"HONEYWELL

MULTICS

RELATIONAL
DATA STORE
REFERENCE
MANUAL

SOFTWARE

MULTICS RELATIONAL DATA STORE
| REFERENCE MANUAL

SUBJECT

Description of the Multics Data Base Manager (Multics Relational Data Store)

SPECIAL INSTRUCTIONS

This manual supersedes AW53, Revision 3, dated June 1980 and Addendum A
dated Octcber 1980. The manual has been extensively revised. Several
appendixes have been reorganized into sections. Change bars in the margin
denote technical additions and changes; asterisks denote deletions. Sections 7,
11, 13 and Appendix F are completely new and do not contain change bars.

Refer to the Preface for additional MR9.0 information.

SOFTWARE SUPPORTED
Multics Software Release 9.0

ORDER NUMBER
AW53-04 : September 1981

Honeywell

PREFACE

This manual is a combined data base primer and reference manual for the Multics
Relational Data Store (MRDS). It describes the functions and subroutine interfaces
to a relational type of data base organization. This manual is intended for users
familiar with the general characteristics of Multics, including the environment of an
interactive terminal session, and assumes the user has a basic understanding of the
simpler features of the PL/I language, since all examples are written in PL/I.

This manual contains references to the Multics Commands and Active Functions,
Order No. AG92, referred to as Commands, the Multics Subroutines and Input/Output
Modules, Order No. AG93, referred to as Subroutines, and the Multics Programmer's
Reference Manual, Order No. AG91, referred to as Reference Manual.

This manual contains descriptions of the following Multies Priced Separate
products (PSPs); some of them may not be installed in your system.

(SGD6801) LINUS (Logical Inquiry and Update System)
(SGL6805) MRPG (Report Generator) Facility
(SGU6801) SORT/MERGE Facility

Significant Changes in this Addendum

Revised the display mode_dm command (refer to Section 3):
] Changed -attribute and -domain control arguments

[Added -crossref control argument

Deleted all data from Section 11.

The following changes were made to the restructure_mrds_db command (refer to
Section 14}):

* Added three new control arguments (-force, -no_force, and -relation_type)

The information and specifications in this document are subject to change without notice. Con-
sult your Honeywell Marketing Representative for product or service availability.

12/86
©Honeywell Information Systems Inc., 1987 File No.: 1L13 AW53-04D

12/86

Added seven new restructure requests (create_attribute, create_domains,
delete_attribute, delete domain, rename_attribute rename_domain, and
rename reiation)

Expanded the display_data_model restructure request

Added three new control arguments to the ready_db restructure request
(-force, -no_force, and -relation_type).

iii AW53-04D

CONTENTS

Page

Section 1 Introduction . C e e e e e e e
Basic Data Base Concepts e e e e e e e e
Data Base Terminology
Characteristics of MRDS

U N
|
2N = -

Section 2 Users' Guide . . e e e e e e e e
Basic MRDS Concepts .
MRDS Terminology
Functional Diagram . .
MRDS Tutorial . .
Access Mechanlsms Other Than Store
Additional Capabilities
Scope Deletion
Temporary Relations e e e e
Argument Substitution U51ng ".V." and
nox.n e e e e e e ..
Data Base De51gn .. e e e e
Examples of Normallzatlon
First Normal Form
Second Normal Form
Third Normal Form
Domains and Attributes
Primary and Secondary Indexes e e e
Secondary Indexing

[IREACIACN \O R \C V)
J

!
WWWhN NN N PN — g

l.\)f\)l'.\.\l\)

f\)f\)l\)l\)l’l\)l\)l'\)f\)f\)

W OWwwo oo oW FWLWWOUIFN = =

Section 3 Commands . e

ad just _ mrds db amdb

copy __ mrds data, ¢ pmd

create mrds db, cmdb

create mrds_dm _include, cmdml . e .
create mrds dm_) table, emdmt
create mrds_ dsm, cmdsm .
display_ mrds db _access, dmdba o e
dlsplay mrds_db_ _population, dmdbp . e .
display mrds_db_status, dmdbs . .
display mrds_db _version, dmdv .
display mrds_dm, dmdm
display mrds_dsm, dmdsm
display mrds_open_dbs, dmod .
display_mrds_scope_settings, dmss .
display _mrds_temp dir, dmtd
quiesce mrds_db, gmdb
secure mrds db, smdb
set mrds temp dlr, smtd .
unpopulate mrds_db, umdb

(W8]

1
] WU w
[}

| L I T |

[
GUTUIUITVIUTUTE FLWWWWN = - o
OWJUIEN=VNIOWIDNW—_MNNOFERNAaW =

LWL WLWWLWWWWWWWWWWW
]

}
-

Section 4 Data Sublanguage Subroutines .

Formal Definition of the Selectlon
Expression . ¢ « ¢ v ¢« ¢ v 4 e s e 4 0
Formal Syntax . . . e e e e e

Where Clause Comparlsons . c e e
Examples of Selection Mechanlsms e e e

dSJ._ . . e e e e e e e e e e
dsl_ $close C e e e e e e e e e
dsl $close all+ . .
dsl_$compile . .. e
dsl_$declare

EEEEEFEEEE &=
i 11
OQWOWLO-JUl—= =

&=
|
=1

12/86 iv AW53-04D

Section 5

Section 6

Section 7

12/86

CONTENTS (cont)

dsl_$define_temp rel
dsl $delete
dsl_$dl _scope . . .
dsl_$dl _scope_all

dsl_$get attribute llst
dsl $get opening_ temp dir

dsl_$get path_info . .
dsl_$get population

-

dsl_$get_relation_list .

dsl $get_scope
dsl_$get temp dir .
dsl $1ist openings .
dsl_$modify
dsl_$open
dsl $retrieve
dsl_$set_scope .
dsl_$set scope_all
dsl_$set temp dir . .
dsl $store e e e .

.

Example -- Opening, Acce551ng,

Da

Example -- Modlflcatlon of Key

ta Base . .

Built-In and Installation-Defined

Bui

Writing Nonstandard Functlons

Subsys
mmi_

msm

Securi
DBA

1t-In Functions
abs
after
before
ceil
concat
floor
index

mod . .
reverse .

oimd
reund

search « « . .
substr
verify . . .

e 9 s e e o
.

tem Writers' Guide . .
mmi $close model e e e
mmi wcreate db
mmi_$get authorization .
mmi_$get model attributes
mmi_$get model info
mmi_$get model relations
mmi $get secured_state
mmi $open model . .
mmi_$quiesce db . .
mmi_$unquiesce_db .
i .
msmi $close submodel
msmi_$get_attribute data
msmi $get relation_ data .
msmi_$get submodel info .
msmi_$open_submodel . . .

e s e &

EY ¢ ¢ o v v e e e e e

Secure Data Bases e e e e

e & & 2 e e« e s e e

-

and Closing a

Attributes

Functions

.
* o o o e o e e o

L S N I T T}
.
* 0 & & s 4 e e e
.
.

.
.

* s s 8 v e e
.

. « e
e e e o s e »

Secure Submodels and the secure submodel

Directory

.

o O

(=)}

[o e o W e

Iww)

F—gN =5 EEeEEEEEEELSEEEE SR EESEE
1
EHFWWWWWMNRMNNOMND NN == -

U

W
a

(1]

R R I I e |
= OWOU~_NTVIWMNDWLOOW NOWOUI&EW—

|
= =
w N

[}

LU [}]
OO EELZWWWNON = = -

[Je-Ne Xo,¥o We We No Ne WENG RS EG R RS EG RS EG RGO RS RGO RO R RS, RV N6
] i
B A N = a~JTTW N NN =

—_— e

AW53-04D

Section 8

Section 9

Section
Section

Section

Section

Section

Section

Appendix
Appendix
Appendix

Appendix

12/86

10
11

12

13

14

15

o o w >

CONTENTS (cont)

Required ACLs
Scopes
Relation Level Security .
Attribute Level Security
Data Model Security
Data Value Security

Data Base Backup
Checkpoint
Rollback « . .+ . .

Data Base Development Tools .
mrds_call, mrec
close « e e e e e
declare
define_temp_rel . . .
delete .« e e e .
dl_scope, ds
dl_scope_all
get_population, gp .
get_scope, gs
list_dbs . .
modify
open
retrieve . .
set_modes
set_scope
set_scope_all
store

¢ ¢ v s e
.

Obsolete Interfaces
Changes In MRDS

Effect of Data Base Version on
Subroutines

Performance Considerations
Data Base Creation . . .
Data Base Use
Selection Expression

Restructuring Subsystem . . .
restructure_mrds_db, rmdb

Data Management System Interface

Creating a Data Base
Converting a Data Base . .
Features . . .

* s s e e e & o
.
.
.

.

Commands

Choosing Between Data Base Types
DMS Command and Subroutine Descriptions

before_ journal_ status (bjst) .
bj_mgr_call (bjme)
transaction (txn) « e e .
before_ journal manager_ . . .

transaction_manager_ .
Error Tables
MRDS Data «
Bibliography

Set Operators

vi

* e & & & s 2 e e+

Page

]
Fwww N

1
—_ e

! Lt 1 1 DOWVOVOVWOVOOVO o Co o NN~
SR AN S S e N T T T T T T T T T |

VWOONFWN =2 WWO-JOUl EWww =

WVWWOWOOOVOOOO
[}

-

o
}

—_

11-1

AW53-04p

CONTENTS (cont)

Page

Appendix E Administrator-Written Procedures E-1
Coding Administrator-Written Procedures . E-2

Encoding Procedure E-2

Decoding Procedure E-3

Check Procedure « « « .+ .« . E-3

Appendix F MRDS Include Files « . + & « « « . F-1
Index i-1

12/86 vii AW53-04D

SECTION 1

INTRODUCTION

The relational data base interface, known as the Multics Relational Data
Store (MRDS), provides Multics users with a general data base management facility
that is callable from Multics command level and from programming languages that
support the standard Multics call interface. A full range of data base definition,

retrieval,

and update capabilities is available, together with facilities that

provide a large measure of data independence and control of concurrent accesses
to the data base.

BASIC DATA BASE CONCEPTS

data

data

data

user

data

data

data

base (DB)

an integrated collection of operational data (i.e., data that can be
read, written, or modified).

base manager (DBM)

a software system designed to make an integrated collection of data
available to a variety of users while providing security measures to
ensure privacy where desired.

base administrator (DBA)

the person responsible for defining and creating the data base and
for controlling its use.

a person, subject to administrative controls, who retrieves, updates,
or deletes data within the data base. Anyone having access to the
Multies system can be both the administrator and user of his own
data base. In general, however, a user is one of many others who
access a common data base which they do not administer.

independence

a characteristic of a data base management system that allows the
user to be more concerned with the information content and logical
properties of the data base and less concerned with the data's physical
organization and location. A high degree of data independence implies
that the syntax of inquiries to the data base manager is relatively
insensitive to changes in the physical organization of the data base.

PP

model (DM) or schema

the total description of a data base, defining the characteristics
and organization of all the datawithin the data base. This description
allows users to reference data in logical rather than physical terms.
The data base administrator creates the data model; the data base
manager references the data model prior to accessing the associated
data base.

submodel (DSM) or subschema

an alternate, and usually incomplete, description of an existing
data base that may optionally be provided to users of the data base.
This alternate description enhances "data independence" by allowing
users to concern themselves with only a particular subset of an

1-1 AW53-04

existing data base and/or reference a data base with alternate (alias)
names. The data submodel may be created by either the user or the
data base administrator. The user may then "open" the submodel,
creating the illusion of accessing the data base defined in the
submodel instead of the actual data base.

DATA BASE TERMINOLOGY

The relational and network approaches to data base management are based on
differing philosophies and each approach has its own terminology. The relational
approach draws upon terms found in the precise mathematical theory of relations
(attributes, tuples, etc.), whereas the network approach draws upon terms common
to the data processing world (field, record, etc.). As illustrated in the following
data base and table example, there exists nearly a one-to-one correspondence
between the two sets of terminology.

1-2 AWS3-04

PRESIDENTS DATABASE

NAME PARTY HOME-STATE
Eisenhower Republican Kansas
Kennedy Democrat Massachusetts
Johnson Democrat Texas
Nixon Republican California

COMPARISON OF TERMINOLOGY

DEFINITION ILLUSTRATION RELATIONAL NETWORK

TERMINOLOGY TERMINOLOGY

A file. A collection The set of data relation record type

of organized data. given above.

A record. A represen- "Kennedy,Democrat, tuple record

tative "row" of data. Massachusetts"

The name of a data "HOME-STATE" attribute field or

field within a record; data-item

a column of information

The value of a data "Texas" attribute value of field

field within a record. value or data-item

The set of all values a] The names of the domain not used

data field may assume. 50 states.

User's definition of Created by user data subschema

the data base. & administrator. submodel

Total definition of Created by the data model schema

the data base. administrator,.

Associated terms: MRDS CODASYL,

I-D-S/I1
1-3

AW53-04

CHARACTERISTICS JF MRDS

The data management system can be called from programming languages supporting
the standard Multics call interface as well as from Multics command level via the
mrds_call command.

All data bases reside within the Multics storage system as directories,
segments, and files, and are protected by the security features inherent to the
Multics virtual memory environment.

MRD3S uses relational data base structures that are based on the mathematical
theory of relations.

Inquiries to MRDS consist of a single 1logical request containing a
selection expression that defines the goal of the search through the data base. For
example:

"-range (x Person)
-select x.2mp_num
-where x.name = ""Smith"" "

This expression (defined in detail in Section 2) contains a relation (file) named

"Person". The expression defines the subset of employee numbers in the Person

relation that are assigned to employees named Smith. This set of employee numbersmay
| be compiled, deleted, modified, or retrieved depending on the user's intention.

2/85 1-4 AW53-04C

SECTION 2

USERS' GUIDE

This section, which is a primer for the MRDS interface, contains general
explanations for several commands and subroutines described in detail in Sections
3 through 5.

The primer closely follows the actual sequence of events in a typical session
with MRDS. Although the exact command invocations and examples shown may be
duplicated for training purposes by a terminal user, they should not be interpreted
as representing a rigid or necessary sequence of operations. Rather, each example
ocutlines the general function and typical usage of a command or subroutine. The
user should examine the detailed descriptions provided in later sections to
build examples that fit a particular requirement.

In this section the use of any particular command or subroutine is not an
exhaustive description of its capabilities. This section uses only those features
that are essential or instructive for the novice user of MRDS. The Commands,
Subroutines, and Subsystem Writers' Guide sections of this document contain a
description of the more advanced features of MRDS.

In all examples, the longest and most descriptive name of a command or
subroutine is used for clarity. Examples are often stylistically formatted for
aesthetic reasons only. Such formatting should not be construed as mandatory,
or even recommended, since MRDS accepts all commands and source text in free
form.

This section contains information for both the data base administrator and
the data base user. Readers who are only interested in accessing an established
data base need not concern themselves with:

) MRDS Tutorial (steps 1 and 2)

] Data Base Design

It is assumed that the reader is familiar with the basic concepts and
terminology contained in Section 1.

BASIC MRDS CONCEPTS

A relational data base is best viewed as a simple tabular or columnar
arrangement of data divided into one or more groups called relations. The data
within a given data base has been placed there because it, in some sense, fits
together and is used or collected for some common purpose. The data within a
relation of the data base can be considered as data belonging to some subclass
or subset of the overall data base.

2-1 AW53-04

A relational data base is most easily pictured as a series of columns that foram a

tabla:
DATA BASE "A"
Relation #1 Relation #2

tuple tuple

tuple tuple

tuple att #1 att #2 att #3

tuple att #1 att #2 att #3

tuple att # att #2 att #3
wnere:

A relational data base contains at least one relation (file).

2. Each relation contains at least one tuple (record); otherwise, it is considered
an unpopulated relation.

. An unpopulated data base contains only unpopulated relations.

4. A tuple contains at least one attribute (field).

5. All tuples within a given relation have the same format.

6. Some fixed set of one or more attributes in eachrelation must uniquely identify
each tuple in that relation. (These attributes combined are called the primary
key of the relation.)

MRDS TERMINOLOGY
access

the ability to perform any combination of data base operations.

compile
converts a selection expression to internal structure format and saves it
for the life of a data base opening.

data base
aMultics directorycontaining the model (schema) definition of the data,
data storage files, and access control structures.

DBA
a data base administrator, defined as someone holding "sma" ACL on the
data base directory.

delete
deletes a complete tuple from a relation.

exclusive

a qualifier to an opening mode that prohibits concurrent updating by
other users.

Ny
|
N

AW53-04C

2/85

model
the main view (schema) defining the data base and its data.

modify
alters one or more attributes of a tuple existing within a relation
(excluding the attributes which make up the primary key).

open
readies a data base for user access.

populated
a data base in which at least one of its relations contains at least one
tuple of data; otherwise, the data base is unpopulated.

primary key
the set of attributes (one or more) whose valuas are used to uniquely
identify a tuple in a relation.

retrieval
an opening mode for a data base that allows only retrieval operations.

retrieve
returns some data subset of the data base.

scope
how the user intends to share the data base with others.

secured
a data base that has had the command secure _mrds_db with the set control
argument run against it and has not subsequently had the secure_mrds _db
command with the -reset control argument run against it.

A secured submodel is located under the secure.submodels directory,
which is under the data base directory, for the purpose of providing
attribute level accass controls.

selection expression
the specification of the relations
ly &

ttributes selected, and
conditions required to uniguely esir

ired tuples.

shared
the qualifier to an opening mode that allows concurrent access by other
users. Unless an exclusive mode is specified (e.g., exclusive update),
data bases are opened in a shared mode.

store
adds a complete tuple to a relation.
submodel
a structure providing an alternate view (subschema) of the main model
view (schema) of the data base data. It also contains the relation and
attribute access spacification used when the data base is secured.
tuple
an instance of data (a record) stored in a relation made up of individual
attributes (fields).
unpopulated
a relation containing no tuples or a data base containing only
unpopulated relations.
update
an opening mode for a data base that allows all data base operations.
view

the logical relation and attribute makeup of the data base provided by a
model or submodel. A view may be a subset of the entire data base.

2-3 AW53-04C

FUNCTIONAL DIAGRAM

The process of creating and accessing a data base consists of four basic
steps:

1. Create the data model and the corresponding unpopulated data base.
2. Create an optional data submodel.

3. Load the unpopulated data base.

L, Access the populated data base.

2-4 AW53-04

The following diagram illustrates these four steps.
1]
data create_mrds_db
model processed (emdb)
source by command
creates creates
the
unpop-
ulated
121
data create mrds dsm
submodel }processed (emdsm)
source by command creates
data data data
sub- model base
model
31
load
raw entered program
data via —=0r--— calls
X mrds call
——QY =
LINUS
option-
ally
refer- refer- acts
ences ences upon
Ui user's
user's application
inquiry entered program Multies Relational
to the via -=0r=-- calls
data base j mrds_call Data Store (MRDS)
- -
LINUS

MRDS TUTORIAL

The numbers (1,2,3,
in this tutorial.
data base administrator.

data base.

and 4) on the diagram correspond to the numbering used

need not concern themselves with steps 1 and 2.

The examples used in this section are PL/I examples,

the Data SublLanguage (DSL) subroutines.

under the mrds call command description).
Update System (LINUS) may also be used to access an established data base.

In addition,

Steps 1 and 2 describe processes generally done once by the
Steps 3 and U4 concern users accessing an established
Users who are only interested in accessing an established data base

many of which utilize
(Parallel mrds_call examples are included
the Logical Inquiry and

AW53-04

1. Creating the data model and the corresponding unpopulated data base.

a. The data base administrator decides to create a relational data
base.

b. Using one of the Multics text editors. the administrator builds a
text segment called the data model source. This segment contains
a description of the data and its organization within the desired
data base. For example, let the segment "foo.cmdb™ contain the
following text:

domain: char 12 char(i2).
char 5 char(5);

attribute: name char_12,
emp num char 5,
comp char 5;
relation: Employee (name emp num* comp).

Comp mgr (comp* emp num);

This example defines a data base consisting of two relations (Employee
and Comp_mgr). The domain and attribute statements define the
names and characteristics of three attributes (name, emp num,
and comp) and the relation statement defines the names and composition
of the two relations.

The domain statement is not a structure declaration and the order
of the attribute names has no significance here. The domain statement
is simply a list of names and associated data types. (The definable
data types are a subset of the Multics PL/I data types.) In this
example, the "emp num" attribute is defined to be a 5-character
string. -

The relation statement determines the logical structure of the
data base. It is here that the number of relations, the names of
the relations, and the logical composition of the relations are
defined. The Employee relation (record) is defined to consist of
three attributes (fields): name, emp num, and comp in that order.

The asterisks in the relation statements designate the attributes
that are the primary keys of the relations. The primary keys in
this example are emp num and comp. A primary key must be designated
and it must be unique. Since no two employees can have the same
employee number, "emp num™ is a good choice for the primary key
of the Employee relation. Additional information regarding the
meaning and selection of primary keys is provided under "Primary
and Secondary Indexes" described later in this section.

1 The domain statement actually defines the characteristics of the set of domains.
It also defines a set of identically-named attributes having those characteristies.
The attribute statement is used to define attribute names for use in relations

over generic domain data types. This is explained in more detail under the

heading "Domains and Attributes" later in this section.

2-6 AW53-04

3/84

The following diagram illustrates the data base defined in the
above data model source:

Employee Comp_mgr
name emp_num comp comp emp_num
name emp_num comp comp emp_num

.
name emp_num comp comp emp_num

The Employee relation is a 1ist of employee names, employee numbers,
and the name of the component each employee is assigned to. The
Comp mgr relation is a 1list of all components in the firm and the
employee number of the manager of each component.

The administrator now invokes the create_mrds_db (cmdb) command
in order to translate the data model source and create the desired
data base.

create_mrds_db foo.cmdb Pers_Info.db

Using the description found in the segment "foo.cemdb", this command
creates a data base within the user's working directory consisting
of a directory named Pers Info.db and all subordinate segments,
files, and directories required to implement the defined data
base. For the current example, the data base has the following
file structure.

2-7 AW53-04B

[

3/84

db.control

(seg)

db_model

(seg)

Employee.m

{seg)
dbcb
resultant_segs.dir (seg)
rdbi
(dir) (seg)
Pers Info.db
Employee
(dir)
(file)

Comp_mgr.m

(seg)

Comp_mgr

(file)

secure.submodels} . . . JPers_Info.dsm
(optional)

(dir) (file)

Notice that three directories, six segments, and three files are
required to implement the Pers Info.db data base. The data base
control segment, "db.control", is used internally by MRDS to control
concurrent access to the data base. The db_model segment holds
common data base information, such as descriptions of domains and
a list of relation names.

The segments ending in ".m" hold the model information for the
corresponding relations. The files having the relation names hold
the actual data and are managed by various file managers. The
"secure.submodels" directory holds submodels that provide attribute
level security. The Pers_Info.dsm file is an optional submodel,
which can be created as shown below.

2-8 AW53-04B

3/84

Knowledge of the file structure of the data base, while informative,
is normally of no concern to the data base user since the MRDS
interface makes the structure transparent.

The resultant_segs.dir contains a copy of the internal structures
used by MRDS on the open data base. The internal structures are
in the dbeb and rdbi segments under this directory. This copy
makes the opening of the data base faster. It is created when
the data base is created via the cmdb command. If an existing
data base is opened by a DBA, the copy is created only if it does
not already exist. Note that MRDS can open the data base even if
this directory is absent, but it takes a bit more time.

The DBA can use the Multics system ACL commands (see MPM Commands
manual) to set the appropriate access controls to the files
(relations), segments, and the containing directory. For example,
if a user is only toretrieve information from the Employee relation,
but is allowed to modify information within the Comp_mgr relation,
the administrator must give that user the following minimum access
rights:

db.control rw (read and write)
db_model r (read)
Employee.m r {read)
Comp_mgr.m r (read)

Employee r (read)

Comp_mgr rw (read and write)
dbeb r (read)

rdbi r (read)
resultant_segs.dir s (status)

See Section 7 for more details on security.

2-8.1 AW53-04B

3/84

2.

Creating an optional data submodel.

a.

A submodel is an alternate description of an existing data base.
When a user opens a data base using the name of an associated
submodel instead of the name of the actual data base, the user's
view of the data base corresponds to the data base described in
the submodel. This gives the user the illusion of accessing the
data base defined by the submodel. A submodel could be used
when:

(1) It is desirable for some users to have a simpler subset view
of a large data base.

(2) It is desirable to reference the data base and its contents
using alternate or alias names instead of using the names
actually defined in the data model.

(3) It is desirable to make the restructuring of a data base
transparent to the data base users. For example, application
programs that reference a particular relation containing four
attributes need not be rewritten if a fifth attribute is
added to the relation in a redesign of the data base. The
programs need only "open" a submodel that defines that relation
as having the original four attributes.

(4) Attribute level security is to be provided (see Section 7).

A data submodel may be created at any time by either a user or
the data base administrator by creating a text segment called a
data submodel source. This segment, like the data model source,
contains a description of the desired data base. However, unlike
the data model source, the data base relations and attributes
described here must be a subset and/or a renaming or reordering
of an existing data base's relations and attributes. In addition,
the data submodel source may only contain relation statements and
no domain or attribute statements. The number of attributes present
in these relation statements must be less than or equal to the
actual number of attributes in the existing relations. Alias
names, if desired, are defined by setting the new name equal to
(=) the actual name used in the existing data base. For example,
let the segment named Pers_Info.*.cmdsm contain the following text:

relation: Employee (last_name = name emp_num),
comp = Comp_mgr (comp emp_num);

The ordering of terms around the equal sign is significant and
must be <{desired name> = <actual name>.

Notice that comp is the name of both a relation and an attribute

in this example. This is allowed. Notice also that no asterisks
are used in the syntax of submodels.

2-9 AW53-04B

This text describes an alternate view of the Pers Info.db data
base which 1is logically equivalent to the following data model
source:

domain: char_12 char(12),
char_5 char(5);

attribute: last_name char_12,
emp_num char_5,
comp char_5;

relation: Employee (last name emp num¥),
comp (comp* emp num);

The create_mrds_dsm (cmdsm) command is now invoked as in the following
example:

create_mrds_dsm Pers_Info >udd ... >Pers_Info.db -install

Using the description found in Pers Info.cmdsm, this command creates
a data submodel named Pers Info.dsm under the secure.submodels
directory of the data base and associates the submodel with the
Pers Info.db data base apparently located in a directory other
than the user's working directory. Opening the data base with
the pathname for Pers Info.dsm instead of Pers Info.db creates
the illusion that the user is accessing the data base defined in
2b above instead of the actual data base defined in 1b. The
number of submodels associated with a given data base is arbitrary.

Two restrictions exist when using a data submodel that defines a
relation as being a subset of the actual relation in the data
base (i.e., the submodel relation contains fewer attributes than
the actual relation and thus is a partial view of the relation).
The operations that are restricted are storing tuples in or deleting
tuples from such a relation when using the submodel.

3. Loading the unpopulated data base.

a.

Depending on the form and quantity of the data, the administrator
may elect to input that data using a terminal, a tuple at a time,
using the command interface mrds call or the LINUS store request,
or tc write and execute a load program designed to read the raw
data from existing file(s) and store it into the data base using
calls to the dsl $store subroutine. 1In addition, the LINUS store
request may be used to load relations from raw text files if the
format of the files is identical to the format of the relations.

2-10 AW53-0U

3/84

b.

Prior to loading, the data base must be opened in a manner similar
to opening a file for I/0. One of the following four opening
modes must be given:

Open Open Mode

Mode Constant Name Value

retrieval retrieval 1

update update 2

exclusive retrieval exclusive_retrieval 3

exclusive update exclusive_update 4
The named) constants are defined in the

"mrds_opening modes_.incl.pl1" system include file.

The following PL/I example illustrates a subroutine call that
opens the data base Pers Info.db in an exclusive update mode
(declarations are omitted).

call dsl_$open ("Pers_Info.db"™, dbi_1, exclusive_update, code);

If the opening is successful, MRDS assigns and returns an integer,
called the data base index (dbi), which remains unique to the
data base during the current user session (from opening to closing).
A user process may have 128 data bases open at one time and must
refer to each opened data base by the assigned data base index in
all subsequent calls.

The storing of data into a data base may occur at any time during
the 1life of a data base and may in fact be a continuing process.
Quite often, a data base is created as a container for data previously
stored in another media. In this case, the initial transfer of
data into the data base is a process known as loading (populating)
the data base and is actually no more than a series of store
operations.

This example illustrates the loading of the data base Pers_Info.db
using data found in two existing data files named emp_data and
comp_data. (Not all PL/I declarations are shown, but the relation
structure declarations may be obtained by using the
create_mrds_dm_include command.)

emp_data comp_data
Akins 57111 Eng Mfg 51603
Hamilton 48227 Mfg Eng 48350
Morton 48350 Eng
Shaw 51603 Mfg
Whiting 49189 Fin
Nielson 52464 Eng

2-11 AW53-04B

2/85

declare 01 Eaployee,
02 name char(12),
02 emp _num char(b6),
02 comp char(6);
declare 01 Comp_mgr,
02 comp char(6),
02 emp num char(6);
read file (emp_data) into (Employee);
call dsl_$store (dbi_1, "Employee", Employee.name,
Employee.emp_num, Employee.comp, code);
do while ("eof emp data);
read file (emp_data) into (Employee);
call dsl_$store (dbi_1, "-another", Employce.name,
Employee.emp num, Employee.comp, code);
end;
read file (comp_data) into (Comp_mgr);
call dsl $store (dbi 1, "Comp mgr", Comp mgr.comp,
Comp mgr.emp num, code);
do while ("eof comp data);
read file (comp_data) into (Comp_mgr);
call dsl_g$store (dbi_1, "-another", Comp mgr.comp,
Comp_mgr.emp_num, code); -
end;

NOTE: Data conversion is performed automatically by MRDS
and proceeds according to the standard PL/I
conversion rules. In this example the char(6) comp of
the Employee structure is converted into the char(5)
comp attribute in the data base. This data conversion
is only available for assign_ data types, which
excludes the picture data type.

If an incomplete tuple is being stored (i.s., a tuple with one or more

unknown attribute values), the user must insert null values into the
unknown attribute of the tuple being stored in order to prevent a

shifting of attribute values into the wrong attribute location. One
rule used in this case is to substitute a "™ "™ (blank) for attributes
requiring alphabetic data and a -1 (or some type of numeric value that
cannot be confused with valid data) for an attribute requiring numeric
data.

The Pers_Info.db data base is considered populated when the load
program completes its execution. Its logical appearance is:

Pers Info.db

Employee Comp_mgr
name emp num¥*| comp comp*| emp_num
Hamilton] 48227 Mfg Eng 48350
Morton 48350 Eng Mfg 51603
Whiting 49189 Fin
Shaw 51603 Mfg
Nielson 52464 Eng
Akins 57111 Eng

The actual internal order of the data within the data base and
the corresponding order in which the data might be retrieved are
functions of internal implementation and should not be anticipated
by the user. Standard Multics sort commands and subroutines are

2-12 AW53-04C

3/84

available for users desiring sorted data (refer to the Multiecs
SORT/MERGE manual). LINUS will also return sorted data if desired.

After loading, if no further accessing is desired, the data base
is closed.

call dsl_$close (dbi_1, code);

4, Accessing the populated data base.

a.

In order to access an established data base, a user must first
open the data base in the desired open mode. Every user mnmust
individually open a data base even though other users may have
the same data base currently open.

call dsl_$open ("Pers_Info", dbi_1, update, code);

This example opens the data base Pers_Info.db in the update mode.
If another user has the data base currently open in an exclusive
mode, MRDS returns a code indicating that the data base is busy.
Otherwise, a unique data base index is returned and the user may
proceed.

An array illustrating those times when a user requesting a data
base opening may receive a "busy" code is shown below. For example,
a user requesting an opening mode of exclusive retrieve (er) of a
data base currently open in an update (u) mode with an update
form of scope set (e.g., for store), receives a busy code and
must wait until the other user closes the data base.

Another User's
Current Open Mode

r 19} er eu
— N

r busy
*

u busy busy
Open * *
Request

er busy busy
* %

eu busy busy busy busy
* * % %

(¥) The r or u shared modes will only conflict when conflicting
scope has been or is requested.

”~
R
(s
(o]
oy
1]
[
i
V]
1
»%
>
3
»}
2
D
n
g
ol
—
o

m W only conflict if the opening views
contain the same relations.

If the data base is opened in one of the shared modes (i.e.,
update or retrieval), MRDS prevents access operations until the
user performs the set_scope operation. Set_scope is the process
of declaring how the data base is to be shared with other users
by specifying:

(1) The operations the user intends to perform on the relations
included in the user's view of the data base (called permit_ops)

2-13 AW53-04B

(2) The operations others are to be prevented from performing on
the relations in their view of the data base (called prevent ops)

Permit ops and prevent ops are initiated by the dsl_$set_ scope
subroutine call by specifying the sum of scope mode encoding(s)
that correspond to the desired data base operation(s).

Scope

Code Operation
0 null
1 read attr or read
2 append_tuple or store
L delete tuple or delete
8 modify attr or modify

call dsl_$set scope (dbi 1, "Employee", 1, 15,
"Comp_mgr", 3, 14, 120, code);

In this example, the user is indicating:

(a) To permit the retrieve operation (permit ops = 1)
in the Employee relation and retrieve and store
operations (permit ops = 1 + 2) in the Comp_mgr

relation for himself.

(b) Other wusers are prevented from performing any
operation on the Employee relation (prevent ops =
1+ 2 + 4 + 8) and are prevented from performing
store, delete, or modify operations on the Comp mgr
relation (prevent ops = 2 + U4 + 8), while retrieve
operations may still be done by others on this
relation. (See "Additional Capabilities", described
later in this section, on dynamically changing
scope.)

(¢) The length of time (in this case 120 seconds) the
user 1s willing to wait for the scope request to
be satisfied. If another user has the data base
currently open with a scope that conflicts with
this request, MRDS automatically queues the request
with the intent of satisfying it when the conflicting
scope is relinquished. 1If the specified wait time
is exceeded without the scope request being
satisfied, MRDS returns a code indicating that the
data base is busy. Otherwise the user may proceed.

The user may specify the number of seconds to wait
to satisfy the set scope request (there is no
anticipated maximum), or may elect to use the MRDS
default value of 30 seconds by omitting the argument.

c. Once the data base is open (and, if a shared opening, the set scope
request is accepted) the user can access the data base in any
manner desired, subject of course to access restrictions imposed
by the data base administrator and to self-imposed opening mode
and scope restrictions.

Access Mechanisms Other Than Store

To access an open data base, the user must make a subroutine call to the
appropriate MRDS entry point in order to:

L Supply the name of the operation to be performed (i.e., delete, modify,
or retrieve).

2-14 AWS3-04

» Supply the data base index of the target data base.

& Specify that subset of the data within the data base upon which the
operation is to be performed.

The name of the operation is indicated by the dsl_ entry name used in the
subroutine call. The three possibilities are:

call dsl_$delete (...);
call dsl $modify (...);

call dsl $retrieve (...);

The data base index (dbi) is always supplied as the first argument in the
subroutine call. For example:

call dsl $delete (dbi, ...);

The subset of the data within the data base to be operated upon is defined
by the second argument known as a selection expression (see "Formal Definition
of the Selection Expression" in Section 4). A selection expression is a
character-string argument ncrmally containing a range clause, 2 select clause,
and a where clause, each identified respectively by the keywords -range, -select
and -where. For example:

call dsl $modify (dbi,
"_range
-select
-where ... ", ...);

The construction of a selection expression is best understood after the
user has mentally performed the desired operation on a tabular representation of
the data base. During this process, the user identifies:

The relations to be referenced in order to accomplish the desired operation
(range clause).

& The attributes affected, that is, the attributes to be retrieved, modified,
or deleted (select clause).

- The conditions required to uniquely identify the desired tuples (where
clause).

The relations to be referenced by these data base operations appear in the
-range clause of the selection expression, the attributes to be affected appear
in the -select clause, and the conditions required to identify the desired tuples
are specified in the -where clause.

In order to illustrate the construction of a selection expression, assume
that the employee tuples of all Engineering employees having an employee number
greater than 50000 are to be deleted from the Employee relation of the Pers_Info
data base above. Note the following:

- The Employee relation is the only relation that needs to be accessed
in order to accomplish the objective.

- Since only entire tuples can be deleted, all of the attributes of the
Employee relation are affected (name, emp num, and comp).

o There are only two conditions required to select the desired tuples.

The employee number must be greater than 50000 and the component must
be equal to "Eng".

2-15 AWS53-04

The following PL/I subroutine call accomplishes the desired deletions. The
multiline formatting is shown only for the sake of clarity. PL/I declarations
are not shown.

call dsl_$delete (dbi_1,
"_range (E Employee)
-select E.name E.emp_num E.comp
-where ((E.emp_num > ""50000"") &
(E.comp - nnEngnn))n, code);

The -range clause is said to assign a "tuple variable" E to the Employee
relation. Tuple variables may be given any name, but generally a one- or two-
character abbreviation for the designated relation is chosen. Tuple variables
should be thought of as pointers which are moved about the selected relation by
MRDS while it attempts to satisfy the conditions specified in the -where clause.
It is sometimes necessary to assign two or more tuple variables to the same
relation.

The -where clause specifies the conditions necessary to identify the tuples
of interest. In this case, the employee number must be greater than 50000 and
the component must be equal to the string "Eng". The double quoting is required
in order to resolve the ambiguity of quotes within quotes. The parentheses are
required for efficient parsing of the selection expression.

The -select clause lists the attributes to be affected when a tuple is
found that satisfies the conditions specified in the -where clause. For this
data base, the tuples containing the names of Nielson and Akins satisfies the
specified conditions and cause their deletion. For the convenience of the user,
a tuple variable appearing by itself in a -select clause is interpreted to mean
all attributes, allowing the above subroutine call to be rewritten as:

call dsl_$delete (dbi,
"_range (E Employee)
-select E
-where ((E.emp_num > ""50000"") &
(E.comp = ""Engn""))}", code);

MRDS assumes no precedence for the boolean operators "&" and "|"; therefore,
parentheses must direct a specific order of evaluation. Selection expressions
may be arbitrarily complex and may include the following operators:

Algebraic Boolean
Operators Operators

= (equal to) & (and)

< (less than) i (inclusive or)
> (greater than) ~ (not)

<= (less than or equal to)

>= (greater than or equal to)

(not equal to)

3/84 2-16 AW53-04B

Selection expressions can be compiled to reduce the overhead of translation.
Compiled selection expressions can be wused directly 1in the execution of
define temp rels, retrieves, modifies, and deletes. The following PL/I subroutine
call compiles a desired selection expression.

call dsl_$compile (dbi,
"~range (e employee)
-select e.name e.emp_num
-where (e.comp = ""SW-ENGR"")" 6 se-index,; code);

Compiled selection expressions are freed or released by calling the compile
entrypoint in the normal manner and supplying a negative number for the selection
expression index of the compiled selection expression that is to be deleted. 1In this
case, the contents of the selection expression are unimportant. For example:

dsl_$compile(db_index, "", -se_index, code);

Note: Compiled selection expressions cannot be retained from one data
base opening to another. It is not necessary to explicitly
release a compiled selection expression when the application is
finished with it; however, it is good practice. When an open
data base is closed, any compiled selection expressions that
exist at the time are released automatically.

2/85 2-16.1 AW53-04C

EXAMPLE 1

Hamilton has transferred to the Engineering component. Modify his component
name to read "Eng":

call dsl_s$modify (dbi_1,
"-range (E Employee)
-select E.comp
-where E.emp_num = ""l48227"" " "Eng", code);

A selection expression is used to uniquely define the subset of the data
base to be modified. The attribute values selected are sequentially replaced
with the values provided to the right of the selection expression. In this
example, only one attribute is selected (E.comp) and, therefore, only one replacement
value is provided (Eng).

NOTE: Modification of a primary Kkey attribute (i.e., an attribute followed
by an asterisk in the data model source) is not allowed and results
in a code indicating an invalid operation. Such modifications may
only be accomplished by deleting the entire tuple and storing a new
tuple containing the corrected values. (The reason for this is explained
later, under "Primary and Secondary Indexes".) Modify operations
are further restricted to include only attributes contained in the
same relation (i.e., 1in order to modify both Employee.comp and
Comp_mgr.comp, two modify operations are required).

EXAMPLE 2

Retrieve the Employee tuple of employee "Shaw':

call dsl_$retrieve (dbi_1,
"-range (E Employee)
-select E
-where E.name = ""Shaw"" ",
arg_1, arg_2, arg_3, code);

The above selection expression identifies the one Employee tuple having the
name attribute equal to Shaw. The retrieve operation returns the three attribute
values: Shaw, 51603, and Mfg. When performing retrieve operations, users must
supply the correct number of arguments to hold the returned attribute values.
Data conversion (if it occurs) proceeds according to the standard PL/I conversion
rules.

EXAMPLE 3

Retrieve the Employee tuples of all manufacturing and finance employees:

call dsl_$retrieve (dbi_1,
“-range (E Employee)
-select E
-where (E.comp = ""Mfg"") | (E.comp = ""Fin"")",
arg_1, arg_2, arg_3, code);

do while (code = 0);
put skip list (arg_1, arg_2, arg_3);
call dsl_$retrieve (dbi_1,
"-another", arg_1, arg_2, arg_3, code);
end;

3/84 2-17 AW53-04B

This PL/I example illustrates the typical programming construct required
when retrieving more than one set of attributes from a data base. The first
call to dsl $retrieve sets up the selection conditions and returns one set of
attributes satisfying the -where clause. The second call to dsl $retrieve requests
another set of attributes satisfying the same selection conditions specified in
the first call, by using "-another" as the selection expression. The "code"
returned is zero if the retrieve is successful. If no tuple satisfied the
selection condition then the code returned is mrds_error_$tuple not_ found.

The above example returns the three tuples (nine attributes) currently in
the Employee relation where either "Mfg" or "Fin" is the comp. If the -where
clause in this example were eliminated, the Employee tuples of all employees
(not just the "Mfg" and "Fin" employees) would be retrieved.

It should be noted that the retrieve operation call is satisfied and complete
when the first tuple that matches the selection expression is found. Therefore,
as in the example above, additional calls using the "-another" selection expression
must be made to find subsequent tuples. The delete and modify operations, on
the other hand, require only one call to operate on all matching tuples in the
data base.

EXAMPLE U4

Retrieve the employee number of Hamilton's manager:

call dsl $retrieve (dbi_1,
"-range (E Employee) (C Comp mgr)
~-select C.emp_num
~-where ((E.name = ""Hamilton"") &
(E.comp = C.comp))", arg 1, code);

This example returns the employee number 51603. VNotice the usage of two
tuple variables in the range clause and the selection of only one attribute
value from the Comp mgr tuple. (Terms like "E.comp = C.comp" and "C.comp =
E.comp" are identical in meaning and may be used with either ordering.)

EXAMPLE 5

Retrieve the name and employee number of Hamilton's manager:

call dsl $retrieve (dbi 1,
"-range (E1 Employee) (C Comp mgr) (E2 Employee)
-select E2.name E2.emp num
-where ((E1.name = ""Hamilton"") &
((El.comp = C.comp) & (C.emp num = E2.emp_num)))",
arg 1, arg 2, code);

This example returns the two attribute values Shaw and 51603. The select
clause could also have used C.emp num instead of E2.emp_ num.

2-18 AW53-04

EXAMPLE 6

Delete the Employee tuple of all employees whose last name begins with the
letters M through Z:

call dsl_$delete (dbi_1,
"-range (E Employee)
-select E
-where ([substr(E.name 1 1)] >= mnynn
& ([substr(E.name 1 1)] <=z mnznmyn_ code);

This example illustrates the substr (substring) built-in function and
identifies a one character-long substring starting with the first character of
E.name. The square brackets are required to designate built-in functions or
expressions within a selection expression.

EXAMPLE 7

The following example illustrates the format for using the MRDS set operators.
(Refer to Appendix D for information regarding set operators.)

call dsl_$retrieve (dbi_1, selection expression 1 --

"(-range ... 3 selects all of A
-select ... in the following diagram.
-where ...)

-inter ’ the intersection (-inter) of
(-range ... selection expression 1 and
-select ... 2 -- selects the shaded area of A
-where ...)", arg_1, ... , code); J and B in diagram (elements

that belong to both A and B).

3/84 2-19 AW53-04B

Several selection expressions (up to 20) may be strung together, separated

by set operators,

in order to construct one complex selection expression where

each set operation is applied to the previous selection expression or result of

a previous set operation,

call dsl_S$retrieve (dbi_

such as:

4
U
ceoe

ced)

...))

ooo)

", arg_1,

Selection expression 1 --

.

see a below

. , code);

-

¥see b belowq

} see c below

selects all of A in the following diagram.

The intersection (-inter) of selection expression 1 and 2 -- selects

all of the shaded area of A and B in the diagram (elements that belong
to both A and B).

"((-range
-select
-where
~-inter
(-range
-select
-where
-differ
(-range
-select
-Wwhere
a.
b.
C. The

the
the

but do not

belong to C).

¥

difference (-differ) of selection expression 3 and the result of
previous operations (selection expressions 1 and 2) -- select only
dark shaded area of B in the diagram (elements that belong to B

The attributes selected in each selection expression must be identical in
number and must also be domain-compatible (see
The set operators may only be used in retrievals and defining temporary relations.
They may not be used to delete or modify data.

3/84

2-20

"Domains and Attributes" below).

AW53-04B

EXAMPLE 8

The following example illustrates one of the useful features of a compiled
selection expression using the combination of -compile and -another to obtain data
from two different MRDS data bases. (Refer to "Argument Substitution Using .V. and
.X." below for additional information on use of the ".X." in the example.)

call dsl_$compile (dbi_2, "-range (s sale s)
-select s.item
-where (s.name = .X.)", se_index, code);

call dsl_$retrieve (dbi_1, "-range (e emp) " i}
"~-select e.name", emp name, code_1);

do while (code_1 = 0);
put skip list (emp_name);
put skip list;
call dsl_$retrieve (dbi_2, "-compiled", se_index, emp_name, item, code_2);
do while (code 2 = 0);

put skip list (item);

call dsl_$retrieve {(dbi 2, *"-another®, emp name, item, code 2);
end;
call dsl_$retrieve (dbi_1, "-another“, emp_name, code 1);
end;
call dsl_$compile (dbi_2, "", -se_index, code_1;

The first call to dsl_$compile translates the supplied selection expression into
disjunctive normal form, stores it, and returns the selection index which is used
to indicate that the selection expression is compiled. The se_index returned from
dsl_$compile is used in the dsl_$retrieve with "-compiled" as the selection
expression.

The last call to dsl_$compile deletes the compiled select expressionbyutilizing
the negative selection expression index.

2/85 2-20.1 AW53-04C

ADDITIONAL CAPABILITIES3

Three powerful concepts complement the capabilities of MRDS:

L) Scope deletion
[] Temporary relations

] Argument substitution using ".V."™ and ".X."

Scope Deletion

The delete scope request lets a user remove all or part of a previously set scope.
Recall that setting scope is required when opening a data base in a shared mode (i.e.,
update or retrieval). If a user's scope includes permit_ops or prevent_ops that
conflict with the scope of others attempting to use the data base, those users are
placed in a queus to wait until the current user either closes the data base, deletes
sufficient scope, or the allowed waiting time 1imit is exceeded. Deleting scope can,
therefore, be considered an act of courtesy to others awaiting access to a shared data
base and users should be alert to the possibility of relaxing their scope restrictions
wnenever completing a logical phase of their session with the data base.

call dsl_$set_scope (dbi 1, Employee, 15, 15, code);
call dsl_$dl_scope {(dbi 1, Employee, 14, 1, code);

Prior to the execution of the delete scope request in the above example, other
users are prevented from performing retrieval and update operations in the Employee
relation. After executing the delete scope request, other users are only prevented
from performing updates in the Employze relation, including the fact that the user has
revoked his own update permission. A subsequent attempt by the user to update an
Employze tuple would result in a code indicating a scope viclation

valaiavaliie

Although a user may repeatedly set and delete scope while the data base is open,
the user must delete all scope before setting a new scope. This rule avoids potential
deadlock problems within the data base manager.

Users of heavily shared data bases should cooperate to maximize the availability
of those data bases. Combinations of opening modes and scope restrictions, in order
of concurrency, are:

1. Exclusive_update mode.

2. Exclusive retrieval mode.

. Update or retrieval mode with many permit_ops and many prevent_ops.

3
§. Update or retrieval mode with few permit_ops and few prevent_ops.

2/85 2-21 AW53-04C

Temporary Relations

A temporary relation is a user-created subset of an open data base that is
accessible via selection expressions in the same manner as permanent relations
for retrieve operations only. Temporary relations are created for the purpose
of simplifying selection expressions, reducing the access time to otherwise dispersed
data, or obtaining a count of the tuples retrieved by a selection expression.
Temporary relations reside in the user's temporary storage directory determined
by set_mrds_temp_dir with a default of the process directory and, although temporary
relations and permanent relations are physically and logically identical, a temporary
relation is destroyed whenever it is redefined, deleted, or whenever the associated
data base is closed.

The asterisks used in a define_temp_rel request designate the attributes
(or concatenation of attributes) that are to be used as the primary key of the
temporary relation. (Temporary relations cannot have secondary keys.) Users
must exercise care when selecting primary keys for temporary relations since
MRDS automatically (and without warning) removes duplicate key tuples from the
resulting relation.

rel_index_1 = 0;
call dsl_$define_temp_rel (dbi_1,
"-range (x Employee) (y Comp_mgr) (z Employee)
-select x.emp_num¥* z.name
-where ((x.comp = y.comp) &
(y.mgr_emp_num = z.emp_num))", rel index_1, code);

This example creates (because rel_index_1 = 0) a temporary relation containing
the names of all employees and their respective managers as represented in the
table below. Notice that this information did not exist side-by-side in the
original data base. Unlike the retrieve request that returns one set of selected
attributes for each call, the define_temp_rel request selects all attributes
that satisfy the selection expression and physically places them into the temporary
relation.

temporary relation 1

emp_num¥* name
48227 Shaw
48350 Morton
51603 Shaw
52464 Morton
57111 Morton

The name Whiting does not appear in the example because the sample data
base does not include a manager of "Fin" in the Comp_mgr relation. Therefore
the -where selection expression cannot be satisfied for Whiting's Employee tuple.

Users may define, redefine, or delete any number of temporary relations.
However, no more than 20 per data base opening may exist at any one time. For
each temporary relation created, MRDS assigns and returns an integer, called a
relation index (rel_index), which remains unique to the temporary relation and
its associated data base during the current user session. A user must reference
an existing temporary relation by using the assigned relation index in the range
clause of a retrieve selection expression (refer to "Argument Substitution llsing

.V." described below).

3/84 2-22 AW53-04B

Tne accessing of temporary relations 1is restricted to retrieve and
define_temp rel operations only. The delete, store, and modify operations are not
allowad for temporary relations.

rel index 1 = 1;
calT dsl Fdeflne temp rel (dbi 1,
"-range (x Employee) (y Comp_mgr) (z Employee)
-select x.emp num z.name¥*
-where ((x.comp = y.comp) &
(y.mgr_emp _num = z.emp _num))", rel _index_1, code);

This example illustrates a redefinition of a temporary relation. If the
relation index variable has a value of zero wnen the define_temp_rel request is made,
the resulting temporary relation is assigned the next available relation index. If
however the relation index is greater than zzro on input and if a temporary relation
possessing this index already 2xists within the data base, that temporary relation is
redefined. In this case, the old temporary relation "1" has been replaced with a new
temporary relation "1", 1If the specified relation index 1is less than zero and a
temporary relation exists whose index is equal to the absolute value of the index
given, then that temporary relation is deleted.

The primary key attribute has been changed to z.name, a non-unique attribute.
Consequently, the new temporary relation "1" contains less information than the old
temporary relation ™M,

1

temporary relation i

emp _num name¥
48350 Morton
51603 Shaw

The number of tuples in a temporary relation can be determined using the
dsl_$get population interface.

Argument Substitution Using ".V." and ".X."

Since a MRDS selection expression is passed as a character-string argument, some
mechanism is needed that allows a programmer to insert variable values into a
selection expression when the application program is executing. Consider the case
where the variable emp num_1 contains a previously selected employee number and the
programmer wishes to use this employee number in a MRDS selection expression.

The method of substituting a value into a selection expression involves the MRDS
argument ".V."., This argument mayonlybe used in place of arelation name in the range
clause (for temporary relation indexes only, not relation names) and in place of a
constant in the where clause. When present in a selection expression, MRDS
sequentially replaces the .V. argument(s) with the value(s) of the variable(s) of
literal(s) immediately following the selection expression.

call dsl_$retrieve (dbi_1,
"_range (x Employee)
-select x.name
-where (x.emp num = .V.)}",
emp_num_1, arg_1, code);

2/85 2-23 AW53-04C

Tne .V. argument is also the mechanism used to insert temporaryrelation indexes
into the range clause of a selection expression. Waen the .V. argument is used within
the range clause, then the relation to which it refers can only be a temporary
relation. Assume that the variable "temp rel 1" contains the index of an existing
temporary relation. The following example is identical to the one above except for
the use of the temporary relation instead of the Employee relation:

call dsl $retrieve (dbi_1,
"-range (x .V.)
-select x.name
-where (x.emp num = .V.)",
temp rel_1, emp num_1, arg_1, code ;

The ".X." argument is a substitution character similar to ".V.". It canonlybe
used when compiling a selection expression and it is used to specify an argument that
is not known at the time of compilation.

call dsl_$compile (db_index,
- "_range (x Employeze)
-select x.name x.smp num x.comp
-where ((x.emp_num < .V.) &
(x.comp > .X.)),
se_index, {.V._values, ... ,} code)

The .V. values is required to satisfy any .V. argument substitution characters that
exist in the selection expression. These then become constant (i.e., they cannot be
changed in a later reference to the selection expression). This can be done using the
.X. substitution character in the selection expression at compilation time. The .V.
values are not needed in future references to the compiled selection expression. No
values are necessary at this time to satisfy any of the .X.s that may exist in the where
clause. They are only used in the define_temp rel, retrieve, modify, or delete
procedures. If se.index is equal to zero on input, a new index is returned in
se_index. If se_index is equal to some positive value and the index is currentlybeing
used (i.e., already assigned to a conpiled selection expression), that compiled
selection expression is redefined.

NOTE: .X. wvaluss are not allowsd in expressions and function references.
Two examples of its use are:

.. "-where [substr (a.value .X. 2)] = mwn3qun n

... "-where a.value = 2 ®* X"

DATA BASE DESIGN

The design of a data base is aresponsibility of the data base administrator. It
requires insight into the nature and form of the data to be stored and must include an
understanding of the manner in which the user community is expected to access the data
base. The design chosen by the data base administrator affects such characteristics
as:

1. Overall size of the data base

2. Processor time required to effect a given update request
3. Complexity of the selection expressions required to update the data base
4 Internal logical considerations called update and deletion anomalies

(discussed below)

2/85 2-24 AW53-04C

The novice designer of a relational data base often has the tendency to createa
one-relation data base that contains all of the data. However, a well-designed
relational data base typically contains several relations with the data distributed
among them. This partitioning of a data base into several relations is characteristic
of a data base design process known as normalization. Normalization is described at
the end of this section, but first the reader should understand the desirabilityof a
multi-relation data base over a one-relation data base.

Consider two data bases that contain logically equivalent information but differ
in their physical structure. The Pers Info A data base consists of only onerelation
whereas Pers Info B (containing the same information as Pers_Info_A) is partitioned
into two relations that share a common attribute (comp).

2/85 2-24.1 AW53-04C

The .V. argument is also the mechanism used to insert temporary relation
indexes into the range clause of a selection expression. When the .V. argument
is used within the range clause, then the relation to which it refers can only
be a temporary relation. Assume that the variable "temp rel 1" contains the
index of an existing temporary relation. The following example is identical to
the one above except for the use of the temporary relation instead of the Employee
relation:

call dsl $retrieve (dbi 1,
"_range (x .V.) N
-select x.name
-where (x.emp_num = .V.)",
temp rel 1, emp _num 1, arg 1, code ;

DATA BASE DESIGN

The design of a data base is a responsibility of the data base administrator.
It requires insight into the nature and form of the data to be stored and must
include an understanding of the manner in which the user community is expected
to access the data base. The design chosen by the data base administrator
affects such characteristics as:

1. Overall size of the data base
2. Processor time required to effect a given update request

3. Complexity of the selection expressions required to update the data
base

b, Internal logical considerations called update and deletion anomalies
(discussed below)

The novice designer of a relational data base often has the tendency to
create a one-relation data base that contains all of the data. However, a
well-designed relational data base typically contains several relations with the
data distributed among them. This partitioning of a data base into several
relations is characteristic of a data base design process known as normalization.
Normalization is described at the end of this section, but first the reader
should understand the desirability of amulti-relation data base over aone-relation
data base.

Consider two data bases that contain logically equivalent information but
differ in their physical structure. The Pers Info A data base consists of only
one relation whereas Pers_Info B (containing the same information as Pers_Info_A)
is partitioned into two relations that share a common attribute (comp).

2-24 AW53-04

Pers Info A

Employee

name emp_num¥*{comp jmgr numj bldg

Hamilton{ 48227 MFG 51603 A

Morton 48350 ENG 48350 B

Whiting 49189 FIN 49189 B

Shaw 51603 MFG 51603 A

Nielson 52464 ENG 48350 B

Akins 57111 ENG 48350 B

Green 57183 MFG 51603 A

Pers Info B
Employee Comp mgr

name emp num*}comp comp¥* mgr num| bldg
Hamilton} 48227 MFG ENG 48350 B
Morton 48350 ENG MFG 51603 A
Whiting 49189 FIN FIN 49189 B
Shaw 51603 MFG
Nielson 52464 ENG
Akins 57111 ENG
Green 57183 MFG

A first observation about these data bases is the size difference between
Pers Info A and Pers Info B. For a large number of employees, Pers Info B would
contain approximately 40% fewer attributes than Pers Info A. A carefully chosen
partitioning of a relation into multiple relations usually produces this effect.

A second observation concerns the number of changes required to reflect one
"real world event" such as the engineering manager being changed from Morton to
Nielson. Notice that three attributes must be changed in order to update Pers Info A,
but only one attribute must be changed in order to update Pers_Info_B Thls
irregularity in Pers_Info A is known as an update anomaly; and although the
update can, in both cases, be done with only one MRDS modify request, MRDS must
do considerably more work for the user requesting the update of Pers_Info_A.
Counter examples exist, but in well-designed data bases update anomalies are
generally minimized by partitionlng large relations into smaller relations.

Now consider the case in which Whiting has retired. This change can be
accomplished in both data bases by deleting Whiting's Employee tuple. However,
there are side effects which may be undesirable. By deleting Whiting's Employee
tuple from Pers Info A, the fact that the Finance component was located in building
"B" has also been deleted from the data base. This same fact is unaffected by
deleting Whiting's Employee tuple in Pers_Info_B. This irregularity in Pers_Info A
is called a deletion anomaly and again suggests advantages to be gained by
partitioning a large relation into smaller relations. The fact that Whiting was
the component manager of Finance means that an additional update is required in
the Pers_Info B Comp mgr relation when a new manager is named.

2-25 AW53-04

There is one observation of Pers Info A and Pers Info B that suggests a
disadvantage to the multi-relation data base. Consider the following selection
expressions that retrieve the employee number of Akins' manager from Pers Info A
and from Pers Info B: a -

Pers Info A

call dsl $retrieve (dbi 1,
"_range (E Employee)”
-select E.mgr num
-where E.name = “""Akins""", arg 1, code);

Pers Info B

call dsl $retrieve (dbi_2,
"-range (E Employee) (C Comp mgr)
-select C.mgr num N
-where ((E.name = ""Akins"") &
(E.comp = C.comp))", arg_1, code);

Not only is the selection expression simpler for the retrieval from Pers_Info A,
but the expected time to retrieve the manager's employee number is less for
Pers_Info A since the data base manager must search both relations in the Pers_Info B
data base in order to satisfy the -where clause. Thus, the data base administrator
must carefully weigh a number of consequences when designing a data base that is
optimal for a particular set of data base requirements. It is generally agreed,
however, that the advantages of a partitioned data base outweigh the disadvantages.

Examples of Normalization

The process of normalizing a data base consists of a subjective design
process (performed by the DBA) where complex relations are transformed into
simpler relations without loss of information. Normalization has been formalized
to the extent that there are three well-defined normal forms: first normal form
(FNF), second normal form (SNF), and third normal form (TNF).

FIRST NORMAL FORM

The conversion of some collection of data into FNF is essentially the process
of eliminating repeating groups and hierarchical structures: every attribute
must be defined over a domain that is a relation containing no more than one
attribute. For example, consider a collection of supplier data where each supplier
references several projects. Such a collection can be represented as follows,
where "supplier" and "project" can be thought of as arrays and the items enclosed
in parentheses represent column headings:

supplier (supp no name address zip project (proj no qty_s mgr))
The project attribute is an array within an array. Such a construct may also be
viewed as an hierarchical relationship, with the supplier being superior to the
project. To convert such a structure to FNF, the attributes of project must be
incorporated into the supplier relation:

supplier (supp_no¥* name address zip proj no qty_s mgr)

2-26 AW53-04

where:

1. proj no
indicates the projects supported by a given supplier.

2. qty s
indicates the quantity of items supplied for a project by a given
supplier.

3. mgr
indicates the project manager.

Since a single supplier may supply more than one project, by definition
proj no is not functionally dependent on supp _no (see "NOTES" below).

SECOND NORMAL FORM

In order to ensure that each attribute is fully functionally dependent on
its primary key (see "Notes" below), the supplier relation must be refined. For
example, the quantity of items supplied (qty s) is dependent upon both components
of the primary key combination of supp no and proj _no. However, the project
manager attribute (mgr) is functionally dependent upon only one of the components:
proj_no. In order to convert the data representation to SNF, a refinement of
the supplier relation is required:

supplier (supp no* name address zip)
supplier_proj (supp _no¥* proj no* qty s)
project (proj no* mgr)

Thus, every nonprime attribute is fully functionally dependent upon the primary
key to which it belongs.

NOTES: Functional dependence: an attribute (or group of attributes) B is
functionally dependent upon A if each value of A never has more than
one value of B associated with it. Alternatively, it can be said
that, in such a case, A implies B.

Full functional dependence: B is fully functionally dependent upon
a group of attributes A if B always depends upon all components of A
and not upon any subset of A.

THIRD NORMAL FORM

Next, every attribute within the relation must be nontransitively dependent
upon its primary key. In this connection, notice that, in the supplier relation,
the address attribute is functionally dependent upon the supp no attribute. That
is, the supplier number (supp no) implies the address. On the other hand, the
supp no attribute is not functionally dependent upon the address attribute. That
is, the address of the supplier does not imply the supplier number. Furthermore,
the zip attribute is functionally dependent upon the address attribute (i.e.,
address implies zip). This means that the zip attribute is transitively dependent
upon the supp no attribute (or the supplier number transitively implies the zip
code of the supplier). To eliminate such transitive dependence, the following
refinement of the supplier relation may be performed:

supplier (supp no* name address)

address (address¥* zip)

2=27 AW53-04

NOTE: Transitive dependence: an attribute (or group of attributes) C is

transitively dependent upon A if, at every instance, it is the case
that,

C is functionally dependent upon B, and

B is functionally dependent upon A, but
A is not functionally dependent upon B,

An illustration of the above normalizing process applied against sample
data values produces:

1. Unnormalized Data

supplier(supp no name address zip project(proj_no qty_s mgr))

936 Acme Houston 44352 8 35 Jones
3 10 Smith
4 10 Smith
909 Zula York 22369 8 12 Jones
6 15 Gray

2. Third Normal Form

supplier (supp no* name address)

936 Acme Houston
909 Zula York
project (proj no¥* mgr)
8 Jones
3 Smith
! Smith
6 Gray
supplier_project (supp no* proj no¥* qty s)
936 8 35
936 3 10
936 b 10
909 8 12
909 6 15

address (address* zip)
Houston 44352
York 22369

Domains and Attributes

Reconsider the definitions:

1. Attribute: the name of a data field within a tuple.
2. Attribute value: the value of an attribute (data field) within a tuple.
3. Domain: the set of all values an attribute may assume.

Though this topic was not previously stressed, the data base administrator
must consider the domain statement in the data model source as defining both a
domain and a corresponding attribute having the same name as the domain. For
the Pers Info data base used earlier in this section, the emp num domain is
defined as a five-character string. The corresponding emp num attribute would
have a domain consisting of all integers from 00000 to 99999 if the domain had
been declared fixed decimal (5) (not considering the sign).

2-28 AW53-04

Consider now the case when two or more attributes have the same domain as
in the following data model source segment:

domain: name char(12),
emp_num char(5),
comp char(5),

mgr_emp_num char(5);

relation: Employee (name emp_num* comp),
Comp mgr (comp* mgr_emp num);

The data base corresponding to this data model is identical to the Pers Info
data base created in the previous tutorial with the clarifying exception that
the employee numbers found in the Comp mgr relation are now obviously the employee

numbers of the managers of the components. Since the values of the emp_num and
mgr_emp_num attribute are both taken from the same set of numbers, they are said
to "have the same domain. The following data model source establishes this
relationship and is therefore a more proper definition.
domain: name char(12),
emp num char(5),
comp char(5);

attribute: mgr emp num emp num;

relation: Employee (name emp num* comp),
Comp mgr (comp¥* mgr emp num);

The attribute statement defines a new attribute "mgr_ emp num" and equates its
domain of values to that of the emp num attribute. The two attributes are said
to be "domain compatible," a condition required for successful use of the -inter,
-differ, and -union set operators.

It is recommended that generic names be used for domains, such as char 5
for char(5). Then, the attribute names that are to be used in the relation
statement can be defined via the attribute statement as was done in Step 1 of
the MRDS tutorial for the Pers_Info.db data base.

i “&L-u it is recommended that atiribute names be anra +h ntir
rurcney it is recommended that attribute names be uu.i.quc across Tné€e entire
data base, not just within each relation, so that any set of attributes can be

selected and have unique names for temporary relation definition.

2-29 AW53-04

Primary and Secondary Indexes

Practical considerations force a data base administrator to be concerned
with the storage requirements of the data base and the computer resources required
when updating the data base. 1In order %to optimize these considerations, a data
base administrator requires some insight into the implementation of MRDS on
Multies. The relation of a data base is implemented as an indexed sequential
file, implying as the name suggests, that the accessing of a particular record
(tuple) within the file proceeds either as a sequential search, record by record,
or directly if an index of the record desired is provided. 1In general, each
record of a file may have more than one index.

Within MRDS, the primary key of a relation becomes the primary index of the
file. 1In other words, the asterisk (or set of asterisks) appearing in the data
model relation statement designates the primary index of the corresponding file.
(A set of asterisks specifies that a primary key is to be formed by concatenating
the attributes designated with an asterisk.) Additional, or secondary indexes,
may also be designated in the data model by an index statement:

domain: name char(12),
emp_num char(5),
comp char(5);

attribute: mgr emp num emp num;

relation: Employee (name* emp_num comp¥),
Comp mgr (comp* mgr_emp num);

index: Employee (comp emp num),
Comp_mgr (mgr_emp num);

In this example, the Employee file has comp and emp num as secondary indexes and
a primary index formed from the concatenation (joining) of the attributes name
and comp. Concatenation of attributes form a larger primary key than would
otherwise be formed and is done only to gain uniqueness in the primary key. 1In
this case, the name attribute alone does not ensure uniqueness (e.g., two Smiths
may work for the company; the data base designer in this case has determined
that two Smiths do not work in the same component). The Comp _mgr file has the
"mgr emp num" as the secondary index and "comp" as the primary index.

The following guidelines are suggested when designing a data base and deciding
the number and type of indexes.

1. All relations must have one and only one primary key. The key may,
however, be composed of several attributes joined together.

2. The primary key values must be unique. (For example, two employees
working in the same component and having the same last name would
result in a duplicate key error when the second employee's tuple is
stored into the Employee relation.)

3. Secondary indexes are used to increase the efficiency of data base
accesses. Secondary indexes are optional and should be used with
discretion because of the increase in data base storage and update
overhead.

y, Secondary indexes may only consist of individual attributes; they cannot

be concatenated. An attribute selected as a secondary index need not
have unique values. However, storage usage and update time increases
with the higher number of duplicate values.

2-30 AW53-0U

5. Selection performance is a function of the type of attributes used in
the search of a relation. Several attribute types are grouped into
three classes of decreasing performance:

a. Attribute is the entire primary key

b. Attribute is the most significant (leftmost) part of the primary
key (called a key head) or is a secondary index

c. Attribute is not the most significant part of the primary key and
is not a secondary index

NOTE: The primary key in MRDS can be a maximum of 2277 bits long. Key
attributes have a storage length as defined by their data type (i.e.,
fixed bin(17) aligned takes 36 bits). The total length of a key is
determined by the sum of the lengths of the attributes making up the
key.

The maximum length {mentioned above) also applies to any single attribute
which is to be a secondary index.

A successful create mrds db with the ~list option (or display mrds_dm
with the -long option) gives information on data bit lengths.

SECONDARY INDEXING

This example is based upon a situation that arises sometime after the creation
of a hypothetical data base called AB Company. The data model source of this
data base is:

domain: 1 name char(12),
emp_num char(5),
location char(5),
component char(5),
salary char(7),

mgr_emp_num char(5);

relation: Employee (1 name emp_num¥* location component®* salary),
Comp_mgr (component¥* mgr_emp_num);

Assume that a new requirement demands frequent searches for the last name
and employee number of all employees who have a salary of "x." Because salary
is not a key of the Employee relation, the procedure to do this task would
require a sequential search of the entire Employee relation to select those
employees having the specified salary.

Placing a secondary indexing on the salary attribute eliminates the need to
sequentially search the entire data base. The retrieve request simply proceeds
as a direct (keyed) access thereby eliminating the sequential search. The data
model source would require the additional statement:

index: Employee(salary);

Situations of this nature should be discussed with the data base administrator
in order to determine whether or not the data base should be redesigned to
include a secondary index on the frequently searched attribute.

2-31 AW53-04

SECTION 3

COMMANDS

This section contains descriptions of the MRDS commands, presented in
alphabetical order. Eachdescription contains the name of the command, discusses the
purpose of the command, and shows the correct usage. Notes and examples are included
where necessary for clarity.

The following is a summary of MRDS commands.

ad just_mrds_db, amdb
administrative tool for managing a data base's concurrent access control
segment.

copy_mrds_data, cpmd
copies data from one MRDS data base to another.

create_mrds_db, cmdb
creates an unpopulated MRDS data base.

create _mrds_dm_include, cmdmi
“builds an include file of structure declarations suitable for use in accessing
the data base from PL/I programs.

create_mrds_dm_table, cmdmt
“provides a picture or graphic display of the data model/submodel structure.

create mrds_dsm, cmdsm
creates a data submodel definition (provides an alternate view of the data
base).

display_mrds_db_access, dmdba
displays the effective security access torelation and attribute data provided
by a given view of the data base.

display mrds_db_population, dmdbp
displays the current number of tuples stored in therelations of a given viewof
the data base.

display_mrds_db_status, dmdbs
displays the open and concurrent users in the given view of a data base.

display mrds_db_version, dmdv
displays the version of a MRDS data model/submodel.

display_mrds_dm, dmdm
displays specified information from the data model.

display mrds dsm, dmdsm

displays sp°01f1ed information from the data submodel and optionallydisplays
related data model information.

display_mrds_open_dbs, dmod

displays a list of pathnames, opening indexes, and opening modes of all
currently opened data bases in the user's process.

2/85 3-1 AW53-04C

display mrds_scope_settings, dmss
displays opening information and scope set for those openings for all data
bases open in the user's process.

display mrds_temp_dir, dmtd
displays the directory under which temporary storage for a given data base
opening is placed.

mrds _call, mrc
provides a command-level interface to the MRDS Data Sublanguage (DSL) for data
base development. For a complete description, see Section 9, "Data Base
Development Tools."

quiasce_mrds_db, gqmdb
an administrative tool that places the data base in a quiescent (non-active)
state for such purposes as dumping, etc.

secure mrds_db, smdb
provides the ability to turn on (or off) attribute level security features.

set _mrds_temp_dir, smtd
changes the current patnname of the directory that is used for temporary
storage in the next call to dsl_$open.

unpopulate mrds_db, umdb
a data base application development tool that deletes all data from a data
base.

In examples that illustrate the user's interaction with the terminal, the lines
typed by the user are indicated with an exclamation mark (!) to the left of the line to
distinguish user entries from systemoutput. Tais is for illustrative purposes only;
the user does not actually type the exclamation mark. Input commands are expected to
be on one line. This is accomplished (for lines longer than can be accommodated on the
terminal) by utilizing the automatic wrap-around feature of most terminals. Comments
that serve an explanatory purpose are included within a program by enclosing them
within "/* comment */", Likewise, the examnples do not show the escape carriage
return ("\CR") and line feed ("\LF") required if the user were to actually input the
commands on multiple lines as shown.

2/85 3-2 AW53-04C

ad just_mrds_db ad just_mrds_db

Name: adjust_mrds_db, amdb

This DBA tool handles special problems that may arise involving the data
base concurrency control segment. It may be used to re-establish consistency in
concurrency control after an incomplete data base operation has put the data
base in a potentially invalid state. It may also be used to remove dead process
information from the control segment or to change the setting of the concurrency
control trouble switch.

Usage

amdb path {-control args}

where:

1. path
is the relative or absolute pathname of the data base whose
concurrency control segment is to be manipulated. The .db suffix
need not be given for new version data bases. This cannot be a
submodel pathname.

2. control_args

may be chosen from the following:

-dead_procs, =-dpr
the data base control segment deletes information pertaining to dead
processes (i.e., data base openers whose processes terminated
without closing the data base). Non=passive dead processes
(processes with some form of update scope set) may leave the data
base in an inconsistent state.

-force, -fc
suppresses the query given for the -reset control argument.

-no_force, -nfe
aliows tnhe query for the -~reset control argument to be given.
(Default)

-reset, =-rs
the data base control segment is re-established in a consistent
state. If there are active users of the data base, the command
queries the user whether to continue, since other active users lose
concurrency control protection if this invocation proceeds.
(Default)

-trouble_switch state, -tsw state
where state may be either "on" or "off". This sets the data base
concurrency control trouble switch ON or OFF. If the switch is on,
attempts to open the data base fail. This can be wused to lock out
users when there 1is a question about the data base integrity. The
DBA can then restore damaged segments or rollback the data base to a
consistent state.

12/86 3-3 AW53-04D

ad just_mrds_db ad just_mrds_db

Notes

The user must be a DBA to use this command.

The -reset and -dead_proc options may not be used together. The -force and
-no_force control arguments, given without -reset, imply -reset.

The -reset option (default) should be used only after
display_mrds_db_status is invoked, to determine if there are open users and to
notify those users to close thelr opening of the data base. If open users are
active during use of this option, they lose concurrency control protection and
later inconsistencies may arise.

The use of the -reset option causes version 4 concurrency control, using
the read-update scope modes, to be updated to version 5 concurrency control
using the scope modes read_attr, modify attr, append_tuple, and delete_tuple.
Version 5 concurrency control uses a segment named db.control rather than dbe.
Version 4 concurrency control cannot be used with the current version of MRDS,
and adjust_mrds_db with the -reset option must be used on the data base in order
to convert it to version 5 concurrency control. The current version of
concurrency control may be displayed via display mrds_db_status using the -long
option.

Current users of r-s-m-d scope mode encodings do not have to change their
application programs to use version 5 concurrency control. Application programs
calling dsl_$set_scope or dsl_$set scope_all which use the old r-u scope mode
encodings need be changed to the encodings described in this manual (e.g., 2 no
longer means s-m-d, just s).

Examples

! display mrds_db_status foo -long

Concurrency contrel version: 4
Data base path: >udd>Multics>JGray>dr>foo.db
Version: 4
State: Consistent
Open users: O

! mrds_call open dmdm update

Error: mu_concurrency_control error by >unb>bound_mrds_i2232. The data
base is a version not supported by this command/subroutine. The version of
the control segment has changed, to support r-m-a(s)-d instead of r-u scope
modes. "adjust_mrds_db >udd>m>jg>dr>foo.db -reset" must be run before it
can be used.

mrds_call: The data base 1is a version not supported by this
command/subroutine. (From dsl_$open)

ad just_mrds_db foo -reset
! mrds_ call open foo update

Opan data base is:

1 >user_dir_dir>Multics>JGray>dr>foo.db
update

12/86 3-4 AW53-04D

ad just_mrds_db ad just_mrds_db

! display_mrds_db_status foo -long

Concurrency control version: 5
Data base path: >udd>m>jg>dr>foo.db
Version: 4
State: Consistent
Open users: 1

0 Active
0 Awakening
0 Queued

Scope users:

User process id: JGray.Multics.a
Process number: 007720037664
Process state: Alive
Usage mode: Normal
Scope: None
! adjust_mrds_db foo

ad just_mrds_db: There are open users who may be harmed if you reset.
you still wish to reset the >udd>m> jg>dr>foo.db data base??

! no
! display_mrds_db_status foo

Data base path: >udd>md jg>dr>foo.db
Open users: 1

Scope users: 1 Active

User process id: JGray.Multics.a
Process state: Dead

Relation Permits Prevents
rel 1 ramd ramd
rel 2 ramd ramd

! adjust_mrds_db foo -dead_proés
! display_mrds_db_status foo

Data base path: >udd>m> jg>dr>foo.db
Open users: 0

Do l

3/84 3-5 AW53-04B

copy_mrds_data copy mrds_data

Name: copy _mrds_data, cpmd

This command copies data from one MRDS data base to another.

Usage

cpmd input_db_path output_db_path {-control_args}

where:

1.

input_db_path
is the pathname of the data base from which data is copied. If the
pathname does not have a suffix of db, then one is assumed. However, the
db suffix must be the last component of the name of the input segment.

2. output_db_path
is the pathname of the data base to which date is copied. The data base
must already exist. If the pathname does not have a suffix of db, then one
is assumed. However, the dbsuffix must be the last component of the name
of the output segment.
3. control_args
can be chosen from the following:
-input_prevent ops OPS
specifies the prevent scope on the input relation(s), where OPS is the set
of operations that the user wishes to denyother openers of the input data
base for the relation{s) bzing copied. (Default is "dms" --refer to
Notes for a list of scope mode abbreviations.)
-output_prevent ops OPS
specifies the prevent scope on the output relation(s), where OPS is the
set of operations that the user wishes todenyother openers of the output
data base for the relation(s) being copied. (Default is "dms" --refer to
Notes for a list of scope mode abbreviations.)
-relation RELNAME, -rel RELNAME
specifies that RELNAME be copied. Only one relation at a time can be
copied using this control argument. If this control argument appears
more than once in a command line, the previous occurrence is overridden.
-transaction_group_size N
specifies copying N tuples within the confines of a single transaction.
If this control argument is omitted, or if N is equal to 0, then each
access to a protected data management file is completed as a separate
transaction.
Notes

The abbreviations used for prevent scope operations (for either input or output)

are as follows:

a append_tuple

s append _tuple (same as a)

2/85 3-5.1 AW53-04C

copy_mrds_data ' copy_mrds_data

d delete_tuple
m modify_éttr
n null

r read_attr

update (same as dms)

[

The prevent scope is made up of a concatenation of the desired operation
abbreviations. If "n" prevent scope is given, then no other mode may be specified for
that prevent. Each of the other modes may be used onlyonce in the same prevent scope.

Relations that are copied must be identical in their makeup, having the same
attributes, attribute names, indexes, etc. It is suggested, where possible, that
both data bases be created using the same create mrds _db source. When using the
-relation control argument howsver, it 1s possible to copy from data bases with
differing models, as long as the relation being copied is the same in both data bases.

2/85 3-5.2 AW53-04C

create mrds_db create_mrds_db

Name: create_mrds_db, cmdb

This command creates an unpopulated MRDS data base from a data model source

segment.

Usage

emdb source path {database_path} {-control argsl

where:
1. source path
“is the pathname of a data model source segment. If source_path does not
have a suffix of cmdb, then one is assumed. However, the cmdb suffix must
be the last component of the name of the source segment. (See Data Model
Source below.)
2. database path
is the pathname of the data base to be created. If database path is not
given as an argument, then the data base is created in The working
directory with the same name as the source segment with a db (rather than a
cmdb) suffix. If database path is given as an argument, then the db
suffix is added automatically if not given with the argument. See
Architecture of the Data Base bzlow.)
3. control_args
may be chosen from the following:
-data_management_file {STR}, -dmf {STR}
creates relation data files that are manipulated by the Multics Data
Management System. STR is an optional mode string that defines the
characteristics of the data management files. This mode string applies
to all relations created in the data base. S=ze Notes for a list of valid
modes.
Access required: The directories under which the listing segment and the
data base directory are to be created must have append access for the
user, similarly for the temp dir if used. The containing directory
access must be "sm", if -force is used.
-force, -fc
causes an existing data base of the same pathname as the given or default
pathname to be deleted and this new data base to be created in its place.
-list, -1s
a segment containing a listing of the data model source, followed by
detailed information about each relation and attribute in the resulting
data base. This segment is created in the working directory and has the
same name as the source segment with list (rather than cmdb) as the
suffix.
-no_force, -nfc
does not allow a data base of the same pathname as the given or default
pathname to be created when such a data base already exists. (Default)
2/85% 3-6 AW53-04C

create_mrds_db create_mrds_db

-no_list, -nls
indicates that no listing is to be created. (Default)

-no_secure
causes the data bases to be created in the unsecured state. (Default)

-secure
causes the data base to be created in the secured state. See the
secure_mrds_db command for details on the secured state. Also refer to
Section 7 for information on the effect of the secured state on commands
and subroutines.

-temp_dir path
provides for a directory with more quota than the default of the process
directory when more temporary storage is needed to do a create_mrds_db on
a source wWwith many relations and attributes. For example, doing a
create _mrds_db on a 256 relation source requires this araument If the
user gets a record quota overflow in the process directory during a
create mrds db, then a new process is required. A retry of the
create mrds_db with the -temp dir argument, giving a pathname of a
directory with more quota than the process directory, can then be done.

-vfile, -vf
creates relation data files that are manipulated by vfile . (Default)

Notes

The largest data base that can be created is 256 relations. MRDS allows 256
attributes per relation.

© he error Uubpuu I/0 switch as they occur.

are also included in the lis t ng segment if one is produced.

Timsm mim smmce e mmeom o~ osmsy trie d

The data base may be populated via dsl $store, mrds call store, or LINUS store
after the data base has been opened by the correspondlng opan routine. To use LINUS,
refer to the Logical Inquiry and Update System Reference Manual.

The person who invokes the create_mrds_db command automatically becomes a DBA
for the data base created since the creator of a data base is always given "sma" access
to the data base directory. The invoker of create mrds_db needs "a" access to the
directory that contains the data base. If -force is used to remove an existing data
base, "sm" access is also required.

List of modes (for use with -data_management file control argument):

protection
creates relations as protected data management files. Relations
created with this mode can be accessed only if the process is in a
transaction.

concurrency
provides concurrency control when accessing relations. This mode is
valid only if protection is enabled.

rollback
provides rollback before images are taken when updating a relation.
This mode is valid only if protection is enabled.

2/85 3-7 AW53-04C

create mrds_db create_mrds_db

If the mode appears in the mode string preceeded by """, then the mode is set tooff. In
the case of duplicate mode specifications, the last mode specified takes effect.

The default for protection ison. If protection is on, the default for concurrency and
rollback is also on. If protection is off, the default for concurrency and rollback is
off. If no mode string is specified in the -data_management file control argument, a
default mode string of "protection,concurrency,rollback"” 1is used.

2/85 3-7.1 AW53-04C

create mrds db

Data Model Source

create mrds_db

The basic format for a text segment containing source for the create mrds db

command is as follows:

domain :
domain_name_1 declaration 1 {options_1},

domain name N declaration N {options_N};

attribute
attribute name 1 attribute 1 domain name,

attribute name N attribute N domain name;

relation :
relation name 1 (
rel 1 key attr 1*¥ ... rel 1 key attr J¥

rel 1 data attr 1 ... rel T data attr K),

relation name N (
rel N key attr 1% ... rel N key attr I%*
rel N data attr 1 ... rel N data attr_P);

index
indexed relation_name 1 (
irel 1 i attr 1t ... i rel 1 i attr L),

indexed_relation name N (
irel N i attr 17 ... i rel N i attr M);

Note that the domain, attribute, relation, and index statements are terminated
by semicolons, while individual domain, attribute, or relation name definitions
are separated by commas, with only spaces separating attribute names within a

relation.

3-8

AW53-04

create_mrds_db create_mrds_db

Statement Usage

The domain statement causes an attribute of the same name as the domain to
be created, which can then be referenced in the relation and index statements.
Additional attributes of different names using the existing domains can be defined
via the attribute statement. The ordering of the domain, attribute, relation,
and index statements must be as given and each statement can appear at most
once. The attribute and index statements are optional.

The domain statement defines the data type that any attribute defined over
that domain is to have. Any legal PL/I scalar data type that can be declared
using the following declaration description words is allowed in MRDS,.

aligned

binary or bin

bit

character or char
complex or cplx
decimal or dec
fixed

float or floating
nonvarying
precision or prec
real

varying or var
unaligned or unal

The maximum string length is U4096. Varying strings are stored at current
length rather than maximum length. Refer to Appendix D of the Programmer's
Reference Manual for a description of Multics data types. When data needs to be
converted from the user's type into the storage type declared in the domain
statement, the subroutine assign_ is used. See Subroutines and I/0 Modules,
Order No. AGY93 for a description of data types supported by that routine.

The relation statement takes previously defined attributes and defines the
relations that are to exist in the data base. There must be at least one key
attribute, whose purpose is to hold data values uniquely identifying each tuple
to be stored in the relation. Key attributes are denoted by an asterisk after
their name in this statement only. The maximum number of key attributes is
determined by the sum of the storage lengths of the individual attributes that
are defined as the key attributes, known collectively as the primary key. This
primary key must be less than 2277 bits. (See "Data Base Design" in Section 2.)
There may be up to a total of 256 different key and non-key attributes in any
one relation. Up to 256 different relations may be defined.

Relation, attribute, and domain names must start with an alphabetic character
and can be composed of any alphanumeric character plus underscore and hyphen
characters. The maximum name length is 30 characters for relation names and 32
characters elsewhere. The names "dbe" and "db_model" are reserved and may not
be used for relation names.

The index statement is used to define attributes in previously defined
relations as being "inverted" or usable as secondary indexes. An attribute that
is so defined will allow faster retrieval performance using that attribute in
selection criteria, but this use increases update costs and storage overhead for
that attribute. (See Section 2, "Data Base Design".) The same key length

3784 3-9 AW53-04B

create_mrds_db create_mrds_db

restrictions apply to each single inverted attribute as apply to the total primary
key. The first attribute of a multi-attribute primary key may be used as if it

were a secondary index.

Formatting Data Model Source

The keywords domain, attribute, and relation may be abbreviated as dom,
attr, and rel, respectively.

Comments appear in the source text in the same manner that they appear in a
PL/I program.

The source may be formatted in several ways, such as by giving the source
segment an add_name with .pl1 suffix and using indent, or by creating the data
base first and then capturing the output of display_mrds_dm using the -cmdb
option.

Domain Options

The domain statement options_I may be one or more of the following:

=check_procedure path, =-check proec path
specifies a procedure that performs data verification checks upon storage
into the data base (such as ensuring valid dates). Path must be an
absolute pathname.

-decode_declare declare, -decode_decl declare
specifies that declare is of the same form as in declaration_I in the
domain statement that gives the data type to be used for the user's
view and the decode procedure, 1if present. If this option is not
given then the decode procedure data type is that given in the main
declaration.

~decode_procedure path, -decode_proc path
specifies a procedure that performs data decoding upon retrieval from
the data base, normally the inverse of the encode procedure. Path
must be an absolute pathname.

-encode_procedure path, -encode_proc path
specifies a procedure that performs data encoding (such as the names
of the states of the USA to integers 1-50) before storage into an
internal data base form. Path must be an absolute pathname.

See Appendix E "Administrator Written Procedures™ for a detailed explanation
of the interface and examples of how these options may be used.

3/84 3-10 AW53-04B

create_mrds_db create_mrds_db

DATA BASE ARCHITECTURE

The data base is a directory with the identifying suffix ".db". This directory
contains the following:

NAME TYPE PURPOSE

resultant_segs_dir directory place for copy of mrds internal l
structure for speedup of open

db.control segment concurrency control

db_model segment domain information, relation
names

{relation_namel}.m segment model of the relation structure

frelation_name} file relation data storage |

secure.submodels directory place for secure submodels

Note: There are two segments (dbeb and rdbi) under the resultant_segs.dir
directory. The dbecb and rdbi segments are the copies of internal
structures.

There is one relation model segment and one relation data file for each |
relation defined in the data base.

Examples

! print x.cmdb
>udd>m> jg>dr>x.cmdb02/27/81 1157.2 mst Fri

dom: a bit; /¥ simplest possible data base ¥/
rel: b(a¥*);

! create_mrds_db x >udd>d>dbmt>small -list
CMDB Version 4 models.
! print x.list

CREATE MRDS DB LISTING FOR >udd>d>dbmt>ndb>mike>x>doc>x.cmdbd

Created by: Kubicar.Multics.a
Created on: 01/16/84 1412.7 mst Mon
Data base path: >udd>d>dbmt>ndb>mike>x>doe>x.db
Options: list
1 dom: a bit; /% simplest possible data base ¥/
2 rel: b(a%*);

NO ERRORS

DATA MODEL FOR VFILE DATA BASE >udd>d>dbmt>ndb>mike>x>doc>x.db

3/84 3-11 AW53-04B

create_mrds_db create_mrds_db

Version: L
Created by: Kubicar.Multics.a
Created on: 01/16/84 1412.8 mst Mon
Total Domains: 1
Total Attributes: 1
Total Relations: 1
RELATION NAME: b
Number attributes: 1
ATTRIBUTE:

Name: a

Type: Key

Domain_info:

name: a

del: bit (1) nonvarying unaligned

! print states.cmdb

>udd>m> jg>dr>states.cmdb 02/27/81 1207.3 mst Fri
domain
text char(4096) varying,
date_time fixed bin(71)
-check_proc >udd>m> jg>dr>verify_ date,
dollars fixed decimal(59, 2) unal,
state_name fixed bin ~decode_decl char(30)
-decode_proc >udd>m>3g>dr>convert num_to_char
-encode_proc >udd>m>Jg>dr>convert_char_to_num,
vector complex float bin(63), /* longitude + latitude */
key bit(70), /¥ use unique_bits_ for key values %*/
name char(32) ;
attribute:
first_name name,
last_name name,
salary dollars,
expenses dollars ;
relation:
person (last_name* first_name* salary expenses),
state hlstory(key* state name date time text),
person_state (last name* first_name* key*),
state_location(key¥ vector) ;
index:

state_history(state_name) ;

! create_mrds_db states

3/84 3-12 AW53-04B

create mrds_db

CMDB Version 4 models.

! display _mrds_dm states

RELATION: person
ATTRIBUTES:
last_name
char (32)
first name
char (32)
salary
fixed dec (59,2) unal
expenses
fixed dec (59,2) unal

RELATION: person_state
ATTRIBUTES:

last name
char (32)

first name
char (32)

key
bit (70)

RELATION: state history
ATTRIBUTES:
key
bit (70)
state_name
char (30)
date time
fixed bin (71)
text
char (4096) var

RELATION: state_location
ATTRIBUTES: ‘
key
bit (70)
vector

cplx float bin (63)

3-13

Key
Key
Data

Data

Key
Key
Key

Key
Data

create_mrds_db

AWS53-04

create mrds_dm_include create_mrds_dm_include

Name: create mrds dm_include, cmdmi

This command is a MRDS data model/submodel display tool that creates an
include segment suitable for use in accessing the data base from PL/I programs
via the dsl subroutine interface. Comments are put in the include file to
indicate indexed and key attributes.

Usage

cmdmi path {-control_args}

where:

1. path
is the relative or absolute pathname of the data base model or submodel,
with or without suffix. It requires "r" ACL to the data model. If
the data base is secured, then the path must refer to a submodel in
the secure.submodels directory under the data base, unless the user
is a DBA. 1If a suffix is not supplied and both a model and submodel
exist in the same directory, then the model is found before the
submodel.

2. control args

can be one or more of the following:

-based
specifies that the resulting include file structure declaration has
the "based" PL/I attribute.

-no_based
specifies that the resulting include file structure declaration does
not have the based attribute. (Default)

-order rel nameil rel name2...rel namei

specifies that the structures generated for the relations whose names
follow this argument are to be placed first in the output segment in
the order of their names on the command line. The structures for
relations not named in the ordered list are placed at the end of the
output segment in the order in which their names are defined in the
data model. The names following the -order control argument are
separated by spaces.

-page length N, -pl N
Specifies the number of lines allowed between form-feed characters
in the output segment, where N=z0 or 30<=N<=127. A page length of 0
puts a form feed before each structure. (Default is 59 lines.)

2/83 3-14 AW53-04A

create_mrds_dm_include create_mrds_dm_include

Notes

The output is written to a segment whose name is constructed as follows:
<entryname of the input path with the db or dsm suffix removed>.incl.pll

If the segment does not exist, it is created.

If the data base is secured and the user is not a DBA, then the "key"
comment on attributes 1is changed to "indexed" for the key head attribute and
remaining key attributes have no comments,

If a -decode_declare option exists on an attribute domain, then the declaration
appears in the 1include file since this is the user view and the data base
storage data type is not of use.

Examples

! display_mrds_dm foo -cmdb

/¥ Created from >udd>m> jg>dr>foo.db
02/24/81 1406.9 mst Tue ®/

domain:
data
real float decimal (10) aligned /¥ 9-bit ¥/
-decode_dcl character (20) varying aligned,
character (20) varying aligned,
indexed
bit (36) nonvarying unaligned,

key
real fixed binary (17,0) aligned;
relation:
sample (key* data indexed);
index:
sample (indexed);

3/84 3-15 AW53-04B

create _mrds_dm_include create_mrds_dm_include

! create_mrds_dm_include foo -based
! pr foo.incl.pl?

JF EEEREERRAE A AR AR RN RN RRX R R RN XX RRRRRRRRRERER
*

* BEGIN foo.incl.pl?
* created: 02/24/81 1U407.2 mst Tue
by: create_mrds_dm_include (3.0)

*
#
¥ Data model >udd>md> jg>dr>foo.db

¥ created: 02/24/81 1405.1 mst Tue
* version: 4

* by: JGray.Multics.a

*
#

M K Kk % K Ok K K

*®

EERREXARERRRAAAARKARRKARRRRAARAXRXRRRNRRRRAXER %/

del 1 sample aligned based,

2 key real fixed binary (17,0) aligned, /% Key ¥/

2 data character (20) varying aligned,

2 indexed bit (36) nonvarying unaligned; /% Index ¥/
/* END of foo.inel.pll REXRERRRREXRERARERRRXRLRRRRRRR)/

! display_mrds_dm foo -cmdb

/% Created from >udd>m> jg>dr>foo.db

03/23/81 1417.3 mst Mon */
domain:
char
character (1) nonvarying unaligned,
number
real float decimal (10) unaligned ;
relation:
rel_1 (char®*),
rel 2 (number¥*);

3/84 3-16 AW53-04B

create_mrds_dm_include create_mrds_dm_inciude

! create_mrds_dm_include foo -order rel 2 rel 1
! print foo.incl.pl1

/% EEEEEEEEERE R RA R R RN E RN R RN RN R RN AR RRRRARE
*
* BEGIN foo.incl.pll
created: 03/16/81 1321.1 mst Mon
by: create_mrds_dm_include (3,0)

version: 4

*
*
x
*
*
Data model >udd>m>jg>dr>foo.db ¥
*
*
by: JGray.Multics.a *

*

*

*
*

%

*

* created: 03/16/81 1320.4 mst Mon

*

*

*
EERRERRERXRRRRXXARERERRENREANEXRRANRXNREXRKERR %/

del 1 rel_2 aligned,
2 number real float decimal (10) unaligned; /% Key ¥/

del 1 rel_1 aligned,
2 char character (1) nonvarying unaligned; /¥ Key ¥/

/% END of foo.incl.pl1 FRERRRRRRERRERRRXRREXRXXXRXXRAXNER

3/84 3-17 AW53-04B

create_mrds_dm_table create_mrds_dm_table

Name: create_mrds_dm_table, cmdmt

This command is a display tool which creates a pictorial representation of
a MRDS data base model/submodel. Each box names an attribute in the relation,
giving its PL/I data type with flags indicating if it is a key attribute and/or
index attribute in the relation.

Usage

cmdmt path {-control_args}

where:

1. path
is the relative or absolute pathname of the data model/submodel of
the data base, with or without the suffix. The user must have "r"
access to some relation in the data base. The pathname must be the
first argument. If the data base is secured, then the path must
refer to a submodel in the secure.submodels directory under the data
base, unless the user is a DBA.

2. control_args
can be one or more of the following:

-brief, -bf
suppresses the PL/I data type information normally displayed below
the attribute name inside each box.

-line_length N, -11 N
specifies the maximum line length (in characters) available for the
display of boxes across the page where 64<z=N<=136). (Default line
length is 136)

-long, -1lg
causes the PL/I data type information to be displayed below each
attribute name, inside each box. (Default)

-order rel namel rel name2 ... rel namei

specifies that the displays generated for the relations whose names
follow this argument are to be placed first in the output segment in
the order of their names on the command 1line. The displays for
relations not named in the ordered list are placed at the end of the
output segment in the order in which their names are defined in the
data model. The names following the -order control argument are
separated by spaces.

-page_length N, -pl N

specifies the number of lines allowed between new page characters in
the output segment where 30<=N<=127. (Default is 59 lines)

3/84 3-18 AW53-04B

create_mrds_dm_table create_mrds_dm table

Notes

The output is written to a segment whose name is constructed as follows:
<entryname of the input path with the db or dsm suffix removed>.table

If the segment does not exist, it is created.

If both a data model and submodel of the same name are in the same directory,
then the model is found first if no suffix is given.

If the data base is secured and the user is not a DBA, then the key head
attribute is marked as "indexed" and remaining key attributes are unmarked.

If a -decode_declare option exists onan attribute domain; then the declaration
appears in the table since this is the user view and the data base storage data
type is not of use.

Examples

! display_mrds_dm cmdmt -cmdb

/* Created from >udd>m> jg>dr>foo.db
02/26/81 1159,4 mst Thu */

domain:
data
real float decimal (10) aligned /¥ 9-bit */
-decode_dcl character (29) varying aligned,
indexed
bit (36) nonvarying unaligned,

key
real fixed binary (17,0) aligned;
relation:
sample (key* data indexed);
index:
sample (indexed);

! create_mrds_dm_table foo -line_length 65
! print foo.table

3/84 . = 3-19 AW53-04B

create_mrds_dm_table

3/84

J¥ REEEERREEREXEXAFAXRRXXXAAXRAARXXAXXRXRARAXXER

% *
¥ BEGIN foo.table ¥
b created: 02/26/81 1158.6 mst Thu *
* by: create_mrds_dm_table (3.0) ¥
% *
¥ Data model >udd>md> jg>dr>foo.db *
* created: 02/26/81 1158.3 mst Thu *
* version: 4 *
¥ by: JGray.Multics.a ¥
* *
EEERRRRKAEXRERRRREARRRERRRRRARRRRRRRRRRRRARR X/
LEGEND:
/ 7/
HA It /7 / 1
relation | Attribute | i i
| Data Type |] i
1 A AR i
/7 7
¥ - Key Attribute
I = Index Attribute
H | | i
sample | key ! data ! indexed |
{ fixed bin (17) | char (20) var | bit (36) |
]] 1 1
1 1 1 1
3-20

create_mrds_dm_table

AW53-04B

create_mrds_dm table create_mrds_dm table

! create_mrds_dm table foo -brief -order rel 2 rel 1
i print foo.table

JE REEERERREERRERE RN RN SRR RN RN R R R AR RN FRRRRERRRE
*
BEGIN foo.table
created: 03/16/81 1342.0 mst Mon
by: create_mrds_dm_table (3.0)

created: 03/16/81 1320.4 mst Mon
version: 4
by: JGray.Multics.a

H O M ok M N K ok ok

*®

*
%
%
*
* Data model >udd>m> jg>dr>foo.db
*
*
#
*
*

ERREEEERRERRE R XX SRR RRA AR RRRRERRRRERRRRERRRE */

LEGEND:
/ /7
TE v/ 7 i
relation | Attribute |] !
i AR i
/7
¥ - Key Attribute
I = Index Attribute
] s
rel 2 | number |
i i
]
rel 1

3/84 3-21 AW53-04B

create_mrds dsm create_mrds_dsm

Name: create_mrds_dsm, cmdsm

This command creates a MRDS data base submodel from a data submodel source
segment. The path of the resulting data submodel can be specified as an argument
to the dsl $open subroutine or the mrds call open or LINUS open commands instead
of the path to a data base directory. ~This command is intended for use by data
base administrators (DBAs) when defining a view of a data base for a given
application. The submodel created only works against the data base whose path
was in the command and not against similar data bases with other pathnames.

Usage
cmdsm source_path db_path {-control args}

where:

1. source_path
is the pathname of a data submodel source segment. If source path
does not have a suffix of cmdsm, then one is assumed. However, the
cmdsm suffix must be the last component of the name of the source
segment. (See "Data Submodel Source" below.)

2. db path
- is the pathname of the data base with which the resulting data submodel
is to be associated. This data base must exist.

3. control args
can be chosen from the following:

~force, -fc
overwrites an existing submodel with the same name without querying
the caller to be sure that the old submodel can be destroyed.

-install, -ins
creates the submodel in the secure.submodels directory that is under
the data base directory rather than in the working dir (see "Data
Base Architecture" under the create mrds db command). The use of
this control argument causes a directory named secure.submodels to
be created under the data base directory if it does not already
exist. This control argument is restricted to DBAs (see Section 7).

-list, -1ls
creates a segment containing a listing of the submodel source, followed
by information about the submodel to model mapping, in the working
directory. The segment also contains a list of any errors found
while creating the submodel.

-no_force, -nfc
if a submodel with the same name already exists, queries the user as
to whether it can be overwritten. This control argument undoes the
effects of a -force. (Default)

-no_install, -nins
creates the submodel in the working dir. (Default)

-no_list, -nls
specifies that a listing segment is not created. (Default)

2/83 3-22 AW53-04A

create mrds dsm create_mrds_dsm

Notes

The data submodel is a multisegment file with the same name as the submodel
source but with a dsm (rather than emdsm) suffix.

Error messages are written to the error_output I/0 switch as they occur.
These messages are also included in the listing segment if one is produced.

Only a DBA can run this command against a secure data base. If the data
base is secure and the -install control argument is not used, the submodel will
be created in the DBA's working directory and a warning that the submodel is not
secure will be issued.

Data Submodel Source

The function of a data submodel is twofold: to map the user's view of the
data base into the actual data base description (i.e., the data model) and to
specify relation and attribute access privileges.

Comments appear in the source segment in the same manner that they appear
in a PL/I source program. .

The basic format of the create mrds_dsm source is:

relation:
relation definition 1,

relation definition N;

attribute access:
attribute access definition 1,

attribute access definition N;
relation access:
relation access definition 1,

relation access definition N;
default relation access: (relation access control list);
default attribute access: (attribute access control list);
Take note that all of the access specification statements are optional,

that multiple relation, attribute access, and relation access statements may
occur, and that there is no fixed order in which the statements must occur.

2/83 3=-23 AW53-04A

create mrds dsm create_mrds dsm

RELATION STATEMENT

The relation statement(s) specifies a mapping of attributes from the data
model relation to the data submodel relation. This mapping can be used to
change the names of the data model relations and attributes, to reorder the
attributes within a relation, to omit attributes from a relation, and to omit
relations from the data base view. Multiple relation statements can occur provided
each model relation is used to define, at most, one submodel relation.

Examples

relation:
relation1 (attributetl ... attributeN),
relation2 = model_relationl (attributel ... attributeN),

relation3 (attributel1 ... attributel = model attributek
... attributeN);

or

relation:
relation1 (attributetl ... attributelN);

relation:

relation2 = model relationI (attributel ... attributeN);
relation:

relation3 (attributei ... attributel = model attributek

attributeN);

If the data submodel view of a relation name differs from that specified in
the data model, the data submodel relation name is equated to the corresponding
name in the data model. If only one relation name is supplied in the data
submodel relation expression, it is assumed that the data submodel and data
model relation names are the same. A data submodel relation name may be up to
30 characters long and may be composed of letters, numbers, hyphens, and underscores,
but must begin with a letter.

Similarly, if the data submodel view of an attribute name differs from that
in the data model, the data submodel attribute name is equated to the corresponding
name in the data model. If only one name for an attribute is supplied, it is
assumed that the data submodel and data model names for the attribute are the
same. A data submodel attribute name may be up to 32 characters long and may be
composed of letters, numbers, hyphens, and underscores, but must begin with a
letter.

2/83 AWS53-04A

w
i

n

=

create_mrds_dsm create mrds_dsm

Access Specification Statements

The cmdsm source text has been augmented to allow the submodel creator to
specify access privileges at the relation and/or attribute level. These access
privileges are enforced when the data base associated with the submodel is a
secure data base. (See the secure mrds_db command and Section 7 "Security".)

Access to the submodel is controlled by the DBA setting Multies ACLs on the
submodel entry. Anyone with read ACL on the submodel and the data base model
can open the associated data base and is subject to the access privileges specified
in that submodel. A person can have access to several submodels each with
different access privileges.

Access is specified by access control statements. These control statements
may appear anywhere in the submodel source, even before the relations and attributes
for which they define access. Only one default relation access and one default
attribute access statement may appear in a cmdsm source. However, there may be
multiple relation access and attribute access statements as long as each statement
defines access for a different relation or attribute. The abbreviations rel_acc
and attr_acc may be used in place of relation access and attribute access.

Statement Name: default relation access

Examples:

default relation access:
(relation access control list);

or
default relation access:
relation access control list;

Purpose:

Specifies that all relations that do.not have an access set by a relation
access statement will have the access specified in the relation access control
list. For every submodel there is an implicit default relation access statement
specifying null access, which can be overridden by an explicit statement specifying
some other access.

Statement Name: default attribute access
Examples:

default attribute access:
(attribute access control list);

or

default attribute access:
attribute access control list;

3-25 AW53-04

create mrds _dsm create _mrds_dsm

Purpose:

Specifies that all attributes that dc not have an access set by an attribute
access statement or by the "with" option in a relation access statement will
have the access specified in the attribute access control list. For every submodel
there is an implicit default attribute access statement specifying read access,
which can be overridden by an explicit statement specifying some other access.

Statement Name: relation access
Examples:

relation access:
relation _namel (relation access control list1),
relation_name2 (relation access control list2)
with attribute access (attribute access control list1),

relation _nameN (relation access control 1istN);
or

relation access:
relation namel (relation access control list1);
relation access:
relation name2 (relation access control 1list2)
with attribute access (attribute access control list1);

relation access:
relation nameN (relation access control listN);

Purpose:

Specifies that the relation indicated by relation namel is to have the
access privileges specified in the relation access control 1listI. The "with
attribute access clause" (attribute access control 1list) can be considered a
default attribute access statement which is in effect only over the associated
relation. Access specified in the "with" clause will have precedence over access
specified in the default attribute statement and will be overridden by access
specified in an attribute access statement, provided an attribute access statement
exists.

Statement Name: attribute access
Examples:

attribute access:
attribute namel (attribute access control list1),
attribute name2 in relation nameil
(attribute access control 1list2),

attribute_nameN'(attribute access control list);

3-26 AW53-04

create mrds_dsm create_mrds_dsm

or

attribute access:
attribute_namel (attribute access control 1list1);
attribute access:
attribute name2 in relation name]l
(attribute access control 1ist2);

attribute access:
attribute nameN (attribute access control 1listN);

Purpose:

Specifies that the attribute indicated by attribute nameI is to have the
access privileges specified in the attribute access control 1listI. If the "in
relation nameI" clause is used, then the attribute will have the specified access
privileges only in the 1ndlcated relation. If the "in" clause is not used, then
the indicated attribute will have the specified access privileges in all the
relations where it occurs. There may be several attribute access statements all
referring to the same attribute but having different relations specified in the
"in" clause.

The access control lists contain the specifications for the access privileges.
These lists are made up of a series of keywords separated by commas. The keywords
depend on the access to be specified and whether the 1ist is associated with a
relation or attribute.

Relation access keywords and the operations that they allow are:

append tuple, append tuple, or a
Specifies that tuples may be stored (e.g., using dsl $store) in the
relation.

delete _tuple, delete tuple, or d
Specifies that tuples may be deleted (e.g., using dsl $delete) from
the relation.

null, or n
Specifies that tuples may neither be stored into nor deleted from the
relation.

Note that any form of the access keywords may be used in the access control
list. A null access cannot be specified with any other access. The order of a
combination of append tuple and delete tuple is not important. Currently there
is the restriction that append tuple and delete tuple may only be specified if
the submodel relation contains all the attributes that are defined in the model
relation, i.e. the submodel relation is a "full view" of the model. Append tuple
has the further restriction that all the key attributes must have read attr
access set.

Attribute access keywords and the operations they allow:

read attr, read attr, or r
Specifies that the attribute value may be read (e.g., using dsl_$retrieve).

3-27 AW53-04

create_mrds_dsm create_mrds_dsm

modify attr, modify attir, or m
Specifies that the attribute value may be modified (e.g., using
dsl_$modify).

null, or n
Specifies that the attribute value may not be read or modified.

Note that any form of the attribute access keywords may be used in the
access control 1list. A null access may not be specified with any other access.
The order of a combination of read_attr and modify attr is not important.

Relation and attribute privileges (except for the append tuple/read attr
requirement) are independent. You may have modify attr and/or read attr privileges
on the attributes in a relation to which you do not have either append tuple or
delete_tuple privileges.

Examples

The following examples show different submodels which are all defined over
the States data base described in the examples of the create mrds db command.
The first submodel is a full view submodel, i.e., all the relations in the model
are present and each relation has all the attributes that were defined in the
model.

cmdsm_source_example 1

/*
This submodel is a simple view corresponding to the entire data base
Wwith no name changes. Since no access is specified, the default relation
access of null and the default attribute access of read is used.

*/

relation:

person (last name first name salary expenses),
state history (key state name date time text),
person_state (last name Tirst_name key),
state_location (key vector);

cmdsm_source_example 2

/*
This submodel renames the last name and first name attributes to 1n
and fn and omits the salary attribute from the person relation. The
attribute key has been moved to the first position in the person_state
relation which has also been renamed to ps. The relation state_location
has been omitted from this submodel.

*/

relation:

person (ln = last name fn = first name expenses),
state_history (key state name date time text),
ps = person_state (key last _name first _name);

3-28 AW53-04

create _mrds_dsm create_mrds_dsm

cmdsm_source_example 3

/%
This submodel specifies a default relation access of append_tuple and
delete_tuple and a default attribute access of read_attr and modify_attr.
Notice that comments can be placed between both relations and attributes.

®/
default relation access: (append tuple, delete tuple);
default attribute access: (modify attr, read attr);

relation:

/¥ person relation ¥/

person
(ln = last_name /* last name of person */
fn = first name /¥ first name of person */
salary - /¥ person's salary ¥/
expenses /* expenses of person to date ¥/),

/% location of person ¥/

person_state /¥ state of residence ¥/
(last name /¥ same as 1ln in person ¥/
first _name /¥ same as fn in person ¥/
key /% state key */);

emdsm_source_example 4

/%
This submodel specifies a default relation access of append tuple and
delete tuple and a default attribute access of read attr and modify
attr. Access for the person relation is set to append with a default
attribute access of read attr. Note that all access key words and the
statement keywords are in their short form. Notice as well the multiple
use of the relation, relation access, and attribute access statements.

A display of the submodel with the relation and attribute access may
be found in the examples for the display mrds dsm command.
%/ - -
default rel acc: a, d;
default attr_acec: r, m;
attr_acec:
last_name (r),
first_name (r);
rel acc:
person_state (d),

relation:
person (last_name first name salary expenses),

rel acec:
person (a) with attr_ace (r);
attr_ace:

salary in person (n);

3-29 AW53-04

create mrds_dsm create mrds_dsm

relation:
person_state (last name first_name key);

relation:

state_history (key state name date time text);
attr_acc: - -

key in state history (r);

The following examples show command usage. Invoking the command using no
control arguments is the same as invoking the command with control arguments of
-no_list, -no_force, and -no_install.

create_mrds_dsm cmdsm_source_example 1.cmdsm states.db
The following invocation creates the submodel in the secure.submodels directory
under the states.db directory. Only a DBA can use this control argument.

create_mrds_dsm -install cmdsm_source_example 2.cmdsm states.db

.The following invocation installs the submodel in the secure.submodels

directory and writes over any existing cmdsm source_example 3 without querying
the invoker.

create mrds_dsm -force cmdsm source example 2.cmdsm -install states.db
This last example installs the submodel in the secure.submodels directory, forces
the overwriting of an existing submodel with the same name, and produces a
listing called cmdsm source example 2.list in the working directory. Notice that

the short form of the control arguments and the command name are used.

ecmdsm -fc cmdsm_source_example 2 states -1s -ins

3-30 AW53-04

display_mrds_db_access display_mrds_db_access

Name: display_mrds_db_access, dmdba

This command displays the current access that the user has to the data for
the relations in the supplied view of the data base.

Usage

display_mrds_db_access path {-control_args}

where:
1. path
is the relative or absolute pathname of a data base model or submodel,
with or without suffix, that supplies the view for which the user
wishes to see access information. If both a data model and submodel
of the same name are in the same directory, then the model will be
found if no suffix is given.
2. control_args
may be one of the following:
-brief, -bf
specifies that a short form of the access information be displayed,
showing only effective access to the data.
-long, -lg
specifies that all information related to access be displayed.
(Default)
-relation rel _namel ... rel_nameN
specifies that only the access for those relations whose names are
given in the rel namel list is to be displayed according to the
other control arguments. This control_arg must appear after path.
Notes

If the data base has been secured, then path must refer to a secure submodel,
unless the user is a DBA. The user must have sufficient access to the related
model information to open the data base using the given path.

Control arguments can be overridden, in that the last one specified takes
effect (e.g., -bf followed by -lg implies -1g).

This command only works for version 4 data bases.

The Multics system ACLs, the MRDS access modes, and the result of these
two, an effective access, is displayed for each relation and attribute in the
given view. Access modes displayed depend on the secured state of the data base
as follows:

3/84 3-31 AW53-04B

display_mrds_db_access display_mrds_db_access

DB SECURED STATE MODES
off r-e-w
on r-a-m-d

The r-e-w refers to Multics ACLs. The r-a-m-d refers to the new attribute level
security related operations of read_attr, append_tuple, modify_attr, and
delete_tuple respectively.

Examples

! display_mrds_db_access submodel

Data base path: >udd>md> jg>dr>model.db
version: 4
data base is in a secure state.

Submodel path: >udd>m>jg>dr>model.db>secure.submodels>submodel.dsm
version: 5

Relation Attribute System MRDS Effective

r001 r a n
k001 r r r
d0o1 r m n

r002 rw d d
k001 rw m m
x001 rw n n
d001 rw r r

! display_mrds_db_access submodel -brief

roo1 n
k001 r
d001 n
r0o2 d
k001 m
x001 n
d0o01 r

3/84 3-32 AW53-04B

display_mrds_db_population display_mrds_db_population

Name: display_mrds_db_population, dmdbp

This command displays the current tuple count for each relation in the
given data base model or submodel view. It can also display population statistics
about the vfile for each relation's data.

Usage

display_mrds_db_population path {—control_args}

where:
1. path
is the relative or absolute pathname of the data base model or submodel,
with or without suffix, that is to have the relation's population
statistics displayed. If both a data model and submodel of the same
name are in the same directory, then the model will be found if no
suffix is given.
2. control args
may be one of the following:
-brief, -bf
limits the output display to only relation names and their current
tuple count. (Default)
-long, -1g
displays the average number of tuples selected by index duringretrieval.
-relation rel_namel ... rel_nameN
specifies that only the population for those relations whose names
are .given in the rel_namel 1list are to be displayed according to the
other control arguments. This control_arg must appear after path.
Notes

Version 3 data bases must have been opened at least once for exclusive
update. They cannot have secondary index information displayed.

For version 4 data bases, only a DBA may use this command on a secured data
base, with the model view. The user must have at least "r" access to the
relation model segment and the relation data vfile for those relations in the
view presented by "path".

3/84 3-33 AW53-04B

display_mrds_db_population

Examples

! display_mrds_db_population test -bf

display_mrds_db_population

Opening version 4 data model: >udd>md>jgddr>test.db

RELATION TUPLES
roo1 100
roo2 100

! display_mrds_db_population x001 -long

Displaying version 4 data model: >udd>d>dbmt>ndb>K>x>doec>x001.db

RELATION TUPLES INDEX AVE TUPLES SELECTED

roo1 100
x001 16

A description of the -long form output follows:

Relation: the name of the relation in the user's
Tuples: the number of tuples currently stored as
Index: the indexed attributes in the relation.

Ave Tuples Selected: the number of tuples that

when doing a comparison on an indexed attribute.
the number of duplicate keys for that index.

3/84 3-3Y

view,.

records in the vfile.

MRDS expects to retrieve
This estimate is based on

AW53-04B

This page intentionally left blank.

3/84 3-35 AW53-04B

display mrds_db status display mrds_db_status

Name: display mrds_db_status, dmdbs

This command displays the current state of the data base concurrency control
segment. The number and type of open users of the data base can be determined
from its output. The current scope settings on all relations in the user's view
can be displayed.

*
Usage
display_mrds_db_status path {-control args}
where:
1. path
is the relative or absolute pathname of the data base, or of a
submodel defined for that data base, for which concurrency control
information is desired. If both a data model and submodel of the
same name are in the same directory, the model will be found if no
suffix is given.
2. control_args
may be chosen from the following:
-brief, -bf
causes display of only the current number of open users and the
number of active scope users of the data base.
-long, -lg
causes all possible concurrency control information to be displayed
that is in the user’'s view. This includes the concurrency control
version, whether the data base has been quiesced, consistency state
of the data base control segment, existence of any dead processes,
identification of the processes having the data base open, and what
scope they have set on relations that are in the user's view.
-proc_id process_number, -pid process number
same as is used for -user, but the process number 1s used for the
identifier instead.
-user person.project, -user person
causes all possible concurrency control information (such as -long)
for the person.project or person given to be displayed, including
scope setting on relations in the user's view.
¥*
Notes
Notes
If no control arguments are specified, then an abbreviated form of the
information given by the -long option is presented.
I The output display does not include "normal" conditions, such as "Activation
§ normal”. Only exception conditions or necessary i.aformation are displayed {(e.g.,

3-36 AW53-04

display_mrds_db_status

"Non-passive scope set by a dead process.™,

-long option is specified.

Examples

! display _mrds _db_status 2rels
Concurrency control version:
Data base path:

Version:

State:

Open users:

Scope users:

User process id:
Process number:
Process state:
Usage mode:
Scope:
Activation:
Relation

ro001
r002

! display mrds_db_status 2rels

Data base path:
Open users:

Scope users:
User process id:
Relation

r001
ro0o02

! display_mrds_db_status 2rels

Data base path:
Open users:

Scope users:

display mrds_db_status

or "open users: O") unless the l

-long

5
>udd>Multies>JGray>dr>2rels.db
y

Consistent

1

1 Active
0 Awakening
0 Queued

JGray.Multics.a
016600352461
Alive
Normal
Active
Normal
Permits Prevents
ramd n
r a

>udd>Multics>JGray>dr>2rels.db
1

1 Active
JGray.Multiecs.a
Permits Prevents
ramd n
r a
-bf

>udd>Multics>JIGray>dr>2rels.db
1

1 Active

3-37 AWS3-04

display mrds_db_status display_mrds_db_status

! display_mrds_db_status 2rels -person JGray.Multics

User process id: JGray.Multics.a
Process number: 016600352461
Process state: Alive
Usage mode: Normal
Scope: Active
Activation: Normal

Relation Permits Prevents
r001 ramd n
r002 r a

The following example shows the effect of using a submodel path, where that
submodel references an open data base "2rels.db" (see above examples) with only
one relation in the submodel view. The submodel has the name "alias 1" for the
model relation "r001"™.

' display _mrds_db_status 1rel.dsm

Data base path: >udd>m>jg>dr>2rels.db
Open users: 1

Scope users: 1 Active
User process id: JGray.Multics.a
Relation Permits Prevents

alias 1 ramd ramd

3-38 AW53-04

display_mrds_db_version display_mrds_db_version

Name: display_mrds_db_version, dmdv

This command displays the MRDS data model/submodel version, creator, and
creation time.

Usage

dmdv path

where path is the pathname of the data model/submodel version to be displayed (with or
without the db or dsm suffix).

Notes

This command requires access to open the data model or submodel for retrieval
(for example, as in mmi_$open_model or msmi_$open_submodel). (See
dsl_$get path_info for a subroutine interface.)

If a data base model and submodel of the same name are in the same directory, the
model is found if a suffix is not given.

Example

! display_mrds_db_version CS_III

Data model: >udd>Demo>demt>db7>jg>CS_III.db
version: 4
created: 02/01/80 1419.0 mst Fri
by: JGray.Multics.a

2/85 3-39 AW53-04C

display mrds_dm display _mrds_dm

Name: display mrds_dm, dmdm

This command displays the details of the data base model and data definition for a
given data base. It can be used to reconstruct the original create_mrds_db data model
source from the data base.

Usage

where:

1.

2.

12/86

dmdm db_path {~control_args}

db_path

is the pathname of the data base for which the data model is to be
displayed.

control _args

can be chosen from the following:

-attribute {modifier}, -attr {modifier}
displays attribute information. The modifier may be name(s) or
-unreferenced (-unref). If name(s) is supplied, information for the
attribute name(s) is displayed. If -unreferenced is supplied, attribute
information anbout all unreferenced attributes is displayed. If no
modifier is supplied,; attribute information about all attributes is
displayed. :

~-brief, -bf
displays only relation and attribute names. No information on the
characteristics of the attributes and relations is provided. This
control argument is incompatible with the -names control argument.

-cmdb
specifies that the output is to be in the same format as an input source
text for create_mrds_db. If the -output_file control argument is
supplied, then the segment can be used to create another data base with
the same definitions. Only the -brief, -long, and -output_file control
arguments are compatible with this control argument.

-crossref {type}l, -xref {type} displays an information cross-reference. The
type may be domain (dom), attribute (attr), or all. If the type is
domain, each domain is listed with a list of attributes in which the
domain is referenced. If the type is attribute, eachattribute is listed
with a list of relations in which the attribute is referenced. If the
type is all, both domain and attribute cross-references are displayed.
(Default is "all".) See the examples below which show the information
displayed.

-domain {modifier}, -dom {modifier}
displays domain information. The modifier may be name(s) or
-unreferenced (-unref). If name(s) is supplied, information for the
domain name(s) is displayed. If -unreferenced is supplied, domain
information about all unreferenced domains is displayed. If no modifier
is supplied, domain information about all domains is displayed.

~header, -he
displays header information for the data base.

3-40 AW53-04D

display mrds_dm display mrds_dm

-history, -hist
displays restructuring history information. If the data base is
restructured more than once, the history entries are displayed in reverse
chronological order.

-index names, -1ix names
displays information about indexed relations for each relation name
supplied. If no names are supplied, then information about all indexed
relations is displayed.

-long, -1lg
displays all available information about relations and their attributes.
For relations, this includes the number of attributes and the layout of
the attributes in the tuple. For attributes, this includes the name of
the underlying domain and the declaration. This control argument is
incompatible with the -names control argument.

-names, -nm
displays the format of domains, attributes, relations, and indexed
relations as a list of the names. This argument is incompatible with
-brief or -long control arguments.

-no_header, -nhe
prevents display of the header information. (Default)

-no_output_ file, -nof
displays output on the user_output switch. (Default)

-output_file path, -of path
places the output in the segment named by path rather than being displayed
on the user output switch. If the segment already exists, its contents
are overwritten.

~-relation names, -rel names
displays relation information for each relation name supplied. If no
names are supplied, the relation information for all relations is
displayed.

-temp_dir path

provides for a directory with more quota than the default of the process
directory when more temporary storage is needed to do a display mrds_dm
on a source Wwith many relations and attributes. For example, doing a
display mrds_dmon a 127 relation source may require this argument. If
the user gets a record quota overflow in the process directory during a
display mrds dm, then a new _process is required. A retry of the
display mrds_dm with the -temp_dir argument, giving a pathname of a
directory with more quota than the process directory, should then be
done.

Notes

If neither -long nor -brief is specified, therelation name is displayed for each
relation as well as the name and user view declaration of each attribute.

This command does not work for submodels (see display mrds_dsm).

12/86 3-41 AW53-04D

display_mrds_dm

display mrds_dm

For version 4 data bases, the user must be a DBA in order touse this command on a

secured data base.

If -long is specified, the header output indicates the secured state of the data

base.

Examples

! display_mrds_dm dmdm.db -long

DATA MODEL FOR VFILE DATA BASE
Data base secured.

Version:
Created by:
Created on:

Total Domains:

Total Attributes:
Total Relations:

RELATION NAME:

Number attributes:

ATTRIBUTES:

Name:
Type:

Domain_info:

name:
decl:

Name:
Type:

Domain_info:

name:
del:

Name:
Type:

Domain_info:

name:
del:

12/86

4
Kubicar.Multics.a
01/16/84 1515.6 mst Mon

3

3
1

sample

key
Key

key

character (1) nonvarying aligned
data

Data

data

character (1) nonvarying unaligned
indexed

Data 1Index

indexed
character (1) varying aligned

342

>udd>d>dbmt>ndb>K>x>doc>dmdm.ddb

AW53-04D

display mrds_dm

2/83

display_mrds_dmA

display_mrds_dm dmdm
RELATION: sample
ATTRIBUTES:
key Key
char (1) aligned
data Data
char (1)
index Data Index
char (1) var
display mrds_dm dmdm -brief
RELATION: sample
ATTRIBUTES: key
data
index
display mrds_dm dmdm -cmdb
/% Created from >udd>m> jg>dr>dmdm.db
03/16/81 1514.1 mst Mon *®/
domain:
data
character (1) nonvarying unaligned
-check proc >udd>m>jg>dr>validate_datag$validate_data,
index
character (1) varying aligned,
key
character (1) nonvarying aligned;
relation:
sample (key* data index);
index:
sample {(index) ;
display mrds_dm dmdm -names
sample
3-43 AWS3-04A

displ

ay_mrds_dsm display mrds_dsm-

Name:

display mrds_dsm, dmdsm

This command displays information about the specified MRDS data submodel.

Usage

where

1.

2.

2/83

dmdsm dsm_path {-control args}

dsm_Path

is the pathname of the data submodel file to be displayed. If dsm_path
does not have a suffix of dsm, then one is assumed. However, the
dsm suffix must be the last component of the data submodel file
name.

control args

can be chosen from the following:

-access, -acce
specifies that access information (both relation and attribute) is
to be displayed.

-brief, -bf .
specifies that only the submodel relation names and attribute names
are to be displayed. This control argument may be superseded by any
of -cmdsm, -rel names, or -long which follow it in the command line.
(Default) -

-cmd sm
specifies that the display is to have a format that may be processed
by the create mrds dsm command to produce another submodel. This
control argument is limited to DBAs if the submodel is associated
with a secure data base. This control argument may be superseded by
any of -long, -rel names, or -brief which follow it in the command
line.

-long, -1lg

specifies that the display is to contain all the information that is
in the submodel. This includes the data base path, submodel version,
submodel creation date and creator, submodel relation names and
associated model relation names, submodel attribute names and associated
model attribute names, relation and attribute access, and the attribute
data types. If the person running this command is not a DBA and the
submodel is associated with a secure data base, then the model relation
names and model attribute names will not be displayed. This control
argument may be superseded by any of -cmdsm, -rel names, or -brief
which follow it in the command line. -

~-no_access, -nhacc
specifies that access information is not to be displayed.

-no output file, -nof
~ causes the output display to be written to the terminal. This control
argument will undo the effects of the -cutput file control argument.
(Default)

3-44 AWS53-04A

display mrds dsm display mrds_dsm

-output_file path, -of path

causes the output display to be written to the spe01f1ed path instead -
of to the terminal. Anything already stored in the segment at the
specified path will be overwritten.

~-rel names, -rn

specifies that only submodel relation names are to be displayed.
This control argument may be superseded by any of -cmdsm, -brief, or
-long which follow it in the command line.

-relation REL 1 REL 2 ... REL N

Example

specifies that information about REL 1 through REL N is to be displayed.
The information about each relation is displayed in the order they -
are specified. If some specified relation REL I does not exist in’
the submodel an error is reported and the display proceeds with the
next relation. If the display is going to an output file, the error
is reported both to the terminal and the output file. This control
argument may be used with the control arguments -cmdsm, -long,
-rel names, and -brief to produce a display of part of the submodel.
(The default displays all relations.)

The following examples all use the submodel example 4, which was generated
from the example cmdsm source_example U4 in the discussion of the create mrds_dsm

command.

data base.

The submodel secure example "4 is the same submodel defined for a secure

! display mrds_dsm example_ 4

TSI W

N3 Q

P N Vel)

person

last name
first_name
salary
expenses

person_state

last_name
first_name
Ypmes

K€y

state_history

key
state name
date_time
text

! display_mrds dsm example_ 4 -long

Submodel path: >udd>Multics>examples>example U
Version: 5
Created by: Davids.Multics.a
Created on: 03/10/81 1059.6
Data base path: >udd>Multics>examples>states.db
Version: L

3-45 AW53-04

display_mrds_dsm

Created by:
Created on:

Davids.Multics.a
03/10/81 1130.3

Submodel Relation Name: person
Model Name: person
Access:

Submodel Attribute Name:
Mcdel Name:

Access:

Data Type:

Submodel Attribute Name:
Model Name:

Access:

Data Type:

Submodel Attribute Name:
Model Name:

Access:

Data Type:

Submodel Attribute Name:
Model Name:

Access:

Data Type:

Submodel Relation Name:
Model Name:
Access:

Submodel Attribute Name:
Model Name:

Access:

Data Type:

Submodel Attribute Name:
Model Name:

Access:

Data Type:

Submodel Attribute Name:
Model Name:

Access:

Data Type:

Submodel Relation Name:
Model Name:
Access:

Submodel Attribute Name:
Model Name:

Access:

data Type:

3-146

display mrds_dsm

append tuple

last name
last name
read _attr
char (32)
Indexed

first_name
first_name
read_attr
char (32)

salary

salary

null

fixed dec (59, 2) unal

expenses
expenses
read attr
fixed dec (59, 2) unal

person_state
person_state
delete tuple

last name
last name
read attr
char™ (32)
Indexed

first_name
first name
read attr
char™ (32)

key

key

read attr modify attr
bit (70) N

state history
state_history
append_tuple delete_tuple

key

key

read attr
bit (70)
Indexed

AW53-04

display mrds_dsm

Submodel Attribute Name:
Model Name:

Access:

Data Type:

Submodel Attribute Name:
Model Name:

Access:

Data Type:

Submodel Attribute Name:
Model Name:

Access:

Data Type:

display_mrds_dsm

state name

state name

read attr modify attr
char (30)

Indexed

date time

date time

read attr modify attr
fixed bin (71)

text

text

read_attr modify_attr
char™ (4096) var

! display_mrds_dsm example U -cmdsm

/¥
created from:

>udd>Multics>examples>example 4.dsm

for: >udd>Multicsdexamples>states.db

by:
x/

relation access:

relation:

attribute access:

display mrds_dsm -cmdsm

person {append tuple);

person = person
(last_name = last name
first name = first_name
salary = salary
expenses = expenses);

last name in person (read attr),

first name in person (read attr)
salary in person (null),

expenses in person (read_attr);

VAR 22232222 2222222 X2 2222222 222222 X2 2 2 22222 222222222 222222 R I

relation access:

relation:

attribute access:

person_state (delete_tuple);

person_state = person_state
(last_name = last_name
first name = first name

key = key);

last_name in person_state {(read attr),
first name in person state (read attr),
key in person state (read attr, modify attr);

VANR A2 2232322222222 2222222222222 2222222222222 222222222 2] N I

relation access:

relation:

state history (append tuple, delete_tuple);

state_history = state history
(key =. key
state _name = state_name
date_time = date_time
text = text);

3-47

AW53-04

display _mrds_dsm display mrds_dsm

attribute access: key in state history (read attr),

state name in state hlstory (read _attr, modify attr),

date_ time in state hlstory (read attr, modlfy attr)

text in state _history

{read attr, modify attr)

! display_mrds_dsm example_ 4 -relation names

a person
d person_state
a state history

! display_mrds_dsm example 4 -relation person_state -long

Submodel path:
Version: 5
Created by: Davids.Multics.a
Created on: 03/10/81 1059.6

Data base path:
Version: L
Created by: Davids.Multics.a
Created on: 03/10/81 1130.3

Submodel Relation Name:
Model Name:
Access:

Submodel Attribute Name:
Model Name:

Access:

Data Type:

Submodel Attribute Name:
Model Name:

Access:

Data Type:

Submodel Attribute Name:
Model Name:

Access:

Data Type:

>udd>Multics>examples>example U

>udd>Multics>examplesd>states.db

person_state
person_state
append_tuple

last_name
last _name
read_attr
char™ (32)
Indexed

first_name
first name
read_attr
char (32)

key

key

read_attr modify attr
bit T70)

! display mrds_dsm example_ U -relation state history person -no_access

state_history

key
state_name
date_time
text
person
last_name
first name
salary

expenses

3-148

AW53-04

display_mrds_dsm display mrds dsm

! display mrds_dsm secure_example U -relation person_state -long

Submodel path: >udd>Multics>examples>secure_example X
Version: 5
Created by: Davids.Multics.a
Created on: 03/10/81 1059.6
Data base path: >udd>Multics>examples>states.db
Version: 4
Created by: Davids.Multics.a
Created on: 03/10/81 1130.3
Submodel Relation Name: person state
Access: append_tuple
Submodel Attribute Name: last_name
Access: read_attr
Data Type: char (32)
Indexed
Submodel Attribute Name: first_name
Access: read_attr
Data Type: char (32)
Submodel Attribute Name: key
Access: read attr modify attr
Data Type: bit T70)

3-49 AWS53-04

display mrds open_dbs display mrds_open_dbs

Name: display_mrds_open_dbs, dmod

This command displavs the data base opening indexes, opening modes, and
pathnames of all model and submodel openings of data bases currently open in the
user's process.

Usage

display mrds_open_dbs

Note

The output is a formatted list of openings, in opening index order, which
contains the opening model or submodel path and the mode in which the opening
was obtained. Data base and submodel suffixes are shown whether or not they
were used in the call to open. A ".dsm" suffix indicates the opening was through
a submodel.

Examples

! mrds call close -all
! display_mrds_open dbs

No data bases are currently open.
! mrds_call open model u submodel r

Open data bases are:
>udd>m> jg>dr>model.db
update
>udd>m> jg>dr>submodel.dsm
retrieval

! display mrds_open dbs

Open data bases are:
>udd>m> jg>dri>model.db
update
>udd>m> jg>dr>submodel.dsm
retrieval

3-50 AW53-04

display_mrds_scope_settings display mrds scope settings

Name: display_mrds_scdpe_settings, dmss

This command displays concurrency control scope mode information for all
currently open data bases in the user's process. The versions of the concurrency
control, data base, and submodel (if used for the opening) are displayed, as
well as the absolute paths of the data base and the submodel (if used for the
opening). The opening mode is also displayed.

Usage

display_mrds_scope settings

Note

. All versions of data base scope settings may be displayed with r-s-m-d
modes used for version 3 and earlier data bases, and read attr, modify attr,
append tuple, and delete tuple (abbreviated as r-m-a-d) used for version I data
bases with version 5 concurrency control. (See the notes section of adjust mrds_db
on version 5 concurrency control; this is not the same as version 5 submodels.)

Example

mrds call set modes no list
mrds call open mod del u
mrds_call set_scope_all 1 ru ru
mrds_call open view eu

display mrds_scope_ settings

Scope settings for process: JGray.Multics.a
process number: 4720336407

Opening index: 1
mecde: update

Concurrency control version: §
data base model path: >udd>mdjg>dr>mod del.db
data base version: 4

Relation Permits Prevents
r001 ramd ramd
r002 ramd ramd

Opening index: 2
mode: exclusive_update

Concurrency control version: 5

data base model path: >udd>m>jgd>drd>partial.db
data base version: &4

3-51 AW53-04

display_mrds_scope_settings

Opened via submodel:
submodel version:

Relation

part
reorder

3-52

display_mrds_scope_settings

>udd>md> jg>dr>view.dsm
5

Permits Prevents

ramd ramd
ramd ramd

AW53-04

display mrds temp_ dir ' display mrds temp dir

Name: display mrds_temp_dir, dmtd

This command displays the directory under which temporary storage for a given
data base opening is placed. This storage includes the "resultant model" that is
created at open time for allowing access to the data base, storage for temporary
relations, and intermediate results of complex searches. The default is the process
directory.

Usage

dmtd temp _dir_indicator

where temp dir_indicator must be one of the following:

1. database_index
the opening index returned by the dsl_$open subroutine. If this option
is used, then the temporary directory pathname for that particular
opening is displayed.

2. -current, -cur
displays the current temporary directory pathname that is used in
subsequent calls to op=an.

Notes

To change from the default the command set _mrds_temp dir is used to allow for the
opening of a data base with a very large resultant model that does not fit in the
process directory, for a data base with a large number of temporary relations, or for
searches involving many tuples in several relations. This would be the case if a
record quota overflow occurred in the process directory on a call to open.

See dsl $get temp dir for a subroutine interface.

Example

! display_mrds_temp dir -current
>process_dir_dir>!BPNCndKBBBBBBB

! set_mrds_temp dir >udd>m>cp>jg>l
mrds_call open dept_store eu
Open data base is:
1 >udd>m>JGray>dr>dept_store

exclusive update

! display mrds_temp_dir 1

The temporary directory for data base index 1 is:

>udd>m>ep> jg>l

2/85 3-53 AW53-04C

quiesce_mrds_db quiesce_mrds_db

Name: gquiesce mrds_db, qmdb

This DBA tool quiesces a given data base, or frees it from being quiesced, for
such purposes as data base backup or other exclusive activities that require a
consistent and non-active data base.

Usage

qmdb database_path {-control_args}

where:

1. database_path
is the pathname of the data base to be quiesced or freed.

2. control args
may be chosen from the following:

-free
causes the data base to be freed from a quiesced state.

-quiet
causes the data base to be quiesced. (Default)

-wait time N, -wt N

Sets the amount of time that an attempt to quiesce waits for conflicting
data base users to depart before failing {(see "Hotes").

Notes
Time (N) for -wait_time is in seconds. A long wait time is needed if a

display mrds_db_status shows many users; otherwise, a short wait time will suffice.
The default wait time is zero seconds.

The control args -quiet and -free are mutually exclusive, as are -free and
-wait_time.

Only the quiescing process may open a quiesced data base. Only a DBA can use this
command .

Examples

! mrds_call open qgmdb update

Open data base is:
1 >udd>m> jg>dr>qmdb.db
update

v

quiesce_mrds_db gmdb -wait_time 1
quiesce_mrds_db: The specified data base is currently busy -~ try later.
Unable to complete the quiescing process on the control segment using the data
base path ">udd>m> jg>dr>gmdb.db".

! mrds_call close -all

2/85 3-54 AWS3-04C

quiesce mrds_db

! mrds call close

! quiesce_mrds_db

-all

gmdb

! display mrds db status qmdb

Data base path:
Open users:

! quiesce mrds_db

>udd>m> jg>dr>qmdb.db

Data base is quiesced.

0

gqmdb ~free

! display mrds_db status qgmdb

Data base path:
Open users:

>udd>m> jg>dr>qmdb.db
0

3-55

quiesce mrds db

AW53-04

secure_mrds_db secure_mrds_db

Name: secure_mrds_db, smdb

This command provides the ability to turn on (or off) the attribute level
security control features of MRDS. This 1s done on a data base basis. The
secured state of a data base can also be displayed by this command.

Usage

secure_mrds_db db_path {-control_args}

where:

1. db_path
is the relative or absolute pathname of the data base to be secured,
unsecured, or have its secured state displayed. The data base suffix
need not be given. The path must be to a version 4 data base, not
to a submodel.

2. control_args
may be chosen from one of the following:

-display, -di
causes the current data base secured state to be displayed without
affecting that state.

-reset, -rs
causes the specified data base to be unsecured, regardless of its
current secured state.

-set
causes the specified data base to be secured, regardless of its
current secured state. (Default)

Notes

A data base that has been secured can be opened by a non-DBA, only via a
submodel residing in the "secure.submodels" directory underneath the data base
directory. This allows turning on (or off) attribute level security, which is
implemented via submodel views, using their access control modes (version 5
submodels). Data bases earlier than version 4 are not supported.

This command requires the user to be a DBA, Once the data base has been
secured, commands that normally operate against the model view requires the user
to be a DBA. In addition, once the data base has been secured, commands using a
submodel view require non-DBAs to use secured submodels.

See the documentation for create_mrds_db -secure, create_mrds_dsm -install,
mmi_$get secured_state, mmi_$get authorization, and Section 7, "Security".

3/84 3-56 AW53-04B

secure_mrds_db secure_mrds_db

Examples
! secure_mrds_db foo
The data base at ">udd>m}jg>dr>foo.db" has been secured.
! secure mrds db foo -display
The data base at ">udd>m>jg>dr>foo.db" has been secured.
! secure_mrds_db foo -reset

The data base at ">udd>m>jg>dr>foo.db" is not secured.

3-57 AW53-04

set mrds temp dir set_mrds_temp dir

Name: set mrds_temp_dir, smtd

In the next call to dsl $open this command changes the current pathname of
the directory that is used for temporary storage. The temporary storage used is
for the "resultant model" built during open time, for temporary relation storage,
and for intermediate search results. The initial default for this directory is
the process dir. This command need only be used prior to the particular opening
where a very large resultant model is built, large temporary relations are to be
defined, or searches involving many tuples in several relations are to be done.
A record quota overflow in the process directory during a call to dsl_$open,
dsl $retrieve, or dsl $define_temp rel indicates this need.

Usage
set_mrds_temp dir directory path

where directory path is the relative or absolute pathname of a directory with
more quota than the current temporary directory. The initial default is to use
the process directory.

Notes

The temporary directory may be changed between calls to dsl_$open, thus
resulting in different temporary directories for each opening. These may be
displayed via display mrds temp dir.

This command should only be used to avoid a record quota overflow in the
process directory upon a call to dsl $open, dsl $retrieve, or dsl $define_tem rel.
If a record quota overflow occurs in one of these calls, do a new _process, then
set_mrds_temp dir with a pathname of a directory that has more quota. If another
record quota overflow occurs in that directory, set mrds temp dir can be used
again giving a directory with even more quota.

See dsl_$set temp dir for a subroutine interface.

3-58 AW53-04

unpopulate mrds db unpopulate mrds_db

Name: unpopulate mrds_db, umdb

This command deletes all existing data stored in the given data base, returning
it to the unpopulated state. It is primarily a data base application development
tool.

Usage

unpopulate mrds_db database path {-control_args}

where:

1. database_path
is the relative or absolute pathname, with or without suffix, of the
data base that is to have all tuples in all relations deleted.

~

2. control_args
may be one of the following:

-force, -fc
causes the data to be deleted without querying the user.

-no_force, -nfe
causes the user to be queried as to whether he really wishes to
delete all data in the data base as a safety measure against inadvertently
typing in the wrong data base name. This is the default.
Notes
Only a DBA can use this command.

If there is no data in the data base, no error will be issued.

The command display mrds db population can be used to check the current
tuple count of the relations.

3-59 AW53-04

unpopulate mrds_db unpopulate mrds_db

Examples
! display_mrds_db population test -bf

Opening version 4 data model: >udd>m>jgd>dr>test.db

RELATION TUPLES
r001 100
r002 100

! unpopulate mrds_db test

unpopulate mrds db: Do you really wish to delete all data currently stored
in the data base ">udd>m>jg>dr>test.db"?

! -yes
Opening version U4 data base: >udd>m>jg>drd>test.db
Data deletion complete, closing data base.

! display_mrds_db population test «bf

Opening version 4 data model: >udd>m>jg>dr>test.db

RELATION TUPLES
ro001 0
r002 0

360 AW53-04

update_mrds_db_version update_mrds_db_version

Name: update mrds db version, umdbv

This command is used to convert existing populated (loaded) data bases to
the most recent version of (new architecture) MRDS data bases as described in
this manual. Since older MRDS data bases can be accessed with the new MRDS
software, this command is not mandatory. However, to take advantage of improvements
in MRDS, it is recommended that this command be used (no application program
changes are necessary to use the updated version of the data base). A limited
amount of restructuring is provided by this command. The end result is a populated
new version data base (with the old data base unaffected).

Usage
update mrds_db_version old_db_path new_db_path

where:

1. old_db_path
refers to an existing old version populated data base (must be a
data base whose version is 1, 2, or 3).

2. new_db path
“refers to a new version unpopulated data base as created by the new
version create mrds db command from a source identical to that of
the old data base create mrds_db source. This pathname must not be
the same pathname as old db path.

Notes

The pathnames must include suffixes, if they exist, for the data base.

The header information for both o0ld and new data bases is displayed, as
well as the relation names and number of tuples moved for each relation.

Limited restructuring is possible, i.e., the secondary indexing of a data
base may be altered using this command by defining the new data base index
statement differently from the o0ld data base index statement. Names of domains
for attributes may also change via use of the attribute statement as long as the
domain declarations remain the same.

e user can re-create the create mrds_db source of the old data base by
he display mrds_db command.

If an error occurs while populating the new data base, the new data base
must be deleted and re-created with the create mrds_db command after correcting
the cause of the error. (update _mrds db expects the new data base to be unpopulated
when it is invoked.) B

If the version 4 data base is secured, the user must be'a DBA.

3-61 AW53-04

update _mrds_db_version

Example

update mrds_db_version

! wupdate mrds_db_version >udd>XYZ>Doe>dept store dept store reindexed.db
UMDBV

Opening data model: >udd>XYZ>Doe>dept store

created:

06/12/79 1017.1 mst Tue

version:

by: Doe

Opening data

For
For
For
For
For

created:
version:

.3iteSA.a

model: >udd>m>jg>dept store reindex.db
01/02/80 1215.2 mst Mon
y

by: JGray.Multics.a

relation
relation
relation
relation
relation

22
5

"class", the number of tuples moved =
"emp", the number of tuples moved = 2
"loc", the number of tuples moved = 7
"sales", the number of tuples moved = 26
"supply", the number of tuples moved = 29

Update complete, closing data models.

3-62

AW53-04

SECTION &

DATA SUBLANGUAGE SUBROUTINES

This section describes those subroutine entries in MRDS which correspond to

the functions described in the Data Sublanguage (DSL) in Section 2. These entries
provide the user with the capabilities to:

- Open and close a data base

[] Declare user-defined functions for use with the data base

L Retrieve data based on a flexible selection capability

o Modify and delete items within a data base

[] Store new information into the data base

L Obtain information about the user's view of the data base

® Perform all of the above while allowing for concurrent access capability

FORMAL DEFINITION OF THE SELECTION EXPRESSION

Several of the DSL entries require a selection expression as an input parameter.
Such an expression is a character string that precisely describes the data items
in the user's view of the data base (the data model or the data submodel) to be
manipulated. This character string may be a constant or a variable declared
character varying or non-varying.

Formal Syntax

A formal syntax for MRDS is presented below using a metalanguage derived
from Backus-Naur Form. The metalanguage symbols are defined as:

<> denotes a syntactical construct
t:= means "is defined as"
[] denotes zero or one occurrence of (optional)
... denotes one or more occurrences of
* denotes key attribute
i denotes the logical inclusive "OR"
The inclusion of an underscore character under any of the symbols (see
<bool op> below) distinguishes that symbol as not being a part of the metalanguage

but asS being a part of the MRDS syntax. The character """ precéding any symbol
(see <qualifier> below) implies "not."

4-1 AW53-04

{selection_expression> ::=

-another | =-compiled | <select_set> | <current_expression>

<current expression> ::=
-current <tuple_item> [<tuple_item> ...]

{select_set> ::=
<alpha_expression> | (<select_set>) <set_op> (<select_set>)

{set _op> ::=
-union | -inter | =-differ

{alpha_expression> ::=
{range_expression> <tuple_expression> [<qualifier_ expression>]

{range expression> ::=
-range [<-no ot | -no optimize>] [<-print_search_order> | <-pso>]
<{range_ definition> {(rande definition> ...]
1

[<-print_search_order> | <-pso>] <range_definition> [<range_definition> ...]

{range_definition> ::=
(<tuple_variable> <relation>)

{relation> ::=
<identifier> | <temp_rel_index>

{temp rel_index> ::=
<argument_substitution>

{tuple_variable> ::=
identifier>

{identifier> ::=
<letter> [<Kletter> | <digit> | _ | - 1...

{tuple_expression> ::=
“-select <tuple_item> [<tuple item> ...] | <non_set_op retrieve_expression>

{non_set_op_retrieve_expression> ::=
-select -dup <{tuple_item> [<tuple_item> ...]

{tuple_item> ::=
{tuple_variable> | <tuple_attribute>

{tuple_attribute> ::=
{tuple variable>.<attribute> ; <temp rel key>

{temp_rel _key> ::=
<tuple_variable>.<attribute>*®

<{attribute> ::=
{identifier>

<qualifier_expression> ::=
-where <{qualifier>

{qualifier> ::=
<term> | “(<qualifier>) | (<qualifier>) <bool_ op> (<qualifier>)
{term> ::=
<expr_or_attr> <rel_op> <expr_or_attr> | <expr_or_attr>
{rel op> <literal constant> | <expr or_attr> <rel” _op>
<{literal argunent substitution>

<literal argument_substitution> ::=
<argument substitution>

{expr_or_attr> ::=
<tuple_attribute> | [<expr>]

2/85

+=
!
no

AW53-04C

{expr>
<

function> | <arith_expr>

{function> ::=

<

fn_name> (<arg_list>)

{fa_name> ::=
{letter>[<letter> | <digit> { _ 1 ...

<arg list> ::=
<arg> |

{arg>
<

Karg> <arg_list>

expr_or_attr> | <literal constant> | .V.

arith expr> ::=

“<operand> <arith op> <operand> |

(
<

<arith_o
-+

<arith_expr>) <arith_op> <operand> |
operand> <arith_op> (Karith_expr>)
p> ::=

P * 7

{operand> ::=

<

<bool op
&

<{rel_op>

{letter>

<digit>

<argumen

{literal

<bit-string_constant> | <character-string constant> |

<

NOTES:

2/85

tuple_attribute> | <function> | <literal constant> { .V.
> =

1 [}

i

N R TR BRI A
IBICIDIEIFIGIHIT I X ILIMINJOIPIQIRISITIUIVIWIX Y (Z)
ibicidieifigihiiijikiliminiolpiqirisitiuiviwixiyiz
111213141516171819
t_substitution> ::=

Viiovel X0 .x.

constant> ::=

arithmetic_constant>

A <tuple_variable> is a user-specified variable that need not appear in the
data model or data submodel and need not be declared in the calling program.
In the <range expression> each <tuple_variable> is associated with a
{relation>. Hence, the <range_expression> defines the data base subset from
wnich the desired data elements are to be selected. More than one
{tuple_variable> may be associated with one <relation>.

The -no_optimize (-no_ot) option in the range expression causes MRDS to
select tuples from the tuple variables in the order in which they are defined,
(i.e., the order of range definition). No attempt will be made to find a
quicker search order (see Section 13 "Performance Considerations").

The -print_search_order (-pso) option in the range expression causes MRDS to
print, via the user_output switch, the order in which types from each tuple
variable are selected, the type of access mechanism used to select those
tuples, and the estimated number of tuples selected. (See Section 13
"Performance Considerations™.)

The <set_op>s -inter, -union, and -differ correspond to the set operators
intersection, union, and difference as defined in Appendix C.

4.3 AW53-04C

2/85

Specification of a <{tuple_attribute> in the <{tuple expression> results in
the selection of only the spec1f1ed attribute value within the designated
tuple. A "®¥" suffix on a tuple attribute indicates that this attribute is to
be a key attribute for a relation defined by define_temp rel and is not
otherwise allowed. Specification of a <tuple_ variable> within the
(tuple_expression> results in the selection of all attribute values in the
designated tuple.

For modifications or deletions, a <select_set> must consist of one
{alpha_expression>, with only one relation specified in the select clause.
The operation applies to all tuples selected.

The order of evaluation of <term>s within a <qualifier>, of <operand>swithin
an <arith_expr>, and of <alpha_expression>s within a <select set> is
governed by the parentheses.

A <selection_expression> consisting of a <current_expression> indicates
that the most recently selected occurrence of the <tup1e variable> specified
in the <tuple_item> 1is to be selected again. The specification of a
{current_expression> is valid only if a {(selection_expression> consistingof
a <select set> has previouslybeen specified. The <select set> in this case
must consist of one <alpha_expression>. The <tuple_ item>smust all be in the
same <tuple_variable> and that <tuple variable> must not have been
quantified in the <{selection_expression>. This feature is useful primarily
in calls to dsl_$delete and dsl_$modify in conjunction with "-another"
retrievals.

If the <tuple expression> contains the -dup option then only retrieve
operations are permitted and duplicate items retrieved from the data base as
specified in the {tuple expression> are returned to the caller. If -dup is
not specified, then only one instance of duplicate selected items is
returned. The -dup option is not allowed with set operations. A retrieve
operation with the -dup option may be significantly faster. However, it is
important to note that there are two ways in which duplicates can occur.
First, a duplicate may occur through restricted views of relations, called a
projection, yielding multiple values that are duplicates of the retrieved
tuples. A second type of duplication may occur when the seiection expression
can select the same tuple multiple times, as when the logical or (i) is used in
the where clause. The -dup option permits both of these types of duplication
to be seen by the user.

" V." or ".v." is an argument indicating that the values to be substituted
into the <selection_expression> are to be selected from the arguments
immediately following the {selection_expression> parameter. The
spacification of a ".V." argument as a {relation> within a
<range definition> indicates that the temporary relation with the index
corresponding to the value passed via the selection value parameter is to be
incorporated into the range of the associated <tuple variable>. There must
exist one selection value for each temporary relation specified in the
corresponding <{selection_expression>. Temporary relations are defined by
calls to dsl_$define temp rel. Only a temporary relation index, not a
relation name, may be used as a substitution value for a ".V." argument in a
range clause. When a ".V." argument is found in a where clause, values are
substituted for the ".V." argument from arguments following the selection
expression in the argument 1list of the dsl_ call. These values are
interpreted as literal constants by MRDS and not as relation or attribute
names.

".X." or ".x." is an argument similar to ".V." (above), but it can only be
used when compiling the selection expression in the call to dsl_$compile. It
is used to specify an argument that is not known at the time of compilation.

If the <selection_expression> specified for a call to dsl_$retrieve results
in the selection of more than one tuple, only one is returned to the caller.
If the <selection_expression> consists of "-compiled" and is supplied with a
selection expression index, the compiled selection expression is returned
for use in the call operation for anydsl_ entry (except dsl_$compile). This
compiled selection expression does not destroy the availability of any
previously compiled selection expressions. Howeaver, the caller may

u-y AW53-04C

individually retrieve the other tuples by successive calls to dsl 3retrieve
with a <selection_expression> consisting of "-another". A call fo anydsl
entry with a {selection _expression> consisting of a <{select set> terminates
the availability of any previously selected tuples.

If no<qualifier_expression> is specified, all tuples in the specified range
are selected.

An <fn_name> may be the name of a built-in function or of a user-defined
function. Refer to Section 5 for a discussion of those functions provided as
a standard part of MRDS and to the dsl_$declare subroutine in this section for
information on user-defined functions.

A1l <tuple_attributeds within an <{expr> must have the same {tuple_variable>.

Items within a <{selection_expression> are delimited by blanks, new-lines,
and horizontal-tab characters not contained in quoted strings.

Where Clause Comparisons

When comparisons between attributes are specified in the where clause, the
following conventions are followed (at least one of the attributes in the pair may not
be a key or index).

[] If either attribute is a complex number, the comparison takes place as a
complex number comparison, after any necessaryconversion to complex float
decimal (59) numbers. Note that only "=", and ""=", are valid in this case.

[If both attributes are bit or both are character, then the comparison is

done as bit or character, respectively.

L If one attribute is declared bit and the other character, the comparison is
done as a character compare, after first converting the bit value.

L] If either attribute is a real number and neither is complex, the comparison
takes place as a real number after any necessary conversion. Real number
comparisons are done as float decimal (59) number compares, unless both
attributes are declared fixed binary with equal scale or float binary. In
these cases, the comparisons are done as fixed bin (71) or float bin (63)
compares, respectively.

If both attributes are a key head, total key, or secondary index, or if multiple
attributes making up the total primary key are involved in the comparison with the
condition that the attributes are of differing data types, then no convention is
followed. The comparison takes place as the data type of whichever attribute the
search mechanism uses for a key search. It is recommended that this case be avoided,
as possible conversion errors may result.

The use of "=" with floating-point numbers is not recommended, as the comparisons
may not be meaningful due to roundoff error.

The most efficient number comparisons, in terms of time and space, are with both
attributes declared fixed bin or both declared float bin, preferably aligned. Both
attributes declared bit or both attributes declared character are also efficient
comparisons.

2/85 h-5 AW53-04C

Examp

les of Selection Mechanisms

relat
follo

2/85

The sample data base to which the following examples apply consists of four
ions, each shown with their attributes in parentheses and their key attributes
wed with an "¥",

supplier (supplier _no* supplier_name location)

part (part _no* part name color weight quant_on_hand)
project (proj_no* proj name manager _no)

supply (supplier_no* part no* proj no* ship date* quantity)

Find all the part numbers of parts being supplied.

"-range (s supply)
-select s.part_no"

Find the part numbers, names, and quantities on hand where the quantity on hand is
less than 25.

"_range (p part)
-select p.part_no p.part_name p.quant _on_hand
-where p.quant_on_hand < 25"

Find the supplier numbers of those suppliers who supply the part with the part
number 3.

"-range (z supply)
-select z.supplier_no
-where z.part no = 3"

Find the supplier names of those suppliers who supply the part with the part
number 3.

"_range (s supplier) (z supply)

-select s.supplier_name

-where ((s.supplier no = z.supplier_no) &
(z.part_no = 3))"

Find the supplier numbers of those suppliers who have the same location as
supplier Jones.

"_range (s supplier) (t supplier)
-select s.supplier_no
-where ((t.supplier name = ""Jones"") &

(t.location = s.location))"

For each project, find the project number, project name, and supplier location
for all suppliers who supply that project.

"_range (p project) (s supplier) (z supply)
-select p.proj_no p.proj_name s.location
-where ((p.proj no = z.proj no) %

(z. suppller_no = s.supplier no))"

k-6 AW53-04C

dsl_

Name:

dsl_

dsl _

This subroutine supplies entry points for the functions required in opening,

manipulating, and closing a data base. (Refer to "Obsolete Interfaces," Section 10,
for additional, but obsoleted dsl_ entries.

Usage of the dsl_ subroutine is explained bzlowunder separate headings for each

designated entry.

NOTES: Tne sub_error_ condition is signaled for some errors to provide further
information. It is suggested that anonunit (refer to the PL/I Reference
Manual) be established to trap this error after program development work
is complete.

The arg error condition is signaled for cases where the error code
argument cannot be obtained.

When arguments for data are expected, as in dsl $retrieve, a structure,
like the output from create mrds_dm_include, may be used in place of
separate arguments. However, onlyone structure per call is allowed and
there is a loss in efficiency.

The following is a summary of dsl_ entries.

close
closes the specified open data bases.

close all
closes all data bases currently open in the user's process.

compiles (or pre-translates) a selection expression for later use in the
current process.

declare
makes a user-defined function knocwn to MRDS.

define_temp rel
defines, redefines or deletes a temporary relation that can be accessed
by the current process. The only functions which can be accomplished
using a temporary relation are "retrieve" ard "define_temp_rel."

delete
specifies that the selected data is to be deleted from the data base.

dl_scope
deletes all or a portion of the current scope of access.

dl_scope_all
deletes all of the current scope of access.

get_attribute list
returns attribute descriptions and access capabilities for all
attributes in the user's view of a given relation.

get_opening_temp dir
returns the directory pathname used for temporary storage in a particular
data base opening.

2/85 4-7 Ad53-04C

dsl_

dsl_

get_path_info

returns information about a relative pathname. This includes the MRDS
model/submodel absolute path, version, and creation information if the
path refers to a MRDS model or submodel.

get_population

returns the current number of tuples stored in a permanent or temporary
relation.)

get_relation_list

returns a 1ist of all relations in the viswof a given opening, plus access
capabilities for each relation.

get_scope

returns the scope currently set on a given relation.

get_temp_dir

returns the directory pathname used for temporary storage on the next
call to dsl_$open.

list_openings

returns a list of all currently open data bases.

modify

specifies that the selected portion of the data base is to be modified.
open

opens the specified data bases or data submodels for processing.
retrieve

2/85

displays the selected data specified by the selection expression.

set_scope

defines the current scope of access for a relation.

set_scope_all

defines the current scope of access for all relations.

set_temp dir

sets the directory used for temporary storage on the next call to
dsl_$open.

store

adds a new tuple to the selected relation.

4-8 AW53-04C

dsl_ dsl_

Entry: dsl_$close

This entry causes the specified data bases to be closed and made unavailable for
processing.

Usage

declare dsl_$close entry options (variable);

call dsl_$close (data_base_index1, ... , data_base_indexn, code);

where:

1. data_base_indexi (Input) (fixed bin(35))
is the integer returned by dsl_$open that designates the currently open
data bases that are to be closed.

2. code (Output) (fixed bin(35))

is a standard status code.

Entry: dsl_$close_all

This entry closes all data bases that are currently open in the user's process.

Usage

declare dsl_$close_all entry options (variable);

call dsl_$close_all (code);

where code (output) (fixed bin(35)) is the standard status code and is 0 if all data
bases are successfully closed or if no data bases are open.

Entry: dsl_$compile

This entry compiles (or pre-translates) a selection expression for later use in
the current process, for retrieval, modify, delete, and define_temp_rel operations.
A previously compiled selection expression can be deleted or redefined through this
entrypoint.

A selection expression can be compiled at any time in the 1ife of an open data base
and saved for future use in that opening.

2/85 4-9 AW53-04C

dsl _ dsl

Usage

declare dsl_$compile entry options (variable);

call dsl_$compile (data_base_index, selection_expression, se_index,
se_valuel, ..., se_valuen, code);

where:

1. data_base_index (Input) (fixed bin(35))
is the index returned by dsl _$open to designate the data base.

2. selection_expression (Input) (char (%))

is a character string as defined at the beginning of this section
(see "Formal Definition of the Selection Expression®"). It may contain
.V. argument substitution characters in all normal places. These are
filled in at the time the selection expression is compiled. Argument
substitution characters of the form .X. may be used in all places in the
where clause where .V. is appropriate, except functions and
expressions, to specify that this value is to be filled in at the time that
the selection expression is used.

3. se_index (Input/Output) (fixed bin(35))

is an integer used to identify a compiled selection expression. 1If the
se_index is O (on input), a new compiled selection expression is defined
and the index for the newly compiled selection expression is returned.
If the se_index is greater than zero (on input) and a compiled selection
expression with that index is found, it is redefined to the new selection
expression. If the se_index is less than zero (on input) and a compiled
selection expression with that index is found, it is deleted and the
selection expression is ignored.

4. se_valuei (Input)
is a selection expression value for each control code (designated by . V.)
appearing in the selection expression, These must be specified so as to
correspond in order and quantity with the control codes specified in the
selection expression.

5. code (Qutput (fixed bin(35))
is a standard MRDS status code. A value of 0 indicates that no error
occurred.

Note

Any .V. argument substitution characters supplied in the selection expression
must have matching arguments supplied in the call to dsl_$compile. They are then
considered to be constant and cannot be changed later. Any .X. argument substitution
characters supplied in the selection expression must have matching arguments supplied
in the call that references the compiled selection expression, not the call to
dsl_$compile. The arguments supplied to satisfy a .X. must have the same data type as
that of the data base attribute it is being compared to.

2/85 4-9.1 AW53-0uC

dsl_ dsi_

MRDS selection expressions are optimizad at the time they are compiled. The
search method chosen is highly data-~dependent. When using compiled selection
expressions in a situation where the data is changing rapidly, the optimization chosen
at compilation time may not be the same optimization which would be appropriate at

§} execution time.

12/86 4-9.2 AW53-04D

dsl_ dsl_

Entry: dsl_$declare

This entry makes a user-defined function known to MRDS while processing the
specified data base. After it is declared, a user-defined function may be used
exactly as a MRDS built-in function. If a user-defined function has the same name as a
built-in function, the user-defined function is referenced.

Usage

declare dsl_$declare entry (fixed bin(35), char(¥*), fixed bin(35));

call dsl_$declare (db_index, fn_name, code);

where:
1. db_index (Input)
is the index returned by dsl_$open that designates the data base.
2. fn_name (Input)
is the name of the function being declared.
3. code (Output)
is a standard status code.
Notes

Built-in functions are provided as a standard part of MRDS and need not be
declared. These functions are described in Section 5.

User-defined functions may be written in PL/I, COBOL, or FORTRAN. MRDS
generates a call that is equivalent to:

return_val = fn_name$fn_name (argl ... argn);
Restrictions on arguments to user-defined functions are:

1. No star (*) extents are permitted in the declarations for return_val or
argi.

2. Data types are restricted to those data types permitted in a MRDS data base

(i.e., pointers, entries, labels, structures, offsets, and arrays are not
allowed).

Example

Declare the user-defined function "state":
call dsl_$declare (db_index, "state", code);

See "Writing Nonstandard Functions" in Section 5.

2/85 4-10 AW53-04C

dsl dsl_

Entry: dsl_$define_temp_rel

This entry allows the user to explicitly create, delete, or redefine a temporary
relation that can be used by the current process for retrieval operations in the same
manner as any predefined permanent data base relatiouns.

The only operations that can be performed on a temporary relation are the
"define temp rel", "retrieve", and "get population". After a temporaryrelationis
defined, it is referenced by specifying a ".V." argument in the range clause and
supplying the appropriate rel index in the dsl_ call argument list. A temporary
relation cannot be used in the -select clause except for the dsl_$retrieve call.

Usage

declare dsl_$define_temp rel entry options (variable);

call dsl_$define _temp rel (data_base_index, selection_expression,
se_index, se valuel, ... , se_index, se_valuen, rel_index, code);

where:

1. data_basa_index (Input) (fixed bin(35))
is the index returned by dsl _3open that designates the data base.

2. selection_expression (Input) (char(¥*))
is a character string (see "Examples of Selection Mechanisms" above) as

defined at the beginning of this section, with at least one ¥ in the
-select clause to define the temporaryrelation key. The attribute names

STLTCLV CLians IeiaLlon 1T dLLT1i0U

given in the select clause must be unique. This character string maybe a
constant or a variable declared either character varying or non-varying.

3. se_index (Input) (fixed bin(35))
is an integer used Lo refer to a compiled selection expression. It is
required only if the selection expression is "-compiled".

b, se_valuei (Input)

is a selection expression valu for each argument substitution
(designated by .V. or .X.) appearing in the <{selection_expression>,
including temporary relation (rel index) designations. These must be
specified so as to correspond in order and quantity with the argument
substitution specified in the <selection expression). If the selection
expression is "-compiled", then the selection expression value is
substituted for the .X. wvalue in the where clause that has to be
satisfied. These values are supplied in the order in wnich they occur in
the selection expression used in the call to dsl_$compile. If the
specified data type does not equal the attribute data type, the value
mrds_error_3$inv_data_type is returned in the code.

5. rel_index (Input/Output) (fixed binary(35))

is an integer. If rel index is 0 on input, a new temporary relation is
defined and the index for the newly created temporary relation is
returned in rel_index. If rel_index is greater than 0 on input and if a
temporary relation possessing this index is already in existence, that
temporary relation is redefined. 1If rel index is less than zero and a
temporary relation with that rel _index exists, then that temporary
relation is deleted and the selection expression is ignored.

2/85 4-11 AW53-04C

6. code (Qutput) (fixed bin(36))
is a standard status code. A value of 0indicates that no error occurred.
Notes

If a duplicate of the temporary relation key is found while creating the
temporary relation, it is ignored (i.e., not stored) without warning.

If no data satisfied the selection expression, then an unpopulated temporary
relation 1is created. The population can be determined by a call to
dsl_$get population.

For shared openings, relations specified in the range clause must have read_attr
scope set.

For attribute level security, attributes specified in the select and where clauses
must have read_attr access.

2/85 h-12 AW53=04C

dsl | dsl_

Entry: dsl_s$delete

This entry allows the user to delete one or more tuples from the same relation of
an opened data base. The user must have read-write permission to the relation. All
attributes in the relation must be specified as being selected and, if the data base is
being referenced by means of a data submodel, all attributes of the relation must be
defined in the submodel. All selected tuples are deleted.

Usage

declare dsl_$de1ete entry options (variable);

call dsl_$delete (data base_index, selection_expression, se_index,
se_valuel, ... , se valuen, code);

where:

1. data_bas=_index (Input) (fixed bin(35))
is the index returned by dsl $open that designates the data base.

2. selection_expression (Input) (char(¥))
is a character string (see "Sz2lection Mechanism") as defined at the
beginning of this section. However, the select clause must specify all
attributes in the relation. This character string may be a constant or a
variable declared cnaracter varying or non-varying.

3. se_index (Input) (fixed bin(35))
is an integer used to refer to a compiled selection expression. It is
required only if the selection expression is "-compiled".

4. se_valuei (Input)

is a selection expression value for each argument substitution
(designated by .V. or .X.) appearing in the <{selection_expression>,
including temporary relation (rel_index) designations. These must be
specified so as to correspond in order and quantity with the argument
substitution specified in the <{selection expression). If the selection
expression is "-compiled", then the selection expression value 1is
substituted for the .X. value in the where clause that has to be
satisfied. These values are supplied in the order in which they occur in
the selection expression used in the call to dsl _$compile. If the
specified data type does not equal the attribute data type, the value
mrds_error_$inv_data_type is returned in the code.

5. code (Output) (fixed bin(35))
is a standard status code. A value of Oindicates that no error occurred.
A value corresponding to mrds error $tuple not found indicates that no
error occurred and that no data satisfied the selection expression.
Notes

For shared openings, the relation must have delete tuple permit scope set.

For attribute level security, the relation must have delete tuple access and any
attributes specified in the where clause must have read attr access.

2/85 4-13 AW53-04C

dsl_ dsl

Entry: dsl $dl1 _scope

This entry deletes all or part of a previously specified scope from the
user's current scope.

declare dsl $dl1 scope entry options (variable);

call dsl $dl scope (db_index, rel namel. permit opsl. prevent opsl.,
rel namen. permit opsn. prevent opsn, code);

where:

1. db_index (Input) (fixed bin(3%))
is the index returned by dsl $open that designates the data base.

2. rel namei (Input) (char(*))
is the name of the relation(s) to be included in the scope.

3. permit opsi (Input) (fixed bin)
the sum of the codes for the operations no longer granted to the
user's process on the specified relation (as defined in set_scope).
(See "Note" below for a description of appropriate codes.)

4, prevent opsi (Input) (fixed bin)
the sum of the codes for the operations no longer denied to other
processes on the specified relation (as defined in set scope). (See
"Note" below for a description of appropriate codes.)

5. code (Output) (fixed bin(35))
is a standard status code.

Note

Scope codes for operations to be prevented or permitted are as follows:

Scope

Code Operation
0 null
1 read attr or read
2 append tuple or store
y delete tuple or delete
8 modify attr or modify

Current scope settings can be determined by a call to dsl $get scope.

See mrds call delete scope function examples.

41l AW53-04

dsl_ dsl

Entry: dsl_$dl_scope_all

This entry deletes all remaining scope tuples from the user's current scope.

Usage

declare dsl_$dl_scope_all entry (fixed bin(35). fixed bin(35));

call dsl _$dl scope_all (db_index, code);

where:
1. db_index (Input)

is the index returned by dsl $open that designates the data base.
2. code (Output)

is a standard status code. It is 0 if no scope is set prior to the
call to dsl_$dl_scope all.

4-15 AW53-04

dsl_ dsl

Entry: dsl $get attribute list

This entry returns information on the attributes in the view of the given
relation provided by the user's opening.

Usage

declare dsl $get attribute list entry (fixed bin (35).
char(#*), ptr., fixed bin, ptr, fixed bin(35)) ;

call dsl_$get attribute list (db index, relation name,
area ptr structure version, mrds_ attrlbute list ptr,
error_code) ;

where:

1. db_index (Input) (fixed bin(35))
is the integer returned by dsl $open for the opening the user wishes
to reference.

2. relation name (Input) (char(¥*))
is the name of the relation in the user's view for which the attribute
information is desired.

3. area ptr (Input) (pointer)
is a pointer to a user-suppiied freeing area. in which the attribute
information is to be allocated.

4, structure_version (Input) (fixed bin)
is the desired version of the attribute information structure to be
returned.

5. mrds_attribute list ptr (Output) (pointer)
is a pointer to the attribute information returned in a structure as
described in the Notes below.

6. error_code (Output) (fixed bin (35))

is the standard status code. It may be one of the following:

error_table $area_too_small
if the supplied area could not hold the attribute information.

error_table $badcall
if the area ptr was null.

error _table $unimplemented version
if the structure_version supplied is unknown.

mrds_error_$invalid _db_index
Tif the db_ index given does not refer to a data base open in
this process.

mrds_error_$not_freeing_area
if the supplied area does not have the attribute "freeing".

416 Aw53-04

Notes

mrds_error_ $unknown relation name
Tif the given relation name is not known in this opening view of
the data base.

mrds _error_$version not supported
Tif the data base referenced is not version U,

The information is returned in the following structure (see Appendix F for

the include file mrds_attribute list.inel.pl?1):

declare 1 mrds attribute 1list aligned
based (mrds_attribute list ptr).
version fixed bin,
access info version fixed bin,
num attrs in view fixed bin,
submodel view bit (1) unal,
mbz1 bit (35) unal,
attribute (0
refer (mrds _attribute list.num_ attrs in_view)).
model name char (32),
submodel name char (64),
domain name char (32).
user data type bit (36),
system acI char (8) varying,
mrds access char (8) varying,
effective access char (8) varying,
indexed bit (1) unal,
mbz2 bit (35) unal ;

MMM MN

wwwwwuwwww

where:

1.

version
is the version number of this structure and should be set by the
caller to mrds_attribute_list_structure_version.

access_info version
is the version of the MRDS access modes returned in the attribute
information. Version 4 refers to version 4 data bases without attribute
level security, using r-w system ACLs. Version 5 refers to secured
version 4 data bases with attribute level security using read attr
(r) and modify attr (m) attribute access modes. -

num_attrs_in view
is the number of attributes in this opening view of the given relation.

submodel view
is"1"p, if this opening referred to by db index was through a submodel.
mbz1
is reserved for future use.

model name
is the name of this attribute in the data base model. If the data
base is secured and the caller is not a DBA, then this field will be

blanks.

4-17 AW53-04

dsl_

10.

11.

12.

13.

14.

fOl‘

and

dsl

submodel name
is the name of the attribute in the submodel view if the opening
referred to by db index was through a submodel; otherwise, it is the
same as the model name.

domain_name
is the name of the underlying domain for this attribute. If the
data base is secured and the caller is not a DBA, then this field is
blank.

user_data_type
is" the standard Multics descriptor for the data type of this domain.
It represents the user's v1ew if a -decode dcl option was used for
the domain.

system_acl
is the Multics ACL on this attribute from the modes r-w.

mrds_access
is the MRDS access mode for this attribute. See the access info version
description for possible values for various versions of MRDS access
control.

effective_access
is " the result of applying both system ACLs and MRDS access to this
attribute, using MRDS access values for the effect.

indexed
is "1"b, if this attribute is the total key. the key head attribute,.
or a secondarily indexed attribute.

mbz2
is reserved for future use.

The only structure version currently available is 1. This entry only works
version 4 data bases.

The variables mrds_attribute_ list num_attrs_init, mrds_attribute_list ptr,

mrds attribute list structure version are also declared in the

mrds_ attrlbute list include file.

4-18 AW53-01

dsl_ dsl

Entry: dsl $get opening temp dir

This entry returns the pathname of the directory that is being used for
temporary storage for a particular data base opening.

Usage

declare dsl_$get~opening_temp_dir entry
(fixed bin(35), fixed bin(35)) returns{char(168));

path = dsl_$get opening temp dir(db_index, error_code);

where:

1. db_index (Input) (fixed bin(35))
is the integer returned by a call to dsl $open and refers to the
opening whose temporary storage directory is desired.

2. error_code (Output) (fixed bin(35))
is the standard status code. If the supplied db_index does not
refer to a currently open data base in the user's process then it
will be mrds error_$invalid _db_index.

3. path (Output) (char(168))
is the absolute pathname of the directory being used for temporary
storage for the opening specified.

Notes

See dsl_$get temp dir for an entry that will return the directory pathname
to be used in the next call to open. Also see dsl_$set_temp dir and the commands
display mrds_temp dir and set_mrds_temp dir.

4-19 AW53-04

Entry: dsl_$get_path info

This entry returns information about a supplied pathname. It indicates

whether or not the path refers to a MRDS data base model or submodel, and if so,
the version number and details about 1its creation. This entry replaces

dsl $get db_version, which is obsolete (see Section 10).

Usage

declare dsl _$get path_info entry(char(¥), ptr,
fixed bin, ptr, fixed bin(35));

call dsl_$get _path_info(in path. area ptr,
structure version, mrds _path_ info _ptr,
error code)

where:

1. in _path (Input) (char(¥))
is the relative or absolute pathname about which the user desires
information. If it refers to a MRDS data base model or submodel. it
does not need a suffix, unless ambiguity would result. A model will
be found before the submodel if they both have the same name, less
suffix, in the same directory.

2. area ptr (Input) (pointer)
is a pointer to auser-supplied freeing area in which the path information
will be allocated.

3. structure version (Input) (fixed bin)
is the desired version of the path information structure to bereturned.

4. mrds_path_info ptr (Output) (pointer)
is the pointer to the path information structure that is returned,
which is described in the Notes below.

5. error code (Output) (fixed bin(35))

is the standard status code. It may be one of the following:

error_table $area too_small
if the supplied area could not hold the path information.

error_table $badcall
if the area ptr was null.

error_table $unimplemented version
if the supplied structure version is unknown.

mrds_error $no_model access
Tif the user does not have "r" access to the db_model segment
under the data base.

mrds_error_$no _model submodel
Tif the path does not refer to a MRDS data base model or submodel.

mrds_error_$not freeing area
if the supplied area does not have the attribute "freeing®.

4-20 AW53-04

Notes

The path information is returned in the following structure (see Appendix F
for the include file mrds path info.inecl.pl1).

declare 1 mrds path info aligned

based (mrds path info ptr).
2 version fixed bin,
2 absolute path char (168),
2 type,

3 not mrds bit (1) unal.

3 model bit (1) unal,

3 submodel bit (1) unal,

3 mbz1 bit (33) unal,

2 mrds version fixed bin,
2 creator_id char (32).
2 creation_time fixed bin (71).
2 mbz2 bit (36) unal ;
where:
1. version

is the version number of this structure and should be set by the
caller to mrds_path_info_structure version.

2. absolute path
is the absolute pathname of the in path, with the model or submodel
suffix if the path refers to a MRDS model or submodel. If the
structure is allocated. this entry will be filled in.

3. not mrds
is "1"b if the path does not refer to a MRDS data base model or
submodel.

4. model
is "I"b if the path refers to a MRDS data base and not a submodel.

5. submodel
is "1"b if the path refers to a MRDS submodel and not a data base

model.
6. mbz1
is reserved for future use.
7. mrds_version
is the version number of the MRDS model or submodel that was found.
The latest version data base model is 4 and for submodels it is 5.
8. creator_id

is the person.project.tag information returned from get group_id
for the person that created the data base model or submodel.

9. creation_time
is the time the data base model or submodel was created in a form
acceptable to date time .

10. mbz2
is reserved for future use.

The only structure version currently available is 1. The wvariables

mrds_path_info ptr and mrds path_info_structure_version are also declared in the
mrds_path info include file.

4-21 AW53-04

dsl_ dsl_

Entry: dsl_$get_population

This entry returns the current number of tuples in either a permanent or
temporary relation.

Usage

declare dsl_$get population entry () options (variable);

call dsl_$get_population (db_index, relation_identifier,
tuple_count, error_code);

where:
1. db_index (Input) (fixed bin(35))
is the integer returned from a call to dsl_$open, which refers to
the opening for which population statistics are desired.
2. relation_identifier (Input)
is the identification for the relation whose tuple count is to be
returned. If it is declared as character and starts with a letter,
then it is interpreted as a permanent relation name. If the string
does not start with a letter and it can be converted to a number,
then it will be interpreted as a temporary relation index. If the
relation identifier is declared as fixed bin (35), then it is interpreted
as a temporary relation index.
3. tuple count (Output) (fixed bin(35))
is the current tuple count for the specified relation in this opening
view.
4. error_code (Output) (fixed bin(35))
is the standard status code. It may be one of the following:
mrds_error_$invalid_db_index
if the given db_index does not refer to a model or submodel
opening of a data base in the user's process.
mrds_error_$undef_temp rel
if the temporary relation index given does not refer to a temporary
relation currently defined in this opening.
mrds_error_$unknown_relation name
if the permanent relation name given is not known in this opening
view of the data base.
Notes

This entry can be used to determine the number of tuples selected by a
selection expressionby defining a temporaryrelationusing that selectionexpression
and calling dsl_$get_population for that temporary relation.

3/84 4-22 AW53-04B

dsl_

dsl

Entry: dsl_$get relation list

This entry returns information about all the relations in the specified

opening view.

Usage

where

1.

AV

3
declare dsl_$get relation list entry (fixed bin(35), ptr,
fixed bin, ptr, fixed bin(35));

call dsl $get_relation list (db index. area ptr,
structure version,, mrds_ relatlon list ptr
error_code)

db_index (Input) (fixed bin(35))
is the integer returned from a call to dsl $open, referring to the
opening for which relation information is to be returned.

area_ptr (Input) (pointer)
is a pointer to a user-supplied freeing area in which the relation
information is to be allocated.

structure_version (Input) (fixed bin)
is the desired version of the relation information structure to be
returned.

mrds_relation_list ptr (Output) (pointer)
is a pointer to the relation information structure that has been
allocated and is described in the Notes below.

error_code (Output) (fixed bin(35))

is the standard status code. It may be one of the following:

error_table_$area_too_small
if the supplied area could not hold the relation information.

error_table $badcall
If the area_ptr was null.

error_table $unimplmented version
1f the supplied structure version is unknown.

mrds_error $invalid db_index
Tif the db index given does not refer to a data base open in

this process.

mrds_error $not freelng area
Tif the supplied area does not have the attribute "freeing".

mrds_error $version not_supported
Tif the data base referenced is not version 4.

423 AW53-04

dsl_

Notes

dsl

The relation information is returned in the following structure (see Appendix

F for the include file mrds_relation list.incl.pl1):

declare 1 mrds relation list aligned

based” (mrds relation list ptr),
version fixed bin, — -

access info version fixed bin,

num rels in view fixed bin,
submodel”_view bit (1) unal,

mbz1 bit (35) unal,

relation (0

refer (mrds relation list.num_rels in view)),
model name char (32), - - T
submodel name char (64),

system_acl char (8) varying,

mrds access char (8) varying,
effective access char (8) varying,
virtual relation bit (1) unal,

mbz2 bit (35) unal;

PN NN N

wWwwwwww

where:

version
is the version number for this structure and should be set by the
caller to mrds_relation_list_structure_version.

access info version
“is the version number of the access information being returned.
Version Y4 is for version 4 data bases without attribute level security
using Multiecs ACLs from r-w. Version 5 is for secured version 4
data bases with attribute level security using the MRDS relation
access modes of append_tuple (a) and delete_tuple (d).

num_rels_in view
is the number of relations present 1in the view provided by this
opening of the data base.

submodel view
is "1" if this opening of the data base was made through a submodel.

mbz1
is reserved for future use.

model name
is the name of this relation in the data base model. If the data
base is secured and the user is not a DBA, then this field will be
blanks.

submodel_name
is the name of this relation in the submodel view if this opening
was via a submodel. Otherwise, this is the same as the model name.

system_acl .
is the Multics ACL on the relation data from the modes r-w.

mrds access

T is the MRDS access mode for this relation. See access info version
for the values that can be returned. - -

4-24 AW53-04

dsl_ dsl

10. effective_access
is the result of applying both Multics and MRDS access modes for
this relation. This effect is returned in MRDS access values.

11. wvirtual_relation
is "1"b if the relation is defined in a submodel over more than one
relation. This capability is not yet available.

12. mbz2
is reserved for future use.

Currently, the only structure version available is 1. The variables
mrds_relation_list_num_rels_init, mrds_relation_list ptr, and
mrds_relation_list structure_version are also declared in the mrds_relation_list
include file.

3/84 425 AW53-04B

dsl_ dsl

Entry: dsl $get scope

This entry returns the scope currently set on a given relation for the
specified opening of the data base.

Usage
declare dsl_$get scope entry(fixed bin(35), char(¥),
fixed bin, fixed bin, fixed bin, fixed bin(35));

call dsl _$get scope(db_index, relation_name,
permits, prevents, scope version, error_code);

where:

1. db_index (Input) (fixed bin(35))
is the integer returned from a call to dsl $open which refers to the
opening for which scope information is desired.

2. relation name (Input) (char(¥))
is the name of the relation for which scope information is desired
in this opening.

3. permits (Output) (fixed bin)
is the sum of the scope modes, representing operations that are to
be permitted the caller for this relation in this opening. See the
table of scope mode encodings in the Notes below.

4, prevents (Output) (fixed bin)
is the sum of the scope modes representing operations that are to be
denied other users of this data base for this relation. See the
table of scope mode encodings in the Notes below.

5. scope_version (Output) (fixed bin)
if this value is less than five, then the scope mode encoding for
the scope represents the old operations of read - store - delete -
modify. Otherwise, the scope mode encoding represents the new
operations of read_attr, append tuple, delete tuple, modify attr used
for attribute level security.

6. error code (Output) (fixed bin(35))

is the standard status code. It may be one of the following:

mrds_error_$scope not set
Tif no scope is currently set on the specified relation.

mrds_error $unknown relation name

Tif the supplied relation name is not in the opening view specified
by db_index.

4-26 AWS53-0U

dsl dsl

Notes

The scope modes are encoded using the integer values given below:

Scope

Code Operation

0 null

1 read_attr or read

2 append tuple or store

4 delete_tuple or delete
8 modify_attr or modify

See Appendix F for the include file mrds_new_scope modes.inecl.pll giving
named constants for these values.

4-27 AW53-04

dsl_ dsl

Entry: dsl $get temp dir

t

This entry returns the pathname of the directory that is used for temporary

storage upon the next call to dsl $open.

Usage

declare dsl_$get temp dir entry () returns (char(168));

path = dsl_$get temp dir ();

where path (Output) (char(168)) is the absolute pathname of the directory to be
used for temporary storage on the next call to open.

»*
Notes
See dsl_$set_temp dir and the command s display mrds_temp dir and
set_mrds_temp dir.
To obtain the temporary storage directory for a particular opening, call
dsl _$get opening_temp dir.

4-28 AW53-04

dsl_ ds1

Entry: dsl_$list_openings

This entry returns information about all openings of MRDS data bases in the
user's process. This entry replaces dsl_$1ist_dbs, which is obsolete (see Section
10).

Usage

declare dsl $list _openings entry
(ptr, Tixed bin, ptr, fixed bin(35);

call dsl $list openings (area ptr, structure version,
mrds database _openings ptr, error code),

where:

1. area_ptr (Input) (pointer)
is a pointer to a user-supplied freeing area in which the opening
information will be allocated.

2. structure_version (Input) (fixed bin)
is the desired version of the structure that is to return opening
information.

3. mrds_data base_opening ptr (Output) (pointer)
is a pointer to an allocated structure containing the opening information
which is described in the Notes below.

4. error_code (Output) (fixed bin(35))

is a standard status code. I{ may be one of the following:

error_table_$area_too_small
if the supplied area could not hold the opening information.

error_table $badcall
if the area _ptr was null.

error table $un1mp1emented version
if the given atructure version is unknown.

mrds_error_$not freeing_area
Tif the supplied area does not have the attribute "freeing".

‘Notes

Note that the structure is still allocated and a 0 error code returned even
if the total number of open data bases is O.

4-29 AW53-04

dsl_

dsl

The opening information is returned in the following structure (see Appendix
F for the include file mrds_database openings.incl.pll):

declare 1 mrds_database_openings aligned

based (mrds database _openings ptr),

2 version fixed bin,

2 number_open fixed bin,

2 mbz1 bit (36) unal,

2 db (0

refer (mrds_database openings.number_open)),
3 index fixed bin (35),

path char (168),

mode char (20),

model bit (1) unal,

submodel bit (1) unal,

mbz2 bit (34) unal;

wwwww

where:

1. version
is the version number of this structure and should be set by the
caller to mrds_database openings_structure_ version.

2. number open
is the total number of openings for this process.

3. mbz1
is reserved for future use.

LN index
is the integer returned from a call to dsl $open for this particular
opening. .

5. path
is the absclute path of the model or submodel that was used in the
call to dsl_$open for this opening. The model or submodel suffix
will be present.

6. mode ’
is the mode that was used in the call to dsl_$open for this opening.
It can be retrieval, update, exclusive retrieval, or exclusive_update.

7. model
is "1", if this opening was made through the data base model and not
through a submodel.

8. submodel
is "1"b, if this opening was through a submodel and not through a
model.

9. mbz2

is reserved for future use.

Currently, the only structure version available is 1.

4-30 AW53-04

dsl_

The following variables are also declared in the

mrds_database openings
include file.

mrds_database openings ptr
mrds database_ openings_num_open_init
mrds database openings structure version

4-31 AW53-04

Entry: dsl_$modify

Tais sntry allows the usar to modify attribute values contained in the tuples of
one reiation in the data base. The modification of a key attribute is not allowed.
Tne user must 1ave read write permission to the relation. All selected tuples are
modified. -

Usage

declare dsl_$modify entry options (variable);

call dsl $modify (data base_index, selection_expression, se_index,
se_valuel, ... , se_valuen, modified_valuel, ... , modified_valuen,
code);

Wwhere:

1. data_base_index (Input) (fixed bin(35))
is the index returned by dsl 3open that designates the data base.

2. selection_expression (Input) (char(¥*))
is a character string (see "Examples of Selection Mechanisms") as defined
at the beginning of this section. The select clause can only specify
attributes from onerelation. This character string may be a constant or
a variable declared character varying or non-varying.

3. se_index (Input) (fixed bin(35))
is an integer used to refer to a compiled selection expression. It is
required only if the selection expression is "-compiled".

4. se_valuei (Input)

- is a selection expression value for each argument substitution
(designated by .V. or .X.) appearing in the <{selection_expression>,
including temporary relation (rel_index) designations. These must be
specified so as to correspond in order and gquantity with the argument
substitution specified in the <selection_expression). If the selection
expression is "-compiled", then the selection expression value is
substituted for the .X. value in the where clause that has to be
satisfied. These values are supplied in the order in which they occur in
the selection expression used in the call to dsl_3$compile. If the
specified data type does not equal the attribute data type, the value
mrds_error_binv_data_type is returned in the code.

5. modified valuei (Input)
is a modified tuple attribute value that is to replace the current such
value in the data base. There must be a one-to-one correspondence
between these values and the tuple items specified in the selection
expression. If a structure is used for modified tuple attribute values,
only one structure may be used. Only data types supported by assign_may
be used for modified tuple attribute values.

4-32 AW53-0U4C

N
™~
(oo}
(*2]

dsl dsl_

6. code (DQutput) (fixed bin(35))
i3 a standard status code. A value of Oindicates that no error occurred.
A value of mrds error $tuple not found indicates that no error occurred
and that no data satisfied the selection expression.

Notes

or shared openings, the relation must nmave modify attr permit scope set.
For attribute lavel security, the attributes specified in the select and vwhere

clauses must nave read attr access. In addition, the attributes specified in the
select clause must have modify attr access.

2/85 h-32.1 AW53-04C

This page intentionally left blank.

2/85 AW53-04C

dsl_ dsl

Entry: dsl_$open

This entry causes the specified data bases to be opened for processing in
the designated modes. For each opened data base, an index that is to be used to
specify that data base in future MRDS calls is returned. If one or more of the
data bases specified cannot be opened for any reason, none of the others are
opened.

Usage

declare dsl_g$open entry options (variable);

call dsl $open (pathl. data_base_index1. model, ... ,
pathn, data_base_indexn. moden. code);

where:

1. pathi (Input) (char(¥*))

T~ is a character string containing the absolute or relative pathname
of the data submodel (or the data base) with or without a suffix
defining the relevant portion of the data base. If the path of the
data base itself is specified, the data model is used in place of
the data submodel.

2. data_base_indexi (Output) (fixed bin(35))
is an integer that is to be used in subsequent MRDS calls to specify
the corresponding data base designated in this opening.

3. modei (Input) (fixed bin(35))
is an integer (1,2,3.0or 4) indicating the usage mode for which the
data base is to be opened.

1 specifies that this is a shared opening, requiring the setting
of concurrency control protection via scope requests by the
set_scope function. The maximum permit scope that can be
set with this opening mode is read_attr.

2 specifies that this is a shared opening, requiring the setting
of concurrency control protection via scope requests by the
set_scope function. Any scope can be set with this opening
mode.

3 specifies that this is an unshared opening in the sense that
all update operations are prevented against any relations in
this view of the data base. No scope setting is necessary
with this opening mode. This mode is the equivalent of opening
with a retrieval mode and doing a set scope all with permit
of read_attr and prevents of modify attr, append_tuple, and
delete tuple on these relations. Dther data base openers
are allowed to set read attr scope and to do retrievals in
these relations. -

4 specifies that this is an unshared opening. No scope setting
is necessary with this opening mode. No other data base
openers are allowed to set any scope or any relation in this
view of the data base. This mode is the equivalent of opening
with an update mode and doing a set_scope all with permits

4-33 AW53-04

dsl_ dsl

and prevents of read attr., modify attr., append_tuple, and
delete tuple on these relations. Only one opening with this
mode 1S allowed if the set of relations in this view overlaps
the relations in another opener's view.

4, code (Output) (fixed bin(35))
is a standard status code.

Notes

Open modes 1 and 2 require subsequent calls to the dsl_ entry set scope.
Also see Appendix F for the include file mrds_open_modes_ .ineI.pl1.

If a data model and submodel of the same name are in the same directory,
the model is found if no suffix is given.

If the data base being opened has been secured, then the view path must
refer to a submodel that resides in the "secure.submodels" directory under the
data base directory if the user is not a DBA. These must be version 5 submodels
if attribute level security is to be provided. See secure mrds db and Section
7, "Security". - -

If the data base being opened uses a version 4 concurrency control, then
adjust mrds db with the -reset option must be run against it to update it to
version 5 concurrency control before it can be opened. This changes the scope
modes from r-u, to read_attr., modify attr, append_tuple, delete tuple.

Application programs calling dsl $set scope, dsl_$set scope_all, or
dsl_$dl _scope making use of r-s-m-d encodings will not be impacted. Those programs
using the r-u encodings will have to be changed to the encodings given in this
manual.

A maximum of 128 openings of the same or different data bases is allowed.
Only 64 of these openings can be version 3 or earlier data bases.

Access requirements for all opening modes includes "r" ACL on the db model
segment and relation model segments (these segments have a ".m" suffix) for any
relations appearing in the given view, plus "rw" ACL on the data base concurrency
control segment. Unshared openings require that, for any relation appearing in
the view, the multisegment file containing the data must have "r" ACL for
exclusive retrieval or "rw" ACL for exclusive update opening mode. For attribute
level security, exclusive retrieval mode requires read attr on some attribute in
each relation in the opéning view and exclusive _update mode requires one of
append tuple on the relation, delete tuple on the relation, or modify attr on
some attribute in the relation, for each of the relations in the opening view.

See the examples for the mrds_call function open.

4-31 AW53-04

dsl

dsl_

Entry: dsl_$retrieve

This entry allows the user to retriasve selected attribute values from the data
The user must have read permission to the referencad relations. One tuple per
call 1is returned.

basa.

Usage

where

1.

2/85

declare dsl_3retrieve entry options (variable);

call dsl_jretrieve (data_base_index, selection_expression, se index,
se valuel, ... , se_valusn, valuel, ... , valuen, code);

data_base_index (Input) (fixed bin(35))

i3 the index returned by dsl _$open that designates the data base.

selection_expression {Input) (char(¥*))

is a character string (see "Formal Dafinition of the Sz2lection
Expression" in this section). This character string may be a constant or
a variable declared character varying or nonvarying. If the expression
results in the selection of identical tuples, only one copy is returned
unless the -dup option is specified. Howzaver, all tuples selected remain
available for retrieval with additional calls to dsi_$retrieve with a
{selection_expression> consisting of "-another™. They cease to be
available whenever any dsl antry is called with a
{selection_expression> consisting of an <alpha expression>. The
selection expression "-another" dces not return duplicate tuples unless
the -dup option was specified in the original <alpha_expression>. The
-dup option cannot bz used with set operations. The range clause may have
a ".V." for substitution of a temporary relation's rel index.

se_index (Input) (fixed bin(35))

is an integer used to refer to a compiled selection expression. It is
required only if the selection expression is "-compiled".

se_valuei (Input)

valuei

is a selection expression value for each argument substitution
(designated by .V. or .X.) appearing in the <selection expression>,
including temporary relation (rel index) designations. These must be
specified so as to correspond in order and quantity with the argument
substitution specified in the <se1ection_expression). If the selection
expression 1is "-compiled", then the selection expression value is
substituted for the .X. value in the where clause that has to be
satisfied. These values are supplied in the order in which they occur in
the selection expression used in the call to dsl $compile. If the
specified data type does not equal the attribute data type, the value
mrds_error_$inv_data_type is returned in the code.

(Qutput)
is aretrieved attribute value. The value may b2 a structure (only one
regardless of the number of relations) or a list of individual values, the
items of which must correspond in order and quantity with the tuple items
specified in the <selection expression>. If an entire tuple is
retrieved by specifying only the tuple value in the select clause, then a
value must be spacified for every attribute of the corresponding relation
as defined in the data submodel or in the data model, whichever is being

4-35 AW53-04C

dsl_ dsi_

used. If data conversion is required, only data types supported by
assign_ may be used.

h. code (Dutput) (fixed bin(35))
is a standard status code. A value of 0 indicates that no error occurred
and that one occurrence of the specified data has been successfully
retrieved. A value of mrds_error $tuple not found indicates that no
error occurred and that no data satisfied the selection expression.

=

Notes

For shared openings, the refzerenced relations must have read_attr permit scope
set.

For attribute l2vel security, attributes referenced in the select and where
clauses aust have read attr access.

2/85 4-36 AW53-04C

dsl_ dsl

Entry: dsl_$set_scope

This entry defines the user's current scope of access to the data base for
shared modes of openings. Before a user can access the data base in shared
mode, a scope of access must be declared., consisting of a set of scope tuples.
If this scope does not confliect with any other currently existing scope (of
other processes), it is accepted. Otherwise, the user's request is placed in a
queue and is processed as soon as the requested resources become available. If
the specified wait time is exceeded before the request can be processed, an
error code is returned. Once the scope has been accepted, only operations permitted
by the scope may be performed. As time progresses in the current process,
individual scope tuples may be removed as they are no longer needed by invoking
dsl $dl1 scope. However, new tuples may not be added to the current scope until
all current scope has been deleted. This rule avoids potential deadlock problems
within the data base manager.

Usage

declare dsl_$set scope entry options (variable);

call dsl_$set_scope (db_index, rel namel, permit opsl. prevent opsl. ...,
rel namen, permit_opsn, prevent opsn, wait_sec, code);

where:
1. db_index (Input) (fixed bin (35))
is the index returned by dsl $open that designates the data base.
2. rel namei (Input) (char(¥))
- Is the name of the relation to be included in the scope.
3. permit_opsi (Input) (fixed bin)
is an integer consisting of the scope code which indicates the operations
the user may perform on the relation.
4., prevent opsi (Input) (fixed bin)
is an integer consisting of the scope code which indicates the operations
that other users may not perform on the relation.
5. wait_sec (Input) (fixed bin (35))
specifies the maximum number of seconds to wait for the scope request
to be honored (there is no anticipated maximum). This argument is
optional and if not provided by the user, the default is 30 seconds.
6. code (Output) (fixed bin (35))

is a standard status code. The code is 0 if set_ scope is successful
or is mrds_error_$db_busy if the data base is busy.

4-37 AW53-04

dsl_

Note

dsl

Codes for operations to be prevented or permitted are:

Scope
Code

0
1
2
mn
8

Operation

null

read attr or read

append tuple or store
delete tuple or delete
modify attr or modify

It is not necessary to set scope on temporary relations or on relations in
a data base which was opened with an exclusive opening mode. (See Appendix F
for the include file mrds_new_scope_modes.incl.p11.)

Access requirements on the relation(s) for which scope is being set in
terms of Multics ACLs and MRDS access modes are as follows:

REQUESTED
PERMIT

a

d

Example

RELATION
MSF ACL

rw

rw

rw

MRDS ACCESS

a
d

m on some attr in
the relation

r on some attr in
the relation

n

The following example shows the appropriate "call" to define scope on relation
"employee" such that the user's process has retrieve access to the relation
while all other processes are prevented from stores, modifies, and deletes (as
might be necessary in doing a totalling operation within a relation). If the
request cannot be honored within 60 seconds, a mrds_error_$db_busy code is issued

to the calling program.

call dsl_$set_scope (db_index, "employee", 1, 14, 60, code);

Also see the mrds_call set scope function examples.

4-38 AW53-04

dsl__ dsl

Entry: dsl_$set_scope_all

This entry provides a means of setting a scope on all relations defined in
the user's view without the need to name each relation. Identical permit operations
and prevent operations are applied to all the relations in the user's view.

Usage

declare dsl_$set scope_all entry options (variable);

call dsl_$set_scope_all (db_index, permit ops, prevent_ops, wait_sec, code);

where:
1. db_index {Input) {(fixed bin(35))
is the index returned by dsl $open that designates the data base.
2. permit_ops (Input) (fixed bin)
is the scope code which indicates the operations the user may perform
on the relation.
3. prevent_ops (Input) (fixed bin)
is the scope code which indicates the operations that other users
may not perform on the relation.
b, wait_sec (Input) (fixed bin(35))
specifies the maximum number of seconds to wait for the scope request
to be honored (there is no anticipated maximum). This argument is
optional and, if not provided by the user. the default is 30 seconds.
5. code (Output) (fixed bin(35))
is a standard status code.
Note

Scope codes for operations to be prevented or permitted are:

Scope

Code Operation
0 null
1 read attr or read
2 append tuple or store
y delete tuple or delete
8 modify attr or modify

See the mrds_call set_scope_all function examples.

See dsl_$set_scope for access requirements.

4-39 AW53-04

dsl_ dsl

Entry: dsl_$set temp dir

This entry sets the directory that is used for temporary storage on the
next call to dsl $open. This temporarydirectory has a default of processdirectory.
Therefore, this entry need never be called unless a record quota overflow occurs
on the process directory, as might happen in opening a data base with a large
number of relations, or during a large retrieve or define_temp_rel operation.

Usage

declare dsl_$set temp_dir entry (char(*), fixed bin(35));

call dsl_$set_temp dir (path, code);

where:

1. path (Input) (char(¥))
is the relative or absolute pathname of the directory to be used for
temporary storage on the next call to open.

2. code (Output) (fixed bin(35))
is the standard status code and is 0 unless an error occurs.

Notes

See dsl $set temp dir, dsl $get temp dir, dsl _$get opening temp dir. and the
commands display Trds_Temp_dir "and set_mrds_temp_dir.

See "Notes" under set mrds temp dir command for proper use of this interface.

4.40 AW53-04

dsl_ dsl_

Entry: dsl $store

This entry allows the user to add a tuple to a designated relation in the
data base. The placement of the new tuple within the relation is determined by
MRDS, based upon data model/data submodel descriptions of the data base and the
value of the primary key in the new tuple. The primary key of the new tuple
must be unique within the designated relation. The caller must have read-write
permission to the relation. If storing through a submodel view, all attributes
of the relation must be defined in the submodel.

Usage

declare dsl $store entry options (variable);
call dsl_$store (data_base_index, relation_expression,
new_valuel, ... , new_valuen, code);
where:

1. data_base_index (Input) (fixed bin(35))
is the index returned by dsl_$open that designates the data base.

2. relation_expression (Input) (char(¥))
indicates the relation to which the tuple is to be added, as it
appears in the user's view of the data base (the data model or the

data submodel). It may be the name of the relation or it may be
"~another".
3. new_valuei (Input)

is the new tuple value to be added to the relation. The entire
tuple, as defined in the user's view, may be specified with one
structure or a list of variables, the items of which must correspond
in order and quantity with the attributes defined in the user's
view.

4, code (Output) (fixed bin(35))

is a standard status code. The value is 0 if the store was successful.
If a duplicate of the primary key already exists in the data base,
the code value mrds_error_$dup_store is returned and the tuple is
not stored. (The name mrds_error_$duplicate key may also be used.)
If a -check proc option exists on a domain of one of the attributes
in the relation for which a tuple is being added and the check
procedure returns false, then the error code, mrds_error_$dom integ,
is returned.

Notes

If the relation expression is the name of a relation, the new tuple is
added to the named relation. If the relation_expression is "-another", the new
tuple is added to the relation specified in the most recent call to the dsl_$store
in which the relation expression argument consisted of a relation name. Any
call to a dsl entry requiring a <selection_expression> causes the previously
specified relation name to become unavailable for subsequent reference using

4-41 AW53-0U4

dsl_ dsl

"-another™, until it 1is again established via a call to dsl_$store with a
relation_expression consisting of the relation name.

The use of "-another" provides an efficient means to store several tuples
into a single relation via consecutive dsl_$store calls.

For shared openings, the relation must have append tuple permit scope set.

For attribute level security, the relation must have append tuple access
and the key attributes must have read attr access.

EXAMPLE -- OPENING, ACCESSING, AND CLOSING A DATA BASE

Assume the same sample data base used for the "Examples of Selection Mechanisms"
(previously shown in this section). Also assume the following declarations have
been made within the calling program.

del 1 supplier,
2 supplier no fixed bin,
2 supplier name char(32),
2 location char(128);

del 1 part,

2 part no fixed bin,

2 part name char(16),

2 color char(8),

2 weight fixed bin,

2 quant_on_hand fixed bin;

del 1 project,
2 proj no fixed bin,
2 proj name char(32),
2 manager _no fixed bin;

del 1 supply,

supplier no fixed bin,
part no Tixed bin,
proj_no fixed bin,
ship date char(6),
quantity fixed bin;

PPN N

1. Open the data base for (nonexclusive) update.
call dsl_$open ("supply data_submodel", db_index, 2, code);
2. Perform the following wupdate, assuming the data base is opened for
(nonexclusive) update.
Add DELTA to the quantity on hand for the part with the part number 3.

call dsl_$set_scope (db_index,
"part", 15, 1, code);

call dsl_$retrieve (db_index.
"-range (p part)

4-42 AW53-04

dsl_ dsl

-select p.quant_on_hand
-where p.part_no = 3",
quant_on_hand. code);

quant_on_hand = quant_on_hand + DELTA;

call dsl $modify (db_index.
"-current p.quant_on_hand",
quant_on_hand, code);

call dsl_$dl_scope(db_index,
"part", 15, 1, code);

3. Perform the following deletion, assuming the data base is opened for exclusive
update.

Delete all tuples of the supply relation involving supplier Jones and project
Alpha in combination with one another.

call dsl $delete (db index,
"_range {(z supply) (s supplier) (p project)
-select z
-where (((s.supplier name = """Jones"")
& (s.supplier_name = z.supplier name))
& ((p.proj name = ""Alpha"") -
& (z.proj nmame = p.proj name)))",
code); - -

4, Perform the following store operation.
Add the tuple contained in NEW PART to the par

call dsl_$store (db_index, "part", NEW_PART, code) ;

(<

Tatinn
reiatichn.

EXAMPLE -~ MODIFICATION OF KEY ATTRIBUTES

When it is desirable to be able to use the equivalent c¢f two different
selection expressions with independent "-another" processing, two or more openings
of the same data base may be necessary in order to maintain position "currency"
within the data base for each selection expression.

An example of a multiple data base opening application is the modification
of a key attribute, which must be done by a program such as follows (dsl_$modify
does not work on key attributes). Note the use of the entire key in the dsl $delete
where clause and the use of the second opening index for the delete and store,
so as not to lose retrieve selection expression currency for "-another" calls,

Not all declarations are shown. The modify proc is a procedure that carries
out the modification of the attribute value before it is stored; error_proc 1is a
general error routine.

delete select expr = "-range (i invy) -select i

-where ((((i.Senum .V.) & (i.secode = .V.)) &
(i.part = .V.)) & (i.divn = .V.))";

443 AW53-04

none = 0;
read = 1

update only
read update
update = 2;
db_path = ">udd>Demo>dbmt>db7>jg>CS_III.db";

14
15;

call dsl_$open (db_path, dbi_1, update, db_path,
dbi 2, update, code);
if code ™= 0 then call error_proc();

call dsl $set scope all (dbi_1, read, none, code);
if code ™= 0 then call error_proc;

call dsl $set scope all (dbi 2. read update, update only, code);
if code ™= 0 Then call error_proc; -

first time = "1"b;
do while (code = 0);

if first time then do;
retrieve select expr =
"“range (i invy) -select i";
first time = "O"b;
end; -
else retrieve_select expr = "-another";

call dsl $retrieve (dbi_1, retrieve_select expr, invy, code);

if code = 0 then
call dsl_$delete (dbi_2. delete_select expr,
invy.senum, invy.secode, invy.part. invy.divn, code);

invy.senum = modify proc (invy.senum);

if code = 0 then
call dsl_$store (dbi_2, "invy", invy, code);
end;
if éode "z mrds_error_$tuple not_ found then
call error_proc(7;

y-ny

dsl

AW53-04

dsl_

/% EREREREFEERXZFAXRAXRAAXXARERXRXXNRXRXAREXRRARRSDR

by: create mrds_dm include (2.0)

*

® BEGIN CS_III.inel.pli

* created: 02/01/80

*

*

* Data model >udd>STL>mrds dev>db>CS III.db
* created: 02/01/80

* version: Y

* by: JGray.Multics.a
*

*

t22 2222232222222 22222222 222222222222 2222t Ls st BN IV

del 1 invy aligned,

AVE\VE\CR\VH V)

/% END of C3_III.incl.pl1

1439.2 mst Fri

T438.0 mst” Fri

W Ok M ok %k e WM ow K

*»

senum character (8) nonvarying unaligned,
secode character (1) nonvarying unaligned.
part character (3) nonvarying unaligned.
divn character (3) nonvarying unaligned,
iquant real fixed decimal (5,0) aligned /¥ 9-bit */;

/*
/*
/*
/%

dsl

Key ¥/
Key */
Key ¥/
Key ¥/

ERRER RN R R E R R AR R X ERRRR R RRERRREXRRRRRR /

4-145

AW53-04

3*

SECTION 5

BUILT-IN AND INSTALLATION-DEFINED FUNCTIONS

BUILT-IN FUNCTIONS

The following built-in functions are available in MRDS. Each of the functions
is described in detail following the list.

abs mod
after reverse
before round
ceil search
concat substr
floor verify
index

Built-in functions within a selection expression must be enclosed with square
brackets []. For example:

... [substr (E.name 1 1)1 ...

The examples below use the data base described by the model:

domain:
x float bin(27),
y float dec(27),
c bit(3);

relation:
r (x¥ y ¢);

that contains the following tuple:
<5.25 5.25 "101"b>
In addition,; the following PL/I structure is used as the program fragments:
del 01 r
02 x fleoat bin(27),

02 y float dec(27),
02 ¢ bit(3);

Function: abs

This is an arithmetic scalar function whose reference has the form:

abs (X)

The result of this function is the absolute value of X, where X must be a
numeric data item.

5-1 AW53-04

X can only be real and the result value is a float decimal (59).

Function: after

This is a string scalar function whose reference has the form:

after (S1 S2)

The result is that portion of S1 that occurs after the leftmost occurrence of S2
within S1. If S2 is a null string, the result is S1. If S2 does not occur
within S1, the result is a null string. For example:

after ("abede" "be") = "de"
after ("abcde" "") = "abecde"

after ("abcde" "fm) = nn
after ("10101"b "10"b) = "101"b
Notes:

When comparing strings, PL/I pads the shorter string on the right. For
example:

r.c = "101"b;
b1 = (after (r.c, "10"b) = "10"b);

results in b1 having a value of "1"b.

MRDS, however, never pads. That is,

mrc retrieve 1 1 "-range (r rel)
-select r.c

-where [after (r.c, ""10""b)] = ""10""b"

does not retrieve any tuples.

Function: before

This is a string scalar function whose reference has the form:
before (81 S2)

The result is that portion of S1 that occurs before the leftmost occurrence of
S2 within S1. If S2 is a null string, the result is a null string. If S2 does
not lie within S1, then the result is S1. For example:

before ("abcde" "be") = "a"
before ("abcde™ "") = "n
before ("abcde™ "f") = "abcde"
before ("10101"b "10"b) = ""p

The before function has an anomaly similar to the one described under "Notes"
for the after function.

5-2 AW53-04

Function: ceil

This is an arithmetic scalar function whose reference has the form:

ceil (X)

where X must be real. The result is the smallest integer (I) such that:

I >= X
For example:
ceil (20.5) = 21

ceil (~14.6) = -14
ceil (12) = 12

Function: concat

This is a string scalar function whose reference has the form:
concat (81 S$2)
The result is the concatenation of S1 and S2. For example:

concat ("abe" "de") = "abede"
concat ("101"b "01"b) = "10101"b

Function: floor

e e mee memfhloeakd oo e T man
[1io 1o dif ar .Ll.ohlllebJ.U >Cdidr

unction whose reference

7
o
5’
o
C
']
=

1as
floor (X)
where X is real. The result is the largest integer (I) such that:
I<K=X
For example:
floor (20.5) = 20

floor (-14.6) = =15
floor (12) = 12

AW53-04

Function: index

This is a string scalar function whose reference has the form:
index (S1 S2)

The result is an integer that is the position of the beginning of the leftmost
occurrence of S2 within S1. If S2 is not in S1 then the result is 0. If 382 is
a null string, the result is 0. For example:

index ("abcde" "be") = 2
index ("abecde™ "f") = 0
index ("abcde™ "") = 0

Function: mod

This is an arithmetic scalar function whose reference has the form:
mod (X Y)
where X and Y are real. The result is X modulus Y, such that:

if Y "= 0 then mod (X ¥Y) = X - Y ¥ floor (X /7 Y)
if Y = 0 then mod (X ¥) = X

For example:
mod (42 5) = 2

mod (129.2867 25) = 4.2867
mod (10 0) = 10

Function: reverse

This is a string scalar function whose reference has the form:
reverse (8)
The result is a string which is the reverse of the value of S. For example:
reverse ("abcde") = "edcba"
reverse ("a") = "a"

reverse ("")} = ""
reverse ("10110"b) = "01101"b

5-4 AW53-04

Function: round

This is an arithmetic scalar function whose reference has the form:
round (X Q)

The result is a rounding of the value of X. When a value is rounded to n
digits, the digits after the nth digit are dropped and the nth digit is increased
by 1 if the (n+1)th digit is 5 or greater. If X is float, then Q must be
positive and the mantissa is rounded to Q digits. If X is fixed, it is rounded
to a value that has Q fractional digits. For complex values, the function is
defined by:

round (X + Yi Q) = round (X Q) + round (Y Q)i
For example:

round (183.629e6 4) = 183.6eb
round (183.629 2) = 183.63

round (183.629 -1) = 180

round (21.56 + 6.21i 0) = 22 + 6i

Notes:

If used in PL/I, a binary variable is rounded based on a bit and a decimal
variable is rounded based on a digit. For example:

r.x = 5.25

round (r.x, 2) 6.0

r.y = 5.25
round (r.y, 2) = 5.3

MRDS always converts the value to be rounded to float decimal before rounding
so that:

mrc retrieve 1 1 "-range (r rel)
-select r.x
-where [round (r.x, 2)] = 67

does not retrieve any tuples.

Function: search

This is a character string scalar function whose reference has the form:
search (C1 C2)

The result is an integer value that is the position in C1 of the leftmost
occurrence of any character contained in C2. 1If C1 does not contain any character
in C2, the result is 0. For example:

search ("abede" "b") = 2
search ("abede"™ "") = 0

search ("abecde™ "f") = 0
search ("abcde" "be") = 2

5-5 AW53-04

Function: substr

This is a string scalar function whose reference has the form:
substr (S I J)
—or-
substr (S I)

The result is that portion of S that begins with the Ith character and has
length J (if J is present), or is that portion of S that begins with the Ith
character and continues to the end of S (if J is not present). For example:

substr ("abecde" 3 2) "edn
substr ("abede™ 3 0) = "¢
substr ("abcde" 3) = "cde"
substr (™10101"b 3) = "101"b

Function: verify

This is a character string scalar function whose reference has the form:
verify (C1 C2)
The result is an integer value that is the position of the first character of C1

that does not occur in C2. When C1 contains only characters that are in C2, the
result is 0., For example:

verify ("xyz" "abe") = 1
verify ("xyz" "xyz") = 0
verify ("abcde® "cba"™) = i

WRITING NONSTANDARD FUNCTIONS

i Nonstandard (or installation-defined) functions mavy be written in PL/I,

I COBOL, or FORTRAN, It is assumed that these functions are written by experienced
programmers. (Refer to the "dsl_$declare" subroutine entry in Section U4 for a
description of how to declare user-defined functions.)

Scalar functions are passed a complete standard Multics argument 1ist containing
argument pointers and descriptor pointers for both the input arguments and the
return argument. The call is equivalent to:

return_val = fn_name$fn_name (in_argl, ... , in_argn);

Two restrictions on arguments to nonstandard functions are:

1. No * extents are permitted.
2. Data types are restricted to those data types permitted in a MRDS data

base. The use of pointers, entries, labels, structures, offsets, and
arrays is not allowed.

3/84 5-6 AW53-04B

Example:
user_substr: proc (param) returns (char(30));
del param char(30);
return (substr (param, 1, 6));

end user_substr;

57 AW53-04

SECTION 6

SUBSYSTEM WRITERS' GUIDE

The MRDS Subsystem Writers' Guide is a reference of interest to writers of
sophisticated subsystems. It documents user-accessible modules that allow the
user to bypass standard MRDS facilities. The interfaces are a level deeper into
the system than those required by the majority of users.

The MRDS Subsystem Writers' Guide provides the advanced Multics user a
selection of some of the internal interfaces used to construct the standard MRDS
user interface.

An example of a specialized subsystem that requires reference to the MRDS
Subsystem Writers' Guide for its construction is a subsystem intended to provide
end-user access to a MRDS data base.

The subroutines contained in this section are: mmi and msmi_.

6-1 AW53-04

mmi_ mmi

mmi

Name

This subroutine primarily provides a means of retrieving information about
a data base model (Mrds_Model Interface). There is also an entry to create a
data base in the same manner as the create mrds db command. This interface
replaces dmd_ which is obsolete (see Section 10). See the msmi_ subroutine
interface for submodel information. B

Entry: mmi_$close_model

This entry closes a given opening of the data base model.

Usage

declare mmi_$close model entry (char(¥), fixed bin(35));

call mmi_$close model (opening name, error_code);

where:

1. opening name (Input) (char(¥))
is the name given in the call tc mmi_$open model for the opening of
the model that is to be closed.

2. error_code (Output) (fixed bin(35))

is a standard status code. If the name given does not refer to a
current model opening, the code mrds_error $open name_not known will
be returned.

Entry: mmi_$create_ db

This entry provides a go/no-go subroutine interface to create mrds_db.

Usage

declare mmi_$create_db entry options (variable);

call mmi_ $create db ("source path", {"db path",} {"-1list",} {"-secure",}
{"-temp_dir"™, "temp_dir_path",} {"-force"l code);

where the arguments are the same character string arguments as given at command
level to the create mrds db command except that code must be declared fixed bin{35).
The same option and features are available. However, the error code of the
first error encountered is returned since it is a go/no-go interface.

6-2 AW53-04

mmi mmi

Notes

Since create mrds db was written for command level, some of its error codes
do not provide much detail. Therefore, a listing should be requested to provide
full information.

If the -temp dir {path} is given, path should be a separate character string
argument from "-temp dir".

If character variables rather than constants are used in the call to
mmi_$create db, then trailing blanks should be suppressed (e.g., with the PL/I
built-in "rtrim", described in the PL/I Language Specification).

Entry: mmi_ $get authorization

This entry returns the user class of the caller for a given data base.

Usage
declare mmi $get authorization entry (char(¥), ptr, fixed bin, ptr,
fixed bin(3%));

call mmi_$get authorization (database path, area ptr, structure_version,
mrds_authorization ptr, error code);

where:
1. database_path (Input) (char(¥))
is the relative or absolute pathname of the data base, with or without
the .db suffix. This path must refer to a version 4 data base.
2. area ptr (Input) (pointer)
is a pointer to a freeing area supplied by the caller in which the
mrds_authorization structure is to be allocated.
3. structure version (Input) (fixed bin)
is the desired structure version the user wishes to have returned.
4. mrds_authorization ptr {Output) {(pointer)
is a pointer to the allocated structure. This structure is described
in the Notes below.
5. error_code (Output) (fixed bin(35))

is a standard status code. It may be one of the following:
error_table $area too small
if the supplied area could not contain the mrds_authorization
structure.
error_table_ $badcall
if the area_ptr was null.

6-3 AW53-04

mmi mmi

mrds_error_g$no_data base
if the given path does not refer to a MRDS data base.

mrds_error_$not_freeing area
Tif the supplied area does not have the attribute "freeing".

error_table $unimplemented version
If the given structure version is unknown.

mrds_error_$version not supported
Tif the data base path does not refer to a version 4 MRDS data
base.

Notes

The user class information for the specified data base is returned in the
following structure (see Appendix F for the include file
mrds_authorization.inel.pl1):

decl 1 mrds authorization aligned
based (mrds_authorization ptr),

2 version fixed bin,
2 administrator bit(1) unal,
2 normal _user bit(1) unal,
2 mbz bit(34) unal;
where:
1. version
is the version number of this structure, which should be set by
calling mrds_authorization structure version.
2. administrator
is "1"b if the caller is a DBA.
3. normal user
is "1" if the caller is a non-DBA. Note that a DBA is always also a
normal user.
4, mbz

is reserved for future use.
Currently, the only available structure version is 1.
The following variables

mrds_authorization_ptr
mrds_authorization structure_version

are also declared by the mrds_authorization include file.

A DBA 1is currently defined as the holder of "sma" access on the data base
directory.

6-4 AW53-04

mmi mmi

Entry: mmi_$get model attributes

This entry returns attribute information for a particular relation in the
data base model.

Usage
declare mmi_$get model attributes entry (char(¥*), char(¥), ptr, fixed bin,
ptr, fixed bin(35));

call mmi_$get model attributes (opening name, relation name, area ptr,
structure ver51on, mrds_db_model_ rel attrs ptr, error_code);

where:

1. opening name (Input) (char(¥))
is the name used in the call to mmi_$open model.

2. relation_name (Input) (char(¥))
is the name of the relation for which the attribute information is
desired.

3. area ptr (Input) (pointer)
is a pointer to a user-supplied freeing area in which the attribute
information will be allocated.

4. structure version (Input) (fixed bin)
is the desired version of the attribute information structure to be
allocated.

5. mrds_db _model rel attrs ptr (Output) (pointer)
is a pointer to the allocated attribute information structure described
in the Notes below.

6. error_code (Output) (fixed bin(35))

is the standard status code. It may be one of the following:

error_table $area_too_small
if the supplied area could not hold the attribute information
structure.

error_table_ $badcall
if the area ptr was null.

error table q;uﬁ;fﬁp;éméuu&u version .
if the structure version given was unknown.

mrds_error_$no_model access
if the user does not have "r" access to the relation model
segment for the given relation.

mrds_error_$no_model rel
Tif the relation name given is not in the model definition.

mrds_error_$not_freeing area
Tif the supplied area does not have the attribute "freeing".

6-5 AW53-0L

mmi mmi

mrds_error_$open name not known
"if the name given does not refer to a current model opening.

Notes

The attribute information is returned in the following structure (see Appendix F
for the include file mrds_db model rel attrs.incl.pl1):

dcl 1 mrds db model rel attrs aligned
based (mrds_db model rel attrs ptr),
version fixed bin,

attribute count fixed bin,

mbz1 bit(36) unal,

attribute (0

refer (mrds_db model rel attrs. attrlbute _count)),
name char(327,

domain char(32),

user_data type bit(36),

indexed bit (1) unal,

mbz2 bit(35) unal;

[ASICR ARV}

wWwwww

where:

1. version
is the version number of this structure, which should be set by
calling mrds_db model rel attrs_structure version.

2. attribute count
is the number of attributes in this relation.

3. mbz1
is reserved for future use.

4. name
is the name of this attribute.

5. domain_name
is the name of the underlying domain for this attribute.

6. user data type
- is a standard Multics descriptor for the user's view of the data in
this domain. It will differ from the data base data type if the
-decode_dcl option was used for this domain.

7. indexed

is "1"b if the attribute is the total key, a key head, or secondary
index in the relation.

8. mbz2
is reserved for future use.

Currently the only structure version available is 1.

The variables mrds db model attrs ptr, mrds_db model rel attrs count_init,
and mrds_db_model rel attrs structure version ‘are also declared in the
mrds_db mocel rel attrs include file.

6-6 AW53-04

mmi mmi

If the data base is secured, this interface is only usable by a DBA. 1If
the data base is not secured, the user must have "r" access to the model segment
for the relation involved.

Entry: mmi_$get model info

This entry returns information about the data base model creation.

Usage
declare mmi_ $get model info entry (char(¥), ptr, fixed bin, ptr,
fixed bin(35));

call mmi_$get model info (opening name, area ptr, structure_version,
mrds_db_model info ptr, error_code);

where:

1. opening name (Input) (char(¥))
is the name used in the call to mmi $open_model.

2. area_ptr (Input) {(pointer)
is a pointer to a user-supplied freeing area in which the model
information will be allocated.

3. structure version (Input) (fixed bin)
is the desired structure version of the model information.

4. mrds_db _model info_ptr (Output) (pointer)
the pointer to the allocated model information structure as described
in the Notes below.

5. error_code (Output) (fixed bin(35))

is the standard status code. It may be one of the following:

error_table $area_too_small
if the area could not hold the model information structure.

error_table $badcall
if the area ptr was null.

error table $unimplemented version
if the supplied structure version is unknown.

mrds_error_$no_model access
if the user does not have "r" access to the db model segment.

mrds_error_$not_freeing_ area
if the supplied area does not have the attribute "freeing".

mrds_error_$open _name_not_known
if the opening name does not refer to a current model opening.

6-7 AW53-04

mmi_ mmi_

Notes

The model information is returned in the following structure (see Appendix F
for the include file mrds_db_model_info.inel.pli):
del 1 mrds_db_model_info aligned,
2 version fixed bin,
2 model version fixed bin,
2 db type fixed bin,
2 dmfile attributes,
3 protected bit(1) unal,
3 rollback bit(1) unal,
3 concurrency bit(1) unal,
3 mbz bit(33) unal,
2 creator_id char(32),
2 creation_time fixed bin(71);

where:

1. version

is the version number of this structure, which should be set by
calling mrds_db_model_info_structure_version.

2. model_version
is the data base version. The latest version is 4.

3. db_type
indicates the type of data base. A value equal to
mrds_db_model_info_vfile_type indicates a vfile type data base while
a value equal to mrds_db_model_info_dmfile_type indicates a dmfile
type data base. The variables mrds_db_model_info_vfile_ type and
mrds_db_model info_dmfile_type are declared in the mrds db_ model info
include file.”

y, protected
a value of "1"b indicates that a transaction must be in progress to
reference the data in the data base; a value of "O"b indicates that
transactions are not needed. This field will always have a value of
"0"b if the data base is a vfile type data base.

5. rollback
a value of "1"b indicates that a before journal will be used to
journalize transaction activity; a value of "O"b indicates that a
pefore journal will not be used. This field will always have a
value of "0"b if the value of the protected element is also "0"b.

6. concurrency
a value of "1"b indicates that locking will be done at the control
interval level; a value of "O"b indicates that locking will not be
done at the control interval level. This field will always have a
value of "O"b if the value of the protected element is also "O0"b.

7. mbz
these bits must be zero (for future use).

8. creator_id

is in the form Person_id.Project_id.tag as returned from get_group_id_
for the creator of the data base.

3/84 6-8 AW53-04B

mmi_ mmi

9. creation_time
is the time the data base was created in a form acceptable to the
date_time_ subroutine.

The latest version of the structure is version 2. Programs using the version
1 structure will continue to execute correctly.

The variables.mrds_db_model_info_ptr and mrds_model_info_structure_version
are also declared in the mrds_db_model_info include file.

If the data base is secured, this interface is only usable by a DBA. If
the data base is not secured, the user must have "r" access to the db_model
segment under the data base directory.

Entry: mmi_$get_model_relations

This entry returns information about all the relations in the given model
opening.

3/84 6-8.1 AW53-04B

mmi_

mmi

Usage

declare mmi_$get model relations entry (char(¥), ptr, fixed bin, ptr,
fixed bin(3%));

call mmi_$get_model relations (opening name, area ptr, structure version,
mrds _db model relatlons _ptr, error_code);

where:
1. opening name (Input) (char(¥))
is the name used in the call to mmi_$open_model.
2. area_ptr (Input) (pointer)
is a pointer to a user-supplied freeing area in which the relation
information will be allocated.
3. structure version (Input) (fixed bin)
is the desired structure version of the relation information.
y, mrds db_model relations_ptr (Output) (pointer)

is the pointer to the allocated structure of relation information in
the form described in Notes below.

error_code (Output) (fixed bin(35))
is the standard status code. It may be one of the following:

error_table $area_too_small
if the area could not hold the relation information.

error table $badecall
if the area ptr was null.

error table $unimplemented version
if the given structure version is unknown.

mrds_error_$no model_ access
if the user does not have "r" access to the db_model segment.

mrds_error_ $not freeing area
Tif the supplied area does not have the attribute "freeing".

mrds_error_$open name_not_known
Tif the openlng name does not refer to a current model opening.

Notes

The relation information is returned in the following structure (see Appendix

F for the include file mrds_db_model relations.incl.pli):

dcl 1 mrds_db model relations aligned

based (mrds db model relations ptr),

version, = - -

relation count fixed bin,

mbz1 bit(36) unal,

relation (O

refer (mrds_db model relations.relation_count)),

NN

6-9 AW53-04

mmi mmi

3 name char(32),
3 mbz2 bit(36) unal;

where:
1. version
is the version number of this structure, which should be set by

calling mrds_db_model relation_structure_version.

2. relation_count
is the number of relations defined in the model.

3. mbzi

is reserved for future use.
4. name

is the name of this relation.
5. mbz2

is reserved for future use.
Currently, the only structure version available is 1.
The variables

mrds_db_model relation_ptr
mrds_db_model relation_count_init
mrds_db model relation_structure version

are also declared in the mrds _db_model relations include file.

If the data base is secured, this interface is usable only by a DBA. If
the data base is not secured, the user must have "r" access to the db_model
segment under the data base directory.

6-10 AW53-04

mmi mmi

Entry: mmi_ $get secured_state

This ehtry returns the secured state of the given data base.

Usage

declare mmi_$get secured_state entry (char(¥*), ptr, fixed bin, ptr,
fixed bin(35));

call mmi_$get secured state (database path, area ptr, structure_version,
database state ptr, error_code);

where:

1. database path (Input) {(char(¥*))
is the relative or absolute pathname of the data base whose secured
state 1is desired. It must refer to a version 4 data base. The
suffix need not be present.

2. area ptr (Input) (pointer)
is a pointer to a user-supplied freeing area in which the data base
state information will be allocated.

3. structure version (Input) (fixed bin)
is the desired version of the structure containing data base state
information.

4. database state ptr (Output) (pointer)
the pointer to the allocated data base state information as contained
in the structure described in the Notes below.

5. error_code (Output) (fixed bin(35))
is the standard status code. It may be one of the following:

error_table_$area_too_small
if the supplied area could not hold the data base state information.

error table $badcall
if the area _ptr was null.

error_table_$insufficient_access
if the user has no access to both the data base directory and
the db model segment.

error table_$unimplemented version
if the supplied structure version is unknown.

mrds_error_$no_data base
Tif the given path does not refer to a MRDS data base.

mrds_error_$no model access
Tif the user does not have "r" access to the data base db_model
segment.

mrds_error_$not_freeing area
if the supplied area does not have the attribute "freeing".

6-11 AW53-04

mmi mmi

mrds_error_$version not supported

if the path given is to a data base whose version is less than
y,

Notes

The data base state information is returned in the following structure (see
Appendix F for the include file mrds_database state.incl.pl?):

del 1 database_ state aligned
based (database state ptr),
2 version fixed bin,
2 unsecured bit(1) unal,
2 secured bit(1) unal,
2 mbz bit(34) unal;

where:

1. version

is the version number of this structure, which should be set by
calling database_state structure_version.

2. unsecured
is "1"b if the data base is not currently secured.

3. secured
is "1"b if the data base is currently secured.

4, mbz
is reserved for future use.

Currently, the only structure version available is one.

The user must have at least "r" access to the db _model segment under the
data base directory.

Entry: mmi_$open model

This entry opens the data base model for retrieving information about relations,
attributes, and creation of the model. There may be multiple openings of the
same data base model or different data base models.

Usage

declare mmi_$open_model entry (char(¥*), char(¥*), fixed bin{(35));

call mmi_$open model (database path, opening name, error_code);

6-12 AW53-04

where:
1. database path (Input) (char(¥))
is the relative or absolute pathname of the data base;, whose datsa
model is to be opened. Version 4 data bases need not have the .db
suffix supplied.
2. opening name (Input) (char(¥))
a user-supplied name, to be used in other mmi_calls referencing
this opening when obtaining model information.
3. error_code (Cutput) (fixed bin(35))
is the standard status code. It may be one of the following:
error table $insufficient access
if the data base has heen secured and the user is not a DBA.
mrds _error_ $no database
if no data base exists at the given pathname.
mrds error $no model access
if the user does not have "r" access to the data base model
segment.
mrds error $open name already known
if the opening name supplied was not unique, within PL/I comparison
rules, compared to other opening names already used in the user's
process.
mrds error $too many open names
if the combined lengths and number of opening names used in the
user's process exceeded the storage capability of the open name
manager.
Notes

The opening name may be any number of ASCII characters. Current capability
is for more than 1000 opening names of reasonable length for version & models,
but only 64 for models of version 3. Opening names must be unique to PL/I
comparison rules within the user's process. (The entry unique chars , described
in MPM Subroutines, can be used to generate unique names.) N h

If the data base is secured, this interface is only usable by a DBA. If
the data base is not secured, the user must have at least "r" access to the
db_model segment under the data base directory.

6-13 AW53-04

mm i mmi

Entry: mmi_3quiesce db

Tnis entry allows the DBA to quiesce a given data base for such purposes as data
base backup or other exclusive activities that require a consistent and non-active
data base. The data base can be returned to a non-guiescent state by use of the
mmi_Punquiesce db entrypoint.

Usage

declare mmi_3quiesc=_db eatry (char(*), fixed bin(17), fixed bin(35));

call mmi_3$quizszz_db (database path, wait _time, arror_code);

wnare:

1. databass_path (Input) (char(*))
is the relative or absolute pathname of the data base to be guiesced.
Varsion 4 data basess need not have the db suffix supplied.

2. wait time (Input) (fixed bin(17))
sets the anount of time that an attempt to quiesce waits for conflicting
data base users to depart before failing (see "Notes").

3. error_code (Jutput) (fixed bin(35))
is the standard status code.

Note

Time specified for wait time is in seconds. A long wait is needed if the data
base is open by many users; otherwise, 3 short wait_time will suffice. For a simple
go/nogo test, zive a wait time of 1 second.

Entry: mmi_ 3unquiesce_db

This entry returns a data base that is in a quiescent state (by either
mmi_s$quiesce_db or the quiesce_mrds_db command) to a non-quiescent state.

Usage

declare mmi_$unquiesce_db entry (char(*), fixed bin(35));

call mmi_$unquiesce_db (database_path, error_code);

where:

1. database path (Input) (char(*))
1s thne relative or absolute pathname of the dats base to be freed.
Version ! data bases need not have the db suffix supplied.

2/85 6-13.1 Ad53-0UC

2/85

error _code
is the

(Dutnut) (fixed bin(35))
standard status code.

6-13.2

AW53-04C

Name: msmi_

This 1is a subroutine 1interface to the MRDS submodel data structure
(mrds_submodel interface). The submodel data structure is created by the
create mrds_dsm command and may be displayed by the display mrds dsm command.
This interface replaces the obsolete dsmd_interface (see Section 710).

Entry: msmi_$close submodel

This entry disassociates an opening name and a submodel to prevent further
access to that submodel through that opening name.

Usage

declare msmi_$close submodel entry (char(¥*), fixed bin(35));

call msmi_¢close_submodel (opening name, code);

where:
1. opening name {(Input) (char(¥*))
1s the name identifying the submodel opening.
2. code " (Output) (fixed bin(35))
is a standard error code.
Notes

The submodel-opening name association must already have been made by a
successful call to msmi_$open_submodel. If the opening name is not known, the
error code mrds_error_g$open_name_not _known is returned.

Entry: msmi_$get attribute data

This entry returns the attribute information for the given relation.

Usage

declare msmi_$get attribute data entry (char(*), char(¥*), ptr, fixed bin,
ptr, fixed bin(35));

call msmi_$get attribute data (opening name, rel name, area ptr,
str version, attribute data ptr, code);

6-14 AW53-04

msmi_ msmi

where:
1. opening name (Input) (char(¥))
is the name identifying the submodel opening.
2. rel name (Input) (char(¥))
is tho name of the relation for which attribute data is desired.
3. area ptr (Input) (ptr)
is a pointer tc a freeing area where the mrds_dsm attribute data
structure will be allocated.
L. str_version (Input) (fixed bin)

is the version of the mrds_dsm attribute data structure that is to
be allocated.

5. attribute data ptr (Output) (ptr) .
is a pointer to the allocated structure.

6. code (Output) (fixed bin(35))
is a standard error code.

Notes

The submodel-opening name association must already have been made by a
successful call to msmi_$open_submodel. If the opening name is not known, the
error code mrds_error_$open_name_not_known is returned.

If the area pointed to by the area ptr parameter is too small for the
mrds_dsm attribute data structure to Dbe allocated in it, the error code
error table _$area too small is returned. If the area ptr parameter is null, the
error code error table $badcall is returned. If the area is not a freeing area,
the error code mrds_error_s$not freeing area is returned.

The following 1is version 1 (currently the only version) of the
mrds_dsm_attribute_data structure (see Appendix F for the include file
mrds_dsm_attribute_data.inel.pl?). If the str version parameter refers to a version
of the mrds_dsm attribute_data structure that is not supported or does not exist,
the error code error_table $unimplemented version is returned.

dcl 1 mrds_dsm_attribute_data based

(mrds_dsm _attribute_data_ptr) aligned,

version fixed bin,

number of attributes fixed bin,

attributes (mrds dsm attribute data num atts refer
(mrds dsm attribute data.number of attributes)),
submodel attribute name char(64),

model atTribute name char(32),

read_access bit(1) unal,

modify access bit(1) unal,

null access bit(1) unal,

mbz1 bit(33) unal;

n NN

wWwwwlww

6-15 AW53-04

msmi_ msmi_

where:
1. version _
is the version of the structure, which should be set by calling
mrds_dsm_attribute_data_ structure_version.
2. number of attributes
is the number of attributes in the submodel relation view.
3. submodel attribute name
is the name of the attribute in the submodel.
y, model attribute_name

is the name of the attribute in the model.

5. read_access
is set to "1"b if the submodel has read access set for the attribute.

6. modify_access
is set to "1"b if the submodel has modify access set for the attribute.

7. null access
is set to "1"b if the submodel has null access set for the attribute.

8. mbz1
is set to "O"b.

The variables
mrds_dsm_attribute_data ptr
mrds_dsm_attribute num atts
mrds_dsm attribute data_structure_version
are also declared in the mrds_dsm attribute data include file.
If the submodel refers to a secure data base and the user calling

msmi_ $get attribute data is not a data base administrator for the data base,
then the value of model attribute name will be null.

If null access has a value of "1"b then both read_access and modify_ access
will have values of "QO"b.

Entry: msmi_$get relation_data

This entry returns information about each relation in the submodel.

Usage
declare msmi_$get relation_data entry (char(¥*), ptr, fixed bin, ptr,
fixed bin{35));

call msmi_$get relation data entry {opening name, area_ptr, _
relation data ptr, code);

-3
(4]
[
(o]
o3

w

6-16 AW53-04

msmi_ msmi_

where:

1. opening_name (Input) (char(¥))
is the name identifying the submodel opening.

2. area_ptr (Input) (ptr)
is apointer to a freeing area where themrds_dsm _relation_data structure
will be allocated.

3. str_version (Input) (fixed bin)

is the version of the mrds_dsm relation_data structure that is to be
allocated.

4. relation data ptr (Output) (ptr)
is a pointer to the allocated structure.

5. code (Output) (fixed bin(35))
is a standard error code.

Notes

The submodel-opening name association must already have been made by a
successful call to msmi_$open_ submodel. If the opening name is not known, the
error code mrds_error_$open name_not known is returned.

If the area pointed to by the area ptr parameter is too small for the
mrds dsm relation data structure to be “allocated in it, the error code
error table $area too small is returned. If the area ptr parameter is null, the
error code error table _$badcall is returned. If the area is not a freeing area,
the error code mr’as_er‘ror_.‘ﬁnor,_rreelng_ar'ea is returned.

The following is version 1 (currently the only version) of the
mrds_dsm_relation data structure (see Appendix F for the include file
mrds dsm relation data.incl.pl1). If the str version parameter refers to a version
of the mrds dsm_ relation data structure that is not supported or does not exist,
the error code error table _$unimplemented_version is returned.

decl 1 mrds dsm relation data based
(mrds dsm relatlon data ptr) aligned,
2 version fixed bin,
2 number_of_relatlons fixed bin,
2 relations (mrds dsm relation data num rels refer
(mrds dsm relation data.number of relations)),
submodel relation _name ohar(ﬁll\
model relation name char(32),
append_access bit(1) unal,
delete access bit(1) unal,
null access bit(1) unal,
mbz1 bit(36) unal;

wwwwww

where:

1. version
is the version of the structure.

6-17 AW53-04

msmi_ msmi

2. number_of relations
is the number of relations in the submodel.

3. submodel relation name
is the relation name defined in the submodel.

u. model_relation_name
is the corresponding name of the relation as defined in the model.

5. append access
is set to "1"b if the submodel has append access set for the relation.

6. delete_access
is set to "1"b if the submodel has delete access set for the relation.

7. null access
is set to "1"b if the submodel has null access set for the relation.

8. mbz1
is set to "0O"b.

The variables
mrds_dsm relation_data ptr
mrds dsm relation data num rels

mrds_dsm_relation data structure version
are also included in the mrds_dsm relation_data include file.
If the submodel refers to a secure data base and the user calling

msmi_$get relation data is not a data base administrator for the data base, then
the value of model _relation name will be null.

If null_access has a value of "1"b then both append_access and delete_access
will have values of "0"b.

Entry: msmi_$get submodel_info

This entry returns general information about the submodel.

Usage
declare msmi_$get submodel info entry (char(*), ptr, fixed bin, ptr,
fixed bin(35));

call msmi_$get submodel info (opening name, area_ptr, str_version,
submodel info ptr, code);

AR Y
J)
submodel opening.

6-18 AW53-04

msmi_ msmi

2. area ptr (Input) (ptr)
is apointer to a freeing area where the mrds_dsm_submodel_info structure
will be allocated.

3. str_version (Input) (fixed bin)
is the version of the mrds_dsm submodel info structure that is to be
allocated.

4. submodel info ptr (Output) (ptr)

is a pointer to the allocated structure.

5. code (Output) (fixed bin(35))
is a standard error code.

Notes

The submodel-opening name association must already have been made by a
successful call to msmi_ $open_submodel. If the opening name is not known, the
error code mrds_error_$open_name_not_known is returned.

If the area pointed to by the area ptr parameter is too small for the
mrds_dsm submodel info structure to be allocated in 1it, the error code
error table $area too_small is returned. TIf the area ptr parameter is null, the
error code error table _$badcall is returned. If the area is not a freeing area,
the error code mrds error _$not_freeing_area will be returned.

The following is version 1 (currently the only version) of the
mrds dsm submodel info structure (see Appendix r for the i 1t

n-le J-"-:'Ie
.............. \See ShulLAa & 107 vii< ul LdLa

mrds dsm submodel info.inecl.pll1). If the str version parameter refers to a version
of the mrds dsm submodel info structure that is not supported or does not exist
the error code error table _$unimplemented version will be returned.

del 1 mrds dsm submodel info based
(mrds_dsm_submodel_info_ptr) aligned,
version fixed bin,

submodel version fixed bin,

database path char(168),

submodel path char(168),

date_time created fixed bin(71),
creator_id char(32);

PN NN

where:

1. version
is the version of the structure, which should be set by calling
mrds_dsm_submodel_info_structure_version.

2. submodel version
is the version of the submodel data structure.

3. datebase path

is the absolute path of the data model for which the submodel is
defined.

6-19 AW53-04

msmi_ msmi_

. submodel path
is the absolute path of the submodel.

5. date_time_ created
is the Multics clock value (suitable for input into the date time_
subroutine) for when the submodel was created.
6. creator_id
is the ID of the user who created the submodel. It has the form of
"Person_id.Project_id.Tag".
The variables
mrds_dsm_submodel info ptr
mrds_dsm_submodel_info_structure_version

are also declared in the mrds_dsm submodel info include file.

Entry: msmi_$open_submodel

This entry associates a submodel with an opening name so that it can be
used by other msmi_ entries. The same submodel may be associated with multiple
opening names.

Usage

declare msmi_$open_submodel (char(¥*), char(*), fixed bin(35));

call msmi_$open_submodel (opening name, path, code);

where:

1. opening_name (Input) (char(¥*))
is the name identifying the submodel opening. This name must be
unique within the opening process (as determined by PL/I comparison
rules), not only for submodel openings, but for any operation within
the MDBM subsystem that takes an opening name name. Multiple openings
of the same submodel must have different opening name names.

2. path (Input) (char(¥*))
is the relative or absolute path (with or without the dsm suffix) of
the submodel to be opened.

3. code (Output) (fixed bin(35))
is a standard error code.

Notes

The opening name can be any length and can be made up of any sequence of
ASCII characters. If the opening name has already been used, the error code

6-20 AW53-04

msmi_ msmi

mrds_error_ $open name already known is returned. If there is no room to create
another opening name, “the error code mrds error _$too_many_open names is returned.
The exact number of opening names depends on the length of the names already
used, but it is large (> 1000).

6-21 AW53-04

SECTION 7

SECURITY

MRDS provides two different levels of data base security: relation level
security and attribute level security. The level of security that 1is enforced
depends upon the security state of the data base. The capabilities that a MRDS
user has depends not only on the security state of the data base but alsoc upon
whether or not the user is a data base administrator (DBA).

DBA

A DBA is a user who has sma ACL on the data base directory. There may be
one or several DBAs for a data base; the creator is always a DBA. A DBA is
automatically given the necessary Multics ACLs when executing a MRDS command or
subroutine.

Secure Data Bases

A data base may be secured {(by a DBA) in one of two ways: either by using
the secure mrds db command with the -set control argument or by creating it in a
secure state by using create mrds db with the -secure control argument. A data
base may be unsecured (by a DBA) by issuing the secure mrds_db command with the
-reset control argument. A secure data base is a data base which has been
secured and not subsequently unsecured.

A secure data base cannot be referenced by a non-DRA via either the data
model or via an unsecured submodel (a submodel that is not located under the
secure.submodels directory). The DBA may reference a secure data base via either
the data base's data model or a submodel (either secure or unsecured).

Secure Submodels and the secure.submodels Directory

The secure.submodels directory is a directory located under the data base
directory. This directory is used to ensure that a secure data base is referenced
through a submodel under the control of a DBA (a secure submodel). A submodel
may be placed in this directory either during submodel creation by using the
-install control argument or by copying an already created submodel. An unsecured
data base may also have some of its submodels in this directory.

A secure data base may be referenced by a non-DBA via a link in some other
directory as long as the link's target is a secure submodel. A submodel in some
other directory pointed to by a link in the secure.submodels directory is not
considered secure.

7-1 AW53-04

Regquired ACLs

The ACLs required on the data model and relation model segments are independent
of the lavel of security ineffect. 1In order touse the data base at all, the user must
nave "r" ACL on the db model sezment; only DBAs should have "rw" ACL to this segment.
Whea the data base is opz2ned via the data model, the user's view contains all the
relations in the data base; if the opening was via a submodel then the view contains
just those relations in the subwmodel. Users will need "r" ACL set on all relation
nodels that correspond to relations in every view to which they have access. No one
but D3As should have "rw" ACL on a relation model segment.

For those submodels on which the DBA z2ontrols Multics ACLs (either unsecured
submodels contained in a directory cresated by the DBA or secure submodels contained in
the secure.submodels directory of the data base), it is recommended that no one but
DBAs have sma ACL on the containing directory and that non-DBA users have "r" ACL only
on submnodels that they are allowed to use. Only the DBAs should have "rw" ACL on the
submodel segments.

The data bas= consists of three directories: the main data base directory and
two inferior directories (resultant segs.dir and secure.submodels). The general
user should have "n" ACL on the data base and the secure.submodels directories while
having "s" ACL on the resultant segs.dir directory. DBAs, by definition, have "sma"
ACL set on the data base directory and will automatically be granted "sma" ACL on the
inferior directories when executing a MRDS command that requires that ACL.

The ACL required on each relation data segment depznds on the operations that
will be 2llow2d on that relation and not on the level of security in effect.

1. ACLs of "rw" are required on each relation data segment where the allowed
oparations are storing a tuple into therelation (append _tuple), deleting a
tuple from the relation (delete tuple), or modifying an attribute value
(modify attr). B

2. For arelation where the only permissible operation is to read the attribute
values (read attr), an ACLof "r" is required on therelation data segment.

3. Relation data segments corresponding to relations that have no access
- p
permissions should have "n" ACL set.

4, ACLs of "r™ should be set on the sezments dbeb and rdbi, located in the
resultant _segs.dir, for each person alloed to open the data base.

Sze the command create _mrds_db for a description of the data base makeup in terms
of directories and segments.

Scopes

Regardless of the level of security in aeffect, scopes must be set before anydata
can be accessed. It is assumed that a scope will be requested only if the indicated
operation is to be performed. For this reason, if the requasted scope requires more
privileges than the user has bzen assigned (determined from the level of security in
effect and the relation's ACL), a data access violation error is generated.

Since an opening in exclusive mode automatically sets scopes, access violation
errors may be generabted at open time as well.

2/85 7=2 AW53-04C

Sze the table of access requirements listed under dsl $set scope.

LIMITATION: MRDS does not allow a user whose authorization is higher than the access
class of a data base to set_scope on that data base.

2/85 7-2.1 AW53-04C

Relation Level Security

This level of security does not provide any data model security in that
there is no restriction on the amount of information about the data base model
that the user may obtain. Any user may access the data base via the data model
and data access permissions are set at the relation level by using Multics ACLs.
This level of security was the only form of security available in MR8.0; it is
the only form of security enforceable for an unsecured data base.

Al]l access violations are determined at scope setting time.

& An ACL of "n" will prevent any scope from being set. In effect there
is no access to this relation.

- An ACL of "r" will allow scopes with permit ops of read attr to be
set,
L An ACL of "rw" will allow scopes with permits ops of read attr,

modify attr, append tupld, and delete_ tuple to be set.

Attribute Level Security

Attribute Level Security, which is enforced only for a secure data base,
provides both data value security and data model security.

DATA MODEL SECURITY

In a secure data base, users are granted access to a subset of the data
base. 1In order to prevent these users from obtaining more information about the
data base than their view allows, the following commands and subroutines, which
deal exclusively with the data model, are restricted to DBAs if the data base is
in a secured state:

create mrds_dsm
display _mrds_dm
dmd_
mmi_

For an unsecured data base, dsl $open and commands that may operate on
either the data model or a data submodel are restricted to secure submodels when
used by a non-DBA on a secure data base. These commands are:

create_mrds_dm include
create mrds_dm table
display_mrds_db _status

Many commands and subroutines either display or return the relation and
attribute data model names associated with the submodel relation and attribute
names. A non-DBA user invoking one of these commands/subroutines will have
spaces (blanks) displayed/returned in place of the model relation and attribute
names if the associated data base is in a secured state.

display mrds_db access
display_mrds dsm

dsmd N

msmi_

7-3 AW53-04

DATA VALUE SECURITY

To use the data value security features of attribute level security the
data base must not only be secured but there must also be at least one secured
submodel containing specifications for the data access permissions on both the
relations in the view defined by the submodel and the attributes in those relations
(see the create mrds_dsm command).

The access permissions that may be set in the submodel correspond to the
scopes that may be requested, i.e:

relation access:
append _tuple
delete tuple
null

attributes access:
read attr
modify attr
null

The only restriction on the attribute access permissions is that null access
cannot be specified with any other access.

There are several restrictions on which access can be set on the relations.

1. null relation access permission cannot be specified with any other
access permissions.

2. append_tuple and delete tuple can only be set if the submodel relation
is a full view of its corresponding model relation. A full view implies
that the submodel relation contains all the attributes in the model
relation.

3. append tuple can only be set on a relation if read attr access is also
set on all of the primary key attributes in that relation. If this
restriction were not applied then it would be possible to store tuples
until the duplicate key error was generated, at which point the values
of the primary key attributes would be known.

Because the access specified in the submodel is independent of the Multies
ACLs on the relation's data segments, Multics will enforce the ACLs on those
segments. It is the responsibility of a DBA to make sure that the ACLs on the
relation data segments allow the submodel user to perform the operations set in
the submodel. Specifically for those users with "r" ACL on the submodel:

1. For every relation in the submodel with either append tuple or delete_ tuple
access or with at least one attribute with modlfy attr access, set
"ru" ACL on the relation data segment.

2. For every relation in the submodel with null access on the relation
and with only read attr access on the attributes, set "r" ACL.

Relation model segments should have "r" ACL set, for all relations appearing
in the submodel view.

Unlike Relation Level Security, not all access violations can be detected
at set_scope time. This is because scopes are set at the relation level, but
the access specifications are at the attribute level.

7-4 AW53-04

Example

The following submodels are all based on the employee db data model (described
below). Each submodel is used by one project, which has the same name as the
submodel (i.e. ¥.submodel name.¥*). For each submodel, the submodel source, the
display produced by display mrds dsm, and the required Multics ACLs on all data
base entries for the project are listed. A table listing the effective access
for each relation and attribute for both a secured and unsecured data base is
also given. Note that an unsecured data base may be opened via the submodel or
via the data model.

The cmdb source of the employee db data base is presented first, followed
by a display of the ACLs on all the entries associated with the data base for
the payroll, credit union, and DBA projects. That is followed by the displays
for each submodel/project.

The Employee db Source

domain:
birth date fixed bin(71),
city char(32),

credit union fixed decimal(6, 2),

end_date fixed bin(71),

end sal fixed decimal(6, 2),

federal fixed decimal(6,2),

first name char(32) varying,

id fixed bin(17),

job title char(64),

last name char(64) varying,

pay fixed decimal(6, 2),

pension fixed decimal(6, 2),

sex char (1),

ssn char(11),

start_date fixed bin(71);

start_sal fixed dec(6, 2),

state char(32);

state with fixed decimal(6, 2),

street char(32);

zip char(9),
relation:

address (id* street city state zip),

payroll (id*¥ pay federal state with pension credit union ssn),

personal (id* first name last_name sex birth date spouse name);
index:

address (zip),

personal (last_name birth date);

Summary of all Multics ACLs for all data base entries:

employee db.db

sma .DBA.*
db_model

rw .DBA. ¥

r .payroll.*

r .credit_union.*
db.control

rw .DBA.¥

rw .payroll.*¥

rw .credit_union.*

7-5

AW53-04

address.m

rw ¥ _DBA.*¥*

r ¥ payroll.*

r ¥ .credit_union.*
address

rv * DBA.*

r ¥ . payroll.*

r % credit_union.*
payroll.m

rw * DBA.*¥

r ¥ payroll.*

r ¥ credit _union.*
payroll

rw * DBA.¥

rw ¥ payroll.*

rw ¥ credit_union.*

personal.m

rw % DBA.*

r ¥ payroll.*

r ¥ .credit_union.*
personal

rw * DBA.*

r * payroll.*

r ¥ credit_union.*

secure.submodels
sma *.DBA.L¥

secure.submodels>payroll.dsm
r ¥ payroll.*

secure.submodels>credit_union.dsm
r *.credit_union.¥*

resultant_segs.dir
sma % DBA.*¥

resultant_segs.dir>dbcb
rw % DBA.¥*

resultant_segs.dir>rdbi
rw % DBA.*

The Payroll Submodel

The payroll submodel allows access to the address, payroll, and part of the
personal relations. The ACLs on these relations only allow tuples to be appended
to or deleted from the payroll relation and only in the payroll relation may
attribute values be modifed. If the data base is secured, then the credit_union
and pension attributes of the payroll relation may not be modified. If the data
base is not secured, it is not possible for MRDS to prevent the modification of
the credit_union and pension values or to prevent the reading of the sex, birth_date
and spouse_name attributes in the personal relation,.

The source:
relation: address (id street city state zip);
relation access: payroll (append_tuple, delete_tuple)

with attribute access
(read_attr, modify_attr);

3/84 7-6 AW53-04B

relation:

attribute access:

relation:

payroll

(id pay federal state_with
credit union pension ssn);

pension in payroll (read attr),

credit_union in payroll (read_attr);

personal (id last_name first_name);

display mrds_dsm >examples>employee_db.db>secure.submodels>payroll.dsm

address

id
street
city
state
zip

payroll

id

pay

federal
state_with
credit_union
pension

ssn

personal

id
last_name
first_name

Required ACLs for ¥.payroll.¥

employee_db.db

db_model
db.control
address.m
address
payroll.m
payroll
personal.m
personal

secure.submodels

secure.submodels>payroll.dsm
secure.submodels>credit_union.dsm

W

n
r
r
r
r
r
rw
r

r

n

resultant_segs.dir>rdbi
resultant_segs.dir>dbcb

jo Jite Bia Nie

Effective access for the ¥.,payroll.¥

3/84

relation
attribute

address
id
street
city
state
zip

payroll
id

unsecured

model submodel

el e N B =
i e e B I~

ad ad

secured
submodel

Rl e e e I

-7 AW53-04B

pay rm rm rm

federal rm rm rm
state_with rm rm rm
credit_union rm rm r

pension rm rm r

ssn rm rm rm
personal n n n

id r r r

last_name r r r

first_name r r r

sex r not_visable

birth_date r not_visable

spouse_name r not_visable

The Credit Union Submodel

The credit union submodel allows the credit union office to read the address
relation and parts of the payroll and personal relations. In addition, the
credit_union attribute in the payroll relation may be modified. Note that, if
the data base is not secured, credit union personnel may open the data base via
the data model, read all the attributes in the personal relation, and read and
modify all the attributes in the payroll relation as well as add and delete
tuples.

The source:

relation: address (id street city state zip);

relation: payroll (id ssn credit union);

attribute access: credit_union in payroll (read_attr, modify_attr);
relation: personal (id last_name first_name);

display_mrds_dsm >example>employee_db.db>secure.submodels>credit_union.dsm

address
id
street
city
state
zip

i e e -

=]

payroll
id
ssn r
credit_union rm

-

personal
id
last_name
first_name

=333

Required ACLs for *.credit_union.*

employee_db.db n
db_model r

3/84 7-8 AW53-04B

db.control
address.m
address
payroll.m
payroll
personal.m
personal

secure.submodels

W

r
r
r
r
rw
r

r

n

secure.submodels>payroll.dsm

secure.submodels>credit_union.dsm

resultant_segs.dir>rdbi
resultant_segs.dir>dbeb

ective access for ¥.credi ion.
Effect for ¥ dit_un ®

3/84

relation
attribute

address
id
street
city
state
zip

payroll
id
pay
federal
state_with

credit_union

pension
ssn

personal
id
last_name
first_name
sex
birth_date
spouse_name

model

unsecured secured
submodel submodel

n n n
r r r
r r r
r r r
r r r
r r r
ad n n
rm rm r
rm not_visable
rm not_visable
rm not_visable
rm rm rm
rm not_visable
rm rm r
n n n
r r r
r r r
r r r
r not_visable
r not_visable
r not_visable

7-9

33 S

AW53-04B

TABLE OF EFFECTS OF DATA BASE SECURITY

DBA Only

adjust_mrds_db
create mrds_dsm -install option
secure mrds db
quiesce_mrds_db

Secured DB - DBA Only

create mrds dsm
dlsplay mrds _dm
dmd_
mmi

Secured DB - Restricted to Secured Submodels for Non-DBA

create mrds dm include
create mrds dm table
dlsplay mrds db status
dsl $open

mrds_call open

Secured DB - Access Violation Detection/Display Change

display mrds_db_access
dlsplay mrds dsm

dsl $open

dsl $set_scope

msmi_

mrds call open
mrds_call set scope

Unaffected

display_mrds_db_version
display_mrds_open_dbs

dlsplay mrds _scope_settings

display mrds temp dir

dsl_(other than open or set scope)
dsmd_

mrds_call (other than open or set_ scope)
set mrds_temp dir

update mrds_db version

New Options

create mrds db -secure option
Avantes minda dam ingtall An+iann
wvi Tauvc il \JS uoiy -.l.llsba.l..l. UyL/J.UI.I

7-10 AW53-04

Scope Display Changes

display mrds_db_status
display mrds_scope_settings
dsl $get scope

mrds_call get_ scope

T-11 AW53-04

SECTION 8

DATA BASE BACKUP

This section describes the procedure for providing a backup copy of a data
base and its data. This is an administrative facility for use by the DBA and is
not intended for use by the general data base user community.

CHECKPOINT
To make a backup (checkpoint) copy of a data base, perform the following
steps:

1. Do a quiesce _mrds_db on the current data base to ensure a consistent
copy and data base integrity.

2. Do a copy dir of the data base to another part of the storage hierarchy
to obtain the checkpoint data base.

3. Do a quiesce_mrds_db using the -free option on the original data base.

ROLLBACK

To return the current data base to its previous checkpointed state, perform
the following steps:

1. Do a quiesce mrds db of the current data base.

2. Do a delete dir of the current data base.

3. Do a copy_dir of the checkpoint data base into the current location of
the current data base.

4, Do a quiesce mrds_db using the -free option on the new current data
base.

Notes

Doing a display_mrds_db_ status of the checkpoint data base shows it as
quiesced. (It should be kept that way to ensure integrity.)

The copy can have itself freed from quiescing if it is to be used for
program development rather than as a backup copy.

If a display mrds_db_status of the current data base shows many users, a
long wait time should be used for quiesce mrds _db. With few users or none, a
small wait time will suffice.

8-1 AW53-04

The quiescing process is the only process that can open the checkpointed,
quiesced data base.

If the data base was quiesced by a dead process, both quiesce mrds_db using
the -free option and adjust mrds db using the -trouble switch off option must be
done. However, there is danger of an inconsistent data base, depending on why
the quiescing process died.

8-2 AW53-04

SECTION 9

DATA BASE DEVELOPMENT TOOLS

This section describes the mrds call command and its related functions,
which may be used in the development phase of a data base application. They are
normally not used in a production environment.

The following is a summary of mrds call functions.
/7
close, ¢
closes the currently open data bases.

declare, decl
makes a user-defined function known to MRDS for possible use as a
-where clause.

define temp rel, dtr
redefines or creates a new temporary relation which can be accessed
by the current prccess.

delete, dl
specifies that the selected data is to be deleted from the data
base.

dl_scope, ds
deletes all or a portion of the current scope of access.

dl_scope_all, dsa
deletes all of the current scope of access.

get population, gp
returns the number of tuples currently stored in a permanent or
temporary relation.

get scope, gs
displays the scope currently set on a relation in a given opening of
the data base.

list dbs, 1d
displays the indexes, pathnames, and opening modes of all data bases
currently open by the user via mrds_call only.

modify, m
specifies that the selected portion of the data base is to be modified.

open, o
opens the specified data bases or data submodels for processing.

retrieve, r
displays the selected data specified by the selection expression.

set modes, sm

allows setting of the amount of error information returned and/or
the displaying of opening information.

9-1 ~ AWS53-04

set_scope, ss
defines the current scope of access for a relation within a shared
data base.

set scope all, ssa

defines the current scope of access for all relations within a shared
data base.

store, s
adds a new tuple (row) to the selected relation.

9-2 AW53-04

mrds_call mrds_call

Name: mrds_call, mrec

This command provides a command-level interface to the Data Sublanguage
(DSL). It is not intended to be a true end-user query language, but rather is
designed to be used as an experimentation vehicle for data base administrators
and applications programmers during the development of a data base and its associated
programs. The mrds_call command is also useful as an instructional tool when
introducing new users to MRDS. Refer to the LINUS Manual for an actual end-user
facility which accesses MRDS data bases.

Usage

mrds_call function-name {args}

where:

1. function-name
is one of the following functions:
close list_dbs
declare modify
define_temp_rel open
delete retrieve
dl_scope set_modes
dl_scope_all set_scope
get_scope set_scope_all
get_population store

2. args

are arguments that depend on the particular function to be performed.
Specific arguments are described below under the functions with which
they can be used. Each argument is limited to 256 characters in
length.

Usage of this command is explained below under a separate heading for each
function. The explanation of the functions covers only those points pertinent
to the command interface. For full details, see the description of the dsl_
subroutine in Section Y4 of this document. Notice that the dsl_ interface can
return the sub_error_ condition (see the Note on sub_error_ in Section 4 and
mrds_call set_modes function in this section).

Function: close, ¢

This function closes the specified data bases and makes them unavailable
for further processing. The data base need not have been opened with the mrds_call
command.

3/84 9-3 AW53-04B

mrds call mrds call

Usage
mrds_call close [data base index1 { ... data base indexn} | all option]

where:

1. data base indexi
is the data base index displayed by the open function.

2. all option
may be -all, or -a to specify that all of the user's open data bases
are to be closed. This control argument may not be used with a
data base index.

Example

The command line:
mrds_call close 1 2

closes data bases 1 and 2 regardless of how they were opened and makes thenm
unavailable for further processing.

Function: declare, dcl

This function makes a2 user-defined function known to MRDS while processing
the specified data base.

Usage

mrds_call declare data_base index fn_name

where:
1. data_base_ index
is the data base index displayed by the open function.
2. fn_name
is the name of the function being declared.
Example

mrds call declare 1 average

9-4 AW53-04

mrds_call mrds call

Function: define temp rel, dtr

This function creates, redefines, or deletes a temporary relation. The
relation index corresponding to the temporary relation is displayed. This index
(rel_index) must be specified in a later retrieve in order to reference the
temporary relation. This may be done by a ".V." argument substitution of the
rel index in the range clause of the retrieve function.

The only functions that can be performed on a temporary relation are
define_temp rel, retrieve, and get population.

Usage

mrds_call define temp rel data base index {selection_expression}
{se_values} rel index {-control arg}

where:

1. data_base_ index
is the index displayed by the open function.

2. selection_expression
is a character string as defined in Section 4, "Selection Mechanism."
This argument must be omitted if the -segment control argument is
specified.

3. se_values _
is a selection expression value (none, one, or more) for each control
code (designated by .V.) appearing in the <selection_expression>.
These must correspond in order and quantity with the control codes
specified in the <selection_expression>.

4. rel index

is an integer. 1If equal to zero, a new temporary relation is created.
If greater than zero, the temporary relation with that index is
redefined. 1If less than zero, the temporary relation with that index
is deleted.

5. control_arg
may be -segment path or -sm path to specify that the selection expression
is to be taken from the designated segment. (Refer to the examples
included with the modify and retrieve functions described later in
this section.)

Notes
For shared openings, read attr scope must have been set on the referenced

relations.

For attribute level security, attributes referenced in the where and select
clauses must have at least read attr access.

9-5 AwWs3-04

mrds call mrds call

Unpopulated temporary relations can be created if the selection expression
does not select any tuples. The get population function can display the resulting
tuple count.

Example
! mrds_call define temp rel 1 "-range (x phone book)
! ~-select x.name¥* x.mail drop" 0

Temporary relation index is: 1.

results in a new temporary relation being created with a relation index of 1.

Function: delete, dl

This function deletes selected tuples from the designated data base.

Usage

mrds_call delete data_base index {selection_expression}
{se_values} {-control_arg}

where:

1. data_base_index
is the index displayed by the open function.

2. selection expression
is a character string as defined in Section 4, "Selection Mechanism".
This argument must be omitted if the -segment control argument is
specified.

3. se_values
is a selection expression value (none, one, or more) for each control
code (designated by .V.) appearing in the <selection_expression>.
These must correspond in order and quantity with the control codes
specified in the <(selection_expression>.

4, control_arg
may be -segment path, or -sm path to specify that the selection
expression is to be taken from the designated segment. (Refer to

the examples included with the modify and retrieve functions described
later in this section.)

9-6 AW53-04

mrds_call mrds call

Notes

For shared openings, delete tuple scope must have been set on the relation.

For attribute level security, the relation requires delete tuple access,
and any attributes referenced in the where clause require read_attr access.

Example

The command line:

mrds _call delete 1 "-range (x phone book) -select X
-where X.name = nrsSmith, Roger D."n

deletes the phone book entry associated with the name Smith, Roger D.

Function: dl_scope, ds

This function is used only with shared openings obtained with an opening
mode of update or retrieval. Its purpose is to delete part or all cof the
current concurrency control scope modes on a relation basis. All scope must
have been deleted from all relations before another scope setting operation can
be accomplished.

Usage

mrds_call dl scope data_base index relation name 1 permit_scope 1
prevent scope 1 {. relatlon name N permlt scope N prevent scope N}

where:

1. data base index
is the opening index displayed by the open function for the desired
opening of the data base.

A%}

relation name I
is the name of the relation for which the concurrency control permit
and prevent scope modes are to be deleted.

3. permit_scope I
is the set of operations that the user wishes to delete from the
current permit scope for this relation. See the table of scope mode
abbreviations below.

9-7 AW53-04

mrds call mrds call

L prevent scope I
is the set of operations that the user wishes to delete from the
current prevent scope for this relation. See the table of scope

mode abbreviations below.

Notes

The abbreviations to be used for the scope modes for either permits or
prevents are as follows:

a (or s) append tuple
d delete tuple
m modify attr
n null

r read attr

u update

The permit scope is made up of a concatenation of the desired operation
abbreviations. If "n" permit scope is given, then no other mode may be specified

for that permit. Each of "r", "a", "m", "d", and "u" may be used only once in
the same permit scope. The abbreviation "u" is the same as specifying a permit
scope of "amd". All of the above also applies to the prevent scope. Note that

"n", does not delete any scope from that prevent or permit for the given relation.

Scope settings can be displayed by the get scope function or the commands
display mrds scope settings and display mrds_db_status.

Scope may be deleted entirely for all relations at once by using the d1_scope_all
function.

All scope must be deleted from all relations before scope can again be set
on any relation. This prevents possible deadlock situations among processes
requesting concurrent access protection.

Examples

! mrds _call open two rels wupdate

Open data base is:
1 >udd>m>jg>dr>two_rels.db
update

! mrds_call set_scope rell ru n rel2 r amd
! display_mrds_scope_settings

Scope settings for process: JG
0

ay.Multics.a
process number: Z2T4 0441

r
~h 1 1
04044

Opening index: 1
mode: update

9-8 AWS53-04

mrds call mrds call

Concurrency control version: 5
data base model path: >udd>m>jg>dr>two_rels.db
data base version: U4

Relation Permits Prevents
rel1l ramd n
rel2 r amd

! mrds_call dl _scope 1 rell amd n rel2 n amd
! display mrds scope settings

Scope settings for process: JGray.Multies.a
process number: 2740040441

Opening index: 1
mode: update

Concurrency control version: 5
data base model path: >udd>m>jg>dr>two_rels.db
data base version: Y4

Relation Permits Prevents
reli r n
relz i r n

Function: dl scope all, dsa

This function deletes all scope from the user's current view of the data
base.

Usage
mrds_call dl scope_all data base_index

where data base index is the data base index displayed by the open function.

Note

No error will be issued if there is no scope set when this function is
used.

9-9 AW53-04

mrds_call mrds call

Function: get population, gp

This function returns the number of tuples that make up either a temporary
or permanent relation, given the temporary relation index or the permanent relation
name. It provides a means of determining the number of tuples specified by a
selection expression by using that selection expression to define a temporary
relation and then getting its population.

Usage

mrds call get population data base index relation identifier

where:

1. data_base_ index
is the data base opening index displayed by the open function.

2. relation identifier
is the identification of the relation for which the population is to
be obtained. For temporary relations, it is the temporary relation
index returned from a call to the define temp rel function. For
permanent relations, it is the view relation name.

Note

Since temporary relations do not store duplicates, it is not possible to
get a true count of a selection expression tuple population where the -dup
option is involved, unless temporary relation keys are defined over uniquely
identifying attributes.

This function does not work for version 3 data bases.

Examples

! mrds call open pop exclusive_update
Open data base is:
1 >udd>m> jg>dr>pop.db
exclusive update

! display mrds_dm pop

RELATION: r001
ATTRIBUTES:
k001 Key
fixed bin (17)
doo1 Data
fixed bin (17)
x001 Data Index

fixed bin (17)

9-10 AW53-04

mrds_call mrds_call

! mrds call get population 1 r001

Tuple count: 100

! mrds call dtr 1 "-range (r r001) -select r.k001%" 0
Temporary relation index is: 1.
! mrds call get population 1 1

Tuple count: 100

Function: get scope, gs

This function provides a means of finding the current scope settings on a
particular relation.

Usage
mrds_call get_scope data base_index relation_name

where:

1. data_base index
is the data base opening index displayed by the open function.

2. relation name
is the name of the relation whose scope settings are to be displayed.

Notes

The scope display uses the following abbreviations:

append tuple
delete tuple
modify attr
null

read attr
store

i o

=t
E

[/, B Ji =]

If the concurrency control version is less than 5, then "s" will be displayed;
otherwise, "a" will be used. This version can be displayed by display mrds_db_status
using the -long option or by display mrds scope_settings.

9-11 AW53-04

mrds_call mrds call

Examples

! mrés_call open dmdm exclusive update
Open data base is:
1 >udd>Multies>JGray>dr>dmdm.db
exclusive update
! display _mrds_scope_settings

Scope settings for process: JGray.Multics.a
process number: 2740040441

Opening index: 1
mode: exclusive update

Concurrency control version: 5
data base model path: >udd>m>jg>dr>dmdm.db
data base version: 4

Relation Permits Prevents

sample ramd ramd

! mrds _call get scope 1 sample

Permits: ramd Prevents: ramd

Function: 1list_dbs, 1d

For all openings of MRD3 data bases in the user's process, this function

displays the opening index, opening mode, and path of the submodel or model used
for the opening.

Usage

mrds_call 1list_dbs

Examples

! mrds_call set_modes no_list
! mrds_call open model update submodel retrieval
! mrds_call 1list_dbs

Open data bases are:
1 >udd>m> jg>dr>model.db

9-12 AW53-04

mrds_call mrds call

update
2 >udd>m> jg>dr>submodel.dsm
retrieval

Notes

If the displayed path ends with a ".dsm" suffix, then the opening was made
through a submodel.

Function: modify, m

This function causes the designated data base to be modified as specified.

Usage

mrds_call modify data base_index {selection_expression}
{se_values} modified values {-control_arg}

where:

1. data_base_ index
is the index displayed by the open function.

2. selection expression
is a character string as defined in Section 4, "Examples of Selection
Mechanisms". This argument must be omitted if the -segment control
argument is specified.

3. se_values
is a selection expression value (none, one, or more) for each control
code (designated by .V.) appearing in the <selection expression>.
These must correspond in order and quantity with the control codes
specified in the <selection expression>.

u, modified values ;
is one or more values that are to replace the selected tuple attribute
values in the data base.

5. control arg
may be -segment path or -sm path to specify that the selection expression
is to be taken from the designated segment.

Notes

For shared openings, the relation must have modify_attr scope set.

For attribute level security, the selected attributes must have modify attr

9-13 AW53-04

mrds_call mrds_call

l access and any attributes appearing in the where clause must have read_attr
access.

Example

Assume the segment named mod select contains:

-range (x phone_ book)
-select x.phone
-where x.name = .V.

! mrds_call modify 1 "Jones, James A." 993-3064 -sm mod_select

changes the phone number of "Jones, James A." to 993-3064 (the se _value in
this case). (Refer to the "Note" concerning the use of quotation marks
included in the examples of the retrieve function described later in this
section.)

Function: open, o

This function causes a data base to be opened and readied for use. It
accepts either 2 model or submodel path for the opening and, in the defauilt
case, displays a data base opening index that 1is needed by other mrds call
functions.

Usage
mrds_call open view pathl open_model {... view_pathN open_modeN}

where:

1. view pathi

is the pathname of the desired view to be used for this opening.
This view can be either the path of the data base itself or the path
of a submodel referring to the data base. The pathname can be relative
or absolute and does not require any suffix, unless needed to prevent
ambiguity. A suffix will be required for models and submodels having
the same name and residing in the same directory. If none is given,
the model will be found before the submodel.

2. open_modei
is the desired opening mode for this opening of the data base. The
following opening modes are available.

retrieval, r
specifies that this is a shared opening, requiring the setting of
concurrency control protection via scope requests by the set scope

9-14 AW53-04

mrds_call mrds_call

function. The maximum permit scope that can be set with this opening
mode is read attr,

update, u
specifies that this is a shared opening, requiring the setting of
concurrency control protection via scope requests by the set scope
function. Any scope can be set with this opening mode.

exclusive retrieval, er
specifies that this 1is an unshared opening in the sense that all
update operations are prevented against any relations in this view
of the data base. No scope setting is necessary with this opening
mode. This mode is the equivalent of opening with a retrieval mode
and doing a set scope_all with permit of read attr and prevents of
modify attr, append tuple, and delete tuple on these relations. Other
data base openers are allowed to set read attr scope and do retrievals
on these relations.

exclusive update, eu

specifies that this is an unshared opening, in the sense that any
operation is prevented by another user against any relation in this
view of the data base. No scope setting is necessary with this
opening mode. No other data base openers are allowed to set any
scope on any relation in this view of the data base. This mode is
the equivalent of opening with an update mode and doing a set scope all
with permits and prevents of read_attr, modify_attr, append tuple,
and delete tuple on these relations. An openlng with this mode will
not be allowed if any relations in the opener's view already have
scope set by some other opening.

Notes

The opening index, plus path and opening mode information, is displayed for
each opening after a successful open operation. This can be eliminated with the
mrds_call set modes no_list feature.

If the data base being opened has been secured, then the view path must
refer to a submodel that resides in the data base's "secure.submodels" directory
under the data base directory if the user is not a DBA. These must be version 5
submodels if attribute level security is to be provided. See secure_mrds_db and
- Section T "Security".

If the data base being opened uses a version 4 concurrency control, then
adjust_mrds_db with the -reset option must be run against it to update it to
version 5 concurrency control before it can be opened. This changes the scope
modes from r-u, to read attr, modify attr, append tuple, delete_tuple. See
adjust_mrds_db for the effects of this change.

Access requirements for all opening modes include "r" ACL on the db model
segment and relation model segments (these segments have a ".m" suffix) for any
relations appearing in the given view, plus "rw" ACL on the data base concurrency
control segment. Unshared opening modes require that, for any relation appearing
in the view, the multisegment file containing the data must have "r" ACL for
exclusive retrieval or "rw" ACL for exclusive update opening mode. For attribute
level security, er mode requires read_attr on some attribute in each relation in
the opening view; eu mode requires one of append tuple on the relation, delete_tuple

9-15 AW53-04

mrds_call mrds call

on the relation, or modify_attr on some attribute in the relation, for each of
the relations in the opening view.

Examples

The following example is for a non-DBA or a secured data base.

! secure mrds_db model display
The data base at ">udd>m>jg>dr>model.db" has been secured.

! mrds call open model update
Error: mrds_dsl_open error by >unb>bound mrds_ ;2504 Attempt to open secured
data base from model or through non-secure submodel. The path
">udd>m> jg>dr>model.db" refers to a data base that has been secured and can

only be be opened via a secure submodel.

mrds call: Attempt to open secured data base from model, or through non-secure
submodel. (From dsl $open)

! mrds call open submodel update
Error: mrds _dsl open error by >unb>bound mrds_ {2747 Attempt to open secured
data base from model or through non-secure submodel. The submodel
">udd>m> jg>dr>submodel .dsm" refers to a data base ">udd>m>jgddr>model.db"
that has been secured, but the submodel itself is not in the data base's
inferior directory "secure.submodels”.

mrds call: Attempt to cpen secured data base from model or through non-secure
submodel. (From dsl_$open)

! mrds_call open model.db>secure.submodels>submodel.dsm wu
Open data base is:
1 >udd>m> jg>dr>model.db>secure.submodels>submodel.dsm
update

! mrds call close =-all
The following example is for a non-DBA on an unsecured data base.

! secure mrds _db model -display
The data base at ">udd>m>jgd>dr>model.db" is not secured.
! mrds_call open model er model er submodel u

Open data bases are:

1 >udd>m> jg>dr>model.db
exclusive_retrieval

2 >udd>m> jg>dr>model.db
exclusive retrieval

3 >udd>m> jg>dr>submodel.dsm
update

9-16 AW53-04

mrds_call mrds_call

! display mrds scope settings

Scope settings for process: JGray.Multics.a
process number: 2740040441

Opening index: 1
mode: exclusive retrieval

Concurrency control version: 5
data base model path: >udd>m>jg>dr>model.db
data base version: U
Relation Permits Prevents

sample r amd

Opening index: 2
mode: exclusive retrieval

Concurrency control version: 5
data base model path: >udd>m>jg>dr>model.db
data base version: 4

Relation Permits Prevents
sample r amd

Opening index: 3
mode: update

Concurrency control version: 5
data base model path: >udd>m>jg>dr>model.db
data base version: 1
Opened via submodel: >udd>m>jgd>dr>submodel.dsm
submodel version: 5

No scope currently set for this opening.

Function: retrieve, r

This function retrieves and displays selected information from a data base.

Usage

mrds_call retrieve nvals data_base_index {selection_expression} {se_ values}
{-control_args}
where:
1. nvals

is a decimal 1integer greater than =zero specifying the number of
attributes to be retrieved from the selected tuple.

9-17 AW53-04

mrds_call mrds_call

2. data_base index
is the index displayed by the open function.

3. selection expression
is a character string as defined in "Examples of Selection Mechanisms"
in Section 4. This argument must be omitted if the -segment control
argument is specified.

4. se_values
is a selection expression value (none, one, or more) for each control
code (designated by .V.) appearing in the <selection expression>,
including temporary relation (rel index) designations. These must
correspond in order and quantity with the control codes specified in
the <selection expression>.

5. control args
may be one or both of the following:

-all, -a
specifies that all selected tuples be printed. If not specified,
only the first selected tuple is printed and any subsequent tuples
must be explicitly retrieved by a new retrieve function using "-another"
for the selection expression.

-segment path, -sm path
specifies that the selection expression is to be taken from the
designated segment (see "Notes" below).

Notes

The selection expression and the -segment control argument are mutually
exclusive. If selection expression is specified, that argument becomes the selection
expression for the retrieval. If the -segment control argument is specified,
the selection expression is taken from the segment designated by path.

For shared openings, read_attr scope must have been set on any relations
appearing in the range clause.

For attribute level security, read _attr access is required for attributes
appearing in the select or where clause.

Examples

Assume the segment named query contains:

-range (x phone_book)
-select x.name x.mail drop
-where x.phone = .V,

-

mrds call retrieve 2 1 993-3065 -all -segment query

9-18 AW53-04

mrds_call mrds_call

Values are:

Jones, James A.
B-116

*EXXER

Smith, Roger D.
B-116

(END)

Both Jones and Smith have the specified phone number and are therefore selected.

! mrds_call retrieve 2 1 "-range (x phone book)
! -select x.name x.mail drop
! -where x.phone = ""993-3065"""

Values are:

Jones, James A.
B-116

The command above did not use "-all" as a control argument, so the second value
"Smith, Roger D. B-116" is not printed. This second value remains available to
the user if a second retrieve function with a selection expression of "-another™
is invoked prior to executing a retrieve function where the selection expression
consists of an <alpha expression> (see "Formal Syntax").

! mrds_call retrieve 2 1 -another
Values are:

Smith, Roger D.
B-116

results in the printing of the next value selected by the previous retrieve
function's selection expression where the -all control argument is not used.

NOTE: The selection expression contained in the segment named query (first
example) and -another (third example) are not contained in quotes.
The selection expression in the second example specifies an argument
in the mrds_call command line and is contained in quotes. The literal
phone number value must be double quoted.

If aretrieve function is performed on a temporary relation, then the rel index
must be specified as a se value. The command line:

mrds_call retrieve 2 1 "-range (x .V.)
-select x" 6 -all

retrieves information from the temporary relation with the rel index "6".

NOTE: Only a temporary relation index, not a relation name, may be used as
a substitution value for the ".V." argument in the range clause.

9-19 AW53-04

mrds_call mrds_call

Function: set_modes, sm

This function allows the user to control the amount of error or display
information returned by mrds_call.

Usage
mrds_call set_modes {options}

where options may be either or both of (a) and (b) below:

(a) 1long err to allow output from the sub_error_ condition or short _err to
suppress it.

(b) 1list to allow the opening information to be displayed after an open function,
or no list to suppress it.

Note

If the set_modes function is not used, the default wmrds_call action 1is
long _err and list.

Function: set scope, ss

This function is used only with shared openings obtained by using the opening
modes of retrieval or update. 1Its purpose 1is to set the operations that are to
be permitted to the user and the operations that are to be simultaneously prevented
for other openers of the same data base. The concurrency control modes, or
scopes, are set on a relation basis.

Usage

mrds call set scope data base index relation_name_1 permit_scope_1

“prevent scope 1 {... relatlon name N permlt scope N prevent scope N}
{wait_seconds?

where:

1. data base_index
is the opening index displayed by the open function for the desired
opening of the data base.

2. relation_name I

is the name of the relation for which the concurrency control permit
and prevent scope modes are to be set.

9-20 AW53-04

mrds_call mrds call

3. permit_scope I
is the set c¢f operations that the user wishes to permit himself to
be allowed for this relation. See the table of scope mode abbreviations
below.

4. prevent scope I
is the set of operations that the user wishes to deny other openers
of the same data base for this relation. See the table of scope
mode abbreviations below.

5. wait_seconds
is an optional argument. This is the amount of time, in seconds,
the user's process will wait before failing an attempt to set scope
modes that conflict with another user's permit and prevent scope.
The full wait time is used only if the conflict remains in effect
for the entire period; otherwise, scope will be granted. If this
argument is not given, the wait seconds defaults to 30.

Notes

The abbreviations to be used for the scope modes for either permits or
prevents are as follows:

a (or s) append tuple
d delete tuple
m modify attr
n null

r read attr

u update

The permit (and prevent) scope is made up of a concatenation of the desired
operation abbreviations. If "n" permit scope is given, then no other mode may
be specified for that permit. Each of "r", "a", "m", "d", and "u" may be used
only once in the same permit scope. The abbreviation "u" is the same as specifying
a permit scope of "amd".

Scope settings can be displayed by the get scope function or by the commands
display mrds_scope settings and display mrds_db status.

Scope can be deleted entirely or in part via the delete_scope function.
Scope can be set on all relations at once using the set scope all function.

All scope must be deleted from all relations before scope can again be set
on any relation. This prevents possible deadlock situations among processes
requesting concurrent access protection.

9-21 AW53-04

mrds_call mrds call

Access requirements on the relation(s) for which scope is being set in
terms of Multiecs ACLs and MRDS access modes are as follows:

REQUESTED RELATION - MRDS ACCESS (Secure

PERMIT MSF ACL Pata Bases Only)

a rw a

d rw d

m rw m on some attr in the
relation

r r r on some attr in the
relation

n r n

Examples

! mrds_call open two_rels update
Open data base is:
1 >udd>m>jg>dr>two_rels.db
update
! mrds_call set_scope rell ru n rel2 r amd

! display mrds_scope_ settings

Scope settings for process: JGray.Multics.a
process number: 2740040441

Opening index: 1
mode: update

Concurrency control version: 5
data base model path: >udd>m>jg>dr>two_rels.db
data base version: 4

Relation Permits Prevents
reli ramd n
rel2 r amd

! mrds_call delete scope all 1
! mrds_call set_scope 1 rell rn
! mrds_call set_scope 1 rel2 an

mrds_call: Attempt to define scope while scope is not empty (from
dsl_$set_scope).

9-22 AW53-04

mrds_call mrds_call

Function: set_scope_all, ssa

This function is used only with shared openings obtained by using the opening
modes of retrieval or update. Its purpose is to set the operations that are to be
permitted to the user and the operations that are to be simultaneously prsvented for
other openers of the same data base. The concurrencycontrol modes, or scopes, are set
on all relations at once.

Usage
mre ssa data_base_index permit_scope prevent_scope {wait_seconds}

where:

1. data_base_index
is the opening index displayed by the open function for the desired
opening of the data base.

2. permit_scope
is the set of operations that the user wishes to permit himself to be
allowed for all relations. See the table of scope mode abbreviations
below.

3. prevent_scope
is the set of operations that the user wishes to deny other openers of the
same data base for all relations. See the table of scope mode
abbreviations below.

4, wait_seconds
is an optional argument. This is the amount of time, in seconds, the
user's process will wait before failing an attempt to set scope modes that
conflict with another user's permit and prevent scope. The full wait
time is used only if the conflict remains in effect for the entire period.
Otherwise, scope will be granted. If this argument is not given, the
wait_seconds defaults to 30.

Notes

The abbreviations to be used for the scope modes for either permits or prevents
are as follows:

(or s) append_tuple
delete_tuple
modify_attr
null
read _attr
update

cSBan

The permit scope is made up of a concatenation of the desired operation
abbreviations. If "n" permit scope is given, then no other mode may be specified for
that permit. Each of/:r", "at, "m", "d", and "u" may be used only once in the same

12/86 9-23 AWS53-04D

mrds _call mrds_call
permit scope. The abbreviation "u" is the same as specifying a permit scope of "amd".
A1l of the above also applies to the prevent scope.

Scope settings can be displayed by the get scope function or by the commands
display_mrds_scope_settings and display mrds_db_status.

Scope can be deleted entirely or in part via the delete_scope function.
Scope can be set on an individual relation basis by using the set_scope function.

All scope must be deleted from all relations before scope can again be set on-any
relation. This prevents possible deadlock situations among processes requesting
concurrent access protection.

Access requirements on the relation(s) for which scope is being set in terms of
Multics ACLs and MRDS access modes are as follows:

REQUESTED RELATION MRDS ACCESS (Secure

PERMIT MSF ACL Data Bases Only)

a rw a

d rw d

m rw m on some attr in the
relation

r r r on some attr in the
relation

n r n

Examples

! mrds_call open two_rels update
Open data base is:
1 >udd>m> jg>dr>two_rels.db
update
! mrds_call set_scope_all ra md 10

! display_mrds_scope_settings

Scope settings for process: JGray.Multics.a
process number: 2740040441

Opening index: 1
mode: update

Concurrency control version: 5

data base model path: D>udd>md>jg>dr>two_rels.db
data base version: U4

12/86 9-24 AW53-04D

mrds_call mrds_call

Relation Permits Prevents
rell ra md
rel2 ra md

Function: store, s

This function adds a specified tuple to the designated relation.

Usage

mrc s data_base_index relation_expression new_values

Wwhere:

1. data_base_index
is the index displayed by the open function.

2. relation_expression
indicates therelation to whicha tuple is to be added. It may be the name
of a relation or it may be "-another™.

3. new_values
are attribute values to be added to the new tuple.

Example

mrds_call store 1 phone_book "Newperson, John J."
Engineering B-116 993-3062

results in the entry associated with Newperson being added to the phone book.

The following example references step 3¢ under "MRDS Tutorial" in Section 2:

mrds_call store 1 Comp_mgr Mfg 51603
mrds call store 1 Employee Akins 57111 Eng

Notes

If an incomplete tuple is being stored (i.e., a tuple with one or more unknown
attribute values), the user must select null values for inclusion in the tuple to
prevent shifting of attribute values within domains/attributes. A suggestion is to
enter a blank ("™ ") in attributes requiring alphabetic data and

12/86 9-25 AW53-04D

mrds_call mrds_oall

a "-1" (or some type of numeric value that cannot be confused with valid data)
for an attribute requiring numeric data. '

Primary key attributes with null values in the key should never be entered
in a data base.

If the relation expression is the name of a relation, the new tuple is
added to the named relation. If the relation expression is "-another", the new
tuple is added to the relation specified in the most recent invocation of store
in which the relation expression parameter consisted of a relation name. The
user of any mrds call command requiring a <{selection expression> causes the
previously specified relation name to become unavailable for subsequent reference
using "-another", until it is again established through the use of a mrds call
store function with a relation expression consisting of the relation name.

The use of "-another" provides an efficient means to store several tuples
into a single relation via consecutive mrds call store functions.
For shared openings, append tuple scope must have been set.on the relation.

For attribute level security, the relation must have append tuple access.

9-26 AW53-04

SECTION 10

OBSOLETE INTERFACES

This section is obsolete and has been deleted from the manual.

10-1 AW53-04B

SECTION 11

CHANGES IN MRDS

This section is obsolete and has been deleted from the manual.

12/86 11-1 AW53-04D

SECTION 12

EFFECT OF DATA BASE VERSION ON COMMANDS AND SUBROUTINES

This section is obsolete and has been deleted from the manual.

3/84 12-1 AW53-04B

SECTION 13

PERFORMANCE CONSIDERATIONS

The following discussion on performance is divided into the following areas:

) Data base creation
L) Data base use
[] Selection expressions

These areas are not completely independent; the size and number of relations
in a data base will affect the format of the selection expressions as will the
number of times a data base is opened and the use of temporary relations. The
DBA and the user must also be concerned with performance versus storage and
performance versus maintainability considerations.

DATA BASE CREATION

For best retrieval performance, an attribute that is used tc select tuples
(i.e., appears in a where clause) should be either a secondary index, part of
the key head (see key head access methods below), or a primary key. If the
attribute is always used with some other attribute that is a secondary index,
part of the key head, or the primary key, then this rule does not apply. An
example might be latitude and longitude.

Indexing an attribute increases storage requirements for the relations by
the length of the attribute plus 2 words for key overhead for each tuple in the
relation. In addition, the time to do an update (store, modify, delete) operation
increases slightly for each indexed attribute in the relation (it is independent
of the number of tuples in the relation). However, the time it takes to select
a set of tuples based on a condition on an indexed attribute is reduced tremendously
-- from a linear function of the number of tuples in the relation to a logarithmic
function.

A normalized data base (see "Data Base Design" in Section 2) will, in
general, require fewer operations to do an update. Multiple operations may be
done via one call to dsl , (e.g., modifying all occurrences of 249-7790 to
249-8861) but may require more joins to select a tuple subset. While the join
cperation will probably be slower than performing the multiple update operations
and will definitely cause a more complex selection expression to be used, it is
felt that the advantages obtained by normalization, which are the removal of the
update anomalies and the removal of duplicated data, outweigh its disadvantages.

Attribute values are encoded whenever the attribute is indexed or part of
the primary key. This 1is done so0 that the data value and the bit pattern
representing the data value have the same ordering. This is not the usual case,
since the bit pattern of a negative number (fixed bin data type) is larger than
any positive number because of the sign bit. Data types of character (N), where
N is some integer, do not require any encoding. Data types of fixed bin (N,P)
aligned, where N and P are integers, require minimal encoding (changing the sign

13-1 AW53-04

bit). All other data types require more complex encoding schemes. Attribute
values and constants may need to be converted to other data types for comparison
with other attributes or constants. The data types character (N) nonvarying and
fixed (N, 0) are compared most efficiently.

Data Base Use

%*

If a small portion of a relation is frequently accessed, a temporary relation
defined over the tuple subset can improve retrieval speed. For example, suppose
there are multiple queries (population, voter registration, per capita income,
etc.) about thecities in a given state. Rather than composing selection expressions
that include the state name, it is faster to create a temporary relation composed
of Jjust cities from the given state. The amount of performance improvement
depends on the size of the base relation (total number of cities), the percentage
of tuples that are always being considered (cities in the given state versus
size of base relation), and the number of queries. The process of defining the
temporary relation does require that the temporary directory have enough quota
to hold the relation. This technique can also be used when the tuple subset
comes from, or at least depends on, more than one relation so that the number of
join operations is reduced.

Calling the dsl_ entries store, retrieve, modify, and delete with a long
argument list does not incur the cost of breaking a structure down into its
components and is, therefore, more efficient than making a call with a structure.

To avoid the cost of data conversion, the data type of the arguments in the
calls to dsl_ store, retrieve, modify, and delete should match the attribute
data type that they correspond to. To reduce conversion of the constants used
in the selection expression, a ".V." may be used in place of the constant and
an argument of the correct data type and value placed in the argument 1list.

A submodel opening has no performance effect after the opening phase. The
opening phase may be faster or slower depending on the number of relations in
the submodel view versus the number of relations in the data base. If the data
base contains substantially more relations than the submodel view, a submodel
view opening will be faster.

Because of the increased checking that must be done, operations on a secure
data base are less efficient than the same operations performed on an unsecured
data base.

SELECTION EXPRESSION

To minimize the cost of data movement, the minimum attributes needed should
be selected from the tuples in the range (i.e., if a tuple has 13 attributes and
only 7 are actually going to be used by the caller, it is faster to select only
those 7 attributes rather than all 13).

When all attributes in a tuple are to be selected, it is more efficient to
use the tuple variable name in the select clause rather than individually specifying
each attribute.

To avoid the high cost of duplicate processing, the -dup option may be
used. However, this option should only be used where the user can be certain
that duplicate tuples will not occur or will not be a problem. Simple cases
where duplicates cannot occur will have -dup forced by MRDS. These cases are
limited to a single tuple variable where the entire key is selected.

3/84 13-2 AW53-04B

Wherever possible, it is desirable to compare attributes to constant values
rather than other attributes. For example,

TVl.key = 5 & TV2.key > TVl.key
is less efficient than

TVl.key = 5 & TV2.key > 5

Explicitly stating transitive conditions is also less efficient than leaving the
condition implicit, not only because of the smaller number of terms in the where
clause but because it prevents optimization. For example,

TVl.key = TV2.key & TV2.key = TV3.key
& TV3.key = TVi.key

is less efficient than

TVl.key = TV2.key & TV2.key = TV3.key

It should be noted that the use of expressions, functions, and set operations
is extremely slow.

The following is a list of the most to least efficient methods of accessing
a relation for relations with a large number of tuples. For relations with a
small number of tuples it is faster to do sequential searches because of the
reduced overhead. The exact number of a large or small number of tuples depends
on the opening mode, the number of duplicate secondary index values, and the
number of attributes in the primary key. That is, it depends on the selectivity
of the secondary indices and key heads.

Primary Key Equality MOST
Key Head Equality

Key or Key Head Range

Indexed Attribute

Sequential Search ’ LEAST

L] Primary Key Equality implies that all the key attributes of the tuple
variable (TV1) are equated to either a constant or to some other attribute
in another tuple variable (TV2) whose value can be determined before
the value of TVI1.

[Key Head Equality implies that from 1 to N-1 of the tuple variable's
(TV1) N key attributes are equated to either a constant or to some
other attribute in another tuple variable (TV2) whose value can be
determined before the value of TV1l, In addition, the N-=1 attributes
must comprise a key head, that is the attributes must be the first N-1
attributes of the primary key, the order of attributes being determined
by their order in the relation as defined by the cmdb source.

L Key or Key Head Range implies that a condition other than equality is
being applied to the first key attribute of the tuple variable.

L Indexed Attribute implies that a condition is being applied to some
indexed attribute.

3/84 13-3 AW53-04B

—%

L Sequential Search is used when the tuples in the tuple variable must
be searched sequentially.

In cases where more than 1 access method may be used, the most efficient
is chosen.

A1l where clause expressions are converted into disjunctive normal form as
the first step in processing. Where clause expressions that are already in
disjunctive normal form do not need to be converted and are, therefore, processed
faster.

A vwhere clause expression in disjunctive normal form has the form:
AVBI{CIDIE...
where each A, B, C, D, E, ... may contain any number of terms, but the terms

must all be and'ed (&) together (an AND-GROUP). Each term must have the form:

(tup_var_Y.attr rel_op tup_var_X.attr)

Example

The expression:

“(TVl.at1 = 200) &
((TV1.,at2 > TV2.at1) | (TVi.at2 > TV2.atl))

is not in d153unct1ve1norma1 form. To convert into that form the AND (&) operator
must be distributed, creating the expression:

(TVi.at1

200) & (TVi.at2 > TV2.at1)

]
(TVi.at1 200) & (TVi.at2 > TV2.atl)

"

The expression:

(TVi.at1 = 200) &
“((TVi.at2 > TV2.at1) | (TVli.at2 > TV2.atd))

is not in disjunctive normal form. To convert into that form, gorgan's rules
may be applied to remove the NOT (") operator from the expression. Notice that
the OR operator is removed without extra effort and the sense of the relational
operators is reversed.

(TVi.at1 = 200) & (TVi.at2 <= TV2.at1) &
(TVi.at2 <= TV2,ath)

MRDS constructs what it considers to be an optimum order for searching each
tuple variable within each AND-GROUP, It does not optimize for more than one
AND-GROUP at a time. In the first example (above) there would be two searches
of tuple variable TV1 both looking for tuples where atl equals 200. The best
performance is therefore achieved if the where clause expression contains only
one AND-GROUP,

3/84 13-4 AW53-04B

MRDS estimates the number of tuples that each tuple variable in an AND-GROUP
(see disjunctive normal form) will select when generating the tuple variable
search order for an AND-GROUP. These estimates may not be valid and may result
in a search order that is not optimum. The major reason for an invalid estimate
is a term that selects a disproportionately 1large or small number of tuples
(i.e., the actual number of tuples selected depends on the data and cannot be
determined without actually looking at the data), which defeats the purpose of
the optimization. Note that the value of the estimate is not really important;
only its magnitude when compared to the other estimates for the terms in the
AND-GROUP is important. As long as their relative magnitudes are correct, the
estimates will generate an optimum search order.

The -no_ot option of the selection expression allows the user to tell MRDS
the order in which the tuple variables should be searched. This option coupled
with the -print search order option allows the user to experiment to find a
search order better than the one MRDS would generate. It has, however, several
drawbacks, the most important of which is that it prevents the search order from
changing due to changes in the data base content. Another is that only one
search order can be defined and it will be applied to all the AND-GROUPS in the
where clause expression. A very subtle drawback is the ability to select (without
checking) what appears to be the obviously correct (but in fact incorrect) search
order to save the time that MRDS would spend determining a search order. Search
order determination is not obvious and should be approached with care.

Example 1
Given two relations rel A and rel B with the same number of tuples (say
1000) and the selection expression:
-range (A rel A) (B rel B)
-select A B
-where A.key attr = B.non_key_attr

There are two possible search orders:

1. Search tuple variable A sequentially. For each tuple in A, search
tuple variable B sequentially for a non_key attr that equals the key_attr
in A. This requires that the 1000 tuples in rel B be searched for
each tuple in relation rel A for a total of 1000 * 1000 searches.

2. Search tuple variable B sequentially. For each tuple in B, use the
primary key equality access method to find a tuple in tuple variable
A. This requires that each tuple in rel A and rel B be searched only
once for a total of 1000 + 1000 searches.

Obviously the second search order is superior.
Example 2

Casual inspection does not always immediately reveal the optimal search
path. If the where clause in the previous example was changed to:

-where A.key attr = B.indexed_attr

then the search order "B first then A" is faster.

However, if the size of relation A is changed to 10 tuples, the costs of
the searches become:

A before B - - - 10¥(cost of index search of B)

B before A - - - 1000*(cost of key search of A)

13-5 AW53-04

Even for a key search cost several times smaller than an index search, the
search order "A before B"™ may be the faster access method.

The cost of finding an optimal search order for an AND-GROUP is a factorial
function of the number of tuple variables in that AND-GROUP (all possible orderings
of the tuple variables are examined). If the where clause expression contains
only one AND-GROUP or all the AND-GROUPS have the same search orders, then
processing can be speeded up by using the -no ot option. The search order may
be determined by executing the selection expression once with the -print search order
option.

From time to time the selection expression should be executed with the
-print_search order option but without the -no ot option to be sure that the
search order is still optimal. The time interval between these executions will
depend on the volatility of the data base and must be judged on an individual
basis by the user.

Note that the search order for an AND-GROUP that contains tuple variables
defined over relations that are empty or have only a few tuples in them (compared
to the other relations involved in the AND-GROUP) may change drastically as
those relations are loaded with more tuples.

The -print search order selection expression option will cause the tuple
variable search order for each AND-GROUP (see disjunctive normal form) in the
where clause expression to be displayed. The display is output over the user output
switch. Each tuple variable is numbered; number 1 is searched first, 2 second,
ete. Each AND-GROUP is separate and the tuple variable numbering starts over at
1. The display for each tuple variable contains:

1. the tuple variable name

2 the relation name the tuple variable is defined over
3. the access method

L

an estimate of the number of tuples selected from the tuple variable
(not displayed to a non-DBA using a secure data base)

5a. the relational operator(s) and the attribute into which it is applied
for the access methods Index Attribute and Key or Key Head Range (not
displayed to a non-DBA using a secure data base)

5b. the number of key attributes for the access methods Primary Key Equality
and Key Head Equality (not displayed to a non-DBA using a secure data
base)

For the case where all the tuple variables are searched sequentially, a
header to that effect is output along with each tuple variable name, its relation
name, and the relation size.

If a tuple variable (TV1) occurs in the select clause but does not occur in
an AND-GROUP (see disjunctive normal form) in the where clause, then when that
AND-GROUP is processed, a cross product between that tuple variable (TV1) and
the tuple variables in the select clause that have conditions in the AND-GROUP
will be done. This implies two things:

1. TV1 is searched sequentially
2. the number of tuples returned will be S¥*N,

where S is the number of tuples that would be selected if TV1 were not in the
select clause and N is the number of tuples in the relation TV1 refers to.

13-6 AW53-04

When there is no where clause, a cross product is formed between all the
tuple variables in the select clause resulting in:

nTV1 ¥ nTV2 ¥ ... ¥ nTVM

tuples retrieved, where nTVi is the number of tuples in the relation that tuple
variable TVi refers to.

Note that the actual number of tuples retrieved may be smaller if duplicate
processing is being done.

13=-7 AW53-04

SECTION 14

RESTRUCTURING SUBSYSTEM

The Restructuring Subsystem is a facility available to the DBA to perform certain
restructuring operations on MRDS data bases. The currently supported restructuring
operations are the creation of new:

attributes

domains

relations (and optional population)
secondary indexes

data base models

the deletion of existing:

attributes
domains

relations
secondary indexes

and the renaming of existing:

& attributes
- domains
* relations

To invoke the Restructuring Subsystem, the DBA must use the restructure mrds db
(rmdb) command. The rmdb subsystem is an interactive subsystem that uses the standard
subsystem utility package (ssu_). It supports certain features that are common to
other subsystems such as abbrev processing, help request, the exec_comrequest, etc.
There are also, quite naturally, requests that are specific to the rmdb subsystem.

Before a data base can be restructured, it must be quiesced by the rmdb facility
(see Note). This is accomplished by supplying the data base pathname to the rmdb
command line or explicitly by the ready _db request within rmdb. Similarly, exiting
the subsystem with the quit request causes the data base to be unquiesced, and makes a
free_db request available for explicit unquiescing.

Note: If the user has quiesced the data base (using the quiesce mrds_db
command) prior to entering the restructure_mrds dbsubsystem, it uses
the guiescent data base, and leaves it quiesced upon exit.

When restructuring takes place, history of the restructuring
operation is retained in the model. This restructuring history can be
displayed by wusing the -history control argument to the
display_mrds dm command at Multics command level. There is also an
rmdb request that is a request-level interface to the display mrds_dm
command .

Although the subsystem is "interactive,™ it is possible under
certain conditions for a restructuring operation to take a
considerable amount of time. Given that, it is possible for a

12/86 14-1 AW53-04D

12/86

restructuring operation to be interrupted before completion, leaving
the data base in an inconsistent state. For this reason, when a
restructuring operation begins, a flag in the model is set marking the
data base as inconsistent. That flag is not reset until the
restructuring operation is completed. In addition, a textual reason
for inconsistency is saved (e.g., "Creating index IndA in relation
RelB"). Further, an rmdb request, a "make-consistent operation™”, is

saved. In the example stated it would be "delete_index RelB IndA".

In some cases, the rmdb request may be null (since executing the
request over again would result in the same inconsistency).

If a data base is left in such a state, and a user attempts to open
it, an error message stating the reason for inconsistency is displayed
and the user 1s directed to contact the DBA. The DBA must invoke the
rmdb subsystem and access the data base. Upon determining that the
data base is inconsistent, rmdb queries the DBA whether or not the
make-consistent operation should be executed on theuser's behalf. A
positive response makes the data base consistent.

14-2 AW53-04D

restructure mrds_db restructure mrds_db

Name: restructure mrds_db, rmdb

This command is used to enter the MRDS Restructuring Subsystem to restructure a
given data base (see Notes below). If the data base does not exist it can be created.
If the data base exists, and is not already quiesced, then it is quiesced.

Usage

rmdb {db_path} {-control_args}

where:

1. db_path
is a relative or absclute path tc the data base tc be restructured.

2. control_args
can be chosen from the following:

-abbrev, -ab
enables abbreviation expansion and editing of request lines.

~-force, -fc
specifies that the data base be created if it does not already exist
without querying the user.

-no_abbrev, -nab

suppresses the abbreviation expansion and editing of request lines.
(Default)

-no_force, nfe
queries theuser if the data base does not exist, to determine if the data
base should be created. This argument overides the -force control
argument. (Default)

-no_prompt, -npmt
suppresses the prompt in the request loop.

-pathname db_path, -pn db_path
specifies the path of the data base used for restructuring. The
indicated data base is quiesced. This overrides any previously
indicated data bases given via the optional db_path argument (above), or
another -pathname control argument.

-profile path, -pf path
specifies the pathname of the profile used for abbreviation expansion.
The profile suffix is added if necessary. This control argument implies
-abbrev.

-prompt STR, -pmt STR
sets the request loop prompt to STR. (Default is "rmdb:")

-quiesce_wait_time N, -qwt N
sets the number of seconds that an attempt to quiesce waits for
conflicting data base users to depart before failing. (Default is O,
that is, no waiting before failing.)

12/86 143 AW53-04D

restructure mrds db restructure mrds_db

-relation type type {modes}, -rt type {modes}
specifies the type of relation to create if the data base does NOT already
exist. The supported types are vfile or data_management file (dmf).
The mode argument is only valid for dmf relations, and the supported modes
are any combination of protected, concurrency, or rollback separated by
commas. Anymode maybe preceded with a NOT sign (") tonegateit. (Also
see Notes below.)

~-request STR, -rq STR
executes STR as an rmdb request line before entering the request loop.

-temp dir path, -td path

provides the path of a directory that has more quota than the default of
the process directory when more temporary storage is needed to
restructure a large data base. If the user gets a record quota overflow
in the process directory during an rmdb invocation, then a new proc is
required. A retry of the rmdb invocation with the -temp dir argument,
giving a pathname of a directory with more quota than the process
directory, can then be done.

Notes

This command can only be used against a Version 4 or later data base and only by
the DBA. In addition, this command cannot be used against a data base that is already
open by any process. The data base can be opened (only by the process invoking this
subsystem) after the subsystem is entered by invoking linus or the mrds call command
via the ".." (or execute) request.

If a newdata base is to be created, and the -relation_type control argument is
not specified, then the default relation type is vfile.

Restructure Requests

The following list summarizes all of the restructuring requests.

identifies rmdb with the version number and the pathname of the data base
being restructured.

lists the available rmdb requests and active requests.

abbrev, ab
turns abbreviation processing ON or OFF and changes profile segments.

answer
supplies an answer to a question asked by a request.

create_attribute, cra
creates a new attribute based upon a previously defi
=1
4

ned domain. The
attribute is unreferenced until it is used in a r ti

1
aCion.

create_domain, crd
creates a new domain. A newlycreated domain is considered unreferenced

12/86 14 -4 AW53-0U4D

restructure mrds_db restructure mrds_db

although it has a corresponding attribute of the same name defined upon
itself.

create_index, cri
makes the indicated attribute a secondary index into the relation.

create_relation, crr
creates a new relation. An unpopulated relation can be specified by
listing the attributes that make up the relation; each attribute must
already be defined.

delete_attribute, dla
deletes the indicated attribute from the data base. The attribute is
removed from all relations in which it is referenced.

delete domain, d1ld
deletes the indicated domain from the data base. All attributes based
upon the domain are also deleted causing restructuring of relations
referencing those attributes.

delete_ index, dli
deletes the secondary index over the indicated attribute in the relation.

delete relation, dlr
deletes the indicated relation from the data base.

display data_model, ddm, dmdm
displays details of the data base model.

do
substitutes args into the request line and passes the result to the rmdb
request processor.

exec_com, ec
executes the rmdb exec_com indicated by ec_path. The ec_path arguments
are passed to the exec_com processor.

execute, e
executes a Multics command line after evaluating rmdb active requests.

free_db, fdb
ungquiesces the data base.

help
displays information about request names or topics. A list of available
topics is produced by the list help request.

if
conditionally executes a request.
list_help, 1h

displays a list of available info segments whose names include a topic
string.

list_requests, 1lr
displays information about rmdb requests.

quit, q

restores the current data base to a non-quiescent state (if the current
data base was quiesced by the rmdb subsystem) and leaves rmdb.

12/86 14-5 AW53-04D

restructure mrds_db restructure mrds_db

ready db, rdb
quiesces the indicated data base and makes it available for
restructuring. Note that only one data base can be restructured at any
given time. If the data base does NOT exist, a query ismade to determine
if an empty data base is to be created.

rename_attribute, rna
renames the indicated attribute.

rename_domain, rnd
renames the indicated domain and its corresponding attributes.

rename_relation, rnr
renames the indicated relation.

subsystem name
displays the name of the subsystem, "rmdb".

subsystem_version
displays the current version of rmdb.

The remainder of this section contains a detailed description of each request,

including standard subsystem environmental requests, that is, requests common to

other

12/86

subsystems such as abbrev, answer, do, etc.

14-6 AW53-04D

restructure_mrds_db restructure mrds_db

Request:

This request identifies rmdb with the Version number and the path of the data base
being restructured.

Usage
Example

1

rmdb 1.0: >udd>Demo>mrds>. ..
Request: ?

This request displays the available restructure_mrds_db requests.

Usage

Example

The following list is displayed when "?" 1is entered by the user to the prompt

"rmdb:".

rmdb: ?
rmdb: Available rmdb requests:

. display_data_model, exec_com, ec
create_attribute, ddm, dmdm execute, e
cra free db, fdb execute string, exs
create_ domain, crd ready db, rdb help
create_index, cri rename_attribute, if
create relation, crr rna list_help, 1lh
delete attribute, rename_ domain, rnd list_requests, 1r
dla rename_relation, rnr quit, q
delete domain, dld abbrev, ab substitute_arguments,
delete_index, dli answer substitute_args,
delete relation, dlr do sbhag

Type "list requests" for a short description of the requests.

12/86 14-7 AW53-04D

restructure mrds_db restructure _mrds_db

Request: abbrev, ab

This request controls abbreviation processing within the subsystem. As an
active request, it returns "true" if abbreviation expansion of request lines is
currently enabled within the subsystem and "false" otherwise.

Usage

ab {-control_argsl

Usage as an Active Request

[ab]

where control _args can be chosen from the following (and cannot be used with the active
request):

-off
specifies that abbreviations are not to be expanded.

-on
specifies that abbreviations should be expanded. (Default)

-profile path
specifies that the segment named by path is to be used as the profile
segment; the profile suffix is added to path if not present. The segment
named by pat h must exist.

Notes

This subsystem provides command line control arguments (-abbrev, -no_abbrev,
-profile) to specify the initial state of abbreviation processing within the
subsystem. For example, a Multics abbreviation can be defined to invoke theread _mail
subsystem with a default profile as follows:

.ab rdm do "read mail -abbrev -profile [hd]>mail_ system &rfi"

If invoked with no arguments, this request enables abbreviation processing
within the subsystem using the profile that was last used in this subsystem
invocation. If abbreviation processing was not previously enabled, the profile in
use at Multics coinmand level is used; this profile is normally
[home dir]>Person_id.profile.

See the abbrev command in the Multics Commands for a description of abbreviation
processing.

Request: answer

This request provides preset answers to questions asked by another request.

12/86 14-8 AW53-04D

restructure_mrds_db restructure_mrds_db

Usage

answer STR {-control_args} request line

where:

1. STR
is the desired answer to any question. If the answer is more than one
word, it must be enclosed in quotes. If STR is -query, the question is
passed on to the user. The -query control argument is the only one that
can be used in place of STR.

2. request_line
is any subsystem request line. It can contain any number of separate
arguments (i.e., have spaces within it) and need not be enclosed in
quotes.

3. control_args
can be chosen from the following:

-brief, -bf
suppresses display (on user terminal) of both the question and the
answer.

-call STR

evaluates the active string STR to obtain the next answer in a sequence.
The active string is constructed from subsystem active requests and
Multics active strings (using the subsystem "execute" active request).
The outermost level of brackets must be omitted (i.e., "forum_list
-changed") and the entire string must be enclosed in quotes if it contains
request processor special characters. The return value "true" is
translated to "yes," and "false" to "no." All other return values are
passed as is.

-exclude STR, -ex STR
passes on, to the user or other handler, questions whose text matches STR.
If STR is surrounded by slashes (/), it is interpreted as a gqedx regular
expression. Otherwise, answer tests whether STR is literallycontained
in the text of the question. Multiple occurrences of -match and -exclude
are allowed (see "Notes™ below). They apply to the entirerequest line.

-match STR
answers only quastions whose text matches STR. If STR is surrounded by
slashes (/), it is interpreted as a qedx regular expression. Otherwise,
answer tests whether STR is literally contained in the text of the
question. Multiple occurrences of -match and -exclude are allowed (see
"Notes" below). They apply to the entire request line.

-query
skips the next answer in a sequence, passing the question on to theuser.
The answer is read from the user_i/o I/0 switch.

-then STR
supplies the next answer in a sequence.

-times N

gives the previous answer (3STR, -then STR, or -query) N times only (where
N is an integer). .

12786 -9 AW53-04D

restructure mrds_db restructure_mrds_db

Notes

The answer request provides preset responses to questions by establishing an ON
unit for the condition command question and then executes the designated request

line. If any request in the request line calls the command query subroutine
(described in the Multics Subroutines) to ask a question, the ONunit is invoked to
supply the answer. The ON unit is reverted when the answer request returns to

subsystem request level. See "List of System Conditions and Default Handlers" in the
Reference Manual for a discussion of the command question condition.

If a question is asked that requires a yes or no answar, and the preset answer is
neither "yes"™ or "no," the ON unit is not invoked.

The last answer specified is issued as many times as necessary, unless followed
by the -times N control argument.

The -match and -exclude control arguments are applied in the order specified.
Each -match causes a given question to be answered if it matches STR; each -exclude
causes it to be passed on if it matches STR. A question excluded by the -exclude
control argument is reconsidered if it matches a -match later in the request line. For
example, the request line:

answer yes -match /fortran/ -exclude /fortran_io/ -match /" fortran_io/
answers questions containing the string "fortran", except that it does not answer

questions containing "fortran io". It does, however, answer questions beginning
Wwith "fortran io".

Request: create_attribute, cra

This request creates an unreferenced attribute in the currently readied data
base. .

Usage

cra attributel domainl {...attributeN domainN}

where:

1. attributei
is the name of the attribute to be created.

2. domaini
is the name of the underlying domain. The domain must already exist.

Request: create domain, crd

his request creates an unreferenced domain in the currently readied data base.

12/86 14-10 AW53-04D

restr

ucture mrds_db restructure mrds_db

Usage

where

1.

crd domain_name data_type {-control args}

domain_name
is the name of the domain toc be created.

2. data_type .
is the underlying data type of the domain. If the data_type contains
spaces or parentheses, it MUST be quoted. See "Notes" for a list of
supported data types.
3. control_args
can be chosen from the following:
-check procedure path, -check proc path
performs data verification checks (such as ensuring valid dates) upon
storage into the data base. "path"™ may be an absoclute or relative
pathname.
-decode_declare data_type, -decode_dcl data_type
is the underlying data type of the argument to the decode procedure for
this domain. See "Notes" for a list of supported data types.
-decode_procedure path, -decode proc path
) performs data decoding upon retrieval from the data base, normally the
inverse of the encode procedure. "path" may be an absolute or relative
pathname.
-encode procedure path, -encode proc path
performs data encoding (such as the names of the states of the U3SA to
integers 1-50) before storage in an internal data base form. "path" may
be an absolute or relative pathname.
Notes
Any legal PL/1 scalar data type that can be declared using the following
declaration description words is allowed in MRDS.
aligned float or floating
binary or bin nonvarying
bit precision or prec
character or char real
complex or cplx varying or var
decimal or dec unaligned or unal
fixed

Request: create_index, cri

12/86

This request creates a secondary index for the attribute in the relation.

h-11 AW53-04D

restructure _mrds_db restructure mrds_db

Usage

cri relation _name attribute name

where:
1. relation_name

is the name of the relation to be restructured.
2. attribute name

is " the name of the attribute to be indexed.

Request: create_relation, crr

This request creates a new relation in a data base.

Usage

crr relation_name {rel attribute_list} {-control_args}

where:

1. relation_name
is the name of the relation to be created.

2. rel _attribute_list

is a 1list of the attribute names used 1in the relation.
rel attribute list has the syntax of attr 1 attr 2 ... attr n (where
"attr "s are the attribute names of the attributes to be used for the
relation). The attribute names that are to make up the primary key of the
relation must have an appended "¥". The rel_attribute list cannot be

used if the -seleotlon exp oontrol argument is provided.

3. control_args
can be chosen from the following:

-index STR, -ix STR

specifies the list of attributes in the relation that are indexed.

has the syntax of attr 1 attr 2 ... attr _n (where "attr

"s are the

12/86

attribute names of the attributes to be indexed). If the -selection exp
control argument is used, the -index control argument must precede the
-selection_exp control argument.

~selection_exp STR {select_values}, -se STR {select_values}

STR is a selection expression that defines relation attributes that are
to be created and populated using the data selected by the selection
expression. See "help mrds.selection_expressions" for the
define_temp rel selection expression specification. The selection
expression must be a separately quoted string with any select_values
provided as individual arguments. The -selection_exp control argument,

Ly . N - P T Y

if provided, must be the iast control argument.

i4-12 AW53-04D

restructure_mrds_db restructure_mrds_db

Request: delete_attribute, dla

This request deletes referenced or unreferenced attributes from a MRDS data
base.

Usage

dla {attribute_namel {...attribute nameN} {-control_args}

where:

1. attribute namei
is the name of the attribute(s) to be deleted from the MRDS data base.

2. control _args
can be chosen from the following:

-all, -a .
deletes all attributes defined in the MRDS data base. This control
argument 1is inconsistent with =-check.

-brief, -bf
suppresses the -long display. (Default) The last occurrence of -brief
and -long on the command line takes effect.

-check, -ck
prevents the deletion of any attributes selected during the execution of
this command and, instead, traces all implied operations upon the data
base and displays them on the terminal. This trace consists of a
statement for each attribute that is referenced, listing the relations
that reference the attribute.

~-force, -fc
prevents the query from being issued if any of the attributes are
referenced in the MRDS data base. (Default is to issue a separate query
for each referenced attribute.)

-inhibit_error, -ihe
prevents error messages from being issued to the terminal. (Default is
to issue error messages.)

~-long, -1lg
displays the same output as ~check; however, the specified attributes are
deleted.

-no_force, -nfec
overrides the ~force control argument. The last occurrence of -force and
-no_force on the request line takes effect. (Default)

-no_inhibit_error, -nihe
overrides the action of -inhibit_error. (Default)

-unreferenced, -unref

deletes only unreferenced attributes. This control argument overrides
-all and is inconsistent with -check.

12/86 14-13 AW53-04D

restructure mrds_db restructure mrds_db

Notes

If an attribute is referenced in one or more relations, ripple effects take
place. When the attributes are actually deleted, all relations that use the deleted
attributes are reformatted.

Specifying either -all or -unreferenced and a 1ist of domain names on the request
line is flagged as an inconsistent error.

A query is issued for each referenced attribute that is to be deleted to ensure
against catastrophic data loss. With the -long control argument, the query is of the
form:

Attribute "start_date" is used in relations '"permanent_employees" and
"temporary _employees". Do you wish to delete the attribute start _date?

Request: delete domain, dld

This request deletes the specified domains from a MRDS data base. The domains
may be referenced or unreferenced.

Usage

dld {domain1 {...domainN} {-control args}

where:
1. domaini

are the domains to be deleted.
2. control_args

can be chosen from the following:

-all, -a
deletes all domains defined in the MRDS data base. This control argument
is inconsistent with -check.

~brief, -bf
suppresses the trace display. (Default) The last occurrence of -brief

and -long on the command 1line takes effect. This argument is
inconsistent with -check.

~-check, -ck

prevents the deletion of any domains selected during the execution of
this command, and instead, traces all implied operations upon the data
base and displays them on the terminal. This trace consists of a
statement for each domain that is referenced, listing the domain that is
to be deleted, a 1list of attributes that are based upon the domain, and a
list of all relations that are to be modified. Inconsistent with -brief
or -long.

~-force, -fc
prevents the query from being issued for domains which are referenced in

12/86 14-14 AW53-04D

restructure mrds_db restructure mrds db

the MRDS data base. (Default is to issue a separate query for each
referenced domain.)

-inhibit_error, -ihe
prevents error messages from being issued to the terminal. ({(Default is
to issue error messages.)

-long, -1g
displays the same output as -check; however, the specified domains are
deleted. The last occurrence of -brief and -long on the command line
takes effect. This control argument is inconsistent with -check.

-no_force, -nfec
overrides the -force control argument. The last occurrence of -force and
-no_force on the command line takes effect. (Default)

-no_inhibit error, -nihe
overrides the action of -inhibit error. (Default)

-unreferenced, -unref
deletes only unreferenced domains. This control argument is
inconsistent with -check and -all.

Notes

If the domain 1is referenced in attributes, which are themselves referenced in
relations, ripple effects take place. When the domains are actually deleted, all
attributes based upon them are also deleted. This causes the relations that use the
deleted attributes to be reformatted.

Specifying either -all or ~unreferenced and a 1ist of domain names on the request
line is flagged as an inconsistent error.

A query is issued for each referenced domain that is to be deleted to ensure
against catastrophic data loss. The query is of the form:

Domain clock value is wused in attributes "clock value", "start_date",
"stop_date", and "current_ date" which are referenced in relations
"permanent employees" and "temporary employees". Do you wish to delete it?

Request: delete index, dli

This request removes the secondary index for the attribute in the relation.

Usage

dli relation_name attribute name {-control_args}
where:

12/86 14-15 AW53-04D

restructure mrds db restructure _mrds db

1. relation_name
is the name of the relation to be restructured.

2. attribute_name
is the name of the attribute whose secondary index is to be deleted.

3. control_args
can be chosen from the following:

-brief, -bf
suppresses error reporting if the attribute is not already a secondary
index.

-long, -1lg
reports an error 1if the attribute is not already a secondary index.
(Default)

Request: delete relation, dlr

This request deletes a relation from the data base.

Usage

dlr relation_name {-control_args}

where:
1. relation_name

is the name of the relation to be deleted.
2. control_args

can be chosen from the following:

-brief, -bf
specifies that no errors are reported.

-long, -lg
specifies that errors are reported. (Default)

Request: display_data_model, ddm, dmdm

This request displays the model definition of a MRDS data base, including domain,
attribute, and relation information.

Usage

ddm {-control_args}

or:

12/86 14-16 AW53-04D

restructure_mrds db restructure mrds_db

dmdm {-control args}
where control _args can be chosen from the following:

-attribute {modifier}, -attr {modifier}
displays attribute information. The modifier wmay be name(s) or
-unreferenced (-unref). If name(s) is supplied, information for the
attribute name(s) is displayed. If -unreferenced is supplied, attribute
information about all unreferenced attributes is displayed. If no
modifier is supplied, attribute information about all attributes is
displayed.

-brief, -bf
specifies that the brief format be displayed. This argument is
incompatible with -names.

-cmdb
specifies that the output be in the same format as an input source text for
create _mrds_db. If the -output file control argument is included in the
invocation, then the segment can be used to create another data base with
the same definitions. Only the -brief, -long, and -output file control
arguments can be used with this control argument.

-crossref {typel, -xref {typel

displays an information cross-reference. The type may be domain (dom),
attribute (attr), or all. If the type is domain, each domain is listed
with a 1ist of attributes in which the domain is referenced. If the type
is attribute, each attribute is listed with a 1ist of relations in which
the attribute is referenced. If the type is all, both domain and
attribute cross-references are displayed. (Default is "all".) See the
examples below which show the information displayed.

-domain {modifier}, -dom {modifier}
displays domain information. The modifier may be name(s) or
-unreferenced (-unref). If name(s) is supplied, information for the
domain name(s) is displayed. If -unreferenced is supplied, domain
information about all unreferenced domains is displayed. If no modifier
is supplied, domain information about all domains is displayed.

-header, -he
displays data base header information.

-history, -hist
displays restructuring history information. If the data base is
restructured more then once, the history entries are displayed in reverse
chronological order.

~-index names, -ix names
displays information about indexed relations for the relation names
supplied. If no names are supplied, then information about all indexed
relations is displayed.

-long, -1g
specifies that the 1long format be displayed. This argument is
incompatible with -names.

-names, -~nm
displays the format of domains, attributes, relations, and indexed
relations as a list of the names. This argument is incompatible with
-brief or -long.

12/86 m-17 AW53-04D

restructure_mrds_db restructure mrds _db

-no_header, -nhe
prevents display of the header information. (Default)

-no_output file, -nof
writes the output to the terminal. (Default)

-output file path, -of path
writes the output to path, rather than to the terminal.

-relation names, -rel names
displays relation information for the relation names supplied. If no
names are supplied, the relation information about all relations is
displayed.

-temp_dir path

specifies that the directory indicated by path be used for temporary
storage.

Note

If no control arguments are supplied, the default relation information is
displayed.

Examples

If the data base "little" is created from the source:

domain: code fixed bin, address char(20);
relation: zip(code¥* address);

the results would be as follows:

display data_model -long
DATA MODEL FOR DATA BASE >udd>Demo>dbmt>db7>jg>little.db

Varsion: 4

Created by: User.Multics.a

Created on: 05/14/80 1042.9 mst Wed
Total Domains: 2

Total Attributes: 2

Total Relations: 1

RELATION NAME: zip

Number attributes: 2
Key length (bits): 36
Data Length (bits): 216

ATTRIBUTES:

Name: c
Type: K
Offset: 0
Length: 3
Domain_info:

12/86 14-18 AW53-04D

restructure_mrds db

name: code
del: real fixed binary (17,0) aligned

Name: address
Type: Data
Offset: 36 (bits)
Length: 180 (bits)

Domain_info:
name: address
del: character (20) nonvarying unaligned

display data_model -cmdb -long

/* Created from >udd>Demo>dbmt>db7>User>little.db:

06/14/82 1251.3 mst Wed */
domain:
address
character (20) nonvarying unaligned,
code
real fixed binary (17,0) aligned;
relation:
zip (code* address);
Request: deo

restructure_mrds_db

This request expands a request line by substituting the supplied arguments into
the 1line Dbefore execution. As an active request, it returns the expanded

request_string rather than executing it.

Usage

do request_line {args}

do -control_args

Usage as an Active Request:

[do request_line args]
where:

1. request_line
is a request line in quotes.

12/86 14-19

AW53-04D

restructure_mrds_db restructure_mrds_db

2. args
are character string arguments that replace parameters in
request string.

3. control _args

can be chosen from the following to set the mode of operation:

-long, -lg
displays the expanded request line before execution.

-brief, -bf
spacifies that the expanded request line not be printed before execution.
(Dafault)

~-nogo
spacifiies that the expanded request line not be passed on for execution.

-go
specifies that the expanded request line be passed on for execution.
(Default)
-absentee
establishes an any other handler that catches all conditions and aborts
execution of the request line without aborting the process.
-interactive

specifies that the any other handler not be established. (Default)

List of Parameters

Any sequence beginning with & in the request line is expanded by the do request
using the arguments given on the request line.

&I
is replaced by argI. I must be a digit from 1 to 9.
&(1)
is replaced by argl. I may be any value.
&ql
is replaced by argIwith any quotes in argI doubled. I must be a digit from1
to 9.
&q(I)
is replaced by argl with any quotes in argl doubled. I may be any value.
&rl

is replaced by argl surrounded by level quotes with any contained quotes
doubled. I must be a digit from 1 to 9.

&r(I)
is replaced by a requoted argI. I may be any value.

&fT
is replaced by all the arguments starting withargIl. Imust bea digit from
i to §.

&f(I)

is replaced by all the arguments starting with argI. I may be any value.

12/86 14-20 AW53-04D

restructure_mrds_db restructure mrds_db

&qfl
is replaced by all the arguments starting witharglwith any quotes doubled.
I must be a digit from 1 to §.

&qf(I) :
is replaced by all the arguments starting withargI with quotes doubled. I
may be any value.

&rl
is replaced by all the arguments starting with argl. Each argument is
placed in level quotes with contained quotes doubled. I must be a digit
from 1 to 9.

&rf(I)
is replaced by all the arguments starting with argl, requoted. I maybe any
value.

&&
is replaced by an ampersand.

&!
is replaced by a 15-character unique string. The string used is the same in
every place where the &! appears in the request line.

&n ;
is replaced by the actual number of arguments supplied.

&f&n
is replaced by the last argument supplied.

Request: exec_com, ec

This request executes a program written in the exec_com language that is used to
pass request lines to the subsystem and to pass input lines to requests that read

input. As an active request, it specifies a return value by use of the &return
statement.
Usage

ec ec_path {ec_args}

Usage as an Active Request

[ec ec_path {ec_args}]

where:

i. ec_path

12/86

is the pathname of an exec_com program. The suffix, which is normally the
name of the subsystem, is assumed if not specified.

14-21 AW53-04D

restructure_mrds_db restructure_mrds_db

2. ec args
are optional arguments to the exec_com program and are substituted for
parameter references in the program such as &1.

Notes

Subsystems may define a search list to be used to find the exec_com program. If
this is the case, the search list is used if ec path does not contain a "<" or ™"
character; if the ec_path contains either a "<"or ">", it is assumed to be arelative
pathname.

For a description of the exec_com language (both Version 1and Version 2), type:

.. help vlec v2ec

When evaluating a subsystem exec_com program, subsystem active requests are used
rather than Multics active functions to evaluate the &[...] construct and the active
string in an &if statement. The execute active request of the subsystem can be used to
evaluate Multics active strings within the exec_com.

Limitation: In the present 1implementation, any errors detected during
execution of an exec_com within a subsystem aborts the request line in which the
exec_com request is invoked.

Request: execute, e

This request executes the supplied line as a Multics command line after
evaluating rmdb active requests. As an active request, it evaluates a Multics active
string and returns the result to the subsystem request processor.

Usage
e STR

Usage as an Active Request

[e STR]

where STRis the Multics command line to be executed or the Multics active string to be
evaluated. It need not be enclosed in quotes.

12/86 14-22 AW53-04D

restructure_mrds_db restructure _mrds_db

Notes

The recommended method Lo execute a Multics command line from within a subsystem
is the ".." escape sequence. The execute request is intended as a means of passing
information from the subsystem to the Multics command processor.

A11 (), [1, and "s in the given line are processed by the subsystem request
processor and not the Multics command processor. This permits passing values of
subsystem active requests to Multics commands when using the execute request, or
passing values to Multics active functions for further manipulation before returning
the values to the subsystem request processor for use within a request line.

Examples

The rmdb request line:
exec_com [execute hd]>create_temp.rmdb
can be used to execute an rmdb exec_com in the user's home_directory.
The rmdb request line:
execute display mrds_temp dir -current

can be used toreview the name of the directory that is being used by mrds for temporary
storage.

Request: free_db, fdb

This request frees the data base currently readied by the Restructuring
Subsystem from the subsystem (i.e., allows the data base to be opened by any user and
prevents further restructuring requests against the data base).

Usage

fdb

Request: help

This request displays information about various subsystem topics including
detailed descriptions of most subsystem requests.

12/86 14-23 AW53-04D

restructure mrds_db restructure_mrds_db

Usage

help {topics} {-control _args}

where:

1. topics
specifies the topics on which information is to be displayed. The topics
available within a subsystem can be determined by using the list_help
request if available.

2. control args
can be chosen from the following:

-brief, -bf
displays a summary of a request or active request, including the syntax,
list of arguments, control arguments, etc.

-search STRs, -srh STRs
displays the paragraph containing all the strings identified by STRs.
(Default, the display begins at the top of the information.)

-section STRs, -scn STRs .
displays the section whose title contains all the strings identified by
STRs. (Default, the display begins at the top of the information.)

-title

displays section titles and section line counts, then asks if the user
wants to see the first paragraph of information.

List of Responses

The most useful responses that can be given to questions asked by the help request
are:
displays "help" to identify the current interactive environment.

.. command line
treats the remainder of the response as a Multics command line.

?

displays a list of responses allowed.
no, n

stops display of information and proceeds to the next topic, if any.
quit, q

stops display of information and returns to subsystem request level.

rest {-section}, r {-scn}
displays remaining information without intervening questions. If
-section is given, help displays the rest of the current section, without
questions, and then asks if the user wants to see the next section.
search {3TRs} {-top}, srh {STRs} {-t}
skips to the next paragraph containing all the strings identified by STRs.

12/86 14-24 AW53-04D

restructure_mrds_db restructure mrds_db

Notes

If -top is given, searching starts at the top of the information. If STRs
are omitted, help uses the STRs from the previous search response, or the
~search control argument.

section {STRs} {-top}, scn {STRs} {-t}

skips to the next section whose title contains all the strings identified by
STRs. If -top is given, title searching starts at the top of the
information. If STRs are omitted, help uses the STRs from the previous
section response, or the -section control argument.

skip {-section}} {-seen}, s {-scn} {-seen}

skips to the next paragraph. If -section is given, the request skips all
paragraphs of the current section. If -seen is given, the request skips to
the next paragraph that the user has not seen. Only one control argument is
allowed in each skip response.

title {-top}

displays titles and line counts of the sections that follow. If -top is
given, help displays all section titles and repeats the previous question
after titles are displayed.

yes, ¥y

prints the next paragraph of information on this topic.

If no topic names are given, the help request explains what help requests are

available in the subsystem.

12/86

14-25 AW53-04D

restructure_mrds_db restructure mrds_db

For a complete description of the control arguments and responses accepted by
this request, type:

help help
Request: if

This request conditionally executes one of two request lines depending on the
value of an active string. As an active request, it returns one of two character
strings to the subsystem request processor depending on the value of an active string.

Usage

if expr -then linel {-else 1line2}

Usage as an Active Request

if expr -then STR1 {-else STR2}

where:

1. expr
evaluates the active string as "true" or "false." The active string is
constructed from subsystem active requests and Multics active strings
(using the execute active request of the subsystem).

2. linet
executes the subsystem request line if expr is "true."™ If the request
line contains any request processor characters, it must be enclosed in
quotes.

3. line2
executes the subsystem request line if expr is "false." If omitted and
expr is "false," no additional request line is executed. If therequest
line contains any request processor characters, it must be enclosed in
quotes.

g, STR1
returns this value to the active request when expr is "true."

5. STR2

returns this value to the if active request when expr is "false." If
omitted and the expr is "false," a null string is returned.

Request: 1list_help, lh

This request lists the names of all subsystem info segments pertaining to a given
set of topics.

12/86 14-26 AW53-04D

restructure_mrds_db restructure mrds db

Usage

lh {topics}

where topics specifies the tOpiCS of interest, Any subsystem info segment that
contains one of these topics as a substring is listed.

Notes

If no topics are given, all info segments available for _.the subsystem are
displayed.

An info segment name is considered to match a topic only if that topic is at the
beginning or end of a word within the segment name. Words in info segment names are
bounded by the beginning and end of the segment name and by the period (.), hyphen (-),
underscore (_), and dollar sign ($) characters. The info suffix is not considered
when matching topics.

Examples

The request line:
list_help 1list

matches info segments named list, list _users, and forum_list, but does not match an
info segment named prelisting.

Request: 1list_requests, 1r

This request displays a brief description of selected subsystem requests.

Usage

1r {STRs} {-control_args}

where:

1. STRs
specifies the requests to be displayed. Any request with a name
containing one of these strings is displayed unless -exact is used, in
which case the request name must match exactly one of these strings.

12/86 14-27 AW53-04D

restructure mrds_db restructure mrds_db

2. control args
can be chosen from the following:

-ali, -a
includes undocumented and unimplemented requests in the display of
requests eligible for matching the STR arguments.

-exact

displays only those requests whose names match exactly one of the STR
arguments.

Notes
If no STRs are given, all requests are displayed.

Arequest name is considered to match a STR only if that STRis at the beginning or
end of a word within the request name. Words in request names are bounded by the
beginning and end of the request name and by the period (.), hyphen (-)., underscore
(), and dollar sign ($) characters.

Examples

The request line:
list_requests list

matches requests named list, list_users, and forum_list, Butdoes not match arequest
named prelisting.

Request: quit, q
This request is used to exit the subsystem, unquiesce the data base (if the

current data base was quiesced by the rmdb subsystem), and return to Multics command
level.

Usage

Request: ready_db, rdb

This request readies a data base for restructuring.

12/86 14-28 AW53-04D

restructure_mrds_db restructure_mrds db

Usage

rdb {db_path} {-control args}

where:

1. db_path
is the relative or absolute path for the data base to be restructured.
The db suffix is assumed if not supplied.

2. control_args
can be chosen from the following:

-force, -fc
specifies that the data base be created if it does not already exist
without querying the user.

-no_force, -nfec
overrides the -force control argument. (Default) The last occurrence of
-force and -no_force on the command line takes effect.

-pathname db_path, -pn db_path
specifies the path for the data base to be restructured. The last path
supplied is the readied one.

-quiesce_wait_time N, -qwt N
specifies the number of seconds to wait for all open users to close the
data base. (Default is 0)

-relation_type type {modes}, -rt type {modes!}
specifies the type of relation to create if the data base does not already
exist. The supported types are vfile_ and data_management_file (dmf)
(see Notes below). The mode argument is only valid for dmf-type
relations, and the supported modes are any combination of protection,
concurrency, or rollback separated by commas. Any mode may be preceded
with a not sign (") to negate it.

Notes
DBAs are the only persons who can ready a data base for restructuring.

The data base should not be readied if there are any open users Once the data base
'is readied, it can be opened by the process that has readied it.

The db_path argument cannot refer to a submodel or a data base earlier than
Version 4.

This request can be run only against a consistent data base. If the data base is
inconsistent, the user is queried to see if he/she wishes to execute the "undo request”
and make the data base consistent. After executing theundorequest, the data base can
be readied. If the undo request fails, the user is returned to rmdb request level
(i.e., the data base is not readied).

12/86 14-29 AW53-04D

restructure_mrds_db restructure _mrds_db

When this request is used to create a new data base, and the -relation_type
argument is not specified, the data base is created with the default relation type of
vfile .

Only one data base can be readied at any given time.

Request: rename_attribute, rna

This request replaces the name of an attribute with another name.

Usage

rna attributel namel {...attributeN nameN}

where:
1. attributei

specifies the current name of an existing attribute.
2. namei

specifies the new name that replaces the original name.

Request: rename domain, rnd

This request replaces the name of a domain with another name.

Usage

rnd domain?t namel {...domainN nameN}

where:

1. domaini
specifies the current name of an existing domain.

2. namei
specifies the new name that replaces the original name.

Request: rename_relation, rnr

This request replaces the name of a relation with another name.

12/86 14-30 AW53-04D

restructure mrds db restructure mrds_db

Usage

rnr relation1 namel {...relationN nameN}

where:
1. relationi

specifies the current name of an existing relation.
2. namei

specifies the new name that replaces the original name.

Request: subsystem name

This request displays the name of the subsystem. As an active request, it
returns the name of the subsystem.

Usage

subsystem_name

Usage as an Active Request

[subsystem_name]

Request: subsystem version

This request displays the version number of the subsystem. As an active request,
it returns the version number of The subsystem.

Usage

subsystem version

Usage as an Active Request

[subsystem_version]

12/86 14-31 AW53-04D

SECTION 15
DATA MANAGEMENT SYSTEM INTERFACE

MRDS now supports two distinct types of data bases; vfile_ data bases and Data
Management System (DMS) data bases. The vfile_ data bases are those data bases
which have relations that are created and accessed via the vfile_ IO module. These
were the only kind of data bases that existed prior to MRI11l. The DMS data bases
are those data bases which have relations that are created and accessed via the DMS
facility. (Refer to "Data Management Overview" in the Programmer’s Reference
Manual for additional information.) MRDS does not support a combination of vfile_
relations and DMS relations within a single data base.

CREATING A DATA BASE

Data bases are created in the traditional fashion (i.e., by use of the create_mrds_db
command). The create_mrds_db command has two new control arguments (-vfile and
-data_management_file). The -vfile control argument (Default) causes a new data base
io be a vfile_ data base, whereas ihe —data_management_file control argument causes a
new data base to be a DMS data base. So, a command line that created a data base
prior to MR11 will do precisely the same thing in MRI11, that is, create a vfile_ data
base. Therefore, the user must explicitly request a DMS data base.

CONVERTING A DATA BASE

To convert an existing vfile_ data base to a DMS data base, the user must first
create a new DMS data base using the same cmdb source used to create the vfile_
data base. If the cmdb source segment is not available, it can be created using the
-cmdb control argument with the display_mrds_dm command. Once the new data base
is created, the wuser can copy the data from the old data base using the
copy_mrds_data command. After execution of the copy_mrds_data command, there are
two data bases with identical data, one a vfile_ data base, the other a DMS data base.
The user can delete the vfile_ data base or continue to use the vfile data base in
production, while testing the DMS data base, whichever circumstances warrant. The
user can always invoke the copy_mrds_data command to reverse the procedure (i.e.,
copy data from a DMS data base back to a vfile_ data base).

FEATURES

The DMS faciiity provides new services for the MRDS user. One important
feature is the concept of a transaction. In order to access a DMS file (in MRDS, a
relation), the user’s process must have initiated a transaction. When a transaction is
active, each change made to the file causes a "before" image of that data to be

2/85 15-1 AWS53-04C

written to a "before" journal. If the transaction does not successfully complete (e.g.,
the system crashes, the user’s process dies, or the user explicitly requests the
transaction to be aborted or rolled back), the "before" images are used to return the
relation to the state it was in before the DMS changes began. If the transaction
completes successfully, the "before" images are discarded and the changes are made
permanent. This can be quite useful to the programmer or interactive user who wishes-
to "group” a series of physically separated actions into a single logical unit.

The DMS interface that handles transactions is the transaction_manager_ subroutine.
The command and subroutine interfaces to transaction_manager_ that are of interest to
the MRDS user are documented later in this section.

The burden of starting and finishing transactions is not completely placed on the
user. When MRDS accesses a DMS file, it knows there must be a transaction running;
therefore, it checks to see if one is in place. If there is a transaction in place,
MRDS proceeds to call the DMS facility, knowing that either the user or application
is controlling the transaction. If no transaction is running, MRDS starts one prior to
calling DMS and then, upon return from DMS, either commits the transaction, rolls it
back and tries again, or aborts the transaction and returns an error code to the user.
An application that accesses a DMS data base, therefore, need never interface with
transaction_manager_ at all, relying on MRDS to handle transactions. In this fashion,
an application that runs againsi a vfile_ data base could be used, without modification,
to run against a DMS data base. MRDS simply turns each dsi_ call into a transaction.

In order to access a DMS file, the user must have initiated a transaction and have
a "before" journal (provided by system default). Users can. however, create and use
their own "before” journals. In fact, the 'site administrator may choose to restrict
access to the sysitem default "before" journal and require users to create and use their
own. The DMS interface that handles "before" journals is the before_journal_manager_
subroutine. The command and subroutine interfaces to before_journal_manager_ that
are of interest to the MRDS user are documented later in this section.

CHOOSING BETWEEN DATA BASE TYPES

With two types of data bases avaijlable (vfile_ and DMS), a choice must be made
as to which type to use for a given application. The differences are many. The
strength of the DMS system is integrity and consistency. The ability to group several
operations into a go/nogo set can be quite valuable. Aiso, DMS ensures the integrity
of the data itself, except for certain media failures. As an example, when MRDS is
adding a tuple to a vfile_ data base, it (actually vfile_relmgr_) must call vfile_ several
limes to add both data and indexes. While vfile_ can guarantee the integrity of each
individual action requested of it. the various calls are not logically related. If the
svstem crashes, or the user’s process fails between calls, the process can easily end up
with a tuple that is only partially there. that is. the data and its indexes are not
completely in place. In the DMS case. however. the adding of a tuple is a single
atomic operation to DMS and is done within the confines of a single transaction. If
the system crashes. or the user’s process fails. the transaction is aboried by the DMS
Daemon.

MRDS and vfile_ is significantly more efficient than MRDS and DMS. The
choice between vfile_ or DMS depends upon the need for the additional functionality

provided by DMS. If DMS functionality is important t¢ an application. then thosc

r
features may well outweigh efficiency considerations. If., however. the improvements

2/85 15-2 AWS53-04C

offered by DMS are not important to an application, it may be best to leave it as a
vfile_ data base.

The recommended method of investigating DMS options, at least as it affects
existing data bases, is to use the procedures described above and do some testing. The
user can see what the various advantages and disadvantages of DMS are without
affecting production jobs. This procedure will provide a feel for the issues of
transactions and "before" journals. The copy_mrds_data command itself can be
instructive. By default, it creates a transaction for each tuple copied. A transaction,
while reasonably efficient, does involve some overhead. This overhead, multiplied over
many tuples, can be significant. For this reason, the copy_mrds_data command utilizes
the —transaction_group_size control argument. The operand indicates how many tuples
are 1o be copied in a single transaction. If this control argument is used. an increase
in efficiency will be seen (by not starting and committing as many transactions), but
the size required for the "before" journal is increased as there are more “"before”
images involved in a single transaction. These same issues become involved in
determining the usage of transactions within an application.

DMS COMMAND AND SUBROUTINE DESCRIPTIONS

2/85 15-3 AWS3-04C

before_journal_status before_journal_status

Name: before__journal__status, bjst
bjst {PATHS} {-control_args}
FUNCTION

displays status information for before journals that you have access to open. This
command is part of the command level interface to Multics data management (DM)
(see the Programmer’s Reference Manual).

ARGUMENTS

PATHS
are the relative pathnames of before journals for which status is desired. If you
supply no pathnames, status information for all journals in use in the process is
displayed. If you don’t give the .bj suffix, it is assumed.

CONTROL ARGUMENTS

-all
displays the status of all journals active in the current invocation of the data
management svstem (DMS) that vou have access to open.

-brief, -bf
displays the pathname, unique identifier, usage state or activity. control interval
size. and control intervals in the before journal for each journal specified that is
either in use or not in use {see "Examples").

-long, -lg

for each journal specified that is in use. displays. besides the above information,
the disposition of control intervals in use. i.e.. if they are buffered, put, flushed,
or on disk: the last time a control interval was queued or written; the tlime the
header was updated; the last record id; the status of images not vet writien on
disk or not being flushed; and the number of users and transactions using the
journal. For each journal specified that is not in use. displays, besides the
information given by -brief. the time the header was updated. (See "Examples.”)

NOTES

If you give neither -brief nor -long. the command vields the information supplied by
-brief plus the disposition of control intervals in use at the time of the request if the
journal(s) specified is in use.

2/85 15-4 AWS3-04C

before_journal_status before_journal_status

EXAMPLES

The example below requests the status, in long form. of the system_low system default
before journal, which is in use.

! bjst >site>dm>system_low>system_default -lg

pathname: >site>Data_Management>system_low
>system_default.bj
journal uid: 132233107561
activity: in use
control interval size: 4096 bytes
control intervals: 4000
control intervals used: 86
iast control interval
buffered: 86
put: 86
flushed: 86
on disk: 86
time last control interval
queued: 01/14/85 1104.9 est
written: 01/14/85 1104.9 est
time header updated: 01/14/85 1104.9 est
last record id: 000001260013
images not on disk: 0
images being flushed: 0
users: 2

—

transactions:
where:

pathname
is the pathname of the before journal

journal uid
is the octal unique identifier of the before journal.
activity

is "in use" if a process currently has the before journal open. "not in use”
otherwise.

control interval size
is the size of each control interval in the before journal, in bytes. Currently 4096
byies is the only supported size.

control intervals
is the number of control intervals in the before journal.

2/85 15-5 AWS53-04C

before_journal_status

2/85

control intervals used

before_journal_status

is the number of control intervals in the before journal containing before images
still needed to roll back modifications made by a transaction. Images that are not
needed include those that have already been used in a complete rollback and

those for a transaction that has ended.

last control interval buffered

indicates the last control interval plit in a special buffer used for before journals.

last control interval put
indicates the last control interval put into the before journal.

last control interval flushed
indicates the last control interval flushed to disk.

last control interval on disk
indicates the last control interval safely on disk.

time last control interval queued

is the last time a before image was put in the before journal.

time last control interval written
is the last time a control interval was written to disk.

time header updated
is the last time the header of the before journal was written.

last record id
is the address of the last before image in the journal.

images not on disk
is the number of images not wrilten to disk vel

images being flushed

is the number of before images for which a flush from memory to disk has been

requested.

users
is the number of users with openings.

15-6

AW53-04C

before_journal_status bj_mgr_call

transactions
is the number of active transactions in the before journal.

The example below requests the status, in long form, of the system_low system
default before journal, which is not in use.

! bjst >site>dm>system_low>system_default -lig

pathname: >site>dm>system_default.bj
journal uid: 127120202215

activity: not in use

control interval size: L4096 bytes

control intervals: L4000

time header updated: 08/26/8L 1228.6 edt

Name: bj_mgr__call, bjmc

SYNTAX AS A COMMAND

bjmc key {paths} {-control_args}
SYNTAX AS AN ACTIVE FUNCTION
[bjmc key {paths} {-control_args}]
FUNCT/ON

enables you to manipulate before journals in your process by calling
before_journal_manager_ entry points from command level. This command is part of
the command level interface to Multics data management (DM) (see the Programmer’s
Reference Manual).

ARGUMENTS

key
designates the before journal manager operation to be performed. See "List of
Operations” below for a description of each operation, its command and active
function syntax lines, and specific application.

paths
specifies the absolute or relative pathname of the before journals being
manipulated (required for all key operations except get_default_path). Give
-pathname {(-pn) PATH with pathnames constructed with leading minus signs to
distinguish them from control arguments. If you supply no .bj suffix, it is
assumed.

2/85 15-7 AWS3-04C

bj_mgr_call bj_mgr_call

CONTROL ARGUMENTS

can be one or more control arguments, depending on the particular operation.

LIST OF OPERATIONS

Each operation is described in the general format of a command/active function.
Where appropriate, notes and examples are included for clarity.

close, ci

closed

create, cr
get_default_path, gdp
open, ©

opened
set_default_path, sdp
set_attribute, sattr

Operation: close, cl

'SVNTAX AS A COMMAND

bjmc-cl .paths

SYNTAX AS AN ACTIVE FUNCT/ON
[bjmc ¢l paths]

FUNCTION

closes the before journals specified by paths. Separale pathnames by spaces if multiple
journals are to be closed. Specifically close by name each journal opened in the
process. The active function returns true if the journals were closed successfully, false
otherwise.

ARGUMENTS

paths
are the absolute or relative pathnames of before journals to be closed. You can
use —pathname (-pn) to specify the journal paths. If you supply no .bj suffix, it
is assumed.

NOTES

If a before journal being closed by this operation is the default journal. the last
journal opened in the process becomes the default

2/85 15-8 AWS3-04C

bj_mgr_call bj_mgr_call

2/85

Operation: closed
SYNTAX AS A COMMAND

bjmc closed path

SYNTAX AS AN ACTIVE FUNCT/ON
[bjmc closed path]

FUNCT/ON

returns true if the before journal specified by path is not open in your process, false
otherwise.

ARGUMENTS

path
is the absolute or relative pathname of a before journal. You can use —pathname
(-pn) to specify the journal path. If you don’t give the .bj suffix, it is assumed.

Operation: create, cr

SYNTAX AS A COMMAND

bjmc cr paths {-control_args}
SYNTAX AS AN ACTIVE FUNCT/ON
[bjmc cr paths {-control_args}]
FUNCTION

creates the before journals specified by paths. The active function returns true if the
journals are created successfully, false otherwise.

ARGUMENTS

paths -
are the absolute or relative pathnames of the before journals to be created. You

can use —pathname (-pn) to specify the journal path. If you supply no .bj suffix,
it is assumed.

CONTROL ARGUMENTS

-length N, -In N
specifies the size of the before journal, where N is the number of 4096-byte
conirol intervals. Once established, vou can’t alter a journal’s size. (Default: if
you specify no value at the time of creation, the size is 64 control intervals).

15-9 AWS3-04C

bj_megr_call bj_mgr_call

2/85

—transaction_storage_limit N, —-tsl N
specifies the maximum number of bytes a single transaction can use in the before
journal (Default: the entire journal, see the set_attriubute operation for more
info).

NOTES

Before journals are extended entry typ&s; you can delete them using the delete
command. You can only delete before journals if they are not required for recovery.

Operation: get__default__path, gdp
SYNTAX AS A COMMAND

bjmc gdp

SYNTAX AS AN ACTIVE FUNCTION
[bjmc gdp]

FUNCT/ON

‘returns the pathname of the process’s defauit before journal.

Operation: open, o

SYNTAX AS A COMMAND

bjmc o paths

SYNTAX AS AN ACTIVE FUNCT/ION
[bjmec o paths]

FUNCTION

opens the before journals specified by paths. The active function returns true if the
journals are opened successfully, false otherwise.

ARGUMENTS

paths ‘
are the absolute or relative pathnames of before journals 1o be opened in your

process. You can use —pathname (-pn) to specify the journal path. If you supply
no .bj suffix, it is assumed.

15-10 AWS53-04C

bj_mgr_call bj_mgr_call

NOTES

If no journal has been specifically designated as the default (see the set_default_path
operation) for your process, the last before journal opened in the process becomes the
default. If no journal is opened in your process when a (ransaction is started, the
system before journal is opened and used as the defauit.

Operation: opened

SYNTAX AS A COMMAND

bjmc opened path

SYNTAX AS AN ACTIVE FUNCT/ON
{bjmc opened path]

FUNCT/ON

returns true if the before journal specified bv path is opened in vour process, false
otherwise.

ARGUMENTS
path

is the absolute or relative pathname of a before journal. You can use —pathname
(-pn) to specify the journal path. If you supply no .bj suffix, it is assumed.

Operation: set__default__path, sdp
SYNTAX AS A COMMAND

bjmc sdp path

SYNTAX AS AN ACTIVE FUNCT/ON
[bjmc sdp path]

FUNCTION

sets the default before journal for the process to the specified pathname. The active
function returns true if the pathname is successfully set. false otherwise.

2/85 15-11 AWS53-04C

bj_mgr_call bj_mgr_call

ARGUMENTS

path
is the absolute or relative pathname of the before journal to be used as the
default by your process. You can use —pathname (-pn) to specify the journal
path. If you supply no .bj suffix. it is assumed.

NOTES

If no default before journal is set for your process, the last journal opened in the
process is used as the default (see the open operation). If no before journal is open
in the process when a transaction is started, the system before journal is opened and
used as the default.

Operation: set__attribute, sattr
SYNTAX AS A COMMAND

bjmc sattr paths -control_arg
SYNTAX AS AN ACTIVE FUNCTION
[bjmc sattr paths -control_arg]
FUNCTION

"sets an attribute of the before journals specified by paths. The active function returns
true if the attribute is successfully set. false otherwise.

ARGUMENTS

paths
are the absolute or relative pathnames of the before journal(s) to have attributes
set. You can use —pathname (-pn) to specify the journal path. If you supply no
.bj suffix, it is assumed.

CONTROL ARGUMENTS

—transaction_storage_limit N, -tsl N
specifies the maximum number of bvies a single transaction can use in the before
journals. An attemp! to write more byles than allowed causes the transaction_bj_full_
condition. A value of zero indicates a transaction can use an entire journal (the
default at journal creation time).

NOTES

Wnen this operauon comp]etes the before journal header conlammg the new attributes

1 T tnl ~FF
Live. ruxJ Chnanges do take cffect

2/85 15-12 AWS3-04C

transaction transaction

2/85

Name: transaction, txn
SYNTAX AS A COMMAND

txn key {-control_args}

SYNTAX AS AN ACTIVE FUNCT/ION .
[txn key {-control_args}]
FUNCT/ON

enables vou to define and execute atomic operations interactively. You can invoke the
services of the transaction manager to begin, commit, abort, rollback, abandon, or kill
a transaction. There is also a status request for displaying information about the
current transaction. There is an execule request to wrap a given command line in a
transaction. This command is part of the command level interface to Multics data
management (DM) (see the Programmer’s Reference Manual).

ARGUMENTS
key
designates the operation to be performed. See "List of Operations” below for a

description of each operation, its command syntax line. and specific application.

CONTROL ARGUMENTS
can be one or more control arguments, depending on the particular operation.

LIST OF OPERATIONS

Each operation is described in the general format of a command/active function.
Where appropriate, notes and examples are included for clarity.

Operation: abandon

SYNTAX AS A COMMAND

txn abandon

SYNTAX AS AN ACT/VE FUNCTION

[txn abandon]

FUNCTI0ON

your process surrenders control of the transaction to the DM Daemon, which aborts it

as part of its normal caretaker responsibilities. The active function returns true if the
transaction is successfully abandoned, false otherwise.

15-13 AWS53-04C

transaction transaction

NOTES

By abandoning a transaction, your process can start another transaction without waiting
for the abort operation to conclude (your process is still charged for the abort). The
data locked by the original transaction remains inaccessible, however, until the rollback
is completed.

Operation: abort

SYNTAX AS A COMMAND

txn abort

SYNTAX AS AN ACTIVE FUNCTION
[txn abort]

FUNCTION

aborts the current transaction so that, in effect, it never existed. Any modifications to
protected files caused by the aborted transaction are rolled back, and references to the
transaction are removed from system tables. The active function returns true if the
transaction is successfully aborted. false otherwise.

.Operation: begin

SYNTAX AS A COMMAND

txn begin {-control_args}
SYNTAX AS AN ACTIVE FUNCTION
[txn begin {-control_args}]
FUNCTION

starts a transaction by reserving a slot in the transaction definition table (TDT) for
vour process. with a unique transaction identifier, date/time of the start, pathname of
the before journal, and other information pertinent to the transaction (see the status
operation). If your process already owns a transaction, an error occurs. The active
function returns true if a transaction is started successfully. false otherwise.

CONTROL ARGUMENTS

-no_wait, —-nwt
causes an error if th

(Default)

[¢°]
(=1
%)
-y
3
w
£3
W

2/85 15-14 AWS3-04C

transaction transaction

-wait N, -wt N
if DMS is not currently invoked, wait N seconds before starting the transaction.
An error occurs if DMS is still not up after the elapsed time.

-wait_indefinitely, —wti
if DMS is not currently invoked, wait as long as necessary to start the
transaction. The status of DMS is checked at 10-second intervals. and notification
is given when command line execution begins.

NOTES

This operation is a tool for isolating and testing the transaction startup function. In a
production environment the transaction execute command is the recommended method
of starting transactions from command level because it builds in the atomicity: it
begins the transaction, executes a command line, and then terminates the transaction,
within the one request (see the execute operation).

EXAMPLES

The following example shows an absentee job intended not to run until a transaction
can be started in absentee.

&if &[not [txn begin -wait 100]] &then &do
ear &ec_path -time "+1 hour" -ag &f1

&quit
&end

Operation: commit

SYNTAX AS A COMMAND

txn commit

SYNTAX AS AN ACTIVE FUNCT/ON
[txn commit]

FUNCTION

signals successful completion of the currently active transaction. Modifications made to
protected files by this transaction are considered permanent. Any locks held by the
transaction are released, making the data public again. The active function returns irue
if the commit operation is successful. faise otherwise.

2/85 15-15 AWS53-04C

transaction transaction

Operation: execute, e

SYNTAX AS A COMMAND

txn e {-control_args} {command_line}
SYNTAX AS AN ACTIVE FUNCTION

[txn e {-controi_args} {command_line}]
FUNCT/ON

starts a (ransaction, executes a command line, and, provided the command line is
successfully executed, commits the transaction. Control argumentis govern what action
to take based on conditions encountered. The active function returns true if the
execute operation is successful, false otherwise.

ARGUMENTS

command_line
specifies the command line to be executed as part of the transaction. Enclose ‘it
in quotes if it contains parentheses, brackets, or semicolons. If you omit it, the
system prompis "Command line:".

CONTROL ARGUMENTS

—-abandon_on CONDITION_LIST
abandons the transaction and results in a nonlocal exit of the command line if
any of the listed conditions is encountered during command line execution.
Separate the listed conditions by commas, with no intervening whitespace. The list
can include any_other. The default action is as described under "Notes" below.
This control argument 1is incompatible with -existing_transaction_allowed and
-existing_transaction_required.

~abort_on CONDITION_LIST
aborts the transaction and resuits in a nonlocal exit of the command line if any
of the listed conditions is encouniered during command line execution. Separate
the listed conditions by commas, with no intervening whilespace. The list can
include any_other. The default action is as described under "Notes" .below. This
control argument is incompatible with -existing_transaction_allowed and
—existing_transaction_required.

-command_level, -¢l
places your process at the next command level. from which commands can be
entered in the transaction. You can use the start or release command to exit this
command level.

2/85 15-16 AWS3-04C

transaction transaction

—existing_transaction_allowed, -eta
accepts the existing transaction (if one already exists in your process) as the origin
of command line execution. No new transaction is begun. This control argument
is incompatible with -retry_on and -suspend_on. (Default: to return an error if a
transaction already exists)

-existing_transaction_required, —etr _
requires that a transaction already exist In your process; returns an error if no
transaction exists. This control argument is incompatible with -retry_on and
-suspend_on. (Default: to return an error if a transaction already exists)

-no_action_on CONDITION_LIST
overrides any special action (e.g., —abandon_on. -retry_on) you previously specified
in the command line for the listed conditions. The default action (see "Notes") is
also overridden.

—-no_existing_transaction_allowed, —neta
causes an error if a transaction already exists in vour process. (Default)

-no_wait, —nwt
causes an error if DMS is not currently invoked. (Default)

-retry_on N CONDITION_LIST
executes the command line up to N times if any of the listed conditions is
encountered during command line execution. If N is 0, the command line is not
retried. Separate the listed conditions by commas, with no intervening whitespace.
The Iist can include any_other. The default action is as described under "Notes”
below.

—suspend_on CONDITION_LIST
suspends the transaction and goes to the next command level if any of the listed
conditions is encountered during command line execution. Separate the listed
conditions by commas. with no intervening whitespace. The list can include
any_other. The default action is as described under "Notes” below.

-wait N, -wt N
if DMS is not currently invoked, waits N seconds before starting the transaction
and executing the command line (you are notified when command line execution
begins). An error condition is returned if DMS is still not up after the elapsed
time. This operation is useful for absentee jobs submitted to perform operations
within transactions.

-wait_indefinitely, -wti
if DMS is not currently invoked, waits as long as necessary (o start the
transaction and execute the command line. The status of DMS 1s checked at
10-second intervals, and notification is given when command line execution begins.

2/85 15-17 AWS3-04C

transaction transaction

NOTES

If a transaction already exists in your process, the default action is -no_action_on
any_other; otherwise the default action is —suspend_on any_other —abort_on cleanup.

A transaction begun by txn execute is committed unless the command line fails to
execute properly, in which case the transaction is aborted.

A transaction severity code (displayable by the "severity transaction"” command) denotes
the status of the execute operation, as follows:

the operation was completed without errors and was not retried.

the operation was completed, but was retried one or more limes.

the operation failed; the transaction was aborted or abandoned.

the operation failed; the transaction could not be aborted or abandoned.
the transaction could not be begun.

H WO

The active function returns true if the severity after execution is 0 or 1; false if it is
2, 3, or 4

If a transaction is currently suspended in your process, the (xn execute command gets
an error and the active function returns false.

Operation: kill

SYNTAX AS A COMMAND

txn kill {iD}

SYNTAX AS AN ACTIVE FUNCTION
[txn kill {ID}]

FUNCTION

expunges the current or specified transaction with no attemptl to preserve consisiency
of any DM files that might have been modified by this transaction. Killing a
transaction may destroy the consistency of any databases that the transaction is using;
therefore use this operation when neither you nor the Daemon is able to complete the
transaction. The active function returns true if the operation is executed successfully.
false otherwise.

ARGUMENTS
ID

is th¢ unique identifier of the transaction to be killed (obtainable through txn
status). (Default: the current transaction in your process)

2/85 15-18 AWS3-04C

transaction transaction

2/85

ACCESS REQUIRED

You need re access to dm_daemon_gate_.

Operation: rollback

SYNTA){ AS A COMMAND

txn réllback

SYNTAX AS AN ACT/IVE FUNCT/ION

Ttxn rollback]
FUNCTION

rolls back the current transaction to its beginning (txn begin). undoing any changes to
protected files caused by the transaction and releasing the locks held by it. The
transaction is still considered active in your process. The active function returns true
if the transaction was successfully rolled back. false otherwise.

Operation: status, st

SYNTAX AS A COMMAND

txn st {-control_args}

SYNTAX AS AN ACT/VE FUNCT/ION
[txn st {-control_args}]

FUNCTION

displays information about the current transaction. selected transactions, or all
transactions, depending on the nature of the request and your access permissions. The
active function takes only one information control argument.

CONTROL ARGUMENTS FOR SELECTING TRANSACT/ONS

If you supply no control arguments, or lack the proper access, only information
pertaining to vour current transaction is displaved.

—abandoned
displays the requested information about all TDT entries marked as abandoned.

-all, -a
displays the requested information about all TDT entries.

15-19 AWS53-04C

transaction transaction

2/85

~dead
displays the requested information about all TDT entries belonging to dead
processes. ' '

-transaction_id ID, -tid ID, -id ID
displays the requested information about the transaction with unique identifier ID,
where ID is a decimal integer. Transaction identifiers are assigned at txn begin
time and can be viewed by the txn status command.

—transaction_index N, -tix N, —-index N .
displays the requested information about entry number N in the TDT. TDT entry
indexes are of interest mainly to data management maintainers and can be viewed
by the txn status command.

CONTROL ARGUMENTS FOR SELECTING INFORMATI/ON

If you give none of the following control arguments, all information is displayed for
each TDT entry selected. You can specify only one control argument far the active
function.

—~before_journal_path, -bj_path
returns the pathname of the before journal used by the current transaction.

—date_time_begun, —dtbg, —begun
teturns the daie and siariing time of each transaction.

—error, error_info
returns a description of the latest error, if any, to have occurred while processing
each transaction.

—owner
identifies the owner (User_id.Project_id) of each TDT entry.

—process_id, -pid
returns the octal process_id of the owner of each TDT entry.

-rollback_count, ~-rbc
returns the number of times each transaction has been rolled back.

~state
indicates the state of each transaction, which must be one of the following:

no transaction (e.g., the process might have owned a transaction. which has
been taken over by the DM Daemon)

in progress

{Error - } OPERATION. calling PROGRAM_NAME, which gives the
operation currently in progress, such as abort or commii, and the entry point
being called: and is followed by an error message if appropriate.

15-20 AWS3-04C

transaction transaction

—switches, -switch, —sw
lists those transactions that. are either abandoned, killed, or suspended or whose
owner processes are dead.

—total, —tt
prints totals information for the TDT, including:

number of slots available (not"yet reserved by processes)

number in use (i.e.,, reserved by processes at first invocation of DMS)
number of entries owned by dead processes (of the number in use)
number of abandoned entries (of the number in use)

number of entries occupied by transactions (i.e., slots reserved by processes
that have started transactions) '

number of iransactions in error.

—transaction_id, -tid, -id :
supplies the unique identifier of each transaction. Use of -transaction_id with a
specific transaction ID returns information about that transaction.

—transaction_index, —1lix; —index
returns the index of entries in the TDT. This index is mainly of interest to data
management mainiainers. Use of -iransaction_index with a specific integer N
returns information about a given TDT entry number.

NOTES

You can’t use the following control arguments with the active function: -abandoned,
-all, -dead, and -total.

You need r1e access to dm_admin_gate_ to view the status of any other user’s
transactions.

EXAMPLES
The command

! txn status -tid

9

asks for the unique identifier of the transaction currently owned by the requesting
user process.

2/85 15-21 AWS53-04C

transaction transaction

The command

! txn status -a -owner -dtbg -tid
TDT size: 6 entries
In use: 4
Dead processes: |
Abandoned entries: O
Transactions: 3
Error transactions: O

Transaction id: &
Owner: Merrili.Multdev
Begun at: 02/12/84 0837.11 est wed

Owner: Lynch.Multdev
No Transaction.

Transaction id: 9
Owner: Pierce.Debug
Begun at: 02/12/84 0846.3 est wed

Transaction id: 12
Owner: Fenner.Support
Begun at: 02/12/84 0901.5 est wed

requests that each transaction in the TDT be identified as to its unique identifier,
owner, and date/time of origin.

The command

! txn status
Transaction id: &
TDT index: 2
Process id: 467265315627
Owner: Smith.Applications
Begun at: 02/12/8L 08L6.3 est wed
State: In progress
Error: none
Checkpoint id: O
Rollback count: O
Before journal path: >site>dm>system_low>system_default.bj
Switches: none

requests all available information on the transaction owned by the requesting user
process.

2/85 15-22 AWS53-04C

transaction before_journal_manager_

The command

! txn status -tix 1 -pid -state -error -switches
Process id: 6257312536L2 (dead)
State: Error - Abort, calling bjm_Swrite_aborted_mark
Error: The before journal is full.
Switches: ABANDONED, DEAD_PROCESS

requests the process id, state, error condition, and switch settings for the specified
transaction index entry.

Name: before__journal__manager__

The before_journal_manager_ subroutine provides the means to manipulate, and obtain
information about, before journals. Before journals are used to store before images of
protected data management (DM) files, for the purpose of rolling back modifications
to these files in the event of failure.

See the section entitled "Multics Data Management"” in the Programmer’'s Reference
Manua/, Order No. AG91, for a complete description of before journals and their
use.

Entry: before_ journal__manager__S$close__bj

This entry point closes the specified before journal, making it unavailable to the
current process. A journal can be opened more-than once in a process, in which case
the same opening id is returned for each open request. In that case, the close
operation merely decreases by one the number of journal openings in the process. If
a close_bj request is issued by a process on a journal while the process still has an
active transaction in that journal. the journal cannot be closed and an error code is
returned to the caller. If the journal to be closed was the default before journal for
the process, the before journal which was last opened in the process (if any) becomes
the defauit before journal (see "Notes” under the set_defauli_bj entry).

USAGE

declare before_journal_manager_Sclose_bj entry {(bit(36) aligned, fixed

—

bin(35));

call before_journal_manager_Sclose_bj (bj_opening_id, code);
ARGUMENTS

bj_opening_id
is the opening identifier of the before journal. (Input)

2/85 15-23 AWS3-04C

before_journal_manager_ before_journal_manager_

code
is a standard system error code. (Output)

Entry: before__journal__manager__$create__bj
This eniry point creates a before journal file as specified by the input arguments.
USAGE

declare before_journal_manager_Screate_bj entry (char (%), char (%), fixed
bin, fixed bin, fixed bin(35));

call before_journal_manager_Screate_bj (dir_name, entry_name,
n_control_intervals, control_interval_size, code);

ARGUMENTS

dir_name
is the pathname of the directory in which the before journal is to be created.
(Input) .

entry_name
is the entry name of the before journal to be created. The .bj suffix must be
included. (Input)

n_control_intervais

is the size of the journal expressed in the number of control intervals. (Input) A
before journal is a circular file; when information is no longer useful (i.e., before
images for committed or aborted transacticns), it will be overwritten, allowing the
space to be reused. In estimating the size of a journal, you should consider the
number of transactions to be using the journal simultaneously, as well as their
profiles, i.e., their length in time and the rate at which they modify data, to
optimize performance.

control_interval_size
is the size of the before journal control interval in number of bytes. (Input) The
size is currently fixed at 4096.

code
is a standard system error code. (Output)

2/85 15-24 AWS3-04C

before_journal_manager_ before_journal_manager_

Entry: before__journal__manager__ Sget__default__bj

This entry point returns the opening identifier of the before journal to be used as the
default in those cases where a before journal specification is expected but not
supplied. The rules for determining this default before journal are described in
"Notes” under the set_default_bj entry point. If the journal which is to serve as the
default before journal is not open at the time of this call, it is opened automatically.

USAGE

declare before_journal_manager_Sget_default_bj entry (bit(36) aligned,
fixed bin(35));

call before_journal_manager_Sget_default_bj (bj_oid, code);
ARGUMENTS

bj_oid
is the opening identifier of the current default before journal. (Output)

code
is a standard system error code. (Output)

Entry: before__journal__manager__%open__bj

This entry point makes the before journal specified by the pathname, ready for use by
any transaction of the current process. A process may have several before journals
open at the same time, and may also have the same journal opened more than one
time. When a transaction is started, one of the open journals must be associated with
the transaction, if the transaction needs a before journal. One can expect that in most

cases, a process will open only one before journal, which will be used by all its
transactions.

This eniry may also change the default before journai for the process to the newly
opened journal (see "Notes" under set_default_bj).

USAGE

declare before_journal_manager_Sopen_bj entry (char (%), char (%), bit (36)
aligned, fixed bin{(35));

call before_journal_manager_Sopen_bj (dir_name, entry_name,
bj_opening_id, code);

ARGUMENTS
dir_name

is the pathname of the directory in which the before journal to be opened
resides. (Input)

2/85 15-25 AWS53-04C

before_journal_manager_ before_journal_manager__

entry_name
is the entry name of the before journal to be opened. The .bj suffix must be
included (Input))

bj_opening_id .
is the opening identifier of the journal. (Output) This specifier must be used
subsequently by the current process to identify this journal.

code
is a standard system error code. (Output)

NOTES

When a before journal is opened, it is remembered in a per system table containing
the pathnames and unique identifiers of all before journals opened in the system. This
table is used after a system crash to determine which journals must be reopened and
examined in order to perform a rollback operation. To preserve the integrity of this
table, it is written out to disk automatically each time it is updated with a newly
opened journal.

“ If a process opens the same before journal more than one time, the opening identifier
received from the open_bj will be the same for each call. The process must close a
before journal the same number of times it opens il. to render the journal inaccessible
through the same opening identifier.

Entry: before__journal _manager__S$set__default__bj

This entry point causes the specified before journal to become the default before
journal. When no before journal is explicitly specified by the user at the beginning of
a transaction, the default before journal for the process will be assigned to the
transaction. The default before journal must be one of the before journals open in
the process.

USAGE

declare before_journal_manager_S$set_default_bj entry (bit(36) aligned,
fixed bin(35));

call before_journal_manager_S$set_default_bj (bj_opening_id, code);
ARGUMENTS

bj_opening_id
is the opening identifier of the before journal. (Input)

code
is a standard system error code. (Output)

2/85 15-26 AW53-04C

before_journal_manager_ before_journal_manager_

NOTES

Several before_journal_manager_ entries expect an opening id to specify which before
journal to use. If bj_opening_id is null, the following default assignments are
attempted, in the order in which they are mentioned below, until one of them
succeeds: '

e The current default before journal in this process, if there is one; otherwise,

e The mosi recently open before journal among those that are still open, if there
is one; otherwise,

e The system before journal. If the system before journal has not been opened
yet in the current process, it is automatically opened.

Entry: before__journal__manager__$set__transaction__storage__limit

This entry point sets the maximum number of bytes a single transaction may use.

USAGE

declare before_journal_manager_S$set_transaction_storage_limit entry
(char (%), char (%), fixed bin (35), fixed bin (35));

call befor

journal manager S$set transaction_storage_limit (dir_name,

e_J v —— —
entryname, storage_limit, code);
ARGUMENTS

dir_name
is the pathname of the containing directory. (Input)

eniryname
is the entryname of the before journal. (Input)

storage_limit
is the maximum number of bytes a single transaction may use in the before
journal. (Input)

code
is a storage system status code. (Qutput)

2/85 15-27 AW53-04C

transaction_manager_ transaction_manager__

2/85

Name: transaction__manager__

Entry points in transaction_manager_ begin and end transactions on behalf of users,
return information about transactions, and recover transactions after system failure.

See the section entitled "Multics Data Management” in the Multics Programmer’'s

Reference Manual, Order No. AGY91, for a complete description of transactions and
their use.

Entry: transaction__manager__$abandon__txn

This entry point relinquishes control of the current transaction, causing it to be
adjusted (aborted unless a commit was already in progress) by the DM daemon
(Data_Management.Daemon). The caller is immediately given a new TDT entry and
can begin another transaction.

USAGE

declare transaction_manager_Sabandon_txn entry (bit (36) aligned, fixed

bin(35));
call transaction_manager_S$abandon_txn (txn_id, code);
ARGUMENTS

xn_id
is the identifier of the current transaction, or "0"b to default to the current
transaction. (Input) If txn_id is neither "0"b nor the transaction identifier of the
current transaction, dm_error_$transaction_not_current is returned. This argument
can be used as a check to be sure which transaction is being abandoned.

code
is a standard system status code. (Output) It can also be:

dm_error_$no_curreni_transaction
No current transaction is defined for this process.

dm_error_$nol_own_transaction
A process can only abandon its own transaction.

dm_error_$transaction_suspended
The current transaction is suspended and therefore cannol be abandoned.

15-28 AWS53-04C

transaction_manager_ transaction_manager_

2/85

Entry: transaction__manager__$abort__txn

This entry point aborts the current transaction, returning all modified DM files to the
state they were in before the transaction began.

USAGE

declare transaction_manager_Sabort_txn entry (bit(36) aligned, fixed

bin(35));
call transaction_manager_Sabort_txn (txn_id, code);
ARGUMENTS

txn_id
is the identifier of the current transaction, or "0"b to default to the current
transaction. (Input) If txn_id is neither "0"b nor the transaction identifier of the
current transaction, dm_error_S$transaction_noi_current is returned. This argument
can be used as a check to be sure which transaction is being aborted.

code
is a standard system status code. {(Qutput) It can also be:

dm_error_$no_current_transaction
No current transaction is defined for this process.

dm_error_$not_own_transaction
A’ process can only aborl its own transaction.

dm_error_$transaction_suspended
The current transaction is suspended and therefore cannot be aborted.

dm_error_S$unfinished_commit
The transaction was left in the middie of a commit operation. It is possible

to call $commii_txn to complete the commit, or call either $abandon_txn or
$kill_txn.

NOTES

If the transaction has already been abandoned, this entry point causes the DM daemon
to abort it immediately.

This entry point will retry abort of a transaction that was left in an error state by a

previous abort or rollback. It will not attempt abort of a transaction left in error by
any other operation.

15-29 AWS53-04C

transaction_manager_ transaction_manager_

Entry: transaction__manager__$begin__txn

This entry point begins a transaction on behalf of the caller, by generating a unique
transaction identifier and recording it in a TDT entry as the current transaction for
the process. Other information, such as owner name, begin time, and (ransaction state
(in—progress) are also recorded. The transaction id is passed to the before journal
manager 1o begin the transaction.

USAGE

declare transaction_manager_Sbegin_txn (fixed bin(17), bit(36), bit(36)
aligned, fixed bin(35));

call transaction_manager_Sbegin_txn (begin_mode,
before_journal_opening_id, txn_id, code);

ARGUMENTS

begin_mode
determines which of several protocols to use. (Input) The only mode currently
available is normal mode.

TM_NORMAL_MODE

requires locks to accompany all gets and puts, and requires all updates to be
journalized.

before_journal_opening_id
is the opening identifier of the before journal to be used by this transaction.
(Input) If zero, a before journal is assigned by default to this transaction.

txn_id
is the identifier of the newly created transaction. (Output) It is generated by

transaction_manager_$begin_txn and is guaranteed to be unique across all Multics
systems. Transaction identifiers are not reusable.

code
is a standard system status code. {(Output) It can also be:

dm_error_%$invalid_mode
The specified begin_mode is not currently supported.

dm_error_$no_begins
Transactions are not allowed to be begun because DM daemon has disallowed

beginning new transactions, for example when preparing to do a systemwide
DMS shutdown.

dm_error_$transaction_suspended
A transaction cannol be begun because a suspended one already exists.

dm_error_$transaction_in_progress
A transaction cannot be begun because one is already active.

2/85 15-30 AWS53-04C

transaction_manager_ transaction_manager_

Entry: transaction__manager__$commit__txn

This entry point commits the current transaction. Any modifications made to DM files
since the transaction began become permanent and visible to other transactions, as if
all the changes were made in the same instant.

USAGE

declare transaction_manager_Scommit_txn entry (bit(36) aligned, fixed

bin(35));
call transaction_manager_Scommit_txn (txn_id, code);
ARGUMENTS

txn_id
is the identifier of the current transaction, or "0"b to default to the current
transaction. {Input) If txn_id is neither "0"b nor the transaction identifier of the
current transaction, dm_error_S$transaction_not_current is returned. This argument
can be used as a check to be sure which transaction is being committed.

code
is a standard system status code. (Output) It can also be:

dm_error_$no_current_transaction
No current transaction is defined for this process.

dm_error_$not_own_transaction
A process can only commit its own transaction.

dm_error_S$transaction_suspended
The current transaction is suspended and therefore canno! be committed.

dm_error_S$unfinished_abort
The transaction was left in the middle of an abort operation. It is possible

to call $abori_txn to complete the abort, or call either $abandon_txn or
$kill_txn.

dm_error_3%unfinished_rollback
The transaction was left in the middie of a rollback operation. It is possible
to call $roliback_txn to complete the rollback. call $abort_txn to abort the
transaction. or call either $abandon_txn or $kill_txn.

NOTES

This entrv point will retry commit of a tiransaction that was left in an error state by

a previous commil. It will not, however, atitempt to commit a lransaction left in error
by any other operation.

2/85 15-31 AWS3-04C

transaction_manager_ transaction_manager_

Entry: transaction__manager__$get__current__txn__id

This entry point returns the identifier of the current transaction, and tells whether the
transaction is suspended or in error. See "Notes" below for a table of transaction
identifiers and error codes returned.

USAGE

declare transaction_manager_Sget_current_txn_id entry (bit(36) aligned,
fixed bin(35));

call transaction_manager_Sget_current_txn_id (txn_id, code);
ARGUMENTS

txn_id
is the identifier of the current transaction. (Qutput)

code
is one of the codes listed below. (Output)

NOTES

The txn_id and code values returned depend on the status of the current transaction:

txn_id code
1. Txn in progress. valid id 0
2. No current txn. 0 dm_error_Sno_current_transaction
3. Txn suspended. valid id dm_error_Stransaction_suspended
L. Txn in error. valid id dm_error_Sunfinished_abort

or: dm_error_Sunfinished_commit
or: dm_error_Sunfinished_rollback

Entry: transaction__manager__$get__txn__info

This entry point returns a structure containing all the information in the TDT about a
transaction.

USAGE

declare transaction_manager_Sget_txn_info entry (bit(36) aligned, ptr,
fixed bin(35));

call transaction_manager_Sget_txn_info (txn_id, txn_info_ptr, code);

2/85 15-32 AWS3-04C

transaction_manager_

2/85

ARGUMENTS

txn_id

transaction_manager_

is the identifier of a transaction, or "0"b to default to the current transaction.

(Input)

txn_info_ptr

is a pointer to the txn_info structure, declared in dm_tm_txn_info.incl.pll. (Input)

code

is a standard system status code. (Output)

ACCESS REQUIRED

The caller requires re access to dm_admin_gate_ to obtain information about another
user’s transaction.

STRUCTURE

This structure, declared in dm_tm_txn_info.incl.pll,

transaction.

dcl 1 tx

MO NNMNMNMONNNODNND DN

3 (dead_process_sw,

2
7

2

w W

(USRS UN R WN)

n_info

version

txn_id

txn_index

mode

state

error_code
checkpoint_id
rollback_count
owner_process_id
owner_name
date_time_created
flags,

suspended_sw,

error_sw,
abandoned_sw,
kill_sw)
mbz
journal_info
bj_uid
bj_oid

aligned based (txn_info_ptr),

char (8),

bit (36) aligned,
fixed bin,
fixed bin,
fixed bin,
fixed bin (35),
fixed bin,
fixed bin,

bit (36),

char (32},
fixed bin (71},

bit (1) unaligned,
bit (31) unaiigned,
aligned,
bit (36),
bit (36),

last_completed_operation

first_bj_rec_id
last_bj_rec_id
n_rec_written
n_bytes_written

char (&),
bit (36),
bit (36),
fixed bin (35),
fixed bin (35);

15-33

returns

information about a

AWS3-04C

transaction_manager_ transaction_manager_

STRUCTURE ELEMENTS

version
is the version of the structure, currently TXN_INFO_VERSION_S.

txn_id
is the identifier of the transaction.

txn_index
is the index of the TDT entrv for the transaction.

mode
is the Dbegin_mode according to which the transaction was begun. See
transaction_manager_$begin_txn for a list of modes.

state
is one of the states declared in the include file dm_im_states.incl.pll. It is either
TM_IN_PROGRESS_STATE for an in-progress transaction, one of several intermediate
states corresponding to calls made by the transaction manager (usually when the
owner process has died in the middle of a call to transaction_manager_), or one
of several error states corresponding to error codes returned by transaction_manager_.

error_code
is 0 or an error code returned by the last call made by the tramsaction manager.

checkpoint_id
is the identifier of the checkpoint that has most recently been rolled back to, or
0 for the start of the transaction.

rollback_count
is the number of times that the transaction has been rolled back, either by a
rollback operation or as part of an unfinished abort.

owner_process_id
is the identifier of the process that began the transaction. This process may or
may not still be running.

owner_name
is the Person.Project identifier of the process thal began the transaction.

date_time_created
is the date—time that the transaction was begun.

dead_process_sw
is "1"b if the process that began the transaction is no longer running.

suspended_sw

is "1"b if the transaction is currently suspended.

error_sw
is "1"b if the transaction manager received an error code from one of its cails

2/85 15-34 AWS3-04C

transaction_manager._ transaction_manager_

(error_code *= () and the transaction has not been adjusted since.

abandoned_sw
is "1"b if the transaction was abandoned by the owner via a call to
$abandon_txn.

kill_sw N
is "1"b if the owner called $kill_txn and the transaction is therefore waiting to
be killed.

bj_uid

is the UID of the before journal chosen when the transaction was begun.

bj_oid
is the per-process opening identifier of the before journal used by the transaction.

last_completed_operation
is the name of the last completed before journal operation.

first_bj_rec_id
1s the identifier of the first mark for this transaction.

last_bj_rec_id
is the identifier of the last mark for this transaction.

n_rec_written
is the number of marks that were written for this transaction.

n_bytes_written
is the total number of byvtes written to the journal.

Entry: transaction__manager_ $kill__txn

This entry point is intended to be called by the owner of a transaction when the
owner cannot end the transaction normally and does not want the daemon to try to
abort it for reasons of efficiency. Killing a transaction can destrov the consistency of
the databases changed during the transaction, and is therefore appropriate only if
consistency is no longer an issue (for example, if the databases are to be deleted). As
with $abandon_txn. calling this entry point frees the user to begin a new transaction.

USAGE

declare transaction_manager_Skill_txn entry (bit(36) aligned, fixed
bin(35));

call transaction_manager_Skili_txn (txn_id, code);

2/85 15-35 AWS53-04C

transaction_manager_ transaction_manager_

ARGUMENTS

txn_id
is the identifier of the transaction to be killed. (Input) If it is "0"b, the current
transaction is used.

code _
is a standard system status code. (Output) It can also be:

dm_error_$no_current_transaction
With txn_id="0"b, no current transaction is defined for this process.

dm_error_$transaction_suspended
With txn_id="0"b, the current transaction is suspended and therefore cannot
be killed.

ACCESS REQUIRED

The caller requires re access 10 dm_admin_gate_.

Entry: transaction__manager__S$resume__txn

This entry point reactivates a suspended (ransaction, once again allowing data
operations on prolected files.

USAGE

declare transaction_manager_Sresume_txn entry (fixed bin(35));
call transaction_manager_Sresume_txn (code) ;

ARGUMENTS

code
is a slandard sysiem status code. (Output) It can also be:

dm_error_%$no_current_transaction
No current transaction is defined for this process.

dm_error_$no_suspended_ transaction
The current transaction is not suspended.

/88 15-36 AWS53-04C

transaction_manager_ transaction_manager_

Entry: transaction__manager__$rollback__txn

This entry point rolls the current transaction back to its beginning, by replacing all
modifications to protected files caused by the transaction, with the before images

preserved in the appropriate before journal. The transaction remains current for the
- user process.

USAGE

declare transaction_manager_Srollback_txn entry (bit(36) aligned, fixed
bin, fixed bin(35));

call transaction_manager_Srollback_txn {txn_id, checkpoint_number,
code) ;

ARGUMENTS

txn_id
is the identifier of the current transaction. or "0"b to default to the current
transaction. (Input) If txn_id is neither "0"b nor the transaction identifier of the
current transaction, dm_error_$transaction_not_current is returned. This argument
can be used as a check to be sure which transaction is being rolled back.

checkpoint_number
must currently be 0. (Input)

code
is a standard system status code. (QOutput) It can also be:

dm_error_$no_current_transaction
No current transaction is defined for this process.

dm_error_$not_own_transaction
A process can only roll back its own transaction.

dm_error_3transaction_suspended
The current transaction is suspended and therefore cannot be rolied back.

dm_error_$unfinished_abort
The transaction was left in the middle of an abort operation. It is possible

to calli $abori_txn to complete the abort, or call either $abandon_txn or
$kill_txn.

dm_error_$unfinished_commit
The transaction was left in the middle of a commit operation. It is possible

to call $commit_txn to complete the commit, or call either $abandon_txn or
$kili_txn.

2/85 15-37 AWS3-04C

transaction_manager_ transaction_manager_

NOTES

This entry point will retry rollback of a transaction that was left in an error state by
a previous rollback. It will not atitempt to rollback a transaction left in error by any
other operation.

Entry: transaction_manager_$suspend_txn

This entry point puts the current transaction into a suspended state wherein it is
temporarily unusable. Data operations to protected files are not allowed while the
transaction is suspended, that is, until $resume_txn is called. Since the suspended
transaction has not been completed, no new transaction can be begun.

USAGE

declare transaction_manager_Ssuspend_txn entry (fixed bin(35));

call transaction_manager_Ssuspend_txn (code);

ARGUMENTS

code
is a standard system status code. {(Output) It can also be:

dm_error_$no_current_transaction
No current transaction is defined for this process.

dm_error_$transactions_suspended
The current transaction is already suspended.

NOTES
Suspension has the following effects:
1. The current transaction is temporarily unusable. As a result, the entry point

$get_current_txn_id returns "0"b and the error code
dm_error_$transaction_suspended.

2. No data operations on protected files are allowed while the transaction is
suspended.

3. Both $begin_txn and $commit_ixn return dm_error_$transaction_suspended.

4, Both $abort_txn and $adjust_tdi_entry (called by DMS) work on suspended
transactions.

2/858 15-38 AWS3-04C

APPENDIX A

ERROR TABLES

The error codes used by MRDS are contained in a separate error table named
mrds_error_. This error table is utilized in the same way as error_table_ (see
"Handling Unusual Occurrences" in the Reference Manual) and contains those messages

and error codes applicable to MRDS,
async_include_file_change
Include files no longer match.

attr_already_exists
The given attribute name has a previous definition.

attr_error
No attribute specification found following an attribute keyword.

bad_access_mode
Data base access mode is not a composite of r, s, m, d, or n.

bad_arith_const
An invalid arithmetic constant or value has been detected.

bad_attr

An illegal tuple attribute has been specified in the selection expression.

bad_attr_name
Attribute name contains an invalid attribute name character.

bad_builtin_obj
Unable to reference the scalar built-in functions.

bad_delim
A delimiter has been incorrectly specified.

bad_domain_proc
Encode/decode procedure could not be accessed.

bad_eq
An equal sign has been incorrectly specified.

bad_ident
An identifier contains invalid characters.
bad_invert file_type

Entry is not a multisegment file.

bad_key_retrieve
Retrieval based on a primary key found multiple tuples.

bad_keyword
An expected keyword was not found.

3/84 A-1 AW53-04B

bad_model
A file which is not a data model or is inconsistent has been specified.

bad op
An arithmetic operator has been improperly specified in the -where clause.

bad_pathname
The pathname supplied is a control argument.

bad_quant
No tuple variable was specified following a quantifier.

bad_rel_name
Relation name contains an invalid relation name character.

bad_select_value
An unsupported data type was specified for a select item value.

bad_source_path
Source pathname is a control argument.

bad_temp_rel_val
A value specified for a temporary relation index is not an integer.

bad var
T An illegal tuple variable has been specified in the selection expression.

block sel_ incons
The number of items being selected is inconsistent among select blocks.

bool_leaf
An 'and' or 'or' operator has a constant or tuple attribute operand.

cant_ref_fun
Unable to reference a declared or built-in function.

comp_sel expr
Complex selection expressions are not allowed for update operations.

conversion_condition
The conversion condition has been signalled during a data conversion attempt.

ctl_ent_is_dir
The control file path is a directory, not a vfile msf.

curr_not_alld
A -current operation is not permitted for a selection expression containing
set operations.

db_already_open
Attempt to open a data base before previous openings have been closed.

db_busy
The specified data base is currently busy -- try later.

db_conflict_dead_process
A scope request cannot be honored due to a conflict with a nonpassive dead
process.

diff_comp_domain
Attempt to compare attributes which are not defined over the same domain.

dom_integ
A value to be inserted into the data base does not satisfy integrity constraints.

domain_already_defined
The given domain name has a previous definition.

3/84 A-2 AW53-04B

dup_invert_dir_name
Inversion entry not a directory.

*
dup_not_alld
A -dup is not allowed in a -current clause or in an operation other than
retrieve.
dup_rel
The given relation name has a previous definition.
dup_store
A tuple with the specified primary key already exists.
dup_temp_rel_attr
A non-unique attribute name was found in the definition of a temporary
relation.
duplicate_key
A tuple with the specified primary key already exists.
duplicate_opt
A control option was given more than once.
duplicate_scope
Attempt to define scope upon a file more than once.
empty range
No range definitions were found following a -range keyword.
empty_select
No tuple attribute or tuple variable was specified following a -select or
-current keyword.
empty where
No predicate follows the -where keyword.
error_condition
The error condition has been signalled during a data conversion attempt.
expr_stack_ovfl
Translator error -- expression stack overflow.
expr_syntax
A syntax error has been detected within an arithmetic expression.
expression _not_complete
A relation definition expression is not complete.
ext_data
Data follows the right parenthesis.
»*

fixedoverflow_condition
The fixed overflow condition has been signalled during a data conversion
attempt.

free_not_quiesced
Attempt to free a data base which was not quiesced.

fun_syntax
A syntax error has been detected within a function reference.

hold_quiesced_db
Attempt to quiesce a data base before previously quiesced data bases have
been freed.

ill_term
There is an illegal term in the -where clause.

3/84 A-3 AW53-04B

inv_comparison .
The data types cannot be compared.

inv_keyword
An unrecognizable keyword was found in the selection expression.

2/85 A-U4.1 AW53-04C

This page intentionally left blank.

2/85 AW53-04C

illegal_procedure_condition
The illegal procedure condition has been signalled during a data conversion
attempt.

inc_attr_acec
Incorrect access to attribute.

inc_ready_mode
The specified operation is not compatible with the current file ready mode.

inc_rel_acec
Incorrect access to relation.

inc_secure_open
Attempt to open secured data base from model, or through non-secure submodel.

incomp_se
A selection expression of -another is valid only for a retrieve operation.

incomp_se_and_scope
The selection expression was -another, but the scope has been changed from
non-shared to shared mode.

incomplete declaration
Incomplete declaration.

incons_db
There is an inconsistency in the data base. If this error persists, contact your
Data Base Administrator.

inconsistent_close
The data base has been closed -- but has been lockad because of an inconsistency.

inconsistent_data length
The selection exression was -another, but the current data length is different
than the previous call to retrieve.

inconsistent_database
There is an inconsistency in the data base. If this error persists, contact your
Data Base Administrator.

inconsistent_info
An internal inconsistency has been detected.

inconsistent_num_files
Number of files in data base dozs not match number specified in db_model.

inconsistent _options
Options supplied cannot be used together.

inconsistent submodel
Inconsistent submadel.

inconsistent_transaction_se
The selection expression was -another, but the original selection expression was
in another transaction.

incorrect dsmd_segq
Data submodel definition entry called in incorrect sequence.

insuff_args
There is no argument corresponding to a .V. in the selection expression.

internal_error
Internal MRDS programming error. Please contact the MRDS developers.

inv_attr_name_first_char
Invalid attribute name; attribute names must begin with an alphabetic character.

2/85 A-U AW53-04C

inv_1literal_type
The value of a constant is not a string or arithmetic data type.

inv_operator
The relational operator index is not valid.

inv_rel_name_first_char
Invalid relation name; relation names must begin with an alphabetic character.

inv_string
An invalid string constant has been specified in the selection expression.

inv_string len
An invalid repetition factor has been specified for a string constant.

inv_token
An unrecognizable token was found in the selection expression.

inval_del_expr
Invalid selection expression for delete.

inval_dtr_expr
Invalid selection expression for define_temp_rel.

inval_mod_expr
Invalid selection expression for modify.

inval_rtrv_expr
Invalid selection expression for retrieve.

invalid_db_index
Specified data base index does not correspond to currently open data base.

invalid_dec_data
Invalid data.

invalid_dm_descriptor
Data type given by descriptor not supported by Data Base Manager.

invalid_opening_ mode
Invalid opening mode.

invalid_precision
Invalid precision specification.

invalid_rel
Submodel relation failed to perfectly validate against the model relation.

invalid_rel_index
An invalid relation index has been given.

invalid_scale
Invalid scale specification.

invalid_select_sets
An invalid select_sets sequence has been detected.

invalid_string_length
Invalid string length.

key_encd_ovfl
An overflow has occurred while encoding a floating point key/index value.

list_duplicate
A duplicate appears in the given list.

lit_string_ovf
Translator error -- the literal area has overflowed.

3/84 A-5 AWS53-04B

long_ident
An identifier consists of more than 32 characters.

long_index
An index attribute is longer than the maximum key length allowed.

long_key
The primary key is longer than the maximum length allowed.

max_and_groups
Translator error -- maximum number of 'and' groups exceeded.

max_and_terms
Translator error -- maximum number of terms in 'and' group exceeded.

max_attributes
The maximum number of attributes allowed per relation has been exceeded.

max_expr_items
Too many items have been specified in an arithmetic expression.

max_indexes
The maximum number of secondaryily indexed attributes for a single relation
has been exceeded.

max_rels
The maximum number of relation allowed per data base has been exceeded.

max_retr_len
The selected attributes exceeded the maximum temporary space available to
hold them.

max_select_items
Too many items have been specified for selection in a -current or -select
clause.

max_sf_args
The maximum number of scalar function arguments allowed has been exceeded.

max_temp_rels
The maximum number of temporary relation definitions has been exceeded.

max_tup_var
Too many tuple variables have been specified.

max_vars_rel
More tuple variables than iocb's for a given relation.

»*
missing _relation_name
Relation name not specified.

missing_select
An expected -select clause was not found.

mixed_versions
Attempt to use different version data bases in same argument list.

*
mod_key_attr
Attempt to modify a key attribute.

mult_asts
Multiple asterisks followed an attribute name.

mult_att_def
An attribute has been multiply specified within a relation expression.

3/84 A-6 AW53-04B

mult_att_ref
An attribute has been multiply referenced within a relation expression.

mult_def var
A tuple variable has been multiply defined in the range clause.

mult expr_vars
An arithmetic expression involving more than one tuple variable has been
specified.

mult_index
B relation has been specified more than once in the index clause.

mult_ paren
Multiple left parentheses were found.

multiple_ tuples_found
A selection expression for modify resulted in more than one tuple being
selected.

my_quiesced_db
Attempt to quiesce a data base which has already been guiesced by this
process.

no_attr_1p
No attribute name was found following the left parenthesis.

no_attr_spec
None of the submodel attributes were found in the data model.

no_ctl_ path
No control file path name was supplied.

no_current_tuple
No tuple was found which satisfied the selection expression.

nc_database
No MRDS data base model found with the given pathname.

no_db_path
No data base path was supplied.

no_dms
Data management software could not be found.

no_domains
No domain specification found following a domain keyword.

no_dups_for_set_oper
Duplicates are not allowed in set operations.

no_inds
No index specification found following an index keyword.

no_key_ specified
No key attribute field defined.

no_left_paren
No left parenthesis was found following the relation name.
no_model_access

Insufficient access to read data base model or submodel.

no_model_attr
The specified data model attribute name does not exist.

no_model_dom
The specified data model domain name does not exist.

3/84 A-T7 AW53-04B

no_model rel

The specified data model relation name does not exist.

no_model submodel

»*

No data base model or submodel found with the given pathname.

no_prev_store

A “another keyword has been specified for store without a previous store.

I no_primary_key

No primary key attributes were specified for the relation.

no_prior_se

A -another or -current keyword has been specified without a prior valid
selection expression,

no_recursion

This command/subroutine may not be called recursively.

no_rel attr

No attributes were specified for the relation.

no_rel_ name
No relation name was found.
no_rels
No relation specification found following a relation keyword.
*
no_sel_exp
No selection expression was found.
no_sm_rel
No relation by this name exists in the submodel.
no_temp_dir

No temporary directory path was supplied.

no_tr_keys

no__

no_

no_

No primary keys were designated in the selection expression.

tuple
There is no tuple satisfying the qualifications.

tuple_effect
Some of the tuple variables have no effect on the select set.

wakeup user
A waiting and blocked data base user could not be awakened.

node_stack_ovfl

Translator error -- the node stack has overflowed.

non_scope_ready

File was not readied for scope_update or scope_retrieve.

not_ dsm

The specified view pathname is not a data submodel.

not_freeing_area

The supplied area does not have the freeing attribute.

not_leaf

A 'not' operator has a constant or tuple attribute operand.

one_tuple_ op

More than one tuple variable was selected for a modify or delete.

3/84 A-8 AW53-04B

op_stack_ovfl
Translator error -- the operator stack has overflowed.

open_name_already_known
The open name given is already defined, open names must be unique.

open_name_not known
The given open name is not currently defined.

open_order
There was an attempt to open an old version data base with new version data
bases open.

overflow_condition
The overflow condition has been signalled during a data conversion attempt.

parse_error
Syntax error.

previously defined_index
An attribute was previously defined as an index.

process_not_found

Unable to locate specified process in the data base control segment.
quiesce_pending

Another process is waiting to quiesce the data base.

quiesce_too_few
The number of data bases to quiesce is negative or zero.

quiesced_db
The data base has been quiesced by another process.

quiesced_dead_db
The data base has been quiesced by a process which no longer exists.

range_syntax
A syntax error has been detected within a -range clause.

recursion_error
This command/subroutine may not be called recursively.

rel name_too_long
The relation name exceeds the 30-character limit.

rel node
A relational operator has a term or group of terms as an operand.

rst_bad_attribute_count
Model structure and attribute count don't agree.

rst_bad_bit_string
Bit string violates syntax rules.

rst_bad_child_count
Model structure and child link count don't agree.

rst_bad_declaration
Error in the declaration of a domain.

rst_bad_domain_count
Model structure and domain count don't agree.

rst_bad_encoding
Source character was incorrectly encoded.

3/84 A-9 AW53-04B

sg—

rst_bad_file_count
Model structure and file count don't agree.

rst_bad_link_count
Model structure and link count don't agree.

rst_bad_model
Inconsistent data base model detected.

rst_bad_number_syntax
Syntax error was found in a number.

rst_bad_relation_count
Model structure and relation count don't agree.

rst_bad_semantics

The intended meaning of a statement may be lost or misinterpreted.

rst_childless_parent
The given foreign key has no child links.

rst_comment_ends_source
Source segment ends in the middle of a comment.

rst_conversion_error
Overflow occured trying to convert number to binary.

rst_dup_file
The given file name has a previous definition.

rst_illegal_char
Illegal character being skipped.

rst_inconsis_option
The given attributes in a declaration are contradictory.

rst_invalid_structure_type
The given number has no defined structure correspondence.

rst_io_error
An error was detected during an I/0O operation.

rst_link attr_differ
The parent/child attribute counts differ.

rst_list_delete_fail
The item to be deleted was not in the list.

rst_list_duplicate
Attempt to add a duplicate to the given list.

rst_logic_error
Internal MRDS programming error. Please contact the MRDS

rst_missing_file_model
File model segment not found.

rst_missing_pathname
An expected pathname was not found.

rst_missing ref domain
A domain referenced by an attribute wasn't found.

rst_model_limit
The capacity of the data base model has been exceeded.

rst_name_duplicate
A relationis attribute 1ist contains a duplicate name.

3/84 A-10

developers.

AW53-04B

rst_name_too_long
A name exceeds it's maximum allowable length.

rst_no_key_attr
The given relation does not specify any key attributes.

rst_no_link relation
The given link does not have a relation attached.

rst_not_rel attr
A relation does not contain the referenced attribute.

rst_option_limit
The upper 1limit for an option's value was exceeded.

rst_parse_err_correct

Unable to understand statement structure, attempting guess at intended syntax.

rst_parse_err_no_correct
Unable to understand statment structure, and attempt at guessing intended
syntax failed.

rst_parse_err_no_recover
Unable to comprehend statement structure, and attempt to recover by skipping
to next recognizable delimiter failed.

rst_parse_err_recover
Unable to comprehend statement structure, skipping to next recognizable
delimiter.

rst_parse_fail
TotaIlly confused by statement syntax, unable to continue parsing.

rst_pathname_ends_source
The scurce segment ends during a path/entry name.

rst_rel has_file
A referenced relation has a previous file definition.

rst_reserved_name
A reserved name was used.

rst_string_ends_source
The source segment ends within a quoted string.

rst_token_too_long
A token exceeds the maximum string size.

rst_undef rel
A referenced relation has not been previously defined.

rst_undone_option
The specified option is not implemented.

rst_unused_attr
The given attribute has never been referenced in a data base relation.

rst_unused_attr_dom
The given domain has never been referenced in a data base relation.

rst_wrong_command
The command or subroutine call was given in an incompatible situation or
sequence.

scal_func_conversion
A conversion condition was raised while processing a scalar function.

scope_empty
Attempt to delete scope tuple from empty scope set.

3/84 A-11 AW53-04B

scope_mrds_access_conflict
The requested scope exceeds the MRDS access granted for this relation.

scope_not_empty
Rttempt to define scope while scope is not empty.

scope_not_found
Specified scope tuple not in current scope.

scope_not_set
No scope currently set for the specified relation.

scope_system_access_conflict
The requested scope exceeds the system acl's on the given relation.

scope_viol
This operation is not permitted within the current scope definition.

sel_blk_synt
A syntax error has been detected within a select block.

select_mismatch

There are not enough value arguments to satisfy all specified select items.

select_syntax
A syntax error has been detected within a -select or -current clause.

sell_syntax
A syntax error has been detected within the selection expression.

set_ovfl
Too many select blocks have been specified in the selection expression,

set_syntax
Select blocks have been incorrectly combined.

size condition
The size condition has been signalled during a data conversion attempt.

surplus_text
Text follows the logical end of the source segment.

too_many_args
The maximum number of expected arguments has been exceeded.

too_many_attributes
The maximum number of attributes for a relation has been exceeded.

too_many_data_models
Attempt to open more than the maximum number for data model openings.

too_many_dbs
Attempt to open more than the maximum allowable number of openings at
time.

too_many_open_names
Too many open names have been defined, some must be deleted first.

too_many_ temp files
The maximum number of temporary files has been exceeded.

trouble_lock
The data base is locked and may be inconsistent.

tuple_not_found
Vo tuple was found which satisfied the selection expression.

unable_to_create_channel

one

An event channel needed to activate a queued process could not be created.

3/84 A-12 AW53-04B

unable_to_queue_user
A user could not be placed in the waiting queue due to an error.

unaccep_fn_args
A function reference includes an unacceptable argument, or the wrong number
of arguments.

unbal_parens
The number of right parentheses does not match the number of left parentheses.

undef_attr
A referenced attribute has not been previously defined.

undef_fun
A referenced function is not built-in nor has it been declared.

undef rel

A specified relation name is undefined in the submodel.

undef_temp_rel
The given index does not refer to a currently defined temporary relation.

undef_var
A specified tuple variable has not been previously defined.

undefined_domain
A referenced domain has not been previously defined.

undefined_temp rel index
The given index does not refer to a currently defined temporary relation.

underflow_condition
The underflow condition has been signalled during a data conversion attempt.

unknown_cursor_storage
The pointer to the storage for the cursor pointers is bad.

unknown_file_name
Specified relation name not known to this process.

unknown_proc_id
An unidentifiable data base user process has been encountered.

unknown_relation_ name
Relation name specified is not in the current view of the data base.

unshared_opening

This operation is not valid for nonshared openings.
unsup_type

An unsupported data type has been specified as a value.

upd_temp rel
Update operations are not permitted for temporary relations.

update_not_allowed
A relation is not available for update operations.

user_not_found
Unable to locate specified user in the data base control block.

var_stack_ovfl
Translator error -- the variable stack has overflowed.

version_1_dsm
Version 1 submodels are no longer supported by MRDS,

3/84 A-13 AW53-04B

m—

version_3 db
Version 3 data bases are no longer supported by MRDS.

version_not_supported
The data base is a version not supported by this command/subroutine.

view_prevent
The specified operation cannot be accomplished using the current data base
view,.

where_syntax
A syntax error has been detected within the -where clause.

3/84 A-14 AW53-04B

APPENDIX B

MRDS DATA

Data that is specific to MRDS is contained in a table named mrds data . It
provides changeable limits on the operation of MRDS.

Listed below are the parameters used during the compilation of some of the

MRDS modules.

Data Item Name
and Declaration

caller define temp rel
fixed bin(35)
caller delete
fixed bin(35)
caller modify
fixed bin(35)
caller retrieve
fixed bin(35)
control segment name
char(32)
current version
fixed bin(35)
current_version status
fixed bin(35)
dmd_version
fixed bin(35)
dsmd version number
fixed bin(35)
file id len pad
fixed bin(35)
key search_threshold
fixed bin(35)

lit _string_size
fixed bin(35)
lock wait
fixed bin(35)
lock wait_time
fixed bin(35)
max_and groups
fixed bin(35)
max_and_terms
fixed bin(35)
max_attributes
Tixed bin(35)
max_builtin_args
fixed bin(35)
max_data_length
fixed bin(35)
max dbs
fixed bin(35)
max_expr_items

Value

n
1
2

3

db.control
I
8

50

73728
900

20
256

2000
128
20

Description

translate called by
define temp rel
translate called by delete

translate called by modify
translate called by retrieve
name of data base

concurrency control segment
current data base version

current version_status structure

major number

version of model header
structure

version of submodel header
structure

length of file id in bits
in tuple id

number of tuples selected before
an additional key search, rather

than comparisons against the
selected set will be done.-
max length of a literal
string
wait time to lock aes
control segment
set scope default wait time

max "and groups" allowed
in s.e. pred tree

max terms allowed in an
and group in pred tree

max attrs allowed per
relation by CMDB

max number of arguments to
a built-in function

max temp rel record
data length

number of data base openings
allowed

stack depth for eval

AW53-04

fixed bin(35)

max_expr_stack size 14
fixed bin(35)

max_id len 32
fixed bin(35)

max_kattr len 253
‘fixed bin(35)

max_key_len 253
fixed bin(35)

max_line size 50000
fixed bin(35)

max_1it string size 254
fixed bin(35)

max_pred depth 30
fixed bin(35)

max_pred nodes 100
fixed bin(35)

max_pred _ops 100
fixed bin(35)

max _relations 256
fixed bin(35)

max_select items 100
fixed bin(35)

max_sets 20
fixed bin(35)

max_sf args 30
fixed bin(35)

max_string size 4096
fixed bin(35)

max_td len 10
fixed bin(35)

max_temp rels 20
fixed bin(35)

max_token size 65
fixed bin(35)

max_tup var 20
fixed bin(35)

max_vfile wait time 60
fixed bin(35)

normal mode 1
fixed bin

quiesce mode 2
fixed bin

quiesce_wait 900

fixed bin(35)
statistics_update_count_interval

fixed bin(35) 10
statistics_update time interval
fixed bin(71) ~ 300000000
statistics_update small rel size
fixed bin(35) 100
submodel dir_ name secure.submodels
char (76)
temp_seg name mrds_ search tidtemp.dbi
char(23)
valid_id chars abcdefghi jklmnopgrstuvwx
char(128) yzABCDEFGHIJKLMNOPQRSTUV
WXYZ0123456789_~-

of s.e. expressions
stack depth for eval

of s.e. expressions
max character length of a

tuple variable name
max length for Key value

max total chars from attrs
making up key field in rels

largest output line for
emdb listing

max repeated string
literal size

size of star't for conversion
pred tree to disj. norm. form

max number of pred tree
tuple attr leaf nodes

max number of pred tree
operator leaf nodes

largest number of relations
emdb can create

s.e. select clause max
item count

s.e. max number of set
operators

max number of args for
scalar function

largest parsable token
for cmdb

largest array space for
token data

most simultaneous temp rels

largest s.e. token length

most s.e. tuple variables
allowed

max time to wait for file
operations for -share option

normal data base access mode

guiesce data base access mode
wait time to quiesce files

+number of rel ref times
before statistics are next update

+real time til statistics
next updated

+max size of rel to be
updated every S.E.

name of submodel dir in
new architecture

common name for tid
search temp segs

legal s.e. token characters

AW53-04

APPENDIX C

BIBLIOGRAPHY

Astrahan, N. M., et al, "System R: Relational Approach to Data Base
Management," ACM Transactions on Data Base Systems, Vol. 1, No. 2.
June 1976, pp 97-137

Chamberlain, D. D. and Boyce, P. F., "Sequel: A Structured English Query
Language," Proc. ACM-SIGMOD Workshop on Data Description, Access, and
Control, May 1974, ACM, New York 1974, pp 2U49-26Y4
May 1974, ACM, New York 1974, pp 249-264

Codd, E. F., "A Relational Model of Data for Large Shared Data Banks,"
Comm. ACM 13, No. 6, June 1970 pp 377-387

Codd, E. F., "A Data Base Sublanguage Founded on the Relational Calculus,"
Proc. 1971 ACM-SIGFIDET Workshop

Codd, E. F., "Further Normalization of the Data Base Relational Model,"
Courant Computer Science Symposia 6 "Data Base Systems," New York City
May 24-25 1971 Prentice Hall

Ccdd, E. F., "Normalized Data Base Structure: A Brief Tutorial," Proc. 1971
ACM-SIGFIDEG Workshop

Codd, E. F., "Relational Completeness of Data Base Sublanguages,"
Courant Computer Science Symposia 6, "Data Base Systems,"
New York City May 24-25, 1971 Prentice Hall

Date, C. J., "An Introduction to Data Base Systems,"
2nd Edition, Reading, Mass. Addison Wesley, 1977

Sibley (Ed), E. H., "Special Issue: Data Base Management
Systems," ACM Computing Surveys, Vol. 8, No. 1 March 1976

Won Kim, "Relational Data Base Systems," ACM Computing Surveys,
Vol. 11, No. 3, Sept. 1979, pp 185-211

C-1 AW53-04

APPENDIX D

SET OPERATORS

Set operators are those operators used by MRDS which define the construction

of different classes of selection expressions and which are based on the mathematical
set theory operations of union, intersection, and difference. The three operations
(including Venn diagrams) are defined as:

UNION

The union of A and B is defined to be the class of all the elements that
belong either to A, or to B, or to both A and B.

INTERSECTION

The intersection of A and B is defined to be the class of all the elements
that belong to both A and B.

DIFFERENCE

The difference between A and B is defined to be the class of all elements
that belong to A but do not belong to B.

AW53-04

APPENDIX E

ADMINISTRATOR-WRITTEN PROCEDURES

MRDS provides an interface to allow a DBA to write encoding, decoding, and check
procedures for domains in a data base. Such procedures are associated with a domain at
the time of data base creation and are executed when data defined by the domain is
accessed. Additiocnally, the DBA may specify an internal data representation that is
different from the way the data is represented to the external user. This feature may
be used independently or in conjunction with the administrator-written procedures.

An encoding procedure, which 1is associated with a domain by using the
-encode proc domain option in the data base model source, is used to convert or
translate external data input into a different data type or internal representation.
For exampls, an encoding procedure may convert an alphabetic input item into all
upparcase characters before it is stored in the data base. The encoding procedureis
executed at two different times: when an attribute associated with the domain is
stored or modified, and when an attribute associated with the domain is used in some
types of selection expressions in such a way that a constant must be encoded during
selection.

A decoding procedure, associated with a domain by the -decode_proc option, does
thereverse of an encoding procedure. It converts or translates an internal data base
value into its external representation. This procedure is also executed at two
different times: when an attribute is retrieved from the data base and when an
attribute associated with the domain is used in a selection expression in such a way
that the data base value must be decoded into its external representation during
selection. (Refer to the following paragraphs for additional information.)

Encoding and decoding procedures must not change the ordering of an item or
selections will not work as expected (i.e., "abe"™ and "cba™ should not be transformed
to "cba"™ and "abe", respectively).

Qualifiers in a selection expression are compared without the use of encode or
decode procedures; that is, all comparisons are done using the internal encoded data,
except in two special cases.

1. When an attribute, that has an encode procedure associated with it, is compared
against a constant. Encoded values must be compared with encoded values. For
this case, the constant is encoded using the attribute's encode procedure, and
the encoded result is compared against the encoded data base value.

12/86 E-1 | AWS53-04D

2. When an expression is compared with an attribute, a constant, or another
expression. Decoded values must be compared with decoded values. For this
case, the data base valuss are decoded using the decode procedures for each
attribute found in the expression. The expression is then evaluated and the
decoded result is compared as follows. If it is being compared against a
constant, the constant value is used directly because it is already decoded. If
it is being compared with an attribute, the attribute value is decoded using its
decode procedure. If it is being compared against another expression, the
expression is evaluated as just described and the decoded results are compared.

Check procedures, specified by the -check proc domain option, areused to verify
data validity prior to its storage in the data base. These procedures are called
waenever data defined by the domain 1is stored or modified. The procedure does
whatever checking is desired by the DBA and returns a true or false value depending on
whether or not the data is acceptable. This is done immediately before the data is
stored and after any encoding or conversion has been done. The data verified is
already in its internal format. :

The DBA may use the -decode_dcl domain option to specify data conversion from an
external to an internal data type either with or without encoding or decoding. For
example, to speed processing or save space a data item may have an external
representation of character, but be stored as binary. Such simple conversion may be
dorne by using the -decode_dcl option alone without any encoding/decoding procedures.
If the -decode _dcl option is used with an encode or decode procedure, it defines the
user-visible data type that is processed by that procedure.

12/86 / E-1.1 AW53-04D

CODING ADMINISTRATOR-WRITTEN PROCEDURES

To interface properlvaith MRDS, encoding, decoding, and check procadures must
be written as recorded below. The example gives a sample data base and procedures, and
describes in detail when the procedures are called.

Encoding Procedure

The encoding procedure is used to convert a data item to be stored or modified
into a different internal representation. Once defined for a domain, the procedure
may not be moved or deleted without causing store and some selection operations using
this domain to fail. It can, however, be changed without re-creating the data base;
this does not change existing values already stored in the data base. Encoding
procedures recsive three arguments, each accompanied by standard Multics
descriptors. Administrators who wish to write encoding proczsdures to accept a
variety of input and output data types may use these descriptors. See the MPM
Subsystem Writers' Guide for more information about argument list format and
descriptors.

Usage

encode _proc: procedure (user_value, db _value, code);
where:
1. user_value (Input)

is the value, in user-visible format, to be encoded. If the -decode dci
domain option 1is wused, this argument matches that declaration.
Otherwise, it matches the internal domain declaration.

2. db_value (Output)
is the value in the format suitable for storage in the data base. It must
match the internal domain declaration.

3. code (Output)
is a status code. A nonzero code returned by the encoding procedure
terminates the data base operation in progress. The actual code,
however, is discarded. Therefore, if the DBA wishes to issue explanatory
messages about the error, the encoding procedure should do so using the
sub_err_ subroutine documented in the MPM Subsystem Writers' Guide.

Notes

The encoding procedure may convert and reformat data for storage in the data
base. It should not, however, change the relative ordering of data or selections may
not work as expected.

If an encoding procedure and a decoding procedure are both used for a domain, they
should perform symmetrical transformations on the data (i.e., if "abe" encodes to
WABC", then "ABC" should decode to "abce"). If this is not done, theresult of data base
retrievals is unpredictable.

12/86 E-2 : AW53-04D

Decoding Procedure

N

The decocding procedure is used to. convert a data item stored in the data
base into its external representation after retrieval for the user. Once defined
for a domain, the procedure may not be moved or deleted without causing retrieve
and some selection operations using this domain to fail. It can, however, be
changed without re-creating the data base. Decoding procedures receive three
arguments, each accompanied by standard Multics descriptors. Administrators who
wish to write decoding procedures to accept a variety of input and output data
types may use these descriptors. See the MPM Subsystem Writers' Guide for more
information about argument 1list format and descriptors.

Usage
decode_proc: procedure (db_value, user_value, code);

where:

1. db_value (Input)
is the value as it appears in the data base. It matches the internal
domain declaration.

2. user_value (Output)
is the value in user-visible format. If the -decode_decl domain option
is used, this argument must match that declaration. Otherwise, it
matches the internal domain declaration.

3. code (Output)
is a status code. A nonzero code returned by the decoding procedure
terminates . the data base operation in progress. The actual code,
however, is discarded. Therefore, if the DBA wishes to issue explanatory
messages about the error, the decoding procedure should do so using
the sub_err_ subroutine documented in the MPM Subsystem Writers'
Guide.

Notes

If an encoding procedure and a decoding procedure are both used for a
domain, they should perform symmetrical transformations on the data (i.e., if
"abc" encodes to ""ABC", then "ABC" should decode to "abe"). If this is not
done, the result of data base retrievals is unpredictable.

Check Procedure

The check procedure is used to ensure that data toc be stored in the data
base passes DBA-defined integrity tests. This procedure is called as a function
with one argument (the value to be stored in the data base) and returns a true
or false value depending on whether or not the value is acceptable. Once defined
for a domain, the procedure may not be moved or deleted without causing store
operations using this domain to fail. It may, however, be changed without re-creating
the data base. The argument passed to this procedure is accompanied by a standard
Multics data descriptor. Administrators who wish to write check procedures to
accept a variety of data types may use this descriptor. See the MPM Subsystem
Writers' Guide for more information about argument list format and descriptors.

E-3 AW53-04

Usage
check proc: procedure (user_value) returns (fixed bin(35));

where:

1. user_value (Input)
is the value to be stored in the data base. It matches the internal
domain declaration. o

2. 0K (Output) fixed bin(35)
is an indicator that is:

1 (true) if the value is acceptable
0 (false) if it is not

Note

The check proc is called after the encoding procedure, if any.

Example

1. For the data base defined by:

domain: name char (32),
birthdate fixed bin (71) /¥ internal representation ¥/
-decode dcl char(17) /¥ external representation %/
-encode proc >udd>Proj>DBA>encode
-decode proc >udd>Proj>DBA>decode
-check proc >udd>Proj>DBA>check;

relation: birth_info (name¥* birthdate);

2. The encoding procedure is:

encode: procedure (user value, db value, code);

del user_value char(®);” /%*external data type */
del db_value fixed bin(71); /* internal data type ¥*/
dcl code fixed bin(35); /% status code ¥/

decl convert date_to binary_ entry
char(*), fixed bin(71), fixed bin(35));

code = 0;

call convert_date_to_binary
(user_value, db_value, code);

return;

end encode;

3. The decoding procedure is:

decode: procedure (db value, user value, code);
del db value fixed bin(71); /¥ Internal data type %/
decl user value char(¥); /% external data type ¥*/
del code fixed bin(35); /% status code ¥/
dcl date time entry

(fixed bin(71), char(*));

code = 0;
call date_time_ (db_value, user_value);

2/83 E-U AWS3-04A

return;
end decode;

4, And the check procedure is:

check: procedure (user_value) returns (fixed bin(35));
del user_value fixed bin(71); /* value to be stored after check */
del OK fixed bin(35); /¥ return indicator ¥/
del clock entry
returns (fixed bin(71));

if user_value < clock () /* compare with current time ¥/
then 0K = 1; /* only want times in past ¥/
else 0K = 0; /% future times are no good ¥/

return (0K);
end check;

5. The interaction of these procedures for the following operations is described
below (assuming that the data base has been opened with an index of 1).
call dsl_$store (1, "birth info", "John Doe", "12/25/7 07:30", code);

Encode is called with user_ value equal to "12/25/79 07:30" and returns
its binary clock equivalent in db value,.

Check is called with that clock value and returns true since it is a
date in the past.

The tuple is stored in the data base.

call dsl $retrieve (1, "-range (info birth info) -select info.name
info.birthdate", name, birthdate, code);

Decode is called with db_value equal to the binary clock value stored
for birthdate. It will return a user_value of "12/25/79 0730.0".

"John Doe" is returned in name and "12/25/79 0730.0" is returned in
birthdate.

call dsl _$store (1, "birth info", "Richard Roe", "May 1 1999 0849.", code);

Encode is called with user value = "May 1 1999 0849." and returns its
binary clock equivalent in db_value.

Check is called with that clock value and returns false since the date
is in the future.

The error code mrds_error_$dom_integ is returned to the calling program
and the tuple is not stored.

call dsl $store (1, "birth info™, "Richard Roe", "May 1 1979 0849.", code);

Encode is called with user_value = "May 1 1979 0849." and returns its
equivalent in db_value.

Check is called with the clock value and returns true.
The tuple is stored in the data base.

call dsl_$retrieve (1, "-range (info birth_info) -select info.name
-where info.birthdate > ""10/01/79 0000."" " 6 name, code);

Encode is called with user_value equal to "10/01/79 0000." and returns
its binary clock equivalent.

E-5 AW53-04

The data base is searched for a qualifying tuple. "John Doe" is returned

in name.
call dsl $retrieve (1, "-range (info birth info) -select info.name
-where [substr (info.birthdate, 1, 2)] = ""05""" name, code);

Deccde is called to convert the binary clock value for each data base
tuple into a character string that is input to the substr function.

"Richard Roe" is returned in name.

E-6 AW53-04

APPENDIX F

MRDS INCLUDE FILES

For dsl_ Entries:

mrds_attribute_list

NOTE: Some of the include files may reference version 3 data bases
which are no longer supported. Please disregard these references.

Description:

For a given data base opening via a model or submodel view, this structure
contains the following attribute information for a particular relation: the
number of attributes in this model/submodel view of the relation and the names
in both the model and submodel (these will be the same if opened with a model
view), the name of the domain for each attribute, the descriptor of the user's
view of the data type, and whether the attribute can be used as an indexed
attribute.

Access information is also returned for various versions of MRDS security as
follows:

system_acl entries refer strictly to "rew" type Multics ACLs.

mrds_access entries are version-dependent. Version 4 data bases released
in MR8 have no MRDS-specific access, but use system ACLs of "rew". Version
4 data bases for MR9.0 MRDS wusing submodel security have MRDS specific
access mode of append/delete_tuple for relations and read/modify_attr for
attributes.

effective_access entries use the same units as mrds_access. This is the
logical result of applying both MRDS and system access and coming up with a
user-effective mode of access to the relation/attribute.

declare 1 mrds_attribute_list aligned based (mrds_attribute_list ptr),
2 version fixed bin, /* version number of this structure ¥/
2 access_info_version fixed bin,
/% version of MRDS access modes
3 => version 3 db with r-s-m-d access,
4 => version 4 MR8 db with r-e-w access,
5 => version 4 MR9 db with relation a-d, and
attr r-m modes (submodel security) ¥/
2 num_attrs_in_view fixed bin,
/¥ number of attributes in this view of the
relation ¥/
2 submodel_view bit (1) unal,
/¥ ON = > the opening was via a submodel ¥/

3/84 F-1 AW53-04B

2 mbz1 bit (35) unal,
2 attribute (mrds attrlbute list num_attrs_init refer
(mrds_attribute_list.num_attrs_in_view)),

3 model name char (32), /% name of attrlbute in model */
3 submodel name char (64) /% alias name of attribute in submodel,
else model name ¥/
3 domain_name char (32), /* name of the domain for this attribute */
3 user_data_type bit (36), /¥ standard Multics data descriptor for storage

format user's view if -decode_dcl, else
same as db descriptor ¥/
system_acl char (8) varying,
/*¥ the system access. from r-e-w modes ¥/
3 mrds_access char (8) varying,
/% version 3 => from r-s-m-d,
4 => from r-e-w,
5 => from r-w ¥/
3 effective_access char (8) varying,
/* effect of system + MRDS access units ¥/
3 indexed bit (1) unal, /¥ ON => this is a secondary index
attribute, or a key head ¥/
3 mbz2 bit (35) unal ;

declare mrds_attribute_list_num_attrs_init fixed bin ;
declare mrds_attribute_list_ptr ptr ;

declare mrds_attribute_list_structure_version fixed bin init (1) int static
options (constant) ;

mrds_database_list

Description

This structure is used by mrds_dsl_list_dbs to return an array of data base
opening information. The data bases which are opened for the calling process
have their opening index and opening model or submodel pathname returned in the
array.

declare database_list_ptr ptr ; /* points to array of indexes/pathnames */

declare 1 database_list aligned based (database_list_ptr),
/% array of pathsllndexes */
2 number_open fixed bin, /* total open by this process ¥/
2 db (number_of openings refer (database_list.number_open)),
/% array of open db info */
3 index fixed bin (35), /* data base opening index ¥/
3 path char (168) ; /% model or submodel opening pathname */

declare number_of openings fixed bin ; /¥ total number open by this process ¥/

3/84 F-2 AW53-04B

mrds_database_openings

Description:

This structure is used by dsl_$1list_openings to return an array of data base
opening information. The mrds_ databases which are opened for the calling process
have their opening index and opening model or submodel pathname returned in the
array.

declare 1 mrds_database_openings aligned based (mrds_database_openings_ptr),
/% array of paths/indexes ¥/~
version fixed bin, /¥ the version number of this structure ¥/
number_open fixed bin, /* total open by this process ¥/
mbz1 bit (36) unal,
db (mrds_database _openings_num_open_init
refer (mrds_database_openings.number “open)),
/¥array of open db info ¥/

N NN

3 index fixed bin (35), /¥ data base opening index ¥/

3 path char (168), /*¥ model or submodel opening pathname ¥/
3 mode char (20), /* opening mode of the data base ¥/

3 model bit (1) unal, /% on => opened via the model */

3 submodel bit (1) unal, /* on => opened via a submodel ¥/

3 mbz2 bit (34) unal ;

declare mrds_database_openings_ptr ptr ;
/* points to array of indexes/pathnames ¥/

declare mrds_database_openings_num_open_init fixed bin ;
/% total number open by this process ¥/

declare mrds_database_openings_structure_version fixed bin init statiec
options (constant) init (1) ;
/% current version ¥/

mrds_new_scope_modes

Description:

This include file defines named constants which can be used to specify the MRDS
operations to be permitted and prevented in a call to dsl_$set_scope.

del (NO_OP init (0),
READ ATTR init (1),
APPEND TUPLE init (2)
DELETE TUPLE init (%),
MODIFY ATTR init (8),
UPDATE OPS init (14),
ALL OPS init (15)) flxed bin int static options (constant);

mrds_opening modes_

Description:

This include file defines named constants which can be used in calls to dsl_$open
when opening a MRDS data base.

del (RETRIEVAL init(1),
UPDATE init(2),
EXCLUSIVE RETRIEVAL init(3),
EXCLUSIVE _UPDATE init(4)) fixed bin(35) int static options(constant);

3/84 F-3 AW53-04B

mrds_path_info

Description:

This structure returns information about a relative pathname. The information

returned is the absolute pathname. In the case that the relative path points to

a MRDS data base or submodel,it returns information defining whether it is =a

model or a submodel, the MRDS version of the model or submodel, its creator, and

the time of creation.

declare 1 mrds_path_info aligned based (mrds_path_info_ptr),

2 version fixed bin, /% version number for this structure */

2 absolute_path char (168), /* the absolute path from the input
relative path ¥/

2

type,
3 not_mrds bit (1) unal, /* on => path not to model or submodel ¥/
3 model bit (1) unal, /% on => path to data base model, thus

possible .db suffix ¥/
3 submodel bit (1) unal, /* on => path to submodel, thus possible .dsm

suffix #*/
3 mbz1 bit (33) unal,
2 mrds_version fixed bin, /¥ the mrds version number of the model or
submodel */
2 creator_id char (32), /* the person.project.tag of the creator ¥/

2 creation_time fixed bin (71),
/* convert date to binary form of time
model/submodel created ¥/
2 mbz2 bit (36) unal ;

declare mrds_path_info_ptr ptr ;

declare mrds_path_info_structure_version fixed bin init (1) int static options
(constant);

mrds_relation_list

Description:

For a given opening of a data base via a model or submodel view, this structure
will contain the 1list of relations as seen from that view, It contains the
number of relations in that view and both the submodel and model names of the
relation (model = submodel name if not a submodel opening) as well as whether
the opening was via a submodel or not. The virtual relation bit indicates when
the model name may not be valid due to a mapping over more than one relation in
the model.

Access information for various versions of MRDS access 1s also returned, as
follows:

system_acl entries refer strictly to "rew" type Multics ACLs.

mrds_access entries are version-dependent. Version 4 data bases released
in MR8 have no MRDS-specific access, but use system ACLs of "rew". Version
4 data bases for MR9.0 MRDS using submodel security have MRDS-specific
access mode of append/delete_tuple for relations and read/modify_attr for
attributes.

effective_access entries use the same units as mrds_access. This 1is the

logical result of applving both MRDS and system access and coming up with a
user-effective mode of access to the relation/attribute.

3/84 F-4 AW53-04B

declare 1 mrds_relation_list aligned based (mrds_relation_list_ptr),
2 version fixed bin, /% version number for this structure */
2 access_info_version fixed bin, /#% version of MRDS access modes
3 => version 3 db with r-s-m-d
access,
4 => version 4 MR8 db with r-e-w
access
5 => version 4 MR9 db with relation
a-d, and attr r (submodel
security) ¥/

2 num_rels_in_view fixed bin, /¥ count of relations present in this
view ¥/

2 submodel view bit (1) unal, /¥ ON => this opening was via a
submodel ¥/

2 mbz1 bit (35) unal,

2 relation (mrds_ relatlon list_num_rels_init refer

(mrds_ relation list. num rels in view)),
3 model_name char (32), ~/¥ name of relation in data base

model ¥/

3 submodel_name char (64), /% alias name of relation in submodel,
else model name ¥/
3 system_acl char (8) varying, /* the system access from r-e-w modes ¥*/
3 mrds_access char (8) varying, /* version 3 => from r-s-m-d,
4 => from r-e-w,
5 => from a-d ¥/
3 effective_access char (8) varying,
/¥ effect of system + MRDS access,
units ¥/
3 virtual_relation bit (1) unal,
/% ON => submodel relation defined over
>1 model relation ¥/
3 mbz2 bit (35) unal ;

declare mrds_relation_list_num_rels_init fixed bin ;
declare mrds_relation_list_ptr ptr ;

declare mrds_relation_list_structure_version fixed bin init (1) int static
options (constant)

FOR mmi_ ENTRIES:

mrds_authorization

Description:

This structure returns the caller's user_class--either data base administrator
or normal user. Note that these separate classes were used to allow future
expansion to the user classes (rather than make them logical "not"'s of one
another). NOTE: a DBA is always also a normal user. Thus if the caller is a
DBA, his normal_user bit will also be on.

declare 1 mrds_authorization aligned based (mrds_authorization_ptr),
2 version fixed bin, /% version number of this structure */
2 administrator bit (1) unal, /¥ caller is a DBA ¥/
2 normal_user bit (1) unal, /% caller has no special privileges ¥/
2 mbz bit (34) unal ;

declare mrds_authorization ptr ptr ; /* pointer for referring to the
structure ¥/

declare mrds_authorization_structure_version fixed bin init (1) int static
options (constant) ;

3/84 F-5 AW53-04B

mrds_database_state

Description:

This structure returns the data base state (secured or unsecured) for determining
how commands and subroutines will behave for each case. The secured bit was
kept separate from the unsecured, rather than its logical "not", to allow for
future extensibility of data base secured states.

declare 1 database_state aligned based (database_state_ptr),
2 version fixed bin, /% yersion number of this structure ¥/
2 unsecured bit (1) unal, /* data base not secured ¥/
2 secured bit (1) unal, /*¥ data base has been secured ¥/
2 mbz bit (34) unal ;

declare database_state_ptr ptr ; /¥ pointer for referring to the structure ¥*/

declare database state_structure_version fixed bin init (1) int static options
(constant) ;

mrds_db_model_info

Description:

This structure passes back information common to the whole data base, rather
than that pertaining to a particular relation or attribute., It refers to the
data base model, rather than to some submodel for that model.

declare 1 mrds_db_model_info aligned based (mrds_db_model_info_ptr),

2 version fixed bin, /* version number for this structure ¥/

2 model_version fixed bin, /* the version number of the data base
model */

2 creator_id char (32), /* the person.project.tag of the data

base creator ¥/
2 creation_time fixed bin (71), /* the convert date to binary form of
the data base creation time ¥/
2 mbz bit (36) unal ;
declare mrds_db_model_info_ptr ptr ;

declare mrds_db_model_info_structure_version fixed bin int static options
(constant) Init (1) ;

mrds_db_model_relations

Description:

This structure returns the list of all relation names in the data base model. A
count of the number of names present is included. No submodel alias names for
the relations are involved.

declare 1 mrds_db model relations aligned based (mrds_db_model_relations_ptr),

2 version fixed bin, /* version number for this structure %/
2 relation_count fixed bin, /¥ total number of relations in this model */

3/84 F-6 AW53-04B

2 mbz1 bit (36) unal,
2 relation (mrds_db_model relations_count_init refer
(mrds_db_model relations.relation_count)),
3 name char (32), /% name of the relation in the model ¥/
3 mbz2 bit (36) unal ;

declare mrds_db_model_relations_ptr ptr ;
declare mrds_db_model_relations_count_init fixed bin ;

declare mrds_db_model relations_structure_version fixed bin int statie init
(1) options (constant) ;

mrds_db_model_rel_ attrs

Description:

This structure returns, for a given relation, the list of all attribute names in
the data base model. A count of the number of names present 1is included. No
submodel alias names for the attributes are involved. Also, the domain name and
the user's view descriptor for the data type 1is returned, as well as a bit
indicating whether the attribute can be used as if it were indexed or not.

declare 1 mrds_db_model _rel attrs aligned based (mrds_db_model rel attrs _ptr),

2 version fixed bin, /* yersion number Tor this structure */
2 attribute_count fixed bin, /¥ total number of attributes in this
model ¥/

2 mbz1 bit (36) unal,
2 attribute (mrds db model_rel_attrs_count_init refer
(mrds db model rel attrs attribute_count)),

3 name char (32), /% name of the attr1bute in the model ¥/

3 domain char (32) /¥ the name of the underlying domain for
this attribute ¥/

3 user_data_type bit (36), /* standard Multics descriptor for the
user's view of the data storage
layout %/

3 indexed bit (1) unal, /% on => key head or secondarily indexed
attribute ¥/

3 mbz2 bit (35) unal ;

declare mrds_db_model_rel_attrs_ptr ptr ;
declare mrds_db_model_rel attrs_count_init fixed bin ;

declare mrds_db_model_rel_attrs_structure_version fixed bin int static init (1)
options (constant) ;

3/84 F-7 AW53-0LB

For msmi_

Entries:

mrds_dsm_attribute_data

Description:

This include file contains information about all the attributes in a relation.

del 01 mrds_dsm_attribute_data aligned based (mrds_dsm_attribute_data_ptr),
02 version fixed bin,
02 number_of attributes fixed bin,
02 attributes (mrds_dsm_attribute_data_num_atts
refer (mrds_dsm_ attrlbute data.number of attributes)),

03
03
03
03
03
03

submodel attrlbute name char (64)7
model _ attrlbute name char (32),
read access bit (1) unal,

modlfy access bit (1) unal

null access bit (1) unal,

mbz1 bit (33) unal;

decl mrds_dsm_attribute_data_ptr ptr;

del mrds_dsm_attribute_data_num_atts fixed bin;

del mrds_dsm_attribute_data_structure_version fixed bin init (1) internal
static options (constant);

mrds_dsm_relation_data

Description:

This include file contains information about all the relations in a submodel

view.

del 01 mrds_dsm_relation_data aligned based (mrds_dsm_relation_data_ptr),
02 version fixed bin,
02 number_of relations fixed bin,
02 relations (mrds dsm_relation_data_num_rels
refer (mrds_dsm_relation_data.number of relations)),

03

submodeTl relation_name char (64)7
model relation name char (32),
append_access bit (1) unal,
delete access bit (1) unal,
null_access bit (1) unal,

mbz1 bit (33) unal;

del mrds_dsm_relation_data_ptr ptr;

del mrds_dsm_relation_data_num_rels fixed bin;

del mrds_dsm_relation_data_structure_version fixed bin init (1) internal static
options (constant);

3/84

F-8 AW53-04B

mrds_dsm_submodel info

Descriptiocn:

This include file contains the structure returned by msmi_$get_ submodel_info.

decl

del

For

del

decl

del

del

decl

del

3/84

01 mrds_dsm_submodel info based (mrds_dsm_submodel info_ptr),

02 version fixed bin,
02 submodel_version fixed bin,
02 database_path char (168),

02 submodel path char (168),

02 date_time created fixed bin (71),

02 creator_id char (32);

mrds_dsm_submodel_info_ptr ptr;

/®
/¥
/¥
/*
/*

/¥

/*

version of this structure ¥/
version of the submodel ¥/

absolute path of the data base that
the submodel refers to ¥/

absolute path of the submodel (may
be a link) ¥/

date-time submodel was created in
standard format */
Person.Project.Tag of the submodel
creator ¥/

pointer to the structure ¥/

mrds_dsm_submodel_info_structure_version fixed bin init (1) internal static

options (constant);

dmd_ Entries (obsolete):

mrds_dm_header

dm_header based (dmh_ptr),
dm_header_id char (87,
dmd_version fixed bin,

creator_id char (32),
create_time fixed bin (71);

NN N =

dmh_ptr ptr;

/*
/¥
/%

/*
/*

data model header */

identification as data model header ¥/
version number of dmd_ creating this
model ¥/

group id of creator ¥/

time of creation ¥/

mrds_model relations

1 model_relations based (mr_ptr),

2 nrels fixed bin (10),

/% structure to return names of all

relations in a model */

/¥ number of relations ¥/

2 relation_name (num_relations_alloc refer (model_relations.nrels))

char (32);

num_relations_alloc fixed bin (10);

mr_ptr ptr;

/¥

/% relation names ¥/

number of relations in model for
allocation purposes ¥/

mrds_rel desc
1 rel_desc based (rd_ptr),

2 num_attr fixed bin,
2 key_length fixed bin (35),

/¥®

/%
/%

F-9

record description of relation
records ¥/

number of attributes in the model */
length in bits of data portion of

AW53-04B

del

del

For

del

del
del

del

N

data_length fixed bin (35),

num keys fixed bin,
inversion bit (1) unal,

reserved bit (35) unal,

N N

attribute_name char (32),
domain name char (32),

bit _offset bit (18) unallgned
bit_length bit (18) unaligned,
key flag bit (1) unaligned,

inver_flag bit (1) unaligned,
unused bit (34) unaligned,
key_attr_order fixed bin,
descriptor bit (36);

wwww wwwww

num_attr_alloc fixed bin (10);

rd_ptr ptr;

attributes (num_attr_alloc refer

/¥

/¥
/*

VAl

tuple ¥/

length in bits of data portion of
tuple ¥/

number of key attributes ¥/

On if this relation contains any
inverted attributes ¥/

Reserved for future use ¥/

(rel_desc.num_attr)),

/*
/¥
/*
/¥
/¥

/¥
/¥
Va4
/¥

/*

name of attrlbute */

name of underlying domain ¥/

offset within tuple of data item ¥/
length of data item in bits ¥/
indicates whether attribute is part
of primary key ¥/

On if this attribute is inverted ¥/
reserved for expansion ¥/

order num of this key attr ¥/
Multics descriptor for attribute */

Number of attributes in relation for
allocation purposes ¥/

dsmd_ Entries (obsolete):

mrds_dsm_display_rels

1 dsm_display_rels based (drel_ptr),

2 nrels fixed bin,

/* user-specified relations for

display */

/% number of relations ¥/

2 relation (nrels_alloc refer (dsm_display_rels.nrels)) char (32);

nrels alloc fixed bin;

drel ptr ptr;

/¥ relation names ¥/

mrds_dsm_header_str

dsm_header_record based,

database_pn char (168),
name char (32),

PPN =

N

creator_id char (32);

num_of_relatlons fixed bin (35),

/% Data submodel header str ¥/

dsm_generator_version flxed bin init (1), /% Generator version number ¥/
date_time_generated fixed bin (71),

/% Date time of generation ¥/

/*¥ Data base pathname ¥/

/¥ Header name ¥/

/¥ Total number of relations
in this data submodel ¥/

/% The ID of the person
creating the submodel */

3/84

AW53-04B

mrds_dsm_rel_str

del 1 dsm_relation_str based, /¥
2 key, /¥

3 submodel_rel_name char (32), /¥

2 record, /¥

3 model_rel name char (32), /¥

3 no_attributess fixed bin, A4

3 attribute_info (dsm_num_attr_alloc
4 submodel att name char (32), /%
4 model att_name char (32); /¥

del dsm_num_attr_alloc fixed bin; /%

3/84 F-11

dsm relation structure ¥/

vfile_ key ¥/

Submodel relation name ¥/

vfile record ¥/

Model relation name ¥/
Number of attributes in
relation ¥/

refer (no_attributes)),
Submodel attribute name
Model attribute name */

Number of attributes in
allocation purposes ¥/

this

*/

relation for

AW53-04B

MULTICS RELATIONAL DATA STORE

REFERENCE MANUAL
ADDENDUM B

SUBJECT
Changes to the Manual

SPECIAL INSTRUCTIONS
This is the second addendum to AW53, Revision 4, dated September 1981. Refer
to the Preface for “Significant Changes.”

Insert the attached pages into the manual according to the collating instruc-
tions on the back of this cover. Throughout the manual, change bars in the
margins indicate technical additions and asterisks denote deletions.

Note:
Insert this cover after the manual cover to indicate the updating of the docu-
ment with Addendum B.
SOFTWARE SUPPORTED
Multics Software Release 162
[l.©
ORDER NUMBER
AW53-04B March 1984
40126 .
e Honeywell

Printed in U.S.A.

To update the manual, remove o0ld pages and insert new pages as follows:

Remove

Title Page, Preface
iii through vi

vii, blank

1-3, 1-4

2-1, 2-2

2-7 through 2-22

3-1 through 3-6
3-9 through 3-12
3-15 through 3-22
3-31 through 3-36
3-41, 3-42

3-55, 3-56

§-9, 4210

4-21, 4-22

-1, 7-2

-5 through 7-10
3, 9-4

-1 through 10-14
11-1 through 11-4
11-5, blank

12-1 through 12-4
13-1 through 13-4
14-15 through 14-18
A-1 through A-16
F-1 through F-8
F-9, blank

i-1 through i-6

TP Remarks Form

COLLATING INSTRUCTIONS

Insert

Title Page, Preface
iii, iv

v, blank

1-3, 1-4

2-1, 2-2

2-7, 2-8

2-8.1, blank

2-9 through 2-22
3-1 through 3-6
3-9 through 3-12
3-15 through 3-22
-31 through 3-36
=41, 3-42

=S L OOV NI EEEWWW
1
1 W= N0 I

12-1, blank

13-1 through 13-4
14-15 through 14-18
A-1 through A-14
F-1 through F-10
F-11, blank

i-1 through i-4
i-5, blank

TP Remarks Form

The information and specifications in this document are subject to change without notice. This
document containg information ahout Honeywell products or services that, may not be available

outside the United States. Consult your Honeywell Marketing Representative.

(© Honeywell Information Systems Inc., 1984

3/84

File No.:

1L13, 1013
AW53-04B

MULTICS RELATIONAL DATA STORE
REFERENCE MANUAL
ADDENDUM D

SUBJECT
Changes to the Manual

SPECIAL INSTRUCTIONS

This is the fourth addendum to the AW53-04 dated September 1981. Refer to the
Preface for “Significant Changes.” Insert the attached pages into the manual
according to the collating instructions on the back of this cover. Change bars in
the margins indicate technical additions and asterisks denote deletions.

Note:

Insert this cover after the manual cover to indicate the updating of the
document with Addendum D.

SOFTWARE SUPPORTED
Multics Software Release 12.0

ORDER NUMBER
AW53-04D December 1986

47028
187
Printed in U.S.A.

Honeywell

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

REMOVE INSERT

TP, Preface TP, Preface

iii through vi iii through vi
vii, blank

3-3, 3-4 3-3, 3-4

3-39 through 3-42 3-39 through 3-42

4-9, 4-9,.1 4-9, 4-9.1

4-9.2, 4-10 4-9.2, u4-10

9-23 through 9-26 9-23 through 9-26

11-1, blank 11-1, blank

14-1 through 14-22 14-1 through 14-30
14-31, blank i

E-1, E-2 E-1, blank
E-1.1, E=2

i-1 through i-5 i-1 through i-4
i-5, blank

The information and specifications in this document are subject to change without notice. Con-
sult your Honeywell Marketing Representative for product or service availability.

12/86
©CHoneywell Information Systems Inc., 1987 File No.: 1L13 AW53-04D

See user

nn

(double quote)
see selection expression

O

see selection expression

*
see primary key

-another
see selection expression

.V,

see control code

control code

%/
program comments

sSee

/% .
see
{1
see selection expression (brackets)
abbreviations
amdb (ad just mrds db command)
emdb (create mrds db command)
cmdmi {create@ mrd3s dm include
command’} -
cmdmt (¢reate mrds dm table command)
cmdsm (create mrds dsm command)
cpmd (copy mrds data command)
DB (data base)
DBA (data base administrator)
dbi (data base index)
DBM (data base manager)
DM (data model)
dmdba (display_mrds_db access
command -
dmdbp (display mrds_db_population
command
dmdbs (displa
command
dmdm (display mrds dm command)
dmdsm (display mrds_dsm command)
dmdv (display mrds db.version
command) -
dmod (display mrds open dbs command)
dmss (display mrds_scope_settings
command’)
dmtd (display mrds temp dir command)
DSL (data subTanguage) —
DSM (data submodel)
FNF (first normal form)
LINUS (Logical INquiry and Update
System)
MDBM (Multics Data Base Manager)
mmi (Mrds _Model Interface)
mr¢ (mrds call command)
MRDS (MulTics Relational Data Store)

;_mrds_db_status

12/86

INDEX

abbreviations (cont.)

msmi (Mrds Submodel Interface)

qmdb~ (quiesce mrds db command)

rmdb (rﬁstrucfure mrds db command)
14 =3 - -

smdb (secure mrds db command)

smtd (set _mrds_temp dir command)

SNF (second normal Torm)

TNF (third normal form)

umdb (unpopulate mrds db command)

access mechanism 2-16

administrative
administrative procedures
check E-1
decoding E-1
encoding E-1
administrator procedures E-1

algebraic operators
see operators

alias name
see name equal to

argument substitution (.V. and .X.)
=25, 4=
asterisk
see primary key
attribute 1-3, 2-2, 2-6, 2-30

access T-4
domain 2-30
full functional dependence 2-29
functional dependence 2-29
indexing 13-1
key 3-9, 4-4

modification example 4-43
statement

see statements
transitive dependence 2-30
tugle

suffix 4-4

1-3, 2-30

boolean operators
see operators

value

built-in functions
see functions

check procedure
see administrative
administrative procedures

checkpoint
see data base

commands

ad just_mrds_db 3-3
copy_mrds_data 3-5.1

AW53-04D

commands (cont.)

create mrds db 3-6

create mrds dm include 3-14

create mrds dm table 3-18

create mrds dsm 2-11, 3-22

display mrds db access 3-31

display_mrds_db_population 3-33

display mrds_db_status 3-36

display_mrds_db_ ver51on 3-39

display mrds dm 3-4

dlsplay mrds dsm 3-”5

display mrds_open_dbs 3-51

display_mrds_scope settln%s 3-52

display mrds temp dir 3-5

mrds_caTl 9-T,
functions 9-1

quiesce mrds db 3-55

restructure mrds db 14-3

secure_mrds_db 3=57

set mrds temp dir 3-59

unpopulate_mrds db 3-60

compiled
see selection expression

compiled selection expression 2-18.1,

’

control code

(varlable values) 2-25, U-4,
4-11, 4-13, 4-32, U4-35
.X. (unknown argument) 2-25, 4-4,
4-11, 4-13, 4-32, 4-35
data

conversion 2-13
display open data 3-51
field
name 1-3
value 1-3
independence 1-1
model 1-1, 1-3
create include segment 3-14
creation 2-6
display information 3-40
display pictorial 3-18
display population 3-33
display version 3-39
source segment 3-8
example 2-6, 2-31,
format 3-10
mrds data table B-1
sorted 2-15
sublanguage
close 4-7
close all 4-7
declare 4-7
define temp rel 4-7
delete U4-7
dl scope 4-7
dl scope all 4-7
get _attribute list 4-7
get _opening temp dir 4-7
get path_inTo U4-B
get _popuTation 4-8
get relation list 4-8
get _scope 4-B
get temp dir 4-8
list openlngs 4-8
modIfX
open 8
retrleve 4-8
set _scope 4-8
set_scope_all
set_temp dir 4-
store 4-8
submodel 1-1,

2-33

n_Q
b

;8
1-3, 3-22

12/86. i-2

data (cont.)
creation 2-10
display information 3-45
names 2-10
restrictions 2-11
source 3-23
source segment example 3-25

data base 1-1
accessing 2-15
effective access
add relation tuple
administrator 1-1,
architecture 3-10
backup copy 8-1
checkpoint 8-1
close user opened 4-9
closing 4-9, 9-3
command level interface 9-3
control segment
concurrency 3-4, 3-36
reinitialize 3-3
create unpopulated 3-6
creation 2-7
current scope 9-11
DBA 3-7
declare user-defined function 4-10
delete scope 9-7
delete scope -all 9-9
delete tuple 4-13, 9-6
deleting scope 4-14
deleting scope all 4-15
design 2-26, 2-32
development tools 9-1
directory
secure.submodels 3-22
display access 3-31.
display directory 3-54
display openings 9-12
display scope settings 3-52
display secured state 3-57
example
delete 2-21
loading 2-12
modify 2-19
retrieve 2-19,
freeing 3-55
get _population 9-9
inconsistent 3-3
index 2-12
instructional tool
loading 2-11
manager 1-1

3-31
§-11, 9-25
7-1

2-20

model 2-3
mmi_ 6-2
modify 4-32, 9-13

network 1-2
normalization 2-26.
normalized 13-1
open 4-33, 9-14
opening 2-12

list information 4-29

modes 9-14

shared 4-33

temporary directory 4-19

unshared #-33

usage mode 4-33
partitioning 2-26.1
pathname

information 4-20
populated 2-3, 2-13
quiesce 3-55
quiesced 8-2
relational 1-2, 2-1
restructuring 14-1
retrieval 4-35, 9-17
rollback 8-1

AW53-04D

data base (cont.)

secure 7-~1
secured 2-3
security control 3-57
set scope 9-20
set scope all 9-23
setting scope 4-37
setting scope all 4-39
status 3-36
submodel 2-3

msmi 6-2

msmi 6-14
termindlogy 1-2
total definition 1-3
unpopulated 2-2, 2-3
unsecured 7-1
user's definition 1-3
utilization examples 4-42
view 2-3

data-item 1-3

DB
see abbreviations

DBA
see abbreviations

dbi
see abbreviations

DBM
see abbreviations

decoding procedure
see administrative
administrative procedures

deletion anomaly 2-27

DM
see abbreviations

domain 1-3, 2-30
compatible 2-31

domain statement
see statements

DSL
see abbreviations

DSM
see abbreviations

duplicate data
see data base
normalization

encoding procedure

see administrator
administrative procedures

error messages 3-7
control/display 9-20

error table A-1
field 2-6
see attribute
value 1-3

file
see relation

12/86

files 1-3, 1-4
include F-1

attribute information F-1,

attribute names F-7
data base information F-2
data base open F-3
data base opening F-3
data base security F-6
data model header F-9
pathname F-U4
records F-9
relation information F-4,
relation names F-6, F-9
relation structure F-11
relations F-10
scope F-3
submodel neader F-10
submodel information F-9
user class F-5

indexed sequential 2-32

FNF 2-28
see abbreviations

functions
built-in 4-5, 5-1

arithmetic scalar
abs 5-1
ceil 5-3
floor 5-3
mod 5-4
round 5-5

character string scalar
index 5-4
search 5-5
verify 5-6

string scalar
after 5-2
before 5-2
concat 5-3
reverse 5-4
substr 5-6
substr example 2-21

nonstandard 5-6

F-8

F-8

nonstandard restrictions 5-6

scalar 5-6
user-defined 4-5
declare 4-10, 9-4

index
primary 2-32
secondary 2-32, 2-33, 3-9

indexed sequential file 2-32

inverted 3-9
see index

key attribute
see attribute

keyword

access
attribute 3-27
relation 3-27

limitations
see MRDS

LINUS
see abbreviations

MDBM
see abbreviations

i-3

AW53-04D

MR DS
also see abbreviations
characteristics 1-4
facilities bypass 6-1
internal interfaces 6-1
limitation 7-2.1
terminology 2-2
tutorial 2-5

normalization 2-28
example 2-30
FNP 2-28
SNF 2-28
TNF 2-28

operators
algebraic 2-18
boolean 2-18
precedence of 2-18
selection expression 2-18
set 4-3, D-1
set (union, inter, differ) 2-31

example 2-21

parentheses
see selection expression

performance

data conversion 13-2

maintainability 13-1

relation access 13-3

retrieval 13-1

search order 13-5
optimum 13-6

secured data base 13-2

selection expression 13-2

storage 13-1

submodel opening 13-2

temporary relations 13-2

permit_ops 2-15

precedence of operators
see operators

prevent_ops 2-16

primary index
see 1index
primary key 2-2, 2-3, 2-6, 2-24, 2-29,
2-%2, 3%, 3lyq 7’ ’
asterisk 2-6
invalid operation 2-19

program comments
/¥ ... %/ 322

quiesced
see data base

range clause .
see selection expression

record 1-3
see tuple
relation 1-3, 1-4, 2-1

access
permissions T7-4
restrictions 7-4
expression
-another §-26
index 2-24
list 4-23

12/86

i-4

relation (cont.)
list attributes U-16
scope U4-26
scope settings 9-8
shared openings 9-5
statement
see statements
temporary 2-24
create or redefine 4-11,
inserting index 2-26
primary key 2-24
redefinition 2-25
restrictions 2-25
tuple count 4-22
tuple population 9-9
tuples
modify 4-32
unpopulated 2-2,

9-5

2-3
restructuring subsystem 14-1

rollback
see data base

row 1-3

schema 1-1, 1-3
scope 2-3
codes 4-14
delete 2-23
all 2-23
setting 2-23
violation 2-23

secondary index
see index

security

ACL T7-2

ACLs T7-2

attribute level T7-1,
data model 7-3
data value 7-4

data base
directories T7-2

relation level 7-1, 7-3

relation operations 7-2

scopes T7-2

submodels T7-1

7-3

select clause
see selection expression
selection expression 1-4,

2-3, 2-17,

s

-another U4-5, 4-35 4_41
-dup option 4-U4, 4-35
also see subroutines
brackets

use of 2-21
compiled 2-18.1,
deletions 4-4
delimiters 4-5
double quote 2-18
example 1-4, 2-17, 2-18, 2-19,

2-25, 2-28, 4-6

modifications 44
operators

see operators
order of evaluation 4-4
parentheses 2-18
quotes 9-19
range clause 2-i7

no optimize option 4-3

print_search_order option 4-3

2-22.1, 4-4

2-20,

AW53-04D

selection expression (cont.) subschema 1-1, 1-3
select clause 2-17
variable values 2-25 temporary relation
where clause 2-17 see relation
comparisons U4-5

temporary storage

set 1-3 change pathname 3-59
return pathname 4-19, u4-28
set operators set directory 4-40
see operators
TNF 2-29
SNF 2-29 see abbreviations
see abbreviations
tuple 1-3, 2-2, 2-3
statements incomplete
access null value 2-13, 9-25
control lists 3-27 shared opening 9-7
privileges 3-25 tuple expression
access control 3-25 duplicate option U4-4
attribute 2-31, 3-9, 3-25 variable 2-18
attributes 2-6
domain 2-6, 2-30, 3-9 tuple attribute
options 3-10 see attribute
index 3-9
relation 2-6, 2-10, 3—9, 3—24, 3-25 unpopulate 3_60
submodel 2-3, 2-10 . -
control statements 3-25 ”p32§§ ﬁgggaly 221
function 3-23 see normalization
secured 2-3
- user
subroutines definition of 1-1
data sublanguage 4-1 interaction
entries 4-7 1 3-2
4 ielﬁcgion expression 4-1
s - .
— ble
metalanguage symbols 4-1 varia - . -
oo 6 user-specified 4-3

msmi 6-14
submodel information 6-18
syntax 4-1

vfile 2-8

where clause
see selection expression

12/86 i-5 AW53-04D

— CUTALONGLINE — = = — — m e e e e e e e — — e —

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

MULTICS RELATIONAL DATA STORE
TITLE REFERENCE MANUAL
ADDENDUM D

ERRORS IN PUBLICATION

ORDER NO.

DATED

AWS53-04D

DECEMBER 1986

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your commenits will be investigated by appropriate technicai personnei
and action will be taken as required. Receipt of all forms will be
¢ acknowledged; however, if you require a detailed reply, check here. O

PLEASE FILL IN COMPLETE
ADDRESS BELOW.

FROM: NAME

TITLE

COMPANY

ADDRESS

DATE

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA 02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

NO POSTAGE
NECESSARY
IF MAILED
INTHE
UNITED STATES

I

Honeywell

L3

L]

T e - - ———————————— CUTALONu uINE

Honeywell

Honeywell information Systems

In Oha II Q A 200 anh Q'rnn’ 'I'A.S .um \/ nhhcm l‘nennnhncm no4 E4

vauiar LSt

In Canada: 155 Gordon Baker Road Wlllowdale Ontario M2H 3N7
In the U.K.: Great West Road, Brentford Middlesex TW8 9DH
in Australia: 124 Walker Street, North Sydney, N.S.W. 2060
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

32950, 7.5C1081, Printed in U.S.A.

AW53-04

	000
	001
	002
	003
	004
	005
	006
	007
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08.0
	02-08.1
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16.0
	02-16.1
	02-17
	02-18
	02-19
	02-20.0
	02-20.1
	02-21
	02-22
	02-23
	02-24.0
	02-24.1
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	03-01
	03-02
	03-03
	03-04
	03-05.0
	03-05.1
	03-05.2
	03-06
	03-07.0
	03-07.1
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09.0
	04-09.1
	04-09.2
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32.0
	04-32.1
	04-32.2
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08.0
	06-08.1
	06-09
	06-10
	06-11
	06-12
	06-13.0
	06-13.1
	06-13.2
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	07-01
	07-02.0
	07-02.1
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	10-01
	11-01
	12-01
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	A-01
	A-02
	A-03
	A-04.1
	A-04.2
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	C-01
	D-01
	E-01.0
	E-01.1
	E-02
	E-03
	E-04
	E-05
	E-06
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	_001
	_002
	_003
	_004
	i-01
	i-02
	i-03
	i-04
	i-5
	replyA
	replyB
	xBack

