
SUBJECT

SERIES 60 (LEVEL 68)

MULTICS PROGRAMMERS' MANUAL

PERIPHERAL INPUT/OUTPUT

Peripheral InputJOutput Reference Material Including Command and 110 Module
Descriptions

SPECIAL INSTRUCTIONS

This manual supersedes AX49, Rev. 0 dated June 1977 and its addendum
(Addendum A dated January 1979).

SOFrW ARE SUPPORTED

Multics Software Release 8.0

ORDER NUMBER

AX49-01 November 1979

Honeywell

PREFACE

This manual is one of six manuals that consti tute the Mul tics Programmers' Manual
(MPM). Primary reference material for user and subsystem programming on the Mul tics
system is contained in these six manuals. Throughout this manual, references are
frequently made to the MPM. For convenience, these references will be as
follows:

Document

Reference Guide
(Order No. AG91)

Commands and Active Functions
(Order No-:-AG92)

Subroutines
(Order No. AG93)

Subsystem Writers' Guide
(Order No. AK92)

Peripheral Input/Output
(Order No. AX49)

Communications Input/Output
(Order No. CC92)

Referred To In Text As

MPM Reference Guide

MPM Commands

MPM Subroutines

MPM Subsystem Writers' Guide

MPM Peripheral I/O

MPM Communications I/O

The i·iPi-l Refe:rence Gu.ide ccntains general i nTormation about the Mul tics command
and programming environments. It also defines items used throughout the rest of the
MPM and, in addition, describes such subjects as the command language, the storage
system, and the input/output system.

The MPM Commands ·is organized into four sections. Section 1 contains a list
of the Multics command repertoire, arranged functionally. Section 2 describes the
active functions. Section 3 contains descriptions of standard Multics commands,
including the calling sequence and usage of each command. Section 4 describes the
requests used to gain access to the system.

The MPM Subroutines is organized into three sections. Section 1 contains a list
of the subroutine repertoire, arranged functionally. Section 2 contains
descriptions of the standard Multics subroutines, including the declare statement,
the calling sequence, and usage of each. Section 3 contains the descriptions of the
I/O modules.

~ Honeywell Information Systems Inc., 1979 File No.: 1113

AX49-01

The MPM Subsystem Writers' Guide is a reference of interest to compiler
writers and writers of sophisticated sUbsystems. It documents user-accessible
modules that allow the user to bypass standard Multics facilities. The interfaces
thus documented are a level deeper into the system than those required by the
majority of users.

The MPM Peripheral I/O manual contains descriptions of commands and subroutines
used to perform peripheral I/O. Included in this manual are commands and subroutines
that manipulate tapes and disks as I/O devices.

The MPM Communications I/O manual contains information about the Mul tics
Communication System. Included are sections on the commands, subroutines, and
I/O modules used to manipulate communications 1/0. Special purpose communications
1/0, such as binary synchronous communication, is also included.

Throughout this manual, change bars in the margins indicate technical additions
and changes; asterisks denote deletions.

Significant Changes in AX49, Addendum C I

The description of administrative records in Section 3 has been expanded, I
and now includes a description of bootable tape label records.

The read tape and query command has several new control arguments and requests I
described, ana inc~udes examples.

The tape in and tape out commands have a new maximum for tape file physical I
block length,-as do the tape_ansi and tape_ibm I/O modules.

New control arguments and control orders have been documented for the tape _mul t ,­
I/O module.

7/82 iii AX49-01C

Section

Section 2

Section 3

I
Section 4

Section 5

I
7/82

CONTENTS

Introduction

Peripheral I/O Facilities .
Resource Control Package .

Dev ice Names
Access Control

Access Control Segments
RCP Effective Access
Manipulating RCP Effective Access .

Sites Not Enabling Resource Management
Device Limits

I/O Workspaces
Resource Reservation
Device Assignment .
Device Attachment ..

I/O Interfacer

Multics Standard Tape Format
Standard Tape Format
Standard Record Format . .
Physical Record Header .
Physical Record Trailer
Administrative Records

Standard Tape Label Record
Bootable Tape Label Record
End of Reel Record

De n sit y and Pa r i t Y • • •
,,_ - D".."t4ri;nrr
va VO 1 UUu.a..O • • • ... ~ .;

Write Error Recovery .
Compatibility Consideration

Commands
copy file, cpf
list-tape contents, ltc
read-tape and query, rtq
tape-in .. -: .
tape=out

I/O Modules • • .
ntape
rdisk-
tape ~nsi•.

Definition of Terms
Attach Description
Creating A File ..
Reading A File
Output Operations On Existing Files .
Extending A File
Modifying A File • .
Generating A File
Encoding Mode
File Expiration • . .
Volume Specification
Volume Switching ..•..
Multiple Devices
File Set Density
Opening
Device Speed Specification

iv

Page

1-1

2-1
2-3
2-5
2-5
2-5
2-6
2-7
2-7
2-7
2-8
2-8
2-9
2-10
2-11

3-1
3-1
3-1
3-2
3-3
3-3
3-3
3-4
3-6
3-6
3-6
3-7
3-7

4-1
4-2
4-6
4-9
4-14.6
4-28

5-1
5-2
5-4
5-14
5-14
5-15
5-17
5-19
5-19
5-20
5-20
5-21
5-21
5-22
5-23
5-23
5-25
5-25
5-25
5-26

AX49-01C

7/82

CONTENTS (cont)

Resource Disposition
Write Rings And Write Protection
Quer ies
Structure Attribute Defaults
Processing Interchange Files
ASCII Subset
Overriding Structure Attributes
Record Formats

F Format
D Format .
S Format
U Format .

Record Format Comparison
Block Padding
Volume Initialization ...
Buffer Offset (Block Prefix)
Conformance To Standard .
Label Processing
Error Processing
Close Operation .
Control Operation

hardware status Operation
status Operation
volume status Operation
file status Operation
feov-Operation
close rewind Operation .
retention retain none, retain all

Operations . . -. . .
reset error lock Operation
volume densTty Operation

Detach Operation
Modes Operation
Position Operation
Read Length Operation
Read Record Operation .
Write Record Operation
Control Operations from Command Level
Ex ampl es
Attach Control Arguments

tape ibm•
DefinTtion of Terms . .
Attach Description
File Identifiers
Creating A File
Padding
Reading A File
DOS Files
Output Operations On Existing Files
Extending A File
Modifying A File
Encoding Mode•.
File Expiration
Volume Specification . . • . .
Volume Switching
Multiple Devices
F i 1 e Se t De n sit Y • • • • • •
Device Speed Specification
Opening . . . • . . .
Resource Disposition
Write Rings And Write Protection
Quer i es • . . •
Structure Attribute Defaults
Overriding Structure Attributes .
Record Formats

v

Page

5-26
5-26
5-27
5-29
5-29
5-30
5-30
5-31
5-31
5-32
5-33
5-34
5-35
5-35
5-36
5-36
5-36
5-37
5-38
5-38
5-38
5-38
5-39
5-39
5-40
5-40
5-41

5-111
5-41
5-42
5-42
5-42
5-42
5-42
5-42
5-42
5-42
5-44
5-46
5-47
5-47
5-47
5-50
5-50
5-52
5-53
5-53
5-54
5-54
5-54
5-55
5-55
5-56
5-56
5-58
5-58
5-58
5-58
5-59
5-59
5-60
5-62
5-62
5-63

AX49-01C

I
I

I

I
I

I
I

Section 6

Index

Figure 2-1 .

Figure 6-1 .

Figure 6-2.

Figure 6-3.

Figure 6-4.

Figure 6-5.
Figure 6-6.
Figure 6-7.

7/82

CONTENTS (cont)

F(B) Format
V (B) Format
V(B)S Format.
U Format

Volume Initialization
Conformance To Standard
Label Processing
Error Processing
Close Operation
Control Operation

hardware status Operation
status Operation
volume status Oper8tion
file status Operation ..
feov-Operation
close rewind Operation
retention, retain none, retain all

Op era t ion s . . -:-
reset error lock Operation .
volume densTty OPERATION .

Detach Operation
Modes Operation . . .
Position Operation
Read Length Operation
Read Record Operation
Write Record Operation
Unlabeled Tapes
Control Operations from Command Level
Ex ampl es
Attach Control Arguments

tape mult•.......
Device-Speed Specification

tape nstd
Device-Speed Specification

Programming Examples ..•..
User-Ring 1/0 System Commands
PLII Calls to the User-Ring 110 System .
Language 1/0 in PLII
Protocol-Defined Data Format
PLII Calls to the User-Ring 110 System,
Multics Standard Tape

Multics Tape Commands

ILLUSTRATIONS

Interrelationship between User Code, iox_, RCP,
101, and the 1/0 Module

Writing Segment to Tape With PLII Calls to iox
(via tape ansi) -

Reading Segment-From Tape With PLII Calls to
iox (via tape ansi)

WritTng Segment-to Tape With PLII 110
Facilities .•.............

Reading Segment to Tape With PLII 110
Facilities•.•..

Writing Segment to Nonstandard Tape •.
Reading Seg~ent to Nonstandard Tape •
Writing Segment to Tape With PL/I Calls to iox

(via tape_mult_)

vi

Page

5-63
5-64
5-65
5-66
5-67
5-67
5-67
5-68
5-68
5-68
5-69
5-69
5-69
5-70
5-71
5-71

5-71
5-71
5-72
5-72
5-72
5-72
5-73
5-73
5-73
5-73
5-73
5-74
5-76
5-77
5-78
5-79
5-80

6-1
6-1
6-2
(,-7
6-10

6-15
6-19

i-1

2-2

6-4

6-5

6-8

6-9
6-11
6-13

6-17

AX49-01C

Table 2-1.
Table 2-2.

7/82

TABLES

RCP Effective Access
I/O Workspaces

vii

2-6
2-8

AX49-01C

I

SECTION 1

INTRODUCTION

The Multics system supports input/output (I/O) operations on the following
peripheral devices:

disk
magnetic tape
printer
card punch
card reader
communications lines

Although revisions of this manual will contain information on all of these
devices, this manual presently documents I/O operations on magnetic tape, disk,
and some forms of communications lines.

Section 2 describes two critical components of the Multics I/O facility:
the resource control package (RCP) and the I/O interfacer (101). These
descriptions are intended as reference information, since tape I/O can be
performed by users with no knowledge of RCP and 101.

Section 3 describes the standard Multics tape format used on tapes written
and read by the tape mult I/O module. Tape format required for the processing
of tapes by the tape ansi I/O module is described in the Draft Proposed
Revision X3L5/419T of the American National Standards Institute's ANSI
X3.27-1969, "Magnetic Tape Labels and File Structure for Information
Interchange". Tape format required for the processing of tapes by the tape ibm
I/O module is described in the following IBM pUblications: OS Data Management
Services Guide, Release 21.7, GC26-3746-2; IBM System 360 Dis~Operating System
Data Management Concepts, GC24-3427-8; and aS Tape LaOels, Release 21,
GC28-6680-4. Readers requiring information on ANSI and IBM tape formats should
refer to these publications, since none of the material in them is duplicated in
this manual.

Section 4 contains alphabetically arranged descriptions of I/O-related
commands; Section 5 contains alphabetically arranged descriptions of the
subroutines and I/O modules.

Section 6 gives some programming examples (in PL/I) illustrating the use of
the user-ring peripheral I/O system.

No hardware status
desiring hardware status
Program Logic Manual.

information is included in this manual. Readers
information should refer to the appropriate Multics

1-1 AX49-01

The following commands handle various aspects of peripheral I/O:

assign_resource
acquire resource
cancel resource
close file
console output
copy file
display p11io error
file output -
io call
line length
list-resources

list resource types
print -
print attach table
print=request_types
reserve resource
set cc
set=tty
unassign resource
vfile adJust
vfile-status

All of these commands are described in the MPM Commands.

1-2 AX49-01

SECTION 2

PERIPHERAL I/O FACILITIES

Input/output in the user environment of the Multics system is organized
around the user-ring I/O system subroutine, iox. The entry points of iox
provide for a general, device-independent interface supporting I/O and control
functions. They may be called either via explicit PL/I code or via the
facilities of language-provided I/O. Often, they are called internally from
programs (see Se~tion 4) that deal with peripheral I/O.

The user-ring I/O system is organized around I/O modules, programs that
support the iox interfaces for a specific device, class of devices, or class of
operations upon-a given device or class of devices. (The available interfaces
of iox are described in the MPM Subroutines.) I/O modules make appropriate
calls upon the I/O interfaces of the supervisor, the resource control package,
and the I/O interfacer to arrange for use of peripheral devices and perform
operations upon them. The system provides a repertoire of I/O modules for
peripheral devices. These I/O modules are documented in Section 5. The user
may provide his own I/O modules as well. (See the MPM Subsystem Writers' Guide
for guidelines for the implementation of I/O modules.)

The resource control package (RCP) is responsible for allocation and
deallocation of peripheral devices to user processes. By means of RCP, user
processes (and I/O modules) can gain access to peripheral devices. RCP provides
for access checking and device selection. RCP is described in detail below.

The I/O interfacer (101) is the facility of the supervisor through which
user programs (via I/O modules) can operate peripheral devices. 101 provides
for the operation of the r/o hardware and the multiplexing of channels and other
physical resources between processes. rOI can only be used to manipulate a
device once a process has acquired the right to use that device via RCP. ror is
described below.

The interrelationship between user code, iox, RCP, ror, and the r/o
modules is shown in Figure 2-1.

2-1 AX49-01

USER ISSUES
COMMAND TO
READIWRITE
FROMITO DEVICE

COMMAND
CALLS LANGUAGE
I/O

RING4

LANGUAGE I/O
CALLS iox_

iox-.CALLS
APPROPRIATE
I/O MODULES

I/O MODULE
CALLS
RCPAND 101

-- ---- - - -- -- -- --
I

RCP CALLS
I 101
I PERFORMS

101 I I/O

I

RING 1 RINGO

Figure 2-1. Interrelationship between User Code, iox •• RCP,IOI, and the I/O Module.

2-2
12/79

AX49-01A

RESOURCE CONTROL PACKAGE

The function of RCP is to control the access to and usage of I/O devices.
RCP executes in ring 1. Access to the various functions of RCP are controlled
by the ring 1 gates that must be used to call RCP. One of the primary functions
of RCP as a device manager is to control access to 101. In order to do this, no
101 gate entries are available to perform device attachments, detachments, and
other privileged administrative functions. User ring programs, therefore, call
RCP in order to request 101 to perform these functions.

An important feature of RCP is its ability to retain registration
information for all resources that it controls. It does this by providing
administrative interfaces for the registration of resources. Registration of a
resource provides information such as: what type of resource this is, what its
name is, which attributes it posseses, or in what access class range the
resource can be used. Once a resource is registered users may acquire them.
The act of acquisition makes a user the owner of the resource--liable for all
changes for that resource and in control of discretionary access to the resource
(see the acquire_resource command in the MPM Commands).

Another important feature of RCP is its ability to control access to the
various resources that it manages (where a resource is either a device or a
volume). It does this through the use of access control segments (ACSs). An
ACS is a zero length segment whose ACL and ring brackets are used to define the
discretionary and intraprocess access to a resource. At a site's discretion,
additional features of RCP can be enabled to provide nondiscretionary access
control for resources. If this is done, access is also controlled by the AIM
access class range of a resource. (See "Access Control" below.)

The resource management functions performed by RCP are:

1 •
2.
3.
4.
5.
6.

maintain resource information
control access to resources
reserve and cancel reservation of resources
assign and unassign devices
attach and detach devices
perform special device control functions

I

The functions reserve, assign and attach are organized into hierarchical.
levels. Defaults are provided at each level so that users not desiring to
exercise features specific to a level do not have to concern themselves with
that level.

reserve
2 assign

3 attach
3 detach

2 unassign
cancel

The Ilrst level involves the reservation of resources by processes.
Reservations are process-specific and remain in effect until the process
requests a cancellation or until the process terminates. Reservation implies
that a process temporarily has exclusive rights to a resource. This exclusive
right means that no other process can use that resource for the duration of the
reservation. Reservation does not necessarily imply that a resource is actually
being used.

2-3 AX49-01

is process-specific and lasts until

I

Assignment, like reservation,
unassignment or process termination. An assignment also gives a process
temporary exclusive rights to a device. Assignment does not necessarily mean
that a device is currently being used. That is the function of the next level,
attachment.

I
I

I

I

A resource cannot be used until it is attached. When RCP is called to
attach a resource, it initiates communication with the ring 0 subsystem that
actually provides the use of the resource. Before the attachment is completed,
RCP performs all initialization necessary to allow the attaching process to
begin using the resource. For devices, this involves attaching the device via
101 and making sure that the device is ready and that any volume needed has been
mounted.

The hierarchical relationship among reservation, assignment, and attachment
implies that the higher-level function, reservation, can stand alone while the
lower-level function, attachment, can only be performed after the higher-level
function has been performed. RCP can perform the following device reservation,
assignment, and attachment functions:

1 • Reserving a resource. This means that no other process can use it
during this period of time.

2. Explicitly assigning a device. The device is assigned to a process
but is not attached.

3. Attaching an explicitly assigned device.

4. Attaching
until it
performs
assigned.

an unassigned device. Since a device cannot be attached
is assigned; RCP automatically assigns the device and then
the attachment. The device is said to be implicitly

5. Detaching an implicitly assigned device. After the device is
detached, RCP automatically unassigns the device.

6. Detaching an explicitly assigned device. The device is detached but
is not unassigned.

7. Explicitly unassigning a device. If the device is attached, it is
first detached and then unassigned.

8. Cancelling reservation of a resource.

The rules stated above imply that I/O modules do not have to be concerned
with the assignment or unassignment of devices. They need to be concerned with
only the attachment and detachment of a device. RCP, however, does allow the
above rules to be overridden. When detaching a device an I/O module can tell
RCP to retain the device assignment regardless of whether the device was
explicitly or implicitly assigned.

When a process terminates, RCP automatically detaches and unassigns all
devices currently assigned to that process and cancels any reservations for that
process.

The reservation of resources and cancellation of reservations are done from
command level via the reserve resource and cancel resource commands and using
the -resource control argument-with the enter abs request command. The explicit
assignment and unassignment of devices is-done from command level via the
assign resource and unassign resource commands. The listing of reservations,
assignments, and attachments -is done from command level via the list resources
command. These commands are described in the MPM Commands.

2-4 AX49-01

Device Names

Each device managed by RCP has a unique device name. Device names are
derived from the name of the hardware subsystem that controls that type of
device. For devices that have exclusive use of a channel, such as printers, the
device name is the actual name associated with that channel. For devices that
are multiplexed over one or more channels, such as disks, the device name has
the form, "ssss xx", where "ssss" is the subsystem name and "xx" is a device
number. Such devices are numbered from 1 to 63. Some examples of device names
are:

tapb_03
opc
rdrb
spc1

Access Control

tape subsystem B, drive number 3
the operator console
a card reader
a special new type of device

Access to resources is controlled by RCP by first guaranteeing that a user
has access to use the resource and then by guaranteeing that the user has not
exceeded the per-process limits imposed on certain resources or types of
resources.

ACCESS CONTROL SEGMENTS

There are three types of access control on the Multics system:
discretionary access control, which is regulated by access control lists (ACL);
nondiscretionary access control, which is regulated by the access isolation
mechanism (AIM); and intraprocess access control, which is regulated by the ring
structure. (For detailed information on types of access, see the MPM Reference
Gui de.)

An important feature of RCP is its ability to control access to the various
resources that it manages. It does this through the use of access control
segments (ACSs). An ACS is a zero length segment whose ACL and ring brackets
are used to define the discretionary and intraprocess access to a resource. RCP
uses an ACS for each resource that it controls; however, an ACS can be shared by
more than one resource. The name of an ACS consists of a name, plus the suffix
"acs" (e.g., tape drives.acs). There are no restrictions on ACS names other
than the required suffix.

The pathname of the ACS for a resource is specified either at the time the
resource is registered or when it is acquired (see the acquire resource command
in the MPM Commands). ~The specified ACS can later- be -changed via the
set_resource command (see the ·MPM Commands). If the ACS has not been specified
or does not exist, access is set by default to rew for the owner of the resource
and null for all other users.

RCP uses the ACS along with other nondiscretionary controls
determine the RCP effective access to a resource.

2-5

(AIM) to

AX49-01

I

RCP Effective Access

Viewed separately, each type of access control answers the same question,
"What access does a particular process have for a particular item?" The access
mode granted a process to a resource by discretionary access control (the ACL)
is known as the raw access mode.

The way RCP determines effective access to a resource for a process differs
from the regular Multics method of determining effective access as follows.
First, the effective access to the ACS for the resource is determined as for any
segment. If the ACS does not exist, the user appears to have read, execute, and
write access if he is the owner of the resource or null access if he is not the
owner. Then, two further checks are made. First, the current authorization of
the process is compared to the maximum access class of the resource. If write
access is not allowed (as defined by the write allowed subroutine) then write
and execute access are denied and only read Is allowed. Next, the current
authorization of the process is compared to the mlnlmum access class of the
resource. If read access is not allowed (as defined by the read allowed
subroutine) then all access is denied. The resulting access is termed the RCP
effective access to the resource. One final restriction enforced by RCP is
that, in order to use a device, the RCP effective access must include both read
and write.

For example, the following table illustrates some examples of RCP effective
access. In the examples below, 11, 12, 13 and 14 represent sensitivity levels
and c1, c2, c3, and c4 represent categories.

Effective
Access
to ACS

rew
re
rew
rew
rw
re
rw
rw
rw
rw

Table 2-1. RCP Effective Acc~ss

Current
Process
Authorization

11
11
11
13
14
14
12, c1
12,c2
12,c1,c3
12, c1

Resource
Access
Class Range

11 : 13
11 : 13
12:13
12:13
12:13
12:13
11 : 14
11 ,c1 :14,c1 ,c2
11 ,c1 :14,c1 ,c2
11 ,c1 :14,c1 ,c2

RCP
Effective
Access

rew
re
null
rew
r
r
r
null
r
rw

For more information on AIM, access classes, authorizations, and
comparisons involving access classes and authorizations, see the MPM Reference
Guide. The pathname of the ACS is specified by the -acs path control argument
and the access cl~ss ra~ge mentioned above· is qpecified- by the -access class
control argument', both of which can be specified in the acquire_resource and
set_resource commands (see the MPM CommandS).

2-6 AX49-01

Manipulating RCP Effective Access

Since the access control mechanisms described above operate together to
determine the RCP effective access of a process, there are actions that the user
can perform to control this effective access.

First, the user creates an ACS via the create command. Then, the desired
ACL for that segment is established using the set acl command to add desired ACL
entries, and the delete acl command to delete entries. (The above three
commands are described in-the MPM Commands.) To further affect the ACS, the
user may modify its ring brackets by using the set ring brackets command
(described in the MPM Subsystem Writers' Guide). -The -system security
administrator may set the AIM access class range of the resource itself using
the set resource command (see the MPM Commands).

SITES NOT ENABLING RESOURCE MANAGEMENT

If the system administrator has chosen not to enable Resource Management
the preceeding discussion of access control can be simplified.

Nondiscretionary access control is not enforced in this case. There are no
ACSs for volumes and all users are assumed to have both read and write access to
any volume. The ACS for a device can be found in >system control 1>rcp and is
named device name.acs (e.g., tape 01.acs). Only the discretionary and
intraprocess access (ACL and ring brackets) is considered in determining access
to a device.

DEVICE LIMITS

In addition to controlling which processes may have access to a device, RCP
will enforce a limit to the number of devices of a given type that a single
process may have assigned at one time. This limit is enforced according to the
following rules:

1. The limit is not enforced for system processes.

2. The limit for each device type is an installation defined value. They
are currently specified on PRPH (peripheral) configuration cards.

3. Currently, only tape drive devices actually have such a limit defined.

RCP will also enforce a
type that may be assigned to
this limit in order to ensure
type are either assigned by a
system process. This limit is

limit to the total number of devices of a given
non-system processes at one time. RCP enforces
that a certain number of devices of each device
system process or available for assignment by a

enforced according to the following rules:

; . The number of devices of each device type that RCP will reserve for
system processes are installation defined values. They are currently
specified on PRPH configuration cards.

2. Currently, only tape drive devices are reserved for system processes.
Only tape drives with certain characteristics are reserved. Only 9
track tape drives are reserved since the backup facility uses only 9
track tapes.

2-7 AX49-01

I/O Workspaces

Due to the nature of the Multics virtual memory and its supporting I/O
hardware, I/O operations such as "read tape" or "write disk" require all pages
of memory referenced by the I/O operation to be in main memory during the
operation -- that is, no paging is done during execution of the I/O operation.
To accomplish this all channel programs and physical record buffer areas are
located in a special segment known as an I/O workspace segment. The ring a I/O
software, 101, guarantees that all pages of the workspace are present in main
memory before starting the I/O operation and remain there for the duration of
the operation.

RCP will control the maximum workspace size associated with each device
type. System processes, privileged processes and users on the ACL of the ACS
named workspace.acs in the directory >system control 1>rcp can request up to the
privileged maximum workspace size. All others can request up to the normal
maximum workspace size. Requests for a workspace longer than is allowed result
in an error. The table below lists the workpace maximums that are enforced.

Table 2-2. I/O Workspaces

Privileged Maximum Normal Maximum

device type words bytes words bytes
----------- ------
tape drive 45056 180224 3072 12288
disk-drive 45056 180224 2048 8192
printer 45056 180224 1024 4096
punch 45056 180224 1024 4096
reader 45056 180224 1024 4096
special 45056 180224 1024 4096
console 45056 180224 1024 4096

The workspace Bi~e l~ arf8~ted UJ Ub~115 the -block control argument ~o
those I/O modules that support it. This control argument is used to specify the
maximum physical record/block size to be processed. In all cases some overhead
for channel programs and I/O module control information must be taken into
consideration. When -block is not specified or supported the individual I/O
modules choose an appropriate default. In the case of commands that use I/O
modules, either the command, some argument or input to the command, or the I/O
module may specify/imply in some way the workspace size (for example by
supplying -block in an attach description).

Resource Reservation

Users may reserve resources by scheduling with RCP to obtain exclusive
rights to a resource for a period of time. RCP enables users to reserve
resources or groups of resources through the use of the reserve resource command
(described in the MPM Commands). A reservation takes effect 'immediately and it
lasts until either the user's process is terminated, or the reservation is
specifically cancelled via the cancel resource command (described in the MPM
Commands). After invoking reserve_resource, the user has exclusive rights to
the resource(s).

2-8 AX49-01

Tape volumes, tape drives, disk volumes, and disk drives can be reserved.
Tape and disk volumes are specified at the time of reservation by name; tape and
disk drives are specified by either name or attributes. In the case of disk
drives, the only acceptable attribute is model. For tape drives, acceptable
attributes are model, track, and density. Suitable values for the
above-mentioned attributes may be found by using the list resource types command
(also described in the MPM Commands). --

To cancel reservations, users invoke the list resource command to obtain
the reservation identifier, and then invoke the cancel resource command with the
reservation identifier to effect the cancellation. Administrators can perform
privileged cancellations; that is, if the administrator has proper access, it is
possible to cancel reservations belonging to other users.

Device Assignment

The RCP interface for device assignment allows the caller to request the
assignment of a specific device, or any appropriate device of a specified type.
To request the assignment of a specific device the caller must ask for the
device by name. To request the assignment of an appropriate device of a
specified type, the caller must specify the characteristics that the assigned
device must have. RCP selects a device for assignment based on the following
functional algorithm.

1 . If the caller has requested a device by name and if this device is
already assigned to the calling process, the assignment is aborted.

2. RCP tests all of the devices of the specified type. RCP counts the
number of these devices that are appropriate; appropriate and
accessible; and appropriate, accessible and available. These
requirements are discussed below:

a. appropriate: A device is considered to be appropriate if it has
the device characteristics specified by the caller. In testing
each device, RCP does not try to match any device characteristics
that are not specified by the caller. If a device is asked for
by name, only the device name characteristic is considered.

b. accessible: A device is considered to be accessible if the
calling process has "RW" effective access to the device.

c. available: A device is considered to be available for assignment
if it is not currently assigne~ to any process or reserved by
another process.

3. Having tested each of these requirements, RCP then wakes additional
tests to see if a device can be assigned. If the assignment cannot be
made, RCP returns an error table code that tells the caller why the
assignment aborted. The ~tests- that RCP makes at this time are
described below:

a. If there are no appropriate devices, the caller is told that the
requested resource (device) is not known to Rep.

b. If there are no appropriate and accessible devices, the caller is
told that he does not have access to the requested resource
(device).

c. If there are no appropriate, accessible and available devices,
the caller is told that the reques~ed resource (device) is not
available at this time.

d. If this assignment causes the previously described device limits
to be exceeded,· the assignment is aborted.

2-9 AX49-01

4. If all the tests described above are passed successfully, the device
assignment is made. Rep selects the most advantageous device from the
list of devices that were found to be appropriate and accessible and
available. It makes this selection based on the following rules:

a. If this is a type of device that has volumes and if the caller
specified a volume name to use in the device selection and if any
device in the list currently has that volume mounted, Rep selects
that device.

b. If the first case is not true, Rep selects the device that has
been idle for the longest amount of time.

Having assigned the device, Rep returns all of the characteristics of this
device to the caller.

Device Attachment

Before a device can be attached it must be assigned. The Rep interface for
device attachment allows the caller to request a device in the same manner
described for device assignment. It can ask for a specific device by name or it
can ask for any appropriate device of a specified type. One difference is that
if this device is a type that uses volumes, the caller must specify the name of
the volume to attach. For assignments, the specification of a volume is
optional.

Using the algorithms described above for device assignment, Rep tests all
of the devices of the specified type that are already assigned by the requesting
process. If the specific device or any appropriate device is already assigned
to this process, Rep attaches that device. If no suitable device is already
assigned to the requesting process, Rep automatically attempts to assign a
suitable device to this process. If no device can be assigned then the
attachment is aborted. If the attachment is for a device type that uses
volumes, Rep checks to see if the specified volume is already attached to this
process or any other process. If the volume is already attached, Rep aborts the
attachment.

Once Rep has found a suitable assigned device, it begins the real work of
attaching the device. This involves calling 101 to perform the ring 0 device
attachment. If the device is a type that uses volumes, Rep tells the operator
to mount the specified volume if it is not already mounted on the proper device.
Before the attachment is completed, Rep makes sure that the volume has been
mounted and that the write protection mechanism provided by the device is set
correctly. When all of this initialization work has been completed, Rep calls
101 to set the workspace and time-out limits and to promote the validation level
of the device. Until this is done, the 101 validation level for the device is
the Rep validation level (1). Thus no program in a higher ring can successfully
call 101 to use this device until Rep tells 101 to promote it. Rep returns all
of the device characteristics of the attached device and all of the information
needed to communicate with 101 about this device.

2-10 AX49-01

I/O INTERFACER

The I/O interfacer (101) allows user-ring programs to perform peripheral
I/O. It is used by all user-ring programs that perform I/O to devices connected
to the Input/Output Multiplexer (10M) channels. The user can construct
device-specific DCW lists and call 101 to initiate the I/O operation. When the
operation completes, 101 provides the user with a wakeup and the status. The
hardware protection and relocation features of the 10M are used by 101 to allow
the user complete control over his DCW lists and data with no possibility of
damaging the system.

NOTE: More information on the 101 will be supplied in a future update of
this manual.

2-11 AX49-01

SECTION 3

MULTICS STANDARD TAPE FORMAT

Th i s sect ion d escr i bes the stand ard phys ica] format used on 7 -t rack and
9-track magnetic tapes on the Multics system. This format is known as Multics
standard tape format. Tapes of this form may be written and read by the tape mult
I/O module (described in Section 5). Any magnetic tape not written fn the
standard format described here is not a Multics standard tape.

STANDARD TAPE FORMAT

The first record on the tape following the beginning of tape (BOT) mark is
the tape label record. Following the tape label record is an end of file (EOF)
mark. Subsequent reels of a multireel sequence also have a tape label followed
by EOF. (An EOF mark is the standard sequence of bits on a tape that is recognized
as an EOF by the hardware.)

Following the tape label and its associated EOF are the data records. An
EOF is written after every 12P data records with the objective of increasing the
reliability and efficiency of reading and positioning within a logical tape.
Records that are repeated because of transmission, parity, or other data alerts,
are not incl ud ed in the coun t 0 f 12P record s. The fi r st record following the
EOF has a physical record count of r mod 128.

An end of reel (EOR) sequence is written at the end of recorded data. An
EOR sequence is:

EOF mark
EOR record
EOF mark
EOF mark

STANDARD RECORD FORMAT

Each physical record (with the exception of the tape label record) consists I
of a 1024-word (36864-bit) data space enclosed by an 8-word header and an 8-word
t r ail e r . Th e tot aIr e cor dIe n g t his the n 1 04 0 W 0 r d s (37 1.J 40 bit s) . Th e head e r
and tr ai 1 er are each 2P 8 bit s . Th i s phys ical record requires 4680 fr ames on
9-track tape and 6240 frames on 7-track tape. This is approximately 5.85 inches
on 9-track tape at 800 bpi and 7. P inches on 7-track tape at 800 bpi, not
including interrecord gaps. (Record gaps on o'-track tapes are approximately 0.6
inches and on 7-track tapes are approximately 0.75 inches, at 800 bpi.)

For 1600 bpi 9-track tape, the record length is approximately ?925 inches
(with an inter record gap of approximately r.5 inches).

7/82 3-1 AX49-01C

PHYSICAL RECORD HEADER

The following is the format of the physical record header:

Word 0:

Words 1 and 2:

Word ~:

Word It:

Word 5:

Word 6:

Word 7:

Constant with octal representation 67C3143552 U5.

Multics standard unique identifier (70 bits, left justified).
Each record has a different unique identifier.

Bi t s 0-17: the number 0 f th i s physical record in thi s phys ical
file, beginning with record o.

Bi ts 18- 35: the number 0 f thi s physi cal fi 1 e on this phys ical
reel, beginning with file o.

Bits 0-17: the number of data bits in the data space, not
including padding.

Bi ts 1 P-35: the total number of bi ts in the data space.
(This should be a constant equal to 36864.)

Fl ags indicating the type of record. Bi ts are assigned
considering the leftmost bit to be bit 0 and the rightmost
bit to be bit 35. Word '5 also contains a count of the
rewrite attempt, if any.

Bit Meaning if Bit is 1

o This is an administrative record (one of bits 1 through
13 is 1).

This is a label record.

2 This is an end of reel (EOR) record.

3-13 Reserved.

1~ One or more of bits 15-26 are set.

15 This record is a rewritten record.

16 This record contains padding.

17Th i s r e cor d was wr itt e n foIl 0 win g a h a r d war e end 0 f
tape (EOT) condition.

1P This record was written synchronously; i.e., control
did not return to the caller until the record was
written out.

19 The logical tape cont inue s on another reel (defined
only for an EOR record).

20-26 Reserved.

27-35 If bits 14 and 15 are 1, this quantity indicates the
number of the attempt to rewrite this record. If bit
15 is 0, this quantity must be O.

Contains the checksum of the header and trailer excluding
word 6; i.e.; excluding the checksum word.

Constant with octal representation 512556146073.

3-2 AX49-01

PHYSICAL RECORD TRAILER

The following is the format of the trailer:

Word 0:

Words 1 and 2:

Word 3:

\1ord 4:

Word 5:

Word 6:

Constant with octal representation 107463422532.

Standard Multics unique identifier (duplicate of header).

Total cumulative number of data bi ts for this logical tape
(not including padding and administrative records).

Padding bit pattern (described below).

Bi t s 0 - 1 1: r eel seq u en c e n urn b e r (m u 1 t ire e 1 n urn b e r) , beg inn in g
with reel O.

Bit s 1 2 - 3 5 : ph Y sic a 1 f i len urn b e r, beg inn i n g wit h ph y sic a 1
file 0 of reel O.

The number of the physical record for this logical tape,
beginning with record O.

Word 7: Constant with octal representation 265221631704.

NOTE: The octal constants listed above were chosen to form elements of a
single-error-correcting code whether read as 8-bit tape characters
C9-track tape) or as 6-bit tape characters (7-track tape).

ADMINISTRATIVE RECORDS

The standard tape format includes three types of administrative records: a I­

standard tape label record, a bootable tape label record, and an end of reel
(EaR) record.

Standard Tape Label Record I

The standard tape label record is written in standard record format, and I
can best be defined by the PL1 structure declaration that follows:

where:

1. head

dcl 1 stand label record
2 head
2 installation id
2 tape reel id
2 volume set id
2 pad (1000)-
2 trail

based (mstrp) aligned,
like mstr header,
char (32)-;-
char (32),
char (32),
bit (36),
like mstr_trailer;

is the standard P-word record header described above.

I

I
2. installation id

identifies the installation I is the ASCII installation code.
that labeled the tape.

This

3. tape reel id I
1 s the AS C I Ire eli den t i f i cat ion. Th i sis the r eel ide n t i f i cat ion
by which the operator stores and retrieves the tape.

7/82 3-3 AX49-01C

4. volume set id

5. pad

f. trail

is the name of the volume set if the "-volume set name" tape mul t
attach description argument was used when the tape reel was creatcd~
If the "-volume set name" attach description argument was not used,
t his fie I dis pad de a wit hAS e I I b I em k s .

is an array of words containing the standard padding pattern (described
below), used to fill the label record data space to the stand2rd
size.

is the standarc A-word record trailer described above.

I Bootable Tape Label Record

I
Th € boo tab let <'I pel abe Ire cor dis a n ad min i s t rat i v ere cor d, wr itt e n in

nonstandard format. The first eip;ht words of the physical record contain four
pairs of executable instructions collectively known as a transfer vector. This
transfer vector allows a Multics standard tape to be bootloaded from any of four
possible I/O controllers.

I

When a tape that contains a bootable tape label record is bootloaded, a
hardwired program within the I/O controller writes the data within the first
record starting at location 30 (octal, absolute) in memory. When the data transfer
is completed, the I/O controller sets an interrupt "cell" in the system controller,
which causes the bootload processor to execute a hardwired "XED" instruction to
the address indicated by the system controller. This interrupt address generated
by the system controller is a function of the interrupt "cell" set by the I/O
controller and by the configuration panel number of the I/O controller itself.
For example, if the bootload sequence was initiated on I/O controller #0, then
the interrupt address would be ::W (A); addresses :2, ?l.l, and 36, respectively,
would be generated by I/O controllers number 1, 2, and? The executable instructions
contained in each pair of the transfer vector are:

Ida 4
tra

I

Location 4 contains the cew address stored by the I/O controller hardwired boot
program. An executable program is located at 330 (octal, absolute). This program
is known as the tape label boot program.

The bootable tape label record is created through the use of the tape mult
boot program control order. This control order is normally executed by the
generate mst command to write a bootable label on BOS system tapes. Although a
user can- write his own boot program and have generate mst write it to the BOS
tape label, a standard boot label exists in the -system libraries, named
mst boot label.

The mst boot label boot program initializes the bootstrap environment and
sets up an VO cnannel program to read and skip the EOF record, and to read in
the first data record on the tape under control of a DeW. The DeW address used
is 7750 (8) absolute with a word count of 40Q6. (The generate mst command
pI aces the stand ard R-word tape record header pI us a 16-word segment header
before the first data in the record; the first executable data in the record
starts at location 10000 (8).) After the first data record is read in, the
status returned from the tape controller is checked for errors. If an error
occurred, the status word is copied in the A register and the processor falls
into a DIS. Assuming no status error was detected, control is transferred to
absolute location 10000 (P).

7/R2 3-4 AX4g-01e

There are many other fields in the bootable tape label record. The following I
is a PL1 structure declaration of the contents of the bootable tape label record
followed by an explanation of each field:

where:

dcl mst label
2 xfer vector

? Ida instr
? tra-instr

2 he8d
2 installation id
2 tape reel id-
2 volume set id
2 fv overlay-

3 scu instr
3 dis-instr

2 fault-data (P)
2 boot pgm path
2 userTd criar
2 label version
2 output mode
2 boot pgm len
2 copyright
2 pad (1 3)
2 boot pgm
2 trail

based (mstrp) alignp.d,
(Ll) ,

bit (?6),
bit (36),
like mstr header,
char (~2) unaligned,
char (32) unaligned,
char (?2),
(32) unaligned,
bit (36),
bit (36),
bit (36),
6har (16P) unaligned,
(32) unaligned,
fixed bin,
fixed bin,
fixed bin,
char (56) unaligned,
bit (36),
(0 refer (mst label.boot pgm_len)) bit (36),
like mstr_traTler;

I
1. xfer vector I

is the bootload tr an s fer vec tor. There is one tr an s fer vector for
each of four possible I/O controllers. The transfer vector functions
to gain control as the resul t of an interrupt after a bootload sequence.

2. Ida instr
is an "LDA" instruction from absolute locCltion 4, which for an 10M
is the payload channel DCW as stored by the hardwired bootload program
1n the rot-1. I •

3. tra instr I
is an unconditional transfer to the beginning of the bootload program.

4. head
is the standard 8-word record header described above.

5. installation id
is the ASCII installation code.
that labeled the tape.

This identifies the installation

6. tape_reel id

7. volume

1 s the AS C I Ire eli den t i f i cat ion. Th i sis the r eel ide n t i fie a t ion
by which the operator stores and retrieves the tape.

set id
is the name of the volume set if the If-volume set name" tape mul t
attach description argument was used when the tape reel was created-:­
If the "-volume set name" attach description argument was not used,
this field is paddea with ASCII blanks.

8. fv overlay
This 32-element array overlays the hardware fault vector area at
absolute location 100 (octal) if this tape is bootloaded. If an
unexpected fault occurs when this tape is bootloaded, the appropriate
fault pair is executed by the processor fault logic.

I
I
I
I
I

9. scu instr is a Store Control Unit (SCLl) instruction, which safe-stores the I
state of the processor control unit when executed.

7/82 3-5 AX49-01C

1
10. dis instr

is an interrupt inhibited De12Y until Interrupt Signal (DIS)
instruction, which halts the processor when executed.

1
11. fault data

is an 8rec where SCU data is stored if an unexpected fault ocurred
while boot~o~ding thi~ tape.

12. boot pgm path
if nonblank can be the
on this lab~l record.
the boot program when
was executed.

absolute pathname of the boot program written
It can also be the user designated name for
the "boot program" tape _mul t control order

In. userid
is the Us~t id
this tape:

(Person. Project. Instance) of the user who created

I
I

I
I

14. label version
is the version number of this label record structure, currently 2.

15. output_mode
is the number of the iox
(See iox_modes.incl.p11.T

mode in effect when this tape was created.

16. boot pgm len
IS the length of the boot program
be less than or equal to R40 (1510
less than 840 words, the record
padding pattern.

in words. The boot program must
octal) words in length. If it is
is padded out with the standard

17. boot pgm
is the executable text of the boot program. The boot program must
be coded in absolute self-relocating ALM assembly language.

118. trail
is the standard 8-word record trailer described above.

i End of Reel Record

1
The end of reel record contains only padding bits in its data space. The

standard record header of the EOR record contains the information that identifies
it as an EOR record (word 5, bits 0 and 2 are 1).

I DENSITY AND PARITY

I
Both 9-track and 7-track standard tapes are recorded in binary mode with

odd 0 n e s h a v in g 1 ate r alp a r i t y . S tan dar d den sit i e s are ? 00 f r am e s per inc h
(bpi) (recorded in NRZI mode), 1600 bpi (recorded in PE mode), and 6250 bpi
(recorded in GCR mode).

DATA PADDING

The padding bit pattern is used to fill administrative records and the last
data record of a reel sequence.

7/82 3-6 AX49-01C

WRITE ERROR RECOVERY

l"1ul tics standard tape error recovery procedures differ from conventional
techniques in that no attempt is made to backspace the tape on write errors. If
a d a t a ale r t 0 c cur s wh i 1 e wr i tin gar e cor d, the r e cor dis r e wr itt en. J fan
error occurs while re-writing the record, that record is again rewritten. Up to
64 attempts can be made to write the record. No backspace record operation is
per formed.

The above write error recovery procedure is applied to both administrative
records and data records.

COMPATIBILITY CONSIDERATION

The software is capable of reading Multics standard tapes that are written
with records with less than 1024 words in their data space. In particular, a
previous Multics standard tape format specified a 256-word (9216-bit) data space
in a tape record.

In addition to recognIzIng and reading standard and bootable tape label I
records, the software is also capable of recognizing and reading Multics standard
tapes that were generated wi th a version 1 label record, i.e., standard label
records that do not contain the volume set id field.

7/82 ?--7 AX49-01C

SECTION 4

COMMANDS

This section contains descriptions of tape-related Multics commands,
presented in alphabetic order. Each description contains the name of the
command (including the abbreviated form, if any), discusses the purpose of the
command, and shows the correct usage. Notes- and examples are included when
deemed necessary for clarity.

The commands described in this section and their functions are:

copies records from an input file to
file

an output I
prints information about files recorded on 9-track

magnetic tape

allows the user to interactively inspect
contents of a magnetic tape

the I
transfers files between magnetic tape and the

storage system

transfers files between the storage system and
magnetic tape

Also refer to the assign resource, list resources, and unassign resource
commands in the MPM Commands. These commands deal with the resource control
package and the consignment of devices.

4-1 AX49-01

Name: copy_file, cpf

The copy file command copies records from an input file to an output file
(both files -reside in memory). The input and output file records must be
structured. (See "Unstructured Files" below for an explanation of how
unstructured files can be copied.) The input file can be copied either
partially or in its entirety.

The copy command makes an exact duplicate of the input file, whereas
copy file produces an output file that has been restructured for maximum
compactness. (See the description of the copy command in the r1Pr.l Commands.)

where:

1 . in control arg
is one of two input control arguments that specifies the input file
from which records are read. The file may be specified by either an
1/ a swi tch name 0 r an attach descr ipt i on. (See" Notes" below.)

-input switch STR, -isw STR
specifies the input file by means of an already attached I/O switch
name, where STR is the switch name.

-input description STR, -ids STR
specifies the input file by means of an attach description, where
STR is the attach description. The attach description string must
be enclosed in quotes if it contains spaces.

2. out control arg
- is one of two output control arguments that specifies the output

file to which these records are written. It may be either an I/O
swi tch name or an attach description. (See "Notes" below.)

-output switch STR, -osw STR
specifies the output file by means of an already attached I/O switch
name, where STR is the switch name.

-output description STR, -ods STR
specifies the output file by means of an attach description, where
STR is the attach description. The attach description string must
be enclosed in quotes if it contains spaces.

3. control args
may be one or more of the following control arguments. (See "Notes"
below.)

-keyed
copies both records and keys from a keyed sequential input file to a
keyed sequential output file. The default is to copy records from
an input file (either keyed or not) to a sequential output file.
(See "Keyed Files" below.)

4-2 AX49-01

-from N, -fm N
copies records beginning with the Nth record of the input file,
where N is a positive integer. The default is to begin copying with
the "next record." (See "Notes" below.)

-start STR, -sr STR

-to N

copies records beginning with the record whose key is STR, where STR
is 256 or fewer ASCII characters. The default is to begin copying
with the "next record."

copies until the Nth record has been copied or the input file is
exhausted, whichever occurs first, where N is a positive integer
greater than or equal to the N given with the -from control
argument. This control argument can only be specified if -from is
also specified. The default is to perform copying until the input
file is exhausted.

-stop STR, -sp STR
copies until the record whose key is STR has been copied or the
~input file is exhausted, whichever occurs first, where STR is 256 or
fewer ASCII characters. This control argument can be specified
without specifying the -start control argument. However, if -start
is specified, the STR given with -stop must be greater than or equal
to (according to the ASCII collating sequence) the STR given with
-start. The default is to perform copying until the input file is
exhausted.

-count N, -ct N
copies until N records have been copied or the input file is
exhausted, whichever occurs first, where N is a positive integer.
The default is to perform copying until the input file is exhausted.

-all, -a.
copies until the input file is exhausted. This is the default.

-brief, -bf
suppresses an informative message indicating the number of records
actually copied.

-long, -lg
prints an informative message indicating the number of records
actually copied. This is the default.

Unstructured Files

The copy file command operates by performing record I/O on structured
files. If Tt is desired to copy from/to an unstructured file, the
record stream I/O module can be used, e.g., by typing the command line:

cpf -ids "record_stream_ -target vfile_ pathname" -osw OUT

The effect is to take lines from the file specified by pathname via the vfile
I/O module, transform tijem into records via the record stream I/O module, and
then copy them. to the I/Q switch named OUT. - '-

4-3 AX49-01

copy~file

The copy file command can copy a keyed sequential file either as such, or
as though it were purely sequential. By default, the command copies only
records and does not place keys in the output file. To copy the keys, the
-keyed control argument must be used. When -keyed is used, the input file must
be a keyed sequential file. Whether keys are copied or not, control arguments
can be used to delimit the range of records to be copied (i.e., -start, -stop,
-from, -to, -count). Copying is always performe~ in key order.

Notes

If either the input or output specification is an attach description, it is
used to attach a uniquely named I/O switch to the file. The switch is opened,
the copy performed, and then the switch is closed and detached. Alternately,
the input or output file may be specified by an I/O switch name. Either the
io call command or iox subroutine may be used to attach the file prior to the
invocation of the copy file command. (See the description of the io call
command in the MPM Commands and the iox subroutine in the MPM Subroutines.)

If the input file is specified by an I/O switch name and the switch is not
open, the copy file command opens it for (keyed)sequential input, performs the
copy, and closes it. If the switch is already -open when the copy file command
is invoked, the opening mode must be sequential input, sequential Tnput output,
keyed sequential input, or keyed sequential update. The switch -is not closed
after-the copy has been performed~ -

The "next record" must be defined if neither the -start nor -from control
argument is used to specify an absolute starting position within the input file.
If the I/O switch is opened by the copy file command, the next record is the
first record of the file; otherwise, the next record is that record at which the
file is positioned when the copy_file command is invoked.

If the output file is specified by an I/O switch name and the switch is not
open, the copy file command opens it for (keyed)sequential output, performs the
copy, and closes it. If the switch is already- open when the copy file command
is invoked, the opening mode must be sequential output, sequential Tnput output,
keyed sequential output, keyed sequential update, direct output~ or
direct update. TIn update mode, output file records with keys-that duplicate
input file records are rewritten.) The switch is not closed "after the copy has
been performed.

The -from and -start control arguments are mutually exclusive. The -to,
-stop, -count, and -all control arguments are mutually 'exclusive. The -brief
and -long control arguments are mutually exclusive. The informative message,
printed by default, appears as one of the following:

345 records copied.

4-4 AX49-01

Examples

To copy an entire file from an already attached file to the segment
in_copy, type:

cpf -isw in -ods "vfile in_copy"

To copy the first 13 records from a tape file to an output file, the two
lines below would actually be typed as only one per line (The normal result of
this command would be to print the first 13 records on the user's terminal.)

cpf -ct 13 -ids "tape ansi 887677 -name TEST21 -ret all"
-ods "record stream- user_output"

To copy 13 records from an already attached file to another already
attached file,· starting with the 56th record of the input file, type:

cpf -isw in -osw out -from 56 -ct 13

To copy records 43 through 78 from an already attached file to an already
attached file, type:

cpf -isw in -osw out -from 43 -to 78

To copy all but the first seven records from segment testdata.11 to an
already attached file, type:

cpf -ids "vfile testdata.11" -osw out -~m 8

To copy an entire keyed sequential file with keys, type:

cpf -isw in -osw out -all -keyed

To copy 13 records of a keyed sequential file starting
whose key is ASD66 to a sequential output file, the following
(No keys are copied.)

cpf -isw in -osw out -sr ASD66 -ct 13

with the record
line is typed.

To copy the records and keys from a keyed sequential file up to and
including the record whose key is bb"bb, type:

cpf -keyed -isw in -osw out -sp "bb""bb"

4-5 AX49-01

Name: list_tape_contents, ltc

The list tape contents command prints information about files recorded on
9-track magnetic tape. Tapes that may be listed include ANSI standard labeled
tapes and IBM standard labeled tapes (see the tape_ansi and tape_ibm_ I/O
modules in Section 5).

The information printed by this command is extracted from the tape labels
and printed in various amounts according to the control arguments supplied.
Where information' is not obtainable from the label, the value "****" is printed
as the item entry. Three printing modes are available to the user: long mode,
which prints extensive information about the files on a tape; brief mode, which
prints only the basic information about the files on a tape; and default mode,
which prints slightly more information than does brief mode.

I list_tape_contents {volume_name {-comment ,STR}} {-control_args}

I

I

where:

1 •

2.

volume name
is the volume name specification of the tape volume or volume-set to
be listed. A maximum of 64 volumes may be specified in this list.
The keyword -volume or -vol must precede the volume name if the
volume name begins with a hyphen (-); otherwise, -volume is
optionil. For tapes written on thA MulticR RVRtAm. onlv the first
volume name of the volume-set need be given,Usinc~ theuI/O module
determines the other members of the set from file labels. However,
for tapes written on other systems, all of the~ volume names of the
volume-set must be given. See "Volume Specification" in the
tape_ansi_ and tape_ibm_ I/O module descriptions.

-comment STR, -com STR
displays a message on
volume name immediately
mounted. STR is a string
message to be displayed.

the operator's console when the volume
preceding the the -comment keyword is
of from 1 to 64 characters comprising the

3. control args
can be chosen from the following and can appear only once in the
command line:

-long, -lg
prints an extensive amount of information about files on an OS or
ANSI standard labeled tape. This file information includes: the
file identifier (Id:), the file sequence number (Number:), the
record format (Format:), the physical block size, in characters
(Blksize:), the logical record length, in characters (Lrecl:), the
encoding mode (Mode:), the file creation date (Created:), the file
expiration date (Expires:), the file-set section number (Section:),
the file version number (Version:), the file generation number

~~;~~~:~)~n:?seea~~xa!~~es~P~~~;;~~ system that recorded the tape

4-6 AX49-01

-brief, -bf
prints a brief amount of information about each file on an ANSI
standard or OS (see tape ibm in Section 5) standard labeled tape.
The file information listed in brief printing mode is just the file
identifier (Id:) and the file sequence number (Number:). (See
"Examples" below.)

-io module STR, -iom STR
- invokes a system I/O module to attach and read the specified tape

-to N

volume. Only the tape ansi or tape ibm I/O modules are valid
specifications here. The tape ansi subroutine is specified in
order to list ANSI Standard labeled tape, the tape ibm subroutine
is specified in order to list as standard labeled -tapes. The
tape ansi subroutine is the default I/O module if this argument is
omitted. -

specifies that only the first N files on a tape are to be listed,
where N is an integer such that 1 < N < 9999. If fewer than N files

. exist on the tape, a warning message to this effect is printed.

-retain STR, -ret STR
specifies which resources are to be retained on termination of this
command. STR can be the string all or the string none. If STR is
not specified, the string none is assumed.

Error Processing

If an unrecoverable error occurs during volume processing, further I/O is
not possible and the listing of the tape is terminated.

Notes

The -long and -brief control arguments are mutually exclusive.

To obtain information about the volume-set, list tape contents creates an
attach description which is used to attach each file.- This attach description
is the catenation of the following in the order specified: the I/O module name;
volume name, -comment STR pairs and any unrecognized argument; and finally a
string of the form "-retain all -number n" where n is the file number to be
processed. Note that due to this last string list tape contents will not allow
-number or -retain arguments in the command line. - -

If neither the -long nor -brief control arguments are specified in the
command line for listing an as or ANSI standard labeled tape, the default action
is to list somewhat more file information than that printed for the -brief
control argument. This file information includes: the file identifier (Id:),
the file sequence number (Number:), the record 'format (Format:), the block size,
in characters (Blksize:), the logical record length, in characters (Lrecl:), the
file creation date (Created:), and the file expiration date (Expires:).

4-7 AX49-01

Examples

list_tape_contents 070065 -iom tape_ansi -to 3

Mounting volume 070065 with no write ring.
070065 mounted on tape_05.

File listing of ANSI Labeled Volume 070065 Recorded at 1600 bpi.

Id:
FILE1
FILE2
FILE3

Number:
1
2
3

Format:
DB

Blksize:
8192

Lrecl:
137

Mode:
ansi

Created:
09/02/76

Displayed characteristics for the last 3 files are identical

Expires:
unknown"

The above example lists only the first three files on tape volume 070065.
The file information is displayed in default printing mode since no verbosity
control arguments are given in the command line. After the mount message, a
header is printed identifing the tape as an ANSI standard labeled tape recorded
at a density of 1600 bpi. Since the recording characteristics for all of the
files on the tape are the same, these are only printed once for the first file.

list_tape_contents 070065 -iom tape_ansi -brief

Mounting volume 070065 with no write ring.
070065 mounted on tape_02.

File listing of ANSI La1eled Vulume 070065 Recorded at 1600 bpi.

Id:
FILE1
FILE2
FILE3
FILE4
FILE5
FILE6
FILE7

Number:
1
2
3
4
5
6
7

This example lists the entire contents of tape volume 070065 in brief
printing mode. Again, ~fter the mount message, a header is'printed giving the
tape type as ANSI standard labeled and the recording density as 1600 bpi. Brief
printing mode gives only the file identifier and the file number for each file
listed.

4-8 AX49-01

read tape and query

Name: read tape and query, rtq

The read tape and query command allows a
determine the contents of a magnet ic tape.
capabilities are also provided.

read tape and query

user to interactively
Physical tape file

inspect and
processing

read tape and query volume id {-control args}

where:

1. volume id
is the local tape library designation of the requested tape volume.

2. control arg
~an be chosen from the following:

I

-block N, -bk N I
specifies the maximum physical record size to be processed, where N
is the number of bytes. The default is 11200 bytes (2800 36-bit
words).

7/82

-comment STR, -com STR I
displays STR as a message on the operators console at the time that I
tape volume <volume id) is mounted. If STR contains spaces, tabs or
special characters,-the entire STR must be enclosed in quotes.

-density N, -den N
specifies the initial density setting for tape attachment, where N
i s the n urn be r 0 fbi t s per inc h (bpi) . Th e de fa u 1 tis 8 00 bpi.
Al though the densi ty is automatically determined (see "Notes" below),
some tape subsystems may not have tape drives capable of handling
the default density.

-no prompt I
suppresses printing of the prompt character string (" __)") when at
rtq command level.

-ring, -rg
specifies that the tape is to be mounted with a write ring. This
allows a tape that is already mounted with a write ring to be attached
wi thout operator intervention. The defaul t is to mount the tape
with no write ring.

-track N, -tk N
where N is 7 or 9 for 7 or 9 track tapes. If this control argument
is not specified, 9 track is assumed.

AX49-01C

I

read tape and_query read tape_and query

Notes

The read tape and query command requests the specified tape volume to be
mounted. After the mount request has been satisfied, read tape and query
automatically determines the tape density and checks for a recorded tape label.
If the density can be determined, an informative message is displayed that includes
the densi ty. If the tape has a stand ard Mul tics, GCOS, IBM, ANSI or CPS tape
label, an informative message is displayed that includes the standard label type
and the recorded volume name. If the tape contains a valid IBM or ANSI label, a
second message is displayed informing the user of the physical block size and
logical record length (in bytes) of the first data file. For all standard
labeled tape volumes, the tape is then positioned to the beginning of the first
data file. If the tape label is not recognized as one of the five standard
types mentioned above, it is designated as unlabeled and the tape volume is
repositioned to the beginning of the tape. The read tape and query command then
goes into a request loop after displaying a prompt character string ("-->"),

I unless -no prompt has been specified. Some requests acceptable to

I

read tape ana query take arguments that are optional. These optional arguments
are enclosed Tn braces. The valid user responses while in this request loop are
as follows:

7/82

quit, .q
detaches the tape and returns control to the current command processor.

help, ?
lists the requests of read tape_and query.

<rest of line>
passes <rest of line> to the command processor for execution as a
Mul tics command-:-

d ispl ays the command name read tape and_query wi th its short name
(rtq) in parentheses.

position, pos

bsr {N}

bsf {N}

bof

fsr {N}

fsf {N}

displays the current physical tape file and record position for the
user.

b a c k spa c e N r e cor d s . If N i s not s pe c i fie d, 1 i s ass urn ed .

backspace N files. If N is not specified, 1 is assumed.

position to the beginning of the current physical tape file.

forward space N records. If N is not specified, is assumed.

forward space N files. If N is not specified, 1 is assumed.

4-10 AXU9-01C

read tape and query read tape 2nd query

7/R2

rewind, rew
issues a rewind command and positions the tape to the beginning of
tape (BOT) marker.

density <N>, den <N>
sets the tape density to <N> bits per inch (bpi), where N can be
6250, 1600, poo, 556 or ?OO. Density requests must be issued while
the tape is positioned at the BOT marker or a request reject status
results. It is not normally necessary to set the tape density as it
is automatically set by read tape and query before the request loop
is entered.

mode STR
sets the hardware mode for reading tape to STR, which can be one of
the following modes:

bin

bcd

nine

eight bit bytes are read in and packed (nine eight bit bytes
per memory double word). This is the default mode.

reads in tape that was originally written in binary coded decimal
(BCD). The hardware performs input character conversion.

eight bit bytes are read in and converted to nine bit bytes by
for c in g the m 0 s t s i g n i f i c Cl n t bit 0 f e a c h n in e bit by t e to ,t 0 It b .

read record f-count N}, rdrec {-ct N} I
reads the current record into a temporary buffer. If the tape is
one of the five known standard labeled tapes, the record is checked
to determine if it is a lab~l or trailer record; if it is, information
pert inen t to that part icul ar record type is d i spl ayed . Otherwi se,
information pertaining to the physical record length in bits, words,
P.-bit bytes, 9-bit bytes, and 6-bit characters is displayed. When
the -count argument is specified, N records are read, overlaying
each other in the temporary buffer.

list tape contents {-long} {-label}, ltc {-lg} {-Ibl}
displays information about each record on the tape. The tape is
positioned to BOT and each record is read in. If the tape is one of
the five known standard types, the current record is inspected to
determine if it is a valid label or trailer record; if so, information
pertinent to that particular label or trailer record is displayed,
in interpreted format. If the -long argument is used, the contents
of the label record is displayed (in ASCII) as well. Otherwise, the
length of the current record is compared to the length of the last
record read. If the lengths are the same, a tally of the number of
records with the same length is incremented. If the length of the
current record is different from that of the last record, or if an
end of file mark is detected, a message is displayed that includes:
the number of records of equal length, and the record length in
bits, wordS, P-bit bytes, 9-bit bytes, and 6-bit characters. This
d ispl ay of record lengths can be circumvented by using the -label
argument, which only displays the label records. This operation
continues until the logical end of tape is reached (two end of file
marks in succession or an end of volume trailer record, followed by
an end of file mark). The tape is reposi t ioned to BOT after the
list tape contents request is complete. Use of the -label argument
with-unlabeled tapes is treated as an error.

4-11 AX4g-01C

I

rend tape and query read tape and query

7/82

dump {offset} {n ~lords} {char types}
displCJys the contents oT the record buffer (filled with th'e read, record
request) on the users terminal. If no arguments are specified, the
contents of the entire tape buffer are displayed in octal format.
If the n words argument is specified, it must follow offset. However,
these arguments may be positioned before or after any char type arguments
that may be specified. The offset and n words arguments must be
specified in octal. If offset is specifieo without being followed
by n words, then the tape buffer is dumped start ing wi th the <offset)th .
word-and ending with the lCJst word in the tCJpe buffer. The char type
optional arguments allow interpretation of the data cont~ined ili the
tape buffer in various character formats. If more than one char type
argument is specified, then the tape buffer is dumped with the Tirst
character interpretation, followed by the next character
interpretation, and so on until all requested data formats have been
dumped. The value of char type can be selected from the following:

-ascii

-bcd

displays the contents of the record buffer in octal wi th an
ASCII interpretation of the data on the right side.

displays the contents of the record buffer in octal with a BCD
interpretation of the data ~n the right side

-ebcdic

-hex

displays the contents of the record buffer in octal with an
EBCDIC interpretation of the data on the right side.

displays the record buffer in hexadecimal format.

read file {args}, rdfile {args}
i-cads the CUiient tope f'n", into the segment. des('ribed hy ~rgs. The
default action of this request with no arguments queries the user as
to the segment name he wishes the tape file to be read into and then
issues a warning telling the user that the current tape file will be
read in as a stream fil e wi th no conver sion . The user is asked if
he wishes to continue. If he answers yes, then the tape file is
read into the designated segment and a newline character is appended
to each physical record. If the user answer s no, then control is
returned to the request loop. If the tape is one of the five standard
types, each record is checked to determine if it is a valid label or
trailer record. If it is, pertinent information about the record is
displayed and the record is not written to the output segment.

The optional arguments associated with the read file request are:

-output file {STR}, -of {STR}
where STR specifies the segment
rea din to. If S T R i s om itt ed,
segment name.

4-12

name for the tape file to be
the user is quer ied for the

AX4g-01C

read tape_and query read tape and query

7/82

-count N, -ct N I
allows reading up to N files, or until logical end of tape is
encountered. After the first file is read in, the -count iteration
count is appended to the end of the user-designated output file
name as a second component. For example:

rdfile -ct 5 -of file1 i
names the first output fil e file 1, the second file 1.2, and the I
third file1.?!.

-multics, -mult
specifies that the input tape file is in Multics standard system
format. (Refer to Section 3 in this manual for a description
of Mul tics standard tape format.) The data portion of each
unrepeated record is written to the specified stream output
file. No attempt is made to separate the contents of the physical
record into a logical format. Since standard Multics tape format
specifies that an EOF mark be written every 12P records, the
"-extend" and "-count" arguments should be used to ensure that
all of the data is recovered.

-gcos, -gc

-cp5

specifies that the input tape file is in GCOS standard system
format. That is, each record has a block control word and
several record control words dividing the physical record into
logical records. Each record is processed accordingly. BCD
records are converted to ASCII. ASCII records are copied directly.
Binary compressed deck card images are decompressed and converted
to ASCII. If a BCD card image is identified as a "$ object"
card, this card image and all successive binary card images,
until a "$ dkend" card image is identified, are copied to a
separate file whose name is formed from columns 73 - 76 of the
$ object card wi th a suffix of ".obj". If a BCD card image is
identified as a "$ snumb" card, this card and all following
card images, until another $ snumb card or end of file, are
copied into a file whose name is formed from columns 16 - 21 of
the ~ snumb card with a suffix of ".imcv". If a BCD card image
is identified as a"~ <language>" card, this card and all following
card images, until another $ <language> card or end of file,
are copied into a file whose name is formed from columns 73 -
76 of the ~ <language> card wi th a suffix of ".ascii". This
file is also surrounded by sufficient GCOS "JCL cards" so that
the completed "deck" can be assembled using the Multics ecos
Environment Simulator. If columns 73 - 76 of the $ <language> I
card are blank, the $ <language> card image is displayed and
the user is queried for the filename.

spec i fies that the input tape fil e is in CPS stand ard system
format, which consists of variable length records, recorded in
EBCDIC. Each variable length logical record is written to the
specified stream file, with a newline character appended to the
end. The data read from the tape is automatically converted
from EBCDIC to ASCII.

11-13 AX4Q-01C

I
I
I

read tape and query read tape and query

7/82

-dec
specifies that the input tape file is in Digital Equipment
Corporation (DEC) standard system format. Each DEC word is l10
bits long, of which the first ~2 bits and the last l1 bits are
concatenated together to form one 36 bit word. The other 4
bits are discarded. The converted data is then written to the
specified file in raw format.

-ibm vb f STR}
specifies that the input tape file is standard IBM "VB" formatted
variable length records with .. embedded bJock and control Hords.
The data encoding mode can be specified by STR, where STR can
bee b c d i c, asc~ i ,.: 0 t bin a r y (0 r bin). Th e de fa u 1 tis EB CD I C .

-ar.lsi db {STR}
specifies th'at the input tape file is ANSI-standard "DB" formatted
variable length records with embedded record control words. The,
data encoding mode can be specified by STR, wh.e"te STR can be
ascii, ebcdic, or binary (or bin). The default is ASCII.

-output description, -ods
alTows the user to specify a standard Mul tics 1/0 attach description
to receive the tape file data. User queries ask the user to
input the at tach descript lon and the open ing mode. Opening
modes can be. expressed in English terms or the appropriate
abbreviation (e.g., sequential output, sqo).

-extend

-nnl

allows the user to concatenate the contents of several tape
f i 1 e sin too n e 0 u t put f i 1 e . Th i s a r g urn en t has mea n in g 0 n 1 y i f
the -count argument is also specified.

allows escape from the read file default of appending a new
1 ine character to the end of each physical record, when no
other format specification is given.

-truncate N, -tc N
allows the user to truncate each physical record to a length of
N char ac ter s .

-skip N
allows the user to skip N characters at the beginning of the
physical tape record. This feature is primarily to allow a
record or block control word to be skipped over while processing
tapes of an unfamiliar format.

-logical record length N, -lrl N
allows the-user to divide each physical tape record into several
logical records of length N. Each logical record is written to
the speci fied file wi th a new 1 ine character appended to the
end. Logical records cannot span physical blocks.

4-14 AX49-01C

read tape_and query read tape and_query

-convert STR, -conv STR

Tape Positioning

allows the user to convert the data format of each tape record,
where STR can be one of the following:

ebcdic to ascii, ebcdic
converts input EBCDIC data to ASCII.

bed to ascii, bed
converts input BCD data to ASCII.

comp? to ascii, comp?
converts input comp? (4 bit packed decimal) data to its
equivalent ASCII representation.

I

When inspecting multi-file tape reels, you may find the action of various I
positioning requests confusing. The table below illustrates the starting and
ending position when using various tape positioning requests:

Start Po si tion

file 6, record 7
file 6, record 7
file 6, record 7
file 6, record 7
file 6, record 7
file 6, record 7
file 6, record 7
file h v, record 7

file 6, record

Operation

rewind
bof
bsf
fsf
bsr
fsr
bsf 8 (1)
bsr 10 (2)
read file -count ?

En d Po sit ion

fil e 1,
fil e 6,
fil e 5,
file 7,

file 6,
fil e 6,
file 1,
file 6,
file 9,

record 1
record 1
record 1
record 1
record
record
record
record
record

6
?
1

I

I

I
note (1): This causes a rewind operation to take place, since the resultant file I

number would be less than 1.
note (2): This causes a bof operation to take place, since the resultant record

number would be less than 1.

Examples I

A typical example of a read tape and query invocation follows, including I
the initial information displayed Tor a-labeled tape.

7/82

read tape and query usert1
Tape-usert1,blk=2800 will be mounted with no write ring.
Tape usert1,blk=2800 mounted on drive tape 02 with no write ring.
Tape density is 1600 bpi
Tape usert1 is a labeled ANSI tape
Volume name recorded on tape label is USERT1
Setting tape dim to read in nine mode
First data file format:

ANSI HDR2 label record. Next file format:
Record format DB; Block length 4000; Record length 4000; Mode ASCII;

Positioning to beginning of physical tape file # 2, (logical file # 1)
-->

4-14.1 AX49-01C

read tape and query read tape and query

I An example of the output produced by the list tape contents request for a
labeled ANSI tape follows. Note the use of the -label arid -long arguments:

I
I

I
I
I

I
I

7/82

--> list tape contents -label -long
Listing tape contents of tape volume usert1 in nine mode.
Starting at BOT (physical file # 1, record n 1)

Physical tape file II 1.

ANSI VOL1 label record. Volume serial number USERT1
("VOL1USERT1 MTF

ANSI HDR1 label record. Data set JD RTQ.PL1

3")

("HDR1RTQ.PL1 USERT1 00010001000100 80225 00000 OOOOOOMULTICS ANSI")

ANSI HDR2 label record. Next file format:
Record format DB; Block length ~OOO; Record length ~OOO; Mode ASCII;
(IIHDR2D040000~000 11 00")

End of physical tape file # 1, total records read - 3.

Physical tape file # 2.
Lo g i c a I tap e f i I e I! 1.

End of physical tape file If 2, (logical tape file # 1),
total records read - 19.

Physical tape file If 3.

ANSI EOF1 label record.
("EOF1RTQ.PL1 USERT1 00010001000100 R0225 00000 000019MlILTICS ANSI")

ANSI EOF2 label record.
("EOF?Df'400004000 11 00")

End of physical tape file n 3, total records read - 2.

Physical tape file # 4.

ANSI HDR1 label record. Data set ID RD TFILE.PL1
(IIHDR1RD TFILE.PL1 USERT1 00010002000100 80225 00000 OOOO(lOMULTICS ANSI")

ANSI HDR2 label record. Next file format:
Record format DB; Block length 4000; Record length ~OOO; Mode EBCDIC;
(IIHDR2DO~00004000 12 00")

End of physical tape file # ~, total records read - 2.

Physical tape file # 5.
Logical tape file # 2.

End of physical tape file # 5, (logical tape file # 2),
total records read - 1.

Physical tape file # 6.

ANSI EOF1 label record.
(nEOF1RD TFILE.PL1 USERT1 00010002000100 80225 00000 000001MULTICS ANSI")

ANSI EOF2 label record.
(nEOF2D0400004000 12 00")

AX49-01C

read tape_and_query rEad tape and query

End of physical tape file' 6, total records read - 2. I
End of physical tape file # 7, total records read - 0. I
Logical end of tape, positioning to BOT I
-->

An example of the output produced by the list_tape contents request for a I
labeled IBM tape follows:

--> list tape contents
Listing ~ape ~ontents of tape volume usert2 in nine mode.
Starting at BOT (physical file # 1, record # 1)

Physical tape file n 1.

IBM VOLl label record. Volume serial number USERT2

IBM HDR1 label record. Data set ID FILE1

IBM HDR2 label record. Next file format:
Record format VB; Block length 8192; Record length BleB;

End of physical tape file # 1, total records read - 3.

Phys ical tape fi I e II 2.
Logical tape file II 1.

record: length = 73332 bits; 2037 words, P14P nine bit bytes,
9166 eight bit bytes, 12222 six bit chars

record: length = 73092 bits, 2047 words, P1PP, nine bit bytes,
()?11 eight bit bytes, 12282 six bit chars

End of physical tape file # 2, (logical tape file # 1),
total records read - 2.

Physical tape file # 3.

IBM EOF1 label record.

IBM EOF2 label record.

End of physical tape file # 3, total records read - 2.

End of physical tape file /I 4, total records read - o.

Logical end of tape, positioning to BOT
-->

I

An example of the output produced by the list_tape_contents request for a I
labeled GCOS tape follows:

7/82

--> list tape contents
Listing ~ape ~ontents of tape volume usert3 in binary mode.
Starting at BOT (physical file # 1, record # 1)

Physical tape file # 1.

GCOS BTL header label record; Tape reel /I 70322.

4-14.3 AX49-01C

I
I
I

I

I

I
I
I
I
I
I
I

I

read tape and query read tape and query

End of physical tape file # 1, total records read - 1.

Physical tape file If 2.
Lo g i c a I tap e f i I e /I 1.

46 records: length = 11124 bits, 309 words, 1236 nine bit bytes,
1390 eight bit bytes, 1P54 six bit chars

record: length = 3060 bits, P5 words, 340 nine bit bytes,
382 eight bit bytes, 510 six bit chars

End of physical tape file If 2, (logical tape file If 1),
total records read - 47.

Ph Y sic a I tap e f i I e If 3 .

Geos "eof" label record. Block count of previous file 47.

End of physical tape file # 3, total records read - 1.

Physical tape file If 4.

Geos Partial header label record.

Logical end of tape, positioning to BOT
-->

I An example of the read file request, using the -count argument, to read in
up to 99 files of a GeOS tape follows. Note that the label records are only
identified and are not written to output files:

I •

I

I
I

7/82

--> read file -count 99 -gcos -output file 3bt.ascii
Reading TRPP filp n 1 in binary mode -

Geos BTL header label record; Tape reel If 70322.
End of file after 1 record read from tape file If 1
Reading tape file If 2 in binary mode
Writing file 3bt.ascii.
End of file after 1 record read from tape file # 2
Reading tape file # 3 in binary mode

Geos "eof" label record. Block count of previous file 1.
End of file after 1 record read from tape file If 3
Reading tape file If 4 in binary mode

Geos header label record.
End of file after 1 record read from tape file If 4
Reading tape file If 5 in binary mode
Writing file 3bt.ascii.3.
End of file after 47 records read from tape file If 5
Reading tape file If 6 in binary mode

Geos "eof" label record. Block count of previous file 117.
End of file after 1 record read from tape file # 6
Reading tape file If 7 in binary mode

Geos header label record.
End of file after 1 record read from tape file II 7
Reading tape file II R in binary mode
Writing file 3bt.ascii.6.
End of file after 1 record read from tape file # e

4-14.4 AX49-01e

7/?,2

read tape and query

Reading tape file # 9 in binary mode

GCOS "eof" label record. Block count of previous file 1.
End of file after 1 record read from tape file # 9
Reading tape file # 10 in binary mode

GCOS Partial header label record.

Logical end of tape at physical file # 10
-->.

4-14.5 AX49-01C

I

I
I

I

tape in tape in

Name: tape in

The tape in command allows the user to transfer files between magnetic tape
and the storage system. To accomplish a file transfer, the tape in command
accesses either the tape ansi or the tape ibm I/O module for the tape
interface, and the vfile I/O module for the- storage system interface.
Unstructured format storage-system files (for stream I/O) and sequential format
storage system files (for record I/O) may be specified; 9-track ANSI standard
labeled tapes, 9-track IBM standard labeled tapes, and any 9-track unlabeled
tape structured according to OS standards may be read.

tape_in path {-control args}

where:

1. path
is the pathname of the control file governing the file transfer. If
path does not end with the tcl suffix, it is assumed.

2. control args
can be chosen from the following:

-severityN, -svN
causes the tape in compiler's error messages with severity less than
N (wh ere N i s - 0, 1, 2 , 3 ,or 4) not to be wr itt e n into the
error output I/O switch. The default value for i is o. See "Error
Diagn~stics" below for further information on err~r reporting.

-check, -ck
performs only
control file.
specified.

semantic checking on the Tape Control Language (TCL)
No tapes are mounted if this control argument is

-ring
mounts volumes of the volume-set with write permit rings.

BASIC TCL CONTROL FILE

The control file that governs file transfer is actually a program, written
by the user, in the Tape Control Language (TCL). The contents of this control
file describe the file transfer(s) to take place. When the user issues the
tape in or tape out command, the control file named in the command line by the
path-argument 1S compiled and if the compilation is successful, the generated
code is interpreted to accomplish the desired file transfer(s). The same
control file may be used with both the tape in command (to read a file from tape
into the storage system) and with the tape out command (to write a file from the
storage system onto tape). -

7/82 4-14. 6 AX49-01C

The TCL control file consists of a list of statements of the form:

<keyword>:
or
<keyword>;

<argument(s»;

These statements are combined to form file-groups and file-groups are combined
to form volume-groups. A TCL control file consists of one or more volume-groups.

A file-group is a list of statements that define one tape to storage system
file transfer. A file-group must begin with a File statement and must contain a
path statement. In addition, it may contain one or more local statements. A
file-group is terminated by a global statement, an End statement, or another
File statement.

A volume-group is a series of statements that specify the file transfer(s)
to be performed between the storage system and a particular tape volume-set. A
volume-group must begin with a Volume statement, contain one or more
file-groups, and terminate with an End statement. In addition, a volume-group
may optionally contain one or more global statements, which apply to all the
file-groups within the volume-group that follow the global statement.

All TCL control files must have at least four statements: a Volume
statement, a File statement, a path statement, and an End statement; all other
TeL statements are optional. The simplest control file has just these four
statements, for example:

Volume:
File:
path:
End;

012345;
File1;
>udd>Project_id>Person id>demo;

This example control file relies on TCL control file defaults, which are listed
below ~der "Volume-Group Defaults." The file transfers possible with this
sample control file are two: either writing tape file File1 from storage system
file demo; or writing storage system file demo from tape file File1.

TCL CONTROL FILE STATEMENTS

Volume: <volid>;
The Volume statement specifies the tape volume to be used in file transfer.
This statement causes a tape volume whose volume tdentifier is <volid> to
be mounted on a 9-track drive. If <volid> contains any of the following
characters, it must be enclosed in quotes.

1. any ASCII control character
2. :;, or blank
3. the sequence /* or */
4. If <volid> itself contains a quote character, the quote must be

doubled and the entire <volid> string enclosed in quotes.

4-15 AX49-01

tape_in tape_in

Some examples of Volume statements are:

Volume: 23; (mounts volume 23)
Volume: 001234; (mounts volume 001234)
Volume: XcJ56; (mounts volume XJ56)
Volume: "as"";56"; (mounts volume as";56)
Volume: -00451 ; (mounts volume -00451)

See the descriptions of tape ansi and tape ibm later in this manual for
more details on volume specifIcations. Also, see "Multivolume Files" below
for a discussion of multivolume volume-groups.

File: <fileid>;
The File statement specifies the tape file to be read or written. For
output, <fileid> must be from one to 17 characters for ANSI labeled tapes
and must be a valid DSNAME for IBM labele<;l tapes. A valid DSNAME is from
one to eight characters long. The first character must be an alphabetic or
national. (@,$,#) character; the remaInIng characters can be any
alphanumeric or national characters, a hyphen (-), or a plus zero (12-0
punch). For input, <fileid> may be an asterisk (*) for labeled tapes, if a
tape file sequence number is also specified. For output with labeled
tapes, <fileid> may not be an asterisk. <fileid> for IBM unlabeled tapes,
which are discussed below, must be an asterisk. The File statement marks
the beginning of any local attributes for a given tape file transfer.

path: <pathname>;

End;

Associated with every File statement must be one path statement. The path
statement specifies the pathname of the storage system file to be read or
written. <pathname> may be either a relative or absolute pathname.

Associated with every Volume statement must be an End statement, to mark
the end of the TeL for that volume-group.

Global Statements

A global statement changes a vOlume-group default. The Tape and the
Density global statements may appear only once in a volume-group and must
preceed all file-groups. The Block, Expiration, Format, Mode, Record, and
Storage global statements may appear any number of times within a volume-group.
These statements apply ~o all subsequent file-groups within the volume-group.

4-16 AX49-01

tape in tape in

Block: <blklen>;
The Block global statement specifies the tape file (maximum) physical block
length, in bytes, to be used wi th subsequent file-groups. The <blklen> I
specification must be a decimal integer >18. For IBMSL, IBMNL, and IBMDOS
formats, the maximum value is <2760 bytes. For ANSI formats, the maximum
value is 99996 bytes. WARNING: <blklen> greater that 2048 does not comply
with the ANSI standard for tapes.

Density: <den>;
The Density global statement indicates the density in which the volume is
(to be) recorded. <den> must be either POO, 1600, 6250, 2, 3, or lJ (for
IBM compatibility) to indicate POO, 1600 or 6250 bpi respectively. WARNING:
the use 0 f 1600 or f, 250 bpi for ANSI in terchang e tapes is non stand ard.
This global statement may appear only once wi thin a volume-group or an
error is indicated.

Expiration: <date>;
The Expiration global statement specifies the expiration date of files to
be wr itt e n (c rea ted) . < d ate> i s a s t r in g 0 f a fo rm a c c e pta b let 0 the
convert date to binary subroutine, for example "09/12/79". (See the
convert-date-to-binary- subroutine in the MPM Subroutines.) Because
overwriting a tIle on a tape logically truncates the file set at the point
of overwriting, the expiration dote of a file must be earlier than or equal
to the expiration date of the previous file (if any) on the tape; otherwise,
an error is indicated. If an attempt is made to overwrite an unexpired
file, the user is queried for explicit permission at the time of writing,
unless the -force control argument is specified in the command line (only
possible with

Format: <form> ;
The Format global statement specifies the tape record format to be used
with subsequent file-groups. <form> must be either u, f, fb, d, db, s, or
sb for ANSI tapes (using tape ansi 1/0 module) and f, fb, u, v, vs, vb, or
vbs for IBM tapes (using tape-ibm_ 1/0 module) .

Mode: <mode>;
The Mode global statement specifies the tape mode and character code to be
used with subsequent file-groups. <mode> may be either ascii or ebcdic for
IBM tapes (using tape ibm 1/0 module) and may be either ascii, ebcdic, or
binary for ANSI tapes-(uslng tape ansi 1/0 module). WARNING: the use of
e b c die mod e 0 r bin a r y mod e i s not -s tan d-a r d for AN SIt ape s . Se e "I 10 tv'lo d u I e
Compatibility and Record Length Tables" below for a description of the
interaction between a given combination of format, block, and record
specification. Values must be carefully chosen to ensure desired results.

Record: <reclen>;

7/B2

The Record global statement specifies the tape file (maximum) logical record
length, in bytes, to be used with subsequent file-groups. <reclen> must be
a decimal integer, such that 1!~!<reclen>!~!maximum!segment!size in bytes.

4-17 AXl!9-01C

tape in tape in

Storage: <structure>;
The Storage global statement states the internal (logical) structure of the
storage system file(s) to be specified by subsequent file-groups. An
unstructured file is referenced as a series of 9-bit bytes, commonly called
lines; a sequential file is referenced as a sequence of records, each
record being a string of 9-bit bytes. <structure> must be either
unstructured or sequential. When an unstructured file is written into the
storage system from a tape the NL character is appended as each line is
written, unless the record already ends in a NL character, in which case
nothing further is appended. ~~en an unstructured file is written from the
storage system to tape, the NL character is stripped off before writing the
tape record. If a line of an unstructured file consists of just a NL
character, it is written to tape as a zero length record. If the Storage
global statement is omitted from a control file volume-group, the assumed
storage system file format is unstructured. If a sequential file is
referenced within that volume-group, the results are undefined and an error
is indicated. Processing is terminated on that file in which the error is
indicated.

Tape: <tape-type>;
The Tape global statement specifies the kind of tape that is processed.
<tape-type> may be ibmsl for IBM standard labeled tape, ibmnl for IBM
unlabeled tape, ibmdos for IBM DOS standard labeled tape, or ansi for ANSI
standard labeled tape. The tape label processing is done automatically by
the I/O module in use. This global statement may appear only once within a
volume-group or an error is indicated.

Local Statements

A file-group may contain one or more local statements. A local statement
overrides the volume-group dcf3ults in effect at thp timp ~ file-arouD is
evaluated. A local statement has no effect outside of the file-group in which
it occurs and may appear anywhere within the file-group.

The block, expiration, format, mode, record and storage local statements
operate exactly as do their global statement counterparts, except that they
affect only the file-group in which they are contained.

generate;
The generate local statement causes the entire contents of a file on an
ANSI tape to be replaced while retaining the structure of the file itself
and incrementing the file generation number. The file to be modified is
identified by the File statement, or by a combination of the File statement
and the number statement.

modify;
The modify local statement causes the entire contents of a file on an ANSI
or IBM labeled tape to be replaced while retaining the structure of the
file itself. The file to be modified is identified by the File statement,
or by a combination of the File statement and the number statement.

4-18 AX49-01

tape_in

number: <number>;
The number statement specifies the file sequence number of the file to be
used in the file transfer. <number> must be either an integer between 1
and 9999 inclusive, or the character "*". For input with labeled tapes,
<number> = * is ignored unless * was specified for the <fileid> in the File
statement. (In this case an error is indicated.) For output with labeled
tapes. <number> = * appends the current file to the volume-set. If a tape
volume has not yet been initialized, that is, if the first file to be
written is the first file on that tape volume, <number> = * is considered a
fatal error. Until a volume has been initialized, files cannot be appended
to it. In this situation, either the number statement should be omitted
or, if used, <number> must be equal to 1.

If the control file is to be used with the tape in command, <number>
specified in a number statement must correspond -with a file on the
specified tape volume-set. If both the <fileid> in the File statement and
the <number> in the number statement are specified in the file-group, they
must identify the same tape file; otherwise an error is indicated.

When reading unlabeled tapes, the number statement is required to identify
the file to be read. When writing unlabeled tapes, the number statement is
required to locate the tape position at which to write the file.

When the control file is to be used with the tape out command for writing
labeled tapes, the number statement is optional. If the numb&r statement
is given in a control file for use with the tape out command, the file
location specified in the number statement is the location-where the file
is written on the tape.. Otherwise, with no number statement, the first
file to be written in a volume-group is the first file position on the tape
(for labeled tapes only). Subsequent files on that volume are appended
after the first file.

replace: <fileid>;
If an existing tape file is to be replaced on .an ANSI or IBM standard
labeled tape and its name is known, the file to be overwritten is
identified by <fileid> in the replace local statement and the new file to
be written is identified by <fileid> in the Fi~e statement. If the file
identified in the replace statement does not exist, an error is indicated.

storage extend;
Normally when a user sets up a file-group to transfer a tape file to a
storage system file, it is intended that a new file be created in the
storage system. Should the user want to extend an already existing file in
the storage system, the storage extend local statement should be used in
the TeL control file. If the storage system file to be extended does not
exist, an error is indicated. If the storage extend local stat~ment exists
in a control file used with tape_out, it is ignored.

tape extend;
-The tape_extend local statement allows new data records to be appended to

an existing file on an ANSI or IBM standard labeled tape without in any way
altering the previous contents of the tape file. The tape file to be
extended is identified by the File statement or by the File statement and
number local statement in combination. If the tape file to be extended
does not exist on the tape, an error is indicated. Recorded in the labels
of an ANSI or IBM labeled tape file is the version number. Initially, it
is zero when the file is created. Every time a file is extended, its
version number is incremented.- The version number field is two digits and
is reset to zero when the one-hundredth revision is made.

4-19 AX49-01

CONTROL FILE COMMENTS

Comments may be inserted anywhere within the TCL program by surrounding the
comment text with the comment delimiters. /* is the delimiter that begins a
comment, and */ is the delimiter that terminates a comment.

VOLUME-GROUP DEFAULTS

Associated with a volume-group are a set of default characteristics. In
the absence of overriding global statements or local statements, these defaults
apply to all file-groups within the volume-group. If no tape-type is specified
in the control file, ANSI standard labeled tape is assumed. If, however, a
tape-type is specified (using a Tape statement), the volume-group defaults for
that tape-type are in effect until overridden.

Tape-type ANSI or no Tape statement (this is the default)

1. density: 800 bpi
2. file expiration: immediate
3. storage system file format: unstructured
4. mode: ascii
5. tape file record format: variable length records, blocked
6. physical block length: 2048 characters (maximum)
7. logical record length: 2048 characters (maximum)

Tape-type ibmsl, ibmnl, or ibmdos

1. density: 1600 bpi
2. file expiration: immediate
3. storage system file format: unstructured
4. mode: ebcdic
5. tape file record format: variable length records, blocked
6. physical block length: 8192 characters (maximum)
7. logical record length: 8188 characters (maximum)

4-20 AX49-01

tape_in

I/O MODULE COMPATIBILITY AND RECORD LENGTH TABLES

tape ansi

mode: ascii (default) I binary I ebcdic
block length: 18 < b < 99996 bytes (2048 default).

for output moae~ Dlock length must be divisible by q.
density: d = 800 (default) : 1600 : 6250
f i 1 e seq u e n c e n urn be r : 1 < n < 9999 0 r *
record length: 0 < r < 104~4Eo
formClt: f = fb 1fT db (defaul t) : dIs sb I u

mode: ascii: ebcdic (default)
block length: 20 < b < 32760 bytes (P192 default)

for output-mode, block length must be devisible by!!.
density: d = 800 : 1600 (default) : 6250
fil e sequence number: 1 < n < q999 or *
record length: 0 < r < 104~4Eo
format: f = fb : I T vb (default) : v : vbs u

Format Record Length
in bytes

Block Length
in bytes

u

f
fb

d
db
s
sb

v
vb
vs
vbs

Notes

r

r is undefined

r = amrl
-
r = amrl

amrl+4 < r < 99996
amrl+4 < r < 99996
amrl < r Z T044480
amrl Z r Z 1044480

amr1+4 < r < 32756
amrl+4 < r < 32756
amrl < r < 1044480
amrl "(r Z 1044~PO

b

amrl < b < 09996 (tape ansi)
amrl "(D "(32760 (tape=ibm)
b = r- - -
b must statisfy
modCb,r) = 0

b =-r-
D > r

1"P "(b < 99996
18 "(D "(99996

b = r + 4
D > r + 4

20 "(b < 32760
20 "(b Z 32760

I

I

I

I
I

amrl IS tne actual or maximum record length of a given record format, i.e.,
the actual or maximum number of characters that can be recorded in a logical
record. The value of r is dependent on the choice of record format. For ANSI
tapes, b must be an int:eger in the range of 18 < b < 99996. For IBM tapes, b I
must be-an integer in the range of 20 < b < 32760. - FOr ANSI tapes, in order to
comply with the ANSI standard, b must be-i~ the range of 1P< b < 2048. For IBM
tapes, the condition mod(b,4) =-0 must be satisfied. The iCL record statement
should not be used for U-fOrmat file transfer.

7/82 4-21 AX49-01C

tape in

ADDITIONAL OPTIONS AVAILABLE FOR THE TeL USER

A number of options are available to the user who wants to do more than the
simple file transfer between a tape volume-set and the storage system. These
features need not be of concern to most users, but for the user with specialized
needs, these additional options are explained below.

~ultivolume Files

Multivolume files are specified in a control file by a slightly more
complicated Volume statement than shown above. The multiple <volid>s of such a
volume-set are separated from one another by commas and are listed either in the
order in which they became members of the volume-set, for input, or in the order
in which they are candidates for volume-set membership, for output. The entire
volume-set membership need not be specified in a Volume statement referencing a
volume-set, but the first (possibly only) member must be mentioned. Up to 64
<volid>s may be specified in a single control file Volume statement.

Volume switching for multivolume files i3 handled automatically by the I/O
modules. If sufficient volume-set members are given in the TeL· control file,
the volume switching is transparent to the user. If insufficient members of a
volume-set are given or the membership is being developed, the user is queried
during execution for names of additional volume-set members.

Sending Messages to the Operator

If it is necessary for the user to have a message displayed on the
operator's console, the comment phrase can be included in the Volume statement.
The comment text consists of the keyword -comment followed by the text of the
message. Whenever the volume with the <volid> immediately preceding the comment
phrase is to be mounted, the specified message is displayed on the operator's
console. The message may be from 1 to 64 characters and must be a contiguous
string with no embedded spaces or a quoted string with embedded quotes doubled.
For example:

Volume: 060082 -comment "tape is Smith's" 060083 -comment tape_also_Smith's;

370/DOS Tapes

The tape ibm I/O Module processes tapes created by or destined for IBM/DOS
installations- as- well as tapes for IBM/OS installations. The Tape:!ibmdos;
global statement is used in the TeL control file to specify that the tape files
referenced by the given volume-group are destined for or have been produced by a
IBM/DOS installation. The important difference between tape files created by OS
and those created by DOS operating system is that the tape file structure
attributes are not recorded in the tape labels under DOS. It is therefore
necessary for all of the structure attributes of a DOS tape file, namely
encoding mode, logical record format, logical record length, and block size to
be specified in the TeL control file.

4-22 AX49-01

tape--,-in tape_in

Unlabeled Tapes

The tape_ibm_ I/O Module supports processing of unlabeled tapes, provided
that the tapes are structured according to the OS standard. DOS leading tape
mark (LTM) unlabeled format tapes cannot be processed. The ibmnl specification
in the Tape statement is mutually exclusive with any statement, global or local,
which refers to labeled tapes: namely, the Expiration global statement and the
expiration, generate, modify, replace, and tape extend local statements. If any
of these appear together within the same file-group, an error is indicated.
When referencing unlabeled tape files in a given file-group, the argument of the
File statement, <fileid>, must be specified by an asterisk, and the tape file
desired must be specified by the number local statement.

ERROR DIAGNOSTICS

The error messages issued during tape_in and tape_out compilation are
graded and have the form:

prefix error number, SEVERITY severity IN STATEMENT m OF LINE n
text of error message
SOURCE:
source statement in error

where n is the line number on which the described statement begins and m is a
number-identifying which statement in line n is in error. If line n contains
only one statement, "STATEMENT m OF" is omitted from the error message"7

The severity numbers produce one of the following prefixes:

severity prefix explanation

o
1

2

3

4

COMMENT
WARNING

ERROR

FATAL ERROR

TRANSLATOR ERROR

the error message is a comment.
the error message warns that a possible error has
been detected. However, the translation still
proceeds.
the error message warns that a probable error has
been detected. However, the error is nonfatal,
and the translation still proceeds.
the error message warns that a fatal error has
been detected. Processing of the input still
continues to diagnose further errors, but no
translation is performed.
the error message warns that an error has been
detected in the operat±on of the translator. No
translation is performed.

4-23 AX49-01

tape_in tape_in

CONTROL FILE EXECUTION

When the TCL control file is being executed in response to the tape_in
command, the volume named in each volume-group of the control file is mounted in
turn without a write ring (unless the -ring control argument has been
specified). If any output options appear in a control file being executed in
response to the tape in command, these statements are ignored. Then each
file-group in that volume-group is processed resulting in one file transfer to
the storage system per file-group.

FILE TRANSFER

File transfer is performed as follows. One logical record is read from the
tape file, and as many characters as were read are written into the storage
system file either as a line with newline (NL) character appended, if necessary,
(unstructured case) or as one logical record in a sequential format file.

EXECUTION TIME DIAGNOSTICS

Any fatal error from an I/O module during execution of a control file
causes the user to be queried as to whether or not he wishes to continue
processing the other file-groups and volume-groups in the control file or
whether to terminate processing of the control file. In the case of some
correctable errors the user will be given the alternative of controlling the
process. This alternative places the user at command level allowing resolution
of the problem. When the user wishes to continue processing, the start command
is used. Executing the relea8e c:urnrnand will cause thc tapc_in ccmmandto be
terminated.

CONTROL FILE EXAMPLES

Below are examples of typical control files. In the first example, the
user wishes to load into the storage system, the contents of volume "2314dp"
which contains a dump of a disk pack containing source and data.

The numbers at the left-hand side of the page in the examples below do not
actually appear in the control file, but are included only for annotation
reference.

4-24 AX49-01

Example: sample1.tcl

tape_in sample1.tcl -ring

2
3
4
5
6
7
8
9
10
11
12
13
14
1 5
16
17
18

58
59
60

Volume: 2314dp;
/* Source Pack being loaded */
Tape: ibmsl;
Storage: unstructured;
Density: 800;
Format: fb;
Record: 80;
Block: 800;
File: FILEX;
path: <setup>data entry>FILEX;
File: FILEXX; -
path: <setup>data entry>FILEXX;
File: FILEY; -
path: <setup>data entry>FILEY;
File: FILEYY; -
path: <setup>data entry>FILEYY;
File: FILEZ; -
path: <setup>data_entry>FILEZ;

File: FILEZZ;
path: <setup>data_entry>FILEZZ;
End;

Annotations for sample1.tcl

1. mounts the volume 2314dp with a write ring.

2. comment.

3. specifies an IBl'<l standard labeled tape.

4. files are created in unstructured format, ready for use in stream I/O.
NL characters are appended as the file is written to disk. The mode
is the default for the ibmsl tape-type, namely, ebcdic.

5. tape is recorded at 800 bpi.

6. all files on tape are in fixed block format unless stated otherwise.
Possible record padding problems may be encountered.

7. all logical records are 80 characters unless stated otherwise (card
image files).

8. all files blocked to 800 characters unless stated otherwise.

9. first 'file to be read from tape is named FILEX. It may be at any file
location on the tape. The tape is automatically positioned to the
file by name.

10. read tape file, FILEX, into storage system file named FILEX. The
relative pathname, <setup>data_entry>FILEX, is expanded.

4-25 AX49-01

11. continue reading files off the tape volume, one by one, into files in
the storage system with the same name.

60. end of volume-group and end of control file.

Example: sample2.tcl Control File for Reading DOS tape

tape_in sample2.tcl

1 Volume: 042281 -comment "Please send tape to accounting";
2 Tape: ibmdos;
3 Density: 800;
4 Storage: unstructured;
5 Mode: ebcdic;
6 File: abc;
7 record: 80;
8 block: 800;
9 format: fb;
10 path:)udd)Example)Foo)fargo.p11;
11 End;

Annotations for sample2.tcl

Note: Only selected statements in the control file are annotated here.

1. mount volume 042281 without a ring after printing comment message for
operator.

2. read IBM DOS standard labeled tape.

4. read tape file into storage system as unstructured format files
appending NL characters to each record from tape.

Example: sample3.tcl control file for Reading an Unlabeled Tape

tape_in sample3.tcl

1 Volume: 042381;
2 Tape: ibmnl;
3 Storage: sequential
4 File: *;
5 format: vbs
6 number: 3;
7 path:)udd)Example)Foo)foobar.data;
8 End;

4-26 AX49-01

Annotations for sample3.tcl

Note: Only selected statements in the control file are annotated here.

2. unlabeled tape is to be read. Files are unnamed. This statement must
appear when processing unlabeled tapes.

4. <fileid> is specified by "*" for unnamed files.

6. the number statement must be present when processing unlabeled tapes.
The third file on the tape is read.

The tape file record format is YES, the tape file record length for VES format
is 1044480 bytes, and the tape file block length is 8192 bytes.

4-27 AX49-01

tape_out

Name: tape_out

The tape out command allows the user to transfer files between the storage
system and magnetic tape. To accomplish a file transfer, the tape out command
accesses either the tape_ansi or the tape ibm I/O module for the tape
interface, and the vfile 1(5 module for -the- storage system interface.
Unstructured format storage-system files (for stream I/O) and sequential format
storage system files (for record I/O) may be specified; 9-track ANSI standard
labeled tapes, 9-track IBM standard labeled tapes, and any 9-track unlabeled
tape structured according to as standard may be written.

tape_out path {-control_args}

where:

1 . path
is the pathname of the control file governing the file transfer. If
pathname does not end with the tcl suffix, it is appended.

2. control args
can be chosen from the following:

-severityN, -svN
causes the tape out compiler's error messages with severity less
than N (where N-is 0, 1, 2, 3, or 4) not to be written into the
error output I/O switch. The default value· for i is O. See ::Error
Diagnostics" in the tape_in command for further information on error
reporting.

-check, -ck
specifies that only semantic checking be done on
Language (TCL) control file. No tapes are mounted
is specified.

the Tape Control
if this control

-force, -fc

-ring

specifies that the expiration date of a tape file to be overwritten
is to be ignored. This control argument extends unconditional
permission to overwrite a tape file, regardless of the file's
"unexpired" status. This unconditional permIssIon supresses any
query made by the I/O module to inquire about tape file's expiration
date.

mounts volumes of the volume-set with write permit rings (default).

TCL CONTROL FILE

The control file that governs file transfer for the tape out command is
written in the control file language described in the tape_in command.

4-28 AX49-01

ADDITIONAL OPTIONS AVAILABLE FOR THE TCL USER

A number of options are available to the user who wants to do more than the
simple file transfer between storage and a tape volume-set. These features need
not be of concern to most users, but for the user with specialized needs, these
additional options are explained below.

Protecting Tape File From Accidental Overwriting

To protect tape files from being accidentally overwritten tape_ansi and
tape ibm include expiration dates in the tape labels they write. The
expiration local statement or Expiration global statement can be used in the TCL
source file. To overwrite or delete a tape file the current date must be later
than the expiration date specified in the tape label. If this is not the case,
the attempt to destroy the tape file will fail and an error will be indicated
unless the -force control argument has been specified in the tape out command
line. In that case expiration date checking will not be done. -

Special Outer Modes

Normally, when a user sets up a TCL control file file-group to write a
storage system file onto a tape volume that is for use with the tape out command
it is intended that a new file be created on ~ne tape volume. The-TeL derau~~
output mode is create. This is the only output mode available for unlabeled
tapes. For labeled tapes however, the TCL language offers four additional
specialized output modes; they are generate, modify, replace, and tape extend.
The replace mode causes the tape file labels to be rewritten using specified and
default file structure attributes. The tape extend, modify, and generate local
statements do not cause the tape file labels to be recomposed, so any file
attributes specified in the file-group or volume-group that do not match those
recorded in the tape labels, cause an error.

CONTROL FILE EXECUTION

When the TCL control file is being executed in response to the tape out
comand, the volume named in each volume-group of the control file is mounted in
turn with a write ring. Then each file-group in that volume-group is processed
resulting in one file transfer to the volume-set per file-group.

FILE TRANSFER

File trans~er is performed as follows. Either a line or a record is read
from the storage system file depending on whether the file is unstructured or
structured. For unstructured format storage system files, a line read is a line
from the file up to and including the first newline character (NL) encountered;
for sequential format storage system files, a record read is one logical record
of the file. The characters read from the storage system are then written on
the tape as one logical record of the tape file.

4-29 AX49-01

Under certain circumstances, tape records being written must be padded in
accordance with a set of per-format padding rules. (For a discription of record
and block padding for all formats, see the descriptions of tape ansi and
tape ibm.) Because of padding rules and treatment of newline characters-when
writTng tape, a file that is written out to tape may not appear the same when
read back in from tape. The following suggestions are offered:

1. to write character data (i.e., source files or text files) use the
defaults; with tape ansi use d, db, s, or sb format with the maximum
block length, and-the -record length chosen so that the amrl (the
actual or maximum record length of a given record format) is greater
than the longest line in the storage system file. To avoid unwanted
pad characters resulting from block padding, do not use f or fb
format.

2. to write binary data with tape ansi, use the defaults with mode of
binary or use s or sb format~ with the maximum permissible block
and/or record lengths and mode of binary.

3. to write character data with tape_ibm_, use vbs format with the
maximum block length, and the record length chosen so that the amrl is
greater than the longest line in the storage system file. (vb may
cause one to three blanks to be appended to lines.)

4. when transfering sequential format files to tape, use a variable
length record format (d, db, s, or sb with tape ansi and v, vb, or
vbs with tape ibm) to avoid unwanted padding characters being
inserted into -records. (vb may cause one to three blanks to be
appended to lines.)

EXECUTION TIME DIAGNOSTICS

Any fatal error from an I/O module during execution of a control file
causes the user to be queried as to whether or not he wishes to continue
processing the other file-groups and volume-groups in the control file or
whether to terminate processing of the control file. In the case of some
correctable errors the user will be given the alternative of "controlling the
process." This alternative places the user at command level allowing resolution
of the problem. When the user wishes to continue processing, the start command
is used. Executing the release command will cause the tape out command to be
terminated. -

CONTROL FILE EXAMPLES

Below are examples of typical control files. In t·he first example, the
user wishes to produce two tapes, one for the Multics system, the other for an
Os installation. The Multics tape contains the source code of user subsystem
SUBSYS, as well as its object code. The OS tape contains only the source code.

4-30 ~X49-01

Example: sample1.tcl

tape_out sample1.tcl

1
2
3
4
5
6
7
8

Volume~ 001234;
/* Dump source in DB and object in SB format */
File: FILE 1;
path: SUBSYS.p11;
File: FILE 2;
mode: binary;
path: <object>SUBSYS;
format: SB;

9
10
11
12
13
14
15
16
17
18

End;
Volume: DFG054;
/* append source to tape */
Tape: ibmsl;
File: TESTSAVE;
format: VBS;
block: 4096;
path: SUBSYS.p11;
number: 3;
End;

Annotations for sample1.tel

1. mounts volume 001234 with a ring. The volume defaults are set to ANSI
standard labeled tape-type, 800 bpi density, ASCII encoding mode, DB
record format, block length = 2048, and record length = 2048.

2. is a comment in the
missing, the default
unstructured files.

control file. Since the storage statement is
storage system file format is set to transfer

3. since there is no number statement, the default positions the tape so
that FILE 1 is created as a new file at the first file position on the
tape volume.

4. specifies the pathname of the storage system file to be written to
tape. Since the file-group contains no local statements, the file is
written according to the current volume defaults.

5. positions the tape so that the file to be written is appended at file
position two on the tape volume.

6. specifies that the file is to be written in binary encoding mode.

7. specifies the pathname of the storage system file to be written to
tape.

8. specifies that the file is to be written in SB format. Notice that
the block length is th€ current volume default block length (2048) and
the record length is the current volume default record length (2048).

9. signifies end of volume-group. The I/O switch is closed and detached.
The volume-set is taken down and the drive is released.

10. mounts volume DFG054 with a ring.

4-31 AX49-01

11. is a comment. Storage format is still unstructured.

12. changes tape-type to IBM standard labeled; changes the volume-group
defaults to those associated with ibmsl: 1600 bpi, ebcdic, VB format,
block length = 8192, and record length = 8188.

13. specifies name of file to be written onto tape. Notice that the
underscore () cannot appear in an IBM file name whereas it can appear
in an ANSI fTle name.

14. changes the record format to VBS. A spanned record format transfering
a sequential file is needed, so that unwanted block padding is not
inserted into the file as it is transferred. The default record
length for VBS format is 1044480 bytes.

15. changes the block length to 4096.

16. specifies the pathname of the storage system file to be written.

17. This number statement is required to make sure the file is appended to
an already existing tape volume. Without this number statement, the
file would be created as the first file on the tape volume,
overwriting any existing files. If files one and two do not exist, an
error is indicated, but if these files do exist, the file is written
at file position three on the tape volume.

18. rewinds and takes down the volume since no more file-groups in the
control file reference the current tape volume.

Example: sample2.tcl

tape_out sample2.tcl -fc

1 Volume: 070067 -comment in_slot_1000, 070068;
2 Tape: ansi;
3 File: BIG LISTING;
4 replace: FILE 20;
5 number: 20;, -
6 expiration: 2weeks;
7 format: db;
8 block: 2048;
9 record: 133;
10 path: >udd>Example>Mega>test.list
11 End;

Annotations for sample2.tcl

1. The first member of the volume-set, 070067, is mounted without a ring,
displaying the message "in slot 10000" on the operator's console.
Later if necessary, the volume-set member 070068 may be mounted to
continue writing a large listing file. A message appears upon
mounting the second member of the volume-set.

2. writing an ANSI standard tape.

4-32 AX49-01

3. tape file named BIG_LISTING, into which the storage system file is to
be written.

4. is to replace tape file named FILE 20.

5. by the number statement FILE 20 is the 20th file on the current
volume-set. As no density statement is included in the control file,
the default for tape ansi, 800 bpi, is used. Upon execution of the
control file, the tape is-positioned at the 20th file automatically,
providing 20 files exist on the tape. As no Storage statement is
present in the control file, the default storage system format is
unstructured, and as the files are written to tape, the NL character
is stripped.

6. The file, BIG LISTING, is protected against accidental overwriting for
two weeks, meaning that if the user attempts to overwrite the file
within that time, he is first queried for permission to do so. The
-force control argument in the command line inhibits a query for
permission to overwrite FILE_20, in case it has not yet expired.

7. BIG LISTING is recorded in variable length blocked record format.
Mode is the default for tape_ansi_, namely ascii.

8. Block length is maximum allowed for ANSI interchange standard, 2048.

9. record length is 133.

10. the listing file is transferred from test.list in the storage system.

11. signifies termination of vOlume-group and of control file.

If, after putting his listing file out onto tape, the user wishes to delete
the on-line listing, and at a later time, read the listing back from tape into
storage, he might type the command line:

tape_in sample2.tcl

The output statements in the control file, namely the replace local statement
and the expiration local statement are ignored on input.

4-33 AX49-01

SECTION 5

I/O MODULES

This section contains descriptions of Multics I/O modules, presented in
alphabetic order. Each description contains the name of the I/O module,
discusses its purpose, and describes the attach description and the operations
supported by the I/O module. Notes and examples are included when deemed
necessary for clarity.

The I/O modules described in this section and their functions are:

ntape_

rdisk

tape_mult

tape_nstd_

supports I/O from/to magnetic tape file

supports I/O from/to removable disk packs

implements the processing of magnetic tape files according to
standards proposed by the American National Standards
Institute (ANSI)

implements the processing of magnetic tape files according to
standards established by IBM

supports I/O from/to Multics standard tape

supports I/O from/to tapes in nonstandard or unknown formats

5-1 AX49-01

Name: ntape_

The ntape_ I/O module supports I/O on files on magnetic tape.

Entry points in the module are not called directly by users; rather, the
module is accessed through the I/O system. See the MPM Reference Guide for a
general description of the I/O system and a discussion of files.

Attach Description

The attach description has the following form:

ntape_ reel num -raw {-control_args}

where:

1 • reel num

2. -raw

is the tape reel number. If the tape is 7-track, reel num must
contain ",7track". If the tape is 9-track, reel num may contain
" , 9track" (if it contains neither, 9-track is assumed).

indicates that each physical record (block) on the tape represents
one logical record.

3. control Rrgs
may be one of the following arguments:

-write
means that the tape is to be mounted with a write ring. This
argument must occur if the I/O switch is to be opened for output or
input/output.

-extend
specifies extension of the file if it already exists on the tape.

Opening

The opening modes supported are sequential input, sequential output, and
sequential input output. If an I/O switch attachea via the ntape 170 module is
to be opened for output or input_output, the -write argument must occur in the
attach description.

Control Operation

This I/O module does not support the control operation.

5-2 AX49-01

Modes Operation

This I/O module does not support the modes operation.

Notes

On input, the logical record contains m=4*ceil(n/36) bytes, where n is the
number of data bits in the physical record. The first n bits of the input
reeord are the data bits, the last (9*m-n) bits are O's. I

On output, the physical record contains n=k*ceil((36*ceil(m/4))/k) data
bits, where k+1 is the number of tracks on the tape, and m is the length of the
logical record in characters. The first 9*m data bits of the physical record I
contain the bits of the logical record (i.e., the output buffer). The last
(n-9*m) bits of the physical record are O's. I

This I/O module aSSumes that there is only one
It is not possible to position the tape after a tape
module should be used to read nonstandard formatted
one tape mark.

5-3

physical file on the tape.
mark. The tape nstd I/O

tapes containing-more-than

AX49-01

I

I

rdisk rdisk

Name: rdisk

The rdisk I/O module supports I/O from/to disk packs.
indexed file types are supported.

Sequential and

Entries in this module are not called directly by users; rather, the module
is accessed through the I/O system. For a general description of the I/O system
and a discussion of files, see the MPM Reference Guide.

Attach Description

The attach description has the following form:

rdisk device id pack_id {-control_args}

where:

1 . device id

2. pack_id

is a character string identifying the type number of the required
disk device. The supported disk devices are listed in the table
below, along with the character string to use for device id:

device id
Character
String

d181
d190
d191 or d400

d451
d500
d501

Device Type

DSU181
DSU190
DSU190/MSU0400 with the

high-efficiency format
(40 sectors/track)

MSU0451
MSU0500
MSU0501

is a character string identifying the disk pack to be mounted.

3. control args
may be chosen from the following and may occur only once:

-write
indicate& that the disk pack may be written on. If omitted, the
operator is instructed to mount the pack with the PROTEQT button
pressed so that writing is inhibited.

-size N

-sys

indicates that the value of N is to override the value of the
buff len parameter as a record size limit for the read record
operation. (See "Notes" below.)

indicates that ~he attachment is being made by a system process and
that a disk drive reserved for system functions is to be assigned.

5-4 AX49-01

rdisk rdisk

The attachment causes the specified disk pack to be mounted on a drive of
the specified type.

Opening

The following opening modes are supported:

sequential input
sequential-output
sequential-update
direct input
direct=update

Notice that if the opening mode is of the output or update type, the attach
description must include the -write control argument so that the operator does
not press the PROTECT button when the pack is mounted.

Delete Record Operation

This operation is not supported.

Read Length Operation

This operation is not supported.

Position Operation

This operation is
sequential update opening
as follows:

supported for only the sequential input and
modes. The type and quantity values are Interpreted

~ g,uantit;y action

-1 position to the beginning of the file.
+1 position to the end of the file. _

0 N skip N sectors (forward if N > 0; backward if N < 0) •
2 N position to sector N.

Read Record Operation

If the amount of data to be read does not terminate on a sector boundary,
the excess portion of the last sector is discarded. A code of 0 is returned in
this case. (See "Notes" below.) This operation is not supported for the
sequential_output opening mode.

5-5 AX49-01

I

rdisk rdisk

Rewrite Record Operation

If the amount of data to be written does not terminate on a sector
boundary, the remaining portion of the last sector is filled with spaces in
sequential modes and binary zeros in direct modes. A code of 0 is returned in
this case. (See "Notes" below.) This operation is supported for only the
update opening modes.

Seek Key Operation

This operation returns a status code of 0 for any key that is a valid
sector number. The record length returned is always 256 (current physical
sector size in characters) for any valid key. The specified key must be a
character string that could have been produced by editing through a PL/I picture
of "(8)9". (See "Notes" below.) This operation is supported for only the
direct opening modes.

Control Operation

The following orders are supported when the I/O switch is open, except for
getbounds, which is supported while the switch is attached.

change pack
causes the current pack to be dismounted and another pack to be
mounted in its place. The in~o ptr should point to a varying
character string (maximum of 32 characters) containine the
identifier of the pack to be mounted. This operation is not allowed
for MSU0500 or MSU0501 devices.

device info
causes information pertaining to the attached
returned to the user. The info_ptr should point
the following form:

dcl 1 device info table
2 subsystem name
2 device name
2 sect per dev
2 cyl per dev
2 sect per cyl
2 sect-per-track
2 num label sect
2 num - al t sec t
2 secl" size

aligned,
char (4),
char (8),
fixed bin (35),
fixed bin,
fixed bin,
fixed bin,
fixed bin,
fixed bin,
fixed bin (12);

where:

1 • subsystem_ name
is the name of the disk subsystem

2. device name
is the name of the disk device in

5-6

in

use

disk device to be
to a structure of

use (.
\ 1. e. , D1 91) •

(.: ~il""'tl.rn (\. .'. 1 \.L. e. , ua n.a. '0.1" / •

AX49-01

rdisk rdisk

3· sect per dev
- is the total number of non-T&D sectors on the disk pack.

4. cyl_per dev
IS the total number of non-T&D cylinders on the disk
pack.

5. sect per cyl
- is the number of data sectors on each cylinder of a disk

pack.

6. sect per track
- is the number of data sectors on each track.

7. num label sect
is the number of data sectors to reserve for label
information.

8. num alt sect
IS the number of data sectors to reserve for alternate
track area.

9. sect size
is the number of 36-bit words in each data sector.

format trk
causes a format track command to be issued to the track that was
indicated by a preceding seek key operation. This operation is not
allowed for MUS0500 or MSU0501 devices. The info ptr should point
to a user supplied structure of the following form:-

dcl 1 format trk info aligned,
bit (2),
bit (2),
fixed bin
fixed bin

where:

1 • hz

(2 hz
2 ti
2 adcyl
2 adhd

(16) ,
(1 6)) unaligned;

is a bit pattern indicating the state of the header
bypass switch. The hz bits are defined as follows:

h z bit pattern meaning
o 0 format home address and all data records
o 1 verify home address and record one, format

home address and all data records
o skip home address, format all data records
1 verify home address and data record one, skip

home address and format all data records

5-7 AX49-01

rdisk

I

2. ti

rdisk

is a bit pattern indicating the state of the track
indicator bits. The ti bits are defined as follows:

t i bit pattern meaning
o 0 format track good
o 1 format track alternate
1 0 format track defective with alternate track

assigned
format track defective with no alternate track
assigned

3. adcyl and adhd
are the alternate or defective cylinder and head numbers
used when the track indicator bits equal "01"b or "10"b.
These two fields are defined as follows:

If the track indicator bi ts are set to "01 lib (alternate track), then
adcyl and adhd should be equal to the defective cylinder and head
number for which the alternate track is being formatted.

If the track indicator bits are set to "10"b
alternate assigned), then adcyl and adhd should
cylinder and head number of the alternate track.
not allowed for MUS0500 or MSU0501 devices.

getbounds

(defective with
be equal to the

This operation is

causes the lowest and highest sector numbers
caller under the current modes to be returned.
point to a structure of the following form:

accessible by the
The info_ptr should

dcl bounds,
'" , - c.. ..L.VW

2 high
fixed t·,; n (7;t:;)

fixed bi~(3§);

rd trk header
causes a read track header command to be issued to the track that
was indicated by a preceding seek key operation. This operation is
not allowed for MUS0500 or MSU0501 devices. The raw track header
information is passed to the user in a structure (pointed to by
info_ptr) of the following form:

dcl 1 trk header info

where:

(2 ha cyl
2 ha-head
2 pad1
2 ha ti
2 pad2

'-2 rcd 0 ti
2 rcd-O-cyl
2 rcd-O-head
2 rcd-O-rn
2 pad3 -
2 rcd 0 data (8),
2 pad4 -

i . ha cyl

aligned~
bit (16),
bit (16),
bit (2),
bi t (2)
bit (10),
bit (2),
bi t (16),
bi t (16),
bit (8),
bit (24),
bi t (8)
bit (4)) unaligned;

is the cylinder number read from the track home address.

5-8 AX49-01

rdisk

setsize

2. ha head

3. ha ti

rdisk

is the head number read from the track home address.

is the track indicator bits (defined above in the
format_trk order) read from the track home address.

4. rcd 0 ti
is the track indicator bits read from record zero. If
the ha ti bits indicate "10"b, then rcd 0 ti should
equal "01"b for alternate track. If ha ti-indicates
"01"b, then rcd 0 ti should equal "101lb for defective
track. Otherwise rcd 0 ti will equal ha_ti.

5. rcd 0 cyl and rcd 0 head
are the cylinder and head number read from record zero.
If ha ti indicates "10"b, then rcd 0 cyl and rcd 0 head
equal- the cylinder and head number of the alternate
track. If ha ti indicates "01 lib, then rcd 0 cyl and
rcd 0 head contain the cylinder and head number of the
defective track. Otherwise, rcd 0 cyl and rcd 0 head
equal ha_cyl and ha_head. - -

6. rcd 0 rn
is the record number for record zero (normally equal to
zero) .

7. rcd 0 data

8. padn

is the eight data bytes in
data record) and is normally

record zero (not a normal
equal to zero.

are unused bits that are returned as "O"b.

causes the value of the record size override setting to be reset.
The info ptr should point to an aligned fixed binary(35) quantity
containing the new override value.

Modes Operation

The modes operation is supported when the I/O switch is attached. The
recognized modes are listed below. Each mode has a complement indicated by the
circumflex character (h) that turns the mode off.

label, hlabel
specifies that a system-defined number of sectors at the beginning
of the pack are reserved for a pack label, and that a seek key or
position operation is to treat any key or position within thIs area
as an invalid key. (The default is on.)

raw, raw
specifies that the entire disk pack is available to the user,
including the T&D cylinder (the last cylinder on the disk pack).
(The default is off.)

5-9 AX49-01

I

rdisk rdisk

alttrk, "alttrk
specifies that the pack has been formatted with the assignment of
alternate tracks, so that a system-defined number of sectors at the
end of the pack are reserved for an alternate track area.
Therefore, a seek key or position operation is to treat any key
within that area -as an invalid key. (The default is off.) This
mode cannot be enabled for a MSU0500 or MSU0501 disk.

wrtcmp, "wrtcmp
specifies that the write-and-compare instruction, rather than the
write instruction, is used for the rewrite record operation. This
causes all data written to be read back and-compared to the data as
it was prior to being written. This mode should be used with
discretion, since it doubles the data transfer time of every write.
(The default is off.)

Write Record Operation

If the amount of data to be written does not terminate on a sector
boundary, the remaining portion of the last sector is filled with spaces. A
code of 0 is returned in this case. (See "Notes" below.) This operation is
supported for only the sequential output opening mode. A series of writes will
write successive records. -

Closing

The closing has no effect on the physical device.
sequential output opening mode, the effect is as if an end-af-file
placed just beyond the end of the available disk area.

Detaching

For the
-f'l ~ C1 ; ~
..L. O .--

I The detachment causes the disk pack to be detached from the users process.

Notes

This 1/0 module is a very elementary, physical-device-oriented 1/0
facility, providing the basic user-level interface to a disk device. All
operations are performed through calls to various 1/0 interfacer (101)
mechanisms and resource control package (RCP) entries. Certain conditions must
be satisfied before a user process can make use of this facility:

1. The system must be configured with one or more disk drives available
as 1/0 disks.

2. The user must have access to assign the disk drive with RCP, access to
the 101 gates, and access to the "acs" segment (e. g. ,
>sc1>rcp>dskb 18.acs) that is used by the site to control access to
the disk drive.

5-10 AX49-01

rdisk rdisk

For input and update opening modes, the file occupies the entire available
disk area (see the getbounds control order). For the sequential output opening
mode, the file is considered to be empty. That is, an open followed by a write
records data in the first sector of the available disk area.

For direct opening modes, the entire disk pack is treated as an indexed
file, with keys interpreted literally as physical sector numbers. Hence, the
only allowable keys are those that can be converted into fixed binary integers
that fall within the range of valid sector numbers for the given disk device
under the current modes, as returned by the getbounds control operation.

For the sequential input and sequential update opening modes, if an attempt
is made to read beyond the end of the user-accessible area, the code
error table Send of info is returned. For all other opening modes, if an
attempt is made ~o -read or write beyond the end of the user-accessible area on
disk, the code error table $device end is returned. If a defective track is
encountered or if any other unrecoverable data transmission error is
encountered, the code error_table_$device_parity is returned.

The record length is specified through the buff len parameter in the
read record operation, and through the rec len parameter for the write and
rewrIte operations, unless overridden by a -sIze control argument in the attach
description, or by a setsize control order.

The following items must be considered when using this I/O module with
language input/output;

1 . Device Attachment and File Opening:

a. PL/I: A file can be attached to a disk pack in PL/I by
specifying the appropriate attach description in the title option
of an open statement. After opening, the desired modes should be
set and the current sector bounds should be obtained through
direct calls to iox $find iocb, iox $modes, and iox $control.
These iox subroutine entry points -are described in the MPM
Subroutines.

b. FORTRAN: It is not possible to attach a file to a disk pack
within FORTRAN. Here, the attachment must be made external to
the FORTRAN program, e.g., through the io call command (described
in the MPM Commands) or through use -of a PL/I subroutine.
FORTRAN automatically opens the file with the appropriate
attributes. Also, it is impossible to set modes or obtain sector
bounds from within FORTRAN. This should be done through use of a
PL/I subroutine prior to the first FORTRAN reference to the file.

2. Input:

a. PL/I: The input record length (buff len) is determined by the
size of the variable specified in the lnto option.

5-11 AX49-01

rdisk

b.

rdisk

For the sequential input and sequential update opening modes, use
the PL/I read statement with the into option to read data. Use
the ignore option to skip forward within the file. An open
statement followed by a read statement will read in the first
record. Successive reads will obtain successive records.

For the direct input opening mode, use the PL/I read statement
with the into and key options. The set option should not be
used. The key should be a character string containing the
character representation of the desired sector number.

The PL/I get statement can be used with the sequential input
opening mode if the record stream I/O module is referenced in
the attach description of the open-statement.

FORTRAN: In FORTRAN, buff len has no relationship
variable size. Hence, the- -size control argument
specified in the attach description if the disk pack
read through FORTRAN. The size should be set to the
the longest expected record.

to input
must be
is to be

length of

For the sequential input opening mode, use the unformatted
sequential read statement.

For the direct input opening mode, use the unformatted keyed
version of the- FORTRAN read statement. The key must be an
integer, whose value is the desired sector number.

3. Output:

a. PLjI: 'rhe size OI "Gne variable referenced in the from option
determines the length of the record written to disk.

For the sequential output opening mode, use the write statement
with the from optTon. An open statement followed by a write
statement will start writing at the beginning of the available
area on the disk pack.

For the sequential update opening mode, use the rewrite statement
with the from option. A previous read statement must have been
used to designate which record will be updated.

For the direct update opening mode, use the rewrite statement
with the from -and key options. The key should be a character
string containing the character representation of the desired
sector number.

The PL/I put statement can be used with the sequential output
opening mode if the record stream I/O module is referenced in
the attach description of the open-statement.

5-12 AX49-01

rdisk rdisk

b. FORTRAN: The size of the output record is determined by the
amount of data specified in the write list.

For the sequential output opening mode, use the unformatted
sequential write version of the FORTRAN write statement.

For the direct update opening mode, use the unformatted keyed
version of the-write statement. The key should be a character
string containing the character representation of the desired
sector number.

Control Operations From Command Level

All control operations may be performed from the io call command, as
follows:

io call control switch order_arg

where:

1 • swi tch
is the name of the I/O switch.

2. order_arg
must be one of the following:

change pack newpack
setsize newsize
getbounds

where:

new pack is the name of the new pack to be mounted.

newsize is the new record size in words.

5-13 AX49-01

Name: tape_ansi

The tape ansi I/O module implements the processing of magnetic tape files
according to- DraIt Proposed Revision X3L5/419T of the American National
Standards Institute's ANSI X3.27-1969, "Magnetic Tape Labels and File Structure
for Information Interchange". This document is referred to below as the DPSR
(Draft Proposed Standard Revision). In addition, the I/O module provides a
number of features that are extensions to, but outside of, the DPSR. Using
these features may produce a nonstandard file, unsuitable for interchange
purposes.

Entrie~ in the module are not called directly by users; rather, the module
is accessed through the I/O system. See the MPM Reference Guide for a general
description of the I/O system.

Definition Of Terms

For the purpose of this document, the following terms have the meanings
indicated. They represent a simplification and combination of the exact and
complete set of definitions found in the DPSR.

record

block

file

volume

related information treated as a unit of information.

a collection of characters written or read as a unit. A block may
contain one or more complete records, or it may contain parts of one
or more records. A parL uf a record IS a record segment, A block
does not contain multiple segments of the same record.

a collection of information consisting
single subject. A file may be recorded
or on more than one volume.

of records pertaining to a
on all or part of a volume,

a reel of magnetic tape. A volume may contain one or more complete
files, or it may contain sections of one or more files. A volume
does not contain multiple sections of the same file.

file set
a collection of one or more related files, recorded consecutively on
a volume set.

volume set
a collection of one or more volumes on which one and only one file
set is recorded.

5-14 AX49-01

tape ansi

Attach Description

The attach description has the following form:

tape_ansi vn1 vn2 vnN {-control args}

where:

1. vni
is a volume specification. A maximum of 64 volumes may be
specified. In the simplest (and typical) case, a volume
specification is a volume name, that must be six characters or less
in length. If a volume name is less than six characters and
entirely numeric, it is padded on the left with O's. If a volume
name is less than six characters and not entirely numeric, it is
padded on the right with blanks. Occasionally, keywords must be
used with the volume name. For a discussion of volume names and
keywords see "Volume Specification" below.

vn1 vn2 .•. vnN
comprise the volume sequence list. The volume sequence list may be
divided into two parts. The first part, vn1 vni, consists of
those volumes that are actually members of the volume set, listed in
the order that they became members. The entire volume set
membership need not be specified in the attach description; however,
the first (or only) volume set member must be specified, because its
volume name .1:::> used to identify t~IlJ.e set. If t.ne entire
membership is specified, the sequence list may contain a second
part, vni+1 ... vnN, consisting of potential members of the volume
set, listed in the order that they may become members. These
volumes are known as volume set candidates. (See "Volume Switching"
below.)

2. control args

9/80

Is a sequence of one or more attach control arguments. A control
argument may appear only once.

-block b, -bk b
specifies-the block length in characters, where the value of b is
dependent upon the value of r specified in the -record control
argument. (See "Creating a File" below.)

-clear, -cl
specifies that internal information on a file-set which the I/O
module retains from previous attachments is to be deleted. This
control argument can be used when it is desired to change attributes
of a file-set which are maintained across attachments for a given
process, e.g. density or label standard. For the initial
attachment to a file-set in a given process, this control argument
has no effect~

-create, -cr
specifies that a new file is to be created. (See "Creating a File"
below.)

-density N, -den N
specifies the density at which the file-set is recorded, where N can
be 800, 1600, or 6250 bits per inch. (See "File Set Density"
below.)

5-15 AX49-01B

tape_ansi

-device N, -dv N
specifies the maximum number of tape drives that can be used during
an attachment, where N is an int~ger in the range 1 < N < 63. (See
"Multiple Devices" below.)

-expires date, -exp date
of the file to be created or

of a form acceptable to the
which is described in the MPM
below.)

specifies the expiration date
generated, where date must be
convert date to binary subroutine
Subroutlnes.- (See "File Expiration"

-extend, -ext
specifies extension of an existing file. (See "Extending. a File"
below.)

-force, -fc
specifies that the expiration date of the file being overwritten is
to be ignored. (See "File Expiration" below.)

-format f, -fmt f
specifies the record format, where f is a format code. (See
"Creating a File" below for a list of format codes.)

-generate, -gen
specifies generation of an existing file. (See "Generating a File"
below.)

-mode STR, -md STR
specifies the encoding mode used to record the file data, where STR
is the string ascii, ebcdic, or binary. The default is ascii. (See
"Encoding Mode" below.)

-modify, -mod
specifies modification of an existing file. (See ::Modifying a File::
below.)

-name STR, -nm STR
specifies the file identifier of the file where STR is from 1 to 17
characters. (See "Creating a File" below.)

-number N, -nb N
specifies the file sequence number, the position of the file within
the file set, where N is an integer in the range 1 < N < 9999. (See
"Creating a File" below.)

-record r, -rec r
specifies tlie record length in characters, where the value of r is
dependent upon the choice of record format. (See "Creating a FIle"
below.)

-replace STR, -rpl STR
specifie~ the fil~ identifier of the file to be replaced, where STR
must be from 1 to 17 characters. If no file with file identifier
STR exists, an error is indicated. (See "Creating a File" below.)

5-16 AX49-01

tape_ansi

-retain STR, -ret STR
specifies retention of resources across attachments, where STR specifies
the detach-time resource disposition. (See "Resource Disposition"
below ~)

-ring, -rg
s p e c i fie s t hat the vol urn e set be moun ted wit h wr i t e r in g s .
"Write Rings and Write Protection" below.)

(See

-speed N1{,N2, ... ,Nn}, -ips N1{,N2, ... ,Nn} I
specifies desired tape arive speeds in inches per second, where Ni
can be 75, 125, or 200 inches per second. (See "Device Speed
Specification" below.)

The following sections define each control argument in the contexts that it
can be used. For a complete list of the attach control arguments, see "Attach
Control Arguments" below.

Creating A File

When a file is created, an entirely new entity is added to the file set.
There are two modes of creation: append and repl ace. In append mode, the new
file is added to the file set immediately following the last (or only) file in
the set. The process of appending does not alter the previous contents of the
file set. In replace mode, the new file is added by replacing (overwriting) an
existing file. The replacement process logically truncates the file set at the
point of replacement, destroying all files (if any) that follow consecutively
from that po int.

The -create and -name control arguments are required to create a file,
where STR is the file identifier. No two files in a file set can have the same
file identifier. If the act of creation would cause a duplication, an error is
indicated.

If no file having file identifier STR exists in the file set, the new file
is appended to the file set; otherwise, the new file replaces the old file of
the same name.

If the user wishes to explicitly specify creation by replacement, the particular
file to be replaced must be identified. Associated with every file is a name
(fil e id ent i fier) and a number (fil e sequence number.) Ei ther is suffic ient to
uniquely identify a particular file in the file set. The -number N and -replace
STR control arguments, either separately or in conjunction, are used to specify
the f i 1 e to be rep 1 ace d . If use d tog e the r, the y m us t bot hid en t i f y the sam e
file; otherwise, an error is indicated ..

7/82 5-17 AX49-01C

This page intentionally left blank.

7/82 AX49-01C

tape_ansi

When the -number N control argument is specified, if N is less than or
equal to the sequence number of the last file in the file set, the created file
replaces the file having sequence number N. If N is one greater than the sequence
number of the last file in the file set, the created file is appended to the
file set. If N is any other value, an error is indicated. When creating the
first file of an entirely new file set, the -number 1 control argument must be
explicitly specified. (See "Volume Initialization" -below.)

The -format f, -record r and -block b control arguments are used to specify
the internal strUCture of tne file to be- created. They are collectively known
as structure attribute control arguments.

7/82 5-17. 1 AX49-01C

I

I

I

I

I

tape ansi tape ansi

When the -format f control argument is used, f must be one of the following
format codes, chosen a~cording to the nature of th~ data to be recorded. (For a
d eta i led des c rip t ion 0 f the v a r°i-a us r e cor d for mat s, see "R e cor d For mat s" below.)_

fb

db

sb

for fixed-length recor(;j·s, blocked. Used when every record has the
same length, not in excess of 99996 characters.

for v a ria b I.e 1 eng t h t e co r d s, b 10 c ked . Use d wh en r e cor d s are 0 f v a r yin g
lengths, th~ longest n0t in excess of 99992 characters.

for spanned:- records, _ blocked. Used when the record length is fixed
and in exce~s_6f 999~6 characters, or variable and in excess of 99992
characters. Ih eith~r case, the record length cannot exceed 1,n44,480
characters.

f for fixed-length records, unblocked.

d for variable-length records, unblocked.

s for spanned records, unblocked.

u for undefined records (records ur.defined in format). Each block is
treated as a single record, and a block may contain a maximum of 99996
characters.

NOTE: THE USE OF UNDEFINED RECORDS IS A NONSTANDARD FEATURE.

Records recorded using U format may be irreversibly modified; therefore,
the use of U format is strongly discouraged. (See "Block Padding"
below.)

Unblocked means that each block contains only one record (f, d) or record
segment (s). Blocked means that each block contains as many records (fb, db) or
record segments (sb) as possible. The actual number of records/block is either
fixed (fb), depending upon the block length and record length, or variable (db,
sb), depending upon the block length, record length, and actual records. Because
of their relative inefficiency, the use of unblocked formats is discouraged.

When the -record r control argument is used, the value of r is dependent
upon the choice of record format. In the following list, amrl is- the actual or
maximum record length.

7/82

f = fb
f = db
I = sb
T = u:

f: r = amrl
d: amrl + 4 ~ ~ ~ 99996
s: amrl < r < 1044480

r is unaerined
Tthe -record control argument should not be used.)

5-18 AX49-01C

tape ansi tape ansi

When the -block b control argument is used, the value of b is dependent
upon the value of r. -When the block length is not constrained to a particular
value, the largest ~ossible block length should be used.

f = fb: b must satisfy mod (~,.!::.) = 0
f = f: b = r
I = db: 0 > r
I = d: b = r.
I = sb s: 1P -< b < 99996
T = u: amrT ~D < 99S96

In every case, b must be an integer in the range 1P < b < 8192.

NOTE: THE USE OF A BLOCK LENGTH IN EXCESS OF 2048 CHARACTERS IS A NONSTANDARD
FEATURE.

Because the structure attribute control arguments are extremely interdependent,
care must be taken to ensure that specified values are consistent.

Reading ~ File

The attach description needed to read a file is less complex than the
description used to create it. ~~en a file is created, the structure attributes
specified in the attach description are recorded in the file's header and trailer
labels. These labels, which precede and follow each file section, also contain
the file name, sequence number, block count, etc. When a file is subsequently
read, all this information is extracted from the labels. Therefore, the attach
description need only identify the file to be read; no other control arguments
are necessary.

The file can be identified using the -name STR control argument, the -number
N control argument, or both in combination. If the -name STR is used, a file
with the specified file identifier must exist in the file set; otherwise, an
error is indicated. If the -number control argument is used, a file wi th the
specified file sequence number must exist in the file set; otherwise, an error
is indicated. If the -name STR and -number N control arguments are used together,
they must both refer to the same file; otherwise, an error is indicated.

Output Operations On Existing Files

Three output operation s can be per formed on an al ready ex isting file:
extension, modification, and generation. As their functions are significantly
different, they are described separately below. They do, however, share a common
characteristic. Like the replace mode of creation, an output operation on an
existing file logically truncates the file set at the point of operation, destroying
all files (if any) that follow consecutively from that point.

7/82 5-19 AX1.Jg-01C

I

tape ansi

Extending A FilE'

File extension is the process of adding records to a file without in any
way altering the previous contents of the file.

Because all the information regarding structure, length, etc. can be obtained
from the file labels, the attach description need only specify that an extend
operation is to be performed on a particular file. The previous contents of the
file remain unchanged; new data records are appended at the end of the file. If
the file to be extended does not exist, an error is indicated.

The file to be extended is identified using the -name STR control argument,
the -number N control argument, or both in combination. The same rules apply as
for reading a file. (See "Reading a File" above.)

Recorded in the labels that bracket every file section is a version number,
initially set to () when thE' file is created. The version number is used to
differentiate between data that have been produced by repeated processing operations
(such as extension). Every time a file is extended, the version number in its
trailer labels is incremented by 1. When the version number reaches 99, the
next increment resets it to O.

The user may specify any or all of the structure attribute control arguments
when extending a file. The specified control arguments are compared with their
recorded counterparts; if a discrepancy is found, an error is indicated.

Modifying A File

It is occasionally necessary to replace the entire contents of a file,
while retaining the structure of the file itself (as recorded in the header
labels). This process is known as modification.

Because all necessary information can be obtained from the file labels, the
attach description need only specify that a modify operation is to be performed
on a particular file. If a file to be modified does not exist, an error is
indicated. The entire contents of the file are replaced by the new data records.
The version number in the trailer labels of a modified file is incremented by 1,
as described above.

The file to be modified is identified using the -name STR control argument,
the -number N control argument, or both in combination. The same rules apply as
for reading a file. (See "Reading a File" above.)

If any or all of the structure attribute control arguments are specified,
they must match their recorded counterparts; otherwise, an error is indicated.

5-20 AX49-01

tape ansi tape ansi

Generating A File

Recorded in the labels that bracket every file section is a generation
number, ini tially set to 0 when the file is created. The generation number is
used to differentiate between different issues (generations) of a file, that all
have the same file identifier. The duplicate file identifier rule (see "Creating
a File" above) precludes mul tiple generations of a file from existing simul taneously
in the same file set.

The generation number is a higher order of differentiation than the version
number, that is more correctly known as the generation version number. While
the process of modification or extension does not change the generation number,
the process of generation increments the generation number by 1, and resets the
version number to O. The generation number can only be incremented by rewriting
the header labels, and it is in this respect that the processes of generation
and modification differ.

Producing a new generation of a file is essentially the same as creating a
new file in place of the old; however, the file identifier, sequence number, and
structure attributes are carried over from the old generation to the new. The
attach description need only specify that a generation operation is to be performed
on a particular file. If the file to be generated does not exist, an error is
indicated. An entirely new generation of the file is created, replacing (and'
destroying) the previous generation. The generation number is incremented by 1;
the version number is reset to O. When the generation number reaches 9999, the
next increment resets it to O.

The file to be generated is identified by the -name STR control argument,
the -number N control argument, or both in combination. The same rules apply as
for reading a file. (See "Reading a File" above.)

If any or all of the structure attribute control arguments are specified,
they must match those recorded in the labels of the previous generation; otherwise,
an error is indicated.

Encoding Mode

The tape ansi I/O module makes provision for three data encoding modes:
ASCII, EBCDIC-; ana binary. Because the DPSR requires that the data in each
record be recorded using only ASCII characters, the default data encoding mode
is ASCII. File labels are always recorded using the ASCII character set.

When a file is created, the -mode STR can be used to explicitly specify the
encoding mode, where STR is the string ascii, ebcdic, or binary. The default is
the string ascii. (If -mode STR is not specified, the list tape contents command I
does not supply the specific mode in its report.)

NOTE: THE USE OF ENCODING MODES OTHER THAN ASCII IS A NONSTANDARD FEATURE.

7/82 5-21 AX49-01C

tape ansi tape ansi

If STR is the string ascII, the octal values of the characters to be recorded
should be in the range 000 < octal value < 177; characters in the range 200 to
377 are not invalid, but recording such- characters is a nonstandard feature;
characters in the range 400 to 777 cause an unrecoverable 1/0 error. If STR is
the string ebcdic, the octal values of the characters to be recorded must be in
the range 000 to 177. (See the ascii to ebcdic subroutine in the MPM Subsystem
Writers' Guide for the specific ASClI-to-EBCDIC-mapping used by the 1/0 module.)
If STR is the string binary, any octal value can be recorded.

The tape ansi 1/0 module records the data encoding mode in a portion of
the file labels reserved for system-defined use. If the -mode STR control argument
is specified when the file is subsequently extended, modified, or generated, the
specified mode must match that recorded in the file labels; otherwise, an error
is indicated. When the file is subsequently read, the encoding mode is extracted
from the file labels, so the -mode STR control argument need not be specified.

File Expiration

Associated with every file is a file expiration date, recorded in the file
labels. If a file consists of more than one file section, the same date is
recorded in the labels of every section. A file is regarded as "expired" on a
day wh 0 sed ate i s 1 ate r t han 0 r e qua 1 tot he ex pi rat ion d ate. On 1 y wh en t his
condi tion is satisfied can the file (and by impl ication, the remainder of the
file set) be overwritten. Extension, modification, generation, and the replace
mode of creation are all considered to be overwrite operations.

The expiration date is recorded in Julian form; i.e., yyddd, where yy are
the last two digits of the year, and ddd is the day of the year expressed-as an
int.PO'pr in t.hp r::JnO'P 1 < lilili < ~f)f). ASpecial case of the Julian date form is
th~ -~~i u~ "00000" (al wa ys ex plred) .

The expiration date is set only when a file is created or generated.
Unless a specific date is provided, the defaul t value "00000" is used. The
-expires date control argument is used to specify an expiration date, where date
must be of a form acceptable to the convert date to binary subroutine (described
in the MPM Subroutines). If the 1/0 module is-invokedthroughthe iox $attach ioname
en try po i n tor the i 0 x $ a t t a chi 0 c ben try po in t (d esc rib e din the M PM Su b r 0 uti n e s) ,
date must be a contiguous string, with no embedded spaces; if invoked through
the io call command, date may be quoted and contain embedded spaces. Julian
form, incl ud ing "00000", is unacceptable. Because overwr i ting a file logically
truncates the file set at the point of overwri ting, the expiration date of a
file must be earlier than or equal to the expiration date of the previous file
(if any); otherwise, an error is indicated.

If an attempt is made to overwrite an unexpired file, the user is queried
for explicit permission. (See "Queries" below). The -force control argument
unconditionally grants permission to overwrite a file without querying the user,
regardless of "unexpired" status.

5-22 . AX49-0 1

tape ansi

Volume Specification

The volume name (also called the slot identifier) is an identifier physically
written on, or affixed to, the volume's reel or container. The volume identifier
is a six -char ac ter id en t i f ier mag net icall y recorded in the fir st block 0 f the
volume, the VOL1 label. This implementation of the 1/0 module assumes the volume
name and volume identifier to be identical. If this is not the case, the volume I
identifier must be used in the volume specification field of the attach description.

If a volume name begins with a hyphen (-), the -volume keyword must precede
the volume name. Even if the volume name does not begin with a hyphen, it may
still be preceded by the keyword. The volume specification has the following
form:

-volume vni

If the user attempts to specify a volume name beginning with a hyphen
without specifying the -volume keyword, an error is indicated or the volume name
may be interpreted as a control argument.

Occasionally, it is necessary for a user to communicate some additional I
information to the operator in connection wi th a mount request. This can be
done through the use of the -comment control argument:

vni -comment STR
or

-volume vni -comment STR

where the -comment STR keyword and text specify that a given message is to be
displayed on the operator's console whenever volume vni is mounted (a comment I
can be specified after each volume name supplied). STR can be from 1 to 64
characters. STR can be quoted and contain embedded spaces.

Volume Switching

The DPSR defines four types of file set configurations:

7/82

single-volume file
multivolume file
multifile volume
multifile multivolume

a single file residing on a single volume
a single file residing on multiple volumes
multiple files residing on a single volume
multiple files residing on multiple volumes

5-23 AX4g-01C

tape ansi

The tape ansi 1/0 module maintains a volume sequence list on a per-file-set
basis, for the life of a process. A minimal volume sequence list contains only
one volume, the first (or only) volume set member. If the file set is a multivolume
configuration, the sequence list may contain one or more of the additional volume
set members, following the mandatory first volume. If the sequence list contains
the entire volume set membership (that may be only one volume), it may then
contain one or more volume set candidates. Volume set candidates can become
volume set members only as the resul t of an output operation. When an output
oper at ion causes the amount of data in the file set to exceed the capaci ty of
the current volume set membership, the first available volume set candidate
becomes a volume set member.

When the first attachment to any file in a file set is made, the volume
sequence list for the file set is ini tialized from the attach description. At
detach time, the 1/0 module empirically determines that one or more volumes are
volume set members, by virtue of having used them in the course of processing
the attached file. The remaining volumes in the sequence list, if any, are
considered to be candidates. In subsequent attachments to any file in the file
set, the order of volumes specified in the attach description is compared with
the sequence list. For those volumes that the 1/0 module knows to be volume set
members, the orders must match; otherwise, an error is indicated. Those volumes
in the sequence list that the 1/0 module considers to be candidates are replaced
by attach description specifications, if the orders differ. If the attach
description contains more volumes than the sequence list, the additional volumes
are appended to the list. This ~mplementation maintains and validates the volume
set membership on a per-process basis, and maintains a list of volume set candidates
that is alterable on a per-attach basis.

Once a volume sequence list exists, subsequent attachments to files in the
file set do not require repeated specification of any but the first (or only)
volume, that is used to identify the file set. If the 1/0 module detects physical
end of t~pe in the course of B!"! 01)t.nllt ·ooeration. it prepares to switch to the
next volume in the volume set. An . attempt is m'ade to obtain the volume name
from the sequence list, ei ther from the sublist of members, or the sublist of
candidates. If the list of volume set members is exhausted, and the list of
candidates is either empty or exhausted, the user is queried for permission to
terminate processing. If the reply is negative, the 1/0 module queries for the
volume name of the next volume, which becomes a volume set member and is appended
to the volume sequence list. If a volume name is obtained by either method, it
is recorded in a system-defined file label field at the end of the current
volume, volume switching occurs, and processing of the file continues.

If the 1/0 module reaches end of file section (but not of file) in the
course of an input operation, it first attempts to obtain the next volume name
from the volume sequence list. No distinction is made between the member and
candidate sublists, because a volume that ends with a file section must be
followed by the volume that contains the next section. If the sequence list is
exhausted, the file section's labels are examined for a volume name and, if one
is found, it is appended to the sequence list. Should the file labels provide
no name, the user is queried, as described above. If any of these three methods
resul ts in a volume name, volume swi tching occur s, and proceSSing of the file
continues. This method of searching allows a specified swi tching sequence to
override a sequence recorded in the file labels.

If the volume set is demounted at detach time, all volume set candidates
are purged from the volume sequence list.

5-24 AX49-01

tape ansi

Multiple Devices

If a volume set consists of more than one volume, the -device N control
argument can be used to control device assignment, where N specifies the maximum
number of tape drives that can be used during this attachment.
N is an integer in the range 1 < N < 63. Drives are assigned only on a demand
basis, and in no case does the ---::YJ.umber actually assigned exceed the device limit
of the process. The defaul t for an ini tial attachment to a file in a file set
i s N e qua 1 s 1; the de fa u 1 t for a sub seq u en tat t a c hm en t tot hat (0 ran y 0 the r)
file in the file set is N equals the previous value of N.

File Set Density

Although the DPSR requires that file sets be recorded at POO bpi (bits per
inch), the I/O module makes provision for three densities: POO, 1600, and 6250 I
bpi. Every file in a file set must be recorded at the same density; otherwise,
an error is indicated.

The -density N control argument is used to explicitly specify the file set
density, where N specifies the den~ity at which the file set is (to be) recorded. I
N can be 800, 1600, 6250 bpi. '

NOTE: THE USE OF 1600 OR 6250 BPI IS A NONSTANDARD FEATURE.

The file set density can only be changed in a subsequent attachment if the
volume set was demounted by the previous attach.

In the a b sen ceo f . a - den sit y Nco n t r 01 a r g urn en t, the f i 1 e set den sit Y is
determined as follows:

open for input: N = density of VOLl label
open for output, creating new file set: N = POO bpi
open for output, old file set: N = density of VOL1 label

Opening

The opening modes supported are sequential input and sequential output. An
I/O switch can be opened and closed any number of times in the course of a
single attachment. Such a series of openings may be in either or both modes, in
any valid order.

All openings during a single attachment are governed by the same attach
description. The following control arguments, all of which pertain to output
operations, are ignored when the switch is opened for sequential input:

-create -generate
-expires -modify
-extend -repl ace
-force

9/80 5-25 AX49-01B

I

tape ansi tape ansi

I Device Sp~.ed Specification

Th.e -speed control argument is used to specify acceptable tape device speeds
in inches per second. The module only attaches a device that matches a speed
specified by this control argument. If more than one speed is specified, the
module attaches a device that matches one of the speeds. If more than one
device is attached, and more than one speed is specified, the devices will not
neces~arily all be of the same speed.

Re sou:t"ci-e' D i spo sit i on

The tape ansi I/O module utilizes two types of resources: devices (tape
drives) and volumes. Once an I/O switch is attached, resources are assigned to
the uS'e:r' s process on a demand basis. When the I/O swi tch is detached, the
defaul~·resource disposition unassigns all devices and volumes.

If several attaches and detaches to a file set are made in a process,
repeated assignment and unassignment of resources is undesirable. Although the
processing time required to assign and unassign a device is small, all available
devices can be assigned to other processes in the interval between one detach
and the next attach. While volumes are not often "competed" for, mounting and
dismounting is both time-consuming and expensive.

The -retain STR control argument is used to specify retention of resources
across attachments, where STR specifies the detach-time resource disposition.
If STR is the string all, all devices and volumes remaif' assigned to the process.
If STR is the string none, all devices and volumes are unassigned. This is the
default retention.

The I/O module provides a further means for specifying or changing the
resource disposition subsequent to attachment. If retention of any devices or
volumes has been specified at or subsequent to attach time using the retention
control operation, the unassign resource command cannot be used. Instead, use
the retai n none or retent ion -none control oper ation be fore detaching the I/O
module. (See "retention, retain none, retain all Operations" under "Control
Operations" below.) -

Write Rings And Write Protection

Before a volume can be written on, a write ring (an actual plastic ring)
must be manually inserted into the reel. This can only be done before the
volume is mounted on a device. When a volume is needed, the I/O module sends
the operator a mount message that specifies if the volume is to be mounted with
or without a ring.

7/82 5-26 AX49-01C

tape ansi tape ansi

1ft he at t a c h des c rip t ion con t a ins any 0 u t put con t r 01 a r g urn e n t (- ext end
-modify, -generate, or -create), volumes are mounted with rings; otherwise, the~
are mounted without rings. When a volume set mounted with rings is opened for
seq uent i al input, hardwar e fil e protect is used to inh ib it an y spur ious wr i te
operations~ A volume set mounted without rings cannot be opened for
sequential output.

However, the following sequence of events is possible. An attach description
contains none of the output control arguments, but does contain the -retain all
control arguments. The volume set is mounted without rings. After one or more
(or no) openings for sequential input, the I/O switch is detached. The volume
set remains mounted because of the -retain all control argument. Subsequently,
an attach is mad e who se descri ption contain s an output control argument, that
requires that the volume set be mounted with rings. However, as rings can only
be inserted in unmounted volumes, the entire volume set must be demounted and
then remoun ted.

7/82 5-26.1 AX49-01C

This page intentionally left blank.

7/82 AX49-01C

This situation can be avoided by using the -ring control argument to
specify that the volume set be mounted with write rings. If no output control
arg~ment is specified in conjunction with -ring, the I/O switch cannot be opened
for sequential_output.

When a volume set is mounted with write rings and the I/O switch is opened
for sequential input, the hardware file protect feature is used to safeguard the
file set. -

I

Queries

Under certain exceptional circumstances, the I/O module queries
for information needed for processing to continue or instructions
proceed.

the user
on how to

Querying is performed by the command query -subroutine. The user may
intercept one or more types of query by establishing a handler for the
command question condition, that is signalled by the command query subroutine.
Alternately, the answer command (described in the MPM Commands) can be used to
intercept all queries. The use of a predetermined "yes" answer to any query
causes those actions to be performed that attempt to complete an I/O operation
without human intervention.

In the following list
command question info.status code.
regarding the - command_question
structure.

of queries, status code refers to
See the MPM Reference Guide for information
condition and the command_question_info

status code = error table $file aborted

This can Occur only when the I/O switch is open for sequential_output. The
I/O module is unable to correctly write file header labels, trailer labels,
or tapemarks. Thi~ type of error invalidates the structure of the entire
file set. Valid file set structure can only be restored by deleting the
defective file or file section from the file set.

The user is queried for permission to delete the defective file or file
section. If the response is "yes", the I/O module attempts deletion. The
attempt mayor may not succeed; the user is informed if the attempt fails.
If the response is "no", no action is taken. The user will probably be
unable to subsequently process the file, or append files to the file set;
however, this choice permits retrieval of the defective file with another
I/O module. In either case, the I/O switch is closed.

status_code = error_table_$unexpired_volume

This can occur only when the I/O switch is open for sequential output. A
volume must be either reinitialized or overwritten; however, the-first file
or file section on the volume is unexpired.

The user is queried for permission to initialize or overwrite the unexpired
volume. If the response is "yes", the volume is initialized or overwritten
and processing continues. If the response is "no", further processing
cannot continue, and the I/O switch is closed.

5-27 AX49-01

I

I

I

I

I
I

status code = error table $uninitialized volume - -

A volume requires reinitialization or user verification before
used to perform any I/O. The I/O module distinguishes among four
setting command_question_info.query_code as follows:

it can be
causes by

query_code

query_code 2

query_code 3

query_code 4

the first block of the tape is unreadable. The tape is
either defective, or recorded at an invalid density.
This query code can occur only if the I/O stream is
opened for sequential_output.

the first block of the tape is not a valid ANSI VOL1
label. The tape is not formatted as an ANSI volume.
This query code can occur only if the I/O stream is
opened for sequential_output.

the volume identifier
incorrect. The volume
volume name.

recorded in the VOL1 label is
identifier does not match the

the density at which the volume is recorded is
incorrect. The volume density does not match the
specified density. This query code can occur only if
the I/O stream is opened for sequential_output.

If the I/O stream is opened for sequential output, the user will be asked
whether he wants to initialize or re-initialize the volume. If the I/O
stream is opened for sequential input, the user will be asked whether he
wants to continue processing in spite of the discrepancy. If the response
is "yes", the volume is reinitialized and processing continues. If the
response iG "no", fu.rther processing cB.nnot cont.i nue: and the I/O swi tch is
closed.

status_code = error_table_$unexpired_file

This can occur only when the I/O switch is open for sequential output. A
file that must be extended, modified, generated, or replaced is unexpired.

The user is queried for permission to overwrite the unexpired file. If the
response is "yes", processing continues. If the response is "no", further
processing cannot continue, and the I/O switch is closed.

status code = error table $no next volume - - - -

This can occur when reading a multivolume file, or when writing a file and
reaching physical end of tape. The I/O module is unable to determine the
name of the next volume in the volume set.

The user is queried for permission to
response is "yes", no further processing is
open for sequential output, the I/O switch
"no", the user is queried for the volume
status code = 0 below.)

5-28

terminate
possible.
is closed.
name of the

processing. If the
If the I/O switch is

If the response is
next volume. (See

AX49-01

status code = 0

This occurs only when the response to the above ~uery is "no". The user is
requested to supply the name of the next volume. The response must be a
volume name six characters or less in length, optionally followed by a
mount message. Even if the volume name begins with a hyphen, it must not
be preceded by the -volume control argument. If a mount message is to be
specified, the response takes the following form:

volume name -comment STR

where STR is the mount message and need not be a contiguous string. See
"Volume Specification" above. This is the only query that does not require
a "yes" or "no" response. If a preset "yes" is supplied to all queries,
this particular query never occurs.

Structure Attribute Defaults

When a file is created, the I/O module can supply a default value for any
or all of the file structure attributes. The defaults used are as follows:

1 • record format the default is f db

2. block length the default is b 2048

3· record length
f u: undefined
f fb f: E. block length
f db d: E. block length
f sb s: E. 1044480

An injudicious combination of explicit specifications and defaults can
result in an invalid attribute set. For example, if the control argument
-record 12000 is specified, applying the defaults produces the following:

-format db -block 2048 -record 12000

This attribute set is invalid because, in D format (See "Record Formats" below),
th~ record length must be l~ss than or equal to the block length.

Processing Interchange Files

The DPSR makes provIsIon for recording record format, block length, and
record length in specific fields of the HDR2 file label. In addition, the I/O
module records the encoding mode in a portion of the HDR2 label reserved for
system-defined use. Because the DPSR restricts the encoding mode to ASCII,
there is no "standard" label field reserved for recording encoding mode.
Therefore, if a foreign interchange file (a file not created by this I/O module)
uses an encoding mode other than ASCII, the -mode STR control argument must be
used to specify the mode.

5-29 AX49-01

File sets are almost always recorded with HDR2 file labels, with the
exception of those created by "primitive" systems at implementation levels 1 or
2. (See the DPSR for a description of the facilities supported at different
implementation levels.) It is therefore rarely necessary to explicitly specify
record format, block length, or record length when interchange files are read,
extended, modified, or generated. If, however, a file does lack HDR2 labels,
explicit attribute specification is required; defaults apply only to file
creation.

ASCII Subset

The DPSR suggests that the characters that comprise certain alphanumeric
label fields be limited to a 56-character subset of full ASCII. Furthermore, it
is suggested that these fields should not contain embedded blanks, nor should
they consist entirely of blanks. In particular, the user need only consider
file identifiers and volume names.

The 56-character subset includes:

uppercase letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ
digits: 0123456789
special characters: <space> "% & ' () * + , - . / < > ?

These characters were chosen from the center four columns of the code table
specified in USA Standard Code for Information Interchange,
except for position 5/15 (t~underscore () character) and
where there is provision for alternate graphic representation.

ANSI X3.4-1968,
those positions

The limitation
interchangeability and
interchange.

to this subset is
consistent printing,

intended to
especially

provide maximum
for international

Overriding Structure Attributes

Normally, the -format 1, -block~, and -record r control arguments are not
included in the attach description of an I/O switch that is opened for
sequential input; the structure attributes are extracted from the file labels.
However, the I/O module permits the recorded structure attributes to be
overridden by explicitly specified attach description control arguments.
Because the apparent structure and characteristics of the file can be
drastically altered, great care must be taken to ensure that attribute overrides
do not produce unexpected and unwanted results.

5-30 AX49-01

If a file has the following recorded attributes:

-format fb -block 800 -record 80

an explicit specification of the -format
causes each block of ten 80-character
800-character record.

f and -record 800 control arguments
records to be treated as a single

If a file has the following recorded attributes:

-format fb -block 800 -record 80

an explicit specification of the -format f, -block 80, and -record 80 control
arguments causes the last 720 characters of every block to be discarded. No
error is indicated, because every block of the file contains at least one
80-character record.

Record Formats

ANSI files are structured in one of three record formats: F, D, or S. In
addition, the I/O module provides for a fourth format, U. When a file is
created, its record format should be chosen in accordance with the nature of the
data to be recorded. For example, data consisting of 80-character card images
is most economically recorded in F format, fixed-length records. Data
consisting of variable length text lines, such as PL/I source code produced by a
text editor, is best recorded in D format, variable-length records. Data of
arbitrary length (that could exceed the maximum block size) must be recorded in
S format, spanned records, so that a lengthy datum can·span several blocks.

F, D, and S format files are either blocked or unblocked, blocked being the
normal case. Each block of an unblocked file contains just one record, whereas
each block of a blocked file can contain several records. Blocking can provide
a significant savings of processing time, because several records are accessed
with a single physical tape movement. Furthermore, as blocks are separated by
distances of blank tape, blocking reduces the amount of tape needed to contain a
file.

F FORMAT

In F format, records are
integral number (n) of records
to 1 and the record length (r)
blocked, N is greater than -1
blocking factor.

of fixed (and equal) length, and files have an
per block. If the file is unblocked, N is equal
is equal to the block length (b). If the file is
and b is equal to (~* N). -N is known as the

5-31 AX49-01

tape ansi

For example, if r is equal to 800 and b is equal to 800, then the file is unblocked
and each block contilns just one record~

data

block ElElElElElEl
If r is equal to 800 and b is equal to 2400, then the file is blocked, the blocking

factor 1S 3, and each block-contains three records.

data El El El El El El
block ___ 8_0_0 __ ~_8_0_0 ______ 8_00 ___ 11 ~ __ 8_0_0 __ ~_8_0_0 __ ~ __ 80_0 __

The ANSI standard for F format records permi ts recording a short block only when the
last block of a blocked file contains fewer than N records and there are no more records
to be written when the file is closed.

There are two special cases in which a datum is padded out to length r. The
first case is that of iobl (the iox $write record I/O buffer length; i.e., thenumber
of characters to be written) equals 0: ctrecord of r blanks is written. When such
a record is subsequently read, it is interpreted asa record of r blanks, and not
as a zero-length record. The second case is that of 0 < iobl < r: the record is
padded on the right with blanks to length r, and the padded record written. When
such a record is read, the original characters plus the padding are returned. The
case of iobl is greater than ~ is in error.

NOTE: THE ANSI STANDARD PROHIBITS RECORDING A FIXED-LENGTH RECORD THAT CONSISTS
ENTIRELY OF CIRCUMFLEX (~) CHARACTERS.

D FORMAT

In D format, records and therefore blocks may vary in length. Each record is
preceded by a four-character record control word (RCW) that contains the total record
length (the length of the data plus the length of the RCW itself).

D format files have an integral number (n) of records per block. If blocked,
r is less than or equal to b. For blocked records, the number of records per block
varies indirectly with the-size of the records.

5-32 AX49-01

tapeE.ansi tape ansi

If r equals b equals 804 and the file is unblocked, records of up to 800 characters
can be wri tten, -and each block contains one record.

data
I I I I

_3_75----'1 _I _28_0_1 _I _6_'_0_

block
8
o
4

800

800

If r equals 804, b is greater than or equal to 804, and the file is
blocked, -records of up to 800 characters can be wri t ten.

data G B 8 r...1 ___
8
_

O
_
O
__

161 I 181
block 375 ~ _1~_1 ___ 8_00 ____ _

Each block can contain a maximum of 201 zero-length records (a record written
as a four-character RCW containing 0004).

S FORMAT

In S format, a single record is formatted as one or more record segments. A
record segment contains either a complete record, the initial portion of a
record, a medial portion of a record, or the final portion of a record. No two segments
of the same record can be contained in the same block, but a block may contain the
segments of several different records. The maximum record length is limited only
by the maximum size of a storage system segment, currently 1,044,480 characters.

S format files have an integral number of record segments per block. If the
file is unblocked, each block contains only one record segme'nt; if blocked, the number
of record segments per block is variable. In either case, rand b are independent
of one another.

5-33 AX49-01

tape~ansi

Each record segment begins with a five-character segment control word
(SeW). The sew contains a four-character record segment length, that includes the
length of the sew itself. The sew also contains a one-character record segment
code, that indicates if the segment contains a complete record, or an ini tial, medial,
or final portion. In the examples below, r equals 1000 and b equals 800.

data

block

data

record
segment

block

U FORMAT

EJI 400 I I 1000

B EJ ~I
8

400 0 795
0

EJ 400 I I 1000

B[J~GtG
2
o
5 200 I~ 400

U format files contain records that do not conform to ei ther F, D, or S
format. A U format file is always unblocked. The record length is undefined,
and b is greater than or equal to iobl. Blocks may vary in length.

NOTE: THE USE OF U FORMAT IS A NONSTANDARD FEATURE

The ANSI block padding convention permits a block (in any format) to be padded
out to any length with circumflex characters (~), according to the requirements of
the system that produces the file. These characters are ignored on input. (See
"Block Padding" below.) In U format, block padding can lead to an ambigui ty; i. e. ,
are trailing circumflexes indeed pad characters, or are they actually valid data
within the non padded portion of the block. The DPSR suggests that a U format block
be treated as a single record. In conformance with this suggestion, the 1/0 module
considers trailing circumflexes to be valid data.

5-34 AX49-01

tape ansi tape ansi

The special case of writing a record where iobl is less than 20 characters
produces a block padded to length 20 with circumflex characters.

data 60 127
I I
~

156

block G ,-I _12_8 ---,I G 1,,--1_56 ---.a

Record Format Comparison

At first glance, it might appe.ar as if S format were the format of choice, simply
because it has the fewest restrictions and the greatest flexibility. Although the
latter is certainly true, the former is by no means a valid inference.
Increased flexibility is almost invariably accompanied by decreased processing
efficiency.

F format requires the least processing time, and should be used if the records
are fixed-length. If F format is used wi th non fixed-length records the record padding
rules apply, so the user must ensure that recorded data is not irretrievably (and
perhaps undetectably) modified.

D format, with explicit inclusion of record length in the RCW, is perhaps the
"safest" format to use: there are no special padding cases, and the RCW provides
an additional validity check. The D format processing overhead is small.

S format permits almost any datum to be recorded, irrespective of length, and
further has the "safety" advantage of D format because each segment includes an
SCW. While S format records provide maximum flexibility, their use entails
considerably more processing time than the use of F or D format.

Block Padding

The DPSR makes provision for extending the recorded length of a block beyond
the end of the last (or only) record whenever such padding is deemed necessary or
advisable. Padding characters are not considered when computing an RCW or SCW
length. Because the Multics system is implemented on a word-oriented computer, the
number of characters in a block must be evenly divisible by four. The 1/0 module
automatically pads every block to the correct length, using from 1 to 3 circumflex
characters. In addition, the DPSR does not permit recording a block of fewer than
18 characters. To conform with this requirement, the 1/0 module pads any block
containing fewer than 20 characters out to length 20.

As long as F, D, or S format is used, the presence or absence of block padding
characters in a particular block is user-transparent. If U format is used, it is
the responsibility of the user to detect and ignore any pad characters that may be
generated.

5-35 AX49-01

Volume Initialization

The DPSR requires that all volumes be initialized with a VOL1 label and
dummy file before they are used for output. The I/O module provides a
semiautomatic volume initialization mechanism that performs this operation as an
integral part of the output function. The rules that govern permission to
initialize a volume are complex, and permission to initialize under most
circumstances is specifically denied (by the DPSR) to the application program.
The I/O module's mechanism strikes a balance between outright denial and
absolute ease. (See "Queries" above.)

It should be noted that a newly initialized volume contains a dummy file.
Thus, if a file is created on a newly initialized volume without an explicit
specification of the -number 1 control argument, the file is appended to the
file set, resulting in a file sequence number of 2, and not 1 as might be
expected.

Buffer Offset (Block Prefix)

The DPSR provides for each block of a file being prefixed by from 1 to 99
characters of prefix information, known as the buffer offset. The buffer offset
length is recorded in the HDR2 label. If an input file has block prefixes, and
the block length is explicitly specified, it must be incremented by the buffer
offset length. This calculation should made after the block length has been
determined using the normal block-record relationship rules .

.LIlt I/O module ignores (skirR) buffer offsets on input, and does not
provide for writing buffer offsets on output, except when extending or modi~ying
an interchange file with a nonzero buffer offset. In this case, each block
written is prefixed with an appropriate number of blanks.

Conformance To Standard

The I/O module conforms to the ANSI standard for level 4 implementations
with the following five exceptions:

1. Volume Initialization -- The I/O module has a permission-granting
mechanism that can be controlled by the application program.

2. Volume and File Accessibility On input, the I/O module always

3.

grants permission to access. On output, the access control fields in
the VOL1 and HDR1 labels are always recorded as blank (" II).

Overwriting Unexpired Files
permission-granting mechanism that
application program.

5-36

The I/O module
can be controlled

has a
by the

AX49-01

tape ansi tape ansi

4. User Label Processing -- The I/O module ignores user labels on input,
and does not provide for writing user labels on output.

5. Buffer Offset Processing -- The I/O module ignores buffer offsets on
input, and does not provide for writing buffer offsets on output (except
as stated above).

Label Processing

VOL1

UVLa

The label is processed on input and output. The owner-identifier field,
character positions (CP) 38 to 51, holds a three-character volume authentication I
code.

These labels are not written on output, and ignored on input.

HDR1/EOF1/EOV1

The labels are processed on input and output. The system-code field, CP 61
to 7 3 , is r e cor d ed as tI M U L TIC SAN S I li

HDR2/EOF2/EOV2

The labels are processed on input and output. The reserved-for-system-use
field, CP 16 to 50, is recorded as follows:

C P 16 to 47
CP 48

CP 49

- full 32-character volume name of next volume (EOV2 only) I
blocking attribute (all)
"0" = unblocked; "1" = blocked
data encoding mode (all) I
"1" = ASCII, 9 mode
"2" = EBCDIC, 9 rrode
"3" = binary

HDR3/EOF3/EOV3 - HDR9/EOF9/EOVg

These labels are not written on output and are ignored on input.

UHLa/UTLa

These labels are not written on output and are ignored on input.

7/82 5-37 AX49-01C

tape ansi tape ansi

Error Pr:ocessing

If an error occurs while reading" the I/O module makes 25 attempts to
backspace and reread. If an error occurS while writing, the I/O module makes 10
attempts to backspace, erase, and rewrite. Should an unrecoverable error occur
while reading o~ writing the, I/O moduLe "locks" the file so that no further I/O
is possib~e. (See re~et error lock OPERATION, below.) If an unrecoverable error
occurs while writing filelabeis or tapem<arks, the user is queried about preserving
the defe'ct,ive file ver..'sus file set con'siseency. (See "Queries" above.) If an
·uhtecov'e:rab.le.ettor'.'Q~·curs dur.ing 'eertainflphases of volume switching or label
'feading>,. ':\btie I/O s'.wft·c,h may be blosed.. The: overr.id·ing ·concer·n, of the error
'{ecov er y .s~tt at'eg y is:

1. bo maintain a consistent file set structure

2. to ensure the validity of data read or written

'Close Operation

The I/O switch must be open.

Control Operation

I The I/O module supports eleven control operations.

I
hardware'stat\;ls
status

volume status
file status
feov-

close rewind
retention
retain none
retain-all
reset error lock

. volume densIty

In the descript,ions below, info ,pt.r' is the information pointer spe'cified in
an iox_$control entry point call. -

hardware status OPERATION

This operation returns the 72-bit 10M status string generated by the last
tape I/O operation. The I/O switch must be open. The substr argument (10M bits,
3, 10) contains the major and minor status codes generated by the tape subsystem
itself. (See MTS500 Magnetic Tape Subsystem, Order No. DB28, for an explanation
of major and mInor status.) T'FievarIable to which info ptr points is declared
as follows:

declare 10M bits bit(72) aligned;

7/82 5-38 AX49-01C

status OPERATION

This operation returns a structure that contains an array of status codes,
providing an interpretation of the 10M status string generated by the last tape
I/O operation. These codes may be used in calls to the com err subroutine, or
may be converted to printable strings by calling the convert status code
subroutine. (See the description of the com err subroutine- in the MPM
Subroutines and the description of the convert status code subroutine in the
MPM Subsystem Writers' Guide.) The I/O switch must be- open. The structure to
which info_ptr points, device_status.incl.pI1, is declared as follows:

dcl dstat_ptr pointer;
dcl 1 device status based (dstat ptr),

2 10M bits bit(72) aligned, /* 10M status */
2 n minor fixed bin, /* number of minor codes */
2 major fixed bin(35), /* major status code */
2 minor (1 0) fixed bin(35); /* minor status codes */

volume status OPERATION

This operation returns a structure that contains the status of the current
volume. If the I/O switch is open, the current volume is the volume on which
the file section currently being processed resides. If the switch has never
been opened, the current volume is the first (or only) volume in the volume set.
If the switch was opened, but is now closed, the current volume is that on which
the last file section processed resides. If the switch was closed by the I/O
module as the result of an error while writing file header labels, trailer
labels, or tapemarks, the current volume is the last (or only) volume in the
volume set. The structure to which info ptr points,
tape_volume_status.incl.pI1, is declared as follows: --

dcl tvstat ptr
dcl 1 tape volume status

2 volume name-
2 volume-id
2 volume-seq
2 tape_drive

2 read errors
2 write errors

pointer;
based (tvstat ptr),
char(6), - /* volume name */
char(6), /* from VOL1 label */
fixed bin, /* order in volume set */
char(8) , /* tape drive name */

/* "" if not mounted */
/* read error count */
/* write error count */

fixed bin,
fixed bin;

In the current implementation of
write errors are always zero. Eventuallv.
supplIes these value~.u u'

the I/O module, read errors and
the resource control package (Rep)

5-39 AX49-01

tape_ansi

file status OPERATION

This operation returns a structure that contains the current status of the
file specified in the attach description. If the I/O switch has never been
opened, no information can be returned; this situation is indicated by

I tape file status.state = O. If the switch was opened, but is now closed, the
current status of the file is its status just prior to closing. If the switch
was closed by the I/O module as the result of an error while writing file header
labels, trailer labels, or tapemarks, the entire file may have been deleted. In
this case, the structure contains the current status of the previous file in the
file set, if any. The structure to which info ptr points,
tape_file_status.incl.p11, is declared as follows: -

dcl tfstat ptr
dcl 1 tape file status

2 state -

2 event code

2 file id
2 file-seq
2 cur section

2 cur volume

2 generation
2 version
2 creation
2 expiration
2 format code

2 blklen
2 reclen
2 blocked
2 mode

2 cur blkcnt

pointer;
based (tfstat ptr),
fixed bin, - /* 0 no information */

/* 1 - not open */
/* 2 - open, no events */
1* 3 - open, event lock */

fixed bin(35), 1* error table code if

char (17) ,
fixed bin,
fixed bin,

char (6) ,

fixed bin,
fixed bin,
char(5),
char (5) ,
fixed bin,

fixed bin,
fixed bin(21),
bit(1),
fixed bin,

state-= 3 *7
/* file identifier */
/* order in file set */
/* current or last

section processed */
/* volume name of volume

on which cur section
resides */

/* generation number */
/* version of generation */
/* Julian creation date */
/* Julian expiration date */
/* - U formaL II
/* 2 - F format */
/* 3 - D format */
/* 4 - S format */
/* block length */
/* record length */
/* "O"b = no T "1"b - yes */
/* 1 - ASCII */
/* 2 - EBCDIC */
/* 3 - binary */

fixed bin(35); /* current block count */

The "event" referenced in tape file status.state, above, is defined as an
error or circumstance that prevents continued processing of a file. For
example, parity alert while reading, reached end of information, no next volume
available, etc.

feov OPERATION

This operation forces the end of a volume when writing a file. The switch
must be open for sequential output. The operation is equivalent to detection of
the end of tape reflective strip. The info_ptr should be a null pOinter.

5-40 AX49-01

tape ansi tape ansi

close rewind OPERATION

This operation specifies that the current volume is to be rewound when the
I/O switch is next closed. The info ptr should be a null pointer. The switch
need not be open when the operation 1s issued. The operation effects only one
close; subsequent closings require additional control calls.

retention, retain none, retain all OPERATIONS I

These operations cause the tape resources currently in use, i.e., tape I
drives(s) and tape volume(s), to be unassigned or retained at detach time according
to the specified retention argument or operation. The info ptr points to a I
fixed binary number with value as defined below:

retention -none or retain none I
causes none of the tape resources currently in use to remain assigned
at detach time.

2 retention -volume I
causes the tape volume(s) currently in use to remain assigned at detach
time.

3 retention -device I
causes the tape drives(s) currently in use to remain assigned at detach
time.

4 retention -all or retain all I
causes all of the devices-and volumes currently in use to remain assigned
at detach time.

reset error lock OPERATION

This operation unlocks the files so that further I/O is possible subsequent
to a parity-type I/O error while reading. Such an error is indicated by a
previous iox $read record or iox $position call having returned the status code
error table $tape error. In this case, the value of tape file status.event lock
is error table $tape error. (See file status OPERATION, above~) The I/O switch
must be open for sequential input. The info ptr should be a null pointer.

7/82

NOTE: IF RECORDS ARE BLOCKED AND/OR SPANNED, THE VALIDITY OF ANY RECORDS
READ SUBSEQUENT TO A PARITY-TYPE I/O ERROR IS NOT GUARANTEED. (The
parity error is reported for the first read of a logical record in
the block. The actual location of the error in the block is unknown.)

5-41 AXlt.9-01C

tape ansi tape ansi

I volume_density OPERATION

I This operation returns the encoded density of the volume set. The I/O
swi tch need not be open. The variable to which info ptr points is declared as
follows:

I
I
I

I

declare volume_density fixed bin;

The values returned and their meanings are listed below:

value meaning

-1
2
3
l.I

Detach Operation

none specified yet
800
1600
6250

The I/O swi tch must be closed. If the I/O module determines that the
membership of the volume set might have changed, the volume set members are
listed before the set is demounted; volumes not listed are available for incorporation
into other volume sets.

Modes Operation

This I/O module does not support the modes operation.

Position Operation

The I/O switch must be open for sequential input, The I/O module does not
support skipping backwards. In the course of a posi tion operation, events or
errors may occur that i!'!vokE' t.hE' query mpch::mism. (See "Queries" above.) An
unrecoverable error locks the file, and a severe error causes the I/O module to
close the I/O switch.

Read Length Operation

The I/O switch must be open for sequential input. In the course of a
read length operation, events or errors may occur tnat invoke the query mechanism.
(See- "Queries" above.) An unrecoverable error locks the file, and a severe
error causes the I/O module to close the I/O switch.

Read Record Operation

The I/O switch must be open for sequential input.

Write Record Operation

The I/O switch must be open for sequential output.

Control Operations from Command Level

All control operations supported by this I/O module can be executed from
command level by using the io_call command. The general format is:

io call control switchname operation -control arg

9/80 5-42 AXl.l9-01B

tape ansi tape ansi

where:

1 . s wit c h n am e
is the name of the I/O switch that is attached through the I/O
module to an ANSI tape file-set.

2. operation
is any of the control operations previously described and summarized
below.

operation

status
hardware status
reset error lock
file status­
volume status
retentTon

retain all
retain-none
close rewind
feov

abbreviation

st
hst
reI
fst
vst
ret

reta
retn

crw
feov

control arg

-all

-none, -volume,
-device, -all

3. control arg

7/P2

Is an operation control arg ument val id onl y for the retention and
the status operations. A control argument is required for the retention
operation; possible control arguments are described below.

-none
causes none of tl--le tape resources currently in use to remain
assigned at detach time.

-volume
causes the tape volume(s) currently in use to remain assigned
at detach time.

-device

-all

causes the tape drives(s) currently in use to remain assigned
at detach time.

causes all of the devices and volumes currently in use to remain
assigned at detach time.

The -all control argument is optional for the status operation. This
control argument prints all available tape status information such
as the device status, the volume status, the file status, and the
hardware status. The -all control argument is only for use with the
status operation through the io call command. It is not defined for
use in the status operation with iox ~control directly.

5-43 AX49-01C

I

tape ansi tape ansi

Examples

In the following examples, it must be emphasized that an attach descri~tion
describes a potential operation, and in and of itself doe~ nothi~g to th~ file.
Depending upon the sequence of openings in various modes, one attach desc~ipti0n
can perform diverse functions. .

tape_ansi 042381 -nm ARD21 -cr -fmt sb -ret all

A file named ARD21 is to be appended to the file s'et whose- ["irst \f0lumeis
042381. If a file named ARD21 already exists in the file set, open·±ngs for
sequential input access that file, and openings for sequential owtput cre~te new
files replacing the old. If no file named ARD21 already exists tn the file set,
openings for sequential input prior to the first opening for' sequential .0·utput
fail. The first opening for sequential output creates the file by appe-ni¢'ing it
to the end of the file set. Subsequent -openings for sequential 'i.n-put a-e"c:'e:ss the
newly created file, and subsequent openings for sequential out,I'tl,t repl'B'ce it.
Spanned records are specified; the block length defaul ts to 204'8, the reco'rd
length to 1044480, and the encoding mode to ASCII. The density defaults to 800
bpi, and the maximum number of devices defaults to 1. The volume set and devices
are retained after detachment.

tape ansi 042381 -nm fargo.pl1 -nb 2 -cr -force -fmt fb -bk roo -rec 80

A file named fargo.pl1 is created at position 2 in the file set. If a file
named fargo.pl1 already exists at position 2, openings for sequential input prior
to the first opening for sequential output access that file. The fIrst opening
for sequential output creates a -new file, and subsequent openings f0r
sequential input access the new file. If no file named fargo~pl1 exists at
position 2'", openings for 3equcnti31 input prior t.o the firs·t opening for
sequential output fail. If a file exists at position 2, it is replaced irrespective
of its expTration date.

tape ansi 042381 -nm zbx -rpl zbx -cr -md binary -bk 6000 -exp 2weeks

A file named zbx is to be created, replacing a file of the same name.
Openings for sequential input prior to the first opening for sequential output
access the old file. Each opening for sequential output creates a new file, and
each subsequent opening for sequential input accesses the most recently created
file. The specified encoding mode is oinary. The record format defaults to D,
blocked, and the record length defaul ts to 6000 because the block length is
specified as 6000. The file is protected from overwriting for a period of two
weeks, so each opening for sequential output subsequent to the initial opening
for sequential_output causes the user ~o be queried for permission to overwrite.

5-44 AX49-01

tape ansi tape ansi

tape_ansi 042381 -nb 1~ -gen -dv 3 -expires 12/31/77

A new g en era t ion 0 f the f i 1 eat po sit ion 1 LI i nth e f i 1 e set i s to be
created, replacing the 0] d generation. If the old generation is not expired,
the user is queried for permission to overwrite. Each opening for sequential input
accesses the current generation. Each opening for sequential output creates a
new generation. The new generation has an expiration date of December 31, 1977.
The maximum number of devices that can be used is three.

tape_ansi 042381 042382 042383 -nm THESIS -rg

A file named THESIS is to be read. The I/O swi tch can only be open for
sequential input. The volume set consists of at least three volumes, and they
are mountea with write rings. Only one device can be used.

tape ansi 042381 -nm FF -nb 3 -ext -dv 4 -ret all

A file named FF at posi tion ::3 in the file set is to be extended. Each
opening for sequential input accesses the current version. Each opening for
sequential output produces a new version. A maximum of four devices can be
used, and resources are retained after detachment.

tape ansi 042381 -vol -COS -com in slot 000034 -nb 6 -mod -fc

The file at posi tion 6 in the file set is to be modified, irrespective of
its expiration date. Each opening for sequential input accesses the current
version. Each opening for sequential output produces a new version. The second
volume of the volume set has volume -identifier -COS, and can be found in slot
000034.

13-45 AX1J9-01

I

tape ansi

Attach Control Arguments

The following is a complete list of all valid attach control arguments in
both long and short forms:

7/82

-block b -bk b 1 P < b < ~9996
-clear -cl
-create -cr
-density N -den N N = 800 I

I 1600 fi250
-device N -dv N 1 < N < 63
-expires date -exp date vaTid date
-extend -- -ext
-force -fc
-format f -fmt f f = fb f db d

sb s u
-generate -gen
-mode STR -md STR STR = ascii I ebcdic I

-modify -mod
-name STR -nm STR STR < 17 characters
-number N -nb N 1 < N < 9999
-record r -rec r 1 7 r 7" 1044480
-repl ace -rpl ST"R <: 17 characters
-retain STR -ret STR STR = all I none I

-ring -rg

The following is a list of positional keywords:

-comment STR -com STR
-volume vni -vol vni

STR < 64 characters
vni (6 characters

5-46

binary

AX49-01C

The tape_ibm I/O module implements the processing of magne~lc tape files
in accordance with the standards established by the following IBM pUblications:
as Data Management Services Guide, Release 21.7, GC26-3746-2; IBM System 360
Disk Operating System Data Management Concepts, GC24-3427-8; and as Tape Labels,
Release 21, GC28-6680-~These documents are collectively referred to below as
the Standard.

Entries iOn the module are not called directly by users; rather, the module
is accessed through the I/O system. 0 See the MPM Reference Guide for a general
description of the I/O system.

Definition of Terms

record

block

~~, -
.l..l..l.e

volume

related information treated as a unit of information.

a collection of characters written or read as a unit. A block may
contain one or more complete records, or it may contain parts of one
or more records. A part of a record is a record segment. A block
does not contain multiple segments of the same record.

a collection of information consisting
single subject. A file may be recorded
or on more than one volume.

of records pertaining to a
on all or part of a volume,

reel of magnetic tape. A volume may contain one or more complete
files, or it may contain sections of one or more files. A volume
does not contain multiple sections of the same file.

file set
a collection of one or more related files, recorded consecutively on
a volume set.

volume set
a collection of one or more volumes on which one and only one file
set is recorded.

Attach Description

The attach description has the following form:

tape_ibm_ vn1 vn2 ... vnN {-control_args}

5-47 AX49-01

tape ibm_

where:

1 . vni
is a volume specification. A maximum of 64 volumes may be
specified. In the simplest (and typical) case, a volume
specification is a volume name that must be six characters or less
in length. If a volume name is less than six characters and
entirely numeric, it is padded on the left with O's. If a volume
name is less than six characters and not entirely numeric, it is
padded on the right with blanks. Occasionally, keywords must be
used with the volume name. For a discussion of volume name and
keywords see "Volume Specification" below.

vn1 vn2 ... vnN
comprise what is .known as the volume sequence list. The volume
sequence list may be divided into two parts. The first part, vtl1

vni~ consists of those volume~ that are actually members of th~
volume set, listed in the crder that they became members. The
entire volume set membership need not be specified in the attach
description; however, the first (or only) volume set member must be
specified, because its volume name is used to identify the file set.
If the entire membership is specified, the sequence list may contain
a second part, vni+1 vnN, consisting of potential members of
the volume set, listed in the order that they may become members.
These volumes are known as volume set candidates. (See "Volume
Switching" below.)

2. control args

9/80

may be one or more attach control arguments. A control argument may
appear only once.

-block b, -bk b
specifies-the block length in characters, where the value of b is
dependent upon the value 01" r specified in the -recon.l <..:unt(ol
argument. (See "Creating A File" below.)

-clear, -cl
specifies that internal information on a file-set which the 1/0
module retains from previous attachments is to be deleted. This
control argument can be used when it is desired to change attributes
of a file-set which are maintained across attachments for a given
process, e.g. density or label standard. For the initial
attachment to a file-set in a given process, this control argument
has no effect.

-create, -cr
specifies that a new file is to be created. (See "Creating A File"
below.)

-density N, -den N
specifies the density at which the file set is recorded, where N can
be 800, 1600, or 6250 bits per inch. (See "File Set Density"
below.)

-device N, -dv N

-dos

specifies the maximum number of tape drives that can be used during
an attachment, where N is an integer in the range 1 < N <63. (See
"Multiple Devices ii below.)

specifies that
installation.

a t"lie was produced by,
(See liDOS Files" below.)

5-48

or is destined
C' __

LVI, a DOS

AX49-01B

9/80

tape ibm_

-expires date, -exp date
specifies the expiration date of the file to be created or generated
1tJhere date must be of a form acceptable to the convert date to binary
subroutine which is described in the MPM Subroutines. -(See "File
Expiration" below.)

-extend, -ext
specifies extension of an existing file. (See "Extending a File"
below.)

-force, -fc
specifies that the expiration date of the file being overwritten is
to be ignored. (See "File Expiration" below.)

-format f, -fmt f
specifies the record format, where f is a format code. (See" Creating
A File" below for a I ist of format-codes.)

-mode STR, -md STR
specifies the encoding mode used to record the file data, where STR
is the string ebcdic, ascii, or binary; the default is ebcdic. (See I
"Encoding Mode" below.)

-modify, -mod
specifies modification of an existing file. (See "Modifying a File"
below.)

-name STR, -nm STR
specifies the file identifier of the file, where STR is from 1 to 17
characters. (See "Creating A File" below.)

-no labels, -nIb
specifies that unlabeled tapes are to be processed. (See "Unlabeled
Tapes" below.)

-number N, -nb N
specifies the file sequence number, the position of the file within
the file set, where N is an integer in the range 1 < N < 9999. (See
"Creating A File" below.)

-record r, -rec r
specifies the record length in characters,
dependent upon the choice of record format.
below.)

-replace STR, -rpl STR

where the value of r is
(See "Creating A Flle"

specifies the file identifier of the file to be replaced, where STR
must be from 1 to 17 characters. If no file wi th file identifier
STR exists, an error is indicated. (See "Creating A File" below.)

-retain STR, -ret STR
specifies retention of resources across attachments, where STR specifies
the detach-time resource disposition. (See "Resource Disposition"
below.)

-ring, -rg
specifies that the volume set be mounted with write rings.
"Write Rings and Write Protection" below.)

(See

5-49 AX49-01

,
I
I
I

tape ibm_

-speed N1{,N2, ... ,Nn}, -ips N1{,N2, ... ,Nn}
specifies desired tape arive speeds in inches per second, where Ni
can be 75, 125, or 200 inches per second. (See "Dev ice Speed
Specification" below.)

The following sections define each control argument in the contexts in
which it can be used. For a complete list of the attach control arguments see
"Attach Control Arguments" below.

File Identifiers

Associated with every file is a name (file identifier) and a number (ftle
'sequence number). The file identifier must be 17 characters or 1 ess. When

I creating a file, the file identifier must be composed of one or more components
of one to eight characters, with adjacent components separated by a period. The

, first character of each component must be an uppercase letter or national character
(@, If, or $) and the rema i n ing char acter s must be upperca se letter s, nat ional
characters or the digits 0 to q. If a file identifier (of an existing file)
does not meet the naming conventions established for files created on the Multics
system, the file must be referenced using the -number control argument and a
file sequence number.

Creating ~ File

When a file is created, an entirely new entity is added to the file set.
There are t ... w modes of creat.ion~ append and replace. In append mode, the new
file is added to the file set immediately following the last (or only) file in
the set. The process of appending does not alter the previous contents of the
file set. In replace mode, the new file is added by replacing (overwriting) a
particular previously existing file. The replacement process logically truncates
the f i 1 e set at the po in t 0 f rep 1 a c em en t, des t roy in gall f i 1 e s (i fan y) t hat
follow consecutively from that point.

The -create and -name control arguments are required to create a file,
where STR is the file identifier. If no file having file identifier STR exists
in the file set, the new file is appended to the file set; otherwise, the new
file replaces the old file of the same name.

If the user wishes to expl icitly specify creation by replacement, the particular
file to be replaced must be identified. Either a file identifier or a file
sequence number is sufficient to uniquely identify a particular file in the file
set. The -number and -replace control arguments either separately or in c-onjunction,
are used to specify the file to be repl aced. If used together, they must both
identify the same file; otherwise, an error is indicated.

When the -number control argument is specified, if N is less than or equal
tot he seq u en c e n urn be r 0 f the I as t f i 1 e in the f i 1 e set, the c rea ted f i 1 e
replaces the file having sequence number N. If N is one greater than the sequence
number of the last file in the file set, the created file is appended to the
file set. If N is any other value, an error is indicated. \Oihen creating the
first file of an entirely new file set, the -number control argument must be
explicitly specified. (See "Volume Initialization" below.)

7/82 5-50 AX49-01C

tape ibm tape ibm_

The -format, -record and -block control arguments are used to specify the
internal structure of the file to be created. They are collectively known as
structure attribute control arguments. When the -format control argument is
used, f must be one of the following format codes, chosen according to the
nature -of the data to be recorded. (For a detailed description- of the various
record formats, see "Record Formats" below.)

fb for fixed-length records. Used when every record has the same length,
not in excess of 32760 characters. I

vb for variable-length records. Used when records are of varying lengths,
the longest not in excess of 32752 characters. I

vbs for spanned records. Used when the record length is fixed and in I
excess of 32700 characters, or variable and in excess of 32752 characters. I
In either case, the record length cannot exceed 1,044,480 characters.
(See "DOS Files" below.)

f for fixed-length records, unblocked.

v for variable-length records, unblocked.

v s for spanned records, unblocked. (See "DOS Files" below.)

NOTE: Because of padding requirements records recorded using vs format may
be irreversibly modified. (See "Padding" below.)

Unblocked means that each block contains only one record (f, v) or record
segment (v s) . Beca use 0 f their re 1 at i v e ine ffic ienc y, the use 0 f un blocked
formats in general is discouraged. Blocked means that each block contains as
many records (fb, vb) or record segments (vbs) as possible. The actual number
of records/block is either fixed (fb), depending upon the block length and record
length, or variable (vb, vbs), depending upon the block length, record length,
and actual records.

u for undefined records. U format records are undefined in format. Each
block is treated as a single record, and a block may contain a maximum
of 32760 characters. I

When the -record control argument is used, the value of r is dependent upon
the choice of record format. In the following list, amrl- is the actual or
maximum record length.

f = fb I
I f: r = amrl

f = vb I v: amrl + 4 < r < 32756 I

T - vbs vs: amrl < r "(TOQ4480
f = u: r is undefined

(the -record control argument should not be used.)

7/82 5-51 AX49-01C

I

I
I

tape ibm_ tape ibm_

When the -block control argument is used, the value of b is dependent upon
the value of r. When the block length is not constrained to a particular value,
the largest possible block length should be used.

f = fb: b must satisfy mod (~,~) = 0
f = f: b = r
T = vb: 1> > r + 4
f b

- -
4 = v: = r +

f = vbs vs: 20 < b < 32760
I = u: amrT (1) < 32760 - - -

In every case, b must be an integer in the range 20 < b < 8192, and, when
the I/O switch is opened for sequential output, must satisfy mod (~,4) = O.

Since the st,ructure attribute control arguments are interdependent, care
must be taken 'to ensure that specified values are consistent.

Padding

Since the Multics system is implemented on word-oriented hardware, records
recorded in any format are subject to block and/or record padding. On output,
the hardware requires that the number of characters in a block be evenly divisible
by 4; i.e., only words can be written. The I/O module therefore requires that

I mo d (b, 4) = 0, and pad s are cor d, i f n e c e s s a r y, tom e e t t his r e qui r em e n t . (Wa r n in g :

I this -padding may cause IBM-system rejection of a block if block length is not a
multiple of the record length.) The following rules govern padding on output:

f = fb:

f = f:

f = vb:

f = v:

f = vbs:

7/82

if iobl (the I/O buffer length in an iox $write record call; i.e., the
n umber of character s to be wr it ten) is less than r, the record is
padded on the right wi th blanks to length r. The last (or only)
record of the file may be padded on the rigFlt with N blanks, where
o < N < 19 is sufficient to satisfy ~ ~ 20, and mod (~,H) = 0.

if iobl is less than r, the record is padded on the right with blanks
to length r. Because the specified value of b must satisfy b > 20,
mod (~, 4) =- 0, and ~ = ~, there are no other padding possibilitIes.

the last (or only) record in every block is padded on the right with N
blanks, where ° < N < 12 is sufficient to satisfy b > 20, and mod
(~, 4) = O. Because tne number of records in a block-is variable, it
is difficult to determine which records of a file are padded, if any.

every record is padded on the right with N blanks, where 0 < N < 12 is
sufficient to satisfy b > 20, and mod (~, 4) = o. - -

the last (or only) record of the file is padded on the right with N
blanks, where 0 < N < 12 is sufficient to satisfy b > 20, and mod
(~, 4) = o.

5-52 AX49-01C

tape_i bm_

f vs: every record or record segment is padded on the right with N blanks,
where 0 < N < 12 is sufficient to satisfy ~ ~ 20, and mod (~,4) = O.

NOTE: This requirement can result in an indeterminate number of blanks
being inserted into a record at one or more indeterminate positions.

f u: every record is padded on the right with N blanks, where 0 < N < 12 is
sufficient to satisfy b > 20, and mod (~,4) = O.

Reading ~ File

The attach description needed to read a file is less complex than the
description used to create it. When a file is initially created by the I/O
module, the structure attributes specified in the attach description are
recorded in the file's header and trailer labels. These labels, that precede
and follow each file section, also contain the file name, sequence number, block
count, etc. Files created by OS installations also record the structure
attributes in the file labels. (See "DOS Files" below.) When a file is
subsequently read, all this information is extracted from the labels.
Therefore, the attach description need only identify the file to be read; no
other control arguments are necessary.

The file can be identified using the -name control argument, the -number
control arg~ment, or both in combination. If the -name control argument is
used, a file with the specified file identifier must exist in the file set;
otherwise, an error is indicated. If the -number control argument is used, a
file with the specified file sequence number must exist in the file set;
otherwise, an error is indicated. If the -name and -number control arguments
are used together, they must both refer to the same file; otherwise, an error is
indicated.

DOS Files

Files created by DOS installations differ from OS files in one major
respect DOS does not record HDR2 labels, which contain the structure
attributes. It is therefore necessary to specify all of the structure
attributes whenever a file created by a DOS installation is to be processed.

It is further necessary to distinguish between OS and DOS files recorded in
VBS or VS format. The segment descriptor word (SDW) of a zero-length DOS
spanned record has a high-order null record segment bit set, while a zero-length
OS spanned record does not. (See "V(B)S Format" below, for an explanation of
the SDW.)

The -dos control argument must be used when writing a VBS or VS file
destined for a DOS installation, or when reading a VBS or VS file written by a
DOS installation. In the interest of clarity, however, it is recommended that
the control argument always be specified when DOS files are processed,
regardless of record format.

5-53 AX49-01

Output Operations On Existing Files

There are two output operations that can be performed on an already
existing file: extension and modification. As their functions are
significantly different, they are described separately below. They do, however,
share a common characteristic. Like the replace mode of creation, an output
operation on an existing file logically truncates the file set at the point of
operation, destroying all files (if any) that follow consecutively from that
pOint. Because the block length is constrained to mod(b,4) = 0 for output
operations, a file whose block length does not satisfy this-criterion cannot be
extended or modified.

Extending ~ File

It is often necessary to add records to a file without in any way altering
the previous contents of the file. This process is known as extension.

Because all the information regarding structure, length, etc., can be
obtained from the file labels, the attach description need only specify that an
extend operation is to be performed on a particular file. (See "DOS Files"
above.) If the file to be extended does not exist, an error is indicated. New
data records are appended at the end of the file; the previous contents of the
file remain unchanged.

The file to be extended is identified using the -name control argument, the
-number control argument, or both in combination. The same rules apply as for
reading 8. file. (See "Readin.g a File" R.hove.)

The user may specify any or all of the structure attribute control
arguments when extending a file. The specified control arguments are compared
with their recorded counterparts; if a discrepancy is found, an error is
indicated.

Modifying! File

It is occasionally necessary to replace the
while retaining the structure of the file itself.
modification.

entire contents of a file,
This process is known as

Because all necessary information can be obtained from the file labels, the
attach description need only specify that a modify operation is to be performed
on a particular file. (See "DOS Files" above.) If a file to be modified does
not exist, an error is indicated. The entire contents of the file are replaced
by the new data records.

The file to be modified is identified using the -name control argument, the
-number control argument, or both in combination. The same rules apply as for
reading a file. (See "Reading a File" above.)

5-54 AX49-01

tape ibm_ tape ibm_

If any or all of the structure attribute control arguments are specified,
they must match their recorded counterparts; otherwise, an error is indicated.

Encoding Mode

The 110 mod ul e make s prov is ion for three data encod i ng mod es : EBC DIC,
binary, and ASCII. The default data encoding mode is EBCDIC.~ File labels are
always recorded using the EBCDIC character set.

When a file is created, the -mode control argument can be used to explicitly
specify the encoding mode (if not used, the list tape contents command does not I
supply the specific mode in its report).

If STR is the string ascii, the octal values of the characters to be recorded
must be in the range 000 < octal value < 377; otherwise, an unrecoverable 1/0
error occur s. If STR is the string ebcd-ic, the octal val ues of the character s
to be recorded must be in the range 000 < octal value < 177. (See the
ascii to ebcdic subroutine in the MPM Subsystem-Writers' Guide for the specific
AS C I 1-to - E BCD I C- map pin gus e d by the I 10m 0 d u 1 e .) I f S T R i s the s t r i n g bin a r y ,
any 9-bit byte value can be recorded. However, data written on IBM equipment
with binary mode may not be compatible with Multics, or vice versa.

Because the data encoding mode is not recorded in the file labels, the
-mode ascii and the -mode binary control arguments must always be specified when
subsequently processing an ASCII or binary file, respectively.

File Expiration

Associated with every file is a file expiration date, recorded in the file
1 abe 1 s . If a fil e consi s ts 0 f more than one fil e section, the same date is
recorded in the labels of every section. A file is regarded as "expired" on a
day wh 0 sed ate i s 1 ate r t han 0 r e qua 1 tot he ex p ira t ion d ate . On 1 y w hen t his
con d i t ion iss a tis fie d can the f i 1 e (a n d by imp 1 i cat ion, the r em a i n d e r 0 f the
file set) be overwritten. Extension, modification, and the replace mode of
creation are all considered to be overwrite operations.

The expiration date is recorded in Jul ian form; i.e., yyddd, where yy are
the last two digits of the year, and ddd is the day of the year expressed as an
integer in the range 1 < ddd < 366. ASpecial case of the Julian date form is
the value "00000", whicnmeans- always expired.

The expiration date is set only when a file is created. Unless a specific
date is provided, the defaul t value "00000" is used. The -expires control argument
is used to specify an expiration date where date must be of a form acceptable to
the convert date to binary subroutine (described in the MPM Subroutines). If
the I/O module is -invoked- through the iox $attach ioname entry point or the
iox $attach iocb entry point, date must be a-contiguous string, with no embedded
spaces; if lnvoked through the io call command, date may be quoted and contain
embedded spaces. Julian form, including "00000", is unacceptable. Because
overwriting a file logically truncates the file set at the point of overwriting,
the expiration date of a file must be earlier than or equal to the expiration
date of the previous file (if any); otherwise, an error is indicated.

7/82 5-55 AX49-01C

tape ibm tape ibm_

If an attempt is made to overwrite an unexpired file, the user is queried
for explicit permission. (See "Queries" below). The -force control argument
unconditionally grants permission to overwrite a file without querying the user,
regardless of "unexpired" status.

Volume Specification

The volume name (also called the slot identifier) is an identifier physically
written on, or affixed to, the reel or container of the volume. The volume
identifier is a six-character identifier magnetically recorded in the first block
of the volume, the VOL1 label. This implementation of the liD module assumes

f the volume name and volume identifier to be identical. If this is not the case,

I the volume identifier must be used in the volume specification field of the
attach description.

If a volume name begins with a hyphen (-), the -volume keyword must precede
the volume name. Even if the volume name does not begin with a hyphen , it may
still be preceded by the -volume keyword. The volume specification has the
following form:

-volume vni

If the user attempts to specify a volume name beginning with a hyphen
without specifying the -volume keyword, an error is indicated or the volume name
may be interpreted as a control argument.

Occasionally, it is necessary for a user to communicate some addiL.ional
information to the operator in connection with a mount request. This can be
done through the use of the -comment control argument:

vni -comment STR
or

-volume vni -comment STR

where the -comment STR keyword and text specify that a given message is to be

I displ ayed on the operator's console whenever volume vni is mounted (a comment
can be specified after each volume name suppl ied) . STR can be from 1 to 64
characters. STR can be quoted and contain embedded spaces.

Volume Switching

7/82

The Standard defines four types of file set configurations:

single-volume file a single file residing on a single volume

multivolume file a single file residing on multiple volumes

multifile volume multiple files residing on a single iolume

multifile multivolume multiple files residing on multiple volumes

5-56 AX49-01C

tape ibm tape ibm

The 1/0 module maintains a volume sequence list on a per-file-set basis,
for the life of a process. A minimal volume sequence list contains only one
volume, the first (or only) volume set member. If the file set is a multivolume
configuration, the sequence list may contain one or more of the additional volume
set members, following the mandatory first volume. If the sequence list contains
the entire volume set membership (which may be only one volume), it may then
contain one or more volume set candidates. Volume set candidates can become
volume set members only as the resul t of an output operation. When an output
o per at ion causes the amoun t 0 f data in the fi 1 e set to ex ceed the capac i t Y of
the current volume set membership, the first available volume set candidate
becomes a volume set member.

When the first attachment to any file in a file set is made, the volume
sequence list for the file set is initialized from the attach description. At
detach time, the 1/0 module empirically determines that one or more volumes are
volume set members, by virtue of having used them in the course of processing
the attached file. The remaining volumes in the sequence list, if any, are
considered to be candidates. In subsequent attachments to any file in the file
set, the order of volumes specified in the attach description is compared with
the sequence list. For those volumes that the 1/0 module knows to be volume set
members, the orders must match; otherwise, an error is indicated. Those volumes
in the sequence list that the 1/0 module considers to be candidates are replaced
by attach description specifications, if the orders differ. If the attach
description contains more volumes than the sequence list, the additional volumes
are appended to the list. This implementation maintains and validates the volume
set membership on a per-process basis, and maintains a list of volume set candidates
that is alterable on a per-attach basis.

Once a volume sequence list exists, subsequent attachments to files in the
file set do not require repeated specification of any but the first (or only)
volume, which is used to identify the file set. If the 1/0 module detects
physical end of tape in the course of an output operation, it prepares to switch
to the next volume in the volume set. An attempt is made to obtain the volume
name from the sequence list, either from the sublist of members, or the sublist
of candidates. If the list of volume set members is exhausted, and the list of
candidates is either empty or exhausted, the user is queried for permission to
terminate processing. If the reply is negative, the 1/0 module queries for the
volume name of the next volume, which becomes a volume set member and is appended
to the volume sequence list. If a volume name is obtained by either method, ..
volume switching occurs, and processing of the file continues.

If the 1/0 module reaches end-of-file section (but not of file) in the
course of an input operation, it first attempts to obtain the next volume name
from the volume sequence list. No distinction is made between the member and
candidate sublists, because a volume that ends wi th a file section must be
followed by the volume that contains the next section. If the sequence list is
exhausted, the user is queried as described above. If ei ther of these methods
results in a volume name, volume switching occurs and processing of the file
continues.

If the volume set is demounted at detach time, all volume set candidates oaf.
are purged from the volume sequence list.

9/80 5-57 AX49-01B

tape ibm_ tape_ibm_

Multiple Devices

If a volume set consists of more than one volume, the -device control
argument can be used to control device assignment, where N specifies the maximum
number of tape drives that can be used during this attachment (N is an integer
in the range 1 < N < 63). Drives are assigned only on a demand basis, and in no
case does the number actually assigned exceed the device limit of the process.
The default for an initial attachment to a file in a file set is N equals 1; the
default for a subsequent attachment to that file or any other in the file set is
N equals the previous value of N.

File Set Density

The I/O module makes provision for three densities: eoo, 1600, and 6250
bpi (bits per inch). Every file in a file set must be recorded at the same
density; otherwise, an error is indicated.

The -density control argument is used to explicitly specify the file set
density, where N specifies the density at which the file set is (to be) recorded
(N can be 800, 1600, and 6250 bpi). The file set densi ty can only be changed in
a subsequent attachment if the volume set was demounted by the previous attach.

In the absence of a -densi ty control argument, the file set densi ty is
determined as follows:

open for input: N = density of VOL1 label
open for output, crea~lng new Ille set~ N = 1600 bpi
open for output, old file set: N = density of VOL1 label

I Device Speed Specification

I The -speed control argument is used to specify acceptable tape device speeds

I
in inches per second. The module only attaches a device that matches a speed
spec i fied by th i s cont rol arg ument . If more than one speed is spec i fied, the
module attaches a device that matches one of the speeds. If more than one
device is attached, and more than one speed is specified, the devices will not

I necessarily all be of the same speed.

Opening

The opening modes supported are sequential input and sequential output. An
I/O switch can be opened and closed any number of times in the course of a
single attachment. Such a series of openings may be in either or both modes, in
any valid order.

7/82 5-58 AX49-01C

tape ibm_ tape ibm_

All openings during a single attachment are governed by the same attach
description. The following control arguments, all of which pertain to output
operations, are ignored when the switch is opened for sequential input:

-create -force
-expires -modify
-extend -replace

Resource Disposition

The 1/0 module utilizes two types of resources: devices (tape drives), and
volumes. Once an 1/0 switch is attached, resources are assigned to the user's
process on a demand basis. When the 1/0 switch is detached, the default resource
disposition unassigns all devices and volumes.

If several attaches and detaches to a file set are made in a process,
repeated assignment and unassignment of resources is undesirable. Al though the
processing time required to assign and unassign a device is small, all available
devices can be assigned to other processes in the interval between one detach
and the next attach. While volumes are not often "competed" for, mounting and
demounting is both time-consuming and expensive.

The -retain control argument is used to specify retention
across attachments, where STR specifies the detach-time resource
If STR is the string all, all devices and volumes remain assigned to
If STR is the string none, all devices and volumes are unassigned.
default retention.

of resources
disposition.
the process.
This is the

The 110 mod ul e prov id es a further means for speci fying or changing the
resource disposition subsequent to attachment. If retention of any devices or
volumes has been specified at or subsequent to attach time using the retention
control operation, the unassign resource command cannot be used. Instead, use
the retain none or retention -none control operation before detaching the I/O
module. (See "retention, retain none, retain all Operations" under "Control
Operations" below.)

Write Rings And Write Protection

Before a volume can be written on, a write ring (an actual plastic ring)
must be manually inserted into the reel. This can only be done before the
volume is mounted on a device. When a volume is needed, the 1/0 module sends
the operator a mount message that specifies if the volume is to be mounted with
or without a ring.

7/82 5-59 AX49-01C

tape ibm_ tape ibm_

If the at tach d esc r ipt ion conta ins an y 0 f the output control argument s
(-extend, -modify, or -create), volumes are mounted with rings; otherwise, they
are moun ted wi thout rings. When a vol ume set moun ted wi th ring s is opened for
seq u en t i ali n put, h a r d war e f i 1 e pro t e c tis use d to in h i bit any s pur i 0 u s wr i t e
operations-:- A volume set mounted without rings cannot be opened for
sequential output.

However, the following sequence of events is possible. An attach description
conta ins none 0 f the output control arg umen ts, but does conta i n the "-reta in
all" control argument. The volume set is mounted without rings. After one or
more (or no) openings for sequential input, the 1/0 switch is detached. The
volume set remains mounted because -of the "-retain all" control argument.
Subsequentl y, an attach is mad e whose desc ription contains an output control
argument, which requires that the volume set be mounted with rings. However, as
rings can only be inserted in a demounted volume, the entire volume set must be
demounted and then remounted.

This situation can be avoided by using the -ring (-rg) control argument to
specify that the volume set be mounted with write rings. If no output control
argument is specified in conjunction with -ring, the 1/0 switch cannot be opened
for sequential output.

When a volume set is mounted with write rings and the 1/0 switch is opened
for sequential input, the hardware file protect feature is used to safeguard the
file set.

Queries

Under certain exceptional circumstances, the 1/0 module queries the user
for information needed for processing to continue or instructions on how to
proceed.

Querying is performed by the command query subroutine (described in the
MPM Subroutines). The user may intercept oneor more types of query by establishing
a handler for the command question condition, which is signalled by the
command query subroutine. Al ternately, the answer command (described in the
MPM Commands)-can be used to intercept all queries. The use of a predetermined
"yes" answer to any query causes those actions to be performed that attempt to
complete an 1/0 operation without human intervention.

7/82 5-60 AX4g-01C

tape ibm_ tape ibm_

In the following list of queries, status code refers to
command question info .status code. See the MPM Reference Guide for information
regarding the command question condition and the command question info structure.

status code = error table $file aborted

This can occur only when the 1/0 switch is open for sequential output. The
I/O module is un&ble to correctly write file header labels, trailer labels,
or tapemarks. This type of error invalidates the structure of the entire
file set. Valid file set structure can only be restored by deleting the
defective file or file section from the file set.

The user is queried for permission to delete the defective file or file
section. If the response is "yes", the I/O module attempts deletion. The
attempt mayor may not succeed; the user is informed if the attempt fails.
If the response is "no", no action is taken. The user is probably unable
to subsequently process the file, or append files to the file set; however,
this choice permits retrieval of the defective file with another I/O Module.
In either case, the I/O switch is closed.

status code = error table_$unexpired volume

This can occur only when the I/O switch is open for sequential output. A
volume must be either reinitialized or overwritten; however, the-first file
or file section on the volume is unexpired.

The user is queried for permission to initialize or overwrite the unexpired
volume. If the response is "yes"; the volume is initialized or overwritten
and processing continues. If the response is "no", further processing cannot
continue, and the I/O switch is closed.

status code = error table_$uninitialized volume

A volume requires reinitialization or user verification before it can be I
used to perform any I/O. The I/O module distinguishes among four causes by
setting command question_info.query_code as follows:

query code = the first block of the tape is unreadable. The tape is - either defective, or recorded at an invalid density.
This query code can occur only if the I/O stream is I opened for sequential output.

query_ code = 2 the first block of the tape is not a valid IBM VOL1
1 abel. The tape is not formatted as an IBM SL volume.
This query code can occur only if the I/O stream is I opened for sequential output.

-

query_ code = 3 the volume identifier recorded in the VOL1 label is
incorrect. The volume identifier does not match the
volume name.

7/82 5-61 AX49-01C

tape ibm

que r y _ cod e = LI

I

tape ibm

the density at which the volume is recorded is incorrect.
The volume density does not match the specified density.
This query code can occur only if the I/O stream is
opened for sequential output.

I If the response is "yes", processing continues. If the response is "no",
I further processing cannot continue, and the I/O switch is closed.

status code = error table_$unexpired file

This can occur only when the I/O switch is open for sequential output. A
file that must be extended, modified, or replaced is unexpired. -

The user is queried for permission to overwrite the unexpired file.
response is "yes", processing continues. If the response is "no",
processing cannot continue, and the I/O switch is closed.

If the
further

status code = error table $no next volume

7/82

- -

This can occur when reading a multivolume file, or when writing a file and
reaching physical end of tape. The I/O module is unable to determine the
name of the next volume in the volume set.

The user is queried for permission to terminate processing. If the response
is "yes", no further processing is possible. If the I/O switch is open for
seque~tial_ o.utput, the I/O swi tch is closed. If the response is "no", the
user IS querIed for the volume name of the next volume. (See status code = 0
below.)

5-61 . 1 AX49-01C

tape ibm_ tape ibm_

In the following list of queries, status code refers to
command question info .status code. See the MPM Reference Guide for information
regarding the command question condition and the command question info structure.

status code = error table $file aborted

This can occur only when the 1/0 switch is open for sequential output. The
1/0 module is unable to correctly write file header labels, trailer labels,
or tapemarks. This type of error invalidates the structure of the entire
file set. Valid file set structure can only be restored by deleting the
defective file or file section from the file set.

The user is queried for permission to delete the defective file or file
section. If the response is "yes", the 1/0 module attempts deletion. The
attempt mayor may not succeed; the user is informed if the attempt fails.
If the response is "no", no action is taken. The user is probably unable
to subsequently process the file, or append files to the file set; however,
this choice permits retrieval of the defective file with another 1/0 Module.
In either case, the 1/0 switch is closed.

status code = error table_$unexpired volume

This can occur only when the 1/0 switch is open for sequential output. A
volume must be either reinitialized or overwritten; however, the-first file
or file section on the volume is unexpired.

The user is queried for permission to initialize or overwrite the unexpired
volume. If the response is "yes"; the volume is initialized or overwritten
and processing continues. If the response is "no", further processing cannot
continue, and the 1/0 switch is closed.

status code = error table $uninitialized volume

A volume requires reinitialization or user verification before it can be I
used to perform any 1/0. The 1/0 module distinguishes among four causes by
setting command question_info.query_code as follows:

query code = the first block of the tape is unreadable. The tape is - either defective, or recorded at an invalid density.
This query code can occur only if the 1/0 stream is I opened for sequential output. -

query_ code = 2 the first block of the tape is not a val id IBM VaLl
label. The tape is not formatted as an IBM SL volume.
This query code can occur only if the 1/0 stream is I opened for sequential ,,"f-1""I11f-

- Vt..AV!-''-A v.

query_ code = 3 the volume identifier recorded in the VaLl label is
incorrect. The volume identifier does not match the
volume name.

7/82 5-61 AX49-0-1C

tape ibm_ tape ibm_

status code = 0

This occurs only when the response to the above query is "no". The user is
r e que s ted to sup ply the n am e 0 f the n ext vol urn e . Th ere s po n s emu s t be a
volume name 6 characters or less in length, optionally followed by a mount
message. Even if the volume name begins with a hyphen, it must not be
preceded by the -volume control argument. If a mount message is to be
specified, the response takes the following form:

volume name -comment STR

where STR is the mount message and need not be a contiguous string. See
"Volume Specification" above. This is the only query that does not require
a "yes" or "no" response. If a preset "yes" is suppl ied to all queries,
this particular query never occurs.

Structure Attribute Defaults

When a file is created, the I/O module can supply a default value for any
or all of the file structure attributes. The defaults used are as follows:

1. record format - the default is f = vb

2. block length - the default is ~ = P192

3· record length f = u: undefined -f fb I f: block length = I r =
I = vb 1 v: -r = block length 4
T = vbs vs: r = 1044480 -

An injudicious combination of explicit specifications and defaults can result
in an invalid attribute set. For example, if -record 12000 is specified, applying
the defaults produces the following:

-format vb -block P192 -record 12000

This attribute set is invalid because, in vb format (see nRecord Formats" below)
the record length must be less than or equal to the block length minus 4.

Overriding Structure Attributes

Normally, the -format, -block, and -record control arguments are not included
in the attach description of an I/O switch that is opened for sequential input;
the structure attributes are extracted from the file labels. However, Ehe I/O
module permits the recorded structure attributes to be overridden by explicitly
specified attach description control arguments. Because the apparent structure
and characteristics of the file can be drastically altered, great care must be
taken to ensure that attribute overrides do not produce unexpected and unwanted
results.

5-62 AX49-01

If a file has the following recorded attributes:

-format fb -block 800 -record 80

an explicit specification of the -format fb and -record 800 control arguments
causes each block of ten 80-character records to be treated as a single
800-character record.

If a file has the following recorded attributes:

-format fb -block 800 -record 80

an explicit specification of the -format fb, -block 80, and -record 80 control
arguments causes the last 720 characters of every block to be discarded. No
error is indicated, because every block of the file contains at least one
80-character record.

Record Formats

Files are structured in one of four record formats: F(B), V(B), V(B)S, or
U. When a file is created, its record format should be chosen in accordance
with the nature of the data to be recorded. For example, data consisting of
80-character card images is most economically recorded in FB format, blocked
fixed-length records. Data consisting of variable length text lines, such as
PL/I source code produced by a text editor, is best recorded in VBS format,
blocked spanned records, so that blanks are not inserted except after the last
line.

With the exception of U format, files are either blocked or unblocked,
blocked being the usual case. Each block of an unblocked file contains just one
record, whereas each block of a blocked file can contain several records.
Blocking can provide a significant savings of processing time, because several
records are accessed with a single physical tape movement. Furthermore, as
blocks are separated by distances of blank tape, blocking reduces the amount of
tape needed to contain a file.

F(B) FORMAT

In F format, records are, of fixed (and equal) length, and files have an
integral number (N) of records per block. If the file is unblocked, N equals 1
and the record length (r) equals the block length (b). If the file is blocked,
N > 1 and b equals (~ *-N) where N is known as the blocking factor.

5-63 AX49-01

tape ibm_ tape ibm_

For example, if r equals 800 and b equals 800, then the file is unblocked and
each block contains jUst one record.

data 888888
block

If r equals 800 and b equals 2400, then the file is blocked, the blocking factor
is 3, and each block contains three records.

data 888888
block ~_8_0_0 __ ~_8_0_0 __ ~ __ 8_00 __ ~1 ~1 __ 8_0_0 __ ~_8_0_0 __ ~ __ 80_0 __ _

The Standard for F format records permi ts recording short blocks. A short block
is a block that contains fewer than N records, when N is greater than 1. Although
the 1/0 module can read this variant of F format, it writes a short block in only
one case. The last block of a blocked file can contain fewer than N records if there
are no more records to be wri tten when the file is closed. Therefore, blocked F format
files wri tten by the 1/0 module are always in FBS (fixed blocved standard)
format.

There are two special cases in which a datum is padded out to length r. The
first case is that of iobl (the number of characters to be written) equals 0: a-record
of r blanks is written. When such a record is subsequently read, it is interpreted
as a record of r blanks~ and Not as a zero-length record. The second case is that
of 0 is less than iobl is less than r: the record is padded on the right wi th blanks
to length r, and the padded record wri tten. When such a record is read, the original
characters plus the padding are returned. The case of iobl is greater than r is in
error.

V(B) FORMAT

In V format, records and therefore blocks may vary in length. Each record is
preceded by a four-character record descriptor word (RDW) that contains the actual
record length in binary, including the length of the RDW itself. Each block is
preceded by a four-character block descriptor word (BDW) that contains the actual
block length in binary, including the length of the BDW itself.

5-64 AX49-01

tape_ibm_

V format files have an integral number of records per block, N. If the file
is unblocked, b = r + 4; if blocked, b > r + 4; For blocked recorQs, the number of
records per block varies indirectly with-the size of the records.

If r equals 804, b equals 808, and the file is unblocked, records of up to 800
characters can be written, but each block can contain only one record.

data

block
3 3
8 8 376
4 0

2 2
8 8 280
8 4

8 8
o 0
8 4

800

800

If r equals 804, b equals 808, and the file is blocked, records of up to 800
characters can be written. Each block can contain a maximum of 201 zero-length
records (a record written as a 4-character RDW containing the binary value 4).

data

block

V(B)S FORMAT

~ __ 3_7_5 __ ~1 ~I ~ ______ 8_0_0 ______ ~

6 3
6 8 376
8 0

2
8
4

280
8 8
o 0
8 4

800

In V(B)S format, a single record is formatted as one or more record
segments. A record segment contains either a complete record, the initial portion
of a record, a medial portion of a record, or the final portion of a record. No two
segments of the same record can be contained in the same block, but a block may
contain the segments of several different records. The maximum record length is
limited only by the maximum size of a storage system segment, currently 1,044,480
characters.

V(B)S format files have an integral number of record segments per block. If
the file is unblocked, each block contains only one record segment; if blocked, the
number of record segments per block is variable. In either case, rand bare
independent of ~ne another.

5-65 AX49-01

Each record segment begins wi th a four-character segment descriptor word
(SDW). The SDW contains a four-character record segment length in binary, that
includes the length of the SDW itself. (See "DOS Files ll above.) The SDW also contains
a one-character record segment code in binary, that indicates if the segment contains
a complete record, or an initial, medial, or final portion. In the examples below,
r equals 1000 and b equals 800.

data

block

data

record
segment

block

U FORMAT

2
0
~

~ ___ 4_0_0 ____ ~11 ~ ____________ 1_0_0_0 __________ __

2 4 4 8 8 2 2
0 200 0 0 400 0 9 792 1 1 208
4 8 4 0 6 6 2

_____ 4_0_0 __ ~1 ~1 ____________ 1_0_0_0 __________ ~

~I 400

400 ml 200 m 792 81
7

o 9
o 6

U format files contain records that do not conform to either F(B), V(B), or V(B)S
format. A U format file is always unblocked. The record length is undefined,
and the block length must equal or exceed the maximum record length. Blocks may vary
in length. The special case of wri ting a record of less than 20 characters produces
a block padded to length 20 with blanks.

data ~ 1~ ____ 1_27 ____ ~1 ~ 1 ________ 15_6 ____ ~

block 60 128 1c:.1:.
'..Jv

5-66 AX49-01

tape ibm

Volume Initialization

The Standard requires that all volumes be initialized with VOL1 and dummy
HDR 1 labels before they are used for output. The I/O module provides a semiautomatic
volume initialization mechanism that performs this operation as an integral part
of the output function. It should be noted that, as stated above, a newly
initialized volume contains a dummy PDR1 label, but not a dummy file. If a file
is created on a newly initialtzed volume without an explicit specification of
the -number control argument, the I/O module attempts to append it to the file
set, resulting in an error.

Conformance To Standard

Wi th two exceptions, the I/O module conforms to the Standard: the I/O
module cannot process block lengths in excess of 81~2 characters; and the I/O
module ignores the data set security field in the HDR1 label on input, and
records it as 0 on output.

Label Processing

VOL1

The label is processed on input and output. The owner-name and
address-code-field, character positions (CP) L! 2 to 51, holds a three-character I
volume authentication code.

UVL 1 - UVL8

These labels are not written on output and ignored on input.

HDR1/EOF1/EOV1

The labels are processed on input and output. The system-code-field, CP 61
to 73, is recorded as "MULTICS IBM"

HDR2/EOF2/EOV2

The 1 abel s are proces sed on in put and output. The 17 -char acter
job/job-step-identification-field, CP 18 to 34, is recorded as fOllows:

"MULTICS /" :: Julian creation date: l " "
HDR3/EOF3/EOV3 - HDRP/EOFP/EOV8

These labels are not written on output and are ignored on input.

7/82 5-67 AX49-01C

tape ibm_ tape ibm_

These labels are not written on output and are ignored on input.

UHL1/UTL1 - UHLP/UTL8

These labels are not written on output and are ignored on input.

Error Processing

If an error occurs while reading, the I/O module makes 25 attempts to
backspace and reread. If an error occurs while writing, the I/O module makes 10
attempts to backspace, erase, and rewrite. Should an error while reading or
writing data prove to be unrecoverable, the I/O Module "locks" the file, and no
fur the r I/O i s po s sib Ie. (See res e t err 0 rIo c k 0 PER A T ION, below.) I fan
unrecoverable error occurs while writing file-labels or tapemarks, the user is
queried as to preserving the defective file versus file set consistency. (See
"Queries" above.) If an unrecoverable error occurs during certain phases of
volume switching or label reading, the I/O switch may be closed. The overriding
concern of the error recovery strategy is: .

...
1. to maintain a consistent file set structure

2. to ensure the validity of data read or written

Close Operation

The I/O switch must be open.

Control Operation

I The I/O module supports eleven control operations.

I
hardware status
status

volume status
file status
feov-

close rewind
retenLion
retain none
retain-all
reset error locke
volume_density

In the descriptions below, info ptr is the information pointer specified in an
iox $control call.

7/82 5-68 AX49-01C

hardware status OPERATION

This operation returns the 72-bit 10M status string generated by the last
tape I/O operation. The I/O switch must be open. The substr argument
(10M bits, 3, 10) contains the major and minor status codes generated by ~ne
tape-subsystem itself. (See MTS500 Magnetic Ta¥li Subsystem, Order no. DB28 for
an explanation of major and mlnor status.) e variable to whTch info_ptr
points is declared as follows:

declare 10M bits bit(72) aligned;

status OPERATION

This operation returns a structure that contains an array of status codes,
providing an interpretation of the 10M status string generated by the last tape
I/O operation. These codes may be used in calls to the com err subroutine, or
may be converted to printable strings by calling the convert status code
subroutine. (See the description of the convert status code subroutine Tn the
MPM Subsystem Writers' Guide and the descrjption-of the com-err subroutine in
the MPM Subroutines.) The I/O switch must be open. The structure to which
info_ptr points, device_status.incl.pI1, is declared as follows:

dcl dstat _ptr pointer;
;::J ~1 1 ;::J ~'T'; ~~ ~~~~,,~ based (dstat _..1.._\
uv...1... J U<:;;V.LVC: i::ilJt:LlJlA.i::i _P lor J,

2 10M bits bit(72) aligned, /* 10M status */
2 n mlnor fixed bin, 1* number of minor codes */
2 major fixed bin(35), /* major status code */
2 minor (10) fixed bin(35) ; /* minor status codes */

volume status OPERATION

This operation returns a structure that contains the status of the current
volume. If the I/O switch is open, the current volume is the volume on which
the file section currently being processed resides. If the switch has never
been opened, the current volume is the first (or only) volume in the volume set.
If the switch was opened, but is now closed, the current volume is that on which
the last file section processed resides. If the switch was closed by the I/O
module as the result of an error while writing file header labels, trailer
labels, or tapemarks, the current volume is the last (or only) volume in the
volume set. The structure to which info_ptr points,
tape_volume_status.incl.p11, is declared as follows:

dcl
dcl

tvstat ptr
1 tape volume status
2 volume name-
2 volume-id
2 volume-seq
2 tape_drive

2 read errors
2 write errors

pointer;
based (tvstat ptr),
char(6), /* volume name */
char(6), 1* from VOL1 label */
fixed bin, /* order in volume set */
char(8), /* tape drive name */

1* "" if not mounted */
fixed bin, /* read error count */
fixed bin; /* write ~rror count */

5-69 AX49-01

In the current implementatiori of
write errors are always zero. Eventually,
supplles these values.

the I/O module, read errors and
the resource control package (RCP)

file status OPERATION

This operation returns a structure that contains the current status of the
file specified in the attach description. If the I/O switch has never been
opened, no information can be returned; this situation is indicated by

I tape file status.state = O. If the switch was opened, but is now closed, the
current status of the file is its status just prior to closing. If the switch
was closed by the I/O module as the result of an error while writing file header
labels, trailer labels, or tapemarks, the entire file may have been deleted. In
this case, the structure contains the current status of the previous file in the
file set, if any. The structure to which info ptr points, file status.incl.p11,
is declared as follows: - -

dcl tfstat ptr
dcl 1 tape file status

2 state -

2 event code

2 file id

2 file seq
2 cur section

2 cur volume

2 pad1
2 pad2
2 creation

2 expiration

2 format code

2 blklen
2 reclen
2 blocked
2 mode

2 cur blkcnt

pointer;
based (tfstat ptr),
fixed bin, - /* 0 - no information */

1* 1 - not open */
/* 2 - open, no events */
/* 3 - open, event lock */

fixed bin(35), /* error table code if
state-= 3 *7

char (17) ,

fixed bin,
fixed bin,

char (6),

fixed bin,
fixed bin,
char (5),

char(5),

fixed bin,

fixed bin,
fixed bin(21),
bit(1),
fixed bin,

/* file identifier */
/* "" if -no labels */
/* order in file set */
/* current or last

I section processed */
/* volume name of volume

on which cur section
resides */

/* not used */
/* not used * /
/* Julian creation date */
/* "00000" if -no labels */
/* Julian expiratlon date */
1* "00000" if -no labels */
1* 1 - U format *7
/* 2 - F(B) format */
1* 3 - V(B) format */
1* 4 - V(B)S format */
/* block length */
1* record lenath */
1* "O"b - no T "1"b - yes */
/* 1 - ASCII */
1* 2 - EBCDIC */

fixed bin(35); 1* current block count */

The "event" referenced in,tape_file_status.state above is defined as an
error or circumstance that prevents continued processing of a file. For
example, parity alert while reading, reached end of information, no next volume
available, etc.

5-70 AX49-01

tape ibm tape ibm

feov OPERATION

This operation forces end of volume when writing a file. The switch must
be open for sequential output. -The operation is equivalent to detection of the
end of tape reflective strip. The info ptr should be a null pointer.

close rewind OPERATION

This operation specifies that the current volume is to be rewound when the
1/0 swi tch is next closed. info ptr should be a null pointer. The swi tch need
not be open when the operation is issued. The operation effects only one close;
subsequent closings require additional control calls.

retention, retain none, retain all OPERATIONS I

These operations cause the tape resources currently in use, i.e., tape I
drives(s) and tape volume(s) , to be unassigned or retained at detach time according
to the specified retention argument or operation. The info ptr points to a I
fixed binary number with value as defined below:

retention -none or retain none I
causes none of the tape resources currently in use to remain assigned
at detach time.

2 retention -volume ,
C8uses the tape volume(s) currently in use to remain assigned at detach
time.

3 retention -device I
causes the tape drives(s) currently in use to remain assigned at detach
time.

4 retention -all or retain all I
causes all of the devices-and volumes currently in use to remain assigned
at detach time.

reset error lock OPERATION

This operation unlocks the files so that further 1/0 is possible subsequent
to a pari ty-type 1/0 error while reading. Such an error is indicated by a
previous iox ~read record or iox ~position call having returned the status code
error table $tape error. In this case, the value of tape file status.event lock
is error taole $tape error. (See file status OPERATION, above~) The 1/0 switch
must be open for sequential input. The info ptr should be a null pointer.

7/82 5-71 AX49-01C

tape ibm tape ibm

NOTE: IF RECORDS ARE BLOCKED AND/OR SPANNED, THE VALIDITY OF ANY RECORDS
READ SUBSEQUENT TO A PARITY-TYPE I/O ERROR IS NOT GUARANTEED. (The
parity error is reported for the first read of a logical record in
the block. The actual location of the error in the block in unknown.)

I volume density OPERATION

I This operation returns the encoded density of the volume set. The I/O
s wit c h nee d not be 0 pen . Th e v a ria b 1 e to wh i chi n fop t r po in t sis dec 1 are d as
follows:

I
I

I

I

declare volume_density fixed bin;

The values returned and their meanings are listed below:

value meaning

-1
2
3
4

Detach Operation

none specified yet
800
1600
6250

The I/O swi tch must be closed. If the I/O module determines that the
membership of the volume set may have changed, the vol~me set members are listed
before the set is demounted; volumes not listed are available for incorporation
into other volume sets. If the volume set is unlabeled, only the name of the
last volume processed is listed.

Modes Operation

This I/O module does not support the modes operation.

Position Operation

The I/O switch must be open for sequential input. The I/O module does not
support skipping backwards. In the course of a position operation, events or
errors may occur that invoke the query mechanism. (See "Queries" above.) An
unrecoverable error locks the file, and a severe error causes the I/O module to
close the I/O switch.

9/80 5-72 AX49-01B

t8pe ibm tape ibm_

Read Length Operation

Th e I lOs wit c h m us t be 0 pen for seq u en t i al in put . In the co u r s e 0 f a
read length operation, events or errors may occur that invoke the query mechanism.
(See- "Queries" above.) An unrecoverable error locks the file, and a severe
error causes the 1/0 module to close the 1/0 switch.

Read Record Operation

The 1/0 switch must be open for sequential input.

Write Record Operation

The 1/0 switch must be open for sequential output.

Unlabeled Tapes

The 1/0 module supports basic processing of unlabeled tapes that are structured
according to the OS Tape Labels document mentioned at the beginning of this
description. DeS lead:rngtape mark (LTM) unlabeled format tapes cannot be processed.

The -no labels control argument specifies that unlabeled tapes are to be
processed. ihe -no labels control argument and any of the following control
arguments are mutual~y exclusive:

-name -extend
-replace -modify
-expires -dos
- force

Volume switching is handled somewhat differently for unlabeled tapes. When
the 1/0 module detects a tape mark in the course of an input operation, it
determines whether or not any volumes remain in the volume sequence list. If
another volume appears in the list, volume swi tching occurs and processing continues
on the next volume. If the list is exhausted, the 1/0 module assumes that end
of information has been reached. Detection of end of tape during an output
operation is handled in much the same way as it would be for a labeled tape.
(See the OS TaDe Labels document for a comDlete description of unlabeled volume
s wit chi n g st r a £ e g y .) --

Control Operations from Command Level

All control operations supported by this 1/0 module can be executed from
command level by using the io_call command. The general format is:

io call control switchname operation -control arg

9/80 5- 7 3 AX49-01B

I

tape ibm_ tape ibm_

where:

1. swi tchname
is the name of the I/O switch that is attached through the 1/0
module to an IBM tape file-set.

2. operation
is any of the control operations previously described and summarized
below.

operation abbreviation control arg

status st -all
hardware status hst
reset error lock reI
file status - fst
volume status vst
retentTon ret -none, -volume,

-device, -all
retain all reta
retain none retn
close rewind crw
feov feov

3. control arg

-none

-volume

-device

-all

Examples

IS an operation control argument val id only for the retention and
the status oper ations. A control argument is requi red for the retent ion
operation; possible control arguments are described below:

causes none of the tape resources currently in use to remain assigned
at detach time.

causes the tape volume(s) currently in use to remain assigned at
detach time.

causes the tape drivesCs) currently in use to remain assigned at
detach time.

causes all of the devices and volumes currently in use to remain
assigned at detach time.

The -all control argument is optional for the status operation. This
control argument prints all available status information such as the
device status, the volume status, the file status, and the hardware
status. The -all control argument is only for use with the status
operation through the io call command. It is not defined for use in
the status operation witn iox_$control directly.

In the following examples, it must be emphasized that an attach description
describes a potential operation, and in and of itself does nothing to the file.
Depending upon the sequence of openings in various modes, one attach description
can perform diverse functions.

7/82 5-74 AX49-01C

tape ibm tape ibm

tape ibm_ 042381 -nm ARD21 -cr -fmt vbs -ret all

A file named ARD21 is to be appended to the file set whose first volume is
042381. If a file named ARD21 already exists in the file set, openings for
sequential input access that file, and openings for sequential output replace
the old file of that name. If no file named ARD21 already exists in the file
set; openings for sequential input prior to the first opening for sequential output
fail. The first opening for sequential output creates the file by appenaing it
to the end of the file set. Subsequent openings for sequential input access the
newly created file, and subsequent openings for sequential output replace it.
Spanned records are specified; the block length defaults LO 8192, the record
1 eng t 11 to 1 0 4 4 4 8 0 , and the en cod in g mod e toE BCD Ie. Th e den sit Y d e fa u 1 t s to
1600 cpi, and the maximum number of devices defaults to 1. The volume set and
devices are retained after detachment.

tape_ibm_ 042381 -nm fargo.p11 -nb 2 -cr -force -fmt fb -bk POO -rec 80

A file named fargo.p11 is created at position 2 in the file set. If a file
named fargo.p11 already exists at position 2, openings for sequential input prior
to the first opening for sequential output access that file. The fIrst opening
for sequential output creates a new file, and subsequent openings for
sequential input access the new file. If no file named fargo.p11 exists at
position 2, openings for sequential input prior to the first opening for
sequential output fail. If a file exists at position 2, it is replaced irrespective
of its expIration date.

tape ibm_ 042381 -nm zbx -rpl zbx -cr -md ascii -bk 6000 -exp 2weeks

A file named zbx is created, repl acing a file of the same name. Openings
for sequential input prior to the first opening for sequential output access the
old file. Each-opening for sequential output creates a new file, and each subsequent
open ing for sequent ial input access tne most recentl y created file. The spec i fied
encoding mode is ascii~ The record format defaults to VB, and the record length
defaults to 5996 because the block length is specified as 6000. The file is
protected from overwri ting for a period of two weeks, so each opening for
sequential output subsequent to the initial opening for sequential output causes
the user to be queried for permission to overwrite. -

tape_ibm_ 042381 042382 -nb 14 -nIb -cr -dv 3

A file is to be created at position 14 on volume 042381. If a file already
exists at position 14, an opening for sequential input prior to the first opening
for seq u en t i a lou t put a c c e sse s t hat f i 1 e ; 0 the r wi s e, an err 0 r i sin d i cat e d. Op e n in g s
for sequential-output create new files, and openings for .sequential input subsequent
to the first opening for sequential output access the most recent creation. The
default record format is VBS, the-default block length R192, and the default
r e cor dIe n g t h 1 0 4 4 480 . Th e vol urn e set i sun 1 abe 1 e d . 1ft h e f i 1 e ex c e e d s the
capacity of volume 042381~ it is continued on volume 042382. If it then exceeds
the capacity of volume 042382, the user is queried for instructions. A maximum
of three devices can be used.

tape ibm_ 0423P1 042382 042383 -nm THESIS -ring

9/80 5-75 AX49-01B

I

tape ibm

A f i 1 e n am edT H E SIS i s to be rea d . Th e I las wit c h can 0 n 1 y be 0 pen for
sequential input. The volume set consists of at least three volumes, and they
are mounted with write rings. Only one device can be used.

tape_ibm_ 042381 -nm FF -nb 3 -ext -dv 4 -ret all

A file named FF at posi tion 3 in the file set is to be extended. Each
opening for sequential input accesses the current version. Each opening for
sequential output produces a new version. A maximum of four devices can be
used. Resources are retained after detachment.

tape_ibm_ 0423P1 -vol -COS -com in slot 000034 -nb 6 -mod -fc

Th e f i 1 eat po sit ion 6 in the f i 1 e set i s to bern od i fie d, i r res p e c t i v e 0 f
its expiration date. Each opening for sequential input accesses the current
version. Each opening for sequential output produces a new version. The second
volume of the volume set has volume ldentifier -COS, and can be found in slot
000034.

Attach Control Arguments

The following is a complete list of all valid attach control arguments in
both long and short forms:

7/82

-block b

-clear
-create
-density N
-dev ice N
-dos
-expires date
-extend --
-force
-format f

-mode STR
-modify
-name STR

-no labels
-number N
-record r
-replace-STR
-retain STR
-ring

-bk b

-cl
-cr
-den N
-dv N

20 < b < 32760
mod-(~,4) = 0 if open for sequential_output

N = poa : 1600
< N < 63

6250

-exp date valid date
-ext
-fc
-fmt f

-md STR
-mod
-nm STR

-nIb
-nb N
-rec r
-rpl STR
-ret STR
-rg

f = fb : f :
vbs : vs

STR = ebcdic

vb I v
: u
I ascii

STR < 17 characters

: binary

< P characters (restricted subset) with -create

1 < N < 9999
1 "(r "(1044480
ST~ < 17 characters

STR-= all : none

The following is a list of positional keywords:

-comment STR -com STR STR < 64 characters
-volume vni -vol vni volume name < 6 characters

5-76 AX49-01C

The tape_mult_ I/O module supports I/O to and from Multics standard tapes.

tape_mult reelid {-control_args}

ItIhere:

1. reelid
is the name of the tape reel to be mounted for this attachment.

2. control args

7/82

can be chosen from the following:

-comment STR, -com STR
specifies a comment string that is displayed to the operator. It
can be used to give the operator any special instructions that are
relevant to this attachment. The comment string must be enclosed
within quotes if it contains blanks or other spacing characters.

-density N, -den N
s p e c i fie s the den sit Y set tin g 0 f the at t a c h edt ape d r i v e, wh ere N
can be 8 00 , 1 600 ,or 6 25 0 bpi. Th e de fa u 1 t s are ROO for 7 - t r a c k ,
and 1600 for 9-track. When opened for reading, the specified denslLY
is used only as a first guess. If the tape cannot be read at that
density, tape_mult_ tries the other density.

-error tally, -et
wnen opened for stream_input, displays an error summary on the
user output stream upon closing the tape I/O swi tch. This error
summary includes: total number of read errors; number of errors
that were successfully recovered for each of 1 to 10 backspace/re-read
retrys; number of errors that could not be recovered by
backspace/re-reading but were successfully recovered by reading forward
and find ing a good copy of the or ig inal record in error; and the
number of times that both backspace/re-read and read forward recovery
failed, but successful recovery was accomplished by backspacing two
files, forward-spacing two files (thus posi tioning the tape at the
beginning of the current file after tape motion past the tape cleaner
and head in both directions dislodges any buildup of oxide particles
on the tape or head surface) and then reading forward until original
record in error was read successfully. This information is obtained
from metering data kept in the tape mult work segment, defined by
tmdb.incl.p11. I

-speed N1{,N2, ... ,Nn}, -ips N1{,N2, ... ,Nn} I
specifies desired tape arive speeds in inches per second, where Ni
can be 75, 125, or 200 inches per second. (See "Devjce Speea
Specification" below.)

~track N, -tk N
specifies the track type of the tape drive that is to be attached,
where N may be either 9 or 7. The default is 9.

5-77 AX49-01C

I

-write, -wrt
mounts the tape reel with a write ring. The default is to mount the
tape reel without a write rinB.

-system, -sys
increases tape performance by using
performance optimizations.
>system control 1>rcp>workspace.acs or
this co~trol ariument.

-volume set name STR, -vsn STR

more I/O buffers and other
Access to

rcp_sys is required to use

specifTes the contents of the volume set name field located in the
tape label record (see section 3 of this manual for a description of
the standard Mul tics tape label record). When opened for writing,
STR is written into the volume set id field of the tape label record.
If this control argument is not specified, the volume set id field
wi 11 be set to bl anks. When opened for read ing, the vol ume set id
field of the tape label is compared to STR. If they match or-if the
volume set id field is padded wi th blanks, the open operation is
allowea to-be completed. If the volume set id field and STR do not
match and the volume set id is not padded with blanks,
error table ~bad label is returned. STR can be up to 32 characters
in length.

I Device Speed Specification

The -speed control argument is used to specify acceptable tape device speeds
in inches per second. The module only attaches a device that matches a speed
specified by this control argument. If more than one speed is specified, the
module attaches a device that matches one of the speeds. If more than one
device is attached 1 and more than one speed is specified, the devices will not
necessarily all be of the same speed.

Opening

The opening modes supported by tape mult are stream input and stream output.
The extend option is not allowed. If-the -opening mode is stream output, the
attach description must have specified the -write control argument. -

Read Record Operation

The get chars operation reads Multics standard records until either the
call er 's buffer is filled, or until the end of the tape vol ume is encountered.
If not all the characters on a tape record fit into the caller's buffer, they
are saved by the I/O module for the next get_chars call.

7/82 5-78 AXlt9-01C

tape_mult_

Write Record Operation

The put chars operation formats the data into Multics standard records of
1024 data words each. Each record is written as it is filled. A partially
filled record is not written onto the tape until it is filled with a subsequent
put chars operation, an error count order is done, or the switch is closed.

Control Operation

The tape_mult_ 1/0 module supports the control operation with three orders. I

error count
~his order is supported only for the stream_output opening mode. It causes
all output currently buffered to be written. An up-to-date error count is
returned in the (fixed bin) variable referenced by the info ptr argument.

boot program
-This order allows the specification of a boot program to be written into

the tape label record (see Section 3 for a discussion of the bootable
Multics tape label record format and function). The specified boot program
must be coded in absolute self-relocating ALM assembly language and must be
less than or equal to 832 (1500 octal) locations in length. The specified
boot program is overlayed starting at absolute location 300 (octal) in the
tape label record. When a Multics tape containing a bootable label record
is bootloaded, control is transferred to location 300 via the tape label
record transfer vector, the first 8 words of a bootable Multics tape label
record. The 1/0 switch must be closed when this control order is executed.
The specified boot program is written
tape is subsequently opened for output.
of the follovling form:

dcl 1 boot program info
2 verslon -
2 boot program ptr
2 boot-program-text length
2 boot=program=name-

onto the tape label record when the
The info ptr must point to a structure

based (info ptr),
fixed bin,
pointer,
fix ed bin (2 1) ,
char (32) unaligned;

where:

1. version
is the version number of this structure, currently 1.

I

I
2. boot program ptr

is a pointer to
boot program.

the hpcrinnincr --0-····-·-0 of the text section of the specified I
3. boot program text length I

is the length in 36-bit words of the text section of the specified
boot program.

4. boot program name

7/82

if nonblank, is the name of the boot program that the user wants
recorded in the boot pgm path field of the label record. If
boot program name is brank~ then the absolute pathname of the boot
program is written into the boot_pgm_path field of the label record.

5-78-. 1 AX4g-01C

tape mult - -

get boot program
- Thi~ order allows a boot program to be extracted -from the tape label when

the tape is opened for input. This control order must be issued immediately
after the tape is opened for input and before the first read operation is
begun. If it is executed later, then error table $no operation is returned.
The info ptr must point to the boot program inlo structure defined above
for the boot program control order. -The user must set the version number.
Then a pointer to a buffer, containing the extracted boot program, its
length, and the entryname portion of the boot program pathname, is returned
to the user. If the get boot program control order IS executed on a tape
that has a standard tape label-record, boot program ptr is set to nUll.

I Control Operations From Command Level

I All control operations can be performed from the io call command, as follows:

I io call control switch order arg

where:

switch
is the name of the 1/0 switch.

order arg
must be one of the following:

error count
boot program PATH
get_boot_program

Operations Not Supported

The tape_mult_ 1/0 module does not support the following operations:

get line
modes

7/82 5-78.2 AX49-01C

tape_nstd tape nstd

Name: tape_nstd

The tape nstd I/O module supports I/O to/from tapes in nonstandard or
unknown formats. This module makes no assumptions about the format of the tape
and returns one logical record for each physical record on the tape. Since the
information upon the tape, includ ing tape marks, is not interpreted by this I/O
module, the user must detect the logical end of information on the reel.

En try po in t sin the mod u 1 ear e no t call e d d ire c t 1 Y by use r s; rat her , the
module is accessed through the iox subroutine. See the MPM Reference Guide for
a general description of the I/O system and for a discussion of files.

Attach Description

The attach description has the following form:

tape_nstd reel num {-control args}

where:

1 . reel num
is the tape reel number.

2. control args

7/82

can be chosen from the following:

-block N, -bk N
specifies the maximum record length, in bytes, for this attachment.
The default value for N is 11200. Values of N greater than 11888
require access to either the >system library 1>rcp sys gate or
>sc 1 >rcp>workspace. acs (see "Buffer Si zefl below)-: --

-comment STR -com STR
specifies a comment string that is displayed to the operator. It
can be used to give the operator any special instructions that are
relevant to this attachment. The comment string must be enclosed
within quotes if it contains blanks or other spacing characters.

-density N, -den N
specifies the initial density to be used for this attachment. Acceptable
values for N are 2nO, 556, POO, 1600 and 6250; the default is ROO
bpi.

-speed NH,N2, ... ,Nn}, -ips NH,N2, ... ,Nn} I
specifies desired tape arive speeds in inches per second, where Ni
can be 75, 125, or 200 inches per second. (See "Device Speea
Specification" below.)

-track N, -tk N
means that the tape is N track. Acceptable values for N are 7 and
9. If no track argument is supplied then 9 track is assumed.

5-79 AX49-01C

tape nstd tape nstd

-write
means that the tape is to be mounted with a write ring. This argument
must occur if the 1/0 swi tch is to be opened for output or input/output.

I Device Speed Specification

I
I

The -speed control argument is used to specify acceptable tape device speeds
in inches per second. The module only attaches a device that matches a speed
specified by this control argument. If more than one speed is specified, the
module attaches a device that matches one of the speeds. If more than one
device is attached, and more than one speed is specified, the devices will not
necessarily all be of the same speed.

Open Operation

The opening modes supported are sequential input, sequential output, and
sequent i al input output. If an 1/0 swi tch at tached v i a the tape nstd 110 module
is to be opened- for output or input output, the -wr i te control argument must
occur in the attach description. -

Control Operation

7/82

The following control operations are implemented by this 1/0 module:

backspace file
positions the tape before the file mark next ~ncountered while rewinding
the tape (if no file mark is encountered then the tape is left at load
point).

backspace record

bcd

positions the tape before the previous record on the tape (or file
mark if the current record is preceded by a file mark).

sets hardware mode to binary coded decimal (BCD). See "Hardware Modes"
below.

binary
sets hardware mode to binary (this is the defaul t) .
Modes" below.

data security erase

See "Hardware

-erases tne tape media from its current position to the end of tape
(EOT) reflective marker. Additional "erase" control orders can be
issued to erase any data written beyond the EOT reflective marker. No
more than 40 additional erase control orders should be issued since
the tape volume could run off the supply reel.

d200
sets density to 200 bpi.

d556
sets density to 556 bpi.

5-RO AX49-01C

tape nstd tape nstd

7/R2

d800
sets density to ROO bpi. This is the default.

d1600
sets density to 1600 bpi.

d6250
sets density to 6250 bpi.

erase
erases tape for a distance of three inches from the current position. I

fixed record length
specifies that no record length information is expected by the caller
sin c e all d a tar e co r d s are 0 f a fix e dIe n g t h s p e c i fie d by a fix ed
bin(21) value. The record length is specified in bytes.

forward file
positions the tape past the next file mark encountered on the tape.

forward record
positions the tape after the next record (or file mark if one follows
the current record) encountered on the tape.

io call

nine

supports the io call command protocol for orders that expect nonnull
info pointers. - This order is prepared to interpret and print the
status returned by the saved status and request_status orders.

sets hardware mode to eight/nine bit conversion.
below.

See nHardware Modes n I
protect

sets write inhibit regardless of the presence of a write permit ring
in the tape reel. The tape unit will remain write inhibited until the
tape is detached.

request status
interrogates the tape controller and returns its status as a bit(12)
aligned quantity.

reset status
causes all resettable statuses of the tape unit to be reset.

retry count
specifies a fixed bin(17) value which is the number of times an operation
is to be retried before returning an error to the caller. The default
value for the retry count is 10.

rewind
rewinds the tape to load point.

saved status
returns the last status returned from the tape controller as a bit(12)
aligned quantity.

unload
rewinds the tape and unloads it (done automatically when the tape is
detached) .

5-P1 AX49-01C

tape nstd tape nstd

write eof
writes an end of file mark (EOF).

I Hardware Modes

I and
In BCD mode, allowed only for ?-track drives, 6-bit characters are translated

then put on tape one character per frame. The translation is reversed on
input.

I
In nine mode, on output four 8-bit bytes are written from each word ignoring

the hi g h 0 r d e r bit 0 f e a c h 9 - bit b yt e (by t r un cat in g it). On in put, P - bit
characters are converted to 9-bit characters by forcing the high order bit to
zero (by appending a zero-bit). This mode should be used to put ASCII or EBCDIC
data on tape for transfer to other systems with R-bit bytes.

I In binary mode, all 36 bits of each word are read or written. This mode
should be used for native Multics applications where binary data is written to
tape.

I 9-track write ~ 8-bit bytes (2 word) are written to 9 frames on tape.
9-track read 9 frames are read into 9 8-bit bytes (2 words).

I 7-track write 6 6-bit frames from each word.
7-track read 6 frames on tape are read into 6 6-bit characters (1 word).

I 7-track is 6 data + parity track.
9-track is P. data + parity track.

Modes OperCltion

This 1/0 module does not support the modes operation.

Position Operation

This 1/0 module does not support the position operation.

Read Length Operation

This 1/0 module does not support the 'read length operation.

7/82 5-82 AX49-01C

tape nstd tape nstd

Close Operation

The close operation rewinds the tape reel. The tape remains mounted, and
positioned at the load point. No further 1/0 operations may be performed unless
the 1/0 switch is opened again.

Detach Operation

The detach operation unloads the tape.

Read Record Operation

Th e log i cal r e cor d ret urn e d by the rea d r e cor d 0 per at ion con t a ins m = c e i 1 (n 13 6)
words, where n is the number of data bits-in the physical record. The first n
bits of the input record are the data bits, the last m-n bits are O's. The
buffer supplied to the read record operation must be word aligned. Read requests
are retried 10 times before reporting an error unless a retry count control
order has been used to change the retry count. -

Write Record Operation

The logical record supplied to the write record operation must be word
aligned, and must contain 0 mod 36 data bits.

Notes

This 1/0 module
processing raw tapes.
pass file marks. For
by a file mark, then
request would return
return record B.

Buffer Size

violates those iox conventions that seem ill suited to
In particular, read record and skip record operations may

example, if a tape contains two records, A and B, separated
the first read request would read record A, a second read
error _table _ $end _of_in fo, and a th ird read request would

The maximum number of bytes that may be transmitted on a read record or I
write record operation is 1e0224, less overhead. This limit may be adminiStratively
restrIcted to a lower value. To use the full capability, the caller may need
access to >system_library_1>rcp_sys_ or >sc1>rcp>workspace.acs.

7/82 5-83 AX49-01C

SECTION 6

PROGRAMMING EXAMPLES

This section gives several examples of the use of the Multics peripheral
I/O facilities. The writing out and subsequent reading in of a segment to and
from magnetic tape is performed in several ways throughout this section.

USER-RING I/O SYSTEM COMMANDS

To write out a tape (for example, reel 50015) from the segment
>udd>Work>Green>data, issue the following commands at Multics command level:

io call attach tape switch tape ansi 50015 -name data
- -create -number 1 -fmt s -

io call open tape_switch sequential_output

io call write tape_switch -segment >udd>Work>Green>data

io call close tape_switch

io call detach tape_switch

To read a tape back in again, to >UQQ/worK/ureen>new data, issue the
following commands at Multics command level:

io call attach tape_switch tape_ansi_ 50015 -name data

io call open tape_switch sequential_input

io call read tap~_switch 1048576 -segment new data

io call close tape_switch

io call detach tape_switch

For the meanings of the particular control arguments to the tape ansi I/O
module, see the description of this I/O module in Section 5 of this manual.

This sequence of calls writes and reads back an ANSI standard tape. A file
named data, in spanned record format, is created on the tape and read back. The
number, 1048576, is the maximum number of characters to be read. This number
must be given to the io call command on a read request. This value is the
maximum number of characters in a segment. If the tape is not already in ANSI
format, the tape ansi I/O module queries the user if the tape is to be
initialized to ANSI format. (The io call command is described in the MPM
Commands.)

6-1 AX49-01

This technique for performing tape I/O has the advantage that no programs
need be written to use it. Simple commands, without the need for preparing
control files, suffice. Using the abbrev or exec com facilities, a segment can
be written to tape in this manner with one command-line. If the only need to be
filled is that of storing a segment or several segments on tape, this method is
completely adequate. The list tape contents command, described in Section 4,
can be used to list the contents-of the tape produced in this manner.

This method of utilizing tape has
completely interactive. A facility that
code cannot use this method.

the obvious disadvantage that it is
needs to deal with tape from program

PL/I CALLS TO THE USER-RING I/O SYSTEM

Figures 6-1 and 6-2 contain sample programs to
>udd>Work>Green>data to tape 50015 with the file name
again.

write out
data and to

the segment
read it in

These two PL/I programs are written to accomplish the same effect as the
I/O system commands in the previous examples. Each call to the iox subroutine
(documented in the MPM Subroutines) has the same effect as one call to the
io call command as used above. Each call to the iox subroutine returns an
error code, represented in the programs by the value of the variable "code." In
this case, the code variable always has the value of the status code returned by
the tape ansi I/O module. This value is tested at each point to check for
error and-report any problem that arises.

This
program can
particular
description
achieved in

technique for performing peripheral I/O has the advantage that a
call all entries in the user-ring I/O system and all entries of a

I/O module and, thus, perform all operations documented in the
of each I/O module. The optimum flexibility in user-ring I/O is

this manner.

The disadvantages of this technique lie chiefly in the number of calls that
must be made to the user-ring I/O system to attach and detach a device. To
perform correct recovery, should any step fail or should a release be performed
around the stack frame of the program (a contingenc;y dealt with in "Language I/O
in PL/I with Protocol-Defined Data Format" below), requires the setting of a
number of switches to determine which calls must be undone. Furthermore, the
entries of the user-ring I/O system are not callable from most languages other
than PL/I.

6-2 AX49-01

/* This procedure writes out a segment to tape, using explicit calls to
the user-ring I/O system to perform an attachment via tape_ansi_. */

dcl
dcl
dcl
dcl
dcl
dcl

dcl
dcl

dcl

com err entry options (variable);
iox-$attach ioname entry (char (*), ptr char (*), fixed bin (35));
iox=$open entry (~tr, fixed bin, bit (1) aligned, fixed bin (35));
iox $close entry \ptr, fixed bin (35));
iox-$detach iocb entry (ptr, fixed bin (35));
iox=$write_record entry (ptr, ptr, fixed bin (21), fixed bin (35));

code fixed bin (35);
hcs $initiate count entry (char (*), char (*), char (*),
fixed bin (24), fixed bin (1), ptr, fixed bin (35));

hcs_$terminate noname entry (ptr, fixed bin (35));

dcl p ptr;
dcl iocbp ptr; /* Pointer value of switch tape switch */
dcl null builtin;
dcl seg bit (bitcount) aligned based (p);
dcl bitcount fixed bin (24);

call hcs $initiate count
- (")udd)Work)Green", "data", "", bitcount, 0, p, code);

/* Get pointer to segment */
if P null

then call com err
(code, "lox_ansi_write", "Cannot initiate segment");

else do;
call iox $attach ioname ("tape switch", iocbp,

"tape ansi -50015 -name data -create -number 1 -fmt s",
code); /* Attach switch, mounting the tape */

if code "= 0 then call com err (code, "iox ansi write",
"Cannot attach tape. "); - -

else do;

end;

call iox $open (iocbp, Sequential output, "O"b, code);
- /*. Open switCh for stream output */

if code "= 0 then
call com err (code, "iox ansi write",

"Cannot-open switch"); -
else do;

call iox $write record (iocbp, p, bitcount/9, code);
- - /* Write out data, integral

number of characters. */
if code" 0 then

call com err (code, "iox ansi write",
"Could not write data"); -

call iox_$close (iocbp, (0)); /* Close the switch. */
end;
call iox_$detach_iocb (iocbp, (0)); /* Demount the tape */

call hcs $terminate noname (p, (0)); /* Clean up address space */
end;
return;

%include iox modes;
end;

/* defines "Sequential_output" */

Figure 6-1. Writing Segment to Tape With PL/I Calls to iox (via tape_ansi_)

6-3 AX49-01

/* This procedure reads in a segment from tape, using explicit calls from
the user-ring I/O system to perform an attachment via tape_ansi_. */

dcl error table $end of info fixed bin (35) external;
dcl com err entry options (variable);
dcl iox-$attach ioname entry (char (*), ptr char (*), fixed bin (35));
dcl iox-$open entry (ptr, fixed bin, bit (1) aligned, fixed bin (35));
dcl iox-$close entry (ptr, fixed bin (35));
dcl iox-$detach iocb entry (ptr, fixed bin (35));
dcl iox-$read record entry (ptr, ptr, fixed bin (21), fixed bin (21),

- fixed bin (35));

dcl code fixed bin (35);
dcl hcs $make seg entry (char (*), char (*), char (*),

fixed bin-(5), ptr, fixed bin (35));
dcl hcs $set bc seg entry (ptr, fixed bin (24), fixed bin (35));
dcl hcs=$terminate_noname entry (ptr, fixed bin (35));

dcl
dcl
dcl
dcl
dcl

p ptr;
iocbp ptr;
null builtin;

/* Pointer value of switch tape_switch */

bitcount fixed bin (24);
char count fixed bin (21); /* Number of characters

actually read. */

call hcs_$make_seg (">udd>Work>Green", "new data", "", 1010b, p, code);
/* Create new segment */

if P = null then call com err (code, "iox ansi read",
"Cannot make new segment"); - -

else do;
call iox $attach ioname ("tape switch", iocbp,

"tape ansi -50015 -name data", code);
- - /* Attach switch, mounting the tape */

if code "= 0 then call com err (code, "iox ansi read",
"Cannot attach tape .,"T; -

else do;
ca.J.l iox $open (iocbp, sequential input, "O"b, code);

- /* Open switch for stream input */
if code "= 0 then

call com err (code," iox ansi read",
"Cannot-open switch"T;

else do;
call iox $read record (iocbp, p, 1048576, char_count,

code); -
/* Read in data, integral

number of characters. */
if code 0 & code "= error table $end of info then

else

end;

/* We expect fewer than 1048576
(4 * 2 ** 18) characters. */

call com err (code," iox ansi read",
"Could not read data ") ;

do;
bitcount = char count * 9; /* Compute bit count */
call hcs $set be seg (p, bitcount, code);
if code ~= 0 then

call com err (code, "iox ansi read",
"Cannot set bit count to ""'-d.",-bitcount);

Figure 6-2. Reading Segment From Tape With PL/r Calls to iox (via tape ansi)

6-4 AX49-01

end;

call iox_$close (iocbp, (0)); /* Close the switch. */
end;
call iox_$detach_iocb (iocbp, (0)); /* Demount the tape */

call hcs $terminate noname (p, (0)); /* Clean up address space */
end;
return;

%include iox modes; /* defines "sequential_input" */
end;

Figure 6-2 (Cont). Reading Segment From Tape With PL/r Calls to iox
(via tape_ansi_)

6-5 AX49-01

LANGUAGE I/O IN PL/I

Figures 6-3 and 6-4 show sample programs to write and read a segment using
the intrinsic I/O facilities of the PL/I language to access the tape via the
tape_ansi_ I/O module.

The PL/I language I/O system makes all calls to the user-ring I/O system,
including those to attach and detach the appropriate switch. The PL/I language
provides no general way to obtain the length of a record that is read in. The
environment (stringvalue) attribute can be used for this purpose, but this
requires setting up a varying string, at least as large as the record to be
read, and copying it. This is not always possible, since the record to be read
in can be as large as a segment. Another way is to set up a record buffer as
large as a segment and heuristically determine the length of the segment by
"finding the end of it" via the adjust bit count subroutine (described in the
MPM Subroutines). Obviously, this technique does not work for arbitrary binary
data. (See "Language I/O in PL/I with Protocol-Defined Data Format" below for
an alternative solution to this problem.) Since a record is being read whose
length is not known, a record buffer (the variable "segment") is set up as
having the length of a full-size segment. When PL/I reads the tape record, via
a call to the tape ansi module, a record shorter than this is read and the
record condition is -signalled. The "on record (tape);" on-unit in the reading
program explicitly ignores this condition. Although standard PL/I does not
define the contents of the buffer variable after a return from an on-unit for
the record condition is performed, in this case Multics PL/I specifies that the
record fill the low addresses of the buffer for the length of the record.

This technique has the advantage that no knowledge of I/O system calls is
required. The meaning of PL/I statements that perform I/O is known to PL/I
programmers on other sy~tems, as opposed to calls to the Multics I/O system.
The use of language I/O statements provides the fullest power of the language to
the programmer using peripheral I/O.

The principal disadvantage of using language I/O is that not all calls
accessible from the user-ring I/O system can be made via language I/O. In PL/I,
for instance, no calls corresponding to "control" functions of I/O modul·es can
be performed via language I/O. However, in certain circumstances the
pl1 io $get iocb ptr subroutine can be used to remedy this deficiency. See the
MPM- Subsystem Writers' Guide for a description of this entry point.) Thus,
end-of-file marks, ~tc., cannot be written from language I/O. A more severe
deficiency is the inability to determine the length of a record on tape. Via
proper protocols, however, this deficiency too can be remedied. (See "Language
I/O in PL/I with Protocol-Defined Data Format" below.)

6-6 AX49~01

tape_write: procedure;

dcl p ptr; /* pointer on which segment image is based */
dcl segment-bit (bitcount) based (p) aligned; /* image of the segment */
dcl bitcount fixed bin (24); /* bit count of the segment */
dcl hcs $initiate count entry (char (*), char (*), char (*), fixed bin (24),

- fixed bin (1), ptr, fixed bin (35));
dcl code fixed bin (35); /* status code */
dcl hcs $terminate noname entry (ptr, fixed bin (35));
dcl null builtin; -
dcl com err entry options (variable);

/* used to report problem to error_output */

del tape file internal; /* internal file for tape */

end;

call hcs $initiate count
- 0, p, code);

if p = null then do;
call com err (code,

return;
end;

(">udd>Work>Green", "data", "", bitcount,
/* get pointer and bit count */

/* could not initiate */
"tape_write", "Cannot get segment");

/* complain */

open file (tape) sequential output title
/* open the file, mount the tape */

("tape_ansi_ 50014 -nm data -cr -fmt s -nb 1");
/* See description of tape_ansi_ */

write file (tape) from (segment);
/* Write the segment as a record */

close file (tape);
call hcs $terminate noname (p, (0));

/* Clean up address space of process */

/* Demount the tape */

return;

Figure 6-3. Writing Segment to Tape With PL/I I/O Facilities

6-7 AX49-01

tape_read: procedure;

dcl p ptr; /* pointer on which segment image is based */
dcl record condition;
dcl segment char (1048576) based (p) aligned; /* image of the segment */
dcl bitcount fixed bin (24); /* bit count of the segment */
dcl adjust bit count entry (char (168) aligned, char (32) aligned,

bIt (1) aligned! fixed bin (24), fixed bin (35));
dcl hcs $make seg entry (char (*), char (*), char (*), fixed bin (5),

- ptr,-fixed bin (35));
dcl code fixed bin (35); /* status code */
dcl hcs $terminate noname entry (ptr, fixed bin (35));
dcl null builtin; -
dcl com err entry options (variable);

/* used to report problem to error_output */

dcl tape file internal; /* internal file for tape */

call hcs $make seg (")udd)Work)Green",
if p = null then do;

call com err (code, " tape_read" ,

"new data", "", 1010b, p, code);
/* could not initiate */

"Cannot make segment");
/* complain */

end;

return;
end;
on record (tape); /* Ignore short records - Multics PL/I fills

buffer anyway. */
open file (tape) sequential input title

/* open the file, mount the tape */
("tape_ansi_ 50014 -nm data"); /* See description of tape_ansi

read file (tape) into (segment);

close file (tape); /* Demount the tape */
call adjust bit count (")udd)Work)Green", "new_data", "1"b,

bTtcount, code);
if code A= 0 then

call com err (code," tape read",
"Cannot-set bit count-on new segment to "d.", bitcount);

call hcs $terminate noname (p, (0));
/* Clean up address space of process */

return;

Figure 6-4. Reading Segment to Tape With PL/I I/O Facilities

*/

6-8 AX49-01

PROTOCOL-DEFINED DATA FORMAT

The programs in Figures 6-5 and 6-6 write out a segment to tape as a
nonstandard tape and read it in again. Rather than being of Multics standard
format (described in Section 3), the tape is written in a format known to, and
used by, only these two programs.

A tape written in this nonstandard format contains segments written out in
100-word blocks, with the last fraction written as a short block. Each block
occupies one physical tape record. The first record written on the tape is an
image of the structure "hdr" in both programs, which is identical in both.
Standard PL/r requires that the layout of the generation of storage from which a
record is written be identical, or capable of being legally overlaid by, the
layout of the generation of storage into which it is read. The variables in
this record define how many 100-word records follow (they follow immediately
after the header record), the length of the "short" record (zero if there is
none), and the bit count to be set on the segment. No end-of-file mark is
written: PL/I offers no facility for writing one, and none is necessary. The
reading program knows only to read the header. When it has read the header, it
knows, by convention with the writing program, exactly how many records, and of
what sizes, to read.

The tape is blocked into 100-word records for several reasons. For one
reason, the maximum size of any physical I/O buffer is limited by the tape
controller and the other I/O hardware, as well as the software. Furthermore,
the shorter a record is, the smaller is its chance of being written with errors.
On the other hand, the larger the block size, the more efficient the use of the
tape.

Part of the complexity of these programs stems from the fact that full
error handling is attempted. The on-unit for "undefinedfile" is inv~oked if the
tape cannot be attached for any reason. PL/I language I/O raises this condition
if a call to the attach or open entry points of the tape nstd I/O module fails.
The transmit condition is raised if any error is indicated -from any call that
reads or writes data. There is no handler for the record condition, as it
should never be raised. The length of all records is known by the reading
program.

The entry p11 io $error code (described in the MPM Subroutines) is used to
extract the 1/0 system status code for use in error recovery. The PL/I language
provides no intrinsic means to return error codes of the Multics I/O system.

A handler for the cleanup condition is provided in these programs to
illustrate its use. Any program that .performs I/O attachments should provide
one. The cleanup handler closes the file tape, thus detaching the tape, should
a release be performed around the invocation of the program.

These techniques have the advantage that the PL/I language can be used
fully and within the language rules of PL/I, and without recourse to heuristics.
These techniques can be used to define multivolume files, error recovery
protocols, and other useful functions.

These techniques have the distinct disadvantage that a data format known
only to the writer of such programs must be devised each time such an
application is necessary. Such techniques are at cross ends with the goals of
compatibility and standardization.

6-9 AX49-01

nstd_writer: procedure;

/* This program writes out a segment in the form of a nonstandard tape,
in 100-word records, with a short last record if appropriate. A header
record is written first, to tell the reading program how much
to read, and how to set the bit count. */

dcl tape file;

dcl (cleanup, transmit, undefinedfile) condition;
dcl com err external entry options (variable); /* For errors */
dcl hcs-$inTtiate count entry (char (*), char (*), char (*),

fixed bin (24), fixed bin (1), ptr, fixed bin (35));

dcl hcs_$terminate_noname entry (ptr, fixed bin (35));

dcl p11_io_$error_code entry (file) returns (fixed bin (35));
/* Gets error code from file. */

dcl p pOinter; /* Pointer to segment, and
to sliding "window" */

dcl buffer (3) fixed bin (35); /* Buffer for three-word record
with bit and record counts. */

dcl sliding_window based (p) aligned,

2 data (100) fixed binary (35),

/* Moveable 100-word window
into segment. */

2 next_record fixed binary (35);

dcl 1 hdr aligned automatic,
2 bit count fixed bin (24),
2 word count fixed bin (19),
2 record count fixed bin (17),
2 words_last_record fixed bin (17);

/* Real data words. */
/* Beginning of next record. */

/* Header to be written. */
/* Bit count of segment */

/* Word count, for info only. */
/* Full records written. */

/* Words in short last record. */

dcl short last record (hdr.words last record) fixed binary (35)
-based (p) aligned; - -

dcl i fixed binary;
dcl code fixed bin (35), null builtin;

Figure 6-5. Writing Segment to Nonstandard Tape

6-10 AX49-01

finish:

call hcs $initiate count (")udd)Work)Green", "data", "", bit_count,
- 0, p, code);

if P
/* Get pointer and length */

null then do; /* Can't get it. */
call com err (code, "nstd_writer", "Cannot initiate segment");
return;

end;

on cleanup call clean_up_proc; /* On abort, terminate
segment and close file */

on undefinedfile (tape) call problem_report ("Cannot attach tape");
/* Set up for problem */

on transmit (tape) call problem_report ("Transmission error on tape!!);

open file (tape) title ("tape nstd 50015 -write")
sequential record output; /* Attach the tape.*/

hdr.word count = (hdr.bit count + 35)/36; /* Compute word length */
hdr.record count = hdr.word count/100; /* Find number of full, 100

- - word records */
hdr.words last record = mod (hdr.word count, 100); /* figure out

- - - short record length. */

write file (tape) from (hdr); /* Write out the header. */

do i = 1 to hdr.record count; /* Write out all full records. */
write file (tape)-from (sliding window.data);

- /* Write 100 words */
p = addr (sliding_window.next_record); /* Slide up the window. */

end;

if hdr.words last record A= 0 then write file (tape)
from (short last record);

- - /* Write last record */

call clean up proc;
return; --

/* Detach and terminate. */

/* Procedure to report problems */

problem_report: procedure (plaint);

dcl plaint char (*); /* Specific message */

call com err (p11 io_$error_code (tape), "nstd writer", plaint);
call clean up proc; /* Clean up. */
go to finish;- /* nonlocal exit */

end problem_report;

/* Procedure to clean up, detaching tape and terminating segment. */

call hcs $terminate noname (p, (0));

close file (tape);

end nstd_writer;

/~ It is permissible to
execute this, even if file

is not open. */

Figure 6-5 (Cont). Writing Segment to Nonstandard Tape

6-11 AX49-01

nstd_reader: procedure;

/* This program reads in a segment written out as a nonstandard tape by the
sample writing-program, nstd writer. It uses the header written by nstd reader
to tell how many record and words to read. */

dcl

dcl
dcl
dcl
dcl

dcl

dcl

dcl

tape file;

(cleanup, transmit, undefinedfile) condition;
com_err_ external entry options (variable); /* For errors */
hcs $set bc seg entry (ptr, fixed bin (24), fixed bin (35));
hcs-$make seg entry (char (*), char (*), char (*),
fixed bin-(5), ptr, fixed bin (35));

hcs_$terminate_noname entry (ptr, fixed bin (35));

p11_io_$error_code entry (file) returns (fixed bin (35));
/* Gets error code from file. */

p pointer; /* Pointer to segment, and
to sliding "window" */

dcl buffer (3) fixed bin (35); /* Buffer for three-word record
with bit and record counts. */

dcl sliding_window based (p) aligned,

2 data (100) fixed binary (35),
2 next record fixed binary (35);

dcl 1 hdr aligned automatic,
2 bit count fixed bin (24)
2 word count fixed bin (19),
2 record count fixed bin (17),
2 words_last_record fixed bin (17);

/* Moveable 100-word window
into segment. */

/* Real data words. */
/* Beginning of next record. */

/* Word

/* Words

/* Header to be written. */
/* Bit count of segment */

count, for info only. */
/* Full records written. */

in short last record. */

dcl short last record (hdr.words last record) fixed binary (35)
-based (p) aligned; - -

dcl i fixed binary;
'dcl code fixed bin (35), null builtin;

Figure 6-6. Reading Segment to Nonstandard Tape

6-12 AX49-01

finish:

call hcs $make seg (">udd>Work>Green", "new data", "", 1010b, p, code);
- - /* Create new segment. */

if P = null then do; /* Can't get it. */
call com err (code, "nstd reader", "Cannot create segment");
return; -

end;

on cleanup call clean_up_proc; /* On abort, terminate
segment and close file */

on undefinedfile (tape) call problem report ("Cannot attach tape");
- /* Set up for problem */

on transmit (tape) call problem_report ("Transmission error on tape");

open file (tape) title ("tape nstd 50015") /* Attach the tape. */
sequential record input;- -

read file (tape) into (hdr); /* Read in header info. */

do i = 1 to hdr.record count; /* Read in all full records. */

end;

read file (tape) into (sliding window.data); /* Read 100 words. */
p = addr (sliding_window.next_record); /* Slide up the window. */

if hdr.words last record A= 0 then read file (tape)
into (sliort_last_record);

/* Read last record */

call hcs $set bc seg (p, hdr.bit count, code); /* Set the bit count. */
if code "= 0 then call com err Tcode, "nstd reader",

"Cannot set bit count to Ad", hdr.bit count);
call clean up proc; /* Detach and terminate. */
return; --

/* Procedure to report problems */

problem_report: procedure (plaint);

dcl plaint char (*); /* Specific message */

call com err (p11 io $error code (tape), "nstd reader", plaint);
call clean up_proc; - - 1* Clean up. */
go to finish; /* nonlocal exit */

end problem_report;

/* Procedure to clean up, detaching tape and terminating segment. */

call hcs $terminate noname (p, (0));

close file (tape); /* It is permissible to
execute this, even if file

is not open. */

end nstd_reader;

Figure 6-6 (Cont). Reading Segment to Nonstandard Tape

6-13 AX49-01

PL/I CALLS TO THE USER-RING I/O SYSTEM, MULTICS STANDARD TAPE

The Multics standard tape format is a conventional format for writing
arbitrary data on magnetic tape. The I/O module that implements this format,
tape mult, is the only program that has, or need have, knowledge of this
format. The Multics standard format provides for blocking and error recovery
within it.

Figures 6-7 and 6-8 contain programs similar to those used in Figures 6-1
and 6-2 above, except that the tape mult I/O module, using stream I/O, is used
instead of the tape ansi I/O moaule,- with record I/O. By comparison, the
attachment to tape muTt Is substantially simpler to accomplish. On the other
hand, since the Multics standard format does not provide for multiple files in
one volume, or keeping name or generation information with data, the data on the
tape is useless unless one knows what it represents. Thus, as opposed to the
ANSI tape, the Multics standard tape is not self-identifying. There cannot be a
command similar to list_tape_contents for this function.

The other advantages and disadvantages of this technique are those of the
technique given in Figures 6-1 and 6-2 above.

There
tape_IDult

is no way to access a stream file of
I/O module through PL/I language I/O.

6-14

the form written by the

AX49-01

tape_mult_writer: procedure;

/* This procedure writes out a segment to tape, using explicit calls to
the user-ring I/O system to perform an attachment via tape_mult_o */

dcl
dcl
dcl
dcl
dcl
dcl

del
dcl

dcl

dcl
dcl
dcl
dcl
dcl

com err entry options (variable);
iox-$attach ioname entry (char (*), ptr char (*), fixed bin (35));
iox-$open entry (ptr, fixed bin, bit (1) aligned, fixed bin (35));
iox-$close entry (ptr, fixed bin (35));
iox-$detach iocb entry (ptr, fixed bin (35));
iox=$put_chars entry (ptr, ptr, fixed bin (21), fixed bin (35));

code fixed bin (35);
hcs $initiate count entry (char (*), char (*), char (*),
fixed bin (24), fixed bin (1), ptr, fixed bin (35));

hcs_$terminate_noname entry (ptr, fixed bin (35));

p ptr;
iocbp ptr; /* Pointer value of switch tape_switch */
null builtin;
seg bit (bitcount) alisned based (p);
bitcount fixed bin (24);

call hcs $initiate count (")udd)Work)Green", "data", Ii", bitcount,
- 0, p, code);

/* Get pointer to segment */
if P = null then call com err (code, "tape mult writer",

"Cannot initiate segment"); --
else do;

Ann-
~~.- ,

call iox $attach ioname ("tape switch", iocbp,
"tape mul t -50015 -wr i te"-; code);

- 7* Attach switch, mounting the tape */
if code "= 0 then call com err (code, "t"ape_mult_writer",

"Cannot attach tape. II);
else do;

call iox $open (iocbp, Stream output, "O"b, code);
- /* Open switch for stream output */

if code A= 0 then
call com err (code, "tape mult writer",

"Cannot-open switch")"";- -
else do;

call iox_$put_chars (iocbp, p, bitcount/9, code);
/* Write out data, integral

number of characters. */
if code "= 0 then

call com err (code, "tape mult writer",
"Could not write-data");

call iox_$close (iocbp, (0)); /* Close the switch. */
end;
call iox_$detach_iocb (iocbp, (0)); /* Demount the tape */

end;

call hcs $terminate noname (p, (0)); /* Clean up address space */

return;

%include iox modes;
end;

/* defines "Stream _ ou~tput" * /

Figure 6-7. Writing Segment to Tape With PL/I Calls to iox (via tape_mult_)

6-15 AX49-01

tape_mult_reader: procedure;

/* This procedure reads in a segment from tape, using explicit calls from
the user-ring I/O system to perform an attachment via tape_mult_. */

dcl
dcl
dcl
dcl
dcl
dcl
dcl

error table $end of info fixed bin (35) external;
com err entry options (variable);
iox-$attach ioname entry (char (*), ptr char (*), fixed bin (35));
iox-$open entry (ntr, fixed bin, bit (1~ aligned, fixed bin (35));
iox-$close entry tptr, fixed bin (35));
iox-$detach iocb entry (ptr, fixed bin (35));
iox-$get chars entry (ptr, ptr, fixed bin (21), fixed bin (21),

- fixed bin (35));

dcl code fixed bin (35);
dcl hcs $make seg entry (char (*), char (*), char (*),

fixed bin-(5), ptr, fixed bin (35));
dcl hcs $set bc seg entry (ptr, fixed bin (24), fixed bin (35));
dcl hcs=$terminate_noname entry (ptr, fixed bin (35));

dcl
dcl
dcl
dcl
dcl

p ptr;
iocbp ptr;
null builtin;

/* Pointer value of switch tape_switch */

bitcount fixed bin (24);
char_count fixed bin (21); /* Number of characters

actually read. */

call

if P

else

hcs $make seg (")udd)Work)Green", "new data", "", 1010b,
p, code);- -

/* Create new segment */
= null then call com err (code, "tape mult reader",

"Cannot make new segment"); --
do;
call iox $attach ioname ("tape switch", iocbp,

"tape mul t -50015", code r;-
- 7* Attach switch, mounting the tape */

if code "= 0 then call com err l (code, "tape mul treader",
"Cannot attach tape. "); - -

else do;
call iox $open (iocbp, Stream input, "O"b, code);

- /* Open switch for stream input */
if code A= 0 then

call com err (code, "tape mult reader",
"Cannot-open swi tch"); -

else do;
call iox $get chars (iocbp, p, 1048576,

char_count, code);
/* Read in data, integral

number of characters. */
if code A= 0 & code A= error table $end of info then

i* We expect fewer than 1048576
(4 * 2 ** 18) characters. */

call com err (code, "tape mult reader",
- "Could not read data");

else do;
bitcount = char count * 9; /* Compute bit count */
call hcs $set be seg (p, bitcount, code);
if code ~= 0 then call com err (code,

"tape mult reader", - -
"Cannot set bit count to Ad.", bitcount);

end;

Figure 6-8. Reading Segment From Tape With PL/I Calls to iox (via tape_mult_)

6-16 AX49-01

end;

call iox_$close (iocbp, (0)); /* Close the switch. */
end;
call iox_$detach_iocb (iocbp, (0)); /* Demount the tape */

call hcs $terminate noname (p, (0)); /* Clean up address space */
end;
return;

%include iox modes; /* defines "Stream_input" */
end;

Figure 6-8 (Cont). Reading Segment From Tape With PL/r Calls to iox
(via tape_mult_)

6-17 AX49-01

MULTICS TAPE COMMANDS

The tape in and tape out commands allow magnetic tape I/O to be performed
to and from-Multics segments. These commands require the preparation of a
control file, in which detailed specification of the I/O operations to be
performed can be given.

The following command:

writes out the segment data, and the following command:

tape_in data_tape

reads it back in. The file data_tape.tcl, in the working directory, ~hould have
the following contents:

Volume: 050015;
File: data;
path: >udd>Work>Green>data;
mode: ascii;
format: S;
number: 1;
block: 600;
record: 200;
End;

These techniques have the advantage that the simplest command of all can be
used to write the segment out or read it back in. Another feature is the
standardized control language, which is independent of I/O module, provided by
the tape_in and tape_out commands.

The disadvantages of these techniques are the necessity to prepare the
control file and maintain it, and the specification of a large amount of detail
in it. The control file for these requests specifies ASCII-encoded tape; the
ANSI tape standard does not allow for arbitrary or binary data.

6-18 AX49-01

INDEX

MISCELLANEOUS

?70/DOS tcpes 4-22

A

access control segment (ACS) 2-?, 2-5

access control, resources 2-3, 2-5
access control segment (ACS) ?-~,

2-5
effective access

determination 2-~

manipulation of 2-7

acquire resource command 1-2

ACS
see access control segment

assigning devices 2-9

assign_resource commnnd 1-2

attaching devices 2-10

B

Block statement 4-17

C

cancel resource command 1-?

card punch 1-1

card reader 1-1

close file command 1-2

i-1

commands
acquire_resource 1-2
assign resource 1-2
cancel-resource 1-2
close Tile 1-2
console output 1-2
copy file 1-2, 4-1, 4-2
display pl1io error 1-2
file ou~put 1-2
iocaII 1-2
line length 1-2
list resources 1-2
list-resource types 1-2
list-tape con~ents 4-1, 4-6
prin~ 1-2
print attach table 1-2
print request types 1-2
rend tape and-query 4-1, 4-9
reserve resource 1-2
set cc 1-2
set-'"tty 1-2
tape in 4-1, 1I-14.6
t2pe-out 1I-1, 4-28
unassign resource 1-2
vfile adjust 1-2
vfile-status 1-2

communications lines 1-1

console output command 1-2

copy _ fil e command 1 -2, 11-1, 4-2

cpf
see copy_file command

D

Density statement 4-17

device limits
workspace size 2-7

disk 1-1
I/O modules

rdisk 5-4

AX49-01C

display_p11io_error command 1-2

E

End statement 11-16

Expiration statement 4-17

F

File statement 4-16

file transfer
to magnetic tape

tape out 11-28
to storage system

tape in 4-14.6

file_output command 1-2

Format statement 4-17

G

generate statement 4-18

H

I

110
control functions

iox subroutine 2-1
copying

copy file 4-2
110 moaules 2-1, 5-1
interface

device specific
I/O modules 2-1

iox subroutine 2-1
iox subroutine 2-1
storage system

copy_file 4-2

110 interfacer (101) 1-1, 2-1, 2-11

110 modules 2-1
ntape 5-1, 5-2
rdisk- 5-1, 5-4
tape ansi 5-1, 5-14
tape-ibm - 5-1, 5-47
tape-mult 5-1, 5-77
tape=nstd= 5-1, 5-79

iocall command 1-2

101 .
see 1/0 inter facer

iox subroutine 2-1

io call command 6-1

L

limits, devices
workspace size ?-7

line length command 1-2

list resources command 1-2

list resource types command 1-2

list_tape contents command 4-1, 4-6

ltc
see list tape contents command

M

magnetic tape 1-1
file transfer

i-2

to storage system
tape in 4-14.6

to tape
tape out 4-28

format -
see tape format

110 modules
ntape 5-2
tape ansi 5-14
tape-ibm - 5-47
tape-mult 5-11
tape-nstd- 5-19

inspecting contents of
list tape contents 4-6
read-tape-and_query 4-9

Mode statement 4-17

modify statement 4-18

multivolume files 4-22

N

naming devices 2-5

ntape 110 module 5-1, 5-2
attach description 5-2

AX49-01C

ntape I/O module (cont)
control operation 5-2
modes operation 5-3
opening 5-2

number statement 4-19

P

path statement u-16

performing tape I/O
system commands 6-1, 6-19
user written programs 6-2

peripheral devices
card punch 1-1
card reader 1-1
communications lines 1-1
disk 1-1
magnetic tape 1-1
printer 1-1

print command 1-2

printer 1-1

print attach table command 1-2

print request_types command 1-2

R

RCP
see resource control package

rdisk I/O module 5-1, 5-4
attach description 5-4
closing 5-10
control operation 5-6

changepack order 5-6
device info order 5-6
format-trk order 5-7
getbounds order 5-P.
rd trk header order 5-R
setsize order 5-9

delete record operation 5-5
detaching 5-10
modes

alttrk 5-10
label 5-9
raw 5-9
wrtcomp 5-10

opening 5-5
position operation 5-5
read length operation 5-5
read record oper8tion 5-5
rewrite record operation 5-6
seek key operation 5-6

i-3

rdisk I/O module (cont)
write record operation 5-10

rdisk modes 5-9

read tape and query command 4-1, 4-9

Record statement 4-17

replace statement 4-19

reserve resource command 1-2

reserving resources 2-8

resource control pack8ge (RCP) 1-1,
2-1, 2-3

functions
access control, resources 2-3,

2-5
access control segment (ACS)

2-3, 2-5
assigning devices 2-3, 2-9
attaching devices 2-3, 2-10
cancelling resources 2-3
control functions, devices 2-3
detaching devices 2-3
reserving resources 2-3, 2-8
resource information 2-3
unassigning devices 2-3

naming devices 2-5

resource information 2-~

rtq
see read tape and_query command

S

set cc command 1-2

set tty command 1-2

Storage statement 4-18

storage extend statement 4-19

T

Tape Con t rol Languag e (TCL) !1~2 p"
4-14.6

control file 4-2P, 4-14.6
comments 4-20
communication with the operator

l!-22
global statements

Block 4-17
De n sit Y 11 - 1 7
Expiration 4-17

AX49-01C

Tape Control Language (TCL) (cont)
control file

global statements
Format LI-17
Mode 4 -17
Record 4-17
Storage 4-18
Tape 4-1R

local statements
generate 4-1P
modify 4-1P
n urn be r Ll - 1 9
replace 4-19
storage extend 4-19
tape extend 4-19

speci fTcation of tape fil es
multivolume 4-22

specification of tapes
370/DOS LI-22
unlabeled 4-23

statements
End 4-16
File 4-16
path 4-16
Volume 4-15

volume-group defaults 4-2n
control file execution 4-24, 4-20

tape format
ANSI 1-1

tape ansi 1-1, 5-14
IBM 1-=1 -

tape ibm 1-1, 5-47
Multics standard 1-1, 3-1

administrative records 3-3
compatibility 3-7
data padding 3-6
record format 3-1
record header 3-2
record trailer 3-3
tape mult 1-1, 5-77
write error recovery 3-7

unstructured
tape_nstd 5-79

Tape statement 4-18

tape ansi 1/0 module 5-1, 5-14
AS~II subset 5-30
attach description 5-15
block padding 5-35
buffer offset 5-36
close operation 5-38
control operation 5-38

close rewind 5-41
feov -5-40
file status 5-40
from-command level 5-42
harware status 5-38
reset error lock 5-41
retent'ion 5-41
status :::>-j':j

volume status 5-39

i-4

tape ansi 1/0 module (cont)
creating files 5-17
detach operation 5-42
encoding mode 5-21
error processing 5-38
expiration, files 5-22
extending files 5-20
file expiration 5-22
file set density 5-25
generating files 5-21
label processing 5-37
modes operation 5-42
modifying files 5-20
multiple devices 5-25
opening 5-25
output operations 5-19
overriding structure attributes

5-30
position operation 5-42
processing interchange filcs S-20
queries r::,-27
read length operation 5-42
read record operation 5-42
reading files 5-19
record formats 5-31

d 5-32
of' 5-31
s 5-33
u 5-34

resource disposition 5-26
structure attribute defaultes 5-29
volume specification 5-23
volume switching 5-23
write protection 5-26
write record operation 5-42
write rings 5-26

tape extend statement 4-i9

tape ibm 1/0 module 5-1, 5-47
attach-description 5-47
close operation 5-68
control operation 5-68

close rewind 5-71
feov -5-71
file status 5-70
from-command level 5-73
hardware status 5-69
reset error lock 5-71
retention 1)-71
status 5-69
volume status 5-69

creating-files 5-50
detach operation 5-72
DOS files 5-53
encoding mode 5-55
error processing 5-68
expiration, files 5-55
extending files 5-54
file expiration 5-55
file identifier 5-50
file set density
label processing

5=58
5-67

AXLI9-01C

tape ibm 1/0 module (cont)
modes operation 5-72
modifying files 5-54
multiple devices 5-58
opening 5-58
output operations 5-54
overriding structure attributes

5-62
padding 5-52
position operation 5-7?
(111PY'; PC: [:; f..n
'"1 _" _- .,/=\....1\..1

read length operation S-73
read record operation 5-73
reading files 5-S3
record formats 5-63

fb 5-f3
u 5-66
vb 5-611
vbs 5-65

resource disposition 5-59
structure attribute defaults 5-62
unlabeled tapes 5-73
volume initialization 5-67
volume specification 5-56
volume switching 5-56
write protection 5-59
write record operation 5-73
write rings ~-59

tape in command 4-1, 4-14.6
see Tape Control Language

tape mult 1/0 module 5-1, 5-77
control-operation 5-78.1

error count order 5-72.1
get cnars 5-78
put-chars 5-78.1

opening 5-78

tape nstd 1/0 module 5-1, 5-79
attach description 5-79
buffer size 5-83
close operation 5-83
control operation 5-80

backspace file 5-PO
backspace-record 5-80
bcd 5-80-
binary 5-80
d1600 5-P1
d200 5-80
d556 5-80
dROO 5-81
erase 5-81
fixed record length 5-81
forward file- 5-81
forward-record 5-81
io call 5-81
nine 5-81
protect 5-81
request status 5-81
reset status 5-81
retry-count 5-81
rewind 5~81

- i-5

tape nstd 1/0 module (cont)
control operation

saved status 5-P1
unload 5-81
write eof 5-82

detach operation 5-83
modes operation 5-82
open operation 5-80
position operation 5-82
read record operation 5-23
read length operation 5-82
write record operation 5-83

tape out command 4-1, 4-2P
see Tape Control Language

TCL
see Tape Control Language

u

unassign_resource command 1-2

unlabeled tapes 4-23

v

vfile adjust command 1-2

vfile status command 1-2

Volume statement 4-15

volume-group defaults 4-20

w

workspace size 2_7

AX49-01C

lJ
Z
.J

..?

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

SERIES 60 (LEVEL 68)
TITLE MULTICS PROGRAMMERS I MANUAL

PERIPHERAL INPUT/OUTPUT

Z
:) ERRORS iN PUBliCATiON
.J
:l:

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME ---
TITLE ___ _

COMPANY -----------

ADDRESS _______________________________________ __

ORDER NO.IAX49-01

DATED I NOVEMBER 1979

DATE ____________ __

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM. MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smith Street. MS 486. Waltham. Massachusetts 02154
In Canada: 2025 Sheppard Avenue East. Willowdale. Ontario M2J 1 W5

In Australia: 124 Walker Street. North Sydney. N.S.w. 2060
In Mexico: Avenida Nuevo leon 250. Mexico 11. OF

26134, 7.5C1179, Printed in U.S.A. AX49-01

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14.0
	4-14.1
	4-14.2
	4-14.3
	4-14.4
	4-14.5
	4-14.6
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17.00
	5-17.01
	5-17.1
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26.0
	5-26.1
	5-26.2
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61.0
	5-61.1
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78.0
	5-78.1
	5-78.2
	5-79
	5-80
	5-81
	5-82
	5-83
	5-84
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	i-01
	i-02
	i-03
	i-04
	i-05
	replyA
	replyB
	xBack

