
Honeywell

MULTICS

SOFTWARE

RECONFIGURA TION
PROGRAM LOGIC MANUAL

Honeywell RECONFIGURATION
PROGRAM LOGIC MANUAL

MULTICS

RESTRICTED DISTRIBUTION

SUBJECT:

Dynamic Reconflguration Software for the Major Hardware Modules (Processor,
System Controller, and Bulk Store).

SPECIAL INSTRUCTIONS:

DATE:

This Program Logic Manual (PlM) describes certain internal modules
constituting the Multlcs System. It is intended as a reference for only
those who are thoroughly famil iar with the implementation details of the
Multlcs operating system; interfaces described herein should not be used by
appl icatlon programmers or subsystem writers; such programmers and writers
are concerned with the external interfaces only. The external interfaces
are described in the Multics Programmers' Manual, Commands .2.QQ Active
Functions (Order No. AG92), Subroutines (Order No. AG93), and Subsystem
Writers' Guide (Order No. AK92).

As Multlcs evolves, Honeywell will add, delete, and modify module
descriptions In subsequent PLM updates. Honeywell does not ensure that the
internal functions and internal module interfaces will remain compatible
with previous versions.

This PLM is one of a set, which when complete, will supersede the System
Programmers' Supplement to the Multics Programmers' Manual (Order No.
AK96) •

THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE EXCLUSIVE
PROPERTY OF HONEYWELL INFORMATION SYSTEMS. DISTRIBUTION IS
LIMITED TO HONEYWELL EMPLOYEES AND CERTAIN USERS AUTHORIZED
TO RECEIVE COPIES. THIS DOCUMENT SHALL NOT BE REPRODUCED OR
ITS CONTENTS DISCLOSED TO OTHERS IN WHOLE OR IN PART.

June 1974

ORDER NUMBER:

AN71, Rev. 0

PREFACE

Multics Program Logic Manuals (PLMs) are intended for use by
Multics system maintenance personnel, development personnel, and
others who are thoroughly famil iar with Multics internal system
operation. They are not intended for appl ication programmers or
subsystem writers.

The PLMs contain descriptions of modules that serve as
internal interfaces and perform special system functions. These
documents do not describe external interfaces, which are used by
appl ication and system programmers.

Sin c e i n t e rna 1 i n t e r f ace s are add ed, del e ted , an d mod i fie d
as design improvements are introduced, Honeywell does not ensure
that the internal functions and internal module interfaces will
remain compatible with previous versions. To help maintain
accurate PLM documentation, Honeywell publ ishes a special status
bulletin containing a 1 ist of the PLMs currently available and
identifying updates to existing PLMs. This status bulletin is
distributed automatically to all holders of the. System
Programmers' Supplement to the Multics Programmers' Manual (Order
No. AK96) and to others on request. To get on the mail ing 1 ist
for this status bulletin, write to:

Large Systems Sales Support
Multics Project Office
Honeywell Information Systems Inc.
Post Office Box 6000 (MS A-85)
Phoenix, Arizona 85005

@) 1974, Honeywell Information Systems Inc. File No.: 2L13

AN71

Section

Sec t i on I I

Section I I I

Section IV

Sect i on V

Section VI

Sec t i on V I I

Sect i on V I I I

Section IX

CONTENTS

Page

Introduction • • • • • ., • • • • • • 4t • • • • • II • • • • • • • ••• 1-1

Terminology .•....•........•..•...•••••.•.•• 2-1

Data Structures .•.•.......•........•...•.•. 3-1
The System Controller Addressing

S e gme n t • • . . . • • • • • • 3 - 8
The System Segment Table (SST) and

Related Data •..•......•....•.•..•...•• 3-8

Data Base Initialization•...•.•• 4-1
SCS Initialization•.............. 4-1
SCAS Initialization 4-2
SST Initialization .••..•.......•.••.•... 4-2
Other Data Base Initialization .•.....••• 4-3

Reconfig and Reconfigure•........••••• 5-1

Processor Reconflguration .•.•...•..•.••••.• 6-1
Idle Processes•...•...•...•••..•.•• 6-1
Adding a Processor to the System•. 6-2
Deleting a Processor from the System •••• 6-4

Memory Reconfiguration••.. 7-1
Adding a System Controller to the System 7-1
Removing a System Controller from the

S y 5 t em ~ •• 7 - 2
Automatic Memory Deletion to be supplied

Bulk Store Reconfiguration•. 8-1
Adding Bulk Store Records 8-3
Deleting Bulk Store Records•.....• 8-3
Automatic Paging Device Record Removal •• 8-5

Co mm and I n t e r fa c e. • .. 9 - 1

iii AN71

SECTION I

INTRODUCTION

This document describes the implementation and design of the
Multics dynamic reconfiguration software for the major hardware
modules of the system. Although there are m~ny more hardware and
software switchable modules in the system, this document is
limited to processor, system controller and bulk store memory
reconfiguration.

Dynamic reconfiguring in Multics, on a per-module basis, is
done only under expl icit operator request. The facil tty of the
system that automatically deconfigures selected subregions of
core or bulk store when hardware problems arise uses the same
basic mechanism as module deconfiguration where appropriate.
There is ctirrently no way the system will automatically
deconfigure a faulty processor. The software to automatically
deconfigure core is incomplete. The software to automatically
deconfigure a faulty record of the bulk store is operational.

1-1 AN71

SECTION II

TERMINOLOGY

TerMS and phrases frequently used in discussions of dynamic
reconfiguration are defined below.

system controller

memory controller

memory

controller

processor

port

is a hardware module that interfaces an
active module to the main memory of the
configuration. The system controller
manages system interrupts, passes on
connect signals, contains the system
calendar clock and provides memory
functions to its active users.

same as system controller

same as system controller

same as system controller

is a major processing unit. A processor
(CPU) is one of the three standard
active modules. (The others are the 10M
and bulk store controller.)

is a point of connection from a system
controller to an active module. A
processor port is one of eight
connection spots on a processor to which
a system controller can be attached. A
controller port or memory port is one of
eight points on a system controller for
a connection to an active module. Each
active module contains hardware known as
port logIc which determines (usually
from absolute address) which processor
port contains the connection to the
appropriate system controller.

2-1 AN71

control processor

control memory

There exists hardware in each system
controller to enable and disable
requests, etc. over one of its (memory)
ports. This port control logic contains
among other loeic a port enable register
describing exactly which memory ports
are enabled and hence which active
modules can interact with the system
controller.

There is a feature of the system
controller hardware which allows the
active modules on only certain selected
ports to change port control and
interrupt masking values of the system
controller. Any processor so selected
at the system controller maintainance
panel is said to be ,a control processor.
The switch which defines a processor to
be control is the execute interrupt mask
assignment (EIMA) switch. Each system
controller has four such switches, and
hence, each system controller can have
up to four control processors. By
convention, Multics allows only one
control processor per controller. Three
of the EIMA switches are disabled. The
fourth selects the port of the control
processor.

Each processor in the system has, by
software convention, a control memory
which that processor uses when it needs
a system controller function (other than
readine the clock) performed. The
typical system controller functions
which may be needed by a processor are
1) setting interrupt masks, 2) sending
interrupts to other processors, and 3)
receiving interrupts from system
controllers. The control memory for a
processor is establ ished at bootload
time or when the processor is added to
the system. An accessing mechanism
(described) later is established In the
per-processor data base, the PROS. Note
that each processor has at least one
control memory and that, by convention,
processors will receive interrupts only
from control memories. All control
memories for a processor have the EIMA

2-2 AN71
.•..

channel mask

interrupt mask

switch
hence

selecting that processor
send interrupts only to

processor.

and
that

Associated with each system controller.
is an eight-bit mask register that has a
bit for each port of the controller. If
this bit is a 1 the active module on the
respective port can use the system
controller. If the bit is 0 the
respective active module will fault if
it attempts to use the controller. The
channel mask bit can be forced on or off
by the port control switches on the
maintainance panel of the system
controller. These port control switches
are three position switches that can be
set (on a per port basis) to either
ENABLE, DISABLE, or PROG CONTROL. The
first two positions have the
corresponding affect. If the switch is
in the PROG CONTROL position, . however,
the channel masks can be set or reset by
any unmasked processor. It is a
convention of the Multics
reconfiguration software to attempt to
mask all active modules currently not
being used. For normal Multics running,
therefore, all port cont ro 1 swi tches
should be in the PROG CONTROL position.

The channel masks are changed as part of
the SMCM processor instruction that also
changes the interrupt masks (see later).

Associated with each EIMA switch on a
system controller is an interrupt mask
register. There are therefore four
interrupt mask registers for each system
controller. (Note there is only one
channel mask register.) The interrupt
mask register contains a bit for each of
32 possible interrupt cells within the
system controller. The interrupt cells
are set on (and off when the interrupt
is picked up) by the active modules· of
the s y stem. W hen ani n t err up t c ell i s
Qll the system controller broadcasts a
signal to all active modules selected by
EIMA switches on the system controller
that have the corresponding interrupt

2-3 AN71

system interrupt

unmasked. An interrupt cell will remain
on, in general, until an interrupt mask
register is unmasked enabling it to be
sent to a processor. (Note that E I MA
switches should only select ports that
contain processors.)

By convention, since Multlcs currently
uses only one EIMA switch per system
controller, there will only be one
interrupt mask register in a system
controller that is being used. This
interrupt mask register will be used by
the corresponding processor to enable
and disable the signall ing of interrupts
to that processor.

A feature to be considered when
dynamically reconfiguring is that before
an EIMA switch can safelY be changed
from one processor to another the
interrupt mask must be masked down so
that no interrupts are lost during the
physical movement of the switch.

A system interruQh is an interrupt
needed by the system in order to carry
out its orderly functions of driving I/O
devices and communicating between I/O
devices. In addition there are special
interrupts the system software uses to
bring an orderly stop to the entire
system or to delay processing of some
data until a later time when better
features of the system are available.
All I/O interrupts are sent to the
system controller containing the first
word of the mailboxes and by software
convention this will always be the first
or low order system controller in the
system. ThIs means that all I/O
interrupts will be sent to the processor
selected by the EIMA switch on the low
order system controller. This low order
controller is often called the system
interrupt controller or bootload memory
and its selected processor is called the
bootload processor or bootload CpU. It
is possible to change the bootload CPU
but it is not possible to change the
bootload memory.

2-4 AN71

process interrupt

internal interlace

external interlace

processor tag

A process interrupt is an Interrupt
directed to a particular process within
the Multics system. They are used to
force the processor to execute some
specific code on behalf of the process;
for example, when the process has used
up its scheduling quantum or the process
is to be destroyed. Unlike system I/O
interrupts, process interrupts can be
directed toward any CPU by directing
them toward one of the control memories
for the CPU. By software convention
whenever it is desired to send a process
interruPt to a particular processor the
same system controller is always used
(assuming no reconfiguration has taken
place).

The system controllers have a feature
that allows interleaving of double-words
of data between the low order and high
order internal stores within the
controller. This is termed
internal interlace and, except for
timing changes, is invisible to all
active modules.

In addition to Internal interlace within
the system controller each active module
of the system has, as part of its port
logic the capabi 1 i ty to di stri bute
apparently contiguous data between
different system controllers. This
ext ern a 1 I n t e r 1 ace can bee i the r two
words at a time or four words at a time
and only can be used between system
controllers that are on an even-odd port
pair. The affect of this external
interlace in conjunction with the
internal interlace within the system
controller leads to a four-way interlace
mechanism. This four-way interlace is
not to be confused with the four-word
interlace implemented within the port
logic of the active modules. All active
modules must have their external
internal switches set in the same way.

Each processor has a two-bit switchable
register that can be read by a special
processor instruction. This register,

2-5 AN71

processor index

core block

core used list

called the cpu tag register should be
set differently for each processor in
the configuration. The value of the
register the cpu tag is used as the name
of the processor by the reconfiguration
software. The current implementation
expects the first cpu tag to be 1 (0 is
not recognized) and hence only three
processors can currently be configured.

It is convenient to remap the cpu tags
into a contiguous series of processor
indices. This is done by software. The
first processor configured is assigned
the index one regardless of the value of
the cpu tag. The correspondence between
processor index and processor tag is
kept in the system configuration segment
(SCS).

A core block is a contiguous region of
core starting on a page boundary that is
one ~ long. All of Gore is thus
divided into fixed length regions the
size of a page. Some core is
permanently wired and can never contain
paged data. Other core contains data or
code that is temporarily wired, i.e., it
is temporarily forced to remain in core.
The core may later be freed up and
reused for some other page. The term
wired applies to anything that must
remain in core for some time for some
r.eason. The terms latched, locked and
core resident are also used in the
literature for what is here called
wired.

The core used list or simply the
used list is a threaded list of all
core map entries for the core blocks in
the paging pool. A Core map entry
describes which page, if any, is
currently occupying the associated core
block. The core ma~ consists of all
core map entries that are threaded
together. The core map, however, can
also be indexed by absolute core block
number as an alternative method for
scanning core map entries.

2-6 AN71

record

paging device map

A record Is a contiguous region of a
secondary storage device that begins on
a page boundary and that is one page
long. Satisfying a page fault, for
example, consists in moving the data of
a page from a given record of secondary
storage to a given block of core and
performing the necessary connections.

The term abs_usable applies to that
attribute of a core block that permits
the core to be used for I/O. This
concept is needed by I/O modules as they
must set up Dew lists that have ~olute
addresses In them. The core blocks of
the bootload memory can not be
dynamically deconfigured (for several
unrelated reasons) and therefore all
core blocks of the bootload memory that
are part of the paging pool are marked
as abs_usable. In addition, core blocks
of other system controllers will also be
so marked if there are not enough
abs_usable blocks In the boot load
memory.

The term abs_wlred applies to a block of
core that contains a page that is wired
down because It may contain absolute
addresses. Such a page can not be moved
either to make room for another
abs_wlred page or to remove the memory.
Any memory that contains one abs_wired
page can not be dYnamically deconfigured
until that page is no longer required to
be abs_wired.

The paging device map (or pdmap) is used
as part of the bulk store management
algorithms and Is analogous to the core
map. It is kept ordered by time of
recent reference and hence Is the key to
the bulk store replacement algorithm.

2-7 AN71

read/write sequence A read/write sequence (or~) is that
mechanism used to move a modified page
from the bulk store to secondary
storage. The mechanism consists in
finding a block of core, reading in the
page from the bulk store and then
writing the page out to disk.

2-8 AN71

SECT ION I II

DATA STRUCTURES

The several key data structures used by the reconfiguration
software are kept in the segments SCS and SST. These are
initialized as described in Section IV and modified as described
in Sections VI, VII and VII I.

The following declarations of data s·tructures describe the
structures that are primarily used during processor
reconfiguration.

declare 1 scs$processor_data ext aligned,
2 int_port(S) blt(3) unal;

declare 1 scs$change_contr(S) ext aligned,
2 flag bit(l) unalIgned;

declare 1 scs$delete_cpu(S) ext aligned,
2 flag bit(l) unaligned;

declare 1 scs$processor_tag(S) ext aligned,
2 index fixed bln(3);

dec 1 are (scs$new_tag,
scs$new_i ndex,·
scs$new_port,
scs$new_contr) fixed bln(3) ext;

declare scs$new_contr_ptr ptr ext;

declare scs$lock bit(36) aligned ext;

declare scs$mask bit(l) aligned ext;

declare scs$last_call fixed bin ext;

3-1 AN71

declare scs$bootload_cpu_tag fixed bln(3) ext;

declare"scs$nprocessors fixed bin ext;

declare scs$processor_port(8) fixed bln(3) ext;

The variables declared above have the following meaning:

2. change_contr.flag

3. delete_cpu. Flag

4. processor_tag. index

is an array, indexed by processor
index, of port numbers for the
system controllers sending process
interrupts to the given processor.

is an array, indexed by processor
i n d ex, i n d i cat i n g wh e the r (" 1" b) 0 r
not ("Q"b) a given processor should
change its control memory, i.e.,
update any internal data bases
(such as its PROS) to indicate that
a new system controller is
controlling process interrupts for
the processor. (A processor must
always know which system controller
is its control memory in order to
know which one to mask when the
processor must run protected from
interrupts.)

is an array, indexed by processor
index, indicating whether (ll"b) or
not ("Q"b) a given processor should
remove itself from the active
configuration. This bit is turned
ON by the rec:onfiguring process to
indicate to the idle process for
the given processor that the
processor is being deconfigured.
After the idle process successfully
stops its processor it resets the
flag to indicate to the
reconfiguration process that the
processor has been deleted.

is the array giving the mapping
between processor tag and processor
index. I t is indexed by processor
tag and yields processor index.
When the processor tag for a given
processor index is des i red, the
array is linearly searched.
Similarly when a new processor

3-2 AN71

10. lock

11. mask

Index is desi red, the array Is
searched for an available value.
All unassigned indices have the
value -1.

is a temporary used to record the
processor tag of the processor to
be reconfigured. It is used both
in adding and deleting a processor
as well as in deleting a system
controller.

is analogous to new_tag. It
records the processor index of the
processor of interest in adding or
deleting a process or in deleting a
system controller

is analogous to new_tag and holds
the system controller port (of the
processor) of interest, i.e. it
specifies which system controller
is being deleted or which system
controller is (to be) control for a
processor being reconfigured.

is used in conjunction with
change_contr to indicate which
system controller is to be used by
a given processor.

is used in conjunction with
change_contr and contains a pointer
to be used when the processor is to
reference the new system
controller. It usually is· a
pointer pointing indirectly to a
port addressing word (a word with
the high order three bits
indicating the system controller
being referenced).

is the global reconfiguration lock.
This lock must be set whenever
processor or system controller
reconfiguration is being done.

is a bit indicating whether a
processor must mask or unmask
itself during critical stages of
reconfiguratJon. In particular, a

3-3 AN71

14. nprocessors

processor must mask before the EIMA
switch of its control memory is
changed.

is a variable used to synchronize
calls to the supervisor side of the
reconfiguration software. Usually
each entry in reconfig Cthe
supervisor reconfiguration program)
can only be called after another
specific entry has been called.
This variable holds the number
associated with the previous call
and is thereby used to check for an
inval id sequence of calls.

is the processor tag of the
bootload processor. Since special
actions must be taken to guard
against the loss of interrupts when
the bootload processor is being
deleted, a convenient method for
determining the boot1oad processor
was establ ished.

is simply a count of the number of
processors confieured in the
system.

15. processor_port is an array, indexed by processor
index, indicating the system
controller Cvia processor port
number) which is control for the
processor.

The following data structures are used both during processor
reconfiguration and system controller reconfiguration.

declare scs$port_addressing_VlordCO:7) bit(3) al igned ext;

declare scs$proc_contr_ptr(8) ptr ext;

declare 1 scs$controller_dataCO:7) al igned ext,
C2 size bitClS),

2 base bitClS),
2 contr_proc bitClS),
2 padl bit(2),
2 sys_int_sVl bitCl),
2 pad2 bit(2),
2 clock_tn_use bitCl),

3-4 AN71

2 pad3 biteS),
2 abs_wired bit(l),
2 ext_interlace bit(l),
2 four_word_interlace bit(l),
2 Int_interlace bit(l),
2 pad4 bit(3)) unaligned;

declare 1 rcd aligned,
2 locker_id char(32),
2 controller_data(0:7) like scs$controller_data,
2 processor_data,

3 int_port(S) bit(3) unal igned,
3 processor_port(S) fixed bin(3),
3 processor_index(S) fixed bin(3),

(2 tag,
2 index,
2 po rt,
2 contr) fixed bin(3),
2 mask bit(l) initial(IO"b),
2 channel_mask (0:7) bit (1);

17. controller_data

18. controller_data.size

is an array, indexed by system
controller name (i.e. processor
port number) of words containing a
bit pattern that when indirected
through will yield a reference to
the given system controller. This
addressing mechanism is used by the
RCel, RMCM, SMCM and SMIC
instructions. The entries of this
array are pointed to by the
pointers in scs$proc_contr_ptr. A
copy of the appropriate
proc_contr_ptr entry is made in
each processor's PROS to facil itate
the use of the above instructions.
(The PRDS also contains the
processor index so the
scs$proc_contr_ptr could be used.)

is a structure, indexed by system
controller name (i.e. processor
port number), containing data about
the given system controller. This
data is initial ized during bootload
and updated during reconfiguration.

is the number of (1024-word) core
blocks attached to the given system
controller.

3-5 AN71

19. controller_data.base is the absolute core address (mod
1024) of the first word of
addressable core in the system
controller. This value and the
controller data.size value above
will both-be all l's if the system
controller Is not currently
configured.

20. controller_data.contr_proc! is the processor index of the
processor controlling this system
controller. (The EIMA switch on
the controller points to the port
on which the processor with this
processor Index Is connected.>

Is ON only for the bootload memory.
This flag is used to determine if
special action must be taken when
the processor controll ing the
bootload memory is deconfieured.

22. controller_data.clock_in_use is ON for the single system
controller whose clock is being
used. There is only one clock of
the system controllers which is
used and this is the one in the
bootload memory.

23. controller_data.abs_wired is ON for all controllers which can
conta i n "abs_wi red" pages, i • e.
pages which can not be moved due to
some process containing absolute
addresses pointing to within the
page. This bit is ON by default
for the boatload memory and will be
turned ON for other system
controllers if there are not enough
abs_wirable pages in the bootload
memory.

24. controller_data.ext_interlace is ON if
controller is
interlaced.

this system
externally

25. controller_data.four_word_interlace is meaningful only if
the controller is externally
interlaced in which case it
indicates, if ON, that the
interlace is four-word interlace as
opposed to two-word interlace.

3-6 AN71

26. controller_data.int_interlace is ON if the system

27. rcd

28. rcd.locker_id

29. rcd.controller_data

30. rcd.processor_data

31. rcd.tag

32. rcd. index

33. rcd.port

34. rcd.contr

35. r cd. ma s k

36. rcd.channel_mask

controller Is internally
Interlaced.

Is a structure used by reconflg to
communicate wIth reconfIgure, the
user-rIng part of the
reconflguratlon software.

is the process_group_id of the
process that last locked the
reconfiguration lock and hence the
process currently performing
reconfiguration if reconflguration
is in progress.

is a direct copy of the
corresponding data from the sese

is a direct copy of the
corresponding data from the sese

is the processor tag of the
processor of Interest for the
particular reconflguration request
being performed. This varIable may
be input or output.

Is the processor index of the
processor of interest. This
variable may be input or output.

Is the system controller number
(processor port number) of the
system controller being
reconfigured; or it is the system
controller port number (thereby
selecting a processor) of interest.

is analogous to red. port and refers
to the system controller that is
having its control processor
changed.

is used to communicate the need to
mask or unmask a system controller.

reflects the current state of the
(eight-bit) channel mask assumed by
the supervIsor and hence the latest
value set In all controllers.

3-7 AN71

THE SYSTEM CONTROLLER APPRESSING SEGMENT

The system controller addressing segment (SCAS) is a
specialized data base used to read and set certain registers in
system controllers. In particular the SCAS segment is used to
generate the correct final (absolute) address needed by the RSCR
and SSCR instructions. These instructions operate on the system
controller that contains the final absolute address generated by
the address preparation logic ff the processor. The SCAS
"segment" is really nothing more than an eight-word page-table
with each page table word (PTW) pointing to a block of core in
the currently configured system. The first "page" of SCAS is
located in the system controller on port 0 of the processor, the
second "page" is located in the system controller on port 1, etc.
Note that there may be "holes" in SeAS due to certain system
controllers not being configured.

THE SYSTEM SEGMENT TABLE (SST) AND RELATED ~

The core memory data base, the core map, consists
the core map entri~s (CME's) threaded into a circular
"head" of the core map is pointed to by the variable
and is the core map entry_for what the system considers
recently referenced page. The paging device map entry
completely analogous to the core map entry. These
described below:

declare 1 cme based (cmep) aligned,
(2 (fp, bp) bit(l8),

2 devadd bit(22),
2 padl bit(2),
2 io bit(l),
2 rws bit(I),
2 pad2 bit(I),
2 removing bit(I),
2 abs_w bit(l),
2 abs_usable bit(I),
2 pad3 bit(3),
2 contr bit(3),
2 ptwp bit(l8),
2 pad4 bit(18),
2 dblw_devadd blt(22),
2 padS bit(14)) unaligned;

3-8

of a 11 of
list. The
sst.usedp
the least
(PDM E) i s
are both

AN71

2 pad2 bit(l),
2 truncated bit(l),
2 notify_requested bit(l),
2 pad3 bit(l),
2 removing bit(l),
2 not_on_disk_yet bit(l),
2 pad bit(l),
2 ptV/P bit(18),
2 ht bit(18),
2 pad4 bit(36)) unal igned;

37. cme.fp, cme.bp are the forward and backward thread
pointers used to chain the CME's
together.

38. cme.devadd

39. crne. i 0

40. crne. rv.Js

4 1. c r.l e • r e mo v i n g

42. cme. abs_'v'J

43. cme.abs_usable

44. cme.contr

is the device address associated
with the page residing in the given
core block. Th i. s may be "null", a
bulk store device address or a disk
device address. If it is a bulk
store device address, the disk
address can be found in pdme.devadd
for the corresponding paging device
map entry.

is IIO"b if the last (or pending)
I/O request for the core block was
a read and is "1"b if the 1 ast
request was a write.

is ON only if this block of core is
being used for a read/write
sequence.

is set ON only If this block of
core is currently being deleted
from the system. If it is ON, the
core map threading algorithm does
not thread the entry into the used
list, but rather leaves the entry
where it is (in the remove 1 ist).

is ON only if the page residing in
this block of core is abs_wired

is ON only if this block of co~e Is
abs_usable.

is the controller name (processor
port number) of the controller
containing this block of core.

3-9 AN71

45. crnc.ptwp

4G. cr.le. db 1 vJ_devadd

47. pdme.fp, pdme.bp

48. pdme.devadd

49. pdme.modified

50.' pdr.le. inca r e

51. pdri1e. rV/s

52. pdme.used

53. pdme.abort

is a pointer to the PTW for the
page residing in this core block or
is (18)"O"b if the core block is
free.

contains the secondary storage
device address to be used in the
store-through cycle of a double
write request. If this field is
(22)"O"b then no secondary write
should be queued.

are the forward and backward thread
pointers used to chain the POME in
the paging device used list.
Howeve r, if a read/wr i te sequence
is in progress for this paging
dev ice reco rd the PDt1 E i s .D.Q.t.
threaded into· the used list and the
pdme.bp field is used instead to
hold a pointer to the core map
entry for the block of core being
used for the RWS.

contains the secondary storage
device address associated with the
page residing in the corresponding

"record of the paging device. This
address is never null as page
control always quarantees a disk
address has been assigned for any
pages residing on the paging
device.

is ON if the page on the paging
device has been modified and hence
must be written back to disk (via
an RHS).

is ON if the page associated with
this POME is in core.

is ON if a read/write sequence is
in process for this PONE.

is ON only if the ~orresponding
paging device record is being
currently used. The record is free
and available for use if this is
OFF.

is ON if a process took a page
fault on a page which was in the

3-10 AN71

54. pdme.truncated

55. pdme.notify_requestcd

56. pdme.removing

58. pdme. ptV/P

59. pdme.ht

process of bein~ writt~n back to
~disk (t.e. an RWS was In process).

This flag is tested when the RWS
completes; If it is ON, the page is
left on the paging device, the core
used for the RWS Is ~iven to the
page, the PTW is updated to
indicate that the pa~e is in core
and the faulting process is
notIfied that this page is in core.

is ON if a page was truncated
during a RWS for thIs page.

is ON if some process wants to be
notified when the RWS in progress
completes.

is ON if the paging device record
is currently being deconfigured.

is on for any (new) pages on the
pag i ng dev Ice \t/h I ch have neve r been
flushed to the disk. This bit is
used during automatic
dcconfiguration of paging device
records to determine if the disk
copy of the page is val i d. I f the
copy is not val id (has never been
written) 'the disk address is freed
up and the page is given a null
address. This prevents
unauthorized access of data.

points to the PTW for the page
corresponding to this POME if the
segment which contains the page is
active. If the segment is not
active this field is (18)"Q"b.

is a hash thread used to thread all
POME's with the same hash index
(generated from secondary storage
device address) together.

3-11 AN71

59. pdme.ht is a hash threa~ used to thread all
POME's with the same hash index
(generated from secondary storage
device address) together.

3-12 AN71

SECTION IV

DATA BASE INITIALIZATION

This sectIon describes the inItIalIzatIon of the data bases
used by the reconflguratlon software, Some of these data bases
wIll not be changed after the bootload, others wIll be changed
all the time and still others will only be changed when
reconfiguration Is explicitly requested,

SCS INITIALIZATION

The system communication segment (SCS) descrIbed in Section
I I I is initialized primarily by the programs scs_init, scas_init,
inItialize_faults, Init_sst, start_cpu and tc_inlt. (The program
scas_init fills in scs$boot1oad_cpu_tag, which is not again
changed unless the boot1oad processor is deconfigured.)

The controller_data structure is filled in in stages as
various programs learn more about the configuration. The program
scas_init reads the system controller regIsters of each
configured controller to determIne internal interlace, etc. The
processor switches are also read to determine external interlace
and to verify that the actual configuration corresponds to the
configuration deck.

The clock readIng mechanism consists of a pointer in
sys_Info pointing to a port addressIng word (a word wIth the high
order three bIts being a port number) for the port connected to
the system controller whose clock we want to use. DurIng early
stages of initial ization thIs pointer and the target port

4-1 AN71

addressing word are set up to point to the bootload system
controller. This function is performed first by
initial ize_faults so that the clock reading mechanism will be
enabled early in the bootload. The clock reading mechanisms are
initialized uofficially" in scs_inlt.

The program scs_init initial izes many structures in SCS but
its primary concern is the initialization of the interrupt
handl ing mechanism. This includes setting up the various
interrupt mask patterns, the Interrupt handler array, and (of
importance to processor deconfigurlng) the ,variable
scs$simulate_pattern Is set up to have a bit ON for each system
interrupt the system can not afford to lose for an extended
length of time.·

SCAS INITIALIZATION

SCAS is not really a data base but rather a page table that
points to pages in each of the configured system controllers.
The actual content of the pages is not of importance and in
general changes as pages are moved in and out of the particular
region pointed to by a.glven SCAS PTW (the actual page that SCAS
is set up to point to in each system controller is the first page
in the controller.) As mentioned earl ier SeAS is used by the
RSCR and SSCR instructions and indeed scas init issues these
instructions as soon as SCAS is initial ized to verify the actual
configuration corresponds to the configuration deck. In addition
other information about the system controllers (internal
interlace, etc.) Is saved at this time.

SST INITIALIZATION

The initial ization of the SST is
System Initialization, Order No. AN70.
features relevant to reconfiguration are:

4-2

described
The two

fully in
iMportant

AN71

1. the abs_usable bits In core map entries are set ON for
all core blocks In the bootload system controller (it
can't be deleted anyway because It contains maIlboxes and
fault and interrupt vectors) and

2. the bulk store (paging devIce) map is initialized as
described on the "page" configuration card.

OTHER DATA BASE INITIALIZATION

The initial ization of the PRDS, done maInly by prds_init,
tc_data, tc_init and start_cpu, is straightforward and simple.
The primary interaction between the traffic controller and
reconfiguration consists in the creation, running and deletion of
the idle processes.

4-3 AN71

SECTION V

RECONFIG AND RECONFIGURE

The processor and system controller reconfiguration software
is spl it into two main programs: reconfie in the hardcore ring
and reconfigure in the user ring. These programs are so
intimately tied together that even the most trivial change to one
often must be reflected sometlow in the other. They are really
one logical program which has been spl it across rings for reasons
independent of the reconfiguration problem. In particular,
reconfig must be in ring zero because it performs (via calls)
privileged functions such as masking, sending interrupts and
changing hardcore·data structures. Simil~rly, reconfigure must
be in the user ring because It must perform normal terminal I/O
and, of prime and nonobvious importance, it must be possible to
be interrupted with a preempt interrupt from the reconfiguration
processor. This preempt interrupt (for other unrelated reasons)
cannot be allowed to go off (and be handled) in the hardcore
ring.

The communication between the two programs is done through
an entry in the hphcs_ gate. This entry i~ declared as follows:

declare hphcs_$reconfig entry (ptr, fixed bin, fixed bin(3S»;

call hphcs_$reconfig (rcd_ptr, entry_no, code);

3. code

is a pointer to the rcd structure described in
Section II I. (Input)

is a code telling reconfig which function is being
requested. (Input)

is an error code indicating what kind of problem
has been encountered, if any. (Output)

5-1 AN71

The various "entries" into reconfir.; arc therefore
implemented by one large lido case -n-" type construct where n is
the entry number. There is extensive cross checking done by
reconfig to insure that the ~roper sequence of calls is
maintained.

All processor and system controller reconfiguration is
controlled by a lock which prevents more than one process from
executing a reconfiguration sequence at the same time. This lock
can be forced to the unlocked state (bypassing any sequencing
tests) via a call to the user ring program
reconfigure$force_unlock. This entry expects no arguments and
prints out the process group 10 of the last process to lock the
lock.

The error code returned by reconfig is decoded by
reconfigure to determine the details of a particular error. In
particular, the code is a two-digit decimal number. The first
digit gives a general indication of what type of problem was
encountered and the second digit gives more detail. The
following tables interpret all returned error codes.

First Digit
o
1
2
7,8,9

Error Code

1
2
3
4
5

11
12
13

14
15
,16

21
22

70
71

general
error from start_cpu
error from stop_cpu
general

Meaning

reconfiguration mechanism is locked
reconfiguration mechanism is ll.Q.t locked
improper sequence of calls
argument is inconsistent with last call
inval id entry number

processor would not start
processor has wrong CPU tag in switches
wrong EIMA switch (reconfiguring

process got Initial ize interrupt itself)
no APTE available for idle process
no idle process for this CPU
no processor for the given controller

no idle process for this CPU
no processor for the given controller

cpu to be deleted not in system
cannot find enough CPUs

5-2 AN71

73
75
74
76
77
78
79

80
81
82

90
91
92
93

memory already configured
controller to be added is not defined
controller cannot be removed
not enough controllers left
not enough core blocks left
abs wired page in controller to be removed
core block not in used 1 ist in controller

being removed

processor already configured
controller not found for CPU
port already assigned

illegal value for processor tag
illegal value for controller
illegal value for port
program bug - no controller available

5-3 AN71

SECTION VI

PROCESSOR RECONFIGURATION

This section describes the workings of the processor-adding
and processor-deleting functions. Before this can be fully
described, however, the mechanism of idle processes must be
briefly explained.

IDLE PROCESSES

There is one idle process for each processor on the system.
In general, the idle process for a processor is run whenever that
processor cannot find another process to run, either because no
other process wants service or because all processes that want
service are either running on other processors or are waiting for
some system event such as a page fault to be satisfied. A
processor will never be run in another processor's idle process.

An idle proCess is a full-fledged normal Multlcs process in
that it has its own stack (pds), its own descriptor segment, and
its own APT entry. In particular, an idle process can be
threaded In at the head of the eligible queue if necessary. This
technique, in fact, is used to force a given processor to execute
in its idle process by Issuing a preempt interrupt to the
processor after threading the idle process APT entry to the head
of the list. However, most of the time the idle processes are
threaded at the tall of the ready list where they will be
selected only if all other processors do not want to or cannot
run.

The Idle process for a processor must be created before a
processor is added to the system. (This Is not quite true for
the bootload CPU that, of course, must somehow be bootstrapped
into the normal state. See System Initialization, Order No.
AN70, for a complete description of this bootstrap mechanism.)

6-1 AN71

AN70, for a complete description 9f this bootstrap mechanism.)
Similarly, each processor on the system must have a processor
data segment (the PRDS) before it can be run. Both the idle
process and the PROS for a processor therefore must be created as
part of the operation of dynamically addIng a processor to the
system. After a processor is deleted from the system its idle
process and PROS are deleted as a cleanup measure.

ADDING A PROCESSOR TO THE SYSTEM

To add a processor to the system up to four calls to
reconfig may have to be performed in additIon to the "status"
call which returns general information about the current
configuration.

The first "entry" called (number 10 or 11) communicates to
ring zero the intent to add a processor to the system. The
caller (reconfigure) mayor may not specIfy which controller the
processor is to be assigned. If the caller does not specify a
controller (entry number 11) the system will attempt to find one.
(Recall that a controller is needed for each processor in the
system and that there must therefore be at least as many
controllers in a given configuration as processors.) At any rate
a controller is selected and if the controller receives system
interrupts, the fact is noted. A processor index is then
generated and a return to the user ring is made. Note that the
user ring was returned a switch indicating whether or not the new
controller receives system interrupts.

The second "entry" called when adding a processor (number
15) is called to mask the controller selected above, as well as
to set the channel mask in all controllers. The channel masks
are set by updating all the masks in SCS and then forcing the
masks to be loaded. For controllers which get interrupts for
some CPU it Is enough to cause that CPU to take an interrupt as
the interrupt interceptor will mask and hence set the channel
mask. In th is case the preempt interrupt t s sent. For
controllers which do not get interrupts an expl icit call to set
their masks (to "open level") is made. Note the controller is
masked to "sys_l evel" and hence all normal interrupts from
hardware devices are delayed if the controller is the system
interrupt controller. In this case any abnormal terminations of
the reconfigure request (wrong switch settings, etc.) must be
acted upon qu i ck 1 y (by the operator). as any sign if i cant del ay in
u nm ask i n g \"Ji 1 1 imp air e f f i c i en top era t ion 0 f the s y stem.

6-2 AN71

After returning from the entry which masks the new
controller, the operator is instructed to change the EIMA switch
on the selected controller to the CPU being added. These
instructions (which require operator reaffirmation) are followed
by the third call into ring zero (entry number 16).

This third call is the call that actually adds the processor
to the system and starts it running. The data base SCS is
changed to reflect the added CPU and the program start_cpu is
called. This program creates and initial izes the PROS for the
new processor as well as the new idle process. start_cpu in turn
calls init_processor to get the processor going. This is done by
patch i ng the interrupt vector for a spec i al "processor
Jnitial ize n Interrupt and then sending this interruPt to the new
processor. The patched interrupt vector forces the new processor
to enter code in init_processor which loads the OBR register of
the new idle process. After certain other initial steps the
newly added processor sets a flag saying it is successfully
running and enters the idle loop in search of a normal user
process to run. The processor which initiated the newly added
processor loops until confirmation that the new processor is
running normally. If this confirmation never comes (it waits a
few mill iseconds) an error code is returned which is reflected to
the reconfiguration programs.

If the processor did not add successfully (wrong switch
setting, etc.) the operator is instructed to change the EIMA
switch back and the controller is unmasked. (If the add was
successful the idle process would have unmasked). When the add
is successful the initiating process resets the interrupt vector
to its original state and returns control from init_processor to
start_cpu to reconfig.

The program init_processor (see SYstem Initial ization, Order
No. AN70) is called to start all processors on the system - even
the bootload process at initial ization time. For this reason the
program makes special checks to see if it interrupted itself
(with the processor initialize Interrupt). In addition to this
check, the processor reads his configuration switches to make
sure the tag is set correctly and makes a check to see If the
processor was already initial ized. (This would be the case if
the bootload processor, for example, sent the initial ize
interrupt to another processor but received it itself do to an
incorrectly set EIMA switch.)

The program Inlt_processor consists of two logically
different sections. The call side is called by start_cpu when
everything has been set up for the new processor. This entry
sets up the interrupt vector to transfer to the second section of

6.-3 AN71

init_processor at the label "first_steps". It Is the code at
this label that first gets executed by the new processor. The
code runs in absolute mode until the DBR is loaded. After the
DBR is loaded the program checks its configuration as mentioned
above and if all is well the program enters the "Idle" code of
init_processor after sending itself a preempt interrupt. Before
beginning to idle, however, the reconflguration process is told
(via a variable in init_processor) that the new process is
running. Also before idling the new processor unmasks (to
open_level) its control memory so that it can receive process
interrupts.

DELETING A PROCESSOR FROM THE SYSTEM

The first "entry" invoked when deleting a processor is
number 20. This entry checks that the CPU to be deleted is
actually in the configuration and then searches for (1) another
CPU to take the illterrupts directed toward the one being deleted
and (2) the first of possibly several controllers pointing to the
CPU. If there is only one controller controlled by the CPU being
deleted, the CPU is stopped at this time. The CPU will mask the
controller when it stops (so the EIMA switch can be moved to
another processor).

If there is more than one controller pointing to the CPU,
one of the controllers that is nQ.t used for process interrupts is
selected and its port number is returned to the user ring. For
each such controller found in the system a pair of calls into
ring 0 is made. The first call (number 21) is done prior to
directing the operator to change the EIMA switch. It is a call
to mask the controller. The second call (number 22) is performed
after the switch has been changed. It first unmasks the
controller and then searches for another controller pointing to
the CPU.

The controller that gets interrupts for the CPU is done last
in the sequence. In this case, instead of finding the next such
controller, the CPU is actually stopped. The CPU will mask its
controller prior to stopping. Entry number 23 is then invoked.
This entry waits until the CPU says it has masked and then
returns. Entry number 24 is then called to finish up. It checks
if the CPU deleted was the bootload CPU and if so redefines
scs$bootload_cpu_tag. It then checks to see if the processor has
really been deleted by checking scs$delete_cDu. If the processor
has not stopped, the ring 0 code returns control to the user ring
so that the effect of a preempt interrupt that was apparently

6-4 AN71

final step, the SCS data base is updated and the channel masks
are set to reflect the absence of the processor from the system.

There are some interesting control sequences which must be
followed when deleting a CPU. In particular the code which the
CPU being deleted must execute is all isolated in the idle
process and in particular in the program init_processor. In
order to force the processor to execute this code, the idle
process is given ultimate high priority (by moving to the head of
the scheduler's ready list). The actual code of the idle process
is a small loop consisting of: (I) code to flash the 1 ights on
the maintenance panel in a recognizable pattern, (2) some DIS
instructions to enable the panel, and (3) some tests to see if
the processor is being deleted or if it should change its control
memory. The check to see if the processor should be deleted
results in the idle process invoking some code which eventually
results in the pro=essor executing a DIS. In particular, the
processor:

1. Gets the port number for its controller (used as an index
into scs$controller_data).

2. Checks to see if the processor is the bootload CPU- and,
if so, sends a batch of interrupts to the controller for
the new bootload CPU using scs$simulate_pattern.

3. Masks the controller.

4. Checks to see if the controller for the
system interrupts. If so, the CPU to get
is told to change its controller and given
so it will run and see the request.
deleted then loops until the processor
controller has changed controllers.

CPU received
the controller
high priority

The CPU being
to get the

Note that the deletion of the bootload CPU requires special
action to be taken. This is because system interrupts (such as
those that drive the disks and typewriters) are only handled by
the bootload CPU because this is the CPU which receives
interrupts from the bootload (low-order) memory and all I/O
interrupts are sent to this system controller. Since it is
necessary to mask all interrupts in an interrupt mask register
whenever its EIMA switch is changed, real system interrupts must
be prevented from reaching ~ processor while this switch is
being changed (the new processor must be directed to receive
system interrupts). Since the system can not in general survive
an extended period with system interrupts being processed, these
interrupts must be simulated by sending every interrupt which may
be of interest to the processor which is to receive system

i

6-5 AN7l

interrupts. These interrupts are remembered In the
scs$simulate_pattern cell at initial ization time, and broadcast
to the ~ bootload CPU every second or so by the CPU being
deleted.

Another item to be noted is that the several places In the
reconfigura~ion software where masks are set in controllers are
bracketed QY calls to force the running (rcconfiguring) process
to run on a particular processor the processor which is
control for the system controller whose mask is being changed.
The "processor required" mechanism built into the dispatcher of
the traffic controller is used for this purpose. Therefore, if
reconfiguration is attempted from a process already restricted to
a given processor, that restriction may not be in effect after
the reconfiguration is complete. (The "processor required"
mechanism does not "stack" requests.)

Since adding a processor to the system requires the operator
(see Section IX) to interact at his terminal, it is not possible
to add a processor to the system automatically. This means that
it is not possible to bootload the system and have it come up
with two processors running. The second and subsequent
processors must be explicitly added after the system is booted.

6-6 AN71

SECTION VII

MEMORY RECONFIGURATION

This section describes the mechanisms used to dynamically
reconfigure primary memory (core or MaS). The first two
subsections describe system controller reconfiguration and the
third subsection describes the core block reconfiguration within
a controller.

ADplNG A SYSTEM CONTROLLER TO THE SYSTEM

At system initial ization time the data bases
scs$controller_data and the main memory map in the SST are
initialized. These are initial ized from the configuration deck
(and active register values); since the core map can not easily
be grown it is required that any system controllers that will
ever be configured to the system for a given bootload must be
specified in the configuration deck for the bootload. This is
done by using an ON or OFF field of the MEM configuration cards.
All system controllers actually configured and to be used at
bootload time are indicated as being ON. Other system
controllers are OFF.

When the core map ,is Initially set up, only core blocks
which are In configured system controllers are threaded into the
used 1 ist. Core blocks for system controllers that are not yet
configured are left 'alone and threaded into no 1 ist. To add a
system controller (and :its memory) to the system, all that need
be done is to thread the (hopefully unused) core blocks for the
controller into the core-used list. This is exactly what
add_memory does as invoked by reconfig after an addmem request is
given. Before the memory is enabled the operator Is told to set
the switches on all active modules so the system controller can
be referenced. The switches on the controller itself must also

7-1 AN71

particular the EIMA switch is set to the processor that controls
the system controller. Note that the entire system can be
prepared (I.e., all switches set correctly) before the addmem
request Is given by the operator.

The actual code in reconflg to add a system controller to
the system, entry 30, merely checks consistency of all arguments
and calls add_memory to actually add the system controller to the
system. The program add_memory first sets the Interrupt mask in
the memory -- to load the appropriate channel mask and then
threads the core map entries for core blocks in the controller
into the used list. Before call ing add_memory, reconfig forces
the executing proc~ss to run on the processor that controls the
memory so the mask can be set.

REMOVING A SYSTEM CONTROLLER FROM THE SYST~

The mechanis~ to remove a system controller from the system
is compl icated by two features. First, a mechanism must be
provided to remove all references to any pages in the system
controller by processors. Second, a mechanism must be provided to
remove all references to the memory of the system controller by
other active modules, particularly 10M's.

The first major problem in removing main memory, i.e.,
preventing processors from referencing the memory, is not hard to
solve in that all processor references to the memory are indirect
through PTW's over which the system software has control. (It is
not possible to remove a system controller that contains
permanently wired code or data.) It is thus necessary only to
remove access in PTW's or copy pages into core that is not being
removed. This in fact is just what is done. There are three
cases to £onsider:

1. Core blocks that contain wired pages.

2. Core blocks that contain pages that are not wired but are
modified.

3. Other core blocks.

Pages that are temp-wired must remain in main memory but
need not remain in the same location in main memory. Such pages
are copied from the region of memory being removed to a region of
memory remaining. After the copy is complete, the PTW Is changed
to point to the new copy and all processors are forced to clear

7-2 AN71

the i r assoc i at i ve memor t es so that they will refetch the PTW wi th
the new address and make all subsequent references to the copy.
If the page is modified whrle the copy is being performed, all
processors are stopped (forced to loop, via a connect fault) and
the copy is made while no one can modIfy the data. The entire
mechanism to move a wired page Is Implemented tn the program
evict_page.

Pages that are modified are simply written out and evicted
when the I/O completes. ThIs process continues until a page does
not get modified while the I/O is going on In which case the
block of memory can be claimed.

Pages that are neither wired nor modified are evicted
immediatelY (the PTW is set to fault) unless I/O is in progress,
in which case the I/O is waited for and the block is claimed on
the next pass.

The program (pc_abs$remove_core) that does all this work
loops through all blocks in the given controller until a pass is
completed that leaves no blocks unclaimed.

The second major problem in removing main memory, that of
preventing other active modules from referencing the memory, is
solved before it even becomes a problem. This is via the
abs_wiring technique, which requires that ~ pages that are
referenceable via nonprocessor active modules (e.g., the 10M)
cannot reside in a deconfigurable system controller. In order to
do this, certain controllers are set up as "abs_usable" and hence
nondeconfigurable. For most configurations, the bootload memory
alone is abs_usable, but the system dynamically chooses other
controllers as necessary if there is not enough abs_wireable
memory in the bootload controller.

Therefore any program that uses a page for I/O (that is not
permanently wired) must call a special program to have the page
wired down. This program is pc_contig. See The Storage System,
Order No. AN61, for a complete description of this mechanism.
The dynamic deconfiguration software need not be concerned about
pages wired for I/O activity.

When a system controller is deleted from the system, a check
must be made to see' if the system controller is used by a
processor as its process interrupt controller. If this is the
case, another controll~r must be found for the processor that in
turn may require the changing of the EIMA switch on the newly
selected controller if it is controlled by a CPU other than the
one losing its interrup~ controller. All of these cases are
handled in the controller deletion software; the general case

7-3 AN71

will take several calls into the hardcore ring to: (1)
communicate with the operator via the typewriter, and (2) mask
and unmask as the EIMA switch Is changed. The variable
scs$change_contr is analogous to the varIable scs$delete_cDu and
is sampled by the idle process (that is given prIority so It will
run) in its normal idle loop. If the change_contr flag is set,
the program init_processor will perform the necessary changes (In
the correct PROS) to reflect the change. It wIll also signal
when it is done by resetting the flag. The program
stop_cpu$switch_contr is used to InItiate this mechanIsm.

AUTOMATIC MEMORY DELETION

To be supplied.

7-4 AN71

SECT I ON V I I I

BULK STORE RECONFIGURATION

The bulk store reconftguration mechanisms differ from the
system controller mechanisms in that records of the bulk store
are reconfigured rather than the active module, the bulk store
controller, being reconfigured. However, the software is set up
so that If ~ records on a given bulk store are removed from
active use by the system, the controller can safely be
deconfigured for offl ine test or for use by another local system.
No switches need be changed during this reconftguration
mechanism. (It is, of course, necessary that any parts of the
bulk store that are to be used by a system be configured to that
system the bulk store reconfiguration software assumes that
necessary configuration switches have been set and does not
remind the operator about these switches.>

During system initial ization (see System Initialization,
Order No. AN70> the "page" configuration card is read to
determine which bulk store records are to be initially used by
the system. The paging device map is read in; if it has not been
successfully cleaned up, the system is crashed. Otherwise, there
is no val id data on the bulk store and all records that are to be
used have the paging device map entries (PDME's> threaded into
the paging device used list and marked as free. Until
reconfiguration time all of these records wIll remain in this
used list unless:

1. The record is removed for a moment as part of a
rethreading operation,

2. The record is removed because a read/write sequence is in
progress for the given page, or

3. The record is dynamically removed automatically because
of a fatal read request.

8-1 AN71

The paging device map (1 ike the core map) can be searched
either by following the used list thread or by indexing into the
map with a given record number. The latter method Is used for
bulk store reconfiguration under operator control.

The main supervisor program that controls bulk store record
reconfiguration is delete_pd_records. This program, callable
through the hphcs_ gate, has two entries as described below:

declare delete_pd_records entry (fixed bin, fixed bin,
fixed bin(3S»;

call delete_pd_records (first, count, code);

1. fi rst

2. count

3. code

is the record number of the first of count
contiguous records to be removed from active
use by the system. (Input)

is the number of records being deconfigured.
(I npu t)

indicates, if nonzero, that the input
parameters were inconsistent with the current
configuration. (Output)

declare delete_pd_records$add_pd_records entry (fixed bin,
fixed bin, fixed bin(3S»;

1. - 3. are analogous to above.

A request to delete a record that is already deconftgured is
not considered fatal. In fact, it is convenient to be able to
delete an entire core storage module (CSM) after several records
within it have been automaticallY deleted by page control. The
paging device map always resides on the first few records of the
paging device region that is potentially usable for a given
bootload. It is again nonfatal to request that these records be
deleted. However, they will not be deleted, because the current
implementation does not provide for moving the paging device map
copied onto the paging device. In particular, if the first CSM
is to be deleted (for offl ine work) the entire bulk store must be
disabled.

8-2 . AN 71

ADDING BULK STORE RECORDS

To add a region of the bulk store to the current
configuration the operator must specify which regions of the bulk
store should be added. As mentioned earlier, all configuration
switches must have previously been set correctly before the bulk
store add request is given. This includes the various switches
on the bulk store controller as well as all the port-enable
switches on all system controllers. (The normal operation Is to
have the port-enable switches under program control.) Since the
bulk store controller is not the target of the operator requested
reconfiguration, the channel masks in the system controllers are
not changed even if the entire set of bulk store records are
deconfigured.

The actual mechanism to add bulk store records to the system
is quite similar to the main memory add mechanism. It is
necessary that all of the paging device map that will ever be
needed for a bootload be allocated at system initialization time.
Those records of the bulk store that are not initially part of
the 'system do not have their PDME's threaded into the paging
device used list. The "addpage" request issued by the operator
merely threads the PDME's for records being added into the paging
device used list and updates the two system-wide variables in the
SST, pd_free and pd_using. The variable pd_free reflects the
number of records actively configured and which are free for use.
The variable pd_using indicates the number of records actively
configured. Both of the variables are updated by the internal
procedure "set_pd_free_and_using" (under control of the global
paging lock) in the main bulk store reconfiguration program
delete_pd_records. Note that when pd_ustng reaches zero, i.e.,
there are no records actively being used, the automatic update of
the paging device map is disabled making it possible to
physically deconfigure the bulk store controller.

The in te rna 1 procedu re "bu i1 d_page_ca rd ll of
delete_pd_records updates the page configuration card (if
possible) to reflect the current bulk store configuration for
both adding and deleting bulk store records.

DELETING BULK STORE:RECORDS
i

Deleting bUlk ~tore records is quite analogous to deleting
main memory block~. The entire mechanism is controlled by the
program delete_pd_records in the hardcore ring. T~is program

8-3 AN71

first checks its parameters for consistency and then loops
through the specified region of the pagIng device map (indexing
by paging device record number), cleaning out pages as it goes.
The entire process is under control of the global pagIng lock;
since the various control bits (such as the modifIed bIt) of the
PDME are sImulated and under control of the same lock these bits
will not change as long as the lock remains set.

There are five cases of interest. These are:

1. The record is not used.

2. The page for a given record is in main memory.

3. The page is not in main memory but has been modified
since last written to secondary storage.

4. The page is not in main memory and has not been modified.

5. A read/write sequence is in progress for the given page.

If the record is not used it is merely removed by threading
its PDME out of the paging device used list.

If the page is in main memory the core map entry is updated
to include the secondary storage devIce address rather than the
paging device address; if the modified bit is ON In the PDME, the
modified bit is set ON in the corresponding PTW. This can cause
a slight anomaly in the value of date-time-modlfled for the

_segment owning the page.

If the page is not in main memory but has been modified
since last being written to secondary storage, a read/write
sequence is initiated for the page. In addition, a flag is set
in the PDME so that when the read/write sequence completes the
paging device record will be marked as being deconfigured (i .e.,
the POME will not be threaded into the paging device used list).
The flag used to indicate this is pdme.removing.

If the page is not in main memory and has not been modified,
the record is taken as if it weren't used unless the segment
containing the page is active. In this case the device address
saved in the PTW is changed to the secondary storage device
address from the pagtng device address.

If a read/write sequence is in progress for a page the
pdme.removing flag is set ON so that the record will not be
threaded into the paging device used list when the RWS
completes. Any pages that have RWS's in progress are remembered;

8-4 AN71

at the end of scanning all POME's, the last RWS noticed is waited
for. The scan is then started again from the beginning until no
RWS's are seen in one pass.

When a record that was used is taken, the secondary storage
address for the record must be hashed out of the paging device
hash table.

AUTOMATIC pAGING DEVICE RECORD REMOVAL

When page control encounters a fatal read error from the
paging device, the removal of that paging device record is
triggered automatically. ThIs is done at page_fault$done time
and consists of hashing the PDME out, threading the PDME out of
the used list and reporting the event on the operator's console.
This type of dynamic deconfiguration of paging device records is
not reflected in the page configuration card, because it is done
at a time when no page faults can be taken. A special flag,
pdmeonot_on_disk_yet, is checked to determine if a copy of the
page has ever been written to secondary storage. If so, that
(probably slightly out of date) copy is preserved as ~ copy of
the page. If the page has never been written to secondary
storage since it was created, the block of main memory to contain
the page is zeroed. If the fatal read error occurs durIng a
read/write sequence, a simIlar action is taken with respect to
using a val id secondary storage copy only if it exists.

8-5 AN71

SECTION IX

THE COMMAND INTERFACE

The reconfiguration of main memory, processors and bulk
store is under operator control either,from an "initial izer"
terminal or from a normal logged-in (privileged) user. The
initial izer commands are

addcpu
del cpu
addmem
delmem
addpage
del page

and are described fully in the Multics Operator's Handbook, Order
No. AM8l. The normal user commands are

reconfigure$addcpu
reconfigure$delcpu
reconfigure$addmem
reconfigure$delmem
addpag
delpag

and, of course,

reconfigure$force_unlock

Note that there is no initial tzer command to unlock the
reconfiguration lock.

9-1 AN71

w
z
::1
~
z o
...J
«
;,

<.)

HONEYWELL INFORMATION SYSTEMS
Publications Remarks Form*

TITLE:
MULTICS RECONFIGURATION
PROGRAM LOGIC MANUAL

ERRORS IN PUBLICATION:

.',

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:

(Please Print)

FROM: NAME ____________________________________ __

COMPANY __________________________________ _

TITLE ______________________________________ _

ORDER NO.:! AN71, R.EV. 0

DATED: I JUNE 1974

DATE: ______________ __

*Your comments will be promptly investigated by appropriate technical personnel, action will be taken as
required, and you will receive a written reply. If you do not require a written reply, please check here. 0

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS
60 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: PUBLICATIONS, MS 050

Honeywell

FIRST CLASS
PERMIT NO. 39531
WELLESLEY HILLS,
MASS. 02181

w
z
:::i
(AI

L
-' «
I­
:J
U

w
Z

",-'
(.!)
Z

I a
,~ -'

«
Cl
-' a
u..

w
z
:::i

I (.!)
• Z
I~g

«
Cl
-'
D
u..

11487
2C874
Printed in U.S.A.

The Other Computer Company:

Hone)'"'ell

HONEYWELL INFORMATION SYSTEMS

In the U.S.A.: 200 Smith Street, MS 061, Waltham, Massachusetts 02154
I n Canada: 2025 Sheppard Avenue East, Willowdale, Ontario AN71. Rev. 0

	000
	001
	002
	003
	004
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	9-01
	9-02
	replyA
	replyB
	xBack

