
MULTICS BASIC MANUAL
ADDENDUM A

SUBJECT

Additions and Changes to the Manual

SPECIAL INSTRUCTIONS

Refer to the Preface for "Significant Changes:'

This is the first addendum to AM82, Revision 1, February 1981. Throughout the
document, change bars are used to indicate technical changes and additions;
asterisks denote deletions. These changes will be incorporated in the next revi­
sion of this manual.

Insert the attached pages into the manual according to the collating instruc­
tions on the back of this cover.

Note: Insert this cover after the manual cover to indicate the updating of the
document with Addendum A.

SOFTWARE SUPPORTED

Multics Software Release 11.0

ORDER NUMBER

AM82-01A

41627
7.5C1184
Printed in U.S.A.

December 1984

Honeywell

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

title page, preface

iii through vii, blank

1-1 , 1-2

3-1 through 3-7, blank

4-3, 4-4

4-7, blank

5-3, 5-4

5-11, 5-12

5-17, 5-18

5-27, 5-28

5- 31 , 5-32

C -1 , C-2

i-1 through i-9, blank

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

Insert

title page, preface

iii through vi

1 -1 , 1-2
1 -2. 1, blank

3-1 through 3-7, blank

4-3, blank
4-3.1, 4-4

4-7, blank

5-3, 5-4

5-11 , 5-12
5-12. 1 , blank

5-17, 5-18

5-27, 5-28
5-28.1, blank

5- 31 , 5-32

C-1, C-2

i-1 through i-5, blank

o Honeywell Information Systems Inc., 1984 File No.: 1L23, 1U23

12/84 AM 82-0 1 A

MULTICS BASIC MANUAL

SUBJECT

General Description, Capabilities, Rules and Definitions, User Interfaces,
Statements, and Input/Output of the BASIC Language on the Multics System

SOFTWARE SUPPORTED

Multics Software Release 9.0

ORDER NUMBER

AM82-01 February 1981

Honeywell

PREFACE

This reference manual completely describes the BASIC
language on the Multics system. It does not describe the BASIC
compiler. For information on the BASIC compiler, the reader is
referred to the basic command description in the Commands and
Active Functions manual, Order No. AG92. Also, this manual does
not attempt to provide the reader with basic knowledge of the
Multics system. The reader is referred to the New Users'
Introduction to Multics -- Part I manual, Order No. CH24 and to
the New Users' Introduction to Multics Part II manual,
Order No. CH25 for an introduction to Multics. In addition, the
reader is referred to the Multics FAST Subsystem Reference Guide
Order No. AU25 describing the time-sharing facility supporting
BASIC and FORTRAN program development.

Addendum A contains documentation
enhancements as described below:

The following string functions are new:

mid$(a$,i,j)
left$(a$,i)
right$(a$,i)

support for new

The string function 'pos' can have an optional number of
arguments.

'+' can be used for concatenation along with the '&'.

BASIC programs can be written without line numbers.

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

12/84 AM 82-0 1 A

CONTENTS

Section 1 Introduction ••.•••••••••••••
Format of Statements •••••••••

Line Numbers • • •. ••••• •
Keywords • • • • • • • • • • • •
Character Processing • • • • • • • • • .

Order of Execution • • • •
Remarks • • • • • . . •• ••••.

Remark Statement • • • • • •
Apostrophes • • • • • • • •

BASIC Program Structure ••••••••
Allocation of Storage • • •
Writing and Compiling a BASIC Program

Basic Search Mechanism • •• •••
Sample Program • • • • • • • • • • •

Section 2 Types of Data • • • • • • . • • • • • • •
Numeric Arguments • • • • • • • • • • • • •

Section 3

String Values •• • ••••••••
Scalar Variables •••••• • • •

Numeric Scalars ••• • • • • • • • • •
String Scalars • • • • • • • • • • •

Array Variables • • • • • • • • •
Array Declarations • • • • • • •
Array Bounds • • • • • • • • • • • • • •
Array Element References • • • • • •
Numeric Arrays • • • • • • • • • • •
String Arrays • • • • • • •

Relationship of Names • ••• •••
References ••• • • • • • • • •
Li s t s . . • . • • . • . • •• .• .

Expressions • • • • • • • • •
Numeric Expressions
String Expressions ••••
Functions • • • • • • • • •

BASIC Functions
User Functions

.
Section 4 Files • • • • • • • • • • •

Terminal Format Files •
Random Access Files • •

Random Numeric Files •

.

.

12/84 iii

Page

1-1
1-1
1-1
1-2
1-2
1-2. 1
1-2. 1
1-3
1-3
1-3
1-4
1-4
1-5
1-5

2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-3
2:"4
2-5
2-5
2-5
2-6
2-6
2-6

3-1
3-1
3-2
3-3
3-3
3-6

II ..
Lf- I

4-1
4-2
4-2

AM82-0 1A

Section 5

12/84

CONTENTS (cont)

Random String Files
File Names ••••
Fi Ie Number s File Ex pressions
Temporary Files •••••
File Attributes •

File Type
File Length •••••• ••.
File Margin ••••••••••••
File Pointer • • • • • • • • •

Functions • • • • • • • • • • •

Statements •••
Call Statement

Arguments

.

Array Arguments • • • • • • • •
Function Arguments
F i leAr g um en t s • • • • • • •

Interlanguage Calls • • • • • • • •
Call Statement Examples ••••••

Change Statement ••••••
Change Bit Statement ••• • •••••
Data Statement •••••••••••
Def Statement • • • • • • • •

Single Line Functions
Multiple Line Function •.

Dim Statement • • • • • • • •
End Statement • • • • • • • • •
File Statement •••••••••
Fnend Statement • • • •
For Statement • • • • • •
Gosub Statement • " • •
Goto Statement • • • • • • • • • • • •
If Statement • • •
If-End Statement •••
If-More Statement ••••••••••
In put Statement • •
Input-File Statement •••
Let Statement • • • •
Linput Statement
Linput-File Statement •

.
Margin Statement • • •
Margin-File Statement • • • • • • • •
Next Statement • • • • • • • •
On-Go sub Statement ••••••••••••
On-Goto Statement • • • • • • • • •
Print Statement • •• ...".....

Numeric Expressions • • • • • •
Integer Format • • •• •••••

iv

Page

4-2
4-2
4-4
4-4
4-4
4-5
4-5
4-5
4-5
4-6
4-6

5-1
5-1
5-2
5-3
5-3
5-3
5-4
5-4
5-4
5-5
5-6
5-7
5-7
5-7
5-9
5-10
5-10
5-10
5-11
5-12
5-12. 1
5-13
5-14
5-14
5-15
5-16
5-17
5-17
5-18
5-19
5-19
5-20
5-21
5-21
5-22
5-22
5-23

AM82-0 1 A

CONTENTS (cont)

Page

Fractional Format •••••••• 5-23
Scientific Format •••••••• 5-23

String Ex pressions •• ••• 5-24
Comma Separator • • • • • • • • •• 5-24
Semicolon Separator •••••••••• 5-24
Tab Request •••••••••••••• 5-25
Space Request •••• • •• 5-25
List Termination • • • • • • • • • • •• 5-25
Print Statement Examples • • • • 5-25

Print-File Statement • • • • • • • 5-26
Print-Using Statement • • • • • • • • • •• 5-26

Format Fields • • • • • • • • ••• 5-27
Format Processing • • • • • • • •• 5-28
Numeric Fields • • • • • • • • • • • •• 5-29
String Fields • • • • • • • • • •• 5-31
Printing Special Characters • • • • •• 5-32
Print-Using Statement Examples • • • •• 5-33

Print-File-Using Statement •••••••• 5-33
Randomize Statement • •• • • • • • 5-34
Read Statement • • • • • • • • • • •• 5-34
Read-File Statement •••••••••• 5-35
Rem Statement • ." ;0;0""""" 5-35
Reset Statement •• •• • • • • • • 5-35
Reset-File Statement ••••••••••• 5-36
Return Statement ••••••••••••• 5-36
Scratch Statement • • • • • • • • • • • •• 5-37
Setdigits Statement • • • • • • • ••• 5-37
Stop Statement • • . • • • • • • • 5-38
Sub Statement • • • • • • • • • • • • • •• 5-38

Parameters • • • • • • • •• 5-39
Scalar Parameters • • • • • • 5-39
Array Parameters • • • • • • •• 5-39
Function Parameters • • • • • • • •• 5-40
File Parameters .."" 5-40

Sub Statement Ex amples • • • • • • • •• 5-40
Subend Statement . • •• ••••• 5-41
Time Statement ••••••• • •• 5-41
Write Statement • • • • • • • • • • • • •• 5-41

Section 6 Array Statements • • • • • • • • •• 6-1

12/84

Array Redimensioning ••••••••••• 6-1
Array Initialization ••••••••••. 6-2
Array Initialization With Redimensioning 6-3
Array Assignment
Array Addition ••••..••.
Array Subtraction • • • .
Array Multiplication ••••

Scalar Multiplication . = • 0

Inner Product • • • • . . • •

v

6-4
6-4
6-4
6-5
6-5
6-6

AM82-01A

CONTENTS (cont)

Outer Product •••
Transpose Function •••••••
Inver se Function
Mat Input Statement

. . .
Mat Input File Statement •••
Mat Linput Statement
Mat
Mat
Mat
Mat
Mat
Mat
Mat
Mat

Linput File Statement • • • • •
Pr int Statement • • •
Print File Statement
Print Using Statement •••••
Print Using File Statement
Read Statement ••••
Read File Statement • •
Write File Statement

Page

6-6
6-7
6-8
6-9
6-10
6-11
6= 11
6-12
6-13
6-13
6-14
6-14
6-15
6-16

Section 7 Sample Programs • • • • • • • • • • • • • •• 1-1
Example 1 • • • • • • • • • • • • • 7-1
E x am pIe 2 • • • • •• ••• 7 - 2
Example 3 • •••••• •••• 1-4
Example 4 • • • • • • • • • • • • • • • •• 1-5
Example 5 • •• •• ••• ••• 1-6
Example 6 • • • • • • • • 7-7
Example 1 • • • • • • • • • • • 1-8
Example 8 • • • • • • • • • • • •• 7-9
Example 9 • ••• •••••• 1-10
Example 10 • • • • . • • • • •• ••• 1-14
Example 11 • • • • • • • • •• 7-15
Example 12 •••••••••• • • •• 1-18

Appendix A ASCII Character Set A-1

Append ix B Compatib il it Y wi th Non -Bas ic Progr ams • • • B-1
Call s Bet ween Bas ic and PL/I • • • • • B-1
Calls Between Basic and Fortran • • B-2

Appendix C Basic File Attachments • • • C-1
Files in the Storage System • C-1
Files on Tape • • • • • • • • • • • • • • • C-1
Terminal Input/Output • • • • • • • C-2
Synonym Attachments •• ••• ••• C-2

Appendix D Extended Precision • •• • •. D-1
D-2 convert numeric file ••.•

Index i-1

12/84 vi AM82-0 1 A

SECTION 1

INTRODUCTION

FORMAT OF STATEMENTS

A BASIC program is a sequence of numbered statements most of
which are identified by a keyword. The source program text consists
of a Mul tics segment containing ASCII characters divided into
lines by "newline" characters (the ASCII character whose octal
code is 12). Each line of the source program contains one or
more BASIC statements. Blank lines are allowed. Mul tiple statements
can appear on one line but must be separated by a backslash (\)
character. A statement that spans several lines is not allowed.

The following statements constitute a complete BASIC program;
it computes and prints the sum and difference of two numbers
specified by the user when the program is executed.

41"\1"\ input x,Y IUU

200 print x+y, x-y
300 end
or :
100 input x, y\print x+y, x-y
200 end

Line Numbers

The line or statement number is an unsigned decimal integer
greater than or equal to 1 and less than or equal to 99999 that
i sus edt 0 1 abe 1 the s tat em en t • Th eli n e n um b e r m u s t beg in in
the fir st posi tion of the source line: the I ine number field is
terminated by the first nondigit in the line.

Line numbering in Mul tics BASIC is optional. Line numbers I
can be used as labels for statements that require labels such as I
the go to or gosub statements. Statements that do not have line
numbers must be preceded by a backslash (\) .. The-following example I
ill ustrates a small BASIC program that does not employ I ine number s.

12/84 1-1 AM82-01A

Example

\s = 0
\for i = to 100
\ s = s + i
\next i
\print "The sum is ";s
\end

If you choose to use line numbers for your programs or you
use some line numbers for statement labels, each line number must

I be greater than the one preceding it.

other subsystems (such as FAST) that make use of the BASIC
compiler can use line numbers to control editing of the source
pro g ram; i f so, the m a x i m urn val ue 0 f a lin e n urn be r may be res t ric ted
to a lower value than that imposed by BASIC.

Keywords

The statement keyword is an English word that immediately
follows the line number or backslash and serves to identify the
type of~ statement. The interpretation of the characters that
follow the keyword depends on the type of statement. Some examples
of BASIC keywords are:

let
print
if
rem

Character Processing

The BASIC compiler ignores blanks and tab characters and converts
uppercase characters to lowercase ones except where they occur
wi thin quoted strings. Thus the following statements are all
equivalent:

100 GOT0485
100 goto 485
100 go TO 4 8 5

The length of the line after blanks and tab characters have
been removed is limited to 256 characters.

12/84 1-2 AM82-01A

ORDER OF EXECUTION

The statement in a program with the lowest line number is the
first statement to be executed. Unless one of the control statements
is executed, statements are executed sequentially according to
line number. Execution of the program ceases if an end statement
or a stop statement is executed.

REMARKS

The BASIC compiler normally looks at all the characters in a
statement. BASIC provides two means by which the user can indicate
that a sequence of characters is to be ignored by the compiler:
the remark statement and apostrophes.

12/84 1-2. 1 AM82-0 1 A

This page intentionally left blank.

12/84 AM82-0 1A

SECTION 3

EXPRESSIONS

BASIC expressions are constructed from operators and operands.
An operand can consist of a constant, a scalar variable or subscripted
array element, a function reference, or the resul t of another
operator. Operators that require two operands are called binary
operators, and operators that require one operand are called unary
operator s.

BASIC defines two types of expressions: numeric and string.
Numeric operands must not be used with the string operator; string
operands must not be used with the numeric operator. There is no
implicit conversion between numeric and string values; explicit
conversion functions must be used to convert from one data type
to the other.

Throughout this document, the word "expression" means an
arbitrarily complicated expression that can range from a single
constant to a complicated construct containing many operators and
parentheses. When a particular type of expression is intended,
the terms "numeric expression" and "string expression" are used.

NUMERIC EXPRESSIONS

BASIC defines seven operators that operate on numeric operands
to produce a numeric value:

Operator Meaning Example

+ plus + a
minus - a

+ addition a + b
subtraction a - b

* multiplication a * b
1 division a 1 b

exponentiation a A b

12/84 3-1 AM82-01A

The operators have their normal arithmetic meaning. The
operations are performed using the floating-point instruction set
of the Mul tics machine. Addition, subtraction, mul tiplication,
and exponentiation of integer values are exact, provided the
magnitudes of the operands and result are less than 2"27 (134,217,728)
for single precision or 2"63 for extended precision.

The order in which these operators are evaluated is determined
by special rules of precedence. The precedence of the numeric
operators is:

precedence Operator

4 (highest) unary -, unary +
3 "
2 * I
1 (lowest) + -

Operators with higher precedence are evaluated first. Operators
of equal precedence are evaluated from left to right, except for
the exponentiation and unary + and - operators, which are evaluated
from right to left. For example; the expression

a + b + c * d * e " f " g

is interpreted as

(a + b) + «c * d) * (e " (f " g)))

Parentheses can also be used to control the order of expression
ev al uat ion.

Examples:

a + b/c
(a + b)/c
(a - b7 * 3.1415)/(c1 + d"2)
a(i,j) + b(j-1,i+5)
-a * b

STRING EXPRESSIONS

I String expressions in BASIC are constructed using either of
the two concatenation operators & or +. These operators combine
two string values to produce a string whose value is the characters
in the first string immediately followed by the characters in the
second string.

12/84 3-2 AM82-0 1 A

Examples:

"hello" & "there" (Result: "hello there")
"upper" + "case" (Result: "uppercase")
a$ + b$ & c$
a$(i) + a$(i+1)
a$ + b$ & left$(c$,3)

FUNCTIONS

A function reference consists of a BASIC function name or a
user-defined function name optionally followed by a parenthesized
argument. list containing one or more arguments. The arguments
used in a function invocation must match the number and type of
arguments expected by the function. No conversion is done to
match the argument provided with the argument expected. Function
references are evaluated at the point where their value is required
and do not affect the order of operator evaluation. All function
arguments are evaluated before the function is evaluated.

BASIC Functions

BASIC provides a variety of functions for computing commonly
used functions and for interrogating the operating environment of
the program. Numeric function names consist of three to fi ve
letters; string function names consist of three letters followed
by a dollar sign. Except where expl ici tl y stated otherwise, a
numeric argument of a function can be any arbitrarily complicated
numeric expression, and a string argument of a function can be
any arbitrarily complicated string expression.

The following list gives the numeric and string functions
provided by BASIC; functions related to files are listed in Section
4. In all of the descriptions that follow, x indicates an arbitrary
numeric expression, i and j indicate arbitrary numeric expressions
that are truncated to yield an integer value, and a$ and b$ indicate
arbitrary string expressions.

12/84 3-3 AM82-01A

I

12/84

Function

abs(x)

asc(c)

arg$(n)

atn(x)

chr$(x)

clg(x)

clk$

cnt

co s (x)

cot(x)

dat$

det

ex p (x)

int(x)

Description

The absolute value of x.

The decimal number corresponding to the single
ASCII character or two- or three-letter
character abbreviation c. Any single ASCII
character can appear except quote, newl ine,
apostrophe, space, and tab; character
abbreviations are listed in Appendix A.

The value of the nth command argument supplied
by the Mul tics command processor. This function
can be used when a BASIC main program has
been called as a Multics command.

The arctangent 0 f x in rad ians (i.e., the angle
whose tangent is x), where the angle is in
the range -pi/2 to +pi/2.

The one-character string that consists of the
ASCII character with numeric code
mod(int(x),128). (See Appendix A.)

The logarithm of x to the base 10.

An eight-character string that gives the time
of day in the form HH:MM:SS.

Th e n urn b e r 0 far gum en t s sup P lie d by the Mu I tic s
command processor. This function can be used
when a BASIC main program has been called as
a Multics command.

The cosine of x, where x is in radians.

The cotangent of x, where x is in radians.

An eight-character string that gives the current
date in the form MM/DD/YY.

The determinant of the last matrix that was
inverted in this program using the matrix
function inv. (See Section 6.)

Th e e x po n en t i a I 0 f x (i • e ., the val ue 0 f e
raised to the power x).

The largest integer not greater than x.

3-4 AM 82-0 1 A

Function Description

left$(a$,i) The substring of a$ that consists of the fir st I
i' characters, where i' = min (i, len(a$)).
If i < 0 a zero-length string is returned.

len(a$)

log(x)

The number of characters in the string a$.

The logarithm of x to the base e.

max(x1, ••• ,xn) The maximum of n numeric values. This function
allows an arbitrary number of arguments.

mid$(a$,i,j) The substring of a$ that consists of j'
characters starting at the character in position
i ' , where i ' = max (i , 1) and j , =
max(min(j,len(a$)-i'+1),O). This function is
equivalent to sst$.

min(x1 see .. jxn) The minimum of n numeric values. This function
allows an arbitrary number of arguments.

mod(x,y)

num

The mod ul us function x - y * int (x/y); the
value x is returned if y is O.

The number of data items transmitted into the
last array by a mat-input statement. (See
Section 6.)

pos(a$,b$,[i]) The location in string a$ of the first occurrence
of string b$, starting at or after position i

right$(a$,i)

rnd

12/84

in a$, if the last
position 1 in a$,
omitted.

argument is supplied, ur
if the last argument is

The substring of a$ that consists of the last
i' characters, where i' = min (i,len(a$)).
If i < 0 a zero-length string is returned.

The next pseudorandom number in a sequence of
uniformly distributed pseudorandom numbers
greater than or equal to 0 and less than 1.
The period of the sequence is 2A 35 - 1.

3-5 AM82-01A

•

I

Function

seg$(a$,i,j)

sgn(x)

sin(x)

sqr(x)

sst$(a$,i,j)

str$(x)

tan(x)

tim

tst(a$)

usr$

val (a$)

Us'er Functions

Description

The substring of a$ that consists of the
characters between positions i' and j'
inclusive, where i' = max(i,1) and j' =
min(j,len(a$)). A zero-length string is
returned if j' < i'; otherwise, the length is
j'-i'+1.

Th e s i g n urn 0 f x: -1 i f x < 0 , 0 i f x = 0 ,
and + 1 if x > o.

The sine of x, where x is in radians.

The positive square root of x.

The substring of a$ that consists of j'
characters starting at the character in position
i ' , where i ' = max (i , 1) and j , =
max(min(j,len(a$)-i'+1),O). This function is
equivalent to mid$.

The string that is the decimal representation
of the n umer ic val ue 0 f x. The conver sion
follows the rules for printed output. (See
Section 5.)

The tangent of x, where x is in radians.

The elapsed running time of the program in
seconds. This value is determined from the
microsecond clock used by the Multics system.

This function returns a value of 1 if the
string a$ can successfully be converted to a
numeric val ue accord ing to the rules for numeric
input; 0 is returned if the string a$ does
not represent a valid numeric constant.

A string giv ing the name of the user (e.g.,
Jones) •

The val ue of the number whose decimal
representation is a$.

In addition to the standard functions that it provides, BASIC
allows the user to define his own functions. These function
definitions are local to the program in which they appear. Two
forms of function definition are permitted: single line functions
and multiple line functions.

12/84 3-6 AM82-01A

A single I ine function returns the val ue of a numeric or
string expression that can depend on the parameters, if any, of
the function. A mul tiple I ine function can per form more compl icated
computations before it returns its result.

The name of a user-defined numeric function consists of the
letters "fn" followed by a single letter. The name of a user-defined
string function consists of the letters "fn" followed by a single
letter followed by a dollar sign. The same letter can be used
for both a string function and a numeric function in the same
program.

Examples:

I fna
fna$ I
A reference to a user-defined function consists of the name

of the function optionally followed by a parenthesized argument
list containing one or more arguments. The arguments supplied in
a reference to a user-defined function must agree in number and
type with the parameters expected by the function; no conversion
is done to match the argument provided with the parameter expected.
Arguments are passed to a user-defined function "by value"; this
allows the function to assign a val ue to a parameter wi thout
changing the corresponding argument.

Multiple line functions can be defined with local variables.
A variable used in a function body that is not a parameter or a
local variable of the function is said to be a global variable.
A global variable is defined in the program that contains the
function definition.

A multiple line function can call itself recursively, i.e.,
the function can be invoked while one or more previous invocations
are still active. The recursive invocation can be direct, as the
result of a use of the function from within its own definition,
or indirect, as the resul t of a call from some other function.
The maximum number of invocations is dependent on stack space. 1
In the simplest case, the maximum number of active invocations is
51. However, if local variables are used and/or if gosubs or
other mul tiple line functions are invoked, this number is decreased.

12/84 3-7 AM82-01A

This page intentionally left blank.

12/84 AM82-01A

WheQ a colon is the first character of a file name, the file
name specifies a Multics I/O switch name. An I/O switch serves
as a channel through which input/output is performed. By specifying
a switch, rather than a specific device or file, a BASIC program
becomes dev ice or file independent. The swi tch can be at tached
to a different device or file each time the program is executed.
A file name of the form:

:name

connects the BASIC file to the I/O switch name, which must already
be properly attached. A file name of the form:

:name attach-description

connects the BASIC file to the I/O switch name; attach-description
specifies the manner in which the switch should be attached if
not already attached. The types of attachments that can be made
are described in Appendix C.

If BASIC attaches the switch, it also opens, positions, closes,
and detaches the switch at the termination of the BASIC program.
If the switch is already attached, BASIC opens, positions, and
closes it but does not detach it. Finally, if the file name
specifies an I/O switch that is both attached and open, BASIC
does not position, close, or detach the switch.

File names that begin with a colon cannot be used for random
a c c e s s f i 1 e s • Ex am p 1 e s 0 f f i len am est hat h a v e a colon as the
first character are:

:error output
:xxx vlile xxx file
:input record stream -target ntape_ 123abc,9track -raw

12/84 4-3 AM82-0 1 A

A file name that does not begin with a colon is interpreted
as a Mul tics pathname that specifies a segment in the Mul tics
storage system. The pathname can be either absolute or relative.
(Refer to the New User s' In trod uc tion to Mul tic s Part I, Order
No. CH24 for a description of absolute and relative pathnames.)
This kind of file name must satisfy all constraints on pathnames
(refer to the Mul tic s Programmer's Reference Man ual, Order No. AG91) I
that are enforced by the Multics operating system. Examples of
this type of file name are:

error output
data -
>udd>projectid>personid>filea
<,input

12/84 4-3. 1 AM82-0 1 A

FILE NUMBERS

A BASIC program refers to its files by means of a file number.
A BASIC file number is an integer from 0 to 16, inclusive. File
number 0 always refers to the user's terminal, which is treated
as a terminal format file.

The correspondence between a file number and a file name is
established by the file statement. A file is called "open" if it
is currently assigned a file number and is called "closed" otherwise.

A file statement results in an attempt to locate the specified
file, ei ther as an 1/0 attachment or as a Mul tics segment. If
the file is located, the BASIC runtime system determines the type
and attaches the file appropriately. Errors that can be detected
include: an invalid file number, an invalid file name, no read
access, a· type not used by BASIC programs, and a numeric file
that has a precision different from the program. If the file is
not located, it will be created when fir st used. If an 1/0 attachment
is specified, there must be a valid attach description if the
file is not already attached, and if the file is already open, it
must be for stream input or stream output.

A file remains open until it is closed. A file can be closed
in one of two ways:

1. When control returns from a BASIC program, either normally
or abnormally, all files opened by the program are
automatically closed.

2. A file is closed if its file number is used in a subsequent
I file statement in the same program.

FILE EXPRESSIONS

Whenever a file number is required in a BASIC program, the
user can wr i te an arbi trar y numeric ex pression who se val ue is
truncated to an integer before it is used. Throughout this document
the term "file expression" signifies a numeric expression that
results in an integer value from 0 to 16, inclusive.

TEMPORARY FILES

The file name "*" refers to a temporary file that is created
by the file statement that opens it. A temporary file is deleted
at the termination of the program that created it. Each use of
the file name "*" in a file statement resul ts in the creation of
a new file that is distinct from any other temporary files previously
created.

4-4 AM82-01

Function

mar(lIn)

per (f!n ~ a $)

t yp (lin ,a $)

NOTES

Description

The current margin of the file assigned file
number n.

The value +1 if the operation specified by a$
i s per mit ted for f i len um be r n, a i f the
operation is not permitted, and -1 if a$ does
not specify one of the operations input, linput,
print, read, reset, scratch, or wri te. An
operation is not permitted if the type of the
file is incorrect or if there is no wri te
access in the case of output operations.

The value +1 if file number n is of type a$,
a if file number n is not of type a$, and -1
if a$ does not speci fy one of the types numeric,
string, terminal, tty, or any. Any open file
has type any_ An empty file has any type
except tty.

In Mu 1 tic s the II is asp e cia 1 c h a r act era n din 0 r d e r for i t
not to perform its delete function it must be preceded by a backslash
(\). See the Multics Programmer's Reference Manual, Order N0.1
AG91, for further information on special characters.

12/84 4-7 AM82-0 1A

ARRA Y ARGUMENTS

An array argument is written as

b ()

for a v ec tor and

b (,)

for a matrix, where b is the name of the array. The location of
the array is passed to the subroutine along with the current and
original array bounds. Any change to an element of the parameter
array from within the subroutine immediately results in a change
to the corresponding element in the argument array. The subroutine
can change the current bounds of the array.

Examples:

I a (,)
b$()

FUNCTION ARGUMENTS

I
A function argument consists 0 f the name 0 f a BASIC or

user-defined function. A use of the function from within the
called subroutine must provide the correct number and type of
arguments. Any names in the body of a user-defined function that
are not function parameters or local variables of the function
refer to the corresponding objects in the program in which the
function is defined. Functions wi th a variable number of arguments, I
such as max, min, and pos cannot be passed as function arguments.

Examples:

I sin
fnz$

FILE ARGUMENTS

A file argument 13 written

II n

12/84

........
a..;,.

5-3

I

AM82-01A

where n is a file expression. The file parameter in the called
subroutine refers to the same file as the calling program; the
file type, length, margin, pointer, and contents at entry to the
subroutine remain as they were after the last operation affecting
the file in the calling program. Any change to the file from
wi thin the called subroutine is retained after the subroutine
returns.

Ex amples :

I fin
fI 3

Interlanguage Calls

Calls between BASIC programs and programs written in other
languages are subject to restrictions on the types of arguments
that can be passed; functions, files, and arrays of strings cannot
be passed. See Appendix B for further details.

Call Statement Examples

The following are examples of the call statement:

100 call "init"
200 call a$ & "routine": a()
300 call "write": Ilk, a$(,)
400 call "integrate": fna, 1, 10, 1e-5
500 call "calculate": a, be), sin(x-y/z)

CHANGE STATEMENT

Syntax:

change n to s$
or

change e$ to n

where n is a numeric vector, s$ is a string reference, and e$ is
a string expression.

5-4 AM82-01

Semantics:

The fnend statement marks the end of a multiple line function
definition. See the description of the def statement.

I 175 fnend

FOR STATEMENT

Syntax:

for v = e1 to e2
or

for v = e1 to e2 step e3

where v is a reference to a scalar numeric variable, and e1, e2,
and e3 are numeric expressions.

Semantic s:

The for statement marks the beginning of a for-next loop; it
is always used in conjunction with a subsequent next statement
that specifies the same scalar numeric variable. When the optional
step expression e3 is omitted, the value +1 is used.

The group of statements between the for statement and the
matching next statement, called the body of the loop, is executed
repeatedly according to the following steps:

1 • The ex press ions e 1, e 2, and e 3 are ev al uated and the resul ting
values are saved. Let e1', e2', and e3' represent the
saved values, which are inaccessible to the user's program.

2. The control variable v is set to the value of expression
Co 1 f
'" I •

3. If e3' >= 0 and v> e2' or if e3' < 0 and v < e2', the
loop is terminated and execution continues with the statement
after the matching next statement; otherwise, execution
continues with step 4.

4. The body of the for-next loop is executed.

5. When the next statement that marks the end of the for-next
loop is executed, the control variable v is set to v +
e3' and step 3 is repeated.

5-11 AM82-01

The value of the control variable can be modified by statements
within the body of the loop, and its value is available at the
end of the loop. The body of the loop can contain statements
that jump out of the loop, but undefined results can occur if a
statement outside the for-nex t loop attempts to jump into the
body of the loop.

For-next loops can be nested to a depth of eight. For-next
loops cannot be interleaved. A for-next loop cannot use the same
control variable as a for-next loop that contains it.

100 for i = 1 to 10
200 for a1 = -y to y+10 step .1
300 for x = n to -3 step -1

GOSUB STATEMENT

Syntax:

gosub In

where In is a line number.

Semantics:

A gosub statement saves the line number of the statement following
ita n d t ran s fer s con t r 01 tot h est a t em en t wh 0 se 1 in e n urn b e r i s
s p e c i fie din the go sub s tat em en t • Wh e n are t urn s tat em e n tis
subsequently executed, control returns to the statement whose line
number was saved.

I In general, 255 gosub statements can be executed before a
return statement; however, the number may be less if multiple-line
functions are also executed. The BASIC runtime system maintains
a last-in first-out stack of pending returns. Any pending gosub
returns that originated in a program or user-defined function are
discarded when control leaves the program or function.

173 gosub 1000

12/84 5-12 AM82-01A

GOTO STATEMENT

Syntax:

go to In

where In is a line number.

12/84 5-12. 1 AM82-01A

This page intentionally left blank.

12/84 AM82-01A

100 input #1: a,b,c
223 INPUT # k+2: n,a(n-1),
317 input #O:i,j$

LET STATEMENT

Syntax:

let v = e
or

let v1 = v2 =
or

v = e
or

= vn = e

v1 = v2 = •• ~= vn = e

where v, v1, v2, ••• , vn are either all numeric references or all
string references and e is an expression of the same type as the
reference(s).

Semantics:

The let statement assigns the value of an expression to one
or more scalar variables or subscripted array elements of the
same type. All subscript expressions in the list of references
are calculated before the expression is evaluated and before any
assignments are done.

100 let x(5) = sqr(q + yA 3)
217 let i = i + 1
345 a$ = b$ + seg$(c$,i,j)
400 i = a (i) = 5

LINPUT STATEMENT

Syntax:

linput list

where list is a list of string references separated by commas.

12/84 5-17 AM82-0 1 A

I

Semantic s :

The linput statement causes each string reference in the list
to be assigned a string value consisting of all the characters in
a line of input (except the newline character at the end). This
permits the user to enter strings containing characters that might
otherwise have special significance to BASIC.

Each time a string value is required, a prompt is printed and
an entire line is read and used for the string value. If the
last input- or mat-input statement ended in a comma and there is
a partial line left, the initial prompt is omitted and the partial
line is used as the first string value.

300 linput a1$, b$(i+3) I
LINPUT-FILE STATEMENT

Syntax:

linput # n: list

where n is a file expression and list is a list of string references
separated by commas.

Semantics:

This variation of the linput statement requests lines of input
from the terminal format file wi th file number n. If the file
number is 0, this form of the linput statement is the same as the
simpler form in which the file number is omitted.

If the file number is nonzero, as many lines as are necessary
to satisfy the list of references are read from the specified
file starting at the current value of the file pointer. No prompting
messages are printed. If a previous input- or mat-input statement
referencing the same file ended in a comma and there is any partial
input line left, the value of the first string reference is set
to the partial line. The file pointer is left pointing at the
character after the newline of the last line read from the file.

123 linput #12 a4$

MARGIN STATEMENT

~vnt.::Iv • -J"'--_ •••

5-18 AM82-01

where f$ is a string expression and list is a list of expressions
separated by commas.

Semantics:

The print-using statement generates 1 ines of output to be
printed on the user's terminal. A single print-using statement
can generate one line, several lines, or only part of a line of
output. The characters generated by a print-using statement are
sent to the terminal at the end of the statement, even if this
means that the terminal print head is left sitting in the middle
of a line.

Format Fields

The string specified by f$ contains a description of the editing
to be applied to the values in the print list. The format string
f$ is divided into a series of fields, each of which controls the
formatting of a single value in the print list. Two types of
fields are possible: numeric fields and string fields. A numeric
field can onl y be used wi th a numeric val ue and a string field
can only be used with a string value.

There are eight special characters used for defining field s
in the format string. These characters and their effects are
given in the following table:

Character

+

$

<

>

Effect

Start a numeric field; print a floating minus sign
for negati ve number s and reserve a place for a
digit for positive numbers.

Start a numeric field, print a floating plus sign
for positive number s and a floating point min us
sign for negative numbers.

Mark the position where a decimal point is to be
printed.

Start a numeric field; print a floating dollar sign.

Specify the exponent part of a numeric field.

Start a string field; print string left justified.

Start a string field; print string right justified.

Reserve a place in either a numeric of a string
field.

5-27 AM82-0 1

I

A format field consists of all of the characters from the
character that starts the field until the end of the format string
or the character before the character that starts the next field,
whichever comes first.

A character that is not one of the eight special format characters
is called a literal character. Literal characters occurring in a
field are normally placed in the line image unchanged; they can
be replaced by blanks as described below under "Numeric Fields".

1. A "+" or a "_,, can be immediately preceded by a "$".

2. If a "$" is not immediately followed by a "+" or "-", "_,,
is assumed to be inserted before the "//" following the
"$".

3. The exponent field must be written as """""""

4. A "I" cannot start a field.

5. A "." is a literal character when it occurs outside of a
n umer ic field.

The following are examples of format strings:

"x is -//# and f(x) is +#//.11""""""
"RECEIPTS $-#//,#11.00"
"<1111111111)//11111111111111"

In the fir st ex ample, the str ing "x is " precedes the fir st field
which consists of the string "-II and f(x) is If; the second field
consists of the string "+1//.//1"""""".

Format Processing

The print-using statement is processed in the following manner:

1 • Th e 0 pt ion a 1 s t r i n g 0 f 1 it era 1 c h a r act e r s t hat pr e c e des
the first field in the format string is placed in the
line image with normal margin checking.

2. Each expression in the print list is evaluated, in turn,
and its value is used to evaluate the corresponding field
in the format string. The string of characters resulting
from the evaluation of the format field is placed in the
line image.

12/84 5-28 AM82-01A

3. If there are more format field s than ex pressions in the
print list, the extra fields are ignored and processing
ceases.

4. If the end of the format string is reached before the
last expression has been evaluated, a newline is added to
the current output line, the line is transmitted to the

12/84 5-28. 1 AM82-01A

This page intentionally left blank.

12/84 AM82-0 1A

Some examples of numeric field evaluation are presented here
(~ represents a single blank):

Field Internal Value External Form

-1111 2 ~)S2
-1111 -23 -23
-1111 416 416
-1111 -416 ***
+1111 23 +23
+1111 -23 -23
+1111 416 ***
+1111 0 ~+o
-1111. 1111 11.419 ~ 17. 48
-1111. 1111 1 • 7419 ~)s1.7
-1111. fill .17419 ~)S0.17
-1111. fill -.112 ~-0.11
-. 1111 0.23 0.23
-. 1111 -0.23 -.23

1 1
-7 *

$-11, flllll. 00 18. 43 ~)S)S)S$18.00
$-11, flflli. 00 -1234 $-1 , 234. 00
- fill • fill'" ,,, .. ,.. ,.. 123.4 ~12.34 E+1iS
-#fl. flfl"''''''''''''' -1.234e14 -12. 34 E+13
-Ilfl. fill"''''''''''''' 0)SOO.OO E+OJ6
$ flllll • fill 25.4 bb$25.40
$fl. fl -1 $-1.0

Where "b" is assumed to be the blank character.

String Fields

A string field is evaluated as follows:

1. Each "fl" in the field reserves a character position as
does the "<,, or ,,>" wi th which the field beg ins" Let P
be the number of places reserved.

2. The character string expression is evaluated. Let S be
the string resul ting from the eval uation, and let N be
the number of characters in S.

3. If the field starts with "<", the field is copied from
left to right. The "<" is replaced by the leftmost character
of S; each "II" is replaced by the next character of S in
sequence from 16ft to right. If N > P, the excess N - P
characters are dropped from the right end of S. If N <
P, the last P - N character posi tions in the field are
replaced by blanks. Any literal character in the field
is copied without change.

12/84 5-31 AM82-01A

I

4. If the field starts with ">", the field- is copied from
right to left. The rightmost "I" in the field is replaced
by the rightmost character of S; each "I" and the ">,, are
replaced by the next character of S in sequence from right
to left. If N > P, the excess N - P characters are
dropped from the left end of S. If N < P, the fir st P -
N character positions are replaced by blanks. Literal
characters in the field are copied without change.

5. The value of the field is the string resulting from step
3 or Step 4.

The following are some examples of string field evaluation (~
indicates a single blank):

Field

< 1111 I I I II 1111
> 1111 1111 1111 1111
>1111111111111111
< I1I1
>1111
< 111211311411

Internal Value

alpha
beta
betalS
alpha
alpha
alpha

Printing Special Characters

External Form

al phakSlS)HS
~lSlSlSkSbeta
kSlSlSlSbetal1
alp
pha
a 1 : 2p 3h 4a

If the user wishes to print a literal copy of one of the
eight characters with special meaning in format fields, he must
use a string field and pass the character as part of the print
list. For example, the following statement prints a period at
the end of the sentence:

100 print using "x is -111<", x, "."

If the statement had been written:

100 print using "x is -1111.", x

the "." would be treated as part of the numeric field.

5-32 AM82-01

APPENDIX C

BASIC FILE ATTACHMENTS

This append ix 1 ists the I/O swi tch attachments that can be
specified .in a BASIC file name.

FILES IN THE STORAGE SYSTEM

The attach description must be of the form:

v file f

where f is an absolute or relative pathname that identifies a
file.

FILES ON TAPE

The attach description must be of the form:

record stream -target ntape_ r -raw -write

where r is a string identifying the reel to be read or written.
The string r should end with the sequence ",7track" or ",gtrack"
to indicate the type of tape to be read or written: If neither
of these endings are present, ",gtrack" is assumed.

The -wri te control argument causes the reel to be mounted
with a write-permit ring. This control argument is required if
the program contains print-statements or scratch-statements that
access the file.

The -raw control argument is required; it means that each
line in the file corresponds to a single physical tape record.

C-1 AM82-01

TERMINAL INPUT/OUTPUT

The attach description must be of the form:

where d is the string, obtainable from the print attach table
(pat) command or user active function, that identifieS-the terminal
device assigned to the I/O switch name user i/o in the user's
process.

SYNONYM ATTACHMENTS

The attach description must be of the form:

syn_ n

where n is the name of an I/O switch through which all operations
on this switch are to be directed. Such a switch must exist at
the time the swi tch is opened, al though it need not ex ist when
the switch is attached. The I/O switch whose name is n can itself
be attached as a synonym for another I/O switch. The I/O switch
that is the final destination of the synonym attachment must be
attached to a file or device and must specify an I/O module.

For more information on the Multics Input/Output System, refer
I to the Mul tics Programmer's Reference Manual, Order No. AG91.

12/84 C-2 AM 82-0 1 A

A

apostrophes 1-3

arguments 5-2
array 5-3
ex pression 5-2
file 5-3
function 5-3
numeric 2-1

array
addition 6-4
arguments 5-3
~<:!<:!; rrV'l""oV'l~ e:. "')
.... OJ OJ .0 IllU ,\;;u " U - .)

bounds 2-4
declarations 2-3
dimensions 2-3
element references 2-5
initialization 6-2
multiplication 6-5
numeric 2-5
redimensioning 6-1, 6-3
statements 6-1
string 2-5
subtraction 6-4
variables 2-3

ASCII
character set A-1

attach dp~~rintion
-- - - -- - -- - - - - - -,;- - - ---

I/O 4-3

attachments
synonym C-2

INDEX

i-1

B

backslash 1-3

C

call statement 5-1

calls
interlanguage 5-4, B-1

change bit statement 5-5

change statement 5-4

character processing
line length 1-2

character set A-1

comments 1-2. 1

compatibility
with non-Basic programs B-1

compiling
Basic programs 1-4

concatenation
onpr;=lt.01'" ~ ~_?
-,;--- ---- - oJ

convert numeric file command
D-1

AM82-01A

D

data statement 5-6

data types
Basic B-1
FORTRAN B-2
PL/1 B-1

def statement
multiple line 5-7
single-line 5-7

dim 5-9

E

end statement 5-10

execution
order of 1-2.1

ex pr e s s ion s 3-1
numeric 3-1
string 3-2

extended precision D-1

F

file
arguments 5-3
attachments C-1
attributes 4-4
expressions 4-4
functions

hps 4-6
loc 4-6
lof 4-6
mar 4-6

length 4-5
margin 4-5
names 4-2
numbers 4-4
pointer 4-6
random access 4-2
temporar y 4-4

i-2

file (cont)
terminal format 4-1
type 4-5

file statement 5-10

files 4-1
converting numeric D-1
in the storage system C-1
tape C-1

fnend statement 5-10

for statement 5-11

format
of statements 1-1

function
arguments 5-3

function definition 5-8

functions
inver se 6-8
list of 3-3
multiple line 5-7
multiple-line 3-7
single-line 5-7
transpose 6-7
user-defined 3-6

G

gosub statement 5-12

goto statement 5-12.1

I

1/0
attach description 4-3
switch attachments C-1
switch name 4-3
terminal C-2

if statement 5-13

AM82-01A

if-end statement 5-14

if-more statement 5-14

initialization, array 6-2

inner products 6-6

input statement 5-15

in-put-file statement 5-16

inverse function 6-8

K

keywords 1-1, 1-2

L

let statement 5-17

1 ine leng th 1-2

1 in e n um be r s 1 -1

linput-file statement 5-18

M

margin statement 5-19

marg in-file statement 5-19

mat input file statement 6-10

mat input statement 6-9

mat linput file statement
k._11
v- I I

mat linput statement 6-11

mat print file
statement 6-12

mat print statement 6-12

mat print using file statement
6-14

mat print using statement
6-13

mat read file statement 6-15

mat read statement 6-14

mat write file statemetn 6-16

multiple-line function 5-7

N

nested loops 5-12

newline 1-1

next statement 5-20

non-Basic programs
compatibility B-1

numeric arguments 2-1
double-precision 2-1
extended precision D-1
floating-point exponents

2-1
single-precision 2-1

numeric arrays 2-5

numeric expressions 3-1

o

on-go sub statement 5-2i

on~goto statement 5-21

operand 3-1

i-3 AM82-01A

operator s
binary 3-1
relational 5-13
unary 3-1

outer products 6-6

precedence
order of 3-2

precision
extended D-1
single D-1

p

print statement 5-22

print-file statement 5-26

print-file-using statement
5-33

print-using statement 5-26

products
outer 6-6

programs
sample' 7-1

R

random access files
nUmeric 4-2
string 4-2

randomize statement 5-34

read statement 5-34

read-file statement 5-35

redimensioning array 6-1

relational operators 5-13

rem statement 5-35

i-4

remarks 1-2.1

reset statement 5-35

reset-file statement 5-36

return statement 5-36

s

sample programs
array processing 7-8
command processor calls

7-14
desk calculator 7-18
mileage 7-1
random access files 7-15
random sentence generation

7-10
recursive function 7-7

scalar multiplication 6-5

scalars
numeric
string

2-2
2-3

scratch statement 5-31

setdigits statement 5-37

single precision D-1

single-line function 5-7

statements
array 6-1
call 5-1
change 5-4
change bit 5-5
data 5-6
def 5-7
dim statement 5-9
end 5-10
file 5-10
fnend 5-10
for 5-11
format of 1-1
gosub 5-12
goto 5-12.1

AM82-01A

statements (cont)
if 5-13
if-end 5-14
if-more 5-14
input 5-15
input-file 5-16
let 5-17
linput 5-17
linput-file 5-18
margin 5-19
margin-file 5-19
mat input 6-9
mat input file 6-10
mat linput file 6-11
mat print 6-12
mat print file 6-12
mat print using 6-13
mat print using file 6-14
mat read file 6-15
mat write file 6-16
next 5-20
on-gosub 5-21
on-goto 5-21
print 5-22
print-file 5-26
print-file-using 5-33
print-using 5-26
randomize 5-34
read 5-34
read-file 5-35
rem 5-35
remark 1-3
reset 5-35
reset-file 5-36
return 5-36
scratch 5-37

.setdigits 5-37
stop 5-38
sub 5-38
subend 5-41
time 5-41
write 5-41

stop statement 5-38

storage
allocation of 1-4

storage system
files C-1

i-5

string
arrays 2-5
changing to a vector 5-6
ex pressions 3-2
scalars 2-3
values 2-2

structure
of Basic programs 1-3

sub statement 5-38

subend statement 5-41

swi tch
1/0 4-3

synonym attachments C-2

tape files C-1

terminal
1/0 C-2

T

terminal format files 4-1

time statement 5-41

transpose function 6-7

variables
array 2-3
names of 2-6
scalar 2-2

v

vector 5-3 ~ 5-5
changing to a string 5-6

w

write statement 5-41
writing

BASIC programs 1-4

AM82-01A

'V I
I
I

~ I
I
I ,

I
I
I
I
I
I

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE MULTICS BASIC MANUAL
ADDENDUM A

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as requiied. Receipt of an forms wili be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME __ _

TITLE __________________ . _____ ~~~~

COMPANY --------
AOORESS _______________________________________ ___

ORDER No·1 AM82-01A

DATE 0 I DECEMBER 1984

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

; r
I
I
I"
I

(

i
I z
I -'
I <.:l
I Z

11(0

I ~
I a
I 0
I ~

I
I
I
I
I
I
I
I
I
I

~ ..
I
I
I
I
I
I
I i.U

I Z
I -'
I <.:l , Z
~o
I ~
I a
I 0
I ~

l-

t,
I
I
I
I
I
I

	0000
	0001
	001
	002
	003
	004
	005
	006
	1-01
	1-02.0
	1-02.1
	1-02.2
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07.0
	3-07.1
	4-03.0
	4-03.1
	4-04
	4-07
	5-03
	5-04
	5-11
	5-12.0
	5-12.1
	5-12.2
	5-17
	5-18
	5-27
	5-28.0
	5-28.1
	5-28.2
	5-31
	5-32
	C-1
	C-2
	i-1
	i-2
	i-3
	i-4
	i-5
	replyA
	replyB

