
HONEYWELL

MULTICS
RELATIONAL
DATA STORE
REFERENCE
MANUAL

SOFTWARE

MULTICS RELA.TIONAL DATA STORE
REFERENCE MANUAL

SUBJECT

Description of the Multics Data Base Manager (Multics Relational Data Store)

SPECIAL INSTRUCTIONS

This manual supersedes A W53, Revision 3, dated June 1980 and Addendum A
dated October 1980. The manual has been extensively revised. Several
appendixes have been reorganized into sections. Change bars in the margin
denote technical additions and changes; asterisks denote deletions. Sections 7,
11,13 and Appendix F are completely new and do not contain change bars.

Refer to the Preface for additional MR9.0 information.

SOFTWARE SUPPORTED

Multics Software Release 9.0

ORDER NUMBER

AW53-04 September 1981

Honeywell

PREFACE

This manual is a combined data base primer and reference manu3l for the Mul tics
Rel ational Da ta Store (MRDS). It desc r i bes the fun ctions and subroutin e inter faces
to a relational type of data base organization. This manual is intended for users
familiar with the general characteristics of Multics, including the environment of an
interactive terminal session, and assumes the user has a basic understanding of the
simpler features of the PL/I language, since all examples are written in PL/I.

This manual contains references to the Multics Commands and Active Functions,
Order No. AG92, referred to as Commands, the Multics Subroutines and Input/Output
Modules, Order No. AG93, referred to as Subroutines, and the Multics Programmer'~
Reference Manual, Order No. AG91, referred to as Reference Manual.

This manual contains descriptions of the following Mul tics Priced Separate
products (PSPs); some of them may not be installed in your system.

(SGD6801) LINUS (Logical Inquiry and Update System)
(SGL680S) MRPG (Report Generator) Facility
(SGU6801) SORT/MERGE Facility

Significant Changes in this Addendum

ReVised the display_mode_dm command (refer to Section 3):

• Changed -attribute and -domain control arguments

• Added -crossref control argument

Deleted all data from Section 11.

The following changes were made to the restructure_mrds_db command (refer to
Section 14):

• Added three new control arguments (-force, -no_force, and -relation_type)

The information and specifications in this document are subject to change without notice. Con­
sult your Honeywell Marketing Representative for product or service availability.

12186
CHoneywell Information Systems Inc., 1987 File No.: 1L13 AW53-04D

• Added seven new restructure requests (create_attribute, create_domains,
delete attribute, delete domain, rename attribute rename domain, and
rename-relation) - - -

• Expanded the display_data_model restructure request

• Added three new control arguments to the ready_db restructure request
(-force, -no_force, and -relation_type).

12/86 iii AW53-040

Section 1

Section 2

Section 3

Section 4

12/86

CONTENTS

Introduction
Basic Data B3se Concepts .
Data Base Terminology
Characteristics of MRDS

Users' Guide
Basic MRDS Concepts
MRDS Terminology . .
Functional Diagram .
MRDS Tutorial

Access Mechanisms Other Than Store
Additional Capabilities

Scope Deletion
Temporary Relations .
Argument Substitution Using ".V."
" . x. "

D a t a Ba s e De s i g n
Examples of Normalization .

First Normal Form
Second Normal Form
Third Normal Form

Domains and Attributes
Primary and Secondary Indexes .

Secondary Indexing

and

Page

1 -1
1 -1
1 -2
1-4

2-1
2-1
2-2
2-4
2-5

2-16
2-23
2-23
2-24

2-25
2-26
2-28
2-28
2-29
2-29
2-30
2-32
2-33

Commands
adjust mrds db, amdb
copy mrds data, c pmd

3-1
3-3

. 3-5. 1
create mrds db, cmdb
create-mrds-dm include, cmdmi
create-mrds-dm-table, cmdmt
create-mrds-dsm, cmdsm
display mrds db access, dmdba .
display-mrds-db-population, dmdbp .
display-mrds-db-status, dmdbs .
display-mrds-db-version, dmdv •.....
display-mrds-dm~ dmdm
display-mrds-dsm, dmdsm
displaY-mrds-open dbs, dmod ..
d1splaY-mrds-scope settings, dmss .
display-mrds-temp dir, dmtd
qUiesce-mrds-db, qmdb•...
secure mrds db, smdb
set mrds temp dir, smtd
unpopulate_mrds_db, umdb

Da ta Sublanguage Subroutines
Formal Definition of the Selection

Expression . •
Formal Syntax • . .
Where Clause Comparisons
Examples of Selection Mechanisms
d sl

dsl $close ..
d s 1 --$ c 1 0 sea 11
dsl-$compile .
dsl=$declare

iv

3-6
3-14
3-18
3-22
3-31
3-33
3-36
3-39
3-40
3-45
3-51
3-52
3-54
3-55
3-57
3-59
3-60

4-1

4-1
4-1
4-5
4-6
4-7
4-9
4-9
4-9

4-10

AW53-04D

Section 5

Section 6

Section 7

12/86

CONTENTS (cont)

4-11 dsl $define temp reI .
dsl-$delete- .. - ..
dsl-$dl scope
dsl-$dl-scope all
dsl-$get attrIbute list
dsl-$get-opening temp dir

. 4-13
4-14
4-15
4-16
4-19
4-20
4-22
4-23
4-26
4-28
4-29
4-32
4-33
4-35
4-37
4-39
4-40
4-41

dsl-$get-path info . ~
dsl-$get-population
dsl-$get-relation list.
dsl-$get-scope . ~
dsl-$get-temp dir
dsl-$list openings .
dsl-$modify . . .
dsl-$open
dsl-$retrieve
d sl-$set scope
dsl-$set-scope all .
dsl-$set-temp dir
dsl-$store . ~ ..

Example -~ Opening, Accessing, and Closing a
Data Base

Example -- Modification of Key Attributes
4-42
4-43

Built-In and Installation-Defined
Built-In Functions.

abs . .
after
before
ceil
concat
floor .
index . .
mod . . .
reverse ..
round . .
search
substr
verify

Writing Nonstandard Functions

Subsystem Writers' Guide
mmi

mmi $close model
mmi-$create db . . • .
mmi-$get authorization .
mmi-$get-model attributes .
mmi-$get-model-info ...
mmi-$get-model-relations
mmi-$get-secured state
mmi-$open model ~
mmi-$quiesce db . . .
mmi=$unquiesce_db . . .

msm i•..
msmi $close submodel
msmi-$get attribute data
msmi-$get-relation data
msmi-$get-submodel-info
msmi=$open_submodeI . •

Securi ty
DBA

Secure Data Bases .•.•.

Fun ctions . . 5-1
5-1
5-1
5-2
5-2
5-3
5-3
5-3
5-4
5-4
5-4
5-5
5-5
5-6
5-6
5-6

6-1
6-2
6-2
6-2
6-3
6-5
6-1

. 6-8. 1
6-11
6-12

• • 6= 1 3. 1
. 6-1 3. 1

6-14
6-14

. • . .. 6-14
6-16
6-18
6-20

. . .. 1-1
1-1
1-1

Secure Submodels and the secure.submodel
Directory . • . • • • 1-1

v AW53-04D

Section 8

Section 9

Section 10

Section 11

Section 12

Section 13

Section 14

Section 15

Appendix A

Appendix B

Appendix C

Appendix D

12/86

CONTENTS (cont)

Required ACLs
Scopes
Relation Level Security
Attribute Level Security

Data Model Security
Data Value Security

Data Base Backup
Checkpoint . .
Rollback

Base Development Tools .
mrds call, mrc

close
declare
define temp reI
delete -. . :- . .
dIs cope, d s . .
d f~scope all . . .
get population, gp
get-scope, gs
list dbs .
mod ify
open . . .
retrieve ..
set modes
set scope
set-scope all
store -

Obsolete Interfaces.

Changes In MRDS . . .

Effect of Data Base Version on Commands and
Subroutines

Performance Considerations
Data Base Creation . .

Data Base Use ..
Selection Expression

Restructuring Subsystem ..
restructure_mrds_db, rmdb

Page

7-2
7-2
7-3
7-3
7-3
1-4

8-1
8-1
8-1

9-1
9-3
9-3
9-4
9-5
9-6
9-7
9-9
9-9

9-11
9-12
9-13
9-14
9-17
9-20
9-20
9-23
9-25

10-1

11-1

12-1

13-1
13-1
13-2
13-2

14-1
14-3

Data Management System Interface
Creating a Data Base . . .
Converting a Data Base ..
Features

. • .• 15-1

. • •. 15-1
15-1
15-1

Choosing Between Data Base Types .
DMS Command and Subroutine Descriptions

before journal status (bjst)

15-2
15-3
15-4
15-7 bj mgr-call (b}mc)

transaction (txn)
before journal manager
transaction_manager -

Error Tables

MRDS Da ta . .

Bibliography

Set Oper a tor s •

vi

15-13
. 15-23
. 15-28

A-1

B-1

C-1

D-1

AW53-04 D

CONTENTS (cont)

Appendix E Administrator-Written Procedures .•.....
Coding Administrator-Written Procedures

Encoding Procedure
Decoding Procedure
Check Procedure .

Appendix F MRDS Include Files

Index

12/86 vii

Page

E-1
E-2
E-2
E-3
E-3

F-1

i-1

AW53-04D

SECTION 1

INTRODUCTION

The relational data base interface, known as the Multics Relational Data I
Store (MRDS), provides Multics users with a general data base management facility
that is callable from Multics command level and from programming languages that
support the standard Mul tics call interface. A full range of data base defini t ion,
retrieval, and update capabilities is available, together with facilities that
provide a large measure of data independence and control of concurrent accesses
to the data base.

BASIC DATA BASE CONCEPTS

data base (DB)
an integrated collection of operational data (i.e., data that can be
read, written, or modified).

data base manager (DBM)
a software system designed to make an integrated collection of data
available to a variety of users while providing security measures to
ensure privacy where desired.

data base administrator (DBA)

user

the person responsible for defining and creating the data base and
for controlling its use.

a person, subject to administrative controls, who retrieves, updates,
or deletes data within the data base. Anyone having access to the
Multics system can be both the administrator and user of his own
data base. In general, however, a user is one of many others who
access a common data base which they do not administer.

data independence
a characteristic of a data base management system that allows the
user to be more concerned with the information content and logical
properties of the data base and less concerned with the data's physical
organization and location. A high degree of data independence implies
that the syntax of inquiries to the data base manager is relatively
insensitive to changes in the physical organization of the data base.

data mJdel (DM) or schema
the total description of a data base, defining the characteristics
and organization of all the data within the data base. This description
allows users to reference data in logical rather than physical terms.
The data base administrator creates the data model; the data base
manager references the data model prior to accessing the associated
data base.

data submodel (DSM) or subschema
an alternate, and usually incomplete, description of an existing
data base that may optionally be provided to users of the data base.
This alternate description enhances "data independence" by allowing
users to concern themselves with only a particular subset of an

1-1 AW53-04

existing data base and/or reference a data base with alternate (alias)
names. The data submodel may be created by either the user or the
data base administrator. The user may then "open" the submodel,
creating the illusion of accessing the data base defined in the
submodel instead of the actual data base.

DATA BASE TERMINOLOGY

The relational and network approaches to data base management are based on
differing philosophies and each approach has its own terminology. The relational
approach draws upon terms found in the precise mathematical theory of relations
(attributes, tuples, etc.), whereas the network approach draws upon terms common
to the data processing world (field, record, etc.). As illustrated in the following
data base and table example, there exists nearly a one-to-one correspondence
between the two sets of terminology.

1-2 AW53-04

PRESIDENTS DATABASE

NAME PARTY HOME-STATE

Eisenhower Republican Kansas
Kennedy Democrat Massachusetts
Johnson Democrat Texas
Nixon Republican California

COMPARISON OF TERMINOLOGY

DEFINITION ILLUSTRATION RELATIONAL NETWORK
TERMINOLOGY TERMINOLOGY

A file. A collection The set of data relation record type
of organized data. given above.

A record. A represen- "Kennedy,Democrat, tuple record
tative "row" of data. Massachusetts"

The name of a data "HOME-STATE" attribute field or
field within a record; data-item
a column of information

The value of a data "Texas" attribute value of field
field within a record. value or data-item

The set of all values a The names of the domain not used
data field may assume. 50 states.

User's definition of Created by user data subschema
the data base. & administrator. submodel

Total definition of Created by the data model schema
the data base. administrator.

Associated terms: MRDS CODASYL,
I-D-S/II

1-3 AW53-04

CHARACTERISTICS OF MROS

The dat.!3 management system can be c!3lled from programming languages supporting
the st1ndard Multics call interface qS well as from Multics command level via the
mrds c811 command.

All data bases reside wi thin the Mul tics storage system as directories,
segments, and files, and are protected by the security features inherent to the
Multics virtual memory environment.

MROS uses relational data base structures that are based on the mathematical
theory of relations.

Inquiries to MROS consist of a single logical request containing a
selection expression that defines the goal of the search through the data base. For
example:

"-range (x Person)
-select x.emp num
- w her ex. n am e - = " " Sm i t h "" "

This expression (defined in detail in Section 2) contains a relation (file) named
"Person". The expression defines the subset of employee numbers in the Person
relation that are assigned to employees named Smith. This set of employee numbers may

I be compiled, deleted, modified, or retrieved depending on the user's intention.

2/85 1-4 AW53-04C

SECTION 2

USERS' GUIDE

This section, which is a primer for the MRDS interface, contains general
explanations for several commands and subroutines described in detail in Sections
3 through 5.

The primer closely follows the actual sequence of events in a typical session
wi th MRDS. Al though the exact command invocations and examples shown may be
duplicated for training purposes by a terminal user, they should not be interpreted
as representing a rigid or necessary sequence of operations. Rather, each example
outlines the general function and typical usage of a command or subroutine. The
user should examine the detailed descriptions provided in later sections to
build examples that fit a particular requirement.

In this section the use of any particular command or subroutine is not an
exhaustive description of its capabilities. This section uses only those features
that are essential or instructive for the novice user of MRDS. The Commands,
Subroutines, and Subsystem Wri ters' Guide sections of this document contain a
description of the more advanced features of MRDS.

In all examples, the longest and most descriptive name of a command or
subroutine is used for clarity. Examples are often stylistically formatted for
aesthetic reasons only. Such formatting should not be construed as mandatory,
or even recommended! since MRDS accepts all commands and source text in free
form.

This section contains information for both the data base administrator and
the data base user. Readers who are only interested in accessing an established
data base need not concern themselves with:

• MRDS Tutorial (steps 1 and 2)

• Data Base Design

It is assumed that the reader is familiar with the basic concepts and
terminology contained in Section 1.

BASIC MRDS CONCEPTS

A relational data base is best viewed as a simple tabular or columnar
arrangement of data divided into one or more groups called relations. The data
wi thin a gi ven data base has been placed there because it, in some sense, fi ts
together and is used or collected for some common purpose. The data within a
relation of the data base can be considered as data belonging to some subclass
or subset of the overall data base.

2-1 AW53-04

I

Are 1 at ion a l d a t::l bas e i s :n 0 s tea s i 1 Y pic t u red a s a s e r i e s 0 f col urn n s t hat for tn a
table:

DATA BASE "A"

Relation 111 Relation 112

tuple tuple
tuple tuple

tuple att 111 att 112 att II
tuple att 111 ::ltt 112 att /I
tuple att 111 att 112 att /I

where:

1. A relational data base contains at least one relation (file).

2. E3ch relation contains at least one tuple (record); otherwise, it is considered
an unpopulated relation.

3. An unpopulated data base contains only unpopulated relations.

4. A tuple contains at least one attribute (field).

5. All tupl~s within a given relation have the same format.

6. Some fixed set of one or more attributes in each relation must uniquely identify
each tuple in that relation. (These attributes combined are called the primary
key of the relation.)

MRDS TERMINOLOGY

2/85

access

compile

the ability to perform any combination of data base operations.

converts a selection expression to internal structure format and saves it
for the life of a data base opening.

data base

DBA

delete

a Mul tics directory containing the model (schema) defini tion of the data,
data storage files, and access control structures.

a data base administrator, defined as someone holding "sma" ACL on the
data base directory.

deletes a complete tuple from a relation.

exclusive
a qualifier to an opening mode that prohibits concurrent updating by
other users.

2-2 AW53-04C

2/85

model

modify

open

the main view (schema) defining the data base and its data.

alters one or more attributes of a tuple existing within a relation
(excluding the attributes which make up the primary key).

readies a dat8 base for user access.

populated
a d a tab a s e in wh i.::! hat 1 e a s ton e 0 fit s reI at ion s con t a ins a tIe as ton e
tuple of dat8; otherwise, the data base is unpopulated.

pri::nary key
the set of attributes (one or more) whose values are used to uniquely
identify a tuple in a relation.

retrieval
an opening mode for a dat~ ba~e that allows only retrieval operations.

retrieve

scope

secured

returns some data subset of the data base.

how the user intends to share the data base with others.

a data base that has had the command secure mrds db wi th the set control
argument run against it and has not subsequentlyhad the secure mrds db
command with the -reset control 8rgument run against it. - -

A secured submodel is located under the secure.submodels directory,
which is under the data base directory, for the purpose of providing
attribute level access controls.

selection expression

shared

store

the specification of the relations referenced, attributes selected, 8nd
~onditions required to uniquely identify the desired tuples.

the qU81ifier to an opening mode that allows concurrent access by other
users. Unless an exclusive mode is specified (e.g., exclusive update),
data bases are opened in a shared mode.

adds a complete tuple to a relation.

submodel

tuple

a structure providing an alternate view (subschema) of the main model
view (schema) of the data base data. It also contains the relation and
attribute access specification used when the data base is secured.

an instance of data (a record) stored in a relation made up of individual
attributes (fields).

unpopulated

update

view

a relation containing no tuples or a data base containing only
unpopulated relations.

an opening mode for a data base that allows all data base operations.

the logical relation and attribute makeup of the data base provided by a
model or submodel. A view may be a subset of the entire data base.

2-3 AW53-04C

FUNCTIONAL DIAGRAM

The process of creating and accessing a data base consists of four basic
steps:

1. Create the data model and the corresponding unpopulated data base.

2. Create an optional data submodel.

3. Load the unpopulated data base.

4. Access the populated data base.

2-4 AW53-04

The following diagram illustrates these four steps.

~

.iI

data
model

source

data
submodel

source

raw
data

user's
inquiry
to the

data base

MRDS TUTORIAL

processed
by

create mrds db
(crodb) -
command

• •

processed
by

create mrds dsm
(cmdsm)-
command

• •

load
entered program

via --or--
~ ________ .I mrds_call

--or--
LINUS

user's
application

entered program
via --or--t-----... mrds_call • --or-­

LINUS

calls

calls

creates

-*-
data
sub­
model

••

option­
ally
refer­
ences

Multics

creates

data
model

••

refer­
ences

Relational

• Data Store (MRDS)
•

creates
the
unpop­
ulated

data
base

....

acts
upon

The numbers (1,2,3, and 4) on the diagram correspond to the numbering used
in this tutorial. Steps 1 and 2 describe processes generally done once by the
data base administrator. Steps 3 and 4 concern users accessing an established
data base. Users who are only interested in accessing an established data base
need not concern themselves with steps 1 and 2.

The examples used in this section are PL/I examples, many of which utilize
the Data SubLanguage (DSL) subroutines. (Parallel mrds call examples are included
under the mrds call command description). In addition, the Logical Inquiry and
Update System [LINUS) may also be used to access an established data base.

2-5 AW53-04

1. Creating the data model and the corresponding unpopulated data base.

a. The data base administrator decides to create a relational data
base.

b. Using one of the Multics text editors. the administrator builds a
text segment called the data model source. This segment contains
a description of the data and its organization within the desired
data base. For example, let the segment "foo.cmdb" contain the
following text:

domain:

attribute:

relation:

name
emp _ num
comp

char (12) •
char(5);

char 12,
char-5.
char=:5;

Employee (name emp num* comp).
Comp_mgr (comp* emp=num);

This example defines a data base consisting of two relations (Employee
and Comp mgr). The domain and attribute statements define the
names and characteristics of three attributes 1 (name. emp num,
and comp) and the relation statement defines the names and composItion
of the two relations.

The domain statement is not a structure declaration and the order
of the attribute names has no significance here. The domain statement
is simply a list of names and associated data types. (The definable
data types are a subset of the Multics PL/I data types.) In this
example. the "emp num" attribute is defined to be a 5-character
string. -

The relation statement determines the logical structure of the
data base. It is here that the number of relations. the names of
the relations. and the logical composition of the relations are
defined. The Employee relation (record) is defined to consist of
three attributes (fields): name, emp_num, and comp in that order.

The asterisks in the relation statements designate the attributes
that are the primary keys of the relations. The primary keys in
this example are emp num and compo A primary key must be designated
and it must be unique. Since no two employees can have the same
employee number. "emp num" is a good choice for the primary key
of the Employee relation. Additional information regarding the
meaning and selection of primary keys is provided under "Primary
and Secondary Indexes" described later in this section.

The domain statement actually defines the characteristics of the set of domains.
It also defines a set of identically-named attributes having those characteristics.
The attribute statement is used to define attribute names for use in relations
over generic domain data types. This is explained in more detail under the
heading "Domains and Attributes" later in this section.

2-6 AW53-04

3/84

The following diagram illustrates the data base defined in the
above data model source:

Employee

name emp_num comp comp emp_num

name emp_num comp comp emp_num

· · · · · · · · · · · · · · ·
name emp_num comp comp emp_num

The Employee relation is a list of employee names, employee numbers,
and the name of the component each employee is assigned to. The
Comp mgr relation is a list of all components in the firm and the
employee number of the manager of each component.

c. The administrator now invokes the create mrds db (cmdb) command
in order to translate the data model source and-create the desired
data base.

create mrds db foo.cmdb Pers Info.db - - -
Using the description found in the segment "foo.cmdb", this command
creates a data base within the user's working directory consisting
of a directory named Pers Info.db and all subordinate segments j I
files, and directories required to implement the defined data
base. For the current example, the data base has the following
file structure.

2-7 AW53-04B

I

I

I

I
I

3/84

db.control

(seg)

db model

(seg)

Employee.m

(seg)

resultant _segs.dir

(dir)

Pers Info.db
Employee

(dir)
(file)

Comp_mgr.m

(seg)

Comp_mgr

(file)

secure.submodels

(dir)

. . .

dbcb

(seg)

rdbi

(seg)

Pers In
(optio

(fil

fo .dsm
nal)

e

Notice that three directories, six segments, and three files are
required to implement the Pers Info.db data base. The data base
control segment, "db.control", is used internally by MHDS to control
concurrent access to the data base. The db model segment holds
common data base information, such as descriptions of domains and
a list of relation names.

The segments ending in ".m" hold the model information for the
corresponding relations. The files having the relation names hold
the actual data and are managed by various file managers. The
"secure.submodels" directory holds submodels that provide attribute
level secur i ty. Th e Per s In fo. d sm file is an opti onal submodel,
which can be created as shown below.

2-8 AW53-04B

3/84

Knowledge of the file structure of the data base, while informative,
is normally of no concern to the data base user since the MRDS
interface makes the structure transparent.

The resultant segs.dir contains a copy of the internal structures
used by MRDS on the open data base. The internal structures are
in the dbcb and rdbi segments under this directory. This copy
makes the opening of the data base faster. It is created when
the data base is created via the cmdb command. If an existing
data base is opened ~y a DBA, the copy is created only if it does
not already exist. Note that MRDS can open the data base even if
this directory is absent, but it takes a bit more time.

The DBA can use the Multics system ACL commands (see MPM Commands
manual) to set the appropriate access controls to the files I
(relations), segments, and the containing directory. For example,
if a user is only to retrieve information from the Employee relation,
but is allowed to modify information within the Comp mgr relation,
the administrator must give that user the following minimum access
rights:

db.control rw (read and wr i te)
db model r (read)
Employee.m r (read)
Comp_mgr.m r (read)
Employee r (read)
Comp_mgr rw (read and wr i te)
dbcb r (read) I rdbi r (read)
resultant_segs.dir s (status)

See Section 7 for more details on security.

2-8. 1 AW53-04B

3/84

2. Creating an optional data submodel.

a. A submodel is an alternate description of an existing data base.
When a user opens a data base using the name of an associated
submodel instead of the name of the actual data base, the user's
view of the data base corresponds to the data base described in
the submodel. This gives the user the illusion of accessing the
data base defined by the submodel. A submodel could be used
when:

(1) It is desirable for some users to have a simpler subset view
of a large data base.

(2) It is desirable to reference the data base and its contents
using alternate or alias names instead of using the names
actually defined in the data model.

(3) It is desirable to make the restructuring of a data base
transparent to the data base users. For example, application
programs that reference a particular relation containing four
a ttr ibutes need not be rewr it ten if a fifth attr i bu te is
added to the relation in a redesign of the data base. The
programs need only "open" a submodel that defines that relation
as having the original four attributes.

(4) Attribute level security is to be provided (see Section 7).

b. A data submodel may be created at any time by ei ther a user or
the data base administrator by creating a text segment called a
data submodel source. This segment, like the data model source,
contains a description of the desired data base. However, unlike
the data model source, the data base relations and attributes
described here must be a subset and/or a renaming or reordering
of an existing data base's relations and attributes. In addition,
the data submodel source may only contain relation statements and
no domain or attribute statements. The number of attributes present
in these relation statements must be less than or equal to the
actual number of attributes in the existing relations. Alias
names, if desired, are defined by setting the new name equal to
(=) the actual name used in the existing data base. For example,
let the segment named Pers_Info.*.cmdsm contain the following text:

relation: Employee (last name = name emp num),
comp = Comp_mgr (comp emp_num);

The ordering of terms around the equal sign is significant and
must be <desired name> = <actual name>.

Notice that comp is the name of both a relation and an attribute
in this example. This is allowed. Notice also that no asterisks
are used in the syntax of submodels.

2-9 AW53-04B

This text describes an alternate view of the Pers Info.db data
base which is logically equivalent to the following data model
source:

domain: char(12),
char(5);

attribute: last name char 12,
emp_num char-5,
comp char=5;

relation: Employee (last name emp num*),
comp (comp* e~p_num); -

c. The create mrds dsm (cmdsm) command is now invoked as in the following
example:

create mrds dsm Pers Info >udd ... >Pers Info.db -install

Using the description found in Pers Info.cmdsm, this command creates
a data submodel named Pers Info :-dsm under the secure. submodels
directory of the data base and associates the submodel with the
Pers Info.db data base apparently located in a directory other
than-the user's working directory. Opening the data base with
the pathname for Pers Info.dsm instead of Pers Info.db creates
the illusion that the user is accessing the data-base defined in
2b above instead of the actual data base defined in 1b. The
number of submodels associated with a given data base is arbitrary.

d. Two restrictions exist when using a data submodel that defines a
relation as being a subset of the actual relation in the data
base (i.e., the submodel relation contains fewer attributes than
the actual relation and thus is a partial view of the relation).
The operations that are restricted are storing tuples in or deleting
tuples from such a relation when using the submodel.

3. Loading the unpopulated data base.

a. Depending on the form and quantity of the data, the administrator
may elect to input that data using a terminal, a tuple at a time,
using the command interface mrds call or the LINUS store request,
or to write and execute a load program designed to read the raw
data from existing file(s) and store it into the data base using
calls to the dsl $store subroutine. In addition, the LINUS store
request may be used to load relations from raw text files if the
format of the files is identical to the format of the relations.

2-10 AW53-04

3/84

b. Prior to loading, the data base must be opened in a manner similar
to opening a file for 1/0. One of the following four opening
modes must be given:

Open
Mode

retrieval
update

Open Mode
Constant Name

retrieval
update

Value

exclusive retrieval
exclusive update

exclusive retrieval
exclusive=update

1
2
3
4

The named constants are defined in
"mrds_opening_modes_.incl.p11" system include file.

The following PL/I example illustrates
opens the data base Pers Info.db in an
(declarations are omitted)~

a subroutine call
exclusive update

the

that
mode

call dsl_$open ("Pers_Info.db", dbi_1, exclusive_update, code); I
If the opening is successful, MRDS assigns and returns an integer,
called the data base index (dbi), which remains unique to the
data base during the current user session (from opening to closing).
A user process may have 128 data bases open at one time and must
refer to each opened data base by the assigned data base index in
all subsequent calls.

c. The storing of data into a data base may occur at any time during
the life of a data base and may in fact be a continuing process.
Quite often, a data base is created as a container for data previously
stored in another media. In this case, the initial transfer of
data into the data base is a process known as loading (populating)
the data base and is actually no more than a ser ies of store
operations.

This example illustrates the loading of the data base
using data found in two existing data files named
comp data. (Not all PL/I declarations are shown, but
structure declarations may be obtained by
create mrds_dm_include command.)

Pers Info.db
emp data and
the-relation
using the

emp_data comp_data

Akins 57111 Eng Mfg 51603
Hamilton 48227 Mfg Eng 48350
Morton 48350 Eng
Shaw 51603 Mfg
Wh i ting 49189 Fin
Nielson 52464 Eng

2-11 AW53-04B

I
I

I

I

I

2/85

declare 01 Employee,
02 name char(12),
02 emp num char(6),
02 comp char(6)j

declare 01 Comp mgr,
02 comp char(6),
02 emp num char(6);

react file (emp datar into (Employee);
call d s 1 $ s tor e (d b i 1, "Em p 10 ye e", Em p loy e e . n am e ,

Employee:emp num, Employee.comp, code);
do while (~eof emp data);

read fIle Temp data) into (Employee);
call dsl $store (dbi 1, "-another", Employee.name,

Employee. emp_num, Employee .comp, code);
end;
read file (comp data) into (Comp mgr);
call dsl $store-(dbi 1, "Comp mgr", Comp mgr.comp,

Comp mgr.emp num, code);- -
do while T~eof comp data);

read fIle (comp data) into (Comp mgr);
call dsl $store-(dbi 1, "-another", Comp_mgr.comp,

comp_mgr.emp_num, code);
end;

NOTE: Data conversion is performed automatically by MHDS
and proceeds according to the standard PL/I
conversion rules. In this example the char(6) comp of
the Employee structure is converted into the char(5)
comp attribute in the data base. This data conversion
is only available for assign data types, which
excludes the picture data type~

If an incomplete tuple is being stored (i.e., 3 tuple wi th one or more
unknown attribute values), the user must insert null values into the
unknown attribute of the tuple being stored in order to prevent a
shifting of attribute values into the wrong attribute location. One
rule used in this case is to substitute a " n (blank) for attributes
requiring alphabetic data and a -1 (or some type of numeric value that
cannot be confused with valid data) for an attribute requiring numeric
data.

The Pers Info.db data base is considered populated when the load
program completes its execution. Its logical appearance is:

Pers Info .db

Employee

name emp_ num* comp comp· emp_num

Ham il ton 48227 Mfg Eng 48350
Morton 48350 Eng Mfg 51603
Whiting 49189 Fin
Shaw 51603 Mfg
Nielson 52464 Eng
Akins 57111 Eng

The actual internal order of the data within the data base and
the correspondin~ order in which the data might be retrieved are
functions of internal implementation and should not be anticipated
by the user. Standard Multics sort commands and subroutines are

2-12 AW53-04C

3/84

available for users desiring sorted data (refer to the Mul tics
SORT/MERGE manual). LINUS will also return sorted data if desired. I

d. After load ing, if no further access ing is des ired, the data base
is closed.

call dsl_$close (dbi_1, code);

4. Accessing the populated data base.

a. In order to access an established data base, a user must first
open the data base in the desired open mode. Every user must
ind iv idually open a data base even though other user s may have
the same data base currently open.

call dsl_$open ("Pers_Info", dbi_1, update, code);

This example opens the data base Pers Info.db in the update mode.
If another user has the data base currently open in an exclusive
mode, MRDS returns a code indicating that the data base is busy_
Otherwise, a unique data base index is returned and the user may
proceed.

An array illustrating those times when a user requesting a data
base opening may receive a "busy" code is shown below. For example,
a user requesting an opening mode of exclusive retrieve (er) of a
data base currently open in an update (u) mode with an update
form of scope set (e.g., for store), receives a busy code and
must wait until the other user closes the data base.

Open
Request

r

u

er

eu

r

busy
it

Another User's
Current Open Mode

u er eu

busy
*

busy busy
* *

busy busy
* ~

busy busy busy
it ,; ,;

(*) The r or u shared modes will only conflict when conflicting
scope has been or is requested.

($) The er and eu modes will only conflict if the opening views
contain the same relations.

b. If the data base is opened in one of the shared modes (i.e.,
update or retrieval), MRDS prevents access operations until the
user performs the set scope operation. Set scope is the process
of declaring how the data base is to be shared with other users
by specifying:

(1) The operations the user intends to perform on the relations
included in the user's view of the data base (called permit_ops)

2-13 AW53-04B

I

I

(2) The operations others are to be prevented from performing on
the relations in their view of the data base (called prevent ops)

Permit ops and prevent ops are initiated by the dsl $set scope
subroutine call by specifying the sum of scope mode encodIng (s)
that correspond to the desired data base operation(s).

Scope
Code

o
1
2
4
8

null
read attr or read
append tuple or store
delete-tuple or delete
modify=attr or modify

call dsl $set scope (dbi 1, "Employee", 1, 15,
"Comp=mgr"-;- 3, 14, 120, code);

In this example, the user is indicating:

(a) To permit the retrieve operation (permit ops = 1)
in the Employee relation and retrieve and store
operations (permit ops = 1 + 2) in the Comp_mgr
relation for himself.

(b) Other users are prevented from performing any
operation on the Employee relation (prevent ops =
1 + 2 + 4 + 8) and are prevented from performing
store, delete, or modify operations on the Comp mgr
relation (prevent ops = 2 + 4 + 8), while retrIeve
operations may still be done by others on this
relation. (See "Additional Capabilities", described
later in this section, on dynamically changing
scope.)

(c) The length of time (in this case 120 seconds) the
user is willing to wait for the scope request to
be satisfied. If another user has the data base
currently open with a scope that conflicts with
this request, MRDS automatically queues the request
with the intent of satisfying it when the conflicting
scope is relinquished. If the specified wait time
is exceeded without the scope request being
satisfied, MRDS returns a code indicating that the
data base is busy. Otherwise the user may proceed.

The user may specify the number of seconds to wait
to satisfy the set scope request (there is no
anticipated maximum), or may elect to use the MRDS
default value of 30 seconds by omitting the argument.

c. Once the data base is open (and, if a shared opening, the set scope
request is accepted) the user can access the data base In any
manner desired, subject of course to access restrictions imposed
by the data base administrator and to self-imposed opening mode
and scope restrictions.

Access Mechanisms Other Than Store

To access an open data base, the user must make a subroutine call to the
appropriate MRDS entry point in order to:

• Supply the name of the operation to be performed (i.e., delete, modify,
or retrieve).

2-14 AW53-04

• Supply the data base index of the target data base.

• Specify that subset of the data within the data base upon which the
operation is to be performed.

The name of the operation is indicated by the dsl entry name used in the
subroutine call. The three possibilities are:

call dsl_$delete

call dsl $modify

call dsl_$retrieve

) ;

) ;

. ..);

The data base index (dbi) is always supplied as the first argument in the
subroutine call. For example:

call dsl $delete (dbi,);

The subset of the data within
by the second argument known as a
of the Selection Expression" in
character=string argument normally
and a where clause, each identified
and -where. For example:

call dsl $modify (dbi,
"-range .. .
-select .. .
-where ... ",);

the data base to be operated upon is defined
selection expression (see "Formal Definition
Section 4). A selection expression is a
containing a range clause, a select clause,
respectively by the keywords -range, -select

The construction of a selection expression is best understood after the
user has mentally performed the desired operation on a tabular representation of
the data base. During this process, the user identifies:

• The relations to be referenced in order to accomplish the desired operation
(range clause).

• The at tri butes affected, that is, the at tri butes to be retri eved, modi fied,
or deleted (select clause).

• The conditions required to uniquely identify the desired tuples (where
clause).

The relations to be referenced by these data base operations appear in the
-range clause of the selection expression, the attributes to be affected appear
in the -select clause, and the conditions required to identify the desired tuples
are specified in the -where clause.

In order to illustrate the construction of a selection expression, assume
that ~ne employee tuples of all ~ngineering employees having an employee number
greater than 50000 are to be deleted from the Employee relation of the Pers Info
data base above. Note the following: -

• The Employee relation is the only relation that needs to be accessed
in order to accomplish the objective.

• Since only entire tuples can be deleted, all of the attributes of the
Employee relation are affected (name, emp_num, and comp).

• There are only two conditions required to select the desired tuples.
The employee number must be greater than 50000 and the component must
be equal to "Eng".

2-15 AW53-04

I

The following PL/I subroutine call accomplishes the desired deletions. The
mul til ine formatting is shown only for the sake of clari ty. PL/I declarations
are not shown.

call dsl $delete (dbi 1,
"-r~nge (E Emploiee)
-select E.name E.emp num E.comp
-wher e «E. emp num >-""50000 -''') &

(E.com~ = ""Eng""»", code);

The -range clause is said to assign a "tuple variable" E to the Employee
relation. Tuple variables may be given any name, but generally a one- or two­
char a cter abbr ev ia ti on for the des ig nated rela ti on is chosen. Tu pIe var iables
should be thought of as pointers which are moved about the selected relation by
MRDS while it attempts to satisfy the conditions specified in the -where clause.
It is sometimes necessary to assign two or more tuple variables to the same
relation.

The -where clause specifies the conditions necessary to identify the tuples
of interest. In this case, the employee number must be greater than 50000 and
the component must be equal to the string "Eng". The double quoting is required

I in order to resolve the ambiguity of quotes within quotes. The parentheses are
required for efficient parsing of the selection expression.

I

The -select clause lists the attributes to be affected when a tuple is
found that satisfies the conditions specified in the -where clause. For this
data base, the tuples containing the names of Nielson and Akins satisfies the
specified conditions and cause their deletion. For the convenience of the user,
a tuple variable appearing by itself in a -select clause is interpreted to mean
all attributes, allowing the above subroutine call to be rewritten as:

call dsl $delete (dbi,
"-ringe (E Employee
-select E
-where «E.emp num > ""50000"") &

(E.com~ = ""Eng""»", code);

MRDS assumes no precedence for the boolean operators "&" and ttl"; therefore,
parentheses must direct a specific order of evaluation. Selection expressions
may be arbitrarily complex and may include the following operators:

3/84

Algebraic
Operators

= (equal to)
< (less than)
> (greater than)
<= (less than or equal to)
>= (greater than or equal to)
= (not equal to)

2-16

Boolean
Operators

&
I
I

"

(and)
(inclusive or)
(not)

AW53-04B

Selection expressions can be compiled to reduce the overhead of translation.
Compiled selection expressions can be used directly in the execution of
define temp rels, retrieves, modifies, and deletes. The following PL/I subroutine
call co!npiles a desired selection expression.

call dsl $compile (dbi,
"-ringe (e employee)
-select e.name e.emp num
-where (e.comp = ""SW-ENGH"")". se-index, code);

Compiled selection expressions are freed or released by calling the compile
entrypoint in the normal manner and supplying a negative number for the selection
expression index of the compiled selection expression that is to be deleted. In this
case, the contents of the selection expression are unimportant. For example:

2/85

dsl $compile(db_index, "", -se_index, code);

Note: Compiled selection expressions cannot be retained from one data
base opening to another. It is not necessary to explicitly
release a comp i led sele c ti on ex press ion wh en the appl ica tion is
finished with it; however, it is good practice. When an open
data base is closed, any compiled selection expressions that
exist at the time are released automatically.

2-16.1 AW53-04C

EXAMPLE 1

Hamilton has transferred to the Engineering component. Modify his component
name to read "Eng":

call dsl $modify {dbi 1,
"-ranie (E Employei)
-Select E.comp
-where E.emp_num = ""48227"" ", "Eng", code);

A selection expression is used to uniquely define the subset of the data
base to be modified. The attribute values selected are sequentially replaced
with the values provided to the right of the selection expression. In this
example, only one attribute is selected (E.comp) and, therefore, only one replacement
value is provided (Eng).

NOTE: Modification of a primary key attribute (i.e., an attribute followed
by an asterisk in the data model source) is not allowed and results
in a code indicating an invalid operation. Such modifications may
only be accomplished by deleting the entire tuple and storing a new
tuple containing the corrected values. (The reason for this is explained
later, under "Primary and Secondary Indexes".) Modify operations
are further restricted to include only attributes contained in the
same relation (i.e., in order to modify both Employee.comp and
Comp_mgr.comp, two modify operations are required).

EXAMPLE 2

Retrieve the Employee tuple of employee "Shaw":

call dsl $retrieve (dbi 1,
"-ranie (E Employee)­
-select E
-where E.name = ""Shaw"" ft.

arg_1, arg_2, arg_3, code);

The above selection expression identifies the one Employee tuple having the
name attribute equal to Shaw. The retrieve operation returns the three attribute
values: Shaw, 51603, and Mfg. When performing retrieve operations, users must I
supply the correct number of arguments to hold the returned attribute values.
Data conversion (if it occurs) proceeds according to the standard PLII conversion
rules.

EXAMPLE 3

Retrieve the Employee tuples of all manufacturing and finance employees:

3/84

call dsl $retrieve (dbi 1,
~-ranie (E Employee)­
-select E
-where (E.comp = ""Mfg"") I (E.comp = ''''Fin'''')'',
arg_1, arg_2, arg_3, code);

do while (code = 0);

end;

put skip list (arg 1, arg 2, arg_3);
call dsl $retrieve-(dbi 1~

"-another", arg_1, arg_2, arg_3, code);

2-17 AW53-04B

This PL/I example illustrates the typical programming construct required
when retrieving more than one set of attributes from a data base. The first
call to dsl $retrieve sets up the selection conditions and returns one set of
attributes satisfying the -where clause. The second call to dsl $retrieve requests
another set of attributes satisfying the same selection condItions specified in
the first call, by using "-another" as the selection expression. The "code"
returned is zero if the retrieve is successful. If no tuple satisfied the
selection condition then the code returned is mrds_error $tuple not found.

The above example returns the three tuples (nine attributes) currently in
the Employee relation where either "Mfg" or I!Fin" is the compo If the -where
clause in this example were eliminated, the Employee tuples of all employees
(not just the "Mfg" and "Fin" employees) would be retrieved.

It should be noted that the retrieve operation call is satisfied and complete
when the first tuple that matches the selection expression is found. Therefore,
as in the example above, additional calls using the "-another" selection expression
must be made to find subsequent tuples. The delete and modify operations, on
the other hand, require only one call to operate on all matching tuples in the
data base.

EXAMPLE 4

Retrieve the employee number of Hamilton's manager:

call dsl $retrieve (dbi 1,
"-ranie (E Employee) (C Comp_mgr)
-select C.emp num
-where «E.name = ""Hamilton"") &

(E . comp = C. comp)) ", ar g_ 1, code);

This example returns the employee number 51603. Notice the usage of two
tuple variables in the range clause and the selection of only one attribute
value from the Comp mgr tuple. (Terms like "E.comp = C.comp" and "C.comp =
E.comp" are identical in meaning and may be used with either ordering.)

EXAMPLE 5

Retrieve the name and employee number of Hamilton's manager:

call dsl $retrieve (dbi 1,
"-ranie (E1 Employee} (C Comp mgr) (E2 Employee)
-select E2.name E2.emp num -
-where «E1.name = HilHamiltonllll) &

«E1.comp = C.comp) & (C.emp num = E2.emp_num)))",
arg_1, arg_2, code); -

This example returns the two attribute values Shaw and 51603. The select
clause could also have used C.emp_num instead of E2.emp_num.

2-18 AW53-04

EXAMPLE 6

Delete the Employee tuple of all employees whose last name begins with the
letters M through Z:

call dsl $delete (dbi 1,
"-ranie (E Employei)
-select E
-where ([substr(E.name 1 1) J >= ""M""

& ([substr(E.name 1 1)J <= ""Z"")", code);

This example illustrates the substr (substring) built-in function and
identifies a one character-long substring starting wi th the first character of
E.name. The square brackets are required to designate built-in functions or
expressions within a selection expression.

EXAMPLE 7

The following example illustrates the format for using the MRDS set operators.
(Refer to Appendix D for information regarding set operators.)

call dsl $retrieve (dbi_1,
"(-range •••

-select •••
-where •••) }

selection expression 1 -­
selects all of A
in the following diagram.

I
I

-inter
(-range
-select •..
-where •••) n, arg_1, ••• code) ;

the intersection (-inter) of
selection expression 1 and I
2 -- selects the shaded area of A
and B in diagram (elements I
that belong to both A and B).

3/84 2-19 AW53-04B

I
I

I
I

I
I

Several selection expressions (up to 20) may be strung together, separated
by set operators, in order to construct one complex selection expression where
each set operation is applied to the previous selection expression or result of
a previous set operation, such as:

call dsl $retrieve (dbi 1,
"«=range -

-select
-where •••)

-inter
(-range
-select
-where •••))

-differ
(-range
-select
-where

... ...)

} see a below

see b below

see c below

••• , code);

a. Selection expression 1 -- selects all of A in the following diagram.

b. The intersection (-inter) of selection expression 1 and 2 -- selects
all of the shaded area of A and B in the diagram (elements that belong
to both A and B).

c. The difference (-differ) of selection expression 3 and the result of
the previous operations (selection expressions 1 and 2) -- select only
the dark shaded area of B in the diagram (elements that belong to B
but do not belong to C).

The attributes selected in each selection expression must be identical in
number and must also be domain-compatible (see "Domains and Attributes" below).
The set operators may only be used in retrievals and defining temporary relations.
They may not be used to delete or modify data.

3/84 2-20 AW53-04B

EXAMPLE 8

The following example illustrates one of the useful features of a compiled
selection expression using the combination of -compile and -another to obtain data
from two different MRDS data bases. (Refer to "Argument Substitution Using. V. and
.X." below for additional information on use of the ".X." in the example.)

call dsl $compile Cdbi_2, II-range (s sale s)
-select s.item
-where (s.name = .X.)", se_index, code);

call dSl_$retrieve (dbi_1, "-range (e emp) II II
"-select e.name", emp_name, code_1);

do while (code = 0);

put skip list (emp_name);

put skip list;

call dsl $retrieve (dbi_2, "-compiled", se_index, emp_name, item, code_2);

do while (code 2 = 0);

put skip list (item);

call d s 1 $ ret r i eve (d b i 2, II - an 0 t. her n , em p _ n am e, item, cod e _ 2) ;

end;

call dSl_$retrieve (dbi_1, "-another", emp_name, code_1);

end;

The first call to dsl_$compile translates the supplied selection expression into
dis j un c ti ve normal form, stores it, and retur ns the selection index wh ich is used
to indicate that the selection expression is compiled. The se index returned from

:::r;:::::~: ~: duS:e:C::p~:: d:::t$erse::~e::m:iilt~"~ ::::::i:::~'eS:Sio:h:y ::::::::: I
the negative selection expression index.

2/85 2-20. 1 AW53-04C

ADDITIONAL CAPABILITIES

Three powerful concepts complement the capabilities of MRDS:

• Scope deletion

• Te~porary relations

• Argument substitution using ".V." and ".X."

Scope Deletion

The delete scope request lets a user remove all or part of a previously set scope.
Recall that setting scope is required when opening a data base in a shared mode (i.e.,
update or retrieval). If a user's scope includes per~it ops or prevent ops that
con f 1 i c t wit h the s cope 0 f 0 the r sat t em p tin g to use the d at a bas e, tho s e use r s are
placej in a queue to wait until the current user either close~ the data base, deletes
sufficient scope, or the allowed waiting time limit is exceeded. Deleting scope can,
therefore, be considered an act of courtesy to others aW3iting access to a shared data
base and users should be alert to the possibility of relaxing their scope restrictions
whenever completing a logical phase of their session with the data base.

call dsl $set scope (dbi 1, Employee, 15, 15, code);
call dsl-$dl_scope (dbi_T, Employee, 14, 1, code);

Prior to the execur.lon of the delete scope request in the above example, other
users are prevented from performing retrieval and update operations in the Employee
relation. After executing the delete scope request, other users are only prevented
from performing updates in the Employee relation, includ ing the fact that the user has
revoked his own update permission. A subsequent attempt by the user to update an
Employee tuple would result in a code indicating a scope violation.

Al though a user may repeatedly set and delete scope while the data base is open,
the user must delete all scope before setting a new scope. This rule avoids potential
deadlock problems within the data base manager.

Users of heavily shared data bases should cooperate to maxi:nize the availability
of those data bases. Combinations of opening modes and scope restrictions, in order
of concurrency, are:

1. Exclusive_update mode.

2. Exclusive retrieval mode.

3. Update or retrieval mode with many per~it_ops and many prevent_ops.

4. Update or retrieval mode with few permit_ops and few prevent_ops.

2/85 2-21 AW53-04C

I

Temporary Relations

A temporary relation is a user-created subset of an open data base that is
accessible via selection expressions in the same manner as permanent relations
for retrieve operations only. Temporary relations are created for the purpose
of simplifying selection expressions, reducing the access time to otherwise dispersed
data, or obtaining a count of the tuples retrieved by a selection expression.
Temporary relations reside in the user's temporary storage directory determined
by set mrds temp dir wi th a defaul t of the process directory and, al though temporary
relations and permanent relations are physically and logically identical, a temporary
relation is destroyed whenever it is redefined, deleted, or whenever the associated
data base is closed.

The asterisks used in a define temp rel request designate the attributes
(or concatenation of attributes) that are-to be used as the primary key of the
temporary relation. (Temporary relations cannot have secondary keys.) Users
must exercise care when selecting primary keys for temporary relations since
MRDS automatically (and without warning) removes duplicate key tuples from the
resulting relation.

rel index 1 = 0;
call dsl $define temp rel (dbi 1,

"-range (x Employee) (y Comp mgr) (z Employee)
-select x.ernp num* z.name -
-where «x.comp = y.comp) &

(y.mgr_emp_num = z.emp_num))", rel_index 1, code);

This example creates (because rel index 1 = 0) a temporary relation containing
the names of all employees and their-respective managers as represented in the
table below. Notice that this information did not exist side-by-side in the
original data base. Unlike the retrieve request that returns one set of selected
attributes for each call, the define temp rel request selects all attributes
that satisfy the selection expression and physically places them into the temporary
relation.

temporary relation 1

emp_num* name

48227 Shaw
48350 Morton
51603 Shaw
52464 Morton
57111 Morton

The name Whi ting does not appear in the example because the sample data
base does not include a manager of "Fin" in the Comp mgr relation. Therefore
the -where selection expression cannot be satisfied for-Whiting's Employee tuple.

Users may define, redefine, or delete any number of temporary relations.
However, no more than 20 per data base opening may exist at anyone time. For
each temporary relation created, MRDS assigns and returns an integer, called a
relation index (rel index), which remains unique to the temporary relation and
its associated data-base during the current user session. A user must reference
an existing temporary relation by using the assigned relation index in the range
clause of a !"et!"ieve selection exp!"ession C!"efe!" to "A!"gument Subst.it.ut.ion lIs.ing
.V." described below).

3/84 2-22 AW53-04B

The accessing of temporary relations is restricted to retrieve and
define temp rel operations only. The delete, store, and modify operations are not
allowe~ for-temporary relations.

rel index 1 = 1;
calT dsl ldefine temp rel (dbi 1,

"-range (x Emp10yee) (y Comp mgr) (z Employee)
-select x.emp num z.name* -
-~here «x.c~mp = y.comp) &

(y.mgr_emp_num = z.emp_num»", rel index 1, code);

Thi.3 exallple illustrates a redefinition of a temporary relation. If the
relation index variable has a value of zero when the define_temp_rel request is made,
the resul ting te:np:>rary relation is assigned the next available relation index. If
however the relation index i'3 greater than zero on input and if a temporary relation
possessing this index already exists within the data base, that temporary relation is
redefined. In this case, the old temporary relation "1" has been replaced wi th a new
temporary relation "1". If the specified relation index is less than zero and a
temporary relation exists whose index is equal to the absolute value of the index
given, then that temporary relation is deleted.

The primary key attribute has been changed to z.name, a non-unique attribute.
Consequently, the new te~nporary relation "1" contains less information than the old
temporary relation "1".

temporary relation

emp num name lf
-

48350 Morton
51603 Shaw

Th e number 0 f tuples ina tempo r a r y re I at i on can be deterln ined using the
dsl_$get population interface.

Argument Substitution Using ".V." and ".X."

Since a MRDS selection expression is passed as a character-string argument, some
mechanism is needed that allows a progra:nmer to insert variable values into a
selection expression when the application program is executing. Consider the case
where the variable emp nu:n 1 contains a previously selected employee number and the
programmer wishes to use this employee number in a MRDS selection expression.

The method of substituting a value into a selection expression involves the MRDS
argument". V.". This argument may only be used in place of a relation name in the range
clause (for temporary relation indexes only, not relation names) and in place of a
cons tant in the where cl ause . When presen t in a sel ection ex pr ess ion, MRDS
sequentlallY replaces tne .V. argument(s) with the value(s) of the variable(s) of
literal(s) immediately following the selection expression.

2/85

call dsl $retrieve (dbi 1,
"-ranie (x Employee)­
-select x.name
-where (x.emp num = .V.)",

emp_num_l, arg_', code);

2-23 AW53-04C

I

The. V. argument is also the mechanism used to insert temporary relation indexes
i n tot her a n g e cIa use 0 f a s e 1 e c t ion ex pr e s s ion. Wh en the . V • a r g urn en tis used wit hi n
the range clause, then the relation to which it refers can only be a temporary
relation. Assume that the variable "temp reI 1" contains the index of an existing
temporary relation. The following example is identical to the one above except for
the uSe of the temporary relation instead of the Employee relation:

call dsl $retrieve (dbi 1,
It-range (x . V.)

- s e 1 e c t x. n a:n e
-where (x.e~p num = .V.)",
temp_reI 1, emp_num_1, arg 1, code

I The ".X." argument is a substitution character similar to ".V.". It can onlybe
used when compiling a selection expression and it is used to specify an argument that
is not known at the time of compilation.

call dsl $compile (db index,
"-range (x Employee)
-select x.name x.emp nurn x.comp
-where «x.emp num <-.V.) &

(x • com p > . X.)) ,
se_index, {.V. values, ... ,J code)

The. V. val ues is required to satisfy any. V. argument substi tution chardcters that
exist in the selection expression. These then become constant (i.e., they cannot be
chang ed ina later referen ce to the sel ec tion ex pr es s ion). Th i s can be done us ing the
• X. substi tution character in the selection expression at compilation time. The. V.
values are not needed in future references to the compiled selection expression. No
val ue s are n e c e s s a r y at t his tim e to sat i s f y any 0 f the . X. s t hat may ex is tin the wh ere
clause. They are only used in the define temp rel, retrieve, modify, or delete
procedures. If se.index is equal to zero-on input, a new index is returned in
se index. If se index is equ3l to some positive value and the index is currently being
used (i.e., 3lready assigned to a co:npiled selection expression), that compiled
selection expression is redefined .

NOTE: • X. values are not allowed in expressions 3nd function references.
Two examples of its use are:

"-where [substr (a.value .X. 2)] = ""31"" "

"-where a.value = 2 * .X."

DATA BASE DESIGN

The design of a data base is a responsibility of the data base administrator. It
requires insight into the nature and form of the data to be stored and must include an
understanding of the manner in which the user community is expected to access the data
base. The design chosen by the data base administrator affects such characteristics
as:

2/85

1. Overall size of the data base

2. Processor time required to effect a given update request

3. Complexity of the selection expressions required to update the data base

4. Internal logical considerations called update and deletion anomalies
(discussed below)

2-24 AW53-04C

The novice designer of a relational data base often has the tendency to create 3

one-relation data ba~e that contains all of the data. However, a well-designed
relational data b'3~e typic'3lly contains several relations with the data distributed
among them. This partitioning of a data base into several relations is characteristic
of a data base design process known as normaliz'3tion. Normaliz'3tion is described at
the end 0 f t his sec t ion, but fir s t the rea de r s h 0 u 1 d un d e r s tan d the des ira b i 1 it y 0 f a
multi-relation data base over a one-relation data base.

Consider two data bases that contain logically equivalent information but differ
in their physical struct!lre. The Pcrs Info A data base consists of only one relation
w~ereas Pers Info B (cont.:lining the saine infor:nation as Pers Info A) is partitioned
into two relations that share a common attribute (comp). - -

2/85 2-24. 1 AW53-04C

The .V. argument is also the mechanism used to insert temporary relation
indexes into the range clause of a selection expression. When the .V. argument
is used within the range clause, then the relation to which it refers can only
be a temporary relation. Assume that the variable "temp reI 1" contains the
index of an existing temporary relation. The following example is identical to
the one above except for the use of the temporary relation instead of the Employee
relation:

call dsl $retrieve (dbi 1,
"-range (x . V.)
=select x.name
-where (x.emp num = .V.)",

temp_reI 1, emp_num_1, arg_1, code

DATA BASE DESIGN

The design of a data base is a responsibility of the data base administrator.
It requires insight into the nature and form of the data to be stored and must
include an understanding of the manner in which the user community is expected
to access the data base. The design chosen by the data base administrator
affects such characteristics as:

1. Overall size of the data base

2. Processor time required to effect a given update request

3. Complexi ty of the selection expressions required to update the data
base

4. Internal logical considerations called update and deletion anomalies
(discussed below)

The novice designer of a relational data base often has the tendency to
create a one-relation data base that contai ns all of the data. However, a
well-designed relational data base typically contains several relations with the
data distributed among them. This partitioning of a data base into several
relations is characteristic of a data base design process known as normalization.
Normalization is described at the end of this section, but first the reader
should understand the desirability of a multi-relation data base over a one-relation
data base.

Consider two data bases that contain logically equivalent information but
differ in their physical structure. The Pers Info A data base consists of only
one relation whereas Pers Info B (containing the same information as Pers Info A)
is partitioned into two relations that share a common attribute (comp). - -

2-24 AW53-04

Pers Info A

Employee

name emp_num* comp mgr_num bldg

Hamilton 48227 MFG 51603 A
Morton 48350 ENG 48350 B
Whiting 49189 FIN 49189 B
Shaw 51603 MFG 51603 A
Nielson 52464 ENG 48350 B
Akins 57111 ENG 48350 B
Green 57183 MFG 51603 A

Pers Info B

Employee Comp_mgr

name emp_num* comp comp* mgr_num bldg

Hamilton 48227 MFG ENG 48350 B
Morton 48350 ENG MFG 51603 A
Whiting 49189 FIN FIN 49189 B
Shaw 51603 MFG
Nielson 52464 ENG
Akins 57111 ENG
Green 57183 MFG

A first observation about these data bases is the size difference between
Pers Info A and Pers Info B. For a large number of employees, Pers Info B would
contain approximately 40%-fewer attributes than Pers Info A. A carefully chosen
partitioning of a relation into multiple relations usually produces this effect.

A second observation concerns the number of changes required to reflect one
"real world event" such as the engineering manager being changed from Morton to
Nielson. Notice that three attri butes must be changed in order to update Pers Info A,
but only one attribute must be changed in order to update Pers Info B. This
irregulari ty in Pers Info A is known as an update anomaly; and although the
update can, in both cases ,- be done with only one MRDS modi fy request, MRDS must
do considerably more work for the user requesting the update of Pers Info A.
Counter examples exist, but in well-designed data bases update anomalies are
generally minimized by partitioning large relations into smaller relations.

Now consider the case in which Whi ting has retired. This change can be
accomplished in both data bases by deleting Whiting's Employee tuple. However,
there are side effects which may be undesirable. By deleting Whiting's Employee
tuple from Pers Info A, the fact that the Finance component was located in building
"B" has also been deleted from the data base. This same fact is unaffected by
deleting Whi ting' s Employee tuple in Pers Info B. This irregulari ty in Pers Info A
is called a deletion anomaly and agaIn suggests advantages to be gaIned by
partitioning a large relation into smaller relations. The fact that Whiting was
the component manager of Finance means that an additional update is required in
the Pers Info B Comp_mgr relation when a new manager is named.

2-25 AW53-04

There is one observation of Pers Info A and Pers Info B that suggests a
disadvantage to the multi-relation data base. Consider the following selection
expressions that retrieve the employee number of Akins' manager from Pers Info A
and from Pers Info B:

Pers Info A

call dsl $retrieve (dbi 1,
"-ranie (E Employee)­
-select E.mgr num
-where E.name-= ""Akins""", arg_1, code);

Pers Info B

call dsl $retrieve (dbi 2,
iI-ranie (E Employee) (C Comp_mgr)
-select C.mgr num
-where «E.name = ""Akins"") &

(E.comp = C.comp))~, arg_1, code);

Not only is the selection expression simpler for the retrieval from Pers Info A,
but the expected time to retrieve the manager t s employee number is less for
Pers Info A since the data base manager must search both relations in the Pers Info B
data-base-in order to satisfy the -where clause. Thus, the data base administrator
must carefully weigh a number of consequences when designing a data base that is
optimal for a particular set of data base requirements. It is generally agreed,
however, that the advantages of a parti tioned data base outweigh the disadvantages.

Examples of Normalization

The process of normalizing a data base consists of a subjective design
process (performed by the DBA) where complex relations are transformed into
simpler relations without loss of information. Normalization has been formalized
to the extent that there are three well-defined normal forms: first normal form
(FNF), second normal form (SNF), and third normal form (TNF).

FIRST NORMAL FORM

The conversion of some collection of data into FNF is essentially the process
of eliminating repeating groups and hierarchical structures: every attribute
must be defined over a domain that is a relation containing no more than one
attribute. For example, consider a collection of supplier data where each supplier
references several projects. Such a collection can be represented as follows,
where "supplier" and "project" can be thought of as arrays and the items enclosed
in parentheses represent column headings:

supplier (supp_no name address zip project (proj_no qty_s mgr))

The project attribute is an array within an array. Such a construct may also be
viewed as an hierarchical relationship, with the supplier being superior to the
project. To convert such a structure to FNF, the attributes of project must be
incorporated into the supplier relation:

supplier (supp_no* name address zip proj_no qty_s mgr)

2-26 AW53-04

where:

1 . proj_no
indicates the projects supported by a given supplier.

2. qty s
indicates the quantity of items supplied for a project by a given
supplier.

3. mgr
indicates the project manager.

Since a single supplier may supply more than one project, by definition
proj no is not functionally dependent on supp_no (see "NOTES" below).

SECOND NORMAL FORM

In order to ensure that each attribute is fully functionally dependent on
its primary key (see "Notes" below), the supplier relation must be refined. For
example, the quantity of items supplied (qty s) is dependent upon both components
of the primary key combination of suppno-and proj no. However, the project
manager attribute (mgr) is functionally dependent upon-only one of the components:
proj no. In order to convert the data representation to SNF, a refinement of
the supplier relation is required:

supplier (supp_no* name address zip)

supplier_proj (supp_no* proj_no* qty_s)

project (proj_no* mgr)

Thus, every nonprime attribute is fully functionally dependent upon the primary
key to which it belongs.

NOTES: Funct iona 1 dependence: an at tri bute (or group of at tri butes) B is
functionally dependent upon A if each value of A never has more than
one value of B assoc iated wi th it. Al tern at i vely , it can be said
that, in such a case, A implies B.

Full functional dependence: B is fully functionally dependent upon
a group of attributes A if B always depends upon all components of A
and not upon any subset of A.

THIRD NORMAL FORM

Next, every attribute within the relation must be nontransitively dependent
upon its primary key. In this connection, notice that, in the supplier relation,
the address attribute is functionally dependent upon the supp no attribute. That
is, the supplier number (supp no) implies the address. On the other hand, the
supp no attribute is not functIonally dependent upon the address attribute. That
is, the address of the supplier does not imply the supplier number. Furthermore,
the zip attri bute is functionally dependent upon the address attri bute (i. e. ,
address implies zip). This means that the zip attribute is transitively dependent
upon the supp no attribute (or the supplier number transitively implies the zip
code of the supplier). To eliminate such transi ti ve dependence, the following
refinement of the supplier relation may be performed:

supplier (supp_no* name address)

address (address* zip)

2-27 AW53-04

NOTE: Transitive dependence: an attribute (or group of attributes) C is
transitively dependent upon A if, at every instance, it is the case
that,

C is functionally dependent upon B, and
B is functionally dependent upon A, but
A is not functionally dependent upon B.

An illustration of the above normalizing process applied against sample
data values produces:

1 • Unnormalized Data

supplier(supp no name address zip project(proj_no qty_s mgr))
936 - Acme Houston 44352 8 35 Jones

3 10 Smith
4 10 Smith

909 Zula York 22369 8 12 Jones
6 15 Gray

2. Third Normal Form

supplier (supp no* name address)
936 - Acme Houston
909 Zula York

project (proj no* mgr)
8 Jones
3 Smith
4 Smith
6 Gray

supplier project (supp no* proj_no* qty_s) - 936 - 8 35
936 3 10
936 4 10
909 8 12
909 6 15

address (address* zip)
Houston 44352
York 22369

Domains and Attributes

Reconsider the definitions:

1. Attribute: the name of a data field within a tuple.

2. Attribute value: the value of an attribute (data field) within a tuple.

3. Domain: the set of all values an attribute may assume.

Though this topic was not previously stressed, the data base administrator
must consider the domain statement in the data model source as defining both a
domain and a corresponding attribute having the same name as the domain. For
the Pers Info data base used earlier in this section, the emp num domain is
defined as a five-character string. The corresponding emp num attribute would
have a domain consisting of all integers from 00000 to 99999 if the domain had
been declared fixed decimal (5) (not considering the sign).

2-28 AW53-04

Consider now the case when two or more attributes have the same domain as
in the following data model source segment:

domain: name char(12),
emp_num char(5),
comp char(5),
mgr_emp_num char(5);

relation: Employee (name emp num* comp) ,
Comp_mgr (comp* mgr-emp_num);

The data base corresponding to this data model is identical to the Pers Info
data base created in the previous tutorial with the clarifying exception-that
the employee numbers found in the Comp mgr relation are now obviously the employee
numbers of the managers of the components. Since the values of the emp num and
mgr emp num attribute are both taken from the same set of numbers, they are said
to have- the same domain. The following data model source establishes this
relationship and is therefore a more proper definition.

domain: name
emp_num
comp

char(12),
char(5),
char(5);

attribute: mgr emp_num emp num;

relation: Employee (name emp_num* comp),
Comp_mgr (comp* mgr emp_num);

The attribute statement defines a new attribute "mgr emp num" and equates its
domain of values to that of the emp num attribute. The two attributes are said
to be "domain compati ble," a condi tion required for successful use of the -inter, I
-differ, and -union set operators.

It is recommended that generic names be used for domains, such as char "5
for char(5). Then, the attribute names that are to be used in the relation
statement can be defined via the attribute statement as was done in Step 1 of I
the MRDS tutorial for the Pers Info.db data base.

Further, it is recommended that attribute names be unlque across the entire
data base, not just within each relation, so that any set of attributes can be
selected and have unique names for temporary relation definition.

2-29 AW53-04

Primary and Secondary Indexes

Practical considerations force a data base administrator to be concerned
with the storage requirements of the data base and the computer resources required
when updating the data base. In order to optimize these considerations, a data
base administrator requires some insight into the implementation of MRDS on
Multics. The relation of a data base is implemented as an indexed sequential
file, implying as the name suggests, that the accessing of a particular record
(tuple) within the file proceeds either as a sequential search, record by record,
or directly if an index of the record desired is provided. In general, each
record of a file may have more than one index.

Within MRDS, the primary key of a relation becomes the primary index of the
file. In other words, the asterisk (or set of asterisks) appearing in the data
model relation statement designates the primary index of the corresponding file.
(A set of asterisks specifies that a primary key is to be formed by concatenating
the attributes designated with an asterisk.) Additional, or secondary indexes,
may also be designated in the data model by an index statement:

domain: name
emp_num
comp

char(12),
char(5),
char(5);

attribute: mgr_emp_num emp_num;

relation: Employee (name* emp_num comp*),
Comp_mgr (comp* mgr emp_num);

index: Employee (comp emp num),
Comp_mgr (mgr emp_num);

In this example, the Employee file has comp and emp num as secondary indexes and
a primary index formed from the concatenation (joining) of the attributes name
and compo Concatenation of attributes form a larger primary key than would
otherwise be formed and is done only to gain uniqueness in the primary key. In
this case, the name attribute alone does not ensure uniqueness (e.g., two Smiths
may work for the company; the data base designer in this case has determined
that two Smiths do not work in the same component). The Comp mgr file has the
"mgr emp_num" as the secondary index and "comp" as the primary Index.

The following guidelines are suggested when designing a data base and deciding
the number and type of indexes.

1 . All relations must have one and only one primary key. The key may,
however, be composed of several attributes joined together.

2. The primary key values must be unique. (For example, two employees
working in the same component and having the same last name would
result in a duplicate key error when the second employee's tuple is
stored into the Employee relation.)

3. Secondary
accesses.
discretion
overhead.

indexes are used to increase the efficiency of data base
Secondary indexes are optional and should be used with
because of the increase in data base storage and update

4. Secondary indexes may only consist of individual attributes; they cannot
be concatenated. An attribute selected as a secondary index need not
have unique values. However, storage usage and update time increases
with the higher number of duplicate values.

2-30 AW53-04

5. Selection performance is a function of the type of attributes used in
the search of a relation. Several attribute types are grouped into
three classes of decreasing performance:

a. Attribute is the entire primary key

b.

c.

Attribute is the most significant (leftmost) part of the
key (called a key head) or is a secondary index

Attribute is not the most significant part of the primary
is not a secondary index

NOTE: The primary key in MRDS can he a maximum of 2277 bits long. Key
attributes have a storage length as defined by their data type (i.e.,
fixed bin(17) aligned takes 36 bits). The total length of a key is
determined by the sum of the lengths of the attributes making up the
key.

The maximum length (mentioned above) also applies to any single attribute
which is to be a secondary index.

A successful create mrds db with the -list option (or display mrds dm
with the -long option) glves information on data bit lengths:

SECONDARY INDEXING

This example is based upon a situation that arises sometime after the creation
of a hypothetical data base called AB Company. The data model source of this
data base is: -

domain: 1 name
emp num
location
component
salary
mgr emp_num

char(12),
char(5),
char(5),
char(5),
char(7),
ch'ar (5) ;

relation: Employee (1 name emp num*. location component* salary),
Comp_mgr (component*-mgr emp_num);

Assume that a new requirement demands frequent searches for the last name
and employee number of all employees who have a salary of flX." Because salary
is not a key of the Employee relation, the procedure to do this task would
require a sequential search of the entire Employee relation to select those
employees having the specified salary.

Placing,a secondary indexing on the salary attribute eliminates the need to
sequentially search the entire data base. The retrieve request simply proceeds
as a direct (keyed) access thereby eliminating the sequential search. The data I
model source would require the additional statement:

index: Employee(salary);

Situations of this nature should be discussed with the data base administrator
in order to determine whether or not the data base should be redesigned to
include a secondary index on the frequently searched attribute.

2-31 AW53-04

SECTION 3

CO~MANDS

This section contains descriptions of the MHDS commands, presented in
alphabetical order. Each description contains the name of the command, discusses the
purp:>se of the co'nmand, and shows the correct usage. Notes and examples are included
where necessary for clarity.

The following is a summary of MHDS commands.

adjust mrds db, amdb
-administrative tool for managing a data base's concurrent access control

segment.

copy mrds data, cpmd
copies data from one MHDS data base to another.

create mrds db, cmdb
-creates an unpopulated MHDS data base.

create mrds dm include, cmdmi
-builds an include file of structure declarations suitable for use in accessing

the data base from PL/I programs.

create mrds dm table, cmdmt
-provIdes a picture or graphic display of the data model/submodel structure.

create mrd s dsm, cmd s~n
-creates a data submodel definition (provides an alternate view of the data

base) .

display mrds db accass, dmdba
displays-the effecti v e secur i ty acces s to reI ation and at tr i bute data prov id ed
by a given view of the data base.

display mrds db population; dmdbp
displays-the current number of tuples stored in the relations of a given view of
the data base.

display mrds db status, dmdbs
displays-the open and concurrent users in the given view of a data base.

display mrds db version, dmdv
displays-the version of a MHDS data model/submodel.

display mrds dm, dmdm
displays specified information from the data model.

display mrds dsm, dmdsm
displays specified information from the data submodel and optionally displays
related data model information.

display mrds open dbs, dmod
displays a-list of pathnames, opening indexes, and opening modes of all
currently opened data bases in the user's process.

2/85 3-1 A'w53-04C

I

display mrds scop~ settings, dmss
displays opening information and scope set for those openings for all dat~
bases open in the user's proc~ss.

diSPlay mrds temp dir, dmtd
displays the directory under which temporary storage for a given data base
opening is placed.

mrds call, mrc
proviies a command-level interface to the MRDS Data Sublanguage (DSL) for data
base development. For a co:nplete description, see Section 9, "Data Base
D~veloprnent Tools."

quiesce mrds db, qmdb
an administrative tool that places the data base in a quiescent (non-active)
state for such purposes as dumping, etc.

secure mrds db, smdb
provIdes the ability to turn on (or off) attribute level security features.

set mrds temp dir, smtd
changes the current pathname of the directory that is used for temporary
storage in the next call to dsl_$open.

unpopulate mrds db, umdb
a data base application development tool that deletes all data from a data
base.

In examples that illustrate the user's interaction wi th the terminal, the l.ines
typed by the user are indicated with an exclamation mark (!) to the left of the line to
distinguish user entries from syste'O output. This is for illustrative purposes only;
the user does not actually type the e){clamation mark. Input commands are expected to
be on one line. This is accomplished (for lines longer than can be accommodated on the
terminal) by util izing the auto:natic wrap-around feature of most terminals. Comments
that serve an explanatory purpose are included within a program by enclosing them
wi thin "1* comment *1". Likewise, the exa'nples do not show the escape carriage
return ("\CR") and line feed ("\LF'") required if the user were to actually input the
commands on multiple lines as shown.

2/85 3-2 AW53-04C

adjust_mrds db

This DBA tool handles special problems that may arise involving the data
base concurrency control segment. It may be used to re-establish consistency in
concurrency control after an incomplete data base operation has put the data
base in a potentially invalid state. It may also be used to remove dead process
information from the control segment or to change the setting of the concurrency
control trouble switch.

amdb path {-control_args}

where:

1. pa th
is the relative or absolute pathname of the
concurrency control segment is to be manipulated.
need not be given for new version data bases.
submodel pathname.

data base whose
The . db suffix

This cannot be a

2. control args

12/86

may be chosen from the following:

-dead procs, -dpr
the data base control segment deletes information pertaining to dead
processes (i.e., data base openers whose processes terminated
without closing the data base). Non=passive dead processes
(processes with some form of update scope set) may leave the data
base in an inconsistent state.

-force, -fc
suppresses the query given for the -reset control argument.

-no force, -nfc
- aiiOWS the query for the -reset control argument to be given.

(Defaul t)

-reset, -rs
the data base control segment is re-established in a consistent
state. If there are active users of the data base, the command
queries the user whether to continue, since other active users lose
concurrency control protection if this invocation proceeds.
(Defaul t)

-trouble switch state, -tsw state
where state may be either "on" or "off". This sets the data base
concurrency control trouble switch ON or OFF. If the switch is on,
attempts to open the data base fail. This can be used to lock out
users when there is a question about the data base integrity. The
DBA can then restore damaged segments or rollback the data base to a
consistent state.

3-3 AW53-04D

Notes ---

The user must be a DBA to use this command.

The -reset and -dead proc options may not be used together. The -force and
-no force control arguments, given without -reset, imply -reset.

The -reset option (default) should be used only after
display mrds db status is invoked, to determine if there are open users and to
notify those-users to close their opening of the data base. If open users are
active during use of this option, they lose concurrency control protection and
later inconsistencies may arise.

The use of the -reset option causes version 4 concurrency control, using
the read-update scope modes, to be updated to version 5 con~urrency control
using the scope modes read attr, modify attr, append tuple, and delete tuple.
Version 5 concurrency control uses a segment named db~control rather than dbc.
Version 4 concurrency control cannot be used with the current version of MRDS,
and adjust mrds db with the -reset option must be used on the data base in order
to convert it- to version 5 concurrency control. The current version of
concurrency control may be displayed via display mrds db status using the -long
option. - --

Current users of r-s-m-d scope mode encodings do not have to change their
application programs to use version 5 concurrency control. Application programs
calling dsl $set scope or dsl $set scope all which use the old r-u scope mode
encodings need be changed to the encodings described in this manual (e.g., 2 no
longer means s-m-d, just s).

Examples

12/86

Concurrency control version:
Data base path:

Version:
State:

Open users:

mrds_call open dmdm update

4
>udd>Multics>JGray>dr>foo.db
4
Consistent
o

Error: mu_concurrency_control error by >unb>bound mrds 12232. The data
base is a version not supported by this command/subroutine. The version of
the control segment has changed, to support r-m-a(s)-d instead of r-u scope
modes. "adjust mrds db >udd>m>jg>dr>foo.db -reset" must be run before it
can be used. - -

mrds call: The data base is a version
command/subroutine. (From dsl_$open)

not supported by this

adjust mrds db foo -reset
mrds_call open foo update

Open data base is:
1 >user_dir_dir>Multics>JGray>dr>foo.db

update

3-4 AW53-04D

3/84

Concurrency control version:
Data base path:

Version:
State:

Open users:

5
>udd>m>jg>dr>foo.db
4
Consistent
1

Scope users: 0 Active

User process id:
Process number:

Process state:
Usage mode:

Scope:

o Awakening
o Queued

J Gr a y • Mu 1 tic s. a
007720037664
Alive
Normal
None

adjust mrds db: There are open users who may be harmed if you reset.
you stIll wIsh to reset the >udd>m>jg>dr>foo.db data base??

no

display_mrds db status foo

Data base path:
Open users:

Scope users:

User process id:
Process state:

Relation

adjust_mrds_db foo -dead_procs

display_mrds_db_status foo

>udd>m>jg>dr>foo.db
1

Ac ti ve

JGr a y . Mu I tic s. a
Dead

Permits Pr events

ramd
ramd

ramd
ramd

Data base path: >udd>m>jg>dr>foo.db
Open users: 0

3-5 AW53-04B

I

I

I
I

I

N am e: cop y m r d s _ d a t a, c pm d

This comman1 copies data from one MRDS data base to another.

cpmd input db path output db path {-control args}

where:

1. input_db path
ii the pathname of the data base from which data is copied. If the
pathname does not have a suffix of db, then one is assumed. However, the
db suffix must be the last component of the name of the input segment.

2. output db path
is-the pathna~ne of the data base to which date is copied. The data base
must already exist. If the pathname does not have a suffix of db, then one
is assumed. However, the db suffix must be the last component of the name
of the output segment.

3. control args

Notes

can be chosen from the following:

-input prevent ops OPS
sp~cifies-the prevent scope on the input relation(s), where DPS is the set
of operations that the user wishes to deny other openers of the input data
base for the relation(s) being copied. (Default is "dms" --refer to
Notes for a li~t of scope mode abbreviations.)

-output prevent ops DPS
specifies the prevent scope on the output relation(s), where DPS is the
set of operations that the user wishes to deny other openers of the output
data base for the relation (s) being copied. (Defaul t is "dms" --refer to
Notes for a list of scope mode abbreviations.)

-relation RELNft!-1E, -reI RELNAME
specifies that RELNAME be copied. Only one relation at a time can be
copied using this control argument. If this control argument appears
more than once in a command line, the prev ious occurrence is overridden •

-transaction group size N
specifies copying N tuples within the confines of a single transaction.
If this control argument is omitted, or if N is equal to 0, then each
access to a protected data management file is completed as a separate
transaction.

The abbreviations used for prevent scope operations (for either input or output)
are as follows:

a append_tuple

s append_tuple (same as a)

2/85 3-5. 1 AW53-04C

I

d delete tuple -
m modify attr -
n null

r read attr

u update (same 3S dms)

The prevent scope is made up of 3 concatenation of the desired operation
abbreviations. If "n" prevent scope is given, then no other mode may be specified for
that prevent. Each of the other modes may be used only once in the same prevent scope.

Relations that are copied must be identical in their makeup, having the same
attributes, attribute names, indexes, etc. It is suggested, w~ere possible, that
both data bases be created using the same create mrds db source. When using the
-relation control argument however, it is possible to copy from data bases with
differing models, as long as the relation being copied is the same in both data bases.

2/85 3-5.2 AW53-04C

create mrds db create mrds db

This co~mand creates an unpopulated MRDS data base from a data model source
segment.

cmdb source path {database path} {-control args}

where:

1. source path
is the pathna:ne of a data 3lodel source segment. If saurce path does not
have a suffix of clldb, then one is assumed. However, the cmdb suffix must
be the last component of the name of the source segment. (See Data Model
Source below.)

2. database path
is the pathname of the data base to be created. If database_path is not
given as an argu~ent' then the data base is created in the working
directory wi th the same name as the source segment wi th a db (rather than a
cmdb) s~ffix. If database path is given as an argument, then the db
suffix is added aut,)llatic311y if not given wi th the argument. See
Architecture of the Data Base belaw.)

3. control args

2/85

may be ch')sen from the following:

-data management file {STR}, -dmf {STR}
creates relation data files that are manipulated by the Multics Data
Management System. STR is an optional mode string that defines the
characteristics of the data management files. This mode string applies
to all relations created in the data base. See Notes for a list of valid
modes.

Access required: Tl-te directories under which the listing segment and the
data base directory are to be created must have append access for the
user, similarly for the te~p dir if used. The containing directory
access must be "sm", if -force is used.

-force, -fc
causes an eXisting data base of the same pathname as the given or default
pathname to be deleted and this new data base to be created in its place.

-list, -Is
a segment containing a listing of the data model source, followed by
detailed information about each relation and attribute in the resulting
data base. This segment is created in the working directory and has the
same name as the source segment with list (rather than cmdb) as the
suffix.

-no fa rce, -n fc
does not allow a data base of the same pathname as the given or default
pathname to be created when such a data base already exists. (Default)

3-6 AW53-04C

create mrds db create mrds db

Notes

-no list, -nls
- indicates that no listing is to be created. (Default)

-no secure
C3uses the data base to be created in the unsecured state. (Default)

-secure
causes the data base to be created in the secured state. See the
secure mrds db command fJr details on the secured state. Also refer to
Section 7 fJr infor:nation on the effect of the secured state on commands
and subroutines.

-temp dir path
provides f'Jr a directory with more quota than the default of the process
directory when more temporary storage is needed to do a create mrds db on
a source wi th many relations and attributes. For example, doing a
create mrds db on a 256 relation source requires this argument. If the
user gets a-record qUJta overflow in the process directory during a
create mrds db, then a new process is required. A retry of the
create-mrds-db with the -temp dir argument, giving a pathname of a
dire c tor y wlth ;nore quo ta th an the proces s director y, ca n then be done.

-vfile, -vf I
creates relation data files that are manipu13ted by vfile_. (Defaul t)

The largest data base that can be created is 256 relations.
attributes per relation.

M R DS a 110 ws 256 I
Error messages are wri tten to the error output IIO swi tch as they occur.

are a150 included in the listing segment irone is produced.

'T'I... _ ••
J.[H::Y

Th e d a tab as e may be po p u 1 ate d v i ads 1 $ 5 tor e, m r d 5 call s to r e, 0 r LIN U S 5 tor e
after the data base has been opened by the corresponding open routine. To use LINUS,
refer to the Logical Inquiry and Update System Reference Manual.

The person who invokes the create mrds db command automatically becomes a DBA
for the data base created since the creator of-a data base is always given "sma" access
tot he d a tab as e d ire c to r y . Th e in v 0 k e r 0 f c rea t e m r d s db nee d s "a" a c c e sst 0 the
directory that contains the data base. If -force is used-to remove an existing data
base, "sm" access is also required.

2/85

List of modes (for use with -data management file control argument):

protection
creates relations as protected data management files. Relations
created with this mode can be accessed only if the process is in a
transaction.

concurrency
provides concurrency control when accessing relations. This mode is
valid only if protection is enabled.

rollback
pro v ides rollback before images are taken when updating a relation.
This mode is valid only if protection is enabled.

3-7 AW53-04C

create mrds db create mrds db

If the mode appears in the mode string preceeded by""''', then the mode is set to off. In
the case of duplicate mode specifications, the last mode specified takes effect.

The defaul t for protection is on. If protection is on, the defaul t for concurrency and
ro 11 back is al so on. If protec ti on is 0 ff, the defaul t for concur ren cy and ro 11 ba ck is
off. If no mode string is specified in the -data management file control argument, a
default mode string of "protection,concurrency,rollback"-is used.

2/85 3-7.1 AW53-04C

create mrds db create mrds db

Data Model Source

The basic format for a text segment containing source for the create mrds db
command is as follows:

domain

attribute

relation

index

domain name' declaration 1 {options 1},

domain name N declaration N {options N};

attribute name' attribute 1 domain_name,

attribute name N attribute_N_domain name;

relation name
reI 1 key attr ,*
rel-'-data attr ,

relation name N (
rel-N key attr 1*
rel-N-data att~ 1

... reI 1 key attr J*
reI 1 data-attr-K),

reI N key attr 1*
rel-N-data attr P)j

indexed relation name 1 (
i reI 1 i attr 1 i_reI 1 i attr_L),

indexed relation name N (
i reI N i altr 1 i reI N i_attr M);

Note that the domain, attribute, relation, and index statements are terminated
by semicolons, while individual domain, attribute, or relation name definitions
are separated by commas, with only spaces separating attribute names within a
relation.

3-8 AW53-04

create mrds db create mrds db - - - -

Statement Usage

The domain statement causes an attribute of the same name as the domain to
be created, which can then be referenced in the relation and index statements.
Additional attributes of different names using the existing domains can be defined
via the attribute statement. The ordering of the domain, attribute, relation,
and index statements must be as given and each statement can appear at most
once. The attribute and index statements are optional.

The domain statement defines the data type that any attribute defined over
that domain is to have. Any legal PL/I scalar data type that can be declared
using the following declaration description words is allowed in MRDS.

aligned
binary or bin
bit
character or char
compl ex or cpl x
decimal or dec
fixed
float or floating
nonvarying
precision or prec
real
varying or var
unaligned or unal

The maximum string length is 4096. Varying strings are stored at current
length rather than maximum length. Refer to Appendix D of the Programmer's I
Reference Manual for a description of Multics data types. When data needs to be
converted from the user's type into the storage type declared in the domain
statement, the subroutine assign is used. See Subroutines and I/O Modules, I
Or der No. AG93 for a description -of data types supported by that routine.

The relation statement takes previously defined attributes and defines the
relations that are to exist in the data base. There must be at least one key
attribute, whose purpose is to hold data values uniquely identifying each tuple
to be stored in the relation. Key attributes are denoted by an asterisk after
their name in this statement only. The maximum number of key attributes is
determined by the sum of the storage lengths of the individual attributes that
are defined as the key attributes, known collectively as the primary key. This
primary key must be less than 2277 bits. (See "Data Base Design" in Section 2.)
There may be up to a total of 256 different key and non-key attributes in any
one relation. Up to 256 different relations may be defined.

Relation, attribute, and domain names must start with an alphabetic character
and can be composed of any alphanumeric character plus underscore and hyphen
characters. The maximum name length is 30 characters for relation names and 32
characters elsewhere. The names "dbc" and "db model" are reserved and may not
be used for relation names. -

The index statement is used to define attributes in previously defined
relations as being "inverted" or usable as secondary indexes. An attribute that
is so defined will allow faster retrieval performance using that attribute in
selection criteria, but this use ibcreases update costs and storage overhead for
that attribute. (See Section 2, "Data Base Design".) The same key length

3/84 3-9 AW53-04B

create mrds db create mrds db - -

restrictions apply to each single inverted attribute as apply to the total primary
key. The first attribute of a mul ti-attribute primary key may be used as if it
were a secondary index.

Formatting Data Model Source

The keywords domain, attribute, and relation may be abbreviated as dom,
attr, and reI, respectively.

Comments appear in the source text in the same manner that they appear in a
PL/I program.

The source may be formatted in several ways, such as by giving the source
segment an add name with .p11 suffix and using indent, or by creating the data
base first and then capturing the output of display mrds dm using the -cmdb
option. - -

Domain Options

The domain statement options_I may be one or more of the following:

-check procedure path, -check proc path
specifies a procedure that performs data verification checks upon storage
in tot h e d a tab as e (s u c has ens uri n g val i d d ate s) • Pat h mu s t be an
absolute pathname.

-decode declare declare, -decode dcl declare
specifies that declare is of the same form as in declaration I in the
domain statement that gives the data type to be used for the user's
view and the decode procedure, if present. If this option is not
given then the decode procedure data type is that given in the main
declaration.

-decode procedure path, -decode proc path
specifies a procedure that performs data decoding upon retrieval from
the data base, normally the inver se of the encode pr ocedur e. Pa th
must be an absolute pathname.

-encode procedure path, -encode proc path
specifies a procedure that performs data encoding (such as the names
of the states of the USA to integers 1-50) before storage into an
internal data base form. Path must be an absolute pathname.

See Appendix E "Administrator Written Procedures" for a detailed explanation
of the interface and examples of how these options may be used.

3/84 3-10 AW53-04B

create mrds db create mrds db - -

DATA BASE ARCHITECTURE

The data base is a directory wi th the ident i fyi ng suff ix ". d bit. Th is directory
contains the following:

NAME

db.control

db model

{relation_name}.m

{relation_name}

secure.submodels

TYPE

directory

segment

segment

segment

file

directory

PURPOSE

place for copy of mrds internal
structure for speedup of open

concurrency control

domain information, relation
names

model of the relation structure

relation data storage

place for secure submodels

I

I

Note: There are two segments (dbcb and rdbi) under the resultant segs.dir I
directory. The dbcb and rdbi segments are the copies of-internal
structures.

There is one relation model segment and one relation data file for each I
relation defined in the data base.

Examples

3/84

pr int x. cmdb

>udd>m>jg>dr>x.cmdb02/27/81 1157.2 mst Fri

dom: a bit; 1* simplest possible data base *1
reI: b(a*);

create mrds db x >udd>d>dbmt>small -list - -
CMDB Version 4 models.

pr i nt x.l is t

CREATE MRDS DB
Created by:

LISTING FOR >udd>d>dbmt)ndb)mike>x>doc)x.cmdb
Kubicar.Multics.a

1
2

NO ERRORS

Created on:
Data base path:

Options:

01/16/84 1412.7 mst Mon
>udd>d>dbmt>ndb>mike>x>doc>x.db
list

dom: a bit; 1* simplest possible data base */
reI: b(a*);

DATA MODEL FOR VFILE DATA BASE >udd>d>dbmt>ndb>mike>x>doc>x.db

3-11 AW53-04B

•

create mrds db create mrds db

3/84

- -

Ver sion: 4
Created by: Kubicar.Multics.a

01/16/84 1412.8 mst Mon Cr eated on:

Total Domains:
Total Attributes:
Total Relations:

RELATION NAME: b
Number attributes:

ATTRIBUTE:

Name: a
Type: Key
Domain info:

name: a
d c 1 : bit (1) non va r yin g un ali g·n e d

print states.cmdb

>udd>m>jg>dr>states.cmdb 02/27/81 1207.3 mst Fri

domain

attribute:

relation:

index:

text char(4096) varying,

date time fixed bin(71)
-check_proc >udd>m>jg>dr>verify_date,

dollars fixed decimal(59, 2) unal,

state name fixed bin -decode dcl char(30)
- -decode proc >udd>m>jg>dr>convert num to char

-encode=proc >udd>m>jg>dr>convert=char_to_num,

vector complex float bin(63), 1* longitude + latitude *1

key bit(70), 1* use unique_bits_ for key values */

name char(32)

first name name,
last name name,
salary dollars,
expenses dollars

person (last name* first name* salary expenses),
state_historY(key* state-name date time text),
person state (last name*-first name* key*),
state_Iocation(key¥ vector) -

create mrds db states - -

3-12

- -

AW53-04B

create mrds db

CMDB Version 4 models.

RELATION: person
ATTRIBUTES:

last name
char (32)

first name
char (32)

salary
fixed dec (59,2) unal

expenses
fixed dec (59,2) una 1

RELATION: person_state
ATTRIBUTES:

last name
char (32)

first name
char (32)

key
bit (70)

RELATION: state_history
ATTRIBUTES:

key
bit (70)

state name
char (30)

date time
fixed bin (71)

text
char (4096) var

RELATION: state location
ATTRIBUTES:

key
bit (70)

vector
cplx float bin (63)

3-13

Key

Key

Data

Data

Key

Key

Key

Key

Data

Data

Data

Key

Data

create mrds db

AW53-04

create mrds dm include create mrds dm includ~

This command is a MRDS data model/submodel display tool that creates an

I include segment suitable for use in accessing the data base from PL/I programs
v ia the d 51 subroutine in terface. Commen ts are put in the include fi le to
indicate indexed and key attributes.

cmdmi path {-control_args}

where:

1. pa th
is the relative or absolute pathname of the data base model or submodel,
Vii th or wi thout suffix. It requires "r" ACL to the data model. If
the data base is secured, then the path must refer to a submodel in
the secure.submodels directory under the data base, unless the user
is a DBA. If a suffix is not supplied and both a model and submodel
exist in the same directory, then the model is found before the
submodel.

2. control args

2/83

can be one or more of the following:

-based
specifies that the resulting include file structure declaration has
the "based" PL/I attribute.

-no based
specifies that the resulting include file structure declaration does
not have the based attribute. (Default)

-order rel name1 rel name2 ..• rel namei
specilies that the structures generated for the relations whose names
follow this argument are to be placed first in the output segment in
the order of their names on the command line. The structures for
relations not named in the ordered list are placed at the end of the
output segment in the order in which their names are defined in the
data model. The names following the -order control argument are
separated by spaces.

-page length N, -pl N
specifies the number of lines allowed between form-feed characters
in the output segment, where N=O or 30<=N<=127. A page length of 0
puts a form feed before each structure. (Default is 59 lines.)

3-14 AW53-04A

create mrds drn include - --

Notes

The output is written to a segment whose name is constructed as follows:

<entryname of the input path with the db or dsm suffix removed>.incl.p11

If the segment does not exist, it is created.

If the data base is secur ed and the user is not a DBA, then the "key"
comment on attributes is changed to "indexed" for the key head attribute and
remaining key attributes have no comments.

If a -decode declare option exists on an attribute domain, then the declaration
appears in the include file since this is the user view and the data base
storage data type is not of use.

Examples

3/84

display_mrds dm foo -cmdb

1* Created from >udd>m>jg>dr>foo.db
02/24/81 1406.9 mst Tue

domain:

relation:

index:

data

*1

real float decimal (10) aligned 1* 9-bit *1
-decode dcl character (20) varying aligned,
character (20) varying aligned,

indexed
bit (36) nonvarying unaligned,

key
real fixed binary (17,0) aligned;

sample (key* data indexed);

sample (indexed) ;

3-15 AW53-04B

I

I

I
I

I

I

I

create mrds dm include create mrds dm include

3/84

- --

create mrds dm include foo -based
pr foo-:-incI":plT

1* **
* * * BEGIN foo.incl.p11 *
* created: 02/24/81 1407.2 mst Tue *
* by: create_mrds_dm_include (3.0) *
* * Data model >udd>m>jg>dr>foo.db
* created: 02/24/81 1405.1 mst Tue
* version: 4
* by: JGray.Multics.a
*

*
*
*
*
*
* ** *1

dcl 1 sample aligned based,
2 key real fixed binary (17,0) aligned,
2 data character (20) varying aligned,
2 indexed bit (36) nonvarying unaligned;

1* Key * 1

1* Index *1

1* END of foo.incl.p11 ******************************1

1* Created from >udd>m>jg>dr>foo.db
03/23/81 1417.3 mst Mon

domain:

relation:

char
character (1) nonvarying unaligned,

number
real float decimal (10) unaligned;

(char*),
(number*);

3-16

*1

AW53-04B

create mrds dm include - --

create mrds dm include foo -order reI 2 reI 1
print foo.incl:pI1

1* **
* * * BEGIN foo.inol.pI1 *
* created: 03/16/81 1321.1 mst Mon *
* by: create_mrds_dm_include (3.0) *
* * * Data model >udd>m>jg>dr>foo.db *
* created: 03/16/81 1320.4 mst Mon *
* version: 4 *
* by: JGray.Mul tics.a *
* * ** *1

dcl 1 reI 2 aligned,
2 number real float decimal (10) unaligned;

dcl 1 reI 1 aligned,
2 char character (1) nonvarying unaligned;

create mrds dm include

1* Key *1

1* Key *1

1* END of foo.incl.pI1 *********************************1

3/84 3-17 AW53-04B

I
I

I

I

create mrds dm table create mrds dm table - -- - ---

This command is a display tool which creates a pictorial representation of
a MRDS data base model/submodel. Each box names an attribute in the relation,
giving its PL/I data type with flags indicating if it is a key attribute and/or
index attribute in the relation.

cmdmt path {-control_args}

where:

1. path
is the relative or absolute pathname of the data model/submodel of
the data base, wi th or wi thout the suffix. The user must have "r"
access to some relation in the data base. The pathname must be the
first argument. If the data base is secured, then the path must
refer to a submodel in the secure.submodels directory under the data
base, unless the user is a DBA.

2. control args
can be one or more of the following:

3/84

-brief, -bf
suppresses the PL/I data type information normally displayed below
the attribute name inside each box.

-line length N, -11 N
specifies the maximum line length (in characters) available for the
display of boxes across the page where 64<=N<=136). (Default line
leng th is 136)

-long, -lg
causes the PL/I data type information to be displayed below each
attribute name, inside each box. (Default)

-order reI name1 reI name2 ••• reI namei
specifies that the displays generated for the relations whose names
follow this argument are to be placed first in the output segment in
the order of their names on the command line. The displays for
relations not named in the ordered list are placed at the end of the
output segment in the order in which their names are defined in the
data model. The names following the -order control argument are
separated by spaces.

-page length N, -pI N
specifies the number of lines allowed between new page characters in
the output segment where 30<=N<=127. (Default is 59 lines)

3-18 AW53-04B

create mrds dm table create mrds dm table - -- - --

The output is written to a segment whose name is constructed as follows:

<entryname of the input path with the db or dsm suffix removed>.table

If the segment does not exist, it is created.

If both a data model and submodel of the same name are in the same directory,
then the model is found first if no suffix is given.

If the data base is secur ed and the user is not a DBA, then the key head
attribute is marked as "indexed" and remaini~g key attributes are unmarked.

If a -decode declare option ex ists on an attribute domain; then the declaration
appears in the table since this is the user view and the data base storage data
type is not of use.

Examples

3/84

display_mrds dm cmdmt -cmdb

/* Created from

domain:
data

>udd>m>jg>dr>foo.db
02/26/81 1159.4 mst Thu */

real float decimal (10) aligned 1* 9-bit *1
-decode dcl character (29) varying aligned,

indexed -
bit (36) nonvarying unaligned,

key
real fixed binary (17,0) aligned;

relation:

sample (key* data indexed);

index:
sample (indexed) ;

create mrds dm table foo ~line_length 65
print foo.table

3-19 AW53-04B

I

I

create mrds dm table

1* **
* * I * BEGIN foo.table *

I

3/84

* c rea ted: 02/2 6 18 1 1 1 5 8. 6 m s t Th u *
* by: create_mrds_dm_table (3.0) *
* * Data model >udd>m>jg>dr>foo.db
* c rea ted: 02/26 18 1 11 58. 3 ms t Th u

*
*
*
*
*
*

* version: 4
* by: JGray.Multics.a
*
********************************i*********** *1

LEGEND:
1 1

:* I: 1 1 T
I

relation I Attribute I I
I I I

Data Type I I
I I
I 1 1 I
I I

1 1
* = Key Attribute
I = Index Attribute

:*
sample : key data

: fixed bin (17) char (20) var
I

indexed
bit (36)

I:

I ________________ ~----------------~---------~

3-20

create mrds dm table - --

AW53-04B

create mrds dm table

3/84

create mrds dm table foo -brief -order reI 2 reI 1
print foo.table

1* **
* * * BEGIN foo.table *
* created: 03/16/81 1342.0 mst Mon *

by: create_mrds_dm_table (3.0) *
*

*
* * Data model >udd>m>jg>dr>foo.db *
* created: 03/16/81 1320.4 mst Mon *
* version: 4 *
* by: JGray.Multics.a *
* * ** *1

LEGEND:
1 1

TI~*--------~I~:~I /.~~----~

relation Attribute:
-=--____ --!----,I I

I I·--'------=-
* = Key Attribute
I = Index Attribute

I'
reI 2 number

I'
reI 1 : char

3-21

create mrds dm table - -

I
I

I

AW53-04B

create mrds dsm create mrds dsm

Name: create_mrds_dsm, cmdsm

This command creates a MRDS data base submodel from a data submodel source
segment. The path of the resulting data submodel can be specified as an argument
to the dsl $open subroutine or the mrds call open or LINUS open commands instead
of the path to a da ta base directory. -Th is command is intended for use by data
base administrators (DBAs) when defining a view of a data base for a given
application. The submodel created only works against the data base whose path
was in the command and not against similar data bases with other pathnames.

where:

1. source path
-is the pathname of a data submodel source segment. If source path

does not have a suffix of cmdsm, then one is assumed. However, the
cmdsm suffix must be the last component of the name of the source
segment. (See "Data Submodel Source" below.)

2. db_path
is the pathname of the data base with which the resulting data submodel
is to be associated. This data base must exist.

3. control args

2/83

can be chosen from the following:

-force, -fc
overwrites an existing submodel with the same name without querying
the caller to be sure that the old submodel can be destroyed.

-install, -ins
creates the submodel in the secure.submodels directory that is under
the data base directory rather than in the working dir (see "Data
Base Architecture" under the create mrds db commandl. The use of
this control argument causes a directory-named secure.submodels to
be created under the data base directory if it does not already
exist. This control argument is restricted to DBAs (see Section 7).

-list, -Is
creates a segment containing a listing of the submodel source, followed
by information about the submodel to model mapping, in the working
directory. The segment also contains a list of any errors found
while creating the submodel.

-no force, -nfc
- if a submodel with the same name already exists, queries the user as

to whether it can be overwritten. This control argument undoes the
effects of a -force. (Default)

-no install, -nins
- creates the submodel in the working_dire (Default)

-no list, -nls
- specifies that a listing segment is not created. (Default)

3-22 AW53-04A

create mrds dsm create mrds dsm

Notes

The data submodel is a multisegment file with the same name as the submodel
source but with a dsm (rather than cmdsm) suffix.

Error messages are wr it ten to the error output I/O swi tch as they occur.
These messages are also included in the listing segment if one is produced.

Only a DBA can run this command against a secure data base. If the data
base is secure and the -install control argument is not used, the submodel will
be created in the DBA's working directory and a warning that the submodel is not
secure will be issued.

Data Submodel Source

The function of a data submodel is twofold: to map the user's view of the
data base into the actual data base description (i.e., the data model) and to
specify relation and attribute access privileges.

Comments appear in the source segment in the same manner that they appear
in a PL/I source program.

The basic format of the create mrds dsm source is:

relation:
relation definition 1,

relation definition N;

attribute access:
attribute access definition 1,

attribute acceSS definition N;

relation access:
relation access definition 1,

relation access definition Nj

default relation access: (relation access control list);

default attribute access: (attribute access control list);

Take note that all of the access specification statements are optional,
that mul tiple relation, attribute access, and relation access statements may
occur, and that there is no fixed order in which the statements must occur.

2/83 3-23 AW53-0~A

create mrds dsm create mrds dsm

RELATION STATEMENT

The relation statement(s) specifies a mapping of attributes from the data
model relation to the data submodel relation. This mapping can be used to
change the names of the data model relations and attributes, to reorder the
attributes within a relation, to omit attributes from a relation, and to omit

I relations from the data base view. Multiple relation statements can occur provided
each model relation is used to define, at most, one submodel relation.

Examples

relation:
relation1 (attribute' ..• attributeN),
relation2 = model relationI (attribute1 ... attributeN),

relation3 (attribute'

or

relation:

attributeI = model attributeK
••• attributeN);

relation1 (attribute1 ... attributeN);
relation:

relation2 = model relationI (attribute1 •.• attributeN);
relation:

relation3 (attribute1 ..• attributeI = model attributeK
attributeN) ;

If the data submodel view of a relation name differs from that specified in
the data model, the data submodel relation name is equated to the corresponding
name in the data model. If only one relation name is supplied in the data
subrnodel relation expression, it is assumed that the data submodel and data
model relation names are the same. A data submodel relation name may be up to
30 characters long and may be composed of letters, numbers, hyphens, and underscores,
but must begin with a letter.

Similarly, if the data submodel view of an attribute name differs from that
in the data model, the data submodel attribute name is equated to the corresponding
name in the data model. If only one name for an attribute is supplied, it is
assumed that the data submodel and data model names for the attribute are the
same. A data submodel attribute name may be up to 32 characters long and may be
composed of letters, numbers, hyphens, and underscores, but must begin with a
letter.

2/83 3-24 AW53-04A

create mrds dsm create mrds dsm

Access Specification Statements

The cmdsm source text has been augmented to allow the submodel creator to
specify access privileges at the relation and/or attribute level. These access
privileges are enforced when the data base associated with the submodel is a
secure data base. (See the secure mrds db command and Section 7 "Security".)

Access to the submodel is controlled by the DBA setting Multics ACLs on the
submodel entry. Anyone with read ACL on the submodel and the data base model
can open the associated data base and is subject to the access privileges specified
in that submodel. A person can have access to several submodels each with
different access privileges.

Access is specified by access control statements. These control statements
may appear anywhere in the submodel source, even before the relations and at tri butes
for which they define access. Only one default relation access and one default
attribute access statement may appear in a cmdsm source. However, there may be
multiple relation access and attribute access statements as long as each statement
defines access for a different relation or attribute. The abbreviations reI acc
and attr acc may be used in place of relation access and attribute access.

Statement Name: default relation access

Examples:

default relation access:
(relation access control list);

or

default relation access:
relation access control list;

Purpose:

Specifies that all relations that do. not have an access set by a relation
access statement will have the access specified in the relation access control
list. For every submodel there is an implicit default relation access statement
specifying null access, which can be overridden by an explicit statement specifying
some other access.

Statement Name: default attribute access

Examples:

default attribute access:
(attribute access control list);

or

default attribute access:
attribute access control list;

3-25 AW53-04

I

create mrds dsm create mrds dsm

Purpose:

Specifies that all attributes that do not have an access set by an attribute
access statement or by the "wi th" option ina re lat ion access statemen twill
have the access specified in the attribute access control list. For every submodel
there is an implicit default attribute access statement specifying read access,
which can be overridden by an explicit statement specifying some other access.

Statement Name: relation access

Examples:

relation access:
relation name1 (relation access control list1),
relation name2 (relation access control list2)

with attribute access (attribute access control list1),

relation nameN (relation access control listN);

or

relation access:
relation name1 (relation access control list1);

relation access:
relation name2 (relation access control list2)

with attribute access (attribute access control list1);

relation access:
relation nameN (relation access control listN);

Purpose:

Specifies that the relation indicated by relation nameI is to have the
access privileges specified in the relation access control listI. The "with
attribute access clause" (attribute access control list) can be considered a
default attribute access statement which is in effect only over the associated
relation. Access specified in the "with" clause will have precedence over access
specified in the default attribute statement and will be overridden by access
specified in an attribute access statement, provided an attribute access statement
exists.

Statement Name: attribute access

Examples:

attribute access:
attribute name1 (attribute access control list1),
attribute-name2 in relation name1

(attribute access control-list2),

attribute nameN (attribute access control list);

3-26 AW53-04

create mrds dsm

or

attribute access:
attribute name1 (attribute access control list1);

attribute access:
attribute name2 in relation name1

(attribute access control list2);

attribute access:
attribute nameN (attribute access control listN);

Purpose:

create mrds dsm

Specifies that the attribute indicated by attribute nameI is to have the
access privileges specified in the attribute access control listI. If the "in
relation nameI" clause is used, then the attribute will have the specified access
privileges only in the indicated relation. If the "in" clause is not uSed, then
the indicated attribute will have the specified access privileges in all the
relations where it occurs. There may be several attribute access statements all
referring to the same attribute but having different relations specified in the
"in" clause.

The access control lists contain the specifications for the access privileges.
These lists are made up of a series of keywords separated by commas. The keywords
depend on the access to be specified and whether the list is associated with a
relation or attribute.

Relation access keywords and the operations that they allow are:

append tuple, append tuple, or a
Specifies that tuples may be stored (e.g., using dsl_$store) in the
relation.

delete tuple, delete tuple, or d
Specifies that tuples may be deleted (e.g., using dsl $delete) from
the relation.

null, or n
Specifies that tuples may neither be stored into nor deleted from the
relation.

Note that any form of the access keywords may be used in the access control
list. A null access cannot be specified with any other access. The order of a
combination of append_tuple and delete_tuple is not important. Currently there
is the restriction that append tuple and delete tuple may only be specified if
the submodel relation contains-all the attributes that are defined in the model
relation, i.e. the submodel relation is a "full view" of the model. Append tuple
has the further restriction that all the key attributes must have read attr
access set.

Attribute access keywords and the operations they allow:

read attr, read attr, or r
-Specifies that the attribute value may be read (e.g., using dsl_$retrieve).

3-27 AW53-04

I

create mrds dsm create mrds dsm

modify attr, modify attr, or m
Specifies that the attribute value may be modified (e.g., using
dsl_ $modi fy) .

null, or n
Specifies that the attribute value may not be read or modified.

Note that any form of the attri bute access keywords may be used in the
access control list. A null access may not be specified with any other access.
The order of a combination of read attr and modify_attr is not important.

Relation and attri bute pri vileges (except for the append _ tuple/read _ attr
requirement) are independent. You may have modify attr andlor read attr privileges
on the attributes in a relation to which you do-not have either-append_tuple or
delete_tuple privileges.

Examples

The following examples show different submodels which are all defined over
the States data base descri bed in the examples of the create mrds db command.
The first submodel is a full view submodel, i.e., all the relatlons ln the model
are present and each relation has all the attributes that were defined in the
model.

If:

f:1

This submodel is a simple view corresponding to the entire data base
with no name changes. Since no access is specified, the default relation
access of null and the default attribute access of read is used.

relation:

1*

*1

person (last name first name salary expenses),
state history (key state name date time text),
person state (last name first name-key),
state location (key vector); -

This submodel renames the last name and first name attri butes to In
and fn and omi ts the salary attri bute from the person relation. The
attribute key has been moved to the first position in the person state
relation which has also been renamed to ps. The relation state location
has been omitted from this submodel.

relation:
person (In = last name fn = first name expenses),
state history (key state name date time text),
ps = person_state (key last name fIrst_name);

3-28 AW53-04

create mrds dsm create mrds dsm

1*

*1

This submodel specifies a default relation access of append tuple and
delete tuple and a default attribute access of read attr and modify attr.
Notice-that comments can be placed between both relations and attributes.

default relation access: (append_tuple, delete tuple);

default attribute access: (modify attr, read attl');

relation:

1* person relation *1
person

(In = last name
fn :: first name
salary
expenses

1* location of person *1
person state

(last name
first name
key

1* last name of person *1
1* first name of person */
1* person's salary *1
1* expenses of person to date */),

1* state of residence *1
1* same as In in person *1
1* same as fn in person *1
1* state key */);

cmdsm source_example~4

1*

*1

This submodel specifies a default relation access of append tuple and
delete tuple and a default attribute access of read attr and modify
attr. Access for the person relation is set to append with a default
attribute access of read attr. Note that all access key words and the
statement keywords are in their short form. Notice as well the multiple
use of the relation, relation access, and attribute access statements.

A display of the submodel with the relation and attribute access may
be found in the examples for the display_mrds_dsm command.

default rel_acc: a, d;

default attr acc: r, m;

attr acc:

reI acc:

last name (r),
first_name (r);

person_state (d),

relation:
person (last_name first_name salary expenses),

reI acc:
person (a) with attr acc (r);

attr acc:
-salary in person (n);

3-29 AW53-04

create mrds dsm

relation:
person_state (last name first name key);

relation:
state_history (key state_name date time text);

attr acc:
-key in state_history (r);

create mrds dsm

The following examples show command usage. Invoking the command using no
control arguments is the same as invoking the command with control arguments of
-no_list, -no_force, and -no install.

create mrds dsm cmdsm_source_expmple_'.cmdsm states.db

The following invocation creates the submodel in the secure.submodels directory
under the states.db directory. Only a DBA can use this control argument.

create_mrds_dsm -install cmdsm_source_example 2.cmdsm states.db

.The following invocation installs the submodel in the secure. submodels
directory and writes over any existing cmdsm_source example 3 without querying
the invoker.

create_mrds_dsm -force cmdsm_source example 2.cmdsm -install states.db

This last example installs the submodel in the secure.submodels directory, forces
the overwri ting of an existing submodel wi th the same name, and produces a
listing called cmdsm source example 2.list in the working directory. Notice that
the short form of the control arguments and the command name are used.

cmdsm -fc cmdsm_source example 2 states -Is -ins

3-30 AW53-04

This command displays the current access that the user has to the data for
the relations in the supplied view of the data base.

display_mrds db access path {-control_args}

where:

1. path
is the relative or absolute pathname of a data base model or submodel,
wi th or wi thout suffix, that suppl ies the view for which the user
wishes to see access information. If both a data model and submodel
of the same name are in the same directory, then the model will be
found if no suffix is given.

2. control args

Notes

may be one of the following:

-brief, -bf
specifies that a short form of the access information be displayed,
showing only effective access to the data.

-long, -lg
specifies that all information related to access be displayed.
(Defaul t)

-relation reI name1 reI nameN
specifies that only the access for those relations whose names are
given in the reI nameI list is to be displayed according to the
other control arguments. This control_arg must appear after path.

If the data base has been secured, then path must refer to a secure submodel,
unless the user is a DBA. The user must have sufficient access to the related
model information to open the data base using the given path.

Control arguments can be overr idden, in that the last one specified takes
effect (e.g., -bf followed by -lg implies -lg).

This command only works for version 4 data bases.

The Mul tics system ACLs, the MRDS access modes, and the resul t of these
two, an effective access, is displayed for each relation and attribute in the
given view. Access modes displayed depend on the secured state of the data base
as follows:

3/84 3-31 AW53-04B

I

DB SECURED STATE

off
on

MODES

r-e-w
r-a-m-d

The r-e-w refers to Multics ACLs.
security related operations of
delete_tuple respectively.

The r-a-m-d refers to the new attribute level
read_attr, append_tuple, modify_attr, and

Examples

3/84

display_mrds db access submodel

Data base path: >udd>m>jg>dr>model.db
version: 4

data base is in a secure state.

Submodel path: >udd>m>jg>dr>model.db>secure.submodels>submodel.dsm
version: 5

Relation Attribute Sy stem MRDS Effective

rOO1 r a n
kOO 1 r r r
dOO1 r m n

rOO2 rw d d
kOO 1 rw m m
xO 01 rw n n
dOO1 rw r r

display mrds - db access submodel -brief

rOO1 n
kOO 1 r
dOO1 n

rOO2 d
kOO1 m
xOO 1 n
dOO1 r

3-32 AW53-04B

This command displays the current tuple count for each relation in the
given data base model or submodel view. It can also display population statistics
about the vfile for each relation's data.

where:

1. path
is the relative or absolute pathname of the data base model or submodel,
wi th or wi thout suffix, that is to have the relation's population
statistics displayed. If both a data model and submodel of the same
name are in the same directory, then the model will be found if no
suffix is given.

2. control args
may be one of the following:

-brief, -bf
limits the output display to only relation names and their current
tuple count. (Defaul t)

-long, -lg I
displays the average number of tuples selected by index during retrieval.

Notes

-relation reI name1 ••• reI nameN
specifies that only the population for those relations whose names
are given in the reI nameI list are to be displayed according to the
other control arguments. This control_arg must appear after path.

Version 3 data bases must have been opened at least once for exclusive
update. They cannot have secondary index information displayed.

For version 4 data bases, only a DBA may use this command on a secured data
base, wi th the model view. The user must have at least "r" access to the
relation model segment and the relation data vfile for those relations in the
view presented by "path".

3/84 3-33 AW53-04B

*

Examples

display_mrds_db_population test -bf

Opening version 4 data model: >udd>m>jg>dr>test.db

RELATION TUPLES

r001 100
r002 100

Displaying version 4 data model: >udd>d>dbmt>ndb>K>x>doc>x001.db

RELATION TUPLES INDEX AVE TUPLES SELECTED

r001 100
x001 16

A description of the -long form output follows:

3/84

Relation: the name of the relation in the user's view.

Tuples: the number of tuples currently stored as records in the vfile.

Index: the indexed attributes in the relation.

Ave Tuples Selected: the number of tuples that MRDS expects to retrieve
when doing a comparison on an indexed attribute. This estimate is based on
the number of duplicate keys for that index.

3-34 AW53-04B

This page intentionally left blank.

3/84 3-35 AW53-04B

display_mrds db status

I

This command displays the current state of the data base concurrency control
segment. The number and type of open users of the data base can be determined
from its output. The current scope settings on all relations in the user's view
can be displayed.

Usage
I -----display_mrds db status path {-control args}

*

where:

1 . path
is the relati ve or absolute pathname of the data base, or of a
submodel defined for that data base, for which concurrency control
information is desired. If both a data model and submodel of the
same name are in the same directory, the model will be found if no
suffix is given.

2. control args

Notes

Notes

may be chosen from the following:

-brief, -bf
causes display of only the current number of open users and the
number of active scope users of the data base.

-long, -lg
causes all possible concurrency control information to be displayed
that is in the user's view. This includes the concurrency control
version, whether the data base has been quiesced, consistency state
of the data base control segment, existence of any dead processes,
identification of the processes having the data base open, and what
scope they have set on relations that are in the user's view.

-proc id process number, -pid process number
same as is -used for -user, but -the process number IS used for the
identifier instead.

-user person.project, -user person
causes all possible concurrency control information (such as -long)
for the person. project or person gi ven to be displayed, including
scope setting on relations in the user's view.

I If no control arguments are specified, then
information given by the -long option is presented.

an abbreviated form of the

I ~ ~_~~ ;~e o~~~~t _ ~.~ ~~:~:_ d~:~ .J~~~ _i_n_cl_~_d~_ ~'~~~~~_~_:' ~C?;:~_~5_i2~n~ __ , _s_~_ch -' ~~ _'~ ~?_~ ~ v~~ i~n:
• IJVI1II0.1. • Vll.1.y I::AI.,;I::~v.!.VIJ I.,;V1JU.!.v.!.VIJ" VI IJt:::I.;t:::""dl Y J .• JlVI Uldl".!.VIJ dl t::: U.L"tJ.Ldyt:::U \t:::.ts.,

3-36 AW53-04

"Non-passi ve scope set by a dead process.", or "open users: 0") unless the I
-long option is specified.

Examples

display_mrds db status 2rels -long

Concurrency control version:
Data base path:

Version:
State:

Open users:

5
)udd)Multics)JGray)dr)2rels.db
4
Consistent
1

Scope users: 1 Active

User process id:
Process number:
Process state:

Usage mode:
Scope:

Activation:

Relation

r001
r002

display_mrds_db_status 2rels

Data base path:
Open users:

Scope users:

User process id:

Relation

r001
r002

Data base path:
Open users:

Scope users:

o Awakening
o Queued

JGray.Multics.a
016600352461
Alive
Normal
Active
Normal

Permits

ramd
r

Prevents

n
a

)udd)Multics)JGray)dr)2rels.db
1

Active

JGray.Multics.a

Permits

ramd
r

Prevents

n
a

)udd)Multics)JGray)dr)2rels.db
1

Active

3-37 AW53-04

display_mrds_db_status 2rels -person JGray.Multics

User process id:
Process number:

Process state:
Usage mode:

Scope:
Activation:

Relation

r001
r002

JGray.Multics.a
016600352461
Alive
Normal
Active
Normal

Permits

ramd
r

Prevents

n
a

The following example shows the effect of using a submodel path, where that
submodel references an open data base "2rels.db" (see above examples) with only
one relation in the submodel view. The submodel has the name "alias 1" for the
model relation "r001".

Data base path:
Open users:

Scope users:

User process id:

Relation

alias 1

>udd>m>jg>dr>2rels.db
1

Active

JGray.Multics.a

Permits

ramd

3-38

Prevents

ramd

AW53-04

This command displays the MRDS data modellsubmodel version, creator, and
creation time.

dmdv path

where path is the pathname of the data modellsubmodel version to be displayed (with or
without the db or dsm suffix).

Notes

This command requires access to open the data model or submodel for retrieval
(for example, as in mmi $open model or msmi_$open_submodel). (See
dsl_$get_path_info for a subroutine interface.)

If a data base model and submodel of the same name are in the same directory, the
model is found if a suffix is not given.

Example

2/85

display_mrds db version CS III

Data model: >udd>Demo>demt>db7>jg>CS III.db
version: 4
created: 02101/80 1419.0 mst Fri

by: JGray.Multics.a

3-39 AW53-04C

Name: display_mrds_dm, dmdm

Tllis command displays the details of the data base model and data definition for a
given data base. It can be used to reconstruct the original create_mrds_db data model
source from the data base.

where:

1. db_path
is the pathname of the data base for which the data model is to be
displayed.

2. control args

12/86

can be cho sen from the following:

-attribute {modifier}, -attr {modifier}
displays attribute information. The modifier may be name(s) or
-unreferenced (-unref). If name(s) is supplied, information for the
attribute name(s) is displayed. If -unreferenced is supplied, attribute
information anbout all unreferenced attributes is displayed. If no
modifier is supplied, attribute information about all attributes is
displayed.

-brief, -bf

-cmdb

displays only relation and attribute names. No information on the
characteristics of the attributes and relations is provided. This
control argument is incompatible with the -names control argument.

specifies that the output is to be in the same format as an input source
text for create mrds_db. If the -output_file control argument is
supplied, then the segment can be used to create another data base wi th
the same defini tions. Only the -brief, -long, and -output file control
arguments are compatible with this control argument. -

-crossref {type}, -xref {type} displays an information cross-reference. The
type may be domain (dom), attribute (attr), or all. If the type is
domain, each domain is listed with a list of attributes in which the
domain is referenced. If the type is attribute, each attribute is 1 isted
with a list of relations in which the attribute is referenced. If the
type is all, both domain and attribute cross-references are displayed.
(Defaul t is "all".) See the examples below which show the information
displayed.

-domain {modifier}, -dom {modifier}
displays domain information. The modifier may be name(s) or
-unreferenced (-unref). If name(s) is supplied, information for the
domain name(s) is displayed. If -unreferenced is suppl ied, domain
information about all unreferenced domains is displayed. If no modifier
is supplied~ domain information about all domains is displayed.

-head er, -he
displays header information for the data base.

3-140 AW53-0qD

Notes

-history, -hist
displays restructuring history information. If the data base is
restructured more than once, the history entries are displayed in reverse
chronological order.

-index names, -ix names
displays information about indexed relations for each relation name
supplied. If no names are suppl ied, then information about all indexed
relations is displayed.

-long, -lg
displays all available information about relations and their attributes.
For relations, this includes the number of attributes and the layout of
the attributes in the tuple. For attributes, this includes the name of
the underlying domain and the declaration. This control argument is
incompatible with the -names control argument.

-names, -nm
displays the format of domains, attributes, relations, and indexed
relations as a list of the names. This argument is incompatible with
-brief or -long control arguments.

-no header, -nhe
- prevents display of the header information. (Default)

-no output file, -nof
- displays output on the user_output switch. (Default)

-output file path, -of path
places the output in the segment named by path rather than being displayed
on the user output switch. If the segment already exists, its contents
are overwrItten.

-relation names, -reI names
displays relation information for each relation name supplied. If no
names are supplied, the relation information for all relations is
displayed.

-temp dir path
provides for a directory with more quota than the default of the process
directory when more temporary storage is needed to do a display mrds dm
on a source wi th man y relations and attributes. For example ,-doing a
display mrds dm on a 127 relation source may require this argument. If
the user gets a record quota overflow in the process directory during a
display mrds dm, then a new process is required. A retry of the
display-mrds-dm with the -temp dir argument, giving a pathname of a
directory with more quota than-the process directory, should then be
done.

If neither -long nor -brief is specified, the relation name is displayed for each
relation as well as the name and user view declaration of each attribute.

This command does not work for submodels (see display_mrds_dsm).

12/86 3-41 AW53-04D

For ver sion 4 data bases, the user must be a DBA in order to use this command on a
secured data base.

If -long is specified, the header output indicates the secured state of the data
base.

Examples

12/86

display_mrds dm dmdm.db -long

DATA MODEL FOR VFILE DATA BASE >udd>d>dbmt>ndb>K>x>doc>dmdm.db
Data base secured.

Version: 4
Created by:
Created on:

Kubicar.Multics.a
01/16/84 1515.6 mst Mon

Total Domains:
Total Attributes:
Total Relations:

RELATION NAME:
Number attributes:

ATTRIBUTES:

Name:
Type:
Domain info:

name:
dcl:

Name:
Type:
Domain info:

name:
dcl:

sample

key
Key

key

3
3
1

character

data
Data

data
character

Name: indexed

3

(1)

(1)

Type: Data Index
Domain info:

n am e: in d ex ed

nonvarying aligned

nonvarying unal igned

dcl: character (1) varying aligned

3";42 AW53-04D

2/83

display_mrds_dm dmdm

RELATION: sample

ATTRIBUTES:
key

char (1) aligned
data

char (1)
index

char (1) var

display_mrds_dm dmdm -brief

RELATION: sample

ATTRIBUTES: key

1* Created from

data
index

>udd>m>jg>dr>dmdm.db

Key

Data

Data

o 31 1 61 8 1 1 5 1 4. 1 m s t Mo n

domain:
data

Index

*1

character (1) nonvarying unaligned

display_mrds_~m

-check proc >udd>m>jg>dr>validate data$validate data,
index - --

character (i) varying aligned,
key

character (1) nonvarying aligned;

relation:
sample (key* data index);

index:
sample (index);

display_mrds dm dmdm -names

sample

3-43 AW53-04A

I

Name: display_mrds_dsm, dmdsm

This command displays information about the specified MRDS data submodel.

dmdsm dsm_path {-control_args}

where:

1. dsm_path
is the pathname of the data submodel file to be displayed. If dsm path
does not have a suffix of dsm, then one is assumed. However; the
dsm suffix must be the last component of the data submodel file
name.

2. control args

2/83

can be chosen from the following:

-access, -acc
specifies that access information (both relation and attribute) is
to be displayed.

-brief, -bf
specifies that only the submodel relation names and attribute names
are to be displayed. This control argument may be superseded by any
of -cmdsm, -reI names, or -long which follow it in the command line.
(Defaul t) -

-cmdsm
specifies that the display is to have a format that may be processed
by the create mrds dsm command to produce another submodel. This
control argument is limi ted to DBAs if the submodel is associated
with a secure data base. This control argument may be superseded by
any of -long, -reI_names, or -brief which follow it in the command
line.

-long, -lg
specifies that the display is to contain all the information that is
in the submodel. This includes the data base path, submodel version,
submodel creation date and creator, submodel relation names and
associated model relation names, submodel attribute names and associated
model attribute names, relation and attribute access, and the attribute
data types. If the person running this command is not a DBA and the
submodel is associated wi th a secure data base, then the model relation
names and model attribute names will not be displayed. This control
argument may be superseded by any of -cmdsm, -reI names, or -brief
which follow it in the command line. -

-no access, -nacc
- specifies that access information is not to be displayed.

-no output file, -nof
- causes the output display to be written to the terminal. This control

argument will undo the effects of the -output_file control argument.
(Defaul t)

3-44 AW53-04A

display_mrds_dsm

-output file path, -of path .,1
causes the output display to be written to the specified path instead
of to the terminal. Anything already stored in the segment at the
specified path will be overwritten.

-reI names, -rn
-specifies that only submodel relation names are to be displayed.

This control argument may be superseded by any of -cmdsm, -brief, or
-long which follow it in the command line.

-relation REL 1 REL 2 ... REL N

Example

specifies that l.nformation about REL 1 through REL N is to be displayed.
The information about each relation is displayed in the order they
are specified. If some specified relation REL I does not exist in
the submodel an error is reported and the display proceeds with the
next relation. If the display is going to an output file, the error
is reported both to the terminal and the output file. This control
argument may be used with the control arguments -cmdsm, -long,
-reI names, and -brief to produce a display of part of the submodel.
(The-default displays all relations.)

The following examples all use the submodel example 4, which was generated
from the example cmdsm source example 4 in the discussion-of the create mrds dsm
command. The submodel-secure-example-4 is the same submodel defined for-a secure
data base. --

a parson
r last name
r first name
n salary
r expenses

d person state -r last name
r first name
rm key

ad state history -r key
rm state name
rm date time -rm text

Submodel path:
Version:

Created by:
Created on:

Data base path:
Version:

>udd>Multics>examples>example 4
5 -
Davids.Multics.a
03/10/81 1059.6

>udd>Multics>examples>states.db
4

3-45 AW53-04

I

*

I

display_mrds dsm

Created by:
Created on:

Davids.Multics.a
03/10/81 1130.3

Submodel Relation Name:
Model Name:

Access:

person
person
append_tuple

Submodel Attribute Name: last name -Model Name: last name -Access: read attr
Data Type: char (32)

Indexed

Submodel Attribute Name: first name
Model Name: first name

Access: read attr
Data Type: char-(32)

Submodel Attribute Name: salary
Model Name: salary

Access: null
Data Type: fixed dec

Submodel Attribute Name: expenses
Model Name: expenses

Access: read attr
Data Type: fixed dec

Submodel Relation Name:
Model Name:

Access:

person state
person-state
delete=tuple

Submodel Attribute Name:
Model Name:

Access:
Data Type:

Submodel Attribute Name:
Model Name:

Access:
Data Type:

Submodel Attribute Name:
Model Name:

last name
last-name
read-attr
char-(32)
Indexed

first name
first-name
read attr
char-(32)

key
key

(59, 2) unal

(59, 2) unal

Access:
Data Type:

read attr modify_attr
bit 170)

Submodel Relation Name:
Model Name:

Access:

state history
state-history
append_tuple delete_tuple

Submodel Attribute Name: key
key Model Name:

Access:
data Type:

3-46

read attr
bit 170),
Indexed

AW53-04

display_mrds dsm

Submodel Attribute Name: state name
state-name Model Name:

Access: read attr modify attr
Data Type: char-(30) -

Indexed

Submodel Attribute Name: date time
date-time Model Name:

Access:
Data Type:

read-attr modify attr
fixed bin (71) -

Submodel Attribute Name: text
text Model Name:

Access:
Data Type:

read attr modify attr
char (4096) var

! display_mrds_dsm example 4 =cmdsm

1*
created from: >udd>Multics>examples>example 4.dsm

for: >udd>Multics>examples>states~db
by: display_mrds_dsm -cmdsm

*1

relation access:

relation:

attribute access:

person (append_tuple);

person = person
(last name = last name
first name = first name
salary = salary
expenses = expenses);

last name in person (read attr),
first name in person (read attr),
salary in person (null), -
expenses in person (read_attr);

1* ** *1

relation access:

relation:

attribute access:

person state = person state
- (last name ~ last name

first name = first name
key =-key);

last name in person state (read attr),
first name in person state (read attr),
key in person_state Tread_attr, modify_attr);

1* ** *1

relation access:

relation:

state_history (append_tuple, delete_tuple);

state history = state history
- (key = key -

state name = state name
date time = date tIme
text-= text);

3-47 AW53-04

I

attribute access: key in state history (read attr),
state name in state history (read attr, modify attr),
date time in state history (read attr, modify attr),
text-in state_history (read_attr~ modify_attr);

display_mrds_dsm example_4 -relation names

a person
d person state
a state_history

! display_mrds dsm example 4 -relation person_state -long

Submodel path:
Version:

Created by:
Created on:

Data base path:
Version:

Created by:
Created on:

)udd)Multics)examples)example 4
5
Davids.Multics.a
03/10/81 1059.6

)udd)Multics)examples)states.db
4
Davids.Multics.a
03/10/81 1130.3

Submodel Relation Name: person state
person-state
append=tuple

Model Name:
Access:

Submodel Attribute Name:
Model Name:

Access:
Data Type:

Submodel Attribute Name:
Model Name:

Access:
Data Type:

Submodel Attribute Name:
Model Name:

Access:
Data Type:

last name
last-name
read-attr
char-(32)
Indexed

first name
first-name
read attr
char-(32)

key
key
read attr modify_attr
bit 170)

! display_mrds_dsm example_4 -relation state_history person -no access

state history
- key

person

state name
date time
text-

last name
first name
salary
expenses

3-48 AW53-04

Submodel path:)udd)Multics)examples)secure example 4
Version: 5 - -

Created by:
Created on:

Data base path:
Version:

Created by:
Created on:

Davids.Multics.a
03/10/81 1059.6

)udd)Multics)examples)states.db
4
Davids.Multics.a
03/10/81 1130.3

Submodel Relation Name: person state
append=tuple Access:

Submodel Attribute Name: last name -Access: read attr
Data Type: char-(32)

Indexed

Submodel Attribute Name: first name
Access: read attr

Data Type: char-(32)

Submodel Attribute Name: key
Access: read attr modify

Data Type: bit (70)

3-49

- attr

AW53-04

I This command di splays the data base open i ng indexes 7 openi ng modes, and
pathnames of all model and submodel openings of data bases currently open in the
user's process.

display_mrds open dbs

Note

The output is a formatted list of openings, in opening index order, which
contains the opening model or submodel path and the mode in which the opening
was obtained. Data base and submodel suffixes are shown whether or not they
were used in the call to open. A ".dsm" suffix indicates the opening was through
a submodel.

Examples

mrds call close -all
display_mrds open_dbs

No data bases are currently open.

mrds call open model u submodel r

Open data bases are:
>udd>m>jg>dr>model.db
update
>udd>m>jg>dr>submodel.dsm
retrieval

display_mrds open_dbs

Open data bases are:
>udd>m>jg>dr>model.db
update
>udd>m>jg>dr>submodel.dsm
retrieval

3-50 AW53-04

Name: display_mrds_scope_settings, dmss

This command displays concurrency control scope mode information for all
currently open data bases in the user's process. The versions of the concurrency
control, data base, and submodel (i f used for the opening) are di splayed, as
well as the absolute paths of the data base and the submodel (if used for the
opening). The opening mode is also displayed.

Note

All versions of data base scope settings may be displayed with r-s-m-d
modes used for version 3 and earlier data bases, and read attr, modify attr,
append tuple, and delete tuple (abbreviated as r-m-a-d) used- for' version "4 data
bases with version 5 concurrency control. (See the notes section of adjust mrds db
on version 5 concurrency control; this is not the same as version 5 submodels~)

Example

mrds call set modes no list
mrds-call open mod del-u
mrds-call set scope all 1 ru ru
mrds call open view-eu
display_mrds_scope_settings

Scope settings for process:
process number:

JGray.Multics.a
4720336407

Opening index:
mode: update

Concurrency control version:
data base model path:

data base version:

Relation

r001
r002

Opening index: 2
mode: exclusive_update

Concurrency control version:
data base model path:

data base version:

3-51

5
>udd>m>jg>dr>mod del.db
4 -

Permits

ramd
ramd

Prevents

ramd
ramd

5
>udd>m>jg>dr>partial.db
4

AW53-04

Relation

part
reorder

Opened via submodel:
submodel version:

3-52

>udd>m>jg>dr>view.dsm
5

Permits

ramd
ramd

Prevents

ramd
ramd

AW53-04

display_mrds temp dir

This command displays the directory under which temporary storage for a given
data base opening is placed. This storage includes the "resultant model" that is
created at open time for allowing access to the data base, storage for temporary
relations, and inter'Iled i3te resul ts of complex searches. The defaul t is the process
director y.

where te~p_dir_indicator must be one of the following:

1. dat8base index
the opening index returned by the dsl $open subroutine. If this option
is used, then the temporary directory pathnalle for that particular
opening is displayed.

2. -cur ren t, -cur

Notes

displays the current tempor3ry directory pathname that is used in
subsequent calls to open.

To change from the default the cO!llmand set mrds temp dir is used to allow for the
opening of a data base wi th a very large resul tant model that does not fit in the
process directory, for a data base with a large number of temp'Jrary relations, or for
searches involving many tuples in several relations. This would be the case if a
record quota overflow occurred in the process directory on a call to open.

See dsl_$get temp_dir for a subroutine interface.

Example

2/85

>process_dir_dir>!BPNCndKBBBBBBB

set_mrds_temp_dir >udd>m>cp>jg>l

mrds call open dept_store eu

Open data base is:
1 >udd>m>JGray>dr>dept store

exclusive_update -

display_mrds temp dir 1

The temporary directory for data base index 1 is:

>udd>m>cp>jg>l

3-53 AW53-04C

I

quiesce_mrds db

This DBA tool quiesces a given data base, or frees it from being quiesced, for
such purposes as data base backup or other exclusive activities that require a
consistent and non-active data base.

qmdb database_path {-control_args}

where:

1. database path
is the pathname of the data base to be quiesced or freed.

2. control args

Notes

may be chosen from the following:

-free
causes the data base to be freed from a quiesced state.

-quiet
causes the data base to be quiesced. (Default)

-wait time N, -wt N
sets the amount of time that an attempt to quiesce waits for conflicting
data base users to depart before failing (see "Notes").

Time (N) for -wait time is in seconds. A long wait time is needed if a
display mrds db status shows :nany users; otherwise, a short wait time will suffice.
The default wait time is zero seconds.

The control args -quiet and -free are mutually exclusive, as are -free and
-wait time.

Only the quiescing process may open a quiesced data base. Only a DBA can use this
command.

Examples

2/85

mrds call open qrodb update

Open data base is:
1 >udd>m>jg>dr>qmdb.db

update

quiesce_mrds_db qmdb -w~it time

qu i esce mrd s db: Th e spe c i f ied data base is curren tl y busy -- try later.
Unable to com-plete the quiescing process on the control segment using the data
base path ">udd>m>jg>dr>qmdb.db".

mrds call close -all

3-54 AW53-04C

quiesce_mrds db

mrds call close -all

Data base path: >udd>m>jg>dr>qmdb.db
Data base is quiesced.

Open users: 0

display_mrds_db_status qmdb

Data base path: >udd>m>jg>dr>qmdb.db
Open users: 0

3-55

quiesce mrds db

AW53-04

secure mrds db secure mrds db - - - -

I This command provides the ability to turn on (or off) the attribute level
sec uri t y con t r 0 1 f eat u res 0 f M R DS • Th i sis don eon a d a tab as e bas is. Th e
secured state of a data base can also be displayed by this co~mand.

where:

1. db path
- is the relative or absolute pathname of the data base to be secured,

unsecured, or have its secured state displayed. The data base suffix
need not be given. The path must be to a version 4 data base, not
to a submodel.

2. control args

Notes

may be chosen from one of the following:

-display, -di
causes the current data base secured state to be displayed without
affecting that state.

-reset, -rs

-set

causes the specified data base to be unsecured, regardless of its
current secured state.

causes the specif ied
current secured state.

data base to be
(Default)

secur ed, regardless of its

A data base that has been secured can be opened by a non-DBA, only via a
submodel residing in the "secure.submodels" directory underneath the data base
directory. This allows turning on (or off) attribute level security, which is

I implemented via submodel views, using their access control modes (ver sion 5
submodels). Data bases earlier than version 4 are not supported.

This command requires the user to be a DBA. Once the data base has been
secured, commands that normally operate against the model view requires the user
to be a DBA. In addition, once the data base has been secured, commands using a
submodel view require non-DBAs to use secured submodels.

See the documentation for create mrds db -secure, create mrds dsm -install,
mmi_$get_secured_state, mmi_$get_auth~rizaIion, and Section 7; "Se~urity".

3/84 3-56 AW53-04B

secure mrds db

Examples

secure mrds db foo

The data base at ">udd>m>jg>dr>foo.db" has been secured.

secure mrds db foo -display

The data base at ">udd>m>jg>dr>foo.db" has been secured.

secure mrds db foo -reset

The data base at ">udd>m>jg>dr>foo.db" is not secured.

3-57

secure mrds db

AW53-04

set_mrds temp dir

In the next call to dsl $open this command changes the current pathname of
the directory that is used for temporary storage. The temporary storage used is
for the "resultant model" built during open time, for temporary relation storage,
and for intermediate search results. The initial default for this directory is
the process dir. This command need only be used prior to the particular opening
where a very large resultant model is built, large temporary relations are to be
defined, or searches involving many tuples in several relations are to be done.
A record quota overflow in the process directory during a call to dsl $open,

I dsl_$retrieve, or dsl_$define_temp_rel indicates this need. -

where directory path is the relative or absolute pathname of a directory with
more quota than-the current temporary directory. The initial default is to use
the process directory.

Notes

The temporary directory may be changed between calls to dsl $open, thus
resulting in different temporary directories for each opening. These may be
displayed via display_mrds temp_dir.

Thi s command shou ld only be used to avo id a record quot a over flow in the

I process directory upon a call to dsl $open, dsl $retrieve, or dsl $define tern reI.
If a record quota overflow occurs Tn one of these calls, do a new process,-then
set mrds temp dir with a pathname of a directory that has more quota. If another
record quota -overflow occurs in that directory, set mrds temp dir can be used
again giving a directory with even more quota. - -

See dsl $set_temp_dir for a subroutine interface.

3-58 AW53-04

Name: unpopulate_mrds_db, umdb

This command deletes all existing data stored in the given data base, returning
it to the unpopulated state. It is primarily a data base application development
tool.

unpopulate_mrds db database_path {-control_args}

where:

1. database path
is the relative or absolute pathname, with or without suffix, of the
data base that is to have all tuples in all relations deleted.

2. control args

Notes

-may be one of the following:

-force, -fc
causes the data to be deleted without querying the user.

-no force, -nfc
causes the user to be queried as to whether he really wishes to
delete all data in the data base as a safety measure against inadvertently
typing in the wrong data base name. This is the default.

Only a DBA can use this command.

If there is no data in the data base, no error will be issued.

The command display mrds db population can be used to check the current
tuple count of the relations. - -

3-59 AW53-04

Examples

display_mrds db population test -bf

Opening version 4 data model:)udd)m)jg)dr)test.db

RELATION TUPLES

r001 100
r002 100

unpopulate_mrds db test

unpopulate mrds db: Do you really wish to delete all data currently stored
in the dati basi ")udd)m)jg)dr)test.db"?

. yes

Opening version 4 data base:)udd)m)jg)dr)test.db

Data deletion complete, closing data base.

display_mrds_db_population test -bf

Opening version 4 data model:)udd)m)jg)dr)test.db

RELATION TUPLES

r001 0
r002 0

3-60 AW53-04

This command is used to convert existing populated (loaded) data bases to
the most recent version of (new architecture) MRDS data bases as described in
this manual. Since older MRDS data bases can be accessed with the new MRDS
software, this command is not mandatory. However, to take advantage of improvements
in MRDS, it is recommended that this command be used (no application program
changes are necessary to use the updated version of the data base). A limited
amount of restructuring is provided by this command. The end result is a populated
new version data base (with the old data base unaffected).

where:

1. old db path
- -refers to an existing old version populated data base (must be a

data base whose version is 1, 2, or 3).

2. new db path

Notes

-refers to a new version unpopulated data base as created by the new
version create mrds db command from a source identical to that of
the old data base create mrds db source. This pathname must not be
the same pathname as old~b_path.

The pathnames must include suffixes, if they exist, for the data base.

The header information for both old and new data bases is displayed, as
well as the relation names and number of tuples moved for each relation.

Limited restructuring is possible, i.e., the secondary indexing of a data
base may be altered using this command by defining the new data base index
statement differently from the old data base index statement. Names of domains
for attributes may also change via use of the attribute statement as long as the
domain declarations remain the same.

The user can re-create the create mrds db source of the old data base by
using the display_mrds_db command.

If an error occurs while populating the new data base, the new data base
must be deleted and re-created with the create mrds db command after correcting
the cause of the error. (update mrds db expects the new data base to be unpopulated
when it is invoked.) --

If the version 4 data base is secured, the user must be'a DBA.

3-61 AW53-04

I

Example

update mrds db version)udd)XYZ)Doe)dept store dept_store_reindexed.db
UMDBV

Opening data model:)udd)XYZ)Doe)dept store
created: 06/12/79 1017.1 mst Tue
version: 3
by: Doe.SiteSA.a

Opening data model:)udd)m)jg)dept store reindex.db
created: 01/02/80 1215.2 mst-Mon
version: 4
by: JGray.Multics.a

For relation "class", the number of tuples moved =
For relation "emp" , the number of tuples moved = 25
For relation "loc" , the number of tuples moved = 7
For relation "sales", the number of tuples moved =
For relation "supply", the number of tuples moved =

Update complete, closing data models.

3-62

22

26
29

AW53-04

SECTION 4

DATA SUBLANGUAGE SUBROUTINES

This section describes those subroutine entries in MRDS which correspond to
the functions described in the Data Sublanguar,e (DSL) in Section 2. These entries
provide the user with the capabilities to:

• Open and close a data base

• Declare user-defined functions for use with the data base

• Retrieve data based on a flexible selection capability

• Modify and delete items within a data base

• Store new information into the data base

• Obtain information about the user's view of the data base

• Perform all of the above while allowin~ for concurrent access capability

FORMAL DEFINITION OF THE SELECTION EXPRESSION

Several of the DSL entries require a selection expression as an input parameter.

I

Such an expression is a character strin~ that precisely describes the data items
in the user's view of the data base (the data model or the data submodel) to be
manipulated. This character string may be a constant or a variable declared I
character varying or non-varying.

A formal syntax for MRDS is presented below using a metalanguage derived
from Backus-Naur Form. The metalanguage symbols are defined as:

<> denotes a syntactical construct

.. - means "is defined as"

[] denotes zero or one occurrence of (optional)

denotes one or more occurrences of

• denotes key attribute

denotes the logical inclusive "OR"

The inclusion of an underscore character under any of the symbols (see
<bool op> below) distinguishes that symbol as not being a part of the metalanguage
but as being a part of the MRDS syntax. The character " " preceding any symbol
(see <qualifier> below) implies "not."

4-1 AW53-04

<selection expression> ::=
I -another : -compiled

<current expression> ::=

<select set> : <current_expression>

-current <tuple item> [<tuple_item> ... J

<select set> ::=
(alpha_expression> «select set» <set_op> «select_set»

<set op> ::=
-union : -inter -differ

<alpha expression> ::=
-<range_expression> <tuple expression> [<qualifier expression>J

<range expression> ::=
-range [<-no ot : -no optimize>J [<-print search order> : <-pso>J
<range definItion> [<range definition> .. ~] -
[<-print search_order> : <=pso>J <range_definition> [<r~nge_definition> ... J

<range definition> ::=
-«tuple_variable> <relation»

<relation> ::=
<identifier> : <temp_reI_index>

<temp_reI index> ::=
<argument substitution>

<tuple_variable> ::=
<identifier>

<ide~tifier) ::=
<letter> [<letter> <digit> -] ...

<tuple_expression> ::=
-select <tuple item> [<tuple item> ...] : <non_set_op_retrieve_expression>

<non set op retrieve expression> .. -
- -select -dup <tuple_item> [<tuple item> ... J

<tuple_item> ::=
<tuple_variable> <tuple attribute>

<tuple attribute> ::=
-<tuple variable>.<attribute>

<temp reI key> ::=
- <tuple_variable>.<attribute>*

<attribute> ::=
<identifier>

<qualifier expression> .. -
-where <qualifier>

<qualifier> ::=
<term> : A«qu~lifier» : «qualifier» <bool_op> «qualifier»

<term>
<expr or attr> <reI op> <expr or attr> : <expr or attr>
<reI op>-<literal constant> :-<expr or attr> <rel=op>
<literal argument=substitution> --

<literal argument substitution)
<argument_substitution>

<expr or attr> ::=
<tuple attribute> : l<expr>l

2/85 4-2 AW53-04C

<ex pr>
<function> I <arith_expr>

<function> :: =
<fn name> «arg_list»

<f:1 name> :: =
<letter>[<letter>

<arg list> :: =

<digit>

<arg> <arg> <arg_Iist>

<arg>

] ...

<expr or attr> <literal constant>

<arith expr> ::=
<operand> <arith op> <operand> I
«arith expr» <arith op> <operand>
<operand> <arith_op> T<arith expr»

<arith op> .. -
-+ I - I * /

<operand> ::=

• V.

<tuple attribute> < fun c tion> <literal constant)

<bool op> :: =
- & 1

< > <= >=

<letter>
AlBlClOlEIFIGIHIIIJ lKILIMIN IOIPIQlRISITIU IVIWIXlYlZl
alblcld:e:flglhliljlklllmlnlolplqlrlsltlulvlwlxlylz

<digit> :: =
01112:314:516171819

<argument substitution>
• V-: 1 • v • 1 • X. 1 • x •

<literal constant> ::=
<bit-string constant>
<arithmetic-constant>

<character-string_constant>

• V.

NOTES: A <tuple variable> is a user-specified variable that need not appear in the
data model or data submodel and need not be declared in the calling program.
In the <range expression> each <tuple variable> is associated with a
<relation>. Hence, the <range expression> defines the data base subset from
which the desired data ele:n-ents are to be selected. More than one
<tuple_variable> may be associated with one <relation>.

2/85

The -no optimize (-no ot) option in the range expression causes MRDS to
selec t tuples from the tuple vari abIes in the order in wh ich they are defined,
(i.e., the order of range definition). No attempt will be made to find a
quicker search order (see Section 13 "Performance Considerations").

The -pr i nt search ord er (- pso) option in the range ex pr ess ion ca uses MRDS to
print, via-the user output swit~h, the order in which types from each tuple
variable are selected, the type of access mechanism used to select those
tuples, and the estimated number of tuples selected. (See Section 13
"Performance Considerations".)

The <set op>s -inter, -union, and -differ correspond to the set operators
intersection, union, and difference as defined in Appendix C.

4-3 AW53-04C

i

I

I
I
I

2/85

Specification of a <tuple attribute> in the <tuple expression> results in
the selection of only the-specified attribute value within the designated
tuple. A "*,, suffix on a tuple attribute indicates that this attribute is to
be a key attribute for a relation defined by define temp reI and is not
otherwise allowed. Specification of a <tuple variable> within the
<t:...iple expression) resul ts in the selection of all attribute values in the
designated tuple.

For modifications or deletions, a <select set> must consist of one
<alpha expression>, with only one relation specified in the select clause.
The operation applies to all tuples selected.

The order of evaluation of <term>s within a <qualifier>, of <operand>s within
an <arith expr>, and of <alpha expression>s within a <select set> is
governed by the parentheses. -

A <selection expression> consisting of a <current expression> indicates
that the most-recently selected occurrence of the <tup1e variable> specified
in the <tuple item> is to be s,elected again. The -specificatlon of a
<current_expression) is valid only if a <selection_expression) consisting of
a <select set> has previously be·~n specified. The <select set> in this case
m u s t con s r s t 0 f on e < a 1 ph a ex pre s s i on) . Th e < t up lei t em> s m u s tall be in the
same <tuple variable> and that <tuple variable> must not have been
quantified inthe <selection expression>. This feature is useful primarily
in calls to dsl $delete and dsl $modify in conjunction with "-another n
retrievals. - -

If the <tuple expression> contains the -dup option then only retrieve
operations are-permitted and duplicate items retrieved from the data base as
specified in the <tuple expression> are returned to the caller. If -dup is
not specified, then only one instance of dupl icate selected items is
returned. The -dup option is not allowed with set operations. A retrieve
operation wi th the -dup option may be significantly faster. However, it is
important to note that there are two ways in which duplicates can occur.
First, a duplicate may occur through restricted views of relations, called a
projection, yielding multiple values that are duplicates of the retrieved
tuples. A second type of dupl ication may occur wl-)en the selection expression
can select the same tuple !nul tiple times, as when the logical or (:) is used in
the where clause. The -dup option permits both of these types ofduplic::!tion
to be seen by the user.

n.v." or ".v." is an argument indicating that the values to be substituted
into the <selection expression> are to be selected from the arguments
immediately followIng the <selection expression> parameter. The
specification of a n.v." argument as a <relation> within a
<range definition> indicates that the temporary relation with the index
correspond ing to the value passed via the selection value parameter is to be
incorporated into the range of the associated <tuple variable>. There must
exist one selection value for each temporary relation specified in the
corresponding <selection expression>. Temporary relations are defined by
calls to dsl $define temp reI. Only a temporary relation index, not a
relation name~ may be used as a substitution value for a n.v." argument in a
range clause. When a ". V. I! argument is found in a where clause, values are
substi tuted for the". V." argument from arguments following the selection
expression in the argument I ist of the dsl call. These values are
interpreted as literal constants by MRDS and not as relation or attribute
names.

".X." or n.x.n is an argument similar to n.v." (above), but it canonlybe
used when compil ing the selection expression in the call to dsl $compile. It
is used to specify an argument that is not known at the time of compilation.

If the <selection expression> specified for a call to dsl $retrieve results
in the selection of more than one tuple, only one is returned to the caller.
If the <selection expression> consists of "-compiled" and is supplied with a
selection expression index, the compiled selection expression is returned
for use in the call operation for any dsl entry (except dsl $compile). This
compiled selection expression does not destroy the avaIlability of any
previously compiled selection expressions. How~ver, the caller may

4-4 AW53-04C

individually retrieve the other tuples by successive calls to dsl $retrieve I
with a <selection_expression) consisting of "-another". A call to any dsl
entry with a <selection expression) consisting of a <select set) terminates
the availability of any previously selected tuples. -

If no <qual ifier expression) is specified, all tuples in the specified range
are selected.

An<fn name) may be the name of a built-in function or of a user-defined
function. Refer to Section 5 for a discussion of those functions provided as
a stand ard part of MRDS ::lnd to the dsl $ declare subrouti ne in this sec tion for
information on user-defined functions.

All <tuple_attribute)s Vlithin::in <expr) must have the same <tuple variable).

Items ~ithin a <selection expression) are deli:nited by blanks, new-lines,
and horizontal-tab characters not cont::lined in quoted strings.

Where Clause Comparisons

When comparisons between attributes are specified in the where clause, the
following conventions are followed (at least one of the attributes in the pair may not
be a key or index).

• If either attribute is a complex number, the comparison takes place as a
complex nUllber comparison, after any necessary conversion to complex float
decimal (59) numbers. Note that only n=", and ""= " , are valid in this case.

• If both attributes are bit or both are character, then the comparison is
done as bit or character, respectively.

• If one attribute is declared bit and the other character, the comparison is
done as a character compare, after first converting the bit value.

• If either attribute is a real number and neither is complex, the comparison
takes place as a real number after any necessary conversion. Real number
comparisons are done as float decimal (59) number compares, unless both
at trib utes are declared fix ed b ina ry wi th equa 1 scale or floa t binary. In
these cases, the comparisons are done as fixed bin (71) or float bin (63)
compares, respectively.

If both attributes are a key head, total key, or secondary index, or if mul tiple
attributes making up the total primary key are involved in the comparison with the
condition that the attributes are of differing data types, then no convention is
followed. The comparison takes place as the data type of whichever attribute the
search mechanism uses for a key search. It is recommended that this case be avoided,
as possible conversion errors may result.

The use of "=" wi th floating-point numbers is not recommended, as the comparisons
may not be meaningful due to roundoff error.

The most efficient number comparisons, in terms of time and space, are wi th both
attributes declared fixed bin or both declared float bin, preferably aligned. Both
attributes declared bit or both attributes declared character are also efficient
comparisons.

2/85 4-5 AW53-04C

Examples of Selectio~ Mechanisms

The sample data base to which the fQllowing examples apply consists of four
re 1 at i on s, each sho wn wi th thei rat tr i b utes in paren theses and thei r ke y at t ri b utes
followed with an "I".

supplier (supplier no* supplier name location)
part (part no* part name color weight quant on hand)
project (proj no* proj name manager no)
supply (supplier no* part no* proj 00* ship_date* quantity)

1. Find all the part nu~bers of parts being supplied.

"-range (s supply)
-select s.part_no"

2. Find the part numbers, names, and quantities on hand w~ere the quantity on hand is
less than 25.

"-range (p part)
-select p.part no p.part name p.quant on hand
-where p.quant=on hand <-25"

3. Find the supplier numbers of those suppliers who supply the part with the part
n um ber 3.

"-range (z supply)
-select z.supplier no
-where z.part no = 3"

4. Find the supplier names of those suppliers who supply the part with the part
number 3.

"-range (s supplier) (z supply)
-select s.supplier name
-Nhere «s.supplier no = z.~upplier no) &

(z.part no = 3»"

5. Find the supplier numb~rs of those suppliers who have the same location as
supplier Jones.

"-range (s supplier) (t supplier)
-select s.supplier no
-where «t.supplier name = ""Jones"") &

(t.location ~ s.location»"

6. For each project, find the project number, project name, and suppl ier location
fQr all suppliers who supply that project.

2/85

"-range (p project) (s supplier) (z supply)
-select p.proj no p.proj name s.location
-where «p.pro} no = z.prQj no) &

(z.supplier no = s.s~pplier no»)"

4-6 AW53-04C

dsl dsl

Name: dsl

This subroutine supplies entry points for the functions required in opening,
manipulating, and closing a data base. (Refer to "Obsolete Interfaces," Section 10,
for additional, but obsoleted dsl entries.

Usage of the dsl subroutine is explained below under separate headings for each
designated entry.

2/85

NOTES: The sub error condition is signaled for some errors to provide further
information. -It is suggested that an on unit (refer to the PL/I Reference
Manual) be established to trap this error after program development work
is complete.

The arg error condition is signaled for cases where the error code
argument cannot be obtained.

When arguments for data are expected, as in dsl_$retrieve, a structure,
like the output from create mrds dm include, may be used in place of
separate arguments. H0wever-; only Jne structure per call is allowed and
there is a loss in efficiency.

The following is a summary of dsl entries.

close
closes the specified open data bases.

close all
closes all data bases currently open in the user's process.

compile compiles (or pre-translates) a selection expression for later use in the II
current process.

declare
makes a user-defined function known to MRDS.

define temp reI
-defines, redefines or deletes a tempJrary relation that can be accessed

by the current process. The only functions which can be accomplished
using a temporary relation are "retrieve" arrd "define_temp_rel."

delete
specifies that the selected data is to be deleted from the data base.

dl scope
- deletes all or a portion of the current scope of access.

dl scope all
deletes all of the current scope of access.

get attribute list
- returns attribute descriptions and access capabilities for all

attributes in the user's view of a given relation.

get opening temp dir
- returns the directory pathname used for temporary storage in a particular

data base opening.

4-7 Ai/53-04C

d sl dsl

get path info
returns information about 3 relative pathname. This includes the MRDS
model/submodel absolute path, version, and creation information if the
path refers to a MRDS model or submodel.

get population
- returns the current number of tuples stored in a perllanent or temporary

relation.

get relation list
returns a list of all relations in the view of a given opening, plus access
capabilities f~r each relation.

get_scope
returns the scope currently set on a given relation.

get temp dir
- returns the directory pathname used for temporary storage on the next

call to dsl_$open.

list openings
returns a list of all currently open data bases.

modify
specities that the selected portion of the data base is to be modified.

open
opens the specified data bases or data submodels for processing.

retrieve
displays the selected data specified by the selection expression.

set scope
defines the current scope of access for a relation.

set scope all
- de?ines the current scope of access for all relations.

set temp dir
- sets the directory used for temporary storage on the next call to

dSl_$open.

store
adds a new tuple to the selected relation.

2/85 4-8 AW53-04C

dsl dsl

Entry: dsl_$close

This entry causes the specified data bases to be closed and made unavailable for
processing.

declare dsl_$close entry options (variable);

call ds1 $close (data_base_index~, . .. ,

where:

1. data base indexi (Input) (fixed bin(35»

2. code

is the integer returned by dsl $open that designates the currently open
data bases that are to be closed.

(Output) (fixed bin(35»
is a standard status code.

This entry closes all data bases that are currentl y open in the user's process.

declare dsl_$close_all entry options (variable);

call dsl_$close_all (code);

where code (output) (fix ed bin (35» is the stand ard status code and is 0 if all data
bases are successfully closed or if no data bases are open.

Entry: dsl $compile

This entry compiles (or pre-translates) a selection expression for later use in
the current process, for retrieval, modify, delete, and define temp reI operations.
A previously compiled selection expression can be deleted or redefined through this
entrypoint.

A selection expression can be compiled at any time in the life of an open data base
and saved for future use in that openiQg.

2/85 4-9 AW53-04C

dsl dsl

declare dsl_$compile entry options (variable);

call dsl $compile (data base index, selection expression, se_index,
se_value1, ... , se=valuen, code); -

where:

1. data base index (Input) (fixed bin(35))
is-the index returned by dsl_$open to designate the data base.

2. selection_expression (Input) (char (*))
is a character string as defined at the beginning of this section
(see "Formal Definition of the Selection Expression"). It may contain
• V. argument substi tution characters in all normal places. These are
filled in at the time the selection expression is compiled. Argument
sUbstitution characters of the form .X. may be used in all places in the
where clause where .V. is appropriate, except functions and
expressions, to specify that this value is to be fi~led in at the time that
the selection expression is used.

3. se index (Input/Output) (fixed bin(35))

4.

5.

Note

is an integer used to identify a compiled selection expression. If the
se index is 0 (on input) , a new compiled selection expression is defined
and the index for the newly compiled selection expression is returned.
If the se index is greater than zero (on input) and a compiled selection
expression wi th that index is found, it is redefined to the new selection
expression. If the se index is less than zero (on input) and a compiled
selection expression with that index is found, it is deleted and the
selection expression is ignored.

se valuei (Input)
is a selection expression value for each control code (designated by . V.)
appearing in the selection expression. These must be specified so as to
correspond in order and quantity with the control codes specified in the
selection expression.

code (Output (fixed bin(35))
is a standard MRDS status code. A value of 0 indicates that no error
occurred.

Any. V. argument substitution characters supplied in the selection expression
must have matching arguments supplied in the call to dsl $compile. They are then
considered to be constant and cannot be changed later. Any:-X. argument substi tution
characters supplied in the selection expression must have matching arguments supplied
in the call that references the compiled selection expression, not the call to
dsl $compile. The arguments supplied to satisfy a .X. must have the same data type as
that of the data base attribute it is being compared to.

2/85 4-9.1 AW53-04C

d sl dsl

MRDS selection expressions are optimized at the time they are compiled. The
search method chosen is highly data-dependent. When using compiled selection
expressions in a situation where the data is changing rapidly, the optimization chosen
at compilation time may not be the same optimization which would be appropriate at

• execution time.

12/86 4-9.2 AW53-04D

dsl dsl

Entry: dsl_$declare

This entry makes a user-defined function known to MRDS while processing the
specified data base. After it is declared, a user-defined function may be used
exactly as a MRDS built-in function. If a user-defined function has the same name as a
built-in function, the user-defined function is referenced.

declare dsl_$declare entry (fixed bin(35), char(*), fixed bin(35));

call dsl_$declare (db_index, fn_name, code);

where:

1. db index (Input)
is the index returned by dsl_$open that designates the data base.

2. fn name (Input)
is the name of the function being declared.

3. code (Output)
is a standard status code.

Notes

Built-in functions are provided as a standard part of MRDS and need not be
declared. These functions are described in Section 5.

User-defined functions may be written in PLII, COBOL, or FORTRAN.
generates a call that is equiv~lent to:

MRDS

return val = fn_name$fn_name (argl ... arg~);

Restrictions on arguments to user-defined functions are:

1. No star (*) extents are permitted in the declarations for return valor
arg.!.

2. Data types are restricted to those data types permitted in a MRDS data base
(i.e., pointers, entries, labels, structures, offsets, and arrays are not
allowed) .

Example

2/85

Declare the user-defined function "state":

call dsl_$declare (db_index, "state", code);

See "Writing Nonstandard Functions" in Section 5.

4-10 AW53-04C

d sl dsl

This entry allows the user to explicitly create, delete, or redefine a temporary
relation that can be used by the curret1t process for retrieval operations in the same
manner as any predefined permanet1t data base relations.

The only operations that can be performed on a te~porary relation are the
"define temp rel!!, "retrieve", and !!get population!!. After a temporary relation is
defined-; it is referenced by specifying a ". V." argument in the range clause and
supplying the appropriate rel index in the dsl call argument list. A temporary
relation cannot be used in the -select clause except for the dsl $retrieve call.

declare dsl_$define_temp_rel entry options (variable);

call dsl $define temp rel (data base index, selection expression,
se_lndex, se_valuel, ... , se_index, se_value~, rel index, code); I

where:

1. data base index (Input) (fixed bin(35))
is-the index returned by dsl $open that designates the data base.

2. selection expression (Input) (char(*))
is a character string (see "Exa~ples of Selection Mechanisms" above) as
defined at the beginning of this section, with at least one * in the
-select clause to define the te'nporary relation key. The attribute names
given in the select clause must be unique. Tl1is character string may be a
constant or a variable declared either character varying or non-varying.

3 • s e in d e x (I n put) (fix ed bin (3 5))

4.

is an integer used to refer to a compiled selection expression. It is
required only if the selection expression is "-compiled".

se valuei (Input)
is a selection expression value for each argument substitution
(designated by .V. or .X.) appearing in the <selection expression),
including temporary relation (rel index) designations. ~hese must be
specified so as to correspond in order and quantity with the argument
substitution specified in the <selection expression). If the selection
expression is "-compiled", then the selection expression value is
substi tuted for the . X. val ue in the where clause that has to be
satisfied. These values are supplied in the order in which they occur in
the selection expression used in the call to dsl $compile. If the I
specified data type does not equal the attribute data type, the value
mrds_error_$inv_data_type is returned in the code.

5. rel index (Input/Output) (fixed binary(35))

2/85

is an integer. If rel index is 0 on input, a new temporary relation is
defined and the index f'Jr the newly created temporary relation is
returned in rel index. If rel index is greater than 0 on input and if a
temporary relation possessing-this index is already in existence, that
temporary relation is redefined. If rel index is less than zero and a
temporary relation wi th that rel index - ex ists, then that temporary
relation is deleted and the selection expression is ignored.

4 -11 AW53-04C

dsl dsl

6. code (0 u t put) (fix ed bin (36))
is a standard status code. A value of 0 indicates that no error occurred.

Notes

If a duplicate of the temp.::>rary relation key is found while creating the
temporary relation, it is ignored (i.e., not stored) without warning.

If no data satisfied
relation is created.
dsl $get population.

the
The

selection expression,
population can be

then an unpopulated
deter~ined by a

temporary
calI to

F:> r s h are dope n i n g s, r e 1 a ti 0 n ssp e c i fie din the ran g e cIa use m us t h a v ere a d at t r
scope set.

F~r attribute level security, attributes specified in the select and where clauses
must have read attr access.

2/85 4-12 AW53-04C

d s1 dsl

Entry: dsl $delate

This entry allows the user to delete one or more tuples from the same relation of
an opened dat::l base. T~e user must have read-write permission to the relation. All
attributes in the relation must be spacified as being selected and, if the data base is
being referenced by means of a data subrnodel, all attributes of the relation must be
defined in the submodel. All selected tuples are deleted.

declare dsl $delcte entry options (variable);

call dsl $delete (dat~ base index, selection expression, se_index,
se_valuel, ... , se_value~, code);

where:

1. data bas~ index (Input) (fixed bin(35»
is-the index returned by dsl $open that designates the data base.

2. selection expression (Input) (char(*»
is a character string (see "Selection Mechanism") as defined at the
beginning of this section. However, the select clause must specify all
a t t rib ute sin the reI at ion. Th is c h a r act e r s t r i n g may be a con s tan tor a
variable declared character varying or non-varying.

I

3. se index (Input) (fixed bin(35) I
is an integer used to refer to a compiled selection expression. It is
required only if the selection expression is II-compiled".

4.

5.

Notes

se valuei (Input)

code

is a selection expression value for each argument substitution
(designated by .V. or .X.) appearing in the <selection expression>,
including temporary relation (reI index) designations. These must be
specified so as to correspond in order and quantity with the argument
substitution specified in the <selection expression). If the selection
expression is "-compiled", then the selection expression value is
substituted for the .X. value in the where clause that has to be
satisfied. These values are supplied in the order in which they occur in
the selec tion ex press ion used in the ca 11 to d sl $ compi 1 e. If the
specified data type does not equal the attribute data type, the value
mrds_error $inv data type is returned in the code.

(Output) (fixed bin(35»
is a standard status code. A value of 0 indicates that no error occurred.
A value corresponding to mrds error $tuple not found indicates that no
error occurred and that no data satisfied-the-selection expression.

For shared openings, the relation must have delete_tuple permit scope set.

For attribute level security, the relation must have delete tuple access and any
attributes specified in the where clause must have read attr access.

2/85 4-13 AW53-04C

dsl dsl

This entry deletes all or part of a previously specified scope from the
user's current scope.

declare dSI_$dl scope entry options (variable);

call dsl $dl scope (db index. reI name1. permit ops1. prevent opsl.
rel-namen. permit-ops~. prevent ops~. code);

where:

1. db index (Input) (fixed bin(35»
is the index returned by dsl_$open that desi~nates the data base.

2. reI namei (Input) (char(*»
is the name of the relation(s) to be included in the scope.

3. permit opsi (Input) (fixed bin)
the- sum of the codes for the operations no lon~er ~ranted to the
user's process on the specified relation (as defined in set scope).
(See "Note" below for a description of appropriate codes.) -

4. prevent opsi (Input) (fixed bin)

5 .

Note

code

the sum of the codes for the operations no 10nl2;er denied to other
processes on the specified relation (as defined in set scope). (See
"I~ote" below for a description of appropriate codes.)

(Output) (fixed bin(35»
is a standard status ~ode.

Scope codes for operations to be prevented or permitted are as follows:

Scope
Code

o
1
2
4
8

null
read attr or read
append tuple or store
delete-tuple or delete
modify-attr or modify

Current scope settings can be determined by a call to dsl_$get_scope.

See mrds call delete scope function examples.

4-14 AW53-04

dsl dsl

This entry deletes all remaining scope tuples from the user's current scope.

declare dsl_$dl_scope_all entry (fixed bin(35). fixed bin(35»;

call dSl_$dl scope_all (db_index, code);

where:

1. db index (Input)

2. code

is the index returned by dsl_$open that designates the data base.

(Output)
is a standard status code. It is 0 if no scope is set prior to the
call to dsl_$dl_scope_all.

4-15 AW53-04

d sl dsl

This entry returns information on the attributes in the view of the given
relation provided by the user's opening.

declare dsl $get attribute list entry (fixed bin (35).
char(*j. ptr. fixed bTn. ptr. fixed bin(35)) ;

call dsl $get attribute list (db index. relation name.
area ptr: structure version~ mrds attribute-list ptr.
error code) - - -

where:

1. db index (Input) (fixed bin(35))
is the integer returned by dsl_$open for the opening the user wishes
to reference.

2. relation name (Input) (char(*))
is the name of the relation in the user's view for which the attribute
information is desired.

3. area ptr (Input) (pointer)
is a pointer to a user-supplied freeing area, in which the attribute
information is to be allocated.

4. structure version (Input) (fixed bin)
is-the desired version of the attribute information structure to be
returned.

5 . m r d sat t rib ute 1 i s t p t r (0 u t put) (po in t e r)
is a pointer to the attribute information returned in a structure as
described in the Notes below.

6. error code (Output) (fixed bin (35))
is the standard status code. It may be one of the following:

error table $area too small
If the-supplIed area could not hold the attribute information.

error table $badcall
If the-area_ptr was nUll.

error table $unimplemented version
If the-structure_verslon supplied is unknown.

mrds error $invalid db index
-if the db index given does not refer to a data base open in

this process.

mrds error $not freeing area
-if the supplied area does not have the attribute "freeing".

4-16 AW53-04

dsl dsl

Notes

mrds error $unknown relation name
-if th~ given rilation nime is not known in this opening view of

the data base.

mrds error $version not supported
if thi data base referenced is not version 4.

The information is returned in the following structure (see Appendix F for
the include file mrds_attribute list.incl.pl1):

declare 1 mrds attribute list aligned

where:

1 . version

based-(mrds attribute list ptr).
2 version fixed bin. - -
2 access info version fixed bin.
2 num attrs in view fixed bin.
2 submodel view bit (1) unal.
2 mbz1 bit-(35) unal.
2 attribute (0
refer (mrds attribute list.num attrs in view».

3 model name char (32).
3 submodel name char (64).
3 domain name char (32).
3 user dita type bit (36).
3 system acT char (8) varying.
3 mrds access char (8) varying,
3 effective access char (8) varying.
3 indexed bIt (1) unal.
3 mbz2 bit (35) unal ;

is the version number of this structure and should be set by the
caller to mrds attribute list structure version.

2. access info version
is the version of the MRDS access modes returned in the attribute
information. Version 4 refers to version 4 data bases vlithout attribute
level security. using r-w system ACLs. Version 5 refers to secured
version 4 data bases with attribute level security using read attr
(r) and modify_attr (m) attribute access modes.

3. num attrs in view
is-the number of attributes in this opening view of the given relation.

4. submodel view
is "1 "b. if this opening referred to by db_index was through a submodel.

5. mbz 1
is reserved for future use.

6. model name
is the name of this attribute in the data base model. If the data
base is secured and the caller is not a DBA. then this field will be
blanks.

4-17 AW53-04

dsl dsl

1. submodel name
is the name of the attribute in the submodel view if the opening
referred to by db index was through a submodel; otherwise. it is the
same as the model name.

8. domain name
is the name of the underlying domain for this attribute. If the
data base is secured and the caller is not a DBA. then this field is
blank.

9. user data type
is-the standard Multics descriptor for the data type of this domain.
It represents the user's view if a -decode dcl option was used for
the domain.

10. system_ acl
is the Multics ACL on this attribute from the modes r-w.

11. mrds access
is the MRDS access mode for this attribute. See the access info version
description for possible values for various versions of MRDS access
control.

12. effective access

13. indexed

14. mbz2

is-the result of applying both system ACLs and MRDS access to this
attribute. using MRDS access values for the effect.

is "1"b. if this attribute is the total key. the key head attribute.
or a secondarily indexed attribute.

is reserved for future use.

The only structure version currently available is 1. This entry only works
for version 4 data bases.

The variables mrds attribute list num attrs init. mrds attribute list ptr.
and mrds attribute list structure version are also declared - in - the
mrds attribute list Include file.

4-18 AW53-04

dsl dsl

This entry returns the pathname of the directory that is being used for
temporary storage for a particular data base opening.

declare dsl $get opening temp dir entry
(fixed-bin(35). fixed bin(35» returns(char(168»;

where:

1. db index (Input) (fixed bin(35»
is the integer returned by a call to dsl $open and refers to the
opening whose temporary storage directory is desired.

2. error code (Output) (fixed bin(35»

3. path

Notes

is the standard status code. If the supplied db index does not
refer to a currently open data base in the user's process then it
will be mrds error $invalid db index. - - - -

(Output) (char(168»
is the absolute pathname of the directory being used for temporary
storage for the opening specified.

See dsl $get temp dir for an entry that will return the directory pathname I
to be used in the-next -call to open. Also see dsl_$set_temp_dir and the commands
display_mrds_temp_dir and set_mrds_temp_dir.

4-19 AW53-04

I
I
I
I
I
I
I

I
I
I

d sl dsl

This entry returns information about a supplied pathname. It indicates
whether or not the path refers to a MRDS data base model or submodel. and if so.
the version number and details about its creation. This entry replaces
dsl_$get_db_version. which is obsolete (see Section 10).

declare dsl $get path info entry(char(*). ptr.
fixed bin, ptr, fixed bin(35));

call dsl $get path info(in path. area ptr,
structure version. mrds path info ptr,
error code); -

where:

1. in path (Input) (char(*))
is the relative or absolute pathname about which the user desires
information. If it refers to a MRDS data base model or submodel. it
does not need a suffix. unless ambiguity would result. A model will
be found before the submodel if they both have the same name, less
suffix, in the same directory.

2. area ptr (Input) (pointer)
is a pointer to a user-supplied freeing area in which the path information
will be allocated.

3. structure version (Input) (fixed bin)
is-the desired version of the path information structure to be returned.

4. mrds path info ptr (Output) (pointer)
is-the pointer to the path information structure that is returned.
which is described in the Notes below.

5. error code (Output) (fixed bin(35))
is the standard status code. It may be one of the following:

error table $area too small
If the-supplIed area could not hold the path information.

error table $badcall
If the-area_ptr was null.

error table $unimplemented version
If the-supplied structure version is unknown.

mrds error $no model access
-if the user does not have "r" access to the db model segment

under the data base.

mrds error $no model submodel
-if the path does not refer to a MRDS data base model or submodel.

mrds error $not freeing area
-if the supplied area does not have the attribute "freeing ii

•

4-20 AW53-04

dsl dsl

Notes

The path information is returned in the following structure (see Appendix F
for the include file mrds_path_info.incl.p11).

declare 1 mrds path info aligned

where:

1 • version

based-(mrds path info ptr).
2 version fixed bIn. -
2 absolute path char (168).
2 type. -

3 not mrds bit (1) unal.
3 model bit (1) unal.
3 submodel bit (1) unal.
3 mbzl bit (33) unal.

2 mrds version fixed bin.
2 creator id char (32).
2 creation time fixed bin (71).
2 mbz2 bit-(36) unal ;

is the version number of this structure and should be set by the
caller to mrds_path_info_structure_version.

2. absolute path
is the absolute pathname of the in path. with the model or submodel
suffix if the path refers to a MRDS model or submodel. If the
structure is allocated. this entry will be filled in.

3. not mrds

4. model

is "1 "b if the path does not refer to a MRDS data base model or
submodel.

is "1 "b if the path refers to a MRDS data base and not a submodel.

5. submodel

6. mbz 1

is "l"b if the path refers to a MRDS submodel and not a data base
model.

is reserved for future use.

7. mrds version
is the version number of the MRDS model or submodel that was found.
The latest version data base model is 4 and for submodels it is 5.

8. creator id
Is the person.project.tag information returned from get group id
for the person that created the data base model or submodel. -

9. creation time

10. mbz2

is the time the data base model or submodel was created in a form
acceptable to date_time_.

is reserved for future use.

The only structure version currently available is 1. The variables
mrds path info ptr and mrds path ~nfo structure version are also declared in the
mrds=path=info-include file~ - - -

4-21 AW53-04

*

dsl dsl

This entry returns the current number of tuples in either a permanent or
temporary relation.

declare dsl_$get_population entry () options (variable);

call dsl $get population (db index, relation_identifier,
tuple_count, error_code);

where:

1. db index (Input) (fixed bin(35»
is the integer returned from a call to dsl $open, which refers to
the opening for which population statistics are desired.

2. relation identifier (Input)
is the identification for the relation whose tuple count is to be
returned. If it is declared as character and starts with a letter,
then it is interpreted as a permanent relation name. If the string
does not start wi th a letter and it can be converted to a number,
then it will be interpreted as a temporary relation index. If the
relation identifier is declared as fixed bin (35), then it is interpreted
as a temporary relation index.

3. tuple_count (Output) (fixed bin(35»
is the current tuple count for the specified relation in this opening
view.

4. error code (Output) (fixed bin(35)
- is the standard status code. It may be one of the following:

Notes

mrds error $invalid db index
-if the given db index does not refer to a model or submodel

opening of a data base in the user's process.

mrds error $undef temp reI
if thetemporary relation index given does not refer to a temporary
relation currently defined in this opening.

mrds error $unknown relation name
-if the permanent relation name given is not known in this opening

view of the data base.

This entry can be used to determine the number of tuples selected by a
selection expression by defining a temporary relation using that selection expression
and calling dsl_$get_population for that temporary relation.

3/84 4-22 AW53 -04B

dsl dsl

Thi sentry return s in formation about all the reI at ion sin the spec ified
opening view.

·l
declare dsl $get relation list entry (fixed bin(35). ptr.

fixed bin, ptr. fixea bin(35));

call dsl $get relation list (db index. area ptr.
structure version: mrds relation list ptr.
error_code) ; - --

where:

1. db index (Input) (fixed bin(35»
is the integer returned from a call to dsl $open. referring to the
opening for which relation information is tobe returned.

2. area ptr (Input) (pointer)
is a pointer to a user-supplied freeing area in which the relation
information is to be allocated.

3. structure version (Input) (fixed bin)
is-the desired version of the relation information structure to be
returned.

4. mrds relation list ptr (Output) (pointer)
is a pointer to the relation information structure that has been
allocated and is described in the Notes below.

5. error code (Output) (fixed bin(35»
is the standard status code. It may be one of the following:

error table $area too small
If the-supplIed area could not hold the relation information.

error table $badcall
If the-area_ptr was null.

error table $unimplmented version
If the-supplied structure version is unknown.

mrds error $invalid db index
-if the db index given does not refer to a data base oPen in
this pr ocess.

mrds error $not freeing area
if the sup~lied area does not have the attribute "freeing".

mrds error $version not supported
-if the data base referenced is not version 4.

4-23 AW53-04

I

dsl dsl

Notes

The relation information is returned in the following structure (see Appendix
F for the include file mrds_relation_list.incl.pl1):

declare 1 mrds relation list aligned

where:

based-(mrds relation list ptr).
2 version fixed bin. - -
2 access info version fixed bin.
2 num reIs in-view fixed bin.
2 submodel-view bit (1) unal.
2 mbz1 bit-(35) unal.
2 relation (0
refer (mrds relation list.num rels in view».

3 model name char (32), - -
3 submodel name char (64),
3 system acl char (8) varying.
3 mrds access char (8) varying,
3 effective access char (8) varying.
3 virtual relation bit (1) unal.
3 mbz2 bit (35) unal;

1. version
is the version number for this structure and should be set by the
caller to mrds relation list structure version.

2. access info version
-is the version number of the access information being returned '.

Version 4 is for version 4 data bases without attribute level security
using Multics ACLs from r-w. Version 5 is for secured version 4
data bases with attribute level security using the MRDS relation
access modes of append_tuple (a) and delete tuple (d).

3. num rels in view
is the number of relations present in the view provided by this
opening of the data base.

4. submodel view
ii "1" if this opening of the data base was made through a submodel.

5. mbz 1
is reserved for future use.

6. model name
is the name of this relation in the data base model. If the data
base is secured and the user is not a DBA. then this field will be
blanks.

7. submodel name
is the name of this relation in the submodel view if this opening
was via a submodel. Otherwise. this is the same as the model name.

8. system acl

9.

-is the Multics ACL on the relation data from the modes r-w.

mrds access
is the MRDS access mode for this relation. See access info version
for the values that can be returned.

4-24 AW53-04

dsl dsl

10. effective access
is the resul t
this relation.

of applying both Mu 1 ti cs and MRDS a cces s modes
This effect is returned in MRDS access values.

for

11. virtual relation

12. mbz2

Is "1"b if the relation is defined in a submodel over more than one
relation. This capability is not yet available.

is reserved for future usee

Currently, the only structure version available is 1. The variables I
mrds relation list num rels init, mrds relation list ptr, and
mrds-relation-list-structure version are also declared in the -mrds relation list
include file.- - -

3/84 4-25 AW53-04B

I

dsl dsl

This entry returns the scope currently set on a given relation for the
specified opening of the data base.

declare dsl $get scope entry(fixed bin(35). char(*).
fixed bin, fixed bin, fixed bin. fixed bin(35));

call dsl $get scope(db index. relation name.
permits,-prevents~ scope version. error code);

where:

1. db index (Input) (fixed bin(35»
is the integer returned from a call to dsl $open which refers to the
opening for which scope information is desIred.

2. relation name (Input) (char(*»)
is the name of the relation for which scope information is desired
in this opening.

3. permits (Output) (fixed bin)
is the sum of the scope modes. representing operations that are to
be permitted the caller for this relation in this opening. See the
table of scope mode encodings in the Notes below.

4. prevents (Output) (fixed bin)
is the sum of the scope modes representing operations that are to be
denied other users of this data base for this relation. See the
table of scope mode encodings in the Notes below.

5. scope version (Output) (fixed bin)
if this value is less than five. then the scope mode encoding for
the scope represents the old operations of read - store - delete -
modify. Otherwise. the scope mode encoding represents the new
operations of read attr. append tuple. delete tuple. modify attr used
for attribute level security. - -

6. error code (Output) (fixed bin(35»)
is the standard status code. It may be one of the following:

mrds error $scope not set
-if no-scope Is currently set on the specified relation.

mrds error $unknown relation name
-if the supplied-relation-name is not in the opening view specified

by db index.

4-26 AW53-04

dsl

Notes

The scope modes are encoded using the integer values given below:

Scope
Code

o
1
2
4
8

Operation

null
read attr or read
append tuple or store
delete-tuple or delete
modify=attr or modify

dsl

See Appendix F for the include file mrds_new_scope_modes.incl.pl1 giving
named constants for these values.

4-21 AW53-04

d sl dsl

This entry returns the pathname of the directory that is used for temporary
storage upon the next call to dsl_$open.

declare dsl_$get_temp_dir entry () returns (char(168»;

path = dsl_$get_temp_dir ();

where path (Output) (char(168» is the absolute pathname of the directory to be
used for temporary storage on the next call to open.

* Notes

See dsl $set temp dir
set mrds_temp_dir. - -

and the commands and

I To obtain the temporary storage directory for a particular opening. call
dsl_$get_opening_temp_dir.

4-28 AW53-04

dsl dsl

This entry returns information about all openings of MRDS data bases in the
user's process. This entry replaces dsl_$list_dbs, which is obsolete (see $ection
10) •

declare dsl $list openings entry
(ptr, fixed bin, ptr, fixed bin(35);

call dsl $list openings (area ptr, structure version,
mrds_database_openings_ptr, error_code);

where:

1 • area ptr (Input) (pointer)
- is a pointer to a user-supplied freeing area in which the opening

information will be allocated.

2. structure version (Input) (fixed bin)
is- the desired version of the structure that is to return opening
information.

3. mrds data base opening ptr (Output) (pointer)
is a pointer to an allocated structure containing the opening information
which is described in the Notes below.

4. error code (Output) (fixed bin(35))
is a standard status code. It may be one of the following:

error table $area too small
If the-supplIed area could not hold the opening information.

error table $badcall
If the-area_ptr was null.

error table $unimplemented version
If the-given structure_version is unknown.

mrds error $not freeing area
-if the supplied area does not have the attribute "freeing".

"Notes

Note that the structure is still allocated and a 0 error code returned even I
if the total number of open data bases is O.

4-29 AW53-04

dsl dsl

The opening information is returned in the following structure (see Appendix
F for the include file mrds_database_openings.incl.pI1):

declare 1 mrds database openings aligned

where:

1 . version

based-(mrds database openings ptr),
2 version fixed bin, - -
2 number open fixed bin,
2 mbz1 bIt (36) unal,
2 db (0
refer (mrds database openings.number open»,

3 index fixed bin (35), -
3 path char (168),
3 mode char (20),
3 model bit (1) unal,
3 submodel bit (1) unal,
3 mbz2 bit (34) unal;

is the version number of this structure and should be set by the
caller to mrds_database_openings_structure_version.

2. number open

3. mbz 1

4. index

5. path

6. mode

7. model

-is the total number of openings for this process.

is reserved for future use.

is the integer returned from a call to dsl_$open for this particular
opening.

is the absolute path of the model or submodel that was used in the
call to dsl $open for this opening. The model or submodel suffix
will be present.

is the mode that was used in the call to dsl $open for this opening.
It can be retrieval, update, exclusive_retrieval, or exclusive_update.

is "1", if this opening was made through the data base model and not
through a submodel.

8. submodel

9. mbz2

is "1 "b, if this opening was through a submodel and not through a
model.

is reserved for future use.

Currently, the only structure version available is 1.

4-30 AW53-04

dsl dsl

The following variables are also declared in the mrds database openings
include file.

mrds database openings ptr
mrds-database-openings-num open init
mrds-database=openings-structure version

4 -31 AW53-04

I

d sl dsl

Entry: dsl $modify

This entry allows the user to modify attribute values contained in the tuples of
one relation in the data base. The modification of a k2Y attribute is not allowed.
The user must ~ave read write per~i~sion to the relation. All selected tuples are
modifiej.

declare dsl $modify entry options (variable);

call dsl $modify (data base index, selection expression, se index,
se value1, ... , se valuen, modified value1, ... , ,nodTfied valuen,
code) ; - - - - --

where:

1. data base index (Input) (fixed bin(35))
is the index returned by dsl $open that designates the data base.

2. selection expression (Input) (char(*»

4 •

is-a character string (see "Exallples of Selection Mechanisms") as defined
at the beginning of thi3 section. The select clause can only specify
at tr i b utes from one reI at ion. Th is chara c ter s t ring may be a constant or
a variable declared character varying or non-varying.

se index (Input) (fixed bin(35)
is an integer used to refer to a compiled selection expression. It is
required only if the selection expression is "-compiled".

se valuei (Input)
is a selection expression value for each argument substitution
(designated by .V. or .X.) appearing in the <selection expression),
including tempor3ry relation (reI index) designations. The~e must be
specified so as to correspond in order and quantity with the argument
substitution specified in the <selection expression). If the selection
expression is "-compiled", then the selection expression value is
substituted for the . X. value in the where clause that has to be
satisfied. These values are supplied in the order in which they occur in
the selection expression used in the call to dsl $compile. If the
specified data type does not equal the attribute data type, the value
mrds_error_$inv data type is returned in the code.

5. modified valuei (Input)

2/85

is a mod-if ied tup Ie 3 t t rib ute val ue tha tis to repl ace the cur rent suc h
value in the data base. There must be a one-to-one correspondence
between these values and the tuple items specified in the selection
expression. If a structure i~ used for modified tuple attribute values,
only one structure may be Llsed. Only dat'3 types supported by assign may
be used for modified tuple attribute values. -

4-32 AW53-04C

d sl

6.

~otes

code

dsl

(Jutput) (fixed bin(35))
i.') a standard status code. A value of a indicates that no error occurred.
A value of :nrds err')r $tuple not found indic:::ltes that no error occurred
and th8t no daI:::l satI~fied Ihe ~election expression.

r::>r sh3rej oper1i:J~s, the relation rnJst '-'lave modi~y attr per'nit scope set.

For attribut,= l:=vel security, the]ttribute~ specified in the select and where
clauses ulust :'1ave read attr 3ccess. I'1 Jddition, the ::.lttributes specified in the
s e 1 e c tel a use :n U S t ;1 ave mod i f y a t t r a c c := s s .

2/85 4-32.1 AW53-04C

T 11 i S page intentionally left b 1:1n k .

2/85 AW53-04C

dsl dsl

This entry causes the specified data bases to be opened for processing in
the designated modes. For each opened data base, an index that is to be used to
specify that data base in future MRDS calls is returned. If one or more of the
data bases specified cannot be opened for any reason. none of the others are
opened.

declare dsl_$open entry options (variable);

call dsl $open (path1. data base index1. mode1.
path~, data_base_index~. moae~. code); -

. .. .

where:

1 • path.! (Input) (char(*))
is a character string containing the absolute or relative pathname
of the data submodel (or the data base) with or without a suffix
defining the relevant portion of the data base. If the path of the
data base itself is specified. the data model is used in place of
the data submodel.

2. data base indexi (Output) (fixed bin(35))
is-an integer that is to be used in subsequent MRDS calls to specify
the corresponding data base designated in this opening.

3. modei (Input) (fixed bin(35))
is an integer (1 92,3 'i or 4) ind icating the usage mode for which the
data base is to be opened.

""

specifies that this is a shared opening. reqUiring the setting I
of concurrency control protection via scope requests by the
set scope function. The max imum permi t scope that can be
set-with this opening mode is read_attr. .

2 specifies that this is a shared opening. requiring the setting
of concurrency control protection via scope requests by the
set scope function. Any scope can be set with this opening
mode.

3 specifies that this is an unshared opening in the sense that
all update operations are prevented against any relations in
this view of the data base. t~o scope setting is necessary
with this opening mode. This mode is the equivalent of opening
with a retrieval mode and doing a set scope all with permit
of read attr and prevents of modify attr, append tuple, and
delete tuple on these relations. Other data base openers
are allowed to set read attr scope and to do retrievals in
these relations. -

4 specifies that this is an unshared opening. No scope setting
is necessary with this opening mode. No other data base
openers are allowed to set any scope or any relation in this
view of the data base. This mode is the equivalent of opening
wi th an update mode and doing a set _ scope_all wi th permi ts

4-33 AW53-04

I

dsl

4. code

Notes

dsl

and prevents of read attr. modify attr. append tuple, and
delete tuple on these relations. Only one opening with this
mode is allowed if the set of relations in this view overlaps
the relations in another opener's view.

(Output) (fixed bin(35))
is a standard status code.

Open modes 1 and 2 require subsequent calls to the dsl entry set_scope.
Also see Appendix F for the include file mrds_open_modes_.incl~p11.

If a data model and submodel of the same name are in the same directory,
the model is found if no suffix is given.

If the data base being opened has been secured, then the v iew path must
refer to a submodel that resides in the "secure.submodels" directory-under the
data base directory if the user is not a DBA. These must be version 5 submodels
if attribute level security is to be provided. See secure mrds db and Section
7, "Security".

If the data base being opened uses a version 4 concurrency control. then
adjust mrds db with the -reset option must be run against it to update it to
version 5 concurrency control before it can be opened. This changes the scope
modes from r-u, to read_attr. modify_attr. append_tuple. delete_tuple.

Application programs calling dsl $set scope. dsl $set scope all. or
dsl $dl scope making use of r-s-m-d encodings will not be impacted.- Those programs
using the r-u encodings will have to be changed to the encodings given in this
manual.

A maximum of 128 openings of the same or different data bases is allowed.
Only 64 of these openings can be version 3 or earlier data bases.

Access requirements for all opening modes includes "r" ACL on the db model
segment and relation model segments (these segments have a ".m" suffix) for an y
relations appearing in the given view. plus "rw" ACL on the data base concurrency
control segment. Unshared openings require that. for any relation appearing in
the view, the multisegment file containing the data must have "r" ACL for
exclusive retrieval or "rw" ACL for exclusive update opening mode. For attribute
level security, exclusive retrieval mode requires read attr on some attribute in
each relation in the opening view and exclusive update mode requires one of
append tuple on the relation. delete tuple on the relation, or modify attr on
some attribute in the relation. for each of the relations in the opening-view.

See the examples for the mrds call function open.

4-34 AW53-04

d sl dsl

Entry: dsl $retrieve

Thi.'3 entry allows the user to retrieve selected 8ttribute v::!lues froln the data
bas e . T~ e uSe r m us t h a v ere a d per ~n iss ion tot her e fer e n c e d reI at ion s . 0 net up I e per
call i'3 returned.

declare jsl $retrieve entry options (variable);

call dsL $retrieve (data base index, selection expression, se index,
se value.l, , se-value..Q., value.l, ... ,-value.!!, code);

where:

1. data ba3e index (Input) (fixed bin(35»
is the index returned by dsl $open that designates the data base.

2. selection expression (Input) (char(*»
is a character string (sec "Fornal Definition of the Selection
Expression" in thi3 section). T:1is character string may be a constant or
a variable declarej character varying or nonvarying. If the expression
resul ts in the selection of identical tuples, only one copy is returned
unless the -dup option is specified. However, all tuples selected remain
available for retrieval with additional calls to dsl $retrieve with a
<selection expression> consisting of "-<mother". They cease to be
available whenever any dsl entry is called with a
<selection expression> consisting of an <alpha expression>. The
selection expression "-another" does not return duplicate tuples unless
the -dup option was specified in the original <alpha expression>. The
-dup option cannot be used wi th set operations. The range clause may have
a ".V." for substitution of a temporary relation's reI index.

I

3. se index (Input) (fixed bin(35» I
is an integer used to refer to a compiled selection expression. It is
required only if the selection expression is "-compiled".

4 • se valuei (Input)
is a selection expression value for each argument sUbstitution
(designated by .V. or .X.) appearing in the <selection expression>,
including te~porary relation (reI index) designations. ~hese must be
specified so as to correspond in order and quantity with the argument
substitution specified in the <selection expression). If the selection
expression is "-compiled", then the selection expression value is
substituted f'Jr the .X. value in the where clause that has to be
sat i s fie d . Th e s e val u e s are sup P 1 i e din the 0 r d e r in wh i c h the y 0 C cur in
the selection expression used in the call to dsl $compile. If the
specified data type does not equal the attribute data type, the value
mrds_error $inv data type is returned in the code.

5. valuei (Jutput)

2/85

is a retrieved attribute value. The value may be a structure (only one
regardless of the number of relations) or a list of individual values, the
items of which must correspond in order and quantity with the tuple items
specified in the <selection expression>. If an entire tuple is
retrieved by specifying only the tuple value in the select clause, then a
value must be specified for every attribute of the corresponding relation
as defined in the data submodel or in the data model, whichever is being

4-35 AW53-04C

d sl d sl

6.

Notes

set.

code

used. If dat:3 conversion is required, only data types supported by
assign_ may be us~d.

(Jutput) (fixed bin(35))
is a st3niard status code. A. value of 0 indic3tes that no error occurred
and th~t one occurrence of the specified data has been successfully
retrieved. A value of mrds error $tuple not found indicates that no
error occurred and that no Jata sitisfiea th~ selection expression.

For shared op':!nings, the ref~renced relations must ~ave read attr permit scope

For attributel:=vel security, '3ttributes referenced in the select and where
clauses ~ust have read attr access.

2/85 4-36 AW53-04C

dsl dsl

This entry defines the user's current scope of access to the data base for
shared modes of openings. Before a user can access the data base in shared
mode, a scope of access must be declared. consisting of a set of scope tuples.
If this scope does not conflict with any other currently existing scope (of
other processes). it is accepted. Otherwise, the user's request is placed in a
queue and is processed as soon as the requested resources become available. If
the specified wait time is exceeded before the request can be processed. an
error code is returned. Once the scope has been accepted. only operations permitted
by the scope may be per formed. As time progresses in the cur ren t process.
individual scope tuples may be removed as they are no longer needed by invoking
dsl $dl scope. However, new tuples may not be added to the current scope until
all-current scope has been deleted. This rule avoids potential deadlock problems
within the data base manager.

declare dsl_$set_scope entry options (variable);

call dsl $set scope (db index. reI name1. permit ops1. prevent ops1.
- rel=name~, permit_oPSE, prevent_ops~. wait=sec. codeT;

where:

1. db index (Input) (fixed bin (3'5»
is the index returned by dsl_$open that designates the data base.

2. reI namei (Input) (chare*))
Is the name of the relation to be included in the scope.

3. permit_opsi (Input) (fixed bin)
is an integer consisting of the scope code which indicates the operations
the user may perform on the relation.

4. prevent opsi (Input) (fixed bin)
-is an integer consisting of the scope code which indicates the operations
that other users may not perform on the relation.

5. wait sec (Input) (fixed bin (35»

6. code

specifies the maximum number of seconds to wait for the scope request
to be honored (there is no anticipated maximum). This argument is
optional and if not provided by the user. the default is 30 seconds.

(Output) (fixed bin (35»
is a standard status code. The code is 0 if set scope is successful
or is mrds_error_$db_busy if the data base is busy.

4-37 AW53-04

I

I

dsl

Note

Codes for operations to be prevented or permitted are:

Scope
Code

o

2
4
8

Operation

null
read attr or read
append_tuple or store
delete tuple or delete
modify=attr or modify

dsl

It is not necessary to set scope on temporary relations or on relations in
a data base which was opened with an exclusive opening mode. (See Appendix F
for the include file mrds_new_scope_modes.incl.p11.)

Access requirements on the relation(s) for which scope is being set in
terms of Multics ACLs and MRDS access modes are as follows:

REQUESTED RELATION MRDS ACCESS
PERMIT MSF ACL

a rw a

d rw d

m rw m on some attr in
the relation

r r r on some attr in
the relation

n r n

Example

The following example shows the appropriate "call" to define scope on relation
"employee" such that the user's process has retr ieve access to the reI ation
while all other processes are prevented from stores, modifies. and deletes (as
might be necessary in doing a totalling operation within a relation). If the
request cannot be honored within 60 seconds. 'a mrds error $db busy code is issued
to the calling program. - --

call dsl_$set_scope (db_index, "employee". 1. 14. 60. code);

Also see the mrds call set_scope function examples.

4-38 AW53-04

dsl dsl

This entry provides a means of setting a scope on all relations defined in
the user's view without the need to name each relation. Identical permit operations
and prevent operations are applied to all the relations in the user's view.

declare dsl_$set_scope_all entry options (variable);

call dsl_$set_scope_all (db index. permit_ops, prevent_ops. wait sec. code);

where:

1. db index (Input) (fixed bin(35»
is the index returned by dsl_$open that designates the data base.

2. permit_ops (Input) (fixed bin)
is the scope code which indicates the operations the user may perform
on the relation.

3. prevent ops (Input) (fixed bin)
Is the scope code which indicates the operations that other users
may not perform on the relation.

4. wait sec (Input) (fixed bin(35»

5 .

Note

specifies the maximum number of seconds to wait for the scope request
to be honored (there is no anticipated maximum). This argument is
optional and, if not provided by the user. the default is 30 seconds.

code (Output) (fixed bin(35»
is a standard status code.

Scope codes for operations to be prevented or permitted are:

Scope
Code

o
1
2
4
8

Operation

null
read attr or read
append tuple or store
delete-tuple or delete
modify=attr or modify

See the mrds call set_scope_all function examples.

See dsl_$ set_scope for access requirements.

4-39 AW53-04

*

dsl dsl

This entry sets the directory that is used for temporar y storage on the
next call to dsl $open. This temporary directory has a default of process directory.
Therefore, this-entry need never be called unless a record quota overflow occurs
on the process directory. as might happen in opening a data base with a large

I number of relations. or during a large retrieve or define_temp_rel operation.

declare dsl_$set_temp_dir entry (char(*). fixed bin(35»;

call dsl_$set_temp_dir (path. code);

where:

1. path

2. code

Notes

(Input) (char(*»
is the relative or absolute pathname of the directory to be used for
temporary storage on the next call to open.

(Output) (fixed bin(35»
is the standard status code and is 0 unless an error occurs.

I See dsl $set temp dir, dsl $get temp dirt dsl $get opening_temp_dir. and the
commands display_mrds_""temp_dir and set_mras_temp_dlr. -

See "Notes" under set_mrds_temp_dir command for proper use of this interface.

4-40 AW53-04

dsl dsl

This entry allows the user to add a tuple to a designated relation in the
data base. The placement of the new tuple within the relation is determined by
MHDS, based upon data model/data submodel descriptions of the data base and the
value of the primary key in the new tuple. The primary key of the new tuple
must be unique within the designated relation. The caller must have read-write I
permission to the relation. If storing through a submodel view, all attributes
of the relation must be defined in the submodel.

declare dSl_$store entry options (variable);

call dsl $store (data base index, relation expression,
new=valuel, ... : new=value~, code); -

where:

1. data base index (Input) (fixed bin(35))

2.

is-the index returned by dsl_$open that designates the data base.

relation expression (Input) (char(*))
indicates the relation to which the tuple is to be added,
appears in the user's view of the data base (the data model
data submodel). It may be the name of the relation or it
"-another".

as it
or the
may be

3. new valuei (Input)

4. code

Notes

is- the new tuple value to be added to the relation. The entire
tuple, as defined in the user's view, may be specified with one
structure or a list of variables, the items of which must correspond
in order and quanti ty with the attri butes defined in the user's
view.

(Output) (fixed bin(35))
is a standard status code. The value is 0 if the store was successful.
If a duplicate of the primary key already exists in the data base,
the code value mrds error $dup store is returned and the tuple is
not stored. (The name mrds error $duplicate key may also be used.) I
If a -check proc option exists on-a domain of one of the attributes
in the rela-tion for which a tuple is being added and the check
procedure returns false, then the error code, mrds error $dom integ,
is returned. - - -

If the relation_expression is the name of a relation, the new tuple is
added to the named relation. If the relation expression is "-another", the new
tuple is added to the relation specified in the-most recent call to the dsl $store
in which the relation expression argument consisted of a relation name. Any
call to a dsl entry requiring a <selection expression) causes the previously
.specified relation name to become unavailable for subsequent reference using

4-41 AW53-04

dsl dsl

"-another", until it is again established via a call to dSI_$store with a
relation_expression consisting of the relation name.

The use of "-another" provides an efficient means to store several tuples
into a single relation via consecutive dSI_$store calls.

I

For shared openings. the relation must have append_tuple permit scope set.

For attribute level security. the relation must have append_tuple access
and the key attributes must have read attr access.

I

EXAMfLE == OPENING. ACCESSING. AND CLOSING! DATA BAS~

Assume the same sample data base used for the "Examples of Selection Mechanisms"
(previously shown in this section). Also assume the following declarations have
been made within the calling program.

dcl 1 suppl ier •
2 supplier no fixed bin.
2 supplier - name char(32) •
2 location - char(128);

dcl 1 part.
2 part no fixed bin.
2 part - char(16). name
2 color char(S).
2 weight fixed bin.
2 quant on hand fixed bin; - -

dcl 1 project,
2 proj no fixed bin.
2 proj - char(32), name
2 manager no fixed bin; -

dcl 1 supply,
2 supplier no fixed bin.
2 part no 1ixed bin,
2 proj-no fixed bin,
2 ship-date char (6) •
2 quantity fixed bin;

1 • Open the data base for (nonexclusive) update.

call dsl_$open ("supply_data_submodel". db_index. 2. code);

2. Perform the following update. assuming the data base is opened for
(nonexclusive) update.

Add DELTA to the quantity on hand for the part with the part number 3.

call dsl $set scope (db index,
"part", 15. 1. code);

call dsl $retrieve (db index,
"-r~nge (p part) -

4-42 AW53-04

dsl

-select p.quant on hand
-where p.part no =-3".

quant_on_hand.-code);

quant_on_hand = quant_on_hand + DELTA;

call dsl $modify (db index.
"-~urrent p.qu~nt on hand".

quant_on_hand. code);-

call dsl $dl scope(db index,
"pa~t".-15. 1. c~de);

dsl

3. Perform the following deletion, assuming the data base is opened for exclusive
update.

Delete all tuples of the supply relation involving supplier Jones and project
Alpha in combination with one another.

call dsl $delete (db index,
"-r~nge (z supply) (s supplier) (p project)
-select z
-where «(s.supplier name = ""Jones"")

code);

& (s.supplier-name = z.supplier name»
& «p.proj naie = ""Alpha"") -
& (z.proj_name = p.proj_name»)",

4. Perform the following store operation.

Add the tuple contained in NEW_PART to the part relation.

call dSl_$store (db_index. "part", NEW_PART, code);

EXAMPLE MODIFICATION OF KEY ATTRIBUTES

When it is desirable to be able to use the equivalent of two different
selection expressions with independent "-another" processing. two or more openings
of the same data base may be necessary in order to m~intain position "currency"
within the data base for each selection expression.

An example of a multiple data base opening application is the modification
of a key attribute, which must be done by a program such as follows (dsl $modify
does not work on key attributes). Note the use of the entire key in the dsl-$delete
where clause and the use of the second opening index for the delete ana store.
so as not to lose retrieve selection expression currency for "-another" calls.

Not all declarations are shown. The modify proc is a procedure that carries
out the modification of the attribute value before it is stored; error_proc is a
general error routine.

delete select expr = "-range (i invy) -select i
-where-««i.senum = .V.) & (i".secode = .V.» &

(i.part = .V.» & (i.divn = .V.»";

4-43 AW53-04

I

dsl

I

I

none = 0;
read = 1
update only = 14
read update = 15;
update = 2;
db_path = ">udd>Demo>dbmt>db7>jg>CS_III.db";

call dsl $open (db path. dbi 1. update. db_path.
dbi-2. update: code); -

if code ~= 0 then call error_proc();

call dsl $set scope all (dbi 1. read. none. code);
if code ~= 0 then call error=proc;

call dsl $set scope all (dbi 2. read update. update_only. code);
if code -= 0 then call error:proc; -

first time = "1"b;
do whTle (code = 0);

endj

if first time then do;
retrieve-select expr =

"=range Ti invy) -select in;
first time = "O"b;

end; -
else retrieve_select_expr = "-another";

call dsl_$retrieve (dbi_1. retrieve select expr. invy. code);

if code = 0 then
call dsl_$delete (dbi 2. delete select expr.

invy.senum. invy:secode. invy.part. invy.divn. code);

invy.senum = modify_proc (invy.senum);

if code = 0 then
call dsl_$store (dbi_2. "invy", invy. code);

if code A= mrds error $tuple not found then
call error=proc(T;

4-44

dsl

AW53-04

dsl

1* **
* * * BEGIN CS III.incl.pli *
* created: 02/01/80 1439.2 mst Fri *
* by: create_mrds_dm_include (2.0) *
* * * Data model >udd>STL>mrds dev>db>CS III.db *
* created: 02/01/80 1438.0 mst-Fri *
* version: 4 *
* by: JGray.Multics.a *
* * **

dcl 1 invy aligned.
2 senum character (8) nonvarying unaligned,
2 secode character (1) nonvarying unaligned.
2 part character (3) nonvarying unaligned.
2 divn character (3) nonvarying unaligned,
2 iquant real fixed decimal (5.0) aligned 1*

dsl

*1

1* Key *1
1* Key *1
1* Key *1
1* Key *1

9-bit *1;

1* END of CS_III.incl.p11 **1

4-45 AW53-04

*

*

SECTION 5

BUILT-IN AND INSTALLATION-DEFINED FUNCTIONS

BUILT-IN FUNCTIONS

The following built-in functions are available in MRDS. Each of the functions
is described in detail following the list.

abs
after
before
ceil
concat
floor
index

mod
reverse
round
search
substr
verify

Built-in functions within a selection expression must be enclosed with square
brackets []. For example:

[substr (E.name 1 1)] ...

The examples below use the data base described by the model:

domain:
x float bin(27),
y float dec(27),
c bit(3);

relation:
r (x* y c);

that contains the following tuple:

<5.25 5.25 "101"b)

In addition, the following PL/I structure is used as the program fragments:

dcl 01 r
02 x float bin(27),
02 y float dec(27),
02 c bit(3);

Function: abs

This is an arithmetic scalar function whose reference has the form:

abs (X)

The result of this function is the absolute value of X, where X must be a
numeric data item.

5-1 AW53-04

I

X can only be real and the result value is a float decimal (59).

Function: after

This is a string scalar function whose reference has the form:

after (81 82)

The result is that portion of 81 that occurs after the leftmost occurrence of 82
within 81. If 82 is a null string, the result is 81. If 82 does not occur
within 81, the result is a null string. For example:

after ("abcde" nbc") = "de"
after ("abcde" "H) = "abcde"
after ("abcde" "f") = ""
after ("10101"b "10"b) = "101"b

Notes:

When comparing strings, PL/I pads the shorter string on the right. For
example:

r.c = "101"b;
b1 = (after (r.c, "10"b) = "10"b);

results in b1 having a value of "1"b.

MRD8, however, never pads. That is,

mrc retrieve 1 1 "-range (r rel)
-select r.c
-where [after (r.c,""10""b)] = ""10""b"

does not retrieve any tuples.

Function: before

This is a string scalar function whose reference has the form:

before (81 82)

The result is that Dortion of 81 that occurs before the leftmost occurrence of
82 within 51. If 5~ is a null string, the result is a null string. If 82 does
not lie within 51, then the result is 51. For example:

before ("abcde" nbc") = "a"
before ("abcde" "H) = ""
before ("abcde" "f"l = "abcde"
before ("10101"b "10"b) = ""b

The before function has an anomaly similar to the one described under "Notes"
for the after function.

5-2 AW53-04

Function: ceil

This is an arithmetic scalar function whose reference has the form:

ceil (X)

where X must be real. The result is the smallest integer (I) such that:

I >= X

For example:

ceil (20.5) = 21
ceil (-14.6) = -14
ceil (12) = 12

Function: concat

This is a string scalar function whose reference has the form:

concat (S1 S2)

The result is the concatenation of S1 and S2. For example:

concat ("abc" "de") = "abcde"
concat ("101"b "01"b) = "10101"b

Function: floor

This is an arithmetic scalar function whose reference has the form;

floor (X)

where X is real. The result is the largest integer (I) such that:

I <= X

For example:

floor (20.5) = 20
floor (-14.6) = -15
floor (12) = 12

5-3 AW53-04

Funct ion: index

This is a string scalar function whose reference has the form:

index (S1 S2)

The result is an integer that is the position of the beginning of the leftmost
occurrence of S2 within S1. If S2 is not in S1 then the result is o. If S2 is
a null string, the result is O. For example:

index ("abcde" "bc") = 2
index ("abcde" "f") = 0
index ("abcde" "") = 0

Function: mod

This is an arithmetic scalar function whose reference has the form:

mod (X Y)

where X and Yare real. The result is X modulus Y, such that:

if Y A= 0 then mod (X y) = X - Y * floor (X / Y)
if Y = 0 then mod (X Y) = X

For example:

mod (42 5) = 2
mod (129.2867 25) = 4.2867
mod (10 0) = 10

Function: reverse

This is a string scalar function whose reference has the form:

reverse (S)

The result is a string which is the reverse of the value of S. For example:

reverse ("abcde") = "edcba"
reverse ("a") = "a"
reverse ("") = ""
reverse ("10110"b) = "01101"b

5-4 AW53-04

Function: round

This is an arithmetic scalar function whose reference has the form:

round (X Q)

The res u It is a r 0 un din g 0 f the val u e 0 f X. Wh e n a val u e is r 0 un d edt 0 n
digits, the digits after the nth digit are dropped and the nth digit is increased
by if the (n+1)th digit is 5 or greater. If X is float, then Q must be
positive and the mantissa is rounded to Q digits. If X is fixed, it is rounded
to a value that has Q fractional digi ts. For complex values, the function is
defined by:

round (X + Yi Q) = round (X Q) + round (y Q)i

For example:

round (183.62ge6 4) = 183.6e6
round (183.629 2) = 183.63
round (183.629 -1) = 180
round (21.56 + 6.21i 0) = 22 + 6i

Notes:

If used in PL/I, a binary variable is rounded based on a bit and a decimal
variable is rounded based on a digit. For example:

r.x = 5.25
round (r. x, 2) = 6.0

r.y = 5.25
round (r.y, 2) = 5.3

MRDS always converts the value to be rounded to float decimal before rounding
so that:

mrc retrieve 1 1 "-range (r reI)
-select r.x
-where [round (r.x, 2)J = 6"

does not retrieve any tuples.

Funct ion: search

This is a character string scalar function whose reference has the form:

search (C1 C2)

The result is an integer value that is the position in C1 of the leftmost
occurrence of any character contained in C2. If C1 does not contain any character
in C2, the result is O. For example:

search ("abcde" "b") = 2
search ("abcde" "") = 0
search ("abcde" "f") = 0
search ("abcde" "be") = 2

5-5 AW53-04

Function: substr

This is a string scalar function whose reference has the form:

substr (S I J)

-or-

substr (S I)

The resul t is that portion of S that beg ins wi th the Ith character and has
length J (if J is present), or is that portion of S that begins with the Ith
character and continues to the end of S (if J is not present). For example:

substr ("abcde" 3 2) = "cd"
substr ("abcde" 3 0) = ""
substr ("abcde" 3) = "cde"
substr ("10101"b 3) = "101"b

Function: verify

This is a character string scalar function whose reference has the form:

v er i fy (C 1 C 2)

The result is an integer value that is the position of the first character of C1
that does not occur in C2. When C1 contains only characters that are in C2, the
result is O. For example:

verify ("xyz" "abc") = 1
verify ("xyz" "xyz") = 0
verify ("abcde" "cba") = 4

WRITING NONSTANDARD FUNCTIONS

I Nonstandard (or installation-defined) functions mav be wri tten in PL/I.
I COBOL, or FORTRAN. It is assumed that these functions are written by experienced

programmers. (Refer to the "dsl $declare" subroutine entry in Section 4 for a
description of how to declare user-defined functions.)

Scalar functions are passed a complete standard Mul tics argument list containing
argument pointers and descriptor pointers for both the input arguments and the
return argument. The call is equivalent to:

3/84

Two restrictions on arguments to nonstandard functions are:

1. No * extents are permitted.

2. Data types are restricted to those data types permitted in a MRDS data
base. The use of pointers, entries, labels, structures, offsets, and
arrays is not allowed.

5-6 AW53-04B

Example:

user substr: proe (param) returns (ehar(30»;

del param ehar(30);

return (substr (param, 1, 6»;

end user_substr;

5-7 AW53-04

SECTION 6

SUBSYSTEM WRITERS' GUIDE

The MRDS Subsystem Writers' Guide is a reference of interest to writers of
sophisticated sUbsystems. It documents user-accessi ble modules that allow the
user to bypass standard MRDS facilities. The interfaces are a level deeper into
the system than those required by the majority of users.

The MRDS Subsystem Wri ters' Guide provides the advanced Multics user a
selection of some of the internal interfaces used to construct the standard MRDS
user interface.

An example of a specialized subsystem that requires reference to the MRDS
Subsystem Writers' Guide for its construction is a subsystem intended to provide
end-user access to a MRDS data base.

The subroutines contained in this section are: mmi and msmi .

6-1 AW53-04

I

*

mmi mmi

Name: mmi

This subroutine primarily provides a means of retrieving information about
a data base model (Mrds Model Interface). There is also an entry to create a
data base in the same -manner as the create mrds db command. This interface
replaces dmd which is obsolete (see Section 10;. See the msmi subroutine
interface for submodel information.

Entry: mmi $close model - -

This entry closes a given opening of the data base model.

declare mmi_$close_model entry (char(*), fixed bin(35));

call mmi $close_model (opening_name, error code);

where:

1. opening name (Input) (char(*»
is the name given in the call to mmi $open model for the opening of
the model that is to be closed.

2. error code (Output) (fixed bin(35»
is a standard status code. If the name given does not refer to a
current model opening, the code mrds error $open name not known will
be returned. - - -

This entry provides a go/no-go subroutine interface to create mrds db.

declare mmi $create_db entry options (variable);

call mmi $create db ("source path", {"db path",} {"-list",} {"-secure",}
{"-temp_dir", "temp_dir=path",} {II-force"} code);

where the arguments are the same character string arguments as given at command
level to the create mrds db command except that code must be declared fixed bin(35). I The same option and features are available. However, the error code of the

I first error encountered is returned since it is a go/no-go interface.

6-2 AW53-04

mmi mmi

Notes

Since create mrds db was written for command level, some of its error codes
do not provide much detail. Therefore, a listing should be requested to provide
full information.

If the -temp dir {path} is given, path should be a separate character string
argument from "-temp_dir".

If character variables rather than constants are used in the call to
mmi $create db, then trailing blanks should be suppressed (e.g., with the PL/I
built-in "rtrim", described in the PL/I Language Specification).

This entry returns the user class of the caller for a given data base.

declare mmi $get authorization entry (char(*), ptr, fixed bin, ptr,
fixed bin(35));

call mmi $get authorization (database path, area_ptr, structure_version,
mrds_authorization_ptr, error_code); .

where:

1 . database path (Input) (char (*))
Is the relative or absolute pathname of the data base, with or without
the .db suffix. This path must refer to a version 4 data base.

2 • are a _p t r (In put) (poi n t e r)
is a pointer to a freeing area supplied by the caller in which the
mrds authorization structure is to be allocated.

3. structure version (Input) (fixed bin)
is the desired structure version the user wishes to have returned.

4. mrds authorization ptr (Output) (pointer)
- is a pointer to the allocated structure. This structure is described

in the Notes below.

5. error code (Output) (fixed bin(35))
is a standard status code. It may be one of the following:

error table $area too small
If the- suppUed -area could not contain the mrds authorization
structure.

error table $badcall
If the-area_ptr was null.

6-3 AW53-04

I

mmi

Notes

mmi

mrds error $no data base
if the given path does not refer to a MRDS data base.

mrds error $not freeing area
-if the sup~lied area does not have the attribute "freeing".

error table $unimplemented version
If the-given structure version is unknown.

mrds error $version not supported
-if the data base path does not refer to a version 4 MRDS data

base.

The user class information for the specified data base is returned in the
following structure (see Appendix F for the include file
mrds authorization.incl.p11):

dcl mrds authorization aligned

where:

based (mrds authorization ptr),
2 version fixed bin,
2 administrator bit(1) unal,
2 normal user bit(1) unal,
2 mbz bit(34) unal;

1 . version
is the' version number of this structure, which should be set by
calling mrds authorization structure version.

2. administrator
is "1"b if the caller is a DBA.

3. normal user
is "1" if the caller is a non-DBA. Note that a DBA is always also a
normal user.

4. mbz
is reserved for future use.

Currently, the only available structure version is 1.

The following variables

mrds authorization ptr
mrds-authorization-structure version

are also declared by the mrds authorization include file.

I A DBA is currently defined as the holder of "sma" access on the data base
directory.

6-4 AW53-04

mmi mmi

This entry returns attribute information for a particular relation in the
data base model.

declare mmi $get model attributes entry (char(*), char(*), ptr, fixed bin,
ptr, f1xed bin(35T);

call mmi $get model attributes (opening name, relation name, area_ptr,
structure_vers10n, mrds_db_model_rel_attrs_ptr, error_code);

where:

1. opening_name (Input) (char(*))
is the name used in the call to mmi $open_model.

2. relation name (Input) (char(*))
1S the name of the relation for which the attribute information is
desired.

3. area _ptr (Input) (pointer)
is a pointer to a user-supplied freeing area in which the attribute
information will be allocated.

4. structure version (Input) (fixed bin)
is the desired version of the attribute information structure to be
allocated.

5. mrds db model reI attrs ptr (Output) (pointer)
is a pointer to the allocated attribute information structure described
in the Notes below.

6. error code (Output) (fixed bin(35))
is the standard status code. It may be one of the following:

error table $area too small
1f the- supplied -area could not hold the attribute information
structure.

error table $badcall
If the-area_ptr was null.

error table $unimplemented version
If the-structure vers10n given was unknown.

mrds error $no model access
-if the user does not have "r" access to the relation model

segment for the given relation.

mrds error $no model reI
-if the relation-name given is not in the model definition.

mrds error $not freeing area
-if the supplied area does not have the attribute "freeing".

6-5 AW53-04

mmi mmi

mrds error $open name not known
if the name-given does not refer to a current model opening.

Notes

The attribute information is returned in the following structure (see Appendix F
for the include file mrds_db_model reI attrs.incl.p11):

dcl mrds db model reI attrs aligned

where:

based (rnrds db model reI attrs ptr),
2 version fixed bin, -
2 attribute count fixed bin,
2 mbz1 bit(36) unal,
2 attribute (0

refer (mrds db mOdel_rel_attrs.attribute_count)),
3 name charT32J,
3 domain char(32),
3 user data type bit(36),
3 indexed bIt(1) unal,
3 mbz2 bit(35) unal;

1 . version
is the version number of this structure, which should be set by
calling mrds db model reI attrs structure version.

2. attribute count
is the number of attributes in this relation.

3. mbz 1
is reserved for future use.

4. name
is the name of this attribute.

5. domain name
is the name of the underlying domain for this attribute.

6. user data type
- is a standard Multics descriptor for the user's view of the data in

this domain. It WIll differ from the data base data type if the
-decode_dcl option was used for this domain.

7. indexed

8. mbz2

is "1"b if the attribute is the total key, a key head, or secondary
index in the relation.

is reserved for future use.

Currently the only structure version available is 1.

I The variables mrds db model attrs ptr, mrds db model reI attrs count init!
I. and mrds db model reI attrs structure-version are also declared in the

mrds db moael-rel attrs- include file.

6-6 AW53-04

mmi mmi

If the data base is secured, this interface is only usable by a DBA. If
the data base is not secured, the user must have "r" access to the model segment
for the relation involved.

Entry: mmi $get_model info

This entry returns information about the data base model creation.

declare mmi $get model info entry (char(*), ptr, fixed bin, ptr,
fixed bin(35));

call mmi $get model info (opening name, area ptr, structure_version,
mrds_db_model_Info_ptr, error code);

where:

1. opening_name (Input) (char(*))
is the name used in the call to mmi $open_model,

2. area_ptr (Input) (pointer)
is a pointer to a user-supplied freeing area in which the model
information will be allocated.

3. structure version (Input) (fixed bin)
is the desired structure version of the model information.

4. mrds db_model info_ptr (Output) (pointer)
the pointer to the allocated model information structure as described
in the Notes below.

5. error code (Output) (fixed bin(35))
is the standard status code. It may be one of the following:

error table $area too small
If the-area could not hold the model information structure.

error table $badcall
If the~area_ptr was null.

error table $unimplemented version
If the-supplied structure version is unknown.

mrds error $no model access
-if thi usir does not have "r" access to the db model segment.

mrds error $not freeing area
-if thi supplied area does not have the attribute "freeing".

mrds error $open name not known
if thi openIng_name does not refer to a current model opening.

6-7 AW53-04

mmi mmi

Notes

The model information is returned in the following structure (see Appendix F
for the include file mrds_db_model_info.incl.p11):

dcl 1 mrds db model info aligned,
2 versTon-fixed-bin,

where:

2 model version fixed bin,
2 db type fixed bin,
2 dmIile attributes,

3 protected bit(1) unal,
3 rollback bit(1) unal,
3 concurrency bit(1) unal,
3 mbz bit(33) unal,

2 creator id char(32),
2 creation time fixed bin(71);

1. version
is the version number of this structure, which should be set by
calling mrds db_model_info_structure_version.

2. model version

3. db type

is the data base version. The latest version is 4.

indicates the type of data base. A value equal to
mrds db model info vfile type indicates a vfile type data base while
a value- equal to IOrds db model info dmfile type indicates a dmfile
type data base. The- variables mrds db model info vfile type and
mrds db model info dmfile type are declared in the mrds db model info
include-file.- - -

4. protected
a value of "1"b indicates that a transaction must be in progress to
reference the data in the data base; a value of "O"b indicates that
transactions are not needed. This field will always have a value of
"O"b if the data base is a vfile type data base.

5. rollback
a value of "1 "b indicates that a before journal will be used to
journalize transaction activity; a value of "O"b indicates that a
before journal will not be used. This field will always have a
value of "O"b if the value of the protected element is also "O"b.

6. concurrency

7. mbz

a value of "1"b indicates that locking will be done at the control
interval level; a value of "O"b indicates that locking will not be
done at the control interval level. This field will always have a
value of "O"b if the value of the protected element is also "O"b.

these bits must be zero (for future use).

8. creator id

3/84

is in the form Person id.Project id.tag as returned from get_group_id_
for the creator of the data base.

6-8 AW53-04B

mmi mmi

9. creation time
Is the time the data base was created in a form acceptable to the
date time subroutine.

The latest version of the structure is version 2.
structure will continue to execute correctly.

Programs using the version I
The variables mrds db model info ptr and mrds model info structure version

are also declared in the mrds db model info include-file.- - -- - -

If the data base is secur ed, this inter face is only usable by a DBA. If
the data base is not secured, the user must have fir" access to the db model
segment under the data base directory.

This entry returns information about all the relations in the given model
opening.

3/84 6-8. 1 AW53-04B

mmi

declare mmi $get model relations entry (char(*), ptr, fixed bin, ptr,
fixed bin(35)); -

mmi

call mmi $get model relations (opening name, area ptr, structure_version,
mrds_db_rnodel_relations_ptr, error_code); -

where:

1. opening_name (Input) (char(*))
is the name used in the call to mmi $open_model.

2. area_ptr (Input) (pointer)
is a pointer to a user-supplied freeing area in which the relation
information will be allocated.

3. structure version (Input) (fixed bin)
is the desired structure version of the relation information.

4. mrds db model relations ptr (Output) (pointer)
-is the pointer to the allocated structure of relation information in

the form described in Notes below.

5. error code (Output) (fixed bin(35))
is the standard status code. It may be one of the following:

error table $area too small
If the-area could not hold the relation information.

error table $badcall
If the-area_ptr was null.

error table $unimplemented version
If the-given structure version is unknown.

mrds error $no model access
-i f the user does not have f!r" access to the db_model segment.

mrds error $not freeing area
-if the supplied area does not have the attribute "freeing".

mrds error $open name not known
-if the openIng_name does not refer to a current model opening.

Notes

The relation information is returned in the following structure (see Appendix
F for the include file mrds_db_model_relations.incl.pI1):

dcl mrds db model relations aligned
based (rnrds_db_model_relations_ptr),

2 version,
2 relation count fixed bin,
2 mbz1 bitT36) unal,
2 relation (0

refer (mrds_db_model_relations.relation_count)),

6-9 AW53-04

mmi mmi

3 name char(32),
3 mbz2 bit(36) unal;

where:

1 . version
is the version number of this structure, which should be set by
calling mrds db model relation structure version.

2. relation count
Is the number of relations defined in the model.

3. mbz 1
is reserved for future use.

4. name
is the name of this relation.

5. mbz2
is reserved for future use.

Currently, the only structure version available is 1.

The variables

mrds db model relation ptr
mrds-db-model-relation-count init
mrds-db-model-relation-structure version

are also declared in the mrds db model relations include file.

If the data base is secured, this interface is usable only by a DBA. If

J
the data base is not secured, the user must have "r" access to the db model
segment under the data base directory.

6-10 AW53-04

mmi mmi

This entry returns the secured state of the given data base.

declare mmi $get secured state entry (char(*), ptr, fixed bin, ptr,
fixed Ein(35)); -

call mmi $get secured state (database path, area_ptr,structure_version,
database=state_ptr, error code);-

where:

1. database_path (Input) (char(*))
is the relative or absolute pathname of the data base whose secured
state is desired. It must refer to a version 4 data base. The
suffix need not be present.

2. area_ptr (Input) (pointer)
is a pointer to a user-supplied freeing area in which the data base
state information will be allocated.

3. structure version (Input) (fixed bin)
is the desired version of the structure containing data base state
information.

4. database state ptr (Output) (pointer)
the pointer to the allocated data base state information as contained
in the structure described in the Notes below.

5. error code (Output) (fixed bin(35))
is the standard status code. It may be one of the following:

error table $area too small
If the supplied area could not hold the data base state information.

error table $badcall
If the-area_ptr was null.

error table $insufficient access
If the-user has no access to both the data base directory and
the db_model segment.

error table $unimplemented version
If the-supplied structure version is unknown.

mrds error $no data base
if the given path does not refer to a MRDS data base.

mrds error $no model access
-if the user does not have Ur" access to the data base db model

segment.

mrds error $not freeing area
-if the sup~lied area does not have the attribute "freeing".

6-11 AW53-04

mmi mmi

mrds error $version not supported
-if the path giVen IS to a data base whose version is less than

4.

Notes

The data base state information is returned in the following structure (see
Appendix F for the include file mrds_database_state.incl.pI1):

dcl database state aligned

where:

based (database state ptr),
2 version fixed bIn, -
2 unsecured bit(1) unal,
2 secured bit(1) unal,
2 mbz bit(34) unal;

1. version
is the version number of this structure, which should be set by
calling database state structure version.

2. unsecured
is "1"b if the data base is not currently secured.

3. secured
is "1"b if the data base is currently secured.

4. mbz
is reserved for future use.

Currently, the only structure version available is onp.

The user must have at least "r" access to the db model segment under the
data base directory.

This entry opens the data base model for retrieving information about relations,
attributes, and creation of the model. There may be multiple openings of the
same data base model or different data base models.

I declare mmi_$open_model entry (char(*), char(*), fixed bin(35));

I call mmi $open_model (database_path, opening_name, error_code);

6-12 AW53-04

mmi rrmi

where:

1. database path (Input) (char(*))
is the relative or absolute pathname of the data base, whose data
model is to be opened. Version 4 data bases need not have the .db
suffix supplied.

2. opening_name (Input) (char(*))
a use r - sup pI i e dna me, to be use din 0 the r mm i
this opening when obtaining model information.

calls referencing

3. error code (Output) (fixed bin(35))

Notes

is the standard status code. It may be one of the following:

error table $insufficient access
If the-data base has-been secured and the user is not a DBA.

mrds error $no database
if no dati base exists at the given pathname.

mrds error $no model access
if the user does not have "r" access to the data base model
segment.

mrds error $open name already known
if the opening name suppl:led was not unique, within PL/I comparison
rules, compared to other opening names already used in the user's
process.

mrds error $too many open names
if the combined-lengths and number of opening names used in the
user's process exceeded the storage capability of the open name
manager.

The opening name may be any number of ASCII characters. Current capability
is for more than 1000 opening names of reasonahle length for version 4 models,
but only 64 for models of version 3. Opening names must be unique to PL/I
comparison rules within the user's process. (The-entry unique chars, described
in MPM Subroutines, can be used to generate unique names.) -

If the data base is secured, this interface is only usable by a DBA. If I
the data base is not secured, the user must have at least "r" access to the
db model segment under the data base directory.

6-13 AW53-04

mmi mmi

En try: 'n m i $ qui ~ s r:! e db

T;1is entry allows the DBA to quiesc:=: ;] given d8t8 base for such purposes as data
base backup or ~ther excl~siie activities that require a consistent 8nd non-active
data b~se. T~e dat~ base can be returned to a non-quiescent state by use of the
mmi lunqui8sce db entryp~i~t.

declare mmi lquies~~ db entry (chare*), fixed bin(17), fixed bin(35»;

call mmi &1ui~s~~ db (database path, w3it_time, ~rror code);

where:

1 . dat8bas2 path (111 put) (char (*»
is the rel~tive or absolute pathname of the data base to be quiesced.
V~rsion 4 data bases need not have the db suffix supplied.

2 • wa itt i 11 e (111 put) (f i x ed bin (1 7))
sets the a'nOU'1t of time that ~n ~tternpt to quiesc2 waits for conflicting
data base users to depart before failing (see "Notes").

3. error code (Jutput) (fixed bin(35»
is the standard status code.

Note

Time specified for wait time is ir. seconds. A long wait is needed if the data
base is open by many users; otherwise, a s~ort wait time will suffice. For a simple
go/nogo test, give a wait ti'Tle of 1 second.

Entry: mmi $unquiesce db

This entry returns a dat::! base that is in a quiescent state (by either
mm i :~q ~ iesc e db or the 1u iesce mrd s _ db command) to a non-qu iescen t state.

declare mmi_$unquiesce db entry (char(*), fixed bin(35»;

call mmi_$unquiesce_db (database path, error_code);

where:

1.

2/85

dat8base path
is the

(Input) (char(*»
. __ '_L!_~ _ _ . _ _ '- __ ' •• L. __ ..-L..1 _______ ~ .. t.._ .-1 _ l....._ _-4-_
r elr.lv.lVe VI dU;:"J.1.uvt: iJdvlllJd:1J1:: VL vllt: uava U<:l':>C VV

Version !I data bases need not have the db suffix supplied.

6-1 3. 1

h~ P",,~~A I
uc .LICCU. I

A't'l53-04C

mmi mmi

error code (Jut~ut) (fixed bin(35»
is the st~ndard status code.

2/85 6-13.2 AW53-04C

msmi msmi

Name: msmi

This is a subroutine interface to the MHDS submodel data structure
(mrds submodel interface). The submodel data structure is created by the
create mr ds dsm command a nd may be displayed by th e display mrds d sm command.
This interface replaces the obsolete dsmd interface (see SectIon 10).

~~~ry: msmi $close submodel 

This entry disassociates an opening name and a submodel to prevent further 
access to that submodel through that opening name. 

declare msmi $close_submodel entry (char(*), fixed bin(35)); 

call msmi $close submodel (opening name, code); 

where: 
1. opening name (Input) (char(*») 

2. code 

Notes 

Is the name identifying the submodel opening. 

(Output) (fixed bin(35)) 
is a standard error code. 

The submodel-opening name aSsocIatIon must already have been made by a 
successful call to msmi $open submodel. If the opening name is not known, the 
error code mrds error_$open name not known is returned. 

~~tr1: msmi $get attribute data 

This entry returns the attribute information for the given relation. 

declare msmi $get attribute data entry (char(*), char(*), ptr, fixed bin, 
ptr, fixed bln(35»; -

call msmi $get attribute data (opening name, rel name, area ptr, 
str version, attribute data_ ptr, code); 

6-14 AW53-04 



msmi msmi 

where: 

1. opening_name (Input) (char(*» 
is the name identifying the submodel opening. 

2. reI name (Input) (char(*» 
is th~ name of the relation for which attribute data is desired. 

3 . are a _p t r ( In put) ( p t r ) 
is a pointer to a freeing area where the mrds dsm attribute data 
structure will be allocated. 

4. str version (Input) (fixed bin) 
is the version of the mrds dsm attribute data structure that is to 
be allocated. 

5. attribute data ptr (Output) (ptr) 

6. 

Notes 

code 

is-a poInter to the allocated structure. 

(Output) (fixed bin(35» 
is a standard error code. 

The submodel-opening name association must already have been made by a 
successful call to msmi $open submodel. If the opening name is not known, the 
error code mrds_error_$open_name_not_known is returned. -

I f the area pointed to by the area ptr parameter is too small for the 
mrds dsm attribute data structure to be- allocated in it, the error code 
error table $area too small is returned. If the area ptr parameter is null, the 
error-code error table $badcall is returned. If the area is not a freeing area, 
the error code mrds_error_$not freeing_area is returned. 

The following is version 1 (currently the only version) of the 
mrds dsm attribute data structure (see Appendix F for the include file 
mrds dsm attribute data. incl. pI1). If the str version parameter refers to a version 
of the mrds dsm attribute data structure that-is not supported or does not exist, 
the error code error_table_$unimplemented_version is returned. 

dcl mrds dsm attribute data based 
(mrds dsm attribute data ptr) aligned, 

2 version fIxed bin, - -
2 number of attributes fixed bin, 
2 attributes (mrds dsm attribute data num atts refer 

(mrds dsm attribute data.number of attrIbutes», 
3 submodeI attribute name char(04)~ 
3 model attribute name char(32), 
3 read access bit(1) unal, 
3 modify access bit(1) unal, 
3 null access bit(1) unal, 
3 mbz1-bit(33) unal; 

6-15 AW53-04 



I 
I 

msmi msmi 

where: 

1 . version 
is the version of the structure, which should be set by calling 
mrds dsm attribute data structure version. 

2. number of attributes 
is-the number of attributes in the submodel relation view. 

3. submodel attribute name 
is the name-of the attribute in the submodel. 

4. model attribute name 
is the name of the attribute in the model. 

5. read access 
is set to "1"b if the submodel has read access set for the attribute. 

6. modify_access 
is set to "1"b if the submodel has modify access set for the attribute. 

7. null access 
is set to "1"b if the submodel has null access set for the attribute. 

8. mbz 1 
is set to "O"b. 

The variables 

mrds dsm attribute data ptr 
mrds-dsm-attribute-num atts 
mrds-dsm-attribute-data structure version 

are also declared in the mrds dsm attribute data include file. 

If the submodel refers to a secure data base and the user calling 
msmi $get attribute data is not a data base administrator for the data base, 
then-the ~alue of m;del attribute name will be null. 

If null access has a value of "1"b then both read access and modify_access 
will have values of "O"b. 

This entry returns information about each relation in the submodel. 

declare msmi $get relation data entry (char(*), ptr, fixed bin, ptr, 
fixed bln(3ST); -

call msmi $get relation data entry (opening_name, area_ptr, 
relation_oata_ptr,-code); 

6-16 AW53-04 



msmi msmi 

where: 

1. opening_name (Input) (char(*» 
is the name identifying the submodel opening. 

2. area ptr (Input) (ptr) 
is a pointer to a freeing area where the mrds dsm relation data structure 
will be allocated. -

3. str version (Input) (fixed bin) 
is the version of the mrds dsm relation data structure that is to be 
allocated. 

4. relation data ptr (Output) (ptr) 

5. code 

Notes 

is a pointer to the allocated structure. 

(Output) (fixed bin(35» 
is a standard error code. 

The submodel-opening name association must already have been made by a 
successful call to msmi $open submodel. If the opening name is not known, the 
error code mrds_error_$open_name_not_known is returned. -

I f the area pointed to by the area ptr parameter is too small for the 
mrds dsm relation data structure to be allocated in it, the error code 
error table $area too small is returned. If the area ptr parameter is null, the 
error-code error_table $badcall is returned. If the area is not a freeing area, 
the error code mrds_error $not_freeing_area is returned. 

The following is version (currently the only version) of the 
mrds dsm relation data structure (see Appendix F for the include file 
mrds-dsm-relation-data. incl. pIn. If the str version parameter refers to a version 
of the mrds dsm relation data structure that-is not supported or does not exist, 
the error code error_table_$unimplemented_version is returned. 

dcl mrds dsm relation data based 

where: 

(mrds dsm relation data ptr) aligned, 
2 version fIxed bin,- -
2 number of relations fixed bin, 
2 relations-(mrds dsm relation data num rels refer 

(mrds dsm relatIon data.number of-relations», 
3 submodeI relation name char(64)~ 
3 model relation name char(32), 
3 append access bit(1) unal, 
3 delete-access bit(1) unal, 
3 null access bit(1) unal, 
3 mbz1-bit(36) unal; 

1 • version 
is the version of the structure. 

6-17 AW53-04 



msmi msmi 

2. number of relations 
is-the number of relations in the submodel. 

3. submodel relation name 
is the relation name defined in the submodel. 

4. model relation name 
is the corresponding name of the relation as defined in the model. 

5. append_access 
is set to "1"b if the submodel has append access set for the relation. 

6. delete access 
is set to "1"b if the submodel has delete access set for the relation. 

7 . null access 
is set to "1"b if the submodel has null access set for the relation. 

8. mbz 1 
is set to "O"b. 

The variables 

mrds dsm relation data ptr 
mrds-dsm-relation-data-num rels 
mrds-dsm-relation-data-structure version 

are also included in the mrds dsm relation data include file. 

If the submodel refers to a secure data base and the user calling 
msmi $get relation data is not a data base administrator for the data base, then 
the value-of model-relation name will be nUll. 

If null access has a value of "1"b then both append_access and delete access 
will have values of "O"b. 

This entry returns general information about the submodel. 

declare msmi $get submodel info entry (char(*), ptr, fixed bin, ptr, 
fixed bln(35T); -

call msmi $get submodel info (opening name, area_ptr, str_version, 
submodel_Info_ptr, code); -

where: 

I I 1. opening name 
Is the 

(Input) (ohar(:» 
identifying the submodel opening. 

6-18 AW53-04 



msmi msmi 

2. area ptr (Input) (ptr) 
is a pointer to a freeing area where the mrds dsm submodel info structure 
will be allocated. 

3. str version (Input) (fixed bin) 
is the version of the mrds dsm submodel info structure that is to be 
allocated. 

4. submodel info ptr (Output) (ptr) 

5. 

Notes 

code 

is a pointer to the allocated structure. 

(Output) (fixed bin(35» 
is a standard error code. 

The submodel-opening_ name association must already have been made by a 
successful call to msmi $open submodel. If the opening name is not known, the 
error code mrds_error_$open_name_not_known is returned. -

If the area pointed to by the area ptr parameter is too small for the 
mrds dsm submodel info structure to be -allocated in it, the error code 
error table $area-too small is returned. If the area ptr parameter is null, the 
error-code error table $badcall is returned. If the area is not a freeing area, 
the error code mrds_error $not_freeing_area will be returned. 

The following is version (currently the only version) of the 
mrds dsm submodel info structure (see Appendix F for the include file 
mrds - dsm - submodel-info. incl. pIn. I f the str version parameter refers to a version 
of the mrds dsm submodel info structure thatis not supported or does not exist 
the error code error_table_$unimplemented_version will be returned. 

dcl mrds dsm submodel info based 

where: 

(mrds dsm submodeI info ptr) aligned, 
2 version fIxed bin,- -
2 submodel version fixed bin, 
2 database-path char(168), 
2 submodel-path char(168), 
2 date time created fixed bin(71), 
2 creator id char(32); 

1 . version 
is the version of the structure, which should be set by calling 
mrds dsm submodel info structure version. 

2. submodel version 
is the version of the submodel data structure. 

3. datebase path 
is the absolute path of the data model for which the submodel is 
defined. 

6-19 AW53-04 



msmi msmi 

4. submodel path 
is the absolute path of the submodel. 

5. date time created 
is the Multics clock value (suitable for input into the date time 
subroutine) for when the submodel was created. 

6. creator id 
Is the ID of the user who created the submodel. It has the form of 
"Person_id.Project id.Tag". 

The variables 

mrds dsm submodel info ptr 
mrds-dsm-submodel-info-structure version 

are also declared in the mrds dsm submodel info include file. 

Thi s entry associates a submodel with an openi ng name so that it can be 
used by other msmi entries. The same submodel may beassociated with multiple 
opening names. 

declare msmi_$open_submodel (char(*), char(*), fixed bin(35)); 

call msmi_$open_submodel (opening_name, path, code); 

where: 

1. opening_name (Input) (char(*)) 

2. path 

3. code 

Notes 

is the name identifying the submodel opening. This name must be 
unique within the opening process (as determined by PL/I comparison 
rules), not only for submodel openings, but for any operation within 
the MDBM subsystem that takes an opening name name. Multiple openings 
of the same submodel must have different opening_name names. 

(Input) (char(*)) 
is the relative or absolute path (with or without the dsm suffix) of 
the submodel to be opened. 

(Output) (fixed bin(35)) 
is a standard error code. 

The opening name can be any length and can be made up of any sequence of 
ASCII characters. If the opening_name has already been used, the error code 

6-20 AW53-04 



msmi msmi 

mrds error $open name already known is returned. If there is no room to create 
another opening name,-the error code mrds error $too many open names is returned. 
The exact number of openi ng names depends on -the length of-the names already 
used, but it is large (> 1000). 

6-21 AW53-04 



SECTION 7 

SECURITY 

MRDS provides two different levels of data base security: relation level 
security and attribute level security. The level of security that is enforced 
depends upon the security state of the data base. The capabilities that a MRDS 
user has depends not only on the security state of the data base but also upon 
whether or not the user is a data base administrator (DBA). 

DBA 

A DBA is a user who has sma ACL on the data base directory. There may be 
one or several DBAs for a data base; the creator is always a DBA. A. DBA is 
automatically given the necessary Multics ACLs when executing a ~RDS command or 
subroutine. 

Secure Data Bases 

A data base may be secured (by a DBA) in one of two ways: either by using 
the secure mrds db command with the -set control argument or by creating it in a 
sec u res t at e b y- us i n g ere ate m r d s d b wit h the - sec u r e con t r 01 a r gum e n t . A d a t a 
base may be unsecured (by a DBA) by issuing the secure mrds dh command with the 
-reset control argument. A secure data base is a data base which has been 
secured and not subsequently unsecured. 

A secure data base cannot be referenced by a non-DBA via ei ther the data 
model or via an unsecured submodel (a submodel that is not located under the 
secure.submodels directory). The DBA may reference a secure data base via either 
the data base's data model or a submodel (either secure or unsecured). 

The secure.submodels directory is a directory located under the data base 
directory. This directory is used to ensure that a secure data base is referenced 
through a submodel under the control of a DBA (a secure submodel). A submodel 
may be placed in this directory either during submodel creation by using the 
-install control argument or by copying an already created submodel. An unsecured 
data base may also have some of its submodels in this directory. 

A secure data base may be referenced by a non-DBA via a link in some other 
directory as long as the link's target is a secure submodel. A submodel in some 
other directory pointed to by a link in the secure.submodels directory is not 
considered secure. 

7-1 AW53-04 



I 

T'1e ACL3 required on the data model and relation model segments are independent 
of the l~vel of security in effect. In order to use the data base at all, the user must 
i1ave "rn ACL ')n the db model .'3egment; only D13A.s should have "rw" ACL to this segment. 
\1hen the data base i3- op?ned vi::} the data model, the Llser' s view contains all the 
relations in the data b'3se; if the opening was via a submodel then the view contains 
jus t tho s ere le! t i on s in the s Ll b ~n 0 del . !J s e r s wi 11 need "r It A C L set on all r e 1 at i on 
tnodels that corresponj to rel=3tions in every view to which they have access. No one 
but D3As should have "rw" ACL ':In ,') relation model segment. 

For those submodels on which the DBA ~ontrols MuLtics ACLs (either unsecured 
submodels contained in a directory created by the DBA or secure subrnodels contained in 
the secure.submodels directory of the data b3se), it is recommended that no one but 
DBAs have sma ACL on the:~ont3ining directory and that non-DBA. users have "r" ACL only 
on sub'nodel s that they are allowed to IJse. On ly the D3As should have "rw" ACL on the 
submodel segmen~s. 

The data ba:32 consists of three directories: the main data base directory and 
two inferior directories (resultant segs.dir 3nd secure.submodels). The general 
user should l1ave "n" ACL on the data b3se and the secure .submodels directories whi Ie 
havins "s" ACL on the resultant segs.dir directory. DBAs, by definition, have "sma" 
ACL set on the data base directory and will autollatic'3lly be granted "sma" ACL on the 
inferior directories whe1 executing a ~RDS command that requires that ACL. 

The ACL required on each relation data segment depends on the operations that 
will be allowed on that re13tion and not on the l~vel of security in effect. 

1. ACLs of "rw" are required on each rel::ltion data segment 'I'lhere the allowed 
oper:3tions are storing a tlJpl~ into the re13tion (append tuple), deleting a 
tuple from the relation (delete tuple), or modifying ~n attribute value 
(modifyattr). -

2. For a relation where the only per'Oissible operation L'5 to read the attribute 
val u~s (read attr), ;:tn ASL of "r" is required on the relr:ltion data segment. 

3. Relation data ~egments correspondin6 to relations that have no access 
per:nissions shoulj 113ve "n" ACL set. 

4. ACLs of "r" should b~ set on the se~ments dbcb and rdbi, located in the 
res~ltant segs.dir, for each person alloed to open the data base. 

S~e the command create mrds db for a description of the data base :nakeup in terms 
of directories and segments. 

Regardless of the level of security in effect, scopes must be set before anydata 
can be accessed. It is assumed th~t a scope will be requested only if the indicated 
operation is to be perforlled. For this reason, if the requested scope requires more 
privileges than the user has been assigned (determined from the level of security in 
effect and the relation's ACL), 3 dat8 access violation error is generated. 

Since an opening in exclusive mode 3utomatic::llly sets scopes, access violation 
errors may be generated at open time a~ well. 

2/85 7-2 AW53-04C 



See the table of access requirements listed under dsl $set_scope. 

L I '-1 I TAT ION: 

2/85 

'-1RDS does not allow a user whose authori zation is higher than the access I 
cla5s of 3 data base to set scope on that data base. 

7 -2. 1 AW53-04C 



Relation Level Security 

This level of securi ty does not provide any data model securi ty in that 
there is no restriction on the amount of information about the data base model 
that the user may obtain. Any user may access the data base via the data model 
and data access permissions are set at the relation level by using Multics ACLs. 
This level of security was the only form of security available in MR8.0; it is 
the only form of security enforceable for an unsecured data base. 

All access violations are determined at scope setting time. 

• An ACL of "n" will prevent any scope from being set. In effect there 
is no access to this relation. 

• An ACL of "r" will allow scopes with permit_ops of read attr to be 
set. 

• An ACL of "rw" will allow scopes with permits ops of read attr, 
modify_attr, append_tupld, and delete tuple to be set. 

Attribute Level Security 

Attribute Level Security, which is enforced only for a secure data base, 
provides both data value security and data model security. 

DATA MODEL SECURITY 

In a secure data base, users are granted access to a subset of the data 
base. In order to prevent these users from obtaining more information about the 
data base than their view allows, the following commands and subroutines, which 
deal exclusively with the data model, are restricted to DBAs if the data base is 
in a secured state: 

create mrds dsm 
display mrds dm 
dmd - -
mmi 

For an unsecured data base, dsl $open and commands that may operate on 
either the data model or a data submodel are restricted to secure submodels when 
used by a non-DBA on a secure data base. These commands are: 

create mrds dm include 
create-mrds-dm-table 
display_mrds_db_status 

Many commands and subroutines ei ther display or return the relation and 
attribute data model names associated with the submodel "relation and attribute 
names. A non-DBA user invoking one of these commands/subroutines will have 
spaces (blanks) displayed/returned in place of the model relation and attribute 
names if the associated data base is in a secured state. 

display mrds db access 
display-mrds-dsm 
dsmd - -
msmi 

7-3 AW53-04 



* 

DATA VALUE SECURITY 

To use the data value securi ty features of attribute level securi ty the 
data base must not only be secured but there must also be at least one secured 
submodel containing specifications for the data access permissions on both the 
relations in the view defined by the submodel and the attributes in those relations 
(see the create mrds dsm command). - -

The access permissions that may be set in the submodel correspond to the 
scopes that may be requested, i.e: 

relation access: 
append tuple 
delete-tuple 
null -

attributes access: 
read attr 
modify attr 
null -

The only restriction on the attribute access permissions is that null access 
cannot be specified with any other access. 

There are several restrictions on which access can be set on the relations. 

1 . null relation access permission cannot be specified wi th any other 
access permissions. 

2. append tuple and delete tuple can only be set if the submodel relation 
is a full view of its corresponding model relation. A full view implies 
that the submodel relation contains all the attributes in the model 
relation. 

3. append tuple can only be set on a relati'on if read attr access is also 
set on- all of the primary key attributes in that relation. If this 
restriction were not applied then it would be possible to store tuples 
until the duplicate key error was generated, at which point the values 
of the primary key attributes would be known. 

Because the access specified in the submodel is independent of the Multics 
ACLs on the relation's data segments, Mul tics will enforce the ACLs on those 
segments. It is the responsibility of a DBA to make sure that the ACLs on the 
relation data segments allow the submodel user to perform the operations set in 
the submodel. Specifically for those users with "r" ACL on the submodel: 

1 . For every relation in the submodel wi th ei ther append tuple or delete tuple 
access or with at least one attribute with modIfy attr access, set 
"rw" ACL on the relation data segment. -

2. For every relation in the submodel wi th null access on the relation 
and with only read attr access on the attributes, set "r" ACL. 

Relation model segments should have "r" ACL set, for all relations appearing 
in the submodel view. 

Unlike Relation Level Security, not all access violations can be detected 
at set scope time. This is because scopes are set at the relation level, but 
the access specifications are at the attribute level. 

7-4 AW53-04 



Example 

The following submodels are all based on the employee db data model (described 
below) . Each submodel is used by one project, which has the same name as the 
submodel (i.e. *.submodel name.*). For each submodel, the submodel source, the 
display produced by display mrds dsm, and the required Multics ACLs on all data 
base entries for the project are listed. A table listing the effective access 
for each relation and attribute for both a secured and unsecured data base is 
also given. Note that an unsecured data base may be opened via the submodel or 
via the data model. 

The cmdb source of the employee db data base is presented first, followed 
by a display of the ACLs on all the-entries associated with the data base for 
the payroll, credi t union, and DBA projects. That is followed by the displays 
for each submodel/project. 

The Employee_db Source 

domain: 
birth date 
city 
credit union 
end date 
end-sal 
federal 
first name 
id 
job title 
last name 
pay 
pension 
sex 
ssn 
start date 
start-sal 
state­
state with 
street 
zip 

fixed bin(71), 
char(32), 
fixed decimal(6, 2), 
fixed bin (71) , 
fixed decimal(6, 2), 
fixed decimal(6,2), 
char(32) varying, 
fixed bin ( 17) , 
char(64), 
char(64) varying, 
fixed decimal(6, 2), 
fixed decimal(6, 2), 
char ( 1 ) , 
char(11), 
fixed bin(71); 
fixed dec(6, 2), 
char(32); 
fixed decimal(6, 2), 
char(32); 
char(9), 

(id* street city state zip), 
relation: 

address 
payroll 
personal 

(id* pay federal state with pension credit union ssn), 
(id* first name last name sex birth date spouse_name); 

index: 
address 
personal 

(zip), 
(last name birth date); 

Summary of all Multics ACLs for all data base entries: 

employee_db.db 
sma *.DBA.* 

db model 
rw 
r 
r 

db.control 
rw 
rw 
rw 

*.DBA.* 
*.payroll.* 
*.credit union.* 

*.DBA.* 
*.payroll.* 
*.credit union.* 

7-5 AW53-04 



address.m 
rw * • DBA. * 
r * • payr 011. * 
r * • credit union • * -

address 
rw * • DBA. * 
r * .payroll. * 
r * • credit union • * -

payroll.m 
rw * • DBA. * 
r * • payroll. * 
r * • credit union • * -

payroll 
rw * • DBA. * 
rw * • payroll. * 
rw * • credit union • * -

per sonal.m 
rw * • DBA. * 
r * • payroll. * 
r * • credit union • * -

per sonal 
rw * • DBA. * 
r * • payr 011. * 
r * .credit union. * -

secure.submodels 
sma *.DBA.* 

secure.submodels>payroll.dsm 
r *.payroll.* 

secure.submodels>credit union.dsm 
r *.credit-union.* 

resultant segs.dir 
sma *.DBA.* 

resultant segs.dir>dbcb 
rw - *.DBA.* 

resultant segs.dir>rdbi 
rw - *.DBA.* 

The Payroll Submodel 

The payroll submoae~ allows access to tne address, payroll, and part of the 
personal relations. The ACLs on these relations only allow tuples to be appended 
to or deleted from the payroll relation and only in the payroll relation may 
attribute values be modifed. If the data base is secured, then the credit union 
and pension attributes of the payroll relation may not be modified. If thi data 
base is not secured, it is not possible for MRDS to prevent the modification of 
the credit union and pension values or to prevent the reading of the sex, birth date 
and spouse~name attributes in the personal relation. -

The source: 

relation: address 

relation access: payroll 

3/84 

(id street city state zip); 

(append tuple. delete tuple) 
with itt~ibute acceis -

(read_attr, modify_attr); 

7-6 AW53-04B 



relation: 

attribute access: 

relation: 

payroll (id pay federal state with 
credit union pension ssn); 

pension in payroll Tread attr), 
credit_union in payroll Tread_attr); 

personal (id last name first_name); 

display_mrds_dsm >examples>employee_db*db>secure.submodels>payrolledsm 

address n 
id r 
street r 
city r 
state r 
zip r 

payroll ad 
id rm 
pay rm 
federal rm 
state with rm 
credit union r 
pension r 
ssn rm 

personal n 
id rm 
last name r 
first name r -

Required ACLs for *.payroll.* 

employee_ db.db n 
db model r 
db:-control rw 
address.m r 
address r 
payroll.m r 
payroll rw 
personal.m r 
personal r 
secure.submodels n 

secure.submodels>payroll.dsm 
secure.submodels>credit union.dsm 
resultant segs.dir>rdbi­
resultant=segs.dir>dbcb 

Effective access for the *.payroll.* 

relation 
attribute 

unsecured secured 
model submodel submodel 

address n n n 
id r r r 
street r r r 
city r r r 
state r r r 
zip r r r 

payroll ad ad ad 
id rm rm rm 

3/84 7-7 

r 
n 
n 
n 

AW53-04B 

I 



pay rm rm rm 
federal rm rm rm 
state with rm rm rm 
credit union rm rm r -pension rm rm r 
ssn rm rm rm 

personal n n n 
id r r r 
last name r r r 
first name r r r -sex r not vis able -birth date r not vis able -not visable spouse_ name r -

The Cred it Union Submodel 

The credit union submodel allows the credit union office to read the address 
relation and parts of the payroll and personal relations. In addition, the 
credit union attribute in the payroll relation may be modified. Note that, if 
the data base is not secured, credit union personnel may open the data base via 
the data model, read all the attributes in the personal relation, and read and 
modify all the attributes in the payroll rel.ation as well as add and delete 
tuples. 

The source: 

relation: address (id street city state zip); 

relation: 
attribute access: 

payroll (id ssn credit union); 
credit_union in payroll Tread_attr, modify_attr); 

relation: personal (id last name first_name); 

display_mrds_dsm )example)employee_db.db)secure.submodels)credit_union.dsm 

address n 
id r 
street r 
city r 
state r 
zip r 

payroll n 
id r 
ssn r 
credit union rm -

per sonal n 
id r 
last name r 
first name r -

Required ACLs for *.credit union.* 

employee_db.db n 
db model r 

3/84 7-8 AW53-04B 



db.control rw 
address.m r 
address r 
payroll.m r 
payroll rw 
personal.m r 
personal r 
secure.submodels n 

secure.submodels>payroll.dsm 
secure.submodels>credit union.dsm 
resultant segs.dir>rdbi­
resultant=segs.dir>dbcb 

Effective access for *.credit union.* 

3/84 

unsecured secured relation 
attribute model submodel submodel 

address n n n 
id r r r 
street r r r 
city r r r 
state r r r 
zip r r r 

payroll ad n n 
id rm rm r 
pay rm not visable -federal rm not visable -state with rm not visable 
credit union -rm rm rm -pension rm not visable -ssn rm rm r 

per sonal n n n 
id r r r 
last name r r r 
first name r r r -sex r not vis able -birth date r not vis able - -not visable spouse_ name r -

7-9 

n 
r 
n 
n 

AW53-04B 

I 



TABLE OF EFFECTS OF DATA BASE SECURITY 

DBA Only 

adjust rnrds db 
create-rnrds-dsrn -install option 
secure-rnrds-db 
quiesce_rnrds_db 

Secured DB - DBA Only 

create rnrds dsrn 
display rnrds dm 
dmd - -
mmi 

Secured DB - Restricted to Secured Submodels for Non-DBA 

create mrds dm include 
create-mrds-dm-table 
display mrds db status 
dsl $open --
mrds call open 

Secured DB - Access Violation Detection/Display Change 

Qlsplay mrds db access 
display-mrds-dsm 
dsl $open -
dsl-$set scope 
msmi 
mrds-call open 
mrds-call set_scope 

Unaffected 

display mrds db version 
display-mrds-open dbs 
display-mrds-scope settings 
display-mrds-temp dir 
dsl (other than open or set scope) 
dsmd 
mrds-call (other than open or set scope) 
set mrds temp dir 
update_mrds_db_version 

New Options 

create mrds db -secure option 
Cieate-mrds-dsm -install option 

7-10 AW53-04 



Scope Display Changes 

display mrds db status 
display-mrds-scope settings 
dsl $get scope -
mrds call get_scope 

7-11 AW53-04 



SECTION 8 

DATA BASE BACKUP 

This section describes the procedure for providing a backup copy of a data I 
base and its data. This is an administrative facility for use by the DBA and is 
not intended for use by the general data base user community. 

CHECKPOINT 

To make a backup (checkpoint) copy of a data base, perform the following 
steps: 

1. Do a quiesce mrds db on the current data base to ensure a consistent 
copy and data base integri ty. 

2. Do a copy dir of the data base to another part of the storage hierarchy 
to obtain-the checkpoint data base. 

3. Do a quiesce_mrds_db using the -free option on the original data base. 

ROLLBACK 

To return the current data base to its previous checkpointed state, perform 
the following steps: 

Notes 

1. Do a quiesce_mrds db of the current data base. 

2. Do a delete dir of the current data base. 

3. Do a copy dir of the checkpoint data base into the current location of 
the current data base. 

4. Do a quiesce_mrds db using the -free option on the new current data 
base. 

Doing a display mrds db status of the checkpoint data base shows it as 
quiesced. (It should-be kept-that way to ensure integrity.) 

The copy can have itself freed from quiescing if it is to be used for 
program development rather than as a backup copy. 

If a display mrds db status of the current data base shows many users, a 
long wai t time should be -used for quiesce mrds db. With few users or none, a 
small wait time will suffice. - -

8-1 AW53-04 



The quiescing process is the only process that can open the checkpointed, 
quiesced data base. 

If the data base was quiesced by a dead process, both quiesce mrds db using 
the -free option and adjust mrds db using the -trouble switch off option must be 
done. However, there is danger-of an inconsistent data base, depending on why 
the quiescing process died. 

8-2 AW53-04 



SECTION 9 

DATA BASE DEVELOPMENT TOOLS 

This section describes the mrds call command and its related functions, 
which may be used in the development phase of a data base application. They are 
normally not used in a production environment. 

The following is a summary of mrds call functions. 
/ 

close, c 
closes the currently open data bases. 

declare, dcl 
makes a user-defined function known to MRDS for possible use as a 
-where clause. 

define temp reI, dtr 
redefines or creates a new temporary relation which can be accessed 
by the current process. 

delete, dl 
specifies that the selected data is to be deleted from the data 
base. 

dl scope, ds 
deletes all or a portion of the current scope of access. 

dl scope all, dsa 
- deletes all of the current scope of access. 

get_population, gp I 
returns the number of tuples currently stored in a permanent or 
temporary relation. 

get_scope, gs I 
displays the scope currently set on a relation in a given opening of 
the data base. 

list dbs, ld 
- displays the indexes, path names , and opening modes of all data bases 

currently open by the user via mrds call only. 

modify, m 
specifies that the selected portion of the data base is to be modified. 

open, 0 

opens the specified data bases or data submodels for processing. 

retrieve, r 
displays the selected data specified by the selection expression. 

set_modes, sm 
allows setting of the amount of error information returned and/or 
the displaying of opening information. 

9-1 AW53-04 



set scope, ss 
- defines the current scope of access for a relation within a shared 

data base. 

set scope all, ssa 
defines the current scope of access for all relations within a shared 
data base. 

store, s 
adds a new tuple (row) to the selected relation. 

9-2 AW53-04 



mrds call mrds call 

Name: mrds_call, mrc 

This command provides a command-level interface to the Data Sublanguage 
(DSL). It is not intended to be a true end-user query language, but rather is 
designed to be used as an experimentation vehicle for data base administrators 
and applications programmers during the development of a data base and its associated 
programs. The mrds call command is also useful as an instructional tool when 
introducing new users to MRDS. Refer to the LINUS Manual for an actual end-user 
facility which accesses MRDS data bases. 

mrds call function-name {args} 

where: 

1. function-name 

2. args 

is one of the following functions: 

close 
declare 
define temp reI 
delete- -
dl scope 
dl-scope all 
get scope 
get=)opul ation 

list dbs 
modify 
open 
retrieve 
set modes 
set-scope 
set-scope all 
store -

are arguments that depend on the particular function to be performed. 
Specific arguments are described below under the functions with which 
they can be used. Each argument is limited to 256 characters in I 
length. 

Usage of this command is explained below under a separate heading for each 
function. The explanation of the functions covers only those points pertinent 
to the command interface. For full details, see the description of the dsl 
subroutine in Section 4 of this document. Notice that the dsl inter face can 
return the sub error condition (see the Note on sub error in- Section 4 and 
mrds_call set_modes function in this section). 

Function: close, c 

This function closes the specified data bases and makes them unavailable 
for further processing. The data base need not have been opened with the mrds_call 
command. 

3/84 9-3 AW53-04B 



mrds call mrds call 

mrds call close [data base index1 { ... data base indexn} all option] 

whe,~e : 

1. data base indexi 
is-the data base index displayed by the open function. 

2. all option 
may be -all, or -a to specify that all of the user's open data bases 
are to be closed. This control argument may not be used wi th a 
data base index. 

Example 

The command line: 

mrds call close 2 

closes data bases and 2 regardless of how they were opened and makes them 
unavailable for further processing. 

Function: declare, dcl 

This function makes a user-defined function known to MRDS while processing 
the specified data base. 

mrds call declare data base index fn name 

where: 

1. data base index 
is the data base index displayed by the open function. 

2. fn name 
is the name of the function being declared. 

Example 

mrds call declare 1 average 

9-4 AW53-04 



mrds call mrds call 

Function: define_temp_rel, dtr 

This function creates, redefines, or deletes a temporary relation. The 
relation index corresponding to the temporary relation is displayed. This index 
(reI index) must be specified in a later retrieve in order to reference the 
temp~rary relation. This may be done by a ".V~" argument substitution of the 
reI index in the range clause of the retrieve function. 

The only functions that can be performed on a temporary relation are 
define_temp_rel, retrieve, and get_population. 

mrds call define temp reI data base index {selection_expression} 
-{se_values}-rel_Index {-controI_arg} 

where: 

1. data base index 
is-the index displayed by the open function. 

2. selection expression 
is - a c h a r act e r s t r i n gas de fin e din Sec t ion 4, T' S e I e c t ion Me c han ism. " 
This argument must be omitted if the -segment control argument is 
specified. 

3. se values 
is a selection expression value (none, one, or more) for each control 
code (designated by . V.) appearing in the <selection expression). 
These must correspond in order and quantity with the control codes 
specified in the <selection_expression). 

4. reI index 
is an integer. If equal to zero, a new temporary relation is created. 
I f greater than zero, the temporary relation wi th that index is 
redefined. If less than zero, the temporary relation with that index 
is deleted. 

5. control arg 

Notes 

may be -segment path or -sm path to specify that the selection expression 
is to be taken from the designated segment. (Refer to th"e examples 
included with the modify and retrieve functions described later in 
this section.) 

For shared openings, read attr scope must have been set on the referenced 
relations. 

For attribute level security, attributes referenced in the where and select 
clauses must have at least read attr access. 

9-5 AW53-04 



mrds call mrds call 

I Unpopulated temporary relations can be created if the selection expression 
does not select any tuples. The get population function can display the resulting 
tuple count. 

Example 

mrds call define temp reI 1 "-range (x phone book) 
-select x. name* x. mail drop" 0 

Temporary relation index is: 1. 

results in a new temporary relation being created with a relation index of 1. 

Function: delete, dl 

This function deletes selected tuples from the designated data base. 

mrds call delete data base index {selection expression} 
-{se values} {-control=arg} 

where: 

1. data base index 
is the index displayed by the open function. 

2. selection expression 
is-a character string as defined in Section 4, "Selection Mechanism". 
This argument must be omitted if the -segment control argument is 
specified. 

3. se values 
is a selection expression value (none, one, or more) for each control 
code (designated by . V.) appearing in the <selection expression). 
These must correspond in order and quantity with the control codes 
specified in the <selection_expression). 

4. control arg 
may be -segment path, or -sm path to specify that the selection 
expression is to be taken from the designated segment. (Refer to 
the examples included with the modify and retrieve functions described 
later in this section.) 

9-6 AW53-0l! 



mrds call mrds call 

Notes 

For shared openings, delete tuple scope must have been set on the relation. 

For attribute level security, the relation requires delete tuple access, 
and any attributes referenced in the where clause require read attr access. 

Example 

The command line: 

mrds call delete "-range (x phone book) -select x 
-where x.name = ""Smith, Roger D~"" " 

deletes the phone book entry associated with the name Smith, Roger D. 

Function: dl scope, ds 

This function is used only wi th shared openings obtained wi th an opening 
mode of update or retrieval. Its purpose is to delete part or all of the 
current concurrency control scope modes on a relation basis. All scope must 
have been deleted from all relations before another scope setting operation can 
be accomplished. 

mrds call dl scope data base index relation name 1 permit scope 1 
-prevent=scope_1 {.~. relation name N permit_scope_N-prevent scope_N} 

where: 

1. data base index 
is-the opening index displayed by the open function for the desired 
opening of the data base. 

2. relation name I 
is the-name of the relation for which the concurrency control permit 
and prevent scope modes are to be deleted. 

3. permit_scope I 
is the set of operations that the user wishes to delete from the 
current permit scope for this relation. See the table of scope mode 
abbreviations below. 

9-7 AW53-04 

* 



I 
I 

mrds call mrds call 

4. prevent scope I 

Notes 

Is the- set of operations that the user wishes to delete from the 
current prevent scope for this relation. See the table of scope 
mode abbreviations below. 

The abbreviations to be used for the scope modes for ei ther permi ts or 
prevents are as follows: 

a (or s) 
d 
m 
n 
r 
u 

append tuple 
delete-tuple 
modify-attr 
null -
read attr 
update 

The permit scope is made up of a concatenation of the desired operation 
abbreviations. If "n" permit scope is given, then no other mode may be specified 
for that permi t. Each of "r", "a", "m", '!d", and "u" may be used only once in 
the same permit scope. The abbreviation "u" is the same as specifying a permit 
scope of "amd". All of the above also applies to the prevent scope. Note that 
"n", does not delete any scope from that prevent or permit for the given relation. 

Scope settings can be displayed by the get scope function or the commands 
display_mrds scope_settings and display_mrds db_status. 

Scope may be deleted entirely for all relations at once by using the dl_scope_all 
function. 

All scope must be deleted from all relations before scope can again be set 
on any relation. This prevents possible deadlock situations among processes 
requesting concurrent access protection. 

Examples 

mrds call open two rels update 

Open data base is: 
1 >udd>m>jg>dr>two rels.db 

update -

mrds call set_scope re11 ru n re12 r amd 

display_mrds_scope_settings 

Scope settings for process: JGray.Multics.a 
process number: 2740040441 

Opening index: 
mode: update 

9-8 AW53-04 



mrds call mrds call 

Concurrency control version: 5 

Relation 

rel1 
rel2 

data base model path: >udd>m>jg>dr>two rels.db 
data base version: 4 

Permits 

ramd 
r 

Prevents 

n 
amd 

mrds call dl scope rel1 amd n rel2 n amd 

display_mrds_scope settings 

Scope settings for process: JGray.Multics.a 
process number: 2740040441 

Opening index: 
mode~ update 

Concurrency control version: 5 

Relation 

rel1 
re12 

data base model path: >udd>m>jg>dr>two rels.db 
data base version: 4 -

Permits 

r 
r 

Prevents 

n 
n 

Function: dl scope_all, dsa 

This function deletes all scope from the user's current view of the data 
base. 

mrds call dl scope_all data base index 

where data base index is the data base index displayed by the open function. 

Note 

No error will be issued if there is no scope set when this function is 
used. 

9-9 AW53-04 



I 
I 

mrds call mrds call 

Function: get_population, gp 

This function returns the number of tuples that make up either a temporary 
or permanent relation, given the temporary relation index or the permanent relation 
name. It provides a means of determining the number of tuples specified by a 
selection expression by using that selection expression to define a temporary 
relation and then getting its population. 

mrds call get_population data base index relation identifier 

where: 

1. data base index 
is-the data base opening index displayed by the open function. 

2. relation identifier 

Note 

is the identification of the relation for which the population is to 
be obtained. For temporary relations, it is the temporary relation 
index returned from a call to the define temp reI function. For 
permanent relations, it is the view relation name. 

Since temporary relations do not store duplicates, it is not possible to 
get a true count of a selection expression tuple population where the -dup 
option is involved, unless temporary relation keys are defined over uniquely 
identifying attributes. 

This function does not work for version 3 data bases. 

Examples 

mrds call open pop exclusive_update 

Open data base is: 
1 >udd>m>jg>dr>pop.db 

exclusive_update 

display_mrds dm pop 

RELATION: r001 
ATTRIBUTES: 

k001 
fixed bin (17) 

d001 
fixed bin ( 17 , 

, I I I 

x001 
fixed bin (17) 

9-10 

Key 

Data 

Data Index 

AW53-04 



mrds call mrds call 

mrds call get_population r001 

Tuple count: 100 

mrds call dtr "-range (r r001) -select r.k001*" 0 

Temporary relation index is: 1. 

mrds call get_population 

Tuple count: 100 

Function: get_scope, gs 

This function provides a means of finding the current scope settings on a 
particular relation. 

mrds call get_scope data base index relation name 

where: 

1. data base index 
is the data base opening index displayed by the open function. 

2. relation name 
is the name of the relation whose scope settings are to be displayed. 

Notes 

The scope display uses the following abbreviations: 

a 
d 
m 
n 
r 
s 

append tuple 
delete-tuple 
modify-attr 
null -
read attr 
store 

If the concurrency control version is less than 5, then "s" will be displayed; 
otherwise, "a" will be used. This version can be displayed by display mrds db status 
using the -long option or by display_mrds_scope_settings. - --

9-11 AW53-04 



mrds call 

Examples 

mrds call open dmdm exclusive_update 

Open data base is: 
1 >udd>Multics>JGray>dr>dmdm.db 

exclusive update 

display_mrds scope settings 

Scope settings for process: JGray.Multics.a 
process number: 2740040441 

Opening index: 
mode: exclusive_update 

Concurrency control version: 5 

Relation 

sample 

data base model path: >udd>m>jg>dr>dmdm.db 
data base version: 4 

Permits Prevents 

ramd ramd 

mrds call get scope sample 

Permits: ramd Prevents: ramd 

Function: list_dbs, Id 

mrds call 

I For all openings of MRDS data bases in the user's process, this function 
displays the opening index, opening mode, and path of the submodel or model used 
for the opening. 

mrds call list dbs 

Examples 

mrds call set modes no list 
mrds-call open-model update submodel retrieval 
mrds-call list dbs 

Open data bases are: 
1 >udd>m>jg>dr>model.db 

9-12 AW53-04 



mrds call mrds call 

2 

Notes 

update 
>udd>m>jg>dr>submodel.dsm 
retrieval 

If the displayed path ends with a ".dsm" suffix, then the opening was made 
through a submodel. 

Function: modify, m 

This function causes the designated data base to be modified as specified. 

mrds call modify data base index {selection expression} 
-{se values} modified values {-control_arg} 

where: 

1. data base index 
is the index displayed by the open function. 

2. selection expression 
is-a character string as defined in Section 4, "Examples of Selection 
Mechanisms". This argument must be omitted if the -segment control 
argument is specified. 

3. se values 
is a selection expression value (none, one, or more) for each control 
code (designated by . V.) appearing in the <selection expression>. 
These must correspond in order and quantity with the control codes 
specified in the <selection expression>. 

4. modified values 
is one or more values that are to replace the selected tuple attribute 
values in the data base. 

5. control arg 

Notes 

may be -segment path or -sm path to specify that the selection expression 
is to be taken from the designated segment. 

For shared openings, the relation must have modify_attr scope set. 

For attribute level security, the selected attributes must have modify_attr 

9-13 AW53-04 



mrds call mrds call 

I access 
access. 

and any attributes appearing in the where clause must have read attr 

* 

I 

Example 

Assume the segment named mod select contains: 

-range (x phone book) 
-select x.phone-
-where x.name = .V. 

mrds_call modify 1 "Jones, James A." 993-3064 -sm mod select 

changes the phone number of "Jones, James A." to 993-3064 (the se value in 
this case). (Refer to the "Note" concerning the use of quotatlon marks 
included in the examples of the retrieve function described later in this 
section.) 

Function: open, 0 

This function causes a data base to be opened and readied for use. It 
accepts ei ther a model or submodel path for the open i ng and, in the defaul t 
case, displays a data base opening index that is needed by other mrds call 
functions. 

mrds call open view path1 open_mode1 { ... view pathN open_modeN} 

where: 

1 . view pathi 
is- the pathname of the desired view to be used for this opening. 
This view can be either the path of the data base itself or the path 
of a submodel referr ing to the data base. The pathname can be relati ve 
or absolute and does not require any suffix, unless needed to prevent 
ambiguity. A suffix will be required for models and submodels having 
the same name and residing in the same directory. If none is given, 
the model will be found before the submodel. 

2. open_modei 
is-the desired opening mode for this opening of the data base. The 
following opening modes are available. 

retrieval, r 
specifies that this is a shared open..ing, requIrIng the setting of 
concurrency control protection via scope requests by the set scope 

9-14 AW53-04 



mrds call mrds call 

Notes 

function. The maximum permit scope that can be set with this opening 
mode is read attr. 

update, u 
specifies that this is a shared opening, requIrIng the setting of 
concurrency control protection via scope requests by the set scope 
function. Any scope can be set with this opening mode. -

exclusive retrieval, er 
specIfies that this is an un shared opening in the sense that all 
update operations are prevented against any relations in this view 
of the data base. No scope setting is necessary with this opening 
mode. This mode is the equivalent of opening with a retrieval mode 
and doing a set scope all with permit of read attr and prevents of 
modify attr, append tuple, and delete tuple on these relations. Other 
data base openers are allowed to set read attr scope and do retrievals 
on these relations. 

exclusive update, eu 
specIfies that this is an unshared opening, in the sense that any 
operation is prevented by another user against any relation in this 
view of the data base. No scope setting is necessary with this 
opening mode. No other data base openers are allowed to set any 
scope on any relation in this view of the data base. This mode is 
the equi valent of opening wi th an update mode and doing a set scope all 
with permits and prevents of read attr, modify attr, append tuple, 
and delete tuple on these relations. An opening- wi th this mode will 
not be allowed if any relations in the opener's view already have 
scope set by some other opening. 

The opening index, plus path and opening mode information, is displayed for 
each opening after a successful open operation. This can be eliminated with the 
mrds call set modes no list feature. 

If the data base being opened has been secured, then the view path must 
refer to a submodel that resides in the data base's "secure. submodels" directory 
under the data base directory if the user is not a DBA. These must be version 5 
submodels if attribute level security is to be provided. See secure mrds db and 
Section 7 "Security". 

If the data base being opened uses a version 4 concurrency control, then 
adjust mrds db wi th the -reset option must be run against it to update it to 
version 5 concurrency control before it can be opened. This changes the scope 
modes from r-u, to read attr, modify attr, append tuple, delete tuple. See 
adjust_mrds_db for the effects of this change. - -

Access requirements for all opening modes include "r" ACL on the db model 
segment and relation model segments (these segments have a ".m" suffix) for any 
relations appearing in the given view, plus "rw" ACL on the data base concurrency 
control segment. Unshared opening modes require that, for any relation appearing 
in the view, the multisegment file containing the data must have "r" ACL for 
exclusive retrieval or "rw" ACL for exclusive update opening mode. For attribute 
level security, er mode requires read attr on some attribute in each relation in 
the opening view; eu mode requires one of append_tuple on the relation , delete_tuple 

9-15 AW53-04 



I 
I 

mrds call mrds call 

on the relation, or modify attr on some attribute in the relation, for each of 
the relations in the opening view. 

Examples 

The following example is for a non-DBA or a secured data base. 

secure mrds db model display 

The data base at ">udd>m>jg>dr>model.db" has been secured. 

mrds call open model update 

Error: mrds dsl open error by >unb>bound mrds :2504 Attempt to open secured 
data base from model or through non-secure submodel. The path 
">udd>m>jg>dr>model.db" refers to a data base that has been secured and can 
only be be opened via a secure submodel. 

mrds call: 
submodel. 

Attempt to open secured data base from model, or through non-secure 
(From dsl $open) 

mrds call open submodel update 

Error: mrds dsl open error by >unb>bound mrds :2747 Attempt to open secured 
data base from model or through non-secure submodel. The submodel 
">udd>m> jg>dr>submodel. dsm" refers to a data base ">udd>m> jg>dr>model. db" 
that has been secured, but the submodel itself is not in the data base's 
inferior directory "secure.submodels". 

mrds call: 
submodel. 

Attempt to open secured data base from model or through non-secure 
(From dsl $open) 

mrds call open model.db>secure.submodels>submodel.dsm u 

Open data base is: 
1 >udd>m>jg>dr>model.db>secure.submodels>submodel.dsm 

update 

mrds call close -all 

The following example is for a non-DBA on an unsecured data base. 

secure mrds db model -display 

The data base at ">udd>m>jg>dr>model.db" is not secured. 

mrds call open model er model er submodel u 

Open data 
1 

2 

3 

bases are: 
>udd>m>jg>dr>model.db 
exclusive retrieval 
>udd>m>jg)dr>model.db" 
exclusive retrieval 
>udd>m>jg)dr>submodel.dsm 
update 

9-16 AW53-04 



mrds call 

display_mrds scope_settings 

Scope settings for process: 
process number: 

JGray.Multics.a 
2740040441 

Opening index: 
mode: exclusive retrieval 

Concurrency control version: 
data base model patQ: 

data base version: 

Relation 

sample 

Opening index: 2 
mode: exclusive retrieval 

Concurrency control version: 
data base model path: 

data base version: 

Relation 

sample 

Opening index: 
mode: 

3 
update 

Concurrency control version: 
data base model path: 

data base version: 

Opened via submodel: 
submodel version: 

5 
>udd>m>jg>dr>model.db 
4 

Permits Prevents 

r amd 

5 
>udd>m>jg>dr>model.db 
4 

Permits Prevents 

r amd 

5 
>udd>m>jg>dr>model.db 
4 

>udd>m>jg>dr>submodel.dsm 
5 

No scope currently set for this opening. 

Function: retrieve, r 

mrds call 

This function retrieves and displays selected information from a data base. 

mrds call retrieve nvals data base index {selection_expression} {se values} 
-{-control_args} 

where: 

1 . nvals 
is a decimal integer greater than zero specifying the number of 
attributes to be retrieved from the selected tuple. 

9-17 AW53-04 



mrds call mrds call 

2. data base index 
is the index displayed by the open function. 

3. selection expression 
is -a character str ing as defi ned in "Examples of Selection Mechan isms" 
in Section 4. This argument must be omitted if the -segment control 
argument is specified. 

4. se values 
is a selection expression value (none, one, or more) for each control 
code (designated by . V. ) appearing in the <selection expression), 
including temporary relation (reI index) designations. These must 
correspond in order and quantity wIth the control codes specified in 
the <selection expression). 

5. control args 

Notes 

may be one or both of the following: 

-all, -a 
specifies that all selected tuples be printed. If not specified, 
only the first selected tuple is printed and any subsequent tuples 
must be explici tly retrieved by a new retrieve function using "-another" 
for the selection expression. 

-segment path, -sm path 
specifies that the selection expression is to be taken from the 
designated segment (see "Notes" below). 

The selection expression and the -segment control argument are mutually 
exclusive. If selection expression is specified, that argument becomes the selection 
expression for the retrieval. If the -segment control argument is specified, 
the selection expression is taken from the segment designated by path. 

I For shared openings, read attr scope must have been set on any relations 
appearing in the range clause. 

I For attribute level securi ty, read attr access is required for attributes 
appearing in the select or where clause. 

Examples 

Assume the segment named query contains: 

-range (x phone book) 
-select x.name x.mail drop 
-where x.phone = .V. -

mrds call retrieve 2 1 993-3065 -all -segment query 

9-18 AW53-04 



mrds call 

Values are: 

Jones, James A. 
B-116 

****** 
Smith, Roger D. 
B-116 

(END) 

mrds call 

Both Jones and Smith have the specified phone number and are therefore selected. 

mrds call retrieve 2 1 "-range (x phone_book) 
-select x.name x.mail drop 
-where x. phone = ''''993-3065'''''' 

Values are: 

Jones, James A. 
B-116 

The command above did not use "-all" as a control argument, so the second value 
"Smith, Roger D. B-116" is not printed. This second value remains available to 
the user if a second retrieve function with a selection expression of "-another" 
is invoked prior to executing a retrieve function wh~re the selection expression 
consists of an <alpha expression) (see "Formal Syntax"). 

mrds call retrieve 2 1 -another 

Values are: 

Smith, Roger D. 
B-116 

resul ts in the printing of the next value selected by the previous retrieve 
function's selection expression where the -all control argument is not used. 

NOTE: The selection expression contained in the segment named query (first 
example) and -another (third example) are not contained in quotes. 
The selection expression in the second example specifies an argument 
in the mrds call command line and is contained in quotes. The literal 
phone number value must be double quoted. 

If a retrieve function is performed on a temporary relation, then the reI index 
must be specified as a se_value. The command line: 

mrds call retrieve 2 1 "-range (x .V.) 
--select x" 6 -all 

retrieves information from the temporary relation with the reI_index "6". 

NOTE: Only a temporary relation index, not a relation name, may be used as 
a substitution value for the ".V." argument in the range clause. 

9-19 AW53-04 

* 



mrds call mrds call 

Function: set_modes, sm 

This function allows the user to control the amount of error or display 
information returned by mrds call. 

mrds call set_modes {options} 

where options may be either or both of (a) and (b) below: 

(a ) long_err to allow output from the sub error 
suppress it. 

cond i tion or short err to 

(b) list to allow the opening information to be displayed after an open function, 
or no list to suppress it. 

Note 

If the set modes function is not used, the default mrds call action is 
long_err and list. 

Function: set scope, ss 

This function is used only with shared openings obtained by using the opening 
modes of retrieval or update. Its purpose is to set the operations that are to 
be permitted to the user and the operations that are to be simultaneously prevented 
for other openers of the same data base. The concurrency control modes, or 
scopes, are set on a relation basis. 

mrds call set scope data base index relation name 1 permit scope 1 
-prevent scope 1 { .. ~ relation name N permit scope N prevent-scope N} 

{wai t seconds T - - --

where: 

1. data base index 
is the opening index displayed by the open function for the desired 
opening of the data base. 

relation name I 
Is the name of the relation for which the concurrency control permit 
and prevent scope modes are to be set. 

9-20 AW53-04 



mrds call mrds call 

3. permit scope I 
- is the set of operations that the user wishes to permit himself to 

be allowed for this relation. See the table of scope mode abbreviations 
below. 

4. prevent scope I 
-is the set of operations that the user wishes to deny other openers 

of the same data base for this relation. See the table of scope 
mode abbreviations below. 

5. wait seconds 

Notes 

is an optional argument. This is the amount of time, in seconds, 
the user's process will wait before failing an attempt to set scope 
modes that conflict with another user's permi t and prevent scope. 
The full wait time is used only if the conflict remains in effect 
for the entire period; otherwise, scope will be granted. If this 
argument is not given, the wait seconds defaults to 30. 

The abbreviations to be used for the scope modes for either permi ts or 
prevents are as follows: 

a (or s) 
d 
m 
n 
r 
u 

append tuple 
delete-tuple 
modify-attr 
null -
read attr 
update 

The permit (and prevent) scope is made up of a concatenation of the desired 
operation abbreviations. If "n" permit scope is given, then no other mode may 
be s p e c i fie d for t hat per mit. E a c h 0 f " r", It a", "m ", " d", and n u" may be use d 
only once in the same permit scope. The abbreviation "u" is the same as specifying 
a permit scope of "amd". 

Scope settings can be displayed by the get scope function or by the commands 
display_mrds_scope settings and display_mrds d~status. 

Scope can be deleted entirely or in part via the delete scope function. 

Scope can be set on all relations at once using the set_scope_all function. 

All scope must be deleted from all relations before scope can again be set I 
on any relation. This prevents possible deadlock situations- among processes 
requesting concurrent access protection. 

9-21 AW53-04 



mrds call mrds call 

Access requirements on the relation(s) for which scope is being set in 
terms of Multics ACLs and MRDS access modes are as follows: 

REQUESTED RELATION MRDS ACCESS (Secure 
PERMIT MSF ACL Data Bases Only) 

a rw a 

d rw d 

m rw m on some 
relation 

r r r on some 
relation 

n r n 

Examples 

mrds call open two rels update 

Open data base is: 
1 >udd>m>jg>dr>two rels.db 

update -

mrds call set_scope rel1 ru n rel2 r amd 

display_mrds_scope_settings 

attr 

attr 

Scope settings for process: 
process number: 

JGray.Multics.a 
2740040441 

Opening index: 1 
mode: update 

5 

in the 

in the 

Concurrency control version: 
data base model path: 

data base version: 
>udd>m>jg>dr>two rels.db 

Relation 

rel1 
rel2 

mrds call set_scope 

mrds call set_scope 

Permits Prevents 

ramd 
r 

rel1 r n 

rel2 a n 

n 
amd 

4 -

mrds call: Attempt to define scope while scope is not empty (from 
dsl_$set_scope). 

9-22 AW53-04 



mrds call mrds call 

Function: set_scope_all, ssa 

This function is used only with shared openings obtained by using the opening 
modes of retrieval or update. Its purpose is to set the operations that are to be 
permitted to the user and the operations that are to be simul taneously prevented for 
other openers of the same data base. The concurrency control modes, or scopes, are set 
on all relations at once. 

mrc ssa data base index permit_scope prevent_scope {wait_seconds} 

where: 

1. data base index 
is the opening index displayed by the open function for the desired 
opening of the data base. 

2. permit_scope 
is the set of operations that the user wishes to permit himself to be 
allowed for all relations. See the table of scope mode abbreviations 
below. 

3. prevent_scope 
is the set of operations that the user wishes to deny other openers of the 
same data base for all relations. See the table of scope mode 
abbreviations below. 

4. wait seconds 

Notes 

is an optional argument. This is the amount of time, in seconds, the 
user's process will wait before failing an attempt to set scope modes that 
conflict with another user's permit and prevent scope. The full wait 
time is used only if the conflict remains in effect for the entire period. 
Otherwise, scope will be granted. If this argument is not given, the 
wait seconds defaults to 30. 

The abbreviations to be used for the scope modes for either permits or prevents 
are as follows: 

a (or s) 
d 
m 
n 
r 
u 

append tuple 
delete-tuple 
modify-attr 
null -
read attr 
update 

The permit scope is made up of a concatenation of the desired operation 
abbreviations. If "n" permit scope is given, then no other mode may be specified for 
that permit. Each of ~r", "a", "m", "d", and "u" may be used only once in the same 

12/86 9-23 AW53-04D 



mrds call mrds call 

permit scope. The abbreviation "u" is the same as specifying a permit scope of "amd". 
All of the above also applies to the prevent scope. 

Scope settings can be displayed by the get scope function or by the commands 
display_mrds_scope_settings and display_mrds_d~status. 

Scope can be deleted entirely or in part via the delete_scope function. 

Scope can be set on an individual relation basis by using the set_scope function. 

All scope must be deleted from all relations before scope can again be set on °any 
relation. TI1is prevents possible deadlock situations among processes requesting 
concurrent access protection. 

Ac ces s r equ i remen t s on the reI ation (s) for wh i ch scope is be ing set in terms of 
Multics ACLs and MRDS access modes are as follows: 

REQUESTED RELATION MRDS ACCESS (Secur e 
PERMIT MSF ACL Data Bases On ly) 

a rw a 

d rw d 

m rw m on some attr in the 
relation 

r r r on some attr in the 
relation 

n r n 

Examples 

mrds call open two_rels update 

Open data base is: 
i >udd>m>jg>dr>two rels.db 

update -

mrds call set_scope_all ra md 10 

display_mrds_scope_settings 

Scope settings for process: 
pro c e s s n urn be r : 

JGr a y. Mu I ti c s . a 
2740040441 

Op e n in gin d ex: 
mode: 

1 
update 

12/86 

Concurrency control version: 
data base model path: 

data base version: 

5 
>udd>m>i~>dr>two rels .db 4 -- -

9-24 AW53-04D 



mrds call 

Relation 

re11 
rel2 

Function: store, s 

Permits 

ra 
ra 

Prevents 

md 
md 

This function adds a specified tuple to the designated relation. 

mrc s data base index relation expression new values 

where: 

1. data base index 
is-the index displayed by the open function. 

2. relation expression 

mrds call 

in d i cat est her e 1 at ion to wh i c hat u pIe i s to be add e d . It may bet. hen am e 
of a relation or it may be "-another". 

3. new values 
are attribute values to be added to the new tuple. 

Example 

mrds call store 1 phone book "Newperson, John J." 
Engineering B-116 993~3062 

results in the entry associated with Newperson being added to the phone book. 

Notes 

The following example references step 3c under "MRDS Tutorial" in Section 2: 

mrds call store 
mrds-call store 

Comp mgr Mfg 51603 
Employee Akins 57111 Eng 

If an incomplete tuple is being stored (i.e., a tuple wi th one or more unknown 
attribute values), the user must select null values for inclusion in the tuple to 
prevent shifting of attribute values wi thin domains/attributes. A suggestion is to 
enter a blank (" ") in attributes requiring alphabetic data and 

12/86 9-25 AW53-04D 



mrds call mrds call 

a "-1" (or some type of numeric value that cannot be confused with valid data) 
for an attribute requiring numeric data. 

Primary key attributes with null values in the key should never be entered 
in a data base. 

If the relation expression is the name of a relation, the new tuple is 
added to the named relation. If the relation expression is "-another", the new 
tuple is added to the relation specified in the most recent invocation of store 
in which the relation expression parameter consisted of a relation name. The 
user of any mrds call command requ ir ing a <selection express ion> cau ses the 
previously specified relation name to become unavailablefor subsequent reference 
using "-another", until it is again established through the use of a mrds call 
store function with a relation_expression consisting of the relation name. 

The use of "-another" provides an efficient means to store several tuples 
into a single relation via consecutive mrds call store functions. 

I 

For shared openings, append_tuple scope must have been set,on the relation. 

For attribute level security, the relation must have append tuple access. 

9-26 AW53-04 



SECTION 10 

OBSOLETE INTERFACES 

This section is obsolete and has been deleted from the manual. I 

10-1 AW53-04B 



SECTION 11 

CHANGES IN MRDS 

This section is obsolete and has been deleted from the manual. 

12/86 11 -1 AW53-04D 



SECTION 12 

EFFECT OF DATA BASE VERSION ON COMMANDS AND SUBROUTINES 

This section is obsolete and has been deleted from the manual. I 

3/84 12-1 AW53-04B 



SECTION 13 

PERFORMANCE CONSIDERATIONS 

The following discussion on performance is divided into the following areas: 

• Data base creation 
• Data base use 
• Selection expressions 

These areas are not completely independent; the size and number of relations 
in a data base will affect the format of the selection expressions as will the 
number of times a data base is opened and the use of temporary relations. The 
DBA and the user must also be concerned wi th performance versus storage and 
performance versus maintainability considerations. 

DATA BASE CREATION 

For best retrieval performance, an attribute that is used to select tuples 
(i. e., appears in a where clause) should be ei ther a secondary index, part of 
the key head (see key head access methods below), or a primary key. If the 
attribute is always used with some other attribute that is a secondary index, 
part of the key head, or the primary key, then this rule does not apply. An 
example might be latitude and longitude. 

Indexing an attribute increases storage requirements for the relations by 
the length of the attribute plus 2 words for key overhead for each tuple in the 
relation. In addition, the time to do an update (store, modify, delete) operation 
increases slightly for each indexed attribute in the relation (it is independent 
of the number of tuples in the relation). However, the time it takes to select 
a set of tuples based on a condition on an indexed attribute is reduced tremendously 
-- from a linear function of the number of tuples in the relation to a logarithmic 
function. 

A normalized data base (see "Data Base Design" in Section 2) will, in 
general, .require fewer operations to do an update. Multiple operations may be 
done via one call to dsl , (e.g., modifying all occurrences of 249-7790 to 
249-8861) but may require more joins to select a tuple subset. While the join 
operation will probably be slower than performing the multiple update operations 
and will definitely cause a more complex selection expression to be used, it is 
felt that the advantages obtained by normalization, which are the removal of the 
update anomalies and the removal of duplicated data, outweigh its disadvantages. 

Attribute values are encoded whenever the attribute is indexed or part of 
the primary key. This is done so that the data value and the bi t pattern 
representing the data value have the same ordering. This is not the usual case, 
since the bit pattern of a negative number (fixed bin data type) is larger than 
any positive number because of the sign bit. Data types of character (N), where 
N is some integer, do not require any encoding. Data types of fixed bin (N,P) 
aligned, where Nand P are integers, require minimal encoding (changing the sign 

13-1 AW53-04 



* 

bit). All other data types require more complex encoding schemes. Attribute 
values and constants may need to be converted to other data types for comparison 
with other attributes or constants. The data types character (N) nonvarying and 
fixed (N, 0) are compared most efficiently. 

Data Base Use 

If a small portion of a relation is frequently accessed, a temporary relation 
defined over the tuple subset can improve retrieval speed. For example, suppose 
there are multiple queries (population, voter registration, per capita income, 
etc.) about the cities in a given state. Rather than composing selection expressions 
that include the state name, it is faster to create a temporary relation composed 
of just cities from the given state. The amount of performance improvement 
depends on the size of the base relation (total number of cities), the percentage 
of tuples that are always being considered (cities in the given state versus 
size of base relation), and the number of queries. The process of defining the 
temporary relation does require that the temporary directory have enough quota 
to hold the relation. This technique can also be used when the tuple subset 
comes from, or at least depends on, more than one relation so that the number of 
join operations is reduced. 

Calling the dsl entries store, retrieve, modify, and delete with a long 
argument list does not incur the cost of breaking a structure down into its 
components and is, therefore, more efficient than making a call with a structure. 

To avoid the cost of data conversion, the data type of the arguments in the 
calls to dsl store, retrieve, modify, and delete should match the attribute 
data type that they correspond to. To reduce conversion of the constants used 
in the selection expression, a n. V." may be used in place of the constant and 
an argument of the correct data type and value placed in the argument list. 

A submodel opening has no performance effect after the opening phase. The 
opening phase may be faster or slower depending on the number of relations in 
the submodel view versus the number of relations in the data base. If the data 
base conta ins sub stant ially more r elations than the submode 1 view, a submode 1 
view opening will be faster. 

Because of the increased checking that must be done, operations on a secure 
data base are less efficient than the same operations performed on an unsecured 
data base. 

SELECTION EXPRESSION 

To mlnlmize the cost of data movement, the mlnlmum attributes needed should 
be selected from the tuples in the range (i.e., if a tuple has 13 attributes and 
only 7 are actually going to be used by the caller, it is faster to select only 
those 7 attributes rather than all 13). 

When all attributes in a tuple are to be selected, it is more efficient to 
use the tuple variable name in the select clause rather than individually specifying 
each attribute. 

To avoid the high cost of dupl icate processing, the -dup option may be 
used. However, this option should only be used where the user can be certa in 
that duplicate tuples will not occur or will not be a problem. Simple cases 
wher e dupl ica tes cannot occur wi 11 have -dup forced by MRDS. Thes e cas es ar e 
limited to a single tuple variable where the entire key is selected. 

3/84 13-2 AW53-04B 



Wherever possible, it is desirable to compare attributes to constant values 
rather than other attributes. For example, 

TV1.key = 5 & TV2.key > TV1.key 

is less efficient than 

TV1.key = 5 & TV2.key > 5 

Explicitly stating transitive conditions is also less efficient than leaving the 
condition implicit, not only because of the smaller number of terms in the where 
clause but because it prevents optimization. For example, 

TV1.key = TV2.key & TV2.key = TV3.key 
& TV3. key = T Vl • key 

is less efficient than 

TV1.key = TV2.key & TV2.key = TV3.key 

It should be noted that the use of expressions, functions, and set operations 
is extremely slow. 

The following is a list of the most to least efficient methods of accessing 
a relation for relations wi th a large number of tuples. For relations wi th a 
small number of tuples it is faster to do sequential searches because of the 
reduced overhead. The exact number of a large or small number of tuples depends 
on the open ing mode, the number of dupl ica te secondary index values, and the 
number of attributes in the primary key. That is, it depends on the selectivity 
of the secondary indices and key heads. 

Primary Key Equality 
Key Head Equality 
Key or Key Head Range 
Indexed Attribute 

Sequential Search 

MOST 

LEAST 

• Primary Key Equality implies that all the key attributes of the tuple 
variable (TV1) are equated to either a constant or to some other attribute 
in another tuple variable (TV2) whose value can be determined before 
the value of TV1. 

• Key Head Equality implies that from 1 to N-1 of the tuple variable's 
(TV1) N key attributes are equated to either a constant or to some 
other attribute in another tuple variable (TV2) whose value can be 
determined before the value of TV1. In addition, the N-1 attributes 
must comprise a key head, that is the attributes must be the first N-1 
attributes of the primary key, the order of attributes being determined 
by their order in the relation as defined by the cmdb source. 

* I 

• Key or Key Head Range implies that a condition other than equal~ty is 
being applied to the first key attribute of the tuple variable. I 

3/84 

• Indexed Attribute implies that a condition is being applied to some 
indexed attribute. 

13-3 AW53 -04B 



I 
* 

• Sequential Search is used when the tuples in the tuple variable must 
be searched sequentially. 

In cases where more than 1 access method may be used, the most efficient 
is chosen. 

All where clause expressions are converted into disjunctive normal form as 
the first step in processing. Where clause expressions that are already in 
disjunctive normal form do not need to be converted and are, therefore, processed 
faster. 

A where clause expression in disjunctive normal form has the form: 

A : B : C : D : E ••• 

I 
where each A, B, C, D, E, may contain any number of terms, but the terms 
must all be and'ed (&) together (an AND-GROUP). Each term must have the form: 

(tup_var_Y.attr rel_op tup_var_X.attr) 

Example 

The expression: 

A(TV1.at1 = 200) & 
«TV1.at2 > TV2.at1) I (TV1.at2 > TV2.at4)) 

is not in disjunctiv l normal form. To convert into that form the AND (&) operator 
must be distributed, creating the expression: 

(TV1.at1 = 200) & (TV1.at2 > TV2.at1) 
i 
I 

(TV1.at1 = 200) & (TV1.at2 > TV2.at4) 

The expression: 

(T V 1 • at 1 = 200) & 
A«TV1.at2 > TV2.at1) : (TV1.at2 > TV2.at4») 

is not in disjunctive normal form. To convert into that form, De~organ's rules 
may be applied to remove the NOT (A) operator from the expression. Notice that 
the OR operator is removed without extra effort and the sense of the relational 
operators is reversed. 

(TV1.at1 = 200) & (TV1.at2 <= TV2.at1) & 
(TV1.at2 <= TV2.at4) 

MRDS constructs what it considers to be an optimum order for searching each 
tuple variable wi thin each AND-GROUP. It does not optimize for more than one 
AND-GROUP at a time. In the first example (above) there would be two searches 
of tuple variable TV1 both looking for tuples where at 1 equals 200. The best 
performance is therefore achieved if the where clause expression contains only 
one AND-GROUP. 

A & (B i C) ==> A&B i A&C 

3/84 13-4 AW53-04B 



MRDS estimates the number of tuples that each tuple variable in an AND-GROUP 
(see disjunctive normal form) will select when generating the tuple variable 
search order for an AND-GROUP. These estimates may not be valid and may result 
in a search order that is not optimum. The major reason for an invalid estimate 
is a term that selects a disproportionately large or small number of tuples 
(i. e., the actual number of tuples selected depends on the data and cannot be 
determined without actually looking at the data), which defeats the purpose of 
the optimization. Note that the value of the estimate is not really important; 
only its magni tude when compared to the other estimates for the terms in the 
AND-GROUP is important. As long as their relative magnitudes are correct, the 
estimates will generate an optimum search order. 

The -no ot option of the selection expression allows the user to tell MRDS 
the order in-which the tuple variables should be searched. This option coupled 
with the -print search order option allows the user to experiment to find a 
search order better than the one MRDS would generate. It has, however, several 
drawbacks, the most important of which is that it prevents the search order from 
changing due to changes in the data base content. Another is that only one 
search order can be defined and it will be applied to all the AND-GROUPS in the 
where clause expression. A very subtle drawback is the ability to select (without 
checking) what appears to be the obviously correct (but in fact incorrect) search 
order to save the time that MRDS would spend determining a search order. Search 
order determination is not obvious and should be approached with care. 

Example 1 

Given two relations reI A and reI B with the same number of tuples (say 
1000) and the selection expression: 

-range (A reI A) (B reI B) 
-select A B -

-where A.key_attr = B.non key_attr 

There are two possible search orders: 

1 • Search tuple variable A sequentially. For each tuple in A, search 
tuple variable B sequentially for a non key attr that equals the key attr 
in A. This requires that the 1000 tuples in reI B be searched for 
each tuple in relation reI A for a total of 1000 * Tooo searches. 

2. Search tuple variable B sequentially. For each tuple in B, use the 
primary key equality access method to find a tuple in tuple variable 
A. This requires that each tuple in reI A and reI B be searched only 
once for a total of 1000 + 1000 searches~ 

Obviously the second search order is superior. 

Example 2 

Casual inspection does not always immed iately reve"al the optimal search 
path. If the where clause in the previous example was changed to: 

-where A.key_attr = B.indexed_attr 

then the search order "B first then A" is faster. 

However" if the size of relation A is changed to 10 tuples, the costs of 
the searches become: 

A before B - 10*(cost of index search of B) 

B before A - 1000*(cost of key search of A) 

13-5 AW53-04 



Even for a key search cost several times smaller than an index search, the 
search order "A before B" may be the faster access method. 

The cost of finding an optimal search order for an AND-GROUP is a factorial 
function of the number of tuple variables in that AND-GROUP (all possible orderings 
of the tuple variables are examined). If the where clause expression contains 
only one AND-GROUP or all the AND-GROUPS have the same search orders, then 
processing can be speeded up by using the -no ot option. The search order may 
be determined by executing the selection expression once wi th the -print search order 
option. - -

From time to time the selection expression should be executed wi th the 
-pr int search order option but wi thout the -no ot option to be sure that the 
search-order 1s still optimal. The time interval between these executions will 
depend on the volatility of the data base and must be judged on an individual 
basis by the user. 

Note that the search order for an AND-GROUP that contains tuple variables 
defined over relations that are empty or have only a few tuples in them (compared 
to the other relations involved in the AND-GROUP) may change drastically as 
those relations are loaded with more tuples. 

The -print search order selection expression option will cause the tuple 
var i able search-order -for each AND-GROUP (see disjuncti ve normal form) in the 
where clause expression to be displayed. The display is output over the user output 
switch. Each tuple variable is numbered; number 1 is searched first, 2 second, 
etc. Each AND-GROUP is separate and the tuple variable numbering starts over at 
1. The display for each tuple variable contains: 

1. the tuple variable name 

2. the relation name the tuple variable is defined over 

3. the access method 

4. an estimate of the number of tuples selected from the tuple variable 
(not displayed to a non-DBA using a secure data base) 

5a. the relational operator(s) and the attribute into which it is applied 
for the access methods Index Attribute and Key or Key Head Range (not 
displayed to a non-DBA using a secure data base) 

5b. the number of key attributes for the access methods Primary Key Equality 
and Key Head Equality (not displayed to a non-DBA using a secure data 
base) 

For the case where all the tuple variables are searched sequentially, a 
header to that effect is output along with each tuple variable name, its relation 
name, and the relation size. 

If a tuple variable (TV1) occurs in the select clause but does not occur in 
an AND-GROUP (see disjunctive normal form) in the where clause, then when that 
AND-GROUP is processed, a cross product between that tuple variable (TV1) and 
the tuple variables in the select clause that have conditions in the AND-GROUP 
will be done. This implies two things: 

1. TV1 is searched sequentially 

2. the number of tuples returned will be S*N, 

where S is the number of tuples that would be selected if TV1 were not in the 
select clause and N is the number of tuples in the relation TV1 refers to. 

13-6 AW53-04 



When there is no where clause, a cross product is formed between all the 
tuple variables in the select clause resulting in: 

nTV1 * nTV2 * * nTVM 

tuples retrieved, where nTVi is the number of tuples in the relation that tuple 
variable TVi refers to. 

Note that the actual number of tuples retrieved may be smaller if duplicate 
processing is being done. 

13-7 AW53-04 



SECTION 14 

RESTRUCTURING SUBSYSTEM 

The Restructuring Subsystem is a facility available to the DBA to perform certain 
restructuring operations on MRDS data bases. The currently supported restructuring 
operations are the creation of new: 

• attributes 

• domains 

• relations (and optional population) 

• secondary indexes 

• data base models 

the deletion of existing: 

• attributes 

• domains 

• relations 

• secondary indexes 

and the renaming of existing: 

• attributes 

• domains 

• relations 

To invoke the Restructuring Subsystem, the DBA must use the restructure mrds db 
(rmdb) command. The rmdb subsystem is an interactive subsystem that uses the standard 
subsystem utility package (ssu). It supports certain features that are common to 
other subsystems such as abbrev-processing, help request, the exec com request, etc. 
There are also, quite naturally, requests that are specific to the rmdb subsystem. 

Before a data base can be restructured, it must be quiesced by the rmdb facility I 
(see Note). This is accomplished by supplying the data base pathname to the rmdb 
command line or explicitly by the ready db request within rmdb. Similarly, exiting 
the subsystem with the qui t request causes the data base to be unquiesced, and makes a 
free_db request available for explicit unquiescing. 

Note: 

12/86 

If the user has quiesced the data base (using the quiesce mrds db 
command) prior to entering the restructure mrds db subsystem-; it uses 
the quiescent data base, and leaves it quiesced upon exit. I 

When restructuring takes place, history of the restructuring 
operation is retained in the model. This restructuring history can be 
displayed by using the -history control argument to the 
display mrds dm command at Multics command level. There is also an 
rmdb request that is a request-level interface to the display mrds dm 
command. - -

Although the subsystem is "interactive," it is possible under 
certain conditions for a restructuring operation to take a 
considerable amount of time. Given that, it is possible for a 

14-1 AW53-04D 



I 

12/86 

restructuring operation to be interrupted before completion, leaving 
the data base in an inconsistent state. For this reason, when a 
res tr uc tur ing oper a tion beg in s, a flag in the model is set mar king the 
data base as inconsistent. That flag is not reset until the 
restructuring operation is completed. In addition, a textual reason 
for inconsistency is saved (e.g., "Creating index IndA in relation 
RelB"). Further, an rmdb request, '3 "make-consistent operation", is 
-saved. In the example stated it would be "delete index RelB IndA". 
In some cases, the rmdb request may be null (since executing the 
request over again would result in the same inconsistency). 

If a data base is left in such a state, and a user attempts to open 
it, an error message stating the reason for inconsistency is displayed 
and the user is directed to contact the DBA. The DBA must invoke the 
rmdb subsystem and access the data base. Upon determining that the 
data base is inconsistent, rmdb queries the DBA whether or not the 
make-consistent operation should be executed on the user's behal f. A 
positive response makes the data base consistent. 

14-2 AW53-04D 



restructure mrds db restructure mrds db - -

Name: restructure_mrds_db, rmdb 

This command is used to enter the MRDS Restructuring Subsystem to restructure a I 
given data base (see Notes below). If the data base does not exist it can be created. 
If the data base exists, and is not already quiesced, then it is quiesced. 

where: 

1. db path 
is a relative or absolute path to the data base to be restructured. 

2. control args 

12/86 

~an be chosen from the following: 

-abbrev, -ab 
enables abbreviation expansion and editing of request lines. 

-force, -fc I 
specifies that the data base be created if it does not already exist 
without querying the user. 

-no abbrev, -nab 
suppresses the abbreviation expansion and editing of request lines. 
(Defaul t) 

-no force, n fc I 
queries the user if the data base does not ex ist, to determine if the data 
base should be created. This argument overides the -force control 
argument. (De faul t) 

-no prompt, -npmt 
suppresses the prompt in the request loop. 

-pathname db path, -pn db path 
specifies the path of the data base used for restructuring. The 
indicated data base is quiesced. This overrides any previously 
indicated data bases given via the optional db path argument (above), or 
another -pathname control argument. -

-profile path, -pf path 
specifies the pathname of the profile used for abbreviation expansion. 
The profile suffix is added if necessary. This control argument implies 
-abbrev. 

-prompt STR, -pmt STR 
sets the request loop prompt to STR. (Default is "rmdb:") 

-quiesce wait time N, -qwt N 
sets the number of seconds that an attempt to quiesce waits for 
conflicting data base users to depart before failing. (Default is 0, 
that is, no waiting before failing.) 

14-3 AW53-04D 



I 

restructure mrds db restructure mrds db 

Notes 

-relation type type {modes}, -rt type {modes} 
specIfies the type of relation to create if the data base does NOT already 
exist. The supported types are vfile or data management file (dmf). 
The mode argument is only valid for dmf relations-:- and the supported modes 
are any combination of protected, concurrency, or rollback separated by 
commas. Anymode maybe preceded with a NOT sign (") to negate it. (Also 
see Notes below.) 

-request STR, -rq STR 
executes STR as an rmdb request line before entering the request loop. 

-temp dir path, -td path 
prov ides the path of a directory that has more quota than the defaul t of 
the process directory when more temporary storage is needed to 
restructure a large data base. If the user gets a record quota overflow 
in the process directory during an rmdb invocation, then a new proc is 
required. A retry of the rmdb invocation wi th the -temp dir argument, 
giving a pathname of a directory with more quota than the process 
directory, can then be done. 

This command can only be used against a Version 4 or later data base and only by 
the DBA. In addition, this command cannot be used against a data base that is already 
open by any process. The data base can be opened (only by the process invoking this 
subsystem) after the subsystem is entered by invoking linus or the mrds ('811 command 

I via the" " (or execute) request. 

I If a new data base is to be created, and the -relation type control argument is 
not specified, then the default relation type is vfile. -

I 
I 
I 

Restructure Requests 

12/86 

The following list summarizes all of the restructuring requests. 

? 

identifies rmdb with the version number and the pathname of the data base 
being restructured. 

lists the available rmdb requests and active requests. 

abbrev, ab 
turns abbreviation processing ON or OFF and changes profile segments. 

answer 
supplies an answer to a question asked by a request. 

create attribute, cra 
~creates a new attribute based upon a previously defined domain. The 
attribute is unreferenced until it is used in a relation. 

create domain, crd 
creates a new domain. A newly created domain is considered unreferenced 

14-4 AW53-04D 



restructure mrds db restructure mrds db 
- -

~~th~~gh it has a corresponding attribute of the same name defined upon I 
.1. L..se.1..L • 

create index, cri 
-makes the indicated attribute a secondary index into the relation. 

create relation, crr 
-creates a new relation. An unpopulated relation can be specified by 

listing the attributes that make up the relation; each attribute must 
already be defined. 

delete attribute, dla 
-deletes the indicated attribute from the data base. The attribute is 

removed from all relations in which it is referenced. 

delete domain, dld 
deletes the indicated domain from the data base. All attributes based 
upon the domain are also deleted causing restructuring of relations 
referencing those attributes. 

delete index, dli 
-deletes the secondary index over the indicated attribute in the relation. 

delete relation, dlr 
-deletes the indicated relation from the data base. 

display data model, ddm, dmdm 
displays details of the data base model. 

do 

12/86 

substi tutes args into the request_line and passes the resul t to the rmdb 
request processor. 

exec com, ec 
executes the rmdb exec com indicated by ec path. The ec_path arguments 
are passed to the exec com processor. 

execute, e 
executes a Multics command line after evaluating rmdb active requests. 

free_db, fdb 

help 

if 

unquiesces the data base. 

d is plays in formati on about request n ames or topic s. A 1 ist 0 f avail abl e 
topics is produced by the list_help request. 

conditionally executes a request. 

1 is t hel p, 1 h 
- displays a list of available info segments whose names include a topic 

string. 

list requests, lr 

quit, q 

displays information about rmdb requests. 

restores the current data base to a non-quiescent state (if the current 
data base was quiesced by the rmdb subsystem) and leaves rmdb. I 

14-5 AW53-04D 



restructure mrds db restructure mrds db - -

ready_db, rdb 
quiesces the indicated data base and makes it available for 
restructuring. Note that only one data base can be restructured at any 
given time. If the data base does NOT exist, a query is made to determine 
if an empty data base is to be created. 

rename attribute, rna 
renames the indic3ted attribute. 

rename_domain, rnd 
renames the indicated domain and its corresponding attributes. 

rename relation, rnr 
-renames the indicated relation. 

subsystem name 
displays the name of the subsystem, "rmdb". 

subsystem version 
displays the current version of rmdb. 

The remainder of this section contains a detailed description of each request, 
including standard subsystem environmental requests, that is, requests common to 
other subsystems such as abbrev, answer, do, etc. 

12/86 14-6 AW53-04D 



restructure mrds db restructure mrds db 

Request: 

This request identifies rmdb with the Version number and the path of the data base 
being restructured. 

Example 

!. 

rmd b 1. 0: >udd>Demo>mrds> ... 

Request: ? 

This request displays the available restructure mrds db requests. 

? 

Example 

The following list is displayed when "?" is entered by the user to the prompt 
"rmdb:". 

rmd b: ? 
rmdb: Available rmdb requests: 

create attribute~ 
cra 

create domain, crd 
create-index, cri 
create-relation, crr 
delete-attribute, 

dla-
delete domain, dId 
delete-index, dli 
delete=relation, dlr 

display data model, 
ddm

1
-dmdm-

free db, fdb 
ready db, r db 
rename_attribute, 

rna 
rename domain, rnd 
rename-relation, rnr 
abbrev-:- ab 
answer 
do 

exec com, ec 
execute, e 
execute string, exs 
help -
if 
list help, lh 
list-requests, lr 
quit-:- q 
substitute arguments, 

substitute args, 
sbag -

Type "list_requests" for a short description of the requests. 

12/86 14-7 AW53-04D 



restructure mrds db restructure mrds db - -

Request: abbrev, ab 

This request controls abbreviation processing within the subsystem. As an 
active request, it returns "true" if abbreviation expansion of request lines is 
currently enabled within the subsystem and "false" otherwise. 

ab {-control_args} 

Usage ~ an Active Request 

[ab] 

where control args can be chosen from the following (and cannot be used with the active 
request) : 

Notes 

-off 
specifies that abbreviations are not to be expanded. 

-on 
specifies that abbreviations should be expanded. (Default) 

-profile path 
specifies that the segment named by path is to be used as the profile 
segment; the profile suffix is added to path if not present. The segment 
named by pat h must exist. 

This subsystem provides command line control arguments (-abbrev, -no abbrev, 
-profile) to specify the initial state of abbreviation processing within the 
subsystem. For example, a Multics abbreviation can be defined to invoke the read mail 
subsystem with a default profile as follows: -

.ab rdm do "read mail -abbrev -profile [hd]>mail_system &rf1" 

If invoked with no arguments, this request enables abbreviation processing 
within the subsystem using the profile that was last used in this subsystem 
invocation. If abbreviation processing was not previously enabled, the profile in 
use at Multics command level is used; this profile is normally 
[home_dir]>Person_id.profile. 

See the abbrev command in the Multics Commands for a description of abbreviation 
processing. 

Request: answer 

This request provides preset answers to questions asked by another request. 

12/86 14 -8 AW53-0~D 



restructure mrds db restructure mrds db 

answer STR {-control_args} request_line 

wnere: 

1. STR 
is the desired answer to any question. If the answer is more than one 
word, it must be enclosed in quotes. If STR is -query, the question is 
passed on to the user. The -query control argument is the only one that 
can be used in place of STR. 

2. request line 
IS any subsystem request line. It can contain any number of separate 
arguments (i.e., have spaces within it) and need not be enclosed in 
quotes. 

3. control args 

12/86 

can be chosen from the following: 

-br ief, -bf 
suppresses display (on user terminal) of both the question and the 
answer. 

-call STR 
evaluates the active string STR to obtain the next answer in a sequence. 
The active string is constructed from subsystem active requests and 
Multics active strings (using the subsystem "execute" active request). 
The outermost level of brackets must be omitted (i.e., "forum list 
-changed") and the entire string must be enclosed in quotes if it contains 

The return value "true" is 
translated to "yes," and "false" to "no." All other return values are 
passed as is. 

-exclude STR, -ex STR 
passes on, to the user or other handler, questions whose text matches STR. 
If STR is surrounded by slashes (I), it is interpreted as a qedx regular 
expression. Otherwise, answer tests whether STR is literallycontained 
in the text of the question. Mul tiple occurrences of -match and -exclude 
are allowed (see "Notes" below) . They apply to the entire reque'st line. 

-match STR 
answers only qUestions whose text matches STR. If STR is surrounded by 
slashes (I), it is interpreted as a qedx regular expression. Otherwise, 
answer tests whether STR is literally contained in the text of the 
question. Mul tiple occurrences of -match and -exclude are allowed (see 
"Notes" below). They apply to the entire request line. 

-query 
skips the next answer in a sequence, passing the question on to the user. 
The answer is read from the user ilo 1/0 switch. 

-then STR 
supplies the next answer in a sequence. 

-times N 
gives the previous answer (STR, -then STR, or -query) N times only (where 
N is an integer). 

14-9 AW53-D4D 



• I 

restructure mrds db restructure mrds db 

Notes 

The answer request provides preset responses to questions by establishing an ON 
unit for the condition command question and then executes the designated request 
line. If any request in the -request line calls the command query subroutine 
(described in the Multics Subroutines) to ask a question, the ONunit Is invoked to 
supply the answer. The ON uni t is reverted when the answer request returns to 
subsystem request level. See "List of System Conditions and Defaul t Handlers" in the 
Reference Manual for a discussion of the command_question condition. 

If a question is asked that requires a yes or no answer, and the preset answer is 
neither "yes" or "no," the ON unit is not invoked. 

The last answer specified is issued as many times as necessary, unless followed 
by the -times N control argument. 

The -match and -exclude control arguments are applied in the order specified. 
Each -match causes a given question to be answered if it matches STR; each -exclude 
causes it to be passed on if it matches STR. A question excluded by the -exclude 
con t r 01 a r g um en tis r e con sid e r ed i fit m a tc he s a - rna tc h 1 ate r in the r e que s t 1 in e . For 
example, the request line: 

answer yes -match Ifortranl -exclude Ifortran iol -match I~fortran iol 

answers questions containing the string "fortran", except that it does not answer 
questions containing "fortran io". It does, however, answer questions beginning 
wi th "fortran ion. 

Request: create_attribute, cra 

This request creates an unreferenced attribute in the currently readied data 
base. 

cra attribute1 domain 1 { ... attributeN domainN} 

where: 

1. attributei 
is the name of the attribute to be created. 

2. domaini 
is the n am e 0 f the un d e r 1 yin g do rna in. Th e d om a in mu s tal rea dye xis t . 

I
I Request: 

T11 i s reques t cr eates an unr efer en ced domain in the cur r en t 1 Y read ied data bas e. 

create_domain, crd 

12/86 14 -10 AW53-04D 



restructure rnrds db 

crd domain name data type {-control args} 

where: 

1 . domain name 
is the name of the domain to be created. 

2. data type 
is the underlying data type of the domain. 
spaces or parentheses, it MUST be quoted. 
supported data types. 

3. control args 
can be chosen from the following: 

-check procedure path, -check proc path 

restructure rnrds db 

If the data type contains 
See "Notes"-for a list of 

performs data verification checks (such as ensuring valid dates) upon 
storage into the data base. "path" may be an absolute or relative 
pathname. 

Notes 

-decode declare data type, -decode dcl data type 
is-the underlying data type of-the argument to the decode procedure for 
this domain. See "Notes" for a list of supported data types. 

-decode procedure path, -decode proc path 
performs data decoding uponretrieval from the data base, normally the 
inverse of the encode procedure. "path" may be an absolute or relative 
pathname. 

-encode procedure path, -encode proc path 
performs data encoding (such as the names of the states of the USA to 
integers 1-50) before storage in an internal data base form. "path" may 
be an absolute or relative pathname. 

Any legal PL/1 scalar data type that can be declared using the following 
declaration description words is allowed in MRDS. 

aligned 
binary or bin 
bit 
character or char 
complex or cplx 
decimal or dec 
fixed 

Request: create_index, cri 

float or floating 
nonvarying 
precision or prec 
real 
varying or var 
unaligned or unal 

This request creates a secondary index for the attribute in the relation. 

12/86 14-11 AW53-04D 

I 



restructure mrds db restructure mrds db 

cri relation name attribute name 

wher e: 

1. relation name 
is the name of the relation to be restructured. 

2. attribute name 
is-the name of the attribute to be indexed. 

Request: create_relation, crr 

This request creates a new relation in a data base. 

crr relation name {reI attribute_list} {-control_args} 

where: 

1. relation name 
is the name of the relation to be created. 

2. reI attribute list 
is a -list of the attribute names used in the relation. The 
reI at t rib ute 1 is t has the s yn t a x 0 fat t r 1 a t t r 2 ... at t r n (wh ere 
"attr Its are the attribute names of the attributes to be used for the 
relatIon). The attribute names that are to make up the primary key of the 
relation must have an appended "*". The reI attribute list cannot be 
used if the -selection exp control argument-is provided. 

3. control args 

12/86 

can be chosen from the following: 

-index STR, -ix STR 
specifies the list of attributes in the relation that are indexed. STR 
has the syntax of attr 1 attr 2 ... attr n (where "attr "s are the 
attribute names of the attributes to be indexed). If the -selection exp 
control argument is used, the -index control argument must precede-the 
-selection_exp control argument. 

-selection exp STR {select values}, -se STR {select values} 
STR is a selection expression that defines relation attributes that are 
to be created and populated using the data selected by the selection 
expression. See "help mrds.selection expressions" for the 
define temp reI selection expression specification. The selection 
expression must be a separately quoted string with any select values 
provided as individual arguments. The -selection_exp control argument, 
if provided, must be the last control argument. 

14 -12 AW53-04D 



restructure mrds db restructure mrds db 

Request: delete_attribute, dla 

This request deletes referenced or unreferenced attributes from a MRDS data 
base. 

dla {attribute name1 { ... attribute nameN} {-control_args} 

where: 

1. attribute namei 
is-the name of the attribute(s) to be deleted from the MRDS data base. 

2. control args 

12/86 

can be chosen from the following: 

-all, -a 
del e t e saIl at t rib ute s de fin ed in the M R DS d a tab a s e . Th i s con t r 01 
argument is inconsistent with -check. 

-br ief, -bf 
suppresses the -long display. (Defaul t) The last occurrence of -brief 
and -long on the command line takes effect. 

-check, -ck 
prevents the deletion of any attributes selected during the execution of 
this command and, instead, traces all implied operations upon the data 
bas e and dis p1 ays them on the term ina1 . Th is tra ce con s is ts 0 f a 
statement for each attribute that is referenced, 1 isting the relations 
that reference the attribute. 

-force, -fc 
prevents the query from being issued if any of the attributes are 
referenced in the MRDS data base. (Defaul t is to issue a separate query 
for each referenced attribute.) 

-inhibit error, -ihe 
prevents error messages from being issued to the terminal. (Defaul t is 
to issue error messages.) 

-long, -lg 
displays the same output as -check; however, the specified attributes are 
deleted. 

-no force, -nfc 
overrides the -force control argument. The last occurrence of -force and 
-no_force on the request line takes effect. (Default) 

-no inhibit error, -nihe 
overrides the action of -inhibit error. (Default) 

-unreferenced, -unref 
deletes only unreferenced attributes. This control argument overrides 
-all and is inconsistent with -check. 

14-13 AW53-04D 



I 
I 

restructure mrds db restructure mrds db 
- - - -

Notes 

If an attribute is referenced in one or more relations, ripple effects take 
place. When the attributes are actu~lly deleted, 811 relations that use the deleted 
attributes are reformatted. 

Specifying either -all or -unreferenced and a list of domain names on the request 
line is flagged as an inconsistent error. 

A query is issued for each referenced attribute that is to be deleted to ensure 
against catastrophic data loss. Wi th the -long control argument, the query is of the 
form: 

Attribute "start date" 
"temporary_employees" . 

is used in relations "permanent employees" and 
Do you wish to delete the attribute-start date? 

Request: delete_domain, dld 

Th i s r eques t deletes the spe c if ied doma in s from a MRDS data bas e . Th e dom ain s 
may be referenced or unreferenced. 

dld {domain1 { ... domainN} {-control args} 

where: 

1. domaini 
are the domains to be deleted. 

2. control args 

12/86 

~an be chosen from the following: 

-all, -a 
deletes all domains defined in the MRDS data base. This control argument 
is inconsistent with -check. 

-brief, -bf 
suppresses the trace display. (Default) The last occurrence of -brief 
and -long on the command line takes effect. This argument is 
inconsistent with -check. 

-check, -ck 
prevents the deletion of any domains selected during the execution of 
this command, and instead, traces all implied operations upon the data 
base and displays them on the terminal. This trace consists of a 
statement for each domain that is referenced, 1 isting the domain that is 
to be deleted, a list of attributes that are based upon the domain, and a 
list of all relations that are to be modified. Inconsistent wi th -brief 
or -long. 

-force, -fc 
prevents the query from being issued for domains which are referenced in 

14-14 AW53-04D 



restructure mrds db restructure mrds db 

Notes 

the MRDS data base. (Default is to issue a separate query for each 
referenced domain.) 

-inhibit error, -ihe 
prevents error messages from being issued to the terminal. (Defaul t is 
to issue error messages.) 

-long, -lg 
displays the same output as -check; however, the specified domains are 
deleted. The last occurrence of -brief and -long on the command line 
takes effect. This control argument is inconsistent with -check. 

-no force, -nfc 
overrides the -force control argument. The last occurrence of -force and 
-no force on the command 1 ine takes effect. (Defaul t) 

-no inhibit error, -nihe 
overrides the action of -inhibit error. (Default) 

-unreferenced, -unref 
deletes only unreferenced domains. 
inconsistent with -check and -all. 

This control argument is 

If the domain is referenced in attributes, which are themselves referenced in 
relations, ripple effects take place. When the domains are actually deleted, all 
attributes based upon them are also deleted. This causes the relations that use the 
deleted attributes to be reformatted. 

Specifying either -all or -unreferenced and a list of domain names on the request 
line is flagged as an inconsistent error. 

A query is issued for each referenced domain that is to be deleted to ensure 
against catastrophic data loss. The query is of the form: 

Domain clock value is used in attributes "clock value", "start_date", 
"stop_date", and "current date" which are referenced in relations 
"permanent_employees" and tttemporary_employees". Do you wish to delete it? 

Request: delete_index, dli 

This request removes the secondary index for the attribute in the relation. 

dli relation name attribute name {-control_args} 

where: 

12/86 14-15 AW53-04D 



restructure mrds db restructure mrds db 

1. relation name 
is the name of the relation to be restructured. 

2. 3ttribute name 
is-the name of the attribute whose secondary index is to be deleted. 

3. control args 
can be chosen from the following: 

-br ief, -bf 
suppr es ses error r eporti ng if the at tr i bute is not aIr ead y a secondar y 
i nd ex. 

-long, -lg 
reports an error if the attrioute is not already a secondary index. 
(Defaul t) 

Request: delete_relation, dlr 

This request deletes a relation from the data base. 

dlr relation name {-control_args} 

where: 

1. relation name 
is the name of the relation to be deleted. 

2. control args 
can be chosen from the following: 

- br ief, -bf 
specifies that no errors are reported. 

-long, -lg 
specifies that errors are reported. (Default) 

Request: display_data_model, ddm, dmdm 

Thi s request d is pI a ys the model defin i tion of a MRDS data bas e, in cl ud ing domain, 
attribute, and relation information. 

ddm {-control_args} 

12/86 14-16 AW53-04D 



restructure mrds db restructure mrds db 
- -

dmdm {-control_args} 

where control_args can be chosen from the following: 

12/86 

-attribute {modifier}, -attr {modifier} 
displays attribute information. The modifier may be name(s) or 
-unreferenced (-unref). If name(s) is supplied, information for the 
attribute name(s) is displayed. If -unreferenced is supplied, attribute 
information about all unreferenced attributes is displayed. If no 
modifier is supplied, attribute information about all attributes is 
displayed. 

-brief, -bf 

-cmdb 

specifies that the brief format be displayed. 
incompatible with -names. 

This argument is 

specifies that the output be in the same format as an input source text for 
create mrds db. If the -output file control argument is included in the 
invocation ,-then the segment canbe used to create another data base wi th 
the same defini tions. Only the -brief, -long, and -output file control 
arguments can be used with this control argument. -

-crossref {type}, -xref {type} 
displays an information cross-reference. The type may be domain (dom), 
attribute (attr), or all. If the type is domain, each domain is listed 
with a list of attributes in which the domain is referenced. If the type 
is a t t rib ute, e a c hat t rib ute i s 1 is t ed wi th ali s t 0 f r e 1 at ion sin wh i c h 
the attribute is referenced. If the type is all, both domain and 
attribute cross-references are displayed. (Defaul t is "all".) See the 
examples below which show the information displayed. 

-domain {modifier}, -dom {modifier} 
displays domain information. The modifier may be name(s) or 
-unreferenced (-unref). If name(s) is supplied, information for the 
domain name(s) is displayed. If -unreferenced is supplied, domain 
information about all unreferenced domains is displayed. If no modifier 
is supplied, domain information about all domains is displayed. 

-head er, -he 
displays data base header information. 

-history, -hist 
displays restructuring history information. If the data base is 
restructured more then once, the history entries are displayed in reverse 
chronological order. 

-index names, -ix names 
displays information about indexed relations for the relatlon names 
suppl ied. If no names are suppl ied, then information about all indexed 
relations is displayed. 

-long, -lg 
specifies that the long format be displayed. 
incompatible with -names. 

This argument is 

-names, -nm 
displays the format of domains, 
relations as a list of the names. 
-brief or -long. 

14-17 

attributes, relations, and index ed 
This argument is incompatible with 

AW53-04D 

I 



I 

I 

restructure mrds db restructure mrds db 

Note 

- -

-no head er, -nhe 
- prevents display of the header information. (Defaul t) 

-no output file, -nof 
- writes the output to the terminal. (Default) 

-output file path, -of path 
wrItes the output to path, rather than to the terminal. 

-relation names, -reI names 
displays relation information for the relation names supplied. If no 
names are suppl ied, the relation information about all relations is 
displayed. 

-temp dir path 
ipecifies that the directory indicated by path be used for temporary 
storage. 

If no control arguments are suppl ied, the defaul t relation in formation is 
displayed. 

Examples 

If the data base "little" is created from the source: 

domain: code fixed bin, address char(20); 
relation: zip(code* address); 

the results would be as follows: 

display data model -long 
DATA MODEL FOR DATA BASE >udd>Demo>dbmt>db7>jg>11ttle.db 

Ver sion : 4 
Cr eated by: User .Mul tics.a 
Cr eated on: 05/14/80 1042.9 mst Wed 

Total Domains: 2 
Total Attributes: 2 
Total Relations: 1 

RELATION NAME: zip 

Number attributes: 2 
Key length (bits): 36 
Data Length (bits): 216 

ATTRIBUTES: 

Name: code 
Type: Key 
Offset: 0 (bits) 
Length: 36 (bits) 
Domain info: 

12/86 14-1 8 AW53-04D 



restructure mrds db - -

name: code 
dcl: real fixed binary (17,0) aligned 

Name: address 
Type: Da ta 
Offset: 36 (bits) 
Length: 180 (bits) 
Domain in fo : 

name: address 
dcl: character (20) nonvarying unaligned 

display_data_model -cmdb -long 

/* Created from >udd>Demo>dbmt>db7>User>little.db 
06/14/82 1251.3 rnst Wed */ 

domain: 
address 

character (20) nonvarying unaligned, 
code 

real fixed binary (17,0) aligned; 

relation: 
zip (code* address); 

Request: do 

This request expands a request line by substituting the supplied arguments into 
the line before execution. As an active request, it returns the expanded 
request_string rather than executing it. 

do request_line {args} 

or: 

do -control_args 

Usage as ~ Active Request: 

[do request_line args] 

where: 

1. request line 
Is a request line in quotes. 

12/86 14-19 AW53-04D 

I 

I 

I 



restructure mrds db restructure mrds db 

2. args 
are character string arguments that replace parameters in 
request_string. 

3. control args 
can be chosen from the following to set the mode of operation: 

-long, -lg 
displays the expanded request line before execution. 

-brief, -bf 

-nogo 

-go 

sp~cifies that the expanded request line not bp. printed before execution. 
(Default) 

specifies that the expanded request line not be passed on for execution. 

specifies that the expanded request line be passed on for execution. 
(Default) 

-absentee 
establishes ~In any other handler that catches all conditions and aborts 
execution of the request line without aborting the process. 

-interactive 
specifies that the any_other handler not be established. (Default) 

List of Parameters ---

Any sequence beginning with & in the request line is expanded by the do request 
using the arguments given on the request line. 

12/86 

&1 
is replaced by arg1. I must be a digit from 1 to 9. 

& (I ) 

&q1 

is replaced by argI. I may be any value. 

is replaced by arg1 wi th any quotes in arg1 doubled. I must be a digit from 1 
to 9. 

&q (I) 

&r1 

is replaced by arg1 wi th any quotes in arg1 doubled. I may be any value. 

is replaced by arg1 surrounded by level quotes with any contained quotes 
doubled. I must be a digit from 1 to 9. 

&r (I ) 
is replaced by a requoted arg1. I may be any value. 

&f1 
is replaced by all the arguments starting with argI. I must be a digit from 
i to 9. 

&f( I) 
is replaced by all the arguments starting with argI. I may be any value. 

14-20 AW53-04D 



restructure mrds db 

&qfI 
is replaced by all the arguments starting wi th argI wi th any quotes doubled. 
I must be a digit from 1 to 9. 

&qf( I) 

&rI 

is replaced by all the arguments starting wi th argI wi th quotes doubled. I 
may be any value. 

is replaced by all the arguments starting with argI. 
placed in level quotes with contained quotes doubled. 
from 1 to 9. 

Each argument is 
I must be a digit 

&rf(I) 

&& 

&! 

&0 

is replaced by all the arguments starting wi th argI, requoted. I may be any 
val ue. 

is replaced by an ampersand. 

is replaced by a 15- charac ter un i que str ing . Th e stri ng used is the same in 
every place where the &! appears in the request line. 

is replaced by the actual number of arguments supplied. 

&f&n 
is replaced by the last argument supplied. 

Reguest: exec_com, ec 

This request executes a program written in the exec com language that is used to 
pass request lines to the subsystem and to pass input lines to requests that read 
input. As an active request, it specifies a return value by use of the &return 
statement. 

Usage as an Active Reguest 

[ec ec path {ec_args}] 

where: 

1. ec pa th 
- is the pathname of an exec com program. The suffix, which is normally the 

name of the subsystem, is assumed if not specified. 

12/86 14 -21 AW53-04D 



restructure mrds db restructure mrds db - - - -

2. ec_args 
are optional arguments to the exec com program and are substituted for 
parameter references in the program such as &1. 

Notes 

Subsystems may define a search list to be used to find the exec com program. If 
this is the case, the search list is used if ec path does not contain a n<" or n>n 
character; if the ec path contains either a n<n or ,,>n, it is assumed to be a relative 
pathname. -

For a description of the exec com language (both Version 1 and Version 2), type: 

help v1ec v2ec 

When evaluating a subsystem exec com program, subsystem active requests are used 
rather than Multics active functionsto evaluate the &[ ... ] construct and the active 
string in an &if statement. The execute active request of the subsystem can be used to 
evaluate Multics active strings within the exec com. 

Limitation: In the present implementation, any errors detected during 
execution of an exec com within a subsystem aborts the request line in which the 
exec com request is Invoked. 

Request: execute, e 

I This request executes the supplied line as a Multics command line after 
evaluating rmdb active requests. As an active request, it evaluates a Multics active 
string and returns the result to the subsystem request processor. 

e STR 

Usage as an Active Request 

[e STRJ 

where STR is the Mul tics command line to be executed or the Mul tics active string to be 
evaluated. It need not be enclosed in quotes. 

12/86 14-22 AW53-04D 



restructure mrds db restructure mrds db - -

Notes 

The recommended method GO execute a Multics command line from within a subsystem 
is the" .. " escape sequence. The execute request is intended as a means of passing 
information from the subsystem to the Multics command processor. 

All (), [], and "s in the given line are processed by the subsystem request 
processor and not the Multics command processor. This permits passing values of 
subsystem active requests to Multics commands when using the execute request, or 
passing values to Multics active functions for further manipulation before returning 
the values to the subsystem request processor for use within a request line. 

Examples 

The rmdb request line: 

exec com [execute hd]>create_temp.rmdb 

can be used to execute an rmdb exec com in the user's home_directory. 

The rmdb request line: 

can be used to review the name of the directory that is being used by mrds for temporary 
storage. 

Reguest: free_db, fdb 

This request frees the data base currently readied by the Restructuring 
Subsystem from the subsystem (i.e., allows the data base to be opened by any user and 
prevents further restructuring requests against the data base). 

fdb 

Reguest: help 

This request displays information about various subsystem topics including 
detailed descriptions of most subsystem requests. 

12/86 14-23 AW53-04D 



restructure mrds db restructure mrds db - - - -

help {topics} {-control_args} 

where: 

1. topics 
spe cif ies the topic s on whic h in forma tion is to be dis pI ayed . Th e topic s 
available within a subsystem can be determined by using the list_help 
request if available. 

2. control args 
can be chosen from the following: 

-brief, -bf 
displays a summary of a request or active request, including the syntax, 
list of arguments, control arguments, etc. 

-search STRs, -srh STRs 
displays the paragraph containing all the strings identified by STRs. 
(Default, the display begins at the top of the information.) 

-section STRs, -scn STRs 
displays the section whose title contains all the strings identified by 
STRs. (Default, the display begins at the top of the information.) 

- ti tl e 
displays section titles and section line counts, then asks if the user 
wants to see the first paragraph of information. 

List of Responses 

are: 

12/86 

The most useful responses that can be given to questions asked by the help request 

displays "help" to identify the current interactive environment. 

command line 
treats the remainder of the response as a Multics command line. 

? 
displays a list of responses allowed. 

no, n 
stops display of information and proceeds to the next topic, if any. 

quit, q 
stops display of information and returns to subsystem request level. 

rest {-section}, r {-sen} 
displays remaining information without intervening questions. If 
=section is given, help displays the rest of the current section: wi thout 
questions, and then asks if the user wants to see the next section. 

search {STRs} {-top}, srh {STRs} {-t} 
skips to the next paragraph containing all the strings identified by STRs. 

14-24 AW 53-04D 



Notes 

restructure mrds db 

If -top is given, searching starts at the top of the information. If STRs 
are omitted, help uses the STRs from the previous search response, or the 
-search control argument. 

sec t ion { S T R s} {- to p}, s c n { S T R s} { - t } 
skips to the next section whose title-contains all the strings identified by 
STRs. If -top is given, ti tie searching starts at the top of the 
information. If STRs are omitted, help uses the STRs from the previous 
section response, or the -section control argument. 

skip {-section}} {-seen}, s {-sen} {-seen} 
skips to the next paragraph. If -section is given, the request skips all 
paragraphs of the current section. If -seen is given, the request skips to 
the next paragraph that the user has not seen. Only one control argument is 
allowed in each skip response. 

ti tl e {- to p} 
displays titles and line counts of the sections that follow. If -top is 
given, help displays all section titles and repeats the previous question 
after titles are displayed. 

yes, y 
prints the next paragraph of information on this topic. 

If no topic names are given, the help request explains what help requests are 
available in the subsystem. 

12/86 14-25 AW53-04D 



restructure mrds db restructure mrds db 
- -

For a complete description of the control arguments and responses accepted by 
this request, type: 

hel p hel p 

Request: if 

This request conditionally executes one of two request lines depending on the 
value of an active string. As an active request, it returns one of two character 
strings to the subsystem request processor depending on the value of an active string. 

if expr -then line1 {-else line2} 

Usage ~ an Active Request 

if expr -then STR 1 {-else STR2} 

where: 

1 . ex pr 

2. line1 

3. line2 

4. STR 1 

5. STR2 

evaluates the active string as "true" or "false." The active string is 
constructed from subsystem active requests and Multics active strings 
(using the execute active request of the subsystem). 

executes the subsystem request line if expr is "true." If the request 
line contains any request processor characters, it must be enclosed in 
quotes. 

executes the subsystem request line if expr is "false." If omitted and 
expr is "false," no additional request line is executed. If the request 
line contains any request processor characters, it must be enclosed in 
quotes. 

returns this value to the active request when expr is "true." 

returns this value to the if active request when expr is "false." If 
omitted and the expr is "false," a null string is returned. 

Request: list_help, Ih 

This request lists the names of all subsystem info segments pertaining to a given 
set of topics. 

12/86 14-26 AW53-04D 



restructure mrds db restructure mrds db - - - -

lh {topic s} 

where topics specifies the topics of interest. Any subsystem info segment that 
contains one of these topics as a substring is listed. 

Notes 

If no topics are given, all info segments available for ~the subsystem are 
displayed. 

An info segment name is considered to match a topic only if that topic is at the 
beginning or end of a word within the segment name. Words in info segment names are 
bounded by the beginning and end of the segment name and by the period (.), hyphen (-), 
underscore ( ), and dollar sign ($) characters. The info suffix is not considered 
when matching topics. 

Examples 

The request line: 

list_help list 

matches info segments named list, list_users, and forum_list, but does not match an 
info segment named prelisting. 

Request: list_requests, lr 

This request displays a brief description of selected subsystem requests. 

lr {STRs} {-control_args} 

where: 

1. STRs 

12/86 

specifies the requests to be displayed. Any request wi th a name 
containing one of these strings is displayed unless -exact is used, in 
which case the request name must match exactly one of these strings. 

14-27 AW53-04D 



restructure mrds db restructure mrds db - -

2. control args 
can be chosen from the following: 

-all, -a 
includes undocumented and unimplemented requests in the display of 
requests eligible for matching the STR arguments. 

-exact 
displays only those requests whose names match exactly one of the STR 
a r g urn en t s . 

Notes 

If no STRs are given, all requests are displayed. 

A request name is considered to match a STR only if that STR is at the beginning or 
end of a word within the request name. Words in request names are bounded by the 
beg inn i n g and en d 0 f the r e qu est n am e and by the pe rio d (.) , h yp hen (-)" un d er s cor e 
( ), and dollar sign ($) characters. 

Examples 

The request line: 

list_requests list 

matches requests named list, list_users, and forum_list, but does not match a request 
named prelisting. 

Request: quit, q 

I This request is used to exit the subsystem, unquiesce the data base (if the 
current data base was quiesced by the rmdb subsystem), and return to Multics command 
level. 

q 

Request: ready_db, rdb 

This request readies a data base for restructuring. 

12/86 14-28 AW53-04D 



restructure mrds db - -

where: 

1. db pa th 
is the relative or absolute path for the data base to be restructured. 
The db suffix is assumed if not supplied. 

2. control args 

Notes 

can be chosen from the following: 

-force, -fc 
specifies that the data base be created if it does not already exist 
without querying the user. 

-no force, -nfc 
overrides the -force control argument. (Defaul t) The last occurrence of 
-force and -no force on the command line takes effect. 

-pathname db path, -pn db path 
specifies the path for the data base to be restructured. The last path 
supplied is the readied one. 

-quiesce wait time N, -qwt N 
specifies the number of seconds to wait for all open users to close the 
data base. (Default is 0) 

-relation type type {modes}, -rt type {modes} I 
specIfies the type of reI ation to create if the data base does not aIr ead y 
exist. The supported types are vfile and data management file (dmf) 
(see Notes below). The mode argument is only val id for dmf-type 
relations, and the supported modes are any combination of protection, 
concurrency, or rollback separated by commas. Any mode may be preceded 
with a not sign (A) to negate it. 

DBAs are the only persons who can ready a data base for restructuring. 

The data base should not be readied if there are any open users Once the data base I 
is readied, it can be opened by the process that has readied it. 

The db path argument cannot refer to a submodel or a data base earlier than 
Version 4. -

This request can be run only against a consistent data base. If the data base is 
inconsistent, the user is queried to see if he/she wishes to execute the "undo request" 
and make the data base consistent. After executing the undo request, the data base can 
be readied. If the undo request fails, the user is returned to rmdb request level 
(i.e., the data base is not readied). 

12/86 14-29 AW53-04D 



restructure mrds db restructure mrds db 

I When this request is used to create a new data base, and the -relation type 
argument is not specified, the data base is created wi th the defaul t relation type of 
v fi 1 e . 

Only one data base can be readied at any given time. 

Request: rename_attribute, rna 

This request replaces the name of an attribute with another name. 

rna attribute1 name1 { ... attributeN nameN} 

where: 

1. attributei 
specifies the current name of an existing attribute. 

2. namei 
specifies the new name that replaces the original name. 

Request: rename_domain, rnd 

This request replaces the name of a domain with another name. 

rnd domain1 name1 {. .. domainN nameN} 

where: 

1. domaini 
specifies the current name of an existing domain. 

2. namei 
specifies the new name that replaces the original name. 

I
I. Request: 

This request replaces the name of a relation with another name. 

rename_relation, rnr 

12/86 14 -30 AW53-04D 



restructure mrds db restructure mrds db 

rnr relation1 name1 {. .. relationN nameN} 

where: 

1. relationi 
specifies the current name of an existing relation. 

2. namei 
specifies the new name that replaces the original name. 

Request: subsystem_name 

This request displays the name of the subsystem. As an active request, it 
returns the name of the subsystem. 

subsystem_name 

Usage ~ an Active Request 

[sub sys tern_name] 

Request: subsystem_version 

This request displays the version number of the subsystem. As an active request, 
it returns the version number of the subsystem. 

subsystem_version 

Usage ~ ~ Active Request 

[subsystem_version] 

12/86 14 -31 AW53-04D 



2/85 

SECTION 15 

DATA MANAGEMENT SYSTEM INTERFACE 

MRDS now supports two distinct types of data bases; vfile_ data bases and Data 
Management System (DMS) data bases. The vfile_ data bases are those data bases 
which have relations that are created and accessed via the vfile_ 10 module. These 
were the only kind of data bases that existed prior to MR11. The DMS data bases 
are those data bases which have relations that are created and accessed via the DMS 
facility. (Refer to "Data Management Overview" in the Programmer's Reference 
Manual for additional information.) MRDS does not support a combination of vfile_ 
relations and DMS relations within a single data base. 

CREATING A DATA BASE 

Data bases are created in the traditional fashion (i.e., by use of the create_mrds_db 
command). The create_mrds_db command has two new control arguments (-vfile and 
-data_management_file). The -vfile control argument (Default) causes a new data base 
to be a vfile_ data base, whereas the -data_management_file control argument causes a 
new data base to be a DMS data base. So, a command line that created a data base 
prior to MR11 will do precisely the same thing in MR11, that is, create a vfile_ data 
base. Therefore, the user must explicitly request a DMS data base. 

CONVERTING A DATA BASE 

To convert an eXIStIng vfile_ data base to a DMS data base, the user must first 
create a new DMS data base using the same cmdb source used to create the vfile_ 
data base. If the cmdb source segment is not available, it can be created using the 
-cmdb control argument with the display_mrds_dm command. Once the new data base 
is created, the user can copy the data from the old data base using the 
copy _mrds_data command. After execution of the copy _mrds_data command, there are 
two data bases with identical data, one a vfile_ data base, the other a DMS data base. 
The user can delete the vfile_ data base or continue to use the vfile_ data base in 
production, while testing the DMS data base, whichever circumstances warrant. The 
user can always invoke the copy _mrds_data command to reverse the procedure (i.e., 
copy data from a DIvIS data base back to a vfile_ data base). 

FEATURES 

The DMS facility provides new services for the MRDS user. One important 
feature is the concept of a transaction. In order to access a DMS file (in MRDS, a 
relation), the user's process must have initiated a transaction. When a transaction is 
active, each change made to the file causes a "before" image of that data to be 

15-1 AW53-04C 



2/85 

written to a "before" journal. If the transaction does not successfully complete (e.g., 
the system crashes, the user's process dies, or the user explicitly requests the 
transaction to be aborted or rolled back), the "before" images are used to return the 
relation to the state it was in bef ore the DMS changes began. If the transaction 
completes successfully, the "before" images are discarded and the changes are made 
permanent. This can be quite useful to the programmer or interactive user who wishes­
to "group" a series of physically separated actions into a single logical unit. 

The OMS interface that handles transactions is the transaction_manager_ subroutine. 
The command and subroutine interfaces to transaction_manager_ that are of interest to 
the MRDS user are documented later jn this section. 

The burden of starting and finishing transactions is not completely placed on the 
user. When MRDS accesses a OMS file, it knows there must be a transaction running; 
theref ore, it checks to see if one is in place. If there is a transaction in place. 
MRDS proceeds to call the OMS facility, knowing that either the user or application 
is controlling the transaction. If no transaction is running. MRDS starts one prior to 
calling OMS and then. upon return from OMS, either commits the transaction. rolls it 
back and tries again, or aborts the transaction and returns an error code to the user. 
An application that accesses a OMS data base, therefore, need never interface with 
transaction_manager_ at all. relying on MRDS to handle transactions. In this fashion, 
an application that runs against a vfile_ data base could be used, without modification. 
to run against a DMS data base. MRDS simply turns each dsl_ call into a transaction. 

In order to access a OMS file, the user must have initiated a transaction and have 
a "before" journal (provided by system default). Users can. however, create and use 
their own "before" journals. In fact, the' site administrator may choose to restrict 
access to' the system default "before" journal and require users to create and use their 
own. The OMS interface that handles "before" journals is the before~ournal_manager_ 
subroutine. The command and subroutine interfaces to before.Journal_manager_ that 
are of interest to the MRDS user are documented later in this section. 

CHOOSING BETWEEN DATA BASE TYPES 

With two types of data bases available (vfile_ and DMS). a choice must be made 
as to which type to use for a given application. The differences are many. The 
strength of the OMS system is integrity and consistency. The ability to group several 
operations into a go/nogo set can be quite valuable. Also. DMS ensures the integrity 
of the data itself, except for certain media failures. As an example, when MRDS is 
adding a tuple to a vfile_ data base, it (actually vfile_relmgr_) must call vfile_ several 
times to add both data and indexes. While vfile_ can guarantee the integrity of each 
individual action requested of it. the various calls are not logically related. If the 
system crashes, or the user's process fails between calls, the process can easily end up 
with a tuple that is only partially there. that is. the data and its indexes are not 
completely in place. In the OMS case. however. the adding of a tuple is a single 
atomic operation to DMS and is done within the confines of a single transaction. If 
the system crashes. or the user~s process fails. the transaction is aborted by the DMS 
Daemon. 

MRDS and vfile_ is significantly more efficient than MRDS and DMS. The 
choice between vfiie_ or DMS depends upon the need for the additional functionality 
provided by DMS. If DMS functionality is important to an application. then those 
features may well outweigh efficiency considerations. If, however. the improvements 

15-2 AW53-04C 



2/85 

offered by DMS are not important to an application, it may be best to leave it as a 
vfile_ data base. 

The recommended method of investigating DMS options, at least as it affects 
existing data bases, is to use the procedures described above and do some testing. The 
user can see what the various advantages and disadvantages of DMS are without 
affecting production jobs. This procedure will provide a feel for the issues of 
transactions and "before" journals. The copy_mrds_data command itself can bt. 
instructive. By default, it creates a transaction for each tuple copied. A transaction, 
while reasonably efficient, does involve some overhead. This overhead, multiplied over 
many tuples, can be significant. For this reason, the copy _mrds_data command utilizes 
the -transaction~oup_size control ar'gument. The operand indicates how many tuples 
are to be copied in a single transaction. If this control argument is used. an increase 
in efficiency will be seen (by not starting and committing as many transactions), but 
the size required for the "before" journal is increased as there are more "before" 
images involved in a single transaction. These same issues become involved in 
determining the usage of transactions within an application. 

DMS COMMAND AND SUBROUTINE DESCRIPTIONS 

15-3 AW53-04C 



bef ore-Journal_status before-Journal_status 

2/85 

Name: before-JournaI_status, bjst 

bjst {PA THSJ {-con trol_argsJ 

FUNCTION 

displays status information for before journals that you have access to open. This 
command is part of the command level interface to Multics data management (DM) 
(see the Programmer's Reference Manual). 

ARGUMENTS 

PATHS 
are the relative pathnames of before journals for which status is desired. If you 
supply no pathnames, status information for all journals in use in the process is 
displayed. If you don't give the . bj suffix, it is assumed. 

CONTROL ARGUMENTS 

-all 
displays the status of all journals active in the current invocation of the data 
management system (DMS) that you have access to open. 

-brief. -bf 
displays the pathname, unique identifier. usage state or activity. control interval 
size. and control intervals in the before journal for each journal specified that is 
either in use or not in use (see ttExamples"). 

-long, -lg 
for each journal specified that is in use. displays, besides the above information. 
the disposition of control intervals in use, i.e .. if they are buffered, put, flushed, 
or on disk: the last time a control interval was queued or written: the time the 
header was updated; the last record id; the status of images not yet written on 
disk or not being flushed: and the number of users and transactions using the 
journal. For each journal specified that is not in use. displays, besides the 
information given by -brief. the time the header was updated. (See "Examples.") 

NOTES 

If you give neither -brief nor -long. the command yields the information supplied by 
-brief plus the disposition of control intervals in use at the time of the request if the 
journaI(s) specified is in use. 

15-4 A V>,15 3-04C 



bef ore..Journal_status bef ore.Journal_sta tus 

2/85 

EXAMPLES 

The example below requests the status. in long form. of the system_low system default 
before journal. which is in use. 

bjst >site>dm>system_low>system_default -1g 

pathname: 

journal uid: 
activity: 
contro 1 i nterva 1 size: 
cont ro 1 i nterva 1 s: 
contro 1 i nterva 1 s used: 
last control interval 

buffered: 
put: 
flushed: 
on disk: 

time last control interval 
queued: 
written: 

time header updated: 
last record id: 
images not on disk: 
images being flushed: 
users: 
transactions: 

where: 

pathname 

>s"ite>Data_Management>system_low 
>system_default.bj 

132233107561 
in use 
4096 bytes 
4000 
86 

86 
86 
86 
86 

01/14/85 1104.9 est 
01/14/85 1104.9 est 
01/14/85 1104.9 est 
000001260013 
o 
o 

is the pathname of the before journal. 

journal uid 
is the octal unique identifier of the before journal. 

activity 
is "in use" if a process currently has the before journal open. "not -in use" 
otherwise. 

control interval size 
is the size of each control interval in the before journaL In bytes. Currently 4096 
bytes is the only supported size. 

control intervals 
is the number of control intervals in the before journal. 

15-5 AW53-04C 



bef ore-.Journal_status bef ore.Journal_status 

2/85 

control intervals used 
is the number of control intervals in the before journal contammg before images 
still needed to roll back modifications made by a transaction. - Images that are not 
needed include those that have already been used in a complete rollback and 
those for a transaction that has ended. 

last control interval buffered 
indicates the last control interval put in a special buffer used for before journals. 

last control interval put 
indicates the last control interval put into the before journal. 

last control interval flushed 
indicates the last control interval flushed to disk. 

last control interval on disk 
indicates the last control interval safely on disk. 

time last control interval queued 
is the last time a before image was put in the before journal. 

time last control interval written 
is the last time a control interyal was written to disk. 

time header updated 
is the last time the header of the before journal was wri tten. 

last record id 
is the address of the last before image in the journal. 

images not on disk 
is the number of images not written to disk yet. 

images being flushed 
is the number of before images for which a flush from memory to disk has been 
requested. 

users 
is the number of users with openings. 

15-6 A \N53-04C 



bef ore-.iournal_status 

2/85 

transactions 
is the number of active transactions in the before journal. 

The example below requests the status, in long form, of the system_low system 
default before journal, which is not in use. 

bjst >site>dm>system_low>s.Ystem_defau1t -19 

pathname: 
journal uid: 
activity: 
control interval size: 
contro 1 i nterva 1 s: 
time header updated: 

>site>dm>system_default.bj 
127120202215 
not in use 
4096 bytes 
4000 
08/26/84 1228.6 edt 

Name: bLmgr_call, bjmc 

SYNTAX AS A COMMAND 

bjmc key {paths} {-control_args} 

SYNTAX AS AN ACTIVE FUNCTION 

[bjmc key {paths} {-control_args}] 

FUNCTION 

enables you to manipulate before journals in your process by calling 
before~ournal_manager_ entry points from command level. This command is part of 
the command level interface to Multics data management (DM) (see the Programmer's 
Reference Manual). 

ARGUMENTS 

key 
designates the before journal manager operation to be performed. See "List of 
Operations" below for a description of each operation, its command and active 
function syntax lines. and specific application. 

paths 
specifies the absolute or relative pathname of the before journals being 
manipulated (required for all key operations except get_default_path). Give 
-pathname (-pn) PATH with pathnames constructed with leading minus signs to 
distinguish them from control arguments. If you suppiy no .bj suffix. it is 
assumed. 

15-7 AW53-04C 



2/85 

CONTROL ARGUMENTS 

can be one or more control arguments, depending on the particular operation. 

LIST OF OPERATIONS 

Each operation is described in the general format of a command/active function. 
Where appropriate, notes and examples are included for clarity. 

c1ose, cl 
closed 
create t cr 
get_default_path, gdp 
open, 0 

opened 
set_default_path, sdp 
set_attribute, sattr 

Operation: close, cl 

SYNTAX AS A COMMAND 

bjrnc· c 1 .paths 

SYNTAX· AS AN ACTIVE FUNCTION 

[bjrnc c 1 paths] 

FUNCTION 

closes the before journals specified by paths. Separate pathnames by spaces if multiple 
journals are to be closed. Specifically close by name each journal opened in the 
process. The active function returns true if the journals were closed successfully, false 
otherwise. 

ARGUMENTS 

paths 
are the absolute or relative pathnames of before journals to be closed. You can 
use -pathnamc (-pn) to specify the journal paths. If you supply no . bj suffix, it 
is assumed. 

NOTES 

If a before journal being closed by this operation is the default journal. the last 
journal opened in the process becomes the default. 

15-8 AW53-04C 



2/85 

Operation: closed 

SYNTAX AS A COMMAND 

bjmc closed path 

SYNTAX AS AN ACTIVE FUNCTION. 

[bjmc closed path] 

FUNCTION 

returns true if the before journal specified by path is not open in your process, false 
otherwise. 

ARGUMENTS 

path 
is the absolute or relative pathname of a before journal. You can use -pathname 
(-pn) to specify the journal path. If you don't give the .bj suffix. it is assumed. 

Operation: create, cr 

SYNTAX AS A COMMAND 

bjmc cr paths {-control_args} 

SYNTAX AS AN ACTIVE FUNCTION 

[bjmc cr paths {-control_args}] 

FUNCTION 

creates the before journals specified by paths. The active function returns true if the 
journals are c.reated successfully, false otherwise. 

ARGUMENTS 

paths 
are the absolute or relative pathnames of the before journals to be created. You 
can use -path name (-pn) to specify the journal path. If you supply no .bj suffix, 
it is assumed. 

CONTROL ARGUMENTS 

-length N, -In N 
specifies the size of the before journal, where N is the number of 4096-byte 
control intervals. Once established, you can't alter a journal's size. (Default: if 
you specify no value at the time of creation, the size is 64 control intervals). 

15-9 AW53-04C 



2/85 

-transaction_storage_limit N, -tsl N 
specifies the maximum number of bytes a single transaction can use in the before 
journal (Default: the entire journal, see the set_attriubute operation for more 
info). 

NOTES 

Before journals are extended entry types; you can delete them using the delete 
command. You can only delete before journals if they are not required for recovery. 

Operation: get_default_path, gdp 

SYNTAX AS A COMMAND 

bjmc gdp 

SYNTAX AS AN ACTIVE FUNCTION 

[bjmc gdp] 

FUNCTION 

returns the pathname of the process's default before journaL 

Operation: open, 0 

SYNTAX AS A COMMAND 

bjmc 0 paths 

SYNTAX AS AN ACTIVE FUNCTION 

[bjmc 0 paths] 

FUNCTION 

opens the before journals specified by paths. The active function returns true if the 
journals are opened successfully, false otherwise. 

ARGUMENTS 

paths 
are the absolute or relative palhnames of before journals to be opened in your 
process. You can use -pathname (-pn) to specify the journal path. If you supply 
no . bj suffix, it is assumed. 

15-10 AW53-04C 



2/85 

NOTES 

If no journal has been specifically designated as the default (see the set_default_path 
operation) f or your process, the last bef ore journal opened in the process becomes the 
default. If no journal is opened in your process when a transaction is started. the 
system before journal is opened and used as the default 

Operation: opened 

SYNTAX AS A COMMAND 

bjmc opened path 

SYNTAX AS AN ACTIVE FUNCTION 

[bjmc opened path] 

FUNCTION 

returns true if the before journal specified by path is opened in your process. false 
otherwise. 

ARGUMENTS 

path 
is the absolute or relative pathname of a before journal. You can use -pathname 
(-pn) to specify the journal path. If you supply no .bj suffix. it is assumed. 

Operation: set_default_path. sdp 

SYNTAX AS A COMMAND 

bjmc sdp path 

SYNTAX AS AN ACTIVE FUNCTION 

[bjmc sdp path] 

FUNCTION 

sets the default before journal for the process to the specified pathname. The active 
function returns true if the pathname is successful1y set. false otherwise. 

15-11 A\V53-04C 



2/85 

ARGUMENTS 

path 
is the absolute or relative pathname of the before journal to be used as the 
default by your process. You can use -pathname (-pn) to specify the journal 
path. If you supply no . bj suffix, it is assumed. 

NOTES 

If no default before journal is set for your process. the last journal opened in the 
process is used as the default (see the open operation). If no before journal is open 
in the process when a transaction is started, the system before journal is opened and 
used as the def auI t. 

Operation: set_attribute, sattr 

SYNTAX AS A COMMAND 

bjmc sattr paths -control_arg 

SYNTAX AS AN ACTIVE FUNCTION 

[bjmc sattr paths -control_arg] 

FUNCTION 

sets an attribute of the before journals specified by paths. The active function returns 
true if the attribute is successfully set, false otherwise. 

ARGUMENTS 

paths 
are the absolute or relative pathnames of the before journal(s) to have attributes 
set. You can use -pathname (-pn) to specify the journal path. If you supply no 
. bj suffix. it is assumed. 

CONTROL ARGUMENTS 

-transaction_storage_limit N, -151 N 
specifies the maximum number of bytes a single transaction can use in the before 
journals. An attempt to write more bytes than allowed causes the transaction_bj_full_ 
condition. A value of zero indicates a transaction can use an entire journal (the 
defau1t at journal creation time). 

NOTES 

When this operation completes, the before journal header containing the new attributes 
;" t"Int o"l1~,.~t"It~~n tl'\ h", flllChe>n 1f the> ';nll.,. ... ')l ;t" ..,,..t;u,,, A ... " ",'h"..,h""r ,:I" t ... 1,,, ... ~~"'~ .. 
.. .., ... .&'-''''" t) ........... u. ...... "' ..... ""'-... rot'" ..., ...... ..I..I.~ ... J. .......... J.J "'".1"'" JV,,",J.J.JuJ. J.~ U.VLtl''-'. r"l.~J.J \wlJCl.110 ....... ..., uv L.Q.J\.\;..r \..rl.1\;.\.tL 

;m",pn;~tphl fl'\" f'l1""e>t"It llCe>.,. I'\f the> ;1'\11 ... "<31 
,I..& ............. .l .......................... J.J J. V.& ~ .... .& J 'w'J.J..... \4..J ...... J. VJ. ... il'-" JVU1 !JU.i. 

15-12 AW53-04C 



transaction transaction 

2/85 

Name: transaction, txn 

SYNTAX AS A COMMAND 

txn key {-control_args} 

SYNTAX AS AN ACTIVE FUNCTION, 

[txn key {-control_args}] 

FUNCTION 

enables you to define and execute atomic operations interactively. You can invoke the 
services of the transaction manager to begin, commit, abort. rollback, abandon, or kill 
a transaction. There is also a status request for displaying information about the 
current transaction. There is an execute request to wrap a given command line in a 
transaction. This command is part of the command level interface to Multics data 
management (DM) (see the Programmer's Reference Manual). 

ARGUMENTS 

key 
designates the operation to be performed. See "List of Operations" below for a 
description of each operation, its command syntax line. and specific application. 

CONTROL ARGUMENTS 
can be one or more control arguments, depending on the particular operation. 

LIST OF OPERATIONS 

Each operation is described in the general format of a command/active function. 
Where appropriate, notes and examples are included for clarity. 

Operation: a bandon 

SYNTAX AS A COMMAND 

txn abandon 

SYNTAX AS AN ACTIVE FUNCTION 

[txn abandon] 

FUNCTION 

your process surrenders control of the transaction to the D~1 Daemon. which aborts it 
as part of its normal caretaker responsibilities. The active function returns true if the 
transaction is successfully abandoned. false otherwise. 

15-13 AW53-04C 



transaction transaction 

2/85 

NOTES 

By abandoning a transaction, your process can start another transaction without waItIng 
for the abort operation to conclude (your process is still charged for the abort). The 
data locked by the original transaction remains inaccessible, however, until the rollback 
is completed. 

Operation: abort 

SYNT AX AS A COMMAND 

txn abort 

SYNTAX AS AN ACTIVE FUNCTION 

[txn abort] 

FUNCTION 

aborts the current transaction so that, in effect. it never existed. Any modifications to 
protected files caused by the aborted transaction are rolled back. and references to the 
transaction are removed from system tables. The active function returns true if the 
transaction is successfully aborted. false otherwise . 

. Operation: begin 

SYNTAX AS A COMMAND 

txn begin {-control_args} 

SYNTAX AS AN ACTIVE FUNCTION 

[txn begin {-control_args}] 

FUNCTION 

starts a transaction by reserving a slot in the transaction definition table (TDT) for 
your process. with a unique transaction identifier. date/time of the start, pathname of 
the before journal, and other information pertinent to the transaction (see the status 
operation). If your process already owns a transaction. an error occurs. The active 
function returns true if a transaction is started successful1y. false otherwise. 

CONTROL ARGUMENTS 

-no_wait, -nwt 
causes an 
(Default) 

error if the data (D!vIS) IS not 

15-14 A \V53-04C 



transaction transaction 

2/85 

-wait N, -wt N 
if DMS is not currently invoked, wait N seconds before starting the transaction. 
An error occurs if DMS is still not up after the elapsed time. 

-wai t_indef ini tely , -wti 
if DMS is not currently invoked, wait as long as necessary to start the 
transaction. The status of DMS is checked at 10-second intervals. and notification 
is given when command line execution begins. 

NOTES 

This operation isa tool for isolating and testing the transaction startup function. In a 
production environment the transaction execute command is the recommended method 
of starting transactions from command level because it builds in the atomicity: it 
begins the transaction, executes a command line, and then terminates the transaction, 
within the one request (see the execute operation). 

EXAMPLES 

The following example shows .an absentee job intended not to run until a transaction 
can be started in absentee. 

&if &[not [txn begin -wait 100JJ &then &do 
ear &ec_path -time "+1 hourI! -ag &fl 
&quit 

&end 

Operation: commit 

SYNTAX AS A COMMAND 

txn commit 

SYNTAX AS AN ACTIVE FUNCTION 

[txn comm i tJ 

FUNCTION 

signals successful completion of the currently active transaction. Modifications made to 
protected files by this transaction are considered permanent. Any locks held by the 
transaction are released, making the data public again. The active function returns true 
if the commit operation is successful. false otherwise. 

15-15 AW53-04C 



transaction transaction 

2/85 

Operation: execute, e 

SYNT AX AS A COMMAND 

txn e {-control_args} {command_line} 

SYNTAX AS AN ACTIVE FUNCTION 

[txn e {-control_args} {command_line}] 

FUNCTION 

starts a transaction, executes a command line, and, provided the command line is 
successfully executed, commits the transaction. Control arguments govern what action 
to take based on conditions encountered. The active function returns true if the 
execute operation is successful, false otherwise. 

ARGUMENTS 

command_line 
specifies the command line to be executed as part of the transaction. Enclose· it 
in quotes if it contains parentheses, brackets, or semicolons. If you omit it. the 
system prompts "Command line:", 

CONTROL ARGUMENTS 

-abandon_on CONDITION_LIST 
abandons the transaction and results in a nonlocal exit of the command line if 
any of the listed conditions is encountered during command line execution. 
Separate the listed conditions by commas, with no intervening whitespace. The list 
can include any_other. The default action is as described under "Notes" below. 
This control argument is incompatible with -existin~transaction_allowed and 
-existing_transaction_required. 

-abort_on CONDITION_LIST 
aborts the transaction and results in a nonlocal exit of the command line if any 
of the listed conditions is encountered during command line execution. Separate 
the listed conditions by commas, with no intervening whitespace. The list can 
include any_other. The default action is as described under "Notes" .below. This 
control argument is incompatible with -existing_transaction_allowed and 
-existin~transaction_required. 

-command_leveL -cl 
places your process at the next command level. from which commands can be 
entered in the transaction. You can use the start or release command to exit this 
command level. 

15-16 AW53-04C 



transaction transaction 

2/85 

-existinS-,..transaction_allowed, -eta 
accepts the existing transaction (if one already exists in your process) as the ongm 
of command line execution. No new transaction is begun. This control argument 
is incompatible with -retry_on and -suspend_on. (Default to return an error if a 
transaction already exists) 

-existinS-,.. transaction_required, -etr 
requires that a transaction already exist in your process; returns an error if no 
transaction exists. This control argument is incompatible with -retry_on and 
-suspend_on. (Default: to return an error if a transaction already exists) 

-no_action_on CONDITION_LIST 
overrides any special action (e.g., -abandon_on. -retry_on) you previously specified 
in the command line for the listed conditions. The default action (see "Notes") is 
also overridden. 

-no_existin~transaction_allowed, -nela 
causes an error if a transaction already exists in your process. (Default) 

-no_wait, -nwt 
causes an error if DMS is not currently invoked. (Default) 

-retry_on N CONDITION_LIST 
executes the command line up to N times if any of the listed conditions is 
encountered during command line execution. If N is 0, the command line is not 
retried. Separate the listed conditions by commas, with no intervening whitespace. 
The list can include any_other. The default action is as described under "Notes" 
below. 

-suspend_on CONDITION_LIST 
suspends the transaction and goes to the next command level if any of the listed 
conditions is encountered during command line execution. Separate the listed 
conditions by commas. with no intervening whitespace. The list can include 
any ~other. The default action is as described under "Notes" below. 

-wait N, -wt N 
if DMS is not currently invoked, waits N seconds before starting the transaction 
and executing the command line (you are notified when command line execution 
begins). An error condition is returned if DMS is still not up after the elapsed 
time. This operation is useful for absentee jobs submitted to perform operations 
within transactions. 

-wait_indefinitely, -wti 
if DMS is not currently invoked, waits as long as necessary to start the 
transaction and execute the command line. The status of DMS is checked at 
10-second intervals, and notification is given when command line execution begins. 

15-17 AW53-04C 



transaction transaction 

2/85 

NOTES 

If a transaction already exists in your process, the default action is -no_action_on 
any_other; otherwise the default action is -suspend_on any_other -abort_on cleanup. 

A transaction begun by txn execute is committed unless the command line fails to 
execute properly, in which case the transaction is aborted. 

A transaction severity code (displayable by the "severity transaction" command) denotes 
the status of the execute operation, as follows: 

o the operation was completed without errors and was not retried. 
1 the operation was completed, but was retried one or more times. 
2 the operation failed; the transaction was aborted or abandoned. 
3 the operation failed; the transaction could not be aborted or abandoned. 
4 the transaction could not be begun. 

The active function returns true if the severity after execution is 0 or 1: false if it is 
2. 3. or 4. 

If a transaction is currently suspended in your process. the txn execute command gets 
an error and the active function returns false. 

Operation: kill 

SYNT AX AS A COMMAND 

txn k i 11 {I O} 

SYNTAX AS AN ACTIVE FUNCTION 

[txn kill {IO}] 

FUNCTION 

expunges the current or specified transaction with no attempt to preserve consistency 
of any DM files that might have been modified by this transaction. Killing a 
transaction may destroy the consistency of any databases that the transaction is using: 
therefore use this operation when neither you nor the Daemon is able to complete the 
transaction. The active function returns true if the operation is executed successfully. 
false otherwise. 

ARGUMENTS 

ID 
is the unique identifier of the transaction to be killed (obtainable through txn 
status). (Default: the current transaction in your process) 

15-18 AW53-04C 



transaction transaction 

2/85 

ACCESS REQUIRED 

You need re access to dm_daemon~ate_. 

Operation: rollback 

SYNTAX AS A COMMAND 

txn ro 11 back 

SYNTAX AS AN ACTIVE FUNCTION 

[txn ro 1 1 back] 

FUNCTION 

rolls back the current transaction to its beginning (txn begin). undoing any changes to 
protected files caused by the transaction and releasing the locks held by it. The 
transaction is still considered active in your process. The active function returns true 
if the transaction was successfully rolled back. false otherwise. 

Operation: status, st 

SYNTAX AS A COMMAND 

txn 5t {-control_args} 

SYNTAX AS AN ACTIVE FUNCTION 

[txn 5t {-contro1_args}] 

FUNCTION 

displays information about the current transaction. selected transactions. or all 
transactions, depending on the nature of the request and your access permissions. The 
active function takes only one information control argument. 

CONTROL ARGUMENTS FOR SELECTING TRANSACTIONS 

If you supply no control arguments, or lack the proper access, only information 
pertaining to your current transaction is displayed. 

-abandoned 
displays the requested information about all TDT entries marked as abandoned. 

-all, -a 
displays the requested information about all TDT entries. 

15-19 A \V53-04C 



transaction transaction 

2/85 

-dead 
displays the requested information about all TDT entries belonging to dead 
processes. 

-transaction id ID, -tid ID. -id ID 
displays the requested information about the transaction with unique identifier ID, 
where ID is a decimal integer. Transaction identifiers are assigned at txn begin 
time and can be viewed by the txn status command. 

-transaction_index N, -tix N, -index N _. 
displays the requested information about entry number N in the TDT. TDT entry 
indexes are of interest mainly to data management maintainers and can be viewed 
by the txn status command. 

CONTROL ARGUMENTS FOR SELECTING INFORMATION 

If you give none of the following control arguments, all information is displayed for 
each TDT entry selected. You can specify only one control argument far the active 
function. 

-before-purnal_path, -bj_path 
returns the pathname of the before journal used by the current transaction. 

-date_time_begun, -dtbg, -begun 
returns the date and starting time of each transaction. 

-error, error_info 
returns a description of the latest error. if any, to have occurred while processing 
each transaction. 

-owner 
identifies the owner (User_id.Project_id) of each TDT entry. 

-process_id, -pid 
returns the octal process_id of the owner of each TDT entry. 

-rollback_count, -rbe 
returns the number of times each transaction has been rolled back. 

-state 
indicates the state of each transaction, which must be one of the following: 

no transaction (e.g., the process might have owned a transaction. which has 
been taken over by the DM Daemon) 

in progress 

{Error OPERA TION, calling PROGRA1.1_NAME. which gives the 
operation currently in prO~1 eSS, such as abort or commit, and the entry point 
being caned: and is followed by an error message if appropriate. 

15-20 AW53-04C 



transaction transaction 

2/85 

-switches, -switch, -sw 
lists those transactions that. are either abandoned, killed. or suspended or whose 
owner processes are dead. 

-total, -tt 
prints totals information for the TDT, including: 

number of slots available (not yet reserved by processes) 

number in use (Le., reserved by processes at first invocation of DMS) 

number of entries owned by dead processes (of the number in use) 

number of abandoned entries (of the number in use) 

number of entries occupied by transactions (i.e., slots reserved by processes 
that have started transactions) 

number of transactions in error. 

-transaction_id, -tid, -id 
supplies the unique identifier of each transaction. Use of -transaction_id with a 
specific transaction ID returns information about that transaction. 

-transaction_index, ·-tix; -index 
returns the index of entries in the TDT. This index is mainly of interest to data 
management maintainers. Use of -transaction_index with a specific integer N 
returns information about a given TDT entry number. 

NOTES 

You can't use the following control arguments with the active function: -abandoned, 
-all, -dead, and -total. 

You need re access to dm_admin~ate_ to view the status of any other user's 
transactions. 

EXAMPLES 

The command 

txn status -tid 
9 

asks for the unique identifier of the transaction currently owned by the reque~ting 
user process. 

15-21 A'W53-04C 



transaction transaction 

2/85 

The command 

txn status -a -owner -dtbg -tid 
TOT size: 6 entries 
In use: 4 
Dead processes: 1 
Abandoned entries: 0 
Transactions: 3 
Error transactions: 0 

Transaction id: 4 
Owner: Merri ll.Multdev 
Begun at: 02/12/84 0837.11 est wed 

Owner: Lynch.Multdev 
No Transaction. 

Transaction id: 9 
Owner: Pierce.Oebug 
Begun at: 02/12/84 0846.3 est wed 

Tr ansac t i on i d: 12 
Owner: Fenner.Support 
Begun at: 02/12/84 0901.5 est wed 

requests that each transaction in the TDT be identified as to its unique identifier, 
owner, and date/time of origin. 

The command 

txn status 
Transaction id: 4 
TOT index: 2 
Process id: 467265315627 
Owner: Smith.Applications 
Begun at: 02/12/84 0846.3 est wed 
State: In progress 
Error: none 
Checkpoint id: 0 
Rollback count: 0 
Before journal path: >site>dm>system_low>system_default.bj 
Switches: none 

requests all available information on the transaction owned by the requesting user 
process. 

15-22 AW53-04C 



transaction 

2/85 

The command 

txn status -tix 1 -pid -state -error -switches 
Process id: 625731253642 (dead) 
State: Error - Abort, ca11 ing bjm_$write_aborted_mark 
Error: The before journal is full ~ 

Switches: ABANDONED, DEAD_PR~~ESS 

requests the process id. state. error condition, and switch settings for the specified 
transaction index entry. 

Name: before-Journal_manager_ 

The before~ournal_manager_ subroutine provides the means to manipulate, and obtain 
information about, before journals. Before journals are used to store before images of 
protected data management (DM) files, for the purpose of rolling back modifications 
to these files in the event of failure. 

See the section entitled "Multics Data Management" in the Programmer's Reference 
Manual, Order No. AG91, for a complete description of before journals and their 
use. 

This entry point closes the specified before journal, making it unavailable to the 
current process. A journal can be opened more· than once in a process, in which case 
the same opening id is returned for each open request. In that case, the close 
operation merely decreases by one the number of journal openings in the process. If 
a c1ose_bj request is issued by a process on a journal while the process still has an 
active transaction in that journal, the journal cannot be closed and an error code is' 
returned to the caBer. If the journal to be closed was the default before journal for 
the process, the before journal which was last opened in the process (if any) becomes 
the default before journal (see "Notes" under the set_defaull_bj entry). 

USAGE 

declare before_journal_manager_$close_bj entry (bit(36) al igned, fixed 
bin (35) ) ; 

ARGUMENTS 

b j_ opening_id 
is the opening identifier of the before journal. (Input) 

15-23 AW53-04C 



2/85 

code 
is a standard system error code. (Output) 

This entry point creates a before journal file as specified by the input arguments. 

USAGE 

declare before_journal_manager_$create_bj entry (char (*), char(*), fixed 
bin, fixed bin, fixed bin(35»; 

call before~ournal_manager_$create_bj (dir_name, entry name, 
n_control_intervals, control interval_size, code); 

ARGUMENTS 

dir_name 
is the pathname of the directory in which the before journal is to be created. 
(Input) 

en try _name 
is the entry name of the before journal to be created. The .bj suffix must be 
included. (Input) 

n_control_intervals 
is the size of the journal expressed in the number of control intervals. (Input) A 
before journal is a circular file; when information is no longer useful (i.e .• before 
images for committed or aborted transactions). it will be overwritten. allowing the 
space to be reused. In estimating the size of a journal. you should consider the 
number of transactions to be using the journal simultaneously. as well as their 
profiles, i.e., their length in time and the rate at which they modify data, to 
optimize perf orrnance. 

con trol_in terval_size 

code 

is the size of the before journal control interval in number of bytes. (Input) The 
size is currently fixed at 4096. 

is a standard system error code. (Output) 

15-24 A \V53-04C 



2/85 

This entry point returns the opening identifier of the before journal to be used as the 
default in those cases where a before journal specification is expected but not 
supplied. The rules for determining this default before journal are described in 
"Notes" under the set_default_bj entry point. If the journal which is to serve as the 
default before journal is not open at the time of this call, it is opened automatically. 

USAGE 

declare before~ournal_manager_$get_default_bj entry (bit(36) aligned, 
fixed bin (35) ) ; 

ARGUMENTS 

bj_oid 
is the opening identifier of the current default before journal. (Output) 

code 
is a standard system error code. (Output) 

Entry: before-.iournal_manager _$open_hj 

This entry point makes the before journal sIJP~ified by the pathname, ready for use by 
any transaction of the current process. A process may have several before journals 
open at the· same time, and may also have the same journal opened more than one 
time. When a transaction is started, one of the open journals must be associated with 
the transaction, if the transaction needs a before journal. One can expect that in most 
cases, a process will open only one before journal, which will be used by all its 
transactions. 

This entry may also change the default before journal for the process to the newly 
opened journal (see "Notes" under set_default_bj). 

USAGE 

declare before_journal_manager_$open_bj entry (char U~), char U:), bit (36) 
ali gned, fixed bin (35) ) ; 

call before_journal_manager_$open_bj (dir_name, entry_name, 
bj_opening_id, code); 

ARGUMENTS 

dir_name 
is the pathname of the directory In which the before journal to be opened 
resides. (Input) 

15-25 AW53-04C 



bef ore~ournal_manager_ bef ore~ournal_manager_ 

2/85 

entry_name 
is the entry name of the before journal to be opened. The .bj suffix must be 
included (Input) 

bLopenin~id 
is the opening identifier of the journal. (Output) This specifier must be used 
subsequently by the current process to identify this journal. 

code 
is a standard system error code. (Output) 

NOTES 

When a before journal is opened, it is remembered in a per system table contaInIng 
the pathnames and unique identifiers of all before journals opened in the system. This 
table is used after a system crash to determine which journals must be reopened and 
examined in order to perform a rollback operation. To preserve the integrity of this 
table, it is written out to disk automatically each time it is updated with a newly 
opened journal. 

If a process opens the same before journal more than one time, the opening identifier 
received from the open_bj will be the same. for each call. The process must close a 
before journal the same number of times it opens it. to render the journal inaccessible 
through the same opening identifier. 

This entry point causes the specified before journal to become the default before 
journal. When no before journal is explicitly specified by the user at the beginning of 
a transaction, the default before journal for the process will be assigned to the 
transaction. The default before journal must be one of the before journals open in 
the process. 

USAGE 

declare before_journal_manager_$set_default_bj entry (bit(36) aligned, 
fixed b i 1-1(35) ) ; ~-

ARGUMENTS 

bj_openin~id 
is the opening identifier of the before journa1. (Input) 

code 
is a standard system error code. (Output) 

15-26 A \V53-04C 



2/85 

bef ore..Journal_manager_ 

NOTES 

Several before..Journal_manager_ entries expect an opening id to specify which before 
journal to use. If bj_openin~id is null, the following default assignments are 
attempted. in the order in which they are mentioned below, until one of them 
succeeds: 

• The current default before journal in this process, if there is one; otherwise. 

• The most recently open before journal among those that are still open, if there 
is one; otherwise, 

• The system before journal. If the system before journal has not been opened 
yet in the current process, it is automatically opened. 

This entry point sets the maximum number of bytes a single transaction may use. 

USAGE 

declare before_journal_manager_$set_transaction_storage_limit entry 
(char (1:), char U'), fixed bin (35), fixed bin (35); 

call before~ournal_manager_Sset_transaction_storage_l imit (dii name, 
entryname, storage_l imit, code); 

ARGUMENTS 

dir_name 
is the pathname of the containing directory. (Input) 

entryname 
is the entryname of the before journal. (Input) 

storage_limi t 
is the maximum number of bytes a single transaction may use in the before 
journal. (Input) 

code 
is a storage system status code. (Output) 

15-27 AW53-04C 



transaction_manager _ transaction_manager_ 

2/85 

Name: transaction_manager_ 

Entry points in transaction_manager_ begin and end transactions on behalf of users, 
return information about transactions, and recover transactions after system failure. 

See the section entitled "Multics Data Management" in the Multics Programmer's 
Reference Manual. Order No. AG91" for a complete description of transactions and 
their use. 

Entry: transaction_manager _$abandon_txn 

This entry point relinquishes control of the current transaction, causing it to be 
adjusted (aborted unless a commit was already in progress) by the DM daemon 
(Data_Management. Daemon). The caller is immediately given a new TDT entry and 
can begin another transaction. 

USAGE 

declare transaction manager $abandon txn entry (bit (36) aligned, fixed 
bin(35»; - - -

call transaction_manager_$abandon_txn (txn_id, code); 

ARGUMENTS 

txn_id 

code 

is the identifier of the current transaction, or "O"b to default to the current 
transaction. (Input) If txn_id is neither "O"b nor the transaction identifier of the 
current transaction, dm_error_$transaction_not_current is returned. This argument 
can be used as a check to be sure which transaction is being abandoned. 

is a standard system status code. (Output) It can also be: 

dm_error_$no_current_transaction 
No current transaction is defined for this process. 

dm_error_$not_own_transaction 
A process can only abandon its own transaction. 

dm_ error _$ transac tion_suspended 
The current transaction is suspended and therefore cannot be abandoned. 

15-28 AW53-04C 



2/85 

transaction_manager_ 

This entry point aborts the current transaction, returning all modified DM files to the 
state they were in before the transaction began. 

USAGE 

declare transaction manager Sabort txn entry (bit(36) al igned, fixed 
bin(35); - - -

ARGUMENTS 

txn_id 

code 

is the identifier of the current transaction, or "oub to default to the current 
transaction. (Input) If txn_id is neither "O"b nor the transaction identifier of the 
current transaction, dm_error_$transaction_not_current is returned. This argument 
can be used as a check to be sure which tran~ction is being aborted. 

is a standard system status code. (Output) It can also be: 

dm_error _$no_current_transaction 
No current transaction is defined for this process. 

dm_error _$not_own_ transaction 
A process can only abort its own transaction. 

dm_error _$ transaction_suspended 
The current transaction is suspended and therefore cannot be aborted. 

dm_error_$unfinished_commit 
The transaction was left in the middie of a commit operation. It is possible 
to call $commit_txn to complete the commit, or call either $abandon_txn or 
$kill_txn. 

NOTES 

If the transaction has already been abandoned, this entry point causes the DM daemon 
to abort it immediately. 

This entry point will retry abort of a transaction that was left in an error state by a 
previous abort or rollback. It will not attempt abort of a transaction left in error by 
any other operation. 

15-29 AW53-04C 



transaction_manager _ transaction_manager _ 

2/85 

Entry: transaction_manager _$begin_txn 

This entry point begins a transaction on behalf of the caller. by generating a unique 
transaction identifier and recording it in a TDT entry as the current transaction for 
the process. Other information, such as owner name. begin time. and transaction state 
(in-progress) are also recorded. The transaction id is passed to the before journal 
manager to begin the transaction. 

USAGE 

declare transaction_manager_$begin_txn (fixed bin(17), bit(36), bit(36) 
ali gned, fixed bin (35) ) ; 

call transaction_manager_$begin_txn (begin_mode, 
before~ournal_opening_id, txn_id. code); 

ARGUMENTS 

begin_mode 
determines which of several protocols to use. (Input) The only mode currently 
available is normal mode. 

TM_NORMAL_MODE 
requires locks to accompany all gets and puts, and requires all updates to be 
journalized. 

bef ore~ournal_openin!Lid 
is the opening identifier of the before journal to be used by this transaction. 
(Input) If zero, a before journal is assigned by default to this transaction. 

txn_id 

code 

is the identifier of the newly created transaction. (Output) It is generated by 
transaction_manager_$begin_txn and is guaranteed to be unique across all Multics 
systems. Transaction identifiers are not reusable. 

is a standard system status code. (Output) It can also be: 

dm_error _Sin valid_mode 
The specified begin_mode is not currently supported. 

dm_error _$no_begins 
Transactions are not allowed to be begun because DM daemon has disallowed 
beginning new transactions. for example when preparing to do a systemwide 
DMS shutdown. 

dm_ error _$ transaction_suspended 
A transaction cannot be begun because a suspended one already exists. 

dm_ error _$transaction_in_progress 
A transaction cannot be begun because one is already active. 

15-30 AW53-04C 



transaction_manager _ transaction_manager _ 

2/85 

Entry: transaction_manager _Scommit_txn 

This entry point commits the current transaction. Any modifications made to DM files 
since the transaction began become permanent and visible to other transactions, as if 
all the changes were made in the same instant. 

USAGE 

declare transaction manager $commit txn entry (bit(36) al igned, fixed 
bin (35) ) ; - - -

ARGUMENTS 

txn_id 

code 

is the identifier of the current transaction, or "O"b to default to the current 
transaction. (Input) If txn_id is neither "oub nor the transaction identifier of the 
current transaction, dm_error _$transaction_not_current is returned. This argument 
can be used as a check to be sure which transaction is being committed. 

is a standard system status code. (Output) It can also be: 

dm_ error _$no _curren t_ transaction 
No current transaction is defined for this process. 

dm_error_$not_own_transaction 
A process can only commit its own transaction. 

dm_ error _$ transaction_suspended 
The current transaction is suspended and therefore canno! be committed. 

dm_error _$unfinished_abort 
The transaction was left in the middle of an abort operation. It is possible 
to cal1 $abort_txn to complete the abort, or call either $abandon_txn or 
$kil1_txn. 

dm_error_$unfinished_rol1back 
The transaction was left in the mlOOle of a rOllback operalion. It is POSS} ole 
to call $rollback_lxn to complete the rollback. can $abort_txn to abort the 
transaction. or call either $abandon_txn or $kill_txn. 

NOTES 

This entry point wi11 retry commit of a transaction that was left in an error state by 
a previous commit. It will not, however, attempt to commit a transaction left in error 
by any other operation. 

15-31 A \\153-04C 



transaction_manager _ transaction_manager _ 

2/85 

This entry point returns the identifier of the current transaction, and tells whether the 
transaction is suspended or in error. See "Notes" below for a table of transaction 
identifiers and error codes returned. 

USAGE 

declare transaction_manager_Sget_current_txn_id entry (bit(36) aligned, 
fixed bin (35) ) ; 

ARGUMENTS 

txn_id 
is the identifier of the current transaction. (Output) 

code 
is one of the codes listed below. (Output) 

NOTES 

The txn_id and code values returned depend on the status of the current transaction: 

1. Txn in progress. 
2. No current txn. 
3. Txn suspended. 
4. Txn in error. 

txn id code 

va 1 i did 
o 
va l' i did 
val id id 

or: 
or: 

o 
dm error $no current transaction 
dm-error-Stransactio~ suspended 
dm-error-Sunfinished abort 
dm-error-Sunfinished-commit 
dm:error=Sunfinished:rol1back 

This entry point returns a structure containing al1 the information in the TDT about a 
transaction. 

USAGE 

declare transaction_manager_Sget_txn_info entry (bit(36) aligned, ptr, 
fixed bin (3S) ) ; 

15-32 AW53-04C 



transaction_manager _ transaction_manager _ 

2/85 

ARGUMENTS 

txn_id 
is the identifier of a transaction, or "O"b to default to the current transaction. 
(Input) 

txn_info_ptr 
is a pointer to the txn_info structure, declared in dm_tm_txn_info.incl.pll. (Input) 

code 
is a standard system status code. (Output) 

ACCESS REQUIRED 

The caller requires re access to dm_admin~ate_ to obtain information about another 
user's transaction. 

STRUCTURE 

This structure, declared in dm_tm_txn_info.incl.pll, returns information about a 
transaction. 

dcl 1 txn info 
2 version 
2 txn id 
2 txn_index 
2 mode 
2 state 
2 error_code 
2 checkpoint_id 
2 rollback_count 
2 owner_process_id 
2 owner name 
2 date time created 
2 flags, 
3 (dead_process_sw, 

suspended_sw, 
error_sw, 
abandoned sw, 

ali gned based (txn info ptr), 
char (8), --
b t (36) al igned, 
f xed bin, 
f xed bin, 
f xed bin, 
f xed bin (35), 
f xed bin, 
f xed bin, 
b t (36), 
char (32), 
fixed bin (] 1) , 

k i 11_ sw) - bit (1) una 1 i gned , 
3 mbz bit (31) una 1 i gned, 

2 journal_info aligned, 
3 bj_uid bit (36), 
3 bj_oid bit (36), 
3 last completed operation 

- - char (4), 
3 first_bj_rec_id bit (36), 
3 last_bj_rec_id bit (36), 
3 n rec wr i t ten fixed bin (35), 
3 n_bytes_written fixed bin (35); 

15-33 AW53-04C 



transaction_manager _ transaction_rnanager_ 

2/85 

STRUCTURE ELEMENTS 

version 
is the version of the structure, currently TXN_INFO_ VERSION_5. 

txn_id 
is the identifier of the transaction .. 

txn_index 
is the index of the TDT entry for the transaction. 

mode 

state 

is the begin_mode according to which the transaction was begun. See 
transaction_manager _$begin_ txn for a list of modes. 

is one of the states declared in the include file dm_tm_states.incl.pll. It is either 
TM_IN_PROGRESS_ST A TE for an in-progress transaction. one of several intermediate 
states corresponding to calls made by the transaction manager (usually when the 
owner process has died in the middle of a call to transaction_manager.J. or one 
of several error states corresponding to error codes returned by transaction_manager_. 

error_code 
is 0 or an error code returned by the last call made by the transaction manager. 

checkpoin t_id 
is the identifier of the checkpoint that has most recently been rolled back to, or 
o for the start of the transaction. 

rollback_coun t 
is the number of times that the transaction has been rolled back, either by a 
rollback operation or as part of an unfinished abort 

owner _process_id 
is the identifier of the process that began the transaction. This process mayor 
may not still be running. 

owner_name 
is the Person. Project identifier of the process that began the transaction. 

date_time_created 
is the date-time that the transaction was begun. 

dead_process_sw 
is "1 "b if the process that began the transaction is no longer running. 

suspended_sw 
is "1"b if the transaction is currently suspended. 

error_sw 
is "1"b if the transaction manager received an error code from one of its caBs 

15-34 A \V53-04C 



transaction_manager -'- transaction_manager_ 

2/85 

(error_code A= 0) and the transaction has not been adjusted since. 

abandoned_sw 
is "1 "b if the transaction was abandoned by the owner via a call to 
$abandon_txn. 

kill_sw 
is "l"b if the owner called $kill_txn and the transaction is therefore waiting to 
be killed. 

bj_uid 
is the UIn of the before journal chosen when the transaction was begun. 

bj_oid 
is the per-process opening identifier of the before journal used by the transaction. 

last_ completed_opera tion 
is the name of the last completed before journal operation. 

first_bj_rec_id 
is the identifier of the first mark for this transaction. 

last_ b j_rec_id 
is the identifier of the last mark for this transaction. 

n_rec_written 
is the number of marks that were written for this transaction. 

n_ bytes_ wri tten 
is the total number of bytes written to the journal. 

Entry: transaction_manager _Skill_txn 

This entry point is intended to be called by the owner of a transaction when the 
owner cannot end the transaction normally and does not want the daemon to try to 
abort it for reasons of efficiency. Killing a transaction can destroy the consistency of 
the databases changed during the transaction, and is therefore appropriate only if 
consistency is no longer an issue (for example. if the databases are to be deleted). As 
with $abandon_txn. calling this entry point frees the user to begin a new transaction. 

USAGE 

declare transaction manager Skill txn entry (bit(36) al igned, fixed 
bin (3S) ) ; - - -

15-35 AW53-04C 



transaction_manager _ transaction_manager _ 

2/85 

ARGUMENTS 

txn_id 
is the identifier of the transaction to be killed. (Input) If it is "O"b, the current 
transaction is used. 

code 
is a standard system status code. (Output) It can also be: 

dm_error_$no_current_transaction 
With txn_id="O"b. no current transaction is defined for this process. 

dm_error _$transaction_suspended 
With txn_id=·'O"b, the current transaction is suspended and therefore cannot 
be killed. 

ACCESS REQUIRED 

The caller requires re access to dm_adminJate_. 

Entry: transaction_manager _Sresume_txn 

This entry point reactivates a suspended transaction. once again allowing data 
operations on protected files. 

USAGE 

declare transaction_manager_Sresume_txn entry (fixed bin(35»; 

call transaction_manager_Sresume_txn (code); 

ARGUMENTS 

code 
is a standard system status code. (Output) It can also be: 

dm_error _$no_curren t_ transaction 
No current transaction is defined for this process. 

dm_ error _$no _suspended_ transaction 
The current transaction is not suspended. 

15-36 AW53-04C 



transaction_manager _ transaction_manager_ 

2/85 

Entry: transaction_manager ~$rollback_txn 

This entry point rolls the current transaction back to its beginning, by replacing all 
modifications to protected files caused by the transaction, with the before images 
preserved in the appropriate before journal. The transaction remains current for the 

. user process. 

USAGE 

declare transaction manager $rollback txn entry (bit(36) aligned, fixed 
bin, fixed b i -;:; (35) ); - -

call transaction manager $rol1back txn (txn_id, checkpoint_number, 
code) ; - - -

ARGUMENTS 

txn_id 
is the identifier of the current transaction. or "O"b to default to the current 
transaction. (Input) If txn_id is neither "O"b nor the transaction identifier of the 
current transaction. dm_error_$transaction_not_current is returned. This argument 
can be used as a check to be sure which transaction is being rolled back. 

checkpoin t_num ber 

code 

must currently be O. (Input) 

is a standard system status code. (Output) It can also be: 

dm_error_$no_current_transaction 
No current transaction is defined for this process. 

dm_error _$not_own_transaction 
A process can only roll back its own transaction. 

dm_error _$transaction_suspended 
The current transaction is suspended and therefore cannot be rolled back. 

dm_error _$unfinished_abort 
The transaction was left in the middle of an abort operation. It is possible 
to call $abort_txn to complete the abort. or call either $abandon_txn or 
$ki1l_txn. 

dm_error _$unf inished_commi t 
The transaction was left in the middle of a commit operation. It is possible 
to call $commit_txn to complete the commit, or call either $abandon_txn or 
$kil1_txn. 

15-37 AW53-04C 



transaction_manager _ transaction_manager_ 

2/85 

NOTES 

This entry point will retry rollback of a transaction that was left in an error state by 
a previous rollback. It will not attempt to rollback a transaction left in error by any 
other operation. 

Entry: transaction_manager _$suspend_txn 

This entry point puts the current transaction into a suspended state wherein it is 
temporarily unusable. Data operations to protected files are not allowed while the 
transaction is suspended, that is, until $resume_txn is called. Since the suspended 
transaction has not been completed, no new transaction can be begun. 

USAGE 

declare transaction_manager_$suspend_txn entry (fixed bin(35»; 

call transaction_manager_$suspend_txn (code); 

ARGUMENTS 

code 
is a standard system status code. (.Output) It can also be: 

dm_error_$no_current_transaction 
No current transaction is defined for this process. 

dm_ error _$ transactions~suspended 
The current transaction is already suspended. 

NOTES 

Suspension has the following effects: 

1. The current transaction is temporarily unusable. As a result, the entry point 
$get_current_txn_id returns "oub and the error code 
dm_error _$transac tion_suspended. 

2. No data operations on protected files are allowed while the transaction is 
suspended. 

4. Both $abort_txn and $adjust_tdt_entry (called by DMS) work on suspended 
transac tions. 

15-38 AW53-04C 



APPENDIX A 

ERROR TABLES 

The error codes used by MRDS are contained in a separate error table named 
mrds error. This error table is utilized in the same way as error table (see 
"Handling Unusual Occurrences" in the Reference Manual) and contains those messages 
and error codes applicable to MRDS. 

async include file change 
Include files-no longer match. 

attr already exists 
-The given attribute name has a previous definition. 

attr error 
-No attribute specification found following an attribute keyword. 

bad access mode 
- Data base access mode is not a composite of r, s, m, d, or n. 

bad arith const 
An invalid arithmetic constant or value has been detected8 

bad attr 
An illegal tuple attribute has been specified in the selection expression. 

bad attr name 
- Attribute name contains an invalid attribute name character. 

bad buil tin obj 
- Unable-to reference the scalar built-in functions. 

bad del im 
A delimiter has been incorrectly specified. 

bad domain proc 
- Encode/decode procedure could not be accessed. 

bad eq 
- An equal sign has been incorrectly specified. 

bad ident 
An identifier contains invalid characters. 

bad invert file type 
- Entry-is not a multisegment file. 

bad key retrieve 
- Retrieval based on a primary key found multiple tuples. 

bad keyword 
- An expected keyword was not found. 

3/84 A-1 AW53-04B 

I 

I 
I 

* 

I 

* 

I 

* 



bad model 
A file which is not a data model or is inconsistent has been specified. 

bad op 
- An arithmetic operator has been improperly specified in the -where clause. 

bad pathname 
- The pathname supplied is a control argument. 

bad quant 
- No tuple variable was specified following a quantifier. 

I bad reI name 
- Relation name contains an invalid relation name character. 

bad select value 
- An unsupported data type was specified for a select item value. 

bad source path 
- Source pathname is a control argument. 

bad temp reI val 
- A value-specified for a temporary relation index is not an integer. 

bad var 
- An illegal tuple variable has been specified in the selection expression. 

block sel in cons 
The number of items being selected is inconsistent among select blocks. 

bool leaf 
-An 'and' or 'or' operator has a constant or tuple attribute operand. 

cant ref fun 
-Unable to reference a declared or built-in function. 

comp sel expr 
-Complex selection expressions are not allowed for update operations. 

conversion condition 
The conversion condition has been signalled during a data conversion attempt. 

ctl ent is dir 
The control file path is a directory, not a vfile msf. 

curr not alld 
-A -current operation is not permitted for a selection expression containing 

set operations. 

db already open 
- Attempt to open a data base before previous openings have been closed. 

db busy 
- The specified data base is currently busy -- try later. 

db conflict dead process 
- A scope request cannot be honored due to a conflict with a nonpassive dead 

process. 

diff comp domain 
-Attempt to compare attributes which are not defined over the same domain. 

dom integ 
- A value to be inserted into the data base does not satisfy integri ty constraints. 

domain already defined 
The given-domain name has a previous definition. 

3/84 A-2 AW53-04B 



dup invert dir name 
- Inveriion-entry not ~ directory. 

dup not alld 
- A -:'dup is not allowed in a -current clause or in an operation other than 

retrieve. 

dup_rel 
The given relation name has a previous definition. 

dup store 
- A tuple with the specified primary key already exists. 

dup temp reI attr 
- A non-unique attribute name was found in the definition of a temporary 

relation. 

duplicate key 
A tuple with the specified primary key already exists. 

duplicate opt 
A control option was given more than once. 

duplicate scope 
Attempt to define scope upon a file more than once. 

empty range 
No range definitions were found following a -range keyword. 

empty select 
No tuple attribute or tuple variable was specified following a -select or 
-current keyword. 

empty where 
No predicate follows the -where keyword. 

error condition 
The error condition has been signalled during a data conversion attempt. 

ex pr sta ck ov fl 
-Translator error -- expression stack overflow. 

expr syntax 
-A syntax error has been detected within an arithmetic expression. 

expression not complete 
A relation definition expression is not complete. 

ext data 
- Data follows the right parenthesis. 

fixedoverflow condition 
The fixed overflow condition has been signalled during a data conversion 
attempt. 

free not quiesced 
-Attempt to free a data base which was not quiesced. 

fun syntax 
- A syntax error has been detected within a function reference. 

hold quiesced db 
-Attempt 10 quiesce a data base before previously quiesced data bases have 

been freed. 

ill term 
There is an illegal term in the -where clause. 

3/84 A-3 AW53-04B 

I 

* 



inv comparison 
The data types cannot be compared. 

inv ke yword 
- An unrecognizable keyword was found in the selection expression. 

2/85 A-4. 1 AW53-04C 



Tnis page intentionally left blank. 

2/85 AW53-04C 



illegal procedure condition 
The illegal procedure condition has been signalled during a data conversion 
attempt. 

inc attr acc 
Incorrect access to attribute. 

inc ready mode 
- The specified operation is not compatible with the current file ready mode. 

inc reI ace 
Incorrect access to relation. 

inc secure open 
Attempt to open secured data base from model, or through non-secure submodel. 

i ncomp se 
A-selection expression of -another is valid only for a retrieve operation. 

I incomp se and scope 
The selection expression was -another, but the scope has been changed from 
non-shared to shared mode. 

incomplete declaration 
Incomplete declaration. 

incons db 
There is an inconsistency in the data base. If this error persists, contact your 
Data Base Administrator. 

inconsistent close 
The database has been closed -- but has been lockad because of an inconsistency. 

inconsistent data length 
The selection exression was -another, but the current data length is different 
than the previous call to retrieve. 

inconsistent database 
There is an inconsistency in the data base. If this error persists, contact your 
Data Base Administrator. 

inconsistent info 
An internal inconsistency has been detected. 

inconsistent num files 
Number of fIles in data base doas not match nu~ber specified in db model. 

inconsistent options 
Options-supplied cannot be used together. 

inconsistent submodel 
Inconsistent submodel. 

I inconsistent transaction se 
The selection expression was -another, but the original selection expression was 
in another transaction. 

incorrect dsmd seq 
Oata-submodel definition entry called in incorrect sequence. 

insuff args 
There is no argument corresponding to a .V. in the selection expression. 

internal error 
Internal MROS programming error. Please contact the MROS developers. 

inv attr name first char 
Invalid iltribute name; attribute names must begin with an alphabetic character. 

2/85 A-4 AW53-04C 



inv literal type 
- The value of a constant is not a string or arithmetic data type. 

inv operator 
- The relational operator index is not valid. 

inv reI name first char I 
- Invalid-relation name; relation names must begin with an alphabetic character. 

inv string 
- An invalid string constant has been specified in the selection expression. 

inv string len 
- An invalid repetition factor has been specified for a string constant. 

inv token 
An unrecognizable token was found in the selection expression. 

inval del expr 
Invalid selection expression for delete. 

inval dtr expr 
Invalid selection expression for define._temp_rel. 

inval mod expr 
Invalid selection expression for modify, 

inval rtrv expr 
InvalId selection expression for retrieve. 

inv al id db index 
Specified data base index does not correspond to currently open data base. 

invalid dec data 
Invalid data. 

invalid dm descriptor 
Data type given by descriptor not supported by Data Base Manager. 

invalid opening mode 
Invalid opening mode. 

invalid precision 
Invalid precision specification. 

invalid reI 
Submodel relation failed to perfectly validate against the model relation. 

invalid reI index 
An-invalid relation index has been given. 

invalid scale 
Invalid scale specification. 

invalid select sets 
An-invalid select sets sequence has been detected. 

invalid string length 
Invalid string length. 

key encd ovfl 
- An overflow has occurred while encoding a floating point key/index value. 

list duplicate 
-A duplicate appears in the given list. 

lit string ovfl 
- Translator error -- the literal area has overflowed. 

3/84 A-5 AW53-04B 



long ident 
-An identifier consists of more than 32 characters. 

long index 
-An index attribute is longer than the maximum key length allowed. 

long key 
-The primary key is longer than the maximum length allowed. 

max and groups 
- Translator error -- maximum number of 'and' groups exceeded. 

max and terms 
Translator error -- maximum number of terms in 'and' group exceeded. 

max attributes 
The maximum number of attributes allowed per relation has been exceeded. 

max expr items 
- Too-many items have been specified in an arithmetic expression. 

max indexes 
- The maximum number of secondaryily indexed attributes for a single relation 

has been exceeded. 

I max rels 
The maximum number of relation allowed per data base has been exceeded. 

* 

* 

max retr len 
The-selected attributes exceeded the maximum temporary space available to 
hold them. 

max select items 
- Too many items have been specified for selection in a -current or -select 

clause. 

max sf args 
- The maximum number of scalar function arguments allowed has been exceeded. 

max temp rels 
- The-maximum number of temporary relation definitions has been exceeded. 

max tup var 
- Too many tuple variables have been specified. 

max vars reI 
- More tuple variables than iocb's for a given relation. 

missing relation name 
Relation name not specified. 

missing select 
An-expected -select clause was not found. 

mixed versions 
Attempt to use different version data bases in same argument list. 

mod key attr 
- Attempt to modify a key attribute. 

mult asts 
-Multiple asterisks followed an attribute name. 

mult att def 
-An ittribut~ hR~ h~~n multiply 5pe~ified within a relation expre55io"~ 

3/84 A-6 AW53-04B 



mult att ref 
-An attribute has been multiply referenced within a relation expression. 

mult def var 
-A tuple variable has been multiply defined in the range clause. 

mul t expr vars 
-An arithmetic expression involving more than one tuple variable has been 

specified. 

mult index 
-A relation has been specified more than once in the index clause. 

mult paren 
-Multiple left parentheses were found. 

multiple tuples found 
A selection expression for modify resul ted in more than one tuple being 
selected. 

my quiesced db 
- Attempt to quiesce a data base which has already been quiesced by this 

process. 

no attr lp 
- No-attribute name was found following the left parenthesis. 

no attr spec 
- None of the submodel attributes were found in the data model. 

no ctl path 
- No control file path name was supplied. 

no current tuple 
- No tuple was found which satisfied the selection expression. 

no database 
No MRDS data base model found with the given pathname. 

nO_db_path 
No data base path was supplied. 

no dms 
- Data management software could not be found. 

no domains 
- No domain specification found following a domain keyword. 

no dups for set oper 
- Duplicates-are not allowed in set operations. 

no inds 
No index specification found following an index keyword. 

no key specified 
- No key attribute field defined. 

no left paren 
- No-left parenthesis was found following the relation name. 

no model access 
- Insufficient access to read data base model or submodel. 

no model attr 
- The-specified data model attribute name does not exist. 

no model dom 
- The-specified data model domain name does not exist. 

3/84 A-7 AW53-04B 

I 

I 

* 

I 



no model reI 
- The-specified data model relation name does not exist. 

no model submodel 
- No data base model or submodel found with the given pathname. 

* no prev store 
- A ~another keyword has been specified for store without a previous store. 

I no primary key 
- No prImary key attributes were specified for the relation. 

no pr ior se 
- A -another or -current keyword has been specified without a prior valid 

selection expression. 

no recursion 
- This command/subroutine may not be called recursively. 

1 

no reI attr 
- No attributes were specified for the relation. 

no reI name 
- No relation name was found. 

no rels 
No relation specification found following a relation keyword. 

*1 no sel exp - No selection expression was found. 

no sm reI 
- No relation by this name exists in the submodel. 

no temp dir 
- No-temporary directory path was supplied. 

no tr keys 
- No primary keys were designated in the selection expression. 

no tuple 
- There is no tuple satisfying the qualifications. 

no tuple effect 
- Some of the tuple variables have no effect on the select set. 

no wakeup user 
- A waIting and blocked data base user could not be awakened. 

node stack ovfl 
-Transrator error -- the node stack has overflowed. 

non scope ready 
- File-was not readied for scope_update or scope_retrieve. 

not dsm 
The specified view pathname is not a data submodel. 

not freeing area 
- The supplied area does not have the freeing attribute. 

not leaf 
- A 'not' operator has a constant or tuple attribute operand. 

one tuole 00 

- More-than one tuple variable was selected for a modify or delete. 

3/84 A-8 AW53-04B 



op stack ovfl 
- Translator error -- the operator stack has overflowed. 

open name already known 
-The open name given is already defined, open names must be unique. 

open name not known 
-The given open name is not currently defined. 

open order 
-There was an attempt to open an old version data base with new version data 

bases open. 

overflow condition 
The-overflow condition has been signalled during a data conversion attempt. 

parse error 
Syntax error. 

previously defined index 
An attribute was previously defined as an index. 

process not found 
Unable-to locate specified process in the data base control segment. 

quiesce pending 
Another process is waiting to quiesce the data base. 

quiesce too few 
The number of data bases to quiesce is negative or zero. 

quiesced db 
The-data base has been quiesced by another process. 

quiesced dead db 
The-data-base has been quiesced by a process which no longer exists. 

range syntax 
A syntax error has been detected within a -range clause. 

recur sion error 
This-command/subroutine may not be called recursively. 

reI name too long 
- The-relation name exceeds the 30-character limit. 

reI node 
- A relational operator has a term or group of terms as an operand. 

rst bad attribute count 
- Model structure and attribute count don't agree. 

rst bad bit string 
- Bit string violates syntax rules. 

rst bad child count 
- Model structure and child link count don't agree. 

rst bad declaration 
- Error in the declaration of a domain. 

rst bad domain count 
- Model structure and domain count don't agree. 

rst bad encoding 
- Source character was incorrectly encoded. 

3/84 A-9 AW53-04B 

* I 



rst bad file count 
Model structure and file count don't agree. 

rst bad link count 
- Model structure and link COunt don't agree. 

rst bad model 
- Inconsistent data base model detected. 

rst bad number syntax 
- Syntax error was found in a number. 

rst bad relation count 
- Model structure and relation count don't agree. 

rst bad semantics 
- The intended meaning of a statement may be lost or misinterpreted. 

rst childless parent 
- The given foreign key has no child links. 

rst comment ends source 
- Source-segment ends in the middle of a comment. 

rst conversion error 
- Overflow occured trying to convert number to binary. 

rst dup file 
- The given file name has a previous definition. 

rst illegal char 
- Illegal character being skipped. 

rst inconsis option 
- The given attributes in a declaration are contradictory. 

rst invalid structure type 
- The given number-has no defined structure correspondence. 

rst io error 
- An error was detected during an IIO operation. 

rst link attr differ 
- The-parent/child attribute counts differ. 

rst list delete fail 
- The-item to be deleted was not in the list. 

rst list duplicate 
- Attempt to add a duplicate to the given list. 

rst logic error 
- Internal MRDS programming error. Please contact the MRDS developers. 

rst missing file model 
- File model segment not found. 

rst missing pathname 
- An expected pathname was not found. 

rst missing ref domain 
- A domaIn referenced by an attribute wasn't found. 

rst model limit 
- The capacity of the data base model has been exceeded. 

rst_name_duplicate 
A relationis attribute list contains a duplicate name. 

3/84 A-10 AW53-04B 



rst name too long 
- A name exceeds it's maximum allowable length. 

rst no key attr 
The gIven relation does not specify any key attributes. 

rst no link relation 
The given link does not have a relation attached. 

rst not reI attr 
A relation does not contain the referenced attribute. 

rst option limit 
- The upper limit for an option's value was exceeded. 

rst parse err correct 
- Unable tounderstand statement structure, attempting guess at intended syntax. 

rst parse err no correct 
- Unable to understand statment structure, and attempt at guessing intended 

syntax failed. 

rst parse err no recover 
- Unable to comprehend statement structure, and attempt to recover by skipping 

to next recognizable delimiter failed. 

rst parse err recover 
- Unable to comprehend statement structure, skipping to next recognizable 

delimiter. 

rst parse fail 
- Totally confused by statement syntax, unable to continue parsing. 

rst pathname ends source 
- The source sigment ends during a path/entry name. 

rst reI has file 
A referenced relation has a previous file definition. 

rst reserved name 
- A reserved name was used. 

rst string ends source 
- The source-segment ends within a quoted string. 

rst token too long 
- A token ixceeds the maximum string size. 

rst undef reI 
- A referenced relation has not been previously defined. 

rst undone option 
- The specified option is not implemented. 

rst unused attr 
- The gIven attribute has never been referenced in a data base relation. 

rst unused attr dom 
- The gIven domain has never been referenced in a data base relation. 

rst wrong command 
- The command or subroutine call was given in an incompatible si tuation or 

sequence. 

scal func conversion 
-A conversion condition was raised while processing a scalar function. 

scope empty 
Attempt to delete scope tuple from empty scope set. 

3/84 A-11 AW53-04B 



scope mrds access conflict 
The requested scope exceeds the MRDS access granted for this relation. 

scope not empty 
Attempt to define scope while scope is not empty. 

scope not found 
SpecIfied scope tuple not in current scope. 

scope not set 
No s~ope currently set for the specified relation. 

scope system access conflict 
The requested scope exceeds the system acl's on the given relation. 

scope viol 
This operation is not permitted within the current scope definition. 

sel blk synt 
- A syntax error has been detected within a select block. 

select mismatch 
There are not enough value arguments to satisfy all specified select items. 

select syntax 
A-syntax error has been detected within a -select or -current clause. 

sell syntax 
-A syntax error has been detected within the selection expression. 

set ovfl 
Too many select blocks have been specified in the selection expression. 

set syntax 
- Select blocks have been incorrectly combined. 

size condition 
-The size condition has been signalled during a data conversion attempt. 

surplus text 
Text follows the logical end of the source segment. 

too many args 
- The-maximum number of expected arguments has been exceeded. 

too many attributes 
- The-maximum number of attributes for a relation has been exceeded. 

too many data models 
- Attempt to open more than the maximum number for data model openings. 

too many dbs 
- Attempt to open more than the maximum allowable number of openings at one 

time. 

too_many open names 
Too-many-open names have been defined, some must be deleted first. 

too many temp files 
- The-maximum number of temporary files has been exceeded. 

trouble lock 
The data base is locked and may be inconsistent. 

tuple not found 
No tuple was found which satisfied the selection expression. 

unable to create channel 
An event channel needed to activate a queued process could not be created. 

3/84 A-12 AW53-04B 



unable to queue user 
A-user could not be placed in the waiting queue due to an error. 

unaccep fn args 
A function reference includes an unacceptable argument, or the wrong number 
of arguments. 

unbal parens 
The number of right parentheses does not match the number of left parentheses. 

undef attr 
A referenced attribute has not been previously defined. 

undef fun 
A referenced function is not built-in nor has it been declared. 

undef reI 
A specified relation name is undefined in the submodel. 

undef temp reI 
The gIven index does not refer to a currently defined temporary relation. 

undef var 
A specified tuple variable has not been previously defined. 

undefined domain 
A referenced domain has not been previously defined. 

undefined temp reI index I 
The given-index does not refer to a currently defined temporary relation. 

underflow condition 
The underflow condition has been signalled during a data conversion attempt. 

unknown cursor storage 
The pointer to the storage for the cursor pointers is bad. I 

unknown file name 
Specified relation name not known to this process. 

unknown proc id 
An-unidentifiable data base user process has been encountered. 

unknown relation name 
Relation name specified is not in the current view of the data base. 

unshared opening 
This operation is not valid for nonshared openings. 

* unsup type 
An unsupported data type has been specified as a value. 

upd temp reI 
- Update operations are not permitted for temporary relations. 

update not allowed 
A-relation is not available for update operations. 

user not found 
-Unable to locate specified user in the data base control block. 

var stack ovfl 
- Translator error -- the variable stack has overflowed. 

* version 1 dsm 
VersIon 1 submodels are no longer supported by MRDS. I 

3/84 A-13 AW53-04B 



I version 3 db 
versIon 3 data bases are no longer supported by MRDS. 

* 

version not supported 
The data base is a version not supported by this command/subroutine. 

view prevent 
-The specified operation cannot be accomplished using the current data base 

view. 

where syntax 
A syntax error has been detected within the -where clause. 

3/84 A-14 AW53-04B 



APPENDIX B 

MRDS DATA 

Data that is specific to MRDS is contained in a table named mrds data. It 
provides changeable limits on the operation of MRDS. 

Listed below are the parameters used during the compilation of some of the 
MRDS modules. 

Data Item Name 
and Declaration Value 

caller define temp reI 4 
fixed bin(35) -

caller delete 
fixed bin(35) 

caller modify 2 
fixed bin(35) 

caller retrieve 3 
fixed bin(35) 

control segment name db.control 
charT32) -

current version 4 
fixed bin(35) 

current version status 8 
fixed bin(35J 

dmd version 4 
fixed bin(35) 

dsmd version number 5 
fIxed binT35) 

file id len pad 7 
fIxed bin(35) 

key search threshold 50 
fixed bln(35) 

lit string size 
fixed bIn(35) 

lock wait 
fIxed bin(35) 

lock wait time 
fIxed bin(35) 

max and groups 
fixed bin(35) 

max and terms 
fixed bin(35) 

max attributes 
fixed bin(35) 

max builtin args 
fixed bin(35) 

max data length 
fixed-bin(35) 

max dbs 
fixed bin(35) 

max expr_items 

73728 

goo 

30 

100 

20 

256 

4 

2000 

128 

20 

B-1 

Description 

translate called by 
define temp reI 

translate-called by delete 

translate called by modify 

translate called by retrieve 

name of data base 
concurrency control segment 

current data base version 

current version status structure 
major number-

version of model header 
structure· 

version of submodel header 
structure 

length of file id in bits 
in tuple id-

number of tuples selected before 
an additional key search, rather 
than comparisons against the 
selected set will be done. 

max length of a literal 
string 

wait time to lock acs 
control segment 

set_scope default wait time 

max "and groups" allowed 
in s.e. pred tree 

max terms allowed in an 
and group in pred tree 

max attrs allowed per 
relation by CMDB 

max number of arguments to 
a built-in function 

max temp reI record 
data length 

number of data base openings 
allowed 

stack depth for eval 

AW53-04 



fixed bin(35) 
max expr stack size 

fixed-bin(35) 
max id len 

fixed bin(35) 
max kattr len 

fixed bin(35) 
max key len 

fixed bin(35) 
max line size 

fixed-bin(35) 
max lit string size 

fixed bin(35) 
max pred depth 

fixed bin(35) 
max pred nodes 

fixed-bin(35) 
max pred ops 

fixed-bin(35) 
max relations 

fixed bin(35) 
max select items 

fixed bln(35) 
max sets 

fixed bin(35) 
max sf args 

fixed bin(35) 
max string size 

fixed bln(35) 
max td len 

fixed bin(35) 
max temp rels 

fixed-bin(35) 
max token size 

fixed bin(35) 
max tup var 

fixed bin(35) 
max vfile wait time 

fixed bin(35) 
normal mode 

fixed bin 
quiesce mode 

fixed bin 
quiesce wait 

fixed bin(35) 

14 

32 

253 

253 

50000 

254 

30 

100 

100 

256 

100 

20 

30 

4096 

10 

20 

65 

20 

60 

2 

900 

statistics update count interval 
fixed bln(35) - 10 

statistics update time interval 
fixed bln(71) - 300000000 

statistics update small reI size 
fixed bln(35) - 100-

submodel dir name secure.submodels 
char(f6) 

temp seg name 
char (23) 

valid id chars 
char(T28) 

mrds search_tidtemp.dbi 

abcdefghijklmnopqrstuvwx 
yzABCDEFGHIJKLMNOPQRSTUV 
WXYZ0123456789 -

B-2 

of s.e. expressions 
stack depth for eval 

of s.e. expressions 
max character length of a 

tuple variable name 
max length for key value 

max total chars from attrs 
making up key field in rels 

largest output line for 
cmdb listing 

max repeated string 
literal size 

size of sta('~~ for conversion 
pred tree to disj. norm. form 

max number of pred tree 
tuple attr leaf nodes 

max number of pred tree 
operator leaf nodes 

largest number of relations 
cmdb can create 

s.e. select clause max 
item count 

s.e. max number of set 
operators 

max number of args for 
scalar function 

largest parsable token 
for cmdb 

largest array space for 
token data 

most simultaneous temp rels 

largest s.e. token length 

most s.e. tuple variables 
allowed 

max time to wait for file 
operations for -share option 

normal data base access mode 

quiesce data base access mode 

wait time to quiesce files 

+number of reI ref times 
before statistics are next update 

+real time til statistics 
next updated 

+max size of reI to be 
updated every S.E. 

name of submodel dir in 
new architecture 

common name for tid 
search temp segs 

legal s.e. token characters 

AW53-04 



APPENDIX C 

BIBLIOGRAPHY 

Astrahan, N. M., et aI, "System R: Relational Approach to Data Base 
Management," ACM Transactions on Data Base Systems, Vol. 1, No.2. 
June 1976, pp 97-137 

Chamberlain, D. D. and Boyce, P. F., "Sequel: A Structured English Query 
Language," Proc. ACM-SIGMOD Workshop on Data Description, Access, and 
Control, May 1974, ACM, New York 1974, pp 249-264 
May 1974, ACM, New York 1974, pp 249-264 

Codd, E. F., "A Relational Model of Data for Large Shared Data Banks," 
Comm. ACM 1}, No.6, June 1970 pp 377-387 

Codd, E. F., "A Data Base Sublanguage Founded on the Relational Calculus," 
Proc. 1971 ACM-SIGFIDET Workshop 

Codd, E. F., "Further Normalization of the Data Base Relational Model," 
Courant Computer Science Symposia 6 "Data Base Systems," New York City 
May 24-25 1971 Prentice Hall -

Codd, E. F., "Normalized Data Base Structure: A Brief Tutorial," Proc. 1971 
ACM-SIGFIDEG Workshop 

Codd, E. F., "Relational Completeness of Data Base Sublanguages," 
Courant Computer Science Symposia 6, "Data Base Systems," 
New York City May 24-25, 1971 Prentice Hall 

Date, C. J., "An Introduction to Data Base Systems," 
2nd Edition, Reading, Mass. Addison Wesley, 1977 

Sibley (Ed), E. H., "Special Issue: Data Base Management 
Systems," ACM Computing Surveys, Vol. 8, No. 1 March 1976 

Won Kim, "Relational Data Base Systems," ACM Computing Surveys, 
Vol. 11, No.3, Sept. 1979, pp 185-211 

C-1 AW53-04 



APPENDIX D 

SET OPERATORS 

Set operators are those operators used by MRDS which define the construction 
of different classes of selection expressions and which are based on the mathematical 
set theory operations of union, intersection, and difference. The three operations 
(including Venn diagrams) are defined as: 

UNION 
The union of A and B is defined to be the class of all the elements that 
belong either to A, or to B, or to both A and B. 

INTERSECTION 
The intersection of A and B is defined to be the class of all the elements 
that belong to both A and B. 

DIFFERENCE 
The difference between A and B is defined to be the class of all elements 
that belong to A but do not belong to B. 

D-1 AW53-04 



APPENDIX E 

ADMINISTRATOR-WRITTEN PROCEDURES 

MRDS provides an interface to allow a DBA to write encoding, decoding, and check 
procedures for domains in a data base. Such procedures are associated with a domain at 
the time of data base creation and are executed when data defined by the domain is 
accessed. Additionally, the DBA may specify an internal data representation that is 
differ ent from the wa y the data is r epr esen ted to the ex tern al us er. Th i s fea tur e may 
be used independently or in conjunction with the administrator-written procedures. 

An encoding procedure, which is associated with a domain by using the 
-encode proc domain option in the data base model source, is used to convert or 
translate external data input into a different data type or internal representation. 
For example, an encoding procedure may convert an alphabetic input item into all 
upper cas e character s befo rei tis s tor ed in the da ta bas e. Th e encod ing proced ur e is 
executed at two different times: when an attribute associated with the domain is 
stored or modified, and when an attribute associated wi th the domain is used in some I 
types of selection expressions tn such a way that a constant must be encoded during 
selection. 

A decoding procedure, associated with a domain by the -decode proc option, does 
the reverse of an encoding procedure. It converts or translates an Internal data base 
value into its external representation. This procedure is also executed at two 
different times: when an attribute is retrieved from the data base and when an I 
attribute associated with the domain is used in a selection expression in such a way 
that the data base value must be decoded into its external representation during 
selection. (Refer to the following paragraphs for additional information.) 

Encoding and decoding procedures must not change the ordering of an item or 
selections will not work as expected (i.e., "abc" and "cba" should not be transformed 
to "cba" and "abc", respectively). 

Qualifiers in a selection expression are compared without the use of encode or 
decode procedures; that is, all comparisons are done using the internal encoded data, 
except in two special cases. 

1. When an attribute, that has an encode procedure associated with it, is compared 
against a constant. Encoded values must be compared with encoded values. For 
this case, the constant is encoded using the attribute's encode procedure, and 
the encoded result is compared against the encoded data base value. 

12/86 E-l AW53-04D 



2. When an expression is compared with an attribute, a constant, or another 
expression. Decoded values must be compared with decoded values. For this 
case, the data base values are decoded using the decode procedures for each 
attribute found in the expression. The expression is then evaluated and the 
decoded resul t is compared as follows. If it is being compared against a 
constant, the constant value is used directly because it is already decoded. If 
it is being compared with an attribute, the attribute value is decoded using its 
decode procedure. If it is being compared against another expression, the 
expression is evaluated as just described and the decoded resul ts are compared. 

Check procedures, specified by the -check proc domain option, are used to verify I 
data validity prior to its storage in the data base. These procedures are called 
whenever data defined by the domain is stored or modified. The procedure does 
whatever checking is desired by the DBA and returns a true or false value depending on 
whether or not the data is a cce pta bl e. Th i sis don e immed ia tel y be for e the data is 
stored and after any encoding or conversion has been done. The data verified is 
already in its internal format. 

The DBA may use the -decode dcl domain option to specify data conversion from an 
external to an internal data type either with or without encoding or decoding. For 
example, to speed processing or save space a data i tern may have an external 
representation of character, but be stored as binary. Such simple conversion may be 
done by using the -decode dcl option alone wi thout any encoding/decoding procedures. 
If the -decode dcl option is used wi th an encode or decode procedure, it defines the 
user-visible data type that is processed by that procedure. 

12/86 E-1. 1 AW53-04D 



CODING ADMINISTRATOR-WRITTEN PROCEDURES 

To interface properly with MRDS, encoding, decoding, and check procedures must 
be wri tten as recorded below. The example gives a sample data base and procedures, and 
describes in detail when the procedures are called. 

Encoding Procedure 

The encoding procedure is used to convert a data item to be stored or modified 
into a different internal representation. Once defined for a domain, the procedure 
may not be moved or deleted without causing store and some selection operations using 
this domain to fail. It can, however, be changed wi thout re-creating the data base; 
this does not change existing values already stored in the data base. Encoding 
procedures receive three arguments, each accompanied by standard Multics 
descriptors. Administrators who wish to write encoding procedures to accept a 
v ar iet y of in pu t and outpu t data types may us e thes e desc r i ptor s . See the MPM 
Subsystem Writers' Guide for more information about argument list format and 
descriptors. 

encode proc: procedure (user value, db_value, code); 

wher e: 

1. user value (Input) 
is the val ue, in user-visible format, to be encoded. If the -decode dcl 
domain option is used, this argument matches that declaratIon. 
Otherwise, it matches the internal domain declaration. 

2. db value (Output) 

3. code 

Notes 

is the val ue in the format sui table for storage in the data base. It must 
match the internal domain declaration. 

(Ou tput) 
is a status code. A nonzero code returned by the encoding procedure 
terminates the data base operation in progress. The actual code, 
however, is discarded. Therefore, if the DBA wishes to issue explanatory 
messages about the error, the encoding procedure should do so using the 
sub_err subroutine documented in the MPM Subsystem Writers' Guide. 

The encoding procedure may convert and reformat data for storage in the data 
base. It should not, however, change the relative ordering of data or selections may 
not work as expected. 

If an encoding procedure and a decoding procedure are both used for a domain, they 
should perform symmetrical transformations on the data (i.e., if "abc" encodes to 
"ABC", then "ABC" should decode to "abc"). If this is not done, the resul t of data base 
retrievals is unpredictable. 

12/86 E-2 AW53-04D 



Decoding Procedure 

The decoding procedure is used to convert a data item stored in the data 
base into its external representation after retrieval for the user. Once defined 
for a domain, the procedure may not be moved or deleted without causing retrieve 
and some selection operations using this domain to fail. It can, however, be 
changed wi thout re-creating the data base. Decoding procedures recei ve three 
arguments, each accompanied by standard Multics descriptors. Administrators who 
wish to write decoding procedures to accept a variety of input and output data 
types may use these descriptors. See the MPM Subsystem Writers' Guide for more 
information about argument list format and descriptors. 

Usage 

decode_proc: procedure (db_value, user_value, code); 

where: 

1. db value (Input) 
is the value as it appears in the data base. It matches the internal 
domain declaration. 

2. user value (Output) 

3. code 

Notes 

is the value in user-visible format. If the -decode dcl domain option 
is used, this argument must match that declaration. Otherwise, it 
matches the internal domain declaration. 

(Output) 
is a status code. A nonzero code returned by the decoding procedure 
terminates the -data base operation in progress. The actual code, 
however, is discarded. Therefore; if the DBA wishes to issue explanatory 
messages about the error, the decoding procedure should do so using 
the sub err subroutine documented in the MPH Subsystem Wri ters' 
Guide. 

If an encoding procedure and a decoding procedure are both used for a 
domain, they should perform symmetrical transformations on the data (i. e., if 
"abc" encodes to ""ABC", then "ABC" should decode to "abc"). If this is not 
done, the result of data base retrievals is unpredictable. 

Check Procedure 

The check procedure is used to ensure that data to be stored in the data 
base passes DBA-defined integrity tests. This procedure is called as a function 
with one argument (the value to be stored in the data base) and returns a true 
or false value depending on whether or not the value is acceptable. Once defined 
for a domain, the procedure may not be moved or deleted wi thout causing store 
operations using this domain to fail. It may, however, be changed wi thout re-creating 
the data base. The argument passed to this procedure is accompanied by a standard 
Multics data descriptor. Administrators who wish to wri te check procedures to 
accept a variety of data types may use this descriptor. See the MPM Subsystem 
Writers' Guide for more information about argument list format and descriptors. 

E-3 AW53-04 



I 

Usage 

check_proc: procedure (user_value) returns (fixed bin(35»; 

where: 

1. user value (Input) 
- is the value to be stored in the data base. It matches the internal 

domain declaration. 

2. 

Note 

OK (Output) fixed bin(35) 
is an indicator that is: 

1 (true) if the value is acceptable 
o (false) if it is not 

The check_proc is called after the encoding procedure, if any. 

Example 

1. For the data base defined by: 

domain: name char (32), 
birthdate fixed bin (71) 1* internal representation *1 

-decode dcl char(17) 1* external representation *1 
-encode-proc >udd>Proj>DBA>encode 
-decode-proc >udd>Proj>DBA>decode 
-check_proc >udd>Proj>DBA>check; 

relation: birth_info (name* birthdate)j 

2. The encoding procedure is: 

encode: procedure (user value, db value, code); 
dcl user value char(*);- I*external data type *1 
dcl db value fixed bin(71)j 1* internal data type *1 
dcl code fixed bin(35); 1* status code *1 
dcl convert date to binary entry 

char(*)~ fixed bin(71)~ fixed bin(35»j 

code = OJ 
call convert date to binary 

(user value,-db=value,-code)j 
return; -
end encode; 

3. The decoding procedure is: 

2/83 

decode: procedure (db value, 
dcl db value fixed bin(71)j 
dcl user value char(*); 
dcl code-fixed bin(35); 
dcl date time entry 

(fixed bin(71), charC*»; 

code = 0; 

user value, code); 
1* Internal data type *1 
1* external data type *1 
1* status code *1 

call date time (db_value, user_value); 

E-4 AW53-04A 



return; 
end decode; 

4. And the check procedure is: 

check: procedure (user value) 
dcl user value fixed bIn(71); 
dcl OK fIxed bin(35); 
dcl clock entry 

returns (fixed bin(71»; 

if user value < clock () 
then OK-= 1; 
else OK = 0; 
return (OK); 
end check; 

returns (fixed bin(35»; 
1* value to be stored after check *1 
1* return indicator *1 

1* compare with current time *1 
1* only want times in past *1 
1* future times are no good *1 

5. The interaction of these procedures for the following operations is described 
below (assuming that the data base has been opened with an index of 1). 

call dsl $store (1, "birth_info", "John Doe", "12/25/7 07:30", code); 

Encode is called with user value equal to "12/25/79 07:30" and returns 
its binary clock equivalent in db_value. 

Check is called with that clock value and returns true since it is a 
date in the past. 

The tuple is stored in the data base. 

call dsl $retrieve (1, "-range (info birth info) -select info.name 
info. birthdate", name, birthdate, code f; 

Decode is called with db value equal to the binary clock value stored 
for birthdate. It will return a user val ue of "12/25/79 0730.0". 

"John Doe" is returned in name and "12/25/79 073000" is returned in 
birthdate. 

call dSl_$store (1, "birth_info", "Richard Roe", ·"May 1 1999 0849.", code); 

Encode is called with user value = "May 1 1999 0849." and returns its 
binary clock equivalent in-db_value. 

Check is called with that clock value and returns false since the date 
is in the future. 

The error code mrds error $dom integ is returned to the calling program 
and the tuple is not stored. -

call dsl $store (1, "birth_info", "Richard Roe", "May 1 1979 0849.", code); 

Encode is called with user value = "May 1 1979 0849." and returns its 
equivalent in db_value. -

Check is called with the clock value and returns true. 

The tuple is stored in the data base. 

call dsl $retrieve (1, "-range (info birth info) -select info.name 
-wheri info.birthdate > ""10/01/79 0000:"" ", name, code); 

Encode is called with user value equal to "10101179 0000." and returns 
its binary clock equivalent. 

E-5 AW53-04 



The data base is searched for a qualifying tuple. "John Doe" is returned 
in name. 

call dsl $retrieve (1, "-range (info birth info) -select info.name 
-where [substr (info.birthdate, 1, 2)J -;- ""05""", name, code); 

Decode is called to convert the binary clock value for each data base 
tuple into a character string that is input to the substr function. 

"Richard Roe" is returned in name. 

E-6 AW53-04 



APPENDIX F 

MRDS INCLUDE FILES 

For dsl Entries: 

mrds attribute list 

NOTE: Some of the include files may reference version 3 data bases I 
which are no longer supported. Please disregard these references. 

Description: 

For a given data base opening via a model or submodel view, this structure 
contains the following attribute information for a particular relation: the 
number of attributes in this model/submodel view of the relation and the names 
in both the model and submodel (these will be the same if opened with a model 
view), the name of the domain for each attribute, the descriptor of the user's 
view of the data type, and whether the attribute can be used as an indexed 
attribute. 

Access informati on is also retur ned for var i ous ver s ions of MRDS s ecur i ty as 
follows: 

system_acl entries refer strictly to "rew" type Multics ACLs. I 
mrds access entries are version-dependent. Version 4 data bases released I 
in MR8 have no MRDS-specific access, but use system ACLs of "rew". Version 
4 d a tab as e s for M R 9. 0 M R DS us in g sub mod e 1 sec uri t y h a v e M R DS s p e c i f i c 
access mode of append/delete_tuple for relations and read/modify_attr for 
attributes. 

effective access entries use the same uni ts as mrds access. This is the 
logical result of applying both MRDS and system access and coming up with a 
user-effective mode of access to the relation/attribute. I 

declare 1 mrds attribute list 
2 versIon fixed bin, 

aligned based (mrds attribute list ptr), 
/* version number of this structure */ 

fixed bin, 

3/84 

2 access info version - -

2 num attrs in view - --

2 submodel view bit 

1* version of MRDS access modes 
3 => version 3 db with r-s-m-d access, 
4 => version 4 MR8 db with r-e-w access, 
5 => version 4 MR9 db with relation a-d, 
attr r-m modes (submodel security) */ 

fixed bin, 
/* number of attributes in this view of the 

relation */ 
(1)unal, 

/* ON = > the opening was via a submodel */ 

and 

F-1 AW53-04B 



2 mbz1 bit (35) unal, 
2 attribute (mrds attribute list num attrs init refer 

(mrds attribute list.num attrs in view)), 
3 model-name char-(32), -1* name of attribute in model *1 
3 submoctel_name char (64), 1* alias name of attribute in submodel, 

else model name */ 
3 domain name char (32), 1* name of the domain for this attribute *1 
3 user_data_type bit (36), 1* standard Multics data descriptor for storage 

format user's view if -decode dcl, else 
same as db descriptor *1 -

3 system_acl char (8) varying, 
1* the system access. from r-e-w modes *1 

3 mrds access char (8) varying, 
1* version 3 => from r-s-m-d, 

4 => from r-e-w, 
5 => from r-w *1 

3 effective access char (8) varying, 
1* effect of system + MRDS access units *1 

3 indexed bit (1) unal, 1* ON => this is a secondary index 
attribute, or a key head *1 

3 mbz2 bit (35) unal ; 

declare mrds attribute list num attrs init fixed bin ; 

declare mrds_attribute_Iist_ptr ptr ; 

declare mrds attribute list structure version fixed bin init (1) int static 
options (constant) ; 

mrds database list - -
Description 

This structure is used by mrds dsl list dbs to return an array of data base 
opening information. The data bases which are opened for the calling process 
have their opening index and opening model or submodel pathname returned in the 
array. 

declare 

declare 

declare 

3/84 

database_Iist_ptr ptr ; 

database_list aligned based 

2 number open fixed bin, 
2 db (number_of_openings refer 

3 index fixed bin (35), 
3 path char (168) 

number_of_openings fixed bin 

1* points to array of indexeslpathnames *1 

(database list ptr), 
1* array of pathslindexes *1 
1* total open by this process *1 

(database list.number open)), 
1* array-of open db Info *1 
1* data base opening index *1 
1* model or submodel opening pathname *1 

1* total number open by this process *1 

F-2 AW53-04B 



Description: 

Th is st ruc tur e is used by dsl $1 ist open ings to retur n an arr ay of data bas e 
opening information. The mrds databases which are opened for the calling process 
have their opening index and opening model or submodel pathname returned in the 
array. 

declare mrds_database_openings aligned based (mrds database openings ptr), 
/* array of paths/indexes */- -

2 version fixed bin, 
2 number open fixed bin, 
2 mbz1 bIt (36) unal, 

/* the version number of this structure */ 
/* total open by this process */ 

2 db (mrds database openings num open init 
refer (mrds database openings.number-open)), 

- - /*array of open db info */ 
3 index fixed bin (35), /* data base opening index */ 
3 path char (168), /* model or submodel opening pathname */ 
3 mode char (20), /* opening mode of the data base */ 
3 model bit (1) unal, /* on => opened via the model */ 
3 submodel bit (1) unal, /* on => opened via a submodel */ 
3 mbz2 bit (34) unal ; 

declare mrds_database_openings_ptr ptr , 
/* points to array of indexes/pathnames */ 

declare mrds_database_openings_num_open init fixed bin ; 
/* total number open by this process */ 

declare mrds database openings structure version fixed bin init static 
options (constant) init (1) ; -

/* current version */ 

Description: 

This include file defines named constants which can be used to specify the MRDS 
operations to be permitted and prevented in a call to dsl_$set_scope. 

dcl (NO OP init (0), 
READ ATTR init (1), 
APPEND TUPLE ini t (2), 
DELETE-TUPLE init (4), 
MODIFY-ATTR init (8), 
UP DA T E -0 PS in i t (1 4 ) , 
ALL OPS init (15)) fixed bin int static options (constant); 

mrds_opening_modes 

Description: 

This include file defines named constants which can be used in calls to dsl_$open 
when opening a MRDS data base. 

dcl (RETRIEVAL 
UPDATE 
EXCLUSIVE RETRIEVAL 
EXCLUSIVE-UPDATE 

3/84 

init(1), 
init(2), 
init(3), 
init(4)) fixed bin(35) int static options(constant); 

F-3 AW53-04B 



I 
I 

I 

mrds_path_info 

Description: 

This structure returns information about a relative pathname. The information 
returned is the absolute pathname. In the case that the relative path points to 
a M R DS d a tab as e 0 r sub mod e 1 , i t ret urn sin for mat ion de fin in g wh e the r i tis a 
model or a submodel, the MRDS version of the model or submodel, its creator, and 
the time of creation. 

declare 1 mrds path info aligned based (mrds path info ptr), 
2 versIon fIxed bin, /* version number for this structure */ 
2 absolute_path char (168), /* the absolute path from the input 

relative path 1ft1 
2 type, 

3 not mrds bit (1) unal, 
3 model bit (1) unal, 

3 submodel bit (1) unal, 

3 mbz1 bit (33) unal, 
2 mrds_version fixed bin, 

2 creator id char (32), 
2 creation time fixed bin 

2 mbz2 bit (36) unal ; 

/* on => path not to model or submodel */ 
/* on => path to data base model, thus 

possible .db suffix */ 
/* on => path to submodel, thus possible .dsm 

suffix */ 

/* the mrds version number of the model or 
submodel */ 

/* the person.project.tag of the creator */ 
(11 ) , 

/* convert date to binary form of time 
model/submodel created */ 

declare mrds_path_info_ptr ptr 

declare mrds path info structure version fixed bin init (1) int static options 
(constant); - -

mrds relation list - -
Description: 

For a given opening of a data base via a model or submodel view, this structure 
will contain the list of relations as seen from that view. It contains the 
number of relations in that view and both the submodel and model names of the 
relation (model = submodel name if not a submodel opening) as well as whether 
the opening was via a submodel or not. The virtual relation bit indicates when 
the model name may not be valid due to a mapping over more than one relation in 
the model. 

Access information for various versions of MRDS access is also returned, as 
follows: 

3/84 

system_acl entries refer strictly to "rew" type Multics ACLs. 

mrds access entries are version-dependent. Version 4 data bases released 
in MR8 have no MRDS-specific access, but use system ACLs of "rew". Version 
4 data bases for MR9.0 MRDS using submodel securi ty have MRDS-specific 
access mode of append/delete tuple for relations and read/modify attr for 
attributes. - -

effective access entries use the same uni ts as mrds access. This is the 
logi~~l result of applying both MRDS and system access and coming up with a 
user-effective mode of access to the relation/attribute. 

F-4 AW53-04B 



declare 1 mrds relation list aligned based (mrds relation list ptr), 
2 versIon fixed-bin, 1* versIon number for-this structure *1 
2 access info version fixed bin, 1* version of MRDS access modes 

- - 3 => version 3 db with r-s-m-d 

2 submodel view bit (1) unal, 

2 mbz1 bit (35) unal, 

access, 
4 => version 4 MR8 db with r-e-w 

access 
5 => version 4 MR9 db with relation 

a-d, and attr r (submodel 
security) *1 

1* count of relations present in this 
view *1 

1* ON => this opening was via a 
submodel *1 

2 relation (mrds relation list num rels init refer 
(mrds relation list.num rels in view)), 

3 model-name char (32), - -I*-name of relation in data base 
- model *1 

3 submodel - name char (64), 1* alias name of relation in submodel, 
else model name *1 

3 system acl - char (8) varying, 1* the system access from r-e-w modes 
3 mrds char (8) varying, 1* version 3 => from r-s-m-d, access - 4 => from r-e-w, 

5 => from a-d *1 
3 effective access char (8) varying, 

1* effect of system + MRDS access, 
units *1 

3 virtual relation bit (1) unal, 

*1 

1* ON => submodel relation defined over 
>1 model relation *1 

3 mbz2 bit (35) unal ; 

declare mrds relation list num rels init fixed bin - - - - -
declare mrds_relation_list_ptr ptr ; 

declare mrds relation list structure version fixed bin init (1) int static 
options (constant) : -

FOR mmi ENTRIES: 

rnrds authorization 

Description: 

This structure returns the caller's user class--either data base administrator 
or normal user. Note that these separate classes were used to allow future 
expansion to the user classes (rather than make them logical "not"'s of one 
another). NOTE: a DBA is always also a normal user. Thus if the caller is a 
DBA, his normal_user bit will also be on. 

declare 1 mrds authorization aligned based (mrds authorization ptr), 
2 versIon fixed bin, 1* version-number of this structure *1 
2 administrator bit (1) unal, 1* caller is a DBA *1 
2 normal user bit (1) unal, 1* caller has no special privileges *1 
2 mbz bit (34) unal ; 

declare rnrds_authorization_ptr ptr 1* pointer for referring to the 
structure *1 

declare mrds authorization structure version fixed bin init (1) int static 
options (constant) ; -

3/84 F-5 AW53-04B 



mrds database state - -
Description: 

This structure returns the data base state (secured or unsecured) for determining 
how commands and subroutines will behave for each case. The secured bit was 
kept separate from the unsecured, rather than its logical "not", to allow for 
future extensibility of data base secured states. 

declare 1 
2 

database state aligned based (database state ptr), 
version fixed bin, 1* version number of this structure *1 

2 unsecured bit (1) unal, 1* data base not secured *1 
2 secured bit (1) unal, 1* data base has been secured *1 
2 mbz bit (34) unal 

declare 1* pointer for referring to the structure *1 

declare database state structure version fixed bin init (1) int static options 
(constant) ;- -

mrds db model info - - -
Description: 

This structure passes back information common to the whole data base, rather 
than that pertaining to a particular relation or attribute. It refers to the 
data base model, rather than to some submodel for that model. 

declare 1 mrds db model info aligned based (mrds db model info ptr), 
2 versIon-fixed-bin, 1* versIon-number for-this structure */ 
2 model_version fixed bin, 1* the version number of the data base 

model *1 
2 creator_id char (32), 1* the person.project.tag of the data 

base creator *1 
2 creation time fixed bin (71), 1* the convert date to binary form of 

the data base creation time *1 

2 mbz bit (36) unal ; 

declare mrds db model info structure version fixed bin int static options 
(constant) Init r1) ; -

mrds db model relations - - -
Description: 

This structure returns the list of all relation names in the data base model. A 
count of the number of names present is included. No submodel alias names for 
the relations are involved. 

declare 1 mrds db model relations aligned based (mrds db model relations ptr), 
2 version fixed bin, 1* version number for this structure wi 
2 relation count fixed bin, 1* total number of relations in this model *1 

3/84 F-6 AW53-04B 



2 mbz1 bit (36) unal, 
2 relation (mrds db model relations count init refer 

(mrds_db_model_relations.relation_count)), 
3 name char (32), /* name of the relation in the model */ 
3 mbz2 bit (36) unal ; 

declare mrds db model relations structure version fixed bin int static init 
(1) options-(constant) ; -

mrds db model reI attrs - - --
Description: 

This structure returns, for a given relation, the list of all attribute names in 
the data base model. A count of the number of names present is included. No 
submodel alias names for the attributes are involved. Also, the domain name and 
the user's view descriptor for the data type is returned, as well as a bit 
indicating whether the attribute can be used as if it were indexed or not. 

declare 1 mrds db model reI attrs aligned based (mrds db model reI attrs ptr), 
2 versTon-fixed-bin~ /* version number for thIs structure */ 
2 attribute_count fixed bin, /* total number of attributes in this 

model *1 
2 mbz1 bit (36) unal, 
2 attribute (mrds db model reI attrs count init refer 

(mrds db model reI attrs.attribute count)), 
3 name char (32)~ - 1* name of the attribute in the model *1 
3 domain char (32), 1* the name of the underlying domain for 

this attribute *1 
3 user data_type bit (36), /* standard Multics descriptor for the 

user's view of the data storage 
layout */ -

3 indexed bit (1) unal, 1* on => key head or secondarily indexed 
attribute *1 

3 mbz2 bit (35) unal ; 

declare mrds_db_model_rel_attrs_count_init fixed bin; 

declare mrds db model reI attrs structure version fixed bin int static init (1) 
options (constant) ; -

3/84 F-7 AW53-0t.B 



For msmi Entries: 

mrds dsm attribute data - - -
Description: 

This include file contains information about all the attributes in a relation. 

dcl 01 mrds dsm attribute data aligned based (mrds_dsm_attribute_data_ptr), 
02 versIon fixed bin,-
02 number of attributes fixed bin, 
02 attributes (mrds dsm attribute data num atts 
refer (mrds dsm attribute data.number-of attributes», 

03 submodel attribute name char (64)~ -
03 model attribute name char (32), 
03 read access bit-(1) unal, 
03 modify access bit (1) unal, 
03 null access bit (1) unal, 
03 mbz1-bit (33) unal; 

dcl mrds_dsm_attribute_data_ptr ptr; 

dcl mrds_dsm_attribute_data_num atts fixed bin; 

dcl mrds dsm attribute data structure version fixed bin init (1) internal 
static-options (constant); -

mrds dsm relation data - - -
Description: 

This include file contains information about all the relations in a submodel 
view. 

dcl 01 mrds dsm relation data aligned based (mrds dsm relation data ptr), 
02 versIon fixed bin~ - - --
02 number of relations fixed bin, 
02 relations-(mrds dsm relation data num rels 
refer (mrds dsm relatIon data.number of-relations»), 

03 sUbmodel relation name char (64)~ -
03 model relation name char (32), 
03 append access bit (1) unal, 
03 delete-access bit (1) unal, 
03 null access bit (1) unal, 
03 mbz'-bit (33) unal; 

dcl mrds_dsm_relation_data_num_rels fixed bin; 

dcl mrds dsm relation data structure version fixed bin init (1) internal static 
options (constant); - -

3/84 F-8 AW53-04B 



mrds dsm submodel info 

Description: 

This include file contains the structure returned by msmi_$get_submodel_infoe 

dcl 01 mrds dsm submodel info based 
02 version fixed bin-;-
02 submodel version fixed bin, 
02 database=path char (168), 

02 submodel _path char ( 1 68) , 

02 date time created fixed bin - -
02 creator id char (32) ; 

(mrds dsm submodel info ptr), 
-/* version of this structure */ 

/* version of the submodel */ 
/* absolute path of the data base that 

the submodel refers to */ 
/* absolute path of the submodel (may 

be a link) */ 
(71), /* date-time submodel was created in 

standard format */ 
/* Person. Project. Tag of the submodel 

creator */ 

/* pointer to the structure */ 

dcl mrds dsm submodel info structure version fixed bin init (1) internal static 

For 

dcl 

dcl 

dcl 

options (constant); - -

dmd Entries (obsolete): 

mrds dm header 

1 dm header based (dmh ptr), /* 
2 dm=header_id char (8), /* 
2 dmd version fixed bin, /* -
2 creator id char (32) , /* 
2 create time fixed bin (71 ) ; /* -

dmh_ptr ptr; 

mrds model relations - -
model relations based (mr_ptr), 

2 nrels fixed bin (10), 

data model header */ 
identification as data model header */ 
version number of dmd creating this 
model */ 
group id of creator */ 
time of creation */ 

/* structure to return names of all 
relations in a model */ 

/* number of relations */ 
2 relation name (num_relations_alloc 

char (32); 
refer (model relations.nrels» 

/* relation-names */ 

dcl num relations alloc fixed bin (10); /* number of relations in model for 
allocation purposes */ 

dcl mr __ ptr ptr; 

mrds_rel_desc 

dcl reI desc based (rd_ptr), 

2 num attr fixed bin, 
2 key=length fixed bin (35), 

3/84 

/* record description of relation 
records */ 

/* number of attributes in the model */ 
/* length in bits of data portion of 

F-9 AW53-04B 



2 data length fixed bin (35), 

2 num keys fixed bin, 
2 inversion bit (1) unal, 

2 reserved bit (35) unal, 
2 attributes (num attr alloc refer 

3 attribute name char (32), 
3 domain name char (32), 
3 bit offset bit (18) unaligned, 
3 bit-length bit (18) unaligned~ 
3 key=flag bit (1) unaligned, 

3 inver flag bit (1) unaligned, 
3 unused bit (34) unaligned, 
3 key attr order fixed bin, 
3 descriptor bit (36); 

dcl num attr alloc fixed bin (10); 

dcl rd_ptr ptr; 

For dsmd Entries (obsolete): 

mrds_dsm_display_rels 

tuple *1 
1* length in bits of data portion of 

tuple *1 
1* number of key attributes *1 
1* On if this relation contains any 

inverted attributes */ 
1* Reserved for future use *1 

(reI desc.num attr», 
1* name of attribute *1 
1* name of underlying domain *1 
1* offset within tuple of data item *1 
1* length of data item in bits *1 
1* indicates whether attribute is part 

of primary key *1 
1* On if this attribute is inverted *1 
1* reserved for expansion *1 
i* order num of this key attr */ 
1* Multics descriptor for attribute *1 

1* Number of attributes in relation for 
allocation purposes *1 

dcl dsm_display_rels based (drel_ptr), 1* user-specified relations for 
display *1 

2 nrels fixed bin, 1* number of relations *1 
2 relation (nrels_alloc refer (dsm display rels.nrels» char (32); 

- 1* relation names *1 

dcl nrels alloc fixed bin; 

dcl drel_ptr ptr; 

mrds dsm header str - - -
dcl 1 dsm header record based, 

2 dsm-generator version fixed bin init (1), 
2 date time generated fixed bin (71), 
2 database pn char (168), 
2 name char (32), 
2 num of relations fixed bin (35), 

2 creator id char (32); 

3/84 F-10 

1* Data submodel header str *1 
1* Generator version number *1 
1* Date time of generation *1 
1* Data base pathname *1 
1* Header name *1 
1* Total number of relations 

in this data submodel *1 
1* The ID of the person 

creating the submodel *1 

AW53-04B 



mrds dsm reI str - - -
dcl 1 dsm relation str based, 

2 key~ 
3 submodel_rel_name char (32), 

2 record, 
3 model reI name char (32), 
3 no_attributess fixed bin, 

1* dsm relation structure *1 
1* vfile key *1 
1* Submodel relation name *1 
1* vfile record *1 
1* Model relation name *1 
1* Number of attributes in 

relation *1 
this 

3 attribute info (dsm num attr alloc 
4 submodeI att name-char (32), 1* 
4 model att_name char (32); 1* 

refer (no attributes)), 
Submodel attribute name *1 
Model attribute name *1 

dcl dsm num_attr_alloc fixed bin; 1* Number of attributes in relation for 
allocation purposes *1 

3/84 F-11 AW53-04B 



MULTICS RELATIONAL DATA STORE 

REFERENCE MANUAL 
ADDENDUMB 

SUBJECT 

Changes to the Manual 

SPECIAL INSTRUCTIONS 

This is the second addendum to AW53, Revision 4, dated September 1981. Refer 
to the Preface for "Significant Changes." 

Insert the attached pages into the manual according to the collating instruc­
tions on the back of this cover. Throughout the manual, change bars in the 
margins indicate technical additions and asterisks denote deletions. 

Note: 
Insert this cover after the manual cover to indicate the updating of the docu­
ment with Addendum B. 

SOFTWARE SUPPORTED 

Multics Software Release ttr.2 

ORDER NUMBER 

AW53-04B 

40126 
7.5C484 
Printed in U.S.A. 

II~ f) 

March 1984 

Honeywell 



COLLATING INSTRUCTIONS 

To update the manual, remove old pages and insert new pages as follows: 

Remove 

Title Page, Preface 
iii through vi 
vii, blank 
1-3,1-4 
2-1, 2-2 
2-7 through 2-22 

3-1 through 3-6 
3-9 through 3-12 
3-15 through 3-22 
3-31 through 3-36 
3-41, 3-42 
3-55, 3-56 
4-9, 4-10 
4-21, 4-22 
4-25, 4-26 
5-5, 5-6 
6-7, 6-8 

7 -1, 7-2 
7-5 through 7-10 
9-3, 9-4 
10-1 through 10-14 
11-1 through 11-4 
11-5, blank 
12-1 through 12-4 
13-1 through 13-4 
14-15 through 14-18 
A-1 through A-16 
F-1 through F-8 
F-9, blank 
i-1 through i-6 

TP Remarks Form 

Insert 

Title Page, Preface 
iii, iv 
v, blank 
1-3, 1-4 
2-1, 2-2 
2-7, 2-8 
2-8.1, blank 
2-9 through 2-22 
3-1 through 3-6 
3-9 through 3-12 
3-15 through 3-22 
3-31 through 3-36 
3-4"1, 3-42 
3-55, 3-56 
4-9, 4-10 
4-21, 4-22 
4-25, 4-26 
5-5, 5-6 
6-7, 6-8 
6-8.1, blank 
7-1, 7-2 
7-5 through 7-10 
9-3, 9-4 
10-1, blank 
11 -1, 11-2 
11-3, blank 
12-1, blank 
13-1 through 13-4 
14-15 through 14-18 
A-1 through A-14 
F-1 through F-10 
F-11, blank 
i-1 through i-4 
i-5, blank 
TP Remarks Form 

The information and specifications in this document are subject to change without notice. This 
docum.ent !!cnb!.!'.-S imO!"!nation about Honeywell :p!"od1J(:~t.!'1 or !'lp.rvicp.!'l t.hat. may not be available 
outside the United States. Consult your Honeywell Marketing Representative. 

® Honeywell Information Systems Inc., 1984 

3/84 

F i Ie No.: I L 13, 1 U 13 

AW53-04B 



MULTICS RELATIONAL DATA STORE 
REFERENCE MANUAL 

ADDENDUMD 

SUBJECT 

Changes to the Manual 

SPECIAL INSTRUCTIONS 

This is the fourth addendum to the AW53-04 dated September 1981. Refer to the 
Preface for "Significant Changes!' Insert the attached pages into the manual 
according to the collating instructions on the back of this cover. Change bars in 
the margins indicate technical additions and asterisks denote deletions. 

Note: 
Insert this cover after the manual cover to indicate the updating of the 
document with Addendum D. 

SOFTWARE SUPPORTED 

Multics Software Release 12.0 

ORDER NUMBER 

AW53-04D 

47028 
187 
Printed in U.S.A. 

December 1986 

Ho neY"le I I 



COLLATING INSTRUCTIONS 

To update the manual, remove old pages and insert new pages as follows: 

REMOVE INSERT 

TP, Preface TP, Preface 

iii through vi iii through 
vii, blank 

3-3, 3-4 3-3, 3-4 
3-39 thro ugh 3-42 3-39 through 

4-9, 4-9.1 4-9, 4-9.1 
4-9.2, 4-10 4-9.2, 4-10 

9-23 through 9-26 9-23 throug~ 

11 -1 , blank 11 -1 , blank 

14 -1 through 14-22 14 -1 through 
14-31, blank 

E-1, E-2 E-1, blank 
E-1. 1, E-2 

i-1 through i-5 i-1 through 
i-5, blank 

The information and specifications in this document are subject to change without notice. Con­
sult your Honeywell Marketing Representative for product or service availability. 

CHoneyweU Information Systems Inc., 1987 File No.: 1L13 
12186 

AW53-04D 

vi 

3-42 

9-26 

14-30 

i-4 



see user 

"" (double quote) 
see selection expression 

( ) 
see selection expression 

* see primary key 

-another 
see selection expression 

• V. 
see control code 

• X. 
see control code 

1* .•. * I 
see program comments 

[ ] 
see selection expression (brackets) 

abbr ev ia tions 
amdb (adjust mrds db command) 
cmdb (create-mrds-db command) 
cmdmi (create mrds dm include 

commandT --
cmdmt (create mrds dm table command) 
cmdsm (create-mrds-dsm command) 
cpmd (copy mrds da~acommand) 
DB (data base) -
DBA (data base administrator) 
dbi (data base index) 
DBM (data base manager) 
DM (data model) 
dmdba (display mrds db access 

command)- --
dmdbp (display mrds db population 

command)- --
dmdbs (display mrds db status 

command)- --
dmdm (display mrds dm command) 
dmdsm (display mrds dsm command) 
dmdv (display ~rds ~b .version 

commandT --
dmod (display mrds open dbs command) 
dmss (display-mrds-scope settings 

commandT - -
dmtd (display mrds temp dir command) 
DSL (data subTanguage) -
DSM (data submodel) 
FNF (first normal form) 
LINUS (Logical INquiry and Update 

System) 
MDBM (Multics Data Base Manager) 
mmi (Mrds Model Interface) 
mrc (mrds-call command) 
MRDS (Mul"Eics Relational Data Store) 

12/86 

INDEX 

i-1 

abbreviations (cont.) 
msmi (Mrds Submodel Interface) 
qmdb-(quiesce mrds do command) 
rmdb (restruc~ure mrds db command) 

14-3 --
smdb (secure mrds db command) 
smtd (set mrds temp dir command) 
SNF (second normal Iorm) 
TNF (third normal form) 
umdb (unpopulate_mrds_db command) 

access mechanism 2-16 

administrative 
administrative procedures 

check E-1 
decoding E-1 
en cod ing E-1 

administrator procedures E-1 

algebraic operators 
see operator s 

al ias name 
see name equal to 

argument substi tution (. V. and. X.) 
2-25, 4-4 

asterisk 
see primary key 

attribute 1-3, 2-2, 2-6, 2-30 
access 7-4 
domain 2-30 
full functional dependence 2-29 
functional dependence 2-29 
indexing 13-1 
key 3-9, 4-4 

modification example 4-43 
sta tement 

see statements 
transitive dependence 2-30 
tuple 

.. suffix 4-4 
value 1-3, 2-30 

boolean operators 
see operators 

built-in functions 
see functions 

check procedure 
see administrative 

administrative procedures 

checkpoint 
see data base 

commands 
adjust mrds db 3-3 
copy_mrds_data 3-5. 1 

AW53-01JD 



command s (cont.) 
create mrds db 3-6 
create-mrds-dm include 3-14 
create-mrds-dm-table 3-18 
create-mrds-dsm 2-11, 3-22 
display mrds db access 3-31 
display-mrds-db-population 3-33 
display-mrds-db-status 3-36 
display-mrds-db-version 3-39 
display-mrds-dm-3-40 
display-mrds-dsm 3-4 5 
display-mrds-open dbs 3-51 
display-mrds-scope settings 3-52 
display-mrds-temp air 3-54 
mrds caTl 9-T, 9-1 

functions 9-1 
quiesce mrds db 3-55 
restructure mrds db 14-3 
secure mrds-db 3~57 
set mras temp dir 3-59 
unpopulate_mras_db 3-60 

compiled 
see selection expression 

compiled selection expression 2-18.1, 
2-22.1, 4-4 

control code 
• V. (variable values) 2-25, 4-4, 

4-11, 4-13, 4-32, 4-35 
• X. ( un kn 0 wn a r g urn en t) 2 -25 , 4 -4 , 

4-11, 4-13, 4-32, 4-35 

data 
conversion 2-13 
display open data 3-51 
field 

name 1-3 
val ue 1-3 

independence 1-1 
model 1-1, 1-3 

create include segment 3-14 
creation 2-6 
display information 3-40 
display pictorial 3-18 
display population 3-33 
display version 3-39 
source segment 3-8 

example 2-6, 2-31, 2-33 
format 3-10 

mrds data table B-1 
sorted 2-15 
subl anguage 

close 4-7 
close all 4-7 
declare 4-7 
define temp reI 4-7 
delete-4-7 -
dl scope 4-7 
dl-scope all 4-7 
get attribute list 4-7 
get-opening temp dir 4-7 
get-path inTo 4-~ 
get-popuTation 4-8 
get-relation list 4-8 
get-scope 4~~ 
get-temp dir 4-8 
list openings 4-8 
modiTy 4-8 
open 4-8 
retrieve 4-8 
set scope 4-8 
... "'.-_"" _""",.,.. _" JI Q 
~c~ ~~V~C a~~ '=v 
set-temp air 4-8 
store 4-"8" 

submodel 1-1, 1-3, 3-22 

12/86 i-2 

data (cont.) 
creation 2-10 
display information 3-45 
names 2-10 
restrictions 2-11 
source 3-23 
source segment example 3-25 

data base 1-1 
accessing 2-15 

effective access 1-11 
add relation tuple 4-41, 9-25 
ad min is t r a to r 1 - 1, 7- 1 
architecture 3-10 
backup copy 8-1 
checkpoint 8-1 
close user opened 4-9 
closing 4-9, 9-3 
command level interface 9-3 
control segment 

concurrency 3-4, 3-36 
reinitialize 3-3 

create unpopulated 3-6 
creation 2-7 
current scope 9-11 
DBA 3-7 
declare user-defined function 4-10 
delete scope 9-7 
delete scope -all 9-9 
delete tuple 4-13, 9-6 
deleting scope 4-14 
deleting scope all 4-15 
design 2-26, 2-32 
development tools 9-1 
directory 

secure.submodels 3-22 
display access 3-31. 
display directory 3-54 
display openings 9-12 
display scope settings 3-52 
display secured state 3-57 
example 

delete 2-21 
loading 2-12 
modify 2-19 
retrieve 2-19, 2-20 

freeing 3-55 
get population 9-9 
inconsistent 3-3 
index 2-12 
instructional tool 9-3 
loading 2-11 
manager 1-1 
model 2-3 

mmi 6-2 
modify 4-32, 9-13 
network 1-2 
normalization 2-26.1 
n'ormal ized 13-1 
open 4-33, 9-14 
ope n in g 2 -1 2 

list information 4-29 
modes 9-14 
shared 4-33 
temporary directory 4-19 
unshared 4-33 
usage mode 4-33 

partitioning 2-26.1 
pathname 

information 4-20 
populated 2-3, 2-13 
quiesce 3-55 
quiesced 8-2 
relational 1-2,.2-1 
restructuring lq-l 
retrieval 4-35, 9-17 
rollback 8-1 

AW53-04D 



data base (cont.) 
secure '7--1 
secured 2-3 
security control 3-57 
set scope 9-20 
set scope all 9-23 
setting scope 4-37 
setting scope all 4-39 
status 3-36 
submodel 2-3 

msmi 6-2 
msm i 6-14 

terminology 1-2 
total definition 1-3 
unpopulated 2-2, 2-3 
unsecured 7-1 
user's definition 1-3 
utilization examples 4-42 
view 2-3 

data-item 1-3 

DB 
see abbreviations 

DBA 
see abbreviations 

dbi 
see abbreviations 

DBM 
see abbreviations 

decoding procedure 
see administrative 

administrative procedures 

deletion anomaly 2-27 

DM 
see abbreviations 

domain 1-3, 2-30 
compatible 2-31 

domain statement 
see statements 

DSL 
see abbreviations 

DSM 
see abbreviations 

duplicate data 
see data base 

normal ization 

encoding procedure 
see administrator 

administrative procedures 

error messages 3-7 
control/display 9-20 

error tabl e A-1 

field 2-6 
see attribute 
val ue 1-3 

file 
see relation 

12/86 i-3 

files 1-3, 1-4 
incl ud e F-1 

attribute information F-1, F-8 
attribute names F-7 
data base information F-2 
data base open F-3 
data base opening F-3 
data base security F-6 
data model header F-9 
pathname F-4 
records F-9 
relation information F-4, F-8 
relation names F-6, F-9 
relation structure F-11 
relations F-10 
scope F-3 
submodel header F-10 
submodel information F-9 
user class F-5 

indexed sequential 2-32 

FNF 2-28 
see abbreviations 

functions 
buil t-in 4-5, 5-1 

arithmetic scalar 
abs 5-1 
ceil 5-3 
floor 5-3 
mod 5-4 
round 5-5 

character string scalar 
index 5-4 
search 5-5 
verify 5-6 

string scalar 
after 5-2 
before 5-2 
concat 5-3 
reverse 5-4 
substr 5-6 
substr example 2-21 

nonstandard 5-6 
nonstandard restrictions 5-6 
scalar 5-6 
user-defined 4-5 

declare 4-10, 9-4 

index 
primary 2-32 
secondary 2-32, 2-33, 3-9 

indexed sequential file 2-32 

inverted 3-9 
see index 

key attribute 
see attribute 

keyword 
access 

attribute 3 -27 
relation 3-27 

limitations 
see MRDS 

LINUS 
see abbreviations 

MDBM 
see abbreviations 

AW53-04D 



t-1RDS 
also see abbreviations 
characteristics 1-4 
facilities bypass 6-1 
internal interfaces 6-1 
limitation 7-2.1 
terminology 2-2 
tutorial 2-5 

normalization 2-28 
example 2-30 
FNP 2-28 
SNF 2-28 
TNF 2-28 

operators 
algebraic 2-18 
boolean 2-18 
precedence of 2-18 
selection expression 2-18 
set 4-3, D-1 
set (union, inter, differ) 2-31 

example 2-21 

parentheses 
see selection expression 

per formance 
data conversion 13-2 
maintainability 13-1 
relation access 13-3 
retrieval 13-1 
search order 13-5 

optimum 13-6 
secured data base 13-2 
selection expression 13-2 
storage 13-1 
submodel opening 13-2 
temporary relations 13-2 

permit_ops 2-15 

precedence of op9rators 
see opera tor s 

prevent_ops 2-16 

primary index 
see index 

primary key 2-2, 2-3, 2-6, 2-24, 2-29, 
2-32, 3-9, 4-41 

asterisk 2-6 
invalid operation 2-19 

pro~ram comments 
/ . .. • / 3-2 

quiesced 
see data base 

range clause 
see selection expression 

record 1-3 
see tuple 

reI at ion 1 - 3 , 1 -4, 2-1 
access 

permissions 7-4. 
restrictions 7-q 

expression ..... ,..,. 
- another 'J -t:. 0 

index 2-24 
1 ist 4-23 

12/86 i-4 

relation (cont.) 
list attributes 4-16 
scope 4-26 
scope settings 9-8 
shared openings 9-5 
statement 

see statements 
temporary 2-24 

create or redefine 4-11, 9-5 
inserting index 2-26 
primary key 2-24 
redefinition 2-25 
restrictions 2-25 

tuple count 4-22 
tuple population 9-9 
tuples 

modify 4-32 
unpopulated 2-2, 2-3 

restructuring subsystem 14-1 

rollback 
see data base 

row 1-3 

s chern a 1 -1, 1 - 3 

scope 2-3 
codes 4-14 
delete 2-23 

all 2-23 
setting 2-23 
violation 2-23 

secondary index 
see index 

security 
ACL 7-2 
ACLs 7-2 
attribute level 7-1, 7-3 

data model 7-3 
data value 7-4 

data base 
directories 7-2 

relation level 7-1, 7-3 
relation operations 7-2 
scopes 7-2 
submodels 7-1 

select clause 
see selection expression 

selection expression 1-4, 2-3, 2-17, 
2-25, 4-4 

-another 4-5, 4-35, 4-41 
-dup option 4-4, 4-35 
also see subroutines 
brackets 

use of 2-21 
compiled 2-18.1, 2-22.1, 4-4 
deletions 4-4 
delimiters 4-5 
double quote 2-18 
example 1-4,2-17,2-18,2-19,2-20, 

2-25, 2-28 4-6 
modifications 4-4 
operators 

see operators 
order of evaluation 4-4 
parentheses 2-18 
quotes 9-19 
range clause 2-i7 

no optimize option 4-3 
prTnt_search_order option 4-3 

AW53-04D 



selection expression (cont.) 
select clause 2-17 
vari~ble values 2-25 
where clause 2-17 

comparisons 4-5 

set 1-3 

set operators 
see opera tor s 

SNF 2-29 
see abbreviations 

s ta temen ts 
access 

control lists 3-27 
privileges 3-25 

access control 3-25 
attribute 2-31, 3-9, 3-25 
attributes 2-6 
domain 2-6, 2-30, 3-9 

options 3-10 
index 3-9 
relation 2-6, 2-10, 3-9, 3-24, 3-25 

submodel 2-3, 2-10 
control statements 3-25 
function 3-23 
secured 2-3 

subroutines 
data sublanguage 4-1 

entries 4-7 
selection expression 4-1 

d sl 4-7 
metalanguage symbols 4-1 
mmi 6-2 
msm 1 6-14 

suomodel information 6-18 
syntax 4-1 

12/86 i-5 

subschema 1-1, 1-3 

temporary relation 
see relation 

temporary storage 
change pathname 3-59 
return pathname 4-19, 4-28 
set directory 4-40 

TNF 2-29 
see abbreviations 

tuple 1-3, 2-2, 2-3 
incomplete 

null value 2-13, 9-25 
shared opening 9-7 
tuple expression 

duplicate option 4-4 
variable 2-18 

tuple attribute 
see attribute 

unpopulate 3-60 

update anomaly 2-27 
data base 

see normalization 

user 
definition of 1-1 
interaction 

! 3-2 

variable 
user-specified 4-3 

vfile 2-8 

where clause 
see selection expression 

AW53-04D 



I" 
I 
I 

~ 

w 
Z 
...J 

e,:J 
Z 
o 
...J 
« 
I­
::::> 
() 

HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

MULTICS RELATIONAL DATA STORE 
TITLE REFERENCE MANUAL 

ADDENDUMD 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

Your comments will be investigated by appropriate technical personnel 

and action will be taken as required. Receipt of all forms will be 
acknowledged; however, if you require a detailed reply, check here. 0 

PLEASE FILL IN COMPLETE 
ADDRESS BELOW. 

FROM: NAME ____________________________________________ __ 

TITLE ____________________________________________ _ 

COMPANY __________________________________________ _ 

ADDRESS __________________________________________ __ 

ORDER NO. I AW53-04D 

DATED I 
I DECEMBER 1986 

DATE ____ _ 



PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA 02154 

POSTAGE WILL BE PAID BY ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA02154 

ATTN: PUBLICATIONS, MS486 

HoneYwell 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

"', , 
, 
, 

"', 
w 
z 
J 
::J 

Z 
o 
...J 
« 
~ 
~ 
t> 

------, ' 

, 
I 

~ 



Honeywell 
Honeywell Information Systems 

In tho I I C 11 . ?nn C",,;th Ctr ...... t lAIC ~ W",lth",,,,, U ... .,.,"'"h •• .,,,,tt ... n?11::A 

... 'j;;- Ca;~da: -1-55 -G~~~"B;ke';'Ro~-;i'wiii~;'d~i~:'o;;t;;;'M2tr3Ni~~ 
In the U.K.: Great West Road, Brentford, Middlesex TWS 9DH 
In Australia: 124 Walker Street, North Sydney, N.S.W. 2060 

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. 

32950, 7.5e10S1, Printed in U.S.A. AW53-04 


	000
	001
	002
	003
	004
	005
	006
	007
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08.0
	02-08.1
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16.0
	02-16.1
	02-17
	02-18
	02-19
	02-20.0
	02-20.1
	02-21
	02-22
	02-23
	02-24.0
	02-24.1
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	03-01
	03-02
	03-03
	03-04
	03-05.0
	03-05.1
	03-05.2
	03-06
	03-07.0
	03-07.1
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09.0
	04-09.1
	04-09.2
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32.0
	04-32.1
	04-32.2
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08.0
	06-08.1
	06-09
	06-10
	06-11
	06-12
	06-13.0
	06-13.1
	06-13.2
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	07-01
	07-02.0
	07-02.1
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	10-01
	11-01
	12-01
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	A-01
	A-02
	A-03
	A-04.1
	A-04.2
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	C-01
	D-01
	E-01.0
	E-01.1
	E-02
	E-03
	E-04
	E-05
	E-06
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	_001
	_002
	_003
	_004
	i-01
	i-02
	i-03
	i-04
	i-5
	replyA
	replyB
	xBack

