HONEYWELL

LEVEL 68 MULTICS
USER RING
INPUT/OUTPUT
SYSTEM PROGRAM
LOGIC MANUAL

RESTRICTED DISTRIBUTION

SOFTWARE




™ MULTICS USER RING
Honeywell INPUT/OUTPUT SYSTEM

PROGRAM LOGIC MANUAL

SERIES 60 (LEVEL 68)

RESTRICTED DISTRIBUTION

SUBJECT:

Description of the Multics User Ring Input/Output System

SPECIAL INSTRUCTIONS:

This Program Logic Manual (PLM) describes certain internal
modules constituting the Multics System. It is intended as a
reference for only those who are thoroughly familiar with the
implementation details of the Multics operating system;
interfaces described herein should not be wused by application
programmers or subsystem writers; such programmers and writers
are concerned with the external interfaces only. The external
interfaces are described in the Multics Programmers' Manual,
Commands and Active Funétions (Order No. AG92), Subroutines
(Order No. AG93), and Subsystem Writers' Guide (Order No. AK§2).

As Multics evolves, Honeywell will add, delete, and modify module
descriptions in subsequent . PLM updates. Honeywell does not
ensure that the internal functions and internal module interfaces
will remain compatible with previous versions.

This PLM is one of a set, which when complete, will supersede the

System Programmers' Supplement to the Multics Programmers' Manual
(Order No. AK96). "‘

THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE EXCLUSIVE
PROPERTY OF HONEYWELL INFORMATION SYSTEMS. DISTRIBUTION IS
LIMITED TO HONEYWELL EMPLOYEES AND CERTAIN USERS AUTHORIZED
DATE: TO RECEIVE COPIES. THIS DOCUMENT SHALL NOT BE REPRODUCED
u 1977 OR ITS CONTENTS DISCLOSED TO OTHERS IN WHOLE OR IN PART.
ay

ORDER NUMBER:

ANS7, Rev. 0



PREFACL

Multics Frogram Logic Manuals (PLMs) are intended for use by
Multics system maintenance personnel, development personnel, and
others who are thoroughly familiar with Multics internal system
operation. They are not intended for application programmers or
subsystem writers.

The FLMs contain descriptions of modules that serve as
internal interfaces and perform special system functions. These
documents do not describe external interfaces, which are used by
application and system programmers.

Since internal interfaces are added, deleted, and modified
as design improvements are introduced, Honeywell does not ensure
that the internal functions and internal module interfaces will
remain compatible with previous versions. To help maintain
accurate FLM documentation, Honeywell publishes a special status
bulletin containing a 1list of the PLMs currently available and
identifying updates to existing PLMs. This status bulletin is
distributed automatically to all holders of the System
Frogrammers' Supplement to the Multics Programmers' Manual (Order
No. AkKGb6) and to others on request. To get on the mailing 1list
for this status bulletin, write to:

Large Systems Sales Support
Multies Froject Office

honeywell Information Systems lnc.
Post Gffice Box 6000 (MS A-85)
Phoenix, Arizona b5500%

() 1977, Honeywell Information Systems Inc. File No.: 2L13

ANST



CUNTENTS

Page
Section 1 Introduction 1-1
Section I1 ‘Design . . . . . 0 0 0 e e e . 2=1
1/0 Control block Visible Portion 2=3
States of an 1/0 Control Block z2=-5
1/0 Control block hidden Fortion 2=-6
Common 1FS Masking Logic 2=7
Section II1 Procedures in the 1/0 Switching :
Mechanism . . . 3~-1
find_iocb.pl1 3=-1
iox_
$find_iochb -
$find_iocb_n -
$look_ioch

$destroy_iocb
attach_name.pl!
iox_
$attach_name
$attach_ptr
iox_.alm .
iox__
$user_io
$user_input
$user_output
$error_output
$detach_iochb
$close
$get_line
$get_chars
$put_chars
$modes
$position
$control
$read_record
$write_record
$rewrite_record
$delete_record
$seek_key
$read_key
$read_length
$err_old_dim .
$err_no_operation

] 1
LW NN -

[ |
(oW R0 ]

] [ | | L T N R |
[VoRVeNe oNe /Ne oo cNe dioaioNe gieaNogne aieaye e oo allo gie sl 6 abN ]

wwwwwwwwwwwwwwtf)wwwwww (VS RESRWE) wwwww

Ciii ANST



CUNTENTS (cont)

Y
')
o
1]

$err_not_attached

¢err_not_closed

$err_not_open
propagate.pli

iox_

$propagate .
print_attach_table. p11
io.pl1 . .

io

io_call

[}
— OO0

— ) ) — )
EEwWwwo o

L) Cad L L (VSR OS AUV EVN]
!

Section 1V Design of the I10S Compatlblllty
Package .
Lesign Characterlstlcs
Data Structures

==
t
W — =

Section V Frocedures in the 105 Compatlblllty
Package
ios_.pl1
ios_
$attach
$detach
$read
$write
$abort
$order
$resetread
$setsize
$getsize
$setdelim
$getdelim
$seek
$tell
$changemode
$readsync
$writesynce
$no_entry .
$read_ptr
$write_ptr
$ios_quick_init
get_at_entry_.pl1
get at entry
iox_.alm
1ox
$1os call . .
$ios_call attach

I
—_ =3

1
T L G G G G Gy S e Ve Ve I o all 0 o U B o J N Y

111
WO oo rwhh—-=00

A\ R0} (RO RG RO RV AG RS RO RO RGO R RS RO RO RS A RO RS RO RS RO RS RS ] U
I
[ "

iv ANST



CONTENTS (cont)

Page
ios_write_around_.pl1 . . . . . . . . 5=19
netd_attach . . . « « « « . 5220

abs_attach, mr attach
oed, attach tekd a+tach,
ec_attach . . . . . . . . . . . Be2i
ios_write_around_
$ios_write_around_detach 5
$ios_write_around_open . . 5
$ios_write_around_close . . . . 5=
$ios_write_around_get_1line . . 5
$ios_write_around_get_chars . . 5=22
ios_write_around_put_chars . . 5-=22
ios_write_around_control . . . 5<23
$ios_write_around_position . . . 5-=23
$ios_write_around_modes . . . . 5=25%

Section VI Synonym 1/0 Module . . . . . . . . . . . b
syn_attach.pl?t . . . . . . . . . . . 6=
syn_
$syn_attach
$syn_attach_
$syn_detach

1
LW —

<4
[}
—

Teletype 1/0 Module
tty_.pl1

tty_
$tty_attach
$tty_detach
$tty_open
$tty_close
$tty_get_chars
$tty_get_line
$tty_put_chars
$tty_control
$tty_modes
$tty_position

Section

[ I | [}
— —

[
~oONOUTUITWU LW -

1

!
- -

Section VIII Dbiscard 1I/0 Module
discard_attach.pl?
discard_
$discard_attach
$discard_detach
$discard_open
$discard_close

OO NN~ =] OO O
I

]
LD —

Section IX The vfile_ 1/0 Module
Introduction
Frogram Modules
Indexed Files

Synchronization of Access
Introduction .

\oupmncxfxo oocoa
1
OV = s

v ANST



CONTENTS (cont)

Fage
bata Structures . . . . . . . 9-6
Processing e Y
File Level . . e LY
File-Altering Uperatlons . . . 9-b
Passive Index Keferencing
Uperations 9-9
Maintaining Correct lndex
Fosition 9-10
Froof of Pa531ve ,
tile-Synchronization . . . . . . 9-10
Hecord Lock Frocessing . . . 9-12
Kecord Locking and Unlocklng .. 9=12
Passive Record '
Synchronization . . . . . . . . §=13
kecovery From Interruptions . . . . . 9-14
Introduction . . e« .« 9=14
The Normal oState of Update
Frocessing . . . . . . 9-14
Tracking Variables . . . . 9-15
Uther header Variables . . 9-15
The hestart Procedure . . 9-16
The kepeating State of :
kExecution . . . . . . . . .« . 9=1T7
Flow of Control . . . e« .« . 9-18
keversion to the Normal State . 9=19
kestoration of Variables . . . . 9=19
heconstructed Variables . . . . . 9=20
Protected Variables . . . . . . . §=20
kepeating State-Summary . . . . . 9=21
Section X Lesign of the ANSI Standard and 1BM
Standard Tape 1/0 Modules . .-. . . . . 10-1
Introduction . . . . . + « . .« . . o 10-1
10X Functions . . e e e v e s s o+ . 10=2
Attach Function . . e« « + o 10-2
Open Function . . . . . . . . . . 10=3
Close Function . . . . . . . . . 10=3
Detach Funection . . . . . . . . . 10=4
Other Functions . . . . . . . . . 10=4
Data Structures . . . . . . . . . . . 10=5
Control Segment .o . . « + 10=-5
Physical 1/0 Sectlon . . . . 10-11
Volume Chain . . . . . e . . 10-12
File Chain . . e« e« o« . 10-14

File Data Structure (Flle
bata Link) e v e e e e e e+« 10=-14
File Link . . . . . . . . . . . . 10-17

vi ANS7



Section XI

CONTENTS (cont)

Procedures in the ANS1 Standard and
IbM Standard 1/0 Modules
tape_ansi_attach_

$tape_ansi attach
$tape_ibm_attach
check_attopt

tape_ansi_file_cntl_

$open .

$data_eof

$data_eot .

$position_for output

$beginning_of_file

$end_of_file

$close

$debug_on

$debug_off
abort_file
another_volume
write_permit
append_file
back_TM .
build1
builde e
build_eofsl . . . .
build_f1
make_eofsl_real
consistent
creating_first
desired_check .
desired_file
extend_check
fill_XXX1 .
fill_XXX2 . . .
fill_fl_from_ hDH1 .
Flll_fl_from_HDRZ .
fill_fdhdr2_from_fl
fill_flhdr2_from_fd
file_new_section_f1l
handler
initialize permlt
initialize_permitA
initialize_volume
lrec_open
move_to_EUD .
move tape

find candloate

move_to_flrst_hbh .

move_forward
move_backward
next_volume

vii

ANST



CONTENTS (cont)

process_hkUX .
read_hKDR1 .
read_hbke .
read_label
write_label
setup_for_create
setup_for_extend_modify
setup_for_read
setup_~for_generate
truncate_chains
vl_init
vname . . .
write_HDks
write_EUFs
write_ECUVs
write_TM .
write_new_section
tape_ansi_nl_file_cntl_
$open .
$data_eof
$data_eot
$beginning_of_ flle
$end_of_file
$close
abort_ flle
con31stent
handler
initialize permltA
initialize_permitB
lrec_open
move . . . .
next_volume
vl_init
vname
another volume
write_TM
tape_ansi_detach_
tape_ansi_lrec_io_
$read_ record .
get_ record
process_sw
skip_segments
move_to_user
read_release
tape_ansi_lrec_io_
$write_record
get_buf
move_to_buf
write_buf .

viii

3

Page

11-36
11-37
11-36
11-36
11-36
11-39
11-39
11-140
11-4G
11-41
11-42
11-42
11-42
11-43
11-43
11-43
11-44
11-41
11-41
11-16
11-47
11-48
11-49
11-50
11-51
11-51
11-52
11-52
11-52
11-53
11-53
11-55
11-55
11-55
11-55
11-56
11-56
11-56

11
il=- 7

11-63
11-64
11-65
11-65
11-65

66

— 3 o D

RN VY NS " {
N = -

ANST



Section XII

Section XxIII

The

The

CONTENTS (cont)

tape_ansi_lrec_io_
$close .
tape_ansi_ibm_lrec_io_
$read_record .
get_ record
process_sw
skip_segments
move_to_user
read_release

tape_ansi_ibm_lrec_io_

$write_record
get_buf
move_to_buf
write_buf .

tape_ansi_ibm_lrec_io_

$close .
tape_ansi_read length
tape_ansi_position_
tape_ansi_mount_cntl__

tape_ansi_mount_cntl_
$mount

$remount . e .

$write_rings . . . .

$write_permit

$free . .

VOL1 check

tape_ans1_tape‘10_
tape_ansi_tape_io_
$attach

$open

$close . .

$get_ buffer

$release_buffer

$read

$sync_read

$sync_write

$write

$order .
tape_ansi 1nterpret status
tape_ansi_parse_options_

no_next
vname
tape_ansi_control_

tape_mult_ 1/0 Module
Introduction B

tape_nstd_ 1/0 Module
Introduction .

ix

Page

11-73

7
7
7
8
8

© 0w o=

11
11
11-
11
11
1

80

11-81
11-87
11-87
11-86

11-89
11-90
11-62
11-95

11-95
11-96
11-97
11-96
11-96
11-99
11-100

11-100
11-101
11=101
11-101
11-102
11-103
11-103
11-104
11-105
11-105
11-107
11-107
11-109
11-110
11-110

ANST



SECTION I

INTRODUCTION

The Multics user ring I/0 switching mechanism provides a
flexible, efficient, and device-independent I/0 capability to
users and system programs. Explicit Input/Output was not very
important in the development of Multics because of its implicit
replacement by the virtual memory mechanism. As Multics matured
and commercial applications multiplied, as more files grew to
exceed segment size, and as demands increased for complete and
compatible implementations of the standard I/0 interfaces defined
for PL/I and COBOL, explicit I/O took on greater significance.
Finally, the initial I/0 system was replaced by a new one with
more flexibility. The o0ld 1I/0 system interfaces are still
supported.

The old I/0 system 1is referred to as I0S; its user
subroutine interface is ios_. The new I/0 system is referred to
as IUX; its user subroutine interface is iox_.

For the sake of generality, all input and output with the
exception of paging takes place over 1/0 switches. The requestor
of I/0 over an 1/0 switch is generally not aware of the device or
data structure to/from which an operation takes place, nor of the
procedures that perform the operation. Both devices and
procedures are interchangeable in the sense that they support the
common interface of the I/0 switch. The user acts as though he
is doing I/0 on the switch itself.

The association of an I/0 switch with a device or data
structure and with a set of procedures is known as attachment.
The device or data structure 1is known as the target of the
attachment. The set of procedures is known as the I/0 module
serving the attachment. Two operations are defined on an
attached I/0 switch:

detach reverse the process of attachment.

open announce the intention to perform I/0
activity of a specified kind.

1-1 ANS5T



Uperations defined on an open I/0 switch are a subset of
those listed below, each of which has a standard calling sequence

read_record
write_record
rewrite_record

delete_record

supported by all the I/0 modules to which the switch can be
attached.
close reverse the process of opening.
get_line read the next line of input.
get_chars read a specified number of characters.
put_chars write a specified number of characters.
modes inspect or change the rules governing later
1/0 operations.
position space forward or backward without
transmitting any data.
control perform a special I/0 operation unique to a

particular attachment.

read the next input record.
write the next output record.

replace the record last read or written.

discard the last record located.

seek_key position an indexed file to a specific key.
read_key read the key to which a file 1is currently
positioned.
read_length obtain the length of the record to be read
next.
An opening mode 1is a particular way of accessing a file.

The opening mode, specified in the open operation, defines a
subset of allowed operations on the open I/0 switch. Some data
bases and some I1I/0 modules do not support all the opening modes,
but every module that supports a given opening mode implements
all the operations defined for that mode with their system-wide
meanings (exceptions are noted in the documentation of individual
I/0 modules). Table I 1lists the opening modes in Multics and
shows the operations supported by each one.

All opening modes support the <c¢lose operation and can,
depending on the 1I/0 module, support certain modes and control
operations. The detach operation is defined only when an 1I/0
switch is closed.

1=2 ANST



A synonym 1is an I/0 switch attached tc another I/0 switch
directly so that an operation requested on the first switch is
performed by the second switch's corresponding operation.
Synonyms are very efficient in Multies and should be exploited.

An  1/0 control block or IOCB is the physical realization of
an I/0 switch. The IOCB <contains information describing the
attachment of the I/0 switch and an entry variable corresponding
to each operation listed above. At attach and open time, the I/0
module serving the attachment assigns appropriate entry point
values to the entry variables for the operations it supports and
assigns entry points that return error codes to the other entry
variables. When an I/0 operation is requested, the I1/0 system
routes the call to the entry point specified in the IOCB. This
routing is done without an extra stack frame or an argument list.

Five I/0 modules are a part of the standard system:

discard_ provides a sink for output.

ntape_ performs 1/0 to/from files on tape.

syn_ establishes one switch as a synonym for
another.

tty_ performs 1I/0 to/from terminals.

viile_ performs I1I/0 -to/from files in the ' storage
system.

The wuser can write his own I/0 module and specify it in an
attach call. Rules for writing an I1/0 module are given 1in
Section IV of the MPM Subsystem Writers' Guide, Order No. AKGg2.

This manual describes the operation of the I/0 switching
mechanism itself and the five standard I/0 modules. To find out
how to use any of the standard I/0 modules, refer to Section III
of the MPM Subroutines, Order No. AG93. For documentation of the
I/0 switching mechanism, refer to the iox_ description in Section
II of the MPM Subroutines.

1-3 ANST






CONTENTS (cont)

Page

Section XIV The rdisk_ 1/0 Module . . . . . . . . . . 14-1
:U'ltr'Oduction . . . . . . . » . . . . 1“"1

Sectign XV The record_stream_ 1/0 Module . . . . . . 15=1

Introduction . . . e e e e o« W 1521
Frogram Modules . . . c « e« <« « 15=1
record_stream_attach. pl1 « « s e« . 15=2
record_stream_attach e e e e .. 1522
OPEN_IS + v v « + « o « o « « « « 1522
close_rs . . . « « ¢« + ¢ « + « . 15=2

detach_rs . . . . . . . « . . . . 15=2
modes_rs, control_rs . . . . . . 15=3

" rs_open_str_in.pl1 . . . . . . . . . 15=3
get_chars_rs . . . . . . . « . . 15=3
get_line_rs . . . . . . . . . . 15=3
position_str_rs . . . . . . . . . 15=3
rs_open_str_out.pl1 . . . . . . . . . 15=4
put_chars_rs . . . . . . . . . . 15=4
rs_open_seq_in.pllt . . . . . . . . . 15=4
read_record_rs . . . . . . . . . 15«4
read_length_rs . . . . . . . . . 15=4
position_seq_.rs . . . . . . . . . 15-5
rs_open_seq_out.pl?t . . . . . . . . . 15-5
write_record_rs . . . . . . . . . 156=5

X ANST



SECTION II

DESIGN

The I/0 switching mechanism (as distinguished from the I1/0
modules that it references) maintains the IOCBs of processes.
All data needed for the operation of the I/0 system is stored in
the IOCBs. There are no other data bases.

A user desiring a new IOCB must call iox_$find_iocb. There
are three reasons for centralizing this function within the I/0
switching mechanism rather than allowing wuser programs to
allocate their own IOCBs:

1. Only the 1/0 system itself is guaranteed to be up to date on
the current format and required initialization of an IOCB.

2. The I/0 system is able to locate all IUCBs at all times.

3. The I0CBs are kept in storage that is least susceptible to
accidental damage.

Details of IOCB allocation are discussed under find_iocb.pl1 in
Section III of this manual.

An IOCB has two parts, one visible to I/0 modules and one
hidden from everyone except the I/0 switching mechanism. The
visible part is the top of the I0CB, referenced by 1include
declarations that show only that part. No user programs or I1/0
modules need be modified if +the hidden portion of the I0CB
changes.

The include file used by I/0 modules and other user programs
to reference an IOCB is iocbv.incl.pl1:

del 1 iocb aligned based,
iocb_version fixed init(1),
name char(32),
actual_iocb_ptr ptr,
attach_descrip_ptr ptr,
attach_data_ptr ptr,
open_descrip_ptr ptr,
open_data_ptr ptr,

reserved bit(72),

[ACEACEACE VISV AV V)

2-1 ANST



NN NN NN

A
visible

bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
bool
boocl

Hidden information,

bool
bool
bool
bool
bool

detach_iocb entry(ptr,fixed(35)),
open entry(ptr,fixed,bit(1)aligned,fixed(35)),

close entry(ptr,fixed(35)),

get_line entry(ptr,ptr,fixed(21),fixed(21),fixed(35
get_chars entry(ptr,ptr,fixed(21),fixed(21),fixed(3

)),
5)),

put_chars entry(ptr,ptr,fixed(21),fixed(35)),

modes entry(ptr,char(*),char(¥*),fixed(35)),

position entry(ptr,fixed,fixed(21),fixed(35)),

control entry(ptr,char(*),ptr,fixed(35)),

read_record entry(ptr,ptr,fixed(21),fixed(21),fixed(35)),
write_record entry(ptr,ptr,fixed(21),fixed(35)),
rewrite_record entry(ptr,ptr,fixed(21),fixed(35)),
delete_record entry(ptr,fixed(35)),

seek_key entry(ptr,char(256)varying,fixed(21),fixed(35)
read_key entry(ptr,char(256)varying,fixed(21),fixed(35)

),
)

read_length entry(ptr,fixed(21),fixed(35));

second 1include
and hidden portions.

file, for

ALM assemblies, shows both

This file is iocebs.incl.alm:

iocb.version, 0 oo 1oL
iocb.name, 1
iocb.actual_iocb_ptr, 12
iocb.attach_descrip_ptr, 14
iocb.attach_data_ptr, 16
iocb.open_descrip_ptr,20
iocb.open_data_ptr,22
iocb.event_channel, 24
iocb.detach_iocb, 26
iocb.open, 32
iocb.close, 36
iocb.get_line, 42
iocb.get_chars, 46
iocb.put_chars,52
iocb.modes, 56
iocb.position, 62
iocb.control, 66
iocb.read_record, 72
iocb.write_record, 76
iocb.rewrite_record, 102
iocb.delete_record, 106
iocb.seek_key, 112
iocb.read_key, 116
iocb.read_length, 122

iocb.ios_compatibility, 126
iocb.syn_inhibits, 130
iocb.syn_father, 132
iocb.syn_brother, 134
ioeb.syn_son, 136

2-2

fixed
char (32)
ptr
ptr
ptr
ptr
ptr
bit (72)
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry .
entry

to support SYN attachments.

ptr
bit (36)
ptr
ptr
ptr

ANST



I/0 CONTROL BLOCK VISIBLE PORTION

The first field is the version number. The current version
number is 1. Because of the expense of reprogramming all the
existing I/0 modules, the only changes expected to be made to the
visible portion of the IOCB are additions to the end, moving the
hidden information down.

The second field is the 32-character name of the ICCB. This
name 1is assigned at the time the IOCB is created and never
changes.

The third field is the actual_iocb_ptr, which points to the
I0OCBs actual IO0CB. An IOCB that is not a synonym of another is
its own actual IOCB. The actual_iocb_ptr of a synonymed IOCB is
the same as the actual_iocb_ptr of the I0CB to which it is
synonymed. A set of IOCBs synonymed to each other form a tree,
of which the actual IOCB is the root. The actual_iocb_ptr is
manipulated by the synonym I/0 module, syn_attach, when synonyms
are attached and. detached. Whenever syn_attach modifies an IOCB,
it also modifies the IOCBs actual IOCB. It then calls
iox_¢$propagate, which propagates the change to all members of the
synonynm tree.

The I/0 system is organized so that changes to I0OCBs are
comparatively infrequent, occurring mainly at attach, detach,
open, and close times. The cost of having synonyms is paid at
these times rather than when a IOCB is used. This cost consists
of a call to iox_¢$propagate after making any change.

The fourth field is the attach_descrip_ptr. By definition,
if this pointer is null, the I0CB is detached. The IOCB is
attached if attach_descrip_ptr is not null, in which c¢ase this
pointer points to a varying character string called the attach
description string. This 1is a human- and machine-readable
description of the IOCBs attachment. It is fabricated by the I/0
module serving the attachment from the information passed to it
in the attach call. The attach description string is a sequence
of arguments separated by blanks. The first argument is the name
of the I/0 module serving the attachment. The second is the name
of the target of the attachment. Any remaining arguments are
attachment-specific options whose format is known only to the
particular I1/0 modules that support them.

An attach description string contains all the information
needed to complete an attachment. The I1I/0 system provides two
entry points that accept attach description strings and perform
the described attachments. See iox_$attach_ptr and
iox_$attach_name in Section III of this manual.

2-3 ANS7



Attach description strings form a convenient interface for
PL/1 programmers to specify the default attachments of PL/I
files. If the PL/I runtime 1I/0 support finds that the IOCB
associated with a PL/I file is not attached when 1I/0 is requested
on it, the PL/I title of the file 1is wused as an attach
description string to perform the attachment.

The attach description string of an I0CB synonymed to
another I0OCB is a description of the synonymization rather than a
copy of the other IOCBs attach description string. This field
and two others, name and attach_data_ptr, retain their individual
identity in a synonym attachment. All other fields in the
visible portion of a synonymed IOCB are duplicate copies of the
corresponding fields of the actual IOCB.

The print_attach_table (pat) command prints the attach
description strings of specified switches or of all the attached
switches in the process.

The fifth field 1is the attach_data_ptr. The 1/0 module
serving the attachment can use this pointer to 1locate a data
structure of its own design 1in which it remembers whatever
details of the attachment it needs 1in whatever format is
appropriate. The contents of this data structure are the
exclusive property of the serving 1/0 module. An I/0 module is
not allowed to keep data pertaining to a particular attachment
anywhere but in or locatable from the attach data structure
pointed to by attach_data_ptr. This requirement is enforced so
that I/0 operations on one attachment have no effect wupon the
state of another attachment through the same 1I/0 module.

The sixth field is the open_descrip_ptr. By definition, if
this pointer is null, the IOCB is closed. The IOCB is open 1if
open_descrip_ptr 1is not null, in which case this pointer points
to a varying character string called the gpen description string.
This is a human- and machine-readable description of the opening
of the IOCB, fabricated by the serving I/0 module from the
information passed to it in the open call. The open description
string is a sequence of arguments separated by blanks. The first
argument is the name of the opening mode. Any remaining
arguments are attachment-specific. A

The seventh field is the open_data_ptr. Like
attach_data_ptr, this pointer is used by the serving I/0 module
to locate a data structure describing the current opening.

The eighth field, named reserved in the include file
jocbv.incl.pl1, 1is presently not used. It provides space for an
event channel id to support asynchronous 1I/0.

The remaining sixteen fields in the visible portion of the
I0OCB, detach_iocb through read_length, are entry variables into
which the serving I/0 module stores the values of entry points in
itself that implement the I/0 operations. In detached and closed
ICCBs, these entry variables are set by the 1I/0 switching

2-4 ANS5T



mechanism to entry points in the I/0 switching mechanism that do
nothing but return error codes. Three such error codes are
error_table_$not_attached, - error_table_$not_open and
error_table_$no_operation. 1In open blocks, any entry variable
not set by the serving I/0 module is set by iox_¢$propagate to one
of the code-returning entry points.

STATES UF AN 1/0 CONTROL BLOCK

An IOCB is always in one of four states: detached, attached
and closed, open, or attached as a synonym. For each of these
states, there are certain consistency relationships that must
hold among the various fields of the IOCB. The I/0 switching
mechanism enforces these relationships, first by creating IOCBs
in a consistent state, and second by calling iox_¢$propagate after
making each change.

By definition, an IOCB is detached if its attach_descrip_ptr
is null. In this state, the 1/0 system ensures that
actual_iocb_ptr points to the 1I0CB 1itself, attach_data_ptr,
open_descrip_ptr, and open_data_ptr are null, and all entry
variables are set to entry points that return error codes.

By definition, an IOCB is attached as a synonym if
actual_iocb_ptr points to a different IOCB. In this state,
attach_descrip_ptr points to a description of the synonymization
as prepared by the synonym module. The field attach_data_ptr is
used by the synonym module for its own purposes, and all other
fields of the IOCB are duplicate copies of those in the actual
JOCB. The actual IUCB must be in either the detached, closed, or
open state.

By definition, an actual IOCB is closed if it is attached
but open_descrip_ptr is null. In this state, open_data_ptr must
be null, the detach_iochb entry variable must be set to an entry
point within the I/0 module capable of restoring the IUCB to the
detached state, the open entry variable must be set to an entry
point within the 1I/0 module capable of changing the IOCB to the
open state, and all other entry variables must bec set to entry
points that return error codes.

Finally, by definition, an actual IOCB is open 1if its
open_descrip_ptr is nonnull. In this state, the detach_iocb and
open entry variables must be set to entry points that return
error codes. All other entry variables are set as desired by the
I/0 module. Entry values for operations not supported by the
particular opening mode remain set to entry points that return
error codes.

2-5 ANST



I/u CONTROUL BLOCK HIDDEN PORTION

The hidden portion of an IUCB is used by the 1/0 switching
mechanism to implement synonyms and I0S compatibility.

The first field, ios_compatibility, is a pointer to a module
that simulates all of the functions of the cobsolete 1I/0 switching
mechanism I0S. 10S compatibility is documented in Section IV of
this manual.

The remaining fields are used to implement synonyms. These
pointers are null if the I0CB 1is not involved in a synonym
attachment. Otherwise, they contain all the information needed
by iox_$propagate to find the members of the synonym tree and to
propagate the entry variables in the actual IOCB to all the other
members. ‘

The bit string syn_inhibits specifies which operations are

inhibited by the synonym attachment. There 1is a one-to-one
correspondence between the first fifteen bits of syn_inhibits and
the operations open through read_length. There 1is no bit

corvesponding to the detach_iocb operation, which cannot be
inhitited. when a bit 1is on, the corresponding operation is
inhibited and returns the code error_table_$no_operation. The
operation 1is automatically inhibited for any IOCB synonymed to
the given IUCB. When copying the entry variables from an IOCB to
one of its descendants, iox_¢$propagate substitutes an entry point
that returns the above error code for the entry values of
inhibited operations.

The pointer syn_father points to the IOCB to which the
current IOCB is immediately synonymed. This pointer is different
from actual_iocb_ptr, which points to +the IOCB to which the
current IUCB is ultimately synonymed.

the pointer syn_brother points to the next IOCB immediately
synonymed to the same father as the current IQOCB. This pointer
is null if there is no such IOCB.

The pointer syn_son points to the first IOCB immediately
synonymed to the current block. All others also immediately
synonymed can be located by following the syn_brother thread from
the syn son.

2-6 ANST7



COMMON IPS MASKING LOGIC

There are many places 1in the 1/0 system where, for short
periods of time, loss of control due to an IPS interrupt (quit,
alrm, or cput) cannot be tolerated because some IOCBs are in an
inconsistent state. All IPS interrupts are masked off while
these critical sections are running. The strategy used is:

ips_mask = 0;
call default_handler_¢$set(handler);

call hes_$set_ips_mask(0,ips_mask);
CRITICAL SECTION
call hes_$reset_ips_mask(ips_mask,ips_mask);

handler: proc (p1, name, p2, p3, continue);
if ips_mask"=0 then TERMINATE PROCESS;
if name"="cleanup" then continue = "1'b;
end handler;

Because faults can still occur while interrupts are masked,
a handler must be established to catch them. Any  fault that
occurs during a critical section must terminate the process
because I/0 will be disabled in unpredictable ways. However,
faults that occur elsewhere are passed on up the stack to the
program that normally handles them. The logic shown above wuses
the automatic variable ips_mask to determine whether control is
inside a critical section. This variable must be initialized to
zero before enabling the condition handler. Thereafter, a call
to hes_¢$set_ips_mask upon entry to a critical section saves the
current interrupt mask in ips_mask. The last bit is guaranteed
to be on, therefore 1ips_mask is nonzero. A call to
hes_$reset_ips_mask wupon leaving the critical section resets
ips_mask to zero.

2=T ANST






SECTION IIl

FROCEDUKES IN Thk 1/0 SWITCHING MECHANISM

The 1/0G switching mechanism consists of seven modules:

find_iocb.pl1
attach_ioname.pl]
move_attach.pl1
iox_.alm

propagate.pl]
print_attach_table.pl1
io.pl1

MODULE find_iocb.pl1

This module implements the entry points 1iox_$find_ioch,
iox_$find_iocb_n, iox_$look_iocb, and iox_$destroy_ioch.

"his is the only module that manages the allocation and
deallocation of 10UCBs. All other modules in the I/0 system work
with IOCBs to which they have been given pointers, these pointers
having ultimately been obtained from find_iocb.

Entry: iox_$find_iochb

This entry point returns a pointer to the named I0CE. The
IOCB is created if it does not already exist. :

Usage
del iox_$find_iocbhb entry(char(#*),ptr,fixed bin(35));
call iox_$find_iocb (ioname, iocb_ptr, code);

1. ioname is the name of an IUCB. (lnput)

3=1 ANST



¢. iocb_ptr 1is a pointer to the I10CBE. (CQutput)

3. code is a standard status code. (Output)

Entry: iox_$find_iocb_n

This entry point returns a pointer to the nth IOCE allocated
in the process.

Usage
del iox $f1nd iocb_n entry(fixed bin(17),
ptr,fixed bin(35));
call iox_$find_iocb_n (iocb_n, iocb_ptr, code);

1. iocb_n is the number of an IOCB. (Input)

mn

iocb_ptr is a pointer to the 10CBE. (Cutput)
3. code is a standard status code. (Output)

The entry point iox_$find_iocb_n 1is wused to methodically
locate all the I0CBs in existence, 1including those that are
detached. The 1UCbs are numbered contiguously from one through
the highest-numbered I0Cb. The numbers bear no relation to the
order in which the I0CBs were created or used. If a number below
one or above the highest number is requested, iox_$find_iocb_n
returns a null pointer and the code error_table_$no_iocb.

Creation and destruction of I0CBs changes the numbering.
Therefore, a program should not call iox_$find_iochb or

iox_¢$destroy_iocb while wusing iox_¢$find_iocb_n to look at all
IOCBs.

Entry: iox_$look_ioch

This enthy point is the same as iox_$find_iocb but does not
create an ICCB.

Usage
del iox_$look_iocb entry(char(®*),ptr,fixed bin(35));

call iox_$look_iocb (ioname, iocb_ptr, code);

Arguments are the same as for iox_$find_iocb.

3=2 ANST



Entry: iox_g$destroy_iocb

This entry point destroys an IOCB.

Usage
del iox_$destroy_iocb entry(ptr,code);

call iox_gdestroy_iocb (iocb_ptr, code);
1. iocb_ptr 1is a pointer to an I10CE. (Input)
2. code is a standard status code. (Cutput)

The <caller 1is responsible for ensuring that the IGCB is in
the detached state prior to requesting its destruction, and for
guaranteeing that no pointers to it remain afterwards. The
storage occupied by the IUGCBH is made available for other use. 1If
a new I0Cb is created with the same name as the old one, it “may
or may not occupy the same storage.

Internal Logic

Five I10CBs are allocated at one time as a compromise between
speed and storage consumption. The first array of five 10CBs
occupies the internal static of find_iocb. When the first array
has been used up, arrays of five are allocated in the combined
linkage segment of the ring in which they reside. The arrays are
threaded together and the beginning of the thread 1is kept in
internal static.

The first array of five 10CBs allows room for the four
standard system 1/0C switches, user_i/o, user_input, user_output,
and error_output, and one user-defined I1/0 switch. The I0CBs for
the system switches are assigned and initialized to the detached
state upon the first call to iox_$find_iocb. Their locations are
filled into the external pointer variables iox_$user_io,
iox_%user_input, iox_$user_output, and iox_$error_output. These
entry points allow fast access to the system switches by all
programs. :

Wwhen the user requests that an 1UCbE be destroyed, the IO0ChH
is marked free so that it can be reused. An IOCB is marked free
by setting its actual_iocb_ptr to null. The allocated storage
itself is never freed, but free 10CBs are used before allocating
another array.

3-3 ANST



Maintenance of the 1UCb table is slightly complicated by the
facts that: :

1. The table cannot be 1locked. 1f a later invocation of
find_iocb needs access to the table while an earlier one
has it locked, a deadlock exists.

[aN]

IPS interrupts cannot be masked off for the whole time it
takes to search the potentially large table.

hence, the following strategy is used. Any program that changes
the table records the time of the change in the internal static
variable changed_at. Any program that searches the table records
the current time in the automatic variable searched_at. If at
the end of the search it finds that a modification was made
during the search (changed_at is greater than searched_at), it
repeats the search. The search itself 1is carefully coded so that
it cannot blow up if the table is modified while it is 1in
progress. The modification code is careful not to thread a new
array of 1uCbs until they have been initialized properly.

The usual 1/0 system 1PS interrupt masking logic is used.

Wwhenever a new 10UChb is assigned, it is initialized to the
detached state. The assignment of an 10Cb, its initialization,
and the setting of the caller's iocb_ptr are all done 1in one
critical section with 1PS interrupts masked. Therefore, the
assignment of an IUCb is an atomic operation from the standpoint
of process synchronization.

Whenever an 10Cb 1is destroyed, it is initialized to the
detached state. Therefore, if any I1/0 operation is attempted on
the destroyed 10CB, an error occurs rather than unpredictable
I/u. 1f, however, the same storage 1is subsequently assigned,
pointers to the old 10Cb now point to the new IOCB. There is no
way to catch this error. The caller must be responsible for
setting all copies of iocb_ptr to null when an I0CB is destroyed.
The unassignment of the I10Cb;, 1its initialization, and the
resetting of the caller's iocb_ptr are all done in one critical
section with I1FS interrupts masked.

"y o~ o - - po |
MODULE attach_name.pl

a
I

This module implements thé entry points iox_$attach_name and
iox_$attach_ptr. It attaches an 10CB according to an attach
description string.

3-4 AN5T



Entry: iox_$attach_name

This entry point attaches an I10CB whose name is known.

Usage
decl iox_$attach_name entry(char(¥*),ptr,
char(*),ptr,fixed bin(35));
call iox_$attach_name (name, iocb_ptr, string, ref_ptr,
code);
1. ioname is the name of an 10CBE. (Ilnput)

z. iocb_ptr 1is a pointer to the IUCB. (Cutput)

3. string is an attach description string specifying the
' desired attachment. (Input)

4, ref_ptr is null or a pointer to the referencing procedure,
used to implement the "referencing_dir" search rule
in searching for the 1/0 module. (Input)

»

5. code is a standard status code. (QOutput)

The code returned is zero if attachment is successful. 1t
is - error_table_$no_iocb if no IGCH could be created. 1t is any
error code - returned by expand_path_, hes_$initiate_count, or
hes_¢$make_ptr if the specified I/0 module cannot be initiated, or
any error code returned by the I/0 module itself if it cannot
perform the attachment.

The entry point in the I1/0 module that is called to perform
the attachment 1is determined as follows. If the module name in
the attach description string is not a pathname (does not contain
< or >), attach_ioname calls hcs_¢$make_ptr with the module name
as reference name and an entry point name consisting of the
module name concatenated with the string "attach" (For example,
syn_$syn_attach). 1f the supplied module name is a pathname, the
1/0 module is initiated with the module name as a reference name
and then hcs_¢$make_ptr is called as above.

(VV)
1
w

ANST



kntry: iox_g$attach_ptr

This entry point attaches an 10Cb given a pointer to it.

Lsage
del iox_$attach_ptr entry(ptr,char(*),ptr,fixed btin(35));

call iox_g$attach_ptr (iocb_ptr, string, ref_ptr, code);
1. iocb_ptr 1is a pointer to an IUCB. (Input)
2. string is an attach description string. (Input)

3. ref_ptr is null or a pointer to the referencing procedure.
(Input)

4, code is a standard status code. (Qutput)

This entry point behaves the same as iox_$attach_name.

Internal Logic

The only significant processing done by this module is the
parsing of the attach description string into an array of varying
character string arguments as required by the I/0 module. The
parsing 1is done in two stages. The first parse scans the string
to determine how many arguments it contains and the length of the
longest one. Space is grown in automatic storage to hold an
array of varying strings of that length. The second parse
rescans the string, filling in the array elements.

If the attach description string contains no target and no
options, attach_name constructs an array of extent 2zero.
Although an array of extent 2zero 1is nonstandard PL/I, our
implementation of PL/I allows this to happen and handles it
correctly.

The I1°0 module to perform the attachment 1is called via
cy_$ptr_call because its name is not known at compile time.

MOUDULE iox_.alm

This module implements the following entry points:

iox_$user_io iox_¢$write_record
iox_¢$user_input iox_$rewrite_record
iox_$user_output iox_¢$delete_record
iox_$error_output iox_¢$seek_key
iox_¢$detach_iochb iox_¢$read_key
iox_$open iox_¢$read_length
iox_$close iox_¢$err_no_iochb

3-6 ANS5T



iox_¢$get_line iox_¢$err_no_operation

iox_$get_chars iox_$err_not_attached
iox_$put_chars iox_$err_not_closed
iox_$modes iox_$err_not_open
iox_¢$position iox_$err_old_dim
iox_$control iox_¢$ios_call
iox_$read_record iox_¢$ios_call_attach

The iox_ module performs an assortment of functions each of
which is best coded in machine language. The first four entry
points 1listed above, iox_$user_io through iox_$error_output, are
not executable procedures but external pointer variables that
point to the IUCbks for the four system 1/0 switches. Since most
1/0 in the system is conducted over these switches, these entry
points eliminate many calls to iox_¢$find_iocb. The next sixteen
entry points, iox_$detach_iocb through iox_$read_length, are call
forwarders that merely pass control to the corresponding entry
variables in the I0CB. They permit most callers of the 1/0
system to remain unaware of the format of an IOCB. The next six
entry points, iox_$err_no_iocb through iox_$err_old_dim, are
procedures that do nothing but return a specified error code as
the last argument with which they are called. They are used to
fill in entry variables that should not be called. The last two
entry points, iox_$ios_call and iox_$ios_call_attach, are used
only by the 10S compatibility package to perform operations with
an obsolete format of 1/0 module, the interface of such calls
having required the use of machine language. Whereas entry
points in the module ios_ (described in Section 1V) test the
format of an 10CB, these last two entry points assume it is of
the old format.

Entry: iox_$user_io

This entry point is an external pointer variable that always
pecints to the ICCE for the switch user_i/o.

Usage
del iox_$user_io pointer external;
call iox_¢$put_chars (iox_g¢$user_io, addr(buf),
length(buf), code);
or:

call iox_$user_io=->iocb.put_chars(iox_$user_io,
addr(buf),length(buf),code);

The external pointer 1is set during process initialization

when user_real_init_admin_ calls iox_$find_iocb for the first
time to set up the system 1/0 switches.

3-7 ANST



tntries: iox_$user_input

iox_$user_output
iox_$error_output

These three external pointer variables point to the IUCBs

for the switches user_input, wuser_output, and error_output
respectively. They are used in the same way as iox_$user_io.

Entry: iox_g¢$detach_ioch

del iox_$detach_iochb entry(ptr,fixed bin(35));
call iox_g$detach_iocb (iocb_ptr, code);

1. locb_ptr 1is a pointer to an IUCB. (Input)

. code is a standard status code. (Output)

This entry point passes the call on, with the same argument
list, to the entry variable iocb.detach_iocb in the I0CB. The
effect is equivalent to executing the call:

call iocb_ptr->iocb.detach_iocb (iocb_ptr, code);
RESTRICTIUN: The entry variable in the IOCb must be external.
The call-forwarding code in iox_g¢$detach_iocb does not properly

pass the environment pointer portion of an internal entry
variable.

Entries:

iox_$close iox_$get_line
iox_¢$get_chars iox_$put_chars
iox_$modes iox_$position
iox_$control iox_$read_record
iox_¢$write_record iox_$rewrite_record
iox_$delete_record iox_$seek_key
iox_$read_key iox_$read_length

These entry points are the same as iox_¢$detach_ioch,

differing only in the entry variable to which they pass their
calls. The same KESTRICTIUN applies.

w
1
o

ANS7



internal Logic

The call-forwarding code is:

detach_iocb:

epplp api2,* Get addr of I0CE ptr.
epplp 1pi0,* Get addr of IOCB itself.
callsp lpiiocb.detach_ioch,* Pass call on.

Only the 1lp register is changed. The callsp instruction is wused
instead of a transfer because it is possible for the entry value
to be a gate. The argument list is not copied or altered in any
way. To support calls upon entry variables that take internal
procedure values would require copying the argument list to make
space for insertion of the environment pointer, which would in
turn necessitate a stack push. These steps add too much overhead
to every 1/0 call to justify their inclusion. hence the above
RESTRICTION. ,

Entry: iox_$err_no_ioch

This entry point returns the status code
error_table_$no_iocb as its last argument.

Usage
dcl iox_$err_no_iocb entry options(variable);

iocb_ptr->iocb.get_line = iox_$err_no_iocb;

The last argument is set to error_table_$no_iocb only if it
is declared as fixed bin(35" Tf iox_%err_no_iocb is called with
no arguments, it returns without doing anything. Descriptors are
not inspected. This entry point is intended to be placed in an
entry variable during periods in which the  corresponding
operation is disabled.

- Entries:

iox_¢$err_no_operation iox_$err_not_attached
iox_$err_not_closed iox_$err_not_open
iox_%err_old_dim

These entry points behave the same as iox_$err_no_iocb

except that they return the status codes
error_table_$no_operation, ' error_table_$not_attached,
error_table_$not_closed, error_table_$not_open, and

error_table_$old_dim respectively.

3-9 ANST



kntries: iox_¢$ios_call and
iox_$ios_call_attach

These entry points form part of the 10S compatibility
package, described in Section 1V of this manual. They are
grouped in iox_.alm only to avoid needless fragmentation at the
source module level. '

MUDULE propagate.plt

This module implements the entry point iox_¢$propagate. It
is 1intended ¢to 'be <called by any 1/0 module after making any
change to an 1UCB. It has two functions:

1. To make sure the'IOCB is in a consistent state.

2. To propagate changes to all 10CBs that are synonyms of the
changed 10CB.

In general, 1/0 modules ignore synonyms, trusting that
iox_¢$propagate will keep them up to date.

while an 1/0 module is changing the contents of an I0CB, the
IUCb can be in an inconsistent state. It can remain in an
inconsistent state until iox_$propagate has finished with it.
Therefore, the 1/0 module is responsible for masking off all 1IPS
interrupts before changing the I0CB and keeping them masked off
until iox_¢$propagate returns. It is recommended that the 1I/0
module use the common I1IPS interrupt masking logic used elsewhere
in the 1/0 switching mechanism. The propagate module itself does
not change the IPS interrupt mask or have a handler for IPS
interrupts.

Entry: iox_¢$propagate
Usage
. dcl iox_gpropagate entry(ptr);
call iox_¢$propagate (ioéb_ptr);
where iocb_ptr is a pointer to an IOCB. (Input)

No status c¢ode 1is returned by this entry point, first
because iox_$propagate has already done its best to make the IGCB

consistent and second because there is no meaningful use that the
caller could make of such a code.

3-10 ANST



Internal Logic

Synonym attachments cause IUCBs to be threaded together in
tree structures by threads maintained in the IOCBs. There are
four pointer fields used for this purpose: 1iocb.actual_iocb_ptr,
iocb.syn_father, iocb.syn_son, and iocb.syn_brother. Of these,
only actual_iocb_ptr is in the visible or advertised portion of
the IOCE. The meanings of the four threads are as follows:

If an I0CEB 1is a synonym, its syn_father pointer points to
the I0OCB to which it 1is immediately synonymed. Utherwise,
syn_father is null. j

If an I0CB is synonymed to another, its syn_brother pointer
points to the next ICCE also synonymed to the other I0OCB. If
there is no next IUCE so synonymed, or if the given IOCB is not
synonymed, syn_brother is null.

1f an IUCb is the target of a synonym, syn_son points to the
first 1I0Cb synonymed to it. Otherwise, syn_son is null. The
remaining 10CBs synonymed to the given I0CB can be found by
following the syn_.brother thread beginning in its syn_son IOCBH.

If an 1I0Cb is synonymed to another, actual_iocb_ptr pdints
to the nonsynonymed I10CB to which it 1is wultimately synonymed.
Otherwise, actual_iocb_ptr points to the given block itself. .

The first task performed by iox_¢$propagate is to ensure the
consistency of the given IOCb. If the IOCB 1is synonymed to
another, then the synonym 1/0 module is trusted to have left the
10CE consistent. 1f the 10CB is not synonymed to another, it is
policed as described in the next four paragraphs.

If the 10CE is detached (attach_descrip_ptr is null), then
attach_data_ptr, open_descrip_ptr, open_data_ptr, and
ios_compatibility are set to null, event_channel is set to zero,
the detach_iocb, open, modes and control entry variables are set
to iox_$err_not_attached, and all other entry variables are set
to iox_¢$err_not_open. The entry variables of a detached IOQOCB are
never equal to iox_$err_old_dim because the I0S compatibility
package 1is careful to reset such entries to iox_$err_not_open
before calling iox_$propagate.

If the block is attached but not open (attach_descrip_ptr is
not null but open_descrip_ptr is null), then open_data_ptr is set
to null and all entry variables from get_line on, with the
exception of modes and control, are set to iox_$err_not_open. If
modes and control are equal to 1iox_$err_no_operation or
iox_¢$err_not_attached, they are set to iox_$err_not_open. No
entry will be equal to iox_¢$err_old_dim, because the I0S
compatibility package never leaves I0Cbs attached but not open.

-11 ANST

w



If the 1UCB 1is both attached and open (attach_descrip_ptr
and open_descrip_ptr are not null), then the entry variables
detach_iocb and open, if not equal to iox_$err_old_dim, are set
to iox_$err_not_closed and the entry variables get_line through
read_length, if equal to iox_$err_not_open, are set to
iox_$err_no_operation. Thus, in the case of IOCBs managed by the
IUS compatibility package, the detach_iocb and open entries
remain set to iox_$err_old_dim and all other entries are set to
supported operations or iox_$err_old_dim. 1In all other cases,

the detach_iochb and open entries are forced to
iox_$err_not_closed and all other entries that the 1/0 module has
left equal to iox_¢$err_not_cpen are reset to

iox_$err_no_operation.

This policing strategy ensures that 10CBs are always in a
well-defined state. It also permits I/0 modules to concern
themselves only with I1I/0 operations of which they wish to be
aware. The propagate module automatically keeps untouched fields
of the I0OCb up to date as its state changes.

Having been forced to be consistent, the fields of the given
10CB must be propagated to the I0CBs that are synonyms of it. A
loop does the following for each IOCB synonymed to the given
16Cb, i.e., each syn son, found by chasing the syn_son and
syn_brother threads:

1. Copies selected fields of the given IOCE to the son.

z. Calls propagate$recurse, an internal entry point, on the
son to propagate the changes to all of its syn sons. This
call is made only if the son has a syn son.

The entry point propagate$recurse is only called if one of the
syn sons of the IUCb on which iox_¢$propagate was called has a syn
son.

Field propagation involves the following. Fields
actual_iocb_ptr, open_descrip_ptr, open_data_ptr, event_channel,
and ios_compatibility are copied from the given I0OCB to the son.
For each entry variable from open through read_length, if the
corresponding operation is inhibited in the syn attachment of the
son to the given IUCB (the corresponding bit is on in the son's
syn_inhibits field), the entry variable is set to
iox_$err_no_operation. Otherwise, the entry variable is copied
from the given 10CBE to the son. No change is made to the fields
name, attach_descrip_ptr, attach_data_ptr, and syn_inhibits, all
of which retain their original identity in synonymed IOCBs.

3-12 ANST



MODULE print_attach_table.pll

This module implements the print_attach_table (pat) command,
which prints information summarizing the attachment of selected
I0CBs or all IOCBs.

If one or more I/0 switch names are given, the command calls
iox_$look_iocb with each name to get a pointer to the IOCB and
calls the internal procedure show to print a line of information.
If no names are given, the command calls iox_$find_iocb_n to
enumerate all IOCBs and calls show for each.

The internal procedure show formats and prints a one-line

(occasionally overflowing to two) display showing the attachment
and open status of an I0CB.

MODULE io.pl1

This module implements the 1io or io_call command, which
provides a convenient command-level interface to the operations
of the 1/0 system.

3-13 ANST



io io

Names: io, io_call

usage

io opname ioname -control_args-
1. opname is the operation to be performed.
2. ioname is the name of an 1/u switch.

Internal Logic

The I0CB is 1located via iox_$look_iocb unless ioname is
"attach™ or "find_iocb", in which case iox_¢$find_iocb is called.
Control 1is dispatched to the block of code that completes the
particular operation.

Two internal subroutines, announce_ and error_, are used by
most of the operations to handle errors. Their calling sequences
are the same as that of com_err_. Either subroutine returns
silently if the status code passed to it is zero. If the code is
nonzero, either subroutine calls com_err_, passing on its
argument 1list. If the status code is -1, it is changed to zero
and com_err_ is called. The announce_ subroutine returns to its
caller afterwards, whereas error_ aborts execution of the io
command. The announce_ subroutine is used to report the outcome
of the 1I/0 operation and error_ is used to report errors in the
execution of the io command.

The IUCb 1is declared using an old include file named
iocbx.incl.plt, which declares the entry variables with the
returns option. Calls to the entry wvariables are embedded in
calls to announce_. The detach operation, for example, says:

call announce_(p->iocb.detach_iocb(p),io_detach,
""a" p->iocb.name);

where p 1is a pointer to the IO0OCB. The first argument to

announce_ is the code returned by iocb.detach_ioecb and the other
arguments format the error message, if any.

3-14 ANST



io io

The attach coding parses an attach description string into
an array of varying character =string arguments. First, the
string is scanned to determine how many arguments it contains and
the 1length of the 1longest one. Space is grown in automatic
storage to hold an array of varying strings of that length. The
array is filled in.

The attach coding requests the I1/0 module to print error
messages as well as return a status code. This 1is done to
provide information in addition to the switch name that cannot be
conveyed in a status code.

The get_line coding handles the case where the number of
characters is not specified, by calling iocb.get_line to read 64
characters each time until the code error_table_$long_record is
not returned.

When the number of characters 1% specified for get_line,
get_chars and read_record, the stack is grown to hold a buffer of
that size.

The control coding grows stack space for a character string
if one is given and passes a pointer to the string as an
information pointer. If no string is given to the command, a
null information pointer is passed. When iocb.control returns,
the string is inspected to see if it has been changed by the 1/0
module. 1f it has and the length of the string is less than 200,
the string is printed. Otherwise, the value of the information
pointer 1s printed.

The print_iocb coding calls an internal subroutine, piocb,
to print the contents of an IOCB. Most fields are printed only
if nonzero or nonnull to minimize the amount of output. The
entry variables are treated as a based array. When 1looping
through the entry variables, an inner loop skips over successive
entries that are identical so that the value of all these entries
is printed only once. The complete pathnames .of the entry
variables are obtained from hes_$fs_get_path_name and
get_entry_name_

3=-15 | ANST






SECTION IV

DESIGN OF THE IOS COMPATIBILITY PACKAGE

The present I/0 switching mechanism IOX replaces a previous
mechanism known as IOS. Since IOS I/0 modules still exist, IOX
provides three-way compatibility with IOS:

1. Users can call IOX to perform I/0 over switches served by
I0S I/0 modules.

2. Users can call IOS to perform I1/0 over switches served by
I0OX I/0 modules.

3. Users can still call IOS to perform 1I/0 over switches
served by I0S I/0 modules.

Complete compatibility is available for the nine old
standard system 1/0 modules syn, tw_, ntw_, absentee_dim_, mrd_,
oc_, tek_, exec_com_, and discard_output_. Either I0S or IOX can
be called to attach and detach these modules. For other I/0
modules not specifically designed to be compatible, attach and
detach mnust be performed through IOS entry points but all other
operations can be performed via IO0X.

When all references to the old interfaces are deleted from
the system, this compatibility package will be obsolete and can
also be deleted.

DESIGN CHARACTERISTICS

Compatibility with IUS necessitates that all calls other
than the normal ones from I0X requestor to I0X module are
detected and intercepted. Such calls must be mapped into calls
of similar function that can be performed by the serving I/0
module.

41 ANST



Calls to IUS are easy to detect because they name entry
points in the module ios_. The technique for capturing these
calls is to provide a new implementation of ios_. The new
implementation ascertains whether the intended I/0 operation is
directed to an 1/0 switch served by an I0X module or an IOS
module and maps the call accordingly. It must be aware of how
old and new module attachments are represented in the new I/0
switching mechanism.

Calls to I0X naming I/0 switches served by IOS modules can
be caught as follows: Since IOS modules do not wuse the entry
variables in the IOCB, 10X can fill them in with intercept
routines when it attaches the I0S module. The intercept routines
map I0X calls into functionally equivalent operations that can be
performed by the serving 10S module.

Attachments served by new and old I/0 modules are
distinguished by the 1ios_compatibility pointer in the hidden
portion of the control ©block. This pointer 1is null for an
attachment served by an I0X I/0 module. For an attachment served
by an IUuS 1I/0 module, ios_compatibility points to the module's
transfer vector. (Each old I/0 module contains a transfer vector
that serves the same purpose as the array of entry variables in
the current I/0U switching mechanism.)

Entry points in ios_ note from a null ios_compatibility
pointer that the attachment is served by an I0X module and call
entry variables in the IOCB. The entry variable called is chosen
to carry out the intended I1I0S operation. The mapping of an IOS
request into its corresponding I0X operation 1is discussed 1in
detail under ios_.pl1 in Section V of this manual.

The attachment of an IOCB to a serving I0S I/0 module is
represented as follows: The location of the module's transfer
vector 1is stored in ios_compatibility. The location of the
module's stream data block, the old system's equivalent to the
open_data_block, 1is stored in open_data_ptr. These are the only
items necessary to support I0S calls on the module because the
stream data block contains the equivalent of the attach and open
descriptions and the transfer vector replaces the array of entry
variables. The remainder of the IOCB is filled in to support I0X
calls: The attach description string contains the name of the

1/0 module and the name of the target. The opén description
string contains the opening mode stream_input_output followed by
the 105 mode designation specified in the I0S attach call. The

entry variables of the I0OCB are initialized to write-around
routines that create the  appearance of the 10X mode
stream_input_output by means of IOS calls on the serving IOS
module. These write-arounds are discussed 1in detail under
ios_write_around_ in Section V of this manual.

b2 AN5T



DATA RUCTURES

The IOCB 1is the only data structure used by the IOS
compatibility package.

4-3 ANET






get_a

MODUL

write-

Entry:

Usage

SECTION V

PROCEDURES IN THE IOS COMPATIBILITY PACKAGE

I0S compatibility is implemented by four modules:

t_entry_.pl1, iox_

E ios_.pl1

This module implements the following entry points:

ios_$attach
ios_¢$detach
ios_$read
ios_¢$write
ios_$abort
ios_¢$order
ios_¢$resetread
ios_$resetwrite
ios_¢$setsize
ios_¢$getsize
ios_¢$setdelim

All entry points
arounds that

ios_$attach

except 1ios

.alm, and ios_write_around_.pl1.

ios_$getdelim
ios_¢$seek

ios_$tell
ios_¢$changemode
ios_$readsync
ios_g$writesync
ios_$no_entry
ios_$read_ptr
ios_¢$write_ptr
ios_$ios_quick_init

_$attach and ios_$detach

os_.pl1,

are

forward their calls to the appropriate entry
points in the I/0 module serv1ng the attachment.

del ios_$attach entry(char(#*),char(¥*),char(¥),
char(#*),bit(72)aligned);

call ios_g$attach (switch, dim, device, mode, status);

ANST



1. switch is the name of an I/0 switch. (Input)

2. dim is the reference name of an I/0 module. (Input)
3. device is the name of the intended target of the
attachment. This argument can specify a logical

device, a volume identifier, another " switch name,
the name of a file, etc., depending on the serving
I/0 module. (Input)

4. mode is a string defining the initial mode to be assumed
by the 1/0 module if it has changeable modes. If
mode is "", the default mode for the I/0 module is

assumed. (Input)

5. status is an I0S-style status code: standard status code in
the first 36 bits, status flags in the last 36 bits.
(Output)

This entry point 1is called by programs using the obsolete
I/0 switching mechanism IO0OS in order to perform the attach
operation. The attachment can be served by either an I0S module
or an I0OX module. In either case, the attachment is such that
both IOS and IOX calls can be made on the I/0 switch.

If the I/0 switch named by the switch argument is already
attached and not as a synonym, ios_$attach immediately returns
the error code error_table_g$ionmat.

If the switch is attached as a synonym, it is provisionally
detached. The attachment status is saved for restoration in the
event that an error prevents the new attachment. If the new
attachment fails, the old attachment is restored.

The dim argument is inspected to see if it is the name of
one of the nine old standard system I1/0 modules syn, tw_, ntw_,
absentee_dim_, mrd_, oc_, tek_, exec_com_, and discard_output_.
For these modules, the attach call is forwarded to one of the new
I/0 modules syn_, tty_, netd_, abs_, mr_, ocd_, tekd_, ec_, and
discard_.

If this is a synonym attachment, processing ends here. For
other attachments, the switch is opened (iox_$open) with the mode
stream_input_output (stream_output in the case of
discard_output_) and a modes operation is performed (iox_$modes)
with the mode argument given to ios_$attach.

5-2 AN5T



INTERNAL LOGIC

The 1I0S compatibility package maintains the integrity of
IOCBs at all times by proper use of the common I/0 system IPS
interrupt masking strategy. To attach via an I0OX I/0 module,
ios_ masks all IPS interrupts, verifies that the IOCB in question
is detached (or detaches it if it is synonymed), attaches via a
call to the 1I/0 module, restores the o0ld synonym attachment if
the new attachment has failed, and restores IPS interrupts.

Ideally, the same sequence should be followed when attaching
an I0S I/0 module, but old I/0 modules are not designed to run
with interrupts masked. The following circuitous route is taken
instead. 1IPS interrupts are masked while the attachment state of
the IOCB is being inspected. If the IOCB is detached, interrupts
are restored and the attach entry point of +the I/0 module is
called. The I1/0 module does not change the IOCB to record the
attachment. When the I/0 module returns, the IOCB must be
checked again in case it has been attached in the meantime by
another process. If it has not, ios_ records the new attachment
in the IUCE. If it has been attached by another process, ios_
returns an error code. In the latter case, it is possible that
the 1/0 module has obtained the use of reserved resources such as
tape drives or special communications lines. These resources are
not made available again until the process terminates.

To attach an I0S I/0 mecdule, designed to be called by a
special machine language calling sequence, ios_$attach wuses the
entry points iox_$ios_call and iox_$ios_call_attach. These entry
points, described below, are PL/I-callable write-arounds written
in machine language.

When the attachment of an I0X I/0 module is requested
through ios_g$attach, the resulting attachment is
indistinguishable from an attachment performed by I0X. The
contents of the IOCB are exactly the same. IO0OX calls use the
entry variables stored there by the I1/0 module. I0S calls are
mapped by the individual ios_ entry points into corresponding IO0OX
calls. The logic for each mapping is described below under the
appropriate ios_ entry point. :

An IOCB served by an IUS module 1is organized as follows:
The attach description string constructed by ios_g$attach is of
the form "<dim> <device>", where <dim> and <device> are the
values of the input arguments dim and device. The open
description string is of the form "IOS compatibility <mode>",
where <mode> is the value of the mode argument. The
attach_data_ptr points to a structure in which the attach and
open description strings are stored. The open_data_pointer is
the stream data block pointer received from the I0S I/0 module's
attach call. The ios_compatibility pointer points to the
transfer vector of the I0S I/0 module. The entry variables
get_line through control are filled in with write-arounds that

5-3 ANST



convert I0X calls to IO0OS calls. The entry variable close is set
to a procedure that performs detachment. Therefore, detachment
is performed automatically by an I0X close operation. All other
entry variables are set to iox_$err_old_dim, meaning that these
operations are not supported by an 10S I/0 module.

I0S calls on such an IOCB are handled by the various 1ios_
entry points described Dbelow. In general, these entry points
check whether the ios_compatibility pointer is null and if it is
not, use iox_$ios_call to call the correct entry point in the 1/0
module's transfer vector.

The attach data block created by ios_$attach is used by the
write-arounds for get_line through control, which assume that
this structure begins with copies of the old 1I/0 module's stream
data block pointer and transfer vector pointer. The format of
the attach data block constructed by ios_$attach must not be
changed without considering how such a change would affect the
various write-arounds.

Entry: ios_$detach

Usage :
dcl ios_¢$detach entry(char(¥*),char(*),char(¥*),

bit(72)aligned);
call ios_$detach (switch, device, disposal, status);
1. switch is the name of an IOCB. (Input)

2. device is the name of the target to which the IQOCB 1is
supposedly attached. (Input)

(W]

. disposal 1is optional information passed on to the I/0 module
that affects details of the detachment, such as
- retention of demountable volumes. (Input)

4, status is an I0OS-style status code. (Qutput)
This entry point can be used to undo any attachment, whether

attached via an IUS call or an 10X call and whether served by an
I0S module or an I0X module. :

5-4 ANS7



INTERNAL LOGIC

IPS interrupts are masked and the I0CB is inspected to
determine the proper course of detachment.

First, if the I0CB 1is not fecund or 1is not attached,
ios_$detach immediately returns the error code
error_table_$ioname_not_found.

Second, 1if the IOCB is attached as a synonym, ios_$detach
calls the detach entry variable in the IOCB and turns on the
detached-status bit in the status argument. The synonym 1/0
module adjusts the IOCB to the detached state. The check for a
synonym attachment must be made before the check for an old or
new I1/0 module so that an IOCB synonymed by IOX to an IOCB
attached by IOS is not mistaken to be attached by IUS.

Third, if the I0CE is attached through an I0X I/0 module, it
is closed if open by calling its close entry variable and then
detached by calling its detach entry variable. If no errors have
occurred, ios_$detach turns on the detached-status bit in the
status argument.

Fourth and last, if the IOCB is attached through an I0S 1I/0
module, IFS interrupts are restored and detachment is performed.
The IOCB must be inspected afterwards to make sure it has not
been attached or detached in the meantime by another process. If
it has, ios_¢$detach immediately returns the error code
error_table_$ionmat without changing the I0CB. Otherwise, it
changes the IOCb to the detached state.

REMAINING IOS ENTRIES

The entry points ios_¢$read through ios_$writesync utilize an
internal procedure named setup. This procedure does preliminary
work common to all of these operations.

First, setup clears the caller's status argument. It calls
- iox_%$look_iocb to get a pointer to the IUCB associated with the
caller's switch argument, setting the variable ioccb_ptr. If the
IoCB is not found, not attached, or not open, setup places an
appropriate error code in status and aborts the I/0 operation by
a nonlocal goto to a return statement.

5-5 ANST



The entry points ios_¢$read through ios_$writesync use the
following common logic:

operation: entry (switch, ...,status);

call setup();

if iocb_ptr- >1ocb ios conpatlblllty null then do;
NEW I/0 MODULE CODE

end;

else do;
OLD I/0 MODULE COLE

end;

return;

The setup call sets iocb_ptr. The I0OCBs los_compatibility
pointer determines whether the attachment is served by an I0X
module or an 10S module, and the appropriate action is taken in
each case.

Entry: ios_¢$read

Usage
decl ios_$read entry(char(*),ptr,fixed bin,fixed bln,
flxed bin b1t(72)a11gned),
call ios_$read (switch, bufptr, offset, nelem,
’ nelemt, status);
1. switch is the name of an IOCB. (Input)
2. bufptr is a pointer tb a buffer to be used in the

transmission. (Input)

3. offset is the offset within the buffer at which to place
the first element read. (Input)

4, nelem is the number of elements requested to be read.
(Input)

5. nelemt is the number of elements actually read. (Output)

6. status is an I0S-style status code. (Output)

If the attachment of switch is served by an I0S I/0 module,
the call is forwarded to the read slot of the module's transfer
vector.

If the attachment is served by an I0OX I1I/0 module, the call
is transformed into a get_line operation specifying the same
offset and number of elements. This transformation is meaningful
only 1if the element size 1is one character. Any status code
returned by get_line except error_table_$long_record 1is passed
back to the caller of ios_$read.

5-6 ANST



Entry: ios_$write

sage
decl ios_$write entry(char(*),ptr,fixed bin,fixed bin,
fixed bin,bit(72)aligned);

call ios_¢$write (switch, bufptr, offset, nelem,
nelemt, statusj;

where arguments are the same as for ios_$read, above.

If the attachment of switch is served by an IOS I/0 module,
the call is forwarded to the write slot of the module's transfer
vector. , )

If the attachment is served by an IOX module, the call is
transformed into a put_chars operation specifying the same offset
and number of elements. This transformation is meaningful only
-if the element size 1is one character. If the module returns a
zero status code, nelemt is set equal to nelem because I0X
modules always transmit all the characters given ' then.
Otherwise, nelemt is set to zero. All status codes are passed
back to the caller of ios_¢$write.

Entry: ios_$abort

Usage
dcl ios_$abort entry(char(*),bit(72)aligned,
bit(72)aligned);

call ios_$abort (switch, unused, status);
1. switch is the name of an IOCB. (Input)
2. unused is unused.
3. status is an I0S-style status code. (Output)

If the attachment of switch is served by an I0OS I/0 module,
the call is forwarded to the abort slot of the module's transfer
vector.

If the attachment 1is served by an IOX module, the call is
transformed into a control operation specifying .the order
"abort". Any status code returned by control is passed back to
the caller. IVX modules desiring to implement the abort

operation do so by recognizing the "abort" order in a control
operation.

5-7 ANST



Entry: ios_$order

decl ios_$order entry(char(*),char(*),ptr,bit(72)aligned);
call ios_$order (switch, order, info_ptr, status);
1. switch is the name of an IOCB. (Input)

order is the name of the control function to be performed,
(Input)

ny

3. info_ptr 1s a pointer to an optional data structure required
by certain orders. The data itself can be input or
output or both. (Input)

4, status is an IUS-style status code. (Output)

If the attachment of switch is served by an I0S I/0 module,
the call is forwarded to the order slot of the module's transfer
vector.

If the attachment is served by an IOX 1/0 module, the call
is forwarded without change to the module's control operation.

Entry: ios_$resetread

Usage
dcl ios_$resetread entry(char(*),bit(72)aligned);

call ios_g$resetread (switch, status);
where arguments 1 and 2 are the same as for ios_$order.

If the attachment of switch is served by an I0S I/0 module,
the call is forwarded to the resetread slot of the module's
transfer vector.

If the attachment 1is served by an I0OX module, the call is
transformed 1into a control operation specifying the order
"resetread". Any status code returned by resetread is passed
back to the caller. IOX modules desiring to implement the
resetread operation do so by recognizing the "resetread" order in
a control operation.

5-8 AN5T



Entry: ios_$setsize

Usage .
del 1ios_¢$setsize entry(char(#*),fixed bin,bit(72)aligned);
call ios_¢$setsize (switch, elemsize, status);

1. switch is the name of an IOCB. (Input)

2. elemsize 1is the desired element size in bits. (Input)
3. status is an I0S-style status code. (Output)

If the attachment of switch is served by an I0OS I/0 module,
the call 1is forwarded to the setsize slot of the module's
transfer vector.

If the éttachmenf is served by an I0X module, the call is
rejected with the error code error_table$missent. That is, ios_
assumes that an attachment served by an I0X module does not

support the setsize operation. None of the system modules
specifically converted to IOX supports this operation.

Entry: ios_$getsize

sage
dcl ios_$getsize entry(char(*),fixed bin,bit(72)aligned);
call ios_¢$getsize (switch, elemsize, status);

1. switch is the name of an IOCB. (Input)

2. elemsize 1is the current element size of the attachment in
bits. (Output)

3. status is an I0S-style status code. (Output)

If the attachment of switch is served by an I0S I/0 module,
the call is forwarded to the getsize slot ¢f the module's
transfer vector.

If the attachment is served by an I0X module, an elemsize of

nine 1is automatically returned. This element size is the only
one supported by IOX modules.

5-9 ANST



Entry: ios_¢$setdelim

Usage
dcl ios_$setdelim entry(char(#*),fixed bin,(*)bit(#*),
fixed bin,(*)bit(*),bit(72)aligned);

call ios_g$setdelim (switch, nbreaks, breaklist,
ndelims, delimlist, status);

1. switceh is the name of an I0CB. (Input)
2. nbreaks is the number of break elements supplied. (Input)

3. breaklist is an array of break elements, each of the current
element size. (Input)

4. ndelims is the number of delimiter elements supplied.
(Input)

5. delimlist is an array of delimiter elements, each of the
current element size. (Input)

b. status is an I0S-style status code. (Output)

1f the attachment of switch is served by an IOS 1/0 module,
the call is forwarded to the setdelim slot of the module's
transfer vector.

If the attachment is served by an IOX module, the call is
rejected with the error code error_table_$missent. That is, ios_
assumes that an attachment served by an 10X module does not
support the setdelim operation. '

Entry: ios_$getdelim

Usage
ixed bin,(¥#)bit (%),

dcl ios_$getdelim entry(char(¥®),f
,(¥)bit(¥*),bit(72)aligned);

fixed bin

call ios_¢$getdelim (switch, nbreaks, breaklist,
ndelims, delimlist, status);

1. switch is the name of an IOCB. (Input)

2. nbreaks is the number of break elements currently in use for
this attachment. (Output)

5-10 ANST



3. breaklist is an array of the break elements currently in use
for this attachment, each of the current element
size. (Output)

4, ndelims is the number of delimiter elements currently in use
for this attachment. (Output)

5. delimlist is an array of the delimiter elements currently in
use for this attachment, each of the current element
size. (Output)

6. status is an I0S-style status code. (Output)

If the attachment of sﬁitch is served by an IO0S I/0 module,
the call is forwarded to the getdelim slot of the module's
transfer vector.:

If the attachment 1is served by an I0X module, the call is
rejected with the error code error_table_¢$missent. That is, ios_
assumes that an attachment served by an I0X module does not
support the getdelim operation.

Entry: ios_$seek

Usage
del ios_¢$seek entry(char(#*),char(#*),char(¥),
fixed bin,bit(72)aligned);

call ios_$seek (switch, namel, namecz,
offset, status);

1. switch is the name of an IOCB. (Input)

2. namel is the name of an old I/0 system reference pointer
whose value is to be changed. (Input)

3. name?l is the name of an o0ld I/0 system reference pointer
whose value, incremented by offset number of
elements, is to be assigned to the pointer named by
namel. (Input)

4. offset is the number of elements used to compute the value
assigned to the reference pointer named by namel,
(Input)

5. status is an I0S-style status code. (COutput)

If the attachment of switch is served by an I0S I/0 module,
the call 1is forwarded to the seek slot of the module's transfer
vector.

511 : ANST



If the attachment is served by an I0X module, the call is
rejected with the error code error_table_¢$missent. That is, ios_
assumes that an attachment served by an IUX module does not
support the seek operation.

Entry: ios_$tell

sage
dcl ios_¢$tell entry(char(*),char(¥*),char(¥*),
fixed bin,bit(72)aligned);

call ios_$tell (switch, namel, name2,
offset, status);

1. switch is the name of an IOCB. (Input)

2. namel is the name of the old I/0 system reference pointer
whose value is desired. (Input)

3. namez2 is the name of an old I/0 system reference pointer.
(Input)
4., offset is the number of elements by which the value of the

reference pointer named by namel exceeds the value
of the reference pointer named by name2. (Output)

5. status is an I0S-style status code. (Output)

If the attachment of switch is served by an I0S I/0 module,
the call is forwarded to the tell slot of the module's transfer
vector.

If the attachment is served by an 10X module, the call 1is
rejected with the error code error_table_$missent. That is, ios_

assumes that an attachment served by an I0OX module does not
support the tell operation. ‘ ‘

Entry: ios_$changemode

sage
dcl ios_¢$changemode entry(char(®*),char(*),char(¥*),
bit(72)aligned);
call ios_$changemode (switch, newmode, oldmode, status);

1. switeh is the name of an IOCB. (Input)

5=-12 AN5T



2. newmode is a character string describing modes to be
established for subsequent I/0 operations. (Input)

3. oldmode is a character string describing the modes that were
previously in effect. (Output)

4. status is an I0S-style status code. (Output)

If the attachment of switch is served by an I0S I/0 module,
the call is forwarded to the changemode slot of the module's
transfer vector.

If the attachment 1is served by an IOX module, the call is
forwarded unchanged as a modes operation.

Entry: ios_g$readsync

Usage ,
decl ios_$readsync entry(char(¥*),char(%*),char(¥),
bit(7z)aligned);

call ios_$readsync (switch, mode, offset, status);
1. switch is the name of an IOCB. (Input)

2. mode is a character string indicating whether the read
synchronization mode 1is to Dbecome synchronous or
asynchronous. (Input)

3. offset is the maximum number of elements that the 1I/0
module is permitted to read ahead 1in the
asynchronous mode. (Input)

4., status is an IOS-style status code. (Output)

If the attachment of switch is served by an I0OS I/0 module,
the <call 1is forwarded to the readsync slot of the module's
transfer vector.

If the attachment is served by an I0X module, the call is
rejected with the error code error_table_$missent. That is, ios_
assumes that an attachment served by an I0X module does not
support the readsync operation. None of the nine system modules
converted to IUX allows any control over synchronization.

5-13 ANST



Entry: ios_$writesync

jsage
del ios_$writesync entry(char(*),char(*),fixed bin,
bit(72)aligned);

call ios_$writesync (switch, mode, offset, status);

1. switch is the name of an IOCB. (Input)

2. mode is a character string indicating whether the write
synchronization mode 1is to Dbecome synchronous or
asynchronous. (Input)

3. offset is the maximum number of elements that the 1I/0
module is permitted to write behind in the
asynchronous mode. (Input)

4, status is an I0S-style status code. (Output)

If the attachment of switch is served by an I0S I/0 module,
the call 1is forwarded to the writesync slot of the module's

transfer vector.

If the attachment is served by an I0X module, the c¢all 1is
rejected with the error code error_table_$missent. That is, ios_
assumes that an attachment served by an I0X module does not
support the writesync operation.

Entry: ios_$no_entry

Usage
dcl ios_$no_entry entry options(variable);

This entry point, when called with an argument 1list whose
last argument 1is an I10S-style status code, sets that code to
error_table_$missent and returns. It is intended to be placed in
slots of transfer vectors corresponding to I/0 operations that
are not supported by a given module. It ensures that, should
such an operation be requested, the caller receives an

appropriate error code.

This entry point is not intended to be called directly.

5-14 ANS5T



Entry: ios_$read_ptr

This entry point 1is a handy abbreviation for the get_line
operation on the I/0 switch user_input.

Usage
del ios_$read_ptr entry(ptr,fixed bin,fixed bin);
call ios_$read_ptr (bufptr, nelem, nelemt);
1. bufptr is a pointer to a buffer to be used in the
transmission. (Input)
2. nelem is the number of elements requested to be read.
(Input)
3. nelemt is the number of elements actually read. (Output)

The call 1is transformed 1into a get_line operation on
user_input. The error codes error_table_$long_record and
error_table_$end_of_info are ignored. All other status codes
from get_line are passed to 1ios_signal_ for reporting. Ir
ios_signal_ returns, the get_line operation is repeated.

Entry: ios_$write_ptr
This entry point is a handy abbreviation for the put_chars
operation on the I/0 switch user_output.

sage
decl ios_¢$write_ptr entry(ptr,fixed bin,fixed bin);

call ios_$write_ptr (bufptr, offset, nelem);

1. bufptr is a pointer to the data to be written. (Input)

2. offset is the number of the first element to be written.
(Input)
3. nelem is the number of elements to be written. (Input)

The call 1is transformed into a put_chars operation cn
user_output. All status codes returned by put_chars are passed
to ios_signal_ for reporting. If ios_signal_ returns, the
put_chars operation is repeated.

5-15 ANST



tntry: ios_$ios_quick_init

This entry point 1initializes the standard system I/0
switches.

Usage
del ios_$ios_quick_init entry;
call ios_$ios_quick_init;

The call establishes user_input, user_output, and
error_output as synonyms for user_i/o. Any errors terminate the
process with the message "Unable to perform necessary
attachments."

This entry point is called by user_real_init_admin_ early in
the life of each process.

MODULE get_at_entry_.pl1

This module implements the entry point get_at_entry_, an
external interface in the I0S I/0 system for acquiring certain
information about an I/0 attachment.

Entry: get_at_entry_

sage
del get_at_entry_ entry(char(*),char(*),char(¥),
char(¥*),fixed bin(35));
call get_at_entry_ (switch, dim, device, mode, code);

1. switceh is the name of an IOCB. (Input)

2. dim is the name of the 1I/0 module ~ serving the
attachment. (Output)

3. device is the name of the target of the attachment.
(OQutput)

4, mode is a character string indicating the modes currently

in effect for the attachment. (Output)

5. code is a standard status code. (Output)

5-16 ANS7



Internal Logic

Since all attachments in the new I1/0 system are maintained
in IOCBs, get_at_entry_ has been rewritten to extract the same
information as before but from different sources. Three cases
are distinguished internally.

The first case is that of an attachment served by an I0S 1/0
module, This case is istinguished by a nonnulil
ios_compatibility pointer in an IOCB that is an actual IOCB. 1In
this case, get_at_entry_ returns the same information as it did
in the old I/0 system.

The second case applies to the nine system modules that have
been explicitly  converted to I0OX. A list of the nine new and
nine old names is maintained by get_at_entry_. 1In this case, the
same information is returned as in the old I/0 system.

The third case is that of an attachment served by an I0OX I/0
module of unknown name. This case has no counterpart in the old
170 system, so the information returned by get_at_entry_ is an
approximation. The I/0 module name and target name are taken
from the attach description string. A modes operation is
attempted to obtain the modes. If it fails, blanks are returned
for mode.

MODULE iox_.alm

In addition to implementing entry points of the new I/0
system, this module also implements the entry points
iox_$ios_call and iox_$ios_call_attach as part of the 1I0S
compatibility package. These two entry points are used by PL/I
callers to «call old I/0 modules, which have special calling
sequen¢es involving the use of index register six and a transfer
vector.

5-17 ANST



Entry: iox_$ios_call

Usage v
del iox_$ios_call entry options(variable);
del 1 ics aligned,
2 sdbptr ptr,
2 dimptr ptr,
2 offset fixed bin;
del status bit(72) aligned;

ies.sdbptr
ics.dimptr
ics.offset = ...;
call iox_$ios_call (addr(ics), ... ,status);

-
-e

Lo

This entry point is used to call all operation entries of an
I0OS I/0 module except the attach operation. The caller must
first fill in the I0S-caller communication structure, ics. The
first item in ics 1is the stream data block pointer for the
attachment. The compatibility package stores this pointer in the
open_data_ptr field of the IOCB. The next item in ics 1is a
pointer to the module's transfer vector. The compatibility
package stores this pointer in the ios_compatibility field of the
IOCB. The third item in ics is the offset in the transfer vector
of the entry to be called. The offset assignments for the
various I/0 operations are:

1 detach 9 getsize

2 read 10 setdelim

3 write 11 getdelim

4 abort 12 seek

5 order 13 tell

6 resetread 14 changemode
7 resetwrite 19 readsync

8 setsize 20 writesync

This entry point is called with the same calling sequence as
the corresponding 1ios_ entry point except that a pointer to the
ics structure is passed in place of the switch name.

Internal LOEig

The argument list is inspected to find the last argument
(status) and set it to zero. Many I/0 modules assume that status
has been cleared before they are called. The first argument
pointer, which points to a pointer to the 1ics structure, is
changed to point to ics itself. The desired offset is loaded
into index register s8ix and control is transferred to the
module's transfer vector, located via the second item in ics. No
stack frame 1is created, and when the module's I/0 operation
completes, it returns directly to the caller of iox_$ios_call.

5-18 ANS57



Entry: iox_$ios_call_attach

sage
del iox_$ios_call_attach entry(char(¥),char(*),
char(*),char(*),bit(72)aligned,ptr);

call iox_$ios_call_attach (switch, dim,
device, mode, status, addr(ics));

where arguments 1-5 are the same as for ioi_$ios_attach.

This entry point is used to call the attach entry point of
an I0S I/0 module. Its calling sequence is similar to that of
iox_¢$ios_call. The differences are: 1) ics.offset need not be
filled 1in, and 2) a pointer to the ics structure is passed as an
additional argument rather than in place of the switch name.

MODULE ios_write_around_.pl1

This module implements IUX I1I/0 operations on six of the
converted I/U modules by building IQpS-compatible control blocks
and forming calls to iox_$ios_call. This module (or the bound
segment containing it) has the names netd_, abs_, mr_, ocd_,
tekd_ and ec_. The entry points that handle the various 1/0
operations are:

ios_write_around_detach detach_iocb
ios_write_around_open open
ios_write_around_close close
ios_write_around_get_line get_liine
ips_write_around_get_chars get_chars
ios_write_around_put_chars put_chars
ios_write_around_control control
ios_write_around_position position
ios_write_around_modes modes

There is also an attach entry point for each I/0 module. The
entry name called by iox_g$attach_iocb for each of the converted
I/0 modules 1is formed by concatenating the new 1/0 module name
with the string "attach", for example, netd_$netd_attach. The
attach and open operations fill the IOCB with the values of the
above entry points in ios_write_around_.

5-19 | ANST



Entry: netd_attach

This entry point attaches an 10CB via write-arounds Dy
setting the values of the open and detach_iocb entry variables to
the entry points ios_write_around_open and
ios_write_around_detach.

Usage
decl netd_$netd_attach entry(ptr,(¥*)char(¥),

bit(1)aligned,fixed bin(35));

call netd_$netd_attach (iocb_ptr, args,
loud_sw, code);

1. iocb_ptr 1is a pointer to an IOCB. (Input)

Ny

. args is an array of extent one where args(1) is the
attach description string. (Input)

3. loud_sw if ON, means print an error message on the user's
terminal before returning a nonzero status code.
(Input)

4. code is a standard status code. (Output)

Internal Logic

Common I1/U system IPS masking strategy is used. The
internal procedure error_ 1is used to report any errors. This
internal procedure restores IPS interrupts if they are masked,
prints a message on the terminal if loud_sw is on, and returns
via a nonlocal goto to a return statement.

If the 10CB is already attached, the attach operation is
aborted by calling error_. The device name is taken from
args(1), the attach description string, and passed to
iox_$ios_call_attach. The 1ics structure contains a null sdbptr
and ics.dimptr points to the transfer vector for the actual I0S
module, in this case ntw_¢$ntw_module. The I/0 module name passed
to iox_$ios_call is the old I/0 module name, in this case ntw_.

If the attachment 1is not successful, netd_attach calls
error_. Otherwise, it prepares to record the attachment in the
block by allocating a stream data block or sdb. The
attach_descrip_ptr in the IOCB 1is set to point to the attach
description in the sdb and attach_data_ptr is set to point to the
sdb itself. The entry variables detach_iocb and open are set to

the entry points ios_write_around_detach and
ios_write_around_open in ios_write_around_ S0 that the
appropriate write-arounds will perform these operations.
Finally, iox_$propagate is <called and IPS interrupts are
restored.

5-20 ANST



Entries: abs_attach, mr_attach, ocd_attach,
tekd_attach, ec_attach
These entry points have the same calling sequences and

internal operation as netd_attach. The old I/0 module name and
transfer vector name for each is listed below:

I1/0 module 0ld name transfer vector
abs_ absentee_dim_ absentee_dim_g$absentee_dim_module
mr_ mrd_ mrd_$mrd_module
ocd_ oc_ oc_$oc_module
tekd_ tek_ tek_$tek_module
ec_ exec_com_ exec_com_$exec_com_module

Entry: ios_write_around_detach

The calling sequence 1is the same as for iox_$detach_ioch.
Common IPS interrupt masking strategy is used. If the
detach_iocb entry variable in the IUCB is not equal to this entry
point, as for a call from outside the I/0 switching mechanism,
the entry point in the IUCB is called instead.

An ics structure is built from the information in the stream
data block pointed to by attach_data_ptr. The detach call is
made via iox_$ios_call. If detachment is successful, the IOCB is
set to the detached state.

Entry: ios_write_around_open

The calling sequence is the same as for iox_$open. Common
IPS interrupt masking strategy 1is used. If the open entry
variable in the IOCB is not equal to this entry point, the entry
point in the IOCB is called jipstead.

The open description is determined from the mode argument
and the string "-extend" is appended to it if the extend bit
argument is on. Appropriate entry points 1in ios_write_around_
are filled into the IOCE.

No call is made to iox_$ios_call because there is no IUS
operation corresponding to the IUX open operation.

5-21 ANST



gntry: ios_write_around_close

The calling sequence is the same as for iox_$close. Common
IFS interrupt masking strategy 1is used. If the close entry
variable in the IOCB is ‘not -equal to this entry point, the entry
point in the IOCB is called instead.

The detach_iocb and open entry variables in the IOCB are set
to 1ios_write_around_detach and ios_write_around_open and other
entry variables are set to iox_$err_not_open.

Each of the following entry points builds an ics structure
from information in the stream data block pointed to by
attach_descrip_ptr.

Entry: ios_write_around_get_line

The calling sequence is the same as for iox_$get_line.

The caller-supplied buffer pointer is separated into a
word-aligned pointer and an offset and iox_$ios_call is called.
If zero elements are returned, ios_write_around_get_line returns
error_table_$end_of_info. If the last of the returned elements
is not a newline character, 1ios_write_around_get_line returns
error_table_$long_record. ’

Entry: ios_write_around_get_chars

The calling sequence is the same as for iox_$get_chars.
Repeated calls to iox_$ios_call read 64 elements at a time

until the desired number  of elements is read or
error_table_$end_of_info is returned.

5-22 AN5T



kntry: ios_write_around_put_chars

The calling sequence is the same as for iox_$put_chars.
The caller-supplied buffer pointer is split 1into. a

word-aligned pointer and an offset and iox_$ios_call is called to
perform the operation.

Entry: ios_write_around_control

The calling sequence is the same as for iox_3&control.
The value of ics.entry and the nature of the iox_$ios_call
call depends on the order argument. An IOX control operation is

used to perform a variety of I0S operations, depending on the
value of order.

kntrv: position
The calling sequence is the same as for iox_$position.

The device is positioned 12b elements at a time by repeated
calls to iox_$ios_call.

Entry: ios_write_around_modes
The calling sequence is the same as for iox_¢$position.

The value of ics.entry is set equal to 14, the I0S offset
for changemode, and iox_$ios_call is called.

AWST

wun
[

o

)






SECTION VI

SYNONYM I/0 MODULE

MODULE syn_attach.plt

This medule imp%ements synonym attachment and detachment,
There are two attach entry points, syn_attach and syn_attach_.
The first is the normal attach entry. The second 1is <called by
ios_ to restore a synonym attachment when the attachment intended
to replace it has failed.

Entry: syn_$syn_attach

Usage ,
del syn_$syn_attach entry(ptr,(*)char(¥*),
bit(1),fixed bin(35));
call syn_¢$syn_attach (iocb_ptr, args, loud_sw, code);

1. iocb_ptr 1is a pointer to an IO0OCB. (Input)

2. args is an array of arguments., The first argument is the
name of the target of the synonymization. The
second argument can be "-inhibit"™ or. "-inh", in

which case the succeeding arguments are the names of
inhibited operations. (Input)

3. loud_sw is ON if an error message is to be printed on the
user's terminal before returning a nonzerc status
code. (Input)

4. code is a standard stétus code. (OQutput)

6-1 : ANST



Internal Logic

Common IPS interrupt masking strategy is used. Errors are
handled by the internal procedure error_, which prints a message
if loud_sw is on and aborts the attach operation by a nonlocal
goto to a return statement.

A pointer to the target switch 1is obtained by calling
iox_$find_iocb on args(1). The remaining arguments are inspected
to build an inhibits bit string identical to syn_inhibits in the
IuCE. From this point on, attachment proceeds the same as for
syn_%$syn_attach_ below.

Entry: syn_$syn_attach_

Usage' '
del syn_$syn_attach_ entry(ptr,ptr,bit(#*),fixed bin(35));

call syn_$syn_attach_ (iocb_ptr, target_ptr,
inhibits, code);

1. iocb_ptr 1is a pointer to an IUCE. (Input)

2. tarzget_ptr is a pointer to the target of +the o0ld synonym
attachment to be restored. This pointer is the old
ioecb.syn_father. (Input)

3. inhibits 1is the syn_inhibits bit string from the old
attachment. (Input)

4, code = is a standard status code. (Qutput)

Internal Logic

Common IPS interrupt masking strategy and the error_
internal procedure are used.

A data block called blk is allocated in the linkage section
for each attachment. These blocks are threaded together and have
the following format:

del 1 blk aligned based(blkptr),

2 next ptr,
z attach char(189) varying;

6-2 ANS7



An attach description string is built from the target name and
the string "-inh" if any operations are inhibited followed by the
names of the inhibited operations. The attach_descrip_ptr in the
IOCB is set to point to blk.attach and attach_data_ptr to blk
itself. Entry variables for inhibited operations are set to
iox_$err_no_operation and all others are copied from the target
IOCB. The syn_father pointer is set to point to the target and
syn_brother to the target's syn son. The target's syn_son
pointer 1is set to point to the IOCB being attached. Changes are
propagated by iox_$propagate. '

Entry: syn_¢$syn_detach

Usage v
dcl syn_$syn_detach entry(ptr,fixed bin(35));

call syn_$syn_detach (iocb_ptr, code);

Internal Logic

Common IPS interrupt masking strategy 1is used. If the
detach_iocb entry variable in the I0CE is not equal to this entry
point, the entry point in the I10CB is called instead. The data
block blk is rethreaded from the used list to a free 1list where
it can be assigned to another attachment. The IOCE is set to the
detached state. If there are syn brothers, the detached IOCB is
removed and the list of syn brothers is rethreaded. Changes are
propagated by iox_$propagate.

6-3 ANS5T






SECTIUN VII

TELETYPE I/0 MODULE

MODULE tty_.pl1

This module implements all I/0 operations on printing
terminals by calling appropriate hardcore system entries.

Entry: tty_$tty_attach
This entry point performs terminal attachnment, entailing the

creation of an event channel.
Usage

del tty_$tty_attach entry(ptr,(¥)char(¥*),

bit(1),fixed bin(35));

call tty_$tty_attach (iocb_ptr, args, loud_sw, code);

1. iocb_ptr is a pointer to an IOCCB. (Input)

2. args is an array of extent one, where args(1) 1is an
attach description., (Input)

3. loud_sw if ON, causes a message to be printed before
returning a nonzero status code. (Input)

4. code is a standard status code. {Cutput)

7-1 ANST



Internal Logic

A data block <called t is allocated in the linkage section
for each attachment. These blocks are threaded together and have
the following format: ‘ :

del 1 t aligned based(table_ptr),’
attach_descrip char(12) varying,
open_descrip char(27) varying,
device_id char(6), /¥ as in attach descrip */
tty_index fixed bin, /¥ from hcs_$tty_attach */
el,
3 no_channel fixed bin, /% = 1 ¥/
3 event fixed bin(71), /* channel id ¥/
2 flags aligned,
3 vacant bit(1) unal, /* ON if block is free ¥/
3 tn1200 bit(1) unal, /* ON for TermiNet 1200 ¥/
" 3-pad bit(34) unal,
2 next_block_ptr ptr, /% forward thread #*/
2 line_length fixed bin, /* settable length #/
2 print_pos fixed bin(22),
2 no_char fixed bin(22);

ASHASHACE NV

The list is searched for a vacant data block, either the
first, which 1is always there, or a later one that was allocated
and subsequently marked as free by a detach call. If there is no
vacant block, one is allocated and threaded to the end of the
list.

Common IPS interrupt masking strategy is used. Errors are
handled by the internal procedure error_, which prints a message
if loud_sw 1is on and aborts the attach operation by a nonlocal
goto to a return statement.

An event channel must be assigned so that the hardcore 1I/0
controller can block waiting for input from the terminal. A fast
event channel, which lacks certain capabilities not needed by
terminal I/0, is obtained by calling hcs_$assign_channel. If no
fast channel is available, a full event channel is obtained by
calling full_ipc_¢$create_ev_chn. The channel id is stored in the
data block and passed to hes_$tty_attach to perform the
attachment. This 1last call returns an index, t.tty_index, used
in further calls to hes_ to perform 1I/0 operations on the
attached switch. If attachment 1is wunsuccessful, the event
channel is deleted and error_ is called.

The detach_iocb and open entry variables in tﬁe IOCB are set
to the tty_detach and tty_open entry points in tty_.

T=2 ANST



The internal procedure set_mask is called by the entry
points tty_detach, tty_open, and tty_close to implement common
I/0 system IPS interrupt masking strategy. In addition, this
internal procedure sets the variable actual_iocbp to point to the
actual IOCB for the attachment and sets the variable table_ptr to
point to the data block for the attachment.

The internal procedure set_up, called by the entry points
tty_get_chars, tty_get_line, tty_put_chars, tty_control,
tty_modes, and ¢tty_position, sets the two pointers but does not

mask IPS interrupts because no masking 1is needed for these
operations.

Entry: tty_$tty_detach

This entry point performs detachment. 7The IUCB is set to
the detached state regardless of whether terminal detachment is
successful. ‘

Usage :
del tty_$tty_detach entry(ptr,fixed bin(35));

call tty_$tty_detach (iocb_ptr, code);
1. iocb_ptr is a pointer to an IOCB. (Input)
2. code is a standard status code. (Output)
This entry point calls set_mask, deletes the event channel,

and calls hes_$tty_detach to perform the detachment. The IOCB is
set to the detached state and iox_¢$propagate is called.

Entry: tty_$tty_open

This entry point opens a. switch for stream input and/or
output.

Usage
del tty_$tty_open entry(ptr,fixed bin,bit(1),
fixed bin(35));

call tty_$tty_open (iocb_ptr, mode, extend, code);

7-3 ANST



1. iocb_ptr 1is a pointer to an IOCB. (Input)
2. mode specifies the opening mode:

1 - stream_input
2 - stream_output
3 - stream_input_output

3. extend © 1is not used.
4, code is a standard status code. (Output)

This entry point calls set_mask and sets the IOCB to the
open state. The open description is determined from mode. If
input is specified, the get_line, get_chars and position entry
variables in the JIOCB are set to the entry points tty_get_line,
tty_get_chars, and tty_position If output is specified, the
put_chars entry variable is set to tty_$tty_put_chars.

Entry: tty_$tty_close

Usage
del tty_$tty_close entry(ptr,fixed bin(35));

call tty_$tty_close (iocb_ptr, code);
1. iocb_ptr 1is a pointer to an 10CB. (Input)
2. code is a standard status code. (Output)

This entry point calls set_mask, sets the IOCB to the closed
state, and calls iox_g$propagate.

The entry points tty_$tty_get_chars and tty_$tty_get_line
call the internal procedure read to read amounts of one 1line or
less at a time. This procedure calls hes_$tty_read. If an error
occurs, the 1/0 o¢peration 1is aborted by a nonlocal goto to a
return statement. If no characters have been read, read goes
blocked awaiting input from the terminal.

7-4 ANS7



Entry: ttyr$tty_get,chars

Usage
del tty_¢$tty_get_chars entry(ptr,ptr,fixed bin(21),

fixed bin(21),fixed bin(35));

call tty_$tty_get_chars (iocb_ptr, buf_ptr, buf_len,
amt_read, code);

1. iocb_ptr 1is a pointer to an IOCB. (Input)

2, buf_ptr is a pointer to an input buffer. (Input)

3. buf_len is the number of characters to be read. (Input)

4, amt_read 1is the number of characters actually read. (Output)
5. code is a standard status code. (OQutput)

This entry point reads the specified number of characters by
calling the read internal procedure prepeatedly.

Entry: tty_$tty_get_line

Calling sequence is the same as for tty_$tty_getPchars.
This entry point calls the read internal procedure once. If

the 1last character returned is not a newline character, code is
set to error_table_$long_record.

Entry: tty_$tty_put_chars

Usage
del tty_$tty_put_chars entry(ptr,ptr,fixed bin(21),
fixed pin(35));

call tty_$tty_put_chars (iocb_ptr, buf_ptr,
buf_len, code);

1. iocb_ptr 1is a pointer to an IOCB. (Input)

2. buf_ptr is a painter to a buffer to be written out. (Input)

7-5 : ANDT



3. buf_len is the number of characters to be written. (Input)
4. code is a standard status code. (QOutput)

This entry point calls hecs_$tty_write. If an error occurs,
the put_chars operation is aborted by a nonlocal goto to a return
statement. If no characters have been written, the operation
goes blocked waiting for previous output to be completed by the
terminal.

Entry: tty_$tty_control

Usage
del tty $tty_control entry(ptr,char(¥*),ptr,

fixed bln(35))

call tty_¢$tty_control (iocb_ptr, order,
info_ptr, code);

1. iocb_ptr 1is a pointer to an IOCB. (Input)

2. order is a character striny# specifying the control .

operation. (Input)

3. info_ptr 1is a pointer to an info structure required by some
operations. (Input) ‘

4. code . is a standard status code. (Qutput)
The orders ‘"resetread", '"resetwrite", and "abort"™ are

carried out by hes_$tty_abort. All other orders are carried out
by hes_$tty_order.

Entry: tty_$tty_modes

usage
del tty_$tty_modes entry(ptr,char(¥),char(¥),
fixed bin(35));
) call tty_$tty_modes (iocb_ptr, new_modes, old_modes,
code);

1. iocb_ptr 1is a pointer to an IOCB. (Input)

2. new_modes is a character string specifying the intended modes.
{Input)

7-6 ANST



3. old_modes is a character string specifying what the modes
were. (Output)

4, code is a standard status code. (Output)

The modes operation is performed by hes_$tty_order with the
"modes" order.

Entry: tty_$tty_position

Usage
del tty_$tty_p081t10n entry(ptr,char(¥),
fixed bln(21) fixed bin(35));

call tty_$tty_position (iocb_ptr, mode, records, code);
1. iocb_ptr 1is a pointer to an IUCE. (Input)
2. mode is a null string. (Input)
3. records is the number c¢f lines to space forward. (Input)
4, code is a standard status code. (Qutput)
The position operation is performed by repeated calls to the

read internal procedure to read 1into a scratch buffer until
records number of newline characters have been read.

T7-7 ANST






SECTIUON VIII

DISCARD I/0 MODULE

MODULE discard_attach.pli

This module provides a sink for output to be discarded. The
I/0 operations put_chars, modes, write_record, control, and
seek_key do nothing byt return a zero status code. No other I/0
operations except attach, detach, open, and close are supported.

Entry: discard_¢$discard_attach
ntry: discard_¢$discard_attach

Usage
del discard_g$discard_attach entry(ptr,(*)char(¥),
bit(1),fixed bin(35));

call discard_$discard_attach (iocb_ptr, args,
loud_sw, code);

1. iocb_ptr 1is a pointer to an IOCB. (Input)

(AN}

. args is an array of extent zero. (Input)

3. loud_sw if ON, <causes a message to be printed before
returning a nonzero status code. (Input)

4. code is a standard status code. (Qutput)

5=1 ANST



dnternal Logic

Common IPS interrupt masking strategy is used. A data block
called blk is allocated in - the 1linkage section for each
attachment. These data blocks are threaded together and have the

following format:
del 1 blk aligned based(blkptr),
2 next ptr, /* forward thread #/
2 attach char(8) varying, /% attach descrip %/
2 open char(31) varying; /% open descrip %/
The attach description is discakd_. The open description 1is

null. The . entry points discard_detach and discard_open in
discard_ are filled into the IOCB. S

Entry: discard_$discard_detach

Usage
decl discard_$discard_detach entry(ptr,fixed bin(35));
call discard_$discard_detach (iocb_ptr, code);

1. iocb_ptr is a pointer to an IOCB. (Input)

2. code is a standard status code. (Output)

Internal Logic

Common IPS interrupt masking strategy is wused. If the
detach_iocb entry variable in the IOCB is not equal to this entry
point, the entry point in the IOCB is called instead. The IOCB
is set to the detached state.

8-2 ANST



Entryv: discard_$discard_open

Usage
dcl discard_$discard_open entry(ptr,fixed bin,
bit(1),fixed bin(35));

call discard_$discard_open (iocb_ptr, mode,
extend, code);

1. iocb_ptr 1is a pointer to an IOCB. (Input)

2. mode is an opening mode. (Input)
3. extend is not used.
4, code is a standard status code. (Output)

Internal Logic

Common IPS interrupt masking strategy is used. If the open
entry variable in the I0CB is not equal to this entry point, the
entry point in the I0CB is called instead. The open description
and the entry variables that are filled in depend on mode.

Entry: discard_$discard_close

Usage
dcl discard_¢$discard_close entry(ptr,fixed bin(35));
call discard_¢$discard_close (iocb_ptr, code);

1. iocb_ptr 1is a pointer to an IOCB. (Input)

2. code is a standard status code. (Output)

6-3 ANST



Internal Logic

Common IPS interrupt masking strategy is used. If the close
entry variable in the IOCB is not equal to this entry point, the
entry point in the IOCB is . called 1instead. The entry points
discard_detach and discard_open in discard_ are filled into the
IOCBE and the I10CB is set to the detached state.

6-4 ANS57



SECTION IX

THE vfile_ I/0 MODULE

INTRUDUCTION

This I/0 module implements the standard iox_ entry points
for processing files in the Multics storage system. All logical
file types and opening modes are supported.

PROGRAM MODULES

The vfile_ I/0 module 1is composed of thirteen separate
program modules. These programs and their associlated data
structures are described below.

The following programs are used with all file types:

vfile_attach.pl]l
implements attach, detach, open, and close entry
points. Dispatches to the appropriate file-type
module at opening and closing.

alloc_cb_file.pl1
is used throughout vfile_ (and record_stream_) to

maintain  blocks of per-process storage as they are
allocated and freed.

The following four modules are the main programs for each of
the standard Multics file types. They 1implement all of the
supported I/0 operations except attach_iocb and detachn_iocb. The
procedure vfile_attach calls one of these programs at opening to
set up the remaining I0CB entries and to allocate and initialize
an I0CB. When a file 1is closed, vfile_attach calls a
corresponding cleanup entry point in the appropriate module:

open_uns_file,pl1 for unstructured files

open_seq_file.pl1 for sequential files

9-1 ANST



open_blk_file.pl1 for blocked files

open_indx_file.pl1 for indexed files

The remaining program modules are called by open_indx_file
to deal with indexed files:

find_key.alm

is wused to locate the first instance of a given key
in the index, or the next larger key if not found.

change_index.pl1

does the work of adding, deleting, and replacing keys
in the index.

change_record_list.pl1

manages assignment, reassignment, and freeing of
blocks of record space.

create_seg _ptrs.pl1

allocates and initializes, or frees, temporary
storage for an array of pointers to the file's
component segments. This module 1is <called by
change_index and change_record_list to obtain new
multiségment file components. '

create_position_stack.pli

restart.pl1

allocates and initializes, or frees, a temporary
array used to keep track of the current position in
the index. The change_index module calls this
program to increase the index tree height.

restores a file to a consistent state from any
intermediate state that can exist as a result of an
interrupted operation.

check_file_version.pl1

transforms the headers of old version files into the
new version.

9-2. ANS5T7



INDEXED FILES

An indexed file is kept as a multisegment file with one or
more index segments and zero or more distinet record segments.
Each segment can contain up to 256K 3(-bit words. Because the
file is in the virtual memory, the implementation of vfile_ doces
not involve explicit 1I/0 requests (I1/0 is done by the system's
page control). However, all wuse of vfile_ 1is through a
device-independent I/0 interface with operations such as seek_key
(locates-a record), read_record, delete_record, etc.

Space for records 1s managed dynamically as records are
written, rewritten, and deleted. A chained list of free blocks
is kept, and allocation is by first fit with a roving pointer.
Merging of adjacent free blocks 1is done with boundary tags
(Knuth, wvol. 1, p 442, Algorithm C). The space overhead is one
word per allocated record. The minimum size of an allocated
block is currently fixed at eight words. The end of a segment is
treated specially so that the last nonzero word of the segment
immediately follows the last allocated record.

To date we have no evidence that searching for a free block
is a performance problem for anyone. (This is, of course, very
dependent on the particular application.) However, as a result
of some simulation studies, we are considering using a separate
free list for each range of block sizes [2%¥m, Z¥¥(m+1)-1], each
list with its own roving pointer. This scheme is now used for
PL/I areas inh Multics and for general system dyrnamic alloecation.
Given a request for a block of size b, the first list searched is
the one such that b is in [2¥%¥m, 2¥*(gp+1)-1].

The 1index is kept as a B-tree. (R. Bayer and E. McCreight,
Acta Informatica 1, pp. 173-169, 1972; and Knuth, vol. 3, Section
6.2.4). Each node occupies one page (1024 words). Keys are
variable length 0<length<256 characters (9-bit). For consistency
with the PL/I (and Multics) vrules for character string
comparison, trailing blanks are ignored.

9-3 ANST



The layout of a node is as follows:

Node. (=1 page)

Descriptor

one entry

\
/

{=-==lke

last branch

y

scattered_space (bytes)

last_ke
branch ptr
descriptor
branch ptr
descriptor
branch ptr

A

:
contiguous
space

1

|

¥

keys

ositionlke
record ptr

1 N A

R S e e T '

AN57

9-4



Descriptors are two words, each key is a string of from zero
to 256 9-bit bytes, and the other items are one word each. The
record and branch pointers are actually number pairs (component
segment number in the file, off'set in the segment). The key
position and key length (each a half-word) locate the key string
within the node. The variables last_branch and last_key together
define the free space 'shown 1in the figure. The wvariable
scattered_space gives the scattered free space available in the
keys section (resulting from deletion of entries). The programs
for insertion and deletion of an entry (branch, descriptor, and
key) are roughly as follows:

Deletion
Add size of entry to total available space.
If total available space > 1/2 page, use underflow
procedure.
klse compact the array of branches/descriptors,
setting last_branch = last_branch - 1, and add size
of key to scattered space.

Insertion

If size of entry <= contiguous free space, do a
simple insertion.

Else if size of entry <= total available space,
compact the keys section and then do a simple
insertion.

Else use the overflow procedure.

The overflow procedure splits the node only if neither the
left or right brother node has sufficient space available to
correct the overflow by shifting some entries to the brother.
The number of entries shifted is chosen to make the space used in
each node as close to equal as possible. The underflow procedure
is the usual one for B-trees. The node is balanced (by shifting
entries) with its right brother if it has a right brother;
otherwise the left brother is used.

Variable 1length keys introduce an effect not present with
fixed length keys. Shifting entries between brother nodes (which
also involves one entry in the parent) can cause the parent to
overflow or underflow. Thus, it is possible for an underflow to
cause the parent node to overflow. Fortunately, this possibility
does not further complicate the program.

9-5 ANS57



The 1/0 system distinguishes a special <case of '"keyed
sequential output" for file creation or extension. For vfile_,
this means that records are output in key order, i.e., are always
appended to the file. In this mode, it does not shift entries
when a node overflows. Instead, it splits with only one entry in
the right half. This means ‘that nodes on the right edge can
contain only one entry, but all other nodes are proper and are
almost full. Writing a file in the normal mode but with records
in key order also results in very full nodes but takes much
longer because of repeated -shifts to balance the same pair of
nodes.

SYNCHRONIZATION QF ACCESS

Introduction

The vfile_ 1/0 module supports concurrent retrievals and
updates on 1indexed files. Any number of openings can exist
simultaneously on a singie file in any number of processes. This
feature is optional, since it implies additional processing on
each 1/0 operation to deal with possible asynchronous changes.

Synchronization 1is provided at both the file and individual
record level through software locks. The use of these 1locks 1is
to a large degree controlled automatically by vfile_. Additional
synchronization can be achieved by explicit user control of locks
and observance of certain protocols.

Data Structures

The file or index level synchronization involves the
following permanent variables in the file header:

file_base.lock_word
a standard Multics lock identifier used by set_lock_.

file_base.file_state_block.file_action

a code indicating what operation, if any, is
currently in progress.

file_base.change_count
a counter whose value increases at the start of each

file~altering operation.

9.6 ANS7



Record level synchronization involves the following
variables in eaeh allocated record block:

record_block.lock_flag
when set, indicates that the record is busy.

record_block.record_1lock
a standard Multics 1loek identifier located in the
unused tail of the record block if space is
available.

During a rewrite_record operation, the file_lock is treated
as if it is a record_lock on the current record as well as a lock
on the whole file.

Processing

I1/0 operations interact with the synchronization variables,

depending on the use of the -share attach option and the class of
operation.

In the following discussion, an operation is said to be
"synchronized" with respect to a given lock if the operation
references the 1lock (e.g., waits until it clears). Operations
not inherently altering the file are termed "passive."

File Level

File level synchronization occurs at opening and on shared
operations that reference an index component. One of two
strategies is used depending on whether or not the operation is
passive. The shared entries are distinguished from their
unshared counterparts by a standard prologue and epilogue that
surround the code for the body of the operation. When the -share
option 1is not used, the only operatipons that reference the file
lock are open and possibly close.

9-17 ANST



File-Altering Operations

where

The standard form of external entry points is:

operation: entry(args);

indx_cb_ptr=ziocb.open_data_ptr; ’
if indx_cb.shared then call lock_file_check;

BODY OF OPERATION

go to unlock_exit;

1. operation

z.

3.

form:

names the external entry point placed in the IOCB in
normal openings (called by iox_$write_record,
iox_¢$rewrite_record, etc.). ’

unlock_exit

designates the block of code used as an external exit
point for all nonpassive index operations. If not
sharing, the program returns. COCtherwise, the current
index position (key and descriptor) and the file's
change count are saved. The file is unlocked and the
program returns.

lock_file_check

4]

is an internal procedure that begins by attempting to
set the file's lock. Assuming that the lock can be
set, the procedure sometimes reinitializes certain
process variables to account for asynchronous changes
(i.e., in other openings). If the file_action is
nonzero, indicating an interrupted operation, the
external procedure restart is callied to complete and
possibly undo the operation before proceeding.

body of each such operation has the following general

Check args and abort if error.

Save necessary crash recovery information in the file's
header.

Set file_action to indicate operation in progress.

o

Increment the file's change count.

g-8 AN57



5.

Proceed with the file-modifying operation.

Set file_action to zero, indicating that the file is
consistent. :

Passive Index Referencing Operations

The

standard form of external entry points for passive

operations is:

operation: entry(args);

where:

indx_cb_ptr=iocb.open_data_ptr;
if indx_cb.shared then do;

current_entry=n;
go to init_entry;/*sets up handler*/

retry_ent(n):

call prepare_process;

end;

°

BODY OF OPERATION

go to verify_done;

1. operation

names the external entry point placed in the IOCB in
normal openings (called by iox_$read_record,
iox_¢$read_length, etc.).

2. init_entry

designates a block of code that saves initial values
describing the state of the opening at the start of
the operation (e.g., file position). The routine
proceeds to establish an any_other handler and
returns to retry_ent(current_entry). The handler
transfers to retry_ent(current_entry) if the
activating condition can have occurred as a result of
asynchronous changes; otherwise the signal is passed
on.

9-9 AN57



3. prepare_process
is an internal procedure that saves the file's change
count, waits for the file_action to become zero, and
possibly reinitializes some process variables to
account for asynchronous changes.

y, verify_done .
designates the block of code used as an external
return point for all operations with passive 1ndex
synchronization. If not sharing, the program
returns. Otherwise, the current 1index position 1s
saved and the current file change count is compared

with the previously saved value. If no changes have
occurred, the operation 1is "verified" and returns.
Otherwise, the original file position information 1is
restored and a transfer is made to

retry_ent(current_entry), where the operation is
reattempted.

Maintaining Correct Index Position

Each opening keeps track of 1its current index position

between and during operations with the help of an array called
the position stack.

In shared openings, the current key and record descriptor
are saved at the end of each index-referencing operation. When
other openings change the file's index, the information in the
position stack becomes invalid. This situation is detected via
the file's change count, and the saved key and descriptor are
used to reseek the former position before the index entry 1is
referenced.

The task of reseeking the saved position is assigned to the

internal procedure restore_position. It is here that
asynchronous insertions and deletions are detected in the case of
shared operations. Note that the position can be restored to

beginning or end of file as well as to a particular index entry,
whichever is appropriate.

Proof of Passive File-Synchronization

The validity of the passive file synchronization strategy of
vfile_ 1is guaranteed Dby the uniform file alteration protocol
described earlier,

§-10 ANST



The diagram below represents a sequence of file alterations.
Note that index-level alterations always occur serially, since
each update begins by setting the file lock.

A B C D E A B C D E
L S— Y PRI [ 200 DUV JRFSUVEEY DAY PRy ' Sy PR PO >
The letters represent the following events:
A. Set file_lock (abort if busy).
B. Set file_action to nonzero code.
C. Increment change_count.
D. Set file_action to zero.
E. Unlock the file.

Each file transformation occurs between events C and D,
marked XX above.

Passively synchronized references involve the following
sequence of steps: ’
1. Save change count.

2. Wait for file_action to go to zero. (Abort if wait
time exceeded.)

3. Compare change_count with saved count. If same then
done, else go back to step 1.

The Dbody of the passive reference takes place between steps
2 and 3.

What must be proven - is that this sequence effectively
excludes references during file transformations, i.e., within the
intervals CD in the diagram above.

9-11 ANST



The classes of parallel references can be identified by the
event, A-E, that immediately precedes step 1 of the reference.
Consider each of the possible cases:

Step 1 follows event:

A. The reference must terminate before event C or else it
will be repeated .at step 3.

B. The reference will wait at step 2 and be repeated after
event D.

C. The reference will wait at step 2 until D and terminate
if step 3 occurs before the next event C. Otherwise,

the reference is repeated.

D. The reference terminates if step 3 occurs before the
next event C. Otherwise, it is repeated.

E. Same as D.

Thus, 1in no case can a reference terminate successfully if
an intervening update (CD interval) occurs or has occurred.

Record Lock Processing

Record level synchronization occurs during operations that
reference the length or contents of a record. As with file-level
synchronization, one of two processing strategies is applied.

Record Locking and Unlocking

The following protocol applies to record alterations.

Explicit user operations -- record_status (set_lock="1"b):

1. ~The record's lock is set. (Abort if wait time
exceeded.)

2. The record's lock_flag is set.

3. The'change_cau1t is incremented.

9-12 ANST



By user via pointer:

Yy, Record modification takes place.
record_status (clear_lock="1"b):

5. The lock_flag is cleared.

6. The record_lock is cleared.

Each record is thus constrained to be serially updated.

Passive Record Synchronization

A record is considered to be busy if its lock_flag is set.
On each record reference, the lock_flag is tested and its status
is indicated by the returned code.

There are two classes of passive record references to be
considered. The first class includes the operations for which
index synchronization also applies; the second class consists of
references to records made directly via pointer (obtained with
the "record_status" order).

The first class of operations requires no additional
processing, since the index synchronization strategy detects all
asynchronous changes by examining the file's change_count.

Users wishing to synchronize access to records via pointer
without locking the entire file might consider a strategy 1like
this:

1. Save change_count.
2. Check the record lock and continue if not busy.
3. Proceed with direct record reference.

by, Compare change_count with the saved count. Done if
unchanged; otherwise must repeat operation.

A further refinement would be to introduce a user-~supported
change_count as the first word of each record. The record
alteration protocol should be modified in this case to require-
that each rewrite increment the record's version number
(change_count). Such a scheme might be justified when many
processes are competing to perform frequent updates on
(stationary) records in a single file.

9-13 ANST



HECUVERY FROM INTERRUPTIONS

Introduction

It can happen that while vfile_ is modifying a file, its
execution is interrupted and not resumed (e.g., the system
crashes). This can leave the file 1in a state where new
operations cannot be performed, e.g., a node has been split but
the new entry has not yet been made in its parent node. The
program vfile_ has been coded so that the next time the file 1is
used, the interrupted operation is automatically completed.

This feature requires the use of a substantial portion of
each file header and a separate restart procedure. The rest of
the mechanism 1is embedded throughout the file-altering sections
of vfile_. -

A uniform strategy applies, except 1in a few simple
special-case situations. File-altering operations are designed
to execute in either of two states, normal or repeating. In the
ncrmal state, each operation keeps track of its progress by
saving certain variables 1in the file header. When an
interruption 1is detected, the restart procedure reinvokes the
interrupted operation in the repeating state. This results in
the completion of the interrupted operation, whereupon the
restart procedure returns, and the operation that detected the
inconsistency proceeds normally. :

The Normal State of Update Processing

The distinction between the normal and repeating states is
made through the variable indx_cb.repeating. At opening, its
value is set to "0O"b, indicating the normal state.

On each file alteration, a certain amount of additional
processing 1is done that is extraneous to the actual
transformation that results. This extra work guarantees that any
intermediate state of execution <can be reconstructed and
correctly resumed, provided only that the file itself is
preserved intact. ’

For this purpose, two kinds of data are periodically saved
in the file header during each update operation. First, there is
the information that keeps track of the nature and degree of
completion of an operation. Second, various external variables
are saved that might otherwise perish with the user's process, or
perish because of a subsequent assignment during the current
operation. '

9-14 ANST



Tracking Variables

In order to keep track of each operation's progress, the
following variables are used:

file_base.file_state_block.file_action
indicates which file-altering operation, if any, 1is
currently in progress.

file_base.file_state_block.file_substate
is a counter indicating how far the current operation
has come toward completion.

file_base.index_state_block.index_action
indicates which kind of index change, if any, is in
progress.

file_base.index_state_block.index_substate
is like file_substate, but applies only to the index
alteration phase of the operation.

For each update operation, there 1is a corresponding
file-action code that is set just before and cleared immediately
after the file transformation takes place. Similarly, each index
alteration - is associated with a nonzero setting of index_action.

The substate counters are zeroed and periodically
incremented during every transformation. By minimizing the
frequency of substate changes, additional processing is reduced.
This optimization, as it turns out, is largely achieved through
otherwise arbitrary choices in coding style, such as the order of
independent assignments.

Other Header Variables

The action and substate variables just discussed make up
only a small part of the file header. Somewhat more than one
page is reserved for the rest of the recovery-related file
variables.

The remaining header variables are used during normal
execution to save copies of certain other variables. Arguments
and other external nonpermanent jinformation that can affect the
subsequent operation, e.g., file position, must be saved before
any 1inconsistency is introauced. This precaution is required by
the condition that the recovery mechanism always completes an
interrupted operation. The other wvariables that must be
duplicated are those permanent file variables that are altered
subsequent to their affecting the course of the transformation.

9-15 ANST



Several optimizations apply to the saving of variables
during updates. For example, the record argument is not saved
during write and rewrite operations. This exception 1is handled
by automatically deleting or flagging the record after
restarting. Although it may be necessary to save many variables
in a single update, the duration over which a given value must be
saved is often shorter than the entire operation. Thus, a single
header variable can serve as a repository for any number of
separate values during the course of one operation. Another
optimization that substantially reduces the <cost of saving
variables takes advantage of the efficiency of multiword
assignments on Multics hardware.

The Restart Procedure

Whenever an entry point sets a file's lock, the header
variable file_action is tested before proceeding with the body of
the operation. If file_action 1is nonzero, 'an inconsistency
exists 1in the file. as the result of the interruption of a
previous update operation. This situation is detected upon
opening and at the start of shared update operations. It is
dealt with simply by calling the external procedure restart.

The restart procedure performs the following simple tasks:

1. Saves the process information describing the state of
the current opening (variables in the structure
iocb.open_data_ptr->indx_cb). ‘

Z. Restores some arguments and process information for the
interrupted operation, using values saved in the
file_header.

3. Sets the variable 1indx_cb.repeating to "1np and
reinvokes the appropriate entry in open_indx_file to
complete the interrupted operation.

4. Finally, after returning from the restarted operation,
the process information for the current opening is
restored and a return is made.

For the write_record, rewrite_record, and record_status
operations, some additional steps are taken. In the case of
rewrite_record, the wuser may be alerted to the potential
inconsistency of the record's contents. For the other two
operations, the new record is automatically deleted immediately
after finishing the interrupted operation. This special
treatment is required on writes and rewrites because efficiency
considerations preclude saving the buffer argument at the start
of every update. '

9-16 AN57



The Repeating State of Ekxecution

The last major feature of the recovery mechanism 1is the
alternate state of update processing, characterized by the
setting of indx_cb.repeating to "1"b. This situation only arises
as a result of the detection of an interruption and invocation of
the restart procedure discussed in the previous section.

What will wultimately be shown 1is that the result of
reinvoking any interrupted operation in the repeating state is
the same as it would have been, had the o¢operation run to normal
completion. Furthermore, the process of recovery must also be
completely restartable.

To guarantee the correctness of restarting as described, it
is sufficient to show that some set of conditions exist such that
the total machine state (relevant to an operation) that existed
just prior to any interruption 1is somehow reconstructed. The
term "machine state" refers to both the state of execution (level
of procedure invocation, for example) and the values of all
variables that can subsequently be referenced. Since we are
presumably dealing with a deterministic system, the replication
of any prior state must produce the same outcome.

The essential difference between the two states of
processing is that certain portions of code are bypassed in the
repeating state. Otherwise, the flow of control is identical to
that of normal execution. In restarting an operation, the
repeating state automatically reverts to the normal state Dbefore
reaching the point of interruption. Thus, the repeating state
only applies to portions of code previously executed.

9-17 ANST



Sections of code to be skipped in the repeating state are
embedded in internal procedures of the following form:

(a "protected" procedure)
routine_x:proc; ‘
if indx_cb.repeating then do;
call check_file_substate;
return;
end;

(body of procedure
executed only .in
the normal state)

file_base.file_substates=s
file_base.file_substate+1;.
end routine_x;

where check_file_substate is the following procedure:

check_file_substate:proc;
indx_cb.next_substate=indx_cb.next_substate+1;
if file_base.file_substate=indx_cb.next_substate
then indx_cb.repeating="0"b;

end check_file_substate;

Also, each update entry in open_indx_file starts with a call
to the following 1internal procedure (some details omitted for
clarity):

initialize_substate:proc;
if indx_cb.repeating
then if file_base.file_substate=@
then indx_cb.repeating="0"b;
else indx_cb.next_substate=0;
, else file_base.file_substate=0@;
end initialize_substate;

Flow of Control

Half the problem of reconstructing the interrupted machine
state 1is getting back to the right location in the cocde. If the
program were completely 1linear, 1i.e., without any internal
procedures or do loops, then a simple transfer would suffice. 1In
general, the skipping mechanism used with the repeating state
achieves the same end without the requirement of 1linear program
flow. The correctness of this technique, however, does imply
certain constraints.

9-18 ANST



To guarantee that flow of control returns to the point of
interruption, it is required that the original path be followed,
deviating only when it is certain that the bypassed c¢ode has
already been completely executed, and 1in such cases always
returning to the original path. Any control-altering statement
that 1is repeated must therefore have the same outcome as before.
This implies that any variables wupon which a control-altering
statement depends must be restored before the statement is
repeated. Conversely, any control-altering statement that
depends on a variable whose value can have changed nust be
skipped in the repeating state.

Reversion to the Normal State

The function of the internal procedure check_file_substate
and the temporary counter indx_cb.next_substate is to ensure that
the transition from repeating to normal execution takes place at
the right moment. Strictly speaking, the right moment to stop
skipping sections of normally executed code is the point after
the last machine instruction executed before the interruption
occurred. In general, however, some number of prior instructions
can be repeated without altering the ocutcome. The permanent
substate values delimit sections of code according to this
property. Thus, for an interruption anywhere within a section of
code corresponding to a single substate value, it is sufficient
to revert to normal execution Jjust prior to entering that
section, or "logical block,"™ of code.

The next_substate in the repeating state is initialized and
periodically incremented so as to correspond to the normal
substate value for the upcoming logical block. This practice
allows the logical block of an interruption to be found simply by
comparing next_substate with the permanent substate saved in the
file_header. However, it should be noted that the mechanism for
incrementing the next_substate described earlier introduces the
constraint that such "protected" procedures not be nested. For
this reason, a second permanent substate counter is used in the
procedure change_index. Evidently, the use of multiple permanent
substate counters effectively removes the constraint against
nesting protected procedures.

Restoration of Variables

Having described the mechanism whereby flow of control
returns to the point of interruption, it remains to be shown how
the program variables are correctly restored to their previous
values at the instant of reverting to normal execution. For this

purpose, the variables are divided into two classes,
distinguished by the constraints they impose wupon protected
procedures., All ©program variables upon which the completion of

any update operation depends are required to fall 1into one of
these classes.

9-19 AN5T



Reconstructed Variables

A variable 1is "reconstructed" if every assignment to it is
repeated and produces the same outcome as that prior to
interruption. Thus a reconstructed variable cannot appear on the
left of an assignment statement within a protected procedure.
This definition guarantees that at any reference to such a
variable while repeating, its value is the same as it was during
previous normal execution. It follows, therefore, that when the
reversion to the normal state takes place, all reconstructed
variables have their former values, as required.

Protected Variables

A variable is "protected" if every assignment to it (except
possibly the last) is skipped in the repeating state. Its value
will therefore remain unchanged between the time an interruption
occurs and normal execution is resumed. Protected variables must
reside in the file, since only the file is assumed to be
preserved.

A file variable can be protected first and then
reconstructed, but not vice-versa. This constraint prevents any
interrupted recovery from altering the protected value until it
is no longer needed.

Statements that are repeated must have the same ocutcome in
order to correctly reconstruct the interrupted machine state.
This 1implies that no repeatable statement can depend upon any
subsequently assigned protected variable.

The basis for subdividing the program into 1logical blocks,
each corresponding to a substate value, lies in the dependencies
on protected variables. Specifically, a single logical block is
required to be independent of any protected variables
subsequently altered in the same block. Otherwise, the outcome
of reexecuting a block would depend on the point of interruption
inside the block, which contradicts the defining assumption
stated earlier.

9-20 AN57



Répeating State-Summary

Another point that was noted earlier 1is the requirement that
the process of recovery from interruption itself be interruptible
in the same sense. Fortunately, this problem has already been
solved through the assumption that all variables are either
reconstructed or protected. Since the file is thus constrained
from changing its state until normal execution resumes, the only
nontrivially distinct intermediate states are those associated
with normal execution. Therefore an interrupted restart 1is
always recoverable through the standard recovery mechanism.

9-21 ANBT






SECTION X

DESIGN OF THE ANSI STANDARD AND IBM STANDARD TAPE I/0 MODULES

INThUBDUCTIUN

The tape_ansi_ 1/U0 module 1implements the processing of
magnetic tape files according to Draft Froposed Standard Revision
X3L5/419T of American National Standard X3.27-1969, Magnetic Tape
Labels and File Structure for Information lInterchange. In
addition, tape_ansi_ provides a number of features that are
extensions to, but outside of, the specifications of the LPSR.

, The tape_ibm_ I/0 module implements the processing of both
labeled and nonlabeled magnetic tape files in accordance with the
standards specified in the following IBM publications: US Data
Management Services Guide, Release 21.7, GC26-3T46-2; IBM
System/360 uisk Uperating System Lata Management Concepts,
GCeh-3427-6; and, 0S Tape Labels, Release 21, GC2b-6650-4. The
proce531ng of nonlabeled tdpes in DUb leading tape mark (LTM)
format is not supported.

Both 1/0 modules operate in conjunction with I0X. As such,
they are not called directly by the user but via iox_. The
reader is wurged to review the MPM documentation for the I1/0
modules for definitions of terms, summaries of standard
specifications, and an overview of the collection of system 1/0
modules. Although they are documented as separate entities, both
tape_ansi_ and tape_ibm_ are implemented in a single body of code
referred to below as the I1/0 module.

10=-1 ANST



I0X FUNCTIONS

Attach Function

The IuX attach function is performed by the external
procedure tape_ansi_attach_. while the 1/0 module conforms to
the I0X convention of attaching to a particular file, the nature
of the storage medium requires specification in the context of
membership in a logical file set residing on a physical volume
set. The wuser can uniquely 1identify a particular file by
supplying either the file identifier (the file's name) or file
sequence number (within the file set), in combination with the
volume name of the first volume of the volume set. The volume
name of the first volume is also used as the external file set
identifier. In addition, the attach description must specify all
the information needed to perform the desired operation, i.e.,
processing mode, file attributes, number of devices to be used,
etec.

The physical sequential organization of magnetic tape file
sets implies that processing a file can affect the files
following it. The internal 1logic of the 1I/0 module must
therefore regard the attach operation as attachment to a file
set, and the processing of a particular file as a matter of
positioning. In this light, an attachment may be categorized as
either initial, if tne attached file is a member of a file set
that has never before been used (by the I/0 module in the current
process), or subsequent, if the file set has been used, even if
the particular file specified has not. The former case causes a
per-file set data base to be created in the process directory,
while the latter relies on the information contained in such a
data base.

The following major functions are performed at attach time:

1. The attach description is validated for self-consistency.

2. The per-file set data base is either 1located or created,

and initialized.

3. The attach description is validated against the known file
set characteristics, if any.

4., Volumes are mounted and/or demounted, as necessary.

10-2 ANST



Upen Function

The open function is performed by the external procedure
tape_ansi_file_cntl_ for ANSI and IBM SL file sets, or by
tape_ansi_nl_file_cntl_ for I1BM NL file sets. The opening modes
supported are sequential_input and sequential_output. The 1I/u
module does not support sequential_input_output because the
sequential organization of magnetic tape file sets severely
restricts the wuse of this opening mode. When opened feor
sequential_output, the 1/U module operates in one of four output
modes (extend, modify, generate, or create) specified at attacn
time. ot all output modes are supported for each type of file
set organization.

The bulk of the 1/0 module's processing functions are
performed at open time. lMost of these are designed to ensure the
validity of the 1/U operations to be performed and the continued
integrity of the file set. In addition, information on the
structure of the file set as a whole is gradually added to the
per-file set data base.

The fcllowing major functions are performed at open time:

1. The opening mode 1is validated against the attacn
description.

2. If the location of the desired file can be determined fron
the per-file set data base, the I/0 module positions
directly to that file. Otherwise, the I/U module searchesz

the file set. In the course of searching, 1t adds
information about the files it encounters to the file set
data base. Volumes can be mounted and/or demounted, as

necessary, as a part of tne open function.

3. Unce the desired file 1is located, 1its attributes are
validated against those specified in the attach .
description.

k. The logical record 1I/U mechanism is initialized for the
type of Li/0 operation to be performed.

The iox_$close function 1is pertormed by the same external
procedure that opened the I/U switch (tape_ansi_file_cntl_ or
tape_ansi_nl_file_cntl_). The tollowing major functions are
performed at close time:

1. Logical record 1/0U is terminated in a consistent manner.

16-3 ANST



File processing is terminated in a manner that ensures the
validity of the file and the integrity of the file set.
The f'inal state of the file is recorded in the file set
data base.

vetach Function

proce
perfo

1.

Other

The iox_¢$detach_iocb function is performed by the external
dure tape_ansi_detach_. The following major functions are
rmed at detach time:

Resource disposition 1is performed as specified by the
attach description. If all volumes are demounted, the

volume sequence list is purged of volume set candidates.
The wuser 1is notified if the volume set membership appears

to have changed..
If an inconsistency in the file set data base has been

detected during the course of the attachment, all resources
are released and the data base is delcted.

runctions

w

The iox_$read_record and iox_$write_record functions are
performed either by the external procedure
tape_ansi_lrec_io_, or by tape_ansi_ibm_1lrec_io_, depending
on whether the 1/U mouule is processing an ANSI or IEM file
set.

The iox_$control function 1is performed by the external
procedure tape_ansi_control_.

The iox_$positidn function is performed by the external
procedure tape_ansi_position_

The iox_$read_length function is performed by the external
procedure tape_ansi_read_length_.

No other iox_ functions are supported.

10-4 ANST



DATA STRUCTURES

Control Segnment

For each file wset accessed by the I/0 module, a separate
data base is maintained in the process directory. This data base
is known as a control segment, or cseg. The c¢seg contains a
variety of data describing both the logical and physical status
of the file set. Some of these data are invariant, some change
with each attachment, and some even change with each physical
tape 1/U operation. To minimize unnecessary processing each time
an attachment is made, and to take advantage of data that may be
accunulated during the course of several attachments, the cseg is
maintained for the 1ife of a process. If, however, an
unresolvable inconsistency 1is detected in the cseg while
processing an attachment, the cseg is deleted at detach time.

The cseg is divided into 4 major components: the cseg body,
which contains data pertaining to the status of the file set as a
whole; the physical 1I/U section, which contains data used by
tape_ansi_tape_io_ and the tseg structure used by tdem_; the
volume chain, which describes the physical volumes that make up
the volume set; and the file chain, which describes the 1logical
files that make up the file set. The include file
tape_ansi_cseg.incl.pll1 defines the cseg body, the physical 1/0
section, and the volume chain.

/* BEGIN INCLUDE FILE: tape_ansi_cseg.incl.pl1 %/
del <c¢F ptr;

del cseg based (cF),
file_set_lock bit (1),
invalid bit (1),
standard fixed bin,
attach_description,

3 length fixed bin (17),
3 string char (256), '
open_description,

3 length fixea bin (17),
3 string char (32),
nodule char (12) varying,
owner_id char (14),
ndrives fixed bin,
nactive tixed bin,
write_ring bit (1),
protect bit (1),

density fixed bin,

ven fixed bin,

feP ptr,

f1P ptry

PPN NN =

(AN

PN NN NN NN

10=5 AnST



NN N RSN

[ASEAVIN V) n

[ARIAC NV

hdw_status,

3 bits bit (72) aligned,
3 no_minor fixed bin,

3 major fixed bin (35),
3 minor (10) fixed bin (3%),
ibl_but char (o0),
open_mode fixed bin,
close_rewind bit (1),
force bit (1),
user_labels bit (1),
no_labels bit (1),
cutput_mode fixed bin,
replace_id char (17),
retain fixed bin,

lrec,

bufP ptr,

nc_buf fixed bin,
offset fixed bin,
savebP ptr, .

file loeck bit (1),
blkent fixed bin (35),
reccnt fixed bin (35),
code fixed bin (35),
read_length,

3 rlk ptr, .

3 rll fixed bin (21),

W ww ww

user_label_routine (6) variable entry (char (80), bit (1)),

syncP ptr,
mode fixed bin,
soft_status,
3 nbuf fixed bin,
3 buf (2),
4 bufP ptr,
4 count fixed bin,
(free_list, busy_list, chain (3), bufct (3)) fixed bin,
wait_switch (1:63) bit (1) unaligned,
tseg aligned,

3 areap ptr,
3 ev_chan fixed bin (71),
3 write_sw fixed bin (1),
3 sync fixed bin (1),
3 get_size fixed bin (1),
3 (ws_segno bit (18),
drive_number fixed bin (17)) unal,
3 buffer_offset fixed bin (12),
3 buffer_count fixed bin (12),
5 completion_status fixed bin (2),
3 hardware_status bit (36) aligned,.
3 error_buffer fixed bin (12),
3 command_count fixed bin (12), :
3 command_queue (10) fixed bin (6) aligned,
3 bufferptr (12) fixed bin (18) aligned,
3 buffer_size (12) fixed bin (18) aligned,
3 mode (12) fixed bin (2) aligned,

10-6 ANST



3 buffer (4) char (162) aligned,

z vl (63),
3 position,

it
4
y
y

ff1X fixed bin unal,
cflX fixed bin unal,
pos fixed bin unal,
1f1X fixed bin unal,

3 vol_data,

)

volname char (&),
comment char (64) varying,
rcp_id fixed bin (6),
event_chan fixed bin (71)
tape_drive char (&),
write_VOL1 fixed bin,
ioi_index fixed bin,

~J

4
i

eg_data,

volume_id char (32),

tracks fixed bin unal,
density fixed bin unal,
label_type fixed bin unal,
usage_count fixed bin unal,
read_errors fixed bin unal,

w .
PN g g S - e N i O

write_errors fixed bin unal,

2 chain_area area;

/% ENDU INCLUDE fILk: tape_ansi_cseg.incl.pl1 . */

"¢k

file_set_lock

invalid

standard

attach_description

length

is a pointer to the cseg. It 1is set at
attach time by a call to hcs_$make_seg, which
either creates or initiates the c¢seg
corresponding to a particular file set.

is "1"b if the file set is currently in use,
i.e., an 1I/0 switch is attached to any file
in the file set. It is set at attach time
and reset at detach time.

is "1"b if an unresolvable inconsistency 1is

detected 1in the cseg during the course of an
attachment. It causes the cseg to be deleted

at detach time.

is the file set organization code: 1 - ANSI;
2 - IBM 0US; 3 - IkM DOS. It is set when the
cseg is created, and is invariant.

is the i1ox_ attach description structure.

is the number of meaningful characters in the
description string.

10=-7 ANST



string
open_description

length

string

module

owner_id

ndrives

nactive

write_ring

protect

density

vecN

fecP

is the attach description string.
is the iox_ open description structure.

is the number of meaningful characters in the
description string.

is the open description string.

is the name of the 1/0 module (either
tape_ansi_ or tape_ibm_). It is set when the
cseg 1is created, and is invariant.

is the user's Ferson_id (or first 14
characters thereof), recorded in the VUL
label if a volume must be initialized. It is
set when the c¢seg 1is created, and is
invariant.

is the maximum number of devices that can be

assigned 1in the course of an attachment. It
is set at attach time.

is the actual‘ number of devices currently
assigned by the 1/0 module. It can be set at
any time by tape_ansi_mount_control_.

is "1"b when the volume set 1is (to be)
mounted with write rings. It is set at
attach time.

is "1"b if hardware file protect 1is on;
writing 1is inhibited, regardless of write
rings. It 1s set at either attach or open
time by tape_ansi_mount_cntl_.

is the density atl which the file set 1is (to
be) recorded. Zero indicates default, 2
indicates 600 bpi, and 3 indicates 1600 bpi.
If specified, this ~field 1is set at attach
time by tape_ansi_attach_. It may be (re)set
at attach or open . time by
tape_ansi_mount_cntl_.

is the number of 1links (elements) in the
volume chain (array) that actually contain
volume data. The value 1is incremented for
each volume added to the volume sequence
list, and decremented for each volume set
candidate purged at detach time.

points to the base of the file <chain, the
file data 1link, which is always allocated.

It is set when the cseg is created.

10-6 ANST



flPp

hdw_status

bits

no_minor
major
minor

1bl_buf

open_mode

close_rewind

force

user_labels

no_labels

output_mode
T~

points to the file chain link currently (or
last) in use. Its value can change during
tne course of an attachment.

contains the hardware status data associated
with every physical tape operation, as
interpreted by tape_ansi_interpret_status_.

is the IUM status string.

is the number of minor status conditions
associated with the major status.

is a standard status code 1indicating the
ma jor status condition.

is an array of standard status codes
indicating the minor status conditions.

is the buffer into which volume and file

labels are read, and from which they are
written.

is either 4 - sequential_input, or &5 -
sequential_output. It 1is set at open time.

is "1"b if the volume currently in use when
the I/0 switch 1is closed is to be rewound.
It can be set at any time by a close_rewind
order.

is M"i"pb if unexpired files are to be
overwritten without querying for permission.
It is set at attach time if the -force option
appears in the attach description.

is "1"b if the user file 1labels are to be
read or written. This feature is currently
not supported.

is "1"b if the file set does not contain
volume or file labels; 1i.e., the file set
organization is IBM NL. It is set at . attach
time if the -nlb option appears in the attach
description,

defines the type of output operation to be
performed if the I/0 switch is opened for
sequential_output. Possible values are: 0 -
no output permitted,; 1 - extend existing
file, ¢ - modify existing file; 3 -
generate existing file; 4 - create new file.
This field is set at attach time.

10-9 ANST



replace_id

retain

lrec

buf' P

nc_buf

offset

savePF

file_lock

blkent

recent

contains the file identifier of a file to be
replaced as the result of a create-type
output operation. It is set at attach time
if the -replace option appears in the attach
description.

specifies the detach-time resource
disposition. Currently, only three values
are defined: 0 - unassign all devices and
volumes, the default disposition; 1T -
unassign all devices and volumes, explicit
specification; 4 - retain all devices and
volumes, explicit specification. It 1is set
at attach time, and can be reset at any time
by a retain_none or retain_all order call.

is used by tape_ansi_lrec_io_ or
tape_ansi_ibwm_1lrec_io_ to control the
blocking and deblocking of logical records.
Its values are initialized at open time, and
some are reinitialized for each file section
processed. .

points to the tseg buffer into which a block
is read, or from which a block is written.

contains the number of characters in a buffer'
available for reading as logical records.

contains the number of characters already
extracted from a buffer in the read case, or
the number of characters already placed into
the pbuffer in the write case.

points to the last (or only) RDW in an IBM V,
VB, Vu, «r VBS form.t block being constructed
for output. If the block 1is padded to a
multiple of 4 characters, the RDW must be
nmodified to include the 1length of the
padding. It is set by
tape_ansi_ibm_1lrec_ioc_.

is "1"b if the file is currently in use. It
is used to prevent conflicting operations on
the file or the cseg from multiple command
levels, and 1is set by tape_ansi_control_,
tape_ansi_position_, tape_ansi_read_length_,
and by the logical I/U procedures.’

contains the number of physical blocks
processed for each file section.

contains the number of logical records

processed for each file. It is not currently
used.

10-10 ANST



code

read_length

rlf

rih

user_label_routine

Fhysical 1/0 Section

if nonzero, indicates that an unrecoverable
error has occurred and prohibits further I/0
operations. The value is a standard status
code. It 1is set by tape_ansi_control_,
tape_ansi_position, tape_ansi_read_length_,
and by the logical I1I/0 procedures.

is used by tape_ansi_read_length_ and the
logical 1/0 procedures to implement the
iox_$read_length cperation.

points to a segment in the process directory
into which a logical record can be read. It
is set by tape_ansi_read_length_.

contains the number of characters in the
logical record. It is set by
tape_ansi_read_length_ when a logical record
is obtained form the logical I/0 procedure in
response to an iox_$read_length call. It is
reset by the logical 1/0 procedure when the
record is transmitted to the user in response
to an iox_$read_record call.

is an array of entry variables defining the
user's label processing routines. The
sequence of entries is: 1 - read UHL; 2 -
write UhL; 3 - read UTL; 4 - write UTL; 5
- read UVL; 6 - write UVL. This feature is
currently not supported.

1his section of the cseg is used only by tape_ansi_tape_io_,
tdem_, and in one case, by tape_ansi_mount_cntl_. When the I/Q
module 1is moditied to use rcp_ for resource management and an
ioi_ interface (tape_ioi_) for physical 1/0, this section can be

removed.

syncP

mode

soft_status

points to the tseg buffer reserved for

synchronous 1/0. It 1is set and wused by
tape_ansi_tape_io_.

is zero if the hardware is to read/write in
binary mode; 1 for 9 mode. It is set by
tape_ansi_file_cntl_, and used by
tape_ansi_tape_io_.

contains the status of the tseg buffers after
an unrecoverable write error has occurred
while doing asynchronous I1/0. It is set by
tape_ansi_tape_io_ and is used by the logical
1/0 procedure to maintain a valid block
count.

10-11 ANST



nbuf contains the number of tseg buffers (blocks)
not written.

buf' P points to the tseg buffer.
count is the number of characters in the buffer.

free_1list,

busy_1list,

chain,

bufent are used by tape_ansi_tape_1io_ to manage the
3 tseg buffers used for asynchronous 1I/C.

wait_switch is an array of switches, one fo each
pcssible device, indicating whether or not
that device 1is waiting for an ipc_ event to
occur. The switches are used by
tape_ansi_tape_io_ when a rewind order 1is
issued, and by tape_ansi_mount_cntl_ when
volumes are mounted Jr unloaded.

tseg contains the data used by tdcr_ tc perform

physical 1/u.

Volume Chain

The volume chain 1s a symbolic representation of those
volumes that are members of the volume set, in the order in which
they became members, followed by those volumes that are potential
members, in the order in which they may become nembers. lhe
number of active 1links 1is dynamically variable (specified by
cseg.veN), as is the point of demarcation between volume set
members and volume set candidates.

vl is a volume chain link. Volume links can be
(re-=)initialized at attach, open, or I/0
time, as necessary.

position describes the portion of the file set
recorded on the volume and the current
physical position of the volume in that
context. These data are maintained by the
open procedure.

frr1Xx is the first file link index, i.e., the index
of the file chain link corresponding to the
first file section recorded on the volume.
If fflX = 0, no file set sections are
recorded, and the volume is not a member of
the volume set; it is, therefore, a vclume
set candidate.

10-12 ANST



cflX

pos

1f1X

vol_data

volnane

comment

rcp_id

event_chan

tape_drive

write_VOL1

is the current file 1link index, 1i.e., the

index of the file chain link which
corresponds to the file section at which the
volume 1s positioned. If c¢flX = 0, the

position of the volume is unknown.

is the intrafile position code, defining the
file section component at which the volume is

positioned. Fossible values are: 0 - in
header label group; 1 - 1in data (passed
header group tape mark); 2 = in trailer

label group (passed data tape mark).

is the last file link index, i.e., the index
of the file chain link corresponding to the
last (or only) file section recorded on the
volume.

contains data used to perform volume mounting
and labeling. These data are maintained by
tape_ansi_mount_cntl_.

is the volume name of the volune.

is the message text displayed on the
operator's console when the volume 1is
mounted.

is currently the tdcm_ device index, required
to perform all tdem_ functions (both
nounting, demounting, and I/0). If rcp_id =
U, the volume is not currently mounted. When
rcp_ 1s used to perform resource management,
it contains the rcp_ id code.

contains the ipc_ event channel that has been
created for use with the device on which the
volume is mounted.

contains the name of the device on which the
volume is mounted.

governs the writing/validation of VUL
labels. Possible values are: 0 - the first
block is a valid VOL1 label and the volume
identifier 1is correct; 1 - th tape is
blank; 2 - the first block cannot be read;
3 - the first block is not a valid VuL1
label; 4 - the first block is a wvalid VOL1
label but the volume identifier is incorrect;
5 -« the first block is a valid VOL1 label and
the volume 1identifier 1is correct, but the
density is incorrect.

106-13 ANST



ioi_index is not currently used.

reg_data will eventually contain data obtained fron
the tape registration file. With one
exception, it is not currently used.

volume_id contains the volume identifier (to be)
recorded in the VOL1 1label. OUnly six
characters are used. This field 1is set by
tape_ansi_mount_cntl_.

File Chain

The file chain 1is  a symbolic representation of the files
(file sections) that constitute the file set. Each file or file
section is described by a file link, and the entire file chain is
preceded by a file data structure that defines the mode of
processing to be used for a particular attachment to a file. The
file data structure is the first link of the chain. The file
chain can vary in length dynamically but always contains at least
one link, the file data structure.

chain_area is the area in which the file <chain is
allocated. The chain area available in a
256K segment is sufficient to provide for
approximately 3500 file sections.

File Data Structure (File Data Link)

/* bEGIN INCLUDe FILE: tape_ansi_fd.incl.pl1 */
del fd aligned based (cseg.fcPF),
backP ptr init (null),

nextP ptr init (null),

f1X fixed bin init (0),

vlX fixed bin init (0),
dummy_HUR2 bit (1),

eox fixed bin init (2),

hdr1,

file_id char (17),

set_id char (6),
dummy_section fixed bin,
sequence fixed bin,
dummy_generation fixed bin,
dummy_version fixed bin,
creation char (5),
expiration char (5),

DR NN N -

[(VSYUNEVIRVIIWI RSN VN Y WS

10-14 ANST



3 access char (1),
3 dummy_blkent fixed bin (35%),
3 system char (13),
¢ hdr2,
format fixed bin,
blklen fixed bin,
reclen fixed bin (21),
dunmy_next_volname c¢har (o),
blocked bit (1),
mode fixed bin,
bo fixed bin,
ce char (1);

[VORVSRUSIVAN VSR VS Y UN R W)

/*

(%
-

INCLUbE FILE: tape_ansi_fd.incl.pl1l ‘ */

The file data link is structured identically tc a (regular)
file link. Some values are set when it is 1initially allocated,
and are 1invariant. Uther values are set on a per-attachment
basis if certain options appear in the attach description. These
values may be further set or reset at open time when the file is
actually located and its labels examined.

td is the file data structure. 1t is allocated
at the Dbeginning of cseg.chain_area and is
always pointed to by cseg.fcP.

cackP points to the previous file chain 1link, and
is therefore always null.

nextP points to the next file chain link, if any.
f1X¥ is the ftile link index. Each file chain link
has an associated index value, corresponding
to the [ile section that it represents. The

file 1links are assigned sequential index
values. The index value assigned tc the file
data link 1s zero, because the file data link
does not correspond to any file section.

v1ix is the volume link index. The file section
represented by a file link is reccrded on a
particular -volume, represented by a 1link in

the volume chain. 1the volume 1link index
thereby establishes the mapping between
logical files and physical volumes. The

value of v1X in the file data link 1is zero,
because the file data link does not represent
a file section. :

dumny_HbLKZ is not used.

16=15 ANST



eoX

hdr 1

file_

hdre

1d

set_id

dummy_section

sequence

creation

expiration

access

dummy_blkent

system

format

is always <. 'Ihis value means that the next
file section must be recorded on a new
volume. Since vlX tor the file data link 1s
zero, this eox value causcs the first file
section to be reccrded on the first volune
set member.

contains data derived from, or to be recorded
in, the hLKk1 file label. 1#LR1 data describe
the external characteristics of the file to
be processed.

is the tile identitier, or naue, of the rile
to be processed.

is the file set identifier. The volune
identifier of the first volurne of the volume
set is used.

is not used.

is the file sequence number, or position, of
the file to be processed.

dumny _generation,
dummy_version are not used.

is the date the «c¢seg was created (today's
date), in Julian form.

is the date on which the file to be created
or generated will expire, 1if specified, in
Julian forn.

specifies access to the file. It is
currently only wused 1if an existing file
contains access data in its file labels.

is not used.

is the system code that corresponds to files
recorded by this I1I/0 module. The system code
for tape_ansi_ is "MULTICS ANSI "; for
tape_ibm_, it is "MULTICS IBM ",

contains  data describing the internal
structure attributes to be used when
processing the file.

defines the logical record format. Possible
values are: 0 - default, if determinable; 1
- undefined records, U format; 2 -
fixed-length records, F/FB format; 3 -

variable-length records, D/uB/V/VB format; 4
- spanned records, 3/SB/VS/VBS format.

10=1¢ AnNS7



blklen specifies the physical block length.
reclen specifies the logical record length.

dummy_next_volname
is not used.

blocked if "1"b, indicates that records are blocked.

mode specifies the data enccding mode. Possible
values are: 1 - ASCII, S mode; 2 - EBCVDIC,
9 mode; 3 -~ binary.

bo for ANS1 files, specifies the block prefix
length (the buffer offset). It is currently
only used if an existing file was vrecorded
with block prefixes.

ce for 1BM files, specifies whether or not
' ‘records contain carriage control characters.
It is currently only used if an existing file
was recorded with carriage control

characters.

File Link

There is a file link in the tile chain for each file section
known to exist. The number of file links can therefore increase
in the course of processing. If an error occurs while creating a
file section, the number of file links can decrease.

A special file link, the end-of-file-set-link (eofsl), is
placed at the end of the file chain to follow the file link
corresponding to the file section known to be the last file
section in the file set,

/% BEGIN INCLUDE FILE: tape_ansi_fl.incl.pl? k/
del fl aligned based (cseg.flP),
backP ptr init (null),
nextP ptr init (null),
f1X fixea bin init (0),
vlX fixed bin init (0),
hbRz bit (1) init ("0"b),
eox fixed bin init (0),
hdr1,

3 file_id char (17),

3 set_id char (6),
section fixed bin,
sequence fixed bin,

generation fixed bin,
version fixed bin,

[ASEARE ARSI AC I AR AC R

ww W

10-17 ANDT



creation char (5),

expiration char (5),

access char (1),

blkent fixed bin (35),

system char (13),

idre,

format fixed bin init (0),
blklen fixed bin init (0),
reclen fixed bin (21) init (0),
next_volname char (6) init (""),
blocked bit (1) init ("0"b),
mode fixed bin init (0),

bo fixed bin init (0),

cc char (1) init (" ");

wuwuw ww

Ny
—

wwuwhwrww w w

~

]
=
=z
jwr

5> INCLUDE FILE: tape_ansi_fl.incl.pl1 */

File 1links are maintained by tape_ansi_file_cntl_. Some
data are invariant for the life of the link. Others are set on a
per-attacnment basis from data obtained from the file data 1link
in combination with the actual file labels. The file link
describes the characteristics of a file section as it is (to be)
recorded. The file data link describes the characteristics to be
assumed when the file is processed. Whereas the two sets usually
coincide, they need not.

fl is a file link. It is based on cseg.f1lP, the
file 1link pointer, which points to the link
currently or last in use.

backPF points to the previous link in the chain.

nextP points to tne next link in the chain, if any.
(nextP = null does not imply that the file
section associated with the file link is the
last of the file sut.)

flXx is the f'ile link index, the sequence of the
file 1link within the file chain. For ANSI
file sets, this value corresponds to the file
section number. If f1X = -1, this 1link is an
eofsl. An eofsl does not correspond to any
file section, but serves merely to indicate
that the previous link is known to correspond
to the last file section of the file set.

viX is the volume link index. The file section
represented by this link is (to be) recorded
on the volume link having this position in
the volume chain.

HDR?2 is "1"b if the file section is (to be)
recorded with a HDR2 label.

10-18 AN57



e0Xx

hdr i

file_id

set_id

section

sequence

generation

version

creation

expiration

access

blkent

system

defines the state of trailer label processing
for this file section. Possible values are:

0 - trailer labels have not been
read/written; 1 - EOF labels have been
read/written; ¢ - EOV 1labels have been
read/written. If eox = 2, the end of volume

has been reached, therefore the next file
section must be on the next volume of the
volume set.

contains values describing the external
characteristics of the file. These data are
obtained from, or are to be recorded in, the
HDR1 label.

is the file identifier, the name of the file.

is the file set 1identifier, the volume
identifier obtained from the VOL1 label of

‘the first volume set member.

is the file section number, the sequence of
the file section within the file set.

is the file number, the sequence of the file
(of which this section is a component) within
the file set.

is the file generation number.

is the file generation version number.

is the date the file was created, 1in Julian
form.

is the date before which the file cannot be
overwritten without user permission, in
Julian form.

contains the file access/security code.

contains the block count (to be) recorded 1in
the first trailer label (EOF1 or ECV1).

contains the system code of the system that
created the file section.

10-19 ANST



hdr2

format

blklen
reclen

next_volume

blocked

mode

bo

ccC

contains data describing the internal
structure of the file section. (Note that
all sections of a file must have 1identical
internal structure.) It is initialized with
default values, some of which are invalid in
certain contexts. Wwhether or not the
information available in this substructure is
actually recorded in a HDkZ2 1label depends
upon the value of fl.hDRe.

specifies the logical record format.
Possible values are the same as for
fd.hdr2.format.

specifies the physical block length.

specifies the logical record length.

contains the volume name of the next volume
in the volume set, if eox = 2 and the file
section was created by the I/U module. It is
recorded in the EOVZ2 label only.

if "1"b, indicates that records are blocked.

specifies the data encoding mode. Possible
values are the same as for fd.hdr2.mode.

tor ANSI files, specifies the length of the
block prefix.

for IBM files, specifies whether or not

carriage control characters are recorded in
each record.

10=-20 ANST



SECTION XI

PROCEDURES IN THE ANSI STANDARD AWD IBM STANDARD 1I/0

c
C

lwr}
[y
—
B3
w

MODULE: tape_ansi_attach_

This module. performs the iox_ attach function, and 1is
invoked via a call to either iox_$attach_name or iox_$attach_ptr.
It parses and validates the attach description, creates and/or
initiates the control segment, and mounts or demounts volumes as
necessary.

Entry: tape_ansi_attach_$tape_ansi_attach

When this entry point is called, the standard code in the
cseg is set to 1, indicating an ANSI file set. ’

Entry: tape_ansi_attach_$tape_ibm_attach

When this entry point is called, the standard code in the
cseg 1is set to 2, indicating (initially) an IBM file set. (If
the -dos option appears in the attach description, the standard
code will eventually be updated to 3, indicating an IBM DOS file
set.) : ~

Usage
del (tape_ansi_¢$tape_ansi_attach,
tape_ibm_¢$tape_ibm_attach) ext entry (pointer,
(*) char (¥) varying, bit (1) aligned, fixed bin (35));

call tape_ansi_g$tape_ansi_attach (iocbP, opt, com, code);
call tape_ibm_¢$tape_ibm_attach (iocbP, opt, com, code);

11-1 ANST



Tne iox_ module determines the.entry name of an 1/0 module's
attach procedure according to the following convention:

module_name_$module_name_attach
1he names tape_ansi_ and tape_ibm; must therefore appear on the
bound object segment (bound_tape_ansi_), and the entry names
tape_ansi_attach and tape_ibm_attach must be retained.
1. iocbP points to an 10Cbk. (Input)

2. opt is the attach description, parsed by iox_ into an
array of character strings. (Input)

3. com if "1"b, permits the I1/0 module to call com_err_.
(Input)
4, code is a standard status code. (Output)

If the code returned is nonzero, the I/0 switch is not
attached. The following error_table_ codes can be returned:

bad_arg invalid attach description.

noalloc too many files in file set (>3500).

noarg invalid attach description.

not_detached I/0 switch already attached.

file_busy file (set) already in use.

inconsistent invalid attach description.

invalid_cseg invalid control segment - retry attachment.

In addition, any code returned by:

hcs_$make_seg unable to create and/or
initiate cseg.

tape_ansi_mount_cntl_ unable to mount a volume.

tape_ansi_parse_options_ invalid attach description.

11-2 ANST



Internal Logic

kach entry sets the standard code in the cseg appropriately,
and transfers to the common body of code. The IOCB is checked to
ensure that the I/0 switch is not already attached; If the IOCHE
is already attached, an error exit is taken. The attach
description is validated by a three-step process:

1. The internal procedure tao_init is invoked to initialize an
attach option structure. This structure is an automatic
storage version of the Dbased structure defined by the
include file tape_ansi_options.incl.pll. Those structure.
elements that must be set with values derived from the
attach description are initialized such that they are

clearly unset; those elements that need not be set from
the attach description are initialized to their default
values.

2. The external procedure tape_ansi_parse_options_ (see below)
is invoked to validate the attach option array and encode
it into the attach option structure. Validation is
confined to the «c¢riterion of self-consistency and is
performed independent of a particular file. set
organization.

3. The internal procedure check_attopt (see below) is called
to validate the attach options in context, i.e., ARSI, IBH
SL, or IBM WL, and then forms an attach description string
for later allocation in the cseg.

The above method of attach option validation permits the
eventual use of a universal tape I/0 module option parser:
either tape_ansi_parse_options_ itself, or a replacement. If an
error occurs during steps 2 or 3, an error exit is taken.

The external procedure hcs_$make_seg is called to create
and/or initiate the <control segment. The cseg resides in the
process directory, and is named as follows:

module_name_XXXAXXx_.cseg

where module_name_ is either tape_ansi_ or tape_ibm_, and XXXXXX
is the normalized volume name of the first volume of the volume
set. 1f the specified volume name is entirely numeric and 1less
than 6 digits long, it has been normalized (by
tape_ansi_parse_options_) by padding on the left with =zeros to
length 6. Nonnumeric volume names are 1 to 6 characters in
length, with no leading cor trailing blanks. If the cseg 1is
initiated (i.e., it previously existed), then the attachment is
considered as a subsequent (re-)attachment to the file set; if
the cseg is created, the attachment is considered as initial.

11-3 ANST



INITIAL ATTACH

The c¢seg is initialized with certain per-process invariants,
such as tne I/U module name, login ID, etc., and with values to

indicate the initial nature of the attachment. The internal
prccedure cseg_init is invoked to initialize the cseg with those
per-attachment data derived from the attach options. The

external procedure tape_ansi_tape_io_%$attach (see Dbelow) is
called to initialize the tseg portion of the cseg, as well as the
1/U buffer management mechanism. The chain area at the end of
the c¢seg 1is formatted as a PL/I area by calling the external
procedure area_, and the file data structure is allocated. This
structure forms the first link in the file chain, and contains
values used to initialize the next link (which will be a true
file 1ink). The 1internal procedure vl_init 1is invoked to
initialize a volume link for each volume specified in the attach
description, and the first (or only) volume of the file set is
mounted by calling the external procedure
tape_ansi_mount_cntl_$mount (see below). Finally, the internal
procedure fd_init 1is 1invoked to initialize the file data
structure (the first link in the file chain) with per-attachment
data derived from the attach options.

SubSEQUENT ATTACH

The cseg ile set lock is first checked to determine whether
or not the file set is currently in use. If it is not 1in |use,
the cseg 1s locked; otherwise, an error exit is taken. If the
file set density has been specified in the attachment
description, and it differs from that wused in the previous
attachment, the volume set must not have been retained at detach
time. If it has been retained, an error exit is taken. If the
maximum number of devices to be used during the course of the
attachment differs from that of the previous attachment, and the
new number 1is less than the number of devices currently assigned,
the excess number of devices must be unassigned.

To unassign these devices, the file chain is scanned to find
the file link corresponding to the first section of the desired
file. (If the file does not exist, the last link in the chain is
used. If the chain does not exist, the index of the first volume
in the volume set is used.) Having obtained an index into the
volume chain from the located file 1link, the volume chain 1is
scanned to locate those volumes currently mounted. The chain is
first scanned upwards from the first volume to the target volume,
demounting volumes and unassigning devices until the new maximum
device limitation is satisfied. If the scan is completed without
reaching this number, the volume chain is then scanned downwards,
from the last volume to the target, until the limitation is met.

11-4 ANST



The target volume may not be mounted. An initial attachment must
always mount the first volume of the volume set in order to
obtain 1its volume identifier for use as the file set identifier.
Subsequent attachments can, however, postpone mounting until open
time, so that an attach-detach sequence without an intervening
open does not incur unnecessary overhead.

The volume set specification obtained from the attach
description is validated against the current contents of the
volume chain. If the number of volumes specified exceeds the
current number of volume links, new 1links are initialized by
calling vl_init. Each volume whose position in the specification
corresponds to an existing link must then be validated against
the current value in the link. If the two do not match and the
link volume 1is not a volume set member, the link volume is
demounted (if necessary) and the link is reinitialized by calling
vl_init. If the. two do not match and the link volume is a volume
set member, an error exit is taken. This determination permits
volume sSet candidates to be replaced at any time, but precludes
the insertion of a "foreign" volume into a valid volume set.

If the attach description requires that volumes have write
rings but rings are not currently inserted, the external
procedure tape_ansi_mount_cntl_$insert_rings is invoked to insert
them. 1f hardware file protect is on,
tape_ansi_mount_cntl_¢$write_permit 1is called to turn it off. If
the attach description does not require write rings but write
rings are currently inserted, and hardware file protect is off,
tape_ansi_mount_cntl_g$write_protect is called to turn it on.

Finally, cseg_init and fd_init are called to initialize the
cseg and file data structures, respectively, with per-attachment
data derived from the attach options.

COMMON TEHMINATIOUN

Both initial and subsequent attachments copy the attach
description string generated by check_attopt into the cseg attach
description structure, and set the string length variable. If an
IEM DOS file set is being processed, the c¢seg standard code is
updated to 3. Interrupts are then masked, the IUCB 1is modified
to the indicated attachment, interrupts are unmasked, and control
returns to the caller.

11=5 ANS5T



Internal Procedure

Entry: check_attopt

This procedure validates the attach options in the context
of either ANSI, IBmM SL, or IBM NL file set organization. The
sequence c¢f checking is:

1. Fhysical medium characteristics: number of tracks and
density. These checks are common to all contexts.

2. Context-specific checks: mutual exclusiveness of AKNSI and
-dos options, ete. kach type has some particular
combination of options that must be validated.

3. Output mode checks: mutual exclusiveness of -extend and
-expires options, etc. kach output mode requires the
presence or absence of other options.

4. Record format checks. Each logical record format places
particular constraints upon the file attribute options.

Checks are performed in an order that minimizes superfluous
processing.

MODULE: tape_ansi_file_cntl_

This module performs the iox_$open and iox_$close functions
for ANSI and IBM SL file sets. In addition, it perforns
end-of-file, end-of-volume, and other miscellaneous file
processing on behalf of the logical 1/0 procedure
(tape_ansi_lrec_io_ or tape_ansi_ibm_lrec_io_).

11-b ANST



Entry: tape_ansi_file_cntl_$open
This entry point performs the iox_$open function. It
positions to the attached file, mounts and/or demounts volumes as

needed, processes the file 1labels, and maintains the file and
volume chains.

ysage

dcl tape_ansi_file_cntl_g$open ext entry
(ptr, fixed bin, bit (1) -aligned, fixed bin (35));

call tape_ansi_file_cntl_$open (iocbP, mode, mbz, code);

1. icebP points to the IuCb. (Input)
2. mode is the opening mode. Possible values are: y -
open  for sequential_input; 5 - open for

sequential_output. (Input)
3. mbz must be "0"b. (lnput)

4, code is a standard status code. (Output)

If code is nonzero, an error has occurred and the IOCB is
not open. The following 1is a nonexhaustive 1ist of the
error_table_ codes that can be returned:

duplicate_file_id The requested opening for
sequential_output would cause a
file to be created whose file
identifier already appears in the
file.

file_aborted A serious error occurred while
writing file labels, and the
defective file (section) has been
successfully deleted from the file
set. \

file_busy The file (set) is currently in use
for other 1/0 activity.

incompatible_attach The attach description does not
permit the IOCB to be opened in the
specified mode.

incompatible_encoding_mode The specified data encoding mode

conflicts with the other attributes
of the file or file set.

11-7 ANST



incompatible_file_attribute

insufficient_open

invalid_block_length

invalid_cseg

invalid_expiration

invalid_file_set_format

invalid_label_format

invalid_record_length

invalid_volume_sequence

noalloc

no_next_volume

A specified file attribute
conflicts with the actual structure
of an existing file.

Insufficient information regarding
the file attributes has been
supplied to open the file. The
file does not have HDRZ2 labels.

The specified block length is
invalid, or 1in conflict with the
other file attributes.

There is an internal inconsistency
in the contrcl segment precluding
further operations other than
iox_¢$detach_ioch.

The specified expiration date is
not equal to or earlier than that
of the preceding file in the file
set.

The file set format 1is not 1in
accord with the applicable standard
(ANSI or 1BM).

A label format 1is not 1in accord
with the applicable standard (ANSI
or IBM).

The specified record length is
invalid or in conflict with the
other file attributes.

The volume set membership has not

been specified in correct switching

sequence.

The I/0 module is unable to
allocate any more storage for the
file chain. The number of file
sections exceeds 3500.

The file specified for reading,
extending, modifying, generation,
or replacement does not exist.

Another volume is needed to

continue processing, but no such
volume is available.

11-8 ANST



unexpired_file The specified output operation
would overwrite a protected file.
The operation was not performed.

unexpired_volume The specified output operation
would overwrite a protected volume.
The operation was not performed.

uninitialized_volume A volume was not (or could not be)
' initialized in a manner that would
permit the specified operation.

INTERNAL LOGIC

The cseg pointer 1is obtained from the IOCB. 1If either
cseg.invalid or —cseg.file_lock is "1"b, an error exit is taken.
The consistency code (cc) is set to 0 and a cleanup handler is
established. cc 1is an automatic variable used by consistent to
determine the action required to maintain file set consistency.
The value of <c¢c¢ 1is always in the range 0 - 2; an increase in
value corresponds to an increase in needed function. The value 0
invalidates the volume position; 1 does the same and, 1in
addition, truncates the file and volume chains; 2 does all the
above and, if possible, truncates the file set. A handler for
the area condition is established in case the file chain exceeds
approximately 3500 links.

The variable search_id is set to the file identifier of the
desired file. 1f the opening mode is sequential_input and -name
XX was specified, search_id is set to XX; if -name XX was not
specified, search_id is set to "", If the opening mode is
sequential_output and -replace XX was specified, search_id is set
to XX; if -replace was not specified, search_id is set to the
identifier specified by -name XX. The value of search_id is used
by desired_file to locate the file to be accessed.

The program searches the file chain for the desired file,
beginning with the first file <chain 1link (the file data
structure, which is always allocated). If the desired link is
not found, build1 is invoked to add a 1link to the <chain and
initialize it with data obtained from its logically associated
file section.

If the link, either previcusly existing or just created, 1is
an end-of-file-set-link (eofsl), the previous link describes the
last file section of the file set. (Reaching the end of the file
chain without encountering an eofsl implies that there are
additional file sections, as yet unexamined.) 1f the link is an
eofsl, append_file is called to determine whether or not the
desired file <can be created at the end of the file set; 1i.e.,
whether or not the attach and open descriptions jointly define

11-9 ANST



such an appending. If they do, control is passed to the output
section of the program; it they do not, the desired file does
not exist, so an error exit is taken via valid_exit. This exit
point does not invoke the consistency mechanisn.

If the link is not an eofsl, desired_file 1is called tc
determine whether or not the file link being examined is that of
tne first section of the desired file. If it 1is not, and the
link was just created by build1, build2 is invoked to complete
the link initialization process, and control passes to build the
next file link. If the link previously existed, control passes
to determine whether or not the next link exists.

When the desired link is located, a number of checks are
performed to ensure the correctness of the open operation. If
the link existed previously and the opening is for any operation
other than extension or modification, desired_check is invoked to
validate the mapping between the 1logical file 1link and its
associated physical file section. If the opening 1is for
sequential_input, control passes to the 1input section of the
program.

If the opening is for sequential_output, further checks are
necessary. If the output mode is modify or extend, control is
passed to extend_chain which extends the file chain out to the
last (or only) section of the desired file. Chain extension is
performed in a manner analagous to chain search, as described
above. kvery section of the file must have a 1link
present/created in the chain, because the extend operation is
performed on the last (or only) section of a file, and the modify
operation requires data (the generation version number) found
only in the trailer § (and hence the file link) of the last file
section. If the operation 1is generation or creation, and
-expires date was specified, the expiration date must be valid
against that of the preceding file (if any). Due to the physical
sequential organization of tape files, an overwrite operation on
any one file also destroys all those files (if any) which follow
consecutively after it. To avoid the necessity of determining
the expiration date of all such consecutive files, it is required
that a file expire no later than 1its predecessor. Therefore,
only the expiration date of the file actually accessed need be
checked. If the specified expiration date would violate this
protocol, an error exit is taken via valid_exit. If all checks
have succeeded, control passes to the output section of the
program.

11-10 ANST



Input

The procedure setup_for_read is invoked to fill in the file
data structure with those attributes from the file link that are
not supplied by the attach description. The procedure lrec_open
is then called to perform final consistency checks on the file
attributes, and to initialize the 1logical record I/0 data
structure, cseg.lrec. Finally, move_tape_ is called to position
the volume set to the first data block of the first section of
the desired file. If none of the above steps results in an error
exit, the IOCE is set to the open state and the program returns.

Qutput

If the -force option was not specified and the output
operation would overwrite an unexpired file, the write_permit
entry of another_volume 1is <called to query the user for
permission. If permission is denied, an error exit is taken via
valid_exit. It permission is granted, truncate_chains is invoked
to free any file chain links beyond that of the desired file.
Volume chain links of volumes following the o¢ne on which the
desired file resides are also changed from membership to
candidate status. The procedure build_eofsl is invoked to place
an eofsl on the file chain immediately following the desired file
link. The chains are truncated and "capped"™ with eofsl's because
the output operation to be performed physically truncates the
file set. Control then passes to one of the three output mode
sections of the program.

kxtend and Hodify

In the extend case, the volume set is positioned to just
beyond the last data block of the last section of the desired
file. In the modify case, the volume set is positioned to just
before the first data block of the first section of the desired
file. The procedure setup_for_extend_modify is called to update
the appropriate file link in accordance with the operation being
performed. Any file attributes not supplied at .attach time are
obtained from the file link. The procedure lrec_open 1is called
to perform final consistency checks on the file attributes and to
initialize the 1logical record 1I/0 structure, cseg.lrec. In the
extend case, extend_check is invoked to ensure that the special
requirements for consistent extension of FB files are met. If
none of the above steps results in an error exit, the I0CB 1is
opened and the program returns.

11=-11 ANBT



Generate and Create

Either setup_for_generate or setup_for_create is invoked to
update the appropriate file 1link. Any file attributes not
supplied at attach time are obtained from the file link. The
procedure lrec_open is called to perform final consistency checks
on the file attributes and initialize the 1logical record I/u
structure. 1he procedure move_tape_ 1s invoked to position the
volume set for writing (new) header labels, write_HLRs is called
to actually write the HUR1 and HLRZ labels, and finally write_TM
and back_TM are called to write the header label group's tape
mark and to backspace over it. (This sequence provides for
everntual user label processing.)

If none otf the above steps results in an error exit, the
I0Cb is opened and the program returns.

Entry: tape_ansi_file_cntl_g$data_eof

this entry point 1is called only by the logical record 1/0
procedure, when a tape mark is detected in the course of a read
operation. It determines whether the EUF indicates end of file
or end of file section. In the latter case, it switches volumes.

Usage

dcl tape_ansi_file_cntl_$data_eof ext entry
(ptr, fixed bin (35));

call tape_ansi_file_cntl_g$data_eof (iocbP, code);

If code 1is nonzero, an error has occurred and processing
should not continue. In addition to0 the error codes 1listed
above, the following error_table_ code can be returned:

discrepant_bplock_count The block count recorded in the
file section's trailer labels does
not agree with the block count
maintained by the 1/0 module.

IsTeRinal LUGIC

The c¢seg pointer is obtained from the IOCB. It is not
necessary to check eitner cseg.invalid or «cseg.file_lock; the
former must be "O"b, else the (calling) logical 1I/0 procedure
could not have been invoked, and the latter must be "1"b, because
the logical 1/0 procedure has been invoked. The variable cc 1is
set to 0. Cleanup and area condition handlers are established.
1f invoked, these handlers call consistent and then <close the
T0Ck.

11-12 ANST



The intrafile position code in the volume 1link is
immediately updated to indicate that the volume is now positioned
in the trailer label group (by virtue of having read over a tape
mark) . The logical I/0 procedure is then invoked at the $close
entrypoint, to terminate the I/0 for the section, synchronize the
tape position, etc. If the file chain indicates that the trailer
label group has never been processed, process_EOX is called. The
block count obtained from the file labels is then compared with
that maintained by the 1/0 module. If they differ, the error code
error_table_¢$discrepant_block_count 1is returned. If the file
section is the last (or only) section of the file, the status
code error_table_$end_of_info is returned. This is not an error,
but rather an indication that no more data exists in the file.

1f the file section is not the last (or only) section of the
file, the file 1link corresponding to the next section must be
examined. If this link does not exist, buildl is invoked to
create 1it. The 1link 1is then tested to determine if it is an
eofsl. If it is, the required next file section is missing. In
this case, the program calls consistent, closes the IUCB, and
returns the error code error_table_g$invalid_file_set_format.
Otherwise, checks are made to ensure that the next file section
is indeed the correct section, i.e., that it is of the same file
and follows sequentially the section in which the EUF was
detected. If either of these checks fails, the program exits as
described for a missing section. Finally, move_tape_ is invoked
to position to the (first data block of the new section,
cseg.blkent (the block count maintained by the logical I/0
procedure on a per-file-section basis) is reset to 0, and the
program returns.

Entry: tape_ansi_file_cntl_$data_eot

This entry point 1is called only by the logical record I/0
procedure, when end of tape (EOT) is detected in the course of a
write operation, and by tape_ansi_control_ in response to an
"feov" operation to simulate the detection of EOT. It switches
to the next volume of the volume set.

Usage

del tape_ansi_file_cntl_$data_eot ext entry
(ptr, fixed bin (35));

call tape_ansi_file_cntl_$data_eot (iocbP, code);
If code is neither zero nor error_table_$no_next_volume, an
error has occurred and the IUCB is not open. The latter error

code indicates that no additional volumes are available and
further 1/0 activity should be prohibited.

11-13 ANST



INTERNAL LUGIC

The cseg pointer is obtained from the IGCB. For reasons
described above, neither cseg.invalid nor cseg.file_lock need be
checked. The variable cc is set to 2, and a cleanup handler is
established to call consistent and close the 10Cb. The variable
close_ect is then set to "O"b to indicate that this EOT was not
detected during the course of an iox_$close operation.

An area condition handler 1is established. The procedure
next_volume is invoked to determine whether or not a volume
switch <can be performed. 1if one cannot, the program returns the
status code error_table_$no_next_volume. This is not an error,
but rather an indication that further 1/0 activity should be
prohibited. If possible, the volume name of the next volume is
saved 1in the file 1link of the current section. The procedure
write_TM is called to write the end of data tape mark, write_EOVs
is called to write an ROV trailer label group, write_TM is called
again to write the two end-of-volume tape marks, and
write_new_section 1is invoked to perform the volume switch.
Finally, cseg.blkent is reset to zero for the new section's block
count, and the program returns.

Entry: tape_ansi_file_cntl_¢$position_for_output

This entry point is called only by the 1logical record 1I/0
procedure, before performing the first write operation. It
rewrites the header label group tape mark and performs volume
switching, if necessary.

Usage

decl tape_ansi_file_cntl_$position_for_output
ext entry (ptr, fixed bin (35));

call tape_ansi_file_cntl_$position_for_output

(iocbP, code);
If code is neither zero nor error_ta le__$no_next__volume, an
error has occurred and the IOCB is not open. The latter status
code 1indicates that no additional volumes are available and
further I1/0 activity is prohibited.

5
)
]
J
D
S
)
3
b)
s
D
S
]
)
3
+
)

o

T1-14 ANS7



INTERNAL LOGIC

The cseg pointer is obtained from the IOCB. For reasons
described above, neither cseg.invalid nor cseg.file_lock need be
checked. The variable cc is set to 2 and a <c¢leanup handler is
established to call consistent and close the I0OCB. The procedure
write_TM 1is invoked to rewrite the header label group tape mark.
If ECT is detected when the tape mark is written, control passes
to the data_eot section of the program, at the label
eot_nct_while_closing. This section operates as described above,
causing a null file section to be written and volume switching to
occur. The ANSI and IBM standards both require this action when
EOT is detected in the header label group.

Entry: tape_ansi_file_pntl_$beginning_of_file

This entry point 1is called only by tape_ansi_position_ in
response to a -1 (position to beginning of file) operation.

Usage

del tape_ansi_file_cntl_¢$beginning_of_file
ext entry (ptr, fixed bin (35));

call tape_ansi_file_cntl_¢$beginning_of_file
(iocbP, code);

If code is -nonzero, an error has occurred and the IUCB is
not open.

INTERNAL LOGIC

The <c¢seg pointer 1is obtained from the IOCB. For reasons
described above, neither c¢seg.invalid nor cseg.file_lock 1is
checked. The variable cc is set to 0 and a cleanup handler is

established to call consistent and close the IOCB. The file
chain is scanned backwards from the current file link until the
first (or only) section of the file 1is found. The procedure

move_tape_ 1is then invoked to position the volume set to the
first data block of the first section.

11-15 ANDT



Entry: tape_ansi_file_cntl_¢$end_of_file

This entry point is called only by tape_ansi_position_ in
response to a +1 (position to end of file) operation.

Usage

del tape_ansi_file_cntl_$end_of_file
ext entry (ptr, fixed bin (35));

call tape_ansi_file_cntl_g$end_of_file
(iocbP, code);

If code 1is nonzero, an error has occurred and the IUCB is not
open.

INTERNAL LOGIC

The cseg pointer is obtained from the IOCB. For reasons
described above, neither cseg.file_lock nor cseg.invalid need be
checked. The variable cc is set to 0. Cleanup and area handlers
are established to <call consistent and close the IQCB. The
logical record 170 procedure is called at the $close entry point
to terminate any I/0 activity and to synchronize the tape. If
the trailer labels of the current file section have not yet been
processed, build2 is invoked. If the current file 1link
corresponds to the last (or only) section of the file, move_tape_
is called to position the volume set to the first trailer 1label,
and back_TM is called to position immediately following the last
data block by backspacing over the end-of-data tape mark. The
program then returns. '

If the current file link does not correspond to the first
(or only) section, the file chain must be searched (and perhaps
extended) until the last section 'is located. 1If the next link in
the chain does not exist, build?l1 is invoked to create it. If the
next link is found to be an eofsl, the required next file section

is missing. In this case, the program calls consistent, closes
the TOCE and returns the error code

vai'o - Ay &Kaa v

error_table_$invalid_file_set_format. Otherwise, checks are made
to ensure that the next file section is indeed the next
sequential section of the same file. If these checks fail, the
program exits as described for a missing section. If the checks
are successful, the program examines the link to see if it is the
last section. The entire process 1is repeated until the last
section is located.

11-16 AN5T



Entry: tape_ansi_file_cntl_$close

This entry point performs the iox_3$close function. 1In the
read case, 1t merely terminates logical record I/0 in a
consistent manner and closes the IOCb. In the write case, it
writes an EOF trailer label group (switching volumes if
necessary) and closes the IOCB.

Usage

del tape_ansi_file_cntl_$close ext entry
(ptr, fixed bin (35));

call tape_ansi_file_cntl_g$close (iocbP, code);

If code 1is nonzero, an error has occurred. In the write
case, the file (or a portion thereof) can be invalid or
destroyed. In any case, the IOCb is always closed.

INTERNAL LOGIC

The cseg pointer is obtained from the IGCB. If
cseg.file_lock is "1"b, the file is busy and an error exit is
taken. Otherwise, the file is locked. The flag cseg.invalid is
checked to ensure that the clcse mechanism can operate correctly.
If the cseg is invalid, the IUCE is closed and an error exit 1is
taken. A cleanup handler is established to close the IUCB in the
Same manner. If the IUCB was opened for sequential_input, an
invalid cseg at close time is merely an inconvenient error. if
the switech was opened for sequential_output, however, the
consequences are far more serious. The file being closed is left
in an inconsistent state, therefore the structure of the file set
as a whole is inconsistent. This 1inconsistency 1s transparent
unless an attempt 1is made to extend or modify the file, or to
append yet another file to the file set. The inconsistency can
be corrected by creating a new file in place of the defective
one.

If the opening was for sequential_input, the variable cc is
set to 0 and a cleanup handler is established to call consistent
and close the IOCB. The logical I/0 procedure is then invoked at
the $close entry point. The current volume 1is rewound if a
close_rewind order has been issued, and the IOCB is closed. The
file is then unlocked (by setting cseg.file_lock to "0"b) and the
program returns.

11=-17 ANS5T



if the opening was for sequential_output, cc is set to 2 and
a cleanup handler is established to call consistent and close the
IUCE. Calling consistent (either due to cleanup or error) under
these circumstances causes an attempt to delete the last (or
only) section of the file. If the intrafile position code in the
vclume link associated with the current file section indicates
that the volume is positioned within the header label group, no
data records were ever written. In this case, write TM |is
invoked to rewrite the header label group tape mark, in order to
determine whether or not EOT has been reached.

If BOT 1is detected, control transfers to the data_eot
section of the program (described above) at label
eot_while_closing. A null file section is then recorded, volume
switching occurs, and another null file section's header label
group is recorded-on the new volume. Control is then transferred
back into the <close section of the program at label
continue_close to continue as though EUT had not occurred.

If LOT is not detected, the logical 1/0 procedure is called
at the $close entrypoint. The end-of-data tape mark, LOF trailer
label group, and two end-of-volume tape marks are then written.
The volume is rewound if a close_rewind order was given, the IOCB
is closed, the program unlocks the file and returns.

Entries: tape_ansi_file_cntl_gdebug_on
tape_ansi_file_cntl_$debug_off

These entry points are used for debugging purposes. Most
tape_ansi_file_cntl_ internal procedures print their names upon
entry if a switch is "1"b. 1In addition, every file label read or
written 1is printed (together with 1/0 status) if this switech is
"1"b. Debugging output is directed to user_output.

Usage

tape_ansi_g$debug_on -or- tape_ibm_g$debug_on
tape_ansi_g$debug_off -or- tape_ibm_¢$debug_off

These entry points are normally invoked from command level.
They do nothing but set a static variable to either "0"b or "1"b,
and can be invoked at any time, even before an IOCB is attached.
Procedure trace and 1label printing are valuable tools for
examining defective volumes, as well as for debugging
tape_ansi_file_cntl_ itself.

11-16 ANST



Internal Procedures

In the following procedure descriptions, extensive use is

made of the file chain concept. To review, the file chain
consists of one or more structures (file 1links) allocated in
cseg.chain_area. The 1links are interconnected by forward and

backward pointers. The first link of the <chain, the file data
~link, 1is always allocated. 1If the end of the file set has been
empirically detected, a special link =-- the end of file set 1link
{eofsl) == 1s added to the end of the chain. Each link in the
chain, with the exception of the file data link and the eofsl,
corresponds to a file section. 1In the paragraphs below, a clear
distinction between the logical entity, the file 1link, and the
physical entity, the file section, is not always maintained.

The base of the file chain is pointed to by cseg.fcP, whose
value 1is constant for the 1life of the c¢seg. The file 1link
currently being referenced is pointed to by cseg.flP, whose value
is highly variable.  Each 1link <contains a file link index,
f1.f1X, and a volume link index, fl.vlX. File links are assigned
successive indices beginning with the file data 1link, which 1is
assigned index O. The eofsl, if any, is assigned index =-1. A
positive .index represents the absolute position of a file section
within the file set. The index fl.vlX associates a volume 1link
with each file 1link, the volume link corresponding to the volume
set member on which the file section resides. The variable
fl1.v1X therefore represents the absolute position of a volume
member within the volume set.

Entry: abort_file

This procedure is invoked by consistent when the consistency
code (cc) is 2. It attempts to restore a valid file set
structure by deleting the defective file section. If the
defective section 1is the only section, the file itself is
deleted. The external procedure command_query_ is invoked to
obtain permission to delete the defective section.: If permission
is not granted, two tape marks are written and the entire file
chain 1is 1invalidated. The tape marks can aid a subsequent
retrieval effort using another tape reading mechanisn. The
procedure then exits with the error code
error_table_$invalid_file_set_format.

If permission is granted to delete the defective section,
the file 1link corresponding to the defective section is deleted
and the file chain is "capped" with an eofsl. If the defective
section is the first of the entire file set, initialize_volume is
invoked to write a VOL1 label and dummy file. If the section is

11-19 ANST



tne first (or only) one of its file, but not of the file set, the
velume set is positioned to just after the EUOF trailer 1label
group of the preceding file. If the section is not the first of
its file, the volume set is positioned to just before the EOV
label group of the preceding section, which is then rewritten as
an rub label group. Two tape marks are written, and the error
code error_table_¢$file_aborted is returned.

If any of the above steps fails, a message 1is written on
user_output stating that the file set structure is invalid. The
entire file chain 1s then truncated, and the error code
errcr_table_$invalid_file_set_format is returned.

Entry: another_volume

This function is 1invoked by next_volume when wunable to
determine the name of the next volume set member, if any. The
external procedure command_query_ is invoked to determine whether
the user wishes to terminate processing. If the answer 1s yes,
the procedure returns the value "(0"b. If the answer 1is no,
command_query_ is again invoked to obtain the name of the next
volume set member, along with an optional comment to be displayed
at mount time. The procedure then returns the value "1"b, having
placed the volume name in the global variable answer and the text
of the comment, if any, in the global variable com_text.

Entry: write_permit

This function entry point is called from the output section
of the $open code when the requested output operation would
overwrite unexpired data. The external procedure command_query_
is invoked to obtain the user's permission to overwrite. If
permission 1is granted, the function returns the value "1"b; if
permission is denied, the function returns the value "("b.

Entry: append_file

This function is called by the $open code when an eofsl is
encountered while searching the file chain. It determines
whether or not the attach-open combination can cause a file to be
appended to the file set. A value of "1i1"b indicates that

11-20 ANST7



appending can be performed. If the attach-open does not specify
sequential_output in -create mode, or if -replace was specified,
appending 1s precluded and the procedure returns the value "(Q"b.
If a -number option was not specified, a file sequence number is
computed. If the option was specified, the sequence number must
be one greater than that of the last file of the file set. If it
is, the file can be appended; if not, the function returns the
value "0"b. The expiration date of the file (either specified or
defaulted) 1is checked to ensure that it does not exceed that of
the previous file section (and by analogy, of the file set as a
whole). i it does, a nonlocal exit is taken via the valid_exit
mechanism, with the error code error_table_$invalid_expiration.
Utherwise, maKe_eofsl_real is invoked to change the eofsl into a
normal file 1link for the file about to be appended, and
build_eofsl 1is called to cap the file chain with a new eofsl.
The procedure then returns the value "1"b,

Entry: back_TM

This procedure backspaces over 1 or 2 tape marks, according
to its calling arguments. The procedure tape_ansi_tape_io_$order
is invoked to perform a "bsf" (backspace file) operation. If
this call returns a nonzero status code, the procedure
immediately returns  that code to its caller. If the code is
zero, the volume link intrafile and interfile position variables,
vli.pos and vl.cflX, are adjusted to reflect the new volume
position. If the procedure is requested to backspace more than 2
tape marks, this volume link mechanism does not work correctly.
Having completed the requested operation(s), the procedure
returns.

Entry: build1

This procedure adds a filled-in 1link to the file chain.
build_fl1 is invoked to allocate storage for a new link and 1link
it dinto the chain structure. The internal procedure move_tape_
is then called to position the volume set to the header labels of
the file section corresponding to the new 1link. The 1internal
procedure read_HDE1 is called to read the HDR1 label. If a tape
mark is read instead of a HUR1 label, the end of the file set has
been reached. The 1link index (fl1.fl1X) is therefore set to -1,
making it an eofsl, and reference to it is deleted from its
associated volume link. The procedure then returns.

11=-21 ANST



If a HDR1 label was read, fill_fl_from_HDR1 1is 1invoked to
validate and store the HLR1 information into the link. The
internal procedure read_HDR2 is called to read the HDke2 label, if
any. If this label is present, fill_fl_from_HDR2 1is called to
validate and store its information into the link. The procedure
then returns. If any of the above calls returns a nonzeroc status
code, the procedure immediately returns that code to its caller.
The value of cseg.flP is set to the newly added link.

Entry: buildz

This procedure completes a file 1link by inserting
information obtained from the trailer 1label group of the
associated file section. The procedure move_tape_ is invoked to
position the volume set to just before the trailer label group.
The procedure process_EOX is then called to read the labels and
fill in the file link. 1If either of the above calls returns a
nonzero status code, this procedure immediately returns that code
to its caller. The value of cseg.flP is unchanged.

kntry: build_eofsl

This procedure appends an eofsl to the file chain,
indicating that the end of the file set has been encountered.
Storage for the 1link 1is allocated in the cseg.chain_area, and
fl.nextP is set to point to the newly allocated storage. (The
variable c¢seg.flP must point to the file link associated with
what is, or will become, the last section of the file set.) The
eofsl's backward chain pointer and link index are set. The value
of cseg.flF is not changed.

Entry: build_fl

empty 1li
the file chain, Storage for the 1link is allocated in
cseg.chain_area, and fl.nextP 1is set to point to the newly
allocated link. The variable cseg.flP must point to the 1last
link in the file chain. The new link's backward chain pointer is
set, and c¢seg.flP 1is wupdated to make the new link the current
link. Control then passes to the section of the procedure

described below, under the make_eofsl_real entry point.

This nrocedure is called b v

v
- b D 1A A —e - v aalTNu vy Vg

build1 to add an

nlr &~
i3 vy

IR ¥ 2

11-22 ANST



Entry: make_eofsl_real

This entry point 1is used to change an eofsl into a normal
link. The method used is identical to the initialization portion
of the new link creation process.

The variable fl1.f1X is set to one greater than that of the
previous 1link, as all file chain 1links must have sequential
indices. If the previous 1link corresponds to an initial or
medial section of a multisection file, the current link must
reside on a different volume, the next sequential volume set
member. The volume 1link of this volume is therefore set to
indicate that the file section associated with the 1link is (will
be) both the first and last section on the volume. If the
previous file link corresponds to the last (or only) section of a
file, the new link's volume index is set to the same value as
that of the preceding link, and v1.1fl1X (the last file link index
of the associated volume link) is incremented by one, indicating
that another file section exists (or will exist) on the volume.
The procedure then returns with c¢seg.flP pointing to the new
(current) 1link.

Entry: consistent

This procedure 1s 1invoked when tape_ansi_file_cntl_  is
unable to complete an operation without an error. The action
performed is contingent upon the value of «c¢c,. the consistency
code. If cc = 0, the position of the current volume is
invalidated and the procedure returns. This is the wusual case.
If cc = 1, the volume position is invalidated and truncate_chains
is invoked to delete the current, and subsequent, file links.
This action is taken when an error occurs while modifying the
file chain. If cc = 2, abort_file is invoked to perform the
above operaticns in adcition to physically truncating the file
set. This action is taken when an error occurs while modifying
the file set itself. ‘

Entry: creating_first

This function is invoked to determine whether or not an
attach-open combination specifies the creation of the first file
of a file set. The criteria for a positive determination,
indicated by a return value of "1"b, are:

The opening mode is sequential_output.

The output mode is -create.

The file sequence number, either specified or computed, is 1.
. The -replace option was not specified.

LW N —

11-23 ANST



If any of +the above «criteria are not met, the procedure
returns the value "O0"b.

Entry: desired_check

This procedure is called by the $open section of the program
to validate file chain and volume chain data produced by a
previous invocation of tape_ansi_file_cntl_. If a discrepancy
between the file/volume <chain and the file/volume set is
detected, one attempt is made to resolve the discrepancy. (For
example, an operator inadvertently rewinding a volume could cause
a discrepancy between the "remembered" and actual volume
position, but this discrepancy could be resolved by
repositioning.) . If it cannot be resolved, the cseg is
invalidated and a nonlocal transfer is made to er_exit with the
error code error_table_$invalid_cseg.

The procedure move_tape_ is invoked to position the volume
set to Jjust before the header label group of the desired file
section. The procedure read_HDR1 is then used to read the HDR1
label. Detection of a tape mark at this point invokes the
discrepancy mechanism. If the file set 1s ANSI, the file
identifier and section number from the HDR1 label are compared
with those values stored in the file link. If the file set is
IBM, only the file identifier is compared. If the data differ,
the discrepancy mechanism 1is invoked; if they agree, the
procedure simply returns. If either of the above calls results
in a nonzero status code, the procedure immediately returns that
code to its caller.

Entry: desired_file

This function is called by the $open section of the program

when the file chain 1is Dbeing searched and/or built. The
procedure 1is invoked on each 1link in the chain to determine
whether or not that link corresponds to the desired file. A

positive determination is indicated by the return value "1"b. If
the 1link does not correspond to an initial file section, the
procedure immediately returns the value "0"b. (There is no need
to examine medial/final links of a multisection file once it has
been determined that the initial link does not correspond to the
desired file.)

Three variables are used to make the determination: the
file sequence number, the file identifier specified by the -name
option, and the file identifier specified by the -replace option.
A fourth variable, search_id, is set to a file_identifier value
determined according to the opening mode. It is search_id that

11-24 ANST



actually specifies the file identifier of the desired file, if
known. From one to all of the first three variables «can have
values, in any combination,. As the number of possible valid
combinations is large, the algorithm used to determine desired
file status can best be understood by referring to the code.

If the determination is positive, this procedure sets the
file sequence number in the file data structure (in case it was
not specified) and returns the value "1"b. If the determination
is negative, the procedure checks to be sure that the attach-open
combination does not require the dupliication of a file identifier
within the file set. If duplication 1is indicated, a nonlocal
transfer is made to valid_exit with the error code
error_table_$duplicate_file_id. Otherwise, the procedure returns
the value "0"b.

Entry: extend_check

This procedure is called by the extend_file c¢ode in the
$open section of the program. It determines whether or not the
last block of a file being extended must be rewritten, and if
necessary, manipulates the cseg so that the necessary operations
will be performed at either first data write or close time.

A rewrite operation is necessary only when the last block of
an FB format file contains fewer than the maximum possible number
of records. If the file is found to be in FB format and to
contain at least one block, tape_ansi_tape_io_$order is called to
position the volume back over the last (or only) data block.
(The extend_file code has already caused the volume to be
positioned immediately after the last block, the cseg.lrec
structure to be initialized, etc.) The entry point
tape_ansi_tape_io_$sync_read 1is called to synchronously read the
last block into the 1I/0 buffer reserved exclusively for
synchronous 1/0 calls.

Although the algorithm used to determine whether or not the
block must be rewritten differs for ANSI and IBM (principally due
to ANSI block padding conventions), the test 1is essentially
two-fold. If the block does not contain an integral number of
records (a defect since records should be fixed-length), or if
another record cannot fit in the block, the procedure simply
returns. Otherwise, tape_ansi_tape_1io_$order is invoked again to
backspace over the block. The entry point
tape_ansi_tape_io_$get_buffer is called to assign an asynchronous
I1/0 buffer, and the block is copied into it from the synchronous
buffer. The procedure then returns.

11-25 ANST



The rationale behind the last steps runs as follows. wWwhen
the 1logical record 1/0 procedure is called to write the first
data record, it will find an asynchronous I/0 buffer already

assigned. It therefore places records into that buffer,
effectively adding them to the last block, wuntil the block 1is
full. It then causes the buffer to be written. But the volume

is positioned immediately before the 1last block, so that the
write operation effectively rewrites a "full" last block. 1If the
IOCB is closed without performing an intervening write operation,
the fact that an asynchronous buffer is assigned at close time
causes that buffer to be written. 1In this case, the vrewritten
last block 1is identical to the original. If any of the calls
described in the above paragraphs returns a ncnzero status code,
the procedure immediately makes a nonlocal transfer to er_exit.
In no case is the file itself modified at open time.

Entry: f£ill_XXX1

This procedure 1is <called by all three entries in the
write_HDRs procedure (write_HDRs, write_EUFs, and write_EOQVs).
It formats the first label of a file 1label group as either a
HDR1, EGF1, or LEUGV1 label. As all nonconstant values are
obtained from the file link, they have been derived from existing
file labels and/or specified attach option values. As the format
of ANSI and IBIM XXX1 labels are virtually identical, referencing
only the ANSI label structure suffices for both.

Entry: fill_XXXz

This procedure 1is <called by the same three entries as
fill_XXX1. It formats the second label of a file label group as
either a HDRZ2, EUFZz, or EUVZ label. As all nonconstant values
are obtained from the file link, they have been derived from
existing file 1labels and/or specified attach option values. As
the format of ANSI and IBM XXX2 labels differ markedly, separate
sections of code are necessary.

11-26 ANST



Entry: fill_f1_from_HDR1

This procedure 1is called by buildl1. Once a HDR1 label has
been read (by read_HDR1), fill_fl_from_HDR1 is invoked to
validate the label contents and encode them into the file link.
The validation process can cause dynamic volume initialization,
in the case of creating the first file of a new file set on a
volume that does not begin with the first file of an old file
set.

Because of the differences between ANSI and IBM labels,
separate sections of code are required. Upon entry, a handler
for the conversion condition 1is established. Most errors in
label format can be detected simply by converting from strings to
integers. Control is then passed to either the ANSI or IBM
portion of the procedure.

The ANSI portion initially copies (and converts) a number of
HDR1 fields into the file link. Checks are then performed to
establish volume sequence validity. If the file section number
is 1, and the file sequence number is 1, then the file section is
the first of the entire file set and its file link should be the
first of the file chain; otherwise, an error exit is taken. if
the sequence number is not 1, there are two possibilities.
Either the file link is the first of the chain, or 1t 1is not
(indicating that this is not the first volume processed). If it
is not, then the previous file link must correspond to a file
with an EOV label set. If the link indicates an EOF label set,
the current volume cannot possibly be part of the volume set, and
an error exit is taken. If the file link is the first of the
chain (indicating that this is the first volume processed), a
problem can exist. A file whose sequence number is not 1 cannot
be the first file on the first volume, unless a new file set is
about to be created. The procedure creating_first is invoked to
make this determination. If the determination is negative, an
error exit is taken; otherwise, the volume is reinitialized, its
HDR1 label reread, and the entire ANSI HDR1 processing code is
reexecuted.

If the file section number is not 1 and the file link is the .
first of the file <chain, the new file set creation checking
described above is employed. Otherwise, the section number found
in the previous file link is checked to ensure that sections are
processed 1in correct ascending order. Finally, the volume
sequence checking having been completed, the remainder of the
HDR1 label data is encoded into the file link.

In the 1IBM case, the HLR1 label actually contains a volume
sequence indicator, but does not contain a file section field.
If the volume sequence field is 0, then the HDR1 label must be a
standard dummy HDR1 label which appears at the beginning of a
newly-initialized volume; otherwise, an error exit is taken. If
the HLR1 label is correct and the file link is first in the chain

11-27 ANS57



(indicating that the volume 1is the first processed), the only
valid case is that of creating the first file of a new file set.
creating_first 1is invoked to make this determination. If the
determination is negative, an error exit is taken. If none of
the above ‘tests fail, the file link is filled and the procedure
returns.

If the volume sequence number is nonzero, the HLK1 label
should be complete. The section number in the file link is set,
to 1 if the file link is the first of the chain, otherwise to one
greater than the section number of the previous link., A series
of checks are then pertormed to ensure that the vclume sequence
nunber, file 1link index, and file sequence numbers are
consistent, both among themselves and in relation to the previous
file 1link. If all tests succeed, the remainder of the file link
is filled in and the procedure exits.

Entry: fill_fl1_from_ H!IR2

This procedure is called by build1l if read_HULEK2 succeeded in
reading a HDRz label. It performs some simple validity checks,
and encodes the HULRkz field values into the file link. As the
ANSI and IBM HDRz labels differ considerably, two separate
sections of code are used.

Upon entry, an on unit is established for the conversion
condition. Most label format errors can be detected in this
manner. Control then passes to either the ANSI or 1BM portions
of the procedure.

In the ANSI case, the standard HDR2 fields are first encoded
into the file link. If the system field in the HDR1 1label 1is
nonbliank, the HDRz buffer offset field is encoded. If the system
field matches the 1/0 Module's system code, furthermore, the
system-specific HDRZ fields are also encoded into the file 1link.

In the IBM case, the HDRZ format and block length fields are
encoded and the density field is validated against the volume set
density. If the dataset_position field is zero, the file must
reside on the first volume. The file link's volume 1link index
(fl.v1X) must therefore equal one. If the dataset_position field

is nonzero, the file section cannot reside on the first volume.
The index fl.v1lX must therefore not equal one, and the previous
file 1link must indicate a file section with an EOV label set.

The remainder of the HDRZ fields are validated and encoded.

11-28 ANS7T



Entry: fill_fdhdr2_from_f1l

This procedure is called by setup_for_extend_modify and
setup_for_generate to validate the user-specified file data
against the HDR2 label data, if any, in the file link. The file
data values are overridden by their file link counterparts.

Entry: fill_flhdr2_from_fd

This procedure is called by setup_for_create,
setup_for_extend_modify, and setup_for_generate to provide all
the file link HDR2 data from the file data structure prior to an
output operation. In the case of file creation, default values
are determined for 'those HLURZ data not found in the file data
structure. These defaults are applied to both the file data and
the file 1link. In all other output cases, the lack of a file
data value causes a nonlocal transfer to er_exit with the error
code error_table_g$insufficient_open.

Entry: file_new_section_f1

This procedure is called by write_new_section to initialize

the file link of an about-to-be-written new file section. Most
data are merely copied from the previous file 1link.

Entry: handler

This procedure is called by the any_other on units that are
enabled, either at close or open termination, prior to IOCB
manipulation. Any faults occurring while the IUOCb is in an
inconsistent state must be handled by this procedure.

The variable mask is checked to determine whether or not IPS
interrupts have been masked. If they are, the external procedure
terminate_process_ is called to terminate the wuser's process,
because the IUCB manipulation cannot be completed. If they are
not, the I0CB is still valid, and the -external procedure
continue_to_signal_ is called to propagate the condition.

11=29 ANST



Entry: initialize_permit

This function is called by move_tape_ to query the user for
permission to initialize a volume. It returns a bit indicating
whether or not permission is granted. (The standards provide for
automatic initialization of blank tapes and correctly labeled
expired volumes.) based upon the value of vl.write_VOL1, the
VOL1 label wvalid/invalid indicator, control is passed to one of
an array of labels. bach section 1initializes the particular
query to be issued and transfers to the common code.

Entry: initialize_permita

This function entry point is called by fill_fl_from_HDR1 and
write_new_section to query the user for permission to
reinitialize an unexpired volume. It returns a bit indicating
whether or not permission 1is granted. (The expired/unexpired
status of the first file section on a volume 1is sufficient to
determine the status of the entire volume.) After initializing
the query to be issued, control passes to the common code.

The common code completes the initialization of the
query_info structure and calls the external procedure
command_query_. If the returned answer 1is "yes" (permission
granted), the procedure returns the value "1"b. Otherwise, it
returns the value "Q"b.

Entry: initialize_volune
This procedure is called by abort_file, fill fl_from_HDR1,

move_tape_, and write_new_section to initialize a volume. Volume
initialization consists of writing a VOL1 label and, depending

upon the standard, one or two file 1label - double tape mark
sequences.

The volume's vl.cflX is invalidated and
tape_ansi_tape_1io_gorder is invoked to rewind the volume. An

ANSI or 1IBM VULl 1label is constructed in cseg.lbl_buf A state
variable is set to indicate that either two (ANSI) or one (IBM)
file 1label - double tape mark sequences are to be written. The
procedure write_label is called to write the VOL1 label.

An ANSI or IBM dummy HDR1 label is placed in c¢seg.lbl_buf,
and write_label is <called to write it out. The procedure
tape_ansi_tape_io_ is invoked to write two tape marks. In the
ANSTI case, the same process 1is repeated for an EOF1 label -
double tape mark sequence.

11-30 ANST



The result is that the volume 1s 1initialized according to the
standard:

ANSI VOL1 HDR1 * * E(QF1 * #
IBM VOL1 HDR1 # *
where * represents a tape mark.

An ANS1 volume 1s 1initialized with a wvalid first file
structure, but that an IBM volume is not. If an error occurs
during any step of the initialization process, the procedure
returns whatever error code it received from write_label or
tape_ansi_tape_io_$order.

Entry: lrec_open

This procedure is called by the $open code to perform final
validation of the 1logical record characteristics and to
initialize the <c¢seg for file opening. Validation consists of
checking the record and block lengths in their contextual setting
(i.e., depending upon file set standard, opening mode, and record
format). If either the record length or block length is invalid,
a nonlocal transfer 1s made to er_exit with error code
error_table_¢$invalid_record_length or
error_table_$invalid_block_length, respectively. In the IBM
case, the encoding mode is also validated and if it is binary, a
similar transfer is made with the error code
error_table_$invalid_encoding_mode.

The cseg is initialized. The procedure
tape_ansi_tape_io_$open is invoked to initialize the tseg buffer
management strategy. The variable <cseg.lrec.blkent is set to
zero in the input case and to fl.blkecnt in the output case. In
all output modes but extend, fl.blkecnt contains zero. 1In extend
mode, it contains the current block count. This convention
ensures that the block count eventually written in the EOF1 or
EOV1 label (taken from cseg.lrec.blkcnt) reflects the cumulative
block count resulting from an extend operation.

Entry: move_to_EUD

This procedure 1is called by the extend_file portion of the
$open code to position the volume set to immediately beyond the
last data block of the file. The file chain is scanned starting
with the current link (corresponding to the first file section)

11-31 ANDST



until the 1last file section link is found. (The extend_chain
portion of the $open code has already built the file <chain to
that last 1link, if it did not already exist.) The procedure
move_tape_ is called to position the volume set to the trailer
labels of that section, and back_TM is called to backspace over
the end-of-data tape mark. These steps correctly position the
volume set for file extension. If either of the above called
procedures returns an error code, a nonlocal transfer is made to
er_exit.

pntry: move_tape_

This procedure is responsible for volume set positioning and
implements the I/0 Module's triadic (volume index, file section
index, intrasection position) position specification mechanism.
It is the only internal procedure that itself contains internal
procedures, and is therefore documented 1in the style of an
external procedure.

Usage call move_tape_ (vX, fX, posit, ecode);

1. vX is the index of the volume link corresponding
to the desired volume. (Input)

2. X is the index of the file 1link corresponding
to the desired file section. (Output)

3. posit is the intrafile section position code:
0 - HDR1 label
1 - first data block
2 - EOF1 or EUV1 label
(Input)

4, ecoude is a standard status code. (Output)

The variable vl.rcp_id 1is checked to determine whether or
not the desired volume 1s currently mounted. If it 1is not
mounted and the number of assigried drives (cseg.nactive) equals
or exceeds the wuser-specified maximum (cseg.ndrives), the
internal procedure find_candidate 1is invoked to determine the
volume index of a volume that can be demounted. The procedure
tape_ansi_mount_cntl_$remount is then called to demount the
volume located by find_candidate and mount the desired volume on

its drive. If the number of assigned drives is less than the
user-specified maximum, tape_ansi_mount_cntl_¢$mount is invoked to
assign a new device and mount the desired volume. Should this

request for new device assignment cause the process device limit
to be exceeded, move_tape_ recovers automatically by performing

the find_candidate/tape_ansi_mount_cntl_$remount sequence
described above.

11-32 ANST



Wwhether or not the desired volume was mounted when
move_tape_ was 1invoked, it 1is mounted at this point. The
volume's drive number (vl.rcp_id) and IPC event channel id
(vl.event_chan) are placed in the tdcm_ tseg portion of the cseg.
This step makes known, independent of the volume link index, the
parameters that determine the device currently being used by the
1/0 Mcdule. When tape_ansi_tape_io_ is replaced by an
rcp_/tape_ioi_ interface, the tseg will be obviated; however,
the current device parameters should still be maintained outside
of the vclume 1link, 1in order to provide for device /0
independent of the file chain/volume chain mechanism.

The status of the VOL1 volume label is determined by
checking vl.write_VOL1, which was set by tape_ansi_mount_cntl_
when the volume was mounted. This variable specifies whether or
not a VOL1 label need be written, and if so, why. A nongzero
value 1indicates that a new label should be written. If the
opening mode (cseg.open_mode) is for sequential_input, the need
to write a label 1is an unrecoverable error; 1i.e., the tape's
VOL1 1label characteristics preclude its being processed as
specified by the attach description. In this case, the external
procedure ioca_ is invoked to print an explanatory message yvia
user_output, normally directed to the user's terminal. The
message text varies with the value of vl.write_VOL1, explicitly
specifying the discrepancy detected between the attach
description and the actual volume characteristics. The procedure
then exits with the error code error_table_$uninitialized_volume.

1f, however, the opening mode is for sequential_output, the
volume can be (re-)initialized, contingent upon the successful
completion of a series of checks. If vX, the volume 1link index
parameter, specifies the first volume of the volume set, then the
function creating_first 1is 1invoked. If the attach description
specifies creation of other than the first file of the file set,
the operation 1is invalid because (re-)initializing the first

volume set member effectively truncates the file set. An
explanatory message 1is 1issued as described above, and the
procedure exits with the error code
error_table_$uninitialized_volume. If wvl.write_VOL1 1indicates

that the tape is blank, no further checks need be performed;
otherwise, the procedure initialize_permit is invoked to query

the user for permission to initialize. If permission is denied,
the procedure exits with the error code
error_table_$uninitialized_volume. If permission is granted, the

procedure initialize_volume is called to initialize the volume.
If a nonzero error code is returned, the procedure exits with
that code; otherwise, vl.write_VOL1 is set to 0, indicating that
the volume no longer requires (re-)initialization.

The procedure begins to position the tape. The automatic
variable can_retry, initialized to "O"b upon procedure

11-33 ANST



activation, is set to "1"b. Wwhen an error 1is detected within
move_tape_, control always passes to the error exit code labeled
error. This code invalidates the volume position (vl.cflX) and

tests can_retry. If it is "1"b, it is set to "0O"b and control
passes to the label retry, which restarts the positioning
operation. If it 1is already "0"b, the procedure returns with
whatever error code 1s set. This algorithm provides one

opportunity to resynchronize a volume's position with its volume
link position data.

If the volume position is unknown or in the CL/UVL label

set (vl.eflX = (), the internal procedure move_to_first_HDK is
invoked to position the volume to the first HDR1 label on the
tape. (This procedure call 1is labeled retry.) Once this has

been done, vl.cflX is set to the index of the first file section
on the volume (v1.fflX). The 1intrafile position indicator
(vl.pos) is also known, and is set to indicate the HDR 1label
group.

If tX, the file 1link 1index parameter, 1is greater than
vl.cflx, move_tape_ must position forward a calculated number of
tape marks. Positioning 1is done by the internal procedure
move_forward. If t'X is less than vl.cflX, the internal procedure
move_backward is invoked, and it fX is equal to vl.cflX, either
move_forward or move_backward is invoked depending upon the value
of vl.pos. Even 1if wvl.pos 1is equal to posit, the intrafile
position parameter, move_backward is invoked to ensure that the
tape 1s positioned at the initial block of the desired position
and not at an indeterminate medial point. vl.cflX and vl.pos are
then set to fX and posit, respectively, 1indicating that the
requested positioning operation has been successfully performed,
and the procedure returns. Should an error occur during any of

the above steps, a transfer to error is made with whatever error
code has been detected.

Internal Procedures

Entry: find_candidate

This procedure searches the volume chain for a mounted
volume to be demounted, allowing the desired volume to be mounted
in 1its ©place. The search goes from the first volume set member
to the volume preceding the desired volume, and then from the

last volume chain entry to the volume link fcllowing the desired
volume. The first mounted volume ends the search. The algorithm

11-24U
Pi=35h

o>
=
n
=1



results in minimum mounting/demounting if volume processing is
performed in the usual manner, i.e., sequentially, from first to
last volume set member., If no mounted volume 1is found, the
procedure performs a nonlocal transfer to error with the code
error_table_$invalid_cseg. This is done because find_candidate
is never invoked unless move_tape_ has determined that a
candidate for demounting does exist, by comparing c¢seg.ndrives
with cseg.nactive.

Entryv: move_to_first_HLR

This is the procedure that actually implements tape
positioning by issuing calls to tape_ansi_tape_io_$order. It
contains the entry points move_forward and move_backward, as well
as the entries move_to_first_UHL and move_to_first_UTL, neither
of which is currently used.

The entry point tape_io_g$order 1is <called to rewind the
volume. The procedure read_label is invoked to read a label, and
the c¢all 1is repeated wuntil a 1label ©beginning with HDR is
encountered. (This call is labeled HDR_search.) The entry point
tape_io_$order is called again to backspace to the beginning of
the label, and the procedure returns.

Entry: move_forward

This entry point calls tape_ansi_tape_io_g$order to forward
space over as many tape marks as 1is necessary to perform the
desired positioning operation.

Entry: move_backward

This entry calls tape_ansi_tape_io_$order to perform all but
one of the Dbackspace file operations necessary to correctly
position the tape. The last such operation is also performed by
tape_ansi_tape_io_g$order, but the error code is specially checked
to determine whether or not the volume was left positioned at
beginning of tape. If it was, control transfers to HDK_search to
effect positioning to the HLR1 label, as opposed to the VOL1
label. (therwise, tape_ansi_tape_io_$order is invoked to forward
space over the last tape mark encountered, leaving the tape
correctly positioned.

11-35 ' ANDT



Entry: next_volune

This function is called by process_kUX, as well as by the
mainline entry data_eot, to determine whether or not the next
volume set member already exists or can be created. A return
value of "1"b indicates that it can.

1f the volume link index of the current file link (fl.v1lX)

is less than the highest volume chain index (cseg.vel), the
procedure immediately returns "1"b because the next volume is
already known. If fl.vlX is 64, the implementation restriction

on the maximum number of volumes, then the external procedure
ica_ is called to issue an explanatory message and the procedure
returns "0"b. This case is not treated as an error in the usual
sense, because file set processing can and must be continued as
though no other volume were available.

hHaving derived no information from the volume chain, the
procedure examines the current file link to determine whether or
not the name of the next volume can be extracted from the trailer
label set. If it cannot, another_volume is invoked fo query the
user for the name of the next volume, if any. Should both of the
above fail to prcvide the next volume, the procedure returns
"Ovp. If either does, c¢seg.vcN is incremented to reflect the
addition of a new volume link and vl_init is called to initialize
it. The volume name is then set in the new volume link, and the
procedure returns "1"b. The algorithm ensures that a volume name
entered into the volume chain (from the attach description, etc.)
can override the one specified in an EOVZ label, if the one field
exists.

Entry: process_EGUX

This procedure 1is <called by build2, as well as by the
mainline entry data_eof, to read the trailer label set, validate
its contents, and store information in the file 1link.

An on unit for the conversion condition is first established
that transfers control to an error exit, bad_EOX, which returns
the error code invalid_label_format. The procedure read_label is
invoked to read the first trailer label. If this read encounters
a tape mark, the procedure returns the error code
error_table_$invalid_file_set_format because either an EOF1 or
EOV1 label must be present. The file link trailer type (fl.eox)
is set according to whether the label read is an EOF1 or an EOVI1,.
This wvariable indicates whether or not volume switching is to be
performed upon detection of a tape mark (indicating end of file
section) while reading data, 1i.e., whether or not the file
section is the last (or only) section of the file. If the label

11-36 ANS7



is neither EOF1 nor EOV1, the procedure returns the error code
error_table_$invalid_file_set_format.

Data, such as generation version number and block count, are
extracted and stored in the file link. The procedure read_label
is invoked again to read the second trailer label, if any. If
the read operation encounters a tape mark, no LOF2 or EOV2 1label
exists, tape_ansi_tape_io_$order 1is therefore called to space
back into the trailer label set. If the first label was an EQF 1,
processing is complete and the procedure returns. If the first
label was an EQOV1, another file section must reside on the next
volume. The procedure next_volume is <called to determine 1its
name, 1if possible. The volume name, if found, is stored in the
file link and the procedure returns. Otherwise, the procedure
returns the error code error_table_$no_next_volume.

If a second trailer label is present, it must be either a
UTL or of the same type as the first trailer 1label. An UTL is
treated as though no second label were read at all. If the types
differ (e.g., EUF1 and EOVez), the procedure returns the error
code error_table_¢$invalid_file_set_format. If the types match
and the trailer set is EOF, the EOFZ2 label need not be processed
(as it is an exact duplicate of the HDR2) and the procedure
returns.

If the second label is an EuUVZ, indicating an AiSI file set,
and the label contains the name of the next volume, that name is
stored in the file link and the procedure returns. If any of the
above are not satisfied, next_volume is 1invoked to attempt to
determine the name of the next volume. The name, if one can be
determined, is stored in the file link and the procedure returns.
Utherwise, the error code error_table_$no_next_volume is
returned.

Entry: read_HDR1

This procedure 1is called by buildl, desired_check, and

fill _fl1_from_HDR'?'! to read and validate a HDR1 label. The
parameter eofsw 1is first set to "O"b. This variable indicates
whether a tape mark, as opposed to a HDR1 label, 1is read. The

procedure read_label is invoked to read a label into
cseg.lbl_buf. If a label is successfully read, it must be a HDR1
label. Otherwise, the error code
error_table_$invalid_file_set_format is returned. If a tape mark
is detected, the volume 1link intrafile position indicator
(vl.pos) is incremented to reflect the tape mark crossing. The
procedure back_TM is called to backspace over the tape mark, the
eofsw parameter is set to "1"b, and the procedure returns. A
tape mark where a HDEK1 label would otherwise be found indicates
the logical end of the volume. In addition, since read_HDLR1 is

11=-37 ANBT



never 1invoked once an kOUV trailer set has been processed on a
volume, finding a tape mark also indicates the logical end of the
file set. If an error is detected while reading or backspacing,
the procedure returns that error code.

kntry: read_HUKZ2

This procedure 1s called by build?l to read and validate a
HDRZ label. The file link variable fl.HDR2 is first set to "0O"b.
This variable indicates whether or not the file section contains
HUR2 (and, by implication, EOFz or EOV2) labels, and therefore
whether or not the file attributes (block length, record format,
etc.) can be obtained from the file itself. The procedure
read_label is invoked to read a label into c¢seg.lbl_buf. f a
HDKk2 1label 1is read, fl.HDR2 1is set to "1"b. Any other label
(i.e., UHL label) is ignored. If a tape mark is detected, vl.pos
is incremented and back_TM is called to backspace over it. The
lack of a HDRZ2 label is not an error.

Entry: read_label

This procedure is called by move_tape_, process_EUX,
read_HDK1, and read_HLRz to read a file or volume 1label into
cseg.lbl_buf. The entry point tape_ansi_tape_io_$sync_read is

called to synchronously read one tape block. If a block 1is
successfully read, its length is checked to determine whether or
not the block could be a 1label. A 1length of 1less than &0

characters causes the procedure to return the error code
error_table_¢$invalid_label_format. If the block length is &0
characters or more, it is moved from the synchronous I/0 buffer
to cseg.lbl_buf. If the file set is IBM standard, the external
procedure ebecdic_to_ascii_ 1is called to perform character code
conversion. :

Entry: write_label

This entry point 1is called by initialize_volume and
write_HDRs to write a file or volume label from cseg.lbl_buf.
The label is first moved from cseg.lbl_buf into the synchronous
1/0 buffer. If the file set 1is 1IBM standard, the external
procedure ascii_to_ebecdic_ is called to perform character code
conversion. The entry point tape_ansi_tape_io_$sync_write is
then invoked to synchronously write the label.

11-38 ANST



Entry: setup_for_create

This procedure is called from the $open code to initialize a
file link preparatory to file creation. Since the file 1link
describes a new entity, it nust be completely filled in from
user-specified data, invariable creation-specific values, and (if
necessary) a set of file attribute defaults. The HDR1 portion of
the file link data is initialized in part from the file data
structure and in part from constants within the procedure itself.
The procedure fill_flhdr2_from_fd is then invoked to complete the
HDRZ portion of the file link.

Entry: setup_for_extend_modify

This procedure is called from the $open code to initialize
the file data structure preparatory to file extension or
modification, and to modify and/or complete the file link. The
file name and sequence number are set 1n file data from
fl.file_id and fl.sequence, respectively, in case one or the
other was not explicitly specified in the attach description. If
the file set is ANSI standard, the file link version number 1is
incremented to reflect +the pending operation. The file link
creation date is set to the current date. If the operation 1is
file modification, the current file block count (fl.blkent) is
zeroed, because modification truncates the file. Otherwise, the
block count 1is left as 1is, because the operation of file
extension leaves the file's current contents unaltered and the
block count must therefore be incremented from its initial value.

The procedure fill_fdhdr2_from_fl 1is 1invoked to fill the
HDRZ portion of the file data structure from the file link. This
step ensures that any file attributes specified 1in the attach
description do, in fact, match the attributes recorded in the
HDR2 label, if any. The procedure fill_flhdr2_from_fd is invoked
to fill the HDRZ portion of the file 1link from the file data
structure, without applying any defaults. This step ensures that
the pending operation 1is not performed unless a complete,
consistent attribute set has been composed from the attach
description, the HDR2 label (if any), or both.

11-39 ANST



kntry: setup_for_read

This procedure 1is called from the $open code to initialize
or complete a file data structure preparatory to reading a file.
The file 1link is never changed to conform to the file data, and
the two can in fact differ as regards +the file attributes. A
file can therefore be processed according to a more or less
arbitrary set of file data (user-specified) attributes, while
preserving the file's actual characteristics in the file link.

The file identifier and sequence number are first copied
from the file 1link into the file data structure, in case one or
the other was not specified in the attach description. If the
record format was user-specified (fd.format "= 0), the record
b ing attribute (fd.blocked) is also known. 1If they are not
specified, the record format and blocking attribute must be
ocbtained from the HDRZ2 portion of the file link. The block
length (fd.blklen) and record length (fd.reclen) are similarly
checked and, if necessary, their values are set from the file
link. In the case of the record length, however, defaults can in
some cases be applied when the file link contains no information.
Under all other circumstances, failure of the file link to supply
a record format, record length, or block length not specified in
the attach description results in a nonlocal transfer to er_exit,
with the error code error_table_$insufficient_open.

If the file set is ANSI, the block prefix length (fd.bo) is
set from the file 1link because this value, if present, is

invariant. If the file was written by the 1I/0 Module, the
blocking attribute and character encoding mode (fd.mode) are also
set from the file 1link, 1if not wuser-specified. If neither

user-specified nor obtainable from the file link, they are set to
the ANSI defaults, blocked and ASCII, respectively.

For an IBM file set, the blocking attribute and encoding
mode are set to blocked and EBCDIC, respectively, if not
user-specified.

Entry: setup_for_generate

This procedure is called from the $open code to initialize
the file data structure preparatory to file generation, and to
modify and/or complete the file link. The file name and sequence
number are set in the file data from the file link, in case one
or the other was not specified at attach time. The file 1link
generation number (fl.generation) 1is incremented by 1, modulo
10000. (The largest possible value 1is 9999.) The generation
version number is set to 0, indicating a new generation, and the
creation and expiration dates (fl.creation and fl.expiration) are

11-40 ANST



set from the file data. The procedure fill_fdhdr2_from_fl is
invoked to attempt to fill the HDR2 portion of the file data from
the file 1link. This step -ensures that any file attributes
specified in the attach description do, 1in fact, match the
attributes recorded in the HDR2 label, if any. The procedure
fill_flhdr2_from_fd is called to fill the HDR2 portion of the
file 1link from the file data, without applying any defaults.
This step ensures that a complete, consistent attribute set 1is

composed from the attach description, the HDR2 label (if any), or
both.

Entry: truncate_chains

This procedure is called from the $open code preparatory to
creating, extending, modifying, or generating a file. Since the
act of writing physically truncates the file set, the file and
volume chains must be correspondingly truncated. This procedure
is also invoked by consistent and abort_file to perform the same
function should an output operation be abnormally terminated
during opening or closing.

A cleanup handler is first established so that interrupting
the truncation process does not 1leave the chains in an
inconsistent state. The file <chain 1is truncated immediately
following the link pointed to by cseg.f1lP. This file 1link is
referred to as the desired link. The value of cseg.flP is saved,
so that it can be reset to point to this 1link once the truncation
process 1is complete. The desired link at that point is the last
link in the chain. If, therefore, the desired 1link 1is already
the last 1link, no action need be taken and the procedure simply
returns. Otherwise, c¢seg.flP is set to point to the next link in
the chain (cseg.flP = <c¢seg.flP =-> fl.nextP). This 1link is
referred to as the truncation link. The forward chain pointer in
the desired 1link (cseg.flP -> fl.backP =-> fl.nextP) is nulled,
logically truncating the file chain. However, the truncation
link as well as all following links (if any) are still physically
allocated in c¢seg.chain_area.

If the truncation link is not an eofsl, its file link index
(f1.f1X) occurs in the range of its associated volume 1link (vl
(f1.v1X).ffl1X << fl.flXx < vl (fl.v1X).1f1X). This volume link
must therefore be either partially or completely truncated;
i.e., reference to the truncation link and all subsequent file
links (if any) must be removed. In addition, all subsequent
volume 1links must be entirely truncated. Since an eofsl has no
associated volume link, truncating the eofsl does not affect the
volume chain at all. If the truncation link corresponds to the
first file section on a volume (fl.f1X = vl (fl.f1X).ffl1X), that
volume 1link is entirely truncated (v1.fflX, vl.cflX, v1.1flX =
0). Otherwise, the volume link must be partially truncated. The

11-41 ANST



last file link index for the volume (vl (fl.vlX).1flX) is set to
the desired file 1link index (vl (fl.v1X).1flX = f1.f1X - 1),
since that is the last file link on the volume. In either case,
all subsequent volume links, if any, are entirely truncated.

tecause the critical portion of the procedure is conplete,
the cleanup handler is reverted. Beginning with the truncation
link, it and all subsequent 1links (if any) are freed from
cseg.chain_area. <c¢seg.flP is restored to point to the desired
link.

Entry: vl_init

This procedure is called by next_volume to initialize a new
volume link. Every member of the volume 1link structure except
the volume name (vl.volname), is set.

Entry: vname

This function 1is called by another_volume to validate and
normalize a user-supplied volume name. If the volume name 1is
longer than 6 characters, it is invalid and the procedure returns
"O"b., If it is exactly 0 characters, the procedure returns "1"b.
If it 1is less than 6 characters, the name is normalized and the
procedure returns "1"b. If the name is entirely numeric, it 1is
normalized by right justifying and padding on the left with zeros
to length six. If not entirely numeric, it is normalized by left
justifying and padding on the right with blanks to length six.

Entry: write_HDRs

This procedure is called by the $open code to write HDR1 and
HDK2 labels as part of the file creation and generation
processes. 1t is also called by write_new_section to write the
header 1labels for a new file section. It sets the file link
trailer label type (fl.eox) to 0, indicating that the file
section contains (as of yet) no trailer labels, and transfers to
the common body of code.

11-42 ANST



Entry: write_EUFs

This entry point is called by the $close code to write an
EOF trailer 1label set once file processing is complete. It is
also called by abort_file to overwrite an EQV trailer set with an
EOF trailer set; thus truncating one or more defective file
section(s). It sets fl.eox to 1, indicating an EOF trailer set
and that the file section is the last (or only) of the file. It
then transfers to the common body of code.

Entry: write_EOVs

This entry point is called by the mainline data_eot code to
write an EQV trailer label set once physical end of tape has been
detected by the logical record I/0 procedure. It sets fl.eox to
2, 1indicating an EOV trailer set and that the file section is
medial.

The common code performs the actual 1label writing by
invoking write_label. The procedure write_HDRs always writes a
HDRZ label, but that write_EOFs and write_EOVs will only write an
EOF2 or EQVZ2 if the file's header label set includes a HDR2.
This practice ensures that the header and trailer label sets of
files not created or generated by the I/0 Module  remain
symmetric. The physical end of tape is ignored, so that volume
switching is only driven by EOT during logical record 1I/0
operations.

Entry: write_TM

This prcocedure is called by numerous internal procedures to
write either 1 or 2 tape marks, adjusting the volume 1link
intrafile position indicator (vl.pos) accordingly. The entry
point tape_ansi_tape_io_$order is invoked to perform the actual
tape mark write operation(s). For each tape mark written, vl.pos
is 1incremented. This is done according to the rules of modulo 3
arithmetic, and an overflow causes the current file 1link index
(vl.cflX) to be incremented. (There are only 3 possible
intrafile positions.)

11-43 ANST



pntry: write_new_section

This procedure is called by the mainline data_eot code to
add a new file section to a file. The variable c¢seg.flF is set
to point to the next file link, which mwmust be an eofsl, and
make_eofsl_real is invoked to establish a file/volume 1link
interrelationship. The procedure build_eofsl is called to append
another eofsl to the file chain, and move_tape_ 1is called to
position the volume set preparatory to writing the new section's
neader iabels.

pefore the labels can be written, however, the first HDR1
label on the volume must be checked to ensure that the volume's
current contents are expired. If this 1is not the case,
initialize_permitA is invoked to query the user for permission to
overwrite. If permission 1is denied, the procedure returns the
error code error_table_g$unexpired_volume. UOtherwise,
initialize_volume 1s invoked to reinitialize and move_tape_ is
called to reposition for writing.

The procedure fill_new_section_fl is called to fill the file
link with data derived from the previous section's 1link, and

write_HDRs is called to write the new header label set. The
procedure write_TM is invoked to write one tape mark.

MODULE: tape_ansi_nl_file_cntl_

This module performs the iox_$open and iox_$close functions
for IBM NL (nonlabeled) file sets. 1In addition, it performs
end-of-file and end-of-volume processing for
tape_ansi_ibm_lrec_io_, as well as beginning-of-file and
end-of-file positioning for tape_ansi_position_.

Entry: tape_ansi_nl_file_cntl_$open

This entry point performs the iox_$open function. It
positions to the attached file, mounts and/or demounts volumes as
needed, and maintains the volume chain.

11-44 ANS5T



Usage

del tape_ansi_nl_file_cntl_$open ext entry
(ptr, fixed bin, bit (1) aligned, fixed bin (35));

call tape_ansi_nl_file_cntl_$open (iocbP, mode, mbz, code);

See the description of tape_ansi_file_cntl_ for a discussion of
the arguments.

If code is nonzero, an error has occurred and the 1/0 switch
is not open. The following 1is a nonexhaustive list of the
error_table_ codes that can be returned. See the description of
tape_ansi_file_cntl_ for a discussion of their meanings.

file_aborted

file_busy
incompatible_attach
incompatible_encoding_mode
insufficient_open
invalid_block_length
invalid_cseg
invalid_file_set_format
invalid_record_length
noalloc

no_file
no_next_volume
uninitialized_volume

INTERNAL LOGIC

The cseg pointer 1is obtained from the ICCB. 1If either
cseg.invalid or cseg.file_lock is "1"b, an error exit 1is taken
with the error code error_table_$invalid_cseg or
error_table_$file_busy, respectively. 4 cleanup handler is
established to ensure that neither the c¢seg nor the file is left
in an inconsistent state. The opening mode is validated against
the attach description. If a discrepancy exists, the procedure
returns the error code error_table_$incompatible_attach.

The file link pointer (cseg.flP) is set to null, and the
file data volume index (fd.v1lX) is initialized to 1, for the
first (or only) volume. The file chain is not wused by this
procedure, since it does not maintain a "history" of the file
set. All data used to process a particular file are maintained
in the file data structure. This being the case, it is necessary
to index into the volume chain wusing a file data variable
(fd.v1lX), as opposed to the corresponding file 1link variable
(f1.v1X), which is undefined.

11-45 ANST



If the opening 1is for sequential_input, the record format
and block length must be specified. For all record formats
except U, the record length must also be specified. The absence
of any of the above attributes causes the procedure to return the

error code error_table_$insufficient_open. If the character
encoding mode is not specified, its default is EBCDIC. The
procedure move is invoked to position to the file. If an error
occurs, the procedure transfers to the label er_exit with
whatever error code was returned. The code at er_exit calls
consistent before returning to ensure that no inccnsistencies
exist in the file or the cseg. If the positioning is successful,

lrec_open is called to perform final consistency checks on the
file attributes and to initialize the logical record I/0 control
structure (cseg.lrec). If no error has been detected, the I/0
switch is opened and the procedure returns.

If the opening 1is for sequential_output, the output mode
must be create. (Nonlabeled files <cannot be attached for
extensicn, modification, or generation.) If the record format is
not specified, 1its default is VE. If the block length is not
specified, its default is ©8192. An unspecified record length
defaults to the block length if the record format is F or FB, to
818 if the record format is V or VB, or to 1044580
(sys_info_$max_seg_size * 4) if the record format is VS or VBS.
The default encoding mode 1is LEbCDIC. The procedure move is
called to position to the desired file. If an error occurs, the
procedure transfers to er_exit with whatever error code was
returned. The procedure lrec_open is called to perform the final
attribute consistency checks and to initialize the logical record
I/0 structure. If this step succeeds, the 1/0 switch is opened
and the procedure returns.

~

Entry: tape_ansi_nl_file_cntl_g$data_eof

This entry point is called by tape_ansi_ibm_lrec_io_ when a
tape mark 1is detected in the course of a read operation. It
determines whether the EOF indicates the end of the file or
merely the end of a file section. In the latter case, volume
switching is performed.

Usage

del tape_ansi_nl_file_cntl_g$data_eof ext entry
(ptr, fixed bin {(35));

call tape_ansi_nl_file_cntl_$data_eof (iocbP, code);

If code is neither zero nor error_table_$no_next_volume, an
error has occurred and the 1/0 switch is closed. The latter code
indicates that no additional volumes are available, and that
further 1/0 activity should be prohibited.

o>

11-46



INTERNAL LOGIC

The c¢seg pointer is obtained from the IGCB. It 1is not
necessary to check either cseg.invalid or cseg.file_lock. The
former must be "O"b, or tape_ansi_ibm_lrec_io_ could not have
been invoked, and the latter must be "1"b because it was invoked.
The consistency code (cc) is set to zero and a cleanup handler is
established.

Since the caller has already read over a tape mark (into the
next file), the volume 1link's current position indicator
(vl.cf1X) must be incremented. (The variable vl.cflX does not
strictly represent an index into the file chain, but rather the
actual physical file number. The variable vl.pos 1is not used
because there are no intrafile positions within a nonlabeled
file, and v1.fflX and v1.1f1lX are not used because there 1is no
file <chain wupon which to base a range of indices.) The entry
point tape_ansi_ibm_lrec_io_$close is called to terminate I1/0 on
the file section, synchronize the tape position, ete. If an
error occurs during this process, consistent is invoked and the
I/0 switch is closed.

To read a multivolume file, the user must specify every
volume set member in the attach description. Hence, determining
whether the file section is the last (or only) one of the file
set (and therefore whether or not volume switching is required)
is a minor task. If the current volume index (fd.v1lX) is equal
to the index of the last volume (cseg.vcN), the file section 1is
terminal and the procedure returns the status code
error_table_¢$end_of_info. Otherwise, move is called to position
to the next file section, which is by definition the first file

on the next volume. If an error occurs while positioning,
consistent is invoked and the I/0 switch 1is closed. If
positioning is successful, the procedure returns to

tape_ansi_ibm_lrec_io_ to resume reading data.

Entry: tape_ansi_nl_file_cntl_¢$data_eot

This entry point 1is called by tape_ansi_ibm_1lrec_io_ when
end of tape is detected in the course of a data write operation,
and by tape_ansi_control_ 1in response to an "feov" order. It
switches to the next volume of the volume set, if any.

Usage

dcl tape_ansi_nl_file_cntl_g$data_eot ext entry
(ptr, fixed bin (35));

call tape_ansi_nl_file_cntl_g$data_eot (iocbP, code);

11-47 ANST



If code is neither zero nor error_table_$no_next_volume, an
error has occurred and the 1/0U switch is closed. The latter code
indicates that no additional volumes are available and that
further 1/0 activity shouid be prohibited.

INTERWAL LOGIC

The cseg pointer 1is obtained from the IUCB. For the
reasons stated above, neither c¢seg.invalid nor cseg.file_lock
need be checked. The procedure next_volume is 1invoked to

determine whether or ‘'not another volume 1is available for
continued processing. If not, the procedure returns the status
code error_table_3sno_next_volume.

If a vclume 1is available, cc is set to 2 and a cleanup
handler 1s established. This handler prevents leaving an
inconsistent file section on the volume set should the procedure
be prematurely terminated. The procedure write_TM is invoked to
write a single tape mark, which logically terminates the file
section. If an error occurs, consistent 1s invoked and the I/u
switch is closed. Writing the tape mark leaves the file set in a
consistent state. Therefore, the consistency code can be reset
to 0, so that the file section is not truncated should an error

occur 1in a subsequent step. The procedure move is called to
position to the beginning of the next volume, where the new file
section 1is recorded. If an error occurs, consistent is invoked

and the 1/0U switch is closed. If positioning is successful, the
procedure vreturns to ‘tape_ansi_ibm_lrec_io_ to resume writing
data.

Entryv: tape_ansi_nl_file_cntl_g¢beginning_of_file

This entry point 1is called by tape_ansi_position_ to
implement the -1 (position to beginning of file) operation.
Usage

del tape_ansi_nl_file_cntl_g¢$beginning_of_file
ext entry (ptr, fixed bin (35));

call tape_ansi_nl_file_cntl_$beginning_of_file
(iocbP, code);

If code is nonzero, an error has occurred and the I/0 switch
i3 closed.

11-48 ANST



INTERNAL LOGIC

The c¢seg pointer 1is obtained from the IO0OCB. Neither
cseg.invalid nor cseg.file_lock need be checked. The variable cc
is set to 0 and a cleanup handler 1is established that calls
consistent and closes the I/0 switch. The procedure move is
invoked to position to the first (or only) file section. If an
error ccurs, consistent is called and the I/0 switch is closed.

Entry: tape_ansi_nl_file_cntl_$end_of_file

“ris entryl point 1is called by tape_ansi_position_ to
implement the +1 (position to end-of-file) operation.

Usage

del tape_ansi_nl_file_cntl_g$end_of_file
ext entry (ptr, fixed bin (35));

call tape_ansi_nl_file_cntl_$end_of_file
(iocbP, code);

If code is nonzero, an error has occurred and the I/0 switch
is closed.

INTERNAL LOGIC

The c¢seg pointer 1is obtained from the I0CB. Neither
cseg.invalid nor cseg.file_lock need be checked. The variable cc
is set to 0 and a <c¢leanup handler 1is westablished that calls
consistent and closes the I/0 switch. :

If the file is already positioned past the end-of-file tape
mark (as the result of tape_ansi_ibm_lrec_io_ read operations),
tape_ansi_tape_io_g$order is invoked to position immediately after
the 1last data block (immediately preceding the tape mark). The
current position indicator (vl.cflX) is decremented to reflect
the new position, and the procedure returns.

Otherwise, tape_ansi_ibm_1lrec_io_g$close is called to
synchronize the tape position before performing any other
positioning operation. If the current volume is not the last of
the volume set (fd.vlX "= cseg.veN), the current file section is
not the last of the file. The procedure move is therefore

11-4¢6 ANST



invoked to position to the last section, which by definition must
be the first file on the 1last volume. The entry point
tape_ansi_tape_io_$order is 1invoked twice: first, to position
immediately after the end-of-file tape mark, and second, to
backspace immediately before it.

It any of the above procedure calls results in an error,
consistent is invoked and the I/0 switch is closed.

Entry: tape_ansi_nl_file_cntl_g$close

This entry point performs the iox_$close function. In the
read case, it merely terminates 1logical record I/0 in a
consistent manner and closes the I/0 switch. 1In the write case,
it writes the end-of-file and end-of-file-set tape marks and then
closes the I/0 switch.

Usage

del tape_ansi_nl_file_cntl_$close ext entry
(ptr, fixed bin (35));
call tape_ansi_nl_file_cntl_$close (iocbP, code);

If code 1s nonzero, an error has occurred. In the write
case, the file (or a portion thereof) may be truncated. In
either case, the I/0 switch is always closed.

INTERNAL LOGIC

The <c¢seg pointer is obtained from the IOCB. If the file is
in use (cseg.file_lock = "1"b), the procedure returns the error
code error_table_$file_busy. If cseg.invalid is "1"b, the I/0
switch must be closed, but no operations can be performed on the
file itself. The return code is set to error_table_$invalid_cseg
and a cleanup handler is established that closes the 1I/0 switch.
The 1/0 switch is then closed.

If the I/0 switch is open for sequential_input, cc is set to
0 and a cleanup handler is established that calls consistent and
closes the I/0 switceh. The entry point
tape_ansi_ibm_1lrec_io_$close is invoked to synchronize the tape,
the volume is rewound if the close_rewind order has been issued,
and the I/0 switch is closed.

11=50 ANS57



If the opening was for sequential_output, cc is set to 2 and
a cleanup handler is established that calls consistent and closes
the I/0 switch. The entry point tape_ansi_ibm_lrec_io_$close 1is
invoked to synchronize the tape. If end of tape is detected, it
is ignored, because the 1I/0 module processes EOT only when
writing data via the tape_ansi_ibm_lrec_io_$write_record entry.
The procedure write_TM is called to write two tape marks (one for
end-of-file, the other for end-of-file-set). EOT 1is similarly
ignored. The variable <cc 1is then reset to 0, since the file
section 1is now valid, and the 1/0 switch is closed.

If an error occurs during any of the above procedure calls,
consistent is invoked and the I1/0 switch is closed.

Internal Procedures

Entry: abort_file

This procedure is called by consistent when an unrecoverable
error occurs during the processing of an output file. After the
volume position (vl.cflX) is invalidated, write_TM is invoked to
write two tape marks. If the ‘tape marks are successfully
written, the file set format is valid. An informatory message is
written on user_output via ioa_ and the procedure returns. If
the tape marks cannot be written, the file set format is invalid,
and a message 1s 1issued to that effect. End-of-tape while
writing the tape marks is ignored because EUT is processed only
at write data time.

Entry: consistent

This procedure 1is <called from multiple points within the
module when an errcr occurs during file (as opposed to data)
processing. It ensures that the control segment is always a
valid model of the file set, and that the file set is
self-consistent.

Depending upon the consistency code (cc), one of two actions
is taken. For consistency codes 0 and 1, the current volume's
current file position indicator (vl (fd.vlX).cflX) is invalidated
and the procedure returns. (tape_ansi_nl_file_cntl_ retains the
three-valued consistency code used by tape_ansi_file_cntl_, even

11=51 ANST



though codes 0 and 1 result in identical actions.) For code 2,
abort_file 1is ~called to ensure that the file set is left in a

consistent state.

Entry: handler

This procedure is called by the on wunit of the any_other
condition handler established prior to I0CB manipulation.
because IPS5 interrupts are masked immediately after the on unit
is established, this procedure should almost never be invoked.
If it is invoked, one of two cases has occurred.

If the IFS mask is nonzero, interrupts have already been
masked and none should have occurred. This is regarded as a
fatal error, and the external procedure terminate_process_ is
called to terminate the process. This drastic step is necessary
to ensure that critical 10Cbs are always valid. If the IPS mask
is =zero, the interrupt has occurred during the fraction of time
between on unit establishment and 1PS masking, and the interrupt

is valid. The external procedure continue_to_signal_ is
therefore called to pass the condition down the stack.

Entry: initialize_permitA

This function is called by move when a newly mounted volume
is found to have a VOL1 1label and the volume is targeted to

receive output data (thus destroying the label). The external
procedure command_query_ is invoked to query the user for
permission to use the volume. If permission 1is granted, the

procedure returns "1"b. If permission is denied, the procedure
returns "G"b.

Entry: initialize_permith

This function entry point in the procedure
initialize_permitA 1is called by move when the first block of a
newly mounted volume targeted to receive output data is found to
be unreadable. Since it cannot be determined whether or not the

volume 1is 1indeed 1labeled, the wuser must be queried for
permission. The external procedure command_query_ is called to

perform the query. If permission 1is granted, the procedure
returns "1"b. If permission 1is denied, the procedure returns
llO"b .

11-52 ANST



kntry: lrec_open

This procedure is called from the mainline open code as the
last step in the opening process prior to IOCB manipulation. It
performs final wvalidity checks on the file attributes and
initializes the logical record I1/0 control structure (cseg.lrec).

The block length is checked to ensure that it is not greater
than &192 (the present implementation restriction). If the
cpening mode is for sequential_output, the block length must also
be greater than 16, and evenly divisible by 4. (The block
length, effectively, must be at least twenty. The two separate
constraints are enforced to distinguish between a standard
requirement that blocks of 18 or fewer bytes are not permitted
and an 1implementation restriction that only words can be
written.) The remaining checks apply to block/record length
interrelationships on a per-format basis. If any of the above
steps fails, the procedure performs a nonlocal transfer to
er_exit. :

Entry: move

This procedure is called from multiple points within the
module to perform the actual tape positioning function.

If the desired volume is not mounted and the user-specified
device limit would not be exceeded, tape_ansi_mount_cntl_$mount
is called to mount the volume on a newly assigned device. If the
new device assignment cannot be completed because it would exceed
the process's device 1limit, control is transferred to the remount
algorithm described below.

If the user-specified device 1limit would be exceeded, the
desired volume can only be mounted in place of some other volume,
an operation termed remounting. The volume chain is searched to
select +the volume to be demounted, first from the first volume
set member up to the desired volume, and then from the last
volume set member down to the desired volume. The search
algorithm is optimized for the most usual case of sequential
volume processing, and a candidate volume is always found. The
entry point tape_ansi_mount_cntl_$remount is called to demount
the candidate volume and to (re)mount the desired volume on the
same device.

If the desired volume 1is already mounted when mnove 1is
invoked, none of the above steps need be done. In any case, the
drive number (currently stored in vl.rcp_id) and event channel id
(vl.event_chan) of the (now) current volume are stored 1in the
tseg portion of the cseg. When rcp_ and tape_ioi_ replace tdem_
as the device 1interfaces, these two steps will have to be

1153 ' ANST



modified. It is likely, however, that the rcp_id, the event
channel, and the tape_ioi_ id of the current volume will still be
maintained in the c¢seg outside the volume chain.

The volume index maintained in the file link (fl.v1X) is set
to the volume index of the current volume. It is this step that
actually makes a volume the T'"current volume", since all
references for positioning and volume activity (outside of move)
are volume link references of the form vl (fl.vlX).

If the opening mode is sequential_output, a number of checks
must be performed before the volume can be used. If the VOL1
label status code (vl.write_VUL1) indicates either a blank tape
or no VUOL1 1latel, the volume can be wused without further
checking. Any other c¢ode indicates the presence (actual or
possible) of a VOL1 1label that cannot be overwritten unless
certain criteria are satisfied.

If the file to be written is not the first file, the volume
cannot possibly be reformatted as a nonlabeled volume. The
external procedure ioa_ is called to write an informatory message
on user_output, and the procedure returns the error code
error_table_$uninitialized_volume. If it 1is the first file,
initialization can be possible. based wupon the value of
vli.Wwrite_VOL1, either initialize_permitA or initialize_permitB is
called to query the wuser for permission. If permission is
granted, tape_ansi_tape_io_¢$order 1is called to rewind the tape
and write_TM is called to overwrite the VUL1 label with two tape
marks. The variable vl.cflX is set to indicate the new current
file position (3), and vl.write_VUL1 1is set to indicate the
absence of a VOL1 label.

Volume positioning complete, the procedure positions to the
desired file. 1If the current position is unknown (vl.cflX = 0),
tape_ansi_tape_io_$order is called to rewind the volume and
vl.ci1lX is set to 1. If the volume 1is positioned before the
desired file (vl.cflX < fX, the desired file index), the
difference is computed and tape_ansi_tape_io_$order is invoked to
forward space the appropriate number of tape nmarks. If blank
tape 1is detected, the desired file does not exist. The error
code error_table_$no_file is returned.

If the volume is positioned after the desired file (vl.cflX
> fX), a combination of tape_ansi_tape_io_$order calls to
backspace and forward space files is issued to effect the desired
positioning. If the volume is positioned at the desired file
(vl.cflX = fX), tape_ansi_tape_io_¢$order calls are issued to
ensure that the volume is positioned to the first block of the
file and not to an intermediate, indeterminate position.

If none of the above steps results in an error, vl.cflX is
set to fX and the procedure returns. If an error occurs during
any step, vl.cflX is set to 0 and the procedure returns whatever
error code was set.

11-54 ANST



Entry: next_volume

This function is called by the data_eot entry to determine
whether or not another volume is available for concatenation to
the volume set. It is called only in the output csincee, since
the volume set membership for the input case is determined
entirely by the vclume list specified in the attach description.

If the current volume is nof the last of the volume chain
(fd.v1X < cseg.vcN), the next volume exists and the procedure
returns "19b. If the current volume index 1is 63, the
implementation maximum, the external procedure ioa_ is invoked to
issue an informatory message on user_output and the procedure
returns "0"b. If neither of the above cases is satisfied,
another_volume is called to query the user for the next volume
name, 1f any. If none is supplied, the procedure returns "Q"b.
If one is supplied, the volume chain 1is extended (cseg.vceN is
incremented), vl_init called to initialize the new link, and the
link's volume name is .set. The procedure returns "1"b.

Entry: vi_init

This procedure 1is called by next_volume to initialize a new
volume 1link. Every structure member except the volume name is
set appropriately to a logically null value.

Entry: vname

This function is called by another_volume to validate and
normalize a volume name. A volume name must be six characters or
fewer. If it 1is longer than six characters, the procedure
returns "0"b. Otherwise, there are two normalization cases. If
the name is entirely numeric, it is padded on the left with zeros
to length six. If it is not entirely numeric, it is padded with
blanks on the right to length six. The procedure returns "1"b.

Entry: another_volume

This function is called by next_volume to determine whether
or not a user-specified volume 1is to be concatenated to the
volume set. It is only invoked if end of tape (ECT) is detected
during a data write operation.

The external procedure command_gquery_ is invoked to query
the user as to whether or not processing is to be continued on
anotner volume. If processing is not to continue, the procedure
returns "0"b. 6 If processing is to continue, command_gquery_ is
called again to obtain the name of the volume, along wWith an
optional mount message. The supplied volume name is validated by
calling vname. If it is invalid, command_query_ is invoked again
to obtain a valid name. If the comment 1is invalid,

11-55 ANST



command_query_ is similarly invoked. Unce a valid volume name
(and optional comment) is obtained, the procedure returns "1"b.

kntry: write_TM

This procedure is called to write either one or two tape
marks, thus terminating a file section or file set, respectively.
The entry point tape_ansi_tape_io_$order is invoked to write the
tape mark(s) and the volume's current file position (vl.cflX) is
incremented for each tape mark written. If EQOT is detected it is
ignored, so that all volume switching takes place at data write
time.

MODULE: tape_ansi_detach_

This module performs the iox_$detach function for both
tape_ansi_ and tape_ibm_. It performs resource disposition as
specified in the attach description, issues a volume set status

message 1if necessary, and manipulates the IOCB to indicate the
detached state.

Usage
dcl tape_ansi_detach_ ext entry (ptr, fixed bin (35));

call tape_énsi_detach_ (iocbF, code);

where:
1. iocbP is a pointer to the IUCBE. (lnput)
2. code is a standard status code. (Qutput)

1f code is error_table_$file_busy, the 1I/0 switch is not
detached. If code 1is zero or any other nonzero value, the I/0
switch is detached.

11-56 ANST



Internal Logic

The cseg pointer is obtained from the I0CB and
cseg.file_lock 1is tested to ensure that an I/0 operation is not
in progress. If the file is locked, the procedure returns the
error code error_table_g$file_busy. Otherwise, the file is locked
and a cleanup handler is established. If the cseg pointer is
null when the cleanup handler is invoked, the IQOCE 1is detached.
NO resource disposition or volume set status activity is
possible. If the cseg pointer is nonnull, the detach operation
is performed as though the specified disposition were "-retain
none". Thus, a quit while detaching always results in a detached
I0CB, though resource disposition may or may not be performed as
specified in the attach description.

Une of five possible resource disposition functions is then
performed. Currently, only two of the functions are distinct:
retention of no resources, and retention of all resources. When
the I/U module is converted to call rcp_ directly, the default
rcp_ retention function <can be added. When rcp_ is further
enhanced to provide 1individual resource management of both
devices and volumes, the additional disposition options of device
retention and volume retention can be implemented.

If no resources are to be retained, cseg.write_ring and
cseg.protect are set to "O"b. (Since all devices are unassigned,
they can neither have volumes mounted with rings nor be file
protected.) The volume chain is then scanned for links having
nonzero vl.rcp_id values. Such a value 1indicates an assigned
device. Such a link's vl.ceflX is invalidated, and
tape_ansi_mount_cntl_$free is called to unassign the device. If
an error occurs during unassignment, cseg.invalid is set to "1"b
and the scan continues. When all links up to and 1including vl
(cseg.veh, the last active 1link) have been checked, control
transfers to perform the 1I/0 module's internal detach-state
functions. If all resources are to be retained, cseg.invalid is
checked to ensure that the 1/0 module is capable of performing
another attachment. If not, control 1is transferred to the
resource unassignment code.

There are three steps to be performed when the I/0 module
enters the detached state. First, if an iox_$read_length
operation was ever performed, the temporary buffer segment in the
process directory must be truncated. Therefore, if c¢seg.rlP is
nonnull, the external procedure hcs_$truncate_seg is invoked to
truncate the segment and cseg.rlN (the segment's character count)
is set to -1, indicating no record in the buffer.

1157 ANST



Second, it must be determined whether or not the control
segment 1is 1internally consistent, hence usable in a subsequent
attachment. If c¢seg.invalid 1is "0"b, the <c¢seg 1is usable.
Utherwise, the <c¢seg must be deleted so that a subsequent
attachment (if any) makes an entirely new cseg, file chain, etc.
The external procedure hcs_$delentry_seg is invoked to delete the
control segment and the read length buffer segment (if any).

The third and 1last step is performed only if the cseg is
valid, volumes have been demounted, and write rings were in
place. Uunder this combination of circumstances, it is possible
that the volume set membership of a multivolume file or file set
changed during the course of the attachment. Since the user may
not know exactly how many volumes are included in the volume set,
an informative message is issued.

If the file set 1is IBM nonlabeled, a test is made to
determine whether the last volume processed (fd.v1X) is the last
volume of the volume chain (cseg.veN). If so, no message need be
issued because the entire volume set membership must have been
specified either in the attach description, or by the user via
the command_query_ facility. If not, an informative message 1is
issued and the volume chain is truncated to the last volume set
nmember (cseg.veN = fd.v1lX). This is done to ensure that volumes
that are not volume set members are not considered as such in
subsequent attachments.

If the file set is either ANSI or IBM SL, it 1is determined
whether or not the last volume in the vclume chain contains a
file section. If it does, the volume set membership comprises
all volumes and no message need be issued. If it does not, the
volume chain is scanned to find the last volume set member, and
the volume chain 1s truncated at that point. An informative
message is then issued.

tinally, the I0UCb is manipulated to indicate the detached
state. If the cseg still exists (it normally does, unless it was
deleted previously due to an inconsistency), the file and file
set locks (cseg.file_lock and cseg.file_set_lock) are set to "O"b
and the read length buffer segment (if any) 1is terminated by
calling the external procedure hcs_$terminate_noname.

MODULE: tape_ansi_lrec_io_

This module performs the iox_$read_record and
iox_$write_record functions for ANSI file sets.

11=-58 ANST



Entry: tape_ansi_lrec_io_$read_record

This entry point performs the iox_$read_record function.

Usage

del tape_ansi_lrec_io_$read_record ext entry (ptr, ptr,
tixed bin (21), fixed bin (21), fixed bin (35));

call tape_ansi_lrec_1io_$read_record (iocbP, ubP,
buf_len, rec_len, code);

where:

1. iocbPF is a pointer to the IOCB. (Input)

2. ubP is a pointer to the user's vrecord buffer.
(Input)

3. buf_1len is the number of characters to be read.
(Input)

4, rec_len is the number of characters actually read.
(vutput)

5. code is a standard status code. (Output)

The following is a nonexhaustive list of error_table_ codes
that can be returned:

file_busy file in use for other I/0 activity; no data

returned.
fatal_error unrecoverable error occurred; all, some, or

no data returned. Data can be incorrect.

long_record actual record length exceeded buf_len
(requested length); buf_len characters
returned, remainder of record discarded.

invalid_record_desc a variable-length or spanned record's RCW or
: SCWw 1is 1invalid; some or no data returned.
Lata can be incorrect.

tape_error a parity error occurred while reading; all,
some, or no data .returned. Data can be
incorrect.

It is important to note that for the blocked record formats,
error_table_$tape_error is returned with the first record of the
block that contains the error. Since a parity error is
associated with a physical block as opposed to a logical record,
the first record may or may not contain the invalid character or

11-59 ANST



characters. If subsequent 1iox_$read_record calls are made,
records from the same block can contain the invalid data even
though their return codes are zero.

InTexNAL LUGIC

g opcinter is obtained from the I0CB and
k 13 checked to ensure that the file is not in use.
s in use, the status cocae error_table_3file_busy 1is
returned. i the file 1is not in use, a c¢cieanup handler is
establisned and the file is locked. If invoked, ‘the «cleanup
narnacler unlocks the file 1lock (cseg.file_lock) and sets the
logical record 1/0 lock (cseg.lrec.code) to
error_table_g$fatal_error. This step 1s necessary because an
interrupted logical I1/0 operation can leave the internal I1/0
buffers and logical record processing variables 1in an
incecnsistent state. Thne logical record I/0 lock is checked and
If it 1is nonzero, the procedure immediately returns that error
code.

The desired record may have already been read as the result
of an icx_gread_length call. 1If so, the read_length buffer count
contains a valid value (cseg.rlN "= -1). If the user's reguest
(buf_len) is equal to or greater than the number of characters in
the buffer (cseg.rln), c¢seg.rlN characters are returned with

status code <zero. If buf_len 1is less than cseg.rlN, buf_len
characters are returned with status code
error_table_$long_record. The appropriate number of characters

are moved into the user's buffer from the read_length buffer and
rec_len 1is set to the number of characters moved. The variable
cseg.rlN is set to -1 to indicate that the read_length buffer no
longer contains a valid record. The logical record count
(cseg.lrec.recent) is incremented, the file is unlocked, and the
procedure returns.

If the record is not in the read_length buffer, contreol is
transferred to one of the four format routines. Three automatic
variables are wused by all four routines to control their
operation. The variable remain is set by the internal procedure
get_record and contains the number of characters in the block
that remain to be processed. The variable move 1is set by the
format routines to the number of characters moved to the user's
buffer by the 1internal procedure move_to_user. The variable
req_off 1is set to the number of characters processed by a single
logical record request. Its value can differ from that of move
and is used by the internal procedure read_release both to locate
the beginning of the next record within a block and to release
the I/0 buffer when the block is exhausted.

11-60 AN57



For U format, get_record is called to obtain a record. The
variable move 1is set equal to remain, because a U format record
fills an entire block including pad characters (if any). If
buf_len 1is less than move, the long record switch (the automatic
variable long_record) is set to "1"b and move is set to buf_len
so that the number of characters returned is equal to the number
requested. (In the absence of any other I/0 error or event,
long_record = "1"b at exit time causes the procedure to return
the status code error_table_$long_record.) Since each logical
record request requires a new Dblock, req_off is set equal to

remain so that the I/0 buffer 1is released. The procedure
move_to_user 1s called to move the record to the user's buffer
and read_release 1is called to release the 1I/0 buffer. Control

then passes to the normal exit routine.

For F and FB format, get_record is <called to obtain a
record. If the file's record length (fd.reclen) exceeds remain,
a short record situation exists. Since iox_ does not treat this
case as an error, move is set equal to remain without setting a
status code. If fd.reclen is less than or equal to remain, move
is set equal to fd.reclen so that only one record's worth of data
is moved. If buf_len is less than move, the user's buffer is too
small to contain all the available data. The long record switch
is therefore set to "1"b and move is set equal to buf_len so that
only the requested number of characters is moved. The variable
req_off is set to fd.reclen because each logical record request
must process an entire record, even if only a portion of that

record is actually moved to the wuser's buffer. The procedure
move_to_user 1s called to move the data and read_release is
called to position beyond the record. (In F format, the 1/0

buffer is released after each record is processed; 1In FB format,
it 1s only released after the last record in a block has been
processed.) Control then passes to the normal exit routine.

For D and DB format, get_record 1is called to obtain a
record. If a block pad character (circumflex, """) is found
where the RCW should be, the remainder of the block contains no
valid data. The entry point tape_ansi_tape_io_$release_buffer is
called to release the I/0 buffer and control passes back to the
get_record call. Once a record has been obtained, a pointer to
the record's RCW (record control word) is made and the record's
actual length is extracted into the automatic variable data_len.
If the data 1length cannot be extracted, or if it exceeds the
number of characters remaining in the block (remain - 4), control
passes to the invalid record descriptor error exit. If the RCW
is valid, move is set equal to data_len. If, however, buf_len is
less than move, long_record 1is set to "1"b and move is reset
equal to buf_len. The variable cseg.lrec.offset, the current
processing offset within the I/0 buffer, is incremented by 4 (the
length of an RCW) so that the RCW is not processed as part of the
data. The variable req_off is set equal to data_len so that the
request processes the entire record, even if only a portion 1is
actually being returned. The procedure move_to_user is called to
move the data to the user's buffer. The procedure read_release

11-61 ANBT



is called to position beyond the record. Control then passes to
the normal exit routine.

For S and Sb format, get_record is called to obtain a record
segment. To keep track of the number of characters that have yet
to be moved 1into the user's buffer to satisfy the request, the
automatic variable left is initialized to buf_len. process_sw 1is
then invoked to process and validate the segment's SCw (segment
control word) and to extract the segment's data length intc
data_len. If left is greater than or equal to data_len, all the
data in the segment is needed and move is set equsa' to data_len.
If left is less than data_len, only a portion of tne segment 1is
needed tc satisfy the (balance of the) request. In this case,
long_record is set equal to "1"b and move is set equal to left.
The procedure move_to_user 1s invoked to move the data to the
user's buffer, left is decremented by move to equal the number of
characters still required to complete the request, and
read_release is called to position beyond the record segment.

The SCw type <code is then checked. 1If the code indicates
either a complete or terminal record segment, the entire logical
record has been processed and control passes to the normal exit
routine. If not, the remaining record segments must eilther be
skipped (if the user's request is satisfied), or processed (if
their data is needed to complete the request). In the 1latter
case, left 1s nonzero, The procedure get_record is called to
obtain the next record segment and control is passed back to the
process_sw call described above. In the former case, left is
zero. The procedure skip_segments is called to position beyond
the last segment of the record. Control then passes to the
normal exit routine with long_record set to "1"b because the user
requested fewer characters than the record contains.

The normal exit routine incremenrts the logical record count
(cseg.lrec.reccnt). If a parity e'ror has occurred, the return
code 1s set to error_table_g$tape_eriror. Otherwise, it is set to
zerc or whatever error code has been set by a previous step. If
the return cocde is zero and long_record is "1"b, the return code
is set to error_table_$longrecord. An error code therefore
overrides the reporting of the 1long record conditicn. The
variable rec_len 1is set equal to the automatic variable total,
whose value has been maintained by move_to_user to be the total
number of characters placed in the user's buffer. The variable
cseg.file_lock is set to "O"b and the procedure returns.

The error and 1invalid record descriptor exit routines
perform the same functions as described above, with the exception
/

of incrementing cseg.lrec.reccnt. ) J

11-62 ANST



INTERNAL PROCEDURES
Entry: get_record

This procedure makes a logical record available toc the
record format routines, either by reading a new block into an I/0
buffer, or by setting the buffer processing variables for the
next record already in a buffer.

If the I/0 buffer pointer (cseg.lrec.bufP) is nonnull, at
least one record is already in the 1I/0 buffer. The wvariable
remain 1s set to the number of characters not yet processed and
the procedure returns. If cseg.lrec.bufP is null,
tape_ansi_tape_io_¢$read is called to read a block. The variable
cseg.lrec.bufP 1is set to point to the I/0 buffer and
cseg.lrec.nc_buf is set to the number of characters read. If the
call returns a nonzero code, there are two main possibilities.

If the code is error_table_$eof_record, an end-of-file nark
has been read. The entry point tape_ansi_file_cntl_$data_eof 1is
invoked to determine whether the actual end of the file has been
reached or whether the file is continued on another volume. If a
zero code 1s returned, the file is continued on the next volume.
Since tape_ansi_file_cntl_ has performed all necessary volume
switching functions, control is simply passed back to the
tape_ansi_tape_io_¢$read call. If the code is nonzero, either no
more data exists or an error has occurred, and ccontrol passes to
the exit routine.

If tape_ansi_tape_io_$read returns any other nonzero code, a

parity or fatal error  has occurred. If the code is
error_table_g$tape_error, the parity error switch (the automatic
variable "parity_error") is set to M"1"b and the current

iox_$read_record operation is continued. Any other code causes
control to pass to the error exit routine. (The iox_$control
operation '"reset_error_lock" can be used to permit further
iox_¢$read_record calls, if and only if the lock value is equal to
error_table_$tape_error.)

If the code was zero or error_table_$tape_error, the block
count (cseg.lrec.blkent) is incremented and cseg.offset is set to
the file's buffer offset value (fd.bo). This causes the block
prefix (if any) to be skipped. As ANSI blocks can be padded to
any length with circumflex characters ("""), it is necessary to
eliminate them (logically) from the I/0 buffer. If cseg.nc_buf
exceeds the desired block length (fd.blklen), the excess can be
eliminated easily by setting c¢seg.nc_buf to fd.blklen. This step
also ensures that no more characters can be extracted from a
block than have been specified. Since U format blocks are
processed with pad characters (if any) and D, Db, S, and SB
records contain explicit data lengths, no further processing is
necessary. The variable remain is set to the number of

11-63 ANST



characters available for processing (cseg.nc_buf - cseg.offset)
and the procedure returns.

For +t and Fb format, a further pad stripping algorithm must
be applied. The number of records in the block 1is computed by
dividing the number of possible data characters in the block
(cseg.nc_buf - fd.bo) by the number of characters in a record
(fd.reclen). The number of characters (if any) that do rot fill
a complete record is computed by taking the number of possible
data characters modulc the record length. If these characters
are all pad characters, they are eliminated (iogically) by

decrementing <c¢seg.nc_buf. If any are not pad characters, they
are as a group considered to form a short record, remain is set,
and the procedure returns. If characters not contained in a

complete record are not found, or if such characters are all
padding, it is possible that additional padding exists. Starting
with the last record in the block, each record is tested to
determine whether it is all pad characters. Each record of
padding causes c¢seg.nc_buf to be decremented by fd.reclen. The
first record that is not padding causes remain to be set and the
procedure to return. Eventually, remain is set to the number of
characters available for processing.

Entry: process_sw

This procedure is called by the S and SB format routine to
validate and process an SCW. If the first character of what
ought to be an SCw is found to be a pad character,
tape_ansi_tape_io_$release_buffer 1is called to release the I/0
buffer. The procedure get_record is then called to obtain a
record segment from the next block and control passes back to the
pad checking code described above. Once an SCW has been
obtairned, the segment's data length is extracted 1into data_len,
its type <code is validated, and data_len is checked against the
actual number of characters remaining in the block. An
inconsistency detected by these checks vresults in a nonlocal
transfer to the invalid record descriptor error exit. If the SCW
is valid, cseg.offset is incremented by 5 (the length of an SCW)
so that the SCW is not processed as part of the segment's data.
The variable req_off is set equal to data_len.

11-64 ANS5T



Entry: skip_segments

This procedure is called by the S and Sb format routine to
skip record segments that are not required to satisfy the user's
request (buf_len < total record length). The procedure
get_record 1is called to obtain a record segment, and process_sw
is called to process and validate its SCW. If the type code . is
that of a final segment, read_release 1s called to position
beyond it and the procedure returns. Otherwise, read_release 1is
called and control passes back to the get_record call. This
algorithm is continued until the final segment is encountered and
skipped. :

Entry: move_to_user

This procedure is called by all four format routines to move
data from the I/0 buffer to the user's buffer. If move is zero,
no data 1is to be moved and the procedure returns. Utherwise, a
pointer is made to the first character to be moved from the I/0
buffer, and another pointer is made to the location within the
user's buffer where that character 1is to be 'placed. If the
encoding mode (fd.mode) 1is not EBCDIC, no character conversion
need be performed and the data 1is simply moved. Otherwise,
ebcdic_to_ascii_ 1is invoked to translate and move the data. The
automatic variable total is incremented by the value of move, to
maintain a count of the total number of characters moved.

tntry: read_release

This procedure 1is <called to release a logical record or
record segment from an I/0 buffer. If the record is the last (or
only) one in the buffer, the entire buffer is also released. The
variable cseg.offset (the current processing offset within the
buffer) is incremented by the value of req_off (the number of
characters processed by the format routine). The variable remain
is calculated by subtracting the new current offset from the
buffer character count (cseg.nc_buf). (The variable remain can
become negative.) If the record format is S or SB and remain is
less than 5, the 1I/0 buffer is released, because the remaining
characters are too few to be even the SCW of a zero-length record
segment. If remain is greater than or equal to 5, the procedure
returns.

For all other férmats, if remain is less than 4, usually the
I/0 buffer 1is to be released. For U format this is always the

11-65 ANST



case, and similarly for L and LB format because four characters
is insufficient for even the RCW of a zero-length record. In
these cases, the buffer is released and the procedure returns.
For F and FB format, however, the buffer is only released if the
logical record length is greater than the value of remain. If
the 1logical record 1length is less than or equal to remain, the
procedure simply returns. This practice causes the loss of short
records (short record 1length < vrecord 1length < 4) in some
unusual,; but possible, cases. Unfortunately, it is the only way
to avoid processing the pad bytes (octal value 000) appended to
blocks that have lengths not evenly divisible by 4. This
ambiguity is built into the current software interface (tdem_) to
the MTS500 hardware and should no longer be a problem when the
proposed interface (tape_ioi_) is implemented. The I/0 buffer is
released by calling tape_ansi_tape_io_$release_buffer.

Entry: tape_ansi_lrec_io_$write_record

This entry point performs the iox_$write_record function for
ANSI file sets.

Usage

del tape_ansi_lrec_io_$write_record entry (ptr,
ptr, fixed bin (21), fixed bin (35));

call tape_ansi_lrec_io_$write_record (iochbP,
ubF, buf_len, code);

where:

1. iocbP is a pointer to the IOCB. (Input)

2. ubP is a pointer to the user's buffer. (Input)

3. buf_len is the number of characters to be written.
(Input)

y, code is a standard status code. (Output)

The following is a nonexhaustive list of error_table_ codes
that can be returned.

file_busy file in use for other 1/0 activity; record
not written.

fatal_error unrecoverable error occurred; sSee Write
Errors below.

11-66 ANST



long_record buf_len exceeds the maximum record and/or
block length; the record is not written.

eov_on_write no more records can be written on the current
volume. For S and SB format, the record may
be partially written; for all other formats,
the record is not written.

tape_error a parity I1/0 error has cccurred; see "Write
Errors" below.

wRITE ERRORS

In the case of a fatal or parity error, more records can be
affected than just the particular record being written when the
error code 1is returned. It is important to note that such an
error is detected upon the writing of a block, and that each
iox_$write_record <call does not necessarily cause a block to be
written. Hence, a zero status code does not guarantee that a
record has been written at all, let alone written correctly. FB
format blocks always, and DB and SB blocks can, contain multiple
records, so that an error in writing a block affects every record
packed into the block.

In addition, tape_ansi_ does not wait to check the status of
a wWrite operation after the operation has been issued. In the
time between issuing a write operation and receiving its status,
a number of further write operations can be issued. This method
of operation is termed asynchronous processing and normally is

highly satisfactory. If an 1/0 error occurs, however, not only
is the erroneous block not written, but all blocks queued for
writing subsequent to the error block are not written. Even in

this case it is possible to maintain an accurate block count, but
since the number of records per block can vary, an accurate
record count cannot be maintained. Since U, F, and D format
place only one record per block, the actual number of records
written equals the block count (available by calling iox_$control
"file_status"” operation). For FB, LB, and SbB format, an
indeterminate number of records packed into blocks subsequent to
the error block are not written, and for S and SB format, the
record can have been partially written in blocks prior to the
error block.

11-67 ANST



INTERNAL LOGIC

The cseg pointer 1is obtained from the I10CB and the
cseg.file_lock is checked to be sure that the file 1is not busy
fcr other 1/0 activity. If it is busy, the procedure immediately

returns the error code error_table_¢$file_busy. Otherwise, a
cieanup nhandler is established and the file lock is 1locked. If
invoked, the cleanup handler unlocks the file lock and sets the
lcgical record I/0C lock to error_table_¢$fatal_error. This step
is necessary because an interrupted logical I/0 operation can
_save the I/0 buffer and 1its processing variables in an

inconsistent state.

The 1logical record 1/0 lock (cseg.lrec.code) is checked to
ensure that I/0 has not been inhibited due to an unrecoverable

error. If the cseg.lrec.code 1s nonzero, the return code is set
to the logical I/U lock value, the file lock (cseg.file_lock) 1is
unlocked, and the procedure returns. If all 1is well, the

intrafile position indicator (vl (fl.flX).pos) 1is checked to
determine whether or not the tape 1is positioned in the data
portion of the file. The first time iox_$write_record is called
subsequent to an opening, the tape is positioned in the file's
header label group. In this case,
tape_ansi_file_cntl_$position_for_output 1is called to write the
header label group tape mark, such action defining the transition

into the data portion of the file. If an error occurs while
writing this tape mark, cseg.lrec.code is set to the error code
value and control passes to the error exit routine. The tape

mark 1s not written until the first logical record call for the
following reason. The ANSI standard requires volume switching to
be performed if end-of-tape is detected while writing the header
label group. This causes a null file section to be recorded on
the old volume. Yet if the I/0 switch is then closed without an
intervening 1/0 operation, another null file section is written
on the new volume. By inhibiting the detection of end-of-tape
until the header label group tape mark is written (this is not a
Standard violation ), and by delaying writing the tape mark until
the first write operation, volume switching can be avoided if no
Wwrite operations are issued. The close call causes just a single
null file section to be written on the current volume.

Control then passes to one of the four record format
routines. For U format, buf_len is checked to ensure that it
does not exceed the maximum number of characters that can fit in
a block (fd.blklen - fd.bo). If its value is too large, control
passes to the long record error exit. The procedure get_buf is
called to obtain an I1I/0 buffer and move (the number of characters
to be moved from the users buffer) is set equal to buf_len. The
variable req_off (the number of characters to be written by this
request) is also set equal to buf_len, and move_to_buf is called
to move the wuser's data 1into the I/0 buffer. The procedure
write_buf is called to write the block, and control passes to the
normal exit routine.

11-68 AN5T



For F and FB format, buf_len is checked to ensure that it
does not exceed the record 1length (fd.reclen). If it does,
control passes to the 1long record error exit routine. The
procedure get_buf is called to obtain an I/0 buffer, if
necessary. (for F format, an I/0 buffer 1is obtained for each
call, because each record requires a new block.) The variable
move 1s set equal to buf_len and remain is set to the number of
pad characters that must be appended to the user's data to make a
complete record (fd.reclen - buf_len). This step is necessary
because fi:ea-format records must be of identical 1lengths. If
remain 1is nonzero, the appropriate number of blanks are inserted
intc tne 1/G buffer. The wvariable req_off 1is set equal to
fd.reclen because each request processes a complete record, even
if buf_len is less than fd.reclen. The procedure move_tc_buf 1is
called to move the user's data into the I/0 buffer immediately
before the inserted padding (if any). If records are not blocked
(F format), write_buf is called to write the record. Otherwise,
write_buf is not called unless the block contains as many records
as can fit (cseg.offset = fs.blklen). Control then passes to the
normal exit routine.

For D and LB format, data_len (the length of the record) is
set to buf_len plus 4 (the length of an RCW). The value of
data_len 1is checked to ensure that it does not exceed fd.reclen.
If it does, control passes to the long record error exit. The
procedure get_buf is called to obtain an 1/0 buffer, if
necessary. (An I/0 buffer 1is always obtained for D fornmat,
because each record requires a new block.) For DB format, it
must be determined if the record to be written can fit into the
current block, or 1if a new block 1is required. If data_len
exceeds the number of remaining characters in the block
(fd.blklen - cseg.offset), then write_buf is called to write the
current block and get_buf is called to obtain a new I/0 buffer.
bither way, a pointer is made to the I/0 buffer location where
the record's KCw is to be constructed and the RCW 1is 1inserted.
The variable cseg.offset is incremented by 4 so that the RCW is
considered when computing the total block length, and req_off is
set equal to buf_len. The variable move is also set equal to
buf_len and move_to_buf is called to move the wuser's data. If
records are not blocked, write_buf is called to write the record.
Otherwise, write_buf 1is not called unless another record cannot
fit in the current block (fd.blklen - cseg.offset < 4, where 4 is
the length of a zero-length record). Control then passes to the
normal exit routine.

Fer 8 and SB format, buf_len is checked to ensure that it
does not exceed fd.reclen. If it does, control passes to the
longer record error exit. The procedure get_buf is called to
obtain an 1/0 buffer, if necessary. (An I/0 buffer 1is always
obtained for S format, because each record segment requires a new
block.) The variable 1left contains the number of characters
still to be moved from the user's buffer, and is initialized
equal to buf_len. As each record segment is written, left is
decremented by the number of characters written in that segment.

11-69 ANST



The variable remain is set to the number of characters remaining
in the current blcck (fd.blklen -~ cseg.offset). A pointer is
made to the I/U0 buffer location where an SCWw 1is ¢to be
constructed.

The type code set in the SCW is dependent upon the amount of
data still to be written (left) and the available space in the
current block (remain). If left + 5 (the balance of the user's
request plus 5 characters for the SCw) can fit in the blcck, the
record segment 1s either a complete or final segment. If no data
from tne record has been previously placed into ancther segment,
the type is complete; 1i.e., the segment contains the entire
record. If some data has been placed into another segment, then
the type 1s final; 1.e., the segment is the last of a group of
segments that 1in toto make up the record. In either case, move
is set equal to left, since the data to be moved into the segment
is the balance of the request. If left + 5 characters cannot fit
into the block, the record segment is either an initial or medial
segment. If no data from the record has been previously placed
into another segment, the type is initial; 1i.e., the segment is
the first of a group of segments that in toto make up the record.
If some data has been placed into another segment, the type is
medial; i.e., the segment 1is one of a group of three or more
segments (but neither the first nor the last) that in toto make
up the record. In either case, move is set equal to remain - 5,
so that as much data as will fit into the block is moved, leaving
room for the 5 character SCW.

The variable left is decremented by the value of move,
giving the amount of data (if any) to be moved into subsequent
segments. The variable data_len, the actual record segment
length, 1is =set equal to move + 5 (to include the SCwW) and is
inserted into the SCW. The variable cseg.offset is incremented
by 5, so that +the SCW is considered when computing the total
block length. The variable req_off 1is set equal to move and
move_to_buf 1is called to nmnove the wuser's data into the I/0
buffer. The variable remain is set to the number of characters
remaining in the block (remain - data_len). If record segments
are not blocked (S format), control passes to write the I1/0
buffer. If record segments are blocked, the I/0 buffer is only
written if another nonzerc length record segment could not fit
into the block {remain < 6)}.

If the 1/0 buffer is to be written, write_buf is called to
write it, get_buf is called to obtain another, and remain is set
to the number of characters available in the new buffer
(fd.blklen - cseg.offset). Whether or not the 1I/0 buffer was
written, left 1is checked to determine whether or not the user's
request has been satisfied. If left is nonzero, control passes
back to make another SCW pointer for the next record segment. If
left is zero, control passes to the normal exit routine.

The normal exit routine first increments the logical record
count (cseg.lrec.reccnt) and then sets the return code and

11=-70 ANST



logical 1I/0 1lock to the code returned by the last I1I/0 operation
(normally zero). If c¢sw (the tape_ansi_lrec_io_$close entry
switch) is "1"b, control passes to that entry's exit routine.
Otherwise, the file lock is unlocked and the procedure returns.
(The variable csw 1is initialized to "0"b upon procedure block
activation, but is set to "1"b by the tape_ansi_lrec_io_$close
entry.) The long record and error exits perform similar
functions, with the exception of 1incrementing c¢seg.lrec.reccnt.

INTERNAL PROCEDURES

Entry: get_buf

This procedure is called to obtain an I/0 buffer, if one is
needed. If the I/0 buffer pointer (cseg.lrec.bufP) is nonnull, a
buffer is available and the procedure returns. If it 1is null,
tape_ansi_tape_io_g$get_buffer 1is called to make an I/0 buffer
available. The current offset equal within the buffer
(cseg.offset equal) 1is set equal to the buffer offset length
(fd.bo) to reserve space for a block prefix (if any). If the
buffer offset length is nonzero, a block prefix of all blanks is
inserted.

kntry: move_to_buf

This procedure is called to move data from the user's buffer
to the I/0 buffer. If move is zero, there 1is no data to be
moved. In this case, cseg.offset is incremented by the value of
reg_off (the number of characters processed by the request) and
the procedure returns. (The variable «cseg.offset must be
incremented to allow for the case of zero-length records in D,
DB, S, and Sb format. Such records consist of RCWs or SCWs
alcne.) If data is to be moved, pointers are made to the offset
within the I/0 buffer where the data is to be placed, and to the
offset in the user's buffer from which the data is to be taken.
If the encoding mode (fd.mode) is either ASCII or binary, the
data is moved. If the mode is EBCDIC, ascii_to_ebcdic_ is called
to translate an move the data. The variable total is
incremented by the value of move, to maintain a count of the
total number of characters moved. The variable c¢seg.offset 1is
incremented by the value of req_off.

11-71 ANST



kntry: write_buf

This procedure writes a block, appending block pad
characters if necessary. If cseg.offset is less than 20, the
biock must be padded. This is necessary for twc reasons: 1)
nlocks of fewer than 1b characters must not be written, and 2)
blocks tn be written must consist of an integral number of words
(4 charascters/word). The number of pad characters is computed by
subtracting cseg.offset (the number of characters presently 1in
the bicek) from 20, and control passes to perform the padding.

If cseg.offset 1s greater than or equal to 20 but not evenly
divisible by four, the block must still be padded to satisfy
requirement 2) above. Padding for both cases is performed by
inserting the appropriate number of pad characters into the 1I/0
buffer immediately following its current contents, and then
incrementing cseg.offset to reflect the new, adjusted block
length. .

The entry point tape_ansi_tape_io_$write is called to write
the block. If the return code 1s =zero, the block count
(cseg.lrec.blkent) is incremented and the procedure returns. if
the return code is nonzero, there are two major possibilities.
If the code 1is not error_table_$eov_on_write, an error has
occurred. The block count is decremented if more than one block
was not written (cseg.blkent = cseg.blkent -
cseg.soft_status.nbut + 1). (The suspended buffer count is
currently obtained directly from the cseg. Eventually, when
tape_ioi_ becomes the device interface, a tape_ici_ status entry
is called to obtain this value.) The logical record count is
invalidated by setting it negative, and control passes to the
error exit.

If the code is error_table_$eov_on_write, end-of-tape has

been detected. This 1is more in the nature of an event than an
error. Tne variable cseg.lrec.blkent is incremented, because the
block has been successfully written. If csw is "1"b (i.e., the

prccedure was entered at the $close entry point), the procedure
simply returns. This is done so that EOT detection at close time
does not force volume switching, with the resultant recording of
a null file section on another volume. If csw 1is "0"b,
tape_ansi_file_cntl_$data_eot is called to switch volumes. If
the returned code is zero, volume switching has occurred and the
procedure returns. If the code is nonzero, the volume switch did
not take place. This can be due either to an error or to the
lack of another volume. If the record format is S or SB and the
entire record has not yet been written (left "= 0), control
passes to the error exit. If the record format is other than S
or SB, or the entire spanned record has been written (left = 0),
this particular iox_$write_record call can complete successfully.
Further calls must, however, be inhibited, therefore
cseg.lrec.code is set to the error code value. The return code
is set to zero, the file is unlocked, and the procedure returns.

11=72 AN57



Entry: tape_ansi_lrec_io_$close

This entry point is called by tape_ansi_file_cntl_$close to
terminate logical record I/0 in a consistent manner at close
time.

Usage
del tape_ansi_lrec_io_$close entry (ptr, fixed bin (35));

call tape_ansi_lrec_io_g$close (acP, code);

where:
1. acP ‘ is a pointer to the cseg. (Input)
2. code is a standard status code. (Output)

INTERNAL LOGIC

The cseg pointer 1is copied from the argument list and the
close entry switch (csw) is set to "1"b. This switch governs the
action taken if write_buf nust be called and either an error or
EOT occurs. If the 1/U switch is open for sequential_input and
the I/0 buffer pointer is null, control passes to the buffer
management reset exit to perform that function and return. If
the pointer is nonnull, control passes to the buffer release exit
to perform that function, reset the buffer management strategy,
and return.

If the 1/0 switch is open for sequential_output and there is
no current I/0 buffer, control passes to the buffer management
reset exit. If there is an I1/0 buffer (cseg.lrec.bufP "= null)
but cseg.offsct 1is either 0 or fd.bo, the I/0 buffer does not
contain any data. In this case, control passes to the buffer
management reset exit. If, "however, the processing offset is
neither 0 nor fd.bo, the buffer contains data that must be
written. In this case, write_buf is called and control passes to
the buffer release exit.

The buffer release exit calls
tape_ansi_tape_io_$release_buffer to release the current 1/0
buffer, calls tape_ansi_tape_io_$close to reset the buffer

management strategy, and returns. The buffer management reset
exit calls tape_ansi_tape_io_¢$close and returns.

11=-73 ANST



MODULE: tape_ansi_ibm_lrec_io_

This module performs the iox_¢$read_record and
iox_¢$write_record functions for IBM file sets.

Entry: tape_ansi_ibm_lrec_io_g¢$read_record

This entry point performs the iox_g$read_record function.

Usage

del tape_ansi_ibm_lrec_ioc_$read_record ext entry (ptr, ptr,
fixed bin (21), fixed bin (21), fixed bin (35));

call tape_ansi_ibm_lrec_io_$read_record (iocbP, ubP,
buf_len, rec_len, code);

where:

1. iocbP is a pointer to the IOCB. (Input)

2. ubP is a pointer to the user's record buffer.
(Input)

3. buf_len is the number of characters to be read.
(Input)

by, rec_len is the number of characters actually read.
(butput)

5. code is a standard status code. (Output)

The following is a nonexhaustive list of

error_table__ codes that can be returned:

file_busy file in use for other I1/0 activity; no data
returned.

fatal_error unrecoverable error occurred; all, some, or
no data returned. Data can be incorrect.

long_record actual record length exceeded buf_len

(requested length); buf_len characters
returned, remainder of record discarded.

invalid_record_desc a variable-length or spanned record's RDW or

SDW 1is invalid; some or no data returned.
Data can be incorrect.

11=-74 ANST



tape_error a parity error occurred while reading; all,
some, or no data returned. Data can be
incorrect.

It is important to note that for the blocked record formats,
tape_error is returned with the first record of the block that
contains the error. Since a parity error is associated with a
physical block as opposed to a logical record, the first record
may or may not contain the invalid character or characters. If
subsequent iox_¢$read_record calls are made, records from the same
block can contain the invalid data even though their return codes
are zero.

INTERNAL LOGIC

The c¢seg pointer is obtained fron the IOCB and
cseg.file_lock 1s checked tc ensure that the file is not in use.
If the file is in use, the status code error_table_g$file_busy is
returned. If the file 1is not 1in wuse, a cleanup handler is
established and the file is locked. If invoked, the cleanup
handler wunlocks the file 1lock (cseg.file_lock) and sets the
logical record I/0 lock (cseg.lrec.code) to
error_table_¢fatal_error. This step 1s necessary because an
interrupted logical I/0 operation <can leave the internal 1/0
buffers and logical record processing variables in an
inconsistent state. The logical record I/0 lock is then checked,
and if it is nonzero, the procedure immediately returns that
error code.

The desired record can have already been read as the result
of an lox_$read_length call. If so, the read_length buffer count
will contain a valid value (cseg.rlN "= =1). If the wuser's
request (buf_len) 1is wequal to or greater than the number of
characters in the buffer (cseg.rlN), c¢seg.rlN characters are

returned with status code =zero. If buf_len 1is 1less than
cseg.rlN, buf_len characters are returned with the status code
error_table_$long_record. The appropriate number of characters

are noved into the user's buffer from the read_length buffer and
rec_len 1is set to the number of characters moved. The variable
cseg.rlhN is set to -1 to indicate that the read._length buffer no
longer contains a valid record. The logical record count
(cseg.lrec.reccnt) is incremented, the file is unlocked, and the
procedure returns.

If the record is not in the read_length buffer, control is
transferred to one of the four format routines. Three automatic
variables are wused by all four routines to control their
cperation. The variable remain is set by the internal procedure
get_record and contains the number of characters in the block
that remain to be processed. The variable move is set by the

11-75 ANST



format routines to the number of characters moved to the user's

buffer by the internal procedure move_to_user. The variable
req_off is set to the number of characters processed by a single
logical record request. 1t can differ from move and is used by

the internal procedure read_release both to locate the beginning
of the next record within a block and to release the 1I/C buffer
when the block is exhausted.

For U format, get_record is called to obtain a record. The
variable move 1is set equal to remain, because a U format record
fills an entire block. If buf_len 1is less than ncve, the 1long
record switch (the automatic variable long_record, is set to "1"b
and mnmove 1is set equal to buf_len, so that the number of

characters returned will be the number requested. (In the
absence of any other I/0 error or event, long_record = "1"b at
exit time causes the procedure to return the status code
error_table_$long_record.) Since each logical record request

requires a new block, req_off is set equal to remain so that the
I/0 buffer will be released. The procedure move_to_user is then
called to move the record to the user's buffer and read_release
is called to release the 1/0 buffer. Control then passes to the
normal exit routine.

For F and Fb Tformat, get_record is called to obtain a
record. If the file's record length (fd.reclen) exceeds the
value of remain, a short record situation exists. Since iox_
does not treat this case as an error, move is set equal to remain
without setting a status code. If fd.reclen is less than or
equal to remain, move 1is set equal to fd.reclen so that only one
record's worth of data is moved. If buf_len is less than move,
the user's buffer is too small to contain all the available data.
The long record switch is therefore set to "1"b and move 1is set
to buf_len so that only the requested number of characters is
moved. The variable req_off is set equal to fd.reclen because
each logical record request must process an entire record, even
if only a portion of that record is actually moved to the user's
buffer. The procedure move_to_user is called to move the data
and read_release is called to position beyond the record. (In F
format, the 1I/0 buffer 1is released after every record is
processed. In FB format, it is only released after the last
record in a block has been processed.) Control then passes to
the normal exit routine.

For V and VB format, get_record 1is called to obtain a
record. A pointer to the record's RDW (record descriptor word)
is made. The record length is extracted, decremented by U4 (the
length of the RDW itself), and set into the automatic variable
data_len. The RDW length field is a 15 bit signed binary number
(16 bits in all), recorded as two 8-bit frames. When reading in
j-mode, each frame 1is stored 1into a 9-bit byte with the
high-crder bit of each byte set to 0. 1In order to recompose the
original binary number, the low-order & bits of the high-order
byte must be shifted right by 1 bit, into the high-order bit
location of the low-order byte.

11-76 ANST



If the data length cannot be extracted, or if it exceeds the
number of characters remaining in the block (remain - 4), control
passes to the invalid record descriptor error exit. If the RDW
is valid, move is set equal to data_len. If, however, buf_len is
less than move, long_record 'is set to "1"b and move is reset
equal to buf_len. The variable cseg.lrec.offset, the current
processing off'set within the I/0 buffer, is incremented by 4 (the
length of an RDw) so that the KRDW is not processed as part of the
data. The variable req_off is set equal to data_len so that the
request will process the entire record, even if only a portion is
actually being returned, and move_to_user 1is called. The
procedure read_release is invoked to pesition beyond the record.
Control then passes to the normal exit routine.

For VS and VBS format, get_record 1is called to obtain a
record segment.  To keep track of the number of characters that
have yet to be moved into the user's buffer to satisfy the
request, the automatic variable 1left 1is initialized equal to
buf_len. The procedure process_sw 1s 1invoked to process and
validate the segment's SUW (segment descriptor word) and to
extract the segment's data length into data_len. If left is
greater than or equal to data_len, all the data in the segment is
needed and move 1s set equal to data_len. If left is less than
data_len, only a portion of the segment is needed to satisfy the
(balance of the) request. In this case, long_record is set to
"1"b and move is set equal to left. The procedure move_to_user
is invoked to move the data to the user's buffer, left is
decremented by the value of move to give the number of characters
still required to complete the request, and read_release 1is
called to position beyond the record segment.

The SLW type code is checked. If the code indicates either
a complete or terminal record segment, the entire logical record
has been processed and control passes to the normal exit routine.
If not, the remaining record segments must either be skipped (if
the user's request is satisfied), or processed (if their data is
needed to complete the request). In the latter case, left is
nonzero. Tne procedure get_record is called to obtain the next
record segment and control is passed back to the process_sw call
described above. In the former case, 1left is zero. The
procedure skip_segments 1is called to position beyond the last
segment of the record. Control then passes to the normal exit
routine with 1long_record set to "1"b because the user requested
fewer characters than the record contained.

The normal exit routine increments the logical record count
(cseg.lrec.reccnt). If a parity error has occurred, the return
code is set to error_table_$tape_error. (Otherwise, it is set to
zero or whatever error code has been set by a previous step. If
no error has occurred but long_record is "1"b, the return code is
set to error_table_$long_record. (An error code therefore
overrides the reporting of the 1long record condition.) The
variable rec_len is set equal to the automatic variable total,
whose value has been maintained by move_to_user to be the total

11=-77 ANST



number of characters placed in the user's buffer. The wvariable
cseg.file_lock 1s set to "O"b and tne procedure returns. The
error and invalid record descriptor exit routines perform the
same functions as described above, with the exception of
incrementing cseg.lrec.reccnt.

INTERNAL PRUCHDURES

Entry: get_reccrd

This procedure makes a logical record available to the
record format routines, either by reading a new block into an I/0
buffer, or by setting the buffer processing variables for the
next record already in a buffer.

if the 1/0 buffer pointer (cseg.lrec.bufP) is nonnull, at

least one record 1is already in the I1/0 buffer. '1h2 variable
remain is set to the number of characters not yet processed, and
the procedure returns. Ir cseg.lrec.buff is null,

tape_ansi_tape_io_$read is called to read a block. The variable
cseg.lrec.bufP is set to point to the I1/0 buffer and
cseg.lrec.nc_buf is set to the number of characters read. If the
call returns a nonzero code, there are two main possibilities.

If the code is error_table_$eof_record, an end-of-file mark
has been read. Either tape_ansi_nl_file_cntl_¢$data_eof or
tape_ansi_file_cntl_¢$data_eof is invoked to determine whether an
end-cf~file mark has been read or the file is continued on

another volumne. If a zero code 1is returned, the file 1is
continued on the next volume. Since tape_ansi_file_cntl_ has
performed all necessary volume switching functions, control is

simply passed back to the tape_ansi_tape_io_$read call. If the
code is nonzero, either no more data exists or an error has
occurred, and control passes to the errcor exit routine.

If tape_ansi_tape_io_$read returns any other nonzero code, a

parity or fatal error has occurred. If the code 1is
error_table_¢$tape_error, the parity error switch (the automatic
variable parity_error) is set to "1"b and the current

iox_$read_record operation is completed. Any other error code
causes control to pass 1immediately to the error exit routine.
(Tne iox_g$control operation "reset_error_lock" <can be used to
permit further 1iox_$read_record calls, if and only if the lock
value is error_table_g$tape_error.)

If the code was zero or error_table_$tape_error, the block
count (cseg.lrec.blkent) is incremented. If cseg.nc_buf exceeds

11=-T7b6 ANST



fd.clklen, cseg.nc_buf is set equal to fd.blklen to eliminate the
unuwanted characters. There are three possibilities if
cseg.nc_buf exceeds fd.blklen. The user can have specified an
incorrect block length, causing data to be lost, the block length
can be specified with the intent of causing the latter portion of
a block to be ignored, or the "extra" characters can have been
appended by the MTS500 tape subsystem. The latter case occurs
when a block whose length is not evenly divisible by 4 1is read,
and the subsystem pads the block to a word boundary with octal
000. This behavior is a result of the inability of the current
tape device interface (tdem_) to process blocks on a
per-character basis, and should no longer occur when tape_ioci_
becomes the device interface.

Since V, VB, VVS, and VBS format blocks contain BDWs (block
descriptor words), the bBLWw block length field is checked against
cseg.nc_buf. If c¢seg.nc_buf is less than the BEDW length value,
control passes to the invalid descriptor error exit. (before
performing this comparison, the BbBDW length field must be
recomposed in the same manner as the KDW length field, described
above.) The variable cseg.nc_buf is set to the BDW length value,
to discard any MTS500 block pad characters not eliminated in the
previous fd.blklen check, and cseg.offset is set to 4 (the length
of the BDw itself) to indicate that the BDW has been processed.
The ~variable remain 1s set to the number of characters available
for processing (cseg.nc_buf - c¢seg.offset), and the procedure
returns. For U, F, and FB format, cseg.offset is set to 0,
remain is set, and the procedure returns.

Entry: process_sw

This procedure is called by the VS and VBS format routine to
validate and process an Sbw. The SLW length value is recomposed
as described above, decremented by 4 (the length of the SDW
itself), and the resulting segment data length 1is stored into
data_len. The variable data_len is checked against the actual
number of characters remaining in the block and the SDW type code
is validated. An inconsistency detected by these checks results
in a nonlocal transfer to the invalid record descriptor error
exit. If the Sbw is valid, cseg.offset is incremented by 4 (the
length of an SDLW) so that the SDW is not processed as part of the
segment's data. The variable req_off is set equal to data_len
and the procedure returns.

11=79 ANST7



tntry: skip_segments

This procedure is called by the VS and VBS format routine to
skip record segments that are not required to satisfy the user's
request (buf_len < total record length). The procedure
get_record is called to obtain a record segment and process_sw is
called to process and validate its SDW. If the type code is that
cf a final segment, read_release is called to position beyond it,
and the procedure returns. Otherwise, read_release is called and
control passes back to the get_record call. This algorithm is
continued until the final segment is encountered and skipped.

Entry: move_to_user

This procedure is called by all four format routines to move
data from the I/0 buffer to the user's buffer. 1If move 1is zero,
no data is to be moved and the procedure returns. Utherwise, a
pointer 1is made to the first character to be moved from the I/0
puffer, and another pointer is made to the location within the
user's tuffer where that character 1is to be placed. If the
encoding mcde (fd.mode) is not EBCDIC, no character conversion
need be performed and the data is simply moved. Otherwise,
ebecdic_to_ascii_ is invoked to translate and move the data. The
automatic variable total is incremented by the value of move, to
maintain a count of the total number of characters noved.

Entry: read_release

This procedure is called to release a 1logical record or
record segment from an 1/0 buffer. If the record is the last (or
only) one in the buffer, the entire buffer is also released. The
variable c¢seg.offset (the current processing offset within the
buffer) is incremented by the value of req_off (the number of
characters processed by the format routine). The value of remain
is calculated by subtracting the new current offset from the
buffer character count (cseg.nc_buf). (The variable remain can
become negative.) If remain 1is 4 or greater, the procedure
returns without releasing the I/0 buffer, because the remaining
characters must be valid data.

If remain is 1less than 4, wusually the I/0 buffer is
exhausted ‘and is to be released by calling
tape_ansi_tape_io_$release_buffer before the procedure returns.
For U format this is always the case, because a U format request
always processes every character (reg_off is set equal to

11-80 ANST7



remain). For V, VB, VVS, and VBVS, this is similarly the case,
because fewer than 4 characters does not even allow for a
4-character BDW. For F and FB format however, the buffer is only
released if the logical record length is greater than the value
of remain. If the logical record length is less than or equal to
remain, the procedure simply returns. This causes the loss of
short records (short record length < record length < 4) in some
unusual, but possible, <cases. Unfortunately, this is the only
way to aveid processing the pad bytes (octal value 000) appended
to blocks that have lengths not evenly divisible by 4.

Entry: tape_ansi_ibm_lrec_io_$write_record

This entry point performs the iox_¢$write_record function for
IbM file sets. :

Usage

del tape_ansi_ibm_lrec_io_$write_record entry (ptr,
ptr, fixed bin (21), fixed bin (35));

call tape_ansi_ibm_lrec_io_$write_record (iocbP,
ubP, buf_len, code);

where:

1. iocbP is a pointer to the IOCB. (Input)

2. ubF is a pointer to the user's buffer. (Input)

3. buf_len is the number of characters  to be written.
(Input)

4. code is a standard status code. (OQOutput)

The following is a nonexhaustive list of error_table_ codes
that can be returned.

file_busy file in use for other I1/0 activity; record
nct written.

fatal_error unrecouveratle error occurred; see "Write
Errors" below.

long_record buf_len exceeds the maximum record and/or
block length; the record is not written.

11-861 ANST



eov_on_write no more records can be written on the current
volume. For VS and VBS format, the record
can be partially written; for all other
formats, the record is not written.

tape_error a parity 1/0 error has occurred; see write
trrors below.

WRITE ERRURS

In the case of a fatal or parity error, more records can be
affected than just the particular record being written when ‘the
error code 1s returned. Such an error is detected upon the
writing of a block, and each 1iox_¢$write_record call does not
necessarily cause a block to be written. Hence, a zero status
code does not guarantee that a record has been written at all,
let alone written correctly. FB format blocks always, and VB and
VES blocks can, contain multiple records, so that an error in
writing a block affects every record packed into the block.

In addition, tape_ansi_ does not wait to check the status of
a write operation after the operation has been 1issued. Indeed,
in the time between issuing a write operation and receiving its
status, a number of further write operations can have been
issued. This methed of operation is termed asynchronous
processing and normally is highly satisfactory. 1f an I1/0 error
occurs, however, not only is the erroneocus block not written, but
all blocks queued for writing subsequent to the error block are
not written. &Even in this case it is possible to maintain an
accurate block count, but since the number of records per block
can vary, an accurate record count cannot be maintained. Since
U, F, and V format place only one record per block, the actual
number of records written equals the block count (available by
calling 1iox_$control "file_status" operation). For FB, VB, and
VES format, an indeterminate number of records packed into blocks
subsequent to the error block are not written, and for VS and VBS
format, the record can have been partially written in blocks
prior to the error block.

INTERNAL LOGIC

The cseg pointer is obtained from the I0CB and
cseg.file_lock is checked to be sure that the file is not busy
for other I/0 activity. If it is busy,  the procedure immediately
returns the error code error_table_¢$file_busy. Otherwise, a
cleanup handler is established and the file lock is 1locked. If

11-862 ANST



invoked, the <cleanup handler unlocks the file lock and sets the
logical record 1I/0 lock to error_table_g$fatal_error. This step
is necessary because an interrupted logical I/0 operation can
leave the 1I1/0 buffer and its processing variables 1in an
inconsistent state. '

The logical record I/0 lock (cseg.lrec.code) is checked to
ensure that I/0 has not been inhibited due to an unrecoverable
error. If cseg.lrec.code is nonzero, the file lock
(cseg.file_lock) is unlocked and the procedure returns with code
set to the 1logical I/0 lock value. If the file is nonlabeled,
the intrafile position indicator (vl (fl1.fl1X).pos) is checked to
determine whether or not the tape 1is positioned in the data
portion of the file. The first time iox_$write_record is called
subsequent to an opening, the tape is positioned in the file's
header label group. In this case,
tape_ansi_file_cntl_$position_for_output ..is called to write the
header label group tape mark, such action defining the transition
into the data portion of the file. If an error occurs while

writing this tape mark, control passes to the error exit routine.

The tape mark is not written until the first logical record
write <call for the following reason. Volume switching is
performed 1if end-of-tape 1s detected while writing the header
label group. This causes a null file section to be recorded on
the old volume. Yet if the I/0 switch is closed without an
intervening write operation, another null file section is written
on the new volume. By inhibiting the detection of end-of-tape
until the header 1label group tape mark 1is written, and by
delaying writing the tape mark until the first write operation,
volume switching can be avoided 1if no write operations are
issued. The close call causes just a single null file section to
be written on the current volume.

Contrcol then passes to one of the four record format
routines. For U format, buf_len is checked to ensure that it
does not exceed the maximum number of characters that can fit in
a block (fd.blklen). If its value is too large, control passes
to the long record error exit. The procedure get_buf is called
to obtain an I/0 buffer and move (the number of characters to be
moved from the users buffer) is set equal to - buf_len. The
rariaple reg_ouif (tue numver of characters to be written by this
request) is also set equal to buf_len and move_to_buf is called
to move the wuser's data into the I1/0 buffer. The procedure
write_buf is called to write the block, and control passes to the
normal exit routine.

For F and FB format, buf_len is checked to ensure that it
does not exceed the record length (fd.reclen). If it does,
control passes to the 1long record error exit routine. The
procedure get_buf is called to obtain an I1/0 buffer, if
necessary. (For F format, an I1/0 buffer 1is obtained for each
call, because each record requires a new block.) The variable
move is then set equal to buf_len and remain is set to the number

11-83 ' ANS7



of pad characters that must be appended to the wuser's data to

make a complete record (fd.reclen - buf_len). This step is
necessary because fixed-format records must be of identical
lengths. If remain is nonzero, the appropriate number of blanks

are inserted into the 1I/0 buffer. The variable req_off 1is set
equal to fd.reclen because each request processes a complete

record, even if buf_len is less than fd.reclen. The procedure
nove_to_buf is called to move the user's data into the I/0 buffer
immediately before the inserted padding (if any). 1If records are

not blocked (F format), write_buf is called to write the record.
vtherwise, write_buf is not called unless the block contains as
many records as can fit {(cseg.offset = fs.blklen). Control then
passes to the normal exit routine.

for V and Vk format, data_len (the length of the record) is
set to buf_len plus 4 (the 1length of an RDW). The variable
data_len is checked to ensure that it does not exceed fd.reclen.
if it dces, <control passes to the long record error exit. The
procedure get_buf is <called to obtain an I/0 buffer, if
necessary. (An I/0 buffer is always obtained for V format, since
each record requires a new block.) For VB format, it must be
determined if the record to be written can fit into the current
block, or 1if a new block 1s required. If data_len exceeds the
number of remaining characters in the block (fd.blklen -
cseg.offset), write_buf is called to write the current block and
get_buf is called to obtain a new I/0 buffer. Either way, a
pointer is made to the I/0 buffer location where the record's RDW
is to be constructed.

The kDUW location 1s saved in cseg.saveP. Because of the
aforementioned tdem_ - MTS500 block length problems, the 1length
of blocks being written must be evenly divisible by 4 to avoid
cctal (000 padding out to the word boundary. Such padding would
not be reflected in the block's BDW and would cause the block to
he unreadable by an 1BM system. To avoid this problem, the last
record of a V or Vb format block is extended with blanks out to
the word boundary and the BEDW 1is adjusted accordingly. of
ccurse, the RDW for the extended record must be similarly
incremented. Its location is saved for this reason.

The record length (data_len) is decomposed and placed into
the RDW length field. (The decomposition process is the reverse
of the RDW recomposition process described above, done for the
same reason.) The variable cseg.offset is incremented by 4, so
that the RDW is considered when computing the total block length,
and req_off is set equal to buf_len. The variable move 1is also
set equal to buf_len and move_to_buf is called to move the user's
data. If records are not blocked, write_buf is called to write
the record. Otherwise, write_buf is not called unless another
record could not fit in the current block (fd.blklen -
cseg.offset < 4, where 4 is the length of a zero-length record).
Control then passes to the normal exit routine.

11-864 AN5T



For VS and VBS format, buf_len is checked to ensure that it
does not exceed fd.reclen. If it does, control passes to the
longer record error exit. The procedure get_buf is called to
obtain an I/0 buffer, if necessary. (An I1/0 buffer 1is always
obtained for VS format, because each record segment requires a
new block.) The variable left contains the number of characters
stil tc be moved from the user's buffer, and 1is initialized
equal to buf_len. As each record segment 1is written, left 1is
decremented by the number of characters written in that segment.
The variable remain is set to the number of characters remaining
in the current block (fd.blklen - cseg.offset). A pointer is
made to the I/0 buffer location where an SDW is to be
constructed, and :the 1location is saved in cseg.saveP for the
reason described above.

The number of characters that can still be placed 1into the
current block is computed. If left, the (balance of the) user's
request, plus 4 (the length of an SLW) characters is greater than
remain, move is set to as many data characters as will fit
(remain - 4). If left + 4 1is not greater than remain, the
(balance of the) user's request can fit entirely within the
current block. It must then be determined whether or not
sufficient characters would remain in the block to contain a
segment of a subsequent record. If left + 4 is less than or
equal to remain - 5, sufficient room would remain for a 5
character segment (4 character SDW plus 1 data character) of the
next reccrd. In this case, move is set equal +to 1left .and the
(balance of the) user's request is placed into the current block.

If, however, a segment of a subsequent record could not fit
into the current block, the current segment of the current record

is the last segment in the block. JSteps must be taken to ensure
that placing the block segment intc the block does not result in

a block with a length not evenly divisible by 4. Such a block
would be padded with octal 000 out to a word boundary, resulting
in unreadable blocks, as described above. The number of

cnaracters of the segment that would be placed into the last word
cf the block 1is computed. If the word would be filled, move is
set equal to left because no padding occurs. Otherwise, move 1is
set equal to left decremented by the number of characters that
would be placed in the last word. Those characters are written
in a subsequent segment in the next block. The variable left is
then decremented by the value of move to give the amount of data
(if any) to be written in subsequent segments.

The type <code set 1in the 3SDW is dependent upon both the
amount of data still to be written (left), and whether or not the
segment to be written is the first of the record. If no data
from the record has been previously placed into another segment
(first_scan = "1"b) and no data remains to be written in a
subsequent segment (left = C), the type is complete; 1i.e., the
segment contains the entire record. If some data has been placed
into another segment (first_span = "QO"b), and no data remains to
be written, the type is final; 1i.e., the segment is the last of

11-65 ANST



a group of ‘'segments that in toto make up the record. If nc data
from the record has been previously placed into another segment
and more remains to be written in subsequent segments (left =
0), the type is initial; 1i.e., the segment 1is the first of a
group of segments that in toto make up the record. If some data
has been placed into another segment and more remains %o be
written, the type is medial; 1i.e., the segment is one of & group
of three or more segments (but neither the first nor the last)
that in toto make up the record.

The variable data_len, the actual record segment length, is set
equal to move + 4 (to include the SLW), decomposed (as .described
above), and placed into the SDW length field. For DOS files
(cseg.standard = 3), a special <check 1is made for zero-length
record SOCWs. If the SDW length value is 4 (no data), the
high-order bit of the SDW length field must be set to "1"b. The
variable cseg.offset is 1incremented by 5, so that the SDW is
considered when computing the total block 1length. The variable
req_off is set equal to move, and move_to_buf is called to move
the user's data into the I/0 buffer. The variable remain is set
to the number of characters now The variable remaining in the
block (remain - data_len). If record segments are not blocked
(VS format), control passes to write the I/0 buffer. If record
segments are blocked, the I/0 buffer is only written if another
nonzero length record segment could not fit into the block
(remain < 5).

If the I/C buffer is to be written, write_buf is called to
write 1it, get_buf is called to obtain another, and remain is set
to the number of characters available in the new buffer
(fd.tlklen - cseg.offset). Whether or not the I/0 buffer was
written, left is checked to determine whether or not the user's
request has been satisfied. If left is nonzero, control passes
back to make another SDW pointer for the next record segment; if
left is zero, control passes to the normal exit routine.

The normal exit routine increments the logical record count
(cseg.lrec.reccent) and sets the return code and cseg.lrec.code to
the code returned by the last 1/0 operation (normally zero). If
csw (the tape_ansi_ibm_lrec_io_$close entry switch) is "1i"p,
control then passes to that entry's exit routine. Otherwise, the
file lock 1s unlocked and the procedure returns. (The variable
csw is initialized to "O"b upon procedure block activation, but
is set to "1"b by the tape_ansi_ibm_lrec_io_$close entry.)

The 1long record and error exits perform similar functions,
with the exception of incrementing c¢seg.lrec.recent.

11-86 ANS7



INTERNAL PROCEDURES

Entry: get_buf

This procedure is called to obtain an I/0 buffer, if one is
needed. If the I1/0 buffer pointer (cseg.lrec.bufP) is nonnull, a
buffer 1is available and the procedure returns. If it is null,
tape_ansi_tape_1io_¢$get_buffer is called to make an I/0 buffer
available. If the record format is V, Vb, VVS, or VBVS, the
current offset within the buffer (cseg.offset) is set to 4, to
reserve space for the BDW. For all other formats, it is set to
0.

Entry: move_to_buf

This procedure is called to move data from the user's buffer
to the I/0 buffer. If move is zero, there 1is no data to be

moved. In this case, c¢seg.offset 1s incremented by the value of
req_off (the number of characters processed by the request) and
the procedure returns. (The variable c¢seg.offset must be

incremented to allow for the case of zero-length records in V,
VB, VVS, and VBS format. Such records consist of RDWs or SDWs
alone.) If data is to be moved, pointers are made to the offset
within the I/0 buffer where the data is to be placed, and to the
offset in the user's buffer from which the data is to be taken.
1If the encoding mode (fd.mode) is ASCII, the data is moved. 1If
the mode is EBCDIC, ascii_to_ebedic_ is called to translate and
move the data. The variable total is incremented by the value of
move, to maintain a count of the total number of characters
moved. The variable cseg.offset is incremented by req_off, and
the procedure returns.

11=-67 ANST7



Entry: write_buf

This procedure writes a block, appending block pad
characters if necessary. If cseg.offset is less than 20 and the
fcrmat 1is neither F nor FB, the block must be padded. This step

is necessary for two reasons: 1) blocks of fewer than 18
characters must not be written, and 2) blocks to be written must
consist of an integral number of words (4 characters/word). The

number of pad characters is computed by subtracting cseg.offset
(the number of characters presently in the block) from 20, and
control passes to perform the padding.

If cseg.offset is greater than or equal to 20 but not evenly
aivisible by four, the block must still be padded to satisfy
requirement 2) above. Padding for both cases 1is performed by
inserting the appropriate number of pad characters into the I1/0
buffer immediately following 1its current contents, and then
incrementing cseg.offset to reflect the new, adjusted block
length. 1In addition, for V, Vb, VS, and VBS format, the BDW and
last HKDW in the block must be incremented to reflect the addition
cf the padding.

The entry point tape_ansi_tape_io_$write is called to write
the ©block. If the return code 1is =zero, the block count
(cseg.lrec.blkcent) 1is incremented and the procedure returns. If
the return code is nonzero, there are two major possibilities.
if the code 1is not error_table_$eov_on_write, an error has
occurred, and the block count is decremented 1if more than one
block was not Wwritten (cseg.blkent = cseg.blkent -
cseg.soft_status.nbuf + 1). (The suspended buffer count 1is
currently obtained directly from the «c¢seg. Eventually, when
tape_ioi_ becomes the device interface, a tape_ioi_ status entry
will be called to obtain this value.) The logical record count
is invalidated by setting it negative, and control passes to the
error exit.

If the code is error_table_$eov_on_write, then end-of-tape
has been detected. This is more in the nature of an event than
an error. The variable cseg.lrec.blkent is incremented, because
the block has been successfully written. If c¢csw is "1"b (i.e.,
the procedure was entered at the $close entry point), the
procedure simply returns. This is done so that EOT detection at
close time does not force volume switching, with the resultant

recording of a null file section on another volume. If c¢csw 1is
"G"Db, either tape_ansi_nl_file_cntl_g$data_eot or
tape_ansi_file_cntl_¢data_eot is called to switech volumes. If

the returned code is zero, volume switching has occurred and the
procedure returns. 1If the code is nonzero, the volume switch did
not take place. This can be due either to an error or to the
lack of another volume. If the format is VS or VBS and the
entire record has not yet been written (left "= 0), control

passes to the error exit. If the format is other than VS or VBS,
or if VS or VBS and the entire record has been written (left =

11-88 ' ANS5T7



0), this iox_$write_record operation is not 1in error. Further
operations must be inhibited nevertheless, because there is no
more room on the volume. To this end, c¢seg.lrec.code (the
logical I/0 1lock) 1is set to the error code value. The return
code is then set to 0, because this operation is successful, and
control passes to unlock the file lock and return,

Entry: tape_ansi_ibm_lrec_io_$close

This entry point is called by tape_ansi_file_cntl_g$close to
terminate logical record 1I/0G in a consistent manner at close
time.

Usage

del tape_ansi_ibm_lrec_io_$close entry (ptr,
fixed bin (35));

call tape_ansi_ibm_lrec_io_$close (acP, code);

where:
1. ack is a pointer to the cseg. (Input)
2. code is a standard status code. (Output)

INTERNAL LOGIC

Tne <cseg pointer 1is copied from the argument list and the
close entry switch (csw) is set to "1"b, This switch governs the
action taken if write_buf must be called and either an error or
EOT occurs. If the I/0 switch.is open for sequential_input, and
the I/0 buffer pointer is null, control passes to the buffer
management reset exit to perform that function and return. If
the pointer is nonnull, control passes to the buffer release exit
to perform that function, reset the buffer management strategy,
and return.

If the I/0 switch is open for sequential_output and there is
no current I1/0 buffer, ccntrol passes to the buffer management
reset exit. Even if an I1/0 buffer exists, it may not contain any
valid data. If cseg.offset is zero, it surely does not, and if
cseg.offset 1is 4 and the record format is V, VB, VS, or VBS, the
buffer only contains a BLW. In either case, control passes to
the buffer management reset exit. Utherwise, the buffer contains

11-89 ANST



data that must be written. The procedure write_buf is called,
and control passes to the buffer release exit,

The buffer release exit calls
tape_ansi_tape_io_$release_buffer to release the current I/0
buffer, calls tape_ansi_tape_io_¢$close to reset the buffer
managemnent strategy, and returns. The buffer management reset
exit calls tape_ansi_tape_io_$close and returns.

MGDULE: tape_ansi_read_length_

This module performs the iox_$read_length function. It
reads a record, returns 1its length, and saves the record in a
buffer for future use by an iox_$read_record call.

Usage

dcl tape_ansi_read_length_ entry (ptr, fixed bin (21),
fixed bin (35));

call tape_ansi_read_length_ (iocbP, reclen, code);

where:

1. iocbP is a pointer to the IOCB. (Input)

2. reclen is the 1length of the next record, in
characters. (Output)

3. code is a standard status code. (Output)

If code 1is error_table_g$tape_error, the record length is
returned but can be in error. If code 1is any other nonzero
value, the record length is undefined.

Internal Logic

The cseg pointer is obtained from the IOCB and cseg.invalid
is checked to determine if the cseg has an internal
inconsistency. If it does, the procedure immediately returns the
error code error_table_$invalid_cseg. The variable
cseg.file_lock is checked to ensure that the file is not in use
for other I/0 activity. If it is in use, the procedure
immediately returns the error code error_table_¢$file_busy.

11-90 ANST



Otherwise, a cleanup handler 1s established and the file is
locked. If invoked, the cleanup handler unlocks the file lock
and sets the logical record I/0 1lock (cseg.lrec.code) to
error_table_$fatal_error. This action 1is necessary because an
interrupted read_length operation can leave the 1logical record
processing variables in an inconsistent state.

The read_length buffer pointer (cseg.rlP) is checked to
determine whether or not a read_length buffer exists. If the
pointer is null, one does not. The external procedure
hes_$make_seg is invoked to make a segment in the process
directory. The entry name of the segment is formed as follows:

module_name || first_volname || "_.rl"

where module_name is the name of the I/0 module (tape_ansi_ or
tape_ibm_) and first_volname is the volume name of the first (or
only) volume of the volume set. If an error occurs while making
the segment, ~the procedure returns the code
error_table_¢$fatal_error. If no error occurs, the maximum buffer
length is computed and saved in the internal static variable
nc_wanted. When reading a record to determine its length, the
procedure must be sure to request every possible character in the
record, and no record can contain more than nc_wanted characters.
Control then passes to read a record.

If cseg.rlP 1s nonnull, the read_length buffer already
exists. The buffer character count (cseg.rlN) is checked to
determine whether or not the buffer already contains a record.
This is possible if two iox_¢$read_length calls are issued without
an intervening iox_$read_record call; the second
iox_$read_length call references the same record as the first.
If c¢seg.rlN 1s not -equal to -1, the buffer already contains a
record. The return code is set to zero, reclen is set equal to
cseg.rlN, the file 1s unlocked, and the procedure returns.

If cseg.rlhN is =1, then a record must be read into the
buffer. To do so, the file must first be unlocked, and
tape_ansi_lrec_io_$read_record or
tape_ansi_ibm_lrec_io_$read_record must be <called to read the
record. The call requests nc_wanted characters. The variable
cseg.rlN is set to the number actually read. The file 1is then
locked once again. If the returned code 1is either zero or
error_table_$tape_error, the logical record count
(cseg.lrec.reccent) is decremented. This is done because although
the record count was incremented by the read_record call, the
record has not actually been read (by the wuser). The variable
reclen 1is set to «c¢seg.rlN, the file 1is unlocked, and the
procedure returns.

If the returned code is any other wvalue, the read_record
operation has failed. The variable reclen 1is set to zero,
cseg.rlN is set to -1 (to ensure that the buffer contents are
invalidated), the file is unlocked, and the procedure returns.

11-91 ANS57



MODULE: tape_ansi_position_

This module implements - the iox_¢$position function.
Positioning to beginning-of-file, end-of-file, and forward a
specified number of records are supported. Positioning backwards
a specified number of records is not supported.

Usage

del tape_ansi_position_ entry (ptr, fixed bin, fixed bin,
fixed bin (35));

call tape_ansi_position_ (iocbP, type, n, code);
where:
1. iocbP is a pointer to the IOCB. (Input)

2. type specifies the type of positioning to be
performed. The following types are
supported:

-1 beginning-of-file

0 forward n records (see n below)
1 end-of-file

(Input)

3. n specifies the number of records to be
positioned over, if type = 0. If type "= 0,
n is ignored. The value of n must be > O.
If n = 0, no action is performed. (Input)

y, code is a standard status code. (Qutput)

The following is a nonexhaustive list of error_table_ codes
that can be returned.

invalid_cseg the control segment is invalid; the
operation was not performed.

file_busy the file is already in wuse for other I/0
activity; the operation was not performed.

fatal_error an unrecoverable I/0 error occurred; the

operation may or may not have been completed.
The I/0 switch may or may not have been
closed.

tape_error a parity I/0 error occurred. If the 1I/0
switch 1is open, the operation was completed.
If not, the operation may not have been
completed.

11=-92 ANST



end_of_info logical end-of-file encountered before
completing a position forward n records

request. The file is positioned at
end-of-file.
bad_arg either type or n is invalid; the operation

was not performed.

Internal Logic

The c¢seg pointer is extracted from the IOCB. The variable
cseg.invalid is checked to determine whether or not the control
segment is valid. If it 1is not wvalid, the error code
error_table_¢$invalid_cseg is returned. Otherwise, the file 1lock
(cseg.file_lock) is .checked to determine whether the file is
already busy for other I/0 activity. If it 1is busy, the
procedure returns the error code error_table_$file_busy.
Utherwise, a cleanup handler is established and cseg.file_lock is
set. If invoked, the cleanup handler sets the logical record I/0
lock to error_table_¢$fatal_error and unlocks the file lock. This
step is necessary because an interrupted positioning operation
can leave the 1logical record processing variables in an
inconsistent state.

The type argument is validated to ensure that it falls
within the range -1 £ type £ +1. If it does, control passes to
perform the appropriate positioning operation. If it does not,
the return code is set to error_table_¢$bad_arg and control passes
to the exit routine,.

Position to beginhing-of-file

Either tape_ansi_nl_file_cntl_¢$beginning_of_file or
tape_ansi_file_cntl_¢$beginning_of_file is called to perform the
actual positioning operation. If the returned code is nonzero,
the logical record I/0 lock is set to that value. Control then
passes to the exit routine.

Position to end-of-file

Either tape_ansi_nl_file_cntl_$end_of_file or
tape_ansi_file_cntl_$end_of_file is called to perform the actual
positioning operation. If the returned code is nonzero, the
logical record I/0 lock is set to that value. Control then
passes to the exit routine.

Position forward n records

The return code is initialized to zero because no procedure
calls can be made. The automatic variable tape_error is

11-93 ANST



initialized to "0"b. This variable is used to determine whether
or not a parity error has occurred in the course of positioning.

If n = 0, no records are to be skipped and control passes to
the exit routine. because: each block can contain an
indeterminate number of records, 1t would be necessary to
maintain a logical record map for every block to implement
positioning backwards. Since the cost of such an implementation

is excessive, n < 0 is not supported. If n < 0, the return code
is set to error_table_$bad_arg and control passes to the exit
routine. If n > 0, the argument is copied into the automatic

variable i1 so that the record count can be decremented without
affecting the caller's parameter.

The read_length buffer character count (cseg.rlN) is checked
to determine whether or not the buffer contains a record. If it
does (cseg.rlN "= -1), the buffer is "emptied" (cseg.rlN = 1)
and the record count is decremented. These actions are logically
equivalent to skipping 1 record. If there was no record in the
read length buffer or if additional records must be skipped,

positioning involves physical tape motion.

Records are skipped by invoking either
tape_ansi_lrec_io_$read_record or
tape_ansi_ibm_lrec_io_$read_record. The variable cseg.file_lock
is set to "0"b so that the logical I/0 procedure does not find
the file 1locked wupon invocation. The appropriate procedure is
called with a null user buffer pointer and a zero buffer length
so that a logical record 1is processed but»no information is
returned. If the returned code is either - zero or
error_table_$long_record, the read is considered to have
completed normally. (Since the length of the record read is
almost always greater than the buffer length (0), code is almost
always error_table_$long_record. In this case, code is reset to
zero and ignored. If the record read has zero length, code is
zero.,) If the returned code is error_table_$tape_error, a parity
error has occurred. This error does not absolutely preclude
further reading. In order to continue, the logical I/0 lock is
unlocked (cseg.lrec.code = 0) and tape_error is set to "1"b so
that the procedure eventually returns error_table_g$tape_error to
its caller. If the returned code is any . other value
(error_table_¢$end_of_info, error_table_¢$fatal_error, etc.), no
further positioning is possible and control passes to the exit
routine. If processing is to continue, the file lock is locked
again and the above algorithm is repeated until the positioning
request has been satisfied.

Once the request is complete, tape_error is checked to
determine whether a parity error has occurred while processing.
If so, cseg.code is set to error_table_$tape_error, relocking the
logical record I/0 1lock, and the return code is set to
error_table_$tape_error.

11-94 AN5T



The exit routine unlocks the file lock (cseg.file_lock) and
returns whatever code has been set in a previous step.

MODULE: tape_ansi_mount_cntl_

This procedure performs all the volume and device management
functions of the I/0 module. Currently coded to use the tdem_
interface, it must eventually be recoded to use rcp_ and
tape_ioi_. The internal 1logic descriptions are therefore
confined to describing the functions performed and ignoring the
particulars of implementation.

Entry: tape_ansi_mount_cntl_$mount

This entry point 1is called to assign a device, mount a
volume on that device, and read the volume's VOL1 label (if any).

Usage

decl tape_ansi_mount_cntl_$mount entry (ptr, fixed bin,
fixed bin (35));

call tape_ansi_mount_cntl_$mount (cP, v1X, code);

where:

1. cP is a pointer to the control segment. (Input)

2. vliX is the index of the volume 1link associated
with the volume to be mounted. (Input)

3 code is a standard status code. (OQutput)

If code is nonzero, the volume is not mounted and no device
is assigned.

11-95 ANST



INTERNAL LUGIC

A cleanup handler is established that calls the internal
procedure cleaner. If invoked, cleaner demounts the volume (if
mounted) and unassigns the device (if assigned). After the
cleanup handler is established, a device is assigned and the
active drive count (cseg.nactive) is incremented. The internal
procedure mount_request is called to issue a mount message to the
user, mount the desired volume (specified in the volume link),
anc issue ancther message when the mount 1is complete. The
internal procedure VOLI1_check 1is called to validate the VUL
label against its expected characteristics and set the VOLI1
status variable (vl.write_VOUL1) accordingly. The volume link is
filled with the assignment, mount, and VOL1 validation data, and
the procedure returns. If an error occurs during any of the
above steps, control passes to the error exit routine.

The error exit routine 1invokes the internal procedure

cleaner, sets the return code to error_table_$bad_mount_request,
and returns.

Entry: tape_ansi_mount_cntl_$remount

This entry point is called to demount a volume from an
assigned device and mount a different volume on the same device.

Usage

dcl tape_ansi_mount_cntl_$remount entry (ptr, fixed bin,
fixed bin, fixed bin (35));

call tape_ansi_mount_cntl_$remount (cP, down_vlX,

v1lX, code);

where:

1. cF is a pointer to the control segment. (Input)

2. down_vl1X is the index of the volume 1link associated
with the volume to be demounted. (Input)

3. v1X is the index of the volume 1link asscciated
with the volume to be mounted. (Input)

y, code is a standard status code. (Output)

If code 1is nonzero, the requested volume has not been
mounted but the volume to be demounted may have been demounted
and its device unassigned.

11-906 ANS57



INTERNAL LOGIC

A cleanup handler 1is established to «c¢all the internal
procedure cleaner, described above. The current file position
(vl.cf1lX) of +the volume to be demounted is invalidated and the
internal procedure unload is called to demount the volume. The
volume link's device identifier (vl.rcp_id) is invalidated and
control passes to call mount_request, continuing as described
above. ‘

Entry: tape_ansi_mount_cntl_$insert_rings

This entry point is called to demount all mounted volumes,
request that write permit rings be 1inserted, and mount the
volunes again. The write ring switch (cseg.write_ring) is set to
"1"b, indicating that all volumes are to be mounted with write
permit rings. ‘

Usage

del tape_ansi_mount_cntl_$insert_rings entry (ptr,
fixed bin (35));

call tape_ansi_mount_cntl_g$insert_rings (cP, code);

Entry: tape_ansi_mount_cntl_$write_protect

This entry point is called to issue a hardware file protect

order to every assigned device. The write protect switch
(cseg.protect) 1is set to "I1"b, 1indicating that writing is
inhibited.

Usage

del tape_ansi_mount_cntl_$write_protect entry (ptr,
fixed bin (35));

call tape_ansi_mount_cntl_gwrite_protect (cP, code);

11-97 ANST



Entry: tape_ansi_mount_cntl_$write_permit

This entry point is called to issue a hardware file permit
order to every assigned device. The write protect switch is set
tc "0"b, indicating that writing is not inhibited.

Usage

dcl tape_ansi_mount_cntl_$write_permit entry (ptr,
tixed tin (35));

call tape_ansi_mount_cntl_$write_permit (cP, code);

Entry: tape_ansi_mount_cntl_g$free

This entry point is called to demount a volume and unassign
its device.

Usage

del tape_ansi_mount_cntl_¢$free entry (ptr, fixed bin,
fixed bin (35));

call tape_ansi_mount_cntl_¢$free (cP, v1X, code);

where:

1. cP is a pointer to the control segment. (Input)

2. vliX is the index of the volume 1link associated
with the volume to be demounted, and whose
device is to be unassigned. (Input)

3. code is a standard status code. (Output)

If code is nonzero, the volume may not have been demounted
and the device may not have been unassigned,

Internal Logic

A cleanup handler 1is established, as described above, and
the current file position (vl.cflX) is invalidated. The volume
is then demounted and its device unassigned. The active drive
count (cseg.nactive) is decremented, the volume 1link's device
identifier (vl.rcp_id) is invalidated, and the procedure returns.

11-98 ANS5T



If an error occurs during any of the above steps, control passes
to the error exit routine.

Internal Procedures

The only internal procedure described is VOL1_check. The
others have been functionally described in the above text and are
highly dependent in their implementation wupon the tdem_
interface.

Entry: VOL1_check

This internal procedure validates the VOL1 label (if any) of
a newly mounted volume and sets the VOL1 status variable
(vl.write_VOL1) accordingly. This variable takes the following
values: .

0 the VOL1 label is correct. For an ANSI file
set, this means that the first block is an
ANSI VOL1 label. For an IBM file set, this
means that the first block is an IBM SL VOL1
label. If a density has been specified or
inferred (cseg.density "= -1), the VOL1 label
density meets the specification. In
addition, the recorded volume identifier
matches the expected volume identifier.

1 the tape is blank; i.e., the first read
operation detected 25 feet of blank tape and
returned blank-tape-on-read status.

the first block is unreadable. Either the
volume 1s recorded at an unreadable density,
or with the wrong number of tracks, or the
tape is defective, or the hardware is
malfunctioning, etc.

Ny

3 ‘ the first block is not a VOL1 label. (An IBM

VOL1 label is not treated as such 1in the
context of an ANSI file set.)

4 the first block is a valid VOL1 1label, but

the recorded volume identifier does not match
the expected volume identifier.

11-96 ANST



5 the VOL1 label is correct in all respects but
density. The recorded density does not meet
the specified or inferred density
(cseg.density).

Currently, this procedure operates independently of the
(eventual) rcp_ volume registration mechanism. It must

eventually be modified to work in accordance with that mechanism,
The majority of its checking functions will be performed by rcp_
itself.

MUDULE: tape_ansi_tape_io_

This procedure performs the actual tape operations required
by the I/0 module. Currently, the procedure is an interface to
tdem_. When tape_ioi_ is implemented, the 1I/0 module can be
recoded to call tape_ioi_ directly, or else this procedure should
be rewritten to interface to tape_ioi_. The following
documentation provides only a functional description of each
entry point, since the 1implementation 1is entirely tdem_
dependent.

Entry: tape_ansi_tape_io_g$attach

This entry point is called to 1initialize the tdem_ tseg
contained in the control segment. Currently, it is called only
once at initial attach time, before a device has been attached.
Eventually, it should perform the tape_ioi_$initialize function
and be called (multiply) at device assignment time.

Usage
del tape_ansi_tape_io_$attach entry (ptr);
call tape_ansi_tape_1io_$attach (cP);

where cP is a pointer to the control segment. (Input) (Input)

11-100 ANST



Entry: tape_ansi_tape_io_$open

This entry point is called at logical record I/0 open time
(lrec_open internal procedure in tape_ansi_file_cntl_ and
tape_ansi_nl_file_cntl_) to initialize the tseg for asynchronous
I/0. Eventually, it should call tape_ioi_ to set buffer sizes,
I/0 modes, etc.

Usage

del tape_ansi_tape_io_$open entry (ptr);
call tape_ansi_tape_io_g$open (cP);

where cP is a pointer to the control segment. (Input)

Entry: tape_ansi_tape_io_$close

This entry point is called at logical record 1I/0 close time
(by tape_ansi_lrec_io_3$close or tape_ansi_ibm_lrec_io_$close) to
synchronize the tape,.backspacing if necessary in the read case,
writing the remaining buffers in the write case. '

Usage
del tape_ansi_tape_io_$close entry (ptr, fixed bin (35));

call tape_ansi_tape_io_$close (cP, code);

where:
1. cPk . is a pointer to the control segment. (Input)
2. code is a standard status code. (Output)

The value of code can be either zero or
error_table_¢$fatal_error. (EQT detection during write

synchronization is ignored.)

Entry: tape_ansi_tape_io_$get_buffer

This entry point is called to obtain a pointer to an 1I/0
buffer that will subsequently be written.

N

11-101 ANST



Usage

dcl tape_ansi_tape_io_$get_buffer entry (ptr, ptr,
fixed bin (35));

call tape_ansi_tape_io_¢$get_buffer (cP, bP, code);

where:
1. cP is a pointer to the control segment. (Input)
Z. bF is a pointer to the I/0 buffer. (Qutput)
3. code is a standard status éode. (Output)
The value of code can be either zero or

error_table_g$fatal_error. In the latter case, bP is null.

Entry: tape_ansi_tape_io_$release_buffer

This entry point is called to release an 1/0 buffer once it
is no 1longer needed; i.e., subsequent to a read operation or
after a get_buffer call if no write is to be issued.

Usage

dcl tape_ansi_tape_io_$release_buffer entry (ptr, ptr,
fixed bin (35));

call tape_ansi_tape_io_$release_buffer (cF, bP, code);

where:
1. cP is a pointer to the control segment. (Input)
2. bP is a pointer to the 1I/0 buffer to be
released. (Input)
3. code is a standardvstatus code. (Output)
The value of code can be either zero or

error_table_g$fatal_error.

11-102 ANST



Entry: tape_ansi_tape_io_$read

This entry point is called to read one block in asynchronous

mede.
Usage
acl tape_ansi_tape_io $read entry (ptr, ptr, fixed bin,
fixed bin (35));
call tape_ansi_tape_io_$read (cP, bP, ccount, code);
where:
1. cP is a pointer to the control segment. (Input)
2. bP is a pointer to the I/0 buffer containing the
‘ block. - (Output)
3. ccount is thé number of characters read. (Output)
4, code is a standard status code. (Qutput)

If code 1is zero, the block 'was read correctly. The
fecllowing error_table_ ccdes can be returned:

eof_record an end-of-file mark was read; bF is null and
' ccount is 0.

blank_tape 25 feet of blank tape read; bP is null and
, ccount is 0.

tape_error parity error detected; a block was read.

fatal_error unrecoverable program or 1/0 error; bP 1is

null and ccount is 0.
Entry: tape_ansi_tape_io_$sync_read

This entry point 1is called tc read a block in synchronous
mode. The block is read into a spe01al synchronous I/0 buffer
p01nted to by cseg.syncP.

Usage

del tape_ansi_tape;io;$sync_read entry (ptr, fixed bin,
fixed bin (35));

call tape_ansi_tape_io_$sync_read (cP, ccount, code);

11-103 ANST



where:

1. cF is a pointer to the control segment. (Input)
2. ccount is the number of characters read. (OQutput)
3. code is a standard status code. (QOutput)

If code 1is 2zero, the read was successful. The following
error_table_ codes <can be returned: eof_record, blank_tape,
tape_error, and fatal_error. If code is nonzero, ccount is zero.

Entry: tape_ansi_tdpe_io_$sync_write

This entry point is called to write a block in synchronous
mode. .The block is written from a special synchronous I1I/0 buffer
pointed to by cseg.syncP.

Usage

del tape_ansi_tape_io_$sync_write entry (ptr, ccount,
fixed bin (35)); '

call tape_ansi_tape_io_$sync_write (cP, ccount, code);

where:

1. cP is a pointer to the control segment. (Input)

2. ccount is the number of characters to be written.
(Input)

3. code is a standard status code. (Output)

If code 1is =zero, the write was successful. The following
error_table_ codes can be returned:

eov_on_write end-of-tape was detected; the block was
written correctly.

tape_error a parity error occurred; the block was not
written or was written incorrectly.
fatal_error an unrecoverable program or I/0 error

occurred; the block was not written.

11-1G64 ANST



Entry: tape_ansi_tape_io_g$write
This entry point is called to write a block in asynchronous
mode. _

Usage

dcl tape_ansi_tape_io_$write entry (ptr, ptr, fixed bin,
fixed bin (35)); ‘

call tape_ansi_tape_io_$write (cP, bP, ccount, code);

where:

1. ck is a pointer to the control segment. (Input)

2. bF is a pointer to the I/0 buffer to be written.
(Input)

3. ccount is the number of characters to be written.
(Input)

4. code is a standard status code.

If code 1s zero, the block was written correctly. The
following error_table_ codes can be returned:

)

eov_on_write end-of-tape was detected; the block was
written correctly.

tape_eﬁror a parity error occurred; the block was not
written.

fatal_error an unrecoverable program or I/0 error
occurred; the block was not written or was

written incorrectly.

kntry: tape_ansi_tape_io_gorder

This entry point 1is called to 1issue an order operation. The
following orders can be issued:

bsf packspace file

bsr backspace record

ers erase

fsf forward space file
fsr forward space record
rgs request status

rss reset status

11-105 ANST



rew rewind

run rewind and unload

gof write end-of-file mark

pro set file protect

per set file permit

san set density (qualified further)
Usage

del tape_ansi_tape_io_$order entry (ptr, char (3),
tixed bin, fixed bin (35));

call tape_ansi_tape_io_$order (cP, order, g, code);

where:

1. ck * is a pointer to the control segment. (Input)

2. order is the order to be performed, as listed
above. (Input)

3. q is the order qualifier. The value of q 1is
ignored wunless the order is "sdn". In this
case, q can be:

0 200 bpi
1 556 bpi
2 800 bpi
3 1600 bpi (Input)

4, code is a standard status code. (OQOutput)

If code is zero, the order was performed correctly. The

following error_table_ codes can be returned:

fatal_error possible for all orders; an unrecoverable
program or I1/0 error occurred. The order may
or may not have been performed.

positioned_on_bot possible for bsf and bsr only; the tape
is/was positioned at beginning-of-tape. The
order may or may not have been performed.

eov_on_write possible for ers and eof only; end-of-tape
detected. The order was performed correctly.

eof_record possible for fsr and bsr only; the order
spaced over an end-of-file mark.

tape_error possible for all orders; an I/0 error
occurred. The order may or may not have been
performed.

11-106 ANST



MODULE: tape_ansi_interpret_status_

This module is called by tape_ansi_tape_io_ to interpret the
IOM status bits. It generates an array of error_table_ status
codes. When tape_ioi_ becomes the device I/0 interface, this
module will no longer be needed.

Usage

del tape_ansi_interpret_status_ entry (ptr);
call tape_ansi_interpret_status_ (hP);
where:

1. hP : is a pointer to a hardware status structure.
(Input)

The hardware status structure is declared as follows:

del 1 hdw_status based (hP),
2 iom_bits bit (72) aligned, /% IOM status bits #/
2 no_minor fixed bin, /* number of minor codes ¥/
2 major fixed bin (35), /* major status code ¥/
2 minor (10) fixed bin (35); /* minor status codes ¥/

Internal Logic

The procedure is passed the structure with
hdw_status.iom_bits set to the ICOM status to be interpreted. The
variable hdw_status.no_minor is set to the number of minor status
codes, the major status code is placed in hdw_status.major, and
the hdw_status.minor array 1is filled with the minor status

code(s).

MODULE: tape_ansi_parse_options_

This module is called by tape_ansi_attach_ to validate an
iox_ attach description.

Usage

del tape_ansi_parse_options_ entry (ptr, (*) char (%)
varying, char (32) varying, fixed bin (35));

call tape_ansi_parse_options_ (taoP, options, error, code);

11-107 ANST7



where:

1. taokF is a peinter to the attach options structure
(tao., as declared by
tape_attach_options.incl.pll1. (Input)

z. options is an array of attach description lexemes, as
parsed by iox_. (Input)

3. error is a diagnostic message. It is null if code
is zero; it can be nonnull if code is

nonzero. (Output)

4, code is a standard status code. If code 1is
nonzero, the attach description is invalid.
(Output)

Internal Logic

The variables error and code are initialized to "" and zero,
respectively. 1If the number of elements in the options array
(tao.noptions) 1is zero, the procedure immediately returns the
error code error_table_g$noarg because the attach description
cannot be null,

Processing begins with the volume list, which is the first
section of the attach description. The array index 1 1is
initialized to 1. ‘The variable hyphen_ok 1is set to "0"b to
indicate that the first options array element should be a volume
name and therefore should not begin with a hyphen. The element
is tested to determine if it is "-volume" or "-vol", either of
which indicates that the next element is a volume name that may
or may not begin with a hyphen. If the element is "-volume" or
"-vol", hyphen_ok 1is set to "1"b and no_next is invoked to
determine whether or not the next element exists. If the next
element does not exist, the procedure returns the error code set
by no_next because the -volume option requires a following volume
name. If the next element ex1sts, no_next has incremented the
array index to access 1it.

The next element 1is tested to determine whether or not it
begins with a hyphen. If it does not, hyphen_ok is set to "0"b
(whether or not it was previously "1"b) and control passes to
validate the element as a volume name. If the element begins
with a hyphen, the value of hyphen_ok is tested. If hyphen_ok =
"O"b, the element is assumed to be an attach option and control
passes to the attach option validation code. (The first array
element can not be an attach option, but must be either -~volume,
-vol, or a volume name.) If hyphen_ok = "1"b, hyphen_ok is reset
to "0"b and control passes to validate the element as a volume
name.

11-106 ANST



The function vname is invoked to validate and normalize the
volume name. If the element 1is not a valid volume name, the
procedure returns error_table_g$bad_tapeid. If the volume limit
is not exceeded, the volume count is incremented and the volume
name is placed into the volume name array (tao.volname). If the
options array 1is not exhausted, the next element is tested to
determine whether or not it is "-comment" or "-com". :

If it is either, no_next is invoked to determine whether or
not the next element (the comment text) exists. The length of
the comment text is validated and the text is saved in the mount
time comment array (tao.comment). Whether or not a comment was
processed, control passes to test for a -volume or -vol element,
as described above. This algorithm is repeated until either an
attach option is encountered or the options array 1is exhausted.

The attach options are processed by comparing them against a
list of valid options and transferring control to the appropriate
option processing routines. The actions performed by these
routines are best described by the PL/I code itself. Each
routine sets a tao structure member to reflect either the
appearance of a particular option or its associated value.

Internal Procedures

Entry: no_next

This function is called to determine whether or not the
options array contains another element when one is required (For
example, -block requires a subsequent element, the block length.)
If the current array index plus 1 is greater than the index of
the last element, another element does not exist. In this case,
error . (the diagnostic message) 1s set equal to the current
element (the option requiring the missing element), code is set
to error_table_$nodescr, and the procedure returns "1"b. If the
next element exists, the array 1index 1is incremented and the
procedure returns "Q"b,

11-109 ANST



Entry: vname

This function is called to validate and normalize a volune
name. If the volume name is longer than six characters, it is
invalid. 1In this case, the function returns a null string and
the value "0"b. If the length is exactly six, the volume name is
valid and does not require normalization. 1In this case, the
function returns the original volume name and the value "1"b, If
the volume name is shorter than six chgracters, 1t must be
normalized. If the name is entirely numeric, it is normalized by
padding on- the 1left with =zeros to length six. If it is not
entirely numeric, it is normalized by padding on the right with
blanks to 1length six. The function then returns the normalized
volume name and the value "1"b.

MODULE: tape_ansi_control_

This module implements the iox_$control function.

Usage

dcl tape_ansi_control_ entry (ptr, char (*), ptr,
fixed bin (35));

call tape_ansi_control_ (iocbP, order, infoP, code);

where:

1. iocbP is a pointer to the IOCB. (Input)

2. order is the control order to be performed.
(Input)

3. infoP is a pointer to the information structure for
a particular order, if required, (Input)

kL, code is a standard status code. (Output)

The following is a nonexhaustive list of error_table_ codes

returned:

not_open the requested order could not be performed
because the I/0 switch is not open.

bad_arg the requested order requires a nonnull

information pointer, or the information
pointer points to. an invalid information
structure.

11-110 AN5T



no_operation the requested order is not implemented.

action_not_performed :
the requested order could not be performed.
The state of the I/0 module (i.e., opening
mode, lock value, etec.) did not meet an
order-specific criterion.

Internal Logic

The requested order 1is compared against an array of
implemented orders (order_list.name). If no match is found, the
procedure returns the error ' code error_table_$no_operation.
Otherwise, order_list.must_be_open is checked to determine
whether or not the I/0 switch must be open. If it must be open
and it is not, the procedure returns error_table_¢$not_open. The
variable order_list.non_null_ptr is tested to determine whether
or not the order requires an information structure. If it does
and infoP is null the procedure returns error_table_$bad_arg.

-If both tests succeed, the c¢seg pointer 1is extracted from
the IOCB and cseg.invalid is tested to determine whether or not
the cseg is valid. If not, the procedure returns
error_table_$invalid_cseg. The +file 1lock (cseg.file_1lock) is
tested to determine whether the file is already in use for other
I/0 activity. If it is in use, the procedure returns
error_table_¢$file_busy. If it is not in use, a cleanup handler
is established and c¢seg.file_lock is set to "1"b. If invoked,
the cleanup handler resets cseg.file_lock to "0O"b. The return
code 1is initialized to zero and control transfers to process the
particular order requested:

hardware_status

The hardware status string pointed to by infoP is filled
with the IOM status bits from the 1last I/0 operation
(cseg.hdw_status.bits) and control passes to the exit routine.

status

The status structure (declared by device_status.incl.pl1)
pointed to by infoP is filled from the I/0 status structured
generated by the last 1I/0 operation (cseg.hdw_status) and control
passes to the exit routine.

volume_status
The volume status © structure (declared by

tape_volume_status.incl.pl1) pointed to by infoP is filled with
status information describing the "current" volume. If the file

11=-111 AnS7



set is IBM nonlabeled, the current volume is specified by fd.vl1lX,
the volume currently (or last) in use. If no volume has yet been
used (fd.vlX = 0), the first volume of the volume set is the
current volume. For ANSI and IBM SL file sets, the current
volume 1is specified by fl.vlX, the volume on which the file
section currently (or last) in use resides. If no file section
has yet been used (cseg.flF = cseg.fcP), or the file link pointer
has been invalidated due to an error (cseg.flP = null), the first
volume of the volume set is the current volume. The structure is
filled in from the volume link and control passes to the exit
routine.

feov

This order forces end of volume on the current volunme. If
the 1I/0 switch is not open for sequential_output, code is set to
error_table_g$action_not_performed and control passes to the exit
routine. (This order is used only to force a volume switch when
writing.) Either . tape_ansi_file_cntl_g$data_eot or
tape_ansi_nl_file_cntl_$data_eot is called to simulate the
detection of end-of-tape. The file control procedure performs
all necessary volume termination and switching functions. If the
returned code 1is zero, volume switching has been performed

successfully and control passes to the exit routine. If the
returned code 1is nonzero, volume switching did not occur, due
either to an error or the lack of another volune. In either

case, the logical record I/0 lock (cseg.lrec.code) is locked to
inhibit further 1/0, by setting it equal to the returned code.
If the returned code is error_table_$no_next_volume, it is set to
zero and control passes to the exit routine. Otherwise, an error
has occurred and the value of code is passed on to the exit
routine.

close_rewind

This order specifies that the current volume 1is to be
rewound when the I/0 switch is next closed. The rewind function
is performed by the file <control procedure. The wvariable
cseg.close_rewind 1is set to "1"b and control passes to the exit
routine.

retention

This order is preserved for historical reasons only. The
rescurce retention variable (cseg.retain) is set to the value of
the number pointed to by infoP.

file_status

The file status structure (declared by
tape_file_status.inecl.pli1) pointed to by infoP is filled in with
status information describing the "current" file. If the file
set is IBM NL and no file has yet been used, the file status
state variable (tape_file_status.state) is set to zero (no

11-112 ANS57



information) and control passes to the exit routine. If the file
set is ANSI or IBM SL and the file link pointer does not point to
a link (cseg.flP = null or cseg.fcP), tape_file_status.state is
similarly set to zero and control passes to the exit routine.
Even if cseg.flP does point to a link, the file section may not
be a part of the attached file. 1In this case, the above action
is also taken.

Once the current file is known, the IOCB open description
pointer is checked to determine whether or not the I/0 switch is
cpen. If it is not open, tape_file_status.state is set to 1 (not
open). If it 1is open, the state variable is set to either 2
(cseg.lrec.code = 0, logical I/0 not locked), or 3
(cseg.lrec.code "= 0, logical I/0 locked.) The remainder of the
file status structure is filled in according to whether or not
the file set is IBM KL.

retain_none
retain_all

These orders set cseg.retain to 1 (retain neither volumes
not devices) or 4 (retain both volumes and devices),
respectively. Control then passes to the exit vroutine.
kEventually, the following retain orders should be implemented:

retain_default cseg.retain = 0
retain_devices ¢cseg.retain = 2
retain_volumes cseg.retain = 3

reset_error_lock

If the 1/0 switch is not open for sequential_input, the
return code 1is set to error_table_$action_not_performed and
control passes to the exit routine, If the I/0 switch 1is open

for sequential_input, the logical record I/0 lock
(cseg.lrec.code) is checked to determine if it can be wunlocked
(cseg.lrec.code = error_table_g$tape_error). If it can, the lock
is unlocked (set = 0). (If the 1lock value 1is already =zero,

nothing need be done.) Any other lock value causes the return
code to be set to error_table_$action_not_performed. Control
then passes to the exit routine.

The exit routine sets the file lock tec "0"b and returns
whatever code has been previously set. '

11-113 ANST






SECTION XII

THE tape_mult_ I/0 MODULE

INTRODUCTION

The tape_mult_ I/0 module supports I/0 to and from Multics
standard tapes. (See "Multics Standard Magnetic Tape Format" in

Section III of the MPM Peripheral Input/Qutput Manual, Order
No. AX49.

This section will be expanded in a future edition.

12-1 ANST






SECTION XIII

THE tape_nstd_ I/0 MODULE

INTRODUCTION

The tape_nstd_ I/0 module supports I/0 to and from records
on magnetic tape. No logical record or file format is processed
or enforced.

This section will be expanded in a future edition.

131 ANS7






SECTION XIV

TrE rdisk_ 1I/0 MODULE

INTRODUCTION

The rdisk_ I/0 module performs explicit I/0 an
user-attachable disk volumes. These volumes are mounted as "I/O"
disks as opposed to storage system disks. Physical operations on
the disk are performed via the I/0 interfacer ioi_.

This section will be expanded in a future edition.

14-1 ANST






SECTION XV

THE record_stream_ I/0 MODULE

INTRODUCTION

This I/0 module associates two I/0 switches, causing
sequential operations on one switch to generate (or be generated
by) corresponding stream operations on the other switch.

PROGRAM MODULES

The record_stream_ I/0 module is composed of the following
five programs:

record_stream_attach.pll
implements attach, detach, open, and close
operations. Dispatches to the appropriate module for
the opening mode at open and close,.

rs_open_str_in.pl1
implements the get_chars, get_line, and position
operations in openings for stream_input.

rs_open_str_out.pll
implements the put_chars operation in openings for
stream_output.

rs_open_seq_in.pl1
implements the read_record, read_length, and position
operations in openings for sequential_input.

rs_open_seq_out.pli

implements the write_record operation in openings for
sequential_output.

15=1 ANST



MODULE record_stream_attach.pl1

Entry: record_stream_attach

This entry point performs the attach operation according teo
the specified attach options. The attach description 1is
validated and placed in an initialized data block, pointed to by
iocb.attach_data_ptr. If the ~target option 1is specified, a
uniquely named I1/0 switch is attached using the remaining options
to form the target attach description.

Entry: open_rs

This entry point implements the open operation for all
opening modes. The target I/0 switch is opened, or if already
open, its mode is verified.

Except in the case of openings for sequential output, a
uniquely named temporary buffer segment is created and pointed to
by iocb.open_data_ptr.

The appropriate module for the given opening mode is called
to set up the I0CB entry values for the supported operations,
before completing the opeping in the common code. i

Entry: close_rs

This entry point implements the close operation. In the
case of stream_output, the remaining buffer contents (if any) are
written out on the target switch. The temporary buffer segment
is deleted. If the target switch was initially closed, it is
closed again.

Entry: detach_rs

This entry point implements the detach_iocb operation. If
the target switch was specified via the ~target option, it is
detached as well.

15=-2 ANST



Entries: modes_rs, control_rs

These entry points implement the modes and control

operations simply by passing the <c¢all to the target switch
without modification.

MODULE rs_open_str_in.pl1

Entry: get_chars_rs

This entry point implements the .get_chars operation. The
returned data is copied from the buffer segment, whose initial
offset and tail_length are adjusted accordingly. When its
contents are exhausted, read_record operations are issued on the
target switch into the buffer segment. If the attachment does
not specify the -nnl option, a newline character is appended to
each record placed in the buffer,

Entry: get_line_rs

This entry point implements the get_line operation similarly
to the get_chars operation. The difference is that the length of
the returned string is determined via the index of a newline
character in the buffer tail.

Entry: position_str_rs

This entry point implemehts the position operation (except
for skipping backwards, which is not supported).

For positioning to either end of the file, the call 1is
simply passed on to the target switch and the buffer contents are
discarded. .

For skipping forward; the logic is identical to that for the
get_line operation, except that no data is copied out of the
buffer.

15-3 ANST



MODULE rs_open_str_out.pl1

bEntry: put_chars_rs

This entry point implements the put_chars operation. If the
-length (-1n) attach option was specified, fixed 1length records
are written to the target switch as the required number of bytes
are made available. The remainder, if any, is appended to the
buffer segment, to be written by a subsequent operation.

In the default attachment case, the treatment is similar.
Variable-length records are formed from 1lines with trailing
newlines deleted and are written out as they become available.
An incomplete line is appended to the buffer and 1is written on
the target switch as part of the next record.

MODULE rs_open_seq_in.pl1

Entry: read_recobd_rs

This entry point implements the read_record operation. If
the buffer segment contains a record, it is returned to the user
and the buffer contents are discarded.

If the buffer is empty, a record is obtained directly from
the target switch via either a get_chars or get_line operation,
depending on the specified attach option.

Entry: read_length_rs

Thi entry p

oint implements the read_length operation. If
the buffer segment contains a record, its length is returned.
Otherwise, a record is read into the buffer from the target .
switch wusing either get_line or get_chars, and its length is
returned.

15-4 ANST



Entry: position_seq_rs

This entry point implements the position operation (except
for backward skipping).

For positioning to either end of the file, the call is
passed directly to the target switch and the buffer segment's
contents are discarded.

For skipping forward in the default case, the call is simply
passed to the target switch. Otherwise, if the -~length (-1n)
attach option was specified, records are successively read into
the buffer segment until the required number has been skipped or
the end of the file is reached.r If the buffer segment initially
contained a record, the first skip is accomplished by discarding
the buffer contents.

MODULE rs_open_seq_out.pl1

Entry: write_record_rs

This entry point implements the write_record operation. No
buffer segment is required in this case. A put_chars operation
is issued to the target switch with the same arguments as those
passed to this entry point. If the -nnl attach option was not
specified, a second put_chars operation is issued to the target
switch to append a single newline-character.

15=-5 ANST






HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

LEVEL 68 MULTICS ORDERNO. | AN57,Rev. 0

TITLE | ySER RING INPUT/OUTPUT SYSTEM

PROGRAM LOGIC MANUAL
DATED | MAY 1977

ERRORS IN PUBLICATION

SUGGESTIONS FOR iMPRGVEMENT TO PUBLICATION

and action will be taken as required. Receipt of all forms will be

Your comments will be investigated by appropriate technical personnel
acknowledged; however, if you require a detailed reply, check here.

DATE

FROM: NAME
TITLE
COMPANY
ADDRESS




PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Honeywell



ANS7, Rev. 0

Honeywell
T
Leon 250, Mexico 11
Printed in U.S.A.



	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	01-03
	01-04
	010
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	11-001
	11-002
	11-003
	11-004
	11-005
	11-006
	11-007
	11-008
	11-009
	11-010
	11-011
	11-012
	11-013
	11-014
	11-015
	11-016
	11-017
	11-018
	11-019
	11-020
	11-021
	11-022
	11-023
	11-024
	11-025
	11-026
	11-027
	11-028
	11-029
	11-030
	11-031
	11-032
	11-033
	11-034
	11-035
	11-036
	11-037
	11-038
	11-039
	11-040
	11-041
	11-042
	11-043
	11-044
	11-045
	11-046
	11-047
	11-048
	11-049
	11-050
	11-051
	11-052
	11-053
	11-054
	11-055
	11-056
	11-057
	11-058
	11-059
	11-060
	11-061
	11-062
	11-063
	11-064
	11-065
	11-066
	11-067
	11-068
	11-069
	11-070
	11-071
	11-072
	11-073
	11-074
	11-075
	11-076
	11-077
	11-078
	11-079
	11-080
	11-081
	11-082
	11-083
	11-084
	11-085
	11-086
	11-087
	11-088
	11-089
	11-090
	11-091
	11-092
	11-093
	11-094
	11-095
	11-096
	11-097
	11-098
	11-099
	11-100
	11-101
	11-102
	11-103
	11-104
	11-105
	11-106
	11-107
	11-108
	11-109
	11-110
	11-111
	11-112
	11-113
	11-114
	12-01
	12-02
	13-01
	13-02
	14-01
	14-02
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	replyA
	replyB
	xBack

