
Honeywell

SERIES 60 (LEVEL 68)

SOFTWARE

MUL TICS DFAST SUBSYSTEM
USERS' GUIDE

Honeywell

SERIES 60 (lEVEL 68)

SUBJECT:

MUL TICS DFAST SUBSYSTEM
USERS' GUIDE

Description of the General Characteristics of the Multics DFAST Subsystem
and the Multics DFAST Command Language

SOFTWARE SUPPORTED:

Multics Software Release 3.1

DATE:

March 1916

ORDER NUMBER:

AT59, Rev. 0

PREFACE

This document describes DFAST, a time-sharing facility supporting BASIC and
FORTRAN program development. DFAST operates as a subsystem under Multics. Its
command language and repertoire are based on the Dartmouth Time-Sharing System
(DTSS) with additions for compatibility with the Multics storage system, access
control features, and input/output facilities.

The manual presupposes no knowledge of the Multics system. BASIC
programmers using DFAST are referred to the Multics BASIC manual (Order
No. AM82) and to Appendix C of this document. which outlines differences
implemented for DFAST BASIC. FORTRAN programmers are referred to the Multics
DFAST/FAST FORTRAN Reference Manual (Order No. AT58.)

~ 1976, Honeywell Information Systems Inc. File No.: 1L13

AT59

Section I

Section II

Section III

Section IV

CONTENTS

Introduction
DFAST Features
Using DFAST . .

Logging In
Typing Conventions
Quit Signal .•.•
Case Conventions ...•
Logging Out • •
Error Handling

Sample Session

Command Language Overview _
DFAST Language Conventions

File Naming Conventions •
Command L;i",nj3s . • •
Input Lines . . .

Command Environment •
Current and Alter Files
Current Name
Current System

Access Control . . • .
Access Control List
Access Modes ..••
Setting Access
Listing Access
Deleting Access

DFAST Command Repertoire
Logging In/Logging Out
File Creation and Edit
File Storage and Retrieval
Access Control . •
Command Environment . .
Information . . • . . . •
Input/Output .•..•.
Programming Facilities

Command Descriptions
append, app
bill, bil • •
brief, bri
build, bui
bye • = • •

catalog, cat
compile, com
delete_acl, da .•.•.
dprint; dp
edi t, edi .
enter, e

enterp, ep
explain, exp
goodbye, goo
hello, hel
help
ignore, ign .
length, len .

iii

Page

1-1
1-1
1-2
1-2
1-3
1-3
1-3
1-4
1-4

2-1

3-1
3-1
3-1
3-2
3-4
3-4
3-4
3-5
3-5
3-6
3-6
3-6
3-7
3-8
3-8
3-9
3-9
3-10
3-10
3-10
3-10
3-11
3-11
3-11

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-9
4-10
4-12
4-14
4-16
4-16
4-17
4-18
4-19
4-20
4-21
4-23

AT59

Section V

Appendix A

Appendix B

Figure 3-1.

CONTENTS (cont)

list, lis
listnh, lisn

list_acl, la
login, 1•
nbrief, nbr .
new . . . •
old • . . . •
onecase, one
rename, ren • .
replace, rep
run
save, sav • .
scratch, scr ...•
set_acl, sa •
set_tty, stty
sort, sor . . .
system, sys .
tty •
twocase, two
unsave, uns
users, use ••••

Text Editing
append, app •
delete, del

,-, , .~. .

desequence, des
explain, exp •.•.
extract, ext
insert, ins.
join, joi . .
list, lis .
locate, loc •
merge, mer
move, mov .•••.
prefix, pre.
replace, rep .••••
resequence, res ••
sequence, seq
strinlZ. str .
suffix~ suf .

Command Summary

DFAST BASIC •

Index

ILLUSTRATIONS

Storage System Hierarchy

iv

Page

4-24
4-24
4-26
4-28
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-41
4-43
4-44
4-45
4-46
4-47
4-48

5-1
5-2
5-3
5-4
5-5
5-6
5-1
5-9
5-10
5-11
5-12
5-13
5-15
5-16
5-17
5-19
5-20
~-~ I·

A-1

B-1

i-1

3-3

AT59

SECTION I

INTRODUCTION

DFAST is an easy-to-use time-sharing facility designed primarily for
creating and running BASIC and FORTRAN programs. A simple command language is
used to create and edit text files, to compile and run programs, and to select a
variety of options.

The files and programs of DFAST are part of the Multics system environment
in which DFAST operates. The DFAST command repertoire and language conventions
are based on the Dartmouth Time-Sharing System (DTSS) with extensions for
compatibility with Multics. In addition, a small set of Multics commands have
been added to the DFAST language to provide user control of Multics file access
and input/output mechanisms. No knowledge of Multics is required to use DFAST.

",:.;

This manual is intended to permit the programmer to use DFAST immediately.
The introductory information in this section and the sample session in
Section II provide enough information to begin using DFAST. A complete overview
of DFAST is given in Section III. Section IV gives detailed descriptions of
each of the DFAST commands. Section V describes text editing facilities.

DFAST FEATURES

The user interacts with DFAST in an online session, issuing commands and
awaiting I~esponse. The major activity during a user-DFAST dialogue is centered
on creating and manipulating the current file (a unit consisting of all input
entered by the user during the session), a file retrieved from the Multics
storage system (permanent online storage), or an object program produced by one
of the DFAST compilers.

DFAST BASIC is similar to the original Dartmouth version, differing from
standard Multics BASIC as described in Appendix B. The system name "basic"
selects BASIC with single-precision arithmetic. The system name "dbasic"
selects BASIC with double-precision arithmetic. Use of both precisions is not
allowed in the same program run and files produced by one version are not
compatible with those produced by the other (basic uses one word to store
numbers, dbasic two).

The version of FORTRAN used on DFAST is a superset of ANSI FORTRAN (1966).
A number of time-sharing oriented features have been added and the use of
expressions in language constructs generally expanded. The DFAST FORTRAN
language is described in the Multics DFAST/FAST FORTRAN Reference Manual (Order
No. AT58).

Automatic editing and sorting of line-numbered input is provided. In
addition, a set of edit requests can be used to modify existing text lines or
reorganize and renumber an entire file.

1-1 AT59

File handling facilities support file creation, deletion, modification, and
renaming. A user can access any file in the Multics system to which he has the
appropriate access privileges. This means that the user can use programs that
belong to other users or programs from system libraries.

DFAST maintains a variety of online information available to a user on
request. This includes brief descriptions of DFAST commands, information on the
current state of the DFAST subsystem, and file-related information.

uSING DFAST

To begin a DFAST session, the user logs in to the Multics system. After
the Multics initial message has ,been typed, DFAST issues a ready message in the
form:

ready 0900

This message is printed throughout the session to inform the user that DFAST has
completed a specified task and is again ready to accept user input. The time of
day is printed with each ready message.

User input can be a command or text. '''' t'nput text usually must begin with a
line number. The build command, described in Section IV, can be used to enter
nonnumbered lines.

At the end of the session, a user must log out.

Logging In

A DFAST user must be registered under a project associated with DFAST. He
will be assigned a unique identification (called a Person_id) and a password,
both of which must be entered precisely as assigned whenever he logs in. If the
user's Person_id is JBrown, he cannot log in if he types Jbrown or J Brown.

The password is entered either superimposed on a string of cover-up
characters or with printing suppressed, to ensure confidentiality.

A sample login, including the messages printed by Multics and DFAST is
shown below. Prior to this interchange, the user must dial the appropriate
telephone number to establish a connection with Multics. The exclamation point
(!) is used here and throughout this document to denote text typed by the user;
this should not actually be typed by a user.

Multics MRX.X: Multics Service, PCO,Phoenix,AZ.
Load = 26.0 out of 100.0 units: users = 26

login JBrown
Password:

You are protected from preemption until 0829.
JBrown Multics logged in 01/21116 0129.2 mst Tue from ASCII terminal "none".
Last login 01/26/76 1230.0 mst Mon from ASCII terminal "none".
ready 0729

1-2 AT59

The ready message indicates that the user, JBrown, is successfully logged in and
that DFAST is awaiting input. Additional messages may be printed to provide
general information such as the addition of features, scheduled shutdowns, and
so on. Errors during logging in are described by messages such as:

Login incorrect
Please try again or type "help" for instructions.

Typing Conventions

User-typed lines can contain commands or input text but not both. Usually,
the user types one command or line of text per physical line, terminating a line
with the appropriate carriage-control character. After a command line, DFAST
issues a ready message and spaces down one line.

Typing errors can be corrected using the special symbols' and @. The
number sign (,) indicates that the character immediately preceding it should be
deleted. To delete a character five positions back, five "s must be typed,
deleting all characters back to that point. (An exception to this is when
blanks or tabs are intervening; one # deletes all white space.) Some examples
of the use of # are given below. In each example, an exclamation point precedes
the line typed by the user and the line beneath it shows what the final input
is.

new newfa#ile.basic
new newfile.basic

new new###oldfile.fortran
new oldfile.fortran

mew new#I##II#new newfile
new newfile

The commercial at sign (@) "deletes an entire line.

new new@new anotherfile
new anotherfile

Quit Signal

The user can interrupt DFAST during command or program execution by
depressing the ATTN, INTERRUPT, BRK, or QUIT key on the terminal. DFAST returns
to command level and issues a new ready message.

Case Conventions

Input from twocase terminals is stored as entered by the user. Input from
onecase terminals is stored as all lowercase. If a user wishes to ente~ a
capital letter, the input must be preceded by a backs lash (\). For the speclal
characters I and @ to be stored as characters (suppressing their erase
functions) they must be preceded by a backslash on all terminals. Nonprinting
characters'are input with a backslash followed by their octal representation.

1-3 AT59

Output conventions can be controlled by the user with the DFAST commands
onecase and twocase. At login, the output mode is twocase. Characters are
printed exactly as stored. Thus, a capital Z is printed as \Z on a onecase
terminal and simply as Z on a twocase. A lowercase z is printed as Z on a
onecase terminal and as z on a twocase. A nonprinting character is typed as a
backslash followed by the octal representation.

In onecase output mode, both lowercase and uppercase letters are printed as
uppercase on all terminals and nonprinting characters are suppressed.

Logging Out

When a user has completed a session, he must log out. To log out and
disconnect the terminal, he can issue either of the commands bye or goodbye
(some terminals require that the user manually disconnect the acoustic coupler).
The hello command logs the user out, maintaining the connection for the next
user.

Error Handling

When a user makes an error in a command line, DFAST issues a descriptive
error message of the form:

command_name: message

Several commands may invoke the same error message. For example, "unknown
argument" can be issued by most commands. When a DFAST error occurs, the user
is issued a new ready message and can retype the command or input line that
caused it. If the user has a question about an error, he can obtain an online
description of the command that caused it using the explain command (using
i'explain topics" he can determine if there is an online description of a general
topic such as file access).

The sample session excerpted below shows an error message printed by DFAST.

compile
compile: current segment must be saved "test.basic"
ready 0910

save
ready 0910

compile
ready 0911

Here, the user had to save the current file before compilation could be
successfully performed (the compile command causes the source text in the
current file to be replaced by the object code generated).

1-4 AT59

SECTION II

SAMPLE SESSION

The following session shows the application of DFAST commands to the
compilation and execution of a BASIC program. User typing is indicated by the
exclamation point character (!). Comments are to the right and preceded by the
slash character (I). Full descriptions of the commands used in the sample
session are given in Section IV.

The user begins the session by dialing into the Multics system and receives
a response before logging in.

Multics MRX.X: Multics Service, PCO,Phoenix,AZ.
Load = 11.0 out of 80.0 units: users = 11
login Smith ."
Password:

You are protected from preemption until 0820.
Smith Multics logged in 01/27/76 0720.2 mst Tue from ASCII terminal "none".
Last login 01/26/76 1230.0 mst Mon from ASCII terminal "none".
ready 0720

To begin entering input, the user issues theDFAST command, new, and
supplies a name for the current file.

new parens.basic
ready 0720

Any name that adheres to the naming conventions given in Section III can be
assigned. Here, the user is entering a BASIC source program indicated by the
second component of the name. Input to the file begins now. this is a program
intended to check for matching parentheses in any input string.

100 input 1$
110 let n = 0
120 let m = 0
130 for i = 1 to len (1$)
140 let b$ = seg$ (1, ; - ;)

- 7 -,

150 if b$ <> "(,, then 200
160 let n = n +1
200 if b <> ")" then 220
210 let m = m + 1
215 if m>n then 260
220 next i
230 if n=@230 if n <> m then 260
240 print "parens match"

2-1 AT59

250 stop
260 print "parens don't match, try again"
270 goto 100
save
ready 0722

The user here has saved his current file permanently before running it
under the name assigned with the new command. The current file can be saved
under another name by supplying a name as an argument to the save command.

run
String expression required in 140
Mixed string and numeric expression in 200
No end statement as of 270
run: error in compilation "parens"
ready 0722

IBASIC error messages

IDFAST error message

The user has issued a run command that ordinarily compiles a program and
then executes it immediately. This time, he has received error messages from
BASIC as well as an error message from DFAST. The compiler used by default was
BASIC because it was the current system at this time. If the current system had
been FORTRAN, the user could have issued the command "run basic," which would
have reset the current system. To ascertain the current system as well as the
name of the current file, the user issues a tty command.

tty
name = parens.basic,
ready 0723

system = basic, user = Smith.Design, line = tty020

In order to successfully compile his program, the user must correct the source
code. This can be done in DFAST simply by typing new lines with the same
numbers to replace errors. To delete a line, the user can simply type a line
number immediately followed by a carriage return.

140 let b$ = seg$ (1$, i, i)
200 if b$ <> ")" then 220
280 end

These corrections are added to the current file. To store them on the saved
copy, the user must overwrite the saved version with the contents of the current
file.

replace parens.basic
ready 0724

To obtain a listing of the source code, the user can issue a list or listnh
(abbreviated to lisn) command. Here, lisn, which suppresses header information
such as name and date, has been selected.

2-2 AT59

lisn
100 input 1$
110 let n = 0
120 let m = 0
130 for i = 1 to len (1$)
140 let b$ = seg$ (1, i, i)
150 if b$ <> 11(" then 200
160 let n = n +1
200 if b$ <> rt)" then 220
210 let m = m + 1
215 if m>n then 260
220 next i
230 if n <> m then 260
240 print "parens match"
250 stop
260 print "parens dtin't match, try again"
270 goto 100
280 end
ready 0121

Now, the user wishes to recompile the program. Instead of the run command, the
user decides to use the compile command, which compiles and, if successful,
returns the object code as the current file. It can then be saved for
subsequent execution. In the sample program, the user types in a string of
characters when the? character is printed by the program.

compile
ready . 0128

save
ready 0728

run
? «(»
parens don't match, try again
?)) ((
parens don't match, try again
? (12(20(abcd)e)f)
parens match
ready 0130

To end the session, the user logs out by issuing the bye command.

bye
Smith Multics logged out 01/21116 0131.3 mst Tue
CPU usage 5 sec, memory usage 16.5 units.

If, in the future, the user wishes to change or add on to his program, he
can retrieve the source file parens.basic by issuing the command "old
parens.basic". The original source program then becomes the current file and
can be changed by typing replacement lines or using the edit command to invoke
functions such as deletion, insertion, and resequencing.

2-3 AT59

SECTION III

COMMAND LANGUAGE OVERVIEW

The DFAST command language is based on a set of commands that describe
general functions to be performed. Many of these commands require arguments to
particularize the function. For example, the save command, which stores a file
in the Multics storage system, requires a name under which to store it. The
user need not always supply such an argument since most DFAST commands operate
on default assumptions based on the current state of the command environment.
In the case of save, when the user supplies no argument, the current file is
stored under its current name.

DFAST LANGUAGE CONVENTIONS

User-supplied arguments to commands must adhere to appropriate naming
conventions; that is, file names must be constructed according to the rules
given under "File Naming Conventions" below, line numbers to conventions given
under "Input Lines" below, and so on.

File Naming Conventions

A fi~e name is a user-constructed identifier from one to 32 characters
long. It can contain any uppercase or lowercase alphabetic character, any
number (0-9), and the hyphen (-), underscore (_), and period (.). A period has
a special effect, dividing a user construct into separate components to be
interpreted by DFAST. For example, the use of the period in:

test.fortran

produces a two-component name whose second component is a language suffix
indicating that the file is a FORTRAN source program.

By convention, an asterisk (*) can be used to represent any component when
a file name argument is given in a command such as catalog, which searches the
storage system. Called the star convention, the asterisk in this context means
i1any text." Thus, ,,* .fortran" would indicate all files with a two-component
name whose second component is fortran. Two asterisks can be used together to
represent any number of components (including none). For example, "test.**"
would m~~cn any of the following: test, test.basic, test.fortran,
test.new.basic.

3-1 AT59

A DFAST file is equivalent to a Multics segment, the basic unit of the
Multics storage system. On Multics, directory segments are maintained for use
in locating other segments (including other directory segments). Directories
maintain a tree-structured hierarchy that permits any segment to be referenced
by the series of directories leading from the root of the tree to the target
segment (or DFAST file.) Each user is assigned his own directory (home
directory) at login to which all his storage system requests refer by default
(that is, when he does not specify some other directory explicitly). When a
file becomes part of the storage system, its name identifies its position in
this tree-structured hierarchy. Figure 3-1 shows a portion of this structure in
a very simplified form.

Based on the sample hierarchy of Figure 3-1, if user TSmith wants to use
user BJones' file called test.basic, he would provide a name indicating the list
of directories leading to BJones (Jones' home directory) and terminating with
the desired file. This string of names is called a pathname. By convention,
individual names in a pathname are separated by the greater-than character (»)
and the root directory need not be specified. Thus, the full pathname for
Jones' file named test.basic would be:

)udd)ProjA)BJones)test.basic

Notice that this notation permits users TSmith and BJones to have files with the
same name. Smith's test.basic file would be specified by Jones as:

)udd)ProjA)TSmith)test.basic

By convention, DFAST permits a user to specify files in his home directory
by name alone. Thus, if a DFAST user means to specify his own copy of
test.basic he need type only "test.basic". To specify another user's test.basic
file, however, he must still supply a full pathname.

Command Lines

A line containing a single command can begin at any horizontal position.
When arguments are supplied, at least one blank must separate them from the
c0wWQ~d. A~g~~cr.ts a~e se~~ret~~ ~~~m p.~r.h other bv blanks. and the entire line
is terminated by a newline character (ASCII code 012).

More than one command can appear on a line if a separator is used. By
convention in DFAST, if the first character typed is not alphanumeric, it will
be interpreted as a separator, as in:

/rename newfile/save/compile/

This is equivalent to the sequence:

rename newfile
save
compile

When a number of commands appear on a line, DFAST executes
issuing a single ready message.

3-2

of them before

AT59

root

udd library

ProjA ProjB

TSmith BJones

Figure 3-1. Storage System Hierarchy

3-3 AT59

Input Lines

Any line that begins with a number is interpreted as a line of input text,
except within the context of an executing user program. Preceding blanks are
ignored. All of the following lines will be entered into the current file.

iOO enter
110 new
5 text

7 here

Line numbers can range from 1 to 99999. _ Lines can be entered in any order.
They are automatically sorted into ascending line-number sequence. If the user
types in a line with a number that has been entered previously, the new text
replaces the old associated with that line number. If a user types in a line
number with no text, the existing line with that number is deleted.

Text without line numbers can be entered using the build command.

COMMAND ENVIRONMENT

The effect of a particular DFAST comm'and can vary at different executions,
depending on the current state of the environment. For example, if a user has
just compiled a FORTRAN program, the current system becomes FORTRAN and must be
changed to BASIC before a BASIC program can be compiled. There are four
elements of the command environment that can affect the use of commands. These
are:

current file
alter file
current name
current system

At login, these have the following values:

current file
alter file
current name
current system

empty
empty
"no name"
basic

Subsequent user-DFAST interaction changes these values. When a command uses one
of these as a default value, the most recent change is in effect.

Current and Alter Files

The file that a user creates in a DFAST session is called the current file.
All information entered into the current file is first temporarily stored in a
buffer called the alter file. To begin a new current file, the user issues the
command, new, followed by line-numbered input. The input lines are stored in
the alter file. When a command is issued that acts on the current file, the
alter file is sorted, then merged with the previous contents of the current
file. When the alter file is sorted, lines are put in ascending numerical
sequence. When duplicate line numbers occur, the last line entered is retained.

3-4 AT59

The sample below shows the user-DFAST dialogue on the left and the
corresponding contents of the current and alter files to the right.

new
100
110
90
90

save

newfile
new text
for new file
this isn't
This is

ready 0610

80 now
120 sample
90 here is

replace newfile
ready 0610

alter file
90 This is
100 new text
110 for new file

alter file
(empty)

alter file
80 now
90 here is
120 sample

alter file
(empty)

'-.:;

current file

(empty)

current file
90 This is
100 new text
110 for new file

current file
90 This is
100 new text
110 for new file

current file
80 now
90 here is
100 new text
110 for new file
120 sample

The contents of the current file can also be changed by other methods. For
example, a previously saved file can be retrieved using the command, old. When
the current file is a source program to be compiled, the current file after
compilation is changed to the resultant object program. In these cases, as with
build, the alter file is not used.

Current Name

The current name of a file is initially "no name"; that is, the character
string "no name" is used on listings where the name would normally appear. The
current name can be explicitly assigned by providing a name argument with the
command, new, or by executing a rename command. When the command, old, is
issued, the current name is automatically changed to the name of the retrieved
file. The current name is also changed as a byproduct of a successful
compilation using the compile command, which returns object code as the current
file. In this case, if the source program name has a language suffix of "basic"
or "fortran," then the current name is changed to the name pr~ceding the suffix
(for example, "test.basic" becomes "test"). If the source program does not have
a language suffix, the current name is changed to "object."

Current System

The current system is the compiler (basic, dbasic, or fortran) that is used
by default in the compile and run commands. It is also used in connection with
the resequencing facility of the edit command (see Section V). At logging in
time, the current system is basic. It can be explicitly reset by a compile,
system, or run command. It is automatically changed by the old, rename, and new
commands as follows. If the name referenced by old has a language suffix or is
an object program, the system name is changed to the corresponding compiler. If
rename or new has an argument with a language suffix, system name is set to the
appropriate compiler.

3-5 AT59

ACCESS CONTROL

Each file stored in the Multics storage system has a set of access rights
associated with it. By default, a user has complete access to all files in his
home directory, and access is denied to any other user. The user has control of
these rights and can specify both those users who can have access to a
particular file and the type of access. For example, a user may specify that
anyone can have access to read a particular
have access to write on it.

he himself can

Access Control List

The access rights for each file are described in its access control list
(ACL). An ACL contains the identification of users permitted (or specifically
denied) access to the file plus a description of the type of access allowed.

The user identification in the ACL consists of a three-component name:
Person_id, Project_id, and an instance tag, separated by periods. The Person_id
is as described under "Logging In" in Section I. The Project_id is the
identification of the user's project, registered by a Multics system
administrator. Multics assigns the instance tag when the user logs in.
Whenever anyone tries to access a file on the Multics system, his
three-component name must match one of the entries on the ACL of that particular
file; if not, he has no access to that file:

Access Modes

The type of access allowed is defined by access modes: four modes for files
and four modes for directories.

Access modes for files are:

read (r) data in the file can be read
write (w) data in the file can be written (modified)
execute (e) an executing process can transfer to and execute

instructions in this file
null (n) access to the file is denied

Access modes for directories are:

status (s)

modify (m)

append (a)
null (n)

the attributes of files contained in the directory can be
obtained
the attributes of existing files contained in the directory
can be modified (changed or deleted)
new files can be created in the directory
access to the directory is denied

3-6 AT59

Generally, combinations of access modes are assigned to files and
directories. Typical access mode combinations are:

Files l2irectories

r s
w sm
re sa
rw sma
rew null
null

The user can specify access mode assignments for files only, although he
can list the access on directories. Once specified, the access is not "frozen";
the user may change it at will by specifying different modes, persons, or
projects as arguments to the set_acl" command, described below.

Setting Access

The command the user invokes to set the ACL, set acl (described in detail
in Section IV j "Command Descriptions"), either adds an- entry to the ACL or
modifies an existing entry. The set_acl command, which may be abbreviated sa,
has the general format: ,-,,;

For example, Tom Smith has text in file xsolve of his directory that Jane
Doe wants to use. To give her access so she can read the file, he types:

sa xsolve r JDoe.*.*

If he instead decides that his file should not be available to Jane and
wants to make sure she cannot read it, he type-s:

sa xsolve null JDoe.*.*

The asterisk following Jane's Person_id (JDoe) in the above command lines
means that the requested access applies to Jane no matter what project she may
be on, no matter what instance tag may be associated with her work. For
example, the User_id Tom gave, JDoe.*.*, matches:

JDoe.ProjB.*
JDoe.ProjA.*
JDoe.ANYTHING.*

When the user wants to denote any Person_id, he types an asterisk for the
first component; any Project_id j an asterisk fo~ the second component; and any
instance tag, an asterisk for the third component. (It is best to use an
asterisk for the third component since the user generally does not know the
instance tag.) Thus, a user identification of * * * specifies any user.

3-7 AT59

Listing Access

To check the ACL of a file, the user invokes the command that lists the
ACL, list_acl (described in detail in Section IV, "Command Descr'iptions"). The
list_acl command, which may be abbreviated la, has the general format:

As explained earlier, any file_name that does not begin with the
greater-than symbol is assumed to be in the user's home directory. Thus, if Tom
Smith wants to list the ACL of xsolve, he types:

la xsolve
rw TSmith.ProjA.*
r JDoe.*.*
rw ~.SysDaemon.*
r *.ProjA.*

The third entry in the example, *.SysDaemon.*, identifies various Multics
system processes that control such things as offline printing and making copies
of files or "backup" tapes. Appropriate ACL entries are placed on every file
the user creates so these system processes will have the necessary access to
perform the various backup, metering, and .input/output functions.

If Tom is interested in checking the access he has given only Jane on
xsolve, he types:

la xsolve JDoe
r JDoe.*.*

or to check the access rights of only ProjA, he types:

la xsolve .ProjA
rw TSmith.ProjA.*
r *.ProjA.*

Notice that when specifying the user identifications, periods must be used
to show "missing" components to the left of a specified component; however, it
is not necessary to include periods for "missing" components on the right.

Deleting Access

A third access control command, delete_acl, allows the user to delete ACL
entries. This command, which may be abbreviated da, has the same general format
and rules as the list_acl command. (See Section IV, "Command Descriptions," for
a detailed description of delete_acl.)

3-8 AT59

For example, if Tom Smith has changed file beta, he might want to also
change its ACL. First, he lists the ACL entries to see who currently has access
to beta:

la beta
rw TSmith.ProjA.*
re Gray.Merlin.*
rw Butler.Merlin.*
rw Jones.*.*
re JDoe.*.*
rw *.SysDaemon.*
r * * *

Tom decides that he no longer wants user Jones 1 anyone on the Merlin
project, or the entire user community (represented by *.*.*) to have access to
beta. Therefore, he invokes the delete_acl command in the following manner:

da beta Jones * * * .Merlin

If Tom now again invokes list_acl, he will see that the requested change
has already taken place.

la beta
rw TSmith.ProjA.*
re JDoe.*.*
rw *.SysDaemon.*

Changes in access rights occur instantaneously. If Jane has access to a
file of Tom's, and he· changes the access while she is using the file, DFAST
prints out a message telling her that she has incorrect access to the file and
returns her to command level.

DFAST COMMAND REPERTOIRE

The complete repertoire of DFAST commands is given below, organized in
terms of general function. A detailed description of each of these commands is
provided in Section IV.

Logging In/Logging Out

enter, enterp

goodbye, bye

hello

login

connects anonymous user to the Multics system.

terminates a user session and disconnects the
terminal.

terminates a user session but leaves the terminal
connected for subsequent user.

connects registered user to the Multics system;
used at dialup or after a hello command.

3-9 AT59

File Creation and Edit

append

build

edit

ignore

list, listnh

new

scratch

sort·

File storage and Retrieval

catalog

old

replace

save

unsave

Access Control

Command Environment

rename

system

appends unsorted contents of alter file to current
file.

initiates non-line-numbered mode of ~nput.

performs text-editing requests.

discards contents of the alter file.

lists all or portions of the current and/or alter
files (listnh suppresses header information).

initiates a new current file, deletes both the
cuprent and alter files, and changes the current
name.

deletes both the current and alter files.

sorts the current file into ascending line-number
sequence.

requests information about
specified directories.

files stored in

retrieves a previously saved file and makes it the
current file.

replaces the contents of a previously saved file
with the contents of the current file.

creates a new file that contains a copy of the
contents of the current segment.

deletes a stored file.

removes an ACL entry.

prints an ACL entry.

adds or changes an ACL entry.

renames the current file.

resets the current system (compiler).

3-10 AT59

Information

bill

explain

help

length

tty

users

,Input/Output

brief

dprint

nbrief

onecase

twocase

Programming Facilities

compile

run

prints accounting information.

prints online description of specified topic.

at login, prints login information; otherwise like
explain.

prints the number of words in the current file.

prints current command environment values.

lists users currently logged in.

establishes brief output mode for printing.

queues a file for printing on the high-speed line
printer.

terminates brief output mode.

establishes'~ingle-case input/output mode.

establishes new terminal type.

establishes two-case output mode.

compiles the source program in the current file.

compiles, if necessary, and runs a user program.

3-11 AT59

SECTION IV

COMMAND DESCRIPTIONS

This section contains, in alphabetical order, a description of each of the
DFAST commands giving its usage and .function and illustrating its application in
a user session. The contents and notation conventions associated with the
various divisions of a command description are given below.

The heading, Name:, is followed by the full command name which in turn is
followed by a comma and the valid abbreviation for the command, as in:

> • -, .~.:

Name: append~ app

Here, the append command can be invoked by typing either "append" or "app."

USAGE

The heading, Usage, is followed by a line showing a prototype command
Optional arguments are enclosed by braces, as in:

compile {system_name}

,.:_-
.1..1.ut::.

Here, system_name is an optional argument and valid user-supplied entries for it
are given after the format line. Arguments are shown in the order in which they
should be supplied. Required arguments appear without surrounding braces.

EXAMPLE

Under the heading Example, portions of user-DFAST dialogue are given to
show the usage and effects of executing the command. In these dialogues, the
user's typing is preceded by an exclamation point (!). This is purely a
notational convention and should not be typed by the user in an actual session.

4-1 AT59

append append

Name: append, app

The append command appends all information currently contained in the alter
file to the current file; that is, information is added at the end of the file
instead of being merged into the appropriate line-number sequence.

Prior to execution of an append command, the alter file contains all
information entered since the last command that caused a merge of the alter and
current files such as new, old,. or replace. After execution, the alter file is
empty.

Usage

append

Example

new new_file
ready 1301

100 this is old
110 text
save
ready 1301

100 this is new
110 text
lisn current
100 this is old
110 text
ready 1301

lisn alter
100 this is new
110 text
ready 1302

append
ready 1302

lisn current
100 this is old
110 text
100 this is new
110 text
ready 1302

4-2 AT59

bill bill

Name: bill, bil

The bill command prints a record of charges for computer usage by the user.
The output gives the date covered by the report, the total charges, and a
breakdown of charges.

Usage

bill

Example

bill

'-.:.: ,.

Smith.Design Report from 10/22/75 1935.1 to 10/30/75

Month-To-Date Charge: $
Resource Limit: $

Interactive Usage: $

shift
1
3

$charge
32.56
4.10

37.40;
100.00;

36.66; 13 logins, 0 crashes.

$limit
open
open

Absentee Usage: none;

10 Daemon Usage:

queue $charge
3 0.74

ready 1002

$ 0.64;

lines/K
1

4-3

1001 .3

AT59

brief brief

Name: brief, bri

The brief command suppresses the DFAST-issued ready message and the header
preceding a printout by the list command.

brief

Example

list alter

alter 12/2/75

100 random text
ready 1210

brief
list alter
100 random text
ready 1210

1210.2 mst Mon

4-4 AT59

build build

Name: build, bui

The build command initiates an input mode for nonnumbered lines of text
that are appended directly to the current file. Any text in the alter file when
build is given is merged before the new text is appended. (Notice that a DFAST
command entered in this mode is simply accepted as text.) The build mode of
input is terminated by typing a line consisting of a newline. When DFAST issues
a ready message, the normal command environment is restored.

Usage

build

Example

new test
ready 0925

100 this is
110 a test
build
of lines typed
save
replace
etcetera

ready 0925

lisn
100 this is
110 a test
of lines typed
save
replace
etcetera
ready 0926

,-".;

4-5 AT59

bye bye

Name: bye

The bye command terminates a user session and ends communication with the
DFAST system.

On terminals equipped with acoustic couplers, it is necessary to hang up
the telephone handset.

bye

Example

bye . ,', ~ ;

Smith Design logged out 11/07/75 1240.4 mst Fri
CPU usage 5 sec, memory usage 16.5 units.
hangup

4-6 AT59

catalog catalog

Name: catalog, cat

When a file is saved, its name and other information about it is placed in
the directory specified (by default, the user's home directory). To print
information about the files in a single directory, the user can issue a catalog_
command. A variety of control arguments allow the user to restrict the listing
to a subset of files and/or a subset of information. When no arguments are
given, the command prints the name, access mode, and length for each file in the
home directory in the ord~r in which they were created. The star convention is
allowed (see "File Naming Convention~" in Section III).

Usage

catalog {file_names} {-control_args}

where:

1 •

2.

-pathname path, -pn path

-name, -nm

,-.,.:

are a subset of the files whose attributes
are to be listed. Listing of information
about these files depends on the control
arguments given.

may be chosen from the arguments
and supplied in any order. The
format of catalog is a series
each of which corresponds to an
the file. If no attributes are

given below
basic output
of columns,
attribute of

explicitly
stated, ua.WI:;::, access mode, and records used
are printed. Otherwise, only the name and
specified attributes are printed. Both
totals and detailed information are printed
unless the user specifies otherwise. Files
are printed in the order they occur unless
the user explicitly requests a different
order.

lists the contents of the directory specified
by path; if this control argument is not
supplied, the home directory is assumed.

prints only the names column.

-date_time_entry_modified, prints the date and time the file was last
-dtem modified.

-total, -tt

-no_header, -nhe

prints only the heading line, giving the
total number of files (Multics segments) and
the sum of their sizes.

omits all heading lines.

4-7 AT59

catalog

Example

catalog

Segments = 4, Lengths = 26.

r w 10 test.basic
rew 9 test
r w 5 newfile
r w 2 summary. basic

ready 0910

catalog •. basic

Segments = 2, Lengths = 12.

r w 10 test.basic
r w 2 summary. basic

ready 0910

catalog -.basic -nm -nhe

test.basic
summary. basic

ready 0911

catalog -tt

Segments = ij, Lengths = 26.

ready 0911

catalog

4-8 AT59

compile compile

Name: compile, com

The compile command compiles the current program into object code by the
BASIC or FORTRAN compiler. The resultant object program becomes the current
file and can be executed immediately using the run command or can be saved for
subsequent execution. The current file must be saved before compilation.

The current name is changed, as follows, with respect to the source program
name. If the source program name has a language suffix (e.g., prog.basic), the
current name after compilation becomes the source name with the suffix removed
(e.g., prog). If no suffix was used for the source program (e.g., prog), the
current name becomes "object." If errors are detected during compilation, error
messages are issued by the compiler and the source program is retained as the
current file.

compile {system_name}

where syst.em_name is basic, dbasic, or fortran.

If no argument is supplied, the current system is the value assumed. For·
information on determining the current system, see "Current System" in Section
III.

Example

rename test.basic
ready 1100

compile
compile: current segment must be saved
ready 1100

save
ready 1100

compile
ready 1100

tty
name = test, system = basic, user = Smith, line = tty112

4-9 AT59

delete acl

The delete acl command removes entries from the access control lists (ACLs)
of files. See ~Access Control" in Section III.

,Usage

where:

1 •

2. User_ids

3.

-ali, -a

-br:Lef, -bf

is the name of the file whose ACL is to be deleted. If
it is omitted, only a User_id of -all or -a is allowed.
The star convention can be used.

are access control names that must be of the form
Person_id.Project_id.tag. All ACL entries with matching
names are deleted." (For a description of the matching
strategy, refer to the set_acl command.) If User_id is
-a or -all, the entire ACL is deleted with the exception
of an entry for •. SysDaemon .•. If no User_id is given,
the user's Person_id and Project_id are assumed.

can be chosen from the following:

causes the entire ACL to be deleted with the exception
of an entry for •. SysDaemon .•.

suppresses the message "User name not on ACL."

An ACL entry for •. SysDaemon .• can be deleted only by specifying all three
components. The user should be aware that in deleting access to the SysDaemon
project he prevents Backup.SysDaemon .• from saving the segment or directory on
tape, Dumper.SysDaemon.. from reloading it, and Retriever.SysDaemon.. from
retrieving it.

Example

delete_acl news .Faculty. Jones

deletes from the ACL of news all entries with Project_id Faculty and the entry
for Jones .•.•.

4-10 AT59

delete acl

da beta.** ..

deletes from the ACL of every file whose entryname has a first component of beta
all entries except the one for *.SysDaemon.*.

4-11 AT59

dprint dprint

Name.: dprint, dp

The dprint command queues specified files for printing on the line printer.
The output begins with a header sheet that is identified by the requestor's
User id and, if specified, the destination. A summary sheet indicates the time
of the request, the time of printing, the number of lines and pages printed, and
the cost of printing.

dprint {-control_args} {filel fileZ ... filen}

where:

1 .

-header XX, -he XX

-destination XX, -ds XX

-map

2. filei

Notes

may be chosen from the following list of
control arguments and can appear anywhere in
the command line:

identifies subsequent output by the string
XX. If this control argument is, not given,
the default is the requestor's Person ide
This argument can be overruled by a
subsequent -header control argument.

labels subsequent output with the string XX,
which is used to determine where to deliver
the output. If this control argument is not
given, the default is the requestor's
Project_ide This argument can be overruled
by a subsequent -destination control
argument.

prints a file using only uppercase letters.
See "Notes" below.

each filel is the name of a file to be
queued for printing.

The dprint command, invoked without any arguments, prints a message telling
how many requests are in the queue for printing.

If control arguments are present, they affect only files specified after
their appearance in the command line. If control arguments are given without a
following filei argument, they are ignored for this invocation of the command
and a warning message is returned.

If the -map control argument is used, an uppercase version of the
file is created in his home directory with the name "file_name.map".
printing, it is deleted. Only one file can be printed by dprint when the
control argument is supplied.

4-12

user's
After

-map

AT59

dprint dprint

Example

dp -he Jones test.basic test.fortran

causes a copy of each of t~e files named test.basic and test.fortran in the home
directory to be printed with the header "Jones".

4-13 AT59

edit edit

~: edit, edi

The edit command invokes a specified text-editing function. The desired
function is expressed as one of the keywords given under "Usage" below with
arguments as required by a specified function. A detailed description of all
edit functions is given in Section V, "Text Editing."

edit function

where function may be selected from one of the following:

Function

append

delete

desequence

explain

extrac:t

insert

join

list

locate

merge

move

prefix

replace

resequence

sequence

Effect

combines two."or more files and resequences line
numbers.

deletes one or more lines in current file.

removes line numbers from current file.

prints online description of
request.

specified

selects specified lines to be retained
current file is deleted.

edit

when

inserts the contents of one or more files at
specified locations of the current file.

combines two or more files without resequencing.

requests printout of all or a portion of the
current file.

requests a listing of lines containing a specified
text string.

merges and sorts the contents of two or more
files.

relocates one or more lines within the current
file.

inserts a given character string before existing
string.

substitutes new character string for existing one.

assigns a new set of line numbers to all or a
portion of the current file.

assigns a new set of line numbers to an entire
current file.

AT59

edit

string

suffix

edit

converts the current file to a random-access
string file for use with BASIC and FORTRAN
programs.

inserts given character string after existing one.

4-15 AT59

enter enter

Name: enter, e
enter'p, ep

These requests are used by anonymous users to gain access to DFAST. Either
one is actually a request to the answering service to create a process for the
anonymous user. See also the login command.

Anonymous users who are not to supply a password use the enter (e) request.
Anonymous users who are to supply a password use the enterp (ep) request.

Usage

enter {anonymous_name} Project_id {-control_args}

where:

1 • anonymous_name

2.

3 •

-brief, -bf

is an optional identifier that is not checked by
the Multics system, but is treated as if it were a
person identifier.

is the identification of the user's project, which
is registered by the Multics system administrator.

can be chosen from the following list of control
arguments:

suppresses messages associated with a successful
login.

overtypes a string of
black area for the
np.~p.~~ary only for
suppress printing.

4-16

characters to provide a
user to type his password;

terminals not equipped to

AT59

explain explain

Name: explain, exp

The explain command prints a specific online description. Such a
description is mairitained for each DFAST command and for general topics such as
file access. A list of topics available can be obtained by issuing the command
with "topics" as its argument.

Usage

explain {-long} topicl{ topicg ... topicnl

where:

1 . -long

2. topic

is a control argument that specifies a long form of explain
messages for given topics; if not supplied, a brief message
is printed.

is a keyword indicating the explain message desired.

Example

explain new

02/11/76 new

Function: starts input of a new current file.

Syntax: new file_name

Argument: file_name is the name to be assigned to the current file.

ready 0930

explain teach
expiain: no explain segment for "teach"
ready 0930

4-17 AT59

goodbye

goodbye, goo

Terminates a user session and disconnects the terminal.
identical to the bye commando

goodbye

This command is

On terminals equipped with acoustic couplers, it is necessary to hang up
the telephone handset.

goodbye

Example

goodbye
Smith, Multics logged out 11/07/75 1240.4 mst Fri
CPU usage 5 sec, memory usage 16.5 units.
hangup

4-i8 AT59

hello hello

~: hello, hel

The hello command terminates work by one user but does not disconnect the
terminal. The next user can log in immediately.

hello

Example

hello

Smith Multics logged out 11/12/75 0830.3 mst ~ed
CPU usage 8 sec, memory usage 80.~ uril~~.

Multics MRX.X: Multics Service, PCO,Phoenix,AZ.
Load = 19.0 out of 41.0 units: users = 19

login JBrown
Pass\ol'ord:

You are protected from preemption until 0932.
JBrown Design logged in 11/12/75 0832.3 mst Wed from ASCII terminal "none".
Last login 11/11/75 0729.2 mst Tue from ASCII terminal "none".
ready 0832

4-19 AT59

help help

~: help

The help command prints information about logging in when issued prior to a
successful login. If help is issued at any other time, DFAST prints a message
referring the user to the explain command.

Usage

help

Example

login JBRown
Password:

Login incorrect.
Please try again or type "help" for instructions.

help
Examples of correct login:

login Person_id
enterp {anonymous_name} Project_id
enter {anonymous_name} Project_id

Uppercase and lowercase letters are different.
Check any typing conventions for your terminal.
Contact (appropriate accounting office) (phone) for more help.
Please try again.

login JBrown

You are protected from preemption until 0830.
JBrown Design logged in 01/28/76 0830.3 mst Wed from ASCII terminal "none".
Last login 01/27/76 0729.2 mst Tue from ASCII terminal "none".
ready 0830

4-20 AT59

ignore ignore

Name: ignore, ign

The ignore command discards line-numbered information in the alter file
rather than merging with information already stored as part of the current file.
Generally, the alter file contains all line-numbered information entered since
the user last executed a command that caused the alter file to be merged with
the current file, such as new, old, or replace. The contents of the alter file
can be examined using the list command.

ignore

Example

new new_file
ready 1120

100 nl9W text
110 is in the alter
120 file
save
ready 1120

200 old text is
210 in the current
120 file now
replace
ready 1120

220 file now
230 and also
list alter

alter 11/01115 1121.3 mst Fri

220 file now
230 and also
ready 1121

ignore
ready 1121

220 file today
replace
ready 1121

4-21 AT59

ignore

lisn current
100 new text
110 is in the alter
120 file now
200 old text is
210 in the current
220 file today
ready 1121

ignore

4-22 AT59

length length

Name: length, len

The length command prints the number of words in the current file. One
word is equal to four characters (including punctuation, spacing, and newline
characters). If the total number of characters is not a multiple of four, the
last word will contain fewer than four characters. The smallest unit of storage
on Multics is a record. A record consists of 1024 words. In the example shown,
the user has used one record even though only 12 words were required by the
file.

Usage

length

Example

100 How many
110 words are
120 in this file?
length
"no name" length = 12 words (1 record)
ready 0707

4-23 AT59

list list

~: list, lis
listnh, lisn

The list command displays information contained in the current file alone,
the alter file alone, or of the current file after merging with the alter file .

. In the latter case, the list command causes the merge to take place thereby
clearing the alter file. The output from list is preceded by a header giving
the file name and the time and date. To suppress this header, the user may use
listnh with the same type of arguments.

Usage

list {file} {line_number}

where:

1 •

2.

file identifies the file to be listed (current or alter).

is any valid line number.

The effects of the various uses of list are shown below:

list

list line_number

list current,
list cur

list alter,
list alt

Effect

prints the current file (after merging with alter
file) .

prints the current file beginning at the line number
given; if no such line number exists, the next higher
line number is used; if the line number is greater than
any line number in the file, the last line of the file
is printed.

prints tne current. file (without mel'giug l!unLt::r:d .. 5 of
alter file).

prints contents of alter file after sorting
numerical order by line number (lines containing
line numbers are retained in this case).

into
only

A line number may be specified with either current or alter (e.g., list alt 40).
The printout adheres to the rule given for the list line_number form above but
is restricted to the file specified.

4-24 AT59

list list

Example

The output of the listings below assumes the following contents for the
current and alter files.

current file alter file

100 text 120 new text
110 to be 150 may also
120 listed 160 be
130 next 170 listed

list current

current 11/07/75 1214.6 mst Fri

100 text
110 to be
120 listed
130 next
ready 1214

list alters 200

alter 11/07/75 1215.2 mst Fri

170 listed
ready 1215

list

no name 11/07/75 1216.1 mst Fri

100 text
110 to be
120 new text
130 next
150 may also
160 be
170 listed
ready 1216

list alter
list: alter segment is empty

_-25 AT59

The list acl command lists the access control lists (ACLs) of files or
directories. TSee "Access Control" in Section III.}

Usage

where:

1 .

2. User ids

3·

-all, -a

-brief, -bf

-directory, -dr

identifies the file whose ACL is to be listed. If
it is omitted, the home directory is assumed and no
User_ids can be specified. The star convention can
be used.

are access control names that must be of the form
Person_id.Project_id.tag. All ACL entries with
matching names are listed. (For a description of
the matching strategy, refer to the set acl
command.) If User_id is -a, ~all, or omitted, -the
entire ACL is listed.

can be chosen from the following control arguments:

lists the entire ACL. This argument overrides any
specified User_ids.

suppresses the message "User name not on ACL of
file/directory."

lists the ACLs of directories only. The default is
files and directories.

If the list_acl command is invoked with no arguments, it lists the entire
ACL of the home directory.

Example

list_acl notice.runoff .Faculty. Doe

lists, from the ACL of notice.runoff, all entries with Project_id Faculty and
the entry for Doe.*.*.

4-26 AT59

list_acl *.basic

lists the whole ACL of every file in the home directory that has a two-component
name with a second component of basic.

la -wd .Faculty. *.*.*

lists access modes for all entries on the home directory's ACL whose Project_id
is Faculty and for the * * * entry.

4-27 AT59

login login

Name: login, I

The login command is used to gain access to the Multics system. First, the
user must dial the appropriate number to activate the terminal and wait until a
message is printed by the answering service. The login command is actually a
request to the answering service to start the user id€ntification and process
creation procedures. Therefore, this command can only be issued from a terminal
connected to the answering service; that is, one that has just dialed up, or one
that has been returned to the answering service after a session terminated with
a hello command.

The login command requests a password from ~ne user (and attempts to ensure
either that the password does not appear at all on the user's terminal or that
it is thoroughly hidden in a string of cover-up characters). The password is a
string of one to eight letters and/or integers associated with the Person_id.

After the user responds with his password, the Multics system looks up the
Person_id and the password in its tables and verifies that the Person_id is
valid and that the password given matches the registered password. If these
tests succeed, and if the user is not already logged in, the load control
mechanism is consulted to determine if allowing the user to log in would
overload the system.

Usage

login Person_id {-control_argsl

where:

1 •

2. control_args

-brief, -bf

-change_password,
-cpw

is the user's registered personal identifier.
This argument must be supplied.

can be selected from the following:

suppresses messages associated with a successful
login.

changes the user's password to a newly given one.
Multics asks for the old one before requesting the
new. If the old password is correct, the new
password replaces it for subsequent logins and the
message "password changed" is printed. The user
should not type the new password as part of the
control argument.

overtypes a string of characters to provide a
black area for the user to type his pa~~ra
(necessary only for users whose terminals do not
have print-suppression capabilities).

4-28 AT59

login

-terminal_type XX
-ttp XX

-modes XX

login

sets the user's terminal type to XX, where XX is
one of the types listed for the corresponding
control argument of the set_tty command.

sets the modes for terminal I/O according to XX.
For a description of this argument, see the
corresponding argument of set_tty.

Example

In the examples below, the user's password is shown even though in most
cases Multics either prints a string of cover-up characters to "hide" the
password or temporarily turns off the printing mechanism of the user's terminal.

'Probably the most common form of the login request is to specify just the.
Person_id and the password as:

login Jones
Password:
mypass

To set the tabs and crecho I/O modes so the terminal uses tabs rather than
spaces where appropriate on output and echoes a carriage return when a line feed
is typed, type:

login Jones -modes tabs,crecho
Passwol:"d:
mypass

To change the password from mypass to newpass, type:

login Jones -cpw
Password:
mypass
New Password:
newpass
Password changed.

4-29 AT59

nbrief nbrief

.Name: nbrief, nbr

The nbrief command restores DFAST-issued ready messages and list command
headers suppressed by a prior execution of the brief command.

Usage

nbrief

Example

brief
list alter
100 random text
110 to list
nbrief
ready 1401

list alter

alter 12/2115

100 random text
110 to list
ready 1401

1210.2 mst Mon

4-30 AT59

new new

Name: new

The new command starts input of a new current file. The previous current
file and the contents of the alter file when the new command is issued are
deleted.

new {file_name}

where file name is the name to be assigned to the current file. (See "File
Naming Conventions" in Section III for a description of valid file names.)

Example

new
enter name:
ready 1301

100 The current
110 file is
save
ready 1301

new another
ready 1302

100 This is
110 different
list current

newfile.basic

current 11/07/75 1302.3 mst Fri

100 This is
110 different
ready 1302

4-31 AT59

old old

Name: old

The old command retrieves a file that has previously been saved either in
the user's home directory or another directory to which the user has access. If
the retrieval is successful, the saved file replaces the current file and the
alter file is cleared. If the saved file'S name includes a language component,
the system is changed to that language. Otherwise. the message "enter system:"
is printed and the user can type basic, dbasic, or fortran.

old {file_name} {system_name}

where:

1 .

2.

is the name of a saved file; if it is not supplied, DFAST
requests that the user type it in.

sets the current system to basic, dbasic, or fortran.

Examole

system basic
ready 0102

old
enter name: ! test.basic
ready 0102

01<1 tst.fortran
system changed to fortran
ready 0103

tty
name =
ready

tst.fortran,
0103

system = fortran,

old >udd>Faculty>Jones>test.basic
system changed to basic
ready 0103

user = Smith.Des, line = tty112

tty
name ;
ready

tst.basic,
0103

system = basiC, user = Smith.Des, line = tty112

4-32 AT59

onecase

~: onecase, one

Sets the printing mode to uppercase only.
See "Case Conventions" in Section I. To reset
twocase command.

Usage

onecase

Example

onecase
new newfile
READY 1201

100 lowercase
110 text
l18n
100 LOWERCASE
110 TEXT
READY 1201

4-33

onecase

At login, the mode is twocase.
the printing mode, use the

AT59

rename rename

Name: rename, ren

The rename command assigns a new name to the current file.

Usage

rename file_name

where file_name is the name to be assigned. The name must adhere to the rules
given in "File Naming Conventions" in Section III.

Example

rename test>basic
rename: illegal character in name
ready 1202

rename
rename: name missing
ready 1202

rename test.basic
ready 1202

4-34 AT59

replace replace

~: replace, rep

The replace command saves the contents of the current file in place of the
contents of a previously saved file. If the file_name argument is supplied, the
current file is saved under that name regardless of the current name. If no
argument is supplied, the current name is assumed and the current file replaces
information previously saved. under that name. If no .saved file exists under
either name, an error message is issued.

Usage

replace {file_name}

where file_name is the name of a saved file. If file_name is not supplied, the
current name is assumed.

Example

replace
ready 1404

replace test.basic
ready 1404

4-35 AT59

run run

Name: run

The run command causes the current file to be executed. The file must
begin with a main program. It may be in source or object form. If the current
file is an object program, it will be directly executed. If the system_name
argument is supplied, the current system is changed accordingly. The contents
of the current file are unaffected.

If the current file (or any external subprogram file that it calls) is in
source form, it is compiled to produce a temporary object program, which is then
executed. An external file must have been specified in a BASIC or FORTRAN
library statement within the user's program.

Usage

run {system_name}

where system_name can be basic, dbasic, or fortran.

Example

old test.basic
ready 907

run
Your program types this
when it runs.
ready 907

4-36 AT59

save save

Name: save, sav

The save command saves the current file either in the user's home directory
or in a specified directory. If no argument is supplied, the file is saved
under the current name in the home directory. If a pathname is given, the file
is saved under the name given and in the directory given; the current name is_
unaffected.

Usage

save {file_name}

where file_name identifies the file that is to be saved; if it is to be in any
directory other than the home directory, a pathname must be supplied.

Example

tty
name =
ready

';no name", system = basic,
0620

save >udd>ProjA>Roy>prog.fortran
ready 0620

tty

user = Roy.Des, line = tty112

name = Uno name",
ready 0620

system = fortran, user = Roy.Des, line = tty112

old prog.fortran
ready 0620

tty
name =
ready

prog.fortran,
0621

rename oldprog.fortran
ready 062i

save
ready 0621

system = fortran, user = Roy.Des, line = tty112

4-37 AT59

scratch scratch

Name: scratch, scr

The scratch command empties either the current and alter files or a saved
file. The current name and system are not affected. If a saved file is
scratched, its name is retained in the specified directory but its contents are
deleted. In this case the current and alter files are not affected. To delete
the name plus the contents, the unsave command is used.

Usage

scratch {file_name}

where file_name is the name of a file saved in the home directory or some other
directory to which the user has deletion privileges.

Example

tty
name .. test.basic, system = basic, user = Smith, line = tty112
ready 0730

scratch
r .. eady 0730

list current
list: current file is empty
ready 0730

list alter
list: alter file is empty
ready 0730

tty
name = test.basic, system = basic, user = Smith, line = tty'12
ready 0731

4-38 AT59

set acl

The set_acl command manipulates the access control lists (ACLs) of files.
See "Access Control" in Section III.

Usage

where:

1 • is the file whose ACL is to be affected.
convention can be used.

The star

2. model is a valid access mode. This can be any or all of the
letters rew. Use null, "n" or all to specify null
access.

3 .

Notes

is an access control name that must be of the form
Person_id.Project_id.tag. All ACL entries with
matching names receive the mode model. (For a
description of the matching strategy, see "Notes"
below.) If no match is found and all three components
are present, an entry is added to the ACL. If the last
model has no User_id following it, the user's Person_id
and current Project_id are assumed.

The arguments are processed from left to right. Therefore, the effect of a
particular pair of arguments can be changed by a later pair of arguments.

The matching of access control name arguments is defined by three rules:

1 . A literal component, including
same name.

"*,, , matches only a component of the

2. A missing component not delimited by a period is treated the same as a
literal "*,, (e.g., "*.Multics" is treated as "*.Multics.*"). Missing
components on the left must be delimited by periods.

3. A missing component delimited by a period matches any component.

4-39 AT59

set acl

Some examples of User_ids and which ACL entries they match are:

* * * matches only the literal ACL entry "*.*.*".

Multics matches only the ACL entry "Multics.*.*". (The absence of a
leading period makes Multics the first component.)

JRSmith .. matches any ACL entry with a first component of JRSmith.

matches any ACL entry.

matches any ACL entry with a last component of *.

.11 (null string) matches any ACL entry ending in II * *"

Example

set acl *.basic rew *

adds to the ACL of every file in the home directory that has a two-component
name with a second component of basic an entry with mode rew to *.*.* (everyone)
if that entry does not exist; otherwise it changes the mode of the * * * .-entry
to rew.

sa alpha.basic rew .Faculty. r Jones.Faculty.

changes the mode of every entry on the ACL of alpha.basic with a middle
component of Faculty to rew, then changes the mode of every entry that starts
with Jones.Faculty to r.

4-40 AT59

The set_tty command specifies proper~les of the useris terminal. It is
needed only in those rare cases when Multics does not recognize the terminal
being used at login.

Usage

where control_args may be chosen from the following control arguments:

-terminal~type XX,
-ttp XX

-modes XX

-reset

causes the user's terminal type to be set to device
type XX, where XX can be anyone of the following:

TTY37, tty37 device similar to Teletype Model 37
TTY33, tty33 device similar to Teletype Model 33 or

35
TTY38 , tty38 device similar to Teletype Model 38
TN300, tn300 device similar to GE TermiNet 300 or

1200

The default modes for the new terminal type are turned
on.

sets the modes for terminal 1/0 according to XX, which
is a string of mode names separated by commas, each one
optionally preceded by n

A

" to turn the specified mode
off. A subset of modes the DFAST user may need to set
are given below. Other modes are, however, supported.
A full set of modes is printed with the -print control
argument. Valid mode names are:

lIn

crecho,
..... crecho

lfecho,
.... lfecho

tabecho
"'tabecho

where n is an integer (10 S n L 255)
specifying the length (in character
positions) of a terminal line.
crecho specifies that a carriage return
is to be echoed when the user types
line feed (Acrecho turns this mode off).
lfecho specifies that a linefeed is to
be echoed when a carriage return is
typed (Alferiho turns this mode off).
specifies that the appropriate number of
blanks are to be echoed when a tab is
typed.

Modes not specified in XX are left unchanged. See
"Notes" below.

turns off all modes that are not specifically set by
the default modes string for the current terminal type.

4-41 AT59

-tabs

-print

specifies that the device has software-settable tabs,
and that the tabs are to be set. This control argument
currently has effect only for GE TermiNet 300-like
devices.

causes the terminal type and a complete set of modes to
be printed on the terminal. If any other control
arguments are specified, the type and modes printed
reflect the result of the command.

The set_tty command performs the following steps in the specified order:

1. If the -terminal_type control argument is specified, set the specified
device type and turn on the default modes for that type.

2. If the -reset control argument is specified, turn off all modes that
are not set in the default modes string for the current terminal type.

3. If the -modes control argument is specified, turn on or off those
modes explicitly specified.

4. If the -tabs control argument is specified, and the terminal has
settable tabs, set the tabs.

5. If the -print control argument is specified, print the type and modes
on the terminal.

Example

In the following example, a user of a TermiNet 300 with tabs establishes
his termin~l type.

set_tt.y -terminal_type tn300 -tabs -reset

In the next example, the user wants to use the linefeed key on his terminal for
the newlinE~ character instead of the carriage return key. After the change, the
user will type line feed and the terminal will echo with carriage return so the
carriage will be positioned for the next line.

set_tty -modes crecho

In the next example the user changes the line length to 60 characters. Lines
that are longer than 60 characters will be continued on the following line.
Lines that are continued will begin with U\c il

•

set_tty -modes 1160

4-42 AT59

sort sort

Name: sort, sor

The sort command arranges the current file in ascending sequence by line
number. When more than one line has the same line number, the last one is
retained. Lines that are not numbered are deleted. Text in the alter file is
merged before the sort is executed. Since normal line-numbered input is
automatically sorted, the sort command is applicable only to files that have
been created in some other way (such as by a user program execution or with the
build command).

sort

Example

old results
ready 0915

lisn
100 new data
entered for
100 a user
program
120 a user's
130 program
10 This is
ready 0916

sort
ready 0916

lisn
10 This is
100 a user
120 a user's
130 program
ready 0916

4-43 AT59

system system

~ame: system, sys

The system command is usea to explicit~y change the current system. As
described under "Command Environment" 1n Section III, the current system at
login is basic but can be changed as a byproduct of executing various commands.

system system_name

where system_name can be basic, dbasic, or fortran.

Example

tty
name = test, system = fortran, user = Smith.Design, line = tty112
ready 1210

system basic
ready 1210

tty
name = test, system = fortran, user = Smith.Design, line = tty112
ready 1211

compile
ready 1211

4-44 AT59

tty tty

Name: tty

The tty command lists the current name, current system, user
identification, and terminal line numbers in the format shown below:

name - cur_name, system = sys_name, user = Person_id.Project_id, line = ttYfl

Usage

tty

4-45 AT59

twocase twocase

~: twocase, two

Resets the printing mode from all uppercase to mixed case. At login, this
is the printing mode; thus, this command is required only after a onecase
command has been previously executed. See "Case Conventions" in Section I for a
description of the effects of these commands.

twocase

Example

onecase
READY 1403

twocase
ready 1403

4-46 AT59

unsave unsave

Name: unsave, uns

The unsave command removes a saved file from the user's home directory or
from another directory, if specified in the file_name argument. An unsave can
only be successful if the user has appropriate access to the directory
specified. The save command is unlike scratch, which removes the contents but
leaves the file name in a directory.

Usage

unsave file_name

where file_name is the name of a saved file.

Example

unsave test.basic
ready 1620

old test.basic
old: segment is not saved
ready 1620

4-47 AT59

users users

Name: users, use

The users command requests the number of users currently logged ~u under
Multics. The message, as shown in the example, gives the current users and the
maximum possible ("18.0/110.0 11) for online users and absentee users ("0/30"
below).

users

Example

users

Multics HRX.X, load 18.0/110.0; 18 users
Absentee users 0/30

ready 0120

4-48 AT59

SECTION V

TEXT EDITING

The edit command, summarized in Section IV, is used to invoke a variety of
line and file editing functions. A particular function is invoked in the form
of a keyword request and arguments as required, as in:

edit delete 100,130,140

Here, the delete request takes line numbers as arguments and the specified lines
are removed from the current file.

When line-number arguments are required, they must be specified in
ascending numerical sequence. By convention, an unbroken series of line-number
arguments can be expressed using the range notation:

linel-linen

where:

1 . linel is the beginning of the range.

2. linen is the end of the range.

Both linel and linen, if present, are affected by the request. If linel does
not exist, the next higher number is taken to begin the range. Similarly, if
linen is not present, the range ends with the last line number that does not
exceed linen. For example, assume the current file contains the line numbers
10, 20, 30, 40, 50, and the range 15-45 is specified. Lines affected by the
request in this case are 20, 30, and 40. The maximum number of ranges that can
be specified in a single request is 16. (The maximum number of files that can
be specified in an edit request using file arguments is also 16.)

For BASIC programs, edit requests that change line numbers also change
internal references to affected linE~s. This feature does not apply to FORTRAN
programs.

Detailed descriptions of all edit requests are given, in alphabetical
order, in the following pages.

AT59

Request: append, app

The append request combines two or more files specified by the user. Files
are 'concatenated in the order specified without any regard for their current
line numbers. The resultant file becomes the current file and is resequenced
with line numbers beginning at 100 and incremented by 10 to derive subsequent
numbers. For BASIC programs (if the system name is basic or dbasic), internal
references to changed line numbers are also changed. This means that lines in
one file should not refer to line numbers in another file.

Usage

edit append filel file2{ file} ... filen}

where each filei is a file name; at least two files must be specified.

Example

new newfile.basic
ready 1101

10 read x
20 if x=O goto 10
30 print x
save
ready 1101

new subr.basic
ready 1101

10 read y
20 if y=O goto 10
30 print y
40 end
save
ready 1102

edit append newfile.basic subr.basic
ready 1102

lisn
100 read x
110 if x=O goto 100
120 print x
130 read y
140 if y=O goto 130
150 print y
160 end
ready 1102

5-2 AT59

Request: delete, del

The delete request removes specified lines from the user's current file.

edit delete linel{ lineZ ... linen}

where each linei is a line number Qr a range of lines.
specified in increasing order.

Example

new newfile
ready 1302

10 do 100 item = 1,10
11 call r_$u(a_num)
12 namt = 1000*a_num+50
13 i = i+l
14 call r_$u(w_ch)
15 i = w_ch*9

edit delete 11-13
ready 1302

lisn

10 do 100 item = 1;10
14 call r_$u(w_ch)
15 i = w_ch*9

5-3

Numbers must be

AT59

Request: desequence, des

The desequence request removes all line numbers and a single blank
immediately following each, if present, from the current file.

Usage

edit desequence

Example

new newfile
ready 1423

10 ten.
20 tWE!nty
30 thirty
edit desequence
ready 1424

lisn

ten
twenty
thirty

ready 1424

5-4 AT59

Request: explain, exp

The- explain request prints an online description of a specified edit
request. If no argument is supplied, general information about the edit command
is listed. See also the explain command in Section IV.

edit explain {-long} requestl{ ~equestZ ... request}}

.where:

1 • -long

2. request.!.

is a control argument that specifies a long form of explain
messages for given requests; if not supplied, a brief message
is printed.

can be selected from the current set of edit requests.

Examole

edit explain de sequence

02/14/76 edit desequence

~unction: removes all line numbers from current file

Syntax: edit desequence

ready 0900

5-5 AT59

Request: extract, ext

The extract request deletes from the current file all but the line numbers
specified as arguments.

edit extract linel { lineZ ... linen}

where each linei is either a single line number or a range of lines.

Example

new newfile
ready 1111

10 do 100 item = 1,10
11 call r_$u(a_num)
12 namt = 1000*a_num+50
13 i = i+1

17 call r_$u(w_ch)
18 i = w_ch*9

edit extract 10,14-15
ready 1111

lisn

10 do 100 item = 1,10
17 call r_$u(w_ch)
18 i = w_ch*9
ready 1112

5-6 AT59

Request: insert, ins

The insert request inserts files at given points in a specified file. The
final result becomes the current file and is resequenced beginning with line
number 100 and incremented by 10 to derive subsequent numbers. For BASIC
programs (if the system name is basic or dbasic), internal references to changed
line numbers are also changed.

Usage

edit insert filel fileZ linel{ file} lineZ filen linen}

where:

1. filel is the file into which information is inserted.

2. fileZ ... filen are files to be inserted.

3. linel ... 1inen are line numbers in filel after which the associated files
are to be inserted.

Example

new file1
ready 1300

10 This is
20 new text
30 and this
save
ready 1300

new file2
ready 1300

10 to be inserted
20 in filel
save
ready 1301

new file3
ready 1301

10 is also
20 inserted
save
ready 1301

edit insert file1 file2 20 file3 30
ready 1301

5-7 AT59

lisn
100 This is
110 new text
120 to be inserted
130 in file1
140 and this
150 is also
160 inserted
ready 1302

5-8 AT59

Request: join, joi

The JOln request concatenates
sorting or renumbering is performed.
file.

Usage

specified files in the order given. No
The resulting file becomes the current

edit join file1 fil~2{ file} ... filen}

where each filei is the name of a file to be concatenated; at least two files
must be specified:

Example

new newfile
ready 1014

10 goto 20
20 goto 30
save
ready 1015

new file2
ready 1015

10 goto 20
20 goto 30
save
ready 1015

edit join newfile file2
ready 1016

lisn
10 goto 20
20 goto 30
10 goto 20
20 goto 30
ready 1016

5-9 AT59

Request: list, lis

The list request prints one or more lines of the current file. If no line
numbers are specified, the entire file is printed. If a nonexistent line is
specified for listing, an error message is printed.

edit list {linel line~ ... linen}

where each linei is a single line or range of lines.

Example

new newfile
ready 1520

10 abc
20 def
30 ghi
40 k
edit list 10
10 abc
ready 1520

5-10 AT59

Request: locate, loc

The locate request causes the current file to be searched for all
occurrences of a specified text string. Each line containing a match for the
string is printed. If line number arguments are supplied, the search is
restricted to the lines given; otherwise the entire file is searched.

edit locate Itext_string/{linel .lineZ ... linen}

where:

1 • 1

2.

3· line.!

is the string delimiter. Any character except blank or tab
can be used as the string delimiter so long as it does not
appear in the string itself.

is the string of characters to be matched; any character
(including blank) except the delimiter may be used.

is a single line or range of lines.

Example

new sample
ready 0707

210 if m)n then 260
220 next i
230 if n<)m then 260
240 print "ok"
250 stop
260 go to 100
edit locate 1)/
210 if m)n then 260
230 if n<)m then 260
ready 0707

5-11 AT59

Request: merge, mer

The merge request combines two or more files according to line number
sequence. The first file specified serves as the primary file for merging; that
is, the file into which all other specified files will be merged. Lines from
subsequent files are inserted into the primary file in the proper numerical
sequence. If duplicate lines occur, the last one encountered during the merge
is retained. The resulting file becomes the current file.

edit merge filel fileZ{ file} ... filen}

where each filei specified is merged into filel.

Example

new filea
ready 1430

10 Primary file
40 to be merged
60 with others
save
ready 1430
new fileb
ready 1430

20 secondary file
30 to be merged
40 with filea
save
ready 1431

edit merge filea fileb
ready 1431

lisn
10 Primary file
20 secondary file
30 to be merged
40 with filea
60 with others
ready 1431

5-12 AT59

Request: move, mov

The move request relocates specified lines within the current file to a
given location. Relocated lines are placed after a specified line number and
assigned new line numbers by incrementing that value by one. For example, if
three lines are moved to line 100, they will be given the line numbers 101, 102:
and 103. If a sequence of lines is moved so that their numbers would not fit
between the line specified and the line originally specified, succeeding lines
are resequenced with an increment of one until there is no overlap.

Usage

edit move linel lineZ

where:

1 . linel is a line or range of lines to be moved.

2. line.2 is the line after which linel will be inserted.

Example

new newfile
ready 1300

10 ten
20 twenty
30 thirty
40 forty

edit move 40 20
ready 1300

lisn
10 ten
20 twenty
21 forty
30 thirty
ready 1301

3 three
1 seven
9 nine
10 ten
11 eleven
edit move 8-11 21
ready 1301

5-13 AT59

lisn
3 three
7 seven
20 twenty
21 forty
22 nine
23 ten
24 eleven
30 thirty
ready 1301

Request: prefix, pre

The prefix request inserts a given character string immediately before each
occurrence of an existing character string. Line numbers are not affected.

edit prefix lold_string/new_string/line1{ line2 ... linen}

where:

1 •

2.

3.

4.

1

linei

is any delimiter
character cannot
new_string.

except blank or tab; the delimiter
be a character in either old_string or

is the string to be located.

is the string to be inserted.

is a single line number or range of lines; each linei
specifies the bounds within which the substitution is to
occur.

Example

new new file
ready 1407

10 let a = 10
20 let b = 100
30 let c = 1000
edit prefix 11001010-40
ready 1407

lisn

10 let a = 10
20 let b = 0100
30 let c = 01000
ready 1407

5-15 AT59

Request: replace, rep

The replace request substitutes a given character string within a specified
line or range of lines. Line numbers are unaffected.

edit replace lold_string/new_string/linel{ line2 ... linen}

where:

1 . 1

2.

3.

4. linei

is any delimiter except blank or tab; the delimiter
character cannot be a character in either old_string or
new_string.

is a string of characters to be located.

is a string of characters to be substituted for each
occurrence of old_string within the range given.

is a single line number or range of lines; each linei
specifies the bounds within which the substitution is to
occur.

Example

new new_file
ready 1101

100 1 January 1975
110 1 February 1975
120 1 March 1975
edit replace /5/6/100-120
ready 1101

lisn
100 1 January 1976
110 1 February 1976
120 1 March 1976
ready 1101

5-16 AT59

Request: resequence, res

The resequence request renumbers specified lines in the current file,
beginning with a given line number and adding a given increment to derive
subsequent numbers. If only a beginning line is given, resequencing continues
to the end of the file. If a range of lines is given, resequencing terminates
at the upper bound of the range. If no argument is glven, the default
assumption is to begin renumbering at the beginning of the file (denoted by 0),
to assign 100 as the first line number, and to derive subsequent numbers in
increments of 10. For BASIC programs (if the system name is basic or dbasic),
internal references to changed line numbers are also changed.

edit resequence {new_num, start_line, inc}

edit resequence new_num, range, inc

where:

1 .

2.

3. inc

4. range

is the first new line number to be assigned (100 by
default).

is the line to which new_num is to be assigned (0 by
default).

is the increment used to derive subsequent line numbers (10
by default).

is a range of lines delimiting the resequencing operation.

Example

new newfile
ready 1301

210 if m>n then
220 next i
230 if n<>m then
240 print "ok"
250 stop
260 go to 400
edit resequence
ready 1301

lisn

260

260

100 if m>n then 150
110 next i
120 if n<>m then 150
130 print "ok"
140 stop
150 go to 400
ready 1301

5-17 AT59

edit resequence 210 110-130 5
ready 1302

lisn
100 if m)n then 150
210 next i
215 if n()m then 150
220 print "ok"
140 stop
150 go to 400
ready 1302

5-18 AT59

Request: sequence, seq

The sequence request adds a new set of line numbers to the current file,
beginning with a given line number and adding a given increment to derive
subsequent numbers. If the file already has line numbers, these are retained
but become part of the text on the line. If no increment is supplied, 10 is
assumed. If no arguments are supplied, the first line number in the file will
be 100.

Usage

edit sequence {first_num inc}

where:

1 .

2. inc

is the first line number (100 by default).

is the increment used to derive subsequent numbers (10 by
default).

Example

build
nonnumbered
file
input

ready 1503

edit sequence
ready 1503

lisn
100 nonnumbered
110 file
120 input
ready 1503

edit sequence 500 5
ready 1504

lisn
500 100 nonnumbered
505 110 file
510 120 input
ready 1504

5-19 AT 59

Request: string, str

The string request converts the current file into a random-access string
file. Each input line, including its line number, is converted into a separate
string.and the newline character(s) are removed.

edit string n

where n is a number giving the maximum length of any string to be used.

5-20 AT59

Request: suffix, suf

The suffix request inserts a given character string immediately following
each occurrence of an existing character string. Line numbers are not affected.

Usage

edit suffix /old_string/new_string/lineJ{ lineZ ... linen}

where:

1 .

2.

3.

4.

/

linei

is any delimiter
character cannot
new_string.

except blank or tab; the delimiter
be a character in either old_string or

is the string to be located.

is the string to be inserted.

is a single line number or range of lines; each linei
specifies the bounds within which the substitution ist~
occur.

Example

lisn

100 I am
110 go
120 to the
130 store
ready 1300

edit suffix /go/ing/110
ready 1300

lisn 110
110 going
ready 1300

5-21 AT59

APPENDIX A

COMMAND SUMMARY

The summary below is in alphabetical order by command name. For summary
descriptions organized by function ,. see /I Command Repertoire" in Section III.

append

bill

brief

build

bye

catalog

compile

dprint

appends unsorted contents of alter file to current file.

prints accounting information.

establishes brief output mode.

initiates mode of input for nonnumbered lines.

terminates a user session and disconnects the terminal.

prints information about
directories.

files

compiles source code in current file.

stored in

removes an entry from an access control list (ACL).

specified

queues a file for printing on the high-speed line printer.

edit requests specified DFAST text-editing operations.

enter, enterp logs in anonymous user~

explain prints online description of specified topic.

goodbye terminates a user session and disconnects the terminal.

hello

help

ignore

length

list, listnh

login

nbrief

new

old

terminates a user session but leaves the terminal connected
for subsequent user.

prints online description of login procedures.

discards contents of the alter file.

prints the number of words in the current file.

lists all portions of the current and/or alter files (listnh
suppresses header information).

prints an entry in an access control list (ACL).

connects registered user to Multics; used at dialup or after
a hello command.

terminates brief output mode.

initiates a new current file, deletes both the current and
alter files and changes the current name.

retrieves a previously saved file and makes it the current
file.

A-1 AT59

onecase

rename

replace

run

save

scratch

set acl

sort

system

tty

twocase

unsave

users

establishes a single-case input/output mode.

renames the current file.

replaces the contents of a previously saved file with the
contents of the current file.

compiles, if necessary, and executes the current file.

stores the current file.

empties both the current and alter files.

adds or changes an entry in an access control list (ACL).

modifies terminal type and modes associated with user's
terminal.

sorts the current file into ascending line-numbered
sequence.

resets the current system (compiler).

prints current command environment.

establishes two-case input/output mode.

deletes a stored file.

prints the number of users currently active on the entire
Multics system.

A-2 AT59

APPENDIX B

DFAST BASIC

DFAST BASIC is the same as standard Multics BASIC (as described in Multi~~
BASIC, Order No. AM82) with the exceptions stated below.

1. The library statement. External files containing subprograms called
by the programs in the user's current file must be listed in a library
statement in the calling program.

The library statement has the form:

library "filel"{, "fileZ", ... , "file!!}

The library statement lists the names of files containing the
subprograms to be used. The names are enclosed in quotation marks and
separated by commas. If only the filename is given in a library
.statement, it is located in the home directory at execution time.

2. The setdigits statement. The setdigits statement dynamically controls
the number of digits in a numeric value that may be printed as output.
It has the form:

setdigits formula

The value expressed by the formula in the statement is truncated to
its integer value and represents the number of print columns that will
be utilized by all subsequent print statements until another setdigits
statement is executed or until program execution terminates. From 1 to
19 printed columns may be specified.

In addition to the specified number of digits, the sign of the number
is printed. An exponent is also printed if all digits to the left of
the decimal point cannot be contained in the number of digits
expressed by the formula. The setdigits statement is valid only for
double precision programs.

3. The characters II II and" "are allowed in subprogram names.

4. A $ used in a format statement as a field delimiter need not be
followed by 1:+" or "_Ii; "_" is assumed.

B-1 AT59

5. The asc function recognizes the abbreviation 'iapo" to mean apostrophe.

6. The rules about the Multics environment and
(Section XIII and Appendix B of the Multics
No. AM82) are replaced by the rules for DFAST.

B-2

non-BASIC programs
BASIC manual, Order

AT59

*, see star convention

A

aCcess control
access modes 3-6
delete_acl command 4-10
deleting access 3-8
list acl command 4-26
listIng access 3-8
set_acl command 4-39
setting access 3-7

ACL (access control list)

alter file 3-4

append (app) command 4-2

append request 5-2

arguments 3-1, 3-2, 5-1

asterisk
see star convention

B

3-6

BASIC (DFAST version) 1-1, A-1

basic
as argument 1-1
as current system 3-5, 4-9, 4-36,

4-44

bill (bil) command 4-3

brief (bri) command 4-4

build (bui) command 4-5

bye command 4-6

c
case conventions 1-3

catalog (cat) command 4-7

character deletion 1-3

command environment 3-4, 3-5

command lines 3-2

INDEX

command repertoire 3-9

commands 4-1
see also individual command listings

compile (com) command 4-9

component
in file names 3-1
in ACL 3-6

current file 1-1, 3-1, 3-4, 3-5

current name 3-1, 3-4, 3-5

current system 3-1, 3-4, 3-5

D

delete_acl (da) command 4-10

delete request 5-4

deletion 1-3
see also edit requests

desequence request 5-4

directory 3-2
see also catalog command

dprint (dp) command 4-12

E

edit (edi) command 4-14, 5-1

edit requests
append (app) 5-2
delete (del) 5-3
desequence (des) 5-4
explain (exp) ·5-5
extract (ext) 5-6
insert (ins) 5-7
join (joi) 5-9
list (lis) 5-10
locate (loc) 5-11
merge (mer) 5-12
move (mov) 5-13
prefix (pre) 5-15
replace (rep) 5-16
resequence (res) 5-17
sequence (seq) 5-19
string (str) 5-20
suffix (suf) 5-21

enter (e) command 4-16

i-1 AT59

enterp (ep) command 4-16

error handling 1-4

explain (exp) command 4-17

explain request 5-5

extract request 5-6

F

file naming conventions 3-1

FORTRAN (DFAST version) 1=1

fortran
as current system 3-5, 4-9, 4-36,

4-44

G

goodbye (goo) command 4-18

H

hello (hel) command 4-19

help command 4-20

I

ignore (ign) command 4-21

input lines 3-4

insert request 5-1

instance tag 3-6

L
language conventions 3-1

language suffix 3-1

length (len) command 4-23

line deletion 1-3

line numbers
in commands 3-4
in edit requests 5-1
range notation 5-1

list (lis) command 4-24

list_acl (la) command 4-26

listnh (lisn) command 4-24

locate request 5-11

logging in 1-2, 4-16, 4-28

logging out 1-4, 4-6, 4-19

login (1) command 4-28

M
merge request 5-12

move request 5-13

N
names

file names 3-1
naming conventions 3-1

nbrief (nbr) command 4-30

new command 4-31

nonnumbered lines
see build command

J 0

join request 5-9 object program 1-1, 4-9, 4-36

i-2 AT59

old command 4-32

onecase (one) command 4-33

p

password 1-2, 4-16, 4-28

pathname 3-2

Person_id 1-2, 4-28

prefix request 5-15

Project_id 3-6

Q

quit signal 1-3

R

range notation 5-1

ready message 1-2, 1-3

rename (ren) command 4-34

replace (rep) command 4-35

replace request 5-16

resequence request 5-17

run command 4-36

s
save (sav) command 4-37

scratch (scr) command 4-38

segment 3-2

separator character 1-3, 3-2

sequence request 5-19

set_acl (sa) command 4-39

set_tty (stty) command 4-41

sort (sor) command 4-43

star convention 3-1

storage system 3-1 , 3-2

string request 5-20

suffix request 5-21

system (sys) command 4-44

system_name 3-4, 3-6, 4-44

T

text editing 1-1, 4-14, 5-1
see also individual edit requests

tty command 4-45

twocase (two) command 4-46

typing conventions 1-3
character deletion 1-3
line deletion 1-3
separator character 1-3, 3-2

typing errors 1-3

u
unsave (uns) command 4-47

user input 1-2

users (use) command 4-48

i-3 AT59

I
I
I
I
I

~'

uJ
z
::i
t:)
z
o
...J
<:(

t­
:J
U

I
I
I

~ I

._j

I
I
I
I
I
I
I

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

SERIES 60 (LEVEL 68)
TITLE MULTICS DFAST SUBSYSTEM

USERS' GUIDE

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER NO·1 AT59, REV. 0

DATED I MARCH 1976

r\. Your comments will be promptly investigated by appropriate technical personnel and action will be taken D L,t' as required. If you require a written reply. check here and furnish complete mailing address below.

FROM: NAME __ _ DATE ________________ ___

TITLE __ __

COMPANV ______________________________________ ___

ADDRE~ ______________________________________ _____

PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms

I
I
I
I
I

(
--I

<.?
2
o
--I
«
I­
:l
U

I
I
I
I
1,·1
I ~
I :::i
')j I,c"~

--'--------------------------------- i-~

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mlil
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

o
--I
o
u..

-~

,
I

w

I --I

I ~
--~----------.--------------------------~g

Honeywell

I «
I g
It~
I
I
l.a.
1.1 ,
J
I ,
I
I
I
I
I
I

(
r
I
I
I
t
I

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

20992, 5C678, Printed in U.S.A. AT59, Rev. 0

	000
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	A-01
	A-02
	B-01
	B-02
	i-01
	i-02
	i-03
	replyA
	replyB
	xBack

