
Honeywell

SERIES 60 (LEVEL 68)

SOFlWARE

RESTRICTED DISTRIBUTION

MUL TICS RECONFIGURA TION
PROGRAM LOGIC MANUAL

Honeywell MUL TICS RECONFIGURA TION
PROGRAM LOGIC MANUAL

SERIES 60 (LEVEL 68)

DATE:

RESTRICTED DISTRIBUTION

SUBJECT:

Dynamic Reconfiguration Software for the Major Hardware Modules
(Processor, System Controller, and Bulk Store).

SPECIAL INSTRUCTIONS:

This Program Logic Manual (PLM) describes certain internal
modules constituting the Multics System. It is intended. as a
reference for only those who are thoroughly familiar with the
implementation details of the Multics operating system;
interfaces described herein should not be used by application
programmers or subsystem writers; such programmers and writers
are concerned with the external interfaces only. The external
interfaces are descri bed .LLl the i"1ul ti cs Programmers' Manual,
Commands and Active Functions (Order No. AG92), Subroutines
(Order No. AG93), and Subsystem Writers' Guide (Order No. AK92).

As Multics evolves, Honeywell will add, delete, and modify module
descriptions in subsequent PLM updates. Honeywell does not
ensure that the internal functions and internal module interfaces
will remain compatible with previous versions.

This PLh is one of a set, which when complete, will supersede the
System Programmers I Supplement to the Multics Programmers' t-'lanual
(Order No. AK96).

THE INFORMATION CONTAINED IN THIS DOCUMENT IS ThE EXCLUSIVE
PROPERTY OF hONEYWELL INFORMATION SYSTEMS. DISTRIBUTION IS
LIMITED TO HONEYWELL EMPLOYEES AND CERTAIN USERS AUTHORIZED
TO RECEIVE COPIES. THIS DOCUMENT SHALL NOT BE REPRODUCED
OR ITS CONTENTS DISCLOSED TO OTHERS IN WHOLE OR IN PART.

April 1977

ORDER NUMBER:

AN71, Rev.

PREFACE

Multics Program Logic Manuals (PLMS) are intended for use by
Multics system maintenance personnel, development personnel, and
others who are thoroughly familiar with Multics internal system
operation. They are not intended for application programmers or
subsystem writers.

The PLMs contain descriptions of modules that serve as
internal interfaces and perform special system functions. These
documents do not describe external interfaces, which are used by
application and system programmers.

Since internal interfaces are added, deleted, and modified
as design improvements are introduced, Honeywell does not ensure
that the internal functions and internal module interfaces will
remain compatible with previous versions. To help maintain
accurate PLM documentation, Honeywell publishes a special status
bulletin containing a list of the PLMs currently available and
identifying updates to existing PLMs. This status bulletin is
distributed automatically to all holders of the System
Programmers' Supplement to the Nultics Programmers' Manual (Order
No. AK96) and to others on request. To get on the mailing list
for this status bulletin, write to:

Large Systems Sales Support
Multics Project Office
Honeywell Information Systems Inc.
Post Office box 6000 (MS A-85)
Phoenix, Arizona 85005

@ 1977, Honeywell Information Systems Inc. File No.: 2L13

AN71

Section I

Section II

Section III

CONTENTS

Introduction

Terminology
. system controller
memory controller .
memory
controller
processor
system controller port
active module port
port enable register
interrupt register
interrupt cell
interrupt mask
interrupt mechanism
boot load controller
system interrupt
bootload processor
BOS processor . . .
interrupt processor
processor tag . . .
internal interlace
external interlace
main memory frame .
main memory map . .
core map
main memory used list
used list
page
record
abs_usable
abs wired .
pagIng device map .
pdmap
read/write sequence
rws

Data Structures
Processor and System Controller

Reconfiguration Structures
Processor Reconfiguration
Structures

iii

Page

·1-1

2-1
2-2
2-2
2'-2
2-2
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-7
2-7
2-7
2-7
2-7

3-1

3-1

3-4

AN71

Section IV

Section V

Section VI

CONTENTS (cont)

System Controller Addressing
Segment

Main Memory and Paging Device
Maps

Data base Initialization
SCS Initialization
SCAS Initialization .
SS1 Initialization
Other Data Base Initialization

Hardcore Reconfiguration Entries
Reconfiguration Entries . .

hphcs_$add_cpu
hphcs_$del_cpu
hphcs_$add_mem
hphcs_$del_mem
hphcs_$add_main . .
hphcs_$del_main . .
hphcs_$reconfig_info
hphcs_$rc_force_unlock

Error Codes

Processor Reconfiguration
Idle Processes
Adding a Processor
Removing a Processor

Page

3-8

3-9

4-1
4-1
4-2
4-2
4-3

5-1
5-1
5-1
5-2
5-2
5-3
5-3
5-4
5-4
5-5
5.-5

6-1
6-1
6-2
6-4

Section VII Memory Reconfiguration 7-1
Adding Main Memory 7-1
Adding a System Controller 7-2
Removing a System Controller 7-2
Removing Main Memory 7-3
Automatic Memory Removal 7-4

Section VIII Bulk Store Reconfiguration 8-1
Bulk Store Initialization 8-1
Bulk Store Reconfiguration
Entries 8-2

hphcs_$del€te_pd_16cords 8-2
'hphcs_$add_pd_records . . . 8-2

Adding Bulk store Records . . . 8-~
Removing Bulk Store Records . . 8-4
Automatic Paging Device Record

Removal 8-5

Section IX The Command Interface 9-1

iv AN71

SECTION I

INTRODUCTION

This document describes the implementation and design of the
Multics dynamic reconfiguration software for the major hardware
modules of the system. This document is limited to processor,
system controller and bulk store memory reconfiguration although
there are many more hardware and software switchable modules in
the system.

Dynamic reconfiguring, on a per-module basis, is done only
in response to explicit operator request. The facility of the
system that automatically deconfigures selected subregions of
main memory or bulk store when hardware problems arise uses the
same basic mechanism as module deconfiguration where appropriate.
There is currently no way the system will automatically
deconfigure a faulty, processor. The software to automatically
deconfigure main memory is incomplete. The software to
automatically deconfigure a faulty record of the bulk store is
operational.

Two types of system controller can be used for Multics
operation: the 6000 system controller (MC6000) and the four
megaword system controller unit (SCU003). These system
controllers can be intermixed in any way in a Multics
configuration. They are hereafter referred to as the 6000 SC and
the 4Mw SCU, respectively. Basic differences between the 6000 SC
and the 4MW SeD are described in the next section.

1 - 1 AN71

SECTION rl

TERMINOLOGY

Terms and phrases frequently used in discussions of dynamic
reconfiguration are defined on the following pages in logical
order. They are listed below in alphabetical order for
convenience.

BOS processor
abs_usable
abs_wired
active module port
boot load controller
boot load processor
controller
core map
external interlace
internal interlace
interrupt cell
interrupt mask
interrupt mechanism
interrupt processor
interrupt register
main memory frame
main memory map
main memory used list
memory
memory controller
page
paging device map
pdmap
port enable register
processor
processor tag
read/write sequence
record
rws
system controller
system controller port
system interrupt
used list

2-1

2-4
2-6
2-7
2-2
2-4
2-4
2-2
2-6·
2-5
2-5
2-3
2-3
2-3
2-4
2-3
2-6
2-6
2-6
2-2
2-2
2-6
2-7
2-7
2-2
2-2
2-5
2-7
2-6
2-7
2-2
2-2
2-4
2-6

AN71

system controller
A passive hardware module that interfaces active
modules to the main memory of the configuration. The
system controller manages system interrupts, passes
connect signals from one active module to another,
contains the system calendar clock, and provides main
memory functions to its active users. A system
controller may be either an 6000 SC or a 4Mw seu.

memory controller

memory

controller

processor

See system controller above.

See system controller above.

See system controller above.

One of the' three types of active modules. (The other
two are the 10M and bulk store controller.) The
processor is the major processing unit (CPO).

system controller port
A point on a system controller for connection to an
active module. There are eight ports on a system
controller. Each system controller contains hardware
to enable or disable requests over each of its. ports.
Only active modules connected to enabled system
controller ports can interact with that system
controller.

active module port
A point on an active module for connection to a system
controller. Bach active module has eight ports
controlled by port logic. The port logic maps an
absolute address generated by an active module into a
port number and an address within the memory associated
with a system controller.

port enable register
An eight-bit mask register associated with each system
controller that contains one bit for each controller
port. If a bit is on, the active module on the
corresponding controller port can use the system
controller. If it is off, the active module will
receive a fault condition if it attempts to access the
system controller.

2-2 AN71

On a 6000 SC, port enable register bits can be forced
on or off by eight configuration panel switches. These
switches have three positions: ENABLE, DISABLE, and
PROG CONTROL. If a switch is in FROG CONTROL position,
the corresponding port enable register bit can be
turned on or off by system software. For normal
Multics operation, all eight switches are usually set
to the PROG CONTROL position.

The 4MW seu configuration panel contains eight·
two-position switches. These' switches are read into
the port enable register only when the system
controller is initialized. At all other times, port
enable register bits must be set by system software.

interrupt register
A 32-bit register associated with each system
controller. Active modules can instruct the system
controller t~ set any of these bits. When one or more
bits in the interrupt register are set, the system
controller will attempt to notify one or more active
modules that an execute interrupt is present (XIP).
This is described in more detail below.

interrupt cell
A single bit of the interrupt register.
cells are numbered from 0 to 31.

Interrupt

interrupt mask
Interrupt masks are used to allow
receipt of Xlf signals by processors.
mechanism.)

or prevent the
(See interrupt

Each 6000 SC contains four 32-bit interrupt mask
registers. Each 4Mw SCU contains only two. Each
interrupt mask register is assigned to a particular
controller port through the use of the execute
interrupt mask assignment (EIMA) switches. On the 4MW
SCU, the EIMA switches are read into internal mask
assignment registers when the system controller is
initialized. Interrupt mask register assignments can
be changed by system software. On the 6000 SC, no
software changes can be made to the mask assignments.

A processor can read or set an interrupt mask register­
assigned to its system controller port through the use
of the RMCM and SMCM instructions. Processors can also
read and·set interrupt mask registers assigned to other
ports through the use of the RSCR and SSCR
instructions. On the 6000 SC, a processor may change
other interrupt mask registers only if it has a mask
register assigned to its own controller port.

2-3 AN71

interrupt mechanism
When one or more bits are set in a system controller's
interrupt register, the controller examines all
interrupt mask registers for matching bits. (When a
bit is on in an interrupt mask register, the active
module to which the mask is assigned is said to have
the corresponding interrupt "unmasked".) The system
controller will send an XIP signal to all active
modules with unmasked interrupts set in the interrupt
register.

Active modules respond to the XIP signal by
interrogating the system controller about the
interrupt. The system controller will find the highest
priority (lowest cell number) unmasked interrupt set
and return the interrupt cell number to the requesting
active "module. The system controller will clear the
interrupt cell at that time. If more than one active
module responds to an XIP signal, only one will receive
information pertaining to a particular interrupt cell.
If a set interrupt is not unmasked by any active
module, the interrupt will be retained until so~e
active module unmasks that interrupt.

bootload controller
The system controller containing low-order main memory
in a system configuration. All interrupts ~ent by
active modules are sent via the interrupt register in
the bootloa~ controller. No other system controllers
convey interrupts to active modules. The boot load
system controller cannot be removed while the system is
running since it contains fault and interrupt vectors,
10M, bulk store, and DataNet 6600 FNP mailboxes, and
unpaged segments.

system interrupt
An interrupt required by the system in order to carry
out its orderly functions of communicating between I/O
devices and Multics processes. (In addition, there is
one interrupt which is sent by a processor to start up
a new processor.) All I/O interrupts are set in the
bootload system controller. I/O interrupts will be
sent to processors selected by the EIMA switches on the
bootload system controller.

bootload processor (or DOS processor)
The central processor used to initialize Multics and to
shutdown and return to BOS at the end of Multics
operation. It is also the processor used to enter BOS
after a system crash. The bootload processor may be
dynamically deconfigured, at which time another
processor will be made the new boatload processor.

2-4 AN71

interrupt processor
Processors that can receive interrupts (i.e. that have
assigned interrupt masks in the boot load system
controller). when a 6000 se is used as the bootload
controller, four interrupt masks are available; hence,
all four processors in such a Hultics configuration are
interrupt processors. When a ~Mw seu is the bootload
controller, only two processors can receive interrupts.
System software will reassign the interrupt mask
register of an interrupt processor which is being
dynamically removed to a processor which is not an
interrupt processor.

processor tag
A processor identification corresponding directly to
the processor number. Prooessors have two switches on
their configuration panels which allow the setting of a
two-bit processor number. This number can be read by
the RSW instruction. Each processor in a· Multics
configuration must have a different processor number.
The processor number corresponds to the processor tag
on the configuration card for that processor.

Processor
Number

00
01

i 10
11

Processor
Tag

A
B
C
D

A maximum of four processors can be configured to a
Hultics system.

internal interlace
A system controller feature which allows interleaving
of double-words between the low-order and high-order
store units connected to the controller. Except for
timing changes, internal interlace is invisible to all
active modules. Only system controllers with low-order
and high-order store units of the same size can be
internally interlaced.

external interlace
The port logic of each active module allows the main
memory of two system controllers on even/odd active
module port pairs to be interlaced. Interlacing may be
done at ·either two words at a time or four words at a
time. Only system controllers containing stores of the
same size can be externally interlaced. Four word
external interlace may be combined with internal
interlace to provide a four-way interlace mechanism.
Of necessity, all active modules must have their
interlace switches set in the same positions.

2-5 AN71

main memory frame
A contiguous region of main memory that is one page in
length and starts on a page boundary. All of main
memory is thus divided into fixed length regions the
size of a page. Some main memory frames contain pages
which are permanently wired. These frames can never
contain paged data. Other main memory frames contain
data or code which is "temp wired" (i . e. , is
temporarily forced to remain in main memory). A temp
wired main memory frame may later be freed up and
reused for some other page. The term "wired" applies
to anything which must remain in main memory for some
time for some reason. The terms "latched", "locked"
and "core resident" are also used in the literature for
what is here called wired.

main memory map (or core map)
An array of entries for all main memory frames that can
ever be configured into the system. The main memory
map is indexed by absolute main memory frame numbers.
A main memory map entry (often called a core map entry
or CME) describes which page, if any, is currently
occupying the associated main memory frame.

main memory used list (or used list)

page

record

abs_usable

A threaded list of main memory map entries for the main
memory frames in the paging pool.

A 1024-word extent of data beginning at a 1024-word
boundary of a segment. Pages belong to segments; they
can reside in main memory frames, secondary storage
records, or both.

A contiguous region of a secondary storage device that
begins on a page boundary and is one page long.
Satisfying a page fault, for example, consists in
moving the data of a page from a given record of
secondary storage to a given frame of main memory and
performing the necessary connections.

That attribute of a main memory frame which permits the
main memory to be used for 1/0. This concept is needed
by several hardcore 1/0 procedures since they must set
up Dew lists,which have absolute addresses in them.
The main memory frames of the bootload controller can
not be dynamically deconfigured (for several unrelated
reasons)" and therefore, all main memory frames of the
bootload controller which are part of the paging pool
are marked as abs_usable. In addition, main memory
frames of other system controllers will also be so
marked if there are not enough abs_usable frames in the
bootload controller.

2-6 AN71

abs_wired A frame of main memory that oontains a page that is
wired down because it may oontain locations that are
absolutely addressed. Such a page cannot be moved,
either to make room. for another abs_wired page or to
deconfigure the controller. Any controller that
contains one abs_wired page can not be dynamically
deconfigured until that page is no longer required to
be abs_wired.

paging device map (or pdmap)
A map, analogous to the main memory map, used as part
of the bulk store management algorithms. The paging
device map is ordered according to time of recent
reference and hence is the key to the bulk store
replacement algorithm.

read/write sequence (or rws)
The mechanism used to move a modified page from the
bulk store to secondary storage. This mechanism
consists of finding a frame of main memory, reading in
the page from the bulk store, and then writing the page
out to secondary storage,

2-1 AN71

SECTION III

DATA STRUCTURES

The several key data structures used by the reconfiguration
software are kept in the segments SCS and SST. These are
initialized as described in Section IV and modified as described
in Sections VI, VII and VIII.

PROCESSOR AND SYSTEM CONTROLLER RECONFIGURATION STRUCTURES

The following declarations
structures that are used both
controller reconfiguration:

of data
during

structures describe
processor and system

declare 1 scs$controller_data (0: 7) aligned ext,
2 size fixed bin(17) unaligned,
2 base fixed bin(17) unaligned,
2 eima_data (4) unaligned,

3 mask_available bit(1) unaligned,
3 mask_assisned bit(1) unaligned,
3 mbz bit(3) unaligned,
3 mask_assignment fixed bin(3) unaligned,

2 info aligned,
3 online bit(1) unaligned,
3 offline bit(1) unaligned,
3 store_a_online bit(1) unaligned,
3,store_a1_online bit(1) unaligned,
3 store_b_online bi t (1) unaligned"
3 store_b1_online bit(1) unaligned,
3 store_b_is_lower bit(1) unaligned,
3 ex.t_interlaoed bi t (1) unaligned,
3 int_interlaced bit(1) unaligned,
3 four_word bit(1) unaligned,
3 cyclic_priority (7) bit(1) unaligned,
3 type bit(4) unaligned,
3 abs_wired bit(1) unaligned,
3 program bit(1) unaligned,
3 pad bit(13) unaligned,

2 lower store size fixed bin(17) uanligned,
2 upper=store=size fixed bin(17) unaligned;

declare scs$reconfig_lock bit(36) aligned ext;

3-1 AN71

declare scs$reconfig_locker_id ohar(32) aligned ext;
declare scs$interrupt_controller fixed bin(3) ext;
declare scs$port_addressing_word (0: 7) bit(3) aligned ext;

The variables declared above have the following meanings:

1. controller_data
is an array, indexed by system controller tag,
containing information for each system controller.

2. controller_data. size

3.

4 .

5 •

is the size, in 1024-word frames, of the main memory
contained in each system controller.

controller data.base
is the base address, modulo 1024 words, of the main
memory contained in each system controller.

controller_data.eima_data
is an array containing
assignment (EIMA) switch
controller.

the execute interrupt mask
settings for each system

eima_data.mask available
is set to "1 lf b if the corresponding interrupt mask is
available on a system controller.

6. eima_data.mask_assigned
is set to "1"b if the corresponding interrupt mask is
assigned to a processor port.

7. eima_data.mask_assignment
is the system controller port to which the interrupt
mask is assigned.

8. controller_data.online

9 ·

1 O.

if equal to "1"b, indicates that the corresponding
system controller is online and in use.

controller data.offline
if equal to "1 lf b, ihdicates that the corresponding
system controller is offline, but could be dynamically
added at a later time.

controller_data.store_a_online
is equal to "1"b if store "A" of the corresponding
system controller is online and in use.

11. controller_data.store_a1_online
is equal to "1"b if store "A1" of the corresponding
system controller is online and in use.

3-2 AN71

12.

13.

15 •

16.

17 .

18 .

19 •

20.

21 •

22.

controller data.store b online
is equal to "1"b if store "B" of the corresponding
system controller is online and in use.

controller data.store b1 online
is equal to "1"b-if-store uB1" of the oorresponding
system controller is online and in use.

controller_data.store_b_is_lower
is equal to "1"b if store "B" (and store "B1", if
present) is the lower order store for a given system
controller.

controller data.ext interlaced
is set to "1"b if the corresponding system controller
is interlaced with a system controller on an adjacent
active module port.

controller data.int interlaced
is set to "1"b if the two stores of the corresponding
system controller are internally interlaced.

controller_data. four_word
is set to "1"b if two adjacent system controll~rs are
interlaced every four words. It is set to "O"b if they
are interlaced every two words. If
controller_data.ext_interlaced is equal to "O"b', this
bit is meaningless.

controller_data.cyclic_priority
is an array of bits giving the oyclic port priority
("anti-hogging") switch settings for each system
controller.

controller_data. type
is a code giving the type of system controller. If it
is greater than pr equal to "0010"b, the controller is
a 4MW seu. Otherwise, it is a 6000 SC.

controller_data.abs_wired
is set to "1"b if abs ·wired pages are contained in the
main memdry associated with the corresponding system
controller.

controller_data.program
is "1"b if the
programmable mode.

controller is a 4MW SCO and is in
Multics requires this bit to be on.

controller data.lower store size
is the size, in 1024-word frames, of the lower
two stores connected to the corresponding
controller.

3-3

of the
system

AN71

23. controller_data.upper_store_size
is the size, in 1024-word frames, of the upper
two stores connected to the corresponding
controller.

of the
system

24. reconfig_lock
is the lock used to prevent simultaneous attempts by
several processes to perform dynamic reconfiguration.

25. reconfig_locker_id
is the process group ID of the process which has set
the reconfig_lock.

26. interrupt_controller
is the tag of the bootload system controller. All
interrupts go through this system controller.

27. port_addressing_word
is an indirect word needed to access a given processor
port .(and thus a given system controller) by certain
processor instructions such as RMCM, SMCM, and RCCL.

PROCESSOR RECONFIGURATION STRUCTURES

The following
structures that

declarations of
are primarily

data structures describe
used during processor

reconfiguration:

declare 1 scs$processor_data (0: 3) ext aligned,
2 online bit(1) unaligned,
2 offline bit(1) unaligned,
2 pad1 bit(2) unaligned,
2 delete_cpu bit(1) unaligned,
2 interrupt_cpu bit(1) unaligned,
2 halted_cpu bit(1) unaligned,
2 pad2 bit(27) unaligned,
2 controller_port fixed bin(3) unaligned;

declare scs$processor_start_int_no fixed bin(S) ext;
declare scs$processor_start_pattern bit(36) aligned;
declare scs$processor_start_mask bit(72) aligned ext;
declare scs$set_mask (0: 3) bit(36) aligned ext;
declare scs$read_mask (0: 3) bit(36) aligned ext;
declare scs$mask_ptr (0: 3) ptr unaligned ext;
declare scs$nprocessors fixed bin ext;
declare scs$bos_processor_tag fixed bin(2) ext;
declare scs$processor bit(4) aligned ext;
declare scs$processor_switch_template (4) bit(36) aligned ext;
declare scs$processor_switch_compare (4) bit(36) aligned ext;
declare scs$processor_switch_mask (4) bit(36) aligned ext;

3-4 AN71

The variables declared above have the following meanings:

1. processor_data
is an array, indexed by processor tag, of information
for each possible processor that can be configured in a
Multics system.

2. processor_data.online
if equal to "1"b, indicates that the corresponding
processor is online and running.

3. processor_data.offline
if equal to "1"b, indicates that the corresponding
processor is offline, but could be dynamically added at
a later time.

4. processor_data.delete_cpu
is set to ."1"b by the processor reconfiguration
software when it is desired to dynamically remove the
corresponding processor.

5. processor_data.interrupt_cpu
is set to "1"b if the corresponding processor has an
interrupt mask assigned to it in the bootload system
controller.

6. processor_data.halted_cpu
is set to "1"b after the corresponding processor has
been successfully dynamically removed. This bit is
also set to "1"b for all processors at the beginning of
Nultics system initialization.

7. processor_data.controller_port

8.

is the system controller port to which the
corresponding processor is connect~d. Note that the
port number occupies bits 33 through 35 of the word
containing processor_data. This enables the entire
word to be used as a Connect Operand Word (COW) when
sending connects to a particular processor.

processor_start_int_no
is the iriterrupt cell number used to
processor that is being dynamically
interrupt cell number is assigned by
initialization software.

start
added.
the

up a
This

system

9. processor_start_pattern
is the hit pattern used to set the processor start
interrupt with a SMIC instruction.

10. processor_start_mask
is the system controller interrupt mask used to allow a
processor to take the processor start interrupt but to
mask all other interrupts.

3-5 AN71

11. set_mask
is an array of instructions used to set interrupt masks
for corresponding processors. If a processor has an
assigned mask, the corresponding element of set_mask
will contain an SMCM instruction. Otherwise, it will
contain an STAQ instruction into a software simulated
mask register.

12. read_mask
is an array of instructions used to read interrupt
masks for corresponding processors. If a processor has
an assigned mask, the corresponding element of
read_mask will contain an RMCM instruction. Otherwise,
it will contain an LDAQ instruction from a software
simulated mask register.

13. mask_ptr
is an array of packed pointers used to set and read
interrupt masks for corresponding processors. If a
processor has an assigned mask, the corresponding
element of mask_ptr will point to
scs$port_addressing_word for the boot load system
controller. Otherwise, it will point to the simulated
mask register located at prds$simulated_mask.

14. nprocessors
is the number of processors currently online and
running.

15. bos_processor_tag
is the processor tag of the processor that was the
bootload processor when Multics was bootloaded. If the
original bootload processor has been dynamically
removed, bos_processor_tag will be set to the tag of a
processor which will be used to return to BOS when
Multics is shut down.

16. processor
contains one bit for each processor. The bit
corresponding to a processor will be equal to "l"b if
that processor is online and running.

17. processor_switch_template
is an array containing temolate values for the
processor switches read by the RS~ through RSW 4
instructions. This array is used to verify the
configuration switch settings of a processor when
attempting to dynamically add that processor.

3-6 AN71

18. processor_switch_compare
is an array containing discrepancies between the
expected and actual data read by the RSW 1 through RSW
4 instructions.

19. processor_switch_mask
is an array containing masks for the processor switches
read by the RSW 1 through RSW 4 instructions. The
processor_switch_compare data is produced by exclusive
~Ring the processor_switch_template data with the
actual configuration switch settings and ANDing the
result with the processor_switch_mask data.

In addition to the structures described above, there are
several structures'contained in the procedure "init_processor"
which are set, examined, or used during processor
reconfiguration. Note _ that init_processor is an impure
procedure.

1 •

declare init_processor$wait_flag fixed bin(35) ext;
declare init_processor$new_dbr bit(72) aligned ext;
declare init_processor$first_tra bit(36) aligned ext;
declare init_processor$trouble_tra bit(36) aligned ext;
declare init_processor$startup_tra bit(36) aligned ext;
declare init_processor$lockup_tra bit(36) aligned ext;"
declare init_processor$onc_tra bit(36) aligned ext;
d~clare init_processor$controller_data (0:7) bit(1)

unaligned ext;

The variables declared above are used in the following ways:

wait_flag
is a cell that is
trouble is experienced
If the processor is
will contain zero.

used to contain an error code if
in starting up a new processor.
started successfully, wait_flag

2. new_dbr
is the descriptor segment base register value for a new
processor. It is filled in by reconfiguration software
before starting up a new processor. It is loaded by a
new processor just before that processor enters
appending mode.

3. first_tra
is an inhibited TRA instruction to be placed in the
interrupt vector entry for the processor start
interrupt. This instruction is executed when a new
processor takes a processor start interrupt.

3-7 AN71

4. trouble_tra
is an inhibited TRA instruction to be placed in the
fault vector for the trouble fault. This instruction
is executed if a new processor takes an unexpected
trouble fault.

5. startup_tra
is an inhibited TRA instruction to be placed in the
fault vector for the startup fault. This instruction
is executed if a new processor takes an unexpected
startup fault.

6. lockup_tra
is an inhibited TRA instruction to be placed in the
fault vector for the lockup fault. This instruction is
executed if a new processor takes an unexpected lockup
fault.

7. onc_tra
is an inhibited TRA instruction to be placed in the
fault vector for the op-not-complete fault.' This
instruction is executed if a new processor takes an
unexpected op-not-complete fault.

8. controller_data
is an array of bits, one for each active module port.
If a system controller is currently configured' and in
use, the bit corresponding to its active module port is
turned on. Otherwise, it is turned off. This array is
used by a new processor to test for the presence of
each configured system controller.

SYSTEM CONTROLLER ADDRESSING SEGMENT

The system controller addressing segment (SCAS) is a
specialized data base that is used to read and set certain
registers in system controllers and their associated store units.
The . SeAS is essentially a segment composed of a page in each
store unit of each configured system controller. It may be up to
32 pages in length. The actual content of the pages is not of
importance and in-general changes as pages are moved in and out
of the particular regions contained in the SCAS.

The SCAS is used to generate the correct final (absolute)
address needed by the RSCR and SSCR instructions. (These
instructions operate on the system controller or store unit that
contains the final absolute address generated by the address
preparation logic of the processor.)

3-8 AN71

Page 0 of the SeAS ia locateQ in the first main memory frama
of the lower store unit oonneoted to the system controller on
port 0 of active modules, page 1 is located in the system
controller on port 1; and so forth, pages 8 through 15 are
located in the first memory frame of the upper store units
connected to the system controllers on ports 0 through 7, Pages
16 through 24 of the SeAS are used to referenoe auxiliary lower
store units, if configured; pages 25 through 31 are used to
reference auxiliary upper store units. Note that there may be
Hholes ii in the SeAS due to certain system controllers or store
units not being configured.

MAIN MEMORY AND PAGING DEVIC~ MAPS

The main ~emory map consists of entries threaded into a
circular list. Entries that correspond to unused frames of main
memory are not threaded into the list. The paging device map is
analogous to the main memory map. Both are described in detail
in Storage System, Order No. AN61.

3-9 AN71

SECTIO~ IV

DATA BASE INITIALIZATlON

This section describes the initialization of the data bases
used by the recorifiguration software. Some of these data bases
will not be changed after the bootload, others will be changed
all the time, and still others will be changed only when
reconfiguration is explicitly requested. (System Initialization,
Order No. AN70, should be consulted for a much more thorough
discussion of system initialization than can be provided here.)

SCS INITIALIZATION

The system communication segment (SCS) described in
Section III is initialized primarily by the programs scs_init,
scs_and_clock_init, init_scu, scr_util, and scas_init.

The contents of scs$bos_processor_tag and
scs$interrupt_controller are set at the very beginning of system
initialization. At this time, the clock reading mechanism is
initialized. This mechanism consists of a pointer at
sys_info$clook_ pointing to sos$port_addressing_word
(scs$interrupt_controller). The high-order three bits of this
word contain the port number of the boot load system controller.
Clock initialization must be performed early in initialization
since the clock reading facility is needed by the Multics error
message facility.

Elements of cscontroller_data are filled in in stages as
various programs learn more about the configuration. The
processor switches are read to determine the base and Slze of
each system controller. An RSCR-CFG instruction is then issued
to the controller. This CFG data is read into the appropriate
element of scs$cfg_data and is interpreted and placed in the
appropriate members of the scs$controller_data structure.

The scs$processor_data structure is initialized to mark all
processors (including the BaS processor) as offline and halted.
The controller port number is filled in from the configuration
deck. The interrupt_cpu bit is set on if an interrupt mask on
the boot load system controller has been assigned to that
processor.

4-1 AN71

As scs$processor_data is initialized, the interrupt mask
pointers and masking instructions for each processor at
scs$mask_ptr, scs$set_mask, and scs$read_rnask are filled in. At
this time, system controller interrupt mask assignments are
checked to make sure that they are correct.

As the interrupt handling mechanism is initialized, an
unused interrupt cell is selected by the system initialization
software and assigned as the interrupt to be used for starting a
new processor. This interrupt cell number is saved in
scs$processor_start_int_no. A SMIC pattern to generate this
interrupt is placed in scs$processor_start_pattern, and an
interrupt mask setting to allow the interrupt is saved in
scs$processor_start_mask.

SCAS INITIALIZATION

The program "init-,scu" is called during initialization and
during system controller reconfiguration. It is responsible for
filling in the SCAS page table for a system controller. Based on
the processor switch settings, init_scu determines the base
address of the memory in a controller and sets a page of SCAS to
point to that address. init_scu then calls out to read
configuration information pertaining to the number and size of
the store units connected to the system controller. This data is
used by init_scu to set up to three additional pages at the base
of each additional store unit. These pages are needed to issue
RSCR instructions directed to a particular store unit rather than
to the system controller. This function is used primarily by
error analysis and logging programs.

SST INITIALIZATION

Before the paging mechanism can be enabled, the main memory
map in the SST must be initialized. Since the main memory map
cannot be grown, it is required that any system controllers that
will ever be configured to the system for a given boot load be
specified in the configuration deck and correctly assigned in the
configuration switches of the bootload processor. Main memory
frames in online system controllers are threaded into the used
list. Main memory frames for system controllers not yet placed
online are threaded into no list. when a system controller and
its main memory are dynamically added, the main memory frames for
that controller can then be threaded into the main memory used
list. The abs_usable bits for each maln memory frame in the
bootload system controller are turned on in the main memory map.
This action will prevent the removal of any main memory frames
contained in the bootload system controller.

The bulk store (paging device) map is also contained in the
SST. It is initialized as described on the "page" configuration
card.

4-2 AN71

OTHER DATA BASE INITIALIZATION

The initialization of the PRDS, done mainly by prds_init,
tc_data, tc_init and start_cpu, is straightforward and simple.
The primary interaction betw~en the traffic controller and
reconfiguration consists in the creation, running and deletion of
the idle processes.

4-3 AN11

SECTION V

HARDCORE RECONFIGURATION"ENTRIES

Processor, system controller, and main memory
reconfiguration is split into two main parts: a user ring
command interface and. hard core ring procedures. The user rlng
command interface, contained in the procedure reconfigure, is
responsible for validating reconfiguration command arguments,
passing them to the hard core ring procedures, and analyzing
returned error information.

The hardcore portion of processor, system controll~r, and
main memory reconfiguration is located in the procedure reconfig
and the many procedures calleq by it. reconfig is called through
the highly privileged hardcore gate "hphos_".

RECONFIGURATION ENTRI~S

Name:

Usage

1 •

2.

3·

This entry is called to add a processor to the system.

deolare hphcs_$add_cpu entry (fixed bin(3), (4) bit(36)
aligned, fixed bin(35»;

call hphcs_$add_cpu (tag, switches, code);

tag

switches

code

is the prooessor tag or processor number of
the processor to be added. (Input)

are the prooessor switches whioh are in error
if an attempt was made to add an improperly
configured processor. (Output)

is a reconfiguration error oode. The
following values are possible:
1 = no response from processor.
2 : processor configuration switches set

improperly.
3 = trouble fault attempting to start

processor,

5-1 AN71

Name:

Usa..g&

1 .

2 .

Name:

4 = startup fault attempting to start
processor.

5 = lockup fault attempting to start
processor.

6 = processor not in t-tlul tics mode.
7 = PTW associative memory and/or SDW

associative memory not enabled on
processor.

8 = some system controller could not be
accessed by processor. (Output)

This entry is called to remove a running processor.

declare hphcs~$del_cpu entry (fixed bin(3), fixed bin(35»;
call hphcs_$del_cpu entry (tag, code);

tag

code

is as described above. (Input)

is an error code. The following values are
possible:
1 = processor did not stop.
2 = only one remaining processor configured.

(Output)

This entry is called to add a system controller and it~
associated main memory. If the system controller to be added is
interlaced with a controller on an adjacent active module port,
both system controllers are added.

Usage

1 •

2.

3·

declare hphcs_$add_mem entry (fixed bin(3), bit(1) aligned,
fixed bin(3), fixed bin(35»;

call hphcs_$add_~em (tag, interlace, error_tag, code);

tag

interlace

error_tag

is the tag of the system controller to be
added. (Input)

is set to "1"b if the system controller to be
~rlrip.rl i~ intp.rl~~p.rl with ~ ~v~tp.m 0.nntrnllpr
-- -- - - - - -- - - - - - - - - - - - •• - - - - - - oJ - - - -.- - - - - - - - - - - -

on·an adjacent active module port. In this
case, both system controllers are added.
(Output)

is the tag of a processor which has the
system controller to be added incorrectly
configured. (Output)

5-2 AN71

4. code

Name:

is an error code, The following values are
possible;
1 = actual memory size is smallep than the

size found on the configuration card for
the system controller.

2 = two interrupt masks are assigned to one
processor on the system controller.

3 = no mask is assigned to a processor on the
system controller,

4 = a mask is assigned to a system oontroller
port whicp. is' pot oonneoted to a
prooessor.

5 = some active module has incorrect
configuration switch settings for the
system controller.

6 = some active module is not enabled by the
system controller.

7·- 4Mw seu is not in PROGRAM mode. (Output)

This entry is called to remove a system controller and its
associated main memory. If the system controller to be .removed
is interlaced with a controller on an adjacent active module
port, both system controllers are removed.

Usage

1 .

2.

3 ·

Name:

declare hphcs_$del_mem entry (fixed bin(3), bit(1) aligned,
fixed bin(35));

call hphcs_$del_mem (tag, interlace, cOde);

tag is as described above. (Input)

interlace is as described above. (Input)

code is an error code wnich can take on the
following value:
1 = system controller contains abs wired

pages in its memory and cannot be
removed. (Output)

The entry is called to add a region of main memory for use
by Multics pages.

Usage

1 .

declare hphcs_$add_main entry (fixed bin(18), fixed bin(18),
fixed bin(35));

call hphcs_$add_main (first_frame, n_frames, code);

is the number of the first 1024-word main
memory frame to be added. (Input)

5-3 AN71

2 .

3 .

Name:

code

is the number of main memory frames to be
added. (Input)

is an error code. (Output)

This entry is called to remove a region of main memory from
use by Multics pages.

Usage

1 •

2.

3 .

Name:

declare hphcs_$del_main entry (fixed bin(lb), fixed bin(18),
fixed bin(35»;

call hphcs_$del_main (first_frame, n_frames, code);

first frame

code

is as descri bed above. (Input)

is as described above. (Input)

is an error code. The following values are
possible:
1 = not enough main memory would be left if

this request were honored.
2 = region to be removed contains abs wired

pages. (Output)

This entry returns the information found in
scs$controller_data and scs$processor_data. It locks the
reconfiguration data base and leaves it locked. If the data base
was previously locked, it returns the process group ID of the
process which set the lock.

Usage

1 •

2.

declare hphcs_$reconfig_info entry (ptr, fixed bin(35»;
declare 1 rci based (rci_ptr) aligned,

2 locker_group_id char (32),
2 controller data (0: 7) like scs$controller_data,
2 processor_data (0: 7) like scs$processor_data;

call hphcs_$reconfig_info (rci_ptr, code);

code

is a pointer to the reconfiguration info
structure described above. (Input)

is an error code. (Output)

5-4 AN71

Name:

This entry is called only ·when the reconfiguration lock has
been left locked by a system error or by a call to
hphcs_$reconfig_info. It forcibly clears the reconfiguration
lock.

Usage
declare hphcs_irc_force_unlock entry;
call hphcs_$rc_force_unlocki

ERROR CODES

There are several general error codes which may be returned
by any of the reconfiguration entries. These are summarized
below:

11 = reconfiguration data base is locked.

12 = device to be added is already online.

13- = device to be added is not in the system
configuration.

14 = device to be removed is not online.

15 = requested region of memory is not in the
Multics configuration.

5-5 AN71

SECTION VI

PROCESSOR RECONFIGURATION

This section describes the workings of the processor-adding
and processor-deleting functions. Before this can be fully
described, however, the mechanism of idle processes must be
briefly explained.

IDLE PROCESSES

There is one idle process for each processor on the system.
In general, the idle process for a processor is run whenever that
processor cannot find another process to run, either because no
other process wants service or because all processes that want
service are either running on other processors or are waiting for
some system event such as a page fault to be satisfied. A
processor will never run another processor's idle process.

An idle process is a limited Multics process. It has its
own descriptor segment, its own APT entry, but no process stack.
The idle process for a processor must be created before that
processor is added to the system. (This is not quite true for
the boot load CPU which must somehow be bootstrapped into the
normal state. See System Initialization, Order No. AN70, for a
complete description of this bootstrap mechanism.) Similarly,
each processor on the system must have a processor data segment
(prds) before it can be run.

An APT entry for each configurable processor (i.e. each
processor found in the configuration deck) is reserved during
system initialization. When a processor is in use, its idle
process APT entry is threaded into a list of idle APT entries.
The idle process descriptor segments are apportioned from the
single unpaged segment "idle_dsegs" during system initialization.
The process data. segments (pds) are apportioned from
"idle_pdses" in a similar manner. A processor data segment
(prds) is created when a processor is added and destroyed when a
processor is removed.

6-1 AN7l

ADDING A PROCESSOR

The program start_cpu is called to add a processor to the
system. start_cpu is responsible for creating and initializing
the idle process for a processor, managing the assignment of
system controller interrupt masks, and starting up a processor.
First, start_cpu creates the prds for the processor to be added
and fills in certain variables in the idle process APT entry.
The AFT entry is threaded into the idle list at this time, but it
is set to a state that will prevent attempts to use the
processor.

First, start_cpu ensures that the processor to be started
has an interrupt mask assigned to it. If the 'bootload system
controller is a 6000 SC, one interrupt mask must have been
assigned to each configurable processor before the system was
booted. If the bootload system controller is a 4M~ SCD (which
has only two interrupt masks) and there are more than two
processors in the configuration, the new processor may not have
an interrupt mask assigned to it. In this case, another
processor must be "persuaded" to give up its interrupt mask and
assign it to the new processor. (An SSCR-CFG instruction is
issued to the bootload system controller to effect this change.)
The mask is cleared and the system controller port to the
processor is enabled.

Now, the new processor is capable of being interrupted and
can be started up. The contents of init_processor$new_dbr are
set to the descriptor segment base register value for the new
processor's idle process descriptor segment. The contents of
init_processor$wait_flag are set to a value which indicates that
the processor to be started has not yet responded to its
interrupt. The interrupt vector is patched to direct the
processor start interrupt to init_processor$first_steps, and the
processor start interrupt cell is set via a SMIC instruction.
The interrupt mask for the new processor is set to allow only the
processor start interrupt. The new processor should immediately
respond to that interrupt. (Note that a connect fault could be
usea to start a new processor, but it is not used for many
reasons. One of these is that the interrupt vector location
cannot be moved by changing processor switches.)

After setting the interrupt cell, start_cpu loops for
several milliseconds until init_processor$wait_flag changes. If
the new processor started up successfully, the value of wait_flag
will be zero. If it failed to respond to the interrupt,
start_cpu will time out with the no response error code already
in init_processor$wait_flag. If another error condition was
detected, wait_flag will contain an error code indicating why the
processor could not be added. This error code is returned to the
caller of start_cpu.

6-2 AN71

The program init_processor (see System Initialization, Order
No. AN70) is invoked to start the idle processes of all
processors on the system, including the bootload processor during
system initialization. This program consists of two distinct
sections: the initialization code to start a processor and the
idle process loop for all processors. The initialization code,
in turn, consists of two parts. The first part is entered when
the processor start interrupt is received. It runs in absolute
mode and checks that all processor switches are set correctly.
If the first part of processor initialization is successfully
completed, the processor's DBR is loaded and an indirect transfer
is executed to place the processor in appending mode and enter
the second part of processor initialization.

The second part of the initialization code further fills in
the idle process APT entry so that the processor can now be
assigned to do useful work. It then issues a connect to itself
to preempt the idle' process and look for useful work for the
processor. The wait_flag is cleared, indicating to start_cpu
that the processor was successfully started. (The second part of
processor initialization is called directly by start_cpu when
initializing the idle process of the boot load processor.)

The idle loop is essentially an
with a transfer back to the DIS. A
always be at the DIS instruction.
processor, the idle process will
connect to the processor.

uninhibited DIS instruction
processor which is idle will

If work exists for the
be preempted by sending a

Many mechanisms are included in start_cpu and init_processor
to allow recovery from operator and hardware errors when
attempting to add a processor. Unexpected startup faults,
trouble faults, and lockup faults (which sometimes occur for
unexplained reasons when adding a processor) are directed to a
special place in init_processor during the time that a processor
is being added. when init_processor catches such an unexpected
fault, it sets a special error code in wait_flag. An SCU
instruction is not placed in the fault vector for these faults
since a processor may experience difficulties in executing an SCU
at this time.

All processor configuration switches are checked for
correctness by init_processor. If one or more switches are
incorrect, an appropriate error code is set, and information
indicating which switches are in error is returned by start_cpu.
If the processor is inadvertently left in GCOS or ABS mode t

init_processor will detect the error and an appropriate error
code will be returned. If the processor is left in STEP, it will
not respond to the processor start interrupt. After several
milliseconds, start_cpu will time out and return the no response
error code initially placed in init_processor$wait_flag. The
init_processor program also checks to make sure that the new
processor can access each configured system controller. It does
this by issuing a Read Calendar Clock (RCeL) instruction to each
configured controller. If, for some reason, a controller cannot

6-3 AN71

be accessed, init_processor intercepts the resultant
op-not-complete fault and returns an appropriate error code. The
PTW and the SDw associative memories must both be enabled in a
processor to be added; init_processor checks to make sure that
this is so.

One error condition especially difficult to detect is the
incorrect setting of the memory assignment switches on a
processor. Such an error may cause the processor to believe that
its fault and interrupt vectors are located in a system
controller other than the bootload system controller. Recovery
from such an error is accomplished by replacing the contents of
the first two memory frames of each system controller with a
special fault and interrupt vector image contained in the program
fv_iv_template. Upon intercepting any fault or interrupt,
fv_iv_template wil,l direct the processor to read its switches and
store them in a reserved place. It will then stop the processor
at an inhibited DIS. If start_cpu times out, it will search the
reserved place in each copy of fv_iv_template to see if processor
switch data has been stored there. If data has been stored,
start_cpu will return the error code indicating that a
configuration switch error has occurred along with data
indicating which switches are in error.

NOTE: If more than one system controller is
incorrectly assigned as the boot load system
controller on the configuration panel of -a
processor to be added, the recovery method
described above will probably fail. This is one
of the few error conditions that cannot be
handled by the reconfiguration software.

Since no operator intervention or interaction is normally
required to add a processor to the system, it is possible to
bootload a system with several processors in the configuration.
Additional processors will automatically be started at the
completion of system initialization.

REMOVING A PROCESSOR

The program stop_cpu is called to remove a processor from
the system. It first checks to see if the processor being
removed is the BOS (or bootload) processor. If it is, a new BOS
processor is assigned. If the boot load system controller is a
4MW seu, the process6r relinquishes its interrupt mask. If any
other processors are currently running without an assigned
interrupt mask, the freed interrupt mask is given to one such
processor. Now the processor is ready to be stopped. The
delete_cpu bit in scs$processor_data for the processor is set and
a preempt connect is sent to the processor.

6-4 AN71

when the dying processor receives the preemption, it enters
special code in the traffic controller. The idle process APT
entry is updated in order to prevent further use of the
processor. The halted_cpu bit is turned on in scs$processor_data
for the processor, and the processor is stopped at an inhibited
DIS instruction.

when stop_cpu detects the halted_cpu bit, it proceeds with
destroying the processor's prds and removing its idle APT entry
frore the thread of idle APT entries.

During system shutdown, stop_cpu is called automatically to
remove all processors other than the BOS processor. It is
therefore not necessary to manually remove processors before'
shutting down Hultics.

6-5 AN71

SECTlON VII

MEMO~Y RECONFIGURATION

This section describes the mechanisms used to dynamically
reconfigure main memory (core or MOS memory). Two subsections
describe system controller reconfiguration and another two
describe main memory frame reconfiguration within a controller.

ADDING MAIN MEMOBY

At system initialization time, the data bases
scs$controller_data and the main memory map in the SST are
initialized. These are initialized from the configuration deck
(and active register values); since the main memory map cannot
easily be grown, it is required that any system controllers that
will ever be configured to the system for a given boatload must
be specified in the configuration deck. This is done by using an
ON or OFF field of the MEM configuration cards~ All system
controllers actually configured and to be used at boot load time
are indicated as being ON. Other system controllers are OFF.

When the main memory map is initially set up, only map
entries for main memory frames which are in configured system
controllers are threaded into the used list. Map entries for
main memory frames in system controllers that are not yet
configured are left alone and threaded into no list. To add a
main memory frame to the system, all that need be done is to
thread the map entry for the frame into the main memory used
list. This is exactly what is done after an addmain request is
given.

A frame of main memory is added by calling fr-eecore, a
primitive in Multics'page control. Before threading the map
entry for a frame into the used list, freecore touches all words
in the frame. It then notes if any parity errors occurred. A
main memory frame containing one or more words with parity errors
will not be added to the used list.

7-1 AN71

ADDING A SYSTEM CONTROLLER

To add a system controller to the system, reconfig checks
consistency of all arguments and calls add_scu to actually add
the system controller. The program add_scu fills in the PTW for
the page of the SCAS used to reference the system controller. It
then forces the executing process to run on all processors and
attempt to reference the system controller. If the controller is
not properly configured at a processor configuration panel, or if
a processor is not enabled at the system controller, a fault will
occur. Any fault will be caught by add_sou and reflected back to
the caller as an error. Note that no mechanism currently exists
to check the configuration switches on the 10M and the bulk
store.

If the system controller can be successfully accessed by all
processors, add_scu returns to reconfig which can then make calls
to freecore to thread the main memory map entries for ea9h main
memory frame in the controller into the used list. If an attempt
is made to add a system controller which is interlaced with a
another controller on an adjacent active module port, both
controllers will be added automatically. Two calls are made to
add_scu before the main memory shared by the two controllers is
added.

REMOVING A SYSTEM CONTROLLER

Two major problems are involved in removing a system
controller from the system. First, a mechanism must be provided
to remove all references to any pages in the system controller by
processors. This mechanism is described in the following
subsection.

The second major problem in removing main memory, that of
preventing other active modules from referencing the memory is
solved before it even becomes a problem. This is accomplished
via the abs_wiring technique, which requires that any pages which
are referenceable via nonprocessor active modules (e.g., the 10M)
cannot reside in a deconfigurable system controller. In order to
do this, certain system controllers are set up as nabs_usable"
and hence nondeconfigurable. For most configurations, the
boot load system controller alone is abs_usable, but the system
dynamically chooses other controllers as necessary if there is
not enough abs_wireable memory in the boot load system controller.

Therefore, any program that uses a page for 1/0 (that is not
permanently wired) must call a special program to have the page
wired down. This program is "pc_contig". (See Storage System,
Order No. AN61, for a complete description of this mechanism.)
Thus, the dynamic reconfiguration software need not be concerned
about pages wired for 1/0 activity.

7-2 AN71

REMOVING MAIN MEMORY

The problem in removing main memory mentioned above, that of
preventing processors from referencing the memory, is not hard to
solve since all processor references to the memory are made
indirectly through PTWs over which the system software has
control. (It is not possible to remove memory which contains
permanently wired code or data.) It is thus necessary only to
remove access in PTws or to copy pages into main memory which is
not being removed. This in fact is just what is done. There are
three cases to consider:

1. Main ffiemory frames that contain wired pages.

2. Main memory frames that contain pages that are not wired"
but are modified.

3. Other main memory frames.

Pages which are temp-wired must remain in main memory but
need not remain in the same frame of main memory. Such pages are
copied from the region of memory being removed to a region of
memory remalnlng. After the copy is complete, the PTW is changed
to point to the new copy, and all processors are forced to clear
their associative memories so that they will refetch the PTW with
the new address (making all subsequent references to the new
copy). If the page is modified while the copy is being
performed, all processors are stopped (forced to loop lock via a
connect fault), and the copy is made while no other processor can
modify the data. The entire mechanism to move a wired page is
implemented in the subroutine evict_page.

Pages that are modified are simply written out to secondary
storage and evicted when the I/O completes. This process
continues until a page does not get modified while the I/O is
going on, in which case the frame of memory can be claimed.

Pages that are neither wired nor modified are evicted
immediately (the PTW is set to fault) unless is I/O is in
progress, in which case the I/O is waited for and the page is
evicted on the next pass.

The program responsible for performing all this work is
pc_abs$remove_core. It loops through all frames to be removed
until a pass is completed that leaves no frames unclaimed. Note
that a request to remove a frame that is already removed is not
considered to be an error. Such a condition might well occur
when an operator makes a request to remove an entire controller
after having removed several main memory frames in that
controller.

7-3 AN71

AUTOMATIC MEMORY REMOVAL

(To be supplied.)

7-4 AN71

SECTION VIII

BULK STORE RECONFIGURATION

The bulk store reconfiguration mechanism provides a means
for the dynamic removal· and addition of selected records of the
bulk store (paging device). The software is set up so that if
all records on a gi ven' bulk store are removed from acti ve use by
the system, the controller can safely be deconfigured for offline
test or for use by another local system. No switches need be
changed during this reconfiguration mechanism. (It is, of
course, necessary that any parts of the bulk store which are to
be used by a system be configured to that system; the bulk store
reconfiguration software assumes that necessary configuration
switches have been set.)

BULK STORE INITIALIZATION

During system initialization, the I'page" configuration card is
read to determine which paging device records are initially to be
used by the system. The label of the root physical volume (RPV)
is inspected by system initialization to see if the system had
previously crashed without successfully flushing the contents of
the paging device. If this is the case, the system is said to
have an unflushed paging device, and use of the paging device by
the system (other than by the physical volume salvager) is
inhibited until all relevant records have been flushed. Refer to
System Initialization, Order No. AN70 and Storage System, Order
No. AN61 for greater detail on this operation.

If the previous bootload had shut down or flushed the paging
device successfully, the pages specified on the "page"
configuration card are threaded into the paging device used list
and marked as free; All of these records-will remain in this
used list until reconfiguration time, unless removed for any of
the reasons listed below: . -

1. The record is momentarily removed as
rethreading operation.

part of a

2. The record is removed because a read/write sequence is in
progress for the given page.

8-1 AN71

3. The record is automatically removed because of a fatal
I/u error.

The paging device map (like the main memory map) can be
searched either by following the used list thread or by indexing
into the map with a given record number. The latter method is
used for bulk store reconfiguration under operator control.

BULK STORE RECONFIGURATION ENTRIES

The main supervisor program that controls bulk store record
reconfiguration is delete_pd_records. This program, callable
through the hphcs_ gate, has two entries related to bulk store
reconfiguration.

Name:

Usage
declare hphcs_$delete_pd_records entry (fixed bin, fixed

bin, fixed bin(35»;
call hphcs_$delete_pd_records (first, count, code);

1 . first is the record number of the first of count
contiguous records to be removed from active
use by the system. (Input)

2. count

3. code

Name:

Usage

is the number of records being deconfigured~
(Input)

indicates, if nonzero, that the input
parameters were inconsistent with the current
configuration. (Output)

declare hphcs_$add_pd_records entry (fixed bin, fixed bin,
fixed bin(35»;

call hphcs_$add~pd_records (first, count, code);

1. - 3. are analogous to above.

A request to delete a record that is already deconfigured is
not considered fatal. In fact, it is convenient to be able to
delete an entire core storage module (CSM) after several records
within it have been automatically deleted by page control. The
paging device map always resides on the first few records of the
paging device region which is potentially usable for a given

8-2 AN71

bootload. It is again nonfatal to request that these records be
deleted. However, they will not be deleted because the current
implementation does not provide for moving the paging device map
copied onto the paging device. In particular, if the first CSM
is to be deleted (for offline work) the entire bulk store must be
disabled.

ADDING BULK STOR1 RECORDS

To add a region of the bulk store to the current
configuration, the operator must specify which regions of the
bulk store should be added. As mentioned earlier, all
configuration switches must have previously been set correctly'
before the bulk store add request is given; this includes the
various switches on the bulk store controller as well as all the
port enable switches on all system controllers. (Recall that
normal operation is. to have the port enable switches under
program control.) Since the bulk store controller is not the
target of the operator requested reconfiguration, the port enable
registers in the system controllers are not changed even if the
entire set of bulk store records are deconfigured.

The actual mechanism to add bulk store records to th~ system
is quite similar to the main memory addition mechanism. It is
necessary that all of the paging dev~ce map that ~ill ever be
needed for a bootload be allocated at system initialization time.
Those records of the bulk store that are not initially part of
the system do not have their PDMEs threaded into the paging
device used list. The "addpage" request issued by the operator
merely threads the PDMEs for records being added into the paging
device used list and updates the two system-wide variables in the
SST, pd_free and pd_using. The variable pd_free reflects the
number of records actively configured and free for use. The
variable pd_using indicates the number of records actively
configured. Both of the variables are updated by the internal
procedure set_pd_free_and_using (under control of the global
paging lock) in the main bulk store reconfiguration program
delete_pd_records. Note that when pd_using reaches zero, (i.e.,
there are no records actively being used), the automatic update
of the paging device map is disabled, making it possible to
phYSically deconfigure the bulk store controller. The variable
pd_using also controls whether or not page control will attempt
to allocate pages on the bulk store.

The internal procedure build_page_card of delete_pd_records
updates the page configuration card (if possible) to reflect the
current bulk store configuration for both adding and deleting
bulk store records.

B-3 AN71

REMOVING BULK STORE RECORDS

Removing bulk store records is analogous to removing main
memory frames. The entire mechanism is controlled by the program
delete_pd_records in the hardcore ring. This program first
checks its parameters for consistency and then loops through the
specified region of the paging device map (indexing by paging
device record number), cleaning out pages as it goes. The entire
process is under control of the global paging lock; since the
various control bits (such as the modified bit) of the PDME are
simulated and under control of the same loqk, these bits will not
change as long as the lock remains set.

There are five cases of interest. These are:

1. The record is not used.

2. The page for a given record is in main memory.

3. The page is not in main memory but has been modified
since last written to secondary storage.

4. The page is not in main memory and has not been modified.

5. A read/write sequence is in progress for the given page.

If the record is not used, it is merely removed by threading
its PDME out of the paging device used list.

If the page is in main memory, the core map entry is updated
to include the secondary storage device address rather than the
paging device address; if the modified bit is in the PDME, the
modified bit is set ON in the corresponding PTW. This can cause
a slight anomaly in the value of date-time-modified for the
segment owning the page.

If the page is not in main memory but has been modified
since last being written to secondary storage, a read/write
sequence is initiated for the page. In addition, a flag is set
in the PDME so that when the read/write sequence completes, the
paging device record will be marked as being deconfigured (i.e.
the PDME will not be threaded into the paging device used list).
The flag used to indicate this is pdme.removing.

If the page is not
modified, the secondary
the paging device address

in main memory, and has not been
storage address from the PDME replaces

in the PTW.

8-4 AN71

If a read/write sequence is in progress for a page, the
pdme.removing flag is set ON so that the record will not be
threaded into the paging device used list when the RWS
completes. Any pages that have RwS's in progress are remembered;
when all PDMEs have been scanned, the last RwS noticed is waited
for. The scan is then started again from the beginning until a
pass is completed where no RwS's are seen.

AUTOMATIC PAGING DEVICE RECORD REMOVAL

when page control encounters a fatal I/O error from the
paging device, the deconfiguration of that paging device record
occurs automatically. This action, performed at page control
"done" time, consists of typing out a message on the operator's
console and placing the paging device map entry in the
deconfigured state. This type of dynamic deconfiguration is not
reflected on the page configuration card until the next explicit
paging device reconfiguration is performed by the operator.

If the error occurred on a normal page write, the concerned
page of the affected segment is emigrated from the paging device
by placing the secondary storage address from the PDME into the
relevant main memory map entry (CME). On a page read error from
the paging device, the secondary storage address from the CME
replaces that in the associated PTW. In either case, the
migration of the page to the paging device is undone.' In the
case of a read error, the standard address management policy
causes the old copy of the data on secondary storage to replace
the bad paging device copy, if it had ever been written to
secondary storage. If it had never been so written, the data is
replaced with zeroes.

On a read/write sequence error (reading from the paging
device), again the paging device record is deconfigured
automatically. The live/nulled status of the associated
secondary, storage address in the PDME is inspected to see if the
data on secondary storage indeed belongs to this segment. If the
address is nulled (data has never been written to secondary
storage), a special null address replaces the secondary storage
address in the PDME. This causes a page of zeroes to replace the
contents of the page at any future page fault time, and a new
secondary storage address to be assigned.

6-5 AN71

SECTION IX

THE COMMAND INTERFACE

The reconfiguration of main memory, processors, and bulk
store is under operator control either from an "initializerH
terminal or from a privileged logged-in user. The initializer
commands are as follows:

aadcpu
delcpu
addmem
delmem
addmain
delmain
add page
delpage

These are described fully in the Multics Operator's Handbook,
Order No. AM81.

The normal user commands are as follows:

add cpu
delcpu
addmem
delmem
addmain
delmain
addpag
delpag.

The following special command is also provided:

reconfigure$force_unlock

Note that tbere is no initializer command to unlock the
reconfiguration lock.

9-1 AN71

i HONEYWELL INFORMATION SYSTEMS
I Technical Publications Remarks Form

I
t,','

UJ
z
::::i
o
z
o
....J
<!
t­
:J
U

"v-
I
I
I
I
I
I
I
I
I
I
t
r
1
I

~
f
I
I
I
I
I
I
I
I
I

.,1

"I'
I
I
I
I
I
I

TITLE
SERIES 60 (LEVEL 68)
MULTICS RECONFIGURATION
PROGRAM LOGIC MANUAL

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER No·1 AN71, REV. 1

DATED f APRIL 1977

r\. Your comments will be promptly investigated by appropriate technical personnel and action will be taken D Ly' as required. If you require a written reply, check here and furnish complete mailing address below.

FROM: NAME __ ____ DATE ______________ __

TITlE __ __

COMPANV ______________________________________ __

ADDRE~ ______________________________________ __

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I
I
I
I

t
w
Z
.-J

l:J
Z
o
.-J
«
f­
:J
u

I
I
l
I
I w
L z
I ~
I ~

--- i-~

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United Stites

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

I 0

I a
I u.

J
I
I
I
I
I
I
I

-(
I
I
I
I
I
I
I
I
I w
I z
I~
I z

--~------------------------ ~g

Honeywell

I «
I g
I.~,
I'
I
i-
I
I
J
I
I
I
I
I
I

(

Honeywell
HoneyweU information Systems

In the U.S.A.: 200 Smith Street, MS 486, Wanham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East. WillOwdale, Ontario M2J 1W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

18106, 3C577. Printed in U.S.A. AN71, Rev. 1

	000
	001
	002
	003
	004
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-01
	4-02
	4-03
	5-01
	5-02
	5-03
	5-04
	5-05
	6-01
	6-02
	6-03
	6-04
	6-05
	7-01
	7-02
	7-03
	7-04
	8-01
	8-02
	8-03
	8-04
	8-05
	9-01
	replyA
	replyB
	xBack

