to Address Register 502 (1)

FORMAT:

Figure 4-12. EIS Address Register Special Arithmetic Instruction Format

ARn Number of address register selected

ADDRESS Literal word displacement value

OPCODE Instruction operation code

I Interrupt inhibit bit

A Use address register contents flag

REG Any register modification except du, dl, ic

ALM Coding Format:

For A = 0, a4bdx PRn|offset,modifier

For A = 1, a4bd PRn|offset,modifier

SUMMARY: If A = 0, then

ADDRESS + C(REG) / 4 C(ARn.WORDNO)→

C(REG)mod4 C(ARn.CHAR)→

4 * C(REG)mod2 + 1 C(ARn.BITNO)→

If A = 1, then

C(ARn.WORDNO) + ADDRESS + (9 * C(ARn.CHAR)

+ 4 * C(REG) + C(ARn.BITNO)) / 36 C(ARn.WORDNO)→

((9 * C(ARn.CHAR) + 4 * C(REG) +

C(ARn.BITNO))mod36) / 9 C(ARn.CHAR)→

4 * (C(ARn.CHAR) + 2 * C(REG) +

C(ARn.BITNO) / 4)mod2 + 1 C(ARn.BITNO)→

MODIFICATIONS: None except au, qu, al, ql, xn

INDICATORS: None affected

NOTES: The steps described in SUMMARY define special 4-bit addition arithmetic
for ADDRESS, C(REG), C(ARn.WORDNO), C(ARn.CHAR), and
C(ARn.BITNO).

0
0

ARn

0
2

3

0
3

1
7

ADDRESS

15

1
8

2
7

OPCODE

10

2
8

I

1

2
9

A

1

3
0

0

3
1

0

2

3
2

3
5

REG

4

C(REG) is always treated as a count of 4-bit characters.

The use of an address register is inherent; the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

a6bd Add 6-bit Displacement to Address Register 501 (1)

FORMAT: EIS address register special arithmetic instruction format (see Figure
4-12).

ALM Coding Format:

For A = 0, a6bdx PRn|offset,modifier

For A = 1, a6bd PRn|offset,modifier

SUMMARY: If A = 0, then

ADDRESS + C(REG) / 6 C(ARn.WORDNO)→

((6 * C(REG))mod36) / 9 C(ARn.CHAR)→

(6 * C(REG))mod9 C(ARn.BITNO)→

If A = 1, then

C(ARn.WORDNO) + ADDRESS + (9 * C(ARn.CHAR) +

6 * C(REG) + C(ARn.BITNO)) / 36 C(ARn.WORDNO)→

((9 * C(ARn.CHAR) + 6 * C(REG) +

C(ARn.BITNO))mod36) / 9 C(ARn.CHAR)→

(9 * C(ARn.CHAR) + 6 * C(REG) +

C(ARn.BITNO))mod9 C(ARn.BITNO)→

MODIFICATIONS: None except au, qu, al, ql, xn

INDICATORS: None affected

NOTES: The steps described in SUMMARY define special 6-bit addition arithmetic
for ADDRESS, C(REG), C(ARn.WORDNO), C(ARn.CHAR), and
C(ARn.BITNO).

C(REG) is always treated as a count of 6-bit characters.

The use of an address register is inherent; the value of bit 29 in the
instruction word affects address preparation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

a9bd Add 9-bit Displacement to Address Register 500 (1)

FORMAT: EIS address register special arithmetic instruction format (see Figure
4-12).

ALM Coding Format:

For A = 0, a9bdx PRn|offset,modifier

For A = 1, a9bd PRn|offset,modifier

SUMMARY: If A = 0, then

ADDRESS + C(REG) / 4 C(ARn.WORDNO)→

C(REG)mod4 C(ARn.CHAR)→

If A = 1, then

C(ARn.WORDNO) + ADDRESS +

(C(REG) + C(ARn.CHAR)) / 4 C(ARn.WORDNO)→

(C(ARn.CHAR) + C(REG))mod4 C(ARn.CHAR)→

0000 C(ARn.BITNO)→

MODIFICATIONS: None except au, qu, al, ql, xn

INDICATORS: None affected

NOTES: The steps described in SUMMARY define special 9-bit addition arithmetic
for ADDRESS, C(REG), C(ARn.WORDNO), and C(ARn.CHAR).

C(REG) is always treated as a count of 9-bit bytes.

The use of an address register is inherent; the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

abd Add Bit Displacement to Address Register 503 (1)

FORMAT: EIS address register special arithmetic instruction format (see Figure
4-12).

ALM Coding Format:

For A = 0, abdx PRn|offset,modifier

For A = 1, abd PRn|offset,modifier

SUMMARY: If A = 0, then

ADDRESS + C(REG) / 36 C(ARn.WORDNO)→

(C(REG)mod36) / 9 C(ARn.CHAR)→

C(REG)mod9 C(ARn.BITNO)→

If A = 1, then

C(ARn.WORDNO) + ADDRESS + (9 * C(ARn.CHAR)

+ 36 * C(REG) + C(ARn.BITNO)) / 36 C(ARn.WORDNO)→

((9 * C(ARn.CHAR) + 36 * C(REG) +

C(ARn.BITNO))mod36) / 9 C(ARn.CHAR)→

(9 * C(ARn.CHAR) + 36 * C(REG) +

C(ARn.BITNO))mod9 C(ARn.BITNO)→

MODIFICATIONS: None except au, qu, al, ql, xn

INDICATORS: None affected

NOTES: The steps described in SUMMARY define special bit addition arithmetic for
ADDRESS, C(REG), C(ARn.WORDNO), C(ARn.CHAR), and C(ARn.BITNO).

C(REG) is always treated as a bit count.

The use of an address register is inherent; the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

awd Add Word Displacement to Address Register 507 (1)

FORMAT: EIS address register special arithmetic instruction format (see Figure
4-12).

ALM Coding Format:

For A = 0, awdx PRn|offset,modifier

For A = 1, awd PRn|offset,modifier

SUMMARY: If A = 0, then

ADDRESS + C(REG) C(ARn.WORDNO)→

If A = 1, then

C(ARn.WORDNO) + ADDRESS + C(REG) C(ARn.WORDNO)→

00 C(ARn.CHAR)→

0000 C(ARn.BITNO)→

MODIFICATIONS: None except au, qu, al, ql, xn

INDICATORS: None affected

NOTES: The use of an address register is inherent; the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

C(REG) is always treated as a word count.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

s4bd Subtract 4-bit Displacement from Address
Register

522 (1)

FORMAT: EIS address register special arithmetic instruction format (see Figure
4-12).

ALM Coding Format:

For A = 0, s4bdx PRn|offset,modifier

For A = 1, s4bd PRn|offset,modifier

SUMMARY: If A = 0, then

- (ADDRESS + C(REG) / Ah) C(ARn.WORDNO)→

- C(REG)mod4 C(ARn.CHAR)→

- 4 * C(REG)mod2 + 1 C(ARn.BITNO)→

If A = 1, then

C(ARn.WORDNO) - ADDRESS + (9 * C(ARn.CHAR)

- 4 * C(REG) + C(ARn.BITNO)) / 36 C(ARn.WORDNO)→

((9 * C(ARn.CHAR) - 4 * C(REG) +

C(ARn.BITNO))mod36) / 9 C(ARn.CHAR)→

4 * (C(ARn.CHAR) - 2 * C(REG) +

C(ARn.BITNO) / 4)mod2 + 1 C(ARn.BITNO)→

MODIFICATIONS: None except au, qu, al, ql, xn

INDICATORS: None affected

NOTES: The steps described in SUMMARY define special 4-bit subtraction
arithmetic for ADDRESS, C(REG), C(ARn.WORDNO), C(ARn.CHAR), and
C(ARn.BITNO).

C(REG) is always treated as a count of 4-bit characters.

The use of an address register is inherent; the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

s6bd Subtract 6-bit Displacement from Address
Register

521 (1)

FORMAT: EIS address register special arithmetic instruction format (see Figure
4-12).

ALM Coding Format:

For A = 0, s6bdx PRn|offset,modifier

For A = 1, s6bd PRn|offset,modifier

SUMMARY: If A = 0, then

- (ADDRESS + C(REG) / 6) C(ARn.WORDNO)→

- ((6 * C(REG))mod36) / 9 C(ARn.CHAR)→

- (6 * C(REG))mod9 C(ARn.BITNO)→

If A = 1, then

C(ARn.WORDNO) - ADDRESS + (9 * C(ARn.CHAR)

- 6 * C(REG) + C(ARn.BITNO)) / 36 C(ARn.WORDNO)→

((9 * C(ARn.CHAR) - 6 * C(REG) +

C(ARn.BITNO))mod36) / 9 C(ARn.CHAR)→

(9 * C(ARn.CHAR) - 6 * C(REG) +

C(ARn.BITNO))mod9 C(ARn.BITNO)→

MODIFICATIONS: None except au, qu, al, ql, xn

INDICATORS: None affected

NOTES: The steps described in SUMMARY define special 6-bit subtraction
arithmetic for ADDRESS, C(REG), C(ARn.WORDNO), C(ARn.CHAR), and
C(ARn.BITNO).

C(REG) is always treated as a count of 6-bit characters.

The use of an address register is inherent; the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

s9bd Subtract 9-bit Displacement from Address
Register

520 (1)

FORMAT: EIS address register special arithmetic instruction format (see Figure
4-12).

ALM Coding Format:

For A = 0, s9bdx PRn|offset,modifier

For A = 1, s9bd PRn|offset,modifier

SUMMARY: If A = 0, then

- (ADDRESS + C(REG) / 4) C(ARn.WORDNO)→

- C(REG)mod4 C(ARn.CHAR)→

If A = 1, then

C(ARn.WORDNO) - ADDRESS +

(C(ARn.CHAR) - C(REG)) / 4 C(ARn.WORDNO)→

(C(ARn.CHAR) - C(REG))mod4 C(ARn.CHAR)→

0000 C(ARn.BITNO)→

MODIFICATIONS: None except au, qu, al, qu, xn

INDICATORS: None affected

NOTES: The steps described in SUMMARY define special 9-bit subtraction
arithmetic for ADDRESS, C(REG), C(ARn.WORDNO), and C(ARn.CHAR).

C(REG) is always treated as a count of 9-bit bytes.

The use of an address register is inherent: the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sbd Subtract Bit Displacement from Address
Register

523 (1)

FORMAT: EIS address register special arithmetic instruction format (see Figure
4-12).

ALM Coding Format:

For A = 0, sbdx PRn|offset,modifier

For A = 1, sbd PRn|offset,modifier

SUMMARY: If A = 0, then

- (ADDRESS + C(REG) / 36) C(ARn.WORDNO)→

- (C(REG)mod36) / 9 C(ARn.CHAR)→

- C(REG)mod9 C(ARn.BITNO)→

If A = 1, then

C(ARn.WORDNO) - ADDRESS + (9 * C(ARn.CHAR)

- 36 * C(REG) + C(ARn.BITNO)) / 36 C(ARn.WORDNO)→

((9 * C(ARn.CHAR) - 36 * C(REG) +

C(ARn.BITNO))mod36) / 9 C(ARn.CHAR)→

(9 * C(ARn.CHAR) - 36 * C(REG) +

C(ARn.BITNO))mod9 C(ARn.BITNO)→

MODIFICATIONS: None except au, qu, al, ql, xn

INDICATORS: None affected

NOTES: The steps described in SUMMARY define special bit subtraction arithmetic
for ADDRESS, C(REG), C(ARn.WORDNO), C(ARn.CHAR), and
C(ARn.BITNO).

C(REG) is always treated as a bit count.

The use of an address register is inherent; the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

swd Subtract Word Displacement from Address
Register

527 (1)

FORMAT: EIS address register special arithmetic instruction format (see Figure
4-12).

ALM Coding Format:

For A = 0, swdx PRn|offset,modifier

For A = 1, swd PRn|offset,modifier

SUMMARY: If A = 0, then

- (ADDRESS + C(REG)) C(ARn.WORDNO)→

If A = 1, then

C(ARn.WORDNO) - (ADDRESS + C(REG)) C(ARn.WORDNO)→

00 C(ARn.CHAR)→

0000 C(ARn.BITNO)→

MODIFICATIONS: None except au, qu, al, ql, xn

INDICATORS: None affected

NOTES: The use of an address register is inherent; the value of bit 29 in the
instruction word affects operand evaluation but not register selection.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Alphanumeric Compare

cmpc Compare Alphanumeric Character Strings 106 (1)

FORMAT:

Figure 4-13. Compare Alphanumeric Character Strings (cmpc)
EIS Multiword Instruction Format

FILL Fill character for string extension

MF1 Modification field for operand descriptor 1

MF2 Modification field for operand descriptor 2

I Interrupt inhibit bit

Y-charn1 Address of left-hand string

CN1 First character position of left-hand string

TA1 Data type of left-hand string

N1 Length of left-hand string

Y-charn2 Address of right-hand string

CN2 First character position of right-hand string

N2 Length of right-hand string

ALM Coding Format:

cmpc (MF1),(MF2)[,fill(octalexpression)]

descna Y-charn1[(CN1)],N1 n = 4, 6, or 9 (TA1 = 2, 1, or 0)

descna Y-charn2[(CN2)],N2 n = 4, 6, or 9 (TA2 is ignored)

SUMMARY: For i = 1, 2, ..., minimum (N1,N2)

C(Y-charn1)i-1 :: C(Y-charn2)i-1

If N1 < N2, then for i = N1+1, N1+2, ..., N2

C(FILL) :: C(Y-charn2)i-1

0
0

0
8

0
9

1
0

1
1

1
7

1
8

2
0

2
1

2
2

2
3

2
4

2
7

2
8

2
9

3
5

FILL

9

0 0

2

MF2

7

106 (1)

10

I

1

MF1

7
Y-charn1 CN1 TA1

2

0

1

N1

CN2

3

0 0 0

3

N2

1218

Y-charn2

If N1 > N2, then for i = N2+1, N2+2, ..., N1

C(Y-charn1)i-1 :: C(FILL)

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y-charn1)i-1 = C(Y-charn2)i-1 for all i, then ON; otherwise, OFF

Carry If C(Y-charn1)i-1 < C(Y-charn2)i-1 for any i, then OFF; otherwise ON

NOTES: Both strings are treated as the data type given for the left-hand string,
TA1. A data type given for the right-hand string, TA2, is ignored.

Comparison is made on full 9-bit fields. If the given data type is not 9-bit
(TA1 ≠ 0), then characters from C(Y-charn1) and C(Y-charn2) are high-
order zero filled. All 9 bits of C(FILL) are used.

Instruction execution proceeds until an inequality is found or the larger
string length count is exhausted.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

scd Scan Characters Double 120 (1)

FORMAT:

Figure 4-14. Scan Characters Double (scd) EIS Multiword Instruction Format

MF1 Modification field for operand descriptor 1

MF2 Modification field for operand descriptor 2

I Interrupt inhibit bit

Y-charn1 Address of string

3
0

3
1

3
2

0
0

1
0

1
1

1
7

1
8

2
0

2
1

2
2

2
3

2
4

2
7

2
8

2
9

3
5

0 0 0 0 0 0 0 0 0 0 0

11

MF2

7

120 (1)

10

I

1

MF1

7
Y-charn1 CN1 TA1

2

0

1

N1

12
CN2

3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15

18

0 0 0 0 0 0 0 0 0 0 0

11

A

1

0 0

2

REG

4

Y-charn2

Y3

CN1 First character position of string

TA1 Data type of string

N1 Length of string

Y-charn2 Address of test character pair

CN2 First character position of test character pair

Y3 Address of compare count word

A Indirect via pointer register flag for Y3

REG Register modifier for Y3

ALM Coding Format:

scd (MF1),(MF2)

descna Y-charn1[(CN1)],N1 n = 4, 6, or 9 (TA1 = 2, 1, or 0)

descna Y-charn2[(CN2)] n = 4, 6, or 9 (TA2 is ignored)

arg Y3[,tag]

SUMMARY: For i = 1, 2, ..., N1-1

C(Y-charn1)i-1,i :: C(Y-charn2)0,1

On instruction completion, if a match was found:

00...0 C(Y3)→ 0,11

i-1 C(Y3)→ 12,35

If no match was found:

00...0 C(Y3)→ 0,11

N1-1 C(Y3)→ 12,35

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and REG

None except du, au, qu, al, ql, xn for MF2

INDICATORS: (Indicators not listed are not affected)

Tally runout If the string length count is exhausted without a match, or if N1 = 1, then
ON; otherwise OFF

NOTES: Both the string and the test character pair are treated as the data type
given for the string, TA1. A data type given for the test character pair,
TA2, is ignored.

Instruction execution proceeds until a character pair match is found or the
string length count is exhausted.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

If MF2.ID = 0 and MF2.REG = du, then the second word following the
instruction word does not contain an operand descriptor for the test
character pair; instead, it contains the test character pair as a direct upper
operand in bits 0,17.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

scdr Scan Characters Double in Reverse 121 (1)

FORMAT: Same as Scan Characters Double (scd) format (see Figure 4-14).

SUMMARY: For i = 1, 2, ..., N1-1

C(Y-charn1)N1-i-1,N1-i :: C(Y-charn2)0,1

On instruction completion, if a match was found:

00...0 C(Y3)→ 0,11

i-1 C(Y3)→ 12,35

If no match was found:

00...0 C(Y3)→ 0,11

N1-1 C(Y3)→ 12,35

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and REG

None except du, au, qu, al, ql, xn for MF2

INDICATORS: (Indicators not listed are not affected)

Tally runout If the string length count is exhausted without a match, or if N1 = 1, then
ON; otherwise OFF

NOTES: Both the string and the test character pair are treated as the data type
given for the string, TA1. A data type given for the test character pair,
TA2, is ignored.

Instruction execution proceeds until a character pair match is found or the
string length count is exhausted.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor .

If MF2.ID = 0 and MF2.REG = du, then the second word following the
instruction word does not contain an operand descriptor for the test
character pair; instead, it contains the test character pair as a direct upper
operand in bits 0, 17.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

scm Scan with Mask 124 (1)

FORMAT:

Figure 4-15. Scan with Mask (scm) EIS Multiword Instruction Format

MASK Comparison bit mask

MF1 Modification field for operand descriptor 1

MF2 Modification field for operand descriptor 2

I Interrupt inhibit bit

Y-charn1 Address of string

CN1 First character position of string

TA1 Data type of string

N1 Length of string

Y- charn2 Address of test character

CN2 First character position of test character

Y3 Address of compare count word

A Indirect via pointer register flag for Y3

REG Register modifier for Y3

ALM Coding Format:

scm (MF1),(MF2)[,mask(octalexpression)]

descna Y-charn1[(CN1)],N1 n = 4, 6, or 9 (TA1 = 2, 1, or 0)

descna Y-charn2[(CN2)] n = 4, 6, or 9 (TA2 is ignored)

arg Y3[,tag]

SUMMARY: For characters i = 1, 2, ..., N1

For bits j = 0, 1, ..., 8

C(Z)j = ~C(MASK)j & ((C(Y-charn1)i-1)j (C(Y-char⊕ n2)0)j)

0
0

0
8

0
9

1
0

1
1

1
7

1
8

2
0

2
1

2
2

2
3

2
4

2
7

2
8

2
9

3
5

MASK

9

0 0

2

MF2

7

124 (1)

10

I

1

MF1

7
Y-charn1 CN1 TA1

2

0

1

N1

12
CN2

3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15

18

0 0 0 0 0 0 0 0 0 0 0

11

A

1

0 0

2

REG

4

Y-charn2

Y3

3
0

3
1

3
2

If C(Z)0,8 = 00...0, then

00...0 C(Y3)→ 0,11

i-1 C(Y3)→ 12,35

otherwise, continue scan of C(Y-charn1)

If a masked character match was not found, then

00...0 C(Y3)→ 0,11

N1 C(Y3)→ 12,35

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and REG

None except du, au, qu, al, ql, xn for MF2

INDICATORS: (Indicators not listed are not affected)

Tally runout If the string length count exhausts, then ON; otherwise, OFF

NOTES: Both the string and the test character pair are treated as the data type
given for the string, TA1. A data type given for the test character pair,
TA2, is ignored.

1 bits in C(MASK) specify those bits of each character that will not take
part in the masked comparison.

Instruction execution proceeds until a masked character match is found or
the string length count is exhausted.

Masking and comparison is done on full 9-bit fields. If the given data type
is not 9-bit (TA1 ≠ 0), then characters from C(Y-charn1) and C(Y-charn2)
are high-order zero filled. All 9 bits of C(MASK) are used.

If MF1.RL = 1, then N1 does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

If MF2.ID = 0 and MF2.REG = du, then the second word following the
instruction word does not contain an operand descriptor for the test
character; instead, it contains the test character as a direct upper operand
in bits 0,8.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

scmr Scan with Mask in Reverse 125 (1)

FORMAT: Same as Scan with Mask (scm) format (see Figure 4-15).

SUMMARY: For characters i = 1, 2, ..., N1

For bits j = 0, 1, ..., 8

C(Z)j = ~C(MASK)j & ((C(Y-charn1)N1-i)j (C(Y-char⊕ n2)0)j)

If C(Z)0,8 = 00...0, then

00...0 C(Y3)→ 0,11

i-1 C(Y3)→ 12,35

otherwise, continue scan of C(Y-charn1)

If a masked character match was not found, then

00...0 C(Y3)→ 0,11

N1 C(Y3)→ 12,35

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and REG

None except du, au, qu, al, ql, xn for MF2

INDICATORS: (Indicators not listed are not affected)

Tally runout If the string length count exhausts, then ON; otherwise, OFF

NOTES: Both the string and the test character are treated as the data type given
for the string, TA1. A data type given for the test character, TA2, is
ignored.

1 bits in C(MASK) specify those bits of each character that will not take
part in the masked comparison.

Instruction execution proceeds until a masked character match is found or
the string length count is exhausted.

Masking and comparison is done on full 9-bit fields. If the given data type
is not 9-bit (TA1 ≠ 0), then characters from C(Y-charn1) and C(Y-charn2)
are high-order zero filled. All 9 bits of C(MASK) are used.

If MF1.RL = 1, then N1 does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

If MF2.ID = 0 and MF2.REG = du, then the second word following the
instruction word does not contain an operand descriptor for the test
character; instead, it contains the test character as a direct upper operand
in bits 0,8.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

tct Test Character and Translate 164 (1)

FORMAT:

Figure 4-16. Test Character and Translate (tct)
EIS Multiword Instruction Format

MF1 Modification field for operand descriptor 1

I Interrupt inhibit bit

Y-charn1 Address of string

CN1 First character position of string

TA1 Data type of string

N1 Length of string

Y-char92 Address of character translation table

Y3 Address of result word

A Indirect via pointer register flag for Y2 and Y3

REG Register modifier for Y2 and Y3

ALM Coding Format:

tct (MF1)

descna Y-charn1[(CN1)],N1 n = 4, 6, or 9 (TA1 = 2, 1, or 0)

arg Y-char92[,tag]

arg Y3[,tag]

SUMMARY: For i = 1, 2, ..., N1

m = C(Y-charn1)i-1

If C(Y-char92)m ≠ 00...0, then

C(Y-char92)m C(Y3)→ 0,8

000 C(Y3)→ 9,11

i-1 C(Y3)→ 12,35

otherwise, continue scan of C(Y-charn1)

0
0

1
7

1
8

2
0

2
1

2
2

2
3

2
4

2
7

2
8

2
9

3
5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 164 (1)

10

I

1

MF1

7
Y-charn1 CN1

3

TA1

2

0

1

N1

12
0 0 0 0 0 0 0 0 0 0 0 A 0 0 REG

18

0 0 0 0 0 0 0 0 0 0 0

11

A

1

0 0

2

REG

4

Y-char92

Y3

3
0

3
1

3
2

If a non-zero table entry was not found, then

00...0 C(Y3)→ 0,11

N1 C(Y3)→ 12,3

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Tally runout If the string length count exhausts, then ON; otherwise, OFF

NOTES: If the data type of the string to be scanned is not 9-bit (TA1 ≠ 0), then
characters from C(Y-charn1) are high-order zero filled in forming the table
index, m.

Instruction execution proceeds until a non-zero table entry is found or the
string length count is exhausted.

If MF1.RL = 1, then N1 does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MF1.ID = 1, then the first word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

The character number of Y-char92 must be zero, i.e., Y-char92 must start
on a word boundary.

If a non-zero table entry was not found, then

00...0 C(Y3)→ 0,11

N1 C(Y3)→ 12,35

tctr Test Character and Translate in Reverse 165 (1)

FORMAT: Same as Test Character and Translate (tct) format (see Figure 4-16).

SUMMARY: For i = 1, 2, ..., N1

m = C(Y-charn1)N1-i

If C(Y-char92)m ≠ 00...0, then

C(Y-char92)m C(Y3)→ 0,8

000 C(Y3)→ 9,11

i-1 C(Y3)→ 12,35

otherwise, continue scan of C(Y-charn1)

If a non-zero table entry was not found, then

00...0 C(Y3)→ 0,11

N1 C(Y3)→ 12,35

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and REG

INDICATORS: (Indicators not listed are not affected)

Tally runout If the string length count exhausts, then ON; otherwise, OFF

NOTES: If the data type of the string to be scanned is not 9-bit (TA1 ≠ 0), then
characters from C(Y-charn1) are high-order zero filled in forming the table
index, m.

Instruction execution proceeds until a non-zero table entry is found or the
string length count is exhausted.

If MF1.RL = 1, then N1 does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MF1.ID = 1, then the first word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Alphanumeric Move

mlr Move Alphanumeric Left to Right 100 (1)

FORMAT:

Figure 4-17. Move Alphanumeric Left to Right (mlr)
EIS Multiword Instruction Format

FILL Fill character for string extension

T Truncation fault enable bit

MF1 Modification field for operand descriptor 1

MF2 Modification field for operand descriptor 2

Y-charn1 Address of sending string

CN1 First character position of sending string

TA1 Data type of sending string

N1 Length of sending string

Y- charn2 Address of receiving string

CN2 First character position of receiving string

TA2 Data type of receiving string

N2 Length of receiving string

ALM Coding Format:

mlr (MF1),(MF2)[,fill(octalexpression)][,enablefault]

descna Y-charn1[(CN1)],N1 n = 4, 6, or 9 (TA1 = 2, 1, or 0)

descna Y-charn2[(CN2)],N2 n = 4, 6, or 9 (TA2 = 2, 1, or 0)

SUMMARY: For i = 1, 2, ..., minimum (N1,N2)

C(Y-charn1)i-1 C(Y-char→ n2)i-1

If N1 < N2, then for i = N1+1, N1+2, ..., N2

C(FILL) C(Y-char→ n2)i-1

0
0

0
8

0
9

1
0

1
1

1
7

1
8

2
0

2
1

2
2

2
3

2
4

2
7

2
8

2
9

3
5

FILL

9

T 0 MF2

7

100 (1)

10

I

1

MF1

7
Y-charn1 CN1 TA1

2

0 N1

CN2

3

TA2 0

1

N2

1218

Y-charn2

1 1

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Truncation If N1 > N2 then ON; otherwise OFF

NOTES: If data types are dissimilar (TA1 ≠ TA2), each character is high-order
truncated or zero filled, as appropriate, as it is moved. No character
conversion takes place.

If N1 > N2, then (N1-N2) trailing characters of C(Y-charn1) are not moved
and the truncation indicator is set ON.

If N1 < N2 and TA2, = 2 (4-bit data) or 1 (6-bit data), then FILL characters
are high-order truncated as they are moved to C(Y-charn2). No character
conversion takes place.

If N1 < N2, C(FILL)0 = 1, TA1 = 1, and TA2 = 2, then C(Y-charn1)N1-1 is
examined for a GBCD overpunch sign. If a negative overpunch sign is
found, then the minus sign character is placed in C(Y-charn2)N2-1;
otherwise, a plus sign character is placed in C(Y-charn2)N2-1.

If MFk.RL = 1,, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charn1) and C(Y-charn2) may be overlapping strings; no check is
made. This feature is useful for replication of substrings within a larger
string, but care must be exercised in the construction of the operand
descriptors so that sending string, C(Y-charn1), data is not inadvertently
destroyed.

The user of string replication or overlaying is warned that the decimal unit
addresses the main memory in unaligned (not on modulo 8 boundary) units
of Y-block8 words and that the overlayed string, C(Y-charn2), is not
returned to main memory until the unit of Y-block8 words is filled or the
instruction completes.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

mrl Move Alphanumeric Right to Left 101 (1)

FORMAT: Same as Move Alphanumeric Left to Right (mlr) format (see Figure 4-17).

SUMMARY: For i = 1, 2, ..., minimum (N1,N2)

C(Y-charn1)N1-i C(Y-char→ n2)N2-i

If N1 < N2, then for i = N1+1, N1+2, ..., N2

C(FILL) C(Y-char→ n2)N2-i

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not list,ed are not affected)

Truncation If N1 > N2 then ON; otherwise OFF

NOTES: If data types are dissimilar (TA1 ≠ TA2), each character is high-order
truncated or zero filled, as appropriate, as it is moved. No character
conversion takes place.

If N1 > N2, then (N1-N2) leading characters of C(Y-charn1) are not moved
and the truncation indicator is set ON.

If N1 < N2 and TA2 = 2 (4-bit data) or 1 (6-bit data), then FILL characters
are high-order truncated as they are moved to C(Y-charn2). No character
conversion takes place.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charn1) and C(Y-charn2) may be overlapping strings; no check is
made. This feature is useful for replication of substrings within a larger
string, but care must be exercised in the construction of the operand
descriptors so that sending string, C(Y-charn1), data is not inadvertently
destroyed.

The user of string replication or overlaying is warned that the decimal unit
addresses the main memory in unaligned (not on modulo 8 boundary) units
of Y-block8 words and that the overlayed string, C(Y-charn2), is not
returned to main memory until the unit of Y-block8 words is filled or the
instruction completes.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

mve Move Alphanumeric Edited 020 (1)

FORMAT:

Figure 4-18. Move Alphanumeric Edited (mve)
EIS Multiword Instruction Format

0
0

0
1

0
2

0
8

0
9

1
0

1
1

1
7

1
8

2
0

2
1

2
2

2
3

2
4

2
7

2
8

2
9

3
5

0 0

2

MF3

7

0 0

2

MF2

7

020 (1)

10

I

1

MF1

7
Y-charn1 CN1 TA1 0 N1

CN2 0 0 0 N2

18

CN3

3

TA3

2

0

1

N3

12

Y-char92

Y-charn3
3

MF1 Modification field for operand descriptor 1

MF2 Modification field for operand descriptor 2

MF3 Modification field for operand descriptor 3

I Interrupt inhibit bit

Y-charn1 Address of sending string

CN1 First character position of sending string

TA1 Data type of sending string

N1 Length of sending string

Y-char92 Address of MOP control string

CN2 First character position of MOP control string

N2 Length of MOP control string

Y-charn3 Address of receiving string

CN3 First character position of receiving string

TA3 Data type of receiving string

N3 Length of receiving string

ALM Coding Format:

mve (MF1),(MF2),(MF3)

descna Y-charn1[(CN1)],N1 n = 4, 6, or 9 (TA1 = 2, 1, or 0)

desc9a Y-char92[(CN2)],N2

descna Y-charn3[(CN3)],N3 n = 4, 6, or 9 (TA3 = 2, 1, or 0)

SUMMARY: C(Y-charn1) C(Y-char→ n3) under C(Y-char92) MOP control

See "Micro Operations for Edit Instructions" later in this section for details
of editing under MOP control.

MODIFICATIONS: None except au, qu, al, ql, xn for MF1, MF2, and MF3

INDICATORS: None affected

NOTES: If data types are dissimilar (TA1 ≠ TA3), each character of C(Y-charn1) is
high-order truncated or zero filled, as appropriate, as it is moved. No
character conversion takes place.

If the data type of the receiving string is not 9-bit (TA3 = 0), then insertion
characters are high-order truncated as they are inserted.

The maximum string length is 63. The count fields N1, N2, and N3 are
treated as modulo 64 numbers.

The instruction completes normally only if N3 is the first tally to exhaust:
otherwise, an illegal procedure fault occurs.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charn1) and C(Y-charn3) may be overlapping strings; no check is
made. This feature is useful for replication of substrings within a larger
string, but care must be exercised in the construction of the operand
descriptors so that sending string, C(Y-charn1), data is not inadvertently
destroyed.

The user of string replication or overlaying is warned that the decimal unit
addresses the main memory in unaligned (not on modulo 8 boundary) units
of Y-block8 words and that the overlayed string, C(Y-charn3), is not
returned to main memory until the unit of Y-block8 words is filled or the
instruction completes.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

mvt Move Alphanumeric with Translation 160 (1)

FORMAT:

Figure 4-19. Move Alphanumeric with Translation (mvt)
EIS Multiword Instruction Format

FILL Fill character for string extension

T Truncation fault enable bit

MF1 Modification field for operand descriptor 1

MF2 Modification field for operand descriptor 2

Y-charn1 Address of sending string

CN1 First character position of sending string

TA1 Data type of sending string

N1 Length of sending string

Y- charn2 Address of receiving string

CN2 First character position of receiving string

TA2 Data type of receiving string

N2 Length of receiving string

0
0

0
1

0
2

0
8

0
9

1
0

1
1

1
7

1
8

2
0

2
1

2
2

2
3

2
4

2
7

2
8

2
9

3
5

0 0

2

MF3

7

0 0

2

MF2

7

020 (1)

10

I

1

MF1

7
Y-charn1 CN1 TA1 0 N1

CN2 0 0 0 N2

18

CN3

3

TA3

2

0

1

N3

12

Y-char92

Y-charn3
3

Y-char93 Address of character translation table

A Indirect via pointer register flag for Y-char93

REG Register modifier for Y-char93

ALM Coding Format:

mvt (MF1),(MF2)[,fill(octalexpression)][,enablefault]

descna Y-charn1[(CN1)],N1 n = 4, 6, or 9 (TA1 = 2, 1, or 0)

descna Y-charn2[(CN2)],N2 n = 4, 6, or 9 (TA1 = 2, 1, or 0)

arg Y-char93[,tag]

SUMMARY: For i = 1, 2, ..., minimum (N1,N2)

m = C(Y-charn1)i-1

C(Y-char93)m C(Y-char→ n2)i-1

If N1 < N2, then for i = N1+1, N1+2, ..., N2

m = C(FILL)

C(Y-char93)m C(Y-char→ n2)i-1

MODIFICATIONS: None except au, qu, al, ql, xn for MF1, MF2, and REG

INDICATORS: (Indicators not listed are not affected)

Truncation If N1 > N2 then ON; otherwise OFF

NOTES: If the data type of the receiving field is not 9-bit (TA2 ≠ 0), then characters
from C(Y-char93) are high-order truncated, as appropriate, as they are
moved.

If the data type of the sending field is not 9-bit (TA1 ≠ 0), then characters
from C(Y-charn1) are high-order zero filled when forming the table index.

If N1 > N2, then (N1-N2) trailing characters of C(Y-charn1) are not moved
and the truncation indicator is set ON.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charn1) and C(Y-charn2) may be overlapping strings; no check is
made. This feature is useful for replication of substrings within a larger
string, but care must be exercised in the construction of the operand
descriptors so that sending string, C(Y-charn1), data is not inadvertently
destroyed.

The user of string replication or overlaying is warned that the decimal unit
addresses the main memory in unaligned (not on modulo 8 boundary) units
of Y-block8 words and that the overlayed string, C(Y-charn2), is not
returned to main memory until the unit of Y-block8 words is filled or the
instruction completes.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Numeric Compare

cmpn Compare Numeric 303 (1)

FORMAT:

Figure 4-20. Compare Numeric (cmpn) EIS Multiword Instruction Format

key

MF1 Modification field for operand descriptor 1

MF2 Modification field for operand descriptor 2

I Interrupt inhibit bit

Y-charn1 Address of left-hand number

CN1 First character position of left-hand number

a TN1 Data type of left-hand number

S1 Sign and decimal type of left-hand number

SF1 Scaling factor of left-hand number

N1 Length of left-hand number

Y- charn2 Address of right-hand number

CN2 First character position of right-hand number

b TN2 Data type of right-hand number

S2 Sign and decimal type of right-hand number

SF2 Scaling factor of right-hand number

N2 Length of right-hand string

ALM Coding Format:

cmpn (MF1),(MF2)

descn[fl,ls,ns,ts] Y-charn1[(CN1)],N1,SF1 n = 4 or 9

descn[fl,ls,ns,ts] Y-charn2[(CN2)],N2,SF2 n = 4 or 9

SUMMARY: C(Y-charn1) :: C(Y-charn2) as numeric values

0
0

1
0

1
1

1
7

1
8

2
0

2
1

2
2

2
3

2
4

2
7

2
8

2
9

3
5

0 0 0 0 0 0 0 0 0 0 0

11

MF2

7

303 (1)

10

I

1

MF1

7
Y-charn1 CN1 a S1 SF1

1

N1

1
CN2

3

b

1

S2

2

SF2

6

N2

618

Y-charn2

3
0

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y-charn1) = C(Y-charn2), then ON; otherwise OFF

Negative If C(Y-charn1) > C(Y-charn2), then ON; otherwise OFF

Carry If | C(Y-charn1) | > | C(Y-charn2) | , then OFF, otherwise ON

NOTES: Comparison is made on 4-bit numeric values contained in each character of
C(Y-charnk). If either given data type is 9-bit (TNk = 0), characters from
C(Y-char9k) are high-order truncated to 4 bits before comparison.

Sign characters are located according to information in CNk, Sk, and Nk
and interpreted as 4-bit fields; 9-bit sign characters are high-order
truncated before interpretation. The sign character 158 is interpreted as a
minus sign; all other legal sign characters are interpreted as plus signs.

The position of the decimal point in C(Y-charnk) is determined from
information in CNk, Sk, SFk, and Nk.

Comparison begins at the decimal position corresponding to the first digit
of the operand with the larger number of integer digits and ends with the
last digit of the operand with the larger number of fraction digits.

Four-bit numeric zeros are used to represent digits to the left of the first
given digit of the operand with the smaller number of integer digits.

Four-bit numeric zeros are used to represent digits to the right of the last
given digit of the operand with the smaller number of fraction digits.

Instruction execution proceeds until an inequality is found or the larger
string length count is exhausted.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

Detection of a character outside the range [0,11]8 in a digit position or a
character outside the range [12,l7]8 in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Numeric Move

mvn Move Numeric 300 (1)

FORMAT:

Figure 4-21. Move Numeric (mvn) EIS Multiword Instruction Format

key

P 4-bit data sign character control

T Truncation fault enable bit

R Rounding flag

MF1 Modification field for operand descriptor 1

MF2 Modification field for operand descriptor 2

I Interrupt inhibit bit

Y-charn1 Address of sending number

CN1 First character position of sending number

a TN1 Data type of sending number

S1 Sign and decimal type of sending number

SF1 Scaling factor of sending number

N1 Length of sending number

Y- charn2 Address of receiving number

CN2 First character position of receiving number

b TN2 Data type of receiving number

S2 Sign and decimal type of receiving number

SF2 Scaling factor of receiving number

N2 Length of receiving string

0
0

0
1

0
8

0
9

1
0

1
1

1
7

1
8

2
0

2
1

2
2

2
3

2
4

2
7

2
8

2
9

3
5

P

1

0 0 0 0 0 0 0 0

8

T

1

R

1

MF2

7

300 (1)

10

I

1

MF1

7
Y-charn1 CN1 a S1 SF1

1

N1

1
CN2

3

b

1

S2

2

SF2

6

N2

618

Y-charn2

3
0

ALM Coding Format:

mvn (MF1),(MF2)[,enablefault][,round]

descn[fl,ls,ns,ts] Y-charn1[(CN1)],N1,SF1 n = 4 or 9

descn[fl,ls,ns,ts] Y-charn2[(CN2)],N2,SF2 n = 4 or 9

SUMMARY: C(Y-charn1) converted and/or rescaled C(Y-char→ n2)

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y-charn2) = decimal 0, then ON; otherwise OFF

Negative If a minus sign character is moved to C(Y-charn2), then ON; otherwise OFF

Truncation If low-order digit truncation occurs without rounding, then ON; otherwise
OFF

Overflow If fixed-point integer overflow occurs, then ON; otherwise unchanged. (see
NOTES)

Exponent
overflow

If exponent of floating-point result exceeds +127, then ON; otherwise
unchanged.

Exponent
underflow

If exponent of floating-point result is less than -128 then ON; otherwise
unchanged.

NOTES: If data types are dissimilar (TN1 ≠ TN2), each character is high-order
truncated or filled, as appropriate, as it is moved. The fill data used is
"00011"b for digit characters and "00010"b for sign characters.

If TN2 and S2 specify a 4-bit signed number and P = 1, then a legal plus
sign character in C(Y-charn1) is converted to 138 as it is moved.

If N2 is not large enough to hold the integer part of C(Y-charn1) as
rescaled by SF2, an overflow condition exists; the overflow indicator is set
ON and an overflow fault occurs. This implies that an unsigned fixed-point
receiving field has a minimum length of 1 character; a signed fixed-point
field, 2 characters; and a floating-point field, 3 characters.

If N2 is not large enough to hold all the given digits of C(Y-charn1) as
rescaled by SF2 and R = 0, then a truncation condition exists; data
movement stops when C(Y-charn2) is filled and the truncation indicator is
set ON. If R = 1, then the last digit moved is rounded according to the
absolute value of the remaining digits of C(Y-charn1) and the instruction
completes normally.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charn1) and C(Y-charn2) may be overlapping strings; no check is
made. This feature is useful for replication of substrings within a larger
string, but care must be exercised in the construction of the operand
descriptors so that sending string, C(Y-charn1), data is not inadvertently
destroyed. Difficulties may be encountered because of scaling factors and
the special treatment of sign characters and floating-point exponents.

The user of string replication or overlaying is warned that the decimal unit
addresses the main memory in unaligned (not on modulo 8 boundary) units
of Y-block8 words and that the overlayed string, C(Y-charn2), is not
returned to main memory until the unit of Y-block8 words is filled or the
instruction completes.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Detection of a character outside the range [0,11]8 in a digit position or a
character outside the range [12,l7]8 in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

mvne Move Numeric Edited 024 (1)

FORMAT:

Figure 4-22. Move Numeric Edited (mvne) EIS Multiword Instruction Format

key

MF1 Modification field for operand descriptor 1

MF2 Modification field for operand descriptor 2

MF3 Modification field for operand descriptor 3

I Interrupt inhibit bit

Y-charn1 Address of sending string

CN1 First character position of sending string

a TN1 Data type of sending string

S1 Sign and decimal type of sending string

N1 Length of sending string

Y-char92 Address of MOP control string

CN2 First character position of MOP control string

N2 Length of MOP control string

Y-charn3 Address of receiving string

CN3 First character position of receiving string

TA3 Data type of receiving string

0
0

0
1

0
2

0
8

0
9

1
0

1
1

1
7

1
8

2
0

2
1

2
2

2
3

2
4

2
7

2
8

2
9

3
5

0 0

2

MF3

7

0 0

2

MF2

7

024 (1)

10

I

1

MF1

7
Y-charn1 CN1 a

1

S1

2

0 0 0 0 0 0

6

N1

CN2 0 0 0 0 0 0 0 0 0

9

N2

18

CN3

3

TA3

2

0 0 0 0 0 0 0

7

N3

6

Y-char92

Y-charn3

3
0

N3 Length of receiving string

ALM Coding Format:

mvne (MF1),(MF2),(MF3)

descn[fl,ls,ns,ts] Y-charn1[(CN1)],N1 n = 4 or 9

desc9a Y-char92[(CN2)],N2

descna Y-charn3[(CN3)],N3 n = 4, 6, or 9

SUMMARY: C(Y-charn1) C(Y-char→ n3) under C(Y-char92) MOP control

See "Micro Operations for Edit Instructions" later in this section for details
of editing under MOP control.

MODIFICATIONS: None except au, qu, al, ql, xn for MF1, MF2, and MF3

INDICATORS: None affected

NOTES: If data types are dissimilar (TA1 ≠ TA3), each character of C(Y-charn1) is
high-order truncated or zero filled, as appropriate, as it is moved. No
character conversion takes place.

If the data type of the receiving string is not 9-bit (TA3 ≠ ≠ 0), then
insertion characters are high-order truncated as they are inserted.

The maximum string length is 63. The count fields N1, N2, and N3 are
treated as modulo 64 numbers.

The instruction completes normally only if N3 is the first tally to exhaust:
otherwise, an illegal procedure fault occurs.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charn1) and C(Y-charn3) may be overlapping strings; no check is
made. This feature is useful for replication of substrings within a larger
string, but care must be exercised in the construction of the operand
descriptors so that sending string, C(Y-charn1), data is not inadvertently
destroyed.

The user of string replication or overlaying is warned that the decimal unit
addresses the main memory in unaligned (not on modulo 8 boundary) units
of Y-block8 words and that the overlayed string, C(Y-charn3), is not
returned to main memory until the unit of Y-block8 words is filled or the
instruction completes.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Bit String Combine

csl Combine Bit Strings Left 060 (1)

FORMAT:

Figure 4-23. Combine Bit Strings Left (csl) EIS Multiword Instruction Format

F Fill bit for string extension

BOLR Boolean result control field

T Truncation fault enable bit

MF1 Modification field for operand descriptor 1

MF2 Modification field for operand descriptor 2

I Interrupt inhibit bit

Y-bit1 Address of sending string

C1 First character position of sending string

B1 First bit position of sending string

N1 Length of sending string

Y-bit2 Address of receiving string

C2 First character position of receiving string

B2 First bit position of receiving string

N2 Length of receiving string

ALM Coding Format:

csl (MF1),(MF2)[,enablefault][,bool(octalexpression)][,fill(0|1)]

descb Y-bit1[(BITNO1)],N1

descb Y-bit2[(BITNO2)],N2

SUMMARY: For i = bits 1, 2, ..., minimum (N1,N2)

m = C(Y-bit1)i-1 || C(Y-bit2)i-1 (a 2-bit number)

C(BOLR)m C(Y-bit2)→ i-1

0
0

0
1

0
4

0
5

0
8

0
9

1
0

1
1

1
7

1
8

2
0

1
9

2
3

2
4

2
7

2
8

2
9

3
5

F 0 0 0 0

4

BOLR

4

T

1

0

1

MF2

7

060 (1)

10

I

1

MF1

7
Y-bit1 C1 B1 N1

C2

2

B2

4

N2

1218

Y-bit2

1

If N1 < N2, then for i = N1+l, N1+2, ..., N2

m = C(F) || C(Y-bit2)i-1 (a 2-bit number)

C(BOLR)m C(Y-bit2)→ i-1

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y-bit2) = 00...0, then ON; otherwise OFF

Truncation If N1 > N2, then ON; otherwise OFF

NOTES: If N1 > N2, the low order (N1-N2) bits of C(Y-bit1) are not processed and
the truncation indicator is set ON.

The bit pattern in C(BOLR) defines the Boolean operation to be performed.
Any of the sixteen possible Boolean operations may be used. Some
common Boolean operations and their BOLR fields are shown below.

Operation C(BOLR)

MOVE 0011

AND 0001

OR 0111

NAND 1110

EXCLUSIVE OR 0110

Clear 0000

Invert 1100

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-bit1) and C(Y-bit2) may be overlapping strings; no check is made. This
feature is useful for replication of substrings within a larger string, but
care must be exercised in the construction of the operand descriptors so
that sending string, C(Y-bit1), data is not inadvertently destroyed.

The user of string replication or overlaying is warned that the decimal unit
addresses the main memory in unaligned (not on modulo 8 boundary) units
of Y-block8 words and that the overlayed string, C(Y-bit2), is not returned
to main memory until the unit of Y-block8 words is filled or the instruction
completes.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

csr Combine Bit Strings Right 061 (1)

FORMAT: Same as Combine Bit Strings Left (csl) (see Figure 4-23).

SUMMARY: For i = bits 1, 2, ..., minimum (N1,N2)

m = C(Y-bit1)N1-i || C(Y-bit2)N2-i (a 2-bit number)

C(BOLR)m C(Y-bit2)→ N2-i

If N1 < N2, then for i = N1+i, N1+2, ..., N2

m = C(F) || C(Y-bit2)N2-i (a 2-bit number)

C(BOLR)m C(Y-bit2)→ N2-i

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y-bit2) = 00...0, then ON; otherwise OFF

Truncation If N1 > N2, then ON; otherwise OFF

NOTES: If N1 > N2, the high order (N1-N2) bits of C(Y-bit1) are not processed and
the truncation indicator is set ON.

The bit pattern in C(BOLR) defines the Boolean operation to be performed.
Any of the sixteen possible Boolean operations may be used. See NOTES
under the Combine Bit Strings Left (csl) instruction for examples of BOLR

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-bit1) and C(Y-bit2) may be overlapping strings; no check is made. This
feature is useful for replication of substrings within a larger string, but
care must be exercised in the construction of the operand descriptors so
that sending string, C(Y-bit1), data is not inadvertently destroyed.

The user of string replication or overlaying is warned that the decimal unit
addresses the main memory in unaligned (not on modulo 8 boundary) units
of Y-block8 words and that the overlayed string, C(Y-bit2), is not returned
to main memory until the unit of Y-block8 words is filled or the instruction
completes.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Bit String Compare

cmpb Compare Bit Strings 066 (1)

FORMAT:

Figure 4-24. Compare Bit Strings (cmpb) EIS Multiword Instruction Format

F Fill bit for string extension

T Truncation fault enable bit

MF1 Modification field for operand descriptor 1

MF2 Modification field for operand descriptor 2

I Interrupt inhibit bit

Y-bit1 Address of left-hand string

C1 First character position of left-hand string

B1 First bit position of left-hand string

N1 Length of left-hand string

Y-bit2 Address of right-hand string

C2 First character position of right-hand string

B2 First bit position of right-hand string

N2 Length of right-hand string

ALM Coding Format:

cmpb (MF1),(MF2)[,enablefault][,fill(0|1)]

descb Y-bit1[(BITNO1)],N1

descb Y-bit2[(BITNO2)],N2

SUMMARY: For i = 1, 2, ..., minimum (N1,N2)

C(Y-bit1)i-1 :: C(Y-bit2)i-1

If N1 < N2, then for i = N1+1, N1+2, ..., N2

C(FILL) :: C(Y-bit2)i-1

0
0

0
1

0
8

0
9

1
0

1
1

1
7

1
8

2
0

2
3

2
4

2
7

2
8

2
9

3
5

F 0 0 0 0 0 0 0 0

8

T

1

0

1

MF2

7

066 (1)

10

I

1

MF1

7
Y-bit1 C1 B1 N1

C2

2

B2

4

N2

1218

Y-bit2

1
9

1

If N1 > N2, then for i = N2+l, N2+2, ..., N1

C(Y-bit1)i-1 :: C(FILL)

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y-bit1)i = C(Y-bit2)i for all i, then ON; otherwise, OFF

Carry If C(Y-bit1)i < C(Y-bit2)i for any i, then OFF; otherwise ON

NOTES: Instruction execution proceeds until an inequality is found or the larger
string length count is exhausted.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Bit String Set Indicators

sztl Set Zero and Truncation Indicators with Bit
Strings Left

064 (1)

FORMAT: Same as Combine Bit Strings Left (csl) (see Figure 4-23).

SUMMARY: For i = bits 1, 2, ..., minimum (N1,N2)

m = C(Y-bit1)i-1 || C(Y-bit2)i-1 (a 2-bit number)

If C(BOLR)m ≠ 0, then terminate

If N1 < N2, then for i = N1+i, N1+2, ..., N2

m = C(F) || C(Y-bit2)i-1 (a 2-bit number)

If C(BOLR)m ≠ 0, then terminate

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(BOLR)m = 0 for all i, then ON; otherwise OFF

Truncation If N1 > N2, then ON; otherwise OFF

NOTES: If N1 > N2, the low order (N1-N2) bits of C(Y-biti) are not processed and
the truncation indicator is set ON.

The execution of this instruction is identical to the Combine Bit Strings
Left (csl) instruction except that C(BOLR)m is not placed into C(Y-bit2)i-1.

The bit pattern in C(BOLR) defines the Boolean operation to be performed.
Any of the sixteen possible Boolean operations may be used. See NOTES
under the Combine Bit Strings Left (csl) instruction for examples of BOLR.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

sztr Set Zero and Truncation Indicators with Bit
Strings Right

065 (1)

FORMAT: Same as Combine Bit Strings Left (csl) (see Figure 4-23).

SUMMARY: For i = bits 1, 2, ..., minimum (N1,N2)

m = C(Y-bit1)N1-i || C(Y-bit2)N2-i (a 2-bit number)

If C(BOLR)m ≠ 0, then terminate

If N1 < N2, then for i = N1+1, N1+2, ..., N2

m = C(F) || C(Y-bit2)N2-i (a 2-bit number)

If C(BOLR)m ≠ 0, then terminate

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(BOLR)m = 0 for all i, then ON; otherwise OFF

Truncation If N1 > N2, then ON; otherwise OFF

NOTES: If N1 > N2, the low order (N1-N2) bits of C(Y-bit1) are not processed and
the truncation indicator is set ON.

The execution of this instruction is identical to the Combine Bit Strings
Right (csr) instruction except that C(BOLR)m is not placed into C(Y-
bit2)N2-i.

The bit pattern in C(BOLR) defines the Boolean operation to be performed.
Any of the sixteen possible Boolean operations may be used. See NOTES
under the Combine Bit Strings Left (csl) instruction for examples of BOLR.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Data Conversion

btd Binary to Decimal Convert 301 (1)

FORMAT:

Figure 4-25. Binary to Decimal Convert (btd)
EIS Multiword Instruction Format

key

P 4-bit data sign character control

MF1 Modification field for operand descriptor 1

MF2 Modification field for operand descriptor 2

I Interrupt inhibit bit

Y-char91 Address of binary number

CN1 First byte position of binary number

N1 Length of binary number in 9-bit bytes

Y- charn2 Address of decimal number

CN2 First character position of decimal number

a TN2 Data type of decimal number

S2 Sign and decimal type of decimal number

N2 Length of decimal number

ALM Coding Format:

btd (MF1),(MF2)

desc9a Y-char91[(CN1)],N1

descn[ls,ns,ts] Y-charn2[(CN2)],N2 n = 4 or 9

SUMMARY: C(Y-char91) converted to decimal C(Y-char→ n2)

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y-charn2) = decimal 0, then ON: otherwise OFF

0
0

0
1

1
0

1
1

1
7

1
8

2
0

2
1

2
2

2
3

2
4

3
0

2
7

2
8

2
9

3
5

P

1

0 0 0 0 0 0 0 0 0 0

10

MF2

7

301 (1)

10

I

1

MF1

7
Y-char91 CN1 0 0 0 0 0 0 0 0 0

9

N1

CN2

3

a

1

S2

2

0 0 0 0 0 0

6

N2

618

Y-charn2

Negative If a minus sign character is moved to C(Y-charn2), then ON; otherwise OFF

Overflow If fixed-point integer overflow occurs, then ON; otherwise unchanged (see
NOTES)

NOTES: C(Y-char91) contains a twos complement binary integer aligned on 9-bit
character boundaries with length 0 < N1 <= 8.

If TN2 and S2 specify a 4-bit signed number and P = 1, then if C(Y-char91)
is positive (bit 0 of C(Y-char91)0 = 0), then the 138 plus sign character is
moved to C(Y-charn2) as appropriate.

The scaling factor of C(Y-charn2), SF2, must be 0.

If N2 is not large enough to hold the digits generated by conversion of C(Y-
char91) an overflow condition exists; the overflow indicator is set ON and
an overflow fault occurs. This implies that an unsigned fixed-point
receiving field has a minimum length of 1 character and a signed fixed-
point field, 2 characters.

If MFk.RL = 1, then Nk does not contain the operand length; instead; it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-char91) and C(Y-charn2) may be overlapping strings; no check is
made.

Attempted conversion to a floating-point number (S2 = 0) or attempted use
of a scaling factor (SF2 ≠ 0) causes an illegal procedure fault.

If N1 = 0 or N1 > 8 an illegal procedure fault occurs.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

dtb Decimal to Binary Convert 305 (1)

FORMAT:

Figure 4-26. Decimal to Binary Convert (dtb)
EIS Multiword Instruction Format

0
0

1
0

1
1

1
7

1
8

2
0

2
1

2
2

2
3

2
4

3
0

2
7

2
8

2
9

3
5

0 0 0 0 0 0 0 0 0 0 0

11

MF2

7

305 (1)

10

I

1

MF1

7
Y-charn1 CN1 a S1 0 0 0 0 0 0

6

N1

CN2

3

0
1

0 0
2

0 0 0 0 0 0

9

N2

618

Y-char92

key

MF1 Modification field for operand descriptor 1

MF2 Modification field for operand descriptor 2

I Interrupt inhibit bit

Y-charn1 Address of decimal number

CN1 First character position of decimal number

a TN1 Data type of decimal number

S1 Sign and decimal type of decimal number

N1 Length of decimal number

Y-char92 Address of binary number

CN2 First byte position of binary number

N2 Length of binary number in 9-bit bytes

ALM Coding Format:

dtb (MF1),(MF2)

descn[ls,ns,ts] Y-charn1[(CN1)],N1 n = 4 or 9

desc9a Y-char92[(CN2)],N2

SUMMARY: C(Y-charn1) converted to binary C(Y-char92)→

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 ad MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y-char92) = 0, then ON: otherwise OFF

Negative If a minus sign character is found in C(Y-charn1), then ON; otherwise OFF

Overflow If fixed-point integer overflow occurs, then ON; otherwise unchanged (see
NOTES)

NOTES: C(Y-char92) will contain a twos complement binary integer aligned on 9-bit
byte boundaries with length 0 < N2 <= 8.

The scaling factor of C(Y-charn1), SF1, must be 0.

If N2 is not large enough to hold the converted value of C(Y-charn1) an
overflow condition exists; the overflow indicator is set ON and an overflow
fault occurs.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charn1) and C(Y-char92) may be overlapping strings; no check is
made.

Attempted conversion of a floating-point number (S1 = 0) or attempted use
of a scaling factor (SF1 ≠ 0) causes an illegal procedure fault.

If N2 = 0 or N2 > 8 an illegal procedure fault occurs.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Decimal Addition

ad2d Add Using Two Decimal Operands 202 (1)

FORMAT:

Figure 4-27. Add Using Two Decimal Operands (ad2d)
EIS Multiword Instruction Format

key

P 4-bit data sign character control

T Truncation fault enable bit

R Rounding flag

MF1 Modification field for operand descriptor 1

MF2 Modification field for operand descriptor 2

I Interrupt inhibit bit

Y-charn1 Address of augend (ad2d), minuend (sb2d), multiplicand (mp2d), or divisor (dv2d)

CN1 First character position of augend (ad2d), minuend (sb2d), multiplicand (mp2d),
or divisor (dv2d)

a TN1 Data type of augend (ad2d), minuend (sb2d), multiplicand (mp2d), or divisor
(dv2d)

S1 Sign and decimal type of augend (ad2d), minuend (sb2d), multiplicand (mp2d), or
divisor (dv2d)

SF1 Scaling factor of augend (ad2d), minuend (sb2d), multiplicand (mp2d), or divisor
(dv2d)

N1 Length of augend (ad2d), minuend (sb2d), multiplicand (mp2d), or divisor (dv2d)

Y- charn2 Address of addend and sum (ad2d), subtrahend and difference (sb2d), multiplier
and product (mp2d), or dividend and quotient (dv2d)

CN2 First character position of addend and sum (ad2d), subtrahend and difference
(sb2d), multiplier and product (mp2d), or dividend and quotient (dv2d)

b TN2 Data type of addend and sum (ad2d), subtrahend and difference (sb2d),
multiplier and product (mp2d), or dividend and quotient (dv2d)

S2 Sign and decimal type of addend and sum (ad2d), subtrahend and difference
(sb2d), multiplier and product (mp2d), or dividend and quotient (dv2d)

0
0

0
1

0
8

0
9

1
0

1
1

1
7

1
8

2
0

2
1

2
2

2
3

2
4

2
7

2
8

2
9

3
5

P

1

0 0 0 0 0 0 0 0

8

T

1

R

1

MF2

7

202 (1)

10

I

1

MF1

7
Y-charn1 CN1 a S1 SF1

1

N1

1
CN2

3

b

1

S2

2

SF2

6

N2

618

Y-charn2

3
0

SF2 Scaling factor of addend and sum (ad2d), subtrahend and difference (sb2d),
multiplier and product (mp2d), or dividend and quotient (dv2d)

N2 Length of addend and sum (ad2d), subtrahend and difference (sb2d), multiplier
and product (mp2d), or dividend and quotient (dv2d)

ALM Coding Format:

ad2d (MF1),(MF2)[,enablefault][,round]

descn[fl,ls,ns,ts] Y-charn1[(CN1)],N1,SF1 n = 4 or 9

descn[fl,ls,ns,ts] Y-charn2[(CN2)],N2,SF2 n = 4 or 9

SUMMARY: C(Y-charn1) + C(Y-charn2) C(Y-char→ n2)

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y-charn2) = decimal 0, then ON; otherwise OFF

Negative If C(Y-charn2) is negative, then ON; otherwise OFF

Truncation If the truncation condition exists without rounding, then ON; otherwise
OFF see NOTES)

Overflow If the overflow condition exists, then ON; otherwise unchanged (see
NOTES)

Exponent
overflow

If exponent of floating-point result exceeds 127 then ON; otherwise
unchanged.

Exponent
underflow

If exponent of floating-point result is less than -128 then ON; otherwise
unchanged

NOTES: If TN2 and S2 specify a 4-bit signed number and P = 1, then the 138 plus
sign character is placed appropriately if the result of the operation is
positive.

If N2 is not large enough to hold the integer part of the result as scaled by
SF2, an overflow condition exists; the overflow indicator is set ON and an
overflow fault occurs. This implies that an unsigned fixed-point receiving
field has a minimum length of l character; a signed fixed-point field, 2
characters; and a floating-point field, 3 characters.

If N2 is not large enough to hold all the digits of the result as scaled by
SF2 and R = 0, then a truncation condition exists; data movement stops
when. C(Y-charn2) is filled and the truncation indicator is set ON. If R =
1, then the last digit moved is rounded according to the absolute value of
the remaining digits of the result and the instruction completes normally.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charn1) and C(Y-charn2) may be overlapping strings; no check is
made.

If T = l and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Detection of a character outside the range [0,11]8 in a digit position or a
character outside the range [12,17]8 in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

ad3d Add Using Three Decimal Operands 222 (1)

FORMAT:

Figure 4-28. Add Using Three Decimal Operands (ad3d)
EIS Multiword Instruction Format

key

P 4-bit data sign character control

T Truncation fault enable bit

R Rounding flag

MF1 Modification field for operand descriptor 1

MF2 Modification field for operand descriptor 2

MF3 Modification field for operand descriptor 3

I Interrupt inhibit bit

Y-charn1 Address of augend (ad3d), minuend (sb3d), multiplicand (mp3d), or divisor (dv3d)

CN1 First character position of augend (ad3d), minuend (sb3d), multiplicand (mp3d),
or divisor (dv3d)

a TN1 Data type of augend (ad3d), minuend (sb3d), multiplicand (mp3d), or divisor
(dv3d)

S1 Sign and decimal type of augend (ad3d), minuend (sb3d), multiplicand (mp3d), or
divisor (dv3d)

SF1 Scaling factor of augend (ad3d), minuend (sb3d), multiplicand (mp3d), or divisor
(dv3d)

N1 Length of augend (ad3d), minuend (sb3d), multiplicand (mp3d), or divisor (dv3d)

Y- charn2 Address of addend (ad3d), subtrahend (sb3d), multiplier (mp3d), or dividend
(dv3d)

0
0

0
1

0
2

0
8

0
9

1
0

1
1

1
7

1
8

2
0

2
1

2
2

2
3

2
4

2
7

2
8

2
9

3
5

P

1

0

1

MF3

7

T

1

R

1

MF2

7

222 (1)

10

I

1

MF1

7
Y-charn1 CN1 a S1 SF1 N1

CN2 b S2 SF2 N2

18

CN3

3

c

1

S3

2

SF3

6

N3

6

Y-charn2

Y-charn3

3
0

key

CN2 First character position of addend (ad3d), subtrahend (sb3d), multiplier (mp3d),
or dividend (dv3d)

b TN2 Data type of addend (ad3d), subtrahend (sb3d), multiplier (mp3d), or dividend
(dv3d)

S2 Sign and decimal type of addend (ad3d), subtrahend (sb3d), multiplier (mp3d), or
dividend (dv3d)

SF2 Scaling factor of addend (ad3d), subtrahend (sb3d), multiplier (mp3d), or
dividend (dv3d)

N2 Length of addend (ad3d), subtrahend (sb3d), multiplier (mp3d), or dividend
(dv3d)

Y-charn3 Address of sum (ad3d), difference (sb3d), product (mp3d), or quotient (dv3d)

CN3 First character position of sum (ad3d), difference (sb3d), product (mp3d), or
quotient (dv3d)

c TN3 Data type of sum (ad3d), difference (sb3d), product (mp3d), or quotient (dv3d)

S3 Sign and decimal type of sum (ad3d), difference (sb3d), product (mp3d), or
quotient (dv3d)

SF3 Scaling factor of sum (ad3d), difference (sb3d), product (mp3d), or quotient (dv3d)

N3 Length of sum (ad3d), difference (sb3d), product (mp3d), or quotient (dv3d)

ALM Coding Format:

ad3d (MF1),(MF2),(MF3)[,enablefault][,round]

descn[fl,ls,ns,ts] Y-charn1[(CN1)],N1,SF1 n = 4 or 9

descn[fl,ls,ns,ts] Y-charn2[(CN2)],N2,SF2 n = 4 or 9

descn[fl,ls,ns,ts] Y-charn3[(CN3)],N3,SF3 n = 4 or 9

SUMMARY: C(Y-charn1) + C(Y-charn2) C(Y-char→ n3)

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y-charn3) = decimal 0, then ON; otherwise OFF

Negative If C(Y-charn3) is negative, then ON; otherwise OFF

Truncation If the truncation condition exists without rounding, then ON; otherwise
OFF (see NOTES)

Overflow If the overflow condition exists, then ON; otherwise unchanged (see
NOTES)

Exponent
overflow

If exponent of floating-point result exceeds 127 then ON; otherwise
unchanged.

Exponent
underflow

If exponent of floating-point result is less than -128 then ON; otherwise
unchanged

NOTES: If TN3 and S3 specify a 4-bit signed number and P = 1, then the 138 plus
sign character is placed appropriately if the result of the operation is
positive.

If N3 is not large enough to hold the integer part of the result as scaled by
SF3, an overflow condition exists; the overflow indicator is set ON and an
overflow fault occurs. This implies that an unsigned fixed-point receiving
field has a minimum length of 1 character; a signed fixed-point field, 2
characters; and a floating-point field, 3 characters.

If N3 is not large enough to hold all the digits of the result as scaled by
SF3 and R = 0, then a truncation condition exists; data movement stops
when C(Y-charn3) is filled and the truncation indicator is set ON. If R = 1,
then the last digit moved is rounded according to the absolute value of the
remaining digits of the result and the instruction completes normally.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charn1), C(Y-charn2), and G(Y-charn3) may be overlapping strings; no
check is made.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Detection of a character outside the range [0,11]8 in a digit position or a
character outside the range [12,17]8 in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Decimal Subtraction

sb2d Subtract Using Two Decimal Operands 203 (1)

FORMAT: Same as Add Using Two Decimal Operands (ad2d) (see Figure 4-27).

SUMMARY: C(Y-charn1) - C(Y-charn2) C(Y-char→ n2)

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y-charn2) = decimal 0, then ON; otherwise OFF

Negative If C(Y-charn2) is negative, then ON; otherwise OFF

Truncation If the truncation condition exists without rounding, then ON; otherwise
OFF (see NOTES)

Overflow If the overflow condition exists, then ON; otherwise unchanged (see
NOTES)

Exponent
overflow

If exponent of floating-point result exceeds 127 then ON; otherwise
unchanged.

Exponent
underflow

If exponent of floating-point result is less than -128 then ON; otherwise
unchanged

NOTES: If TN2 and S2 specify a 4-bit signed number and P = 1, then the 138 plus
sign character is placed appropriately if the result of the operation is
positive.

If N2 is not large enough to hold the integer part of the result as scaled by
SF2, an overflow condition exists; the overflow indicator is set ON and an
overflow fault occurs. This implies that an unsigned fixed-point receiving
field has a minimum length of 1 character; a signed fixed-point field, 2
characters; and a floating-point field, 3 characters.

If N2 is not large enough to hold all the digits of the result as scaled by
SF2 and R = 0, then a truncation condition exists; data movement stops
when C(Y-charn2) is filled and the truncation indicator is set ON. If R = 1,
then the last digit moved is rounded according to the absolute value of the
remaining digits of the result and the instruction completes normally.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charn1) and C(Y-charn2) may be overlapping strings; no check is
made.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Detection of a character outside the range [0,11]8 in a digit position or a
character outside the range [12,17]8 in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

EIS - Decimal Multiplication

mp2d Multiply Using Two Decimal Operands 206 (1)

FORMAT: Same as Add Using Two Decimal Operands (ad2d) (see Figure 4-27).

SUMMARY: C(Y-charn1) × C(Y-charn2) C(Y-char→ n2)

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y-charn2) = decimal 0, then ON; otherwise OFF

Negative If C(Y-charn2) is negative, then ON; otherwise OFF

Truncation If the truncation condition exists without rounding, then ON; otherwise
OFF (see NOTES)

Overflow If the overflow condition exists, then ON; otherwise unchanged (see
NOTES)

Exponent
overflow

If exponent of floating-point result exceeds 127 then ON; otherwise
unchanged.

Exponent
underflow

If exponent of floating-point result is less than -128 then ON; otherwise
unchanged

NOTES: If TN2 and S2 specify a 4-bit signed number and P = 1, then the 138 plus
sign character is placed appropriately if the result of the operation is
positive.

If N2 is not large enough to hold the integer part of the result as scaled by
SF2, an overflow condition exists; the overflow indicator is set ON and an
overflow fault occurs. This implies that an unsigned fixed-point receiving
field has a minimum length of 1 character; a signed fixed-point field, 2
characters; and a floating-point field, 3 characters.

If N2 is not large enough to hold all the digits of the result as scaled by
SF2 and R = 0, then a truncation condition exists; data movement stops
when C(Y-charn2) is filled and the truncation indicator is set ON. If R = 1,
then the last digit moved is rounded according to the absolute value of the
remaining digits of the result and the instruction completes normally.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charn1) and C(Y-charn2) may be overlapping strings; no check is
made.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Detection of a character outside the range [0,11]8 in a digit position or a
character outside the range [12,17]8 in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

mp3d Multiply Using Three Decimal Operands 226 (1)

FORMAT: Same as Add Using Three Decimal Operands (ad3d) (see Figure 4-28).

SUMMARY: C(Y-charn1) × C(Y-charn2) C(Y-char→ n3)

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y-charn3) = decimal 0, then ON; otherwise OFF

Negative If C(Y-charn3) is negative, then ON; otherwise OFF

Truncation If the truncation condition exists without rounding, then ON; otherwise
OFF (see NOTES)

Overflow If the overflow condition exists, then ON; otherwise unchanged (see
NOTES)

Exponent
overflow

If exponent of floating-point result exceeds 127 then ON; otherwise
unchanged.

Exponent
underflow

If exponent of floating-point result is less than -128 then ON; otherwise
unchanged

NOTES: If TN3 and S3 specify a 4-bit signed number and P = 1, then the 138 plus
sign character is placed appropriately if the result of the operation is
positive.

If N3 is not large enough to hold the integer part of the result as scaled by
SF3, an overflow condition exists; the overflow indicator is set ON and an
overflow fault occurs. This implies that an unsigned fixed-point receiving
field has a minimum length of 1 character; a signed fixed-point field, 2
characters; and a floating-point field, 3 characters.

If N3 is not large enough to hold all the digits of the result as scaled by
SF3 and R = 0, then a truncation condition exists; data movement stops
when C(Y-charn3) is filled and the truncation indicator is set ON. If R = 1,
then the last digit moved is rounded according to the absolute value of the
remaining digits of the result and the instruction completes normally.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charn1), C(Y-charn2), and C(Y-charn3) may be overlapping strings; no
check is made.

If T = 1 and the truncation indicator is set ON by execution of the
instruction, then a truncation (overflow) fault occurs.

Detection of a character outside the range [0,11]8 in a digit position or a
character outside the range [12,17]8 in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

EIS - Decimal Division

dv2d Divide Using Two Decimal Operands 207 (1)

FORMAT: Same as Add Using Two Decimal Operands (ad2d) (see Figure 4-27).

SUMMARY: C(Y-charn2) / C(Y-charn1) C(Y-char→ n2)

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y-charn2) = decimal 0, then ON; otherwise OFF

Negative If C(Y-charn2) is negative, then ON; otherwise OFF

Overflow If the overflow condition exists, then ON; otherwise unchanged (see
NOTES)

Exponent
overflow

If exponent of floating-point result exceeds 127 then ON; otherwise
unchanged.

Exponent
Underflow

If exponent of floating-point result is less than -128 then ON; otherwise
unchanged

NOTES: This instruction performs continued long division on the operands until it
has produced enough output digits to satisfy the requirements of the
quotient field. The number of required quotient digits, NQ, is determined
before division begins as follows:

1) Floating-point quotient

NQ = N2, but if the divisor is greater than the dividend after operand
alignment, the leading zero digit produced is counted and the effective
precision of the result is reduced by one.

2) Fixed-point quotient

NQ = (N2-LZ2+1) - (N1-LZ1) + (E2-E1-SF2)

where: Nn = given operand field length

LZn = leading zero count for operand n

En = exponent of operand n

SF2 = scaling factor of quotient

3) Rounding

If rounding is specified (R = 1), then one extra quotient digit is
produced.

If C(Y-charn1) = decimal 0 or NQ > 63, then division does not take place,
C(Y-charn2) are unchanged, and a divide check fault occurs.

If TN2 and S2 specify a 4-bit signed number and P = 1, then the 138 plus
sign character is placed appropriately if the result of the operation is
positive.

If N2 is not large enough to hold the integer part of the result as scaled by
SF2, an overflow condition exists; the overflow indicator is set ON and an
overflow fault occurs. This implies that an unsigned fixed-point receiving
field has a minimum length of 1 character; a signed fixed-point field, 2
characters; and a floating-point field, 3 characters.

If N2 is not large enough to hold all the digits of the result as scaled by
SF2 and R = 0, then a truncation condition exists; data movement stops
when C(Y-charn2) is filled and the truncation indicator is set ON. If R = 1,
then the last digit moved is rounded according to the absolute value of the
extra quotient digit and the instruction completes normally.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charn1) and C(Y-charn2) may be overlapping strings; no check is
made.

Detection of a character outside the range [0,11]8 in a digit position or a
character outside the range [12,17]8 in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

dv3d Divide Using Three Decimal Operands 227 (1)

FORMAT: Same as Add Using Three Decimal Operands (ad3d) (see Figure 4-28).

SUMMARY: C(Y-charn2) / C(Y-charn1) C(Y-char→ n3)

MODIFICATIONS: None except au, qu, al, ql, xn for MF1 and MF2

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y-charn3) = decimal 0, then ON; otherwise OFF

Negative If C(Y-charn3) is negative, then ON; otherwise OFF

Overflow If the overflow condition exists, then ON; otherwise unchanged (see
NOTES)

Exponent
overflow

If exponent of floating-point result exceeds 127 then ON; otherwise
unchanged.

Exponent
underflow

If exponent of floating-point result is less than -128 then ON; otherwise
unchanged

NOTES: This instruction performs continued long division on the operands until it
has produced enough output digits to satisfy the requirements of the
quotient field. The number of required quotient digits, NQ, is determined
before division begins as follows:

1) Floating-point quotient

NQ = N3, but if the divisor is greater than the dividend after operand
alignment, the leading zero digit produced is counted and the effective
precision of the result is reduced by one.

2) Fixed-point quotient

NQ = (N2-LZ2+1) - (N1-LZ1) + (E2-E1-SF3)

where: Nn = given operand field length

LZn = leading zero count for operand n

En = exponent of operand n

SF3 = scaling factor of quotient

3) Rounding

If rounding is specified (R = 1), then one extra quotient digit is
produced.

If C(Y-charn1) = decimal 0 or NQ > 63, then division does not take place,
C(Y-charn3) are unchanged, and a divide check fault occurs.

If TN3 and S3 specify a 4-bit signed number and P = 1 , then the 138 plus
sign character is placed appropriately if the result of the operation is
positive.

If N3 is not large enough to hold the integer part of the result as scaled by
SF3, an overflow condition exists; the overflow indicator is set ON and an
overflow fault occurs. This implies that an unsigned fixed-point receiving
field has a minimum length of 1 character; a signed fixed-point field, 2
characters; and a floating-point field, 3 characters.

If N3 is not large enough to hold all the digits of the result as scaled by
SF3 and R = 0, then a truncation condition exists; data movement stops
when C(Y-charn3) is filled and the truncation indicator is set ON. If R = 1,
then the last digit moved is rounded according to the absolute value of the
extra quotient digit and the instruction completes normally.

If MFk.RL = 1, then Nk does not contain the operand length; instead, it
contains a register code for a register holding the operand length.

If MFk.ID = 1, then the kth word following the instruction word does not
contain an operand descriptor; instead, it contains an indirect pointer to
the operand descriptor.

C(Y-charn1), G(Y-charn2), and C(Y-charn3) may be overlapping strings; no
check is made.

Detection of a character outside the range [0,11]8 in a digit position or a
character outside the range [12,17]8 in a sign position causes an illegal
procedure fault.

Attempted execution with the xed instruction causes an illegal procedure
fault.

Attempted repetition with the rpt, rpd, or rpl instructions causes an
illegal procedure fault.

MICRO OPERATIONS FOR EDIT INSTRUCTIONS

The Move Alphanumeric Edited (mve) and Move Numeric Edited (mvne) instructions require
micro operations to perform the editing functions in an efficient manner. The sequence of micro
operation steps to be executed is contained in main memory and is referenced by the second
operand descriptor of the mve or mvne instructions. Some of the micro operations require special
characters for insertion into the string of characters being edited. These special characters are
shown in the "Edit Insertion Table" discussion below.

Micro Operation Sequence

The micro operation string operand descriptor points to a string of 9-bit bytes that specify
the micro operations to be performed during an edited move. Each of the 9-bit bytes defines a
micro operation and has the following format:

Figure 4-29. Micro Operation (MOP) Character Format

MOP 5-bit code specifying the micro operator

IF Information field containing one of the following:

1) A sending string character count. A value of 0 is interpreted as 16.

2) The index of an entry in the edit insertion table to be used. Permissible values
are 1 through 8.

3) An interpretation of the "blank-when-zero" operation

Edit Insertion Table

While executing an edit instruction, the processor provides a register of eight 9-bit bytes to
hold insertion information. This register, called the edit insertion table, is not maintained after
execution of an edit instruction. At the start of each edit instruction, the processor initializes the
table to the values given in Table 4-8, where each symbol refers to the corresponding standard
ASCII character.

Table 4-8. Default Edit Insertion Table Characters

Table Entry
Number Character

1 blank

2 *

3 +

4 -

5 $

6 ,

0
0

MOP

0
4

5

0
5

IF

0
8

4

Table Entry
Number Character

7 .

8 0 (zero)

One or all of the table entries can be changed by the Load Table Entry (lte) or the Change
Table (cht) micro operations to provide different insertion characters.

Edit Flags

The processor provides the following four edit flags for use by the micro operations.

ES End suppression flag; initially OFF and set ON by a micro operation when zero
suppression ends.

SN Sign flag; initially set OFF if the sending string is alphanumeric or unsigned numeric. If
the sending string is signed numeric, the sending string sign character is tested and SN
is set OFF if positive, and ON if negative.

Z Zero flag; initially set ON. It is set OFF whenever a sending string character that is not
decimal zero is moved into the receiving string.

BZ Blank-when-zero flag; initially set OFF and is set ON by either the enf or ses micro
operation. If, at the completion of a move, both the Z and BZ are ON, the receiving
string is filled with character 1 of the edit insertion table.

Terminating Micro Operations

The micro operation sequence is terminated normally when the receiving string length
becomes exhausted. The micro operation sequence is terminated abnormally (with an illegal
procedure fault) if a move from an exhausted sending string or the use of an exhausted MOP string
is attempted.

MVNE and MVE Differences

The processor executes mvne in a slightly different manner than it executes mve. This is due
to the inherent differences in the way numeric and alphanumeric data are handled. The following
are brief descriptions of the hardware operations for mvne and mve.

Numeric Edit

1. Load the entire sending string number (maximum length 63 characters) into the decimal unit
input buffer as 4-bit digits (high-order truncating 9-bit data). Strip the sign and exponent
characters (if any), put them aside into special holding registers and decrease the input
buffer count accordingly.

2. Test sign and, if required, set the SN flag.

3. Execute micro operation string, starting with first (4-bit) digit.

4. If an edit insertion table entry or MOP insertion character is to be stored, ANDed, or ORed
into a receiving string of 4- or 6-bit characters, high-order truncate the character
accordingly.

5. If the receiving string is 9-bit characters, high-order fill the (4-bit) digits from the input
buffer with bits 0-4 of character 8 of the edit insertion table. If the receiving string is 6-bit
characters, high-order fill the digits with "00"b.

Alphanumeric Edit

1. Load decimal unit input buffer with sending string characters. Data is read from main
memory in unaligned units (not modulo 8 boundary) of Y-block8 words. The number of
characters loaded is the minimum of the remaining sending string count, the remaining
receiving string count, and 64.

2. Execute micro operation string, starting with the first receiving string character.

3. If an edit insertion table entry or MOP insertion character is to be stored, ANDed, or ORed
into a receiving string of 4- or 6-bit characters, high-order truncate the character
accordingly.

Micro Operations

A description of the 17 micro operations (MOPs) follows. The mnemonic, name, octal value,
and the function performed is given for each MOP in a format similar to that for processor
instructions. These micro operations are included in the alphabetic list of instructions in Appendix
B, identified by the code MOP.

Checks for termination are made during and after each micro operation. All MOPs that
make a zero test of a sending string character test only the four least significant bits of the
character.

The following additional abbreviations and symbols are used in the description of the MOPs.

EIT edit insertion table

pin current position in the sending string

pmop current position in the micro operation string

pout current position in the receiving string

After each MOP, add one to pmop.

cht Change Table 21

SUMMARY: For i = 1, 2, ..., 8

C(Y-char92)pmop+i C(EIT)→ i

pmop = pmop + 8

FLAGS: None affected

NOTES: C(IF) is not interpreted for this operation.

enf End Floating Suppression 02

SUMMARY: If C(IF)0 = 0, then

If ES is OFF, then

If SN is OFF, then C(EIT)3 C(Y-char→ n3)pout

If SN is ON, then C(EIT)4 C(Y-char→ n3)pout

pout = pout + 1

ES set ON

If ES is ON, then no action

If C(IF)0 = 1, then

If ES is OFF, then

C(EIT)5 C(Y-char→ n3)pout

pout = pout + 1

ES set ON

If ES is ON, then no action

If C(IF)1 = 1, then BZ set ON; otherwise no action

FLAGS: (Flags not listed are not affected)

ES If OFF, then set ON

BZ If C(IF) = 1, then set ON; otherwise no change

ign Ignore Source Character 14

SUMMARY: pin = pin + C(IF)

FLAGS: None affected

insa Insert Asterisk on Suppression 11

SUMMARY: If ES is OFF, then

C(EIT)2 C(Y-char→ n3)pout

If C(IF) = 0, then pmop = pmop

If ES is ON, then

If C(IF) ≠ 0, then

m = C(IF)

C(EIT)m C(Y-char→ n3)pout

If C(IF) = 0, then

C(Y-char92)pmop+1 C(Y-char→ n3)pout

pmop = pmop + 1

pout = pout + 1

FLAGS: None affected

NOTES: If C(IF) > 8 an illegal procedure fault occurs.

insb Insert Blank on Suppression 10

SUMMARY: If ES is OFF, then

C(EIT)1 C(Y-char→ n3)pout

If C(IF) = 0, then pmop = pmop + 1

If ES is ON, then

If C(IF) ≠ 0, then

m = C(IF)

C(EIT)m C(Y-char→ n3)pout

If C(IF) = 0, then

C(Y-char92)pmop+1 C(Y-char→ n3)pout

pmop = pmop + 1

pout = pout + 1

FLAGS: None affected

NOTES: If C(IF) > 8 an illegal procedure fault occurs.

insm Insert Table Entry One Multiple 01

SUMMARY: For i = 0, 1, ..., C(IF) - 1

C(EIT)1 C(Y-char→ n3)pout+i

pout = pout + C(IF)

FLAGS: None affected

insn Insert On Negative 12

SUMMARY: If SN is OFF, then

C(EIT)1 C(Y-char→ n3)pout

If C(IF) = 0, then pmop = pmop + 1

If SN is ON, then

If C(IF) ≠ 0, then

m = C(IF)

C(EIT)m C(Y-char→ n3)pout

If C(IF) = 0, then

C(Y-char92)pmop+1 C(Y-char→ n3)pout

pmop = pmop + 1

pout = pout + 1

FLAGS: None affected

NOTES: If C(IF) > 8 an illegal procedure fault occurs.

insp Insert On Positive 13

SUMMARY: If SN is ON, then

C(EIT)1 C(Y-char→ n3)pout

If C(IF) = 0, then pmop = pmop + 1

If SN is OFF, then

If C(IF) ≠ 0, then

m = C(IF)

C(EIT)m C(Y-char→ n3)pout

If C(IF) = 0, then

C(Y-char92)pmop+1 C(Y-char→ n3)pout

pmop = pmop + 1

pout = pout + 1

FLAGS: None affected

NOTES: If C(IF) > 8 an illegal procedure fault occurs.

lte Load Table Entry 20

SUMMARY: m = C(IF)

C(Y-char92)pmop+1 C(EIT)→ m

pmop = pmop + 1

FLAGS: None affected

NOTES: If C(IF) = 0 or C(IF) > 8 an illegal procedure fault occurs.

mflc Move with Floating Currency Symbol Insertion 07

SUMMARY: For i = 0, 1, ..., C(IF) - 1

If ES is ON, then C(Y-charn1)pin+i C(Y-char→ n3)pout+i

If ES is OFF and C(Y-charn1)pin+i = decimal 0, then

C(EIT)1 C(Y-char→ n3)pout+i

If ES is OFF and C(Y-charn1)pin+i ≠ decimal 0, then

C(EIT)5 C(Y-char→ n3)pout+i

C(Y-charn1)pin+i C(Y-char→ n3)pout+i+1

pout = pout + 1

ES set ON

pin = pin + C(IF)

pout = pout + C(IF)

FLAGS: (Flags not listed are not affected)

ES If OFF and any of C(Y-charn1)pin+i ≠ decimal 0, then ON; otherwise
unchanged

Z See the "Edit Flags" section.

NOTES: The number of characters moved to the receiving string is data dependent.
If the entire C(Y-charn1) are decimal 0s, C(IF) characters are moved to
C(Y-charn3). However, if the sending string contains a non-zero character,
then C(IF)+1 characters are moved to C(Y-charn3); the insertion character
plus C(Y-charn1). A possible illegal procedure fault due to this condition
may be avoided by assuring that the Z and BZ flags are ON.

mfls Move with Floating Sign Insertion 06

SUMMARY: For i = 0, 1, ..., C(IF) - 1

If ES is ON, then C(Y-charn1)pin+i C(Y-char→ n3)pout+i

If ES is OFF and C(Y-charn1)pin+i = decimal 0, then

C(EIT)1 C(Y-char→ n3)pout+i

If ES is OFF and C(Y-charn1)pin+i ≠ decimal 0, then

If SN is OFF, then C(EIT)3 C(Y-char→ n3)pout+i

If SN is ON, then C(EIT)4 C(Y-char→ n3)pout+i

C(Y-charn1)pin+i C(Y-char→ n3)pout+i+1

pout = pout + 1

ES set On

pin = pin + C(IF)

pout = pout + C(IF)

FLAGS: (Flags not listed are not affected)

ES If OFF and any of C(Y-charn1)pin+i ≠ decimal 0, then ON; otherwise
unchanged

Z See the "Edit Flags" section

NOTES: The number of characters moved to the receiving string is data dependent.
If the entire C(Y-charn1) are decimal 0s, C(IF) characters are moved to
C(Y-charn3). However, if the sending string contains a non-zero character,
then C(IF)+1 characters are moved to C(Y-charn3); the insertion character
plus C(Y-charn1) A possible illegal procedure fault due to this condition
may be avoided by assuring that the Z and BZ flags are ON.

mors Move and OR Sign 17

SUMMARY: For i = 0, 1, ..., C(IF) - 1

If SN is OFF, then

C(Y-charn1)pin+i | C(EIT)3 C(Y-char→ n3)pout+i

If SN is ON, then

C(Y-charn1)pin+i | C(EIT)4 C(Y-char→ n3)pout+i

pin = pin + C(IF)

pout = pout + C(IF)

FLAGS: (Flags not listed are not affected)

Z See the "Edit Flags" section

mses Move and Set Sign 16

SUMMARY: For mvne

For i = 0, 1, ..., C(IF) - 1

C(Y-charn1)pin+i C(Y-char→ n3)pout+i

pin = pin + C(IF)

pout = pout + C(IF)

For mve

C(Z) = 0

For i = 0, 1, ..., C(IF) - 1

C(Y-charn1)pin+i C(Y-char→ n3)pout+i

If C(Z) = 0, then

C(Z) = C(Y-charn1)pin+i & C(EIT)3

If C(Z) = 0, then

C(Z) = C(Y-charn1)pin+i & C(EIT)4

If C(Z) ≠ 0, then SN set ON

pin = pin + C(IF)

pout = pout + C(IF)

FLAGS: (Flags not listed are not affected)

SN If C(EIT)4 found in C(Y-charn1), then ON; otherwise no change

Z See the "Edit Flags" section

mvc Move Source Characters 15

SUMMARY: For i = 0, 1, ..., C(IF) - 1

C(Y-charn1)pin+i C(Y-char→ n3)pout+i

pin = pin + C(IF)

pout = pout + C(IF)

FLAGS: (Flags not listed are not affected)

Z See the "Edit Flags" section

mvza Move with Zero Suppression and Asterisk
Replacement

05

SUMMARY: For i = 0, 1, ..., C(IF) - 1

If ES is ON, then C(Y-charn1)pin+i C(Y-char→ n3)pout+i

If ES is OFF and C(Y-charn1)pin+i = decimal 0, then

C(EIT)2 C(Y-char→ n3)pout+i

If ES is OFF and C(Y-charn1)pin+i ≠ decimal 0, then

C(Y-charn1)pin+i C(Y-char→ n3)pout+i

ES set On

pin = pin + C(IF)

pout = pout + C(IF)

FLAGS: (Flags not listed are not affected)

ES If OFF and any of C(Y-charn1)pin+i ≠ decimal 0, then ON; otherwise
unchanged

Z See the "Edit Flags" section

mvzb Move with Zero Suppression and Blank
Replacement

04

SUMMARY: For i = 0, 1, ..., C(IF) - 1

If ES is ON, then C(Y-charn1)pin+i C(Y-char→ n3)pout+i

If ES is OFF and C(Y-charn1)pin+i = decimal 0, then

C(EIT)1 C(Y-char→ n3)pout+i

If ES is OFF and C(Y-charn1)pin+i ≠ decimal 0, then

C(Y-charn1)pin+i C(Y-char→ n3)pout+i

ES set ON

pin = pin + C(IF)

pout = pout + C(IF)

FLAGS: (Flags not listed are not affected)

ES If OFF and any of C(Y-charn1)pin+i ≠ decimal 0, then ON; otherwise
unchanged

Z See the "Edit Flags" section

ses Set End Suppression 03

SUMMARY: If C(IF)0 = 0, then ES set OFF

If C(IF)0 = 1, then ES set ON

If C(IF)1 = 1, then BZ set ON; otherwise no action

FLAGS: (Flags not listed are not affected)

ES Set by this micro operation

BZ If C(IF)1 = 1, then ON; otherwise no change

Micro Operation Code Assignment Map

Operation code assignments for the micro operations are shown in Table 4-9. A dash (----)
indicates an unassigned code. All unassigned codes cause an illegal procedure fault.

Table 4-9. Micro Operation Code Assignment Map

0 l 2 3 4 5 6 7

00 ---- insm enf ses mvzb mvza mfls mflc

10 insb insa insn insp ign mvc mses mors

20 lte cht ---- ---- ---- ---- ---- ----

30 ---- ---- ---- ---- ---- ---- ---- ----

SECTION 5: ADDRESSING -- SEGMENTATION AND PAGING

ADDRESSING MODES

The Multics processor is able to access the main memory in either absolute mode or append
mode. The processor prepares an 18-bit computed address (TPR.CA) for each main memory
reference for instructions or operands using the address preparation algorithms described in
Section 6. This computed address is a scalar index into a virtual memory with an extent of 262,144
words.

Absolute Mode

In absolute mode, the appending unit is bypassed for instruction fetches and most operand
fetches and the final 18-bit computed address (TPR.CA) from address preparation becomes the
absolute main memory address.

Thus, all instructions to be executed in absolute mode must reside in the low-order 262,144
words of main memory, that is, main memory addresses 0 through 262,143. Operands normally
also reside in the low-order 262,144 words of main memory but, by specifying in an instruction
word that the appending unit be used for the main memory access, operands may reside anywhere
in main memory. An appended operand fetch may be specified by:

1. Specifying register then indirect (ri) address modification in the instruction word and
indirect to segment (its) or indirect to pointer (itp) address modification in the indirect
word.

2. Specifying pointer register modification in the instruction word (bit 29 = 1) and giving a
pointer register number in the instruction address C(y)0,2.

3. Specifying pointer register modification (MFk.AR = 1) in the modification field for an EIS
operand descriptor.

The use of any of the above constructs in absolute mode places the processor in append
mode for one or more address preparation cycles. All necessary registers must be properly loaded,
all tables of segment descriptor words (SDWs) and page table words (PTWs) expected by the
appending unit must exist and be properly described, and all fault conditions must be considered
(see append mode below).

If a transfer of control is made with any of the above constructs, the processor remains in
append mode after the transfer and subsequent instruction fetches are made in append mode.

Although no segment is defined for absolute mode, it may be helpful to visualize a virtual,
unpaged segment overlaying the first 262,144 words of main memory.

Append Mode

In append mode, the appending unit is employed for all main memory references. The
appending unit is described later in this section.

SEGMENTATION

In Multics, a segment is defined as an array of arbitrary (but limited) size of machine words
containing arbitrary data. A segment is identified within the processor by a segment number
(segno) unique to the segment.

To simplify this discussion, the operation of the hardware ring mechanism is not described
although it is an integral part of address preparation. See Section 8 for a discussion of the ring
mechanism hardware.

A virtual memory address in the processor consists of a pair of integers, (segno,offset) The
range of segno is [0,215-1] and the range of offset is [0,218-1]. The description of the segment
whose segno value is n is kept in the nth word-pair in a table known as the descriptor segment.
The location of the descriptor segment is held by the processor in the descriptor segment base
register (DSBR) (see Section 3). Each word-pair of a descriptor segment is known as a segment
descriptor word (SDW) and is 72 bits long (see Figure 5-5).

A bit in the SDW for a segment (SDW.U) specifies whether the segment is paged or
unpaged. The following is a simplified description of the appending process for unpaged segments
(also using an unpaged descriptor segment) (refer to Figures 3-15 and 5-5).

1. If 2 * segno >= 16 * (DSBR.BND + 1), then generate an access violation, out of segment
bounds, fault.

2. Fetch the target segment SDW from DSBR.ADDR + 2 * segno.

3. If SDW.F = 0, then generate directed fault n where n is given in SDW.FC. The value of n
used here is the value assigned to define a missing segment fault or, simply, a segment
fault.

4. If offset >= 16 * (SDW.BOUND + 1), then generate an access violation, out of segment
bounds, fault.

5. If the access bits (SDW.R, SDW.E, etc.) of the segment are incompatible with the
reference, generate the appropriate access violation fault.

6. Generate 24-bit absolute main memory address SDW.ADDR + offset.

Figure 5-1 depicts the relationships just described.

Figure 5-1. Main Memory Address Generation for Unpaged Segments

PAGING

In Multics, a page is defined as a block of virtual memory with a size of 210 machine words.
The processor is designed in such a way that the page size is adjustable over the range [26, 212]
but no basis has been found to justify an assertion that any page size is more efficient than 210 or
1024 words.

`SDW SDW(segno)

2 * segno

descriptor
segment

DSBR.ADDR

16 * (DSBR..BND + 1)

`

offset

data

target
segment

16 * (SDW..BOUND + 1)

The processor divides a k-bit offset or segno value into two parts; the high-order (k-n) bits
forming a page number, x, and the low-order n bits forming a word number, y. This may be stated
as:

y = (value) modulo (page size)

x = (value - y) / (page size)

The symbols x and y are used in this context throughout this section. An example of page
number formation is shown in Figure 5-2.

Figure 5-2. Page Number Formation

A bit in the SDW for a segment (SDW.U) specifies whether the segment is paged or
unpaged. A paged segment may be defined as an array of arbitrary (but limited) size of pages and
a page may be defined as an array of 1024 machine words. Thus, x is a scalar index into the array
of pages, y is a scalar index into the page, and a reference to a word of a paged segment may be
treated as a reference to word y of page x of the segment.

Multics subdivides the virtual memory into page size blocks of 1024 words each. Such a
subdivision of space allows a segment page to be handled as a physical block independently from
the other pages of the segment and from other segments. In main memory, the blocks are known
as frames; on secondary storage, they are known as records. When a reference to a word in a
paged segment is required (and the page containing the word is not already in main memory), a
main memory frame is allocated and the page is read in from secondary storage. Unneeded pages
need not occupy space in main memory.

The location and status of page x of a paged segment is kept in the xth word of a table
known as the page table for the segment. The words in this table are known as page table words
(PTWs) (see Figure 5-6).

Any segment may be paged as appropriate and convenient. The address field of the
segment descriptor word (SDW.ADDR) for a paged segment contains the 24-bit absolute main
memory address of the page table for the segment instead of the address of the origin of the
segment. If the descriptor segment is paged, the address field of the descriptor segment base
register (DSBR.ADDR) contains the 24-bit absolute main memory address of the page table for the
descriptor segment.

The full algorithm used by the processor to access word offset of paged segment segno
(including descriptor segment paging) is as follows. (Refer to Figures 3-15, 5-5, and 5-6.)

1. If 2 * segno >= 16 * (DSBR.BND + 1), then generate an access violation, out of segment
bounds, fault.

2. Form the quantities:

y1 = (2 * segno) modulo 1024

0
0

1
7

offset

18

0
0

1
7

y

10

0
7

0
8

8

x

x1 = (2 * segno – y1) / 1024

3. Fetch the descriptor segment PTW(x1) from DSBR.ADR + x1.

4. If PTW(x1).F = 0, then generate directed fault n where n is given in PTW(x1).FC. The
value of n used here is the value assigned to define a missing page fault or, simply, a
page fault.

5. Fetch the target segment SDW, SDW(segno), from the descriptor segment page at
PTW(x1).ADDR + y1.

6. If SDW(segno).F = 0, then generate directed fault n where n is given in SDW(segno).FC.
This is a segment fault as discussed earlier in this section.

7. If offset >= 16 * (SDW(segno).BOUND + 1), then generate an access violation, out of
segment bounds, fault.

8. If the access bits (SDW(segno).R, SDW(segno).E, etc.) of the segment are incompatible
with the reference, generate the appropriate access violation fault.

9. Form the quantities:

y2 = offset modulo 1024

x2 = (offset – y2) / 1024

10.Fetch the target segment PTW(x2) from SDW(segno).ADDR + x2.

11.If PTW(x2).F = 0, then generate directed fault n where n is given in PTW(x2).FC. This is
a page fault as in Step 4 above.

12.Generate the 24-bit absolute main memory address PTW(x2).ADDR + y2.

Figure 5-3 depicts the relationships described above.

Figure 5-3. Main Memory Address Generation for Paged Segments

SDW(segno)

`

SDW

descriptor
segment

page

1024

y1

PTW(x2)`PTW

target
segment

page table

x2
`PTW

descriptor
segment

page table

PTW(x1)

x1

DSBR.ADDR

1024

`

data

target
segment

y2

y1 = (2*segno) modulo 1024
x1 = (2 * segno - y1) / 1024
y2 = offset modulo 1024
x2 = (offset - y2) / 1024

CHANGING ADDRESSING MODES

The processor is placed in absolute mode by the initialize, initialize and clear, or system
initialize functions. The first response to faults and interrupts is in absolute mode and the mode
thereafter is determined by the instruction sequence entered through the fault or interrupt trap
pair. The processor remains in absolute mode until a transfer of control via the appending unit
takes place. Note that a Return (ret) or Restore Control Unit (rcu) instruction that sets the
absolute indicator OFF (see Section 3 for a discussion of the indicators) or a Return Control Double
(rtcd) instruction also places the processor in append mode.

When it responds to a fault or interrupt, the processor enters absolute mode temporarily for
the fetch and execution of the trap pair. If an unappended transfer is executed while in the trap
pair, the processor remains in absolute mode, otherwise it returns to append mode.

ADDRESS APPENDING

At the completion of the formation of the virtual memory address (see Section 6) an
effective segment number (segno) is in the segment number register of the temporary pointer
register (TPR.SNR) and a computed address (offset) is in the computed address register of the
temporary pointer register (TPR.CA). (See Section 3 for a discussion of the temporary pointer
register.)

Address Appending Sequences

Once segno and offset are formed in TPR.SNR and TPR.CA, respectively, the process of
generating the 24-bit absolute main memory address can involve a number of different and distinct
appending unit cycles.

The operation of the appending unit is shown in the flowchart in Figure 5-4. This flowchart
assumes that directed faults, store faults, and parity faults do not occur.

A segment boundary check is made in every cycle except PSDW. If a boundary violation is
detected, an access violation, out of segment bounds, fault is generated and the execution of the
instruction interrupted. The occurrence of any fault interrupts the sequence at the point of
occurrence. The operating system software should store the control unit data for possible later
continuation and attempt to resolve the fault condition.

The value of the associative memories may be seen in the flowchart by observing the
number of appending unit cycles bypassed if an SDW or PTW is found in the associative memories.

There are nine different appending unit cycles that involve accesses to main memory. Two
of these (FANP, FAP) generate the 24-bit absolute main memory address and initiate a main
memory access for the operand, indirect word, or instruction pair; five (NSDW, PSDW, PTW,
PTW2, and DSPTW) generate a main memory access to fetch an SDW or PTW; and two (MDSPTW
and MPTW) generate a main memory access to update page status bits (PTW.U and PTW.M) in a
PTW. The cycles are defined in Table 5-1.

Table 5-1. Appending Unit Cycle Definitions

Cycle name Function

FANP Final address nonpaged

Generates the 24-bit absolute main memory address and initiates a main memory
access to an unpaged segment for operands, indirect words, or instructions.

FAP Final address paged

Cycle name Function

Generates the 24-bit absolute main memory address and initiates a main memory
access to a paged segment for operands, indirect words, or instructions.

NSDW Nonpaged SDW Fetch

Fetches an SDW from an unpaged descriptor segment.

PSDW Paged SDW Fetch

Fetches an SDW from a paged descriptor segment.

PTW PTW fetch

Fetches a PTW from a page table other than a descriptor segment page table and
sets the page accessed bit (PTW.U).

PTW2 Prepage PTW fetch

Fetches the next PTW from a page table other than a descriptor segment page
table during hardware prepaging for certain uninterruptible EIS instructions.
This cycle does not load the next PTW into the appending unit. It merely assures
that the PTW is not faulted (PTW.F = 1) and that the target page will be in main
memory when and if needed by the instruction.

DSPTW Descriptor segment PTW fetch

Fetches a PTW from a descriptor segment page table.

MDSPTW Modify DSPTW

Sets the page accessed bit (PTW.U) in the PTW for a page in a descriptor
segment page table. This cycle always immediately follows a DSPTW cycle.

MPTW Modify PTW

Sets the page modified bit (PTW.M) in the PTW for a page in other than a
descriptor segment page table.

Figure 5-4. Appending Unit Operation Flowchart

APPENDING UNIT DATA WORD FORMATS

Segment Descriptor Word (SDW) Format

The segment descriptor word (SDW) pair contains information that controls the access to a
segment. The SDW for segment n is located at offset 2n in the descriptor segment whose
description is currently loaded into the descriptor segment base register (DSBR).

START APPEND

YesNo

No

Yes

No

Yes

No

Yes
No

Yes

Yes

No

Yes

No

END APPEND

DSPTW
cycle

PSDW
cycle

NSDW
cycle

Load
SDWAM

MDSPTW
cycle

FAP
cycle

MPTW
cycle

PTW2
cycle

PTW
cycle

FANP
cycle

is SDW in
SDWAM?

is segment
paged?

is PTW in
PTWAM?

Prepage
mode?

STR-OP &
PTW.M = 0

is descriptor
segment paged?

is DSPTW.U
set on?

Note: A STR-OP is any processor function
that writes data to main memory.

Even word

Odd word

Figure 5-5. Segment Descriptor Word (SDW) Format

Field Name Description

ADDR 24-bit absolute main memory address of unpaged segment (U=1) or segment page
table (U=0)

R1,R2,R3 Ring brackets (see Section 8)

F Directed fault flag
0 = execute the directed fault specified in FC
1 = the unpaged segment or segment page table is in main memory

FC The number of the directed fault (df0-df3) to be executed if F=0

BOUND 14 high-order bits of the largest 18-bit modulo 16 offset that may be accessed
without causing a descriptor violation, out of segment bounds, fault.

R Read permission bit

E Execute permission bit (xec and xed instructions excluded)

W Write permission bit

P Privileged mode bit
0 = privileged instructions cannot be executed
1 = privileged instructions may be executed if in ring 0

U Paged/unpaged control bit
0 = segment is paged; ADDR is the 24-bit main memory address of the

page table
1 = segment is unpaged; ADDR is the 24-bit main memory address of the

origin of the segment

G Gate indicator bit
0 = any call into the segment must be to an offset less than the value of EB
1 = any legal segment offset may be called

C Cache control bit
0 = words (operands or instructions) from this segment may not be placed

in the cache memory
1 = words from this segment may be placed in the cache memory

EB Entry bound

Any call into this segment must be to an offset less than EB if G=0

0
0

2
3

ADDR

24

2
4

R1

2
6

3

2
7

R2

2
9

3

3
0

R3

3
2

3

3
3

F

3
5

FC

2

3
4

1

0
0

0

1

0
1

1
4

BOUND

14

1
5

R

1

1
6

E

1

1
7

W

1

1
8

P

1

1
9

U

1

2
0

G

1

2
1

C

1

2
2

3
5

ER

14

Page Table Word (PTW) Format

The page table word (PTW) contains main memory address and status information for a
page of a paged segment.

Figure 5-6. Page Table Word (PTW) Format

Bits pictured as "x" are ignored by the hardware and may be used by the operating system
software.

Field Name Description

ADDR 18-bit modulo 64 absolute main memory address of page

The hardware ignores low order bits of the main memory page address according
to page size based on the following:

Page Size in words
64

128
256
512

1024
2048
4096

ADDR Bits ignored
none
17

16-17
15-17
14-17
13-17
12-17

U 1 = page has been used (referenced)

M 1 = page has been modified

F Directed fault flag
0 = page not in main memory; execute directed fault FC
1 = page is in main memory

FC directed fault number for page fault.

0
0

1
7

ADDR

18

1
8

x x x x x

2
3

x

6

2
4

0

2
5

0

2

2
6

U

1

2
7

0

2
8

0

2

2
9

M

1

3
0

x x

3
2

x

3

3
3

F

1

3
4

3
5

FC

2

SECTION 6: VIRTUAL ADDRESS FORMATION

DEFINITION OF VIRTUAL ADDRESS

The virtual address in the Multics processor is the user's specification of the location of a
data item in the Multics virtual memory. Each reference to the virtual memory for operands,
indirect words, indirect pointers, operand descriptors, or instructions must provide a virtual
address. The hardware and the operating system translate the virtual address into the true
location of the data item and assure that the data item is in main memory for the reference.

The virtual address consists of two parts, an effective segment number and an offset or
computed address. The value of each part is the result of the evaluation of a hardware algorithm
(expression) of one or more terms. The selection of the algorithm is made by the use of control
bits in the instruction word; for example, bit 29 for modification by pointer register and bits 30-35
(the TAG field) for modification by index register or indirect word. For certain modifications by
indirect word, the TAG field of the indirect word is also treated as an address modifier, thus
establishing a continuing "indirect chain". Bit 29 of an indirect word has no meaning in the context
of virtual address formation.

The results of evaluation of the virtual address formation algorithms are stored in
temporary registers used as working registers by the processor. The effective segment number is
stored in the temporary segment register, TPR.TSR. The offset is stored in the computed address
register, TPR.CA. When each virtual address computation has been completed, C(TPR.TSR) and
C(TPR.CA) are presented to the appending unit for translation to a 24-bit absolute main memory
address (see Section 5).

TYPES OF VIRTUAL ADDRESS FORMATION

There are two types of virtual address formation. The first type does not make explicit use
of segment numbers. The algorithms produce values for the computed address, C(TPR.CA), only.
The effective segment number in C(TPR.TSR) does not change from the value used to fetch the
current instruction. In this case, all references are said to be "local" to the procedure segment
pointed to by the procedure pointer register (PPR).

The second type makes use of a segment number in an indirect word-pair in main memory
or in a pointer register (PRn). The algorithms produce values for both the effective segment
number, C(TPR.TSR), and the computed address, C(TPR.CA). The effective segment number in
C(TPR.TSR) may change and, if it changes, references are said to be "external" to the procedure
segment.

Both types of virtual address formation for the operand of a basic or EIS single-word
instruction begin with a preliminary step of loading TPR.CA with the ADDRESS field of the
instruction word. This preliminary step takes place during instruction decode.

The two types of virtual address formation can be intermixed. In cases where virtual
address calculations are chained together through pointer registers or indirect words, each virtual
address is translated to a 24-bit absolute main memory address to fetch the next item in the chain.

This description of virtual address formation is divided into two parts corresponding to the
two types. The first part describes the type that involves only the computed address, C(TPR.CA).
The effective segment number is constant. In append mode its value is equal to C(PPR.PSR) (a
local reference) and in absolute mode its value is undefined.

The second part describes the type that involves both the effective segment number,
C(TPR.TSR), and the computed address, C(TPR.CA).

SYMBOLOGY (ALM)

In many instances in the discussions that follow, references to the features of the ALM
assembly program are unavoidable. Such references are explained briefly here. The reader is
advised to consult the appropriate software documentation for further details and for possible
changes in the various features.

Symbolic Fields

A symbolic field is an expression consisting of variables, constants, literals, and operators
that is evaluated by ALM to produce a value for the corresponding field of a machine word. The
values of the variables and constants are either known or assignable and the operators are defined
for the mode of the evaluation (algebraic, logical, etc.). The necessary fields for a machine
instruction or ALM pseudo-instruction are given as a comma-separated string of expressions.

ALM Pseudo-Instructions

The following ALM pseudo-instructions are used in this section:

aci string

This pseudo-instruction generates a sequence of 9-bit byte fields each of which contains the
ASCII octal value for the corresponding graphic character in string. The last machine word
generated is low-order filled with binary 0s to the next word boundary.

arg address,tag

This pseudo-instruction generates a machine word with the same format as the basic and
EIS single-word instructions but having binary 0s in the operation code field.

bci string

This pseudo-instruction generates a sequence of 6-bit character fields each of which
contains the binary coded decimal (BCD) octal value for the corresponding graphic
character in string. The last machine word generated is low-order filled with binary 0s to
the next word boundary.

vfd field1,field2, ... ,fieldn

This pseudo-instruction generates a machine word (or word-pair) containing an arbitrary
number of fields of arbitrary length up to a total bit count of 72. The data generated is left-
justified in the machine word (or word-pair) and zero filled to the next word boundary as
necessary.

Each fieldi is given as:

md/expr

where: m is the data conversion mode and may be:

null for arithmetic operators and decimal literals,

o for Boolean operators and octal literals,

h for 6-bit character binary coded decimal (BCD) character strings, or

a for 9-bit byte ASCII character strings.

d is a literal giving the field width in bits and may have any value from 1 to 72.

expr is the expression to be evaluated or converted. Conversion is done with
full 36-bit precision and the field value is the conversion result modulo the field
width.

COMPUTED ADDRESS FORMATION

The address formation algorithms described here produce values only for the computed
address. The effective segment number is constant and equal to C(PPR.PSR) if the processor is in
append mode or is undefined if the processor is in absolute mode.

The Address Modifier (TAG) Field

Bits 30-35 of an instruction word or indirect word constitute the address modifier or TAG
field. The format of the TAG field is:

Figure 6-1. Address Modifier (TAG) Field Format

Field Name Function

Tm modifier field, specifies one of four general types of computed address
modification

Td designator field, selects among several variations available for the general
type given with Tm

General Types of Computed Address Modification

There are four general types of computed address modification: register, register then
indirect, indirect then register, and indirect then tally. The general types are described in Table
6-1. The value loaded into TPR.CA is symbolized by "y" in the descriptions following.

Table 6-1. General Computed Address Modification Types

Tm
value Type Description

0 Register
(r)

The contents of the register specified in C(Td) are added to the current
computed address, C(TPR.CA), to form the modified computed address.
Addition is twos complement, modulo 218, and overflow does not occur.

1 Register
then
indirect
(ri)

The contents of the register specified in C(Td) are added to the current
computed address, C(TPR.CA), to form the modified computed address as for
register modification. The modified C(TPR.CA) is then used to fetch an
indirect word. The TAG field of the indirect word specifies the next step in
computed address formation. The use of du or dl as the designator in this
modification type will cause an illegal procedure, illegal modifier, fault.

3
0

3
5

Td

4

3
1

3
2

2

Tm

Tm
value Type Description

2 Indirect
then
tally (it)

The indirect word at C(TPR.CA) is fetched and the modification performed
according to the variation specified in C(Td) of the instruction word and the
contents of the indirect word. This modification type allows automatic
incrementing and decrementing of addresses and tally counting.

3 Indirect
then
register
(ir)

The register designator, C(Td), is safe-stored in a special holding register, CT-
HOLD. The word at C(TPR.CA) is fetched and interpreted as an indirect
word. The TAG field of the indirect word specifies the next step in computed
address formation as follows:

Indirect
TAG Next step

r or it Perform register modification using Td from CT-HOLD.(1)

ri Perform the register then indirect modification immediately and
fetch the next indirect word from the result of that modification.

ir Replace the safe-stored Td value in CT-HOLD with the Td value
from the indirect word TAG field and use the ADDRESS field of
the indirect word as a computed address value to fetch the next
indirect word.

(1)In this instance, the indirect then tally variations fault tag 1, fault tag 2, and fault tag 3 are
treated differently. The fault tag 1 variation results in the action described here but fault tag 2
and fault tag 3 result in the generation of a fault. See the discussion of indirect then tally
modification later in this section.

Computed Address Formation Flowcharts

The flowcharts depicting the computed address formation process are scattered throughout
this section and are linked together by figure references. The flowcharts start with Figure 6-2.

Figure 6-2. Common Computed Address Formation Flowchart

Register (r) Modification

In register modification (Tm = 0) the value of Td designates a register whose contents are to
be added to C(TPR.CA) to form a modified C(TPR.CA). This modified C(TPR.CA) becomes the
computed address of the operand. See Figure 6-3, Table 6-2, and the examples following.

START CA

RI MODR MOD IR MODIT MOD

Tm=r Tm=ri Tm=it Tm=ir

(Figure 6-3) (Figure 6-4) (Figure 6-5) (Figure 6-6)

`

Interpret
Tm

Figure 6-3. Register Modification Flowchart

Table 6-2. Register Modification Decode

Td
value Register

Coding
Symbol Computed Address

0 none n, null y

1 A0,17 au y + C(A)0,17

2 Q0,17 qu y + C(Q)0,17

3 none du none; y becomes the upper 18 bits of the 36-bit zero
filled operand

4 PPR.IC ic y +C(PPR.IC)

5 A18,35 al y +C(A)18,35

6 Q18,35 ql y +C(Q)18,35

7 none dl none; y becomes the lower 18 bits of the 36-bit zero
filled operand

10 X0 0, x0 y +C(X0)

11 X1 1, x1 y +C(X1)

12 X2 2, x2 y +C(X2)

13 X3 3, x3 y +C(X3)

14 X4 4, x4 y +C(X4)

15 X5 5, x5 y +C(X5)

16 X6 6, x6 y +C(X6)

17 X7 7, x7 y +C(X7)

R MOD

Yes

Yes

No

END CA

No

r = Td
C(TPR.CA) + C(r) C(TPR.CA)→

Set direct operand flag
Form operand

Td = 0?

Td = 3
or 7?

Examples:

Location Instruction Computed address

1. a lda y y

2. a sta y,n y

3. a ldaq y,au y + C(A)0,17

4. a tra 3,ic a + 3

5. a ldq y,du none; operand has the form y || (00...0)18

6. a lxl4 y,dl none; operand has the form (00...0)18 || y

7. a mpy y,1 y + C(X1)

8. a stx4 y,7 y + C(X7)

Register Then Indirect (ri) Modifications

In register then indirect modification (Tm = 1) the value of Td designates a register whose
contents are to be added to C(TPR.CA) to form a modified C(TPR.CA). This modified C(TPR.CA) is
used as a computed address to fetch an indirect word. The ADDRESS field of the indirect word is
loaded into TPR.CA and the TAG field of the indirect word is interpreted in the next step of an
indirect chain. The TALLY field of the indirect word is ignored.

The indirect chain continues until an indirect word TAG field specifies a modification
without indirection.

The coding symbol for register then indirect modification is r* where r is any of the coding
symbols for register modification as given in Table 6-1 above except du and dl. The du and dl
register codes are illegal and and their use causes an illegal procedure, illegal modifier, fault. See
Figure 6-4, Table 6-1, and the examples following.

Figure 6-4. Register Then Indirect Modification Flowchart

Examples:

Location Instruction Computed address

1. a lda b,* (r = null)
b arg y y

2. a ldq b,1*
b+C(X1) arg y,au y + C(A)0,17

3. a tra 4,ic*
a+4 arg c,*
c arg y y

4. a lxl4 b,0*
b+C(X0) arg c,1*
c+C(X1) arg y,dl none; operand has the form (00...0)18 || y

Indirect Then Register (ir) Modification

In indirect then register modification (Tm = 3) the value of Td designates a register whose
contents are to be added to C(TPR.CA) to form the final modified C(TPR.CA) during the last step in
the indirect chain. The value of Td is held in a special holding register, CT-HOLD. The initial
C(TPR.CA) is used as computed address to fetch an indirect word. The ADDRESS of the indirect

RI MOD

Yes

Yes

No

START CA

No ABORT

illegal procedure,
illegal modifier, fault

(Figure 6-2)

Td = 3
or 7?

Td = 0?

r = Td
C(TPR.CA) + C(r) C(TPR.CA)→

Indirect word fetch
APPEND CYCLE

(Figure 5-4)

Indirect word ADDRESS
 → C(TPR.CA)

word is loaded into TPR.CA and the TAG field of the indirect word is interpreted in the next step of
an indirect chain. The TALLY field of the indirect word is ignored.

If the indirect word TAG field specifies a register then indirect modification, that
modification is performed and the indirect chain continues.

If the indirect word TAG field specifies indirect then register modification, the Td value from
that TAG field replaces the Td value in CT-HOLD and the indirect chain continues.

If the indirect word TAG specifies register or indirect then tally modification, that
modification is replaced with a register modification using the Td value in CT-HOLD and the
indirect chain ends.

The coding symbol for indirect then register modification is *r where r is any of the coding
symbols for register modification as given in Table 6-2 except null. See Figure 6-5, Table 6-1, and
the examples following.

Figure 6-5. Indirect Then Register Modification Flowchart

IR MOD

Yes

No

END CA fault tag 2
or 3 fault

ABORT

Tm=ri Tm=ir Tm=r` Tm=it

Td CT-HOLD→

Indirect word fetch
APPEND CYCLE

(Figure 5-4)

Indirect word ADDRESS
 → C(TPR.CA)

Interpret
indirect TAG

Fault tag
2 or 3?

r = CT-HOLD
C(TPR.CA) + C(r) C(TPR.CA)→

r = Td
C(TPR.CA) + C(r) C(TPR.CA)→

Examples:

Location Instruction Computed address

1. a lda b,*n (CT-HOLD = n)
b arg y,2 y

2. a lxl2 b,*dl (CT-HOLD = dl)
b sta y,au none; operand has the form (00...0)18 || y

3. a lda b,*1 (CT-HOLD = x1)
b arg c,n*
c arg d,*4 (CT-HOLD = x4)
d arg y,ql y + C(X4)

4. a ldx0 b,1*
b+C(X1) arg c,*ic (CT-HOLD = ic)
c arg 5,dl a + 5

Indirect Then Tally (it) Modification

In indirect then tally modification (Tm = 2) the value of Td specifies a variation. The initial
C(TPR.CA) is used an as computed address to fetch an indirect word. The indirect word is
interpreted and possibly altered as the modification is performed. If the specified variation
involves alteration of the indirect word, the indirect word is fetched with a special main memory
cycle that prevents other processors from accessing it until the alteration is complete.

The TALLY field of the indirect word is used to count references made to the indirect word.
It has a maximum range of 4096. If the TALLY field has the value 0 after a reference to the
indirect word, the tally runout indicator will be set ON, otherwise the tally runout indicator is set
OFF. The value of the TALLY field and the state of the tally runout indicator have no effect on
computed address formation.

If there is more than one indirect word in an indirect chain that is referenced by a tally
counting variation, only the state of the TALLY field of the last such word is reflected in the tally
runout indicator.

The variations of the indirect then tally modification are given in Table 6-3 and explained in
detail in the paragraphs following. Those entries given as "Undefined" cause an illegal procedure,
illegal modifier, fault. See Figure 6-6, Table 6-1, and the examples following.

Table 6-3. Variations of Indirect Then Tally Modification

Td
value

Coding
symbol Computed address

0 f1 Fault tag 1

1 Undefined (see itp modification later in this section)

2 Undefined

3 Undefined (see its modification later in this section)

4 sd Subtract delta

Td
value

Coding
symbol Computed address

5 scr Sequence character reverse

6 f2 Fault tag 2

7 f3 Fault tag 3

10 ci Character indirect

11 i Indirect

12 sc Sequence character

13 ad Add delta

14 di Decrement address, increment tally

15 dic Decrement address, increment tally, and continue

16 id Increment address, decrement tally

17 idc Increment address, decrement tally, and continue

Fault tag 1 (Td = 0)

If this variation appears in an indirect word and the TAG of the instruction word or
preceding indirect word is indirect then register (ir), then terminate computed address
formation with a register (r) modification using the register held in CT-HOLD. If this
variation appears in an instruction word or in an indirect word and the TAG of the
instruction word or preceding indirect word is not indirect then register (ir), then generate
a fault tag 1 fault.

C(TPR.CA) at the time of the fault contains the computed address of the word containing
the fault tag 1 variation. Thus, the ADDRESS and TALLY fields of that word may contain
information relative to recovery from the fault.

Subtract delta (Td = 4)

The TAG field of the indirect word is interpreted as a 6-bit, unsigned, positive address
increment value, delta. For each reference to the indirect word, the ADDRESS field is
reduced by delta and the TALLY field is increased by 1 before the computed address is
formed. ADDRESS arithmetic is modulo 218. TALLY arithmetic is modulo 4096. If the
TALLY field overflows to 0, the tally runout indicator is set ON, otherwise it is set OFF. The
computed address is the value of the decremented ADDRESS field of the indirect word.

Example:

Location Instruction Reference
count

Computed
address

Tally value

a lda b,sd 1 c-d t+l
b vfd 18/c,12/t,6/d 2 c-2d t+2

3 c-3d t+3
...
n c-nd t+n

Sequence character reverse (Td = 5)

Bit 30 of the TAG field of the indirect word is interpreted as a character size flag, tb, with
the value 0 indicating 6-bit characters and the value 1 indicating 9-bit bytes. Bits 33-35 of

the TAG field are interpreted as a 3-bit character/byte position counter, cf. Bits 31-32 of the
TAG field must be zero.

For each reference to the indirect word, the character counter, cf, is reduced by 1 and the
TALLY field is increased by 1 before the computed address is formed. Character count
arithmetic is modulo 6 for 6-bit characters and modulo 4 for 9-bit bytes. If the character
count, cf, underflows to -1, it is reset to 5 for 6-bit characters or to 3 for 9-bit bytes and
ADDRESS is reduced by 1. ADDRESS arithmetic is modulo 218. TALLY arithmetic is
modulo 4096. If the TALLY field overflows to 0, the tally runout indicator is set ON,
otherwise it is set OFF. The computed address is the (possibly) decremented value of the
ADDRESS field of the indirect word. The effective character/byte number is the
decremented value of the character position count, cf, field of the indirect word.

A 36-bit operand is formed by high-order zero filling the value of character cf-l of
C(computed address) with an appropriate number of bits .

Examples:

Location Instruction
Reference

count cf
Computed
address

Tally
value Operand

a lda b,scr 1 2 c+l t+l (00...0)30 || "I"
b vfd 18/c+1,12/t,1/0,5/3 2 1 c+l t+2 (00...0)30 || "H"
c bci "ABCDEFGHIJKL" 3 0 c+l t+3 (00...0)30 || "G"

4 5 c t+4 (00...0)30 || "F"
5 4 c t+5 (00...0)30 || "E"
...

a lda b,scr 1 2 c+l t+l (00...0)27 || "g"
b vfd 18/c+1,12/t,1/1,5/3 2 1 c+l t+2 (00...0)27 || ”f”
c aci "abcdefgh" 3 0 c+l t+3 (00...0)27 || "e"

4 3 c t+4 (00...0)27 || "d"
5 2 c t+5 (00...0)27 || "c"
...

Fault tag 2 (Td = 6)

Terminate computed address formation immediately and generate a fault tag 2 fault.

C(TPR.CA) at the time of the fault contains the computed address of the word containing
the fault tag 2 variation. Thus, the ADDRESS and TALLY fields of that word may contain
information relative to recovery from the fault.

Fault tag 3 (Td = 7)

Terminate computed address formation immediately and generate a fault tag 3 fault.

C(TPR.CA) at the time of the fault contains the computed address of the word containing
the fault tag 3 variation. Thus, the ADDRESS and TALLY fields of that word may contain
information relative to recovery from the fault.

Character indirect (Td = 10)

Bit 30 of the TAG field of the indirect word is interpreted as a character size flag, tb, with
the value 0 indicating 6-bit characters and the value 1 indicating 9-bit bytes. Bits 33-35 of
the TAG field are interpreted as a 3-bit character/byte position value, cf. Bits 31-32 of the
TAG field must be zero.

If the character position value is greater than 5 for 6-bit characters or greater than 3 for 9-
bit bytes, an illegal procedure, illegal modifier, fault will occur. The TALLY field is ignored.
The computed address is the value of the ADDRESS field of the indirect word. The effective
character/byte number is the value of the character position count, cf, field of the indirect
word.

A 36-bit operand is formed by high-order zero filling the value of character cf of
C(computed address) with an appropriate number of bits .

Examples:

Location Instruction Operand

a lda b,ci
b vfd 18/c+1,12/0,1/0,5/2 (00...0)30 || "I"
c bci "ABCDEFGHIJKL"

a lda d,ci
d vfd 18/c,12/0,1/0,5/1 (00...0)30 || "B'"

a lda e,ci
e vfd 18/f,12/0,1/1,5/3 (00...0)27 || "d"
f aci "abcdefgh"

a lda g,ci
g vfd 18/f+1,12/0,1/1,5/0 (00...0)27 || "e"

Indirect (Td = 11)

The computed address is the value of the ADDRESS field of the indirect word. The TALLY
and TAG fields of the indirect word are ignored.

Sequence character (Td = 12)

Bit 30 of the TAG field of the indirect word is interpreted as a character size flag, tb, with
the value 0 indicating 6-bit characters and the value 1 indicating 9-bit bytes. Bits 33-35 of
the TAG field are interpreted as a 3-bit character position counter, cf. Bits 31-32 of the TAG
field must be zero.

For each reference to the indirect word, the character counter, cf, is increased by 1 and the
TALLY field is reduced by 1 after the computed address is formed. Character count
arithmetic is modulo 6 for 6-bit characters and modulo 4 for 9-bit bytes. If the character
count, cf, overflows to 6 for 6-bit characters or to 4 for 9-bit bytes, it is reset to 0 and
ADDRESS is increased by 1. ADDRESS arithmetic is modulo 218. TALLY arithmetic is
modulo 4096. If the TALLY field is reduced to 0, the tally runout indicator is set ON,
otherwise it is set OFF. The computed address is the unmodified value of the ADDRESS
field. The effective character/byte number is the unmodified value of the character position
counter, cf, field of the indirect word.

A 36-bit operand is formed by high-order zero filling the value of character of of
C(computed address) with an appropriate number of bits .

Examples:

Location Instruction
Reference

count cf
Computed
address

Tally
value Operand

a lda b,sc 1 4 c t-1 (00...0)30 || "E"
b vfd 18/c,12/t,1/0,5/4 2 5 c t-2 (00...0)30 || "F"
c bci "ABCDEFGHIJKL" 3 0 c+l t-3 (00...0)30 || "G"

4 1 c+l t-4 (00...0)30 || "H"
5 2 c+l t-5 (00...0)30 || "I"
...

a lda b,sc 1 2 c t-1 (00...0)27 || "c"
b vfd 18/c,12/t,1/1,5/2 2 3 c t-2 (00...0)27 || "d"
c aci "abcdefgh" 3 0 c+l t-3 (00...0)27 || "e"

4 1 c+l t-4 (00...0)27 || "f"
5 2 c+l t-5 (00...0)27 || "g"
...

Add delta (Td = 13)

The TAG field of the indirect word is interpreted as a 6-bit, unsigned, positive address
increment value, delta. For each reference to the indirect word, the ADDRESS field is
increased by delta and the TALLY field is reduced by 1 after the computed address is
formed. ADDRESS arithmetic is modulo 218. TALLY arithmetic is modulo 4096. If the
TALLY field is reduced to 0, the tally runout indicator is set ON, otherwise it is set OFF.
The computed address is the value of the unmodified ADDRESS field of the indirect word.

Example:

Location Instruction Reference count Computed
address

Tally value

a lda b,ad 1 c t-1
b vfd 18/c,1/t,6/d 2 c+d t-2

3 c+2d t-3
...
n c+(n-l)d t-n

Decrement address, increment tally (Td = 14)

For each reference to the indirect word, the ADDRESS field is reduced by 1 and the TALLY
field is increased by 1 before the computed address is formed. ADDRESS arithmetic is
modulo 218. TALLY arithmetic is modulo 4096. If the TALLY field overflows to 0, the tally
runout indicator is set ON, otherwise it is set OFF. The TAG field of the indirect word is
ignored. The computed address is the value of the decremented ADDRESS field.

Example:

Location Instruction Reference
count

Computed
address

Tally value

a lda b,di 1 c-1 t+l
b vfd 18/c,12/t 2 c-2 t+2

3 c-3 t+3
...
n c-n t+n

Decrement address, increment tally, and continue (Td = 15)

The action for this variation is identical to that for the decrement address, increment tally
variation except that the TAG field of the indirect word is interpreted and continuation of
the indirect chain is possible. If the TAG of the indirect word invokes a register, that is,
specifies r, ri, or ir modification, the effective Td value for the register is forced to "null"
before the next computed address is formed .

Increment address, decrement tally (Td = 16)

For each reference to the indirect word, the ADDRESS field is increased by 1 and the
TALLY field is reduced by 1 after the computed address is formed. ADDRESS arithmetic is
modulo 218. TALLY arithmetic is modulo 4096. If the TALLY field is reduced to 0, the tally
runout indicator is set ON, otherwise it is set OFF. The TAG field of the indirect word is
ignored. The computed address is the value of the unmodified ADDRESS field.

Example:

Location Instruction Reference
count

Computed
address

Tally value

a lda b,id 1 c t-1
b vfd 18/c,1/t 2 c+1 t-2

3 c+2 t-3
...
n c+(n-1) t-n

Increment address, decrement tally, and continue (Td = 17)

The action for this variation is identical to that for the increment address, decrement tally
variation except that the TAG field of the indirect word is interpreted and continuation of
the indirect chain is possible. If the TAG of the indirect word invokes a register, that is,
specifies r, ri, or ir modification, the effective Td value for the register is forced to "null"
before the next computed address is formed.

Figure 6-6. Indirect Then Tally Modification Flowchart

VIRTUAL ADDRESS FORMATION INVOLVING BOTH SEGMENT
NUMBER AND COMPUTED ADDRESS

The second type of virtual address formation generates an effective segment number and a
computed address simultaneously.

The Use of Bit 29 in the Instruction Word

The reader is reminded that there is a preliminary step of loading TPR.CA with the
ADDRESS field of the instruction word during instruction decode.

If bit 29 of the instruction word is set to 1, modification by pointer register is invoked and
the preliminary step is executed as follows:

1. The ADDRESS field of the instruction word is interpreted as shown in Figure 6-7 below.

2. C(PRn.SNR) C(TPR.TSR)→

IT MOD

Yes

No

???
cf field, and

ADDRESS. Form
computed address

END CA

ABORT

fault tag 1,
2, or 3 fault

Td = 0, 6, 7
(f1, f2, f3)

Td = 1, 2, 3
(undef)

Td = 10, 12, 5
(ci, sc, scr)

Td = 11, 13, 4, 14, 16
(i, ad, sd, di, id)

Td = 15, 17
(dic, idc)

ABORT

illegal procedure,
illegal modifier, fault

START CA

Tm = r Tm = ir or it Tm = ri

(Figure 6-2)

Interpret
Td

is the cf
value legal?

Interpret
indirect TAG

Indirect word fetch
APPEND CYCLE

(Figure 5-4)

Indirect word fetch
APPEND CYCLE

(Figure 5-4)

Indirect word fetch
APPEND CYCLE

(Figure 5-4)

Indirect word fetch
APPEND CYCLE

(Figure 5-4)

Adjust TALLY
and form

computed address

3. maximum of (C(PRn.RNR), C(TPR.TRR), C(PPR.PRR)) C(TPR.TRR)→

4. C(PRn.WORDNO) + OFFSET C(TPR.CA)→

(NOTE: OFFSET is a signed binary number.)

5. C(PRn.BITNO) TPR.BITNO→

Figure 6-7. Format of Instruction Word ADDRESS When Bit 29 = 1

After this preliminary step is performed, virtual address formation proceeds as discussed
above or as discussed for the special address modifiers below.

Special Address Modifiers

Whenever the processor is forming a virtual address two special address modifiers may be
specified and are effective under certain restrictive conditions. The special address modifiers are
shown in Table 6-4 and discussed in the paragraphs below.

The conditions for which the special address modifiers are effective are as follows:

1. The instruction word (or preceding indirect word) must specify indirect then register or
register then indirect modification.

2. The computed address for the indirect word must be even.

If these conditions are satisfied, the processor examines the indirect word TAG field for the
special address modifiers.

If either condition is violated, the indirect word TAG field is interpreted as a normal address
modifier and the presence of a special address modifier will cause an illegal procedure, illegal
modifier, fault.

Table 6-4. Special Address Modifiers

TAG Value Coding Symbol Name

41 itp Indirect to pointer

43 its Indirect to segment

Indirect to Pointer (ITP) Modification

If the value for indirect to pointer modification is found in the test for special modifiers, the
indirect word-pair is interpreted as an ITP pointer pair (see Figure 6-8 for format) and the
following actions take place:

For n = C(ITP.PRNUM):

0
0

1
7

OFFSET

15

0
2

0
3

3

PRn

C(PRn.SNR) C(TPR.TSR)→

maximum of (C(PRn.RNR), C(SDW.R1), C(TPR.TRR)) C(TPR.TRR)→

C(ITP.BITNO) C(TPR.TBR)→

C(PRn.WORDNO) + C(ITP.WORDNO) + C(r) C(TPR.CA)→

where:

1. r = C(CT-HOLD) if the instruction word or preceding indirect word specified
indirect then register modification, or

2. r = C(ITP.MOD.Td) if the instruction word or preceding indirect word specified
register then indirect modification and ITP.MOD.Tm specifies either register or
register then indirect modification.

3. SDW.R1 is the upper limit of the read/write ring bracket for the segment
C(TPR.TSR) (see Section 8).

Even word

Odd word

Figure 6-8. ITP Pointer Pair Format

Field Name Meaning

PRNUM The number of the pointer register through which to make the
segment reference

WORDNO A word offset value to be added to C(PRn.WORDNO)

BITNO A bit offset value for the data item

MOD Any normal address modifier (not ITP or ITS)

Indirect to Segment (ITS) Modification

If the value for indirect to segment modification is found in the test for special modifiers,
the indirect word-pair is interpreted as an ITS pointer pair (see Figure 6-9 for format) and the
following actions take place:

C(ITS.SEGNO) C(TPR.TSR)→

0
0

PRNUM

0
2

3

0
3

0 0

2
9

0

27

3
0

418

3
5

6

0
0

1
7

WORDNO

18

1
8

0 0

2
0

0

3

2
1

2
6

BITNO

6

2
7

0 0

2
9

0

3

3
0

MOD

3
1

2

3
2

Td

3
5

4
TmTm

maximum of (C(ITS. RN), C(SDW.R1), C(TPR.TRR)) C(TPR.TRR)→

C(ITS.BITNO) C(TPR.TBR)→

C(ITS.WORDNO) + C(r) C(TPR.CA)→

where:

1. r = C(CT-HOLD) if the instruction word or preceding indirect word specified
indirect then register modification, or

2. r = C(ITS.MOD.Td) if the instruction word or preceding indirect word specified
register then indirect modification and ITS.MOD.Tm specifies either register or
register then indirect modification.

3. SDW.R1 is the upper limit of the read/write ring bracket for the segment
C(TPR.TSR) (see Section 8).

Even word

Odd word

Figure 6-9. ITS Pointer Pair Format

Field Name Meaning

SEGNO The number of the segment to be referenced

WORDNO Word offset to be used in the computed address formation

BITNO The bit offset for the data item

MOD Any valid normal address modifier (not ITS or ITP)

Effective Segment Number Generation

A simplified flowchart for effective segment number generation is given in Figure 6-10.
Although effective ring number generation and access checking are an integral part of this
process, their treatment is deferred to Section 8.

0
0

0 0

0
2

0

3

0
3

1
7

SEGNO

15

1
8

RN

2
0

3

2
1

0 0 0 0 0 0 0 0

2
9

0

9

3
0

438

3
5

6

0
0

1
7

WORDNO

18

1
8

0 0

2
0

0

3

2
1

2
6

BITNO

6

2
7

0 0

2
9

0

3

3
0

MOD

3
1

2

3
2

Td

3
5

4
TmTm

Figure 6-10. Effective Segment Generation Flowchart

START ESN

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

BA

C(PPR.PSR) C(TPR.TSR)→
n = C(instruction word)0,2

C(PRn .SNR) C(TPR.TSR)→

CA CYCLE
(Figure 6-2)

Was last cycle an
indirect word?

Is bit
29 ON?

Was it a
sequential instruction

fetch?

Indirect
word fetch?

ri or ir &
TPR.CA even?

Figure 6-10(cont). Effective Segment Number Generation Flowchart

VIRTUAL ADDRESS FORMATION FOR EXTENDED INSTRUCTION
SET

The steps involved in virtual address formation for the operand of an EIS instruction are
shown in Figure 6-11. The flowchart depicts the virtual address formation for operand k as
described by its modification field, MFk. This virtual address formation is performed for each
operand as its operand descriptor is decoded.

START ESN

YesNo

BA

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

EXECUTE

END ESN

appending
unit data

movement?

C(Y)3,17 C(TPR.TSR)→
C(Y+1)0,17 C(TPR.CA)→

C(ITS.MOD) TAG→

n = C(Y)0,2
C(PRn .SNR) C(TPR.TSR)→

C(PRn .WORDNO) + C(Y+1)0,17
 → C(TPR.CA)

C(ITP.MOD) TAG→

C(Y)3,17 C(PPR.PSR)→
C(Y+1)0,17 C(PPR.IC)→

C(TPR.TSR) C(PPR.PSR)→
C(TPR.CA) C(PPR.IC)`→

TAG =
ITS?

TAG =
ITP?

Need an
indirect word?

rtcd
operand?

call6 or
transfer

operand?

(Not shown)

Figure 6-11. EIS Virtual Address Formation Flowchart

NOTE 1: The symbol "Y" stands for the contents of the ADDRESS field of the operand descriptor.
The symbols '"CN" and "C" stand for the contents of the character number field. The
symbol "B" stands for the contents of the bit number field.

NOTE 2: The algorithms used in the formation of the effective word/char/bit address are described
below.

Character- and Bit-String Addressing

The processor represents the effective address of a character- or bit-string operand in three
different forms as follows:

1. Pointer register form

This form consists of a word value (PRn.WORDNO) and a bit value (PRn.BITNO). The
word value is the word offset of the word containing the first character or bit of the
operand and the bit value is the bit position of that character or bit within the word. This

START EIS CA

YesNo

END EIS CA

YesNo

Yes No

ESN CYCLE
(Figure 6-10)

operand descriptor
APPEND CYCLE

(Figure 5-4)

MFk .AR
= 1?

MFk .REG
= 0?

MFk .ID
= 1?

n = C(Y)0,2
(NOTE 1)

n = null

r = null r = Mfk .REG

Form effective word/char/bit
address from

Y, CN, C, B, C(PRn), C(r)
(NOTE 1, 2)

form is seen when C(PRn) are stored as an ITS pointer pair or as a packed pointer (see
discussion of ITS pointers earlier in this section and the Store Pointer Register n Packed
(sprpn) instruction in Section 4).

2. Address register form

This form consists of a word value (ARn.WORDNO), a byte number (ARn.CHAR), and a
bit value (ARn.BITNO). The word value is the word offset of the word containing the first
character or bit of the operand. The byte number is the number of the 9-bit byte
containing the first character or bit. The bit value is the bit position within ARn.CHAR of
the first character or bit. This form is seen when C(ARn) are stored with the Store
Address Register n (sarn) instruction (see Section 4).

3. Operand Descriptor Form

This form is valid for character-string operands only. It consists of a word value
(ADDRESS) and a character number (CN). The word value is the word offset of the word
containing the first character of the operand and the character number is the number of
that character within the word. This form is seen when C(ARn) are stored with the
Address Register n to Alphanumeric Descriptor (aran) or Address Register n to Numeric
Descriptor (arnn) instructions. (The operand descriptor form for bit-string operands is
identical to the address register form.)

The terms "pointer register" and "address register" both apply to the same physical
hardware. The distinction arises from the manner in which the register is used and in the
interpretation of the register contents. "Pointer register" refers to the register as used by the
appending unit and "address register" refers to the register as used by the decimal unit.

The three forms are compatible and may be freely intermixed. For example, PRn may be
loaded in pointer register form with the Effective Pointer to Pointer Register n (eppn) instruction,
then modified in pointer register form with the Effective Address to Word/Bit Number of Pointer
Register n (eawpn) instruction, then further modified in address register form (assuming character
size k) with the Add k-Bit Displacement to Address Register (akbd) instruction, and finally invoked
in operand descriptor form by the use of MF.AR in an EIS multiword instruction .

Character- and Bit-String Address Arithmetic Algorithms

The arithmetic algorithms for calculating character- and bit-string addresses are presented below.
The symbols "ADDRESS" and "CN" represent the ADDRESS and CN fields of the operand
descriptor being decoded. "r" and "n" are set according to the flowchart in Figure 6-11. If either
has the value "null", the contents of all associated fields are identically zero.

9-bit Byte String Address Arithmetic

Effective BITNO = 0000

Effective CHAR = (CN + C(ARn.CHAR) + C(r))[4]

Effective WORDNO = ADDRESS + C(ARn.WORDNO) +
(CN + C(ARn.CHAR) + C(r)) / 4

6-bit Character String Address Arithmetic

Effective BITNO = (9*C(ARn.CHAR) + 6*C(r) + C(ARn.BITNO))[9]

Effective CHAR = ((9*C(ARn.CHAR) + 6*C(r) + C(ARn.BITNO))[36]) / 9

Effective WORDNO = ADDRESS + C(ARn.WORDNO) +
(9*C(ARn.CHAR) + 6*C(r) + C(ARn.BITNO)) / 36

4-bit Byte String Address Arithmetic

Effective BITNO = 4 * (C(ARn.CHAR) + 2*C(r) + C(ARn.BITNO)/4)[2] + 1

Effective CHAR = ((9*C(ARn.CHAR) + 4*C(r) + C(ARn.BITNO))[36] / 9

Effective WORDNO = ADDRESS + C(ARn.WORDNO) +
(9*C(ARn.CHAR) + 4*C(r) + C(ARn.BITNO)) / 36

Bit String Address Arithmetic

Effective BITNO = (9*C(ARn.CHAR) + 36*C(r) + C(ARn.BITNO))[9]

Effective CHAR = ((9*C(ARn.CHAR) + 36*C(r) + C(ARn.BITNO))[36]) / 9

Effective WORDNO = ADDRESS + C(ARn.WORDNO) +
(9*C(ARn.CHAR) + 36*C(r) + C(ARn.BITNO)) / 36

SECTION 7: FAULTS AND INTERRUPTS

Faults and interrupts both result in an interruption of normal sequential processing, but
there is a difference in how they originate. Generally, faults are caused by events or conditions
that are internal to the processor and interrupts are caused by events or conditions that are
external to the processor. Faults and interrupts enable the processor to respond promptly when
conditions occur that require system attention.

A unique word-pair is dedicated for the instructions to service each fault and interrupt
condition. The instruction pair associated with a fault or interrupt is called the trap pair for that
fault or interrupt. The set of all interrupt trap pairs is called the interrupt vector and is located at
absolute main memory address 0. The set of all fault trap pairs is called the fault vector and is
located at a 0 modulo 32 absolute main memory address whose high-order bits are given by the
setting of the FAULT BASE switches on the processor configuration panel. The fault vector is
constrained to lie within the lowest 4096 words of main memory.

FAULT CYCLE SEQUENCE

Following the detection of a fault condition, the control unit determines the proper time to
initiate the fault sequence according to the fault group (Fault groups are discussed later in this
section). At that time, the control unit interrupts normal sequential processing with an ABORT
CYCLE. The ABORT CYCLE brings all overlapped and asynchronous functions within the
processor to an orderly halt. At the end of the ABORT CYCLE, the control unit initiates a FAULT
CYCLE.

In the FAULT CYCLE, the processor safe-stores the Control Unit Data (see Section 3) into
program-invisible holding registers in preparation for a Store Control Unit (scu) instruction, then
enters temporary absolute mode, forces the current ring of execution C(PPR.PRR) to 0, and
generates a computed address for the fault trap pair by concatenating the setting of the FAULT
BASE switches on the processor configuration panel with twice the fault number (see Table 7-1).
This computed address and the operation code for the Execute Double (xed) instruction are forced
into the instruction register and executed as an instruction. Note that the execution of the
instruction is not done in a normal EXECUTE CYCLE but in the FAULT CYCLE with the processor
in temporary absolute mode.

If the attempt to fetch and execute the instruction pair at the fault trap pair results in
another fault, the current FAULT CYCLE is aborted and a new FAULT CYCLE for the trouble fault
(fault number 31) is initiated. In the FAULT CYCLE for a trouble fault, the processor does not
safe-store the Control Unit Data. Therefore, it may be possible to recover the conditions for the
original fault (except the fault number) by use of the Store Control Unit (scu) instruction. The fault
number may usually be recovered by analysis of the computed address for the original fault trap
pair stored in the control unit history registers.

If either of the two instructions in the fault trap pair results in a transfer of control to a
computed address generated in absolute mode, the absolute mode indicator is set ON for the
transfer and remains ON thereafter until changed by program action.

If either of the two instructions in the fault trap pair results in a transfer of control to a
computed address generated in append mode (through the use of bit 29 of the instruction word or
by use of the its or itp modifiers), the transfer is made in the append mode and the processor
remains in append mode thereafter.

If no transfer of control takes place, the processor returns to the mode in effect at the time
of the fault and resumes normal sequential execution with the instruction following the faulting
instruction (C(PPR.IC) + 1). Note that the current ring of execution C(PPR.PRR) was forced to 0
during the FAULT CYCLE and that normal sequential execution will resume in ring 0.

Many of the fault conditions are deliberately or inadvertently caused by the software and do
not necessarily involve error conditions. The operating supervisor determines the proper action
for each fault condition by analyzing the detailed state of the processor at the time of the fault. In
order to accomplish this analysis, it is necessary that the first instruction in each of the fault trap
pairs be the Store Control Unit (scu) instruction and the second be a transfer to a fault analysis
routine. If a fault condition is to be intentionally ignored, the fault trap pair for that condition
should contain an scu/rcu pair referencing a unique Y-block8. By using this pair to ignore a fault,
the state of the processor for the ignored fault condition may be recovered if the ignored fault
causes a trouble fault. The use of the scu/rcu pair also ensures that execution is resumed in the
original ring of execution.

Table 7-1. List of Faults

Decimal fault
number

Octal (1)

fault
address

Fault
mnemonic Fault name Priority Group

0 0 sdf Shutdown 27 7

1 2 str Store 10 4

2 4 mme Master mode entry 1 11 5

3 6 f1 Fault tag 1 17 5

4 10 tro Timer runout 26 7

5 12 cmd Command 9 4

6 14 drl Derail 15 5

7 16 luf Lockup 5 4

8 20 con Connect 25 7

9 22 par Parity 8 4

10 24 ipr Illegal procedure 16 5

11 26 onc Operation not
complete

4 2

12 30 suf Startup 1 1

13 32 ofl Overflow 7 3

14 34 div Divide check 6 3

15 36 exf Execute 2 1

16 40 df0 Directed fault 0 20 6

17 42 df1 Directed fault 1 21 6

18 44 df2 Directed fault 2 22 6

19 46 df3 Directed fault 3 23 6

20 50 acv Access violation 24 6

21 52 mme2 Master mode entry 2 12 5

22 54 mme3 Master mode entry 3 13 5

23 56 mme4 Master mode entry 4 14 5

24 60 f2 Fault tag 2 18 5

25 62 f3 Fault tag 3 19 5

26 64 Unassigned

27 66 Unassigned

Decimal fault
number

Octal (1)

fault
address

Fault
mnemonic Fault name Priority Group

28 70 Unassigned

29 72 Unassigned

30 74 Unassigned

31 76 trb Trouble 3 2

(1)The octal fault address value is the value concatenated with the FAULT BASE switch setting in
forming the computed address for the fault trap pair.

FAULT PRIORITY

The processor has provision for 32 faults of which 27 are implemented. The faults are
classified into seven fault priority groups that roughly correspond to the severity of the faults.
Fault priority groups are defined so that fault recognition precedence may be established when
two or more faults exist concurrently. Overlapped and asynchronous functions in the processor
allow the simultaneous occurrence of faults. Group 1 has the highest priority and group 7 has the
lowest. In groups 1 through 6, only one fault within each group is allowed to be active at any one
time. The first fault within a group occurring through the normal program sequence is the one
serviced.

Group 7 faults are saved by the hardware for eventual recognition. In the case of
simultaneous faults within group 7, shutdown has the highest priority with timer runout next and
connect the lowest.

There is a single exception to the handling of faults in priority group order. If an operand
fetch generates a parity fault and the use of the operand in "closing out" instruction execution
generates an overflow fault or a divide check fault, these faults are considered simultaneous but
the parity fault takes precedence.

FAULT RECOGNITION

For the discussion following, the term "function" is defined as a major processor functional
cycle. Examples are: APPEND CYCLE, CA CYCLE, INSTRUCTION FETCH CYCLE, OPERAND
STORE CYCLE, DIVIDE EXECUTION CYCLE. Some of these cycles are discussed in various
sections of this manual.

Faults in groups 1 and 2 cause the processor to abort all functions immediately by entering
a FAULT CYCLE.

Faults in group 3 cause the processor to "close out" current functions without taking any
irrevocable action (such as setting PTW.U in an APPEND CYCLE or modifying an indirect word in a
CA CYCLE), then to discard any pending functions (such as an APPEND CYCLE needed during a
CA CYCLE), and to enter a FAULT CYCLE.

Faults in group 4 cause the processor to suspend overlapped operation, to complete current
and pending functions for the current instruction, and then to enter a FAULT CYCLE.

Faults in groups 5 or 6 are normally detected during virtual address formation and
instruction decode. These faults cause the processor to suspend overlapped operation, to complete
the current and pending instructions, and to enter a FAULT CYCLE. If a fault in a higher priority
group is generated by the execution of the current or pending instructions, that higher priority
fault will take precedence and the group 5 or 6 fault will be lost. If a group 5 or 6 fault is detected
during execution of the current instruction (e.g., an access violation, out of segment bounds, fault

during certain interruptible EIS instructions), the instruction is considered "complete" upon
detection of the fault.

Faults in group 7 are held and processed (with interrupts) at the completion of the current
instruction pair. Group 7 faults are inhibitable by setting bit 28 of the instruction word.

Faults in groups 3 through 6 must wait for the system controller to acknowledge the last
access request before entering the FAULT CYCLE.

FAULT DESCRIPTIONS

Group 1 Faults

Startup

DC POWER has been turned on. When the POWER ON button is pressed, the
processor is first initialized and then the startup fault is generated.

Execute

1. The EXECUTE pushbutton on the processor maintenance panel has been pressed.

2. An external gate signal has been substituted for the EXECUTE pushbutton.

The selection between the above conditions is made by settings of various switches on
the processor maintenance panel.

Group 2 Faults

Operation Not Complete

Any of the following will cause an operation not complete fault:

1. The processor has addressed a system controller to which it is not attached, that is,
there is no main memory interface port having its ADDRESS ASSIGNMENT
switches set to a value including the main memory address desired.

2. The addressed system controller has failed to acknowledge the processor.

3. The processor has not generated a main memory access request or a direct
operand within 1 to 2 milliseconds and is not executing the Delay Until Interrupt
Signal (dis) instruction.

4. A main memory interface port received a data strobe without a preceding
acknowledgment from the system controller that it had received the access
request.

5. A main memory interface port received a data strobe before the data previously
sent to it was unloaded.

Trouble

The trouble fault is defined as the occurrence of a fault during the fetch or execution
of a fault trap pair or interrupt trap pair. Such faults may be hardware generated (for
example, operation not complete or parity), or operating system generated (e.g., the
page containing a trap pair instruction operand is missing).

Group 3 Faults

Overflow

An arithmetic overflow, exponent overflow, exponent underflow, or EIS truncation
fault has been generated. The generation of this fault is inhibited when the overflow
mask indicator is ON. Resetting of the overflow mask indicator to OFF does not
generate a fault from previously set indicators. The overflow mask state does not
affect the setting, testing or storing of indicators. The determination of the specific
overflow condition is by indicator testing by the operating supervisor.

Divide Check

A divide check fault occurs when the actual division cannot be carried out for one of
the reasons specified with individual divide instructions.

Group 4 Faults

Store

The processor attempted to select a disabled port, an out-of-bounds address was
generated in the BAR mode or absolute mode, or an attempt was made to access a
store unit that was not ready.

Command

1. The processor attempted to load or read the interrupt mask register in a system
controller in which it did not have an interrupt mask assigned.

2. The processor issued an XEC system controller command to a system controller in
which it did not have an interrupt mask assigned.

3. The processor issued a connect to a system controller port that is masked OFF.

4. The selected system controller is in TEST mode and a condition determined by
certain system controller maintenance panel switches has been trapped.

5. An attempt was made to load a pointer register with packed pointer data in which
the BITNO field value was greater than or equal to 60(8).

Lockup

The program is in a code sequence which has inhibited sampling for interrupts
(whether present or not) and group 7 faults for longer than the prescribed time. In
absolute mode or privileged mode the lockup time is 32 milliseconds. In normal mode
or BAR mode the lockup time is specified by the setting for the lockup time in the
cache mode register. The lockup time is program settable to 2, 4, 8, or 16
milliseconds.

While in absolute mode or privileged mode the lockup fault is signalled at the end of
the time limit set in the lockup timer but is not recognized until the 32 millisecond
limit. If the processor returns to normal mode or BAR mode after the fault has been
signalled but before the 32 millisecond limit, the fault is recognized before any
instruction in the new mode is executed.

Parity

1. The selected system controller has returned an illegal action signal with an illegal
action code for one of the various main memory parity error conditions.

2. A cache memory data or directory parity error has occurred either for read, write,
or block load. Cache status bits for the condition have been set in the cache mode
register.

3. The processor has detected a parity error in the system controller interface port
while either generating outgoing parity or verifying incoming parity.

Group 5 Faults

Master Mode Entries 1-4

The corresponding Master Mode Entry instruction has been decoded.

Fault Tags 1-3

The corresponding indirect then tally variation has been detected during virtual
address formation.

Derail

The Derail instruction has been decoded.

Illegal Procedure

1. An illegal operation code has been decoded or an illegal instruction sequence has
been encountered.

2. An illegal modifier or modifier sequence has been encountered during virtual
address formation.

3. An illegal address has been given in an instruction for which the ADDRESS field is
used for register selection.

4. An attempt was made to execute a privileged instruction in normal mode or BAR
mode.

5. An illegal digit was encountered in a decimal numeric operand.

6. An illegal specification was found in an EIS operand descriptor.

The conditions for the fault will be set in the fault register, word 1 of the Control Unit
Data, or in both.

Group 6 Faults

Directed Faults 0-3

A faulted segment descriptor word (SDW) or page table word (PTW) with the
corresponding directed fault number has been fetched by the appending unit.

Access Violation

The appending unit has detected one of the several access violations below. Word 1 of
the Control Unit Data contains status bits for the condition.

1. Not in read bracket (ACV3=ORB)

2. Not in write bracket (ACV5=OWB)

3. Not in execute bracket (ACV1=OEB)

4. No read permission (ACV4=R-OFF)

5. No write permission (ACV6=W-OFF)

6. No execute permission (ACV2=E-OFF)

7. Invalid ring crossing (ACV12=CRT)

8. Call limiter fault (ACV7=NO GA)

9. Outward call (ACV9=OCALL)

10.Bad outward call (ACV10=BOC)

11.Inward return (ACV11=INRET)

12.Ring alarm (ACV13=RALR)

13.Associative memory error

14.Out of segment bounds (ACV15=OOSB)

15.Illegal ring order (ACV0=IRO)

16.Out of call brackets (ACV8=OCB)

Group 7 Faults

Shutdown

An external power shutdown condition has been detected. DC POWER shutdown will
occur in approximately one millisecond.

Timer Runout

The timer register has decremented to or through the value zero. If the processor is
in privileged mode or absolute mode, recognition of this fault is delayed until a return
to normal mode or BAR mode. Counting in the timer register continues.

Connect

A connect signal ($CON strobe) has been received from a system controller. This
event is to be distinguished from a Connect Input/Output Channel (cioc) instruction
encountered in the program sequence.

(See the discussion of the floating faults in Section 3).

INTERRUPTS AND EXTERNAL FAULTS

Each system controller contains 32 interrupt cells that are used for communication among
the active system modules (processors, I/O multiplexers, etc.). The interrupt cells are organized in
a numbered priority chain. Any active system module connected to a system controller port may
request the setting of an interrupt cell with the SXC system controller command.

When one or more interrupt cells in a system controller is set, the system controller
activates the interrupt present (XIP) line to all system controller ports having an assigned interrupt

mask in which one or more of the interrupt cells that are set is unmasked. Interrupt masks should
be assigned only to processors. Each interrupt cell has associated with it a unique interrupt trap
pair located at an absolute main memory address equal to twice the cell number.

Interrupt Sampling

The processor always fetches instructions in pairs. At an appropriate point (as early as
possible) in the execution of a pair of instructions, the next sequential instruction pair is fetched
and held in a special instruction buffer register. The exact point depends on instruction sequence
and other conditions

If the interrupt inhibit bit (bit 28) is not set in the current instruction word at the point of
next sequential instruction pair virtual address formation, the processor samples the group 7
faults. If any of the group 7 faults is found an internal flag is set reflecting the presence of the
fault. The processor next samples the interrupt present lines from all eight memory interface ports
and loads a register with bits corresponding to the states of the lines. If any bit in the register is
set ON an internal flag is set to reflect the presence of the bit(s) in the register.

If the instruction pair virtual address being formed is the result of a transfer of control
condition or if the current instruction is Execute (xec), Execute Double (xed), Repeat (rpt), Repeat
Double (rpd), or Repeat Link (rpl), the group 7 faults and interrupt present lines are not sampled.

At an appropriate point in the execution of the current instruction pair, the processor
fetches the next instruction pair. At this point, it first tests the internal flags for group 7 faults and
interrupts. If either flag is set it does not fetch the next instruction pair.

At the completion of the current instruction pair the processor once again checks the
internal flags. If neither flag is set, execution of the next instruction pair proceeds. If the internal
flag for group 7 faults is set, the processor enters a FAULT CYCLE for the highest priority group 7
fault present. If the internal flag for interrupts is set, the processor enters an INTERRUPT CYCLE.

Interrupt Cycle Sequence

In the INTERRUPT CYCLE, the processor safe-stores the Control Unit Data (see Section 3)
into program-invisible holding registers in preparation for a Store Control Unit (scu) instruction,
enters temporary absolute mode, and forces the current ring of execution C(PPR.PRR) to 0. It then
issues an XEC system controller command to the system controller on the highest priority port for
which there is a bit set in the interrupt present register.

The selected system controller responds by clearing its highest priority interrupt cell and
returning the interrupt trap pair address for that cell to the processor.

If there is no interrupt cell set in the selected system controller (implying that all have been
cleared in response to XEC system controller commands from other processors), the system
controller returns the address value 1, which is not a valid interrupt trap pair address. The
processor senses this value, aborts the INTERRUPT CYCLE, and returns to normal sequential
instruction processing.

The interrupt trap pair address returned and the operation code for the Execute Double
(xed) instruction are forced into the instruction register and executed as an instruction. Note that
the execution of the instruction is not done in a normal EXECUTE CYCLE but in the INTERRUPT
CYCLE with the processor in temporary absolute mode.

If the attempt to fetch and execute the instruction pair at the interrupt trap pair results in a
fault, the INTERRUPT CYCLE is aborted and a FAULT CYCLE for the trouble fault (fault number
31) is initiated. In the FAULT CYCLE for a trouble fault, the processor does not safe-store the
Control Unit Data. Therefore, it may be possible to recover the conditions for the interrupt (except
the interrupt number) by use of the Store Control Unit (scu) instruction. The interrupt number

may usually be recovered by analysis of the computed address for the interrupt trap pair stored in
the control unit history registers.

If either of the two instructions in the interrupt trap pair results in a transfer of control to a
computed address generated in absolute mode, the absolute mode indicator is set ON for the
transfer and remains ON thereafter until changed by program action.

If either of the two instructions in the interrupt trap pair results in a transfer of control to a
computed address generated in append mode (through the use of bit 29 of the instruction word or
by use of the itp or its modifiers), the transfer is made in the append mode and and the processor
remains in append mode thereafter.

If no transfer of control takes place, the processor returns to the mode in effect at the time
of the interrupt and resumes normal sequential execution with the instruction following the
interrupted instruction (C(PPR.IC) + 1). Note that the current ring of execution C(PPR.PRR) was
forced to 0 during the INTERRUPT CYCLE and that normal sequential execution will resume in
ring 0.

Due to the time required for many of the EIS data movement instructions, additional group
7 fault and interrupt sampling is done during these instructions. After the initial load of the
decimal unit input data buffer, group 7 faults and interrupts are sampled for each input operand
virtual address formation. The instruction in execution is interrupted before the operand is
fetched and flags are set into Control Unit Data and Decimal Unit Data to allow the restart of the
instruction.

NOTE: The execution of a Store Pointers and Lengths (spl) instruction is required before an
interrupted EIS instruction may be restarted. Therefore, a fault or interrupt handling
routine must execute this instruction even though it does not use the decimal unit for its
processing.

Many of the interrupts are deliberately or inadvertently caused by the software and do not
necessarily involve error conditions. The operating supervisor determines the proper action for
each interrupt by analyzing the detailed state of the processor at the time of the interrupt. In
order to accomplish this analysis, it is necessary that the first instruction in each of the interrupt
trap pairs be the Store Control Unit (scu) instruction and the second be a transfer to an interrupt
analysis routine. If an interrupt is to be intentionally ignored, the trap pair for that interrupt
should contain an scu/rcu pair referencing a unique Y-block8. By using this pair to ignore an
interrupt, the state of the processor for the ignored interrupt may be recovered if the ignored
interrupt causes a trouble fault. The use of the scu/rcu pair also ensures that execution is
resumed in the original ring of execution.

SECTION 8: HARDWARE RING IMPLEMENTATION

The philosophy of ring protection is based on the existence of a set of hierarchical levels of
protection. This concept can be illustrated by a set of N concentric circles, numbered 0, 1, 2, ...,
N-1 from the inside out. The space included in circle 0 is called ring 0, the space included between
circle i-1 and i is called ring i. Any segment in the system is placed in one and only one ring. The
closer a segment to the center, the greater its protection and privilege.

When a program is executing a procedure segment placed in ring R, the program is said to
be in ring R, or that the ring of execution or current ring is ring R. A program in ring R potentially
has access to any segment located in ring R and in outer rings. The word "potentially" is used
because the final decision is subject to what access rights the user has for the target segment.
This same program in ring R has no access to any segment located in inner rings, except to special
procedures called gates.

Gates are procedures residing in a given ring and intended to provide controlled access to
the ring. A program that is in ring R can enter an inner ring r only by calling one of the gate
procedures associated with this inner ring r. Gates must be carefully coded and must not trust any
data that has been manufactured or modified by the caller in a less privileged ring. In particular,
gates must validate all arguments passed to them by the caller so as not to compromise the
protection of any segment residing in the inner ring.

Calls from an outer ring to an inner ring are referred to as inward calls. They are
associated with an increase in the access capability of the program and are controlled by gates.
Calls from an inner ring to an outer ring, referred to as outward calls, are associated with a
decrease in the access capability of the program and do not need to be controlled.

RING PROTECTION IN MULTICS

The ring protection designed for Multics uses the foregoing philosophy, extended to obtain
more flexibility and better efficiency.

First, the assignment of a segment to one and only one ring is inconvenient for a class of
procedure segments, such as library routines. Such procedures operate in whatever the ring of
execution the program is at the time they are called; they need no more access than the caller.
One solution could have been to have a copy of the library in each ring. Instead, the solution
adopted by Multics is to relax the condition that a segment can be assigned to only one ring and
allow a procedure segment to be assigned to a set of consecutive rings defined by two integers (r1,
r2), with r1 <= r2. If such a segment is called from ring R such that r1 <= R <= r2, it behaves as
if it were in ring R, and executes without changing the current ring of the program. If it is called
from ring R such that R > r2, it behaves likes a gate associated with ring r2, accepting the call as
an inward call and decreasing the current ring of the program from R to r2. Upon return to the
caller, the current ring is restored to R.

Second, the maximum ring number from which a gate can be called may be specified. A
third integer, r3, is added to the pair of integers already associated with a segment. Any
procedure segment has associated with it three ring numbers (r1, r2, r3), called its ring brackets,
such that r1 <= r2 <= r3. If r3 > r2, the procedure is a gate for ring r2, accessible from rings no
higher than r3; if r2 = r3, the procedure is not a gate. Because outward calls are declared illegal
in Multics, a segment may be called from a ring R only if r1 <= R <= r3. Such a segment is said to
have the call bracket [r1,r3].

Third, data segments may also be used in more than one ring. A segment resides in ring r1
for write purposes but resides in a less privileged ring r2 for read purposes. Such a segment is
said to have the write bracket [0,r1] and the read bracket [0,r2].

In summary, the operations that are potentially permitted to a program in ring R on a
segment whose ring brackets are (r1, r2, r3) are as follows:

Write if 0 <= R <= r1

Read if 0 <= R <= r2

Execute if r1 <= R <= r2 (execution in ring R)

Inward call if r2 < R <= r3 (execution in ring r2)

RING PROTECTION IN THE PROCESSOR

The processor provides hardware support for the implementation of Multics ring protection.
A particular effort was made to minimize the overhead associated with all authorized ring
crossings, which the processor performs without operating system intervention; and also to
minimize the overhead associated with the validation of arguments, for which the processor
provides assistance.

The number of rings available in the processor is eight, numbered from 0 to 7. The current
ring R of a program is recorded in the procedure ring register (PPR.PRR).

The ring brackets (r1, r2, r3) of a segment are recorded in the segment descriptor word
(SDW) used by the hardware to access the segment. In addition, the SDW contains the number of
legal gate entries (SDW.CL) existing in the segment. The hardware assumes that all gate entries
are located from word 0 to word (CL-1) and does not permit an inward call to the segment if the
word number specified in the call is greater than (CL-1). The SDW also contains the access rights
for the user on the segment. If the same segment is used by several users, who may have different
access rights to the segment, there is an SDW describing the segment in the descriptor segment
for each user.

In order to provide assistance in argument validation, any pointer being stored into an ITS
pointer pair or loaded into a pointer register also contains a ring number. A program in ring R
may write any value into the ring number field of an ITS pointer pair; the hardware assures that,
when a pointer register is loaded from an ITS pointer pair, the ring number loaded is equal to or
greater than R, but never smaller.

During the execution of an instruction, the hardware may examine several SDWs, ITS
pointer pairs and pointer registers. For any given examination, the hardware records the
maximum of the current ring, the r1 value found in an SDW, the ring number found in an ITS
pointer pair, and the ring number found in a pointer register. This maximum is kept in the
temporary ring register (TPR.TRR) and is updated at each such examination. The reason for
having this temporary ring number available at any point of instruction execution is that it
represents the highest ring (least privileged) that might have created or modified any information
that led the hardware to the target segment it is about to reference. Although the current ring is
R, the hardware evaluates references as if the current ring were C(TPR.TRR), which is always
equal to or greater than R. The hardware uses C(TPR.TRR) instead of R in all comparisons with
the ring brackets involved in the enforcement of the ring protection rules given in the previous
paragraph.

The use of C(TPR.TRR) by the hardware allows gate procedures to rely on the hardware to
perform the validation of all addresses passed to the gate by the less privileged ring. The rule
enforced by the hardware regarding argument validation can be stated as follows:

Whenever an inner ring performs an operation on a given segment and references that
segment through pointers manufactured by an outer ring, the operation is considered valid
only if it could have been performed while in the outer ring.

APPENDING UNIT OPERATION WITH RING MECHANISM

The complete flow chart for effective segment number generation, including the hardware
ring mechanism, is shown in Figure 8-1 below. See the description of the access violation fault in

Section 7 for the meanings of the coded faults. The current instruction is in the instruction
working buffer (IWB).

Figure 8-1. Complete Appending Unit Operation Flowchart

C(PPR.PRR) C(TPR.TRR)→
C(PPR.PSR) C(TPR.TSR)→

START APPEND

YesNo

Yes

No

YesNo

A

Yes

No

YesNo

n = C(IWB)0,2

C(PPR.PRR) C(TPR.TRR)→ C(PRn .RNR) C(TPR.TRR)→

C(PRn .SNR) C(TPR.TSR)→

Was the last
cycle an indirect

word fetch?
Was it an

rtcd operand
fetch?

Was it a
sequential instruction

fetch?

C(PRn .RNR) >
C(PPR.PRR)?

Is bit
29 ON?

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

A

YesNoYes

No

Yes No

Initiate a
directed fault

Yes

No

Yes No

Initiate a
directed fault

B

DSPTW
cycle

MDSPTW
cycle

PSDW
cycle

NSDW
cycle

Load SDWAM

C(SDW.R1) →
C(RSDWH.R1)

DSBR.U
= 0

is SDW for
C(TPR.TSR)
in SDWAM?

SDW.F
set ON?

DSPTW.F
set ON?

DSPTW.U
set ON?

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

B

Yes

No

YesNo

YesNo

Yes

No

C

E

F

YesNo

Yes

No

Yes

No

Yes

NoYes No

YesNo

G

Was last
cycle an rtcd

operand fetch?

Set fault
ACV0 = IRO

Set fault
ACV3 = ORB

Set fault
ACV5 = OWB

Set fault
ACV6 = W-OFF

Set fault
ACV4 = R-OFF

C(SDW.R1) ≤
C(SDW.R2) ≤
C(SDW.R3)?

Is
OPCODE
call6?

Transfer or
instruction

fetch?

Is it a
STR-OP?

C(TPR.TRR) >
C(SDW.R2)?

C(TPR.TRR) >
C(SDW.R2)?

SDW.R
ON?

SDW.W
ON?

C(PPR.PSR) =
C(TPR.TSR)?

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

C

YesNo

Yes

No

Yes

No

No

(instruction fetch)D (rtcd operand)

Yes

No

Yes

NoYes

G

Set fault
ACV1 = OEB

Set fault
ACV2 = E-OFF

Set fault
ACV11 = INRET

Set fault
ACV13 = RALR

C(TPR.TRR) <
C(SDW.R1)?

C(TPR.TRR) >
C(SDW.R2)?

C(TPR.TRR) ≥
C(PPR.PRR)

SDW.E
set ON?

RALR
= 0?

C(PPR.PRR)
< RALR?

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

E

Yes

No

Yes

No

No

(call6)

Yes

G

Yes

No

Yes

No

No

Yes

No

Yes

Yes

No

Yes

No

Set fault
ACV2 = E-OFF

Set fault
ACV7 = NO GA

Set fault
ACV8 = OCB

Set fault
ACV9 = OCALL

Set fault
ACV10 = BOC

SDW.R2 C(TPR.TRR)→

SDW.E
set ON?

SDW.G
set ON?

C(PPR.PSR) =
C(TPR.TSR)?

C(TPR.CA)4,17
≥ SDW.CL?

C(TPR.TRR)
> SDW.R3?

C(TPR.TRR)
< SDW.R1?

C(TPR.TRR)
> SDW.R2?

C(TPR.TRR) >
C(PPR.PRR)?

C(PPR.PRR)
< SDW.R2?

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

(transfer or instruction fetch)

C(PPR.PRR) =
C(TPR.TRR)?

F

Yes

No

YesNo

Yes

No

Yes

No

D

SDW.E
set ON?

C(TPR.TRR) >
C(SDW.R2)?

C(TPR.TRR) <
C(SDW.R1)?

Set fault
ACV1 = OEB

Set fault
ACV2 = E-OFF

Set fault
ACV12 = CRT

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

G

YesNo

Yes

No

YesNo Initiate an access
viloation fault

Yes No

I

H

Yes No

Yes

No

Initiate a
directed fault

Yes No

Initiate a
directed fault

C(TPR.CA)0,13
> SDW.BOUND?

is segment
C(TPR.TSR)

paged?

Any ACV
faults?

Is PTW.F
set ON?

Prepage
Mode?

Is PTW.F
set ON?

is PTW for
C(TPR.CA)
in PTWAM?

Set fault
ACV15 = OOSB

PTW
cycle

PTW2
cycle

Load
PTWAM

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

I

Yes

No

Yes

No

J

No

H

Yes

No

K Yes

No

N Yes

L

No

Yes

END APPEND

MPTW
cycle

FAP
cycle

FANP
cycle

Load/store
APU data

STR-OP &
PTW.M = 0?

Was this
an indirect
word fetch?

Was it an
rtcd operand

fetch?

Is OPCODE
call6?

Transfer or
instruction

fetch?

APU data
movement?

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

Yes

No

No

J

Yes

No

O Yes

No

P

Yes

END APPEND

C(Y)0,17 C(IWB)→ 0,17
C(Y)30,35 C(IWB)→ 30,35

0 C(IWB)→ 29

C(Y)30,35
= 438

C(Y)30,35
= 418

ri or ir &
TPR.CA even?

C(Y)30,35 =
other indirect?

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

L

Yes

M K

No

Yes

No

Yes No

Yes

No O

END APPEND

C(Y)3,17 C(TPR.TSR)→
C(Y+1)0,17 C(TPR.CA)→

C(TPR.TRR) C(PR→ i .RNR)
for i = 0, 7

C(TPR.TRR) C(PPR.PRR)→

C(TPR.TSR) C(PPR.PSR)→
C(TPR.CA) C(PPR.IC)→

C(SDW.P) C(PPR.P)→ 0 C(PPR.P)→

C(PPR.PRR) C(PR→ n .RNR)
C(PPR.PSR) C(PR→ n .SNR)

C(PPR.IC) C(PR→ n .WORDNO)
000000 C(PR→ n .BITNO)

Is
OPCODE
tspn?

C(TPR.TRR) ≥
C(PPR.PRR)?

C(TPR.TRR)
= 0?

Is this an
rtcd operand

fetch?

Yes

N

No

M

C(TPR.TRR) =
C(PPR.PRR)?

C(PR6.SNR) C(PR7.SNR)→
C(DSBR.STACK) || C(TPR.TRR)

 → C(PR7.SNR)

C(TPR.TRR) C(PR7.RNR)→
00...0 C(PR7.WORDNO)→
000000 C(PR7.BITNO)→

C(TPR.TRR) C(PPR.PRR)→
C(TPR.TSR) C(PPR.PSR)→

C(TPR.CA) C(PPR.IC)→

Figure 8-1(cont). Complete Appending Unit Operation Flowchart

Yes

O

No

Yes

NoYesNo

END APPEND

Yes

P

No

Yes

NoYesNo

END APPEND

C(TPR.TRR) ≥
C(Y)18,20?

C(Y)18,20 ≥
RSDWH.R1?

C(TPR.TRR) ≥
RSDWH.R1?

C(PRn .RNR) ≥
RSDWH.R1?

C(TPR.TRR) ≥
C(PRn .RNR)?

C(TPR.TRR) ≥
RSDWH.R1?

RSDWH.R1 C(TPR.TRR)→ C(Y)18,20 C(TPR.TRR)→

RSDWH.R1 C(TPR.TRR)→ C(PRn .RNR) C(TPR.TRR)→

SECTION 9: DPS/L68 CACHE MEMORY OPERATION

The Multics processor may be fitted with an optional cache memory. The operation of this
cache memory is described in this section.

PHILOSOPHY OF CACHE MEMORY

The cache memory is a high speed buffer memory located within the processor that is
intended to hold operands and/or instructions in expectation of their immediate use. This concept
is different from that of holding a single operand (such as the divisor for a divide instruction) in the
processor during execution of a single instruction. A cache memory depends on the locality of
reference principle. Locality of reference involves the calculation of the probability, for any value
of d, that the next instruction or operand reference after a reference to the instruction or operand
at location A is to location A+d.

The calculation of probabilities for a set of values of d requires the statistical analysis of
large volumes of real and simulated instruction sequences and data organizations. If it can be
shown that the average expected data/instruction access time reduction (over the range 1 to d) is
statistically significant in comparison to the fixed main memory access time, then the
implementation of a cache memory with block size d will contribute a significant improvement in
performance.

The results of such studies for the Multics processor with a cache memory as described
below (with d!=!4) show a hit probability ranging between 80 and 95 percent (depending on
instruction mix and data organization) and a performance improvement ranging up to 30 percent.

CACHE MEMORY ORGANIZATION

The cache memory is implemented as 2048 36-bit words of high-speed register storage with
associated control and content directory circuitry within the processor. It is fully integrated with
the normal data path circuitry and is virtually invisible to all programming sequences. Parity is
generated, stored, and/or checked on each data reference. The total storage is divided into 512
blocks of 4 words each and the blocks are organized into 128 columns of four levels each.

Cache Memory / Main Memory Mapping

Main memory is mapped into the cache memory as described below and shown in Figure
9-1.

Main memory is divided into N blocks of 4 words each arranged in ascending order
and numbered with the value of Y15,21 of the first word of the block.

All main memory blocks with numbers n modulo 128 are grouped associatively with
cache memory column n.

Each cache memory column may hold any four blocks of the associated set of main
memory blocks.

Each cache memory column has associated with it a four entry directory (one entry for
each level) and a 2-bit round robin counter. Parity is generated, stored, and checked
on each directory entry.

A cache directory entry consists of a 15-bit ADDRESS register, a pre-set, 2-bit level
number value and a level full flag bit.

When a main memory block is loaded into a cache memory block at some level in the
associated column, the directory ADDRESS register for that column and level is
loaded with Y0,14. (Level selection is discussed in "Cache Memory Control" later in
this section.)

Figure 9-1. Main Memory/Cache Memory Mapping

Cache Memory Addressing

For a read operation, the 24-bit absolute main memory address prepared by the appending
unit is presented simultaneously to the cache control and to the main memory port selection
circuitry. While port selection is being accomplished, the cache memory is accessed as follows.

Yl5,21 are used to select a cache memory column.

Block
0

Words
0,3

Block
1

Words
4,7

Block
2

Words
8,11

Block
126

Words
504,507

Block
127

Words
508,511

Block
128

Words
512,515

Block
129

Words
516,519

Block
130

Words
520,523

Block
254

Words
1016,1019

Block
255

Words
1020,1023

. . .

. . .

Block
N-128
Words

-512,-509

Block
N-127
Words

-508,-505

Block
N-126
Words

-504,-501

Block
N-2

Words
-8,-5

Block
N-1

Words
-4,-1

. . .

.

Column
0

Level
0

. . .

Column
1

Level
0

Column
2

Level
0

Column
126

Level
0

Column
127

Level
0

Column
0

Level
3

. . .

Column
1

Level
3

Column
2

Level
3

Column
126

Level
3

Column
127

Level
3

Column
0

Level
1

. . .

Column
1

Level
1

Column
2

Level
1

Column
126

Level
1

Column
127

Level
1

Column
0

Level
2

. . .

Column
1

Level
2

Column
2

Level
2

Column
126

Level
2

Column
127

Level
2

Main
Memory

Cache
Memory

. . .

Y0,14 are matched associatively against the four directory ADDRESS registers for the
selected column.

If a match occurs for a level whose full flag is ON, a hit is signaled, the main memory
reference cycle is canceled, and the level number value is read out.

The level number value and Y22,23 are used to select the level and word in the selected
column and the cache memory data is read out into the data circuitry.

If no hit is signaled, the main memory reference cycle proceeds and a cache memory
block load cycle is initiated (see "Cache Memory Control" below).

For a write operation, the 24-bit absolute main memory address prepared by the appending
unit is presented simultaneously to the cache control and to the main memory port selection
circuitry. While port selection is being accomplished, the cache memory is accessed as follows.

Y15,21 are used to select a cache memory column.

Y0,14 are matched associatively against the four directory ADDRESS registers for the
selected column.

If a match occurs for a level whose full flag is ON, a hit is signaled and the level
number value is read out.

The level number value and Y22,23 are used to select the level and word in the selected
column, a cache memory write cycle is enabled, and the data is written to the main
memory and the cache memory simultaneously.

If no hit is signaled, the main memory reference cycle proceeds with no further cache
memory action.

CACHE MEMORY CONTROL

Enabling and Disabling Cache Memory

The cache memory is controlled by the state of several bits in the cache mode register (see
Section 3). The cache mode register may be loaded with the Load Central Processor Register
(lcpr) instruction. The cache memory control bits are as follows:

bit Value Action

54 0 The lower half of the cache memory (levels 0 and 1) is disabled.

1 The lower half of the cache memory is active and enabled as per the state of bits
56-57.

55 0 The upper half of the cache memory (levels 2 and 3) is disabled.

1 The upper half of the cache memory is active and enabled as per the state of bits
56-57.

56 0 The cache memory (if active) is not used for operands and indirect words.

1 The cache memory (if active) is used for operands and indirect words.

57 0 The cache memory (if active) is not used for instructions.

1 The cache memory (if active) is used for instructions.

59 0 The cache-to-register mode is not in effect (see "Dumping the Cache Memory"
later in this section).

1 The cache-to-register mode is in effect.

NOTE: The cache memory option furnishes a switch panel maintenance aid that attaches to the
free edge of the cache memory control logic board. The switch panel provides six
switches for manual control of the cache memory:

Four of the switches inhibit the control functions of bits 54-57 of the cache mode
register and have the effect of forcing the corresponding function to be disabled.

The fifth switch inhibits the store-aside feature wherein the processor is permitted to
proceed immediately after the cache memory write cycle on write operations without
waiting for a data acknowledgment from main memory. (There is no software control
corresponding to this switch).

The sixth switch forces the enabled condition on all cache memory controls (except
cache-to-register mode) without regard to the corresponding cache mode register
control bit.

There is no switch corresponding to the cache-to-register control bit.

While these switches are intended primarily for maintenance sessions, they have been
found useful in testing the cache memory during normal operation and in permitting
operation of the processor with the cache memory in degraded or partially disabled
mode.

Cache Memory Control in Segment Descriptor Words

Certain data have characteristics such that they should never be loaded into the cache
memory. Primary examples of such data are hardware mailboxes for the I/O multiplexer, bulk
store controller, etc., status return words, and various dynamic operating system data base
segments. In general, any data that is modified by an agency external to a processor with the
intent to convey information to that processor should never be loaded into cache memory.

Bit 57 of the segment descriptor word is used to reflect this property of "encacheability" for
each segment. (See Section 5 for a discussion of the segment descriptor word.) If the bit is set
ON, data from the segment may be loaded into the cache memory; if the bit is OFF, they may not.
The operating system may set bit 57 ON or OFF as appropriate for the use of the segment.

Loading the Cache Memory

The cache memory is loaded with data implicitly whenever a cache memory block load is
required. (See the discussion of read operations in "Cache Memory Addressing" earlier in this
section.) There is no explicit method or instruction to load data into the cache memory.

When a cache memory block load is required, the level is selected from the value of the
round robin counter for the selected column, and the cache memory write function is enabled.
(The round robin counter contains the number of the least recently loaded level.) When the data
arrives from main memory, it is written into the cache memory and entered into the data circuitry.
The processor proceeds with the execution of the instruction requiring the operand if appropriate.

When the cache memory write is complete, further virtual address formation is inhibited,
Y22 is inverted, and a second main memory access for the other half of the block is made. When
the second half data arrives from main memory, it is written into the cache memory, Y0,14 are
loaded into the directory ADDRESS register, the level full flag is set ON, the round robin counter is
advanced by 1, and virtual address formation is permitted to proceed.

If all four level full flags for a column are set ON, a column full flag is also set ON and
remains ON until one or more levels in the column are cleared.

Clearing the Cache Memory

Cache memory can be cleared in two ways; general clear and selective clear. The clearing
action is the same in both cases, namely, the full flags of the selected column(s) and/or level(s) are
set OFF.

General Clear

The entire cache memory is cleared by setting all column and level full flags to OFF in the
following situations:

Upper or lower cache memory or both becoming enabled by appropriate bits in the
operand of the Load Central Processor Register (lcpr) instruction or by action of the
cache memory control logic board free edge switches.

Execution of a Clear Associative Memory Segments (cams) instruction with bit 15 of
the address field set ON.

Selective Clear

The cache memory is cleared selectively as follows:

If a read-and-clear operation (ldac, sznc, etc.) results in a hit on the cache memory,
that cache memory block hit is cleared.

Execution of a Clear Associative Memory Pages (camp) instruction with address bit 15
set ON causes Y13,14 to be matched against all cache directory ADDRESS registers.
All cache memory blocks hit are cleared.

Dumping the Cache Memory

When the cache-to-register mode flag (bit 59 of the cache mode register) is set ON, the
processor is forced to fetch the operands of all double-precision operations unit load operations
from the cache memory. Y0,12 are ignored, Y15,21 select a column, and Y13,14 select a level. All
other operations (e.g., instruction fetches, single-precision operands, etc.) are treated normally.

Note that the phrase "treated normally" as used here includes the case where the cache
memory is enabled. If the cache memory is enabled, the "other" operations causes normal block
loads and cache memory writes thus destroying the original contents of the cache memory. The
cache memory should be disabled before dumping is attempted.

An indexed program loop involving the ldaq and staq instructions with the cache-to-
register mode bit set ON serves to dump any or all of the cache memory.

The occurrence of a fault or interrupt sets the cache-to-register mode bit to OFF.

APPENDIX A: OPERATION CODE MAP

This appendix contains the operation code map for the processor in Figure A-1. The second
portion of the map includes extended instruction set (EIS) instructions. Also see Appendix B for an
alphabetical instruction list.

OPERATION CODE MAP (BIT 27 = 0)

 000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017

000
020
040
060

adlx0
asx0
adx0

mme
adlx1
asx1
adx1

drl
adlx2
asx2
adx2

adlx3
asx3
adx3

mme2
adlx4
asx4
adx4

mme3
adlx5
asx5
adx5

adlx6
asx6
adx6

mme4
adlx7
asx7
adx7

adwp0

nop

adwp1
awca

puls1
ldqc
adwp2
awcq

puls2
adl
adwp3
lreg

ldac
aos

cioc
adla
asa
ada

adlq
asq
adq

adlaq
sscr
adaq

100
120
140
160

cmpx0
sblx0
ssx0
sbx0

cmpx1
sblx1
ssx1
sbx1

cmpx2
sblx2
ssx2
sbx2

cmpx3
sblx3
ssx3
sbx3

cmpx4
sblx4
ssx4
sbx4

cmpx5
sblx5
ssx5
sbx5

cmpx6
sblx6
ssx6
sbx6

cmpx7
sblx7
ssx7
sbx7

adwp4

cwl

adwp5
swca

adwp6
swcq

adwp7
lpri

sdbr

cmpa
sbla
ssa
sba

cmpq
sblq
ssq
sbq

cmpaq
sblaq

sbaq

200
220
240
260

cnax0
ldx0
orsx0
orx0

cnax1
ldx1
orsx1
orx1

cnax2
ldx2
orsx2
orx2

cnax3
ldx3
orsx3
orx3

cnax4
ldx4
orsx4
orx4

cnax5
ldx5
orsx5
orx5

cnax6
ldx6
orsx6
orx6

cnax7
ldx7
orsx7
orx7

lbar
spri0
tsp0

cmk
rsw
spbp1
tsp1

absa
ldbr
spri2
tsp2

epaq
rmcm
spbp3
tsp3

sznc
szn
spri

cnaa
lda
orsa
ora

cnaq
ldq
orsq
orq

cnaaq
ldaq
lsdp
oraq

300
320
340
360

canx0
lcx0
ansx0
anx0

canx1
lcx1
ansx1
anx1

canx2
lcx2
ansx2
anx2

canx3
lcx3
ansx3
anx3

canx4
lcx4
ansx4
anx4

canx5
lcx5
ansx5
anx5

canx6
lcx6
ansx6
anx6

canx7
lcx7
ansx7
anx7

eawp0
eawp4
epp0
epp4

easp0
easp4
epbp1
epbp5

eawp2
eawp6
epp2
epp6

easp2
easp6
epbp3
epbp7

stac

cana
lca
ansa
ana

canq
lcq
ansq
anq

canaq
lcaq
stcd
anaq

400
420
440
460

sxl0

mpf
ufm
sxl1
fmp

mpy

sxl2
dufm
sxl3
dfmp

sxl4

cmg
fcmg
sxl5 sxl6

dfcmg
sxl7

fszn
stz
fstr

lde
fld
smic
frd

scpr
dfstr

rscr
dfld

dfrd
stt

ade
ufa
fst
fad

ste
dufa
dfst
dfad

500
520
540
560

rpl
rpt
sprp0
rpd

sprp1 sprp2 sprp3 sprp4

bcd
fdi
sprp5
fdv

div

sprp6

dvf
dfdi
sprp7
dfdv

sbar
neg
stba

cams
stbq

fneg
negl
smcm
fno

stc1

fcmp
ufs

fsb

dfcmp
dufs
ssdp
dfsb

600
620
640
660

tze
eax0
ersx0
erx0

tnz
eax1
ersx1
erx1

tnc
eax2
ersx2
erx2

trc
eax3
ersx3
erx3

tmi
eax4
ersx4
erx4

tpl
eax5
ersx5
erx5

eax6
ersx6
erx6

ttf
eax7
ersx7
erx7

rtcd
ret
spri4
tsp4

spbp5
tsp5

spri6
tsp6

rcu
rccl
spbp7
tsp7

teo
ldi
stacq
lcpr

teu
eaa
ersa
era

dis
eaq
ersq
erq

tov
ldt
scu
eraq

700
720
740
760

tsx0
lxl0
stx0
lprp0

tsx1
lxl1
stx1
lprp1

tsx2
lxl2
stx2
lprp2

tsx3
lxl3
stx3
lprp3

tsx4
lxl4
stx4
lprp4

tsx5
lxl5
stx5
lprp5

tsx6
lxl6
stx6
lprp6

tsx7
lxl7
stx7
lprp7

tra

stc2
ars
stca
arl

qrs
stcq
qrl

call6
lrs
sreg
lrl

sti
gtb

tss
als
sta
alr

xec
qls
stq
qlr

xed
lls
staq
llr

Figure A-1. Processor Operation Code Map

OPERATION CODE MAP (BIT 27 = 1)

 000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017

000
020
040
060

mve

csl csr

mvne

sztl sztr cmpb

100
120
140
160

mlr
scd

mvt

mrl
scdr scm

tct

scmr

tctr

cmpc

lptr
sptr

200
220
240
260

ad2d
ad3d

sb2d
sb3d

mp2d
mp3d

dv2d
dv3d

spbp0 spri1
lsdr
spbp2 spri3 ssdr lptp

300
320
340
360

mvn btd cmpn dtb easp1
easp5
epbp0
epbp4

eawp1
eawp5
epp1
epp5

easp3
easp7
epbp2
epbp6

eawp3
eawp7
epp3
epp7

400
420
440
460

sareg
lareg

spl
lpl

500
520
540
560

a9bd
s9bd
ara0
aar0

a6bd
s6bd
ara1
aar1

a4bd
s4bd
ara2
aar2

abd
sbd
ara3
aar3

ara4
aar4

ara5
aar5

ara6
aar6

awd
swd
ara7
aar7

camp
sptp

600
620
640
660

trtn

arn0
nar0

trtf

arn1
nar1

arn2
nar2

arn3
nar3

tmoz

arn4
nar4

tpnz

arn5
nar5

ttn

arn6
nar6

arn7
nar7

spbp4 spri5 spbp6 spri7

700
720
740
760

sar0
lar0

sar1
lar1

sar2
lar2

sar3
lar3

sar4
lar4

sar5
lar5

sar6
lar6

sar7
lar7

sra
lra

Figure A-1(cont). Processor Operation Code Map

APPENDIX B: ALPHABETIC OPERATION CODE LIST

This appendix presents a listing of all processor instruction operation codes sorted
alphabetically on mnemonic. It also includes the micro operations required by the mve and mvne
edit instructions. The columns from left to right list the mnemonic, octal operation code value, the
functional class, the page number in Section 4 of the instruction description, and the instruction
name.

The functional class codes are:

FIX Fixed Point

BOOL Boolean Operations

FLT Floating Point

PREG Pointer Register

PRIV Privileged

MISC Miscellaneous

EIS Extended Instruction Set

TXFR Transfer of Control

MOP EIS Micro Operations

Mnemonic Code Class Page Name

a4bd 502 (1) EIS 225 Add 4-bit Displacement to Address Register
a6bd 501 (1) EIS 226 Add 6-bit Displacement to Address Register
a9bd 500 (1) EIS 226 Add 9-bit Displacement to Address Register
aar n 56n (1) EIS 219 Alphanumeric Descriptor to Address Register n
abd 503 (1) EIS 227 Add Bit Displacement to Address Register
absa 212 (0) PRIV 218 Absolute Address to A-Register
ad2d 202 (1) EIS 265 Add Using Two Decimal Operands
ad3d 222 (1) EIS 267 Add Using Three Decimal Operands
ada 075 (0) FIX 111 Add to A
adaq 077 (0) FIX 111 Add to AQ
ade 415 (0) FLT 160 Add to Exponent
adl 033 (0) FIX 111 Add Low to AQ
adla 035 (0) FIX 112 Add Logical to A
adlaq 037 (0) FIX 112 Add Logical to AQ
adlq 036 (0) FIX 112 Add Logical to Q
adlx n 02n (0) FIX 113 Add Logical to Index Register n
adq 076 (0) FIX 113 Add to Q
adwp0 050 (0) PREG 178 Add to Word Number of Pointer Register 0
adwp1 051 (0) PREG 178 Add to Word Number of Pointer Register 1
adwp2 052 (0) PREG 178 Add to Word Number of Pointer Register 2
adwp3 053 (0) PREG 178 Add to Word Number of Pointer Register 3
adwp4 150 (0) PREG 178 Add to Word Number of Pointer Register 4
adwp5 151 (0) PREG 178 Add to Word Number of Pointer Register 5
adwp6 152 (0) PREG 178 Add to Word Number of Pointer Register 6
adwp7 153 (0) PREG 178 Add to Word Number of Pointer Register 7
adx n 06n (0) FIX 113 Add to Index Register n
alr 775 (0) FIX 107 A Left Rotate
als 735 (0) FIX 107 A Left Shift
ana 375 (0) BOOL 132 AND to A
anaq 377 (0) BOOL 132 AND to AQ
anq 376 (0) BOOL 132 AND to Q
ansa 355 (0) BOOL 132 AND to Storage A

Mnemonic Code Class Page Name

ansq 356 (0) BOOL 133 AND to Storage Q
ansx n 34n (0) BOOL 133 AND to Storage Index Register n
anx n 36n (0) BOOL 133 AND to Index Register n
aos 054 (0) FIX 114 Add One to Storage
ara n 54n (1) EIS 222 Address Register n to Alphanumeric Descriptor
arl 771 (0) FIX 107 A Right Logical
arn n 64n (1) EIS 222 Address Register n to Numeric Descriptor
ars 731 (0) FIX 108 A Right Shift
asa 055 (0) FIX 114 Add Stored to A
asq 056 (0) FIX 114 Add Stored to Q
asx n 04n (0) FIX 115 Add Stored to Index Register n
awca 071 (0) FIX 115 Add with Carry to A
awcq 072 (0) FIX 115 Add with Carry to Q
awd 507 (1) EIS 228 Add Word Displacement to Address Register
bcd 505 (0) MISC 195 Binary to Binary-Coded-Decimal
btd 301 (1) EIS 262 Binary to Decimal Convert
call6 713 (0) TXFR 162 Call (Using PR6 and PR7)
camp 532 (1) PRIV 209 Clear Associative Memory Pages
cams 532 (0) PRIV 210 Clear Associative Memory Segments
cana 315 (0) BOOL 138 Comparative AND with A
canaq 317 (0) BOOL 138 Comparative AND with AQ
canq 316 (0) BOOL 138 Comparative AND with Q
canx n 30n (0) BOOL 138 Comparative AND with Index Register n
cioc 015 (0) PRIV 215 Connect I/O Channel
cmg 405 (0) FIX 127 Compare Magnitude
cmk 211 (0) FIX 127 Compare Masked
cmpa 115 (0) FIX 127 Compare with A
cmpaq 117 (0) FIX 128 Compare with AQ
cmpb 066 (1) EIS 258 Compare Bit Strings
cmpc 106 (1) EIS 233 Compare Alphanumeric Character Strings
cmpn 303 (1) EIS 249 Compare Numeric
cmpq 116 (0) FIX 128 Compare with Q
cmpx n l0n (0) FIX 129 Compare with Index Register n
cnaa 215 (0) BOOL 140 Comparative NOT with A
cnaaq 217 (0) BOOL 140 Comparative NOT with AQ
cnaq 216 (0) BOOL 140 Comparative NOT with Q
cnax n 20n (0) BOOL 140 Comparative NOT with Index Register n
csl 060 (1) EIS 255 Combine Bit Strings Left
csr 061 (1) EIS 256 Combine Bit Strings Right
cwl 111 (0) FIX 130 Compare with Limits
dfad 477 (0) FLT 145 Double-Precision Floating Add
dfcmg 427 (0) FLT 158 Double-Precision Floating Compare Magnitude
dfcmp 517 (0) FLT 158 Double-Precision Floating Compare
dfdi 527 (0) FLT 151 Double-Precision Floating Divide Inverted
dfdv 567 (0) FLT 151 Double-Precision Floating Divide
dfld 433 (0) FLT 142 Double-Precision Floating Load
dfmp 463 (0) FLT 149 Double-Precision Floating Multiply
dfrd 473 (0) FLT 156 Double-Precision Floating Round
dfsb 577 (0) FLT 147 Double-Precision Floating Subtract
dfst 457 (0) FLT 143 Double-Precision Floating Store
dfstr 472 (0) FLT 143 Double-Precision Floating Store Rounded
dis 616 (0) PRIV 218 Delay Until Interrupt Signal
div 506 (0) FIX 124 Divide Integer
drl 002 (0) MISC 181 Derail
dtb 305 (1) EIS 263 Decimal to Binary Convert
dufa 437 (0) FLT 145 Double-Precision Unnormalized Floating Add
dufm 423 (0) FLT 149 Double-Precision Unnormalized Floating Multiply
dufs 537 (0) FLT 147 Double-Precision Unnormalized Floating Subtract
dv2d 207 (1) EIS 275 Divide Using Two Decimal Operands

Mnemonic Code Class Page Name

dv3d 227 (1) EIS 276 Divide Using Three Decimal Operands
dvf 507 (0) FIX 124 Divide Fraction
eaa 635 (0) FIX 94 Effective Address to A
eaq 636 (0) FIX 94 Effective Address to Q
easp0 311 (0) PREG 171 Effective Address to Segment Number of 0
easp1 310 (1) PREG 171 Effective Address to Segment Number of PR1
easp2 313 (0) PREG 171 Effective Address to Segment Number of PR2
easp3 312 (1) PREG 171 Effective Address to Segment Number of PR3
easp4 331 (0) PREG 171 Effective Address to Segment Number of PR4
easp5 330 (1) PREG 171 Effective Address to Segment Number of PR5
easp6 333 (0) PREG 171 Effective Address to Segment Number of PR6
easp7 332 (1) PREG 171 Effective Address to Segment Number of PR7
eawp0 310 (0) PREG 171 Effective Address to Word/Bit Number of PR0
eawp1 311 (1) PREG 171 Effective Address to Word/Bit Number of PR1
eawp2 312 (0) PREG 171 Effective Address to Word/Bit Number of PR2
eawp3 313 (1) PREG 171 Effective Address to Word/Bit Number of PR3
eawp4 330 (0) PREG 171 Effective to Word/Bit Number of PR4 Address
eawp5 331 (1) PREG 171 Effective Address to Word/Bit Number of PR5
eawp6 332 (0) PREG 172 Effective Address to Word/Bit Number of PR6
eawp7 333 (1) PREG 172 Effective Address to Word/Bit Number of PR7
eax n 62n (0) FIX 94 Effective Address to Index Register n
epaq 213 (0) PREG 179 Effective Pointer to AQ
epbp0 350 (1) PREG 172 Effective Pointer at Base to Pointer Register 0
epbp1 351 (0) PREG 172 Effective Pointer at Base to Pointer Register 1
epbp2 352 (1) PREG 172 Effective Pointer at Base to Pointer Register 2
epbp3 353 (0) PREG 172 Effective Pointer at Base to Pointer Register 3
epbp4 370 (1) PREG 172 Effective Pointer at Base to Pointer Register 4
epbp5 371 (0) PREG 172 Effective Pointer at Base to Pointer Register 5
epbp6 372 (1) PREG 172 Effective Pointer at Base to Pointer Register 6
epbp7 373 (0) PREG 172 Effective Pointer at Base to Pointer Register 7
epp0 350 (0) PREG 173 Effective Pointer to Pointer Register 0
epp1 351 (1) PREG 173 Effective Pointer to Pointer Register 1
epp2 352 (0) PREG 173 Effective Pointer to Pointer Register 2
epp3 353 (1) PREG 173 Effective Pointer to Pointer Register 3
epp4 370 (0) PREG 173 Effective Pointer to Pointer Register 4
epp5 371 (1) PREG 173 Effective Pointer to Pointer Register 5
epp6 372 (0) PREG 173 Effective Pointer to Pointer Register 6
epp7 373 (1) PREG 173 Effective Pointer to Pointer Register 7
era 675 (0) BOOL 136 EXCLUSIVE OR to A
eraq 677 (0) BOOL 136 EXCLUSIVE OR to AQ
erq 676 (0) BOOL 136 EXCLUSIVE OR to Q
ersa 655 (0) BOOL 136 EXCLUSIVE OR to Storage A
ersq 656 (0) BOOL 137 EXCLUSIVE OR to Storage Q
ersx n 64n (0) BOOL 137 EXCLUSIVE OR to Storage Index Register n
erx n 66n (0) BOOL 137 EXCLUSIVE OR to Index Register n
fad 475 (0) FLT 145 Floating Add
fcmg 425 (0) FLT 158 Floating Compare Magnitude
fcmp 515 (0) FLT 159 Floating Compare
fdi 525 (0) FLT 152 Floating Divide Inverted
fdv 565 (0) FLT 152 Floating Divide
fld 431 (0) FLT 142 Floating Load
fmp 461 (0) FLT 149 Floating Multiply
fneg 513 (0) FLT 154 Floating Negate
fno 573 (0) FLT 155 Floating Normalize
frd 471 (0) FLT 156 Floating Round
fsb 575 (0) FLT 147 Floating Subtract
fst 455 (0) FLT 143 Floating Store
fstr 470 (0) FLT 144 Floating Store Rounded
fszn 430 (0) FLT 160 Floating Set Zero and Negative Indicators

Mnemonic Code Class Page Name

gtb 774 (0) MISC 196 Gray to Binary
lareg 463 (1) EIS 220 Load Address Registers
lar n 76n (1) EIS 219 Load Address Register n
lbar 230 (0) FIX 197 Load Base Address Register
lca 335 (0) FIX 95 Load Complement A
lcaq 337 (0) FIX 95 Load Complement AQ
lcpr 674 (0) PRIV 198 Load Central Processor Register
lcq 336 (0) FIX 95 Load Complement Q
lcx n 32n (0) FIX 96 Load Complement Index Register n
lda 235 (0) FIX 96 Load A
ldac 034 (0) FIX 96 Load A and Clear
ldaq 237 (0) FIX 97 Load AQ
ldbr 232 (0) PRIV 198 Load Descriptor Segment Base Register
lde 411 (0) FLT 160 Load Exponent
ldi 634 (0) FIX 97 Load Indicator Register
ldq 236 (0) FIX 98 Load Q
ldqc 032 (0) FIX 98 Load Q and Clear
ldt 637 (0) PRIV 199 Load Timer Register
ldx n 22n (0) FIX 99 Load Index Register n
llr 777 (0) FIX 108 Long Left Rotate
lls 737 (0) FIX 108 Long Left Shift
lpl 467 (1) EIS 220 Load Pointers and Lengths
lpri 173 (0) PREG 173 Load Pointer Registers from ITS Pairs
lprp n 76n (0) PREG 174 Load Pointer Register n Packed
lptp 257 (1) PRIV 199 Load Page Table Pointers
lptr 173 (1) PRIV 200 Load Page Table Registers
lra 774 (1) PRIV 200 Load Ring Alarm Register
lreg 073 (0) FIX 99 Load Registers
lrl 773 (0) FIX 109 Long Right Logical
lrs 733 (0) FIX 109 Long Right Shift
lsdp 257 (0) PRIV 201 Load Segment Descriptor Pointers
lsdr 232 (1) PRIV 201 Load Segment Descriptor Registers
lxl n 72n (0) FIX 99 Load Index Register n from Lower
mlr 100 (1) EIS 89 Move Alphanumeric Left to Right
mme 001 (0) MISC 184 Master Mode Entry
mme2 004 (0) MISC 184 Master Mode Entry 2
mme3 005 (0) MISC 185 Master Mode Entry 3
mme4 007 (0) MISC 185 Master Mode Entry 4
mp2d 206 (1) EIS 272 Multiply Using Two Decimal Operands
mp3d 226 (1) EIS 273 Multiply Using Three Decimal Operands
mpf 401 (0) FIX 122 Multiply Fraction
mpy 402 (0) FIX 122 Multiply Integer
mrl 101 (1) EIS 244 Move Alphanumeric Right to Left
mve 020 (1) EIS 245 Move Alphanumeric Edited
mvn 300 (1) EIS 251 Move Numeric
mvne 024 (1) EIS 253 Move Numeric Edited
mvt 160 (1) EIS 247 Move Alphanumeric with Translation
nar n 66n (1) EIS 220 Numeric Descriptor to Address Register n
neg 531 (0) FIX 126 Negate A
negl 533 (0) FIX 126 Negate Long
nop 011 (0) MISC 186 No Operation
ora 275 (0) BOOL 134 OR to A
oraq 277 (0) BOOL 134 OR to AQ
orq 276 (0) BOOL 134 OR to Q
orsa 255 (0) BOOL 134 OR to Storage A
orsq 256 (0) BOOL 135 OR to Storage Q
orsx n 24n (0) BOOL 135 OR to Storage Index Register n
orx n 26n (0) BOOL 135 OR to Index Register n
puls1 012 (0) MISC 186 Pulse One

Mnemonic Code Class Page Name

puls2 013 (0) MISC 186 Pulse Two
qlr 776 (0) FIX 109 Q Left Rotate
qls 736 (0) FIX 109 Q Left Shift
qrl 772 (0) FIX 110 Q Right Logical
qrs 732 (0) FIX 110 Q Right Shift
rccl 633 (0) MISC 180 Read Calendar Clock
rcu 613 (0) PRIV 202 Restore Control Unit
ret 630 (0) TXFR 162 Return
rmcm 233 (0) PRIV 212 Read Memory Controller Mask Register
rpd 560 (0) MISC 187 Repeat Double
rpl 500 (0) MISC 189 Repeat Link
rpt 520 (0) MISC 191 Repeat
rscr 413 (0) PRIV 212 Read System Controller Register
rsw 231 (0) PRIV 213 Read Switches
rtcd 610 (0) TXFR 163 Return Control Double
s4bd 522 (1) EIS 229 Subtract 4-bit Displacement from Address Register
s6bd 521 (1) EIS 229 Subtract 6-bit Displacement from Address Register
s9bd 520 (1) EIS 230 Subtract 9-bit Displacement from Address Register
sareg 443 (1) EIS 223 Store Address Registers
sar n 74n (1) EIS 223 Store Address Register n
sb2d 203 (1) EIS 270 Subtract Using Two Decimal Operands
sb3d 223 (1) EIS 271 Subtract Using Three Decimal Operands
sba 175 (0) FIX 117 Subtract from A
sbaq 177 (0) FIX 117 Subtract from AQ
sbar 550 (0) MISC 194 Store Base Address Register
sbd 523 (1) EIS 231 Subtract Bit Displacement from Address Register
sbla 135 (0) FIX 117 Subtract Logical from A
sblaq 137 (0) FIX 118 Subtract Logical from AQ
sblq 136 (0) FIX 118 Subtract Logical from Q
sblx n 12n (0) FIX 118 Subtract Logical from Index Register n
sbq 176 (0) FIX 119 Subtract from Q
sbx n 16n (0) FIX 119 Subtract from Index Register n
scd 120 (1) EIS 234 Scan Characters Double
scdr 121 (1) EIS 236 Scan Characters Double in Reverse
scm 124 (1) EIS 237 Scan with Mask
scmr 125 (1) EIS 238 Scan with Mask in Reverse
scpr 452 (0) PRIV 203 Store Central Processor Register
scu 657 (0) PRIV 204 Store Control Unit
sdbr 154 (0) PRIV 204 Store Descriptor Segment Base Register
smcm 553 (0) PRIV 215 Set Memory Controller Mask Register
smic 451 (0) PRIV 215 Set Memory Controller interrupt Cells
spbp0 250 (1) PREG 175 Store Segment Base Pointer of Pointer Register 0
spbp1 251 (0) PREG 175 Store Segment Base Pointer of Pointer Register 1
spbp2 252 (1) PREG 175 Store Segment Base Pointer of Pointer Register 2
spbp3 253 (0) PREG 175 Store Segment Base Pointer of Pointer Register 3
spbp4 650 (1) PREG 175 Store Segment Base Pointer of Pointer Register 4
spbp5 651 (0) PREG 175 Store Segment Base Pointer of Pointer Register 5
spbp6 652 (1) PREG 175 Store Segment Base Pointer of Pointer Register 6
spbp7 653 (0) PREG 175 Store Segment Base Pointer of Pointer Register 7
spl 447 (1) EIS 223 Store Pointers and Lengths
spri 254 (0) PREG 175 Store Pointer Registers as ITS Pairs
spri0 250 (0) PREG 176 Store Pointer Register 0 as ITS Pair
spri1 251 (1) PREG 176 Store Pointer Register 1 as ITS Pair
spri2 252 (0) PREG 176 Store Pointer Register 2 as ITS Pair
spri3 253 (1) PREG 176 Store Pointer Register 3 as ITS Pair
spri4 650 (0) PREG 176 Store Pointer Register 4 as ITS Pair
spri5 651 (1) PREG 176 Store Pointer Register 5 as ITS Pair
spri6 652 (0) PREG 176 Store Pointer Register 6 as ITS Pair
spri7 653 (1) PREG 176 Store Pointer Register 7 as ITS Pair

Mnemonic Code Class Page Name

sprp n 54n (0) PREG 177 Store Pointer Register n Packed
sptp 557 (1) PRIV 204 Store Page Table Pointers
sptr 154 (1) PRIV 205 Store Page Table Registers
sra 754 (1) MISC 193 Store Ring Alarm
sreg 753 (0) FIX 100 Store Registers
ssa 155 (0) FIX 119 Subtract Stored from A
sscr 057 (0) PRIV 216 Set System Controller Register
ssdp 557 (0) PRIV 206 Store Segment Descriptor Pointers
ssdr 254 (1) PRIV 207 Store Segment Descriptor Registers
ssq 156 (0) FIX 120 Subtract Stored from Q
ssx n 14n (0) FIX 120 Subtract Stored from Index Register n
sta 755 (0) FIX 100 Store A
stac 354 (0) FIX 100 Store A Conditional
stacq 654 (0) FIX 101 Store A Conditional on Q
staq 757 (0) FIX 101 Store AQ
stba 551 (0) FIX 101 Store Bytes of A
stbq 552 (0) FIX 102 Store Bytes of Q
stc1 554 (0) FIX 102 Store Instruction Counter Plus 1
stc2 750 (0) FIX 103 Store Instruction Counter Plus 2
stca 751 (0) FIX 103 Store Characters of A
stcd 357 (0) FIX 104 Store Control Double
stcq 752 (0) FIX 104 Store Characters of Q
ste 456 (0) FLT 160 Store Exponent
sti 754 (0) FIX 105 Store Indicator Register
stq 756 (0) FIX 105 Store Q
stt 454 (0) FIX 105 Store Timer Register
stx n 74n (0) FIX 105 Store Index Register n
stz 450 (0) FIX 106 Store Zero
swca 171 (0) FIX 120 Subtract with Carry from A
swcq 172 (0) FIX 121 Subtract with Carry from Q
swd 527 (1) EIS 232 Subtract Word Displacement from Address Register
sxl n 44n (0) FIX 106 Store Index Register n in Lower
szn 234 (0) FIX 131 Set Zero and Negative Indicators
sznc 214 (0) FIX 131 Set Zero and Negative Indicators and Clear
sztl 064 (1) EIS 260 Set Zero and Truncation Indicators with Bit Strings Left
sztr 065 (1) EIS 260 Set Zero and Truncation Indicators with Bit Strings Right
tct 164 (1) EIS 240 Test Character and Translate
tctr 165 (1) EIS 241 Test Character and Translate in Reverse
teo 614 (0) TXFR 164 Transfer on Exponent Overflow
teu 615 (0) TXFR 164 Transfer on Exponent Underflow
tmi 604 (0) TXFR 164 Transfer on Minus
tmoz 604 (1) TXFR 165 Transfer on Minus or Zero
tnc 602 (0) TXFR 165 Transfer on No Carry
tnz 601 (0) TXFR 165 Transfer on Nonzero
tov 617 (0) TXFR 166 Transfer on Overflow
tpl 605 (0) TXFR 166 Transfer on Plus
tpnz 605 (1) TXFR 166 Transfer on Plus and Nonzero
tra 710 (0) TXFR 167 Transfer Unconditionally
trc 603 (0) TXFR 167 Transfer on Carry
trtf 601 (1) TXFR 167 Transfer on Truncation Indicator OFF
trtn 600 (1) TXFR 168 Transfer on Truncation Indicator ON
tsp0 270 (0) TXFR 168 Transfer and Set Pointer Register 0
tsp1 271 (0) TXFR 168 Transfer and Set Pointer Register 1
tsp2 272 (0) TXFR 168 Transfer and Set Pointer Register 2
tsp3 273 (0) TXFR 168 Transfer and Set Pointer Register 3
tsp4 670 (0) TXFR 168 Transfer and Set Pointer Register 4
tsp5 671 (0) TXFR 168 Transfer and Set Pointer Register 5
tsp6 672 (0) TXFR 168 Transfer and Set Pointer Register 6
tsp7 673 (0) TXFR 168 Transfer and Set Pointer Register 7

Mnemonic Code Class Page Name

tss 715 (0) TXFR 169 Transfer and Set Slave
tsx n 70n (0) TXFR 169 Transfer and Set Index Register n
ttf 607 (0) TXFR 170 Transfer on Tally Runout Indicator OFF
ttn 606 (1) TXFR 170 Transfer on Tally Runout Indicator ON
tze 600 (0) TXFR 170 Transfer on Zero
ufa 435 (0) FLT 146 Unnormalized Floating Add
ufm 421 (0) FLT 150 Unnormalized Floating Multiply
ufs 535 (0) FLT 148 Unnormalized Floating Subtract
xec 716 (0) MISC 182 Execute
xed 717 (0) MISC 182 Execute Double

EIS Micro Operations

Mnemonic Code Class Page Name

cht 21 MOP 280 Change Table
enf 02 MOP 280 End Floating Suppression
ign 14 MOP 281 Ignore Source Character
insa 11 MOP 281 Insert Asterisk on Suppression
insb 10 MOP 282 Insert Blank on Suppression
insm 01 MOP 282 Insert Table Entry One Multiple
insn 12 MOP 282 Insert On Negative
insp 13 MOP 283 Insert On Positive
lte 20 MOP 283 Load Table Entry
mflc 07 MOP 283 Move with Floating Currency Symbol Insertion
mfls 06 MOP 284 Move with Floating Sign Insertion
mors 17 MOP 284 Move and OR Sign
mses 16 MOP 285 Move and Set Sign
mvc 15 MOP 285 Move Source Characters
mvza 05 MOP 286 Move with Zero Suppression and Asterisk Replacement
mvzb 04 MOP 286 Move with Zero Suppression and Blank Replacement
ses 03 MOP 287 Set End Suppression

APPENDIX C: ADDRESS MODIFIERS

00 01 02 03 04 05 06 07

00
10 0

au
1

qu
2

du
3

ic
4

al
5

ql
6

dl
7 r

20
30

n*
0*

au*
1*

qu*
2* 3*

ic*
4*

al*
5*

ql*
6* 7* ri

40
50

f1
ci

itp
i sc

its
ad

sd
di

scr
dic

f2
id

f3
idc it

60
70

*n
*0

*au
*1

*qu
*2

*du
*3

*ic
*4

*al
*5

*ql
*6

*dl
*7 ir

NONSTANDARD MODIFIERS

Instruction Tag Meaning

scpr 00 Store appending unit history register
01 Store fault register

06 Store mode register
10 Store decimal unit history register

20 Store control unit history register
40 Store operations unit history register

lcpr 02 Load cache mode register

03 Load 0s into all history registers
04 Load mode register

07 Load 1s into all history registers

stca See description in Section 4

stcq See description in Section 4

stba See description in Section 4

stbq See description in Section 4

	Preface
	Section 1: Introduction
	Multics Processor Features
	Segmentation and Paging
	Address Modification and Address Appending
	Faults and Interrupts

	Processor Modes of Operation
	Instruction Execution Modes
	Normal Mode
	Privileged Mode

	Addressing Modes
	Absolute Mode
	Append Mode
	BAR Mode

	Processor Unit Functions
	Appending Unit
	Associative Memory Assembly
	Control Unit
	Operation Unit
	Decimal Unit

	Section 2: Data Representation
	Information Organization
	Position Numbering
	Number System
	Information Formats
	Data Parity
	Representation of Data
	Numeric Data
	Fixed-point Binary Data
	Fixed-point Binary Integers
	Fixed-point Binary Fractions

	Floating-point Binary Data
	Overlength Registers
	Normalized Numbers

	Decimal Data
	Decimal Data Values

	Alphanumeric Data
	Character String Data
	Bit String Data

	Section 3: Program Accessible Registers
	Accumulator Register (A)
	Format: - 36 bits
	Description:
	Function:

	Quotient Register (Q)
	Format: - 36 bits
	Description:
	Function:

	Accumulator-Quotient Register (AQ)
	Format: - 72 bits
	Description:
	Function:

	Exponent Register (E)
	Format: - 8 bits
	Description:
	Function:

	Exponent-Accumulator-Quotient Register (EAQ)
	Format: - 80 bits
	Description:
	Function:

	Index Registers (Xn)
	Format: - 18 bits each
	Description:
	Function:

	Indicator Register (IR)
	Format: - 14 bits
	Description:
	Function:

	Base Address Register (BAR)
	Format: - 18 bits
	Description:
	Function:

	Timer Register (TR)
	Format: - 27 bits
	Description:
	Function:

	Ring Alarm Register (RALR)
	Format: - 3 bits
	Description:
	Function:

	Pointer Registers (PRn)
	Format: - 42 bits each
	Even word of ITS pointer pair
	Odd word of ITS pointer pair
	Data as stored by Store Pointer Register n Packed (sprpn)
	Description:
	Function:

	Address Registers (ARn)
	Format: - 24 bits each
	Data as stored by Store Address Register n (sarn)
	Description:
	Function:

	Procedure Pointer Register (PPR)
	Format: - 37 bits
	Shown as part of word 0 of control unit data
	Shown as part of word 4 of control unit data
	Description:
	Function:

	Temporary Pointer Register (TPR)
	Format: - 42 bits
	Shown as part of word 2 of control unit data
	Shown as part of word 3 of control unit data
	Shown as part of word 5 of control unit data
	Description:
	Function:

	Descriptor Segment Base Register (DSBR)
	Format: - 51 bits
	Even word of Y-pair as stored by Store Descriptor Base Register (sdbr)
	Odd word of Y-pair as stored by Store Descriptor Base Register (sdbr)
	Description:
	Function:

	Segment Descriptor Word Associative Memory (SDWAM)
	Format: - 88 bits each
	Even word of Y-pairs as stored by Store Segment Descriptor Registers (ssdr)
	Odd word of Y-pairs as stored by Store Segment Descriptor Registers (ssdr)
	Data as stored by Store Segment Descriptor Pointers (ssdp)
	Description:
	Function:

	Page Table Word Associative Memory (PTWAM)
	Format: - 51 bits each
	Data as stored by Store Page Table Registers (sptr)
	Data as stored by Store Page Table Pointers (sptp)
	Description:
	Function:

	Fault Register (FR) – DPS and L68
	Format: - 72 bits
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 01
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 01
	Description:
	Function:

	Fault Register (FR) - DPS 8M
	Format: - 72 bits
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 01
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 01
	Function:

	Mode Register (MR) - DPS and L68
	Format: - 33 bits
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 06
	Description:
	Function:

	Mode Register (MR) - DPS 8M
	Format: - 36 bits
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 06
	Description:
	Function:

	Cache Mode Register (CMR) - DPS and L68
	Format: - 28 bits
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 06
	Description:
	Function:

	Cache Mode Register (CMR) - DPS 8M
	Format: - 36 bits
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 06.
	Description:
	Function:

	Control Unit (CU) History Registers - DPS and L68
	Format: - 72 bits each
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 20
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 20
	Description:
	Function:

	Control Unit (CU) History Registers - DPS 8M
	Format: - 72 bits each
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 20
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 20
	Description:
	Function:

	Operations Unit (OU) History Registers - DPS and L68
	Format: - 72 bits each
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 40
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 40
	Description:
	Function:

	Decimal Unit (DU) History Registers - DPS and L68
	Format: - 72 bits each
	Description:
	Function:

	Decimal/Operations Unit (DU/OU) History Registers - DPS 8M
	Format: - 72 bits each
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 40
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 40
	Description:
	Function:

	Appending Unit (APU) History Registers - DPS and L68
	Format: - 72 bits each
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 00
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 00
	Description:
	Function:

	Appending Unit (APU) History Registers – DPS 8M
	Format: - 72 bits each
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 00
	Odd word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 00
	Extended APU History Register:
	Even word of Y-pair as stored by Store Central Processor Register (scpr), TAG = 10
	Description:
	Function:

	Configuration Switch Data - DPS and L68
	Format: - 36 bits each
	Data read by Read Switches (rsw), y = xxxxx0
	Data read by Read Switches (rsw), y = xxxxx2
	Data read by Read Switches (rsw), y = xxxxx1 (port A-D) or xxxxx3 (port E-H)
	Data read by Read Switches (rsw), y = xxxxx4
	Description:
	Function:

	Configuration Switch Data - DPS 8M
	Format: - 36 bits each
	Data read by Read Switches (rsw), y = xxxxx2
	Data read by Read Switches (rsw), y = xxxxx1 (port A-D)
	Description:
	Function:

	Control Unit Data
	Format: - 288 bits, 8 machine words
	Data as stored by Store Control Unit (scu) instruction
	Description:
	Function:

	Decimal Unit Data
	Format: - 288 bits, 8 machine words
	Data as stored by Store Pointers and Lengths (spl) instruction
	Description:
	Function:

	Section 4: Machine Instructions
	Instruction Repertoire
	Arrangement of Instructions
	Basic Operations
	Extended Instruction Set (EIS) Operations
	EIS Single-Word Operations
	EIS Multiword Operations

	Format of Instruction Description
	MNEMONIC
	INSTRUCTION NAME
	OPCODE
	Line 1: MNEMONIC, INSTRUCTION NAME, OPCODE
	Line 2: FORMAT
	Line 3: SUMMARY
	Line 4: MODIFICATIONS
	Line 5: INDICATORS
	Line 6: NOTES

	Definitions of Notation and Symbols
	Main Memory Addresses
	Index Values
	Abbreviations and Symbols
	Register Positions and Contents
	Other Symbols

	Common Attributes of Instructions
	Illegal Modification
	Parity Indicator

	Instruction Word Formats
	Basic and EIS Single-Word Instructions
	Indirect Words
	EIS Multiword Instructions
	EIS Modification Fields (MF)
	MF Coding Examples

	EIS Operand Descriptors and Indirect Pointers
	Operand Descriptor Indirect Pointer Format
	Alphanumeric Operand Descriptor Format
	Numeric Operand Descriptor Format
	Bit-string Operand Descriptor Format

	Fixed-point Arithmetic Instructions
	Fixed-Point Data Movement Load
	Fixed-Point Data Movement Store
	Fixed-Point Data Movement Shift
	Fixed-Point Addition
	Fixed-Point Subtraction
	Fixed-Point Multiplication
	Fixed-Point Division
	Fixed-Point Negate
	Fixed-Point Comparison
	Fixed-Point Miscellaneous

	Boolean Operation Instructions
	Boolean And
	Boolean Or
	Boolean Exclusive Or
	Boolean Comparative And
	Boolean Comparative Not

	Floating-point Arithmetic Instructions
	Floating-Point Data Movement Load
	Floating-Point Data Movement Store
	Floating-Point Addition
	Floating-Point Subtraction
	Floating-Point Multiplication
	Floating-Point Division
	Floating-Point Negate
	Floating-Point Normalize
	Floating-Point Round
	Floating-Point Compare
	Floating-Point Miscellaneous

	Transfer Instructions
	Pointer Register Instructions
	Pointer Register Data Movement Load
	Pointer Register Data Movement Store
	Pointer Register Address Arithmetic
	Pointer Register Miscellaneous

	Miscellaneous Instructions
	Calendar Clock
	Derail
	Execute
	Master Mode Entry
	No Operation
	Repeat
	Ring Alarm Register
	Store Base Address Register
	Translation

	Register Load
	Privileged Instructions
	Privileged - Register Load
	Privileged - Register Store
	Privileged - Clear Associative Memory
	Privileged - Configuration and Status
	Privileged – System Control
	Privileged - Miscellaneous

	Extended Instruction Set (EIS)
	EIS - Address Register Load
	EIS - Address Register Store
	EIS - Address Register Special Arithmetic
	EIS - Alphanumeric Compare
	EIS - Alphanumeric Move
	EIS - Numeric Compare
	EIS - Numeric Move
	EIS - Bit String Combine
	EIS - Bit String Compare
	EIS - Bit String Set Indicators
	EIS - Data Conversion
	EIS - Decimal Addition
	EIS - Decimal Subtraction
	EIS - Decimal Multiplication
	EIS - Decimal Division

	Micro Operations for Edit Instructions
	Micro Operation Sequence
	Edit Insertion Table
	Edit Flags
	Terminating Micro Operations
	MVNE and MVE Differences
	Numeric Edit
	Alphanumeric Edit

	Micro Operations
	Micro Operation Code Assignment Map

	Section 5: Addressing -- Segmentation and Paging
	Addressing Modes
	Absolute Mode
	Append Mode

	Segmentation
	Paging
	Changing Addressing Modes
	Address Appending
	Address Appending Sequences

	Appending Unit Data Word Formats
	Segment Descriptor Word (SDW) Format
	Even word
	Odd word

	Page Table Word (PTW) Format

	Section 6: Virtual Address Formation
	Definition of Virtual Address
	Types of Virtual Address Formation
	Symbology (ALM)
	Symbolic Fields
	ALM Pseudo-Instructions

	Computed Address Formation
	The Address Modifier (TAG) Field
	General Types of Computed Address Modification
	Computed Address Formation Flowcharts
	Register (r) Modification
	Examples:

	Register Then Indirect (ri) Modifications
	Examples:

	Indirect Then Register (ir) Modification
	Examples:

	Indirect Then Tally (it) Modification
	Fault tag 1 (Td = 0)
	Subtract delta (Td = 4)
	Example:
	Sequence character reverse (Td = 5)
	Examples:
	Fault tag 2 (Td = 6)
	Fault tag 3 (Td = 7)
	Character indirect (Td = 10)
	Examples:
	Indirect (Td = 11)
	Sequence character (Td = 12)
	Examples:
	Add delta (Td = 13)
	Example:
	Decrement address, increment tally (Td = 14)
	Example:
	Decrement address, increment tally, and continue (Td = 15)
	Increment address, decrement tally (Td = 16)
	Example:
	Increment address, decrement tally, and continue (Td = 17)

	Virtual Address Formation Involving Both Segment Number and Computed Address
	The Use of Bit 29 in the Instruction Word
	Special Address Modifiers
	Indirect to Pointer (ITP) Modification
	Even word
	Odd word

	Indirect to Segment (ITS) Modification
	Even word
	Odd word

	Effective Segment Number Generation

	Virtual Address Formation for Extended Instruction Set
	Character- and Bit-String Addressing
	Character- and Bit-String Address Arithmetic Algorithms
	9-bit Byte String Address Arithmetic
	6-bit Character String Address Arithmetic
	4-bit Byte String Address Arithmetic
	Bit String Address Arithmetic

	Section 7: Faults and Interrupts
	Fault Cycle Sequence
	Fault Priority
	Fault Recognition
	Fault Descriptions
	Group 1 Faults
	Startup
	Execute

	Group 2 Faults
	Operation Not Complete
	Trouble

	Group 3 Faults
	Overflow	
	Divide Check

	Group 4 Faults
	Store
	Command
	Lockup
	Parity

	Group 5 Faults
	Master Mode Entries 1-4
	Fault Tags 1-3
	Derail
	Illegal Procedure

	Group 6 Faults
	Directed Faults 0-3
	Access Violation

	Group 7 Faults
	Shutdown
	Timer Runout
	Connect

	Interrupts and External Faults
	Interrupt Sampling
	Interrupt Cycle Sequence

	Section 8: Hardware Ring Implementation
	Ring Protection in Multics
	Ring Protection in the Processor
	Appending Unit Operation with Ring Mechanism

	Section 9: DPS/L68 Cache Memory Operation
	Philosophy of Cache Memory
	Cache Memory Organization
	Cache Memory / Main Memory Mapping
	Cache Memory Addressing

	Cache Memory Control
	Enabling and Disabling Cache Memory
	Cache Memory Control in Segment Descriptor Words
	Loading the Cache Memory
	Clearing the Cache Memory
	General Clear
	Selective Clear

	Dumping the Cache Memory

	Appendix A: Operation Code Map
	Appendix B: Alphabetic Operation Code List
	EIS Micro Operations

	Appendix C: Address Modifiers
	Nonstandard Modifiers

