

 Chapter1.runoff 08/09/74

 1158.7rew 08/09/74 1158.2 57519

 SECTION I

 INTRODUCTION

 AN_OVERVIEW_OF_THE_COMPILER

 The PL/1 compiler translates a source program written in the

 PL/1 language into an equivalent Multics standard object segment.

 This compiler represents an implementation of the PL/1 language

 as defined in the PL/1 Language Manual (Order No. AG94). The

 entire compiler is written in the same language, and therefore,

 is self reproduceable.

 The compiler is organized into five phases: Syntactic

 Translation, Declaration Processing, Semantic Translation,

 Optimization, and Code Generation. Each phase is a set of

 procedures grouped together to perform a major logical function.

 The internal representation of the program being compiled

 serves as the interface between phases of the compiler. To have

 a thorough understanding of how the compiler works requires an in

 depth knowledge of the internal representation scheme adopted by

 this implementation.

 DRAFT: SUBJECT TO CHANGE 1-1 order number

 THE_COMMAND_PROGRAM

 This pl1 command program is the interface between the user

 and the compiler. It is also the interface between the compiler

 and the Multics operating system. All calls to Multics system

 subroutines are made in this command program.

 DRAFT: SUBJECT TO CHANGE 1-2 order number

 NAME: pl1

 Function:

 1. It initializes the various static variables of the compiler.

 2. It processes all the options to the command:

 check

 list

 time

 source

 brief

 symbols

 assembly

 severity

 cpdcls

 debug

 optimize

 table

 brief_table

 parse

 profile

 link

 3. It gets the pointer to the source segment.

 4. It makes the object segment and the listing segment if

 required.

 5. It calls the multi-segment-file manager if the listing

 requires more than one segment.

 6. It sets up a default handler.

 7. It sets up a cleanup handler, in case a compiler should abort

 in the middle of a compilation.

 8. It invokes the various phases of the compiler:

 parse

 semantic_translator

 optimizer

 code_generator

 prepare_symbol_map_

 Entry:

 DRAFT: SUBJECT TO CHANGE 1-3 order number

 pl1, v2pl1

 Usage:

 pl1 pathname -control_arg1 ... -control_argn

 1. pathname is the path name of a PL/1 source

 segment to be translated by the

 PL/1 compiler. If the source

 segment does not have a suffix of

 .pl1, then one is assumed.

 2. control_argi can be chosen from a list of

 options. Refer to the Multics

 Programmers' Manual 'pl1' command

 for details.

 Entry:

 pl1$times, v2pl1$times

 This entry, when called after a compilation, will print out

 a table giving the time, the number of page faults, and the

 amount of storage used by each phase of the compiler. The phases

 include setup, parse, semantics, optimizer, code generator, and

 the lister.

 Usage:

 pl1$times

 Entry:

 pl1$epilogue, v2pl1$epilogue

 pl1$clean_up, v2pl1$clean_up

 These entries are called after an aborted compilation, so

 that cleanup jobs will be done.

 DRAFT: SUBJECT TO CHANGE 1-4 order number

 Usage:

 pl1$epilogue

 pl1$clean_up

 Entry:

 pl1$blast, v2pl1$blast

 This entry is called to turn on the blast message, to turn

 off the blast message, or to rewrite the blast message.

 If the blast message is on, the blast message will be given

 at the start of the first compilation in the process.

 Usage:

 pl1$blast -on

 pl1$blast -off

 pl1$blast -set blast_message

 Internal Procedures:

 none

 External Variables:

 cg_static_$debug

 cg_static_$stop_id

 cg_static_$support

 error_table_$badopt

 error_table_$entlong

 error_table_$noarg

 error_table_$translation_failed

 error_table_$zero_length_seg

 pl1_blast_$blast_message

 pl1_blast_$blast_on

 pl1_blast_$blast_time

 DRAFT: SUBJECT TO CHANGE 1-5 order number

 pl1_stat_$abort_label

 pl1_stat_$brief_error_mode

 pl1_stat_$char_pos

 pl1_stat_$compiler_name

 pl1_stat_$constant_list

 pl1_stat_$debug_semant

 pl1_stat_$dummy_block

 pl1_stat_$error_messages

 pl1_stat_$error_width

 pl1_stat_$generate_symtab

 pl1_stat_$greatest_severity

 pl1_stat_$index

 pl1_stat_$line_count

 pl1_stat_$list_ptr

 pl1_stat_$listing_on

 pl1_stat_$max_list_size

 pl1_stat_$max_node_type

 pl1_stat_$node_name

 pl1_stat_$node_size

 pl1_stat_$node_uses

 pl1_stat_$ok_list

 pl1_stat_$optimize

 pl1_stat_$options

 pl1_stat_$pathname

 pl1_stat_$phase

 pl1_stat_$print_cp_dcl

 pl1_stat_$profile_length

 pl1_stat_$root

 pl1_stat_$seg_name

 pl1_stat_$severity_plateau

 pl1_stat_$source_index

 pl1_stat_$source_ptr

 pl1_stat_$stop_id

 pl1_stat_$table

 pl1_stat_$temporary_list

 pl1_stat_$tree_vec_index

 pl1_stat_$user_id

 pl1_stat_$validate_proc

 tree_$

 v2pl1$

 xeq_tree_$

 Internal Static Variables:

 none

 Programs Called:

 DRAFT: SUBJECT TO CHANGE 1-6 order number

 bindec

 clock_

 code_gen_

 code_gen_$return_bit_count

 com_err_

 cu_$arg_ptr

 cv_dec_

 date_time_

 db

 default_handler_$set

 error_$finish

 establish_cleanup_proc_

 expand_path_

 get_group_id_

 get_wdir_

 hcs_$get_max_length_seg

 hcs_$get_usage_values

 hcs_$initiate_count

 hcs_$make_ptr

 hcs_$truncate_seg

 hmu

 ioa_

 ioa_$nnl

 ios_$changemode

 lex$scan_token_table

 lex$terminate_source

 msf_manager_$get_ptr

 optimizer

 parse

 pl1_print$non_varying

 pl1_print$non_varying_nl

 pl1_print$varying_nl

 pl1_signal_catcher

 pl1_symbol_print

 prepare_symbol_map_

 prepare_symbol_table

 record_command_usage_$enter

 record_command_usage_$exit

 revert_cleanup_proc_

 semantic_translator

 tree_manager$init

 tree_manager$truncate

 tssi_$clean_up_file

 tssi_$clean_up_segment

 tssi_$finish_file

 tssi_$finish_segment

 tssi_$get_file

 tssi_$get_segment

 v2pl1$epilogue

 DRAFT: SUBJECT TO CHANGE 1-7 order number

 Include Files used:

 none

 Errors Diagnosed:

 Errors diagnosed by this program are not errors in the

 source program, but rather errors found in the use of the command

 pl1.

r

 Chapter2.runoff 09/06/74

 1227.5rew 09/06/74 1227.5 870804

 SECTION II

 INTERNAL REPRESENTATION

 OVERVIEW

 The internal representation of the program being compiled serves

 as the interface between phases of the compiler. The internal

 representation is organized into a modified tree structure (the

 program tree) consisting of nodes which represent the component

 parts of the program, such as blocks, statements, operators,

 operands, and declarations. Each node may be logically connected

 to any number of other nodes by the use of pointers.

 Each source program block is represented in the program tree by a

 block node which has two lists connected to it: a statement list

 and a declaration list. The elements of the declaration list are

 DRAFT: SUBJECT TO CHANGE 2-8 AN54

 symbol table nodes representing declarations of identifiers

 within that block. The elements of the statement list are nodes

 representing the source statements of that block. Each statement

 node contains the root of a computation tree which represents the

 action to be performed by that statement. This computation tree

 consists of operator nodes and reference nodes.

 The operators of the internal representation are n-operand

 operators whose meaning closely parallels that of the PL/I source

 operators. References are represented by reference nodes which

 point to a declaration of some variable or constant. Each

 reference also serves as the root of a computation tree which

 describes the computations necessary to locate the item at run

 time.

 Except for some fields of the reference node used only by the

 code generator, this internal representation is machine

 independent in that it does not reflect the instruction set, the

 addressing properties, or the register arrangement of the target

 machine (645 or 6180). All phases of the compiler, except the

 code generator, are also machine independent since they deal only

 with this machine independent internal representation. Figure

 2-1 shows the internal representation of a simple program.

 BLOCK_STRUCTURE

 Each begin block, procedure, or on-unit is represented by a block

 node. The entire tree is found via the external static pointer

 "root". The outside or external environment of the outermost

 procedure is represented by a block node whose type is

 "root_block" and which contains the block which represents the

 external procedure. See Figure 2-2.

 Format:

 dcl 1 block based aligned,

 2 node_type bit(9) unaligned,

 2 source_id structure unaligned,

 3 file_number bit(8),

 3 line_number bit(14),

 3 statement_number bit(5),

 2 father ptr unaligned,

 DRAFT: SUBJECT TO CHANGE 2-9 AN54

 2 brother ptr unaligned,

 2 son ptr unaligned,

 2 declaration ptr unaligned,

 2 end_declaration ptr unaligned,

 2 default ptr unaligned,

 2 end_default ptr unaligned,

 2 context ptr unaligned,

 2 prologue ptr unaligned,

 2 end_prologue ptr unaligned,

 2 main ptr unaligned,

 2 end_main ptr unaligned,

 2 return_values ptr unaligned,

 2 return_count ptr unaligned,

 2 plio_ps ptr unaligned,

 2 plio_fa ptr unaligned,

 2 plio_ffsb ptr unaligned,

 2 plio_ssl ptr unaligned,

 2 plio_fab2 ptr unaligned,

 2 block_type bit(9) unaligned,

 2 prefix bit(12) unaligned,

 2 like_attribute bit(1) unaligned,

 2 no_stack bit(1) unaligned,

 2 get_data bit(1) unaligned,

 2 flush_at_call bit(1) unaligned,

 2 processed bit(1) unaligned,

 2 skip bit(1) unaligned,

 2 number fixed bin(8) unaligned,

 2 free_temps dimension(3) ptr,

 2 temp_list ptr,

 2 entry_list ptr,

 2 o_and_s ptr,

 2 max_display_steps fixed(17),

 2 display_vector fixed(17),

 2 number_of_entries fixed(17),

 2 level fixed(17),

 2 last_auto_loc fixed(17),

 2 symbol_block fixed(17),

 2 entry_info fixed(18),

 2 enter structure unaligned,

 3 start fixed(17),

 3 end fixed(17),

 2 leave structure unaligned,

 3 start fixed(17),

 3 end fixed(17);

 node_type - has a value of "000000001"b which identifies this as

 a block node.

 DRAFT: SUBJECT TO CHANGE 2-10 AN54

 source_id - (treated as a triple of numbers)

 file_number - 0 for main source file, and

 indexes include files in

 sequential order of inclusion.

 Any include file may be

 included more than once; each

 occurrence will have a distinct

 file_number.

 line_number - line number within source file

 (see file_number) of line on

 which statement begins.

 statement_number - 1 + number of statements that

 finish ahead of the current

 statement on the line on which

 the current statement begins.

 father - points to the immediately containing block. This

 pointer is null for the root block.

 brother - points to the next block at this nesting level that has

 the same father.

 son - points to the first contained block.

 declaration - points to the first symbol or label node declared

 in this block.

 end_declaration - points to the last symbol or label node

 declared in this block.

 default - points to a uni-directional chain of default nodes each

 representing a default statement in this block. The

 default nodes are used only during declaration

 processing and are of no interest to the code

 generator.

 DRAFT: SUBJECT TO CHANGE 2-11 AN54

 end_default - points to the last default node in this block.

 context - used by the parse and declaration processor and is

 ignored by the code generator.

 prologue - points to the first statement node of the prologue

 statement sequence.

 end_prologue - points to the last statement node of the prologue

 statement sequence.

 main - points to the first statement node of the main statement

 sequence.

 end_main - points to the last statement node of the main

 statement sequence.

 return_values - points to a chain of list nodes each of which

 points to a symbol node representing a unique kind of

 value returned by the return statements of this

 procedure.

 return_count - if this procedure returns more than one kind of

 value, this points to a declaration of an integer

 declared in the block which is used to determine what

 kind of value is to be returned. This information as

 well as the list of return values is not used by the

 code generator; it is created and used by the semantic

 translator.

 plio_ps - if non-null, points to the symbol-node for PS, the

 storage block used in I/O statements. If non-null, the

 code generator will compile code in the block prologue

 to set PS.stack_frame_p, stack.psp, and, if there is to

 be a runtime symbol table, PS.ST_top_p and

 PS.ST_block_p.

 plio_fa - if non-null, points to the symbol-node for the

 format-area, used by edit-directed get- and

 put-statements. If non-null, the code generator will

 DRAFT: SUBJECT TO CHANGE 2-12 AN54

 compile code in the block prologue to set

 PS.format_area_p to its address.

 plio_ffsb - if non-null, points to the symbol-node for "fake

 FSB", a pseudo-file-control-block used for get- and

 put-statements with string option.

 plio_ssl - if non-null, points to the symbol-node for ss_list,

 storage used for the put data statement. If non-null,

 the code generator will cause its address to be stored

 in PS.ss_list_p during block prologue.

 plio_fab2 - points to the symbol-node for FAB2, storage used by

 the open statement to record file options, linesize,

 and pagesize.

 block_type - defines the kind of block this node represents. The

 codes used in this field are given in the appendix.

 prefix - the condition prefix of the block. See "Statement

 Nodes" on page 2- for a definition of each bit.

 like_attribute - indicates that some declaration occurs in this

 block with a like attribute.

 no_stack - this block shares its stack frame with its containing

 or brother block and can be called with a non-recursive

 call.

 get_data - used by get-data to indicate that a full runtime

 symbol table is required for this block.

 flush_at_call - indicates that some son of this block is assigned

 to an external static entry variable. Hence, any call

 may invoke it and change any automatic variable in this

 block.

 processed - used and set by the code generator only.

 DRAFT: SUBJECT TO CHANGE 2-13 AN54

 skip - a filler.

 number - this field is used to sequentially number all blocks.

 it is used by the part of the semantic translator which

 determines the set of blocks requiring stack frames.

 free_temps - points to lists of free temporaries. (used and set

 only by the code generator).

 temp_list - points to a list of allocated temporaries. (set and

 used only by the code generator).

 entry_list - points to a list of all entry statements in this

 block.

 o_and_s - used by the code generator to keep track of offset and

 size expressions.

 max_display_steps - indicates the maximum number of environment

 pointers needed to reference automatic variables or

 label constants, etc., declared in outer blocks.

 display_vector - used by the code generator to remember the

 location of the environment (display) pointers. (not

 used or set outside the code generator).

 number_of_entries - the number of procedure and entry statements

 in this block.

 level - set and used only by the code generator. "level" is the

 nesting level of this block in terms of stack-frame

 nesting depth. The "level" of a quick block is thus

 equal to the "level" of the block in which its

 automatic storage has been placed. The level of the

 root block is 0. The level of the external procedure

 block is 1.

 last_auto_loc - used by the storage allocator as a location

 counter for allocating automatic storage.

 DRAFT: SUBJECT TO CHANGE 2-14 AN54

 symbol_block - holds the offset within the run-time symbol table

 of the runtime block node that corresponds to this

 block; used and set only by the code generator.

 entry_info - used and set only by the code generator.

 enter - used and set only by the code generator.

 leave - used and set only by the code generator.

 REPRESENTATION_OF_DECLARATIONS

 Two data structures are used to represent declarations: the

 token table and the symbol table. The token table contains an

 entry for each unique token (operator, delimiter, identifier,

 constant) in the source program. It does not reflect the block

 structure of the program and can be considered a vector. The

 symbol table consists of lists of symbol and label nodes attached

 to block nodes. Each block node contains a uni-directional list

 of symbol and label nodes which represent the declarations made

 in that block.

 Token_Table

 Each token table entry represents a unique token found in the

 source program or generated by the compiler.

 Format:

 dcl 1 token based aligned,

 2 node_type bit(9) unaligned,

 2 type bit(9) unaligned,

 2 loc bit(18) unaligned,

 2 declaration ptr unaligned,

 2 next ptr unaligned,

 2 size fixed(9),

 2 string char(n refer(token.size));

 DRAFT: SUBJECT TO CHANGE 2-15 AN54

 node_type - has a value of "000000101"b which identifies this

 node as a token table entry.

 type - has one of the values listed in the appendix. This value

 describes the kind of token represented by this node.

 loc - Position in runtime symbol table of this token. Used and

 set by the code generator only.

 declaration - points to a uni-directional chain of symbol and

 label nodes which describe the declarations of this

 token. This pointer is null for tokens other than

 identifiers.

 next - points to the next entry in the token table.

 size - is the length of the token, "token.string".

 string - is the character string representation of the token. In

 the case of a character-string token, "string" is the

 string value. In the case of a bit-string token,

 "string" is the character-string obtained from the bit

 string by replacing "1"b with "1", "0"b with "0", and

 adding a final "b".

 Symbol_Table

 The symbol table consists of lists of symbol and label nodes

 attached to block nodes. Each block node contains a pointer to a

 uni-directional chain of symbol and label nodes, each of which

 represents a declaration in the block.

 LABEL NODES

 A label node represents the declaration of a statement label

 constant. It may be a scalar or array. Entry labels are

 represented by symbol nodes, not label nodes. Format statements

 DRAFT: SUBJECT TO CHANGE 2-16 AN54

 have labels, but these are removed from the statement by

 io_statement_parse and changed into symbols with the initial

 pointer pointing at the format statement. The fields of the

 label node generally match the corresponding fields of the symbol

 node.

 Format:

 dcl 1 label based aligned,

 2 node_type bit(9) unaligned,

 2 source_id structure unaligned,

 3 file_number bit(8),

 3 line_number bit(14),

 3 statement_number bit(5),

 2 location fixed(17) unaligned,

 2 allocated bit(1) unaligned,

 2 dcl_type bit(3) unaligned,

 2 reserved bit(29) unaligned,

 2 array bit(1) unaligned,

 2 used_as_format bit(1) unaligned,

 2 used_in_goto bit(1) unaligned,

 2 symbol_table bit(18) unaligned,

 2 low_bound fixed(17) unaligned,

 2 high_bound fixed(17) unaligned,

 2 block_node ptr unaligned,

 2 token ptr unaligned,

 2 next ptr unaligned,

 2 multi_use ptr unaligned,

 2 cross_reference ptr unaligned,

 2 statement ptr unaligned;

 node_type - has a value of "000001111"b which identifies this

 node as a label node.

 source_id - describes the statement on which this label appeared.

 For label arrays it identifies the first statement on

 which one of the array elements appeared. (For further

 detail, see description in "Block Structure" on page

 2-9.)

 location - the address assigned to this label.

 DRAFT: SUBJECT TO CHANGE 2-17 AN54

 allocated - indicates that the storage allocator has assigned an

 actual location in the object program for this label.

 dcl_type - describes the manner in which the label was declared.

 The declare_types include file listed in the appendix

 defines the values used in this field.

 array - identifies this as a constant label array.

 used_as_format - used by FORTRAN to distinguish labels and format

 identifiers.

 used_in_goto - used by FORTRAN to distinguish labels and format

 identifiers.

 symbol_table - used and set by the code generator only. Records

 the location in the runtime symbol table of the runtime

 label node corresponding to this label.

 low_bound - the observed lower bound of the array.

 high_bound - the observed high bound of the array.

 block_node - points to the block node which owns this

 declaration.

 token - points to the token table entry for this identifier.

 next - points to the next symbol or label node in this block.

 multi_use - points to the next declaration of this identifier (in

 any block).

 cross_reference - points to a uni-directional chain of cross

 reference nodes, each of which contains a statement-id

 of a statement which references this label or label

 array.

 DRAFT: SUBJECT TO CHANGE 2-18 AN54

 statement - points to the statement node representing the

 statement on which this label appeared. For label

 arrays this points to the first statement on which one

 of the array elements appeared as a label prefix.

 SYMBOL NODES

 A symbol node represents the declaration of a variable or

 constant (other than label constants). All scalar and aggregate

 values are represented in a uniform manner. Variables,

 constants, entry names, file names, condition names, and

 temporaries are represented by symbol nodes with the proper

 storage class and type attributes.

 Format:

 dcl 1 symbol based aligned,

 2 node_type bit(9) unaligned,

 2 source_id structure unaligned,

 3 file_number bit(8),

 3 line_number bit(14),

 3 statement_number bit(5),

 2 location fixed(17) unaligned,

 2 allocated bit(1) unaligned,

 2 dcl_type bit(3) unaligned,

 2 reserved bit(6) unaligned,

 2 pix structure unaligned,

 3 pic_fixed bit(1) unaligned,

 3 pic_float bit(1) unaligned,

 3 pic_char bit(1) unaligned,

 3 pic_scale fixed(7) unaligned,

 3 pic_size fixed(7) unaligned,

 2 level fixed(8) unaligned,

 2 boundary fixed(3) unaligned,

 2 size_units fixed(3) unaligned,

 2 scale fixed(7) unaligned,

 2 runtime bit(18) unaligned,

 2 runtime_offset bit(18) unaligned,

 2 block_node ptr unaligned,

 2 token ptr unaligned,

 2 next ptr unaligned,

 2 multi_use ptr unaligned,

 2 cross_references ptr unaligned,

 2 initial ptr unaligned,

 DRAFT: SUBJECT TO CHANGE 2-19 AN54

 2 array ptr unaligned,

 2 descriptor ptr unaligned,

 2 equivalence ptr unaligned,

 2 reference ptr unaligned,

 2 general ptr unaligned,

 2 father ptr unaligned,

 2 brother ptr unaligned,

 2 son ptr unaligned,

 2 word_size ptr unaligned,

 2 bit_size ptr unaligned,

 2 dcl_size ptr unaligned,

 2 symtab_size ptr unaligned,

 2 c_word_size fixed(24),

 2 c_bit_size fixed(24),

 2 c_dcl_size fixed(24),

 2 attributes structure aligned,

 3 data_type structure unaligned,

 4 structure bit(1) ,

 4 fixed bit(1),

 4 float bit(1),

 4 bit bit(1),

 4 char bit(1),

 4 ptr bit(1),

 4 offset bit(1),

 4 area bit(1),

 4 label bit(1),

 4 entry bit(1),

 4 file bit(1),

 4 arg_descriptor bit(1),

 4 storage_block bit(1),

 4 lock bit(1),

 4 condition bit(1),

 4 format bit(1),

 4 builtin bit(1),

 4 generic bit(1),

 4 picture bit(1),

 3 misc_attributes structure unaligned,

 4 dimensioned bit(1),

 4 initialed bit(1),

 4 aligned bit(1),

 4 unaligned bit(1),

 4 connected bit(1),

 4 precision bit(1),

 4 varying bit(1),

 4 local bit(1),

 DRAFT: SUBJECT TO CHANGE 2-20 AN54

 4 decimal bit(1),

 4 binary bit(1),

 4 real bit(1),

 4 complex bit(1),

 4 variable bit(1),

 4 reducible bit(1),

 4 irreducible bit(1),

 4 returns bit(1),

 4 position bit(1),

 4 internal bit(1),

 4 external bit(1),

 4 like bit(1),

 4 member bit(1),

 3 storage_class structure unaligned,

 4 auto bit(1),

 4 based bit(1),

 4 static bit(1),

 4 controlled bit(1),

 4 defined bit(1),

 4 parameter bit(1),

 4 param_desc bit(1),

 4 constant bit(1),

 4 temporary bit(1),

 4 return_value bit(1),

 3 file_attributes structure unaligned,

 4 print bit(1),

 4 input bit(1),

 4 output bit(1),

 4 update bit(1),

 4 stream bit(1),

 4 reserved_1 bit(1),

 4 record bit(1),

 4 sequential bit(1),

 4 direct bit(1),

 4 interactive bit(1),

 4 reserved_2 bit(1),

 4 forwards bit(1),

 4 backwards bit(1),

 4 keyed bit(1),

 4 reserved_3 bit(1),

 4 environment bit(1),

 3 compiler_developed structure unaligned,

 4 abnormal bit(1),

 DRAFT: SUBJECT TO CHANGE 2-21 AN54

 4 packed bit(1),

 4 passed_as_arg bit(1),

 4 allocate bit(1),

 4 set bit(1),

 4 exp_extents bit(1),

 4 refer_extents bit(1),

 4 star_extents bit(1),

 4 variable_arg_list bit(1),

 4 non_varying bit(1),

 4 isub bit(1),

 4 put_in_symtab bit(1),

 4 contiguous bit(1),

 4 put_data bit(1),

 4 overlayed bit(1),

 4 error bit(1),

 4 symtab_processed bit(1);

 node_type - has a value of "000000110"b which identifies this as

 a symbol node.

 source_id - identifies the statement which declared this value.

 (For further detail, see description in "Block

 Structure" on page 2-9.)

 location - the address given to this item by the storage

 allocator. If this item is a parameter, "location" is

 the position of the parameter in first entry statement

 in which it appears (i.e., first entry statement

 processed by declare). (See "Parameter" on page 2-).

 If this item is controlled, location is the offset of a

 3-pointer structure serving to identify the current

 generation of the variable. (See "Controlled" on page

 2-).

 allocated - indicates that storage has been allocated for this

 variable. Set in the case of a parameter appearing in

 more than one parameter position (see "Parameter" on

 page 2-).

 dcl_type - indicates how the declaration was established. The

 values of this field are defined in the "declare_types"

 include file listed in the appendix.

 DRAFT: SUBJECT TO CHANGE 2-22 AN54

 pix - the fields of pix record facts about a picture deduced from

 inspection of the picture.

 pic_fixed - set if the picture is a numeric picture,

 not floating.

 pic_float - set if the picture is numeric, floating.

 pic_char - set if the picture is a character picture.

 pic_scale - the scale of the (fixed) associated

 variable: the number of digits after the "v"

 in the picture, if one appears, (or zero),

 less the value of the picture's scale factor,

 if any. If the symbol is a generic

 arg_selector for an arithmetic argument,

 pic_scale is used to hold the upper limit of

 the scale.

 pic_size - the precision for a numeric picture, the

 length for a character picture. If the

 symbol is a generic arg_selector for an

 arithmetic argument, pic_size is used to hold

 the upper limit of the precision.

 level - the level number adjusted so that the level number of a

 member is one greater than its containing structure.

 Non-structure level-one variables have a level number

 of zero.

 boundary - the storage boundary required by this item. The valid

 codes are given in the appendix.

 size_units - used and set by the code generator only. used to

 keep track of the units in which the item's size is

 expressed.

 scale - the arithmetic scale factor. If the symbol is a generic

 arg_selector for an arithmetic argument, scale is used

 to hold the lower limit of the scale.

 DRAFT: SUBJECT TO CHANGE 2-23 AN54

 runtime - used and set by the code generator only. Holds offset

 within runtime symbol table of the runtime symbol node

 corresponding to this symbol node.

 runtime_offset - NOT USED.

 block_node - points to the block_node that owns this declaration.

 token - points to the token table entry for this identifier.

 next - points to the next symbol or label node in this block.

 multi_use - if this declaration is a literal constant, this

 points to the next literal constant in the program. If

 this declaration is a temporary this points to the next

 temporary in the program. If this is a variable or

 named constant this points to another declaration of

 the same name.

 cross_reference - points to a uni-directional chain of cross

 reference nodes each of which contains the source-id of

 a statement which references this declaration. (Items

 without names have a null value for this pointer.)

 initial - if this item is an internal entry constant this points

 to the entry statement on which the entry name

 appeared. If this item is an initialized variable this

 points to a list node or tree of list nodes which

 represents the initial attribute. If this item is a

 literal constant this points to the binary

 representation of the constant's value. If this is a

 level-1 "defined" variable with position attribute this

 points to the position expression template. In the

 case of a format constant, "initial" points to the

 format statement node. (See_X.X.X.X.X)

 array - points to an array node which describes the number of

 dimensions, the bounds, and the multipliers of this

 array. See "Array and Bound Nodes" on page 2-.

 DRAFT: SUBJECT TO CHANGE 2-24 AN54

 descriptor - points to a reference_node which points to a symbol

 node whose type is arg_descriptor and whose storage

 class is automatic, constant, controlled, temporary, or

 param_desc. If it is a constant it will appear in the

 constant list, otherwise it will be in the same block

 as the declaration which it describes. The semantic

 translator creates declarations of descriptors when it

 processes function references and calls. It generates

 assignment statements to assign the proper values to

 the descriptor - in the prologue, in the allocate

 statement for a controlled variable, or immediately

 before the statement containing the call. If this is

 an array, the descriptor describes the entire array and

 the element descriptor is found in the array node.

 equivalence - points to the parse of the reference given in the

 defined attribute or to the base constant of a group of

 equivalenced constants. (See "Storage Classes" on page

 2-.)

 reference - points to a reference node which describes how to

 access this value at run-time. For arrays this

 reference node describes how to access the entire

 array.

 general - A general purpose pointer whose meaning depends on

 other attributes.

 1. offset data - points to the area reference given in the

 offset attribute.

 2. pictured data - points to the token table entry

 representing the picture.

 3. entry - points to a uni-directional chain of list nodes

 each of which points to a symbol node describing a

 parameter of the entry.

 4. generic - points to a uni-directional chain of list

 nodes each of which points to a symbol node

 describing an entry descriptor, and to an entry

 reference.

 5. structure - points to the reference given with the like

 attribute.

 DRAFT: SUBJECT TO CHANGE 2-25 AN54

 6. file constant - points to the declaration of the file

 block used at run-time.

 father - points to the symbol node of the immediately containing

 structure.

 brother - points to the symbol node of the next structure member

 at this level.

 son - points to the first member of this structure (null for

 non-structures).

 word_size - points to an expression giving the size of this item

 in words (rounded if necessary). If the size is

 constant this field is null. If this is a member of a

 packed structure neither this field nor its constant

 counterpart have any meaning, although they may contain

 non-empty values.

 bit_size - points to an expression giving the size of this item

 in bits. If the size is constant this field is null.

 (Both bit and word size of dimensioned data are the

 total array size, not the element size).

 dcl_size - points to an expression giving the declared size of

 areas or the declared length of strings. If the

 data-type is entry this field points to the symbol node

 that describes the return value of the entry. In the

 case of a controlled variable, dcl_size points to an

 expression which references the runtime descriptor of

 the controlled variable.

 symtab_size - in the case of controlled variables, set by

 declare_descriptor to the original (parsed only)

 contents of dcl_size if this is not constant. Points

 to an expression giving the declared size of the item.

 This expression is obtained by semantically translating

 the dcl_size expression. This pointer is null if a

 runtime symbol table entry is not required.

 DRAFT: SUBJECT TO CHANGE 2-26 AN54

 c_word_size - constant size in words (rounded if necessary).

 c_bit_size - constant size in bits.

 c_dcl_size - constant area size, string length, or arithmetic

 precision. If the symbol is a generic arg_selector for

 an arithmetic argument, c_dcl_size is used to hold the

 lower limit of the arithmetic precision. In the case

 of a pictured item, the length of the pictured string.

 The bits of the symbol node are generally self

 explanatory and are derived from the

 declare statement and default rules of

 the language. The compiler-created

 attributes are described below:

 abnormal - the value of this variable may change without any

 explicit indication in this program. A variable is

 abnormal if:

 1. it is based, parameter, external, defined or the

 base of a defined variable;

 2. it is used in an addr built-in function or appears

 in the string option of a put statement, an into

 or set option of a read statement, or a set option

 of a locate statement;

 3. it is a member of an abnormal structure or is a

 structure containing abnormal values;

 4. it is passed as an argument by reference and is

 static or controlled.

 packed - this value is:

 1. An unaligned aggregate of packed data;

 2. unaligned arithmetic data;

 DRAFT: SUBJECT TO CHANGE 2-27 AN54

 3. unaligned non-varying string data;

 4. unaligned pointer data.

 passed_as_arg - set in semantics, tested by the code generator;

 indicates that spare bits may have been written into by

 the procedure called. Also set for an argument of the

 unspec pseudo-variable. See padded_ref in "Reference

 Nodes" on page 2-.

 allocate - indicates that the item has been referenced; indicates

 that any required allocation of space may not be

 ommitted; inspected during preparation of the listing.

 set - this item appears on the left side of an assignment, in a

 get list, a set() option, a keyto() option, the

 string() option of a put-statement, suitably as an

 argument to a pseudovariable operator, in an in()

 option, a read into() statement, or as an argument

 passed by reference. Defined items, and items which

 are the bases of defined items, are abnormal (see

 above) but do not inherit each other's set attribute.

 exp_extents - this item has non-constant extents.

 refer_extents - this item has refer extents or belongs to a

 structure which has refer extents.

 star_extents - this item has asterisk extents.

 variable_arg_list - represents the source program construction

 "options(variable)".

 non_varying - indicates that the item is a nonvarying character

 or bit string.

 isub - indicates that the item is isub-defined.

 DRAFT: SUBJECT TO CHANGE 2-28 AN54

 put_in_symtab - this declaration must be placed in the run-time

 symbol table.

 contiguous - used and set only by the code generator. Indicates

 of a string array that no element crosses a word

 boundary.

 put_data - NOT USED

 overlayed - indicates that the item is a string overlayed item.

 error - would flag an inconsistent declaration: NOT USED.

 symtab_processed - flag used by prepare_symbol_table. Indicates

 that the semantic processing needed to generate the

 runtime symbol table entry has already been done.

 ARRAY AND BOUND NODES

 The array node and its associated chain of bound pairs serve to

 describe the elements of an array and provide pre-computed

 multipliers for use by the subscript processor module of the

 semantic translator.

 Array Nodes

 Format:

 dcl 1 array based aligned,

 2 node_type bit(9) unaligned,

 2 reserved bit(34) unaligned,

 2 number_of_dimensions fixed(7) unaligned,

 2 own_number_of_dimensions fixed(7) unaligned,

 2 element_boundary fixed(3) unaligned,

 2 size_units fixed(3) unaligned,

 2 offset_units fixed(3) unaligned,

 2 interleaved bit(1) unaligned,

 DRAFT: SUBJECT TO CHANGE 2-29 AN54

 2 c_element_size fixed(24),

 2 c_element_size_bits fixed(24),

 2 c_virtual_origin fixed(24),

 2 element_size ptr unaligned,

 2 element_size_bits ptr unaligned,

 2 virtual_origin ptr unaligned,

 2 symtab_virtual_origin ptr unaligned,

 2 symtab_element_size ptr unaligned,

 2 bounds ptr unaligned,

 2 element_descriptor ptr unaligned;

 node_type - has a value of "000001000"b which identifies this

 node as an array node.

 number_of_dimensions - the number of declared dimensions, plus

 all dimensions inherited from containing structures.

 own_number_of_dimensions - The number of dimensions declared on

 this item.

 element_boundary - the storage boundary required by the elements

 of this array.

 size_units - used and set by the code generator only. The units

 in which the element_size is expressed. See

 array.element_size and symbol.size_units.

 offset_units - indicates the units of the multipliers. The

 permitted values are defined by the boundary include

 file listed in the appendix. Note: descriptor

 multipliers are always in bits if the item is packed,

 words if it is not.

 interleaved - This array is interleaved.

 c_element_size - constant element size in words (rounded if

 necessary). See "size_units" above.

 DRAFT: SUBJECT TO CHANGE 2-30 AN54

 c_element_size_bits - constant element size in bits.

 c_virtual_origin - if "virtual_origin" is null, the constant

 virtual origin: a virtual origin is the value

 (constant or variable) that must be added to the sum of

 the products of an item's subscripts with its

 multipliers to yield a correct offset relative to the

 beginning of the containing level-1 aggregate.

 element_size - points to an expression giving the element size in

 words.

 element_size_bits - points to an expression giving the element

 size in bits.

 virtual_origin - if non-null, points to an expression for the

 virtual origin (see c_virtual_origin).

 symtab_virtual_origin - points to an expression giving the

 virtual origin of the array. This expression is

 obtained by semantic translation of the

 "virtual_origin" expression. This pointer is null if a

 runtime symbol table entry is not required.

 symtab_element_size - see "symtab_virtual_origin": replace

 "virtual_origin" by "element_size".

 bounds - points to a uni-directional chain of bounds nodes each

 of which gives a lower bound, an upper bound, and a

 multiplier. These multipliers are measured in the

 units indicated by offset_units. The descriptor bounds

 are measured in bits if the item is packed, otherwise

 they are measured in words.

 element_descriptor - points to a symbol node whose type is

 arg_descriptor. That descriptor describes the elements

 of this array and is used when one of those elements is

 passed as an argument to any entry which requires

 descriptors.

 DRAFT: SUBJECT TO CHANGE 2-31 AN54

 Bound Nodes

 Format:

 dcl 1 bound based aligned,

 2 node_type bit(9),

 2 c_lower fixed(24),

 2 c_upper fixed(24),

 2 c_multiplier fixed(24),

 2 c_desc_multiplier fixed(24),

 2 lower ptr unaligned,

 2 upper ptr unaligned,

 2 multiplier ptr unaligned,

 2 desc_multiplier ptr unaligned,

 2 symtab_lower ptr unaligned,

 2 symtab_upper ptr unaligned,

 2 symtab_multiplier ptr unaligned,

 2 next ptr unaligned;

 node_type - has a value of "000001001"b which identifies this

 node as a bound node.

 c_lower - constant lower bound if "lower" is null. Used in

 bounds checking, to compute the range (upper-lower+1)

 of this dimension, and to compute multipliers for

 contained bound nodes.

 c_upper - upper bound if "upper" is null. See "c_lower".

 c_multiplier - multiplier for computing offset from subscript if

 "multiplier" is null. The multiplier for a bound with

 N contained bounds is the N+1-fold product of the

 ranges (upper-lower+1) of those bounds with the element

 size of the terminal, unsubscripted element.

 c_desc_multiplier - constant descriptor multiplier if

 "desc_multiplier" is null. The multipliers in array

 descriptors, desc_multiplier's, serve the same purpose

 DRAFT: SUBJECT TO CHANGE 2-32 AN54

 as the more generally used multipliers, but follow

 different rules due to the necessity to continue the

 practice of EPL. The units in which desc_multiplier

 is expressed is bits in the case of a packed array and

 words in the case of an unpacked array.

 lower - points to lower-bound expression tree if non-null. See

 "c_lower". In the case of a controlled array, points

 to an expression which references the runtime

 descriptor of the controlled variable.

 upper - points to upper-bound expression tree if non-null. See

 "c_upper".

 multiplier - points to multiplier expression tree if non-null.

 See "c_multiplier".

 desc_multiplier - points to descriptor-multiplier expression tree

 if non-null. See "c_desc_multiplier".

 symtab_lower - set by declare_descriptor for controlled arrays:

 contains the original (parsed only) tree for

 bound.lower if the lower bound is not constant.

 Otherwise used and set by the code generator only.

 points to an expression giving the lower bound of this

 dimension of the array. The expression is obtained by

 semantic translation of the "lower" expression. This

 pointer will be null if a runtime symbol table entry is

 not required.

 symtab_upper - set by declare_descriptor in the case of

 controlled arrays: contains the original (parsed only)

 bound.upper if the upper bound is not constant. See

 "symtab_lower"; replace "lower" with "upper".

 symtab_multiplier - set by get_array_size in the case of

 controlled arrays: contains the original (parsed only)

 bound.multiplier if the multiplier is not constant.

 See "symtab_lower"; replace "lower" with "multiplier".

 DRAFT: SUBJECT TO CHANGE 2-33 AN54

 next - if non-null, points to the immediately containing bound

 node. Note well that the chain of bound nodes, like

 most lists relating to subscripts, is kept in reversed

 order. Thus, "next" for a sub-array points to the

 bound node for the containing array.

 INITIAL ATTRIBUTES

 The initial attribute of PL/I is a list of initial items each

 with a repetition factor or implied repetition factor of one.

 Each initial item is either an expression, an asterisk, or

 another initial list.

 The parse of an initial attribute is a uni-directional chain of

 list nodes each representing a single initial item. The nesting

 of the initial attribute is reflected in the parse as shown in

 Figure 2-5.

 The repetition factor is an expression. The initial value is

 either an expression, a token table entry for an asterisk, or

 another chain of list nodes representing the parse of the nested

 initial list.

 STORAGE CLASSES

 The storage mechanism used to contain a value at run-time is

 defined by the storage class bits of the symbol node.

 Automatic

 If the size (extents) of the value are variable the prologue will

 contain a statement explicitly allocating the value using an

 "allot_auto" operator. This operator returns a pointer value

 which is used to qualify all references to the variable. The

 code generator does not allocate such variables and it assumes

 that all necessary pointer qualification has been done by the

 semantic translator.

 DRAFT: SUBJECT TO CHANGE 2-34 AN54

 Constant size automatic values are allocated by the storage

 allocator module of the code generator. It only allocates this

 value if the "allocate" bit is on and the cross_references field

 in the symbol node is non-null (indicating one or more references

 to the variable). Having allocated the value, it sets the

 "allocated" bit and fills in the "location" field of the symbol

 node. The location field contains the stack offset of the value.

 The code generator will add this stack offset to any address it

 prepares for the value.

 The code generator always creates accessing code with the proper

 block qualification (or display) pointers. The block

 qualification is not explicitly described in the internal

 representation. But, the block node contains a number,

 max_display_steps, which is the maximum number of display

 (environment) pointers needed by the block; it is obtained from

 the level numbers of the block in which the reference occurs and

 the block in which the variable is declared.

 Based

 The code generator does not allocate based values. It computes

 their addresses by evaluating the offset and qualifier

 expressions found in the reference node used to access the value.

 Static

 Internal static values are allocated by the storage allocator

 module of the code generator. If the set bit is on, the value is

 placed in internal static storage (the linkage section) and the

 "allocated" bit is turned on. The location field is set to

 contain the offset of the value within the linkage section. This

 offset is added to any address developed by the code generator.

 If the value is not set but is referenced (the "allocate" bit is

 on) and does not have an initial attribute the storage allocator

 issues a diagnostic warning the user that the value is used but

 not set. If the value is used, not set, and is initialized the

 value has its storage class changed to constant and is allocated

 within the text of the object program by the code generator.

 DRAFT: SUBJECT TO CHANGE 2-35 AN54

 Internal static values are initialized by the storage allocator

 and do not result in the creation of initialization code in the

 object program.

 External static values result in the generation of a link

 (symbolic reference) in the linkage section of the object

 program. The storage allocator creates the link and sets the

 "allocated" bit on. The "location" field is set to contain the

 offset of this link. All addresses developed by the code

 generator are effectively indirect references through the link.

 If the name of the variable has no $, the link contains

 information used by the linker which allocates and initializes

 the variable in stat_ the first time it is referenced in the

 process. The initial value is compiled into the text of the

 object program. If the name contains a $, the link also includes

 initialization or dynamic allocation information, but the

 variable is allocated in the segment "name$". If the segment

 does not exist, it is created in the process directory.

 Controlled

 Controlled storage is explicitly allocated by the program at

 runtime. For internal controlled storage, the code generator

 allocates a 3-pointer block in internal static whose offset is

 contained in symbol.location. The first pointer points to the

 most recent generation of storage for the variable, the second

 points to the most recent generation of storage for the

 descriptor if the variable has expression extents, and the third

 points to a 3-pointer block representing the previous generation

 of storage. For external controlled variables, symbol.location

 is the offset of a link to a similar 3-pointer block in external

 static.

 Defined

 No storage is allocated for the value. The code generator

 develops addresses for defined references by combining the offset

 of the defined reference with the offset of the base reference.

 The qualifier field of the defined reference node points to the

 base-reference. The locator qualification of the base is used as

 DRAFT: SUBJECT TO CHANGE 2-36 AN54

 the locator qualification of the defined reference.

 Parameter

 Two methods are used to access a parameter and its descriptor: A

 reference to a parameter is always effectively qualified by a

 param_ptr operator. If a parameter appears in the same position

 within all entries in which it appears, the param_ptr operator

 will appear explicitly in each reference to it. Otherwise, the

 parameter reference is qualified by a unique automatic pointer

 whose value is set (via a suitable param_ptr operator) in the

 entry sequence of each entry in which the parameter appears.

 (In the parameter's symbol node, the "location" field gives the

 position of the parameter within the first entry statement

 processed by declare. If declare finds that the parameter

 appears in any other position in any other entry statement,

 declare sets the "allocated" bit in the parameter's symbol. This

 all occurs in the processing of declarations in the block

 containing the entry labels, that is, the block father to the

 block containing the entry statements.

 Thus, when declare processes the parameters themselves, it sets

 the "qualifier" field to a unique automatic pointer if

 "allocated" is set, or to a param_ptr expression if it is not.

 When the entry statements themselves are processed, the

 "allocated" bit may thus be inspected and suitable preparatory

 code inserted, if required. Refer to "Call, Save, and Return

 Operators" on page 2-.

 Parameter-Descriptor

 This storage class is used for parameter descriptors and

 functions exactly like the parameter storage class. The compiler

 may create additional declarations of this storage class for

 entry(), returns(), and generic() attributes. Such declarations

 have no meaning after semantic translation and have no effect on

 the code generator since it never finds any references to them.

 DRAFT: SUBJECT TO CHANGE 2-37 AN54

 Constants

 Named constants such as entry and file constants are represented

 by symbol nodes whose storage class is constant and whose type

 bits are file or entry. They are not part of the pooling

 mechanism used for literal constants.

 Literal constants may result from source program constants or may

 be compiler-created. They have compiler generated unique names

 and refer to the token table entry for their name just like other

 declarations. Each declaration of a constant consists of a

 symbol node and associated reference node. All such declarations

 are threaded on a uni-directional chain beginning with the

 external static pointer "constant_list", and are linked together

 through the "multi_use" pointer of the symbol node. Each symbol

 node contains attributes which describe a value. The binary

 internal representation of the value is referenced by the

 "initial" field of the symbol node.

 The chain of literal constant declarations is maintained in order

 of increasing size of the constant's value. More than one

 declaration may refer to the same value. Such groups of

 constants are said to be equivalenced. All declarations which

 have been equivalenced to another have their equivalence pointer

 set to refer to the symbol node of the constant to which they are

 equivalenced. A constant which is the base of other equivalenced

 constants is itself never equivalenced. The allocate bit of the

 base constant is on, and the allocate bits of all other

 equivalenced constants is off. See Figure 2-3.

 Temporary Values

 The compiler has need of a means to represent values which need

 not, and do not, correspond to generations of storage at run

 time. Temporaries fill this need. When a temporary generation

 of storage, as distinct from a temporary value, is required, an

 automatic variable must be declared.

 The result of each operator is represented by a declaration of a

 temporary value. Each declaration consists of a symbol node and

 associated reference node. The symbol node contains all the

 attributes of the value and has a storage class of "temporary" or

 DRAFT: SUBJECT TO CHANGE 2-38 AN54

 "return_value".

 All such temporaries are threaded on a uni-directional chain

 beginning with the external static pointer "temporary_list" and

 are linked together through the "multi_use" pointer of the

 symbol nodes. The procedure "declare_temporary" does its best to

 pool temporary declarations to minimize the amount of compiler

 storage needed to represent these declarations.

 Values which are never referenced except at the moment of

 evaluation in the program have a storage class of "temporary",

 and the "shared" bit is on in the reference node for the

 temporary. A shared temporary is used solely to indicate the

 output attributes of an operator. They are allocated and freed

 by the code generator at its discretion.

 Values which must be maintained for an extended period of time

 because they are referenced elsewhere within the same region of

 the program have a storage class of "temporary" and a zero

 "shared" bit. The "ref_count" field of the reference node

 indicates the number of references to this value.

 Values returned by functions whose return attribute contains

 asterisks (returns(char(*))) are represented by declarations

 whose storage class is "return_value". These temporaries are

 allocated by the called program but exist in the caller's stack.

 They continue to exist until a statement having a "free_temps"

 attribute is executed by the caller.

 REPRESENTATION_OF_EXECUTABLE_STATEMENTS

 The executable statements of a block are represented by two

 bi-directional chains of statement nodes attached to the block

 node. One chain represents the prologue statements generated by

 the compiler, the other represents the statements written by the

 programmer or generated from statements written by the

 programmer.

 DRAFT: SUBJECT TO CHANGE 2-39 AN54

 Statement_Nodes

 Each statement is represented by a statement node.

 Format:

 dcl 1 statement based aligned,

 2 node_type bit(9) unaligned,

 2 source_id structure unaligned,

 3 file_number bit(8),

 3 line_number bit(14),

 3 statement_number bit(5),

 2 next ptr unaligned,

 2 back ptr unaligned,

 2 root ptr unaligned,

 2 labels ptr unaligned,

 2 reference_list ptr unaligned,

 2 state_list ptr unaligned,

 2 reference_count fixed(17) unaligned,

 2 ref_count_copy fixed(17) unaligned,

 2 object structure unaligned,

 3 start fixed(17),

 3 finish fixed(17),

 2 source structure unaligned,

 3 segment fixed(11),

 3 start fixed(23),

 3 length fixed(11),

 2 prefix bit(12) unaligned,

 2 optimized bit(1) unaligned,

 2 free_temps bit(1) unaligned,

 2 LHS_in_RHS bit(1) unaligned,

 2 statement_type bit(9) unaligned,

 2 processed bit(1) unaligned,

 2 put_in_profile bit(1) unaligned,

 2 generated bit(1) unaligned;

 node_type - has a value of "000000001"b which identifies this as

 a statement node.

 source_id - identifies the original statement in the source text.

 Compiler-generated statements will carry the source_id

 of the original statement from which they were

 DRAFT: SUBJECT TO CHANGE 2-40 AN54

 generated, the field will be zero if no original

 exists. (For further detail, see description in "Block

 Structure" on page 2-9.)

 next - points to the next statement node in this block.

 back - points to the previous statement node in this block.

 root - points to the computation tree which represents the

 operators and operands of this statement.

 labels - points to a uni-directional chain of list nodes, each of

 which points to a label node representing the

 declaration of a label that appeared on this statement.

 Subscripted labels are represented by a reference node

 which points to a label node. The offset field of the

 reference node indicates which element of the label

 array appeared as a label on this statement.

 reference_list - used by the optimizer to collect a list of

 values which are known to be available when control

 reaches this statement.

 state_list - used by the code generator. When the code generator

 processes a jump operator which references a statement

 not yet compiled by the code generator, it attaches a

 copy of the current machine state record to the

 state_list of the statement node referenced by the

 jump. If all references to a statement have been

 processed, the machine state available at the statement

 is the intersection of all of the machine states on the

 state_list.

 reference_count - contains a count of all references to any of

 the labels that appeared in the label prefix of this

 statement. A labelled statement with no other

 references to its label has a count of one.

 ref_count_copy - a copy of reference_count used by the optimizer

 and reduced by it to zero.

 DRAFT: SUBJECT TO CHANGE 2-41 AN54

 object - used by the code generator and the listing procedure to

 record the starting and finishing locations of the

 object code generated for the statement.

 source - used by offset testing programs to locate the source

 text of this statement. procedure that produces the

 object code listing)

 prefix - describes the condition prefix found on this source

 statement or inherited from the block. A value of "1"b

 means the condition is enabled.

 Bit Meaning

 1 underflow

 2 overflow

 3 zerodivide

 4 fixedoverflow

 5 conversion

 6 size

 7 subscriptrange

 8 stringrange

 9 stringsize

 10-12 unused

 optimized - this bit is set on by the optimizer when it first

 attaches a list of available values to the reference

 list.

 free_temps - when the code generator encounters a statement node

 with this attribute it releases all variable-size

 temporaries and return values.

 LHS_in_RHS - used in semantics to warn that portions of an

 aggregate target of an assignment statement are

 referenced in computing the right hand side and may not

 be changed until the whole right hand side has been

 computed.

 statement_type - identifies the kind of statement. Its value is

 one of the values defined by the "statement_types"

 DRAFT: SUBJECT TO CHANGE 2-42 AN54

 include file listed in the appendix.

 processed - set by semantic_translator to indicate that the

 statement has already been processed, so avoiding an

 erroneous re-processing. It may be noted that

 completely processed statements are created during the

 semantic translation, by do_semantics and io_semantics

 for example, and the newly created statements may be

 inserted after the statement currently being processed.

 put_in_profile - set for the first statement among those which

 realize a given source language statement. If the

 profile option is in effect, the code generator will

 compile special profile code for each marked statement.

 generated - this bit is set on if the statement was generated by

 the compiler.

 Reference_Nodes

 All values (except scalar label constants) are accessed via a

 reference node. This node contains the offset, length, and other

 attributes which may be unique for each reference.

 The declaration processor constructs a reference node for each

 symbol node. This reference node contains the offset and locator

 qualifier necessary to locate the value at run-time. Each

 subscripted reference or substr reference results in a unique

 offset and a unique reference. Each locator qualified reference

 results in a unique reference node with its own qualifier

 expression. References without subscripts or locator

 qualification are represented by unique instances of the

 reference node originaly created by the declaration processor.

 If the "shared" bit of a reference node is on, it indicates to

 the code generator and optimizer that this reference node appears

 as a node within more than one computation tree, and that each

 occurrence of this node may represent a reference to a unique

 value. If the "shared" bit is off, each reference to the node

 must represent a reference to the same value, and the "ref_count"

 of the reference node must indicate how many times this reference

 DRAFT: SUBJECT TO CHANGE 2-43 AN54

 node is referenced in the tree. The optimizer transforms the

 representation of the program to maximize the number of reference

 nodes whose shared bit is zero.

 Format:

 dcl 1 reference based aligned,

 2 node_type bit(9) unaligned,

 2 array_ref bit(1) unaligned,

 2 varying_ref bit(1) unaligned,

 2 shared bit(1) unaligned,

 2 put_data_sw bit(1) unaligned,

 2 processed bit(1) unaligned,

 2 units fixed(3) unaligned,

 2 ref_count fixed(17) unaligned,

 2 c_offset fixed(24),

 2 c_length fixed(24),

 2 symbol ptr unaligned,

 2 qualifier ptr unaligned,

 2 offset ptr unaligned,

 2 length ptr unaligned,

 2 subscript_list ptr unaligned,

 2 address structure unaligned,

 3 base bit(3),

 3 offset bit(15),

 3 op bit(9),

 3 no_address bit(1),

 3 inhibit bit(1),

 3 ext_base bit(1),

 3 tag bit(6),

 2 info structure unaligned,

 3 address_in structure,

 4 b dimension(0:7) bit(1),

 4 storage bit(1),

 3 value_in structure,

 4 a bit(1),

 4 q bit(1),

 4 aq bit(1),

 4 string_aq bit(1),

 4 complex_aq bit(1),

 4 decimal_aq bit(1),

 4 b dimension(0:7) bit(1),

 4 storage bit(1),

 4 indicators bit(1),

 4 x dimension(0:7) bit(1),

 DRAFT: SUBJECT TO CHANGE 2-44 AN54

 3 skip bit(3),

 2 data_type fixed(5) unaligned,

 2 bits structure unaligned,

 3 padded_ref bit(1),

 3 aligned_ref bit(1),

 3 long_ref bit(1),

 3 forward_ref bit(1),

 3 ic_ref bit(1),

 3 temp_ref bit(1),

 3 defined_ref bit(1),

 3 evaluated bit(1),

 3 allocate bit(1),

 3 allocated bit(1),

 3 abnormal bit(1),

 3 even bit(1),

 3 perm_address bit(1),

 3 aggregate bit(1),

 3 hit_zero bit(1),

 3 dont_save bit(1),

 3 reserved bit(2),

 2 relocation bit(12) unaligned,

 2 last_usage bit(18) unaligned,

 2 store_ins bit(18) unaligned;

 node_type - has a value of "000000100"b which identifies this as

 a reference node.

 array_ref - indicates that this is an array reference, not an

 array element reference.

 varying_ref - indicates that this is a reference to a varying

 string. (This is unique because substr(x,i,j) = y

 results in a non-varying reference to x even when x is

 varying).

 shared - indicates a reference node used (potentially) in many

 parts of the program tree, refering to a generation of

 storage rather than to a value. The reference node

 that hangs from the symbol node has the shared bit set

 if there are no locator qualifier, variable length, or

 subscript fields needed to complete the reference.

 DRAFT: SUBJECT TO CHANGE 2-45 AN54

 References to such items are usually made by pointing

 to the symbol node's shared reference. If a reference

 node appears in the executable tree and has qualifier,

 length, or offset expressions, then it does not have

 the shared bit on; for a change to any such expression

 effectively alters the reference, and the compiler does

 not test for such changes.

 put_data_sw - set by expression semantics when pre-processing the

 argument of a put_data_trans operator. It causes the

 subscripter to create a list of the subscripts of the

 scalar items and attach it at reference.subscript_list.

 This list is later attached to the put_data_trans

 operator and, ultimately, transmitted to the runtime

 I/O machinery.

 processed - set by expression_semantics to indicate that the

 reference has been fully processed, so to avoid an

 erroneous re-processing.

 units - indicates the units of the offset (bits, bytes,

 half_words, words).

 ref_count - indicates that the reference is to a value which is

 referenced ref_count times (not necessarily in the

 current statement) without possibility of changing.

 (The ref_count is the number of pointers in the tree

 that point to this reference except in the case of a

 reference which is the first operand of an operator

 which sets its first operand; in this case, ref_count

 is the total number of pointers in the tree that point

 either to the reference or to the operator, the pointer

 from the operator to the reference not being counted

 for this purpose.) Values referenced under reference

 nodes with ref_count>0 may be kept in convenient

 registers by the code generator rather than, or as well

 as, in storage. The code generator reduces the

 ref_count after each use of the node. The optimizer

 tries to replace shared references with unshared

 references, as a means of dealing with common

 sub-expressions. In the case of a temporary, reduction

 of the ref_count to zero means that the storage or

 register holding the temporary may be reused.

 DRAFT: SUBJECT TO CHANGE 2-46 AN54

 c_offset - the constant offset. This field is meaningful whether

 or not the offset is variable.

 c_length - the constant current length of a string value if

 reference.length is null.

 symbol - points to the symbol or label node which represents the

 declaration of this value.

 qualifier - points to the locator expression used to qualify this

 reference. Parse uses reference.qualifier to point to

 a locator qualifier if one appears. In the case of a

 defined item, qualifier points to a reference to the

 base item.

 offset - points to the offset expression. If the offset is

 entirely constant this field is null. Parse uses

 reference.offset to point to a list node containing the

 subscript expression trees, if subscripts appear; the

 list is in reverse order. Parse does not distinguish

 subscripts and arguments.

 length - points to the length expression giving the current

 length of the string value. If the length is constant

 then this field is null. Parse uses reference.length

 to point to a reference node for the structure

 qualifier if any.

 subscript_list - io_semantics uses this to point to a list node

 holding the subscripts of this reference; for put_data.

 The subscript expressions are listed in (forward)

 order. The size of this list is used by the

 subscripter to set the size of the block of storage

 (block.plio_ssl) into which the code generator will

 store the evaluated subscripts; subscripter sets that

 size, ssl_size, as max(k+1 , ssl_size), where k is

 the number of subscripts for the reference currently

 being processed.

 padded_ref - indicates that the last word of the value is not

 shared with another value. Permits the code generator

 to assume, in most circumstances, that the spare bits

 DRAFT: SUBJECT TO CHANGE 2-47 AN54

 of the last word of storage touched by this item are

 zero. However, see passed_as_arg in "Symbol Nodes" on

 page 2-19.

 abnormal - set if the symbol has the abnormal bit set or if it is

 a reference to a non-local automatic variable that is

 passed as an argument by reference.

 NOTE: All other fields are set and used

 only by the code generator.

 List_Nodes

 The list node is a general purpose node used to chain together

 other types of nodes. It is used to:

 1. chain together the label nodes or label reference nodes

 which represent the label prefix.

 2. chain together parameter descriptors of an entry()

 attribute.

 3. chain together the members of a generic() attribute.

 4. to represent the initial attribute.

 5. to represent argument lists and descriptor lists of

 arg_list operators.

 Format:

 dcl 1 list based aligned,

 2 node_type bit(9) unaligned,

 2 reserved bit(12) unaligned,

 2 number fixed(14) unaligned,

 2 element dimension(n refer(list.number))

 ptr unaligned;

 DRAFT: SUBJECT TO CHANGE 2-48 AN54

 node_type - has a value of "000001011"b which identifies the node

 as a list node.

 number - number of operands in this node.

 element - pointers to the operands.

 When list nodes are used to form uni-directional chains, the

 first "element" pointer is usually used to point to the next

 link in the chain.

 Operator_Nodes

 Each operation to be performed by the object program is

 represented by an operator node. All source language operators

 and all compiler generated operators have the same form and are

 subjected to the same optimizations.

 dcl 1 operator based aligned,

 2 node_type bit(9) unaligned,

 2 op_code bit(9) unaligned,

 2 shared bit(1) unaligned,

 2 processed bit(1) unaligned,

 2 optimized bit(1) unaligned,

 2 number fixed(14) unaligned,

 2 operand dimension(n refer(operator.number))

 ptr unaligned;

 node_type - has a value of "000000011"b which identifies this as

 an operator node.

 op_code - is one of the op codes listed in the appendix.

 shared - indicates that this operator appears as a subexpression

 of another computation elsewhere in this program. The

 DRAFT: SUBJECT TO CHANGE 2-49 AN54

 optimizer uses this bit to keep itself from getting

 into trouble.

 processed - set by semantic translator to prevent erroneous

 re-processing of this operator tree.

 optimized - this computation has been previously performed and it

 does not need to be re-evaluated. Operand one contains

 the correct value.

 number - the number of operands

 operand - pointers to the operands

 Operators

 The operators of the internal representation closely resemble the

 operators of the PL/I language. These operators are listed in

 the appendix and can be classified into distinct groups of

 operators having similar function. The following sections

 describe each class of operators.

 ARITHMETIC OPERATORS

 Arithmetic operands are:

 1. binary fixed (real|complex)

 2. binary float (real|complex)

 3. decimal (fixed|float)(real|complex)

 The code generator performs all necessary conversions between

 mode for cases 1 and 2. It performs conversions of mode and type

 for case 3. These conversions are done by the code generator

 because it can exploit particular hardware features.

 DRAFT: SUBJECT TO CHANGE 2-50 AN54

 Operands may be any precision and scale, and may be packed or

 unpacked. The desired output is defined by the attributes of

 operand one.

 STRING OPERATORS

 The operands of string operators are scalar string values. They

 are either a all bit-strings or all character-strings. The

 boolean operators only allow bit-string operands while the

 concatenation operator allows either. The reference given as

 operand one describes the desired result.

 ASSIGNMENT OPERATORS

 The assign operator allows operands of any data type.

 Conversions are permitted between any combination of arithmetic

 and string data, between offset and pointer, between pointer and

 offset, between packed and unpacked data, and it allows

 assignment of pointer to file, and integer to arg_descriptor,

 arg_descriptor to integer, label constant to integer, and label

 constant to pointer.

 Assign_size_ck allows assignments between any combination of

 arithmetic and string data. Code is generated to check whether

 the receiving variable has sufficient precision or string length

 to hold the value to be assigned; if not, the size or stringsize

 condition is signaled.

 The assign_zero operator requires that its operand be fixed

 binary aligned with a precision of <36 and a scale factor of

 zero.

 The copy_words operator copies the storage of operand two into

 the storage of operand one. The number of words to be copied is

 given by operand three. The operator is used to implement

 assignment of PL/I arrays or structures. It is generated only

 for non-packed aggregates of identical type and aggregation.

 DRAFT: SUBJECT TO CHANGE 2-51 AN54

 The copy_string operator copies the storage of operand two into

 the storage of operand one. The number of bits to be copied is

 given by operand three. The operator is used to implement

 assignment of PL/I arrays and structures. It is generated only

 for packed aggregates of identical type and aggregation.

 The make_desc operator is used to create a basic argument

 descriptor value. Operand two is a bit string value representing

 the left part of an argument descriptor, and operand three is an

 integer expression representing the size value of the basic

 argument descriptor. The operator combines operands two and

 three to produce a basic argument descriptor value.

 block_assign - This operator has n operands. Operands 2 through

 n are integer expressions to be evaluated and stored in operand

 one. Operand one is a temporary or variable whose data type is

 block_storage and whose size is sufficient to contain the integer

 values. The block_assign operator is used to process the

 subscript list of an array element or a put data statement.

 RELATIONAL OPERATORS

 Operand one of the relational operators is a bit_string value of

 length one. The other two operands are either: both arithmetic

 (see "Arithmetic Operators" on page 2-50), character-string,

 bit-string, pointer, offset, label, entry, or file expressions.

 TRANSFER OPERATORS

 Operand one of a transfer operator is a label valued expression.

 The second operand of the jump_true and jump_false operators is a

 bit-string value. The second and third operands of other

 conditional transfer operators obey the rules specified for the

 operands of relational operators.

 CALL, SAVE, AND RETURN OPERATORS

 DRAFT: SUBJECT TO CHANGE 2-52 AN54

 The std_arg_list operator results in the creation of a Multics

 Standard Argument List in automatic storage. Operand one

 represents the argument list, and is a temporary whose storage

 class is block_storage. During argument list creation all

 argument expressions are evaluated.

 Operand two is a list node containing a vector of pointers to the

 argument expressions. The last argument of function references

 is the return value and is a "return_value", "temporary" or a

 variable reference. "Return value" storage class means that the

 called procedure will allocate space for the return value. (Se

 "Temporary Values" on page 2-38.)

 Operand three is a list node containing a vector of pointers to

 references to the argument descriptors. If no descriptors are

 needed operand three is null.

 The std_call operator results in a Multics Standard Call.

 Operand one is null if the call is not a function reference;

 otherwise it points to the reference node used to access the

 return value. Operand two is an entry expression giving the

 entry to be invoked. Operand three is null if there are no

 arguments or return value; otherwise it is an argument list

 operator which prepared the argument list.

 The std_entry operator results in the creation of entry

 descriptive information and a Multics Standard entry sequence in

 the object program. The entry descriptive information includes

 the number of parameters and a descriptor for each parameter.

 The ex_prologue operator causes the prologue to be evaluated.

 The allot_auto operator makes permanent allocations in the stack.

 It is a pointer valued operator whose second operand is an

 integer expression specifying the number of words to be

 allocated. The storage is released by the return or non-local go

 to operator.

 The "param_ptr" and "param_desc_ptr" are used to access the

 argument pointer and argument descriptor pointer which references

 the kth argument of the entry used to invoke the procedure whose

 block node is referenced by operand three. They are used to

 DRAFT: SUBJECT TO CHANGE 2-53 AN54

 assign these pointers to the automatic pointers used to reference

 the parameter or parameter descriptor. See "Parameter" on page

 2-37.

 The std_return operator returns via the Multics Standard Return.

 It has no arguments - an assignment statement has already

 assigned the return value to the last parameter.

 The return_value operator returns via the Multics standard

 return, but requires the evaluation, allocation, and assignment

 of the return value to the last parameter. The descriptor of the

 return value has already been set. See Figure 2-4.

 OFFSET OPERATORS

 Offset operators are used to compute the addresses of values at

 run-time. Their output operands are binary integers and their

 input operands are usually binary integer expressions. The

 "desc_size" operator has an arg_descriptor as operand two, and

 the "bit_pointer" operator has a pointer value as operand two.

 BUILT-IN FUNCTION OPERATORS

 The built-in function operators are a miscellaneous group of

 operators which support PL/I built-in functions. The types of

 their arguments are defined by the language. All argument

 conversions required by the language have been done and are not

 implied by the operator.

 INPUT/OUTPUT OPERATORS

 The input/output operators may be divided into four classes.

 First are the operators get_file, get_string, put_file,

 put_string, read_file, write_file, locate_file, delete_file,

 rewrite_file, open_file, and close_file. These are used by the

 parse to pass parsed input/output statements to the semantic

 phase. Each of these operators has operands enough to compass

 DRAFT: SUBJECT TO CHANGE 2-54 AN54

 the references and expressions occurring in the options of the

 statement; each has one further operand, the last, which contains

 a bit(36) constant which encodes the options which have appeared

 and also the statement type. The operands of these operators are

 processed, and considerably rearranged, by the semantics before

 the code generation phase and, with the exception of the

 operators open_file and close_file which are retained without

 operands, these operators are not passed on to the code

 generator.

 Second are the transmission operators: get_list_trans,

 get_edit_trans, get_data_trans, put_list_trans, put_edit_trans,

 and put_data_trans. The get_data_trans operator is presented to

 the code generator with a single operand, a join of the items

 appearing in the list of the get data statement. The code

 generator will transform this join into a constant list of

 runtime-symbol-table offsets which will serve to identify the

 allowable runtime references. The put_data_trans operator has

 two operands, a list of subscript expressions and the reference

 with which they are associated. The code generator will see that

 the list of subscripts, as well as the address and

 runtime-symbol-table offset of the reference, are made available

 at runtime. Each of the other four transmission operators takes

 a descriptor-valued expression and the reference to which it

 corresponds; the code generator will see that the descriptor and

 the address of the item referenced are available at runtime.

 Third are the special operators: record_io, stream_prep, and

 terminate_trans. The record_io operator takes one or two

 operands and the stream_prep operator takes two operands. In

 both cases the first operand is a bit(36) constant which is

 transmitted to the runtime mechanisms and defines the work to be

 done. In both cases, the second operand, if present, is a label

 (the label of a null statement following the other statements

 which realize the I/O statement) to which control may be

 transferred at runtime if the execution of the statement cannot

 be continued. The terminate_trans operator is always compiled,

 after the list items, if any, in a get or put statement and has

 no operands; it is compiled by the code generator into the

 invocation of terminating code at runtime.

 Fourth is the set of format operators. The first two operands of

 a format operator are standard: the first identifies the next

 format operator (in the case of the operator l_parn, the operator

 identified is that following the associated r_parn); and the

 second is an integer expression for the repitition count. The

 third and other operands depend on the operator. For l_parn, the

 third operand identifies the first format operator of the

 parenthesised format list. In the r_format operator, the third

 DRAFT: SUBJECT TO CHANGE 2-55 AN54

 operand is a reference to a format value. In the c_format, the

 third and fourth operands identify the component real format

 operators. In all other cases, the third and subsequent operands

 are integer expressions. (It is to be noted that all

 expressions, including those involved in the format-valued

 reference in an r_format, are to be evaluated at runtime from the

 runtime procedures but are compiled, when necessary, as internal

 procedures of the block containing the I/O statement.)

 AGGREGATE OPERATORS: LOOP AND JOIN

 The loop operator takes five operands and is used for the

 expansion of dimensioned aggregates. Operand one points to the

 expression to be expanded. Operand two is a reference, the

 control variable in the loop. Operand three and four are the

 lower and upper bound expressions for the loop. Operand five is

 a list of those scalar expressions which have been pulled out of

 the loop for optimization purposes.

 The join operator has a variable number of operands which it

 serves to present in order to the code generator. Its operands

 may not be null. It is used in the expansion of structured

 aggregates, in the presentation of data lists in get and put

 statements, and in the compilation of most I/O statements.

 DRAFT: SUBJECT TO CHANGE 2-56 AN54

 Appendix - Codes used in The

 Internal Representation

 The Node Types (nodes.incl.pl1)

 block_node "000000001"b

 statement_node "000000010"b

 operator_node "000000011"b

 reference_node "000000100"b

 token_node "000000101"b

 symbol_node "000000110"b

 context_node "000000111"b

 array_node "000001000"b

 bound_node "000001001"b

 format_value_node "000001010"b

 list_node "000001011"b

 default_node "000001100"b

 machine_state_node "000001101"b

 source_node "000001110"b

 label_node "000001111"b

 cross_reference_node "000010000"b

 sf_par_node "000010001"b

 temporary_node "000010010"b

 The Block Types (block_types.incl.pl1)

 root_block "000000001"b

 external_procedure "000000010"b

 internal_procedure "000000011"b

 begin_block "000000100"b

 on_unit "000000101"b

 DRAFT: SUBJECT TO CHANGE 2-57 AN54

 The Boundary and Offset Unit Values (boundary.incl.pl1)

 bit_ 1

 character_ 2

 half_ 3

 word_ 4

 mod2_ 5

 mod4_ 6

 mod8_ 7

 The Declare Types (declare_type.incl.pl1)

 by_declare "001"b

 by_explicit_context "010"b

 by_context "011"b

 by_implication "100"b

 by_compiler "101"b

 DRAFT: SUBJECT TO CHANGE 2-58 AN54

 The Statement Types (statement_types.incl.pl1)

 unknown_statement "000000000"b

 allocate_statement "000000001"b

 assignment_statement "000000010"b

 begin_statement "000000011"b

 call_statement "000000100"b

 close_statement "000000101"b

 declare_statement "000000110"b

 lock_statement "000000111"b

 delete_statement "000001000"b

 display_statement "000001001"b

 do_statement "000001010"b

 else_clause "000001011"b

 end_statement "000001100"b

 entry_statement "000001101"b

 exit_statement "000001110"b

 format_statement "000001111"b

 free_statement "000010000"b

 get_statement "000010001"b

 goto_statement "000010010"b

 if_statement "000010011"b

 locate_statement "000010100"b

 null_statement "000010101"b

 on_statement "000010110"b

 open_statement "000010111"b

 procedure_statement "000011000"b

 put_statement "000011001"b

 read_statement "000011010"b

 return_statement "000011011"b

 revert_statement "000011100"b

 rewrite_statement "000011101"b

 signal_statement "000011110"b

 stop_statement "000011111"b

 system_on_unit "000100000"b

 unlock_statement "000100001"b

 wait_statement "000100010"b

 write_statement "000100011"b

 default_statement "000100100"b

 continue_statement "000100101"b

 DRAFT: SUBJECT TO CHANGE 2-59 AN54

 Hardware and Environment Parameters (system.incl.pl1)

 max_p_flt_bin_1 27

 max_p_flt_bin_2 63

 max_p_fix_bin_1 35

 max_p_fix_bin_2 71

 max_p_dec 61

 min_scale -128

 max_scale +127

 max_bit_string 2359296

 max_char_string 262144

 max_area_size 65536

 min_area_size 30

 bits_per_word 36

 bits_per_packed_ptr 36

 bits_per_double 72

 characters_per_half 2

 characters_per_word 4

 characters_per_double 8

 words_per_label_var 4

 words_per_entry_var 4

 bits_per_character 9

 bits_per_half 18

 default_area_size 1024

 default_flt_bin_p 27

 default_fix_bin_p 17

 default_flt_dec_p 10

 default_fix_dec_p 7

 integer_type

 "010000000000000000000100000011000000"b

 dec_integer_type

 "010000000000000000000100000101000000"b

 pointer_type

 "000001000000000000000100000000000000"b

 DRAFT: SUBJECT TO CHANGE 2-60 AN54

 real_type

 "001000000000000000000100000011000000"b

 complex_type

 "001000000000000000000100000010100000"b

 builtin_type

 "000000000000000010000000000000000000"b

 storage_block_type

 "000000000000100000000000000000000000"b

 arg_desc_type

 "000000000001000000000000000000000000"b

 local_label_var_type

 "000000001000000000000100001000010000"b

 entry_var_type

 "000000000100000000000000000000010000"b

 bit_type

 "000100000000000000000000000000000000"b

 char_type

 "000010000000000000000000000000000000"b

 f_logical_type

 "000100000000000000000100000000000000"b

 f_dim_type

 "000000000000000000000101000000010000"b

 f_type_conflict

 "111100000000000010000000000000000000"b

 DRAFT: SUBJECT TO CHANGE 2-61 AN54

 f_dim_conflict

 "100000000100000010000000000000000000"b

 f_external_type

 "000000000100000000000000000000000100

 010000000001000000000000000000000000"b

 f_test_type

 "011100000000000000000000000000000000

 000000000000000000000000000000000000"b

 f_auto_type

 "000000000000000000000101000000010000

 100010000000000000000000000000000000"b

 f_member_type

 "000000000000000000000101000000010000

 100100100000000000000000000000100000"b

 f_common_type

 "100000000000000000000000000000000000

 010000100000000000000000000000000000"b

 f_external_conflict

 "100000000000000000010000000000000000

 000110000000000000000000000000000000"b

 f_auto_conflict

 "100000000100000010000000000000000000

 000100000100000000000000000000000000"b

 f_common_conflict

 "100000000100000010000000000000000000

 000110000100000000000000000000000000"b

 DRAFT: SUBJECT TO CHANGE 2-62 AN54

 f_dat_equ_conflict

 "100000000100010010000000000000000000

 000000000100000000000000000000000000"b

 DRAFT: SUBJECT TO CHANGE 2-63 AN54

 The Token Types (token_types.incl.pl1)

 no_token "000000000"b

 identifier "100000000"b

 isub "010000000"b

 plus "001000001"b

 minus "001000010"b

 asterisk "001000011"b

 slash "001000100"b

 expon "001000101"b

 not "001000110"b

 and "001000111"b

 or "001001000"b

 cat "001001001"b

 eq "001001010"b

 ne "001001011"b

 lt "001001100"b

 gt "001001101"b

 le "001001110"b

 ge "001001111"b

 ngt "001010000"b

 nlt "001010001"b

 assignment "001010010"b

 colon "001010011"b

 semi_colon "001010100"b

 comma "001010101"b

 period "001010110"b

 arrow "001010111"b

 left_parn "001011000"b

 right_parn "001011001"b

 bit_string "000100001"b

 char_string "000100010"b

 bin_integer "000110001"b

 dec_integer "000110011"b

 fixed_bin "000110000"b

 fixed_dec "000110010"b

 float_bin "000110100"b

 float_dec "000110110"b

 i_bin_integer "000111001"b

 i_dec_integer "000111011"b

 i_fixed_bin "000111000"b

 i_fixed_dec "000111010"b

 i_float_bin "000111100"b

 i_float_dec "000111110"b

 DRAFT: SUBJECT TO CHANGE 2-64 AN54

 is_identifier "100000000"b

 is_isub "010000000"b

 is_delimiter "001000000"b

 is_constant "000100000"b

 is_arith_constant "000010000"b

 (FORTRAN ONLY)

 label_argument "010000001"b

 hollerith_constant_header "010000010"b

 x_format_f "010000011"b

 new_line "001011010"b

 logical_constant "000100001"b

 DRAFT: SUBJECT TO CHANGE 2-65 AN54

 The Operators (op_codes.incl.pl1)

 add "000010001"b

 opnd(1) <- opnd(2)+opnd(3)

 sub "000010010"b

 opnd(1) <- opnd(2)-opnd(3)

 mult "000010011"b

 opnd(1) <- opnd(2)*opnd(3)

 div "000010100"b

 opnd(1) <- opnd(2)/opnd(3)

 negate "000010101"b

 opnd(1) <- -opnd(2)

 exp "000010110"b

 opnd(1) <- opnd(2) ** opnd(3)

 and_bits "000100001"b

 opnd(1) <- opnd(2) & opnd(3)

 or_bits "000100010"b

 opnd(1) <- opnd(2)|opnd(3)

 xor_bits "000100011"b

 opnd(1) <- opnd(2) xor opnd(3)

 not_bits "000100100"b

 opnd(1) <- ^opnd(2)

 cat_string "000100101"b

 opnd(1) <- opnd(2)||opnd(3)

 DRAFT: SUBJECT TO CHANGE 2-66 AN54

 assign "000110001"b

 opnd(1) <- opnd(2)

 assign_size_ck "000110010"b

 opnd(1) <- opnd(2)

 assign_zero "000110011"b

 opnd(1) <- 0

 copy_words "000110100"b

 move opnd(2) to opnd(1) by opnd(3) words

 copy_string "000110101"b

 move opnd(2) to opnd(1) by opnd(3) units

 make_desc "000110110"b

 opnd(1) <- descriptor(opnd(2),opnd(3))

 pack "000111000"b

 opnd(1) <- encode to picture opnd(2)

 unpack "000111001"b

 opnd(1) <- decode from picture opnd(2)

 less_than "001000100"b

 opnd(1) <- opnd(2) < opnd(3)

 greater_than "001000101"b

 opnd(1) <- opnd(2) > opnd(3)

 equal "001000110"b

 opnd(1) <- opnd(2) = opnd(3)

 not_equal "001000111"b

 opnd(1) <- opnd(2) ^= opnd(3)

 DRAFT: SUBJECT TO CHANGE 2-67 AN54

 less_or_equal "001001000"b

 opnd(1) <- opnd(2) <= opnd(3)

 greater_or_equal "001001001"b

 opnd(1) <- opnd(2) >= opnd(3)

 jump "001010001"b

 go to opnd(1) unconditionally

 jump_true "001010010"b

 go to opnd(1) if opnd(2) is not 0

 jump_false "001010011"b

 go to opnd(1) if opnd(2) is all 0

 jump_if_lt "001010100"b

 go to opnd(1) if opnd(2) < opnd(3)

 jump_if_gt "001010101"b

 go to opnd(1) if opnd(2) > opnd(3)

 jump_if_eq "001010110"b

 go to opnd(1) if opnd(2) = opnd(3)

 jump_if_ne "001010111"b

 go to opnd(1) if opnd(2) ^= opnd(3)

 jump_if_le "001011000"b

 go to opnd(1) if opnd(2) <= opnd(3)

 jump_if_ge "001011001"b

 go to opnd(1) if opnd(2) >= opnd(3)

 jump_three_way "001011010"b

 opnd(1) = expression

 go to opnd(2) if expression < 0

 go to opnd(3) if expression = 0

 go to opnd(4) if expression > 0

 DRAFT: SUBJECT TO CHANGE 2-68 AN54

 std_arg_list "001100001"b

 opnd(1) <- arglist(opnd(2) desclist(opnd(3)))

 return_words "001100010"b

 return aggregate opnd(1), opnd(2) is length

 in words

 std_call "001100011"b

 opnd(1) <- call opnd(2) with opnd(3)

 return_bits "001100100"b

 return aggregate opnd(1), opnd(2) is length

 in bits

 std_entry "001100101"b

 entry(opnd(1)... opnd(n))

 return_string "001100110"b

 return string opnd(1)

 ex_prologue "001100111"b

 execute the prologue -no operands-

 allot_auto "001101000"b

 opnd(1) <- addrel(stack,opnd(2))

 param_ptr "001101001"b

 opnd(1) <- ptr to opnd(2) in block opnd(3)

 param_desc_ptr "001101010"b

 opnd(1) <- ptr to opnd(2) in block opnd(3)

 std_return "001101011"b

 return -no arguments-

 allot_ctl "001101100"b

 allocate opnd(1) and its desc opnd(2)

 DRAFT: SUBJECT TO CHANGE 2-69 AN54

 free_ctl "001101101"b

 free opnd(1)

 bit_to_char "010000000"b

 opnd(1) <- (opnd(2)+8)/9

 bit_to_word "010000001"b

 opnd(1) <- (opnd(2)+35)/36

 char_to_word "010000010"b

 opnd(1) <- (opnd(2)+3)/4

 half_to_word "010000011"b

 opnd(1) <- (opnd(2)+1)/2

 word_to_mod2 "010000100"b

 opnd(1) <- (opnd(2)+1)/2*2

 word_to_mod4 "010000101"b

 opnd(1) <- (opnd(2)+3)/4*4

 word_to_mod8 "010000110"b

 opnd(1) <- (opnd(2)+7)/8*8

 rel_fun "010000111"b

 opnd(1) <- rel(opnd(2))

 baseno_fun "010001000"b

 opnd(1) <- baseno(opnd(2))

 desc_size "010001001"b

 opnd(1) <- substr(opnd(2),13,24)

 ceil_fun "010010000"b

 opnd(1) <- ceil(opnd(2))

 DRAFT: SUBJECT TO CHANGE 2-70 AN54

 floor_fun "010010001"b

 opnd(1) <- floor(opnd(2))

 round_fun "010010010"b

 opnd(1) <- round(opnd(2))

 sign_fun "010010011"b

 opnd(1) <- sign(opnd(2))

 abs_fun "010010100"b

 opnd(1) <- abs(opnd(2))

 trunc_fun "010010101"b

 opnd(1) <- trunc(opnd(2))

 tran_sign_fun "010010110"b

 opnd(1) <- abs(opnd(2))

 with the sign of opnd(3)

 index_fun "010100000"b

 opnd(1) <- index(opnd(2),opnd(3))

 off_fun "010100001"b

 opnd(1) <- offset(opnd(2),opnd(3))

 complex_fun "010100010"b

 opnd(1) <- complex(opnd(2),opnd(3))

 conjg_fun "010100011"b

 opnd(1) <- conjg(opnd(2),opnd(3))

 mod_fun "010100100"b

 opnd(1) <- mod(opnd(2),opnd(3))

 repeat_fun "010100101"b

 opnd(1) <- repeat(opnd(2),opnd(3))

 DRAFT: SUBJECT TO CHANGE 2-71 AN54

 verify_fun "010100110"b

 opnd(1) <- verify(opnd(2),opnd(3))

 translate_fun "010100111"b

 opnd(1) <- translate(opnd(2),opnd(3))

 lock_fun "010101000"b

 opnd(1) <- stac(opnd(2),opnd(3))

 real_fun "010101001"b

 opnd(1) <- real(opnd(2))

 imag_fun "010101010"b

 opnd(1) <- imag(opnd(2))

 length_fun "010101011"b

 opnd(1) <- length(opnd(2))

 pl1_mod_fun "010101100"b

 opnd(1) <- mod(opnd(2))

 search_fun "010101101"b

 opnd(1) <- search(opnd(2),opnd(3))

 allocation_fun "010101110"b

 opnd(1)<-allocation(opnd(2))

 reverse_fun "010101111"b

 opnd(1) <- reverse(opnd(2))

 addr_fun "010110000"b

 opnd(1) <- addr(opnd(2))

 addr_fun_bits "010110001"b

 opnd(1) <- addr(opnd(2))

 DRAFT: SUBJECT TO CHANGE 2-72 AN54

 ptr_fun "010110010"b

 opnd(1) <- ptr(opnd(2),opnd(3))

 baseptr_fun "010110011"b

 opnd(1) <- baseptr(opnd(2))

 addrel_fun "010110100"b

 opnd(1) <- addrel(opnd(2),opnd(3))

 min_fun "011000000"b

 opnd(1) <- min(opnd(1),opnd(2),...)

 max_fun "011000001"b

 opnd(1) <- max(opnd(1),opnd(2),...)

 pos_dif_fun "011000010"b

 opnd(1) <- opnd(2) - min(opnd(2),opnd(3))

 enable_on "011010100"b

 opnd(1) is the cond name

 opnd(2) is the file name

 opnd(3) is the block

 revert_on "011010101"b

 opnd(1) is the cond name,

 opnd(2) is the file name

 signal_on "011010110"b

 opnd(1) is the cond name

 opnd(2) is the file name

 bound_ck "011100000"b

 opnd(1) <- opnd(2)

 if opnd(3) <= opnd(2) <= opnd(4)

 range_ck "011100001"b

 opnd(1) <- opnd(2)

 if opnd(3) <= opnd(2) <= opnd(4)

 DRAFT: SUBJECT TO CHANGE 2-73 AN54

 loop "011100010"b

 do opnd(1) for opnd(2) from opnd(3)

 to opnd(4) by 1 , opnd(5) being

 a list of scalar expressions removed

 from the loop for optimization purposes.

 join "011100011"b

 compile in sequence:

 opnd(1), opnd(2) ... opnd(n)

 r_parn "011110001"b

 l_parn "011110010"b

 opnd(1) is format operator after

 parenthesized format list, opnd(2)

 is repitition count, opnd(3) is

 first format operator of

 parenthesized format list

 r_format "011110011"b

 opnd(1) is next format operator

 opnd(2) is repitition count

 opnd(3) is format-valued reference

 c_format "011110100"b

 opnd(1) is next format operator

 opnd(2) is repitition count

 opnd(3) is real format operator

 opnd(4) is real format operator

 f_format "011110101"b

 opnd(1) is next format operator

 opnd(2) is repitition count

 opnd(3) is field size

 opnd(4) is default decimal position

 opnd(5) is scale factor

 e_format "011110110"b

 opnd(1) is next format operator

 opnd(2) is repitition count

 opnd(3) is field size

 opnd(4) is default decimal position

 DRAFT: SUBJECT TO CHANGE 2-74 AN54

 opnd(5) is total precision

 b_format "011110111"b

 opnd(1) is next format operator

 opnd(2) is repitition count

 opnd(3) is field size

 a_format "011111000"b

 opnd(1) is next format operator

 opnd(2) is repitition count

 opnd(3) is field size

 x_format "011111001"b

 opnd(1) is next format operator

 opnd(2) is repitition count

 opnd(3) is field size

 skip_format "011111010"b

 opnd(1) is next format operator

 opnd(2) is repitition count

 opnd(3) is skip count

 column_format "011111011"b

 opnd(1) is next format operator

 opnd(2) is repitition count

 opnd(3) is target column

 page_format "011111100"b

 opnd(1) is next format operator

 opnd(2) is repitition count

 line_format "011111101"b

 opnd(1) is next format operator

 opnd(2) is repitition count

 opnd(3) is target line number

 picture_format "011111110"b

 opnd(1) is next format operator

 opnd(2) is repitition count

 opnd(3) is picture constant

 DRAFT: SUBJECT TO CHANGE 2-75 AN54

 get_list_trans "100000000"b

 getlist(opnd(2))

 with opnd(1)=desc(opnd(2))

 get_edit_trans "100000001"b

 getedit(opnd(2))

 with opnd(1)=desc(opnd(2))

 get_data_trans "100000010"b

 opnd(1) is join of items (references)

 in data list.

 put_list_trans "100000011"b

 putlist(opnd(2))

 with opnd(1)=desc(opnd(2))

 put_edit_trans "100000100"b

 putedit(opnd(2))

 with opnd(1)=desc(opnd(2))

 put_data_trans "100000101"b

 putdata(opnd(2))

 where opnd(1) points to list-node of

 subscript expressions (or is null)

 terminate_trans "100000110"b

 terminate stream transmission

 stream_prep "100000111"b

 initiate stream transmission

 opnd(1) is description of statement

 opnd(2) is label for abnormal return

 record_io "100001000"b

 perform record_i/o operation

 opnd(1) is description of statement

 and options; opnd(2), if present, is

 label for abnormal return

 DRAFT: SUBJECT TO CHANGE 2-76 AN54

 open_file "100011001"b

 opnd(1) is linesize

 opnd(2) is file

 opnd(3) is title

 opnd(4) is pagesize

 opnd(5) is attribute-bits

 opnd(6) is job-bits

 close_file "100011010"b

 opnd(2) is file

 opnd(3) is job-bits

 These operators are produced by the parse but are not used as

 input to the code generator.

 They are processed by the semantic translator.

 return_value "100010010"b

 return(opnd(1))

 allot_based "100010011"b

 allot opnd(1) in opnd(2)

 free_based "100010100"b

 free opnd(1) out of opnd(2)

 get_file "100010101"b

 opnd(1) is copy

 opnd(2) is file

 opnd(3) is skip

 opnd(4) is list

 opnd(5) is job-bits

 DRAFT: SUBJECT TO CHANGE 2-77 AN54

 get_string "100010110"b

 opnd(1) is copy

 opnd(2) is string

 opnd(4) is list

 opnd(5) is job-bits

 put_file "100010111"b

 opnd(1) is line

 opnd(2) is file

 opnd(3) is skip

 opnd(4) is list

 opnd(5) is job-bits

 put_string "100011000"b

 opnd(2) is string

 opnd(4) is list

 opnd(5) is job-bits

 read_file "100011011"b

 opnd(1) is set, into, or ignore

 opnd(2) is file

 opnd(3) is key or keyto

 opnd(4) is job-bits

 write_file "100011100"b

 opnd(1) is from

 opnd(2) is file

 opnd(3) is keyfrom

 opnd(4) is job-bits

 locate_file "100011101"b

 opnd(2) is file

 opnd(3) is keyfrom

 opnd(4) is variable to be located

 opnd(5) is job-bits

 do_fun "100011110"b

 opnd(1) is join of a list

 opnd(2) is control variable ref

 opnd(3) is specification operator

 DRAFT: SUBJECT TO CHANGE 2-78 AN54

 do_spec "100011111"b

 opnd(1) to opnd(2) by opnd(3)

 repeat opnd(4) while opnd(5)

 opnd(6) is next specification

 rewrite_file "100100000"b

 opnd(1) is from

 opnd(2) is file

 opnd(3) is key

 opnd(4) is job-bits

 delete_file "100100001"b

 opnd(2) is file

 opnd(3) is key

 opnd(4) is job-bits

 refer "100100101"b

 opnd(1) refer(opnd(2))

 prefix_plus "100100110"b

 opnd(1) <- +opnd(2)

 nop "100100111"b

 no-op

n

 Chapter3.runoff 08/14/74

 0844.0rew 08/14/74 0844.0 415458

 SECTION III

 SYNTACTIC TRANSLATION

 DRAFT: SUBJECT TO CHANGE 3-79 order number

 AN_OVERVIEW

 Syntactic translation is the process of disassembling the

 source program into its consituent parts called tokens, building

 an internal representation of the program, and putting

 information into the symbol table and other tables. The

 syntactic translator consists of two modules called the lexical

 analyser and the parse.

 DRAFT: SUBJECT TO CHANGE 3-80 order number

 LEXICAL_ANALYSIS

 The lexical analyser scans the characters of the source

 program from left to right and organizes the characters into

 groups of tokens which represent a statement. It creates the

 source listing file, it also builds a token table which contains

 the source representation of all tokens used in the source

 program. The lexical analyser is called by the parse each time

 the parse needs a new statement.

 The token table produced by the lexical analyser contains a

 single entry for each unique token in the source program.

 Searching of the token table is done using a hash coded scheme

 that provides quick access to the table.

 Each token table entry contains a pointer which may

 eventually point to a declaration of the token, that is, the

 symbol node. For each statement, the lexical analyzer builds a

 vector of pointers to the tokens which were found in the

 statement. This vector is the input to the parse.

 DRAFT: SUBJECT TO CHANGE 3-81 order number

 NAME: lex

 Function:

 1. It maintains an internal static running character index to

 the source segment that shows at any instant the beginning of

 the source that the lexical analyser has yet to process.

 2. It scans the source segment until it reaches the next

 semicolon, and groups the characters it has scanned into a

 set of lexical units called tokens. The order of tokens is

 kept in an internal static array of pointers called the token

 list. When lex returns, the character index is pointing at

 the character immediately following the semicolon that it has

 just scanned.

 3. When an include statement is found in the text, lex treats

 the include segment as the current source segment and goes on

 processing, until it reaches the end of the include segment.

 Then it reverts to the original source segment.

 4. If a listing is required, lex writes the source into the

 listing segment.

 Entry:

 lex

 Usage:

 declare lex entry;

 call lex;

 Programs that invoke this entry:

 DRAFT: SUBJECT TO CHANGE 3-82 order number

 procedure_parse

 do_parse

 if_parse

 Entry:

 lex$write_last_line

 This entry checks that no text follows the logical end of

 the program. This entry writes the last line of the source into

 the listing segment. It also writes the list of all include

 files used by the program into the listing segment.

 Usage:

 declare lex$write_last_line entry;

 call lex$write_last_line;

 Programs that invoke this entry:

 parse

 Entry:

 lex$terminate_source

 This entry terminates the source segment.

 Usage:

 DRAFT: SUBJECT TO CHANGE 3-83 order number

 declare lex$terminate_source entry;

 call lex$terminate_source;

 Programs that invoke this entry:

 pl1

 Entry:

 lex$scan_token_table

 This entry goes down the hash table and checks for duplicate

 declarations.

 Usage:

 declare lex$scan_token_table entry;

 call lex$scan_token_table;

 Programs that invoke this entry:

 pl1

 Entry:

 lex$initialize_lex

 DRAFT: SUBJECT TO CHANGE 3-84 order number

 This entry initializes the data$data pointer once per

 process, and initializes the hash table once per compilation.

 Usage:

 declare lex$initialize_lex entry;

 call lex$initialize_lex;

 Programs that invoke this entry:

 parse

 Entry:

 lex$meter

 This entry gathers some statistics about the hash table.

 1. Number of empty buckets in the hash table.

 2. Total number of tokens used in the program.

 3. Maximum number of tokens in a single bucket of hash table.

 4. Total storage used by all the token nodes for the program.

 Usage:

 declare lex$meter entry (token_count, token_words,

 empty_buckets, maximum);

 call lex$meter (fixed bin(15), fixed bin(15), fixed

 bin(15), fixed bin(15));

 1. token_count total number of tokens used in the

 program. (output)

 DRAFT: SUBJECT TO CHANGE 3-85 order number

 2. token_words total number of words of storage in

 the tree segment used by all the

 token nodes in the program.

 (output)

 3. empty_buckets total number of empty buckets in

 the hash table. (output)

 4. maximum the maximum number of tokens in a

 single bucket. (output)

 Programs that invoke this entry:

 none

 Internal Procedures:

 create_source

 an internal procedure to create a source node

 for each of the include file used in the

 source program.

 lex_create_token

 an internal function used to create a token

 node for the token represented by the

 token_string. This function does essentially

 the same things as the external procedure

 create_token. The reason for this internal

 function is to save the large number of

 calling sequence lex would have to made to

 call the more expensive external procedure.

 lex_err

 an internal procedure used to call the error

 message program error_.

 External Variables:

 DRAFT: SUBJECT TO CHANGE 3-86 order number

 data$data

 pl1_stat_$cur_statement

 pl1_stat_$hash_table

 pl1_stat_$last_source

 pl1_stat_$line_count

 pl1_stat_$listing_on

 pl1_stat_$node_uses

 pl1_stat_$seg_name

 pl1_stat_$source_index

 pl1_stat_$source_list_ptr

 pl1_stat_$source_ptr

 pl1_stat_$source_seg

 pl1_stat_$st_length

 pl1_stat_$st_start

 pl1_stat_$statement_id

 tree_$

 Internal Static Variables:

 bitcount bit_count of an include file.

 dataptr pointer to the data$ segment that contains

 the driving table for lex.

 end_of_file bit indicating end of segment is reached.

 file_ptr pointer to an include file.

 file_stack array of structure that contains the

 information of the source segment and all the

 include files used in the source.

 file_token pointer to the token node created for the

 name of an include file.

 filename_length length of the include file name.

 first_time bit indicating whether lex$initialize_lex has

 been previously called in the same process.

 index the running character index to the source

 segment.

 line_size length of the current source line being

 processed by lex.

 DRAFT: SUBJECT TO CHANGE 3-87 order number

 listing_on bit indicating whether a listing is needed

 for this compilation. It has the same value

 as pl1_stat_$listing_on.

 old_file_token pointer to the old token node created for the

 name of an include file.

 saved_index saved running character index.

 saved_length saved length of current line.

 saved_source_line saved total length of current source line.

 saved_tindex saved length of the token string.

 seg_ptr pointer to an include file.

 semi_colon_ptr pointer to the token node ";".

 source_depth number of include files used.

 source_files total number of include files used.

 source_line total length of current source line.

 source_string_length

 length of the source segment.

 Programs Called:

 bindec

 bindec$vs

 create_token

 error_

 error_$no_text

 find_include_file_$initiate_count

 hcs_$terminate_noname

 pl1_get

 pl1_print$for_lex

 pl1_print$non_varying

 pl1_print$non_varying_nl

 pl1_print$varying_nl

 token_to_binary

 translator_info_$get_source_info

 tree_$

 DRAFT: SUBJECT TO CHANGE 3-88 order number

 Include Files used:

 rename

 create_token

 language_utility

 source_id_descriptor

 nodes

 token

 token_types

 token_list

 source_list

 declare_type

 symbol

 system

 Errors Diagnosed:

 Error 76

 Error 99

 Error 100

 Error 101

 Error 103

 Error 104

 Error 105

 Error 106

 Error 107

 Error 108

 Error 109

 Error 110

 Error 111

 Error 112

 Error 125

 Error 151

 Error 152

 Error 153

 Error 154

 Error 155

 Error 156

 Error 157

 Error 158

 Error 159

 Error 441

 DRAFT: SUBJECT TO CHANGE 3-89 order number

 NAME: data

 Function:

 This is a data segment that contains the driving table for

 the lexical analyzer. It consists of a two dimensional matrix of

 the form matrix(1:31,0:29). The lexical analyzer is an

 approximation of a finite state machine with 31 states. The

 input to the lexical analyzer is a character string. The

 character set used to construct the string can be loosely

 classified into 29 types. By a simple transformation, the matrix

 is declared as matrix(0:929). Each element of the matrix is a 36

 bit bitstring containing four 9 bit substrings. The first nine

 bits give the token type of a resulting group of characters, the

 second nine bits are currently not used, the third nine bits give

 the action to take in lex, and the last nine bits give the next

 state.

 DRAFT: SUBJECT TO CHANGE 3-90 order number

 THE_PARSE

 The parse gets the statement represented by the vector of

 token pointers from the lex and proceeds to analyze the

 statement, and transform the statement into an appropriate

 internal representation. The completed internal representation

 is a program tree that contains all the relationships between all

 the components of the original source program.

 DRAFT: SUBJECT TO CHANGE 3-91 order number

 NAME: parse

 Function:

 1. It initializes various static variables and modules used for

 the parse.

 2. It creates the root block node as the basis for the whole

 tree segment for the program.

 3. It calls lex for the first statement of the program, and

 subsequently invokes procedure_parse to parse the remaining

 statements of the program.

 Entry:

 parse

 Usage:

 declare parse entry (ptr, ptr, fixed bin (15));

 call parse (root, source_ptr, source_length);

 1. root pointer to the root node block

 created by parse. (output)

 2. source_ptr pointer to the base of the segment

 containing the source program.

 (input)

 3. source_length length in characters of the source

 program. (input)

 Programs that invoke this entry:

 DRAFT: SUBJECT TO CHANGE 3-92 order number

 pl1

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$compiler_created_index

 pl1_stat_$error_memory

 pl1_stat_$one

 pl1_stat_$util_abort

 Internal Static Variables:

 none

 Programs Called:

 create_block

 create_token

 error_$initialize_error

 lex$initialize_lex

 lex$write_last_line

 parse_error

 procedure_parse

 reserve$clear

 statement_type

 Include Files used:

 block

 block_types

 language_utility

 DRAFT: SUBJECT TO CHANGE 3-93 order number

 parse

 source_id_descriptor

 statement_types

 token_types

 Errors Diagnosed:

 Error 180

 Error 417

 DRAFT: SUBJECT TO CHANGE 3-94 order number

 NAME: procedure_parse

 Function:

 1. It processes all statements occurring in begin blocks and

 procedures.

 By processing a statement is meant the following steps:

 a. calling lex to get the statement.

 b. calling statement_type to determine the type of the

 statement.

 c. calling an appropriate procedure to parse the statement

 into its proper internal representation.

 2. It creates a block node for the begin block or the procedure.

 3. It calls itself recursively to handle nested blocks.

 4. It attempts to match end statements to the proper procedure

 statement or begin statement.

 Entry:

 procedure_parse

 Usage:

 declare procedure_parse entry (fixed bin(15), ptr,

 bit(12) aligned, ptr, ptr, bit(9) aligned, bit(1) aligned);

 call procedure_parse (token_list_index, entry_ptr,

 conditions, father_block_ptr, end_ptr, block_type, return_flag);

 1. token_list_index index of the token_list for the

 statement. (input/output)

 2. entry_ptr pointer to the list of labels.

 (input)

 DRAFT: SUBJECT TO CHANGE 3-95 order number

 3. conditions conditions for the block. (input)

 4. father_block_ptr pointer to the block node

 containing this block. (input)

 5. end_ptr pointer to the token that ends the

 block. (output)

 6. block_type type of this block. (input)

 7. return_flag bit indicating if there is a return

 statement in this block. (output)

 Programs that invoke this entry:

 parse

 procedure_parse

 do_parse

 on_parse

 if_parse

 Internal Procedures:

 none

 External Variables:

 pla_stat_$cur_statement

 tree_$

 Internal Static Variables:

 none

 DRAFT: SUBJECT TO CHANGE 3-96 order number

 Programs Called:

 create_block

 create_operator

 create_statement

 declare_label

 declare_parse

 default_parse

 do_parse

 if_parse

 io_statement_parse

 lex

 on_parse

 parse_error

 procedure_parse

 process_entry

 statement_parse

 statement_type

 Include Files used:

 parse

 language_utility

 source_id_descriptor

 token_list

 block

 declare_type

 op_codes

 statement

 token

 block_types

 statement_types

 token_types

 list

 Errors Diagnosed:

 Error 410

 Error 411

 Error 412

 Error 416

 DRAFT: SUBJECT TO CHANGE 3-97 order number

 NAME: do_parse

 Function:

 1. It parses the do statement.

 2. It processes all statements following the do statement until

 a matching end statement is found.

 3. It may call itself recursively to process other do

 statements.

 Entry:

 do_parse

 Usage:

 declare do_parse entry (fixed bin(15), ptr, bit(12)

 aligned, ptr, ptr, bit(1) aligned, bit(1) aligned, bit(1) aligned

);

 call do_parse (token_list_index, entry_ptr,

 conditions, father_block_ptr, end_ptr, entry_flag, return_flag,

 iterative_do_flag);

 1. token_list_index index of the token_list for the

 statement. (input/output)

 2. entry_ptr pointer to the list of labels.

 (input)

 3. conditions conditions for the block. (input)

 4. father_block_ptr pointer to the block node

 containing this block. (input)

 DRAFT: SUBJECT TO CHANGE 3-98 order number

 5. end_ptr pointer to the token node that ends

 the block. (output)

 6. entry_flag bit indicating whether there is any

 entry statement within this block.

 (output)

 7. return_flag bit indicating whether there is any

 return statement within this block.

 (output)

 8. iterative_do_flag bit indicating whether an iterative

 do group has been found. (output)

 Programs that invoke this entry:

 procedure_parse

 do_parse

 if_parse

 Internal Procedures:

 print

 an internal procedure used to call the error

 message program parse_error.

 External Variables:

 pl1_stat_$cur_statement

 tree_$

 Internal Static Variables:

 none

 DRAFT: SUBJECT TO CHANGE 3-99 order number

 Programs Called:

 create_label

 create_list

 create_operator

 create_statement

 declare_label

 declare_parse

 default_parse

 do_parse

 expression_parse

 free_node

 if_parse

 io_statement_parse

 lex

 on_parse

 parse_error

 procedure_parse

 process_entry

 reference_parse

 statement_parse

 statement_type

 Include Files used:

 parse

 language_utility

 source_id_descriptor

 token_list

 block

 op_codes

 operator

 statement

 token

 block_types

 statement_types

 token_types

 list

 label

 reference

 declare_type

 DRAFT: SUBJECT TO CHANGE 3-100 order number

 Errors Diagnosed:

 Error 404

 Error 405

 Error 406

 Error 407

 Error 408

 Error 409

 Error 411

 Error 413

 Error 416

 Error 418

 Error 419

 Error 424

 Error 425

 Error 426

 Error 429

 Error 433

 DRAFT: SUBJECT TO CHANGE 3-101 order number

 NAME: on_parse

 Function:

 1. It parses the on statement.

 2. It processes all statements in the on unit.

 3. It creates a block node for the on unit.

 Entry:

 on_parse

 Usage:

 declare on_parse entry (fixed bin(15), ptr, bit(12)

 aligned, ptr, ptr);

 call on_parse (token_list_index, entry_ptr,

 conditions, father_block_ptr, end_ptr);

 1. token_list_index index of the token_list for the

 statement. (input/output)

 2. entry_ptr pointer to the list of labels.

 (input)

 3. conditions conditions for the block. (input)

 4. father_block_ptr pointer to the block node

 containing this block. (input)

 5. end_ptr pointer to the token that ends the

 block. (output)

 DRAFT: SUBJECT TO CHANGE 3-102 order number

 Programs that invoke this entry:

 procedure_parse

 do_parse

 if_parse

 Entry:

 on_parse$revert

 This entry parses the revert statement and the signal

 statement.

 Usage:

 declare on_parse$revert entry (fixed bin(15), ptr, ptr

);

 call on_parse$revert(token_list_index, statement_ptr,

 father_block_ptr);

 1. token_list_index index of the token_list for the

 statement. (input/output)

 2. statement_ptr pointer to the statement node for

 the revert statement or the signal

 statement. (input)

 3. father_block_ptr pointer to the block node that

 contains this block. (input)

 Programs that invoke this entry:

 statement_parse

 DRAFT: SUBJECT TO CHANGE 3-103 order number

 Internal Procedures:

 get_condition

 this internal function ascertains if the

 condition name is valid, and records the

 condition context for the name.

 External Variables:

 pl1_stat_$condition_index

 tree_$

 Internal Static Variables:

 none

 Programs Called:

 bindec$vs

 context

 create_block

 create_list

 create_operator

 create_statement

 create_symbol

 create_token

 declare_label

 free_node

 io_statement_parse

 parse_error

 procedure_parse

 reference_parse

 statement_parse

 statement_type

 Include Files used:

 DRAFT: SUBJECT TO CHANGE 3-104 order number

 parse

 language_utility

 source_id_descriptor

 block

 block_types

 context_codes

 declare_type

 list

 nodes

 op_codes

 operator

 reference

 statement

 statement_types

 symbol

 token

 token_list

 token_types

 Errors Diagnosed:

 Error 1

 Error 42

 Error 420

 Error 421

 Error 422

 Error 423

 DRAFT: SUBJECT TO CHANGE 3-105 order number

 NAME: statement_type

 Function:

 1. It parses the condition prefix for the statement.

 2. It parses the label prefix for the statement.

 3. It determines the type of statement returned by lex.

 Entry:

 statement_type

 Usage:

 declare statement_type entry (fixed bin(15), ptr,

 bit(12) aligned) returns (fixed bin(15));

 type = statement_type (token_list_index, label_ptr,

 conditions);

 1. token_list_index index of the token_list for the

 statement. (input/output)

 2. label_ptr pointer to the list of labels for

 the statement. (output)

 3. conditions conditions for the statement.

 (output)

 4. type type of statement found by this

 procedure. (output)

 Programs that invoke this entry:

 DRAFT: SUBJECT TO CHANGE 3-106 order number

 procedure_parse

 parse

 do_parse

 on_parse

 if_parse

 Internal Procedures:

 has_equal

 an internal function to advance the

 token_list_index to search for an equal

 token.

 print

 an internal procedure to call the error

 message program parse_error.

 skip_parens

 an internal procedure to advance the

 token_list_index until it matches a

 corresponding right parenthesis.

 External Variables:

 tree_$

 Internal Static Variables:

 none

 Programs Called:

 create_list

 create_reference

 create_token

 parse_error

 DRAFT: SUBJECT TO CHANGE 3-107 order number

 Include Files used:

 language_utility

 source_id_descriptor

 token_list

 list

 reference

 nodes

 token_types

 statement_types

 Errors Diagnosed:

 Error 2

 Error 43

 Error 44

 Error 45

 Error 95

 Error 96

 DRAFT: SUBJECT TO CHANGE 3-108 order number

 NAME: statement_parse

 Function:

 1. The following statements are parsed by this program:

 allocate statement

 assignment statement

 call statement

 free statement

 goto statement

 null statement

 return statement

 Entry:

 statement_parse

 Usage:

 declare statement_parse entry (fixed bin(15), ptr,

 bit(12) aligned, ptr, fixed bin(15));

 call statement_parse (token_list_index, label_ptr,

 conditions, cur_block, type);

 1. token_list_index index of the token_list for the

 statement. (input/output)

 2. label_ptr pointer to the list of labels for

 the statement. (input)

 3. conditions conditions for the statement.

 (input)

 4. cur_block pointer to the block node

 containing this statement. (input)

 DRAFT: SUBJECT TO CHANGE 3-109 order number

 5. type type of statement to be parsed by

 this program. (input)

 Programs that invoke this entry:

 procedure_parse

 do_parse

 on_parse

 if_parse

 Internal Procedures:

 print

 an internal procedure used to call the error

 message program parse_error.

 External Variables:

 pl1_stat_$cur_statement

 tree_$

 Internal Static Variables:

 none

 Programs Called:

 context

 create_list

 create_operator

 create_reference

 create_statement

 create_symbol

 declare_label

 DRAFT: SUBJECT TO CHANGE 3-110 order number

 expression_parse

 on_parse$revert

 parse_error

 reference_parse

 Include Files used:

 parse

 language_utility

 source_id_descriptor

 block

 declare_type

 context_codes

 label

 list

 nodes

 op_codes

 operator

 reference

 statement

 statement_types

 symbol

 token

 token_list

 token_types

 Errors Diagnosed:

 Error 1

 Error 5

 Error 49

 Error 150

 Error 444

 Error 446

 Error 447

 Error 450

 Error 451

 Error 452

 Error 453

 Error 454

 Error 455

 Error 456

 Error 460

 DRAFT: SUBJECT TO CHANGE 3-111 order number

 NAME: if_parse

 Function:

 1. It parses the if statement.

 2. If the then clause is an independent statement, this program

 will parse the then clause.

 3. If the then clause is a group or a begin block, this program

 will process all the statements in the then clause.

 4. It also processes all the statements in the else clause if

 there is an else clause.

 Entry:

 if_parse

 Usage:

 declare if_parse entry (fixed bin(15), ptr, bit(12)

 aligned, ptr, ptr, bit(1) aligned);

 call if_parse (token_list_index, entry_ptr,

 conditions, father_block, end_ptr, return_flag);

 1. token_list_index index to the token_list for the

 statement. (input/outut)

 2. entry_ptr pointer to the list of labels for

 this statement. (input)

 3. conditions conditions for this statement.

 (input)

 4. father_block pointer to the block node

 containing this statement. (input)

 DRAFT: SUBJECT TO CHANGE 3-112 order number

 5. end_ptr pointer to the token that ends the

 block. (output)

 6. return_flag bit indicating whether there is a

 return statement in this statement.

 (output)

 Programs that invoke this entry:

 procedure_parse

 do_parse

 if_parse

 Internal Procedures:

 print

 an internal procedure used to call the error

 message program parse_error.

 External Variables:

 pl1_stat_$cur_statement

 tree_$

 Internal Static Variables:

 none

 Programs Called:

 create_label

 create_list

 create_operator

 create_statement

 DRAFT: SUBJECT TO CHANGE 3-113 order number

 declare_label

 do_parse

 expression_parse

 if_parse

 io_statement_parse

 lex

 on_parse

 parse_error

 procedure_parse

 reference_parse

 statement_parse

 statement_type

 Include Files used:

 parse

 language_utility

 source_id_descriptor

 token_list

 token

 token_types

 op_codes

 block

 block_types

 statement

 statement_types

 nodes

 reference

 operator

 list

 label

 symbol

 declare_type

 Errors Diagnosed:

 Error 1

 Error 412

 Error 430

 Error 431

 Error 432

 Error 446

 DRAFT: SUBJECT TO CHANGE 3-114 order number

 NAME: io_statement_parse

 Function:

 1. It parses the following input/output statements:

 get statement

 put statement

 read statement

 write statement

 rewrite statement

 locate statement

 delete statement

 open statement

 close statement

 2. It calls format_list_parse to parse the format statement.

 Entry:

 io_statement_parse

 Usage:

 declare io_statement_parse entry (fixed bin(15), ptr,

 bit(12) aligned, ptr, ptr, bit(1) aligned, bit(9) aligned);

 call io_statement_parse (token_list_ptr, entry_ptr,

 conditions, father_block, end_ptr, return_flag, statement_type);

 1. token_list_index index to the token_list for the

 statement. (input/output)

 2. entry_ptr pointer to the list of labels fo

 this statement. (input)

 3. conditions conditions for this statement.

 (input)

 DRAFT: SUBJECT TO CHANGE 3-115 order number

 4. father_block pointer to the block node

 containing this statement. (input)

 5. end_ptr pointer to the token that ends the

 block. (output)

 6. return_flag bit indicating whether there is a

 return statement in this block.

 (input)

 7. statement_type type of statement to be parsed by

 this program. (input)

 Programs that invoke this entry:

 procedure_parse

 do_parse

 on_parse

 if_parse

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$cur_statement

 tree_$

 Internal Static Variables:

 none

 Programs Called:

 DRAFT: SUBJECT TO CHANGE 3-116 order number

 context

 create_operator

 create_statement

 create_symbol

 create_token

 data_list_parse

 declare_label

 expression_parse

 format_list_parse

 parse_error

 Include Files used:

 parse

 language_utility

 source_id_descriptor

 list

 block_types

 label

 block

 context_codes

 nodes

 declare_type

 operator

 op_codes

 statement

 statement_types

 symbol

 token_list

 token_types

 Errors Diagnosed:

 Error 169

 Error 237

 Error 238

 Error 239

 Error 240

 Error 241

 Error 243

 Error 245

 Error 247

 Error 254

 DRAFT: SUBJECT TO CHANGE 3-117 order number

 Error 257

 Error 288

 Error 289

 Error 290

 Error 293

 Error 428

 DRAFT: SUBJECT TO CHANGE 3-118 order number

 NAME: format_list_parse

 Function:

 1. It parses the format list in a format statement.

 2. It parses the format list in a get (edit) statement or a put

 (edit) statement.

 Entry:

 format_list_parse

 Usage:

 declare format_list_parse entry (fixed bin(15), ptr,

 ptr, ptr) returns (bit(1) aligned);

 success_bit = format_list_parse (token_list_index,

 cur_block, statement_ptr, format_tree);

 1. token_list_index index to the token list for the

 statement. (input)

 2. cur_block pointer to the block node

 containing the format list.

 (input)

 3. statement_ptr pointer to the statement node

 containing the format list.

 (input)

 4. format_tree pointer to the format list returned

 by this program. (output)

 5. success_bit bit indicating if the list of

 tokens does indeed parse into a

 format list. (output)

 DRAFT: SUBJECT TO CHANGE 3-119 order number

 Programs that invoke this entry:

 io_statement_parse

 format_list_parse

 Internal Procedures:

 none

 External Variables:

 tree_$

 Internal Static Variables:

 none

 Programs Called:

 create_operator

 create_symbol

 declare_picture

 expression_parse

 format_list_parse

 free_node

 parse_error

 reference_parse

 Include Files used:

 parse

 language_utility

 source_id_descriptor

 DRAFT: SUBJECT TO CHANGE 3-120 order number

 block

 declare_type

 label

 list

 nodes

 operator

 op_codes

 picture_image

 reference

 statement

 statement_types

 token_list

 token_types

 symbol

 Errors Diagnosed:

 Error 278

 Error 427

 Error 439

 DRAFT: SUBJECT TO CHANGE 3-121 order number

 NAME: data_list_parse

 Function:

 1. It parses the data list in an input/output statement.

 Entry:

 data_list_parse

 Usage:

 declare data_list_parse entry (fixed bin(15), ptr,

 ptr) returns (bit(1) aligned);

 success_bit = data_list_parse (token_list_index,

 cur_block, data_tree);

 1. token_list_index index to the token list for the

 statement. (input)

 2. cur_block pointer to the block node

 containing the statement. (input)

 3. data_tree pointer to the data list returned

 by this program. (output)

 4. success_bit bit indicating if the list of

 tokens does indeed parse into a

 data list. (output)

 Programs that invoke this entry:

 io_statement_parse

 DRAFT: SUBJECT TO CHANGE 3-122 order number

 Internal Procedures:

 none

 External Variables:

 tree_$

 Internal Static Variables:

 none

 Programs Called:

 create_operator

 expression_parse

 parse_error

 reference_parse

 Include Files used:

 parse

 language_utility

 source_id_descriptor

 operator

 op_codes

 token_list

 token_types

 Errors Diagnosed:

 Error 255

 Error 256

 DRAFT: SUBJECT TO CHANGE 3-123 order number

 Error 258

 Error 404

 Error 405

 Error 406

 Error 407

 Error 408

 Error 409

 Error 418

 Error 419

 Error 424

 Error 426

 DRAFT: SUBJECT TO CHANGE 3-124 order number

 NAME: expression_parse

 Function:

 1. This procedure parses expressions using a simple operator

 procedence technique. The syntax parsed is:

 <expression> ::= <primitive> [<operator> <primitive>]

 ...

 where the nth operator and its operands are stacked if the

 n+1st operator has higher precedence. The primitive is

 parsed by the intenal procedure "primitive".

 Entry:

 expression_parse

 Usage:

 declare expression_parse entry (fixed bin(15), ptr)

 returns (ptr);

 expression_tree = expression_parse (token_list_index,

 cur_block);

 1. token_list_index index to the token list for the

 statement. (input/output)

 2. cur_block pointer to the block node

 containing this expression.

 (input)

 3. expression_tree pointer to the expression returned

 by this program. (output)

 DRAFT: SUBJECT TO CHANGE 3-125 order number

 Programs that invoke this entry:

 attribute_parse

 data_list_parse

 default_parse

 do_parse

 expression_parse

 format_list_parse

 if_parse

 io_statement_parse

 reference_parse

 statement_parse

 Internal Procedures:

 primitive

 an internal procedure used to parse

 expressions, exponentiation operators, and

 parenthesized expressions.

 External Variables:

 tree_$

 Internal Static Variables:

 t pointer used to get better accessing to the

 list of tokens.

 Programs Called:

 create_operator

 create_token

 evaluate

 expression_parse

 reference_parse

 DRAFT: SUBJECT TO CHANGE 3-126 order number

 Include Files used:

 parse

 language_utility

 source_id_descriptor

 token_list

 token

 nodes

 operator

 op_codes

 token_types

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 3-127 order number

 NAME: reference_parse

 Function:

 1. It parses the list of tokens into a reference node whenever

 possible.

 2. The reference may be locator qualified, structure qualified,

 subscripted, or any combination thereof.

 3. The reference may also be a function reference.

 Entry:

 reference_parse

 Usage:

 declare reference_parse entry (fixed bin(15), ptr)

 returns (ptr);

 reference_tree = reference_parse (token_list_index,

 cur_block);

 1. token_list_index index to the token list for the

 statement. (input/output)

 2. cur_block pointer to the block node

 containing this operand. (input)

 3. reference_tree pointer to the operand representing

 the result of reference_parse.

 (output)

 Programs that invoke this entry:

 DRAFT: SUBJECT TO CHANGE 3-128 order number

 attribute_parse

 data_list_parse

 do_parse

 expression_parse

 format_list_parse

 if_parse

 io_statement_parse

 on_parse

 statement_parse

 Internal Procedures:

 atom

 an internal procedure to test and parse the

 list of tokens into an expression.

 Expressions of the form

 (reference)

 is parsed into

 temporary_node = reference

 External Variables:

 tree_$

 Internal Static Variables:

 none

 Programs Called:

 context

 create_list

 create_operator

 create_reference

 create_symbol

 expression_parse

 DRAFT: SUBJECT TO CHANGE 3-129 order number

 Include Files used:

 parse

 language_utility

 source_id_descriptor

 context_codes

 declare_type

 list

 nodes

 op_codes

 operator

 reference

 symbol

 token

 token_list

 token_types

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 3-130 order number

 NAME: declare_parse

 Function:

 1. It parses the declare statement.

 Entry:

 declare_parse

 Usage:

 declare declare_parse entry (fixed bin(15), ptr, ptr

);

 call declare_parse (token_list_index, cur_block,

 labelptr);

 1. token_list_index index to the token_list for the

 statement. (input/output)

 2. cur_block pointer to the block node

 containing this statement. (input)

 3. labelptr pointer to the list of labels to

 this statement. (input)

 Programs that invoke this entry:

 procedure_parse

 do_parse

 DRAFT: SUBJECT TO CHANGE 3-131 order number

 Entry:

 declare_parse$abort

 This entry calls the error message program parse_error. It

 also attempts to resume parse at the first comma after the error

 token not contained in parentheses.

 Usage:

 declare declare_parse$abort entry(fixed bin(15), ptr

);

 call declare_parse$abort (error_number, error_pointer

);

 1. error_number the error number. (input)

 2. error_pointer pointer to the operand that causes

 the error. (input)

 Programs that invoke this entry:

 attribute_parse

 declare_parse

 descriptor_parse

 Internal Procedures:

 declare_parse_factored

 is called to parse all the tokens in the

 declare statement between "declare" and the

 semicolon. It calls attribute_parse to

 process the attributes, and it calls itself

 recursively to process factored attribute

 lists when it encounters a left parenthesis.

 DRAFT: SUBJECT TO CHANGE 3-132 order number

 link_symbol

 an internal procedure used to link up members

 of a structure.

 External Variables:

 pl1_stat_$cur_statement

 pl1_stat_$statement_id

 pl1_stat_$unwind

 tree_$

 Internal Static Variables:

 cblock pointer to the block node containing this

 declare statement.

 factored_level number indicating the depth of structure

 level the current symbol is in.

 k used to show the position of the

 token_list_index.

 l used to show the position of the

 token_list_index.

 previous_symbol pointer to the symbol node of the structure

 containing the current symbol.

 Programs Called:

 attribute_parse

 create_statement

 create_symbol

 create_token

 declare_label

 declare_parse$abort

 free_node

 merge_attributes

 parse_error

 token_to_binary

 DRAFT: SUBJECT TO CHANGE 3-133 order number

 Include Files used:

 parse

 language_utility

 source_id_descriptor

 block

 token_types

 statement_types

 symbol

 token_list

 token

 declare_type

 reference

 link_symbol

 Errors Diagnosed:

 Error 3

 Error 27

 DRAFT: SUBJECT TO CHANGE 3-134 order number

 NAME: attribute_parse

 Function:

 1. It parses the attribute set occurring in declare statements,

 in the returns(), entry() attributes, and in the when()

 clause of then generic () attribute.

 Entry:

 attribute_parse

 Usage:

 declare attribute_parse entry (ptr, ptr, fixed

 bin(15), bit(1) aligned);

 call attribute_parse (cur_block, symbol_ptr,

 token_list_index, generic_bit);

 1. cur_block pointer to the block node

 containing this declaration.

 (input)

 2. symbol_ptr pointer to the symbol node for

 which the attributes are declared

 for. (input)

 3. token_list_index index to the token list for the

 statement. (input/output)

 4. generic_bit bit indicating that the procedure

 is called in the generic attribute

 context, which allows the

 declaration of precision attribute

 to range from low precision to high

 precision and the scale attribute

 to range from low scale to high

 scale. (input)

 DRAFT: SUBJECT TO CHANGE 3-135 order number

 Programs that invoke this entry:

 declare_parse

 default_parse

 descriptor_parse

 Internal Procedures:

 get_scale

 an internal procedure to get the scale of a

 fixed or precision attribute.

 initial_list

 an internal procedure to parse the initial

 attribute.

 print

 an internal procedure used to call the error

 message program declare_parse$abort.

 refer_exp

 an internal procedure to get the size or the

 bound of an item. In particular, if the size

 or bound has refer_extents declaration, it

 will be parsed.

 External Variables:

 pl1_stat_$one

 tree_$

 Internal Static Variables:

 none

 DRAFT: SUBJECT TO CHANGE 3-136 order number

 Programs Called:

 context

 create_array

 create_bound

 create_list

 create_operator

 create_token

 declare_parse$abort

 descriptor_parse

 expression_parse

 reference_parse

 token_to_binary

 Include Files used:

 parse

 language_utility

 source_id_descriptor

 attribute_table

 block

 token_list

 reference

 context_codes

 token_types

 symbol

 array

 operator

 op_codes

 list

 nodes

 Errors Diagnosed:

 Error 6

 Error 7

 Error 8

 Error 9

 Error 10

 Error 11

 Error 12

 Error 13

 DRAFT: SUBJECT TO CHANGE 3-137 order number

 Error 14

 Error 15

 Error 17

 Error 18

 Error 19

 Error 20

 Error 22

 Error 23

 Error 24

 Error 26

 Error 57

 Error 138

 Error 192

 Error 193

 DRAFT: SUBJECT TO CHANGE 3-138 order number

 NAME: default_parse

 Function:

 1. It parses the default statement.

 Entry:

 default_parse

 Usage:

 declare default_parse entry (fixed bin(15), ptr, ptr

);

 call default_parse (token_list_index, cur_block,

 label_ptr);

 1. token_list_index index to the token list for the

 statement. (input/output)

 2. cur_block pointer to the block node

 containing this statement. (input)

 3. label_ptr pointer to the list of labels for

 this statement. (input)

 Programs that invoke this entry:

 procedure_parse

 do_parse

 DRAFT: SUBJECT TO CHANGE 3-139 order number

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$cur_statement

 pl1_stat_$statement_id

 pl1_stat_$unwind

 tree_$

 Internal Static Variables:

 none

 Programs Called:

 attribute_parse

 create_default

 create_statement

 create_symbol

 declare_label

 expression_parse

 free_node

 parse_error

 Include Files used:

 parse

 language_utility

 source_id_descriptor

 default

 symbol

 block

 token_list

 token_types

 DRAFT: SUBJECT TO CHANGE 3-140 order number

 statement_types

 declare_type

 Errors Diagnosed:

 Error 48

 DRAFT: SUBJECT TO CHANGE 3-141 order number

 NAME: descriptor_parse

 Function:

 1. It parses descriptor lists. Descriptor lists occur in the

 following three contexts:

 entry (descriptior list) in the entry attribute,

 returns (descriptior list) in the returns attribute,

 when (descriptior list) in the when clause of the

 generic attribute.

 Entry:

 descriptor_parse

 Usage:

 declare descriptor_parse entry (ptr, ptr, fixed

 bin(15)) returns (ptr);

 return_ptr = descriptor_parse (cur_block, token_ptr,

 token_list_index);

 1. cur_block pointer to the block node

 containing this declaration.

 (input)

 2. token_ptr pointer to the token node for which

 the attribute is declared for.

 (input)

 3. token_list_index index to the token_list for the

 statement. (input/output)

 4. return_ptr pointer to the chain of list nodes

 returned by this program. (output)

 DRAFT: SUBJECT TO CHANGE 3-142 order number

 Programs that invoke this entry:

 attribute_parse

 process_entry

 Internal Procedures:

 link_symbol

 an internal procedure used to link up members

 of a structure.

 External Variables:

 tree_$

 Internal Static Variables:

 none

 Programs Called:

 attribute_parse

 bindec$vs

 create_list

 create_symbol

 create_token

 declare_parse$abort

 parse_error

 token_to_binary

 Include Files used:

 DRAFT: SUBJECT TO CHANGE 3-143 order number

 parse

 language_utility

 source_id_descriptor

 symbol

 token_list

 token_types

 declare_type

 list

 link_symbol

 Errors Diagnosed:

 Error 16

 DRAFT: SUBJECT TO CHANGE 3-144 order number

 NAME: process_entry

 Function:

 1. It parses the procedure statement and the entry statement.

 Entry:

 process_entry

 Usage:

 declare process_entry entry (fixed bin(15), bit(9)

 aligned, ptr, ptr, bit(12) aligned);

 call process_entry (token_list_index, statement_type,

 cur_block, entry_ptr, conditions);

 1. token_list_index index to the token_list for the

 statement. (input/output)

 2. statement_type type of statement. (input)

 3. cur_block pointer to the block node

 containing this statement. (input)

 4. entry_ptr pointer to the list of labels for

 this statement. (input)

 5. conditions conditions for this statement.

 (input)

 Programs that invoke this entry:

 DRAFT: SUBJECT TO CHANGE 3-145 order number

 procedure_parse

 do_parse

 Internal Procedures:

 print

 an internal procedure used to call the error

 message program parse_error.

 External Variables:

 cg_static_$support

 pl1_stat_$cur_statement

 pl1_stat_$root

 pl1_stat_$statement_id

 pl1_stat_$unwind

 pl1_stat_$validate_proc

 tree_$

 Internal Static Variables:

 none

 Programs Called:

 context

 create_cross_reference

 create_list

 create_operator

 create_statement

 create_symbol

 create_token

 descriptor_parse

 parse_error

 reserve$rename_parse

 DRAFT: SUBJECT TO CHANGE 3-146 order number

 Include Files used:

 parse

 language_utility

 source_id_descriptor

 token_list

 context_codes

 nodes

 token

 statement_types

 statement

 cross_reference

 symbol

 declare_type

 operator

 token_types

 op_codes

 list

 block

 block_types

 Errors Diagnosed:

 Error 34

 Error 35

 Error 36

 Error 37

 Error 38

 Error 39

 Error 40

 Error 41

 Error 46

 DRAFT: SUBJECT TO CHANGE 3-147 order number

 NAME: context

 Function:

 1. It records the context of certain identifiers found during

 the parse.

 Entry:

 context

 Usage:

 declare context entry (ptr, ptr, fixed bin(15));

 call context (identifier, block_ptr, context_type);

 1. identifier pointer to the token node

 representing the identifier.

 (input)

 2. block_ptr pointer to the block node

 containing this token. (input)

 3. context_type type of cntext to be recorded for

 the identifier. (input)

 Programs that invoke this entry:

 attribute_parse

 io_statement_parse

 on_parse

 process_entry

 reference_parse

 statement_parse

 DRAFT: SUBJECT TO CHANGE 3-148 order number

 Internal Procedures:

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 create_context

 Include Files used:

 language_utility

 source_id_descriptor

 context

 context_codes

 nodes

 block

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 3-149 order number

 NAME: evaluate

 Function:

 1. It examines an expression involving two token constants and

 decides if they can be simplified into one token constant.

 Entry:

 evaluate

 Usage:

 declare evaluate entry (bit(9) aligned, ptr, ptr)

 retruns (ptr);

 return_ptr = evaluate (op_code, first_ptr, second_ptr

);

 1. op_code indicates the kind of operation is

 involved. (input)

 2. first_ptr pointer to the first token

 constant. (input)

 3. second_ptr pointer to the second token

 constant. (input)

 4. return_ptr pointer to the token node

 representing the resulting operand.

 (output)

 Programs that invoke this entry:

 DRAFT: SUBJECT TO CHANGE 3-150 order number

 expression_parse

 Internal Procedures:

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 bindec

 create_operator

 create_token

 token_to_binary

 Include Files used:

 op_codes

 operator

 token

 token_types

 language_utility

 source_id_descriptor

 Errors Diagnosed:

 DRAFT: SUBJECT TO CHANGE 3-151 order number

 none

 Chapter4.runoff 08/13/74

 1215.3r w 08/13/74 1214.7 194346

 SECTION IV

 DECLARATION PROCESSING

 THE_CONTEXT_PROCESSOR

 The context processor scans all the context nodes containing

 contextually derived attributes recorded during the parse. The

 context processor either augments the partial symbol table node

 created from declaration statements or creates new declarations.

 This activity constitutes the contextual and implicit

 declarations.

 DRAFT: SUBJECT TO CHANGE 4-152 order number

 NAME: context_processor

 Function:

 1. It does the context processing of all the context entries on

 a block node.

 2. For each context entry in the block, it will try to match a

 previous declared symbol.

 3. If a previous declaration is found, the context declaration

 will be overwritten except for the parameter context. If no

 previous declaration is found, a symbol node will be created,

 and the context declaration copied on to the symbol node.

 4. If a condition context entry is found to match with a

 declaration not in the same block, a new declaration will be

 made.

 5. This program also expands the like attribute appearing

 anywhere in the block.

 Entry:

 context_processor

 Usage:

 declare context_processor entry (ptr);

 call context_processor (block_ptr);

 1. block_ptr pointer to the block node whose

 block.context chain is to be

 scanned. (input)

 DRAFT: SUBJECT TO CHANGE 4-153 order number

 Programs that invoke this entry:

 context_processor

 semantic_translator

 Internal Procedures:

 found

 an internal procedure to match a context

 entry with a previously declared symbol node

 entry.

 print

 an internal procedure to call the error

 message program error_$no_text.

 process_like

 an internal procedure to process and expand

 the like attribute in a symbol node.

 External Variables:

 pl1_stat_$root

 Internal Static Variables:

 none

 Programs Called:

 context_processor

 copy_expression$copy_sons

 create_symbol

 error_$no_text

 lookup

 DRAFT: SUBJECT TO CHANGE 4-154 order number

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 block

 nodes

 reference

 context

 declare_type

 symbol

 token

 Errors Diagnosed:

 Error 69

 Error 74

 Error 74

 Error 75

 Error 119

 Error 120

 Error 133

 Error 189

 Error 214

 DRAFT: SUBJECT TO CHANGE 4-155 order number

 THE_DECLARATION_PROCESSOR

 After contextual and implicit declarations have been

 processed, the declaration processor scans all the symbol table

 nodes to develop additional information about each variable.

 These include the preparation of accessing code: transforming

 parameters and automatic adjustible arrays into based references,

 calculation of boundary requirements, offset expressions, and

 array multipliers and virtual origins; the computation of storage

 requirements for each variable; and the generation of

 initialization code for some variables.

 DRAFT: SUBJECT TO CHANGE 4-156 order number

 NAME: declare

 Function:

 1. This program establishes complete declarations for all the

 names used in the program.

 2. It calls declare_structure to establish the complete

 declaration for all the members of the structure.

 3. It calls validate to get the default attributes, and to check

 for correctness of all the declared attributes.

 4. It creates descriptors for parameters and controlled

 variables.

 5. It calls get_size to determine the storage size and boundary

 requirement for the declaration.

 6. It generates a character string constant for condition

 constants.

 7. It establishes the complete declaration for the returns

 descriptor and the parameter descriptor for an entry

 declaration.

 8. For all the return values of all the entry constants in the

 block, it determines whether the attributes associated with

 the return values are the same. An integer will be created

 for use in the semantic translator if the attributes

 associated with the return values are not the same.

 9. Pointers are created for parameters appearing in more than

 one position in any entry statement.

 10. Allot_auto operators will be created in the prologue sequence

 for the block, for automatic variables with adjustible sizes.

 11. It calls expand_initial to do the initialization of variables

 if necessary.

 Entry:

 DRAFT: SUBJECT TO CHANGE 4-157 order number

 declare

 Usage:

 declare declare entry (ptr);

 call declare (symbol_ptr);

 1. symbol_ptr pointer to the symbol node to be

 processed by this program. (input)

 Programs that invoke this entry:

 builtin

 declare

 declare_structure

 defined_reference

 expand_assign

 expand_primitive

 expression_semantics

 io_semantics

 operator_semantics

 semantic_translator

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$eis_mode

 DRAFT: SUBJECT TO CHANGE 4-158 order number

 Internal Static Variables:

 none

 Programs Called:

 compare_declaration

 copy_expression

 create_list

 create_operator

 create_statement$prologue

 declare

 declare_constant$char

 declare_constant$integer

 declare_descriptor

 declare_descriptor$parm

 declare_integer

 declare_pointer

 declare_structure

 expand_initial

 get_size

 lookup

 semantic_translator$abort

 semantic_translator$error

 validate

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 symbol

 block

 reference

 list

 operator

 statement

 op_codes

 statement_types

 nodes

 token

 token_types

 DRAFT: SUBJECT TO CHANGE 4-159 order number

 declare_type

 boundary

 system

 Errors Diagnosed:

 Error 98

 Error 149

 Error 194

 Error 196

 Error 213

 DRAFT: SUBJECT TO CHANGE 4-160 order number

 NAME: compare_declaration

 Function:

 1. It compares the data type and the size of two declarations.

 2. If the two declarations are arrays, or structures, it calls

 itself recursively to compare the array dimensions, bounds,

 or attributes of members of the structure.

 Entry:

 compare_declaration

 Usage:

 declare compare_declaration entry (ptr, ptr) returns

 (bit(1) aligned);

 success_bit = compare_declaration (first_ptr,

 second_ptr);

 1. first_ptr pointer to either a reference node

 or a symbol node. (input)

 2. second_ptr pointer to a symbol node. (input)

 3. success_bit bit indicating if the comparison is

 successful. (output)

 Programs that invoke this entry:

 compare_declaration

 declare

 expand_assign

 DRAFT: SUBJECT TO CHANGE 4-161 order number

 operator_semantics

 Internal Procedures:

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 compare_declaration

 compare_expression

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 array

 nodes

 picture_image

 reference

 symbol

 Errors Diagnosed:

 DRAFT: SUBJECT TO CHANGE 4-162 order number

 none

 DRAFT: SUBJECT TO CHANGE 4-163 order number

 NAME: validate

 Function:

 1. It validates that all attributes on a declaration is

 compatible.

 2. It applies the default attributes to every declaration.

 3. It checks for completeness of certain attributes.

 4. It develops the packed attribute and the abnormal attribute.

 5. It validates that precision, scale, string size, and area

 size are within proper range.

 Entry:

 validate

 Usage:

 declare validate entry (ptr);

 call validate (symbol_ptr);

 1. symbol_ptr pointer to the symbol node to be

 processed by this program. (input)

 Programs that invoke this entry:

 declare_

 declare_structure

 expression_semantics

 DRAFT: SUBJECT TO CHANGE 4-164 order number

 Internal Procedures:

 evaluate

 an internal procedure to evaluate the

 predicate of a default statement.

 inconsistent

 an internal procedure to check for

 incompatible attributes in the same

 declaration.

 print

 an internal procedure to call the error

 message program semantic_translator$error.

 system

 an internal procedure to evaluate the system

 defaults.

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 error_$no_text

 merge_attributes

 propagate_bit

 semantic_translator$error

 token_to_binary

 Include Files used:

 DRAFT: SUBJECT TO CHANGE 4-165 order number

 semant

 language_utility

 source_id_descriptor

 default

 symbol

 symbol_bits

 reference

 operator

 token

 token_types

 decoded_token_types

 list

 block

 op_codes

 nodes

 system

 attribute_table

 declare_type

 Errors Diagnosed:

 Error 97

 Error 113

 Error 200

 Error 201

 Error 204

 Error 205

 Error 206

 Error 207

 Error 208

 Error 209

 Error 211

 Error 212

 Error 215

 Error 216

 Error 217

 Error 218

 Error 219

 Error 220

 Error 222

 Error 279

 Error 280

 Error 281

 Error 282

 Error 283

 Error 284

 DRAFT: SUBJECT TO CHANGE 4-166 order number

 Error 285

 Error 357

 Error 360

 Error 367

 DRAFT: SUBJECT TO CHANGE 4-167 order number

 NAME: merge_attributes

 Function:

 1. It merges attributes from a template declaration into a

 target declaration.

 Entry:

 merge_attributes

 Usage:

 declare merge_attributes entry (ptr, ptr) returns (

 bit(1) aligned);

 success_bit = merge_attributes (target_symbol_ptr,

 template_symbol_ptr);

 1. target_symbol_ptr pointer to the symbol node of the

 declaration to which the attributes

 are merged into. (input)

 2. template_symbol_ptr pointer to the symbol node of the

 declaration of the template.

 (input)

 3. success_bit bit indicating if the merging

 process is successful. (output)

 Programs that invoke this entry:

 declare_parse

 lang_util_

 validate

 DRAFT: SUBJECT TO CHANGE 4-168 order number

 Internal Procedures:

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 copy_expression

 create_token

 Include Files used:

 symbol

 reference

 token

 token_types

 language_utility

 source_id_descriptor

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 4-169 order number

 NAME: get_size

 Function:

 1. It creates statements in the prologue sequence for adjustible

 bounds or adjustible sizes.

 2. It turns on the varying_ref bit in the reference node for

 varying strings.

 3. It fills the length and c_length fields in the reference node

 for areas.

 4. It fills in the word_size and c_word_size fields in the

 symbol node.

 5. If the declaration is a picture, it calls declare_picture to

 check the syntax of the picture string and to develop all its

 attributes.

 6. It calculates the boundary requirement for each declaration.

 7. If the declaration is an array, it calls get_array_size to

 find the total size and to compute the multipliers and

 virtual origin used by subscripted references to the array

 elements.

 8. If the declaration is a member of the structure, it stores

 the offset units in the c_length field of the reference node

 temporarily.

 9. If the declaration is a structure, it tries to improve the

 offset units to the best possible unit.

 Entry:

 get_size

 Usage:

 DRAFT: SUBJECT TO CHANGE 4-170 order number

 declare get_size entry (ptr);

 call get_size (symbol_ptr);

 1. symbol_ptr pointer to the symbol node to be

 processed by this program.

 (input/output)

 Programs that invoke this entry:

 declare

 declare_structure

 declare_temporary

 expand_initial

 lang_util_

 operator_semantics

 Internal Procedures:

 addf

 an internal procedure to create an add

 operator.

 multf

 an internal procedure to create a mult

 operator.

 External Variables:

 pl1_stat_$eis_mode

 pl1_stat_$util_abort

 Internal Static Variables:

 DRAFT: SUBJECT TO CHANGE 4-171 order number

 none

 Programs Called:

 create_operator

 create_statement$prologue

 declare_constant$integer

 declare_integer

 declare_picture

 get_array_size

 Include Files used:

 language_utility

 source_id_descriptor

 symbol

 block

 statement

 statement_types

 reference

 token

 operator

 op_codes

 boundary

 system

 Errors Diagnosed:

 Error 414

 Error 434

 Error 440

 Error 457

 Error 458

 Error 459

 DRAFT: SUBJECT TO CHANGE 4-172 order number

 NAME: get_array_size

 Function:

 1. It fills in the element size fields of the array node and

 expresses them in the best unit.

 2. It walks down the bound pairs and construct two multipliers

 for each bound pair. The descriptor multiplier is used only

 when the array is accessed as a parameter. It is expressed

 in bits if the array is packed, and in words if it is

 unpacked. The other multiplier is used by this procedure and

 is expressed in the unit given by offset_units.

 3. Multipliers are computed by the following rule:

 m(n) = element_size

 m(n-1) = (hb(n)-lb(n)+1) * m(n)

 m(n-2) = (hb(n-1)-lb(n-1)+1) * m(n-1)

 .

 .

 .

 m(1) = (hb(2)-lb(2)+1) * m(2)

 4. The address of a subscripted element is:

 addr(a(i(1),i(2),...,i(n))) = B - V + (i(1)*m(1) +

 i(2)*m(2) + ... + i(n)*m(n))

 where

 B = the beginning of storage for the array, that

 is, the offset of the first element, addr(

 a(i(lb),i(lb(2)),...,i(lb(n)))

 and

 V = the virtual origin, that is, the offset of

 the 0th element, addr(a(0,0,...,0))

 5. The first multiplier is the element size. It is converted to

 bits when used as the descriptor multiplier of a packed,

 array.

 6. It loops down the bound pairs and develop the other

 multiplirs.

 7. It creates statements in the prologue sequence if any

 multiplier is an expression.

 8. The last multiplier gives the total size of the array, this

 total size is recorded in the symbol node.

 DRAFT: SUBJECT TO CHANGE 4-173 order number

 Entry:

 get_array_size

 Usage:

 declare get_array_size entry (ptr);

 call get_array_size (symbol_ptr, offset_unit);

 1. symbol_ptr pointer to the symbol node with the

 dimensioned attribute. (input)

 2. offset_unit unit in which the offset is

 expressed. (input)

 Programs that invoke this entry:

 get_size

 Internal Procedures:

 addf

 an internal procedure to create an add

 operator.

 assignf

 an internal procedure to create an assign

 operator in the prologue sequence.

 interleaved

 an internal procedure to distribute the

 bounds, multipliers, and virtual origins of a

 dimensional structure onto all its contained

 members at every level.

 DRAFT: SUBJECT TO CHANGE 4-174 order number

 multf

 an internal procedure to create a mult

 operator.

 subf

 an internal procedure to create a sub

 operator.

 virtue

 an internal procedure to add a term to the

 virtual origin.

 External Variables:

 pl1_stat_$eis_mode

 pl1_stat_$util_error

 Internal Static Variables:

 none

 Programs Called:

 copy_expression

 create_array

 create_bound

 create_operator

 create_statement$prologue

 declare_constant$integer

 declare_integer

 token_to_binary

 Include Files used:

 language_utility

 source_id_descriptor

 array

 DRAFT: SUBJECT TO CHANGE 4-175 order number

 reference

 symbol

 token

 token_types

 block

 operator

 op_codes

 statement

 statement_types

 boundary

 nodes

 system

 Errors Diagnosed:

 Error 168

 DRAFT: SUBJECT TO CHANGE 4-176 order number

 NAME: declare_structure

 Function:

 1. It scans the structure to determine the boundary, packing,

 and size required fby each member.

 2. It computes the boundary, packing, and size required by the

 level one structure.

 3. It then computes the offset for each member of the structure.

 Entry:

 declare_structure

 Usage:

 declare declare_structre entry (ptr);

 call declare_structure (symbol_ptr);

 1. symbol_ptr pointer to the symbol node to be

 processed by this program. (input)

 Programs that invoke this entry:

 declare

 Internal Procedures:

 DRAFT: SUBJECT TO CHANGE 4-177 order number

 get_structure_size

 an internal procedure to compute the offset

 of each structure member, to determine the

 level one structure size, and to call the

 internal procedure initialize to initialize

 each structure member, if necessary.

 initialize

 an internal procedure to initialize all

 members of the structure, if necessary.

 structure_scan

 an internal procedure to propagate the

 refer_extent, exp_extent, and star_extent

 bits upward, to determine the boundary

 required by each structure member, and the

 packing of the structure.

 External Variables:

 pl1_stat_$eis_mode

 Internal Static Variables:

 none

 Programs Called:

 copy_expression

 create_operator

 create_statement$prologue

 declare_

 declare_constant$integer

 declare_descriptor

 declare_descriptor$param

 declare_pointer

 expand_initial

 get_size

 offset_adder

 semantic_translator$error

 DRAFT: SUBJECT TO CHANGE 4-178 order number

 validate

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 symbol

 array

 block

 reference

 operator

 statement

 op_codes

 nodes

 statement_types

 boundary

 list

 system

 Errors Diagnosed:

 Error 210

 DRAFT: SUBJECT TO CHANGE 4-179 order number

 INITIALIZATION

 The declaration processor creates statements in the prologue

 sequence of the declaring blocks to do the initialization of

 variables. Variables that require initialization includes file

 constants, varying strings, areas, in addition to variables with

 the initial attribute.

 DRAFT: SUBJECT TO CHANGE 4-180 order number

 NAME: expand_initial

 Function:

 1. It initializes a file constant by creating an internal static

 file state block, and a file attribute block.

 2. It initializes varying strings to null strings.

 3. It initializes areas to "empty".

 4. It creates a statement to initialize scalar variables.

 5. For array initialization, it creates a subscript. For one

 dimension arrays, it creates codes to initialize the

 subscript to zero, increments it, and uses it as a subscript

 of the array, while the initial values are assigned one by

 one to the elements of the array.

 6. For multi-dimensional arrays, a one dimensional vector whose

 number of elements is equal to the number of dimensions of

 the multi-dimensional array is created. Initialization is

 done in two steps. First the one dimensional array is

 initialized, then loop and join operators are created to

 initialize the multi-dimensional array.

 Entry:

 expand_initial

 Usage:

 declare expand_initial entry (ptr, ptr, ptr);

 call expand_initial (symbol_ptr, statement_ptr,

 locator_qualifier);

 DRAFT: SUBJECT TO CHANGE 4-181 order number

 1. symbol_ptr pointer to the symbol node to be

 processed by this program. (input)

 2. statement_ptr pointer to the statement node or

 block node containing this

 declaration. (input)

 3. locator_qualifier locator qualifier of the

 expression, if any. (input)

 Programs that invoke this entry:

 alloc_semantics

 declare

 declare_structure

 Internal Procedures:

 addf

 an internal procedure to create an add

 operator.

 assign_initial

 an internal procedure to assign the values of

 an initial attribute to a vector.

 assignf

 an internal procedure to create an assign

 operator.

 link_father

 an internal procedure to create a list node

 to structure qualify members of the

 structure.

 make_statement

 an internal procedure to create a statement

 node either in the prologue sequence or in

 the main sequence of the block.

 multf

 an internal procedure to create a mult

 operator.

 DRAFT: SUBJECT TO CHANGE 4-182 order number

 subf

 an internal procedure to create a sub

 operator.

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 copy_expression

 create_array

 create_bound

 create_cross_reference

 create_label

 create_list

 create_operator

 create_reference

 create_statement

 create_statement$prologue

 create_symbol

 create_token

 declare_constant$bit

 declare_constant$char

 declare_constant$integer

 declare_integer

 declare_pointer

 get_size

 semantic_translator$abort

 token_to_binary

 Include Files used:

 DRAFT: SUBJECT TO CHANGE 4-183 order number

 semant

 language_utility

 source_id_descriptor

 cross_reference

 symbol

 boundary

 system

 label

 reference

 token

 token_types

 declare_type

 statement

 block

 statement_types

 op_codes

 operator

 array

 list

 nodes

 Errors Diagnosed:

 Error 264

 Error 292

 Error 442

1

 Chapter5.runoff 09/03/74

 1137.9rew 09/03/74 1137.9 769608

 SECTION V

 SEMANTIC TRANSLATION

 DRAFT: SUBJECT TO CHANGE 5-184 order number

 AN_OVERVIEW

 The semantic translator scans over the internal

 representation of the program and transforms the internal

 representation to reflect the attributes declared with each

 variable. Thus the semantics of the variables will be used by

 this phase of the compiler to produce a more sophisticated and

 meaningful internal representation of the program ready for the

 optimizer and the code generator.

 DRAFT: SUBJECT TO CHANGE 5-185 order number

 NAME: semantic_translator

 Function:

 1. It calls the context_processor to process all the context

 information recorded during the parse.

 2. For each block, starting from pl1_stat_$root, going down for

 its son block and then its brother block, the program

 performs the following jobs:

 a. It collects all the information necessary to determine

 whether a block can be quick.

 b. It goes down the chain block.declaration and calls

 declare to process all the symbols in the chain.

 c. It calls expression_semantics to process all the

 statements in the main sequence of the block, and then

 all the statements in the prologue sequence of the block.

 3. It goes over the block nodes and determine if they are quick.

 Entry:

 semantic_translator

 Usage:

 declare semantic_translator entry;

 call semantic_translator;

 Programs that invoke this entry:

 pl1

 v2pl1_semant_

 DRAFT: SUBJECT TO CHANGE 5-186 order number

 Entry:

 semantic_translator$abort

 This entry is called when a fatal error occurs in

 declaration processing or semantic translation. Recovery

 consists of deleting the offending statement from the program by

 transforming it into a null statement. Illegal declaration

 remain in the program. The error message program error_ or

 error_$no_text is called, and control is transferred to start

 process the next statement or the next symbol.

 Usage:

 declare semantic_translator$abort entry (fixed

 bin(15), ptr);

 call semantic_translator$abort (error_number,

 error_pointer);

 1. error_number error number. (input)

 2. error_pointer pointer to an operand used by the

 error message program. (input)

 Programs that invoke this entry:

 alloc_semantics

 builtin

 declare

 defined_reference

 do_semantics

 expand_assign

 expand_infix

 expand_initial

 expand_primitive

 expression_semantics

 function

 generic_selector

 DRAFT: SUBJECT TO CHANGE 5-187 order number

 lookup

 match_arguments

 operator_semantics

 semantic_translator

 subscripter

 v2pl1_semant_

 Entry:

 semantic_translator$error

 This entry is called when a non-fatal error occurs during

 the semantic translation or declaration processing. The error

 message program error_ or error_$no_text is called to issue a

 warning, and control is transferred to continue process the same

 statement or the same symbol.

 Usage:

 declare semantic_translator$error entry (fixed

 bin(15), ptr);

 call semantic_translator$error (error_number,

 error_pointer);

 1. error_number error number. (input)

 2. error_pointer pointer to an operand used by the

 error message program. (input)

 Programs that invoke this entry:

 builtin

 declare

 declare_structure

 defined_reference

 expression_semantics

 DRAFT: SUBJECT TO CHANGE 5-188 order number

 function

 io_data_list_semantics

 io_semantics

 semantic_translator

 v2pl1_semant_

 validate

 Entry:

 semantic_translator$call_es

 This entry is called by prepare_symbol_table in the code

 generator, when it wants to process an expression hanging off a

 symbol node.

 Usage:

 declare semantic_translator$call_es entry (ptr, ptr,

 ptr, label) returns (ptr);

 return_tree = semantic_translator$call_es (cur_block,

 statement_ptr, input_tree, abort_label);

 1. cur_block pointer to the block node

 containing this operand. (input)

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. input_tree pointer to the operand to be

 processed by this program. (input)

 4. abort_label the label to be transferred to if

 this program is aborted for any

 reason. (input)

 5. return_tree pointer to the operand returned by

 this program. (output)

 DRAFT: SUBJECT TO CHANGE 5-189 order number

 Programs that invoke this entry:

 prepare_symbol_table

 v2pl1_semant_

 Internal Procedures:

 process_label

 an internal procedure to process all the

 labels in the label list, and to issue

 warnings if the previous statement is a goto

 statement and there are no labels on the

 current statement.

 External Variables:

 pl1_stat_$LHS

 pl1_stat_$abort_label

 pl1_stat_$cur_statement

 pl1_stat_$debug_semant

 pl1_stat_$error_flag

 pl1_stat_$index

 pl1_stat_$last_severity

 pl1_stat_$multi_type

 pl1_stat_$node_uses

 pl1_stat_$profile_length

 pl1_stat_$quick_pt

 pl1_stat_$root

 pl1_stat_$st_length

 pl1_stat_$st_start

 pl1_stat_$statement_id

 pl1_stat_$stop_id

 pl1_stat_$util_abort

 pl1_stat_$util_error

 Internal Static Variables:

 abort a label indicating where the control should

 go if there is a fatal error occuring

 DRAFT: SUBJECT TO CHANGE 5-190 order number

 anywhere in the declaration processing of

 symbols, or the semantic processing of

 statements.

 had_error a bit indicating if an error has occurred in

 the processing. It is used only by the

 semantic_translator$call_es entry.

 Programs Called:

 context_processor

 convert

 debug

 declare

 error

 error_

 error_$no_text

 expression_semantics

 ioa_

 semantic_translator$abort

 semantic_translator$error

 Include Files used:

 quick_info

 semant

 language_utility

 source_id_descriptor

 block

 block_types

 declare_type

 operator

 semantic_bits

 list

 symbol

 reference

 statement

 statement_types

 nodes

 token

 token_types

 system

 DRAFT: SUBJECT TO CHANGE 5-191 order number

 Errors Diagnosed:

 Error 56

 DRAFT: SUBJECT TO CHANGE 5-192 order number

 OPERATOR_PROCESSING

 When an operator is encountered, the attributes of the

 operands are examined, and from these attributes, the attributes

 of the result of the operation are derived. The result of an

 operator is represented in the program as a temporary node.

 These temporary nodes may be operands of other operators, and the

 attributes of these temporary nodes may in turn be used to derive

 the properties of yet other temporary nodes.

 Some operators may be modified, and some operators may be

 changed to a std_call operator to invoke a library routine if the

 semantics warrants it.

 DRAFT: SUBJECT TO CHANGE 5-193 order number

 NAME: operator_semantics

 Function:

 1. It goes down the operator node and extracts the data types

 from the operands.

 2. For most operators, it determines the type, precision, scale

 of the result, and creates a temporary node to hold the

 result. It also converts each operand to the appropriate

 type, precision, and scale in order to produce the result.

 3. For the exponentiation operator, it determines from the

 operands either to pass along the exponentiation operator, or

 to create a std_call operator to call a libraray subroutine.

 cxp1_

 dcxp1_

 cxp2_

 dcxp2_

 decimal_exp_

 xp22_

 dxp12_

 cxp12_

 dcxp12_

 4. Fr the assignment operator, the following steps are taken:

 a. If the right side is a constant, convert it to the type

 of the left side, unless the left side has no type. Then

 the right side is converted to the type represented by

 the constant itself.

 b. If the left side has no type, it is converted to the type

 of the right side.

 c. If the assignment is to a char(*) or bit(*) return

 parameter, a statement will be created to make a

 descriptor for the return parameter.

 d. In certain cases assignments of x=0 are transformed into

 an operator assign_zero(x).

 f. If the right side is an operator whose output temporary

 has the same attributes as the left side, replace the

 temporary with a reference to the left side.

 g. Assignments of a pointer to an offset and vice versa are

 transformed into off_fun operator or ptr_fun operator.

 h. Area assignment is converted into a call to area_$assign

 (addr(a1), addr(a2));

 DRAFT: SUBJECT TO CHANGE 5-194 order number

 5. For the std_call operator, the procedure function will be

 invoked.

 6. For the std_entry operator, a goto statement is created

 before and a null statement is created after the statement

 containing the std_entry operator. If any parameter or

 return value appears in a differenct position in another

 entry statement, then an assignment statement will be created

 so that the parameter or return value are made to be

 qualified by automatic pointers. If the block has multiple

 return types, an assignment statement is created so that it

 is possible to determine by means of an automatic integer

 which entry is invoked. An ex_prologue operator is created

 with every std_entry operator.

 7. For a return_value operator with multiple return values, it

 is necessary to create a number of statements best

 illustrated by the following sequence:

 if entry_indicator ^= 1 then goto label1;

 entry_1_return_value = return_operand;

 return;

 label1: ;

 :

 :

 :

 if entry_indicator ^= n then goto labeln;

 entry_n_return_value = return_operand;

 return;

 labeln: ;

 It is sometimes possible to cause a fatal error by the

 processing of one of the generated statements, in that case,

 that statement will be transformed into a signal statement.

 8. For input/output operators, the procedure io_semantics will

 be invoked.

 9. For do_fun operators, the procedure do_semantics will be

 invoked.

 10. For allot_based and free_based operators, the procedure

 alloc_semantics will be invoked.

 DRAFT: SUBJECT TO CHANGE 5-195 order number

 Entry:

 operator_semantics

 Usage:

 declare operator_semantics entry (ptr, ptr, ptr,

 bit(36) aligned) returns (ptr);

 return_tree = operator_semantics (block_ptr,

 statement_ptr, input_tree, context_bits);

 1. block_ptr pointer to the block node

 containing this statement. (input)

 2. statement_ptr pointer to the statement node

 containing this operator. (input)

 3. input_tree pointer to the operator node that

 is to be processed by

 operator_semantics. (input)

 4. context_bits bits containing special information

 about this operator node.

 (input/output)

 5. return_tree pointer to the operator node

 returned by operator_semantics.

 (output)

 Programs that invoke this entry:

 alloc_semantics

 builtin

 do_semantics

 expand_infix

 expand_prefix

 expression_semantics

 operator_semantics

 DRAFT: SUBJECT TO CHANGE 5-196 order number

 Internal Procedures:

 convert_relationals

 an internal procedure used to force proper

 conversions of operands of relational

 operators.

 converter

 an internal procedure used to convert

 operand(2) and operand(3) of the operator

 node to their appropriate type.

 extract

 an internal procedure used to extract data

 types and useful pointers of all the operands

 of the operator node.

 make

 an internal procedure used to create an

 operator node and a statement node, and

 attach the operator node to the root of the

 statement node.

 prepare

 an internal procedure used to create

 statements for any expression found in the

 return_value operator, when there are

 multiple return types.

 print

 an internal procedure used to call the error

 message program semantic_translator$abort.

 External Variables:

 pl1_stat_$abort_label

 pl1_stat_$cur_statement

 pl1_stat_$error_flag

 pl1_stat_$multi_type

 pl1_stat_$root

 Internal Static Variables:

 DRAFT: SUBJECT TO CHANGE 5-197 order number

 none

 Programs Called:

 alloc_semantics

 compare_declaration

 convert

 convert$to_target

 convert$validate

 copy_expression

 create_label

 create_list

 create_operator

 create_reference

 create_statement

 create_symbol

 create_token

 declare

 declare_constant

 declare_constant$integer

 declare_temporary

 do_semantics

 expand_assign

 expression_semantics

 free_node

 function

 get_size

 io_semantics

 operator_semantics

 refer_extent

 reserve$declare_lib

 semantic_translator$abort

 share_expression

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 array

 symbol

 symbol_bits

 operator

 DRAFT: SUBJECT TO CHANGE 5-198 order number

 mask

 label

 list

 block

 block_types

 statement

 reference

 semantic_bits

 op_codes

 statement_types

 nodes

 system

 token

 token_types

 declare_type

 decoded_token_types

 Errors Diagnosed:

 Error 50

 Error 51

 Error 52

 Error 53

 Error 78

 Error 134

 Error 135

 Error 180

 Error 198

 Error 223

 Error 227

 Error 229

 Error 435

 DRAFT: SUBJECT TO CHANGE 5-199 order number

 OPERAND_PROCESSING

 Operands may be constants, or references. References may be

 simple references, subscripted references, structure qualified

 references, locator qualified references, or function references.

 References may further be defined on other references. The

 semantic translator finds the correct declaration for each

 variable, builds and processes the length expression, offset

 expression and qualifier expression for each variable. When

 these accessing expressions are fully processed, the code

 generator can produce codes to access the data at runtime.

 DRAFT: SUBJECT TO CHANGE 5-200 order number

 NAME: expression_semantics

 Function:

 1. It processes the operator nodes in the following manner:

 a. It calls io_semantics for io opcodes.

 b. It calls format_list_semantics for format opcodes.

 c. It gets the proper pointer for locator qualification for

 refer and bit_pointer opcodes.

 d. It calls itself recursively to process all the operands

 of the operator node. After all the operands are

 processed, it calls operator_semantics to produce the

 appropriate temporary result. If any of the operands is

 an aggregate reference or aggregate expression, it will

 invoke the aggregate package expand_assign, expand_infix

 or expand_prefix to do further processing of the

 operator.

 2. It processes the token node and the reference nodes in the

 following manner:

 a. It converts the constants if there are default statements

 in the block. Otherwise, it leaves the constants alone.

 b. It calls lookup to get the proper symbol node pointer.

 c. If the symbol has the builtin attribute, it calls

 builtin.

 d. If the symbol has the generic attribute, it calls

 generic_selector.

 e. It processes the qualifier.

 f. It processes the subscripts. It determines if the

 reference is a scalar, a cross-section, or an array

 reference. It calls subscripter to compute the offset.

 If the symbol has the defined attribute, it calls

 defined_reference to compute the offset.

 g. It processes the offset field of the reference node.

 h. It processes the length field of the reference node.

 i. If the symbol has the entry attribute, it calls function.

 j. It turns on the aggregate bit in context_bits if the

 reference is a structure or an array. It then goes

 through an algorithm to determine whether the LHS_in_RHS

 bit in the statement node should be turned on.

 Entry:

 DRAFT: SUBJECT TO CHANGE 5-201 order number

 expression_semantics

 Usage:

 declare expression_semantics entry (ptr, ptr, ptr, bit

 (36) aligned) returns (ptr);

 return_tree = expression_semantics (block_ptr,

 statement_ptr, input_tree, context_bits);

 1. block_ptr pointer to the block node

 containing this statement. (input)

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. input_tree pointer to the operand that is to

 be processed by

 expression_semantics. (input)

 4. context_bits bits containing special information

 about this operand. (input/output)

 5. return_tree pointer to the operand returned by

 expression_semantics. (output)

 Programs that invoke this entry:

 alloc_semantics

 builtin

 declare_descriptor

 defined_reference

 expand_assign

 expand_infix

 expand_initial

 expand_primitive

 expression_semantics

 function

 generic_selector

 io_data_list_semantics

 io_semantics

 operator_semantics

 DRAFT: SUBJECT TO CHANGE 5-202 order number

 semantic_translator

 subscripter

 v2pl1_semant_

 Internal Procedures:

 print

 an internal procedure used to call the error

 message program semantic_translator$abort.

 External Variables:

 pl1_data$builtin_name

 pl1_stat_$LHS

 pl1_stat_$index

 pl1_stat_$locator

 pl1_stat_$root

 Internal Static Variables:

 none

 Programs Called:

 builtin

 convert

 convert$to_integer

 convert$to_target

 copy_expression

 create_cross_reference

 create_list

 create_operator

 create_reference

 create_symbol

 create_token

 declare

 defined_reference

 DRAFT: SUBJECT TO CHANGE 5-203 order number

 expand_assign

 expand_infix

 expand_prefix

 expand_primitive

 expression_semantics

 format_list_semantics

 free_node

 function

 generic_selector

 io_semantics

 lookup

 operator_semantics

 propagate_bit

 semantic_translator$abort

 semantic_translator$error

 share_expression

 simplify_offset

 subscriptor

 validate

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 block

 block_types

 builtin_table

 cross_reference

 declare_type

 label

 list

 nodes

 op_codes

 operator

 reference

 semantic_bits

 statement

 symbol

 symbol_bits

 system

 token

 token_types

 DRAFT: SUBJECT TO CHANGE 5-204 order number

 Errors Diagnosed:

 Error 63

 Error 64

 Error 65

 Error 66

 Error 67

 Error 68

 Error 70

 Error 71

 Error 72

 Error 73

 Error 77

 Error 80

 Error 83

 Error 102

 Error 121

 Error 137

 Error 145

 Error 291

 DRAFT: SUBJECT TO CHANGE 5-205 order number

 NAME: simplify_offset

 Function:

 1. It attempts to reduce the precision of the length expression,

 if possible.

 2. It attempts to simplify the offset expression into an

 expression part and a constant part. The expression part

 will be stored in reference.offset, and the constant part

 will be stored in reference.c_offset.

 3. The expressions of the form

 constant

 expression + constant

 expression - constant

 constant + expression

 constant1 * constant2

 constant1 * (expression + constant2)

 constant1 * (expression - constant2)

 constant1 * (constant2 + expression)

 will be simplified by this program.

 Entry:

 simplify_offset

 Usage:

 declare simplify_offset entry (ptr);

 call simplify_offset (tree);

 1. tree pointer to the reference node whose

 offset expression and length

 expression are to be processed by

 this program. (input)

 DRAFT: SUBJECT TO CHANGE 5-206 order number

 Programs that invoke this entry:

 builtin

 expand_primitive

 expression_semantics

 function

 Internal Procedures:

 check_addr

 an internal procedure to improve code

 generated for an unaligned item locator

 qualified by the addr of another item.

 check_char_units

 an internal procedure to ensure unaligned

 binary numbers or pointers not to have

 character offset units.

 check_exp

 an internal procedure to determine whether an

 offset expression occurs as part of the

 length expression.

 fb1_const

 an internal procedure to determine if a

 declaration is a single word fixed binary

 constant.

 fb_value

 an internal procedure to determine if a

 declaration is a fixed binary real constant

 or fixed binary real aligned variable.

 fix_exp

 an internal procedure to reduce precision of

 the temporary of an expression to default

 precision, if possible.

 free_exp

 an internal procedure to free the storage for

 an expression.

 free_op

 an internal procedure to free an operator

 DRAFT: SUBJECT TO CHANGE 5-207 order number

 node.

 in_expression

 an internal procedure to the internal

 procedure check_exp to determine whether an

 expression appears as part of another

 expression.

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 compare_expression

 convert$to_integer

 copy_expression

 create_operator

 declare_constant$integer

 declare_temporary

 free_node

 share_expression

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 operator

 reference

 symbol

 array

 op_codes

 DRAFT: SUBJECT TO CHANGE 5-208 order number

 nodes

 system

 boundary

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 5-209 order number

 NAME: offset_adder

 Function:

 1. It combines one set of offset with another set of offset.

 Entry:

 offset_adder

 Usage:

 declare offset_adder entry (ptr, fixed bin(31), fixed

 bin(3), ptr, fixed bin(31), fixed bin(3), bit(1));

 call offset_adder (offset_1, c_offset_1,

 unit_of_offset_1, offset_2, c_offset_2, unit_of_offset_2,

 no_improve_bit);

 1. offset_1 pointer to the first offset

 expression. (input/output)

 2. c_offset_1 first constant offset.

 (input/output)

 3. unit_of_offset_1 unit in which offset_1 and

 c_offset_1 are measured.

 (input/output)

 4. offset_2 pointer to the second offset

 expression. (input)

 5. c_offset_2 second constant offset. (input)

 6. unit_of_offset_2 unit in which offset_2 and

 c_offset_2 are measured. (input)

 DRAFT: SUBJECT TO CHANGE 5-210 order number

 7. no_improve_bit bit indicating whether the offsets

 should be improved to the best

 unit. (input)

 Programs that invoke this entry:

 builtin

 declare_structure

 defined_reference

 subscripter

 Internal Procedures:

 get_ptr

 an internal procedure to eliminate the

 mod_bit and mod_byte operators, and to

 modifiy the mod_word operator before

 combining the two offsets.

 External Variables:

 pl1_stat_$eis_mode

 Internal Static Variables:

 none

 Programs Called:

 create_operator

 declare_constant$integer

 free_node

 DRAFT: SUBJECT TO CHANGE 5-211 order number

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 operator

 nodes

 op_codes

 boundary

 system

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 5-212 order number

 NAME: lookup

 Function:

 1. Given an identifier, it searches through the list of symbol

 nodes to find the applicable declaration associated with the

 identifier. This list of symbol nodes are chained first

 through token.declaration, and thereafter through

 symbol.multi_use.

 2. Fully qualified references are considered applicable.

 3. Partially qualified references are considered applicable if

 no better reference or no other partially qualified

 references can be found.

 4. It creates a cross reference node for the identifier.

 Entry:

 lookup

 Usage:

 declare lookup entry (ptr, ptr, ptr, ptr, bit (36)

 aligned) returns (bit(1) aligned);

 success_bit = lookup (block_ptr, statement_ptr,

 input_tree, symbol_ptr, context_bits);

 1. block_ptr pointer to the block node

 containing this statement. (input)

 2. statement_ptr pointer to the statement node

 conatining this operand. (input)

 3. input_tree pointer to the operand to be

 processed by lookup. (input)

 DRAFT: SUBJECT TO CHANGE 5-213 order number

 4. symbol_ptr pointer to the symbol node for the

 operand. (output)

 5. context_bits bits containing the special

 information about this operand.

 (output)

 6. success_bit bit indicating if lookup has

 successfully found the symbol node

 corresponding to the input tree.

 (output)

 Programs that invoke this entry:

 context_processor

 declare

 defined_reference

 expression_semantics

 function

 prepare_symbol_table

 v2pl1_semant_

 Internal Procedures:

 none

 External Variables:

 none

 Internal Static Variables:

 none

 DRAFT: SUBJECT TO CHANGE 5-214 order number

 Programs Called:

 create_cross_reference

 semantic_translator$abort

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 symbol

 label

 reference

 semantic_bits

 block

 statement

 token

 list

 cross_reference

 nodes

 Errors Diagnosed:

 Error 221

 DRAFT: SUBJECT TO CHANGE 5-215 order number

 NAME: subscripter

 Function:

 1. It gathers all the subscripts from the subscript list. If

 the subscript is a constant, it gets its value and ascertain

 that the constant is within the subscript range. If the

 subscript is a variable or expression, it converts the result

 to integer type.

 2. If the subscriptrange prefix is on, it creates a bound_ck

 operator.

 3. If all the subscripts are constants, it will yield a constant

 offset as the partial result, otherwise it will yield an

 expression offset as the partial result.

 4. It calls offset_adder to combine the partial offset with the

 offset produced by the declaration processor.

 Entry:

 subscripter

 Usage:

 declare subscripter entry (ptr, ptr, ptr, ptr, ptr)

 returns (ptr);

 return_ptr = subscripter (cur_block, statement_ptr,

 input_tree, subscript_ptr, symbol_ptr);

 1. cur_block pointer to the block node

 containing this operand. (input)

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 DRAFT: SUBJECT TO CHANGE 5-216 order number

 3. input_tree pointer to the operand to be

 processed by subscripter. (input)

 4. subscript_ptr pointer to the list of subscripts.

 (input)

 5. symbol_ptr pointer to the symbol node for the

 operand. (input)

 6. return_tree pointer to the operand returned by

 subscripter. (output)

 Programs that invoke this entry:

 defined_reference

 expand_primitive

 expression_semantics

 function

 Internal Procedures:

 addf

 an internal procedure to create an add

 operator.

 multf

 an internal procedure to create a mult

 operator.

 print

 an internal procedure used to call the error

 message program semantic_translator$abort.

 subf

 an internal procedure to create a sub

 operator.

 External Variables:

 DRAFT: SUBJECT TO CHANGE 5-217 order number

 pl1_stat_$eis_mode

 Internal Static Variables:

 none

 Programs Called:

 convert$to_integer

 copy_expression

 create_bound

 create_list

 create_operator

 declare_constant$integer

 expression_semantics

 offset_adder

 semantic_translator$abort

 token_to_binary

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 block

 label

 symbol

 array

 reference

 statement

 list

 token

 operator

 op_codes

 boundary

 nodes

 token_types

 declare_type

 semantic_bits

 system

 DRAFT: SUBJECT TO CHANGE 5-218 order number

 Errors Diagnosed:

 Error 81

 Error 82

 Error 84

 Error 184

 DRAFT: SUBJECT TO CHANGE 5-219 order number

 NAME: function

 Function:

 1. It does the semantic processing of all the arguments.

 2. It determines whether descriptors are needed for the

 arguments.

 3. It determines whether an argument should be passed by-value

 or by-reference.

 4. It has an algorithm to handle the special case when an

 argument is a cross section reference.

 5. It does the semantic processing of the returns argument.

 6. It creates a desc_size operator for the returns argument if

 necessary.

 7. It creates a statement for the std_call operator if the

 returns parameter has the star_extents and/or the varying

 attribute.

 Entry:

 function

 Usage:

 declare function entry (ptr, ptr, ptr, ptr, bit(36)

 aligned) returns (ptr);

 return_tree = function (cur_block, statement_ptr,

 input_tree, symbol_ptr, context_bits);

 1. cur_block pointer to the block node

 containing this operand. (input)

 DRAFT: SUBJECT TO CHANGE 5-220 order number

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. input_tree pointer to the operand to be

 processed by function. (input)

 4. symbol_ptr pointer to the symbol node for the

 operand. (input)

 5. context_bits bits containing special information

 about this operand. (input/output)

 6. return_tree pointer to the operand returned by

 this program. (output)

 Programs that invoke this entry:

 expression_semantics

 operator_semantics

 Internal Procedures:

 print

 an internal procedure used to call the error

 message programs semantic_translator$abort

 and semantic_translator$error.

 prop_bit

 an internal procedure used to turn on an

 attribute bit throughout a structure.

 External Variables:

 pl1_stat_$node_uses

 pl1_stat_$quick_pt

 Internal Static Variables:

 DRAFT: SUBJECT TO CHANGE 5-221 order number

 none

 Programs Called:

 check_star_extents

 copy_expression

 create_array

 create_bound

 create_list

 create_operator

 create_reference

 create_statement

 create_symbol

 declare_constant$integer

 declare_descriptor

 declare_temporary

 expression_semantics

 lookup

 match_arguments

 semantic_translator$abort

 semantic_translator$error

 share_expression

 simplify_offset

 subscripter

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 array

 block

 declare_type

 list

 nodes

 op_codes

 operator

 quick_info

 reference

 semantic_bits

 statement

 statement_types

 symbol

 DRAFT: SUBJECT TO CHANGE 5-222 order number

 symbol_bits

 system

 token

 token_types

 Errors Diagnosed:

 Error 47

 Error 85

 Error 86

 Error 88

 DRAFT: SUBJECT TO CHANGE 5-223 order number

 NAME: generic_selector

 Function:

 1. It does the semantic processing of all the arguments of the

 generic reference and gets the symbol pointer for each

 argument.

 2. It calls the internal procedure compare_generic for each

 argument for each corresponding argument selector in every

 alternative.

 3. It selects the proper entry reference when all the arguments

 match a particular selector.

 Entry:

 generic_selector

 Usage:

 declare generic_selector entry (ptr, ptr, ptr, ptr,

 bit(36) alligned) returns (ptr);

 return_tree = generic_selector (cur_block,

 statement_ptr, input_tree, subscript_ptr, context_bits);

 1. cur_block pointer to the block node

 containing this operand. (input)

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. input_tree pointer to the operand to be

 processed by this program. (input)

 4. subscript_list pointer to the list of subscripts.

 (input)

 DRAFT: SUBJECT TO CHANGE 5-224 order number

 5. context_bits bits containing special information

 about this operand. (input)

 6. return_tree pointer to the operand returned by

 this program. (output)

 Programs that invoke this entry:

 expression_semantics

 Internal Procedures:

 compare_generic

 an internal procedure to determine if an

 argument matches the description for a

 specific argument selector in the generic

 declaration.

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 copy_expression

 create_operator

 create_symbol

 expression_semantics

 semantic_translator$abort

 DRAFT: SUBJECT TO CHANGE 5-225 order number

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 semantic_bits

 list

 symbol

 reference

 token

 token_types

 nodes

 statement

 statement_types

 operator

 op_codes

 array

 declare_type

 picture_image

 Errors Diagnosed:

 Error 65

 DRAFT: SUBJECT TO CHANGE 5-226 order number

 NAME: match_arguments

 Function:

 1. It is called by the procedure function to determine if an

 argument matches the corresponding parameter description, so

 that the argument can be passed by-reference instead of

 by-value.

 2. It may call itself recursively if both the argument and the

 parameter are aggregate references so that lower level

 mismatches are also taken into consideration.

 Entry:

 match_arguments

 Usage:

 declare match_arguments entry (ptr, ptr) returns

 (bit(1) aligned);

 success_bit = match_arguments (first_ptr, second_ptr

);

 1. first_ptr pointer to the first operand.

 (input)

 2. second_ptr pointer to the symbol node of the

 second operand. (input)

 3. success_bit bit indicating if the two operands

 match. (output)

 Programs that invoke this entry:

 DRAFT: SUBJECT TO CHANGE 5-227 order number

 function

 match_arguments

 Internal Procedures:

 none

 External Variables:

 none

 Internal Static Variables:

 int_index

 number indicating the depth of a structure

 the program is operating on.

 parent_is_scalar

 bit indicating if the parent is a scalar.

 Programs Called:

 compare_expression

 match_arguments

 semantic_translator$abort

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 array

 nodes

 picture_image

 DRAFT: SUBJECT TO CHANGE 5-228 order number

 reference

 symbol

 Errors Diagnosed:

 Error 269

 DRAFT: SUBJECT TO CHANGE 5-229 order number

 NAME: make_non_quick

 Function:

 1. It walks through an expression tree, if it finds a function

 reference to an internal procedure, it makes the internal

 procedure non-quick.

 Entry:

 make_non_quick

 Usage:

 declare make_non_quick entry (ptr) ;

 call make_non_quick (tree);

 1. tree pointer to the expression to be

 processed by this program. (input)

 Programs that invoke this entry:

 check_star_extents

 io_data_list_semantics

 Internal Procedures:

 none

 DRAFT: SUBJECT TO CHANGE 5-230 order number

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 none

 Include Files used:

 reference

 list

 operator

 symbol

 block

 nodes

 op_codes

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 5-231 order number

 NAME: builtin

 Function:

 1. It does the semantics processing of all builtin functions.

 2. It checks whether a builtin function is called with an

 acceptable number of arguments.

 3. It processes all the arguments and extracts the data type and

 the pointer of all the arguments.

 4. If an aggregate reference is found among any of the

 arguments, it determines if the result of the builtin should

 be an aggregate.

 5. It calls expand_arguments, an internal procedure to handle

 those aggregate builtin references.

 6. It checks to make sure whether all the arguments have

 acceptable data types. converting them if necessary.

 7. For individual builtin functions, the work is rather straight

 forward, it creates either an operator node with the

 appropriate temporary, or it creates a std_call operator to

 call a runtime library subroutine.

 Entry:

 builtin

 Usage:

 declare builtin entry (ptr, ptr, ptr, ptr, ptr,

 bit(36) aligned) returns (ptr);

 return_tree = builtin (cur_block, statement_ptr,

 input_tree, subscript_list, builtin_symbol, context_bits);

 DRAFT: SUBJECT TO CHANGE 5-232 order number

 1. cur_block pointer to the block containing

 this builtin function. (input)

 2. statement_ptr pointer to the statement node

 containing this builtin function.

 (input)

 3. input_tree pointer to the builtin function to

 be processed. (input)

 4. subscript_list pointer to the list of arguments

 for this builtin function. (input)

 5. builtin_symbol pointer to the symbol node for this

 builtin function. (input)

 6. context_bits bits containing special information

 for this builtin function.

 (input/output)

 7. return_tree pointer to the operand returned by

 this procedure. (output)

 Programs that invoke this entry:

 builtin

 expression_semantics

 Internal Procedures:

 check_strings

 an internal procedure to make sure that all

 the members of the structure used as the

 argument to the string builtin have the same

 kind of string.

 convert_arg

 an internal procedure to convert an operand

 to a certain data type.

 expand_arguments

 an internal procedure to expand all the

 aggregate arguments to the builtin function.

 DRAFT: SUBJECT TO CHANGE 5-233 order number

 make_assignment

 an internal procedure to create an operator

 node and a statement node and to attach the

 operator node to the root of the statement.

 merge

 an internal procedure to combine the results

 of the expanded arguments of the builtin

 function.

 External Variables:

 pl1_stat_$builtin_name

 pl1_stat_$cur_statement

 pl1_stat_$eis_mode

 Internal Static Variables:

 none

 Programs Called:

 builtin

 check_star_extents

 compare_expression

 convert

 convert$from_builtin

 convert$to_integer

 convert$to_target

 convert$to_target_fb

 copy_expression

 create_list

 create_operator

 create_reference

 create_statement

 create_symbol

 create_token

 declare

 declare_constant

 declare_constant$bit

 DRAFT: SUBJECT TO CHANGE 5-234 order number

 declare_constant$char

 declare_constant$integer

 declare_descriptor

 declare_integer

 declare_temporary

 defined_reference

 expand_assign

 expand_infix

 expand_primitive

 expression_semantics

 fill_refer

 offset_adder

 operator_semantics

 propagate_bit

 reserve$declare_lib

 semantic_translator$abort

 semantic_translator$error

 share_expression

 simplify_offset

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 array

 block

 boundary

 builtin_table

 decoded_token_types

 declare_type

 label

 list

 mask

 nodes

 operator

 op_codes

 reference

 semantic_bits

 statement

 statement_types

 symbol

 symbol_bits

 system

 token

 token_types

 DRAFT: SUBJECT TO CHANGE 5-235 order number

 Errors Diagnosed:

 Error 121

 Error 122

 Error 123

 Error 124

 Error 126

 Error 127

 Error 128

 Error 131

 Error 132

 Error 139

 Error 141

 Error 142

 Error 146

 Error 147

 Error 148

 Error 160

 Error 167

 Error 168

 Error 187

 Error 188

 Error 190

 Error 436

 Error 437

 Error 438

 DRAFT: SUBJECT TO CHANGE 5-236 order number

 NAME: initialize_builtin

 Function:

 1. It initializes the external static data block pl1_data$ that

 contains information about all the builtin functions.

 Entry:

 initialize_builtin

 Usage:

 declare initialize_builtin

 call initialize_builtin;

 Programs that invoke this entry:

 none

 Internal Procedures:

 none

 External Variables:

 pl1_data_image$builtin_name

 DRAFT: SUBJECT TO CHANGE 5-237 order number

 Internal Static Variables:

 none

 Programs Called:

 write_list_

 Include Files used:

 mask

 op_codes

 system

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 5-238 order number

 NAME: pl1_data

 Function:

 This data segment contains information of all the builtin

 functions. For each builtin function, it describes: the name of

 the builtin function; whether the builtin function will produce

 an aggregate result if some of its arguments are aggregates; the

 opcode if the builtin function is to result in an operator; the

 procedure to invoke if the builtin function is to result in a

 std_call operator; the label to transfer to in the procedure

 builtin; the number of arguments expected for the builtin

 function; and the data type expected of these arguments.

 This data segment is used extensively by the procedure

 builtin.

 DRAFT: SUBJECT TO CHANGE 5-239 order number

 NAME: reserve

 Function:

 1. This program maintains a list of names of all the library

 subroutines that the resulting object program may invoke.

 2. It calls reserve$read_lib to create a token node with a

 specific name.

 3. It declares the name as an entry constant.

 Entry:

 reserve$declare_lib

 Usage:

 declare reserve$declare_lib entry (fixed bin(15))

 returns (ptr) ;

 entry_ptr = reserve$declare_lib (subroutine_number);

 1. subroutine_number number on the reserved list for

 library subroutines. (input)

 2. entry_ptr pointer to the reference node

 representing the entry. (output)

 Programs that invoke this entry:

 alloc_semantics

 builtin

 convert_chars

 lang_util_

 DRAFT: SUBJECT TO CHANGE 5-240 order number

 operator_semantics

 Entry:

 reserve$read_lib

 This entry is used to create a token node for a specific

 library subroutine name.

 Usage:

 declare reserve$read_lib entry (fixed bin(15))

 returns (ptr) ;

 token_ptr = reserve$read_lib (subroutine_number);

 1. subroutine_number number on the reserved list for

 library subroutines. (input)

 2. token_ptr pointer to the token node returned

 by this program. (output)

 Programs that invoke this entry:

 compile_link

 lang_util_

 reserve$declare_lib

 Entry:

 reserve$clear

 DRAFT: SUBJECT TO CHANGE 5-241 order number

 This entry clears the renamed_array and the declared_array

 used in this program.

 Usage:

 declare reserve$clear entry () returns (ptr) ;

 null_ptr = reserve$clear ();

 1. null_ptr null pointer returned by this

 program. (output)

 Programs that invoke this entry:

 lang_util_

 parse

 Entry:

 reserve$rename_parse

 This entry is used to implement the rename option used in a

 procedure statement. By this option, the name of a specific

 library subroutine may be changed.

 Usage:

 declare reserve$rename_parse entry (fixed bin(15),

 bit(1) aligned);

 call reserve$rename_parse (subroutine_number,

 success_bit);

 DRAFT: SUBJECT TO CHANGE 5-242 order number

 1. subroutine_number number on the reserved list for

 library subroutines. (input)

 2. success_bit bit indicating if the renaming step

 is successful. (output)

 Programs that invoke this entry:

 lang_util_

 process_entry

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$root

 tree_$

 Internal Static Variables:

 declared_array an array of bits to indicate whether a

 particular library subroutine name has

 already been declared as an entry constant.

 parallel_ptr an array of pointers used to indicate the new

 name to use if the particular library

 subroutine name has been renamed in a rename

 option.

 parallel_ptr_number

 a number showing an empty slot in the

 parallel_ptr array.

 renamed_array an array of bits to indicate whether a

 particular library subroutine name has

 DRAFT: SUBJECT TO CHANGE 5-243 order number

 already been renamed in a rename option.

 Programs Called:

 create_symbol

 create_token

 parse_error

 reserve$read_lib

 Include Files used:

 language_utility

 source_id_descriptor

 boundary

 declare_type

 op_codes

 operator

 parameter

 reference

 symbol

 system

 token

 token_list

 token_types

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 5-244 order number

 NAME: defined_reference

 Function:

 1. Given a defined reference node and a subscript list, this

 procedure determines whether the defined reference is

 properly declared.

 2. It forms the proper offset expression for the defined

 reference.

 Entry:

 defined_reference

 Usage:

 declare defined_reference entry (ptr, ptr, ptr, ptr,

 ptr, bit(36) aligned) returns (ptr);

 return_tree = defined_reference (block_ptr,

 statement_ptr, input_tree, subscript_list, symbol_ptr,

 context_bits);

 1. block_ptr pointer to the block node

 containing this statement. (input)

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. input_tree pointer to the operand that is to

 be processed by program. (input)

 4. subscript_list pointer to the list of subscripts

 for this defined reference.

 (input)

 5. symbol_ptr pointer to the symbol node of this

 defined reference. (input)

 DRAFT: SUBJECT TO CHANGE 5-245 order number

 6. context_bits bits containing special information

 about this operand. (input/output)

 7. return_tree pointer to the operand returned by

 this program. (output)

 Programs that invoke this entry:

 builtin

 expand_primitive

 expression_semantics

 io_data_list_semantics

 Internal Procedures:

 find

 an internal procedure to find and replace

 asterisks and isubs in a subscript list.

 find_r

 an internal procedure to find and replace

 only isubs in a subscript list.

 isubs_or_stars

 an internal procedure to find asterisks and

 isubs in the subscript list of based

 reference offsets and to replace and form the

 proper offset expression for the defined

 reference.

 match

 an internal procedure to match the defined

 item's father against its base to determine

 the suitability for simple defining or isub

 defining.

 print

 an internal procedure used to call the error

 message program semantic_translator$abort.

 string_overlay

 an internal procedure to determine the

 suitability of a reference being string

 DRAFT: SUBJECT TO CHANGE 5-246 order number

 overlayed defining.

 External Variables:

 pl1_stat_$eis_mode

 pl1_stat_$root

 Internal Static Variables:

 none

 Programs Called:

 convert

 copy_expression

 create_operator

 create_symbol

 decbin

 declare

 declare_constant$integer

 declare_temporary

 expression_semantics

 lookup

 offset_adder

 propagate_bit

 semantic_translator$abort

 semantic_translator$error

 subscripter

 token_to_binary

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 symbol

 symbol_bits

 DRAFT: SUBJECT TO CHANGE 5-247 order number

 block

 reference

 semantic_bits

 token

 statement

 array

 list

 oO

 op_codes

 token_types

 nodes

 system

 declare_type

 boundary

 Errors Diagnosed:

 Error 77

 Error 81

 Error 82

 Error 175

 Error 176

 Error 177

 Error 178

 Error 179

 Error 181

 Error 183

 Error 185

 DRAFT: SUBJECT TO CHANGE 5-248 order number

 THE_AGGREGATE_EXPANSION

 Special tools are needed to handle aggregate references and

 aggregate expressions in a pl1 program. Aggregate references and

 aggregate expressions are recognized by expression_semantics.

 This information is transmitted back to the caller, who now

 recognizes that some or all of the operands of an operator are

 aggregates, and who will invoke expand_assign, expand_infix, or

 expand_prefix to do the processing depending on whether the

 operator is an assign operator, an infix operator or a prefix

 operator.

 DRAFT: SUBJECT TO CHANGE 5-249 order number

 NAME: expand_assign

 Function:

 1. This procedure looks at the left side and the right side of

 the assign operator, and transforms the operator into loop

 and join operators.

 2. If the left side is already a loop operator or join operator,

 then expand_infix is called to merge the left side and the

 right side.

 3. If the right side is a constant, it is converted into the

 type it represents.

 4. If the LHS_in_RHS bit in the statement node is on, assignment

 must be done in two steps.

 5. If the left side is a temporary with no data type, it is

 replaced with a temporary whose type and extents are given by

 the right side.

 6. If an optimization can be found, the assignment is

 transformed into a copy_string or copy_word operator.

 Otherwise expand_infix is called to merge the left side and

 the right side.

 Entry:

 expand_assign

 Usage:

 declare expand_assign entry (ptr, ptr, ptr, bit (36)

 aligned, ptr) returns (ptr);

 return_tree = expand_assign (block_ptr, statement_ptr,

 input_tree, context_bits, aggregate_reference);

 DRAFT: SUBJECT TO CHANGE 5-250 order number

 1. block_ptr pointer to the block node

 containing this statement. (input)

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. input_tree pointer to the operand to be

 processed by this program. (input)

 4. context_bits bits containing special information

 about this operand. (input/output)

 5. aggregate_reference pointer to the aggregate reference

 node, sometimes served as the

 secondary return value. (output)

 6. return_tree pointer to the operand returned by

 this program. (output)

 Programs that invoke this entry:

 builtin

 expand_assign

 expression_semantics

 operator_semantics

 Internal Procedures:

 declare_expression

 an internal procedure used to create a

 declaration which represents the result of an

 aggregate reference.

 fill

 an internal procedure of fill_desc used to

 create assignments to descriptors to

 individual member or bound of an aggregate

 reference.

 fill_desc

 an internal procedure used to create

 assignments to descriptors of an aggregate

 expression when used as a return value.

 DRAFT: SUBJECT TO CHANGE 5-251 order number

 make_copy

 an internal procedure to create a copy_string

 operator or a copy_word operator.

 maker

 an internal procedure to create a source like

 declaration of a temporary.

 print

 an internal procedure used to call the error

 message program semantic_translator$abort.

 size

 an internal procedure to determine the size

 of a string array temporary.

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 compare_declaration

 convert

 copy_expression

 create_array

 create_bound

 create_operator

 create_statement

 create_symbol

 create_token

 declare

 declare_constant$integer

 declare_temporary

 expand_assign

 expand_infix

 DRAFT: SUBJECT TO CHANGE 5-252 order number

 expression_semantics

 refer_extent

 semantic_translator$abort

 simplify_expression

 subscriptor

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 array

 block

 boundary

 declare_type

 decoded_token_types

 list

 nodes

 op_codes

 operator

 reference

 semantic_bits

 statement

 statement_types

 symbol

 symbol_bits

 system

 token

 token_types

 Errors Diagnosed:

 Error 90

 Error 91

 Error 93

 Error 195

 DRAFT: SUBJECT TO CHANGE 5-253 order number

 NAME: expand_prefix

 Function:

 1. It is used to expand a unary operator when its operand is an

 aggregate reference, or an aggregate expression.

 2. It calls expand_primitive to expand the aggregate reference.

 3. It calls an internal procedure to apply the unary operation

 to each member of the aggregate reference.

 Entry:

 expand_prefix

 Usage:

 declare expand_prefix entry (ptr, ptr, ptr) returns

 (ptr);

 return_tree = expand_prefix (block_ptr, statement_ptr,

 input_tree);

 1. block_ptr pointer to the block node

 containing this statement. (input)

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. input_tree pointer to the operand to be

 processed by this program. (input)

 4. return_tree pointer to the operand returned by

 this program. (output)

 DRAFT: SUBJECT TO CHANGE 5-254 order number

 Programs that invoke this entry:

 expression_semantics

 Internal Procedures:

 apply_prefix

 an internal procedure to apply the unary

 operation to each member of the aggregate

 expression. A call is made to

 operator_semantics to process the unary

 operators thus formed.

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 create_operator

 expand_primitive

 operator_semantics

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 operator

 DRAFT: SUBJECT TO CHANGE 5-255 order number

 semantic_bits

 op_codes

 nodes

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 5-256 order number

 NAME: expand_infix

 Function:

 1. It is used to expand an infix operator when some of its

 operands are aggregate references or aggregate expressions.

 2. It calls expand_primitive to expand any aggregate reference.

 3. It calls an internal procedure to locally optimize any scalar

 expression found in any operand.

 4. It calls the internal procedure walk or match to apply the

 binary operation to the expanded operands.

 Entry:

 expand_infix

 Usage:

 declare expand_infix entry (ptr, ptr, ptr) returns

 (ptr);

 return_tree = expand_infix (block_ptr, statement_ptr,

 input_tree);

 1. block_ptr pointer to the block node

 containing this statement. (input)

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. input_tree pointer to the operand to be

 processed by this program. (input)

 4. return_tree pointer to the operand returned by

 this program. (output)

 DRAFT: SUBJECT TO CHANGE 5-257 order number

 Programs that invoke this entry:

 builtin

 expand_assign

 expression_semantics

 Internal Procedures:

 match

 an internal procedure to match the expanded

 parts of aggregate references and to combine

 them.

 simplify_scalar

 an internal procedure to extract scalar

 subexpressions so that it is evaluated only

 once outside the loop.

 walk

 an internal procedure to walk down the loop

 and join operator of one aggregate reference

 and to apply the binary operation to the

 expanded member and a scalar.

 External Variables:

 pl1_stat_$LHS

 Internal Static Variables:

 none

 Programs Called:

 compare_expression

 create_operator

 DRAFT: SUBJECT TO CHANGE 5-258 order number

 create_statement

 create_symbol

 declare_temporary

 expand_primitive

 expression_semantics

 operator_semantics

 semantic_translator$abort

 share_expression

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 declare_type

 nodes

 op_codes

 operator

 reference

 semantic_bits

 statement

 statement_types

 symbol

 system

 Errors Diagnosed:

 Error 79

 DRAFT: SUBJECT TO CHANGE 5-259 order number

 NAME: expand_primitive

 Function:

 1. It determines from the subscript list the number of

 additional subscripts that needs be created.

 2. It calls the internal procedure expander to do the expansion.

 3. Depending on the declaration of the aggregate reference, it

 returns a series of loop and join operator to represent the

 expansion of the aggregate reference.

 Entry:

 expand_primitive

 Usage:

 declare expand_primitive entry (ptr, ptr, ptr)

 returns (ptr);

 return_tree = expand_primitive (block_ptr,

 statement_ptr, input_tree);

 1. block_ptr pointer to the block node

 containing this statement. (input)

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. input_tree pointer to the operand to be

 processed by this program. (input)

 4. return_tree pointer to the operand returned by

 this program. (output)

 DRAFT: SUBJECT TO CHANGE 5-260 order number

 Programs that invoke this entry:

 builtin

 expand_infix

 expand_prefix

 expression_semantics

 Internal Procedures:

 addf

 an internal procedure to create an add

 operator.

 bit_ptr

 an internal procedure to search and replace

 the bit_pointer operator with the proper

 locator qualifier.

 declare_index

 an internal procedure to declare a control

 index of the form "s.n" used in the loop

 operators.

 expander

 an internal procedure to create a join

 operator for structure reference, and to

 create a loop operator for array reference.

 It may call itself recursively if the

 sublevel member of an aggregate reference is

 again an aggregate reference.

 make_loop

 an internal procedure to create a loop

 operator.

 process_subscripted_reference

 an internal procedure to do the semantics

 processing of a scalar subscripted reference

 produced by the expansion of the aggregate

 reference.

 subf

 an internal procedure to create a sub

 operator.

 DRAFT: SUBJECT TO CHANGE 5-261 order number

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 bindec$vs

 copy_expression

 create_bound

 create_list

 create_operator

 create_reference

 create_symbol

 create_token

 declare

 declare_constant$integer

 declare_temporary

 defined_reference

 expression_semantics

 refer_extent

 semantic_translator$abort

 share_expression

 simplify_expression

 simplify_offset

 subscripter

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 array

 declare_type

 label

 list

 DRAFT: SUBJECT TO CHANGE 5-262 order number

 nodes

 op_codes

 operator

 reference

 semantic_bits

 symbol

 system

 token

 token_types

 Errors Diagnosed:

 Error 81

 DRAFT: SUBJECT TO CHANGE 5-263 order number

 NAME: simplify_expression

 Function:

 1. It walks through the expression and simplify all constant

 expressions of the form:

 constant1 + constant2

 constant1 - constant2

 constant1 * constant2

 Entry:

 simplify_expression

 Usage:

 declare simplify_expression (ptr, fixed bin, bit(1)

 aligned) returns (ptr);

 return_tree = simplify_expression (input_tree,

 constant_value, modified_bit);

 1. input_tree pointer to the expression to be

 simplified. (input/output)

 2. constant_value value of the expression if the

 entire expression can be reduced to

 a constant. (output)

 3. modified_bit bit indicating if the entire

 expression is reduced to a

 constant. (output)

 4. return_tree pointer to the modified expression.

 (output)

 DRAFT: SUBJECT TO CHANGE 5-264 order number

 Programs that invoke this entry:

 expand_assign

 expand_primitive

 Internal Procedures:

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 declare_constant$integer

 Include Files used:

 language_utility

 source_id_descriptor

 nodes

 op_codes

 operator

 reference

 symbol

 system

 DRAFT: SUBJECT TO CHANGE 5-265 order number

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 5-266 order number

 SPECIAL_STATEMENTS

 Certain operators representing allocate statements, do

 statements, or input/output statements undergo considerable

 modifications. Many new statements and operators may be created

 to fully implement their meaning.

 DRAFT: SUBJECT TO CHANGE 5-267 order number

 NAME: alloc_semantics

 Function:

 1. It transforms the allot_based and free_based operators into

 calls to the runtime routines alloc_, alloc_$storage, and

 freen_.

 2. If the allocation reference has the control attribute, the

 allot_based operator is transformed into the allot_ctl

 operator and the free_based operator is transformed into the

 free_ctl operator.

 3. If the set reference is an unaligned pointer or an offset,

 statements will be created after or before the call to do the

 conversion between the different data types.

 4. If the allocation reference is an aggregate reference with

 refer_extents, statements will be created to assign the

 expression value to the refer reference in the refer option.

 5. If the allocation reference has the initial attribute, the

 procedure expand_initial will be invoked to do the

 initialization of the based allocated reference.

 Entry:

 alloc_semantics

 Usage:

 declare alloc_semantics entry (ptr, ptr, ptr);

 call alloc_semantics (block_ptr, statement_ptr,

 input_tree);

 1. block_ptr pointer to the block node

 containing this statement. (input)

 DRAFT: SUBJECT TO CHANGE 5-268 order number

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. input_tree pointer to the operand to be

 processed by this program.

 (input/output)

 Programs that invoke this entry:

 operator_semantics

 Entry:

 alloc_semantics$init_only

 This entry is called by io_semantics in the processing

 of a locate statement.

 Usage:

 declare alloc_semantics$init_only entry (ptr, ptr, ptr

);

 call alloc_semantics$init_only (locator,

 statement_ptr, input_tree);

 1. locator locator qualifier of the allocation

 reference. (input)

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. input_tree pointer to the operand to be

 processed by this program. (input)

 DRAFT: SUBJECT TO CHANGE 5-269 order number

 Programs that invoke this entry:

 io_semantics

 Internal Procedures:

 build_assignment

 an internal procedure to create statements to

 assign expression values to the refer

 reference in a refer option.

 getsize

 an internal procedure to get the number of

 storage words to be allocated or freed.

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 copy_expression

 create_list

 create_operator

 create_reference

 create_statement

 create_symbol

 declare_constant$integer

 declare_descriptor$ctl

 declare_pointer

 declare_temporary

 expand_initial

 DRAFT: SUBJECT TO CHANGE 5-270 order number

 expression_semantics

 operator_semantics

 propagate_bit

 refer_extent

 reserve$declare_lib

 semantic_translator$abort

 share_expression

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 array

 boundary

 list

 nodes

 operator

 op_codes

 reference

 semantic_bits

 statement

 statement_types

 symbol

 symbol_bits

 system

 Errors Diagnosed:

 Error 114

 Error 115

 Error 116

 Error 117

 Error 118

 DRAFT: SUBJECT TO CHANGE 5-271 order number

 NAME: do_semantics

 Function:

 1. It does the semantics processing of the do statement.

 2. If the control variable of the do statement is locator

 qualified, subscript qualified, or has length expressions,

 these qualifiers will be extracted out of the do loop to

 prevent their values from being reset accidentally.

 3. Depending on the existence of to-clause, by-clause,

 repeat-clause, and while-clause in the do-specification,

 statements will be created to represent their logic.

 4. If the do statement is a multiple specification do loop, a

 label variable will be created to control the flow of logic.

 Entry:

 do_semantics

 Usage:

 declare do_semantics entry (ptr, ptr, ptr);

 call do_semantics (block_ptr, statement_ptr,

 input_tree);

 1. block_ptr pointer to the block node

 containing this statement. (input)

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. input_tree pointer to the operand that is to

 be processed by program.

 (input/output)

 DRAFT: SUBJECT TO CHANGE 5-272 order number

 Programs that invoke this entry:

 operator_semantics

 Internal Procedures:

 copy_ref

 an internal procedure to determine whether a

 reference should be shared.

 make_operator

 an internal procedure to create an operator

 node.

 make_statement

 an internal procedure to create a statement

 node.

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 copy_expression

 create_label

 create_list

 create_operator

 create_reference

 create_statement

 create_symbol

 create_token

 DRAFT: SUBJECT TO CHANGE 5-273 order number

 declare_integer

 declare_pointer

 free_node

 operator_semantics

 semantic_translator$abort

 share_expression

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 block

 declare_type

 label

 list

 nodes

 operator

 op_codes

 reference

 semantic_bits

 statement

 statement_types

 symbol

 system

 token

 token_types

 Errors Diagnosed:

 Error 140

 Error 143

 Error 144

 DRAFT: SUBJECT TO CHANGE 5-274 order number

 NAME: io_semantics

 Function:

 1. io_semantics handles both the major io operators compiled by

 the parse as the root nodes of I/O statements, and the minor

 io operators (transmission operators), provided, for the most

 part, by io_data_list_semantics in the compilation of the

 data lists of get and put statements. For the handling of

 transmission operators, see step 15, below.

 2. The parse attaches operands of two types to io operators:

 reference and expression operands from the various options of

 io statements, attached in canonical positions known to parse

 and semantics alike; and a special final operand which is, in

 effect, a 36 bit bitstring. This last operand has a bit

 position for every option and statement type recognizable by

 the parse; the bits are set to describe the particular

 statement observed by the parse and serve importantly to

 drive the compilation of the statement by io_semantics (see

 step 13).

 3. The design of the compiled procedure provides that I/O

 statements are almost entirely executed out-of-line by the

 PL/1 runtime I/O routines, PLIO. The work of io_semantics

 is, then, to provide for suitable invocations of PLIO and to

 provide for the transfer of information between the compiled

 procedure and PLIO. The general design of the compiled

 procedure is as follows:

 a. each block containing an I/O statement or format

 statement is non-quick; that is, it has a stack frame

 distinct from that of its parent block (if any).

 b. each stack frame corresponding to a block containing an

 I/O statement has a workspace, PS, reserved in it for use

 by PLIO during the execution of any I/O statement and for

 passing information from the compiled procedure to PLIO

 (and sometimes back again).

 c. the location of this workspace is known to PL/1 operators

 by a convention between the code generator and the PL/1

 operators; all invocations of PLIO are accomplished by

 PL/1 operator invocations - rather than by full PL/1

 calls - the PL/1 operators pass a single argument to

 PLIO in every case, namely the address of PS.

 DRAFT: SUBJECT TO CHANGE 5-275 order number

 Accordingly, the compiled procedure must, either by

 direct code or with the help of the PL/1 operators, store

 into PS (and, occasionally, elsewhere) all information

 which the invoked entry in PLIO will require to complete

 its work.

 4. The work of io_semantics thus consists chiefly of compiling

 assignments to PS and invocations of PLIO. This is

 accomplished by the creation of assignment operators and of

 special io-operators which the code generator compiles into

 invocations of "transfer vector" entries in PL/1 operators.

 Certain of the jobs of assigning to PS are done by the code

 generator as part of its work in compiling the special

 io-operators. Some of the information that appears in PS is

 constant through the life of the stack frame containing the

 PS (for example, the stack frame pointer, the runtime symbol

 table pointer) and is put into PS by code supplied by the

 code generator on its own motion (see PLM for io_op) rather

 than as the compilation of operators generated by

 io_semantics.

 5. Assignment to or from PS is tricky, an anomaly in the

 compiler. Although at runtime PS is a structure containing

 pointers, integers, character and bit strings, a label, etc.,

 at compile time PS is simply an unstructured "storage block".

 Assignment to PS makes use of the fact that the code

 generator will in effect take unspec of the object being

 assigned and will put it, as a bit string, at a position in

 PS depending on the offset relative to PS. It is thus

 necessary to convert the object being assigned into the exact

 form which it will have in PS prior to assigning it to PS.

 Extracting information from PS (as with the string returned

 for a KEYTO option) requires use of a defined reference whose

 qualifier points at the right spot in PS.

 6. A source_io_statement is compiled into a list of statements,

 as follows:

 a. a labelled null statement (if the source statement was

 labelled);

 b. an assignment statement whose root is a join operator all

 but the last of whose operands are assignment operators

 each of which assigns an argument to its proper place in

 PS (or the like); and the last operand of which invokes

 PLIO (to do preparatory work in the stream case, to do

 the main work in the record case.);

 DRAFT: SUBJECT TO CHANGE 5-276 order number

 c. in the case of most get and put statements, a list of

 statements implementing the implied DO's in the LIST,

 EDIT, or DATA option and having transmission operators

 for each scalar list item;

 d. in the case of a read statement with a keyto option, a

 statement to assign to the target of the keyto option;

 e. in many cases a null statement to which PLIO is to pass

 control if the remainder of the statement's execution is

 to be aborted.

 7. So that arguments to PLIO may be stored in the proper form

 and in the proper place (chiefly in PLIO), io_semantics

 maintains an "assign-list", of length "lal", which is a list

 of assign operators each of which makes such an assignment.

 The operators in this list are created by an internal

 procedure of io_semantics, assign_ps, which creates the

 operator and in many cases inserts conversion operators or

 operators to create a pointer to a given argument.

 8. The io operator is processed as follows. First, if the io

 statement is labelled, a null statement is inserted after the

 labelled statement, and the root nodes of the labelled and

 null statements are interchanged so that a labelled null

 statement precedes an unlabelled io statement.

 9. The length, "lal", of the "assign-list" is initialized to

 zero and the existence of PS is provided for. The last

 operand of the io-operator is converted to a 36 bit bitstring

 item, "job", which shows the options processed by the parse.

 Additional bits will be set in "job" by io_semantics and

 "job" will be passed to PLIO via PS where it will be

 interpretted as specifying the work to be done at runtime.

 10. If a DATA, LIST, or EDIT option appears,

 io_data_list_semantics is called. This has the effect of

 appending statements after the io statement, statements which

 implement implied DO's, transmissions of all list elements,

 and the establishment of format lists. For a "get data"

 statement, no statements are created. Instead, a

 get_data_trans operator is compiled containing the list of

 allowed targets (a list of zero length for the source

 statement "get data;"); the code generator will translate

 this operator into a constant list of runtime symbol table

 offsets and the address of this constant list will be put

 into PS.

 DRAFT: SUBJECT TO CHANGE 5-277 order number

 11. If the io statement is a LOCATE statement, then the reference

 in the statement is checked for conformance to the language,

 the pointer to be SET is established, and the size of the

 generation to be located is computed and assigned in PS.

 References to the variable to be allocated and to the pointer

 to be set are preserved in the local variables "locate_var"

 and "locate_set", respectively. The unprocessed reference to

 the pointer (if it appears) and to the variable to be

 allocated are removed from among the operands of the io

 operator.

 12. The oerands now attached to the io operator are processed by

 expression_semantics. They are processed as, and are

 required to turn out to be, scalar, except in the two cases:

 the operands for the FROM and INTO options.

 13. The bits of the "job" (see step 2) now drive the further

 processing of the operands of the io operator, the presence

 of the i-th bit of "job" causing the code at the label

 "action(i)" to be invoked relative to the appropriate operand

 of the io operator. In most cases the work of the code so

 invoked is to check the semantic correctness of the program

 element and then cause one or more assignments to PS (or the

 like) to be compiled and put on the "assign-list" (see step

 7) by calling the internal procedure "assign_ps". Most of

 these actions require no documentation here. A few special

 actions will be considered.

 INTO , FROM (actions 25,27): Storage in PS of the address

 and bitlength of the generation appearing in the option would

 suffice but for two points. First, the compiler's addressing

 of varying strings and of arrays of varying strings has to be

 considered. The compiler will take the address of the first

 data word (i.e., the second word) of a varying string or

 array of varying strings; and will calculate the bitlength

 only on the data portion of a scalar varying string.

 Accordingly, bit(3) of "job" is set to indicate that the

 generation is varying and bit(35) of "job" is set to indicate

 a varying array. Second, as an optimization in consideration

 of the fact that the runtime I/O mechanism expects

 byte-aligned and byte-lengthed generations of storage, the

 compiler will set bit(34) of "job" to indicate that

 byte-alignment and byte-length of the generation must be

 checked at runtime; if the byte-alignment and byte-length

 can be assured at compile time, then this bit will not be

 set.

 DRAFT: SUBJECT TO CHANGE 5-278 order number

 KEYTO (action 22): The reference in the KEYTO option (the

 keyto target) is checked to see that it is a character string

 reference (pseudovariables not being allowed). An assignment

 statement is created before the statement following the read

 statement. This assignment statement will pick up the value

 obtained at runtime and assign it to the keyto target. A

 labelled null statement is then created before the statement

 originally following the read statement (and, thus, after the

 assignment statement) whose label is assigned to PS as an

 abnormal return label.

 OPEN (action 34): A structure, FAB2, is created in the stack

 frame to receive the attributes specified in the open

 statement. A template is created to initialize FAB2;

 constants for title, pagesize, and linesize are written into

 the template. An assignment of the template to FAB2 is

 placed in the "assign-list". Assignments of variable values

 for title, pagesize, and linesize are compiled and placed

 into the "assign-list". An assignment of the address of FAB2

 to PS is compiled and placed in the "assign-list".

 14. After the "job"-dictated actions are done, the "job" word is

 corrected for use at runtime and placed in the record_io or

 stream_prep operator, if any. An assignmant statement is

 created before the current statement (which has been made a

 null statement) to which is attached a join operator joining

 the operators in the "assign-list".

 15. The transmission operators (see step 1), as originally

 created by data_list_parse and as transformed by

 io_data_list_semantics, are of three kinds.

 The get_data_trans operator has as its single operand a join

 of the references appearing in the list of the get data

 statement. This operator is not processed further by

 io_semantics.

 The put_data_trans operator is received by io_semantics with

 one operand, a reference containing a subscript list.

 io_semantics moves this subscript list to the first operand

 position of the put_data_trans operator. The code generator

 will make the runtime symbol table offset for the reference

 and the evaluated subscript values available at runtime.

 The remaining transmission operators, get_list_trans,

 put_list_trans, get_edit_trans, and put_edit_trans, are

 treated as a class. To each is attached a descriptor valued

 expression whose value describes the item being transmitted

 (this item is always scalar at this point, aggregates having

 DRAFT: SUBJECT TO CHANGE 5-279 order number

 been expanded by expand_prefix - see io_data_list_semantics).

 This descriptor is a trivially determined constant in the

 cases of numeric or pictured items, but may be complicated in

 the case of string items which may be adjustable, have refer

 extents, etc.

 Entry:

 io_semantics

 Usage:

 declare io_semantics entry (ptr, ptr, ptr);

 call io_semantics (block_ptr, statement_ptr,

 input_tree);

 1. block_ptr pointer to the block node

 containing this statement. (input)

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. input_tree pointer to the operand that is to

 be processed by program. (input)

 Programs that invoke this entry:

 expression_semantics

 operator_semantics

 Internal Procedures:

 assign_ps

 an internal procedure whose princial use is

 the assignment with coercive conversion of

 DRAFT: SUBJECT TO CHANGE 5-280 order number

 some element to PS. It has been extended to

 do addressing and to assign to storage blocks

 other than PS.

 io_semantics_util

 a dummy entry point, never called.

 io_semantics_util$keys

 an internal procedure to extend the size of

 PS to 48 + 65 words long to accommodate the

 new key, which is declared as char(256)

 varying. It also sets list.element(50) to

 the defined new key, whose qualifier is

 PS|48.

 io_semantics_util$make_fa

 an internal procedure to create a work space

 of 122 words to store the format stack in the

 use of a "get edit" or "put edit" statement.

 io_semantics_util$make_fab2

 an internal procedure to create a work space

 of 14 words to accommodate the title option,

 page size, and line size in an open

 statement.

 io_semantics_util$make_ffsb

 an internal procedure to create a fake FSB

 block for the use of string option in a get

 statement or put statement.

 io_semantics_util$make_ps

 an internal procedure to create a 48 word

 work space for the PS used by all io

 statements.

 io_semantics_util$make_ssl

 an internal procedure to create a work space

 for the subscript list used in a "put data"

 statement.

 External Variables:

 pl1_stat_$generate_symtab

 DRAFT: SUBJECT TO CHANGE 5-281 order number

 Internal Static Variables:

 none

 Programs Called:

 alloc_semantics$init_only

 convert

 convert$to_target

 copy_expression

 create_label

 create_list

 create_operator

 create_reference

 create_statement

 create_symbol

 create_token

 declare

 declare_constant

 declare_constant$bit

 declare_constant$integer

 declare_descripter

 declare_temporary

 expression_semantics

 io_data_list_semantics

 ioa_

 operator_semantics

 propagate_bit

 refer_extent

 semantic_translator$error

 share_expression

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 nodes

 block

 list

 operator

 op_codes

 DRAFT: SUBJECT TO CHANGE 5-282 order number

 semantic_bits

 symbol

 array

 system

 reference

 token

 token_types

 statement

 statement_types

 declare_type

 label

 ps_map

 symbol_bits

 boundary

 Errors Diagnosed:

 Error 62

 Error 114

 Error 115

 Error 461

 Error 462

 Error 263

 Error 464

 Error 465

 Error 466

 Error 467

 Error 468

 Error 471

 Error 472

 Error 474

 Error 475

 DRAFT: SUBJECT TO CHANGE 5-283 order number

 NAME: io_data_list_semantics

 Function:

 1. It processes the data list of a stream-io statement.

 2. It turns on the set bit of the symbol node for an item in a

 get statement data list.

 3. It turns on the get_data bit in the block node for "get

 data;" or "put data;" statements.

 4. Items in a "get data" statement data list will be put on the

 pl1_stat_$ok_list;

 5. Items in a "put data" statement data list will have their

 symbol.put_in_symtab bit turned on.

 6. It calls the internal procedure io_join_semantics to process

 the items on the data list of a "get/put list/edit"

 statement.

 7. It calls the entry format_list_semantics to process the

 format list in a "get edit" or "put edit" statement.

 Entry:

 io_data_list_semantics

 Usage:

 declare io_data_list_semantics entry (ptr, ptr, ptr);

 call io_data_list_semantics (block_ptr, statement_ptr,

 input_tree);

 1. block_ptr pointer to the block node

 containing this statement. (input)

 DRAFT: SUBJECT TO CHANGE 5-284 order number

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. input_tree pointer to the operand to be

 processed by this program.

 (input/output)

 Programs that invoke this entry:

 io_semantics

 Entry:

 format_list_semantics

 It processes the format list of a format statement, or the

 format list in "get edit" or "put edit" statements. It may call

 itself recursively to process format items and format lists.

 Usage:

 declare format_list_semantics entry (ptr, ptr, ptr);

 call format_list_semantics (block_ptr, statement_ptr,

 input_tree);

 1. block_ptr pointer to the block node

 containing this statement. (input)

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. input_tree pointer to the operand to be

 processed by this program. (input)

 DRAFT: SUBJECT TO CHANGE 5-285 order number

 Programs that invoke this entry:

 expression_semantics

 io_data_list_semantics

 Internal Procedures:

 down

 an internal procedure to turn on the set bit

 and the put_in_symtab bit in the symbol node

 and all the lower level members.

 io_join_semantics

 The internal procedure io_join_semantics

 processes an item list, which may contain

 simple items such as references and

 expressions as well as complex items -

 implied do groups -, by creating statements

 and inserting them just before the statement

 that originally followed the io statement

 being compiled. These statements control the

 do-groups and contain the transmission

 operators which io_semantics later processes.

 The join seen by io_join_semantics contains

 simple items and/or do_fun operators

 (corresponding to implied do groups).

 io_join_semantics collects the maximum number

 of consecutive simple items, replaces each

 with the appropriate transmission operator

 containing the simple item, and creates a

 statement whose root node is a join

 containing these transmission operators (if

 there are more than one) or containing the

 transmission operator itself (if there is

 exactly one). Each do_fun operator is

 processed by the creation of a do statement

 containing, as its root, the do_fun operator,

 next followed by the result of invoking

 io_join_semantics recursively to process the

 item list associated with the do_fun

 operator, and finally followed by a labelled

 null statement whose label is associated with

 the do statement as if it were the associated

 end statement.

 DRAFT: SUBJECT TO CHANGE 5-286 order number

 label_of_statement

 an internal procedure to create a label to

 attach to a null statement created by this

 program.

 walk

 an internal procedure to turn on the set bit

 and the put_in_symtab bit in the symbol node

 and all its fathers and sons and brothers.

 External Variables:

 pl1_stat_$ok_list

 Internal Static Variables:

 none

 Programs Called:

 convert$to_target

 create_label

 create_list

 create_operator

 create_statement

 create_symbol

 declare_constant$integer

 declare_temporary

 defined_reference

 expression_semantics

 format_list_semantics

 make_non_quick

 semantic_translator$abort

 Include Files used:

 DRAFT: SUBJECT TO CHANGE 5-287 order number

 semant

 language_utility

 source_id_descriptor

 nodes

 system

 mask

 reference

 block

 token

 token_types

 semantic_bits

 symbol

 declare_type

 label

 list

 op_codes

 operator

 statement

 statement_types

 ps_map

 Errors Diagnosed:

 Error 170

 Error 171

 Error 469

 Error 470

 Error 473

2

 Chapter8.runoff 09/05/74

 1139.9r w 09/05/74 1134.4 808029

 SECTION VIII

 DRAFT: SUBJECT TO CHANGE 8-288 order number

 UTILITY PROGRAMS

 AN_OVERVIEW

 The procedures described in this section deals with many of

 the utility functions not limited to use by any phase of the

 compiler.

 DRAFT: SUBJECT TO CHANGE 8-289 order number

 NODE_MANAGEMENT_PROGRAMS

 The scheme used for the allocation and freeing of the nodes

 used by the compiler is simple. When a node is needed, it is

 allocated in the tree_$ segment -- sometimes in the xeq_tree_$

 segment. When a node is to be freed, generally no action is

 taken. But because of the frequency of allocating and freeing

 certain nodes like the operator node (2 or 3 operands), list node

 (2 or 3 elements), reference node, and statement node, a pool is

 maintained to keep track of the freed nodes. On subsequent

 allocation of the same type of node, this pool is examined for

 the existence of a freed and reuseable node before attempting to

 allocate a fresh node in the tree_$ segment (or xeq_tree_$

 segment).

 DRAFT: SUBJECT TO CHANGE 8-290 order number

 NAME: create_block

 Function:

 1. It creates and initializes a block node.

 Entry:

 create_block

 Usage:

 declare create_block entry (bit(9) aligned, ptr)

 returns (ptr) ;

 block_ptr = create_block (block_type, father_block_ptr

);

 1. block_type type of block node to be created.

 (input)

 2. father_block_ptr pointer to the block node

 containing this block. (input)

 3. block_ptr pointer to the block node returned

 by this program. (output)

 Programs that invoke this entry:

 code_generator

 lang_util_

 on_parse

 parse

 prepare_symbol_table

 procedure_parse

 DRAFT: SUBJECT TO CHANGE 8-291 order number

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$node_uses

 pl1_stat_$statement_id

 Internal Static Variables:

 none

 Programs Called:

 pl1_get

 tree_$

 Include Files used:

 rename

 block

 block_types

 nodes

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-292 order number

 NAME: create_statement

 Function:

 1. It creates and initializes a statement node.

 Entry:

 create_statement

 Usage:

 declare create_statement entry (bit(9) aligned, ptr,

 ptr, bit(12) aligned) returns (ptr);

 statement_ptr = create_statement (statement_type,

 father_ptr, label_ptr, conditions);

 1. statement_type type of statement to be created.

 (input)

 2. father_ptr either a pointer to the block node

 containing this statement, or a

 pointer to the statement node

 preceding this statement. (input)

 3. label_ptr pointer to the list of labels for

 this statement. (input)

 4. conditions conditions for this statement.

 (input)

 5. statement_ptr pointer to the statement node

 created by this program. (output)

 DRAFT: SUBJECT TO CHANGE 8-293 order number

 Programs that invoke this entry:

 alloc_semantics

 builtin

 code_generator

 declare_descriptor

 declare_parse

 default_parse

 do_parse

 do_semantics

 expand_assign

 expand_infix

 expand_initial

 function

 if_parse

 io_data_list_semantics

 io_semantics

 io_statement_parse

 lang_util_

 on_parse

 operator_semantics

 prepare_symbol_table

 procedure_parse

 process_entry

 statement_parse

 statement_recognizer

 Entry:

 create_statement$prologue

 This entry is used to create a statement node in the

 prologue sequence instead of the main sequence of the block.

 Usage:

 declare create_statement$prologue entry (bit(9)

 aligned, ptr, ptr, bit(12) aligned) returns (ptr);

 DRAFT: SUBJECT TO CHANGE 8-294 order number

 statement_ptr = create_statement$prologue (

 statement_type, father_ptr, label_ptr, conditions);

 1. statement_type type of statement to be created.

 (input)

 2. father_ptr either a pointer to the block node

 containing this statement, or a

 pointer to the statement node

 preceding this statement. (input)

 3. label_ptr pointer to the list of labels for

 this statement. (input)

 4. conditions conditions for this statement.

 (input)

 5. statement_ptr pointer to the statement node

 created by this program. (output)

 Programs that invoke this entry:

 declare

 declare_descriptor

 declare_structure

 expand_initial

 get_array_size

 get_size

 lang_util_

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$cur_statement

 pl1_stat_$tree_ptr

 pl1_stat_$node_uses

 DRAFT: SUBJECT TO CHANGE 8-295 order number

 pl1_stat_$source_seg

 pl1_stat_$st_length

 pl1_stat_$st_start

 pl1_stat_$statement_id

 tree_$

 Internal Static Variables:

 none

 Programs Called:

 pl1_get

 xeq_tree_$

 Include Files used:

 rename_xeq

 token_list

 label

 reference

 list

 statement

 block

 nodes

 statement_types

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-296 order number

 NAME: create_operator

 Function:

 1. It creates and initializes an operator node.

 Entry:

 create_operator

 Usage:

 declare create_operator entry (bit(9) aligned, fixed

 bin(15)) returns (ptr);

 operator_ptr = create_operator (op_code, arg_number);

 1. op_code operator code for this operator.

 (input)

 2. arg_number number of arguments for this

 operator. (input)

 3. operator_ptr pointer to the operator node

 created by this program. (output)

 Programs that invoke this entry:

 alloc_semantics

 attribute_parse

 builtin

 convert

 copy_expression

 data_list_parse

 declare

 DRAFT: SUBJECT TO CHANGE 8-297 order number

 declare_descriptor

 declare_structure

 defined_reference

 do_parse

 do_semantics

 evaluate

 expand_assign

 expand_infix

 expand_initial

 expand_prefix

 expand_primitive

 expression_parse

 expression_semantics

 format_list_parse

 function

 generic_selector

 get_array_size

 get_size

 if_parse

 io_data_list_semantics

 io_semantics

 io_statement_parse

 lang_util_

 offset_adder

 on_parse

 operator_semantics

 prepare_symbol_table

 procedure_parse

 process_entry

 reference_parse

 simplify_offset

 statement_parse

 subscripter

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$tree_ptr

 pl1_stat_$node_uses

 DRAFT: SUBJECT TO CHANGE 8-298 order number

 Internal Static Variables:

 none

 Programs Called:

 pl1_get

 xeq_tree_$

 Include Files used:

 rename_xeq

 operator

 nodes

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-299 order number

 NAME: create_reference

 Function:

 1. It creates and initializes a reference node.

 Entry:

 create_reference

 Usage:

 declare create_reference entry (ptr) returns (ptr);

 reference_ptr = create_reference (token_ptr);

 1. token_ptr pointer to the token node or symbol

 node for this reference (input)

 2. reference_ptr pointer to the reference node

 created by this program. (output)

 Programs that invoke this entry:

 alloc_semantics

 builtin

 code_generator

 copy_expression

 declare_descriptor

 do_semantics

 expand_initial

 expand_primitive

 expression_semantics

 fill_refer

 function

 DRAFT: SUBJECT TO CHANGE 8-300 order number

 get_reference

 io_semantics

 lang_util_

 operator_semantics

 refer_extent

 reference_parse

 share_expression

 statement_parse

 statement_type

 Entry:

 create_reference$for_symbol

 This entry is called so that the reference node created

 will be allocated in the xeq_tree_ segment instead of the tree_

 segment.

 Usage:

 declare create_reference entry (ptr) returns (ptr) ;

 reference_ptr = create_reference (token_ptr);

 1. token_ptr pointer to the token node or symbol

 node for this reference. (input)

 2. reference_ptr pointer to the reference node

 created by this program. (output)

 Programs that invoke this entry:

 create_symbol

 DRAFT: SUBJECT TO CHANGE 8-301 order number

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$free_ptr

 pl1_stat_$node_uses

 xeq_tree_$

 Internal Static Variables:

 none

 Programs Called:

 pl1_get

 tree_$

 Include Files used:

 rename

 nodes

 reference

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-302 order number

 NAME: create_token

 Function:

 1. It prepares to create a token node for the token represented

 by the given string.

 2. It tries to find the token node in the hash table.

 3. If it succeeds, it returns the pointer to the token node

 found.

 4. If it fails, it creates a new token node, puts the pointer in

 the appropriate slot in the hash table, and returns.

 Entry:

 create_token

 Usage:

 declare create_token entry (char (*) aligned, bit (9)

 aligned) returns (ptr) ;

 token_ptr = create_token (token_string, token_type);

 1. token_string string for which the token is made.

 (input)

 2. token_type type of token to be created.

 (input)

 3. token_ptr pointer to the token node returned

 by this program. (output)

 DRAFT: SUBJECT TO CHANGE 8-303 order number

 Programs that invoke this entry:

 attribute_parse

 builtin

 convert

 create_identifier

 declare_parse

 descriptor_parse

 do_semantics

 evaluate

 expand_assign

 expand_initial

 expand_primitive

 expression_parse

 expression_semantics

 initialize_int_static

 io_semantics

 io_statement_parse

 lang_util_

 lex

 merge_attributes

 on_parse

 operator_semantics

 parse

 process_entry

 reserve

 statement_type

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$hash_table

 pl1_stat_$node_uses

 Internal Static Variables:

 DRAFT: SUBJECT TO CHANGE 8-304 order number

 none

 Programs Called:

 pl1_get

 tree_$

 Include Files used:

 rename

 nodes

 token

 create_token

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-305 order number

 NAME: create_symbol

 Function:

 1. It creates and initializes a symbol node.

 Entry:

 create_symbol

 Usage:

 declare create_symbol entry (ptr, ptr, bit(3) aligned

) returns (ptr);

 symbol_ptr = create_symbol (block_ptr, token_ptr,

 create_type);

 1. block_ptr pointer to the block node

 containing this symbol. (input)

 2. token_ptr pointer to the token node for which

 the symbol node is created.

 (input)

 3. create_type bits indicating whether the symbol

 node is created by declaration, by

 context, by implication, or by the

 compiler. (input)

 4. symbol_ptr pointer to the symbol node returned

 by this program. (output)

 Programs that invoke this entry:

 DRAFT: SUBJECT TO CHANGE 8-306 order number

 alloc_semantics

 builtin

 context_processor

 copy_expression

 declare_constant

 declare_descriptor

 declare_integer

 declare_parse

 declare_pointer

 declare_temporary

 default_parse

 defined_reference

 descriptor_parse

 do_semantics

 expand_assign

 expand_infix

 expand_initial

 expand_primitive

 expression_semantics

 format_list_parse

 function

 generate_constant

 generic_selector

 get_variable

 io_data_list_semantics

 io_semantics

 io_statement_parse

 lang_util_

 on_parse

 operator_semantics

 process_entry

 reference_parse

 reserve

 statement_parse

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$free_ptr

 pl1_stat_$node_uses

 DRAFT: SUBJECT TO CHANGE 8-307 order number

 tree_$

 Internal Static Variables:

 none

 Programs Called:

 create_identifier

 create_reference$for_symbol

 pl1_get

 tree_$

 Include Files used:

 rename

 symbol

 block

 token_list

 nodes

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-308 order number

 NAME: create_context

 Function:

 1. It creates and initializes a context node.

 Entry:

 create_context

 Usage:

 declare create_context entry (ptr, ptr) returns

 (ptr);

 context_ptr = create_context (block_ptr, token_ptr);

 1. block_ptr pointer to the block node

 containging this token. (input)

 2. token_ptr pointer to the token node for which

 the context is to be recorded.

 (input)

 3. context_ptr pointer to the context node

 returned by this program. (output)

 Programs that invoke this entry:

 context

 lang_util_

 DRAFT: SUBJECT TO CHANGE 8-309 order number

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$node_uses

 Internal Static Variables:

 none

 Programs Called:

 pl1_get

 tree_$

 Include Files used:

 rename

 context

 nodes

 block

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-310 order number

 NAME: create_array

 Function:

 1. It creates and initializes an array node.

 Entry:

 create_array

 Usage:

 declare create_array entry () returns (ptr);

 array_ptr = create_array ();

 1. array_ptr pointer to the array node returned

 by this program. (output)

 Programs that invoke this entry:

 attribute_parse

 copy_expression

 expand_assign

 expand_initial

 function

 get_array_size

 lang_util_

 Internal Procedures:

 DRAFT: SUBJECT TO CHANGE 8-311 order number

 none

 External Variables:

 pl1_stat_$node_uses

 Internal Static Variables:

 none

 Programs Called:

 pl1_get

 tree_$

 Include Files used:

 rename

 nodes

 array

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-312 order number

 NAME: create_bound

 Function:

 1. It creates and initializes a bound node.

 Entry:

 create_bound

 Usage:

 declare create_array entry () returns (ptr);

 array_ptr = create_array ();

 1. array_ptr pointer to the array node returned

 by this program. (output)

 Programs that invoke this entry:

 attribute_parse

 copy_expression

 expand_assign

 expand_initial

 expand_primitive

 function

 get_array_size

 lang_util_

 subscripter

 Internal Procedures:

 DRAFT: SUBJECT TO CHANGE 8-313 order number

 none

 External Variables:

 pl1_stat_$node_uses

 Internal Static Variables:

 none

 Programs Called:

 pl1_get

 tree_$

 Include Files used:

 rename

 nodes

 array

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-314 order number

 NAME: create_list

 Function:

 1. It creates and initializes a list node.

 Entry:

 create_list

 Usage:

 declare create_list entry (fixed bin(15)) returns

 (ptr);

 list_ptr = create_list (number);

 1. number number of elements for this list

 node. (input)

 2. list_ptr pointer to the list node returned

 by this program. (output)

 Programs that invoke this entry:

 alloc_semantics

 assign_storage

 attribute_parse

 builtin

 check_o_and_s

 compile_entry

 compile_statement

 convert_chars

 copy_expression

 declare

 DRAFT: SUBJECT TO CHANGE 8-315 order number

 descriptor_parse

 do_parse

 do_semantics

 expand_initial

 expand_primitive

 expression_semantics

 function

 gen_pl1_linkage

 get_reference

 if_parse

 io_data_list_semantics

 io_semantics

 lang_util_

 mst

 name_assign

 on_parse

 operator_semantics

 optimizer

 process_entry

 reference_parse

 statement_parse

 statement_type

 subscripter

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$free_ptr

 pl1_stat_$node_uses

 Internal Static Variables:

 none

 DRAFT: SUBJECT TO CHANGE 8-316 order number

 Programs Called:

 pl1_get

 xeq_tree_$

 Include Files used:

 rename

 nodes

 list

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-317 order number

 NAME: create_default

 Function:

 1. It creates and initializes a default node.

 Entry:

 create_default

 Usage:

 declare create_default entry () returns (ptr);

 default_ptr = create_default ();

 1. default_ptr pointer to the default node created

 by this program. (output)

 Programs that invoke this entry:

 default_parse

 lang_util_

 Internal Procedures:

 none

 External Variables:

 DRAFT: SUBJECT TO CHANGE 8-318 order number

 pl1_stat_$node_uses

 Internal Static Variables:

 none

 Programs Called:

 pl1_get

 tree_$

 Include Files used:

 rename

 default

 nodes

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-319 order number

 NAME: create_label

 Function:

 1. It creates and initializes a label node.

 Entry:

 create_label

 Usage:

 declare create_label entry (ptr, ptr, bit(3) aligned

);

 label_ptr = (block_ptr, token_ptr, create_type);

 1. block_ptr pointer to the block node

 containing this label. (input)

 2. token_ptr pointer to the token node for which

 the label node is created. (input)

 3. create_type bits indicating whether the label

 node is created by declaration, by

 context, by implication, or by the

 compiler. (input)

 4. label_ptr pointer to the label node returned

 by this program. (output)

 Programs that invoke this entry:

 code_generator

 compile_block

 DRAFT: SUBJECT TO CHANGE 8-320 order number

 compile_statement

 compile_tree

 convert_chars

 declare_label

 do_parse

 do_semantics

 expand_initial

 if_parse

 io_data_list_semantics

 io_semantics

 lang_util_

 operator_semantics

 set_indicators

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$node_uses

 pl1_stat_$statement_id

 tree_$

 Internal Static Variables:

 none

 Programs Called:

 create_identifier

 pl1_get

 tree_$

 DRAFT: SUBJECT TO CHANGE 8-321 order number

 Include Files used:

 rename

 nodes

 block

 label

 token_list

 token

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-322 order number

 NAME: create_cross_reference

 Function:

 1. It creates and initializes a cross_reference node.

 Entry:

 create_cross_reference

 Usage:

 declare create_cross_reference entry () returns (ptr);

 cross_reference_ptr = create_cross_reference ();

 1. cross_reference_ptr pointer to the cross_reference node

 returned by this program. (output)

 Programs that invoke this entry:

 expand_initial

 expression_semantics

 lang_util_

 lookup

 process_entry

 Internal Procedures:

 none

 DRAFT: SUBJECT TO CHANGE 8-323 order number

 External Variables:

 pl1_stat_$node_uses

 Internal Static Variables:

 none

 Programs Called:

 pl1_get

 tree_$

 Include Files used:

 rename

 cross_reference

 nodes

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-324 order number

 NAME: create_identifier

 Function:

 1. It fabricates a compiler-created unique name.

 2. It creates a token node for that name.

 Entry:

 create_identifier

 Usage:

 declare create_identifier entry () returns (ptr);

 token_ptr = create_identifier ();

 1. token_ptr pointer to the token node returned

 by this program. (output)

 Programs that invoke this entry:

 create_label

 create_symbol

 lang_util_

 Internal Procedures:

 none

 DRAFT: SUBJECT TO CHANGE 8-325 order number

 External Variables:

 pl1_stat_$compiler_created_index

 Internal Static Variables:

 none

 Programs Called:

 bindec$vs

 create_token

 Include Files used:

 token_types

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-326 order number

 NAME: create_storage

 Function:

 1. It allocates a block of words.

 Entry:

 create_storage

 Usage:

 declare create_storage entry (fixed bin) returns

 (ptr);

 storage_ptr = create_storage (number);

 1. number number of words to be allocated.

 (input)

 2. storage_ptr pointer to the block of storage

 returned by this program. (output)

 Programs that invoke this entry:

 declare_constant

 lang_util_

 Internal Procedures:

 none

 DRAFT: SUBJECT TO CHANGE 8-327 order number

 External Variables:

 pl1_stat_$node_uses

 Internal Static Variables:

 none

 Programs Called:

 pl1_get

 tree_$

 Include Files used:

 rename

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-328 order number

 NAME: pl1_get

 Function:

 1. It calls tree_manager$get_free to get a free area.

 Entry:

 pl1_get

 Usage:

 declare pl1_get entry (fixed bin(15), ptr) returns

 (ptr);

 return_ptr = pl1_get (size, area_ptr);

 1. size number of words to be allocated.

 (input)

 2. area_ptr pointer to the area inside which

 space is to be allocated. (input)

 3. return_ptr pointer to the space just

 allocated. (output)

 Programs that invoke this entry:

 assign_storage

 cg_error

 compile_formats

 copy_temp

 create_array

 create_block

 create_bound

 DRAFT: SUBJECT TO CHANGE 8-329 order number

 create_context

 create_cross_reference

 create_default

 create_label

 create_list

 create_operator

 create_reference

 create_statement

 create_storage

 create_symbol

 create_token

 e_v

 generate_constant

 lang_util_

 lex

 mst

 pl1_signal_catcher

 stack_temp

 state_man

 Entry:

 pl1_put

 This entry is used for freeing an area. But currently this

 entry does nothing.

 Usage:

 declare pl1_put entry;

 call pl1_put;

 Programs that invoke this entry:

 none

 DRAFT: SUBJECT TO CHANGE 8-330 order number

 Internal Procedures:

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 none

 Include Files used:

 none

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-331 order number

 NAME: tree_manager

 Function:

 1. It manages the use of multiple free storage segments used by

 the compiler during compilation.

 Entry:

 tree_manager$init

 It creates a tree_$ segment, and a xeq_tree_$ segment.

 Usage:

 declare tree_manager$init entry (label);

 call tree_manager$init (abort_label);

 1. abort_label label indicating where the transfer

 is to go if all the storage space

 is exhausted. (input)

 Programs that invoke this entry:

 lang_util_

 v2pl1

 Entry:

 DRAFT: SUBJECT TO CHANGE 8-332 order number

 tree_manager$truncate

 It truncates the tree_$ segment as well as the

 xeq_tree_$ segment.

 Usage:

 declare tree_manager$truncate entry ();

 call tree_manager$truncate;

 Programs that invoke this entry:

 lang_util_

 v2pl1

 Entry:

 tree_manager$get_free

 This entry makes a call to the Multics system routine

 hcs_$make_seg to allocate a free segment in the process directory

 of the user.

 Usage:

 declare tree_manager$get_free entry (fixed bin(24),

 ptr, ptr);

 call tree_manager$get_free (size, area_ptr, unused_ptr

);

 DRAFT: SUBJECT TO CHANGE 8-333 order number

 1. size number of words to be allocated.

 (input)

 2. area_ptr pointer to the area inside which

 space is to be allocated. (input)

 3. unused_ptr dummy argument, currently not being

 used for any purpose.

 Programs that invoke this entry:

 lang_util_

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$condition_index

 pl1_stat_$free_ptr

 pl1_stat_$root

 pl1_stat_$source_list_ptr

 pl1_stat_$tree_vec_index

 tree_$tree_

 Internal Static Variables:

 abort_label label indicating where the transfer is to go

 if all the free segments are exhausted.

 tree_vec array of pointers to the free segments it has

 allocated.

 xeq_ptr pointer to the xeq_tree area it has

 allocated.

 DRAFT: SUBJECT TO CHANGE 8-334 order number

 Programs Called:

 hcs_$make_seg

 hcs_$truncate_seg

 ioa_

 Include Files used:

 source_list

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-335 order number

 NAME: free_node

 Function:

 1. Given a pointer to a node, it will determine the type of node

 to be freed.

 2. If the node is an operator node, a list node, a reference

 node, or a symbol node, the node will be saved on a

 free-list. Future creations of the same type of node can

 pick it up from the free-list, without having to allocate a

 new node.

 Entry:

 free_node

 Usage:

 declare free_node entry (ptr);

 call free_node (node_ptr);

 1. node_ptr pointer to the node to be freed by

 this program. (input)

 Programs that invoke this entry:

 declare_parse

 default_parse

 do_parse

 do_semantics

 expression_semantics

 format_list_parse

 lang_util_

 DRAFT: SUBJECT TO CHANGE 8-336 order number

 offset_adder

 on_parse

 operator_semantics

 optimizer

 prepare_symbol_table

 simplify_offset

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$free_ptr

 Internal Static Variables:

 none

 Programs Called:

 none

 Include Files used:

 rename

 nodes

 symbol

 token

 block

 statement

 reference

 array

 list

 DRAFT: SUBJECT TO CHANGE 8-337 order number

 context

 label

 operator

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-338 order number

 VARIABLE_AND_CONSTANT_CREATION_PROGRAMS

 It is often necessary for the compiler to declare a constant

 or a variable with some specific attributes to facilitate the

 processing of other references and expressions. This function is

 accomplished by the following procedures.

 DRAFT: SUBJECT TO CHANGE 8-339 order number

 NAME: declare_integer

 Function:

 1. It creates a symbol node and makes a fixed binary real

 declaration of default precision and automatic storage class.

 Entry:

 declare_integer

 Usage:

 declare declare_integer entry (ptr);

 return_ptr = declare_integer (block_ptr);

 1. block_ptr pointer to the block node for which

 the integer is declared. (input)

 2. return_ptr pointer to the reference node

 representing the integer declared

 by this program. (output)

 Programs that invoke this entry:

 builtin

 declare

 do_semantics

 expand_initial

 get_array_size

 get_size

 lang_util_

 DRAFT: SUBJECT TO CHANGE 8-340 order number

 Internal Procedures:

 none

 External Variables:

 Internal Static Variables:

 none

 Programs Called:

 create_symbol

 Include Files used:

 language_utility

 source_id_descriptor

 boundary

 declare_type

 symbol

 system

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-341 order number

 NAME: declare_pointer

 Function:

 1. It creates a symbol node and makes apointer declare_constantl

 withautomatic storage class.

 Entry:

 declare_pointer

 Usage:

 declare declare_pointer

 return_ptr = declare_pointer (block_ptr);

 1. block_ptr pointer to the block node for which

 the pointer is declare. (input)

 2. return_ptr pointer to the reference node

 representing the pointer declared

 by this program. (output)

 Programs that invoke this entry:

 alloc_semantics

 declare

 declare_descriptor

 declare_structure

 do_semantics

 expand_initial

 lang_util_

 prepare_symbol_table

 DRAFT: SUBJECT TO CHANGE 8-342 order number

 Internal Procedures:

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 create_symbol

 Include Files used:

 language_utility

 source_id_descriptor

 boundary

 declare_type

 symbol

 system

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-343 order number

 NAME: declare_temporary

 Function:

 1. It searches through the list of temporary nodes already

 created for an identical declaration. If the search is

 successful, that temporary will be returned.

 2. If the search fails, it creates a symbol node and makes a new

 declaration with temporary storage class.

 3. The new temporary node created witll be chained onto the list

 of temporary nodes.

 Entry:

 declare_temporary

 Usage:

 declare declare_temporary entry (bit(36) aligned,

 fixed bin(31), fixed bin(15), ptr) returns (ptr) ;

 return_ptr = declare_temporary (data_type, precision,

 scale, length);

 1. data_type data type of the temporary.

 (input)

 2. precision precision of the temporary if the

 data type is arithmetic, otherwise

 the string length. (input)

 3. scale scale of the temporary if the data

 type is arithmetic. (input)

 4. length length expression of the string if

 the data type is a string. (input)

 DRAFT: SUBJECT TO CHANGE 8-344 order number

 5. return_ptr pointer to the reference node

 representing the temporary.

 (output)

 Programs that invoke this entry:

 alloc_semantics

 builtin

 convert

 decimal_op

 declare_descriptor

 defined_reference

 expand_assign

 expand_infix

 expand_primitive

 function

 io_data_list_semantics

 io_semantics

 lang_util_

 operator_semantics

 prepare_symbol_table

 simplify_offset

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$temporary_list

 Internal Static Variables:

 none

 DRAFT: SUBJECT TO CHANGE 8-345 order number

 Programs Called:

 create_symbol

 get_size

 Include Files used:

 language_utility

 source_id_descriptor

 symbol

 boundary

 mask

 reference

 declare_type

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-346 order number

 NAME: declare_label

 Function:

 1. Given a list of labels, this program will get the token

 representing each label.

 2. For each token, if a declaration has already been made, it

 will check if the attributes are consistent. For constant

 label arrays, it will update the high bound and the low

 bound.

 3. If no declaration has been made, a label node will be

 created.

 Entry:

 declare_label

 Usage:

 declare declare_label entry (ptr, ptr, ptr, bit(3)

 aligned);

 call declare_label (block_ptr, statement_ptr,

 label_ptr, declare_type);

 1. block_ptr pointer to the block node

 containing this label. (input)

 2. statement_ptr pointer to the statement node

 containing this label. (input)

 3. label_ptr pointer to the list node of labels.

 (input)

 4. declare_type bits indicating whether the declare

 is by context, by implicating, or

 DRAFT: SUBJECT TO CHANGE 8-347 order number

 by the compiler.

 Programs that invoke this entry:

 declare_parse

 default_parse

 do_parse

 if_parse

 io_statement_parse

 on_parse

 procedure_parse

 statement_parse

 Internal Procedures:

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 create_label

 parse_error

 token_to_binary

 DRAFT: SUBJECT TO CHANGE 8-348 order number

 Include Files used:

 language_utility

 source_id_descriptor

 block

 label

 list

 nodes

 reference

 token

 Errors Diagnosed:

 Error 31

 Error 54

 DRAFT: SUBJECT TO CHANGE 8-349 order number

 NAME: declare_descriptor

 Function:

 1. It creates a descriptor for the argument of a call.

 2. It determines if the descriptor has already been made for the

 argument.

 3. It creates a parameter descriptor pointer if necessary.

 Entry:

 declare_descriptor

 Usage:

 declare declare_descriptor entry (ptr, ptr, ptr, ptr,

 bit(1) aligned) returns (ptr) ;

 descriptor_ptr = declare_descriptor (block_ptr,

 statement_ptr, symbol_ptr, locator_qualifier,

 array_descriptor_bit);

 1. block_ptr pointer to the block node

 containing this declaration.

 (input)

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. symbol_ptr pointer to the symbol node for

 which the descriptor is to be made.

 (input)

 4. locator_qualifier locator qualifier expression for

 this operand. (input)

 DRAFT: SUBJECT TO CHANGE 8-350 order number

 5. array_descriptor_bit bit indicating if an array

 descriptor is required. (input)

 6. descriptor_ptr pointer to the descriptor created

 by this program. (output)

 Programs that invoke this entry:

 builtin

 declare

 declare_structure

 function

 io_semantics

 lang_util_

 Entry:

 declare_descriptor$ctl

 This special entry point is used to make assignments to

 controlled descriptors at allocation time.

 Usage:

 declare declare_descriptor$ctl entry (ptr, ptr, ptr,

 ptr, bit(1) aligned) returns (ptr) ;

 descriptor_ptr = declare_descriptor$ctl (block_ptr,

 statement_ptr, symbol_ptr, locator_qualifier,

 array_descriptor_bit);

 1. block_ptr pointer to the block node

 containing this declaration.

 (input)

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 DRAFT: SUBJECT TO CHANGE 8-351 order number

 3. symbol_ptr pointer to the symbol node for

 which the descriptor is to be made.

 (input)

 4. locator_qualifier locator qualifier expression for

 this operand. (input)

 5. array_descriptor_bit bit indicating if an array

 descriptor is required. (input)

 6. descriptor_ptr pointer to the descriptor created

 by this program. (output)

 Programs that invoke this entry:

 alloc_semantics

 lang_util_

 Entry:

 declare_descriptor$param

 This entry point is used to indicate that all the

 extents and bounds have already been computed by get_size.

 Usage:

 declare declare_descriptor$param entry (ptr, ptr, ptr,

 ptr, bit(1) aligned) returns (ptr) ;

 descriptor_ptr = declare_descriptor$param (block_ptr,

 statement_ptr, symbol_ptr, locator_qualifier,

 array_descriptor_bit);

 1. block_ptr pointer to the block node

 containing this declaration.

 (input)

 DRAFT: SUBJECT TO CHANGE 8-352 order number

 2. statement_ptr pointer to the statement node

 containing this operand. (input)

 3. symbol_ptr pointer to the symbol node for

 which the descriptor is to be made.

 (input)

 4. locator_qualifier locator qualifier expression for

 this operand. (input)

 5. array_descriptor_bit bit indicating if an array

 descriptor is required. (input)

 6. descriptor_ptr pointer to the descriptor created

 by this program. (output)

 Programs that invoke this entry:

 declare_

 declare_structure

 lang_util_

 Internal Procedures:

 assignf

 an internal procedure to create a statement

 for the assignment to the descriptor.

 assignm

 an internal procedure to create a statement

 for generating multiplier assignments to

 controlled descriptors.

 builder

 an internal procedure to build a descriptor

 from the symbol node.

 copy

 an internal procedure to call copy_expression

 for a reference node if the reference node

 has offset expression, length expression, or

 qualifier expression.

 DRAFT: SUBJECT TO CHANGE 8-353 order number

 set_star

 an internal procedure to propagate the

 star_extents bit upward.

 External Variables:

 pl1_stat_$util_abort

 Internal Static Variables:

 none

 Programs Called:

 copy_expression

 create_operator

 create_reference

 create_statement

 create_statement$prologue

 create_symbol

 declare_constant$desc

 declare_constant$integer

 declare_pointer

 declare_temporary

 expression_semantics

 refer_extent

 token_to_binary

 Include Files used:

 semant

 language_utility

 source_id_descriptor

 semantic_bits

 symbol

 array

 reference

 DRAFT: SUBJECT TO CHANGE 8-354 order number

 statement

 block

 operator

 statement_types

 op_codes

 system

 declare_type

 boundary

 nodes

 token

 token_types

 Errors Diagnosed:

 Error 28

 Error 29

 DRAFT: SUBJECT TO CHANGE 8-355 order number

 NAME: declare_picture

 Function:

 1. It calls picture_info_ to ascertain that the picture string

 is valid.

 2. It fills in the attributes of the picture as determined by

 picture_info_.

 3. It declares the picture_constant, and puts it in

 symbol.general.

 Entry:

 declare_picture

 Usage:

 declare declare_picture entry (char(*) aligned, ptr,

 fixed bin(15));

 call declare_picture (picture_string, symbol_ptr,

 error_code);

 1. picture_string character string representing the

 picture. (input)

 2. symbol_ptr pointer to the symbol node with the

 picture attribute. (input)

 3. error_code error number returned by

 picture_info_. (output)

 Programs that invoke this entry:

 DRAFT: SUBJECT TO CHANGE 8-356 order number

 format_list_parse

 get_size

 lang_util_

 Internal Procedures:

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 declare_constant$bit

 picture_info_

 Include Files used:

 language_utility

 source_id_descriptor

 picutre_constant

 picutre_image

 picutre_types

 reference

 symbol

 DRAFT: SUBJECT TO CHANGE 8-357 order number

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-358 order number

 NAME: declare_constant

 Function:

 1. It computes the boundary requirement and the bit size needed

 to declare the constant.

 2. It searches throught the chain of constants to find a

 constant with the same value.

 3. It creates a new symbol node to represent the value if no

 other constant has the same value.

 4. If another constant value can be found but with different

 attributes, then an equivalence declaration will be made.

 5. The new constant will be linked to the constant chain.

 Entry:

 declare_constant

 Usage:

 declare declare_constant entry (bit(*) aligned,

 bit(36) aligned, fixed bin(31), fixed bin(15)) returns (ptr) ;

 return_ptr = declare_constant (value, data_type,

 precision, scale);

 1. value value of the constant to be

 declared. (input)

 2. data_type data type of the constant. (input)

 3. precision precision of the constant if the

 data type is arithmetic, otherwise

 the string length. (input)

 DRAFT: SUBJECT TO CHANGE 8-359 order number

 4. scale scale of the constant if the data

 type is fixed. (input)

 5. return_ptr pointer to the reference node

 representing the constant declared

 by this program. (output)

 Programs that invoke this entry:

 builtin

 convert

 declare_constant

 io_semantics

 lang_util_

 operator_semantics

 Entry:

 declare_constant$bit

 This entry is used to declare a bit string constant.

 Usage:

 declare declare_constant$bit entry (bit(*) aligned)

 returns (ptr) ;

 return_ptr = declare_constant$bit (bit_string);

 1. bit_string bit string value of the constant to

 be declared. (input)

 2. return_ptr pointer to the reference node

 representing the bit constant

 declared by this program. (output)

 DRAFT: SUBJECT TO CHANGE 8-360 order number

 Programs that invoke this entry:

 builtin

 declare_picture

 expand_initial

 io_semantics

 lang_util_

 Entry:

 declare_constant$char

 This entry is used to declare a character string

 constant.

 Usage:

 declare declare_constant$char entry (char(*) aligned)

 returns (ptr) ;

 return_ptr = declare_constant$char (char_string);

 1. char_string char string value of the constant

 to be declared. (input)

 2. return_ptr pointer to the reference node

 representing the character constant

 declared by this program. (output)

 Programs that invoke this entry:

 builtin

 declare

 expand_initial

 lang_util_

 DRAFT: SUBJECT TO CHANGE 8-361 order number

 Entry:

 declare_constant$desc

 This entry is used to declare a constant descriptor.

 Usage:

 declare declare_constant$desc entry (bit(*) aligned)

 returns (ptr) ;

 return_ptr = declare_constant$desc (desc_bit_string);

 1. desc_bit_string bit string value of the descriptor

 constant to be declared. (input)

 2. return_ptr pointer to the reference node

 representing the descriptor

 constant declared by this program.

 (output)

 Programs that invoke this entry:

 declare_descriptor

 lang_util_

 Entry:

 declare_constant$integer

 This entry is used to declare a fixed binary constant.

 DRAFT: SUBJECT TO CHANGE 8-362 order number

 Usage:

 declare declare_constant$integer entry (fixed bin(31)

) returns (ptr) ;

 return_ptr = declare_constant$integer (value);

 1. value value of the integer constant to be

 declared. (input)

 2. return_ptr pointer to the reference node

 representing the integer constant

 declared by this program. (output)

 Programs that invoke this entry:

 alloc_semantics

 builtin

 declare

 declare_descriptor

 declare_structure

 defined_reference

 expand_assign

 expand_initial

 expand_primitive

 function

 get_array_size

 get_size

 io_data_list_semantics

 io_semantics

 lang_util_

 offset_adder

 operator_semantics

 prepare_symbol_table

 simplify_offset

 subscripter

 Internal Procedures:

 DRAFT: SUBJECT TO CHANGE 8-363 order number

 none

 External Variables:

 pl1_stat_$constant_list

 Internal Static Variables:

 none

 Programs Called:

 create_storage

 create_symbol

 declare_constant

 Include Files used:

 language_utility

 source_id_descriptor

 symbol

 reference

 system

 boundary

 declare_type

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-364 order number

 CONVERSION_PROGRAMS

 Conversion between data types is done by the following

 utility procedures.

 DRAFT: SUBJECT TO CHANGE 8-365 order number

 NAME: convert

 Function:

 1. It gets the input type, input precision, and input scale.

 2. It gets the output type; and output precision and output

 scale if possible.

 3. It checks the validity of this attempted conversion.

 4. If the input and the output have identical data types, no

 conversion is done.

 5. If the input is not a constant, an assign operator will be

 created, so that conversion will be done at run time.

 6. If the input is a constant, conversion is done at compile

 time.

 Entry:

 convert

 Usage:

 declare convert entry (ptr, bit(36) aligned) returns

 (ptr) ;

 return_ptr = convert (input_tree, target_type);

 1. input_tree operand to be converted by this

 program. (input)

 2. target_type data type to which the operand is

 to be converted. (input)

 DRAFT: SUBJECT TO CHANGE 8-366 order number

 3. return_ptr pointer to the result returned by

 this program. (output)

 Programs that invoke this entry:

 builtin

 defined_reference

 expand_assign

 expression_semantics

 io_semantics

 lang_util_

 operator_semantics

 semantic_translator

 Entry:

 convert$from_builtin

 This entry is used to suppress warning diagnostics that

 may normally be given, because the user does an explicit

 conversion using a builtin function.

 Usage:

 declare convert$from_builtin entry (ptr, bit(36)

 aligned) returns (ptr) ;

 return_ptr = convert$from_builtin (input_tree,

 target_type);

 1. input_tree operand to be converted by this

 program. (input)

 2. target_type data type to which the operand is

 to be converted. (input)

 DRAFT: SUBJECT TO CHANGE 8-367 order number

 3. return_ptr pointer to the result returned by

 this program. (output)

 Programs that invoke this entry:

 builtin

 lang_util_

 Entry:

 convert$to_integer

 This entry is used to convert an operand to a fixed

 binary integer value with no scale factors.

 Usage:

 declare convert$to_integer entry (ptr, bit(36) aligned

) returns (ptr) ;

 return_ptr = convert$to_integer (input_tree,

 target_type);

 1. input_tree operand to be converted by this

 program. (input)

 2. target_type data type to which the operand is

 to be converted. (input)

 3. return_ptr pointer to the result returned by

 this program. (output)

 Programs that invoke this entry:

 DRAFT: SUBJECT TO CHANGE 8-368 order number

 builtin

 expression_semantics

 lang_util_

 simplify_offset

 subscripter

 Entry:

 convert$to_target

 This entry is used to convert an operand to the data

 type, precision, scale or length specified by a target

 declaration.

 Usage:

 declare convert$to_target entry (ptr, ptr) returns

 (ptr) ;

 return_ptr = convert$to_target (input_tree,

 target_reference);

 1. input_tree operand to be converted by this

 program. (input)

 2. target_reference pointer to the target reference

 node. (input)

 3. return_ptr pointer to the result returned by

 this program. (output)

 Programs that invoke this entry:

 builtin

 expression_semantics

 io_data_list_semantics

 io_semantics

 DRAFT: SUBJECT TO CHANGE 8-369 order number

 lang_util_

 operator_semantics

 Entry:

 convert$to_target_fb

 This entry is used to suppress warning diagnostics that

 may normally be given when an operand is converted to the data

 type, precision, scale or length specified by the target

 declaration because the user does an explicit conversion using a

 builtin function.

 Usage:

 declare convert$to_target_fb entry (ptr, ptr) returns

 (ptr) ;

 return_ptr = convert$to_target_fb (input_tree,

 target_reference);

 1. input_tree operand to be converted by this

 program. (input)

 2. target_reference pointer to the target reference

 node. (input)

 3. return_ptr pointer to the result returned by

 this program. (output)

 Programs that invoke this entry:

 builtin

 lang_util_

 DRAFT: SUBJECT TO CHANGE 8-370 order number

 Entry:

 convert$validate

 This entry is used to find out whether two sides of an

 assign operator is compatible.

 Usage:

 declare convert$validate entry (ptr, ptr) returns

 (ptr) ;

 return_ptr = convert$validate (input_tree,

 target_reference);

 1. input_tree operand to be converted by this

 program. (input)

 2. target_reference pointer to the target reference

 node. (input)

 3. return_ptr pointer to the result returned by

 this program. (output)

 Programs that invoke this entry:

 lang_util_

 operator_semantics

 Internal Procedures:

 ceil

 an internal procedure to perform the ceiling

 function.

 DRAFT: SUBJECT TO CHANGE 8-371 order number

 desc_type

 an internal procedure to convert the data

 type and precision into a descriptor type

 code.

 get_target_size

 an internal procedure to compute the output

 precision, scale and length, when the input

 type, input precision, scale, length and

 output type is known.

 print

 an internal procedure to call the error

 message program pl1_stat_$util_abort or

 pl1_stat_$util_error.

 External Variables:

 pl1_stat_$util_abort

 pl1_stat_$util_error

 Internal Static Variables:

 none

 Programs Called:

 assign_

 char_to_numeric_

 create_operator

 create_token

 declare_constant

 declare_temporary

 share_expression

 Include Files used:

 DRAFT: SUBJECT TO CHANGE 8-372 order number

 language_utility

 source_id_descriptor

 declare_type

 desc_dcls

 desc_types

 mask

 nodes

 op_codes

 operator

 reference

 symbol

 system

 token

 token_types

 Errors Diagnosed:

 Error 223

 Error 224

 Error 225

 Error 226

 Error 227

 Error 228

 Error 229

 Error 230

 Error 231

 Error 232

 Error 233

 Error 234

 Error 235

 Error 236

 Error 246

 Error 248

 Error 249

 Error 250

 Error 251

 Error 252

 Error 253

 Error 443

 DRAFT: SUBJECT TO CHANGE 8-373 order number

 NAME: bindec

 Function:

 1. It converts a fixed binary number to a fixed decimal number.

 Entry:

 bindec

 Usage:

 declare bindec entry (fixed bin) returns (char(12)

 aligned);

 character_result = bindec (binary_number);

 1. binary_number binary number to be converted.

 (input)

 2. character_result decimal result expressed in

 characters. (output)

 Programs that invoke this entry:

 display_pl1_map

 display_pl1_text

 evaluate

 lang_util_

 lex

 pl1_print

 v2pl1

 DRAFT: SUBJECT TO CHANGE 8-374 order number

 Entry:

 bindec$vs

 This entry is used to return a varying character string

 instead of a nonvarying character string.

 Usage:

 declare bindec$vs entry (fixed bin) returns (

 char(12) varying);

 character_result = bindec$vs (binary_number);

 1. binary_number binary number to be converted.

 (input)

 2. character_result decimal result expressed in

 characters. (output)

 Programs that invoke this entry:

 cg_error

 create_identifier

 decode_node_id

 descriptor_parse

 display_pl1_text

 display_text

 expand_primitive

 lang_util_

 lex

 on_parse

 pl1_error_print

 prepare_symbol_map_

 Internal Procedures:

 DRAFT: SUBJECT TO CHANGE 8-375 order number

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 none

 Include Files used:

 eis_bits

 eis_micro_ops

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-376 order number

 NAME: binoct

 Function:

 1. It converts a bit string to an octal string.

 Entry:

 binoct

 Usage:

 declare binoct entry (bit(36) aligned) returns (

 char(12) aligned);

 character_result = binoct (bit_string);

 1. bit_string bit string to be converted.

 (input)

 2. character_result octal result expressed in

 characters. (output)

 Programs that invoke this entry:

 display_pl1_map

 display_text

 lang_util_

 pl1_symbol_print

 Internal Procedures:

 DRAFT: SUBJECT TO CHANGE 8-377 order number

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 none

 Include Files used:

 none

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-378 order number

 NAME: binary_to_octal_string

 Function:

 1. It converts a fixed binary constant into a octal string.

 Entry:

 binary_to_octal_string

 Usage:

 declare binary_to_octal_string entry (fixed bin,

 char(12) aligned);

 call binary_to_octal_string (integer, octal_string);

 1. integer fixed binary constant to be

 converted. (input)

 2. octal_string character string representation of

 the octal value. (output)

 Programs that invoke this entry:

 none

 Entry:

 binary_to_octal_var_string

 DRAFT: SUBJECT TO CHANGE 8-379 order number

 This entry returns a varying octal string instead of a

 nonvarying octal string.

 Usage:

 declare binary_to_octal_var_string entry (fixed bin,

 char(12) varying);

 call binary_to_octal_var_string (integer,

 octal_var_string);

 1. integer fixed binary constant to be

 convertd. (input)

 2. octal_string character string representation of

 the octal value. (output)

 Programs that invoke this entry:

 pl1_error_print

 Internal Procedures:

 none

 External Variables:

 none

 Internal Static Variables:

 DRAFT: SUBJECT TO CHANGE 8-380 order number

 none

 Programs Called:

 none

 Include Files used:

 none

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-381 order number

 NAME: decbin

 Function:

 1. It converts a character string representing a signed or

 unsigned decimal constant to a fixed binary value.

 Entry:

 decbin

 Usage:

 declare decbin entry (char(*) aligned) returns (

 fixed bin);

 value = decbin (decimal_string);

 1. decimal_string character string representing a

 signed or unsigned decimal

 constant. (input)

 2. value value returned by this program.

 (output)

 Programs that invoke this entry:

 defined_reference

 lang_util_

 Internal Procedures:

 DRAFT: SUBJECT TO CHANGE 8-382 order number

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 none

 Include Files used:

 none

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-383 order number

 NAME: token_to_binary

 Function:

 1. It gets the value of a constant token node.

 Entry:

 token_to_binary

 Usage:

 declare token_to_binary entry (ptr) returns (fixed

 bin);

 value = token_to_binary (token_ptr);

 1. token_ptr pointer to the token node to be

 converted. (input)

 2. value value returned by this program.

 (output)

 Programs that invoke this entry:

 attribute_parse

 declare_descriptor

 declare_label

 declare_parse

 defined_reference

 descriptor_parse

 evaluate

 expand_initial

 get_array_size

 initialize_int_static

 DRAFT: SUBJECT TO CHANGE 8-384 order number

 lang_util_

 lex

 subscriptre

 validate

 Internal Procedures:

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 none

 Include Files used:

 none

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-385 order number

 NODE_DUPLICATION_PROGRAMS

 The following procedures duplicates expressions or nodes so

 that the same expression or reference may be used or shared by

 different parts of the program.

 DRAFT: SUBJECT TO CHANGE 8-386 order number

 NAME: copy_expression

 Function:

 1. It duplicates a node and its components.

 Entry:

 copy_expression

 Usage:

 declare copy_expression entry (ptr unaligned) returns

 (ptr) ;

 return_ptr = copy_expression (operand_ptr);

 1. operand_ptr pointer to the operand to be

 duplicated. (input)

 2. return_ptr pointer returned by this program.

 (output)

 Programs that invoke this entry:

 alloc_semantics

 builtin

 copy_expression

 declare

 declare_descriptor

 declare_structure

 defined_reference

 do_semantics

 expand_assign

 expand_initial

 DRAFT: SUBJECT TO CHANGE 8-387 order number

 expand_primitive

 expression_semantics

 fill_refer

 function

 generic_selector

 get_array_size

 io_semantics

 lang_util_

 merge_attributes

 operator_semantics

 optimizer

 prepare_symbol_table

 refer_extent

 share_expression

 simplify_offset

 subscripter

 Entry:

 copy_sons

 This entry is used to duplicate all the symbol nodes of

 the members of a structure.

 Usage:

 declare copy_sons entry (ptr, ptr);

 call copy_sons (father_ptr, stepfather_ptr);

 1. father_ptr pointer to the symbol node to be

 duplicated. (input)

 2. stepfather_ptr pointer to the new symbol node.

 (output)

 Programs that invoke this entry:

 DRAFT: SUBJECT TO CHANGE 8-388 order number

 context_processor

 lang_util_

 Internal Procedures:

 copy_symbol

 an internal procedure to create a symbol

 node, and to duplicate all the fields in the

 symbol node.

 External Variables:

 pl1_stat_$util_abort

 Internal Static Variables:

 previous pointer set to remember the original

 symbol.next when a symbol node is to be

 duplicated.

 Programs Called:

 copy_expression

 create_array

 create_bound

 create_list

 create_operator

 create_reference

 create_symbol

 Include Files used:

 language_utility

 source_id_descriptor

 DRAFT: SUBJECT TO CHANGE 8-389 order number

 array

 symbol

 declare_type

 list

 nodes

 operator

 op_codes

 reference

 Errors Diagnosed:

 Error 32

 DRAFT: SUBJECT TO CHANGE 8-390 order number

 NAME: share_expression

 Function:

 1. It determines whether a reference node or an operator node

 can be shared, and increments the reference count.

 2. It calls copy_expression if these nodes are not sharable.

 Entry:

 share_expression

 Usage:

 declare share_expression entry (ptr) returns (ptr) ;

 return_ptr = share_expression (operand_ptr);

 1. operand_ptr pointer to the operand to be

 shared. (input)

 2. return_ptr pointer returned by this program.

 (output)

 Programs that invoke this entry:

 alloc_semantics

 builtin

 call_op

 convert

 do_semantics

 expand_infix

 expand_primitive

 expression_semantics

 DRAFT: SUBJECT TO CHANGE 8-391 order number

 function

 io_semantics

 lang_util_

 operator_semantics

 simplify_offset

 string_temp

 Internal Procedures:

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 copy_expression

 create_reference

 Include Files used:

 language_utility

 source_id_descriptor

 nodes

 operator

 reference

 symbol

 DRAFT: SUBJECT TO CHANGE 8-392 order number

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-393 order number

 ERROR_DIAGNOSTIC_PROGRAMS

 The following procedures are used to print the error

 messages either on the user's console or in the program listing.

 DRAFT: SUBJECT TO CHANGE 8-394 order number

 NAME: parse_error

 Function:

 1. It calls the error message program error_.

 Entry:

 parse_error

 Usage:

 declare parse_error entry (fixed bin(15), ptr);

 call parse_error (error_number, error_ptr);

 1. error_number error number. (input)

 2. error_ptr pointer to the node exhibiting the

 error. (input)

 Programs that invoke this entry:

 data_list_parse

 declare_label

 declare_parse

 default_parse

 descriptor_parse

 do_parse

 format_list_parse

 if_parse

 io_statement_parse

 lang_util_

 on_parse

 parse

 DRAFT: SUBJECT TO CHANGE 8-395 order number

 procedure_parse

 process_entry

 reserve

 statement_parse

 statement_type

 Entry:

 parse_error$no_text

 This entry is called when the error is caused not as a

 result of processing the statements in the block.

 Usage:

 declare parse_error$no_text entry (fixed bin(15), ptr

);

 call parse_error$no_text (error_number, error_ptr);

 1. error_number error number. (input)

 2. error_ptr pointer to the node exhibiting the

 error. (input)

 Programs that invoke this entry:

 none

 Internal Procedures:

 none

 DRAFT: SUBJECT TO CHANGE 8-396 order number

 External Variables:

 pl1_stat_$cur_statement

 pl1_stat_$source_seg

 pl1_stat_$st_length

 pl1_stat_$st_start

 pl1_stat_$statement_id

 tree_$

 Internal Static Variables:

 none

 Programs Called:

 error_

 Include Files used:

 source_id

 language_utility

 source_id_descriptor

 token_list

 statement

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-397 order number

 NAME: pl1_error_print

 Function:

 1. It gets the error message from the error message segment.

 2. It constructs the file number, line number and statement

 number, and the statement that causes the error.

 3. It prints the complete message on the user's console.

 Entry:

 pl1_error_print$write_out

 Usage:

 declare pl1_error_print$write_out entry (fixed

 bin(15), 1 unaligned, 2 bit(8), 2 bit(14), 2 bit(5), ptr, fixed

 bin(11), fixed bin(31), fixed bin(31), fixed bin(15));

 call pl1_error_print$write_out (error_number,

 statement_id, token_ptr, source_seg, source_start, source_length,

 source_line);

 1. error_number error number. (input)

 2. statement_id a substructure containing the file

 number, line number, and statement

 number where the error occurred.

 (input)

 3. token_ptr pointer to the identifier causing

 the error. (input)

 4. source_seg pointer to the source segment.

 (input)

 DRAFT: SUBJECT TO CHANGE 8-398 order number

 5. source_start index showing the start of the

 statement causing the error.

 (input)

 6. source_length length of the statement causing the

 error. (input)

 7. source_line not being used.

 Programs that invoke this entry:

 error_

 Entry:

 pl1_error_print$listing_segment

 This entry is used to dump the error message on the listing

 segment rather than the user's console.

 Usage:

 declare pl1_error_print$listing_segment entry (fixed

 bin(15), 1 unaligned, 2 bit(8), 2 bit(14), 2 bit(5), ptr);

 call pl1_error_print$listing_segment (error_number,

 statement_id, token_ptr);

 1. error_number error number. (input)

 2. statement_id a substructure containing the file

 number, line number, and statement

 number where the error occurred.

 (input)

 3. token_ptr pointer to the identifier causing

 the error. (input)

 DRAFT: SUBJECT TO CHANGE 8-399 order number

 Programs that invoke this entry:

 error_

 Internal Procedures:

 next_string

 an internal procedure to get the error

 message from the error message segment.

 quote_token

 an internal procedure to replace the "$" in

 the error message text with the corresponding

 identifier string.

 External Variables:

 cg_static_$debug

 pl1_stat_$abort_label

 pl1_stat_$brief_error_mode

 pl1_stat_$err_stm

 pl1_stat_$error_memory

 pl1_stat_$error_messages

 pl1_stat_$error_width

 pl1_stat_$greatest_severity

 pl1_stat_$last_severity

 pl1_stat_$last_statement_id

 pl1_stat_$severity_plateau

 pl1_stat_$source_list_ptr

 tree_$

 Internal Static Variables:

 none

 Programs Called:

 DRAFT: SUBJECT TO CHANGE 8-400 order number

 binary_to_octal_var_string

 bindec$vs

 decode_source_id

 ios_$write_ptr

 pl1_print$varying

 pl1_print$varying_nl

 Include Files used:

 language_utility

 source_id_descriptor

 token

 token_types

 token_list

 source_list

 source_id

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-401 order number

 NAME: error

 Function:

 1. It calls the error message program error_.

 Entry:

 error

 Usage:

 declare error entry (fixed bin(15), ptr, ptr);

 call error (error_number, statement_ptr, token_ptr);

 1. error_number error number. (input)

 2. statement_ptr pointer to the statement node

 containing this error. (input)

 3. token_ptr pointer to the token node causing

 this error. (input)

 Programs that invoke this entry:

 adjust_ref_count

 aq_man

 assign_op

 assign_storage

 cg_error

 compile_statement

 eval_exp

 expmac

 gen_pl1_symbol

 DRAFT: SUBJECT TO CHANGE 8-402 order number

 jump_op

 lang_util_

 m_a

 mst

 pl1_signal_catcher

 prepare_operand

 prepare_symbol_table

 semantic_translator

 stack_temp

 xr_man

 Entry:

 error$omit_text

 This entry calls error_$no_text instead of error_.

 Usage:

 declare error$omit_text entry (fixed bin(15), ptr, ptr

);

 call error$omit_text (error_number, statement_ptr,

 token_ptr);

 1. error_number error number. (input)

 2. statement_ptr pointer to the statement node

 containing this error. (input)

 3. token_ptr pointer to the token node causing

 this error. (input)

 Programs that invoke this entry:

 none

 DRAFT: SUBJECT TO CHANGE 8-403 order number

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$err_stm

 Internal Static Variables:

 none

 Programs Called:

 error_

 error_$no_text

 Include Files used:

 language_utility

 source_id_descriptor

 source_id

 statement

 source_list

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-404 order number

 NAME: error_

 Function:

 1. This is an error message buffering program.

 2. If the listing option is on in the compilation, up to 100

 error messages and related information are saved in the

 internal static buffer error_info.

 3. It then calls pl1_error_print$write_out to print the error

 message on the user's console.

 Entry:

 error_

 Usage:

 declare error_ entry (fixed bin(15), 1 unaligned, 2

 bit(8), 2 bit(14), 2 bit(5), ptr, fixed bin(8), fixed bin(23),

 fixed bin(11), fixed bin(31));

 call error_ (error_number, statement_id, token_ptr,

 source_seg, source_start, source_length, source_line);

 1. error_number error number. (input)

 2. statement_id a substructure containing the file

 number, line number, and statement

 number where the error occurred.

 (input)

 3. token_ptr pointer to the identifier causing

 the error. (input)

 4. source_seg pointer to the source segment.

 (input)

 DRAFT: SUBJECT TO CHANGE 8-405 order number

 5. source_start index showing the start of the

 statement causing the error.

 (input)

 6. source_length length of the statement causing the

 error. (input)

 7. source_line not being used.

 Programs that invoke this entry:

 error

 lang_util_

 lex

 parse_error

 semantic_translator

 Entry:

 error_$no_text

 This entry is called when it is not possible to determine

 the specific statement causing the error.

 Usage:

 declare error_$no_text entry (fixed bin(15), 1

 unaligned, 2 bit(8), 2 bit(14), 2 bit(5), ptr);

 call error_$no_text entry (error_number, statement_id,

 token_ptr);

 1. error_number error number. (input)

 2. statement_id a substructure containing the file

 number, line number, and statement

 number where the error occurred.

 DRAFT: SUBJECT TO CHANGE 8-406 order number

 (input)

 3. token_ptr pointer to the identifier causing

 the error. (input)

 Programs that invoke this entry:

 context_processor

 error

 initialize_int_static

 lang_util_

 lex

 semantic_translator

 validate

 Entry:

 error_$finish

 This entry is called to sort the error messages in the

 buffer by statement number, and then dump them onto the listing

 segment.

 Usage:

 declare error_$finish entry;

 call error_$finish;

 Programs that invoke this entry:

 lang_util_

 v2pl1

 DRAFT: SUBJECT TO CHANGE 8-407 order number

 Entry:

 error_$initialize_error

 This entry is used to initialize the internal static running

 index ei.

 Usage:

 declare error_$initialize_error entry;

 call error_$initialize_error;

 Programs that invoke this entry:

 lang_util_

 parse

 Internal Procedures:

 none

 External Variables:

 pl1_stat_$error_width

 pl1_stat_$listing_on

 Internal Static Variables:

 ei running index into the error_info array.

 DRAFT: SUBJECT TO CHANGE 8-408 order number

 error_info array of structure serving as the buffer for

 up to 100 error messages diagnosed by the

 program.

 error_number number of an individual error.

 file_number file number of an individual error.

 line_number line number of an individual error.

 statement_id substructure of error_info.

 statement_number statement number of an individual error.

 token_pt pointer to record the identifier causing an

 individual error.

 Programs Called:

 pl1_error_print$listing_segment

 pl1_error_print$write_out

 pl1_print$non_varying_nl

 Include Files used:

 language_utility

 source_id_descriptor

 nodes

 operator

 op_codes

 reference

 symbol

 source_id

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-409 order number

 NAME: decode_node_id

 Function:

 1. It decodes the source_id of a node into its component parts

 of file number, line number, and statement number.

 Entry:

 decode_node_id

 Usage:

 declare decode_node_id entry (ptr, bit(1) aligned)

 returns (char(120) varying);

 source_id_string = decode_node_id (node_ptr,

 capital_bit);

 1. node_ptr pointer to a node whose source_id

 is to be decoded. (input)

 2. capital_bit bit indicating whether to return

 upper case characters. (input)

 3. source_id_string character string returned by this

 program. (output)

 Programs that invoke this entry:

 compile_statement

 lang_util_

 optimizer

 pl1_signal_catcher

 DRAFT: SUBJECT TO CHANGE 8-410 order number

 Entry:

 decode_source_id

 This entry supplies a 27-bit bitstring instead of a

 pointer to a node.

 Usage:

 declare decode_source_id entry (1 structure unaligned,

 2 bit(8), 2 bit(14), 2 bit(5), bit(1) aligned) returns (

 char(120) varying);

 source_id_string = decode_source_id (source_id,

 capital_bit);

 1. source_id source_id to be decoded. (input)

 2. capital_bit bit indicating whether to return

 upper case characters. (input)

 3. source_id_string character string returned by this

 program. (output)

 Programs that invoke this entry:

 lang_util_

 pl1_error_print

 Internal Procedures:

 none

 DRAFT: SUBJECT TO CHANGE 8-411 order number

 External Variables:

 pl1_stat_$source_list_ptr

 Internal Static Variables:

 none

 Programs Called:

 bindec$vs

 Include Files used:

 nodes

 source_id

 source_list

 token

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-412 order number

 ENTRY_VECTOR_PROGRAMS

 The compiler is grouped and bound into four distinct

 segments in the Multics system. These bound segments are called

 bound_parse_, bound_semant_, bound_lang_util_, and bound_cg_.

 Each of these may invoke procedures bound in the same segment or

 procedures in other bound segments. To facilitate cross-segment

 procedure invocation and to reduce the names appearing on a bound

 segment, each bound segment has a entry vector program and a

 transfer vector program. The entry vector program introduces

 entry names in its own bound segment invoked by other segments;

 while the transfer vector introduces entry names on other bound

 segments invoked by some procedures in its own bound segment.

 All the entry vector programs and transfer vector programs are

 written in the assembly language ALM.

 Note: There is no entry vector program for bound_parse_ because

 none of its components are invoked by procedures in the other

 bound segments.

 DRAFT: SUBJECT TO CHANGE 8-413 order number

 NAME: v2pl1_semant_

 Function:

 1. This is the entry vector program for the bound segment

 bound_semant_.

 Entry:

 abort

 call_es

 error

 expression_semantics

 lookup

 prepare_symbol_table

 semantic_translator

 DRAFT: SUBJECT TO CHANGE 8-414 order number

 NAME: lang_util_

 Function:

 1. This is the entry vector program for the bound segment

 bound_lang_util_.

 Entry:

 pl1_signal_catcher

 generate_definition

 end_symbol

 beg_symbol

 init_linkage

 gen_pl1_linkage

 compile_link

 assign_storage

 compile_formats

 mst

 by_size

 display_pl1_text

 display_pl1_map

 merge_attributes

 unaligned_nl

 for_lex

 string_ptr_nl

 string_ptr

 non_varying_nl

 non_varying

 varying_nl

 varying

 initialize_error

 finish

 no_text

 error_

 error

 decode_source_id

 decode_node_id

 parse_error

 decbin

 share_expression

 to_target

 to_target_fb

 DRAFT: SUBJECT TO CHANGE 8-415 order number

 to_integer

 validate

 from_builtin

 convert

 rename_parse

 read_lib

 clear

 declare_lib

 copy_sons

 copy_expression

 compare_expression

 optimizer

 declare_temporary

 declare_pointer

 declare_picture

 declare_integer

 param

 ctl

 declare_descriptor

 char

 bit

 desc

 integer

 declare_constant

 refer_extent

 get_size

 free_node

 get_free

 truncate

 init

 pl1_get

 prologue

 create_storage

 create_statement

 create_reference

 create_operator

 create_list

 token_to_binary

 vs

 binoct

 bindec

 create_identifier

 create_token

 create_symbol

 create_label

 create_default

 create_cross_reference

 create_context

 create_bound

 DRAFT: SUBJECT TO CHANGE 8-416 order number

 create_block

 create_array

 DRAFT: SUBJECT TO CHANGE 8-417 order number

 TRANSFER_VECTOR_PROGRAMS

 Please refer to the previous subsection "Entry Vector

 Programs" for the description of transfer vector programs.

 DRAFT: SUBJECT TO CHANGE 8-418 order number

 NAME: parse_xfer_vector

 Function:

 1. This is the transfer vector program for the bound segment

 bound_parse_.

 Entry:

 pl1_signal_catcher

 string_ptr_nl

 merge_attributes

 prepare_symbol_table

 truncate

 init

 token_to_binary

 semantic_translator

 rename_parse

 declare_picture

 declare_lib

 clear

 varying_nl

 non_varying_nl

 non_varying

 for_lex

 pl1_get

 parse_error

 optimizer

 free_node

 no_text

 initialize_error

 finish

 error_

 create_token

 create_symbol

 create_statement

 create_reference

 create_operator

 create_list

 create_label

 create_default

 create_cross_reference

 create_context

 DRAFT: SUBJECT TO CHANGE 8-419 order number

 create_bound

 create_block

 create_array

 copy_expression

 vs

 binoct

 bindec

 DRAFT: SUBJECT TO CHANGE 8-420 order number

 NAME: semant_xfer_vector

 Function:

 1. This is the transfer vector program for the bound segment

 bound_semant_.

 Entry:

 error

 create_block

 token_to_binary

 share_expression

 declare_lib

 refer_extent

 merge_attributes

 get_size

 free_node

 no_text

 error_

 declare_temporary

 declare_pointer

 declare_integer

 param

 ctl

 declare_descriptor

 integer

 char

 bit

 declare_constant

 decbin

 create_token

 create_symbol

 prologue

 create_statement

 create_reference

 create_operator

 create_list

 create_label

 create_cross_reference

 create_bound

 create_array

 copy_sons

 DRAFT: SUBJECT TO CHANGE 8-421 order number

 copy_expression

 validate

 to_target_fb

 to_target

 to_integer

 from_builtin

 convert

 compare_expression

 vs

 DRAFT: SUBJECT TO CHANGE 8-422 order number

 NAME: util_xfer_vector

 Function:

 1. This is the transfer vector program for the bound segment

 bound_lang_util_.

 Entry:

 cg_error

 l_v

 e_v

 prepare_operand

 call_es

 lookup

 expression_semantics

 DRAFT: SUBJECT TO CHANGE 8-423 order number

 DATA_SEGMENTS

 The pl1_stat_ data segment contains the external static

 variables used by all phases of the compiler.

 DRAFT: SUBJECT TO CHANGE 8-424 order number

 NAME: pl1_stat_

 LHS A pointer to the symbol node of the left hand

 side of an assignment statement currently

 being processed by the semantic translator.

 This pointer is set by expression_semantics,

 and reset by semantic_translator. This

 pointer is used by expand_infix and

 expression_semantics to decide whether an

 aggregate expression may be simplified.

 abort_label This label field is set by the procedure

 semantic_translator. Transferring to this

 label results in unwinding the compiler,

 printing an error message informing the user

 that the compilation has been aborted, and

 executing the cleanup handler.

 apostrophe_mode not used.

 brief_error_mode This bit(1) field is set to "1"b if the brief

 option is specified. This field controls the

 amount of text to be printed when an error

 occurred.

 card_input not used.

 char_pos This field contains an approximate character

 count for the current listing segment. It is

 approximate because it is always one larger

 than the actual character count. If the

 listing file is a multisegment file, this

 field only contains the character count of

 the active component.

 check_bounds not used.

 compiler_created_index

 Initialized to 0, this is a count of the

 compiler generated symbol names. The names

 are of the form "cp.n", where n is the value

 of compiler_created_index.

 compiler_name This character field is the compiler name to

 be stored in the object segment by the code

 generator. The name of this compiler is

 "pl1".

 DRAFT: SUBJECT TO CHANGE 8-425 order number

 condition_index Initialized to 0, this is a count of the

 compiler generated condition na,mes. The

 names are of the form "condition.n", where n

 is the value of condition_index.

 constant_list The root of the chain of all constants

 created by the compiler.

 convert_len not used.

 convert_ptr not used.

 convert_switch not used.

 cur_block not used.

 cur_level not used.

 cur_statement A pointer to the statement node currently

 being processed by the semantic translator.

 debug_semant This bit(1) field is set to "1"b if the

 debug_semant option is specified.

 dummy_block Initialized to a null pointer, this pointer

 is used by the code generator.

 eis_mode This bit(1) field is used to indicate whether

 the extended instuction code is desired by

 this compilation. In the current Multics

 system, this bit is always on.

 equivalence_base not used.

 err_stm A pointer pointing to the statement node in

 which an error has been discovered.

 error_flag This bit(1) field is used to indicate whether

 an error has occurred in the processing of

 compiler generated statements for the return

 statement in a multiple-entried program.

 error_memory The procedure error_ remembers the first 100

 errors, so they can be sorted by line number

 before being placed in the listing segment.

 error_messages a pointer to the segment containing the text

 for all error messages.

 DRAFT: SUBJECT TO CHANGE 8-426 order number

 error_width The line length for the I/O stream

 user_output. If user_output does not have a

 line length, the value 120 is used.

 expl_continuation_count

 not used.

 format_list not used.

 free_ptr array of headers of free reuseable nodes

 saved in the allocation pool.

 generate_symtab This bit(1) field is set to "1"b if there is

 a "get/put data;" statement in the program.

 greatest_severity This field is initialized to 0 at the

 beginning of a compilation and will indicate

 the error level high water mark at the end of

 the compilation. In other words, the highest

 severity error recorded for this compilation.

 had_data_io not used.

 hash_table The token node hash table.

 hollerith_mode not used.

 index A number indicating the current locater

 qualifier in the external static array

 pl1_stat_$locator.

 last_severity A number indicating the severity of error

 encountered, used to set the had_error bit in

 the procedure semantic_translator$call_es.

 last_source The number of include files used in this

 compilation.

 last_statement_id not used.

 line_count At the end of a compilation this field is set

 to the number of newline characters in the

 source segment.

 list3_node not used.

 list5_node not used.

 DRAFT: SUBJECT TO CHANGE 8-427 order number

 list_ptr A pointer to the current listing segment.

 listing_on This bit(1) field is set to "1"b if a listing

 segment is to be produced.

 locator An array of pointers to keep track of the

 locator qualifiers occurring at different

 levels of an expression.

 max_list_size This field is the max_seg_size of the current

 listing segment.

 max_node_type This indicates the number of different types

 of nodes used by the compiler.

 modetable not used.

 multi_type This bit(1) indicates that the semantic

 translator is currently processing a return

 statement in a multiple-entried program.

 no_quick_blocks not used.

 node_name An array of character(12) containing the

 names of different nodes used by the

 compiler.

 node_sizes An array of numbers showing the sizes of

 different nodes used by the compiler.

 node_uses An array of counters, one for each node

 length. The appropriate counter is bumped

 whenever a node is created. The length of

 the operator is based on the number of words

 allocated for it. This information is

 provided for metering purposes.

 ok_list The root of the chain of OK lists. One OK

 list is created for each "get data"

 statement.

 one A pointer to the token "1", a decimal

 integer.

 optimize This bit(1) field indicates whether an

 optimize option is used in the compilation.

 options A character string representation of all

 options specified in the compilation. This

 DRAFT: SUBJECT TO CHANGE 8-428 order number

 character string will appear in the listing

 segment.

 pathname The absolute pathname of the source segment.

 phase The current compilation phase.

 print_cp_dcl If the cpdcl option is specified, this field

 is set to "1"b.

 profile_length The number of words to be allocated to

 implement the profile feature of the

 compiler. This value will approximate the

 number of statements in the subprogram.

 quick_pt A pointer to the bit array real_quick_info in

 the procedure semantic_translator. The bit

 array contains information on whether each

 block can be quick.

 root A pointer to the root block node.

 seg_name The entryname of the source segment but

 without the final component ".pl1".

 severity_plateau This field is initially one but can be set by

 the user to any value from one to four. This

 field implements the severity option by

 specifying the minimum error level of error

 messages to be printed.

 source_index A running index to the source segment

 currently working on by the procedure lex.

 source_list_ptr A pointer to the array of structures

 source_list that contains information about

 the source segment and all the include files

 used in the compilation.

 source_ptr A pointer to the source segment.

 source_seg An index used to indicate the source segment

 or include file currently working on by the

 procedure lex.

 st_length Current length of the statement being

 compiled. It is updated every time another

 token is parsed.

 DRAFT: SUBJECT TO CHANGE 8-429 order number

 st_start Character offset of the beginning of the

 current statement relative to the base of the

 source segment.

 statement_id The line number, statement number, and file

 number of the current statement.

 stop_id If the debug_semant option or debug_cg option

 is used, this field is compared to

 pl1_stat_$statement_id. If they are equal,

 then the procedure debug will be invoked.

 table Set to "1"b if the table option is specified

 in the compilation.

 temporary_list The root of the chain of the temporary nodes

 created during the compilation.

 tree_vec_index This field specifies how many additional

 segments are being used by the compiler to

 accommodate all the nodes used for the

 internal representation of the program. Its

 value will be zero if only tree_ and

 xeq_tree_ are being used. The value is

 maintained dynamically and reflects only the

 current storage requirements.

 unwind A label variable set to a label constant in

 the procedure process_entry. This label is

 used as the point of transfer in case an

 error occurs in the procedures declare_parse

 or default_parse.

 user_id The Person.Project.instance tag for the

 current compilation.

 util_abort An entry variable used by the utility

 procedures to unwind after a level 3 error.

 It is assigned the value

 semantic_translator$abort. Transferring to

 this label results in unwinding the compiler

 sufficiently to continue compilation.

 util_error An entry variable used by the utility

 procedures to unwind after an error. It is

 assigned the value semantic_translator$error.

 No unwinding results from transferring to

 this label.

 DRAFT: SUBJECT TO CHANGE 8-430 order number

 validate_proc A pointer to the symbol node of the

 validating procedure when the validate option

 is used in a procedure statement or entry

 statement.

 DRAFT: SUBJECT TO CHANGE 8-431 order number

 OTHER_MISCELLANEOUS_PROGRAMS

 Some procedures deal with other miscellaneous functions, and

 do not fall into any category described earlier.

 DRAFT: SUBJECT TO CHANGE 8-432 order number

 NAME: refer_extent

 Function:

 1. It scans a reference node or an operator node to find a refer

 operator among some of its components.

 2. It replaces all the refer operators by the refer target,

 qualified with a proper locator qualifier.

 Entry:

 refer_extent

 Usage:

 declare refer_extent entry (ptr, ptr);

 call refer_extent (expression_tree, locator_qualifier

);

 1. expression_tree pointer to the operator node or

 reference node to be processed by

 this program. (input/output)

 2. locator_qualifier pointer to be used as the locator

 qualifier. (input)

 Programs that invoke this entry:

 alloc_semantics

 declare_descriptor

 expand_assign

 expand_primitive

 io_semantics

 DRAFT: SUBJECT TO CHANGE 8-433 order number

 lang_util_

 operator_semantics

 refer_extent

 Internal Procedures:

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 copy_expression

 create_reference

 refer_extent

 Include Files used:

 language_utility

 source_id_descriptor

 nodes

 reference

 operator

 op_codes

 DRAFT: SUBJECT TO CHANGE 8-434 order number

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-435 order number

 NAME: fill_refer

 Function:

 1. It scans a reference node or an operator node to find a refer

 operator among some of its components.

 2. It replaces all the refer operators by the refer target,

 qualified with a proper locator qualifier.

 3. It has an argument which indicates whether the locator

 qualifier needs be duplicated.

 Entry:

 fill_refer

 Usage:

 declare fill_refer entry (ptr, ptr, bit(1) aligned)

 returns (ptr) ;

 return_ptr = fill_refer (expression_tree,

 locator_qualifier, copy_switch);

 1. expression_tree pointer to the operator node or

 reference node to be processed by

 this program. (input)

 2. locator_qualifier pointer to be used as the locator

 qualifier. (input)

 3. copy_switch bit indicating whether

 copy_expression should be invoked.

 (input)

 4. return_ptr pointer to the operator or

 reference node returned by this

 DRAFT: SUBJECT TO CHANGE 8-436 order number

 program. (output)

 Programs that invoke this entry:

 builtin

 prepare_symbol_table

 Internal Procedures:

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 copy_expression

 create_reference

 Include Files used:

 language_utility

 source_id_descriptor

 nodes

 reference

 operator

 DRAFT: SUBJECT TO CHANGE 8-437 order number

 op_codes

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-438 order number

 NAME: check_star_extents

 Function:

 1. It scans through all the arguments of a call for a length

 expression appearing in a position corresponding to a star

 extents parameter.

 2. It calls make_non_quick if the search is successful.

 Entry:

 check_star_extents

 Usage:

 declare check_star_extents entry (ptr, ptr);

 call check_star_extents (symbol_ptr, argument_list);

 1. symbol_ptr pointer to the symbol node of the

 entry. (input)

 2. argument_list list of arguments for the entry.

 (input)

 Programs that invoke this entry:

 builtin

 function

 Internal Procedures:

 DRAFT: SUBJECT TO CHANGE 8-439 order number

 none

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 make_non_quick

 Include Files used:

 nodes

 block

 symbol

 reference

 operator

 list

 Errors Diagnosed:

 none

 DRAFT: SUBJECT TO CHANGE 8-440 order number

 NAME: propagate_bit

 Function:

 1. It turns on a specified bit in the symbol node.

 2. It also turns on the corresponding bit in the symbol node for

 all members of the structure.

 Entry:

 propagate_bit

 Usage:

 declare propagate_bit entry (ptr, fixed bin(15));

 call propagate_bit (symbol_ptr, bit_position);

 1. symbol_ptr pointer to the symbol node whose

 attribute is to be propagated.

 (input)

 2. bit_position bit position of the attribute in

 the symbol node that is to be

 propagated. (input)

 Programs that invoke this entry:

 alloc_semantics

 builtin

 defined_reference

 expression_semantics

 validate

 DRAFT: SUBJECT TO CHANGE 8-441 order number

 Internal Procedures:

 propagate

 an internal procedure to turn on a specified

 bit throughout a structure.

 External Variables:

 none

 Internal Static Variables:

 none

 Programs Called:

 none

 Include Files used:

 symbol

 Errors Diagnosed:

 none

 Historical Background

 This edition of the Multics software materials and documentation

 is provided and donated to Massachusetts Institute of Technology

 DRAFT: SUBJECT TO CHANGE 8-442 order number

 by Group BULL including BULL HN Information Systems Inc. as a

 contribution to computer science knowledge. This donation is

 made also to give evidence of the common contributions of

 Massachusetts Institute of Technology, Bell Laboratories, General

 Electric, Honeywell Information Systems Inc., Honeywell BULL

 Inc., Groupe BULL and BULL HN Information Systems Inc. to the

 development of this operating system. Multics development was

 initiated by Massachusetts Institute of Technology Project MAC

 (1963-1970), renamed the MIT Laboratory for Computer Science and

 Artificial Intelligence in the mid 1970s, under the leadership of

 Professor Fernando Jose Corbato. Users consider that Multics

 provided the best software architecture for managing computer

 hardware properly and for executing programs. Many subsequent

 operating systems incorporated Multics principles. Multics was

 distributed in 1975 to 2000 by Group Bull in Europe , and in the

 U.S. by Bull HN Information Systems Inc., as successor in

 interest by change in name only to Honeywell Bull Inc. and

 Honeywell Information Systems Inc. .

 Permission to use, copy, modify, and distribute these programs

 and their documentation for any purpose and without fee is hereby

 granted,provided that the below copyright notice and historical

 background appear in all copies and that both the copyright

 notice and historical background and this permission notice

 appear in supporting documentation, and that the names of MIT,

 HIS, BULL or BULL HN not be used in advertising or publicity

 pertaining to distribution of the programs without specific prior

 written permission.

 Copyright 1972 by Massachusetts Institute of Technology and

 Honeywell Information Systems Inc.

 Copyright 2006 by BULL HN Information Systems Inc.

 Copyright 2006 by Bull SAS

 All Rights Reserved

 DRAFT: SUBJECT TO CHANGE 8-443 order number

