Honeywell | RECONFIGURATION
PROGRAM LOGIC MANUAL

MULTICS

SOFTWARE

RESTRICTED DISTRIBUTION }

Honeywe“ RECONFIGURATION

PROGRAM LOGIC MANUAL

MULTICS

RESTRICTED DISTRIBUTION

SUBJECT:

SPECI

Dynamic Reconfiguration Software for the Major Hardware Modules (Processor,
System Controller, and Bulk Store).

AL INSTRUCTIONS:

This Program Logic Manual (PLM) describes certain .internal modules
constituting the Multics System. |t is intended as a reference for only
those who are thoroughly familiar with the implementation details of the
Multics operating system; interfaces described herein should not be used by
application programmers or subsystem writers; such programmers and writers

. are concerned with the external interfaces only. The external interfaces

DATE:

are described in the Multics Programmers' Manual, Commands and Active
Functlons (Order No. AG92), Subroutines (Order No. AG93), and Subsystem
Writers' Guide (Order No. AK92).

As Multics evolves, Honeywell will add, delete, and modify module
descriptions In subsequent PLM updates. Honeywell does not ensure that the
internal functions and internal module interfaces will remain compatible
with previous versions.

This PLM 1is one of a set, which when complete, will supersede the System

Programmers' Supplement to the Multics Programmers' Manual (Order No.
AK96) .

THE INFORMATION CONTAINED IN THIS DOCUMENT 1S THE EXCLUSIVE
PROPERTY OF HONEYWELL INFORMATION SYSTEMS. DISTRIBUTION IS
LIMITED TO HONEYWELL EMPLOYEES AND CERTAIN USERS AUTHORIZED
TO RECEIVE COPIES. THIS DOCUMENT SHALL NOT BE REPRODUCED OR
ITS CONTENTS DISCLOSED TO OTHERS IN WHOLE OR IN PART.

June 1974

ORDER NUMBER:

AN71, Rev. O

PREFACE

Multics Program Logic Manuals (PLMs) are intended for use by
Multics system maintenance personnel, development personnel, and
others who are thoroughly familiar with Multics internal system
operation. They are not intended for application programmers or
subsystem writers.

The PLMs contain descriptions of modules that serve as
internal interfaces and perform special system functions. These
documents do not describe external interfaces, which are used by
application and system programmers.

Since internal interfaces are added, deleted, and modified
as design improvements are introduced, Honeywell does not ensure
that the internal functions and internal module interfaces will
remain compatible with previous versions. To help maintain
accurate PLM documentation, Honeywell publishes a special status
bulletin containing a 1list of the PLMs currently available and
identifying updates to existing PLMs. This status bulletin. is
distributed automatically to all holders .of the. System
Programmers' Supplement to the Multics Programmers' Manual (Order
No. AK96) and to others on request. To get on the mailing 1list
for this status bulletin, write to:

Large Systems Sales Support
Multics Project Office

Honeywell Information Systems lInc.
Post Office Box 6000 (MS A-85)
Phoenix, Arizona 85005

C) 1974, Honeywell Information Systems Inc. File No.: 2L13

AN71

CONTENTS

Page
Section | INtroduction vevseeeseososcacsaansssssssassses 1-1
Section 11 TermMiNOTOgY v e et eeeeennsoeesansesscrscnnnas 21
Section 111 Data Structures. .;... Gt et ersateeseaannseas 3-1

The System Control]er Addressing.

=¥ =41 17=] 1 1 S R
The System Segment Table (SST) and

Related Data@...eeeeeeeeenesesssssaaaas 3-8

Section |V Data Base Infttialization.e.ee.eeeeeeeeeneensss b-1
SCS InitializationNe.es.eeeeeeeeenenneaanes b-1
SCAS InitlalizationN.e.e.eeeeeenetnseoneesss U=2
SST INitiallzZatioN.ee.eeeeaeaeesnsoennaeas U=2
Other Data Base Initialization....veesss L-3
Section V Reconfig and Reconfigure.....e..... ceeessse D-1
Section VI Processor Reconfiguration..............;... 6-1
ldle ProCESSeS ... vieeeeeeneeencsanassess 0-1
Adding a Processor to the System........ 6-2
Deleting a Processor from the System.... 6-4
Section VIl Memory Reconfiguration.....ceiieeeenennceae 7-1

Adding a System Contro]]er to the System 7-1

Removing a System Controller from the
SYSEEMe et tneeeeeensoasonssssssssannnas 12

Automatic Memory Deletion.....to be supplied

Section VIII Bulk Store Reconfiguration..........;;;..;. 8-1
Adding Bulk Store Records..... teeseeasass 8-3
Deleting Bulk Store Records.....vevesees 8-3
Automatic Paging Device Record Removal.. 8-5
Section IX Command Interface........ C e e e a e eeerenes 9-1

i AN71

SECTION |

INTRODUCTI!ION

This document describes the implementation and design of the
Multics dynamic reconfiguration software for the major hardware
modules of the system. Although there are many more hardware and
software switchable modules in the system, this document is
limited to processor, system controller and bulk store memory
reconfiguration,

Dynamic reconfiguring in Multics, on a per-module basis, 1Is
done only under explicit operator request. The facility of the
system that automatically deconfigures selected subregions of
core or bulk store when hardware problems arise uses the same
basic mechanism as module deconfiguration where appropriate.
There is currently no way the system will automatically
deconfigure a faulty processor. The software to automatically
deconfigure core is incomplete. The software to automatically
deconfigure a faulty record of the bulk store is operational.

1-1 AN71

SECTION 11

TERMINOLOGY

Terms and phrases frequently used in discussions of dynamic
reconfiguration are defined below.

system controller

memory controller
memory
controller

processor

port

is a hardware module that interfaces an
active module to the main memory of the
configuration. The system controller
manages system Iinterrupts, passes on
connect signals, contains the system
calendar clock and provides memory
functions to its active users.

same as system controller
same as system controller
same as system controller

is a major processing unit. A processor
(CPU) is one of the three standard
active modules. (The others are the I10M
and bulk store controller.)

is a point of connection from a system
controller to an active module. A
r or_por is one of eight
connection spots on a processor to which
a system controller can be attached. A
controller port or memotry port is one of
eight points on a system controller for
a connection to an active module. Each
active module contains hardware known as
port logic which determines (usually
from absolute address) which processor
port contains the connection to the
appropriate system controller.

2-1 AN71

control processor

control memory

There exists hardware 1In each system
controller to enable and disable
requests, etc. over one of its (memory)
ports. This port control logic contains

among other logic a port enable register
describing exactly which memory ports

are enabled and hence which active
modules can interact with the system
controller.

There is a feature of the system
controller hardware which allows the
active modules on only certain selected
ports to change port control and
interrupt masking values of the system
controller. Any processor so selected
at the system controller maintainance
panel is sald to be a gcontrol processor.
The switch which defines a processor to
be control is the execute interrupt mask
assignment (EIMA) switch. Each system
controller has four such switches, and
hence, each system controller can have
up to four control processors, By
convention, Multics allows only one
control processor per controller. Three
of the EIMA switches are disabled. The
fourth selects the port of the control
processor.

Each processor in the system has, by
software convention, a ontr

which that processor uses when it needs
a system controller function (other than
reading the clock) performed. The
typical system controller functions
which may be needed by a processor are
1) setting interrupt masks, 2) sending
interrupts to other processors, and 3)
receiving interrupts from system
controllers. The control memory for a
processor is established at bootload
time or when the processor is added to
the system. An accessing mechanism
(described) 1later is established in the
per-processor data base, the PRDS. MNote
that each processor has at least one
control memory and that, by convention,
processors will receive interrupts only
from control memories. A1l control
memories for a processor have the EIMA

2-2 AN71

channel mask

interrupt mask

switch selecting that processor and
hence send interrupts only to that
processor.

Associated with each system controller
is an eight-bit mask register that has a
bit for each port of the controller. |If
this bit is a1l the active module on the
respective port can use the system

controller. If the bit s 0 the
respective active module will fault if
it attempts to use the controller. The

channel mask bit can be forced on or off
by the port control switches on the
maintainance panel of the system
controller. These port control switches
are three position switches that can be
set (on a per port basis) to either
ENABLE, DISABLE, or PROG CONTROL. The
first two positions have the
corresponding affect., |f the switch is
in the PROG CONTROL position, - however,
the channel masks can be set or reset by

any unmasked processor. It is a
convention of the Multics

reconfiguration software to attempt to
mask all active modules currently not
being used. For normal Multics running,
therefore, all port control switches
should be in the PROG CONTROL position.

The channel masks are changed as part of
the SMCM processor instruction that also
changes the interrupt masks (see later).

Associated with each EIMA switch on a
system controller 1is an interrupt mask
register. There are therefore four
interrupt mask registers for each system
controller, (Note there is only one
channel mask register.) The interrupt
mask register contains a bit for each of
32 possible interrupt cells within the
system controller. The interrupt cells
are set on (and off when the interrupt
is picked up) by the active modules of
the system, When an interrupt-cell is
on the system controller broadcasts a
signal to all active modules selected by
EIMA switches on the system controller
that have the <corresponding interrupt

2-3 ‘ AN71

system

interrupt

unmasked., An interrupt cell will remain
on, in general, until an interrupt mask
register is unmasked enabling it to be
sent to a processor. (Note that EIMA
switches should only select ports that
contain processors.)

By convention, since Multlics currently
uses only one EIMA switch per system
controller, there will only be one
interrupt mask register In a system
controller that 1is being used. This
interrupt mask register will be used by
the corresponding processor to enable
and disable the signalling of interrupts
to that processor.

A feature to be considered when
dynamically reconfiguring is that before
an EIMA switch can safely be changed
from one processor to another the
interrupt mask must be masked down so
that no interrupts are lost during the
physical movement of the switch.

A system interrupt is an interrupt
needed by the system in order to carry

out its orderly functions of driving 1/0
devices and communicating between 1/0
devices. In addition there are special
interrupts the system software uses to
bring an orderly stop to the entire
system or to delay processing of some
data until a later time when better
features of the system are available.
A1l 1/0 interrupts are sent to the
system controller containing the first
word of the mailboxes and by software
convention this will always be the first
or low order system controller in the
system. This means that a1l 1/0
interrupts will be sent to the .processor
selected by the EIMA switch on the Ilow
order system controller. This low order
controller is often called the system
interrupt controller or bootload memory
and its selected processor is called the
bootload processor or bootload CPU. It
is possible to change the bootload CPU
but it is not possible to change the
bootload memory.

2-4 AN71

process interrupt

internal interlace

external interlace

processor tag

A process interrupt 1Is an Interrupt
directed to a particular process within
the Multics system. They are wused to
force the processor to execute some
specific code on behalf of the process;
for example, when the process has used
up its scheduling quantum or the process

‘is to be destroyed. Unlike system 1/0

interrupts, process Interrupts can be
directed toward any CPU by directing
them toward one of the control memories
for the CPU, By software convention
whenever it is desired to send a process
interrupt to a particular processor the
same system controller 1is always used
(assuming no reconfiguration has taken
place).

The system controllers have a feature
that allows interleaving of double-words
of data between the low order and hlgh
order Iinternal stores within the
controller. This is termed
internal interlace and, except for
timing changes, is invisible to all
active modules.

In addition to Internal interlace within
the system controller each active module
of the system has, as part of its port
logic the capability to distribute
apparently contiguous data between
different system controllers. This
external Interlace can be either two
words at a time or four words at a time
and only can be used between system
controllers that are on an even-odd port
pair. The affect of this external
interlace in conjunction with the
internal interlace within the system
controller leads to a four-way interlace
mechanism. This four-way interlace is
not to be confused with the four-word
interlace implemented within the port
logic of the active modules. All active
modules must have their external
internal switches set in the same way.

Each processor has a two-bit switchable

register that can be read by a special
processor instruction. This register,

2-5 AN71

processor index

core block

core used list

called the g¢pu tag register should be
set differently for each processor in
the configuration. The value of the

register the ¢gpu tag is used as the name
of the processor by the reconfiguration
sof tware, The current Iimplementation

expects the first cpu tag to be 1 (0 s
not recognlized) and hence only three
processors can currently be configured,

It is convenient to remap the cpu tags
into a. contiguous series of processor
indices. This is done by software. The
first processor configured 1is assigned
the index one regardless of the value of
the cpu tag. The correspondence between
processor Iindex and processor tag Is
kept in the system configuration segment
(SCS).

A core block is a contiguous region of
core starting on a page boundary that is
one page long. A1l of core is thus
divided into fixed 1length regions the
size of a page. Some core is
permanently wired and can never contain
paged data. Other core contains data or
code that is temporarily wired, i.e., it
is temporarily forced to remain in core.
The core may later be freed up and
reused for some other page. The term
wired applies to anything that must
remalin in core for some time for some
r.eason. The terms latched, locked and
core resident are also wused in the
literature for what is here called
wired.

The core used list or simply the
used list is a threaded 1list of all

core map entries for the core blocks in
the paging pool. A core map entry
describes which page, if any, is
currently occupying the associated core
block. The c¢ore map consists of all
core map entries that are threaded
together. The core map, however, can
also be indexed by absolute core block
number as an alternative method for
scanning core map entries.

2-6 AN71

record

abs_usable

abs_wired

paging device map

A record Is a contiguous reglon of a
secondary - storage device that beglns on
a page boundary and that 1is one page
long. Satisfying a page fault, for
example, conslists In moving the data of
a page from a gliven record of secondary
storage to a given block of core and
performing the necessary connections.

The term abs_usable applies to that
attribute of a core block that permits
the core to be used for [/0. This
concept is needed by |/0 modules as they
must set up DCW 1Ilsts that have absolute
addresses 1In them. The core blocks of
the boot1oad memory can not be
dynamically deconfigured (for several
unrelated reasons) and therefore all
core blocks of the bootload memory that
are part of the paging pool are marked
as abs_usable. In addition, core blocks
of other system controllers will also be
SO marked if there are not enough
abs_usable blocks in the boot1oad
memory.

The term abs_wired applies to a block of
core that contains a page that is wlred
down because [t may contain absolute
addresses. Such a page can not be moved
either to make room for another
abs_wlred page or to remove the memory.
Any memory that contains one abs_wired
page can not be dynamically deconfigured
until that page Is no longer requlired to
be abs_wlred.

The paging device map (or pdmap) is used
as part of the bulk store management
algorithms and Is analogous to the core
map. |t is kept ordered by time of
recent reference and hence is the key to
the bulk store replacement algorithm.

2-7 AN71

read/write sequence

A read/wrlte sequence (or rws) is that
mechanism used to move a modified page
from the bulk store to secondary
storage. The mechanism consists in
finding a block of core, reading in the
page from the bulk store and then
writing the page out to disk.

2-8 AN71

SECTION 111

DATA STRUCTURES

The several key data structures used by the reconfiguration
software are kept in the segments SCS and SST. These are
initialized as described in Section IV and modified as described
in Sections VI, VII and VI,

The following declarations of data structures describe the

structures that are primarily used during processor
reconflguration.

declare 1 scs$processor_data ext aligned,
2 int_port(8) bit(3) unal;

declare 1 scs$change_contr(8) ext allgned,
2 flag bit(1l) unaligned;

declare 1 scs$delete_cpu(8) ext aligned,
: 2 flag bit(1l) unaligned;

declare 1 scs$processor_tag(8) ext allgned,
2 index fixed bin(3);

declare (scs$new__tag,

scs$new_index,

scs$new_port,

scs$new_contr) leed bin(3) ext;
declare scs$new_contr_ptr ptr ext;
declare scs$lock bit(36) alignhed ext;
declare scs$mask bif(l) aligned ext;

declare scs$last_call fixed bin ext;

3-1 AN71

10

2‘

3.

ul

declare scs$bootload_cpu_tag fixed bIn(3) ext;

declare scs$nprocessors fixed bin ext;

declare scs$processor_port(8) flixed bin(3) ext;

The variables declared above have the following meaning:

processor_data.int_port

change_contr.flag

delete_cpu,.flag

processor_tag. index

is an array, indexed by processor
index, of port numbers for the
system controllers sending process
interrupts to the given processor.

is an array, indexed by processor
index, indicating whether ("1'"b) or
not ("0"b) a given processor should
change its control memory, i.e.,
update any internal data bases
(such as its PRDS) to indicate that

a new system controller is
controlling process interrupts for
the processor. (A processor must

always know which system controller
is its control memory in order to
know which one to mask when the
processor must run protected from
interrupts.)

is an array, indexed by processor
index, indicating whether ("1"b) or
not ("0"b) a given processor should
remove itself from the active
configuration. This bit is turned
ON by the reconfiguring process to
indicate to the 1idle process for
the given processor that the
processor is being deconfigured.
After the idle process successfully
stops its processor it resets the
flag to indicate to the
reconfiguration process that the
processor has been deleted.

is the array giving the mapping
between processor tag and processor
index. 1t is indexed by processor
tag and vyields processor index.
When the processor tag for a gilven
processor index is desired, the
array is linearly searched.
Similarly when a new processor

3-2 AN71

new_tag

new_index

new_port

new_contr

new_contr_ptr

10. lock

index is desired, the array Is
searched for an available value.
A1l unassigned indices have the
value -1.

is a temporary used to record the
processor tag of the processor to
be reconfigured., It is used both
in adding and deleting a processor
as well as in deleting a system
controller.

is analogous to new_tag. It
records the processor index of the
processor of interest in adding or
deleting a process or in deleting a
system controller

is analogous to new_tag and holds
the system controller port (of the
processor) of interest, 1i.e. it
specifies which system controller
is being deleted or which system
controller is (to be) control for a
processor being reconfigured.

is used in conjunction with
change_contr to indicate which
system controller is to be used by
a given processor.

is used in conjunction with
change_contr and contains a pointer
to be used when the processor Is to
reference the new system
controller. 1t usually is a
pointer pointing indirectly to a
port addressing word (a word with
the high order three bits
indicating the system controller
being referenced).

is the global reconfiguration lock.
This 1lock must be set whenever
processor or system controller
reconfiguration is being done,

is a bit indicating whether a
processor must mask or unmask
itself during critical stages of
reconfiguration, In particular, a

3-3 AN71

12. last_call

13, bootload_cpu_

‘14, nprocessors

tag

15. processor_port

processor must mask before the EIMA
switch of 1its control memory is
changed.

is a variable used to synchronize
calls to the supervisor side of the
reconfiguration software., Usually
each entry in reconfig (the
supervisor reconfiguration program)
can only be called after another
specific entry has been called.
This variable holds the number
associated with the previous call
and is thereby used to check for an
invalid sequence of calls,

Is the processor tag of the
bootload processor. Since special
actions must be taken to guard
against the loss of interrupts when
the bootload processor 1is being
deleted, a convenient method for
determining the bootload processor
was established.

is simply a count of the number of
processors configured in the
system.

is an array, indexed by processor
index, indicating the system
controller (via processor port
number) which s control for the
processor.

The following data structures are used both during processor
reconfiguration and system controller reconfiguration.

declare scs$port_addressing_word(0:7) bit(3) aligned ext;

declare scs$proc_contr_ptr(8) ptr ext;

declare 1 scs$controller_data(0:7) aligned ext,

(2

RNDNNNDNN

size bit(18),
base bit(18),
contr_proc bi
padl bit(2),
sys_int_sw bi
pad2 bit(2),
clock_in_use

t(18),
t(1),
bit(l),

3-4 AN71

pad3 bit(5),

NNONNNON

declare 1 rcd aligned,

abs_wired bit(1l),
ext_interlace bit(l),
four_word_interlace bit(1l),
int_interlace bit(1l),

padl bit(3)) unaligned;

2 locker_id char(32),
2 controller_data(0:7) like scs$controller_data,
2 processor_data,

3 int_port(8) bit(3) unaligned,

3 processor_port(8) fixed bin(3),

3 processor_index(8) fixed bin(3),

tag,
index,
port,

NN

mask bit(1l)

contr) fixed bin(3),
initial("0"b),

2 channel_mask (0:7) bit (1);

16. port_addressing_word

17. controller_data

18.

controller_data.size

is an array, indexed by system
controller name (i.e. processor
port number) of words containing a
bit pattern that when indirected
through will yield a reference to
the given system controller. This
addressing mechanism is used by the
RCCL, RMCM, SMCM and SMIC
instructions. The entries of this
array are pointed to by the
pointers in scs$proc_contr_ptr. A
copy of the appropriate
proc_contr_ptr entry is made in
each processor's PRDS to facilitate
the use of the above instructions.
(The PRDS also contains the
processor index SO the
scs$proc_contr_ptr could be used.)

is a structure, indexed by system
controller name (i.e. processor
port number), containing data about
the given system controller. This
data is initialized during bootload
and updated during reconfiguration.

is the number of (1024-word) core

blocks attached to the given system
controller.

3-5 AN71

19. controller_data.base

20. controller_data.contr_proc

21, sys_int_sw

is the absolute core address (mod
1024) of the first word of
addressable <core 1in the system
controller. This value and the
controller_data.size value above
will both be all 1's if the system
controller Is not currently
configured.

is the processor index of the
processor controlling this system
controller. (The EIMA switch on
the controller points to the port
on which the processor with this
processor index is connected.)

is ON only for the bootload memory.
This flag is used to determine if
special action must be taken when
the processor controlling the
bootload memory is deconfigured.

22, controller_data.clock_in_use is ON for the single system

23, controller_data.abs_wired

controller whose <clock is being
used. There is only one <clock of
the system controllers which s
used and this is the one 1in the
bootload memory.

is ON for all controllers which can
contain "abs_wired" pages, i.e.
pages which can not be moved due to
some process containing absolute
addresses pointing to within the
page. This bit is ON by default
for the bootload memory and will be
turned ON for other system
controllers if there are not enough
abs_wirable pages in the bootload
memory.

24, controller_data.ext_interlace is ON |if this system
controller is externally
interlaced.

25, controller_data.four_word_interlace is meaningful only if
the controller is externally
interlaced in which case it
indicates, If ON, that the

interlace is four-word interlace as
opposed to two-word interlace.

3-6 AN71

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

controller_data.int_interlace is ON if the system

rcd

rcd.locker_id

rcd.controller_data

rcd.processor_data

rcd. tag

rcd. index

rcd.port

rcd.contr

rcd.mask

rcd.channel_mask

controller s Internally
Interlaced.

ls a structure used by reconfig to
communicate with reconflgure, the
user-ring part of the
reconflguration software.

is the process_group_id of the
process that last locked the
reconfiguration lock and hence the
process currently performing
reconfiguration if reconfiguration
is In progress.

is a direct copy of the
corresponding data from the SCS.

is a direct copy of the
corresponding data from the SCS.

is the processor tag of the
processor of Interest for the
particular reconfiguration request
being performed. This variable may
be input or output.

s the processor index of the
processor of interest. This

‘varlable may be input or output.

Is the system controller number
(processor port number) of the
system controller being
reconfigured; or it is the system
controller port number (thereby
selecting a processor) of interest.

is analogous to rcd.port and refers
to the system controller that is
having its control processor
changed.

is used to communicate the need to
mask or unmask a system controller.,

reflects the current state of the
(eight-bit) channel mask assumed by
the supervisor and hence the latest
value set In all controllers.

3-7 AN71

THE SYSTEM CONTROLLER ADDRESSING SEGMENT

The system controller addressing segment (SCAS) is a
specialized data base used to read and set certaln reglsters in
system controllers. In particular the SCAS segment 1is used to
generate the correct final (absolute) address needed by the RSCR
and SSCR instructions, These instructions operate on the system
controller that contains the final absolute address generated by
the address preparation 1loglc ff the processor. The SCAS
"segment" is really nothing more than an eight-word page-table
with each page table word (PTW) pointing to a block of <core in
the currently configured system. The first "page'" of SCAS is
located in the system controller on port 0 of the processor, the
second '"page" is located in the system controller on port 1, etc.
Note that there may be '"holes'" in SCAS due to certain system
controllers not being configured.

THE SYSTEM SEGMENT TABLE (SST) AND RELATED DATA

The core memory data base, the core map, consists of all of
the core map entrizs (CME's) threaded into a circular list. The
"head" of the core map is pointed to by the varlable sst.usedp
and is the core map entry. for what the system considers the least
recently referenced page. The paging device map entry (PDME) is
completely analogous to the core map entry. These are both
described below:

declare 1 cme based (cmep) aligned,
(2 (fp, bp) bit(18),

devadd bit(22),

padl bit(2),

io bit(1l),

rws bit(l),

pad2 bit(1),

removing bit(l),

abs_w bit(1),

abs_usable bit(1),

pad3 bit(3),

contr bit(3),

ptwp bit(18),

padli bit(18),

dblw_devadd bit(22),

pad5 bit(1l4)) unaligned;

NRRNRNDMNMNNDNNMDMNDMRNRNNDN

3-8 AN71

37.

38.

39.

Lo,

L1,

L2,

43,

“""0

pad2 bit(l),

pad3 bit(1l),
removing bit(

pad bit(l),
ptwp bit(18),
ht bit(18),
padli bit(36)

NN NN

cme.fp, cme.bp

cme.devadd

cme, io

cme, rws

cne.removing

cme.abs_w
cme.abs_usable

cme.contr

truncated bit(1l),
notify_requested bit(l),

1),

not_on_disk_yet bit(1l),

) unaligned;

are the forward and backward thread
pointers used to chain the CME's
together.

is the device address associated
with the page residing in the given
core block., This may be "null", a
bulk store device address or a disk
device address., If it 1is a bulk
store device address, the disk
address can be found in pdme.devadd
for the corresponding paging device
map entry.

is "0"b if the 1last (or pending)
1/0 request for the core block was
a read and is "1"b if the 1last
request was a write.

is ON only if this block of core is
being used for a read/write
sequence.

is set ON only ({if this block of
core is currently being deleted
from the system. If it is ON, the
core map threading algorithm does
not thread the entry into the used
list, but rather leaves the entry
where it is (in the remove 1list).

is ON only if the page residing in
this block of core is abs_wired

is ON only if this block of core is
abs_usable.

is the controller name (processor

port number) of the controller
containing this block of core.

3-9 ANT71

L5,

Lo,

L7,

L3.

L9,

50.

51.

52.

53.

chme.ptwp

cme.dblw_devadd

pdme.fp, pdme.bp

pdme.devadd

npdme.modified

pdme. incore

pdme.rws

pdme.used

pdme.abort

is a pointer to the PTW for the
page residing in this core block or
is (18)"0"b if the core block is
free.

contains the secondary storage
device address to be used in the
store-through cycle of a double
write request. If this field is
(22)"0"b then no secondary write
should be queued.

are the forward and backward thread
pointers used to chain the PDME in
the paging device used list,
However, if a read/write sequence
is in progress for this paging
device record the PDME 1is pot
threaded into the used 1list and the
pdme.bp field is used instead to
hold a pointer to the core map
entry for the block of core being
used for the RWS.

contains the secondary storage
device address associated with the
page residing in the corresponding

‘record of the paging device. This

address is never null as page
control always quarantees a disk
address has been assigned for any
pages residing on the paging
device.

is ON if the page on the paging
device has been modified and hence
must be written back to disk (via
an RWS).

is ON if the page associated with
this PDME is in core.

is ON if a read/write sequence 1is
in process for this PDME,

is ON only if the corresponding
paging device record is being
currently used. The record is free
and available for use if this |is
OFF.

is ON if &a process took a page
fault on a page which was iIn the

3-10 AN71

54. pdme.truncated

55. pdme.notify_requested

56. pdme.removing

57. pdme.not_on_disk_yet

58. pdme.ptwp

59, pdme.ht

process of being written back to

*disk (i.e. an RWS was in process).

This flag is tested when the RWS
completes; if it is OM, the page is
left on the paging device, the core
used for the RWS is given to the
page, the PTW is updated to
indicate that the page is in core
and the faulting process is
notified that this page is in core,

is OH |If a page was truncated
during a RWS for this page.

is ON if some process wants to be
notified when the RWS in progress
completes,

is ON If the paging device record
is currently being deconfigured,

is ON for any (new) pages on the
paging device which have never been
flushed to the disk. This bit is
used during automatic
deconfiguration of paging device
records to determine if the disk
copy of the page is valid. |If the
copy is not valid (has never been
written) the disk address is freed
up and the page is given a null
address. This prevents
unauthorized access of data.

points to the PTW for the page
corresponding to this PDME if the
segment which contains the page |is
active. 1f the segment 1is not
active this field is (18)"0"b,

is a hash thread used to thread all
POME's with the same hash index
(generated from secondary storage
device address) together.

3-11 AN71

59. pdme.ht is a hash thread used to thread all
PDME's with the same hash index
(generated from secondary storage

device address) together.

3-12 AN71

SECTION [V

DATA BASE INITIALIZATION

This sectlon describes the initlallzatlon of the data bases
used by the reconflguratlion software, Some of these data bases
will not be changed after the bootload, others wll]l be changed
all the time and still others wl11l only be changed when
reconfiguration Is explicitly requested,

NIT ZAT | ON

The system communication segment (SCS) described in Section
1l is initialized primarily by the programs scs_init, scas_init,
inftialize_faults, Init_sst, start_cpu and tc_init. (The program
scas__init fil1ls in scs$bootlioad_cpu_tag, which 1Is not again
changed unless the bootload processor is deconfigured.)

The controller_data structure is filled in 1in stages as
various programs learn more about the configuration. The program
scas_1Iinit reads the system controller reglsters of each
configured controller to determline internal interlace, etc. The
processor switches are also read to determine external Iinterlace
and to verlify that the actual configuration corresponds to the
configuration deck.

~ The «clock reading mechanism consists of a polinter in
sys_Iinfo pointing to a port addressing word (a word with the high
order three bits being a port number) for the port connected to
the system controller whose clock we want to use. Durlng early
stages of initialization this polnter and the target port

L-1 AN71

addressing word are set up to point to the bootload system
controller. This function is performed first by
initialize_faults so that the clock reading mechanism will be
enabled early in the bootload. The clock reading mechanisms are
initialized "officially" In scs_init.

The program scs_init initializes many structures in SCS but
its primary concern 1is the initlallzation of the interrupt

handling mechanism, This includes setting up the various
interrupt mask patterns, the Interrupt handler array, and (of
importance to processor deconfiguring) the variable

scs$simulate_pattern Is set up to have a blt ON for each system
Interrupt the system can not afford to 1lose for an extended
length of time.

SCAS INITIALIZATION

SCAS is not really a data base but rather a page table that
points to pages in each of the configured system controllers.
The actual content of the pages is not of importance and in
general changes as pages are moved in and out of the particular
region pointed to by a.glven SCAS PTW (the actual page that SCAS
is set up to point to in each system controller is the first page
in the controller.) As mentioned earlier SCAS is wused by the
RSCR and SSCR instructions and indeed scas_init issues these
instructions as soon as SCAS is initialized to verify the actual
configuration corresponds to the configuration deck. In addition
other information about the system controllers (internal
interlace, etc.) Is saved at this time.

SST INITI ZAT]ON

The initialization of the SST is described fully in
Svstem Inltialization, Order No. AN70. The two important

features relevant to reconfiguration are:

L-2 ‘ AN71

"1, the abs_usable bits In core map entries are set OM for
all core blocks In the bootload system controller (it
can't be deleted anyway because It contains mallboxes and
fault and interrupt vectors) and

2. the bulk store (paging device) map 1Is initlalized as
described on the '"page'" configuration card.

R DATA BAS NIT ZATIO

The initialization of the PRDS, done mainly by prds_init,
tc_data, tc_init and start_cpu, is straightforward and simple.
The primary interaction between the traffic controller and
reconfiguration consists in the creation, running and deletion of

the idle processes.

L-3 AN71

SECTION V

RECONFIG AND RECONFIGURE

The processor and system controller reconfiguration software
is split into two main programs: reconfig in the hardcore ring
and reconfigure in the wuser ring. These programs are so
intimately tied together that even the most trivial change to one
often must be reflected somehow in the other. They are really
one logical program which has been split across rings for reasons
independent of the reconfiguration problem. In particular,
reconfig must be in ring zero because it performs (via calls)
privileged functions such as masking, sending interrupts and
changing hardcore.data structures. Similarly, reconfigure must
be in the user ring because it must perform normal terminal 1/0
and, of prime and nonobvious importance, it must be possible to
be interrupted with a preempt interrupt from the reconfiguration
processor, This preempt interrupt (for other unrelated reasons)
cannot be allowed to go off (and be handled) 1in the hardcore
ring.

The communication between the two programs is done through
an entry in the hphcs_ gate. This entry is declared as follows:

declare hphcs_$reconfig entry (ptr, fixed bin, fixed bin(35));

call hphcs_$reconfig (rcd_ptr, entry_no, code);

1. rcd_ptr is a pointer to the rcd structure described in
Section 111, (lnput)
2. entry_no - is a code telling reconfig which function is heing

requested., (lnput)

3. code "is an error code indicating what kind of problem
has been encountered, if any. (Output)

5-1 ANT71

The various "antries" into reconfig are therefore
implemented by one large "do case =-n-" type construct where n |is
the entry number,. There s extensive cross checking done by
reconfig to insure that the proper sequence of calls is
maintained.

A1l processor and system controller reconfiguration s
controlled by a lock which prevents more than one process from
executing a reconfiguration sequence at the same time. This lock
can be forced to the unlocked state (bypassing any sequencing
tests) via a call to the user ring program
reconfigure$force_unlock. This entry expects no arguments and
?riats out the process group ID of the last process to lock the

ock.

The error code returned by reconfig 1is decoded by
reconfigure to determine the details of a particular error, I'n
particular, the code 1is a two-digit decimal number. The first
digit gives a general indication of what type of problem was
encountered and the second digit gives more detail. The
following tables interpret all returned error codes.

First Digit

0 general
1 - error from start_cpu
2 error from stop_cpu
7,8,9 general

rror Cod Meaning
1 reconfiguration mechanism is locked
2 reconfiguration mechanism is pnot locked
3 improper sequence of calls
L argument is inconsistent with last call
5 invalid entry number
11 processor would not start
12 processor has wrong CPU tag in switches
13 wrong EIMA switch (reconfiguring

process got initialize interrupt itself)

14 no APTE available for idle process
15 no idle process for this CPU
16 no processor for the given controller
21 no idle process for this CPU
22 no processor for the given controller
70 cpu to be deleted not in system

71 cannot find enough CPUs

5=-2 AN71

73

74
76

78
79

80
81
82

90

92
93

memory already configured

controller to be added is not defined

controller cannot be removed

not enough controllers left

not enough core blocks left

abs wired page in controller to be removed

core block not in used list in controller
being removed

processor already configured
controller not found for CPU
port already assigned

illegal value for processor tag
illegal value for controller

illegal value for port

program bug - no controller available

5-3 ' AN71

SECTION VI

PROCESSOR RECONFIGURATION

This section describes the workings of the processor-adding
and processor-deleting functions. Before this can be fully
described, however, the mechanism of _ldle processes must be
briefly explained.

1D PROCESSES

There 1is one idle process for each processor on the system.
In general, the idle process for a processor is run whenever that
processor cannot find another process to run, elther because no
other process wants service or because all processes that want
service are either running on other processors or are waiting for
some system event such as a page fault to be satisfled. A
processor will never be run In another processor's Idle process.

An 1dle process is a full-fledged normal Multlcs process In
that it has its own stack (pds), its own descriptor segment, and
its own APT entry. In particular, an Idle process can be
threaded in at the head of the eligible queue if necessary. This
technique, in fact, is used to force a given processor to execute
in 1Its 1idle process by issuing a preempt Interrupt to the
processor after threading the idle process APT entry to the head
of the 1list. However, most of the time the idle processes are
threaded at the tail of the ready 1ist where they will be
selected only If all other processors do not want to or cannot
run. ‘

The idle process for a processor must be created before a
processor is added to the system. (This is not quite true for
the bootload CPU that, of course, must somehow be bootstrapped
into the normal state. See Svstem Initlialization, Order No.

AN70, for a complete description of this bootstrap mechanism.)

6-1 AN71

AN70, for a complete description of this bootstrap mechanism.)
Similarly, each processor on the system must have a processor
data segment (the PRDS) before it can be run. Both the idle
process and the PRDS for a processor therefore must be created as
part of the operation of dynamically adding a processor to the
system. After a processor is deleted from the system its idle
process and PRDS are deleted as a cleanup measure.

NG SSOR TO THE SYSTEM

To add a processor to the system up to four <calls to
reconfig may have to be performed in addition to the "status"
call which returns general information about the current
configuration,

The first "entry" called (number 10 or 1l1) communicates to
ring zero the intent to add a processor o the system. The
caller (reconfigure) may or may not specify which controller the
processor is to be assigned. |If the caller does not specify a
controller (entry number 11) the system will attempt to find one.
(Recall that a controller is needed for each processor in the
system and that there must therefore be at 1least as many
controllers in a given configuration as processors.) At any rate
a controller s selected and if the controller receives system
interrupts, the fact 1is noted. A processor index is then
generated and a return to the user ring is made. Note that the
user ring was returned a switch indicating whether or not the new
controller receives system interrupts.

The second "entry" called when adding a processor (number
15) is ~called to mask the controller selected above, as well as
to set the channel mask in all controllers, The channel masks
are set by updating all the masks in SCS and then forcing the
masks to be loaded. For controllers which get interrupts for
some CPU it is enough to cause that CPU to take an interrupt as
the interrupt interceptor will mask and hence set the channel
mask. In this case the preempt interrupt 1Is sent, For
controllers which do not get interrupts an explicit call to set
their masks (to '"open level'") is made. Note the controller is

masked to '"sys_level" and hence all normal interrupts from
hardware devices are delayed 1if the controller is the system
interrupt controller. In this case any abnormal terminations of

the reconfigure request (wrong switch settings, etc.) must be
acted upon quickly (by the operator) as any significant delay in
unmasking will impair efficient operation of the system,

6-2 AN71

After returning from the entry which masks the new
controller, the operator is instructed to change the EIMA switch
on the selected controller to the CPU being added. These
instructions (which require operator reaffirmation) are followed
by the third call into ring zero (entry number 16).

This third call is the call that actually adds the processor
to the system and starts it running. The data base SCS is
changed to reflect the added CPU and the program start_cpu Is
called. This program creates and initializes the PRDS for the
new processor as well as the new idle process. start_cpu in turn
calls init_processor to get the processor going. This is done by
patching the interrupt vector for a special "nrocessor
initialize" interrupt and then sending this interrupt to the new
processor. The patched interrupt vector forces the new processor
to enter code in init_processor which loads the DBR reglister of
the new idle process. After certain other initial steps the
newly added processor sets a flag saying it 1Is successfully
running and enters the 1idle 1loop 1in search of a normal user
process to run. The processor which initiated the newly added
processor loops until confirmation that the new processor is
running normally. |If this confirmation never comes (it walits a
few milliseconds) an error code is returned which is reflected to
the reconfiguration programs.

If the processor did not add successfully (wrong switch
setting, etc.) the operator is instructed to change the EIMA
switch back and the controller is unmasked. (If the add was
successful the idle process would have unmasked). When the add
is successful the initiating process resets the interrupt vector
to its original state and returns control from init_processor to
start_cpu to reconfig.

The program init_processor (see System Initialization, Order

No. AN70) is called to start all processors on the system - even
the bootload process at initialization time. For this reason the
program makes special checks to see if it interrupted itself
(with the processor initialize interrupt). |In addition to this
check, the processor reads his configuration switches to make
sure the tag 1Iis set correctly and makes a check to see if the
processor was already initialized. (This would be the case if
the bootload processor, for example, sent the initiallize
interrupt to another processor but received it itself do to an
incorrectly set EIMA switch.)

The program init_processor consists of two logically
different sections. The call side is called by start_cpu when
everything has been set up for the new processor. This entry
sets up the interrupt vector to transfer to the second section of

6-3 AN71

init_processor at the label "flrst_steps". It 1Is the code at
this 1label that first gets executed by the new processor. The
code runs In absolute mode until the DBR is 1loaded. After the
DBR is 1loaded the program checks Its conflguration as mentioned
above and if all is well the program enters the "idle" code of
init_processor after sending itself a preempt interrupt. Before
beginning to idle, however, the reconflguration process 1is told
(via a variable 1in init_processor) that the new process is
running. Also before 1idling the new processor unmasks (to
open_level) its control memory so that It can receive process
Interrupts.

T PROCESSOR FROM THE SYSTEM

The first "entry" invoked when deleting a processor is
number 20. This entry checks that the CPU to be deleted is
actually in the configuration and then searches for (1) another
CPU to take the iinterrupts directed toward the one belng deleted
and (2) the first of possibly several controllers pointing to the
CPU. If there is only one controller controlled by the CPU being
deleted, the CPU is stopped at this time. The CPU will mask the
controller when it stops (so the EIMA switch can be moved to
another processor).

|f there is more than one controller pointing to the CPU,
one of the controllers that Is not used for process interrupts is
selected and its port number is returned to the user ring. For
each such controller found in the system a palr of <calls into
ring 0 1is made. The first call (number 21) is done prior to

directing the operator to change the EIMA switch. It is a call
to mask the controller. The second call (number 22) is performed
after the switch has been changed. It first unmasks the

controller and then searches for another controller pointing to
the CPU.

The controller that gets interrupts for the CPU is done last
in the sequence. In this case, instead of finding the next such
controller, the CPU is actually stopped. The CPU will mask its
controllier prior to stopping. Entry number 23 is then invoked.
This entry waits until the CPU says it has masked and then
returns. Entry number 24 is then called to finish up. |t checks
if the CPU deleted was the bootload CPU and if so redefines
scs$bootload_cpu_tag. |t then checks to see if the processor has
really been deleted by checking scs$delete_cpu. |f the processor
has not stopped, the ring 0 code returns control to the user ring
so that the effect of a preempt Interrupt that was apparently

6-L4 ’ AN71

final step, the SCS data base is updated and the channel masks
are set to reflect the absence of the processor from the system.

There are some interesting control sequences which must be

followed when deleting a CPU. |In particular the code which the
CPU being deleted must execute is all isolated in the idle
process and in particular in the program init_processor. In

order to force the processor to execute this code, the idle
process is given ultimate high priority (by moving to the head of
the scheduler's ready list). The actual code of the idle process
is a small loop consisting of: (1) code to flash the 1lights on
the maintenance panel in a recognizable pattern, (2) some DIS
instructions to enable the panel, and (3) some tests to see if
the processor is being deleted or if it should change its control
memory. The check to see if the processor should be deleted
results in the idle process invoking some code which eventually
results in the preoczessor executing a DIS. In particular, the
processor:

l. Gets the port number for its controller (used as an index
into scs$controller_data).

2. Checks to see if the processor is the bootload CPU and,
if so, sends a batch of interrupts to the controller for
the new bootload CPU using scs$simulate_pattern.

3. Masks the controller.

L, Checks to see if the controller for the CPU received
system interrupts. |If so, the CPU to get the controller
is told to change its controller and given high priority
so It will run and see the request. The CPU being
deleted then 1loops until the processor to get the
controller has changed controllers.

Note that the deletion of the bootload CPU requires special
action to be taken. This is because system interrupts (such as
those that drive the disks and typewriters) are only handled by
the bootload CPU because this 1is the CPU which receives
interrupts from the bootload (low~order) memory and all !/0
interrupts are sent to this system controller. Since it is
necessary to mask all interrupts in an interrupt mask register
whenever its EIMA switch is changed, real system interrupts must
be prevented from reaching any processor while this switch is
being changed (the new processor must be directed to receive
system interrupts). Since the system can not in general survive
an extended period with system interrupts being processed, these
interrupts must be simulated by sending every interrupt which may
be of iqterest to the processor which 1is to receive system

6-5 AN71

interrupts. These interrupts are remembered in the
scs$simulate_pattern cell at initialization time, and broadcast
to the pew bootload CPU every second or so by the CPU being
deleted.

Another item to be noted is that the several places In the
reconfiguration software where masks are set in controllers are
bracketed by calls to force the running (reconfiguring) process
to run on a particular processor =-- the processor which s
control for the system controller whose mask is being changed.
The "processor required" mechanism built into the dispatcher of
the traffic controller is used for this purpose. Therefore, if
reconfiguration is attempted from a process already restricted to
a given processor, that restriction may not be in effect after
the reconfiguration 1is complete. (The '"processor required"
mechanism does not '"stack" requests.)

Since adding a processor to the system requires the operator
(see Section IX) to interact at his terminal, it is not possible

to add a processor to the system ag;gma;gga]!y This means that
it is not possible to bootload the system and have it come up
with two processors running. The second and subsequent

processors must be explicitly added gfter the system is booted.

6-6 AN71

SECTION VI

MEMORY RECONFIGURATION

This section describes the mechanisms used to dynamically
reconfigure primary memory (core or MOS). The first two
subsections describe system controller vreconfiguration and the
third subsection describes the core block reconfiguration within
a controller,

S R : STEM

At system initialization time the data bases
scs$controller_data and the main memory map in the SST are
initialized. These are initialized from the configuration deck
(and active register values); since the core map can not easily
be grown it is required that any system controllers that will
ever be configured to the system for a given bootload must be
specified in the configuration deck for the bootload. This 1is
done by using an ON or OFF field of the MEM configuration cards.
All system controllers actually configured and to be used at
bootload time are indicated as being ON, Other system
controllers are OFF,

When the core map is initially set up, only core blocks
which are in configured system controllers are threaded into the
used list. Core bhlocks for system controllers that are not vet
configured are 1left '‘alone and threaded into no list. To add a
system controller (and :its memory) to the system, all that need
be done is to thread the (hopefully unused) core blocks for the
controller into the core-used 1list. This is exactly what
add_memory does as invoked by reconfig after an addmem request is

given. Before the memory is enabled the operator is told to set
the switches on all active modules so the system controller can
be referenced. The switches on the controller itself must also

7-1 AN71

particular the EIMA switch is set to the processor that controls
the system controller. Note that the entire system can be
prepared (i.e., all switches set correctly) before the addmem
request is given by the operator.

The actual code in reconflg to add a system controller to
the system, entry 30, merely checks consistency of all arguments
and calls add_memory to actually add the system controller to the
system, The program add_memory first sets the Interrupt mask in
the memory -- to load the appropriate channel mask =-- and then
threads the core map entries for core blocks in the controller
into the used list. Before calling add_memory, reconfig forces
the executing process to run on the processor that controls the
memory so the mask can be set.

REMOVING A SYSTEM CONTROLLER FROM THE SYSTEM

The mechanisr. to remove a system controller from the system
is complicated by two features. First, a mechanism must be
provided to remove all references to any pages in the system
controller by processors. Second, a mechanism must be provided to
remove all references to the memory of the system controller by
other active modules, particularly I0OM's,

The first major problem in removing main memory, i.e.,
preventing processors from referencing the memory, is not hard to
solve in that all processor references to the memory are indirect
through PTW's over which the system software has control. (1t is
not possible to remove a system controller that contains

permanently wired code or data.) It is thus necessary only to
remove access in PTW's or copy pages into core that is not being
removed. This in fact is just what is done. There are three

cases to consider:
1. Core blocks that contain wired pages.

2. Core blocks that contain pages that are not wired but are
modified.

3. Other core blocks.

Pages that are temp-wired must remaln in main memory but
need not remain in the same location in main memory. Such pages
are copied from the region of memory being removed to a region of
memory remaining. After the copy is complete, the PTW Is changed
to point to the new copy and all processors are forced to clear

7-2 AN71

their associative memories so that they wl1l refetch the PTW wlith
the new address and make all subsequent references to the copy.
If the page 1is modified while the copy is belng performed, all
processors are stopped (forced to loop, via a connect fault) and
the copy 1is made while no one can modify the data. The entire
mechanism to move a wired page Is Implemented 1In the program
evict_page.

Pages that are modified are simply wrltten out and evicted
when the 1/0 completes. This process continues until a page does
not get modified while the |/0 is going on in which case the
block of memory can be claimed.

Pages that are neither wired nor modified are evicted
immediately (the PTW is set to fault) unless 1/0 is in progress,
in which <case the |/0 is waited for and the block is claimed on
the next pass.

The program (pc_abs$remove_core) that does all thls work
loops through all blocks in the gliven controller untll a pass is
completed that leaves no blocks unclaimed.

The second major problem in removing main memory, that of
preventing other active modules from referencing the memory, is
solved before it even becomes a problem. This is via the
abs_wiring technique, which requires that anyv pages that are
referenceable via nonprocessor active modules (e.g., the [0M)
cannot reside in a deconfigurable system controller. |In order to
do this, certain controllers are set up as "abs_usable'" and hence
nondeconfigurable. For most conflgurations, the bootload memory
alone is abs_usable, but the system dynamically chooses other
controllers as necessary if there 1Is not enough abs_wireable
memory in the bootload controller.

Therefore any program that uses a page for [/0 (that is not
permanently wired) must call a special program to have the page
wired down. This program is pc_contig. See The Storage System,
Order No. AN61, for a complete description of this mechanism.
The dynamic deconfiguration software need not be concerned about
pages wired for 1/0 activity.

When a system controller is deleted from the system, a check
must be made to see’ if the system controller is used by a
processor as its process interrupt controller. If this 1is the
case, another controller must be found for the processor that in
turn may require the changing of the EIMA switch on the newly
selected controller if It is controlled by a CPU other than the
one losing its interrupt controller. A1l of these cases are
handled in the controller deletion software; the general case

7-3 AN71

will take several calls into the hardcore ring to: (1)
communicate with the operator via the typewriter, and (2) mask
and unmask as the EIMA switech 1Is changed. The varlable
scs$change_contr is analogous to the varlable scs$delete_cpu and
is sampled by the idle process (that is glven priority so It will
run) in its normal idle loop. |If the change_contr flag Is set,
the program init_processor will perform the necessary changes (in
the <correct PRDS) to reflect the change. It will also signal
when it is done by resetting the flag. The program
stop_cpu$switch_contr is used to Initiate this mechanlism.

UTOMATIC RY

To be supplied.

7-4 AN71

SECTION VI

BULK STORE RECONFIGURATION

The bulk store reconfiguration mechanisms dliffer from the
system controller mechanisms in that records of the bulk store
are reconfigured rather than the active module, the bulk store
controller, being reconfigured. However, the software is set up
so that iIf all records on a given bulk store are removed from
active use by the system, the controller can safely be
deconfigured for offline test or for use by another 1local system.
No switches need be changed during this reconfiguration

mechanism., (It 1is, of course, necessary that any parts of the
bulk store that are to be used by a system be configured to that
system =~ the bulk store reconfiguration software assumes that

| necessary configuration switches have been set and does not
remind the operator about these switches.)

During system Iinitialization (see stem lnitializ

Order No. AN70) the '"page" configuration card is read to
determine which bulk store records are to be initially used by
the system. The paging device map is read in; if it has not been
successfully cleaned up, the system is crashed. Otherwise, there
is no valid data on the bulk store and all records that are to be
used have the paging device map entries (PDME's) threaded into
the paging device wused 1list and marked as free. Until
reconfiguration time all of these records will remain in this
used list unless:

1. The record is removed for a moment as part of a
rethreading operation,

2. The record is removed because a read/write sequence is in
progress for the given page, or

3. The record is dynamically removed automatlcally because
of a fatal read request.

8-1 AN71

The paging device map (like the core map) can be searched
either by following the used list thread or by indexing into the
map with a given record number. The latter method is used for
bulk store reconfiguration under operator control,

The main supervisor program that controls bulk store record
reconfiguration is delete_pd_records. This program, callable
through the hphcs_ gate, has two entries as descrlibed below:

declare delete_pd_records entry (fixed bin, fixed bin,
fixed bin(35));

call delete_pd_records (first, count, code);
1. first is the record number of the first of count

contiguous records to be removed from active
use by the system. (lnput)

2. count is the number of records being deconfigured.
(lnput)
3. code indicates, if nonzero, that the input

parameters were inconsistent with the current
configuration. (Qutput)

declare delete_pd_records$add_pd_records entry (fixed bin,
fixed bin, fixed bin(35));

call delete_pd_records$add_pd_records (flrst, count, code);
1., - 3. are analogous to above.

A request to delete a record that is already deconflgured is
not considered fatal. In fact, it is convenlent to be able to
delete an entire core storage module (CSM) after several records
within it have been automatically deleted by page control. The
paging device map always resides on the first few records of the
paging device region that is potentially usable for a glven
bootload., It is again nonfatal to request that these records be
deleted. However, they will not be deleted, because the current
implementation does not provide for moving the paging devlice map
copied onto the paging device. |n particular, if the first CSM
is to be deleted (for offline work) the entire bulk store must be
disabled.

8-2 - AN71

LN R

To add a region of the bulk store to the current
configuration the operator must specify which regions of the bulk
store should be added. As mentioned earlier, all configuration
switches must have previously been set correctly before the bulk
store add request is given. This includes the various swltches
on the bulk store controller as well as all the port-enable
switches on all system controllers. (The normal operatlon is to
have the port-enable switches under program control.) Since the
bulk store controller is not the target of the operator requested
reconfiguration, the channel masks in the system controllers are
not changed even if the entire set of bulk store records are
deconfigured.

The actual mechanism to add bulk store records to the system
is quite similar to the main memory add mechanlism. It is
necessary that all of the paging device map that will ever be
needed for a bootload be allocated at system initiallzation time.
Those records of the bulk store that are not initially part of
the system do not have their PDME's threaded into the paging
device wused 1list. The "addpage'" request issued by the operator
merely threads the PDME's for records being added into the paging
device used list and updates the two system-wide variables in the
SST, pd_free and pd_using. The variable pd_free reflects the
number of records actively configured and which are free for use.
The variable pd_using Iindicates the number of records actively
configured, Both of the variables are updated by the internal
procedure '"set_pd_free_and_using" (under control of the global
paging lock) in the main bulk store reconfiguration program
delete_pd_records., Note that when pd_using reaches zero, i.e.,
there are no records actively being used, the automatic update of
the paging device map 1Is disabled making it possible to
physically deconfigure the bulk store controller.

The internal procedure "bulld_page_card" of
delete_pd_records updates the page configuration card (if
possible) to reflect the current bulk store configuratlion for
both adding and deleting bulk store records.

D Tl BULK STOR RDS

Deleting bulk $tore records is quite analogous to deleting
~main memory blocks. The entire mechanism is controlled by the
program delete_pd_records in the hardcore rlng. This program

8-3 AN71

first checks its parameters for consistency and then 1loops
through the specified region of the paging device map (indexing
by paging device record number), cleaning out pages as |t goes.
The entire process 1is under control of the global paging lock;
since the various control bits (such as the modified bit) of the
PDME are simulated and under control of the same lock these bits
will not change as long as the lock remains set.

‘There are five cases of interest. These are:
1. The record is not used.
2, The page for a given record is in main memory.

3. The page is not in main memory but has been modified
since last written to secondary storage.

4., The page is not in main memory and has not been modified.
5. A read/write sequence is in progress for the given page.

If the record is not used it is merely removed by threading
its PDME out of the paging device used list.

If the page is in main memory the core map entry is updated
to include the secondary storage device address rather than the
paging device address; if the modified bit Is ON In the PDME, the
modified bit is set ON in the corresponding PTW. This can cause
a slight anomaly in the value of date-time-modifled for the
segment owning the page.

If the page is not 1in main memory but has been modified
since last being written to secondary storage, a read/write
sequence Is Initiated for the page. In additlon, a flag is set
in the PDME so that when the read/write sequence completes the
paging device record will be marked as being deconfigured (i.e.,
the PDME will not be threaded into the paging device used 1list).
The flag used to indicate this is pdme.removing.

If the page is not in main memory and has not been modified,
the record 1is taken as if it weren't used unless the segment
containing the page is active. |In this case the device address
saved in the PTW 1is changed to the secondary storage device
address from the paging device address.

If a read/write sequence is in progress for a page the
pdme.removing flag is set ON so that the record will not be
threaded into the paging device used 1ist when the RWS
completes. Any pages that have RWS's in progress are remembered;

8-4 AN71

at the end of scanning all PDME's, the last RWS notlced is waited
for. The scan is then started again from the beginning until no
RWS's are seen in one pass.

When a record that was used is taken, the secondary storage
address for the record must be hashed out of the paging device
hash table.

AUTOMAT NG Vi RECORD REMOV

When page control encounters a fatal read error from the
paging device, the removal of that paging device record s
triggered automatically. This is done at page_fault$done time
and consists of hashing the PDME out, threading the PDME out of
the wused list and reporting the event on the operator's console.
This type of dynamic deconfiguration of paging device records is
not reflected in the page configuration card, because it is done

at a time when no page faults can be taken. A special flag,
pdme.not_on_disk_yet, is checked to determine if a copy of the
page has ever been written to secondary storage. If so, that
(probably slightly out of date) copy is preserved as the copy of
the page. If the page has never been written to secondary
storage since it was created, the block of main memory to contain
the page is zeroed, If the fatal read error occurs during a

read/write sequence, a similar action is taken with respect to
using a valid secondary storage copy only if it exists,

8-5 AN71

SECTION 1IX

THE COMMAND INTERFACE

The reconfiguration of main memory, processors and bulk
store is under operator control either from an "initializer"
terminal or from a normal logged-in (privileged) user. The
initializer commands are

addcpu
delcpu
addmem
delmem
addpage
delpage

and are described fully in the Multics Operator's Handbook, Order

No. AM81, The normal user commands are

reconfigure$addcpu
reconfigure$delcpu
reconfigure$addmem
reconfigure$delmenm
addpag
delpag

and, of course,
reconfigure$force_unlock

Note that there 1is no initializer command to unlock the
reconfiguration lock.

9-1 AN71

Cor ALONG LINE == =---=---- - --mccco oo oo s s s e e s s o s e s e R

HONEYWELL INFORMATION SYSTEMS
Publications Remarks Form*

ANT71, REV. 0

TITLE: MULTICS RECONFIGURATION ORDER No.:

‘| PROGRAM LOGIC MANUAL

DATED: JUNE 1974
ERRORS IN PUBLICATION:
SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:
{Please Print)
FROM: NAME DATE:
COMPANY
TITLE

*Your comments will be promptly investigated by appropriate technical personnel, action will be taken as
required, and you will receive a written reply. If you do not require a written reply, please check here.D

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

FIRST CLASS
PERMIT NO. 39531
WELLESLEY HILLS,
MASS. 02181

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS
60 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: PUBLICATIONS, MS 050

Honeywell

“RLINE == -------

A

lmmmceeee-e-cmaamcaacasnacesaanacacecnaannana-CUTALC"
FOLD ALONG’LINE

A
FOLD ALONG LINE

I T T T

-

The Other Computer Company:
Honeywell

HONEYWELL INFORMATION SYSTEMS

11487
2C874 in the U.S.A.: 200 Smith Street, MS 061, Waltham, Massachusetts 02154
Printed in U.S.A. In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario AN71, Rev. 0

	000
	001
	002
	003
	004
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	9-01
	9-02
	replyA
	replyB
	xBack

