SERIES 60 (LEVEL 68)
MULTICS PROGRAMMERS’ MANUAL

PERIPHERAL INPUT/OUTPUT
SUBJECT
Peripheral Input/Output Reference Material Including Command and I/O Module
Descriptions :
SPECIAL INSTRUCTIONS

This manual supersedes AX49, Rev. 0 dated June 1977 and its addendum
(Addendum A dated January 1979).

SOFTWARE SUPPORTED
Multics Software Release 8.0

ORDER NUMBER
AX49-01 November 1979

Honeywell

PREFACE

This manual is one of six manuals that constitute the Multics Programmers’' Manual
(MPM). Primary reference material for user and subsystem programming on the Multics
system is contained in these six manuals. Throughout this manual, references are

frequently made to the MPM. For convenience, these references will be as
follows:

Document Referred To In Text As

Reference Guide MPM Reference Guide

(Order No. AGOT)

Commands and Active Functions MPM Commands
(Order No. AG92)

Subroutines MPM Subroutines
{Order No. AG93)
Subsystem Writers' Guide MPM Subsystem Writers' Guide

(Order No. AK92)

Peripheral Input/Output MPM Peripheral 1I/0
(Order No. AX49)

Communications Input/Output MPM Communications I/0
(Order No. CCO2)

s omam (Mas S A A

The MPM Reference Guidc contains ral information about the Multics command
and programming environments. It also defines items used throughout the rest of the
MPM and, in addition, describes such subjects as the command language, the storage
system, arnd the input/output system.

coane
gene
d

The MPM Commands is organized into four sections. Section 1 contains a list
of the Multics command repertoire, arranged functionally. Section 2 describes the
active functions. Section 3 contains descriptions of standard Multics commands,
including the calling sequence and usage of each command. Section 4 describes the
requests used to gain access to the system.

The MPM Subroutines is organized into three sections. Section 1 containsalist
of +the subroutine repertoire, arranged functionally. Section 2 contains
descriptions of the standard Multics subroutines, including the declare statement,
the calling sequence, and usage of each. Section % contains the descriptions of the
I/0 modules.

(:) Honeywell Information Systems Inc., 1979 Pile No.: 1L1%

AX49-01

The MPM Subsystem Writers' Guide is a reference of interest to compiler
writers and writers of sophisticated subsystems. It documents user-accessible
modules that allow the user to bypass standard Multics facilities. The interfaces
thus documented are a level deeper into the system than those required by the
majority of users.

The MPM Peripheral I/0 manual contains descriptions of commands and subroutines
used to perform peripheral I/0. 1Included in thismanual are commands and subroutines
that manipulate tapes and disks as I/0 devices.

The MPM Communications I/0 manual contains information about the Multics
Communication System. Included are sections on the commands, subroutines, and
I/0 modules used to manipulate communications I/0. Special purpose communications
I/0, such as binary synchronous communication, is 2lso included.

Throughout this manual, change bars in the margins indicate technical additions
and changes; asterisks denote deletions.

Significant Changes in AX49, Addendum C

The description of administrative records in Section 3 has been expanded,
and now includes a description of bootable tape label records.

The read tape and query command has several new control arguments and requests
described, and includes examples.

The tape in and tape out commands have a new maximum for tape file physical
block length, as do the tEpe_ansi and tape ibm I/0 modules.

New control arguments and control orders have been documented for the tape mult
I/0 module. - -

7/82 iii AXhg-01C

Section 1

Section 2

Section 3

Section &4

Section 5

7/82

CONTENTS

Introduction
Peripheral I/0 Facilities e e e e e e e
Resource Control Package
Device Names

Access Control
Access Control Segments
RCP Effective Access . .
Manipulating RCP Effectlve Access
Sites Not Enabling Resource Management
Device Limits
I/0 Workspaces .
Resource Reservatlon
Device Assignment
Device Attachment
I/0 Interfacer

Multics Standard Tape Format

Standard Tape Format
Standard Record Format .
Physical Record Header
Physical Record Trailer e e e e e e
Administrative Records . . e e e e e
Standard Tape Label Record
Bootable Tape Label Record
End of Reel Record .
Density and Parity

Nad+
vava Pudd’"g . L

Write Error Recovery .
Compatibility Con51deratlon

Commands

copy flle, cpf e
list™ tape contents, ltc .
read” tape and query, rtq

tape in
tape out
I/0 Modules . . . « ¢ v v v v v v e e e e e e

ntape . . . L 0 0 0 s s e e e e e e e e

rdisk” S

tape ansi . . C e e e e
Definition of Terms e e e e e e e e
Attach Description

Creating A File

Reading A File . e ..
Output Operations On Ex1st1ng Flles . ..
Extending A File . e .
Modifying A File

Generating A File e e e e
Encoding Mode
File Expiration .

Volume Specification

Volume Switching
Multiple Devices
File Set Density e e e e
Opening . . . e e

Device Speed Spec;f1cat on

iv

Page

-
1
—

!
= =2 O0VONITIITOAUVTUTUTW —

I\JNNF\)T\)T\JT?JI\)I\)NT\)(\)T\)I\)
-0

L I I}

| I T I
NN OO EFEFWWWN = =

1
N =20 =
o I=

[}
R QT (PN QI QT S — S A S Y

WOV & 1=

(MRS RGO RO RO RO RS R RS R | Tt W W W W WD WD W W
|

1
n
(@]

AX49-01C

7/82

CCNTENTS (cont)

Resource Disposition

Write Rings And Write Protectlon
Queries

Structure Attrlbute Defaults
Processing Interchange Files
ASCII Subset

Overriding Structure Attrlbutes
Record Formats

F Format

D Format e e e
S Format
U Format

Record Format Comparlson
Block Padding .
Volume Inltlallzatlon .
Buffer Offset (Block Preflx)

Conformance To Standard . .
Label Processing
Error Processing

Close Operation
Control Operation . . .
hardware status Operatlon
status Operation . .
volume status Operatlon .
file status Operation . e e .
feov Operation . . . e e e e .
close rewind Operatlon .
retention retain _none, retain all
Operations . e .
reset error lock Operatlon . e
volume density Operatlon
Detach Operation
Modes Operation e e e e e
Position Operation
Read Length Operation
Read Record Operation
Write Record Operation . .
Control Operations from Command Level
Examples« e e e e
Attach Control Arguments e e e e

tape ibm

Definition of Terms . . e e e e e .
Attach Description

File Identifiers

Creating A File + . ¢ + .
Padding . . e e e e e e e e e e
Reading A FllP s e s e e e e e e e
DOS Files . . .

Output Operatlons On Ex1st1ng F11es
Extending A File AN o e e
Modifying A File « « . . .+« .
Encoding Mode«
File Expiration
Volume Specification
Volume Switching
Multiple Devices
File Set Density
Device Speed Specification

Opening . . e e e e e e e e e
Resource Dlsp051t10n . . .
Write Rings And Write Protectlon . .
Queries . o s e
Structure Attrlbute Defaults e e .
Overriding Structure Attributes .
Record Formats
v

Page

5-26
5-26
5-27
5-29
5-2¢9

ELEFWWLWWWWWWWWWWWWWWwww
- OO

U'l\ﬂU'lU'!U‘IU'\'\ﬂU’l\ﬂkﬂ\lflU1U"UTU'IU'IU'|U'IU‘IU’1U1KJ"I
=S OO0OWWOWOOOOO~ITATOUITUIE=ZW N =

TYYYY

q
FERE SR S
DN = =

5-142
5-42
5-42
5-42
5-42
5172
51k
5-46
5-47
5-47
5-47
5-50
5-50
5-52
5-53
5-53
5-54
5-54
5514
5-55
5-55
5-56
5-56
5-58
5-58
5-58
5-58
5-59
5-59
5-60
5-62
5-62
5-63

AX49-01C

Section 6

Index

Figure 2-1.
Figure
Figure

Figure

6

6

6
Figure 6-
Figure 6
Figure 6
Figure 6

7/82

CONTENTS (cont)

F(B) Format . e e .

V(B) Format

V(B)S Format

U Format . .
Volume Inltlallzat1on
Conformance To Standard .
Label Processing .« e .
Error Processing
Close Operation
Control Operation

hardware status Operatlon

status Operation .

volume status Operatlon

file status Operation

feov Operation

close rewind Operat1on

retention, retain _none, retaln all

Operations
reset error lock Operat1on

volume density OPERATION

Detach Operation
Modes Operation .
Position Operation .
Read Length Operation

Read Record Operation

Write Record Operation

Unlabeled Tapes .

Control 0perat1ons from Command Level
Examples . . .

Attach Control Arguments e e e e e s
tape mult . . . « e s e e

Device Speed Speclficat1on . ..
tape nstd

Device™ Speed Spe01flcatlon

Programming Examples .
User-Ring I/0 System Commands
PL/I Calls to the User-Ring I1/0 System
Language I/0 in PL/I
Protocol-Defined Data Format .
PL/I Calls to the User-Ring I/O System,
Multics Standard Tape
Multics Tape Commands

ILLUSTRATIONS

Interrelationship between User Code, iox , RCP,
IOI, and the I/O Module . .

ertlng Segment to Tape With PL/I Calls to 1ox
(via tape ansi) .

Readlng Segment From Tape W1th PL/I Calls to
iox (via tape ansi) . e e .

Writing Segment to Tape W1th PL/I I/O

Facilities e e e e

Reading Segment to Tape With PL/I I/O
Facilities « + ¢ v o o o o o« o &
Writing Segment to Nonstandard Tape
Reading Segment to Nonstandard Tape

Writing Segment to Tape With PL/I Calls to iox

(via tape mult) . e e e e e

vi

(L
-— I) s
o

1
—_

[e)We)) ’J\’J\O\O\CIY\ (200 G RO R0, |
o

[
|
—_

AX49-01C

TABLES

Table 2-1. RCP Effective Access . .
Table 2-2. I/0 Workspaces . . . « .« . .

NN
|
jace))

7/82 vii AX49-01C

SECTION 1

INTRCDUCTION

The Multics system supports input/output (I/0) operations on the following
peripheral devices: :

disk

magnetic tape
printer

card punch

card reader
communications lines

Although revisions of this manual will contain information on all of these
devices, this manual presently documents I/0 operations on magnetic tape, disk,
and some forms of communications lines.

Section 2 describes two critical components of the Multics I/0 facility:
the resource control package (RCP) and the I/0 interfacer (I0OI). These
descriptions are intended as reference information, since tape I/0 can be
performed by users with no knowledge of RCP and IOI.

Section 3 describes the standard Multics tape format used on tapes written
and read by the tape mult_ I/0 module. Tape format required for the processing
of tapes by the tape ansi I/0 module is described in the Draft Proposed
Revision X3L5/419T of +the American National Standards Institute's ANSI
X3.27-1969, "Magnetic Tape Labels and File Structure for Information
Interchange". Tape format required for the processing of tapes by the tape ibm
I/0 module is described in the following IBM publications: OS Data Management
Services Guide, Release 21.7, GC26-3746-2; IBM System 360 Disk Operating System
Data Management Concepts, G624-3427-8; and Os Tape Labels, Release 21,
GC28-6680-4. Readers requiring information on ANSI and IBM tape formats should
refer to these publications, since none of the material in them is duplicated in
this manual.

Section 4 contains alphabetically arranged descriptions of I/O-related
commands; Section 5 contains alphabetically arranged descriptions of the
subroutines and I/0 modules.

Section 6 gives some programming examples (in PL/I) illustrating the use of
the user-ring peripheral I/0 system.

No hardware status information is included in this manual. Readers
desiring hardware status information should refer to the appropriate Multics
Program Logic Manual.

1-1 AX49-01

The following commands handle various aspects of peripheral I/0:

assign_resource list_resource_types
acquire_resource print
cancel_resource print_attach_table
close_Tile print_request_types
console_output reserve resource
copy file set_cc ~
display_plilio_error set_tty

file output unassign resource
io_call vfile adjust

line length viile status

list_resources

All of these commands are described in the MPM Commands.

1-2 AX49-01

SECTION 2

PERIPHERAL I/0 FACILITIES

Input/output in the user environment of the Multics system is organized
around the user-ring I/0 system subroutine, iox . The entry points of iox
provide for a general, device-independent interface supporting I1/0 and control
functions. They may be called either via explicit PL/I code or via the
facilities of language-provided 1I/0. COften, they are called internally from
programs (see Section 4) that deal with peripheral I/0.

The wuser-ring I/0 system is organized around I/0 modules, programs that
support the iox_ interfaces for a specific device, class of devices, or elass of
operations upon a given device or class of devices. (The available interfaces
of iox_ are described in the MPM Subroutines.) I/C modules make appropriate
calls upon the I/0 interfaces of the supervisor, the resource control package,
and the I/0 interfacer to arrange for use oFf peripheral devices and perform
operations upon them. The system provides a repertoire of I/0 modules for
peripheral devices. These I/0 modules are documented in Section 5. The user
may provide his own I/0 modules as well. (See the MPM Subsystem Writers' Guide
for guidelines for the implementation of I/0 modules.)

The resource control package (RCP) is responsible for allocation and
deallocation of peripheral devices to user processes. By means of RCP, user
processes (and I/0 modules) can gain access to peripheral devices. RCP provides
for access checking and device selection. RCP is described in detail below.

The I/0 interfacer (IOI) is +the facility of the supervisor through which
user programs (via I/0 modules) can operate peripheral devices. I0I provides
for the operation of the I/0 hardware and the multiplexing of channels and other
physical resources between processes. I0I can only be used to manipulate a
device once a process has acquired the right to use that device via RCP. I0I is
described below.

The interrelationship between wuser code, iox_, RCP, iOI, and +the I/0
modules is shown in Figure 2-1.

2-1 AX49-01

USER ISSUES
COMMAND TO
READ/WRITE
FROM/TO DEVICE

COMMAND
CALLS LANGUAGE
1/0

RING 4

LANGUAGE I/0
CALLS iox_

iox.CALLS
APPROPRIATE
1/0 MODULES

Y

1/0 MODULE
CALLS
RCP AND (01

101
PERFORMS
1/0

RCP CALLS
101

RING 1 RING 0

I
I
+
|
|
|
|
|
|
|

Figure 2-1. Interrelationship between User Code, iox., RCP,IOL, and the 1/0 Module.

12/79
A)J?:‘)-OIA

RESOURCE CONTROL PACKAGE

The function of RCP is to control the access to and usage of I/0 devices.
RCP executes in ring 1. Access to the various functions of RCP are controlled
by the ring 1 gates that must be used to call RCP. One of the primary functions
of RCP as a device manager is to control access to IOI. In order to do this, no
IOI gate entries are available to perform device attachments, detachments, and
other privileged administrative functions. User ring programs, therefore, call
RCP in order to request IOI to perform these functions.

An important <feature of RCP is 1its ability +to retain registration
information for all resources that it controls. It does this by providing
administrative interfaces for the registration of resources. Registration of a
resource provides information such as: what type of resource this is, what its
name 1is, which attributes it ©posseses, or 1in what access class range the
resource can be used. Once a resource is registered users may acquire themn.
The act of acquisition makes a user the owner of +the resource--liable for all
changes for that resource and in control of discretionary access to the resource
(see the acquire_resource command in the MPM Commands) .

Another important feature of RCP is 1its ability to control access to the
various resources that it manages (where a resource is either a device or a
volume). It does this through the use of access control segments (ACSs). An
ACS is a zero length segment whose ACL and ring brackets are used to define the
discretionary and intraprocess access to a resource. At a site's discretion,
additional features of RCP can be -enabled to provide nondiscretionary access
control for resources. If this is done, access is also controlled by the AIM
access class range of a resource. (See "Access Control" below.)

The resource management functions performed by RCP are:

maintain resource information

control access to resources

reserve and cancel reservation of resources
assign and unassign devices

attach and detach devices

perform special device control functions

AU —

The functions reserve, assign and attach are organized into hierarchical B
levels. Defaults are provided at each level so that wusers not desiring to
exercise features specific to a 1level do not have to concern themselves with
that level.

1 reserve
2 assign

3 attach
% detach
2 unassign
1 cancel

The first 1level involves +the reservation of resources by processes.
Reservations are process-specific and remain in effect until the process
requests a cancellation or until the process terminates. Reservation implies
that a process temporarily has exclusive rights to a resource. This exclusive
right means that no other process can wuse that resource for the duration of the

reservation. Reservation does not necessarily imply that a resource is actually
being used.

2-3 AX49-01

Assignment, like reservation, is process-specific and lasts until
unassignment or process ‘termination. An assignment also gives a process
temporary exclusive rights to a device. Assignment does not necessarily mean
that a device is currently being used. That is the function of the next level,
attachment.

A resource cannot be used until it is attached. When RCP is called to
attach a resource, it initiates communication with the ring O subsystem that
actually provides the use of the resource. Before the attachment is completed,
RCP performs all initialization necessary +to allow the attaching process to
begin using the resource. For devices, this involves attaching the device via
I0I and making sure that the device 1s ready and that any volume needed has been
mounted.

The hierarchical relationship among reservation, assignment, and attachment
implies that the higher-level function, reservation, can stand alone while the
lower-level function, attachment, can only be performed after the higher-level
function has been performed. RCP can perform the following device reservation,
assignment, and attachment functions:

1. Reserving a resource. This means that no other process can use it
during this period of time.

2. Explicitly assigning a device. The device is assigned +to a process
but is not attached.

3. Attaching an explicitly assigned device.

4. Attaching an unassigned device. Since a device cannot be attached
until it 1s assigned; RCP automatically assigns the device and then
performs +the attachment. The device is said to be implicitly
assigned.

5. Detaching an implicitly assigned device. After the device is
detached, RCP automatically unassigns the device.

6. Detaching an explicitly assigned device. The device is detached but
is not unassigned.

7. Explicitly wunassigning a device. If the device is attached, it is
first detached and then unassigned.

8. Cancelling reservation of a resource.

The rules stated above imply that I/0 modules do not have to be concerned
with the assignment or unassignment of devices. They need to be concerned with
only the attachment and detachment of a device. RCP, however, does allow the
above rules to be overridden. When detaching a device an I/0 module can tell
RCP to retain the device assignment regardless of whether +the device was
explicitly or implicitly assigned.

When a process terminates, RCP automatically detaches and unassigns all
devices currently assigned to that process and cancels any reservations for that
process.

The reservation of resources and cancellation of reservations are done from
command level via the reserve_resource and cancel_resource commands and using
the -resource control argument with the enter_abs_request command. The explicit
assignment and unassignment of devices 1s done from command level via the
assign_resource and unassign resource commands. The 1listing of reservations,
assignments, and attachments 1is done from command level via the list_resources
command. These commands are described in the MPM Commands.

2-4 AX49-01

Device Names

Each device managed by RCP has a unique device name. Device names are
derived from the name of the hardware subsystem that controls that +type of
device. For devices that have exclusive use of a channel, such as printers, the
device name is the actual name associated with that channel. For devices that
are multiplexed over one or more channels, such as disks, the device name has
the form, "ssss xx", where "ssss" 1is the subsystem name and "xx" is a device
number. Such devices are numbered from 1 to 63. Some examples of device names
are:

tapb_03 - tape subsystem B, drive number 3
opc - the operator console

rdrdb - a card reader

spei — a special new type of device

Access Control

Access to resources is controlled by RCP by first guaranteeing that a user
has access to use the resource and then by guaranteeing that the user has not
exceeded the per-process limits imposed on certain resources or types of
resources.

ACCESS CONTROL SEGMENTS

There are three types of access control on the Multics system:
discretionary access control, which is regulated by access control lists (ACL);
nondiscretionary access control, which 1is regulated by the access isolation
mechanism (AIM); and intraprocess access control, which is regulated by the ring
struct?re. (For detailed information on types of access, see the MPM Reference
Guide.

An important feature of RCP is its ability to control access to the various
resources that it manages. It does this through the wuse of access control
segments (ACSs). An ACS is a zero length segment whose ACL and ring brackets
are used to define the discretionary and intraprocess access to a resource. RCP
uses an ACS for each resource that it controls; however, an ACS can be shared by
more than one resource. The name of an ACS consists of a name, plus the suffix
"acs" (e.g., tape drives.acs). There are no restrictions on ACS names other
than the required suffix.

The pathname of the ACS for a resource is specified either at the time the
resource is registered or when it is acquired (see the acquire_resource command
in the MPM Commands). ‘The specified ACS can 1later be changed via the
set_resource command (see the MPM Commands). If the ACS has not been specified
or does not exist, access is set by default to rew for the owner of the resource
and null for all other users.

RCP uses the ACS along with other nondiscretionary controls (AIM) to
determine the RCP effective access to a resource.

2-5 AX49-01

RCP Effective Access

Viewed separately, each type of access control answers the same question,
"What access does a particular process have for a particular item?" The access
mode granted a process to a resource by discretionary access control (the ACL)
is known as the raw access mode.

The way RCP determines effective access to a resource for a process differs
from +the regular Multics method of determining effective access as follows.
First, the effective access to the ACS for the resource is determined as for any
segment. If the ACS does not exist, the user appears to have read, execute, and
write access if he is the owner of the resource or null access if he is not the
owner. Then, two further checks are made. First, the current authorization of
the process is compared to the maximum access class of the resource. If write
access is not allowed (as defined by the write_allowed subroutine) then write
and eXxecute access are denied and only read is allowed. DNext, the current
authorization of the process is compared to the minimum access class of the
resource. If read access 1is not allowed (as defined by the read allowed_
subroutine) then all access is denied. The resulting access 1is termed the RCP
effective access to the resource. One final restriction enforced by RCP is
that, in order to use a device, +the RCP effective access must include both read
and write.

For example, the following table illustrates some examples of RCP effective
access. In the examples below, 11, 12, 13 and 14 represent sensitivity levels
and c¢c1, c2, c¢3, and c4 represent categories.

Table 2-1. RCP Effective Access

Effective Current Resource RCP
Access Process Access Effective
to ACS Authorization Class Range Access
rew 11 11:13% rew

re 11 11:13 Te

rew 11 12:13 null
rew 13 12:13 rew

rw 14 12:13 r

re 14 12:13 by

TW 12,ct 11:14 T

rw 12,c2 11,c1:14,c1,c2 null
rw 12,c1,c3 11,c1:14,c1,c2 r

rw 12,c1 11,c1:14,c1,c2 rw

For more information on AIM, access classes, authorizations, and
comparisons involving access classes and authorizations, see the MPM Reference
Guide. The pathname of the ACS is specified by the -acs_path control argument
and +the access class range mentioned above is specified by the -—access class
control argument, both of which can be specified in +the acquire resource and
set_resource commands (see the MPM Commands§ -

2-6 AX49-01

Manipulating RCP Effective Access

Since the access control mechanisms described above operate together to
determine the RCP effective access of a process, there are actions that the user
can perform to control this effective access.

First, the user creates an ACS via the create command. Then, the desired
ACL for that segment is established using the set acl command to add desired ACL
entries, and the delete_acl command to delete entries. (The above three
commands are described in the MPM Commands.) To further affect the ACS, the
user may modify 1its ring brackets by using the set ring brackets command
(described in the MPM Subsystem Writers!' CGuide). ~The system security
administrator may set the AIM access class range of the resource itself using
the set _resource command (see the MPM Commands).

SITES NOT ENABLING RESOURCE MANAGEMENT

If the system administrator has chosen not to enable Resource Management
the preceeding discussion of access control can be simplified.

Nondiscretionary access control is not enforced in this case. There are no
ACSs for volumes and all users are assumed to have both read and write access to
any volume. The ACS for a device can be found in >system_control_1>rcp and is
named device_name.acs (e.g., tape_01.acs). Only the discretionary and
intraprocess access (ACL and ring brackets) is considered in determining access
to a device.

DEVICE LIMITS

In addition to controlling which processes may have access to a device, RCP
will enforce a limit to the number of devices of a given type that a single
process may have assigned at one time. This limit is enforced according to the
following rules: :

1. The 1limit is not enforced for system processes.

2. The 1limit for each device type is an installation defined value. They
are currently specified on PRPH (peripheral) configuration cards.

3. Currently, oniy tape drive devices actually have such a limit defined.

RCP will also enforce a 1limit to the total number of devices of a given
type that may be assigned +to non-system processes at one time. RCP enforces
this limit 1in order to ensure that a certain number of devices of each device
type are either assigned by a system process or available for assignment by a
system process. This 1limit is enforced according to the following rules:

1. The number of devices of each device type that RCP will reserve for
system processes are installation defined values. They are currently
specified on PRPH configuration cards.

2. Currently, only tape drive devices are reserved for system processes.
Only tape drives with certain characteristics are reserved. Only 9
track tape drives are reserved since the backup facility uses only 9
track tapes.

2=-7 AX49-01

I/0 Workspaces

Due to the nature of the Multics virtual memory and its supporting I/O
hardware, I/0 cperations such as "read tape" or "write disk" require all pages
of memory referenced by the I/0 ocperation to be in main memory during the
operation -~ that is, no paging is done during execution of the I/0 operation.
To accomplish this all channel programs and physical record buffer areas are
located in a special segment known as an I/0 workspace segment. The ring O I/0
software, I0I, guarantees that all pages of the workspace are present in main
memory before starting the I/0 operation and remain there for the duration of
the operation.

RCP will control +the maximum workspace size associated with each device
type. System processes, privileged processes and wusers on the ACL of the ACS
named workspace.acs in the directory >system_control 1>rcp can request up to the
privileged maximum workspace size. All others can request up to the normal
maximum workspace size. Requests for a workspace longer than is allowed result
in an error. The table below lists the workpace maximums that are enforced.

Table 2-2. I/0 Workspaces

Privileged Maximum Normal Maximum
device type words bytes words bytes
tape_drive 45056 180224 3072 12288
disk _drive 45056 180224 2048 8192
printer 45056 180224 1024 4096
punch 45056 180224 1024 4096
reader 45056 180224 1024 4096
special 45056 180224 1024 4096
console 45056 180224 1024 4096

The workspace size 1s alfected by using the -block contro :
those I/0 modules that support it. This control argument is used to specify the
maximum physical record/block size to be processed. In all cases some overhead
for channel programs and I/0 mcdule control information must be taken into
consideration. When -block is not specified or supported the individual I/0
modules choose an appropriate default. In the case of commands that wuse I/0
modules, either the command, some argument or input to the command, or the I/0
module may specify/imply in some way the workspace size (for example by
supplying -block in an attach description).

w4+
i

Resource Reservation

Users may reserve resources by scheduling with RCP to obtain exclusive
rights to a resource for a period of time. RCP enables users to reserve
resources or groups of resources through the use of the reserve_resource command
(described in the MPM Commands). A reservation takes effect immediately and it
lasts until either the wuser's process 1is terminated, or the reservation is
specifically cancelled via the cancel resource command (described in the MPM
Commands). After invoking reserve_resource, the wuser has exclusive rights to
the resource(s).

2-8 ‘ AX49-01

Tape volumes, tape drives, disk volumes, and disk drives can be reserved.
Tape and disk volumes are specified at the time of reservation by name; tape and
disk drives are specified by either name or attributes. In the case of disk
drives, the only acceptable attribute is model. For tape drives, acceptable
attributes are model, track, and density. Suitable values for the
above-mentioned attributes may be found by using the list resource types command
(also described in the MPM Commands). - -

To cancel reservations, users invoke the list_resource command 1o obtain
the reservation identifier, and then invoke the cancel resource command with the
reservation identifier to effect the cancellation. Kdministrators can perform
privileged cancellations; that is, if the administrator has proper access, it is
possible to cancel reservations belonging to other users.

Device Assignment

The RCP interface for device assignment allows the caller to request the
assignment of a specific device, or any appropriate device of a specified type.
To request the assignment of a specific device the caller must ask for the
device by name. To request the assignment of an appropriate device of a
specified type, the caller must specify the characteristics that the assigned
device must have. RCP selects a device for assignment based on the following
functional algorithm.

1. If the. caller has requested a device by name and if +this device is
already assigned to the calling process, the assignment is aborted.

2. RCP tests all of the devices of the specified type. RCP counts the
number of these devices that are appropriate; appropriate and
accessible; and - appropriate, accessible and available. These
requirements are discussed below: -

a. appropriate: A device is comnsidered to be appropriate if it has
the device characteristics specified by the caller. In testing
each device, RCP does not try to match any device characteristics
that are not specified by the caller. If a device is asked for
by name, only the device name characteristic is considered.

b. accessible: A device is considered to be accessible 1f the
calling process has "RW" effective access to the device.

C. available: A device is considered to be available fér assignment
if it is not currently assigned to any process or reserved by
another process. :

3. Having tested each of these requirements, RCP then mskes additional
tests to see if a device can be assigned. If the assignment cannot be
made, RCP returns an error_table code that tells the caller why the
assignment aborted. The .tests +that RCP makes at +this time are
described below:

a. If there are no appropriate devices, the caller is told that the
requested resource (device) is not known to RCP.

b. If there are no appropriate and accessible devices, the caller is
told that he does not have access to the requested resource
(device).

C. If there are no appropriate, accessible and available devices,
the caller 1is told that the requested resource (device) is not
available at this time.

d. If this assignment causes the previously described device limits
to be exceeded, the assignment is aborted.

2-9 AX49-01

4. If all the tests described above are passed successfully, the device
assignment is made. RCP selects the most advantageous device from the
list of devices that were found to be appropriate and accessible and
available. It makes this selection based on the following rules:

a. If this 1is a type of device that has volumes .and if the caller
specified a volume name to use in the device selection and if any
device in the list currently has that volume mounted, RCP selects
that device.

b. If the first case is not true, RCP selects the device that has
been idle for the longest amount of time.

Having assigned the device, RCP returns all of the characteristics of this
device to the caller.

Device Attachment

Before a device can be attached it must be assigned. The RCP interface for
device attachment allows the caller +to request a device in the same manner
described for device assignment. It can ask for a specific device by name or it
can ask for any appropriate device of a specified type. One difference is that
if this device is a type that uses volumes, the caller must specify the name of
the volume to attach. TFor assignments, +the specification of a volume is
optional.

Using the algorithms described above for device assignment, RCP tests all
of the devices of the specified type that are already assigned by the requesting
process. If the specific device or any appropriate device is already assigned
to this process, RCP attaches that device. If no suitable device 1is already
assigned +to the requesting process, RCP automatically attempts to assign a
suitable device +to this process. If no device can be assigned then the
attachment 1is aborted. If the attachment is for a device +type that uses
volumes, RCP checks +to see if the specified volume is already attached to this
process or any other process. If the volume is already attached, RCP aborts the
attachment.

Once RCP has found a suitable assigned device, it %begins the real work of
attaching the device. This involves calling IOI to perform the ring O device
attachment. If the device is a type that uses volumes, RCP tells the operator
to mount the specified volume if it is not already mounted on the proper device.
Before the attachment 1is completed, RCP makes sure that the volume has been
mounted and that the write protection mechanism provided by the device is set
correctly. When all of this initialization work has been completed, RCP calls
I0I to set the workspace and time-out limits and to promote the validation level
of the device. Until +this is done, the IOI validation level for the device is
the RCP validation level (1). Thus no program in a higher ring can successfully
call IOI to use this device until RCP +tells IOI to promote it. RCP returns all
of the device characteristics of the attached device and all of the information
needed to communicate with IOI about this device.

2-10 AX49-01

1/0 INTERFACER

The I/0 interfacer (I0I) allows user-ring programs to perform peripheral
I/0. It is used by all user-ring programs that perform I/0 to devices connected
to the Input/Output Multiplexer (IOM) channels. The wuser can construct
device-specific DCW lists and call IOI +to initiate the I/O operation. When the
operation completes, IOI provides the user with a wakeup and the status. The
hardware protection and relocation features of the IOM are used by IOI to allow
the user complete control over his DCW lists and data with no possibility of
damaging the system.

NOTE: More information on the IOI will be supplied in a future update of
this manual.

2-11 AX49-01

SECTION 3

MULTICS STANDARD TAPE FORMAT

This section describes the standard physical format used on 7-track and
9-track magnetic tapes on the Multics system. This format is known as Multics
standard tape format. Tapes of this form may be written and read by the tape mult
I/0 module (described 1in Section 5). Any magnetic tape not written in the
standard format described here is not a Multics standard tape.

STANDARD TAPE FORMAT

The first record on the tape following the beginning of tape (BOT) mark is
the tape label record. Following the tape label record is an end of file (EOF)
mark. Subsequent reels of a multireel sequence also have a tape label followed
by ECF. (An EOF mark is the standard sequence of bits on a tape that is recognized
as an EOF by the hardware.)

Following the tape label and its associated EOF are the data records. An
EOF is written after every 128 data records with the objective of increasing the
reliability and efficiency of reading and positioning within a logical tape.
Records that are repeated because of transmission, parity, or other data alerts,
are not included in the count of 128 records. The first record following the
ECF has a physical record count of ¢ mod 128.

An end of reel (EOR) sequence is written at the end of recorded data. An
EOR sequence 1is:

ECF mark
ECR record
EOF mark
EOF mark

STANDARD RECORD FORMAT

Each physical record (with the exception of the tape label record) consists
of a 1024-word (3686U4-bit) data space enclosed by an 8-word header and an &-word
trailer. The total record length is then 1040 words (37440 bits). The header
and trailer are each 288 bits. This physical record requires 4680 frames on
9-track tape and 6240 frames on 7-track tape. This is approximately 5.85 inches
on 9-track tape at 800 bpi and 7.8 inches on 7-track tape at 800 bpi, not
including interrecord gaps. <(Record gaps on 9-track tapes are approximately 0.6
inches and on 7-track tapes are approximetely 0.75 inches, at 800 bpi.)

For 1600 bpi ¢-track tape, the record length is approximately 2.¢25 inches
(with an interrecord gap of approximately (.5 inches).

7/82 2-1 AXug-01C

PHYSICAL RECORD HEADER

The following is the format of the physical record header:

Word O:

Words 1 and 2:

Word 2:

Word 4:

Word 5:

Word 6:

Word T7:

Constant with octal representation 670314355245,

Multics standard unique identifier (70 bits, left justified).
Each record has a different unique identifier.

Bits 0-17: the number of this physical record in this physical
file, beginning with record 0.

Bits 18-35: the number of this physical file on this physical
reel, beginning with file 0.

Bits 0-17: the number of data bits in the data space, not
including padding.

Bits 18-35: the total number of bits in the data space.
(This should be a constant equal to 36864.)

Flags 1indicating the ¢type of record. Bits are assigned
considering the leftmost bit to be bit 0 and the rightmost
bit to be bit 35. Word 5 also contains a count of the
rewrite attempt, if any.

Bit Meaning if Bit is 1

0 This is an administrative record (one of bits 1 through
12 is 1).

1 This is a label record.

2 This is an end of reel (EOR) record.

3-13 Reserved.

14 One or more of bits i5-26 are set.

15 This record is a rewritten record.

16 This record contains padding.

17 This record was written following a hardware end of

tape (EOT) condition.

18 This record was written synchronously; i.e., control
did not return to the caller until the record was
written out.

10 The logical tape continues on another reel (defined
only for an EOR record).

20-26 Reserved.

27-35 If bits 14 and 15 are 1, this quantity indicates the
number of the attempt to rewrite this record. If bit
15 is 0, this quantity must be 0.

Contains the checksum of the header and trailer excluding
word 6; i.e., excluding the checksum word.

Constant with octal representation 512556146073.

3-2 AXU4g-01

PHYSICAL RECORD TRAILER

The following is the format of the trailer:

Word 0O: Constant with octal representation 107462U22532.

Words 1 and 2: Standard Multics unique identifier (duplicate of header).

Word 3: Total cumulative number of data bits for this logical tape
(not including padding and administrative records).

Word U: Padding bit pattern (described below).

Word 5: Bits 0-11: reel sequence number (multireel number), beginning

with reel 0.

Bits 12-35: physical file number, beginning with physical
file 0 of reel 0.

Word 6: The number of the physical record for this 1logical tape,
beginning with record 0.

Word 7: Constant with octal representation 2652216317C4.

NOTE: The octal constants listed above were chosen to form elements of a
single-error-correcting code whether read as 8-bit tape characters
(9-track tape) or as 6f-bit tape characters (7T-track tape).

ADMINISTRATIVE RECORDS

The standard tape format includes three types of administrative records: a

standard tape label record, a bootable tape label record, and an end of reel
(ECR) record.

Standard Tape Label Record

The standard tape label record is written in standard record format, and
can best be defined by the PL1 structure declaration that follows:

del 1 stand label record based (mstrp) aligned,

2 head like mstr header,

2 installation id char (32),

2 tape_reel_id char (32),

2 volume set id char (32),

2 pad (1000) bit (36),

2 trail like mstr_trailer;
where:
1. head

is the standard f&-word record header described above.

2. installation id
is The ASCII installation code. This identifies the installation
that labeled the tape.

3. tape_reel id

Is the ASCII reel identification. This is the reel identification
by which the operator stores and retrieves the tape.

T7/82 3-3 AX40-01C

L. volume set id
T is the name of the volume set if the "-vclume set name" tape mult
attach description argument was used when the tape Teel wass created.
If the "-volume set name" attach description ergument was not used,
this field is padded with ASCII blanks.

5. pad
is an array of words containing the standard padding pattern (described
below), used to fill the label record data space to the standerd
size.

6. trail

is the standard Rf-word record trailer described zbove.

Bootable Tape Label Record

The bootable tape 1label record is an administrative record, written 1in
nonstandard format. The first eight words of the physical record contain four
pairs of executable instructions collectively known as a transfer vector. This
transfer vector allows a Multics standard tape to be bootlcaded from any of four
possible I/0 controllers.

When a tape that contains a bootable tape label record is bootloaded, a
hardwired program within the I/0 controller writes the data within the first
record starting at location 30 (octal, absolute) in memory. When the data transfer
is completed, the I/0 controller sets an interrupt "cell" in the system controller,
which causes the bootload processor to execute a hardwired "XED" instruction to
the address indicated by the system controller. This interrupt address generated
by the system controller is a function of the interrupt "cell" set by the I1/0
controller and by the configuration penel number of the I/0 controller itself.
For example, if the bootload sequence was initiated on I/0 controller #0, then
the interrupt address would be 20 (8); addresses 22, 22U, and 26, respectively,
would be generated by I/0 controllers number 1, 2, and 2. The executable instructions
contained in each pair of the transfer vector are:

lda b
tra 330

Location 4 contains the LCCW address stored by the 1/0C controller hardwired boot
program. An executable program is located at 230 (octal, absolute). This program
is known as the tape label boot program.

The bootable tape label record is created through the use of the tape mult
boot program control order. This control order is normally executed by the
generate mst command to write a bootable label on BOS system tapes. Although a
user can write his own boot program and have generate mst write it to the BOS
tape 1label, a standard boot 1label exists in the "system 1libraries, named
mst boot label.

The mst boot label boot program initializes the bootstrap environment and
sets up an I/0 channel program to read and skip the EOF record, and to read in
the first data record on the tape under control of a DCW. The DCW address used
is 7750 (8) absolute with a word count of LUQ06. (The generate mst command
places the standard 8-word tape record header plus a 16-word segment header
before the first data in the record; the first executable data in the record
starts at 1location 10000 (8).) After the first data record is read in, the
status returned from the tape controller is checked for errors. If an error
occurred, the status word is copied in the A register and the processor falls
into a [IS. Assuming no status error was detected, control is transferred to
absolute location 10000 (8).

T/82 3-4 AX49-01C

There are many other fields in the bootable tape label record. The following

is a PL1 structure decleration of the contents of the bootable tape label record
followed by an explanation of each field:

del 1 mst label based (mstrp) aligned,
2 xfer vector (uy,
2 1da instr bit (26),
2 tra instr bit (36),
2 head like mstr header,
2 instzllation id char (22) unaligned,
2 tape reel id™ char (22) unaligned,
2 volume set id char (22),
2 fv overlay (32) unaligned,
2 Scu instr bit (26),
3 dis instr bit (36),
2 fault data (R) bit (26),
2 boot pgm path char (16€) unaligned,
2 userid char (22) unaligned,
2 label version fixed bin,
2 output mode fixed bin,
2 boot pgm len fixed bin,
2 copyright char (56) unaligned,
2 pad (13) bit (26),
2 boot pgm (0 refer (mst label.boot pgm len)) bit (26),
2 trail like mstr trailer; - -

where:

1.

xfer vector
a is the bootload transfer vector. There is one transfer vector for
each of four possible I/0 controllers. The transfer vector functions
to gain control as the result of an interrupt after a bootload sequence.

2. lda instr
- is an "LDA" instruction from absolute location 4, which for an ICM
is the payload channel DCW as stored by the hardwired bootload program
in the IOM.
3. tra instr
- is an unconditional transfer to the beginning of the bootload program.
4, head
is the standard &-word record header described above.
5. installation id
is the ASCII installation code. This identifies the installation
that labeled the tape.
6. tape reel id
- Is the ASCII reel identification. This is the reel identification
by which the operator stores and retrieves the tape.
7. volume set id
~ 1S the name of the volume set if the "-volume set name" tape mult
attach description argument was used when the tape reel was created.
If the "-volume set name" attach description argument was not used,
this field is padded with ASCII blanks.
8. fv overlay
- This 32-element array overlays the hardware fault vector area at
2bsolute location 100 (octal) if this tape is bootloaded. If an
unexpected fault occurs when this tape is bootloaded, the appropriate
fault pezir is executed by the processor fault logic.
9. scu instr is a Store Control Unit (SCU) instruction, which safe-stores the
- state of the processor control unit when executed.
7/82 3-5 AXbho-01C

10. dis instr
- is an interrupt inhibited ©Deley wuntil Interrupt Signal (DIS)
instruction, which halts the processor when executed.

11. fault data
T is an ares where SCU data is stored if an unexpected fault ocurred
while bootloading this tape.

12. boot pgm path
T if nonblank can be the absolute pathname of the boot program written
on this label record. It can also be the user designated name for
the boot program when the "boot program" tape mult control order
was executed. - - -

13. userid
: is the User id. (Person.Project.Instance) of the user who created
this tape. .

"1u. label version

is the version number of this label record structure, currently 2.

15. output mode
~ is the number of the iox mode in effect when this tape was created.
(See iox modes.incl.pl1.)

16. boot pgm len
~ Ts the length of the boot program in words. The boot program must
be less than or equal to BUO (151C octal) words in length. If it is
less than 840 words, the record is padded out with the standard
padding pattern.

17. boot pgm
- is the executable text of the boot program. The boot program must
be coded in absolute self-relocating ALM assembly language.

18. trail
is the standard 8-word record trailer described above.

End of Reel Record

The end of reel record contains only padding bits in its data space. The
standard record header of the EOR record contains the information that identifies
it as an EOR record (word 5, bits 0 and 2 are 1).

DENSITY AND PARITY

Both 9-track and 7-track standard tapes are recorded in binary mode with
odd ones having lateral parity. Standard densities are 800 frames per inch
(bpi) (recorded in NRZI mode), 1600 bpi (recorded in PE mode), and 6250 bpi
(recorded in GCR mode).

DATA PADDING

The padding bit pattern is used to fill administrative records and the last
data record of a reel sequence.

w
!
(o)}

7/82 AX49-01C

WRITE ERROR RECCVERY

Multics standard tape error recovery procedures differ from conventional
techniques in that no attempt is made to backspace the tape on write errors. If
a data alert occurs while writing a record, the record is rewritten. If an
error occurs while re-writing the record, that record is again rewritten. Up to
64 attempts can be made to write the record. No backspace record operation is
performed.

The above write error recovery procedure is applied to both administrative
records and data records.

COMPATIBILITY CONSIDERATION

The software is capable of reading Multics standard tapes that are written
with records with less than 1024 words in their data space. In particuler, a
previous Multics standard tape format specified a 256-word (9216-bit) data space
in a tape record.

In addition to recognizing and reading standard and bootable tape label
records, the software is also capable of recognizing and reading Multics standard
tapes that were generated with a version 1 label record, i.e., standard label
records that do not contzin the volume set id field.

7/82 =7 AX49-01C

SECTION 4

COMMANDS

This section contains descriptions of tape-related Multics commands,
presented 1in alphabetic order. Each description contains the name of the
command (including the abbreviated form, if any), discusses the purpose of the
command, and shows +the correct usage. DNotes and examples are included when
deemed necessary for clarity.

The commands described in this section and their functions are:
copy file copies records from an input file to an output
- ' file

list_tape contents prints information about files recorded on 9-track
magnetic tape

read_tape_and query allows the wuser +to 1interactively inspect the
contents of a magnetic tape

tape_in transfers files between magnetic tape and the
storage system

tape_out transfers files Dbetween the storage system and
magnetic tape

Also refer to +the assign resource, list_resources, and unassign resource

commands in the MPM Commands. These commands deal with the resource control
package and the consignment of devices.

4-1 AX49-01

copy_file copy_Tfile

Name: copy_file, cpf

The copy file command copies records from an input file to an output file
(both files "reside in memory). The input and output file records must be
structured. (See "Unstructured Files" below for an explanation of how
unstructured files can be copied.) The input file can be copied either
partially or in its entirety.

The copy command makes an exact duplicate of the input file, whereas
copy_file produces an output file that has been restructured for maximum
compactness. (See the description of the copy command in the MPM Commands.)

Usage

copy_file in_control _arg out_control_arg {—control_args}

where:

1. in_control _arg
- is one of two input control arguments that specifies the input file
from which records are read. The file may be specified by either an
I1/0 switch name or an attach description. (See "Notes" below.)

—-input_switch STR, -isw STR
specifies the input file by means of an already attached I/0 switch
name, where STR is the switch name.

-input_description STR, -ids STR
specifies the input file by means of an attach description, where
STR is the attach description. The attach description string must
be enclosed in quotes if it contains spaces.

2. out_control_arg
is one of +two output control arguments that specifies the output
file to which these records are written. It may be either an I/O
switch name or an attach description. (See "Notes" below.)

—output_switeh STR, -osw STR
specifies the output file by means of an already attached I/0 switch
name, where STR is the switch name.

—output_description STR, -ods STR
specifies the output file by means of an attach description, where
STR is the attach description. The attach description string must
be enclosed in quotes if it contains spaces.

3. control_args
may be one or more of the following control arguments. (See "Notes"
below.)

~keyed
copies both records and keys from a keyed sequential input file to a
keyed sequential output file. The default is to copy records from
an input file (either keyed or not) to a sequential output file.
(See "Keyed Files" below.)

4-2 AX49-01

copy_file copy_file

-from N, -fm N
copies records beginning with the Nth record of the input file,
where N is a positive integer. The default is to begin copying with
the "next record." (See "Notes"™ below.)

-start STR, -sr STR
coples records beginning with the record whose key is STR, where STR
is 256 or fewer ASCII characters. The default 1is to begin copying
with the "next record."

-to N
copies until the Nth record has been copied or the input file is
exhausted, whichever occurs first, where N is a positive integer
greater than or equal to the N given with the -from control
argument. This control argument can only be specified if -from is
also specified. The default is to perform copying until the input
file is exhausted.

-stop STR, -sp STR]

copies until the record whose key is STR has been copied or the
“input file is exhausted, whichever occurs first, where STR is 256 or
fewer ASCII characters. This control argument can be specified
without specifying the -start control argument. However, if -start
is specified, the STR given with -stop must be greater than or equal
to (according +to the ASCII collating sequence) the STR given with
-start. The default 1is to perform copying until the input file is
exhausted.

—-count N, -ct N
copies wuntil N records have been copied or the input file is
exhausted, whichever occurs first, where N is a positive integer.
The default is to perform copying until the input file is exhausted.

-all, -a.
copies until the input file is exhausted. This is the default.

-brief, -bf
suppresses an informative message indicating the number of records
actually copied.

-long, -1g

prints an informative message indicating the number of records
actually copied. This is the default.

Unstructured Files

The copy file command operates by performing record I/0 on structured
files. If it 1is desired to copy from/to an unstructured file, the
record_stream I/0 module can be used, e.g., by typing the command line:

cpf -ids "record_stream -target v}ile_ pathname" -osw OUT
The effect is to take lines from the file specified by pathname via the vfile

I/0 module, transform them into records via the record stream I/0 module, and
then copy them to the I/0 switch named OUT.

4-3 AX49-01

copy_file copy_file

Keyed Files

The copy_file command can copy a keyed sequential file either as such, or
as though 1t were purely sequential. By default, +the command copies only
records and does not place keys in the output file. To copy the keys, the
~keyed control argument must be used. When -keyed is used, the input file must
be a keyed sequential file. Whether keys are copied or not, control arguments
can be used to delimit the range of records to be copied (i.e., -start, -stop,
-from, -to, -count). Copying is always performed in key order.

Notes

If either the input or output spe01flcat10n is an attach description, it is
used to attach a uniquely named I/0 switch to the file. The switch is opened,
the copy performed, and then the switch is closed and detached. Alternately,
the input or output file may be specified by an I/0 switch name. Either the
io_call command or iox_ subroutine may be used to attach the file prior to the
invocation of the copy file command. (See the descrlptlon of the io call
command in the MPM Commands and the iox_ subroutine in the MPM Subroutines. 7

If the input file is specified by an I/0 switch name and the switch is not
open, the copy_file command opens it for (keyed_)sequential_input, performs the
copy, and closes 1it. If the switch is already open when the copy file command
is invoked, the opening mode must be sequential input, sequential_input_output,
keyed__ sequentlal input, or keyed sequential update. The switch is not closed
after the copy has been performed.

The "next record" must be defined if neither the -start nor -from control
argument is used to specify an absolute starting position within the input file.
If the 1I/0 switch is opened by the copy_file command, the next record is the
first record of the file; otherwise, the next record is that record at which the
file is positioned when the copy_ file command is invoked.

If the output file is specified by an I/0 switch name and the switch is not
open, the copy_file command opens it for (keyed_)sequential_output, performs the
copy, and closes it. If the switch is already open when the copy_file command
is invoked, the opening mode must be sequential_ output, sequential_ 1nput output,
keyed sequentlal output, keyed_sequential update, direct output or
direct update. TIn wupdate mode, output file records with keys that duplicate
input Ffile records are rewritten.) The switch is not closed ‘after the copy has
been performed.

The -from and -start control arguments are mutually exclusive. The -to,
-stop, -count, and -all control arguments are mutually ‘exclusive. The -brief
and -long control arguments are mutually exclusive. The informative message,
printed by default, appears as one of the following:

345 records copied.

4-4 AX49-01

copy_file copy_file

Examples

To copy an entire file from an already attached file to the segment
in_copy, type:

cpf —isw in -ods "vfile_ in copy"

To copy the <first 13 records from a tape file to an output file, the two
lines below would actually be typed as only one per line (The normal result of
this command would be to print the first 13 records on the user's terminal.)

cpf -ct 13 -ids "tape _ansi_ 887677 -name TEST21 -ret all"

-ods "record_stream user_output"

To copy 13 records from an already attached file +to another already
attached file, starting with the 56th record of the input file, type:

cpf -isw in -osw out -from 56 -ct 13

To copy records 43 through 78 from an already attached file to an already
attached file, type:

cpf -isw in -osw out -from 4% -to 78

To copy all but the first seven records from segment testdata.l1 to an
already attached file, type:

cpf -ids "vfile_ testdata.l1" -osw out -fm 8

To copy an entire keyed sequential file with keys, type:

cpf -isw in -osw out -all -keyed

To copy 13 records of a keyed sequential file starting with the record
whose key 1is ASD66 to a sequential output file, the following 1line is typed.
(No keys are copied.)

cpf -isw in -osw out -sr ASD66 -ct 13

To copy the records and keys from a keyed sequential file up to and
including the record whose key is bb"bb, type:

cpf -keyed -isw in -osw out -sp "bb""bb"

4-5 AX49-01

list_tape contents list_tape_contents

Name: 1list_tape_contents, 1ltc

The 1list tape contents command prints information about files recorded on
9-track magnefic tape. Tapes that may be listed include ANSI standard labeled
tapes and IBM standard labeled tapes (see the tape ansi_ and tape_ibm_ 1/0
modules in Section 5). - -

The information printed by this command is extracted from the tape labels
and printed in various amounts according to the control arguments supplied.
Where information is not obtainable from the label, the value "*¥¥*" jig printed
as the item entry. Three printing modes are available to the user: long mode,
which prints extensive information about the files on a tape; brief mode, which
prints only the ©basic information about the files on a tape; and default mode,
which prints slightly more information than does brief mode.

Usage
list_tape_contents {volume_name {-comment STR}} {-control_args}

where:

1. volume_name

is the volume name specification of the tape volume or volume-set to
be listed. A maximum of 64 volumes may be specified in this 1list.
The keyword -volume or -vol must precede the volume name if the
volume name begins with a hyphen (-); otherwise,” -volume is
optional. TFor tapes written on the Multics system, only the first
volume name of the volume-set need be given, since the I/0 module
determines the other members of +the set from file labels. However,
for tapes written on other systems, all of the* volume names of the
volume-set must be given. See "Volume Specification" in the
tape_ansi_ and tape_ibm_ I/0 module descriptions.

2. ~comment STR, -com STR
displays a message on the operator's console when the volume
volume name immediately preceding the +the -comment keyword is
mounted. STR is a string of from 1 to 64 characters comprising the
message to be displayed.

3. control_args

can be chosen from the following and can appear only once in the
command line:

-long, -lg :
prints an extensive amount of information about files on an OS or
ANSI standard labeled tape. This file information includes: the
file identifier (Id:), the file sequence number (Number:), the
record format (Format:), the physical Dblock size, in characters
(Blksize:), the logical record length, in characters (Lrecl:), the
encoding mode (Mode:), the file creation date (Created:), the file
expiration date (Expires:), the file-set section number (Section:),
the file version number (Version:), the file generation number
(Generation:), and the operatin§ system that recorded the tape

(System:). (See "Examples" below

4-6 AX49-01

list_tape contents list_tape_contents

-brief, -bf
prints a brief amount of information about each file on an ANSI
standard or 0S (see tape_ibm_ in Section 5) standard labeled tape.
The file information listed in brief printing mode is Jjust the file
identifier (Id:) and the file sequence number (Number:). (See
"Examples" below.))

-io_module STR, -iom STR

invokes a system I/0 module +to attach and read the specified tape
volume. Only the tape _ansi_ or tape_ibm_ I/0 modules are valid
gspecifications here. The +tape_ansi subroutine 1s specified in
order to 1list ANSI Standard labeled Fape, the tape_ibm_ subroutine
is specified in order to 1list OS standard 1labeled tapes. The
tape_ansi_ subroutine is the default I/0 module if this argument is
omitted.

-to N
specifies that only the first N files on a tape are to be listed,
~where N is an integer such that 1 < N < 9999. If fewer than N files
exist on the tape, a warning message to this effect is printed.

-retain STR, -ret STR
specifies which resources are to be retained on termination of this
command. STR can be the string all or the string none. If STR is
not specified, the string none is assumed.

Error Processing

If an unrecoverable error occurs during volume processing, further I/0 is
not possible and the listing of the tape is terminated.

Notes
The -long and -brief control arguments are mutually exclusive.

To obtain informaticn about the volume-set, list_tape contents creates an
attach description which is used to attach each <file. This attach description
is the catenation of the following in the order specified: the I/0 module name;
volume name, -comment STR pairs and any unrecognized argument; and finally a
string of the form "-retain all -number n" where n is the file number to be
processed. Note that due to this 1last string list_tape_contents will not allow
-number or -retain arguments in the command line.

If neither the -long nor -brief control arguments are specified in the
command line for listing an O3 or ANSI standard labeled tape, the default action
is to list somewhat more file information than that printed for the -brief
control argument. This file information includes: the file identifier (Id:),
the file sequence number (Number:), the record format (Pormat:), the block size,
in characters (Blksize:), the logical record length, in characters (Lrecl:), the
file creation date (Created:), and the file expiration date (Expires:).

4-7 AX49-01

list_tape_contents list_tape_contents

Examples
! 1list_tape_contents 070065 ~iom tape_ansi_ -to 3
Mounting volume 070065 with no write ring.

070065 mounted on tape 05.

File 1listing of ANSI Labeled Volume 070065 Recorded at 1600 bpi.

Id: Number: Format: Blksize: Lrecl: Mode: Created: Expires:
FILE1 1 DB 8192 137 ansi 09/02/76 unknown -
FILE2 2
FILE3 3

Displayed characteristics for the last 3 files are identical

The above example 1lists only the first three files on tape volume 070065.
The file information is displayed 1in default printing mode since no verbosity
control arguments are given in the command line. After the mount message, a
header is printed identifing the tape as an ANSI standard labeled tape recorded
at a density of 1600 bpi. Since the recording characteristics for all of the
files on the tape are the same, these are only printed once for the first file.

! list_tape contents 070065 -iom tape ansi_ -brief

Mounting volume 070065 with no write ring.
070065 mounted on tape_ 02.

r

isting of ANSI Labeled Volume 070065 Recorded at 1600 bpi-.

This example 1lists the .entire contents of tape volume 070065 in brief
printing mode. Again, after the mount message, a header 1is printed giving the
tape type as ANSI standard labeled and the recording density as 1600 bpi. Brief

printing mode gives only the file identifier and the <file number for each file
listed.

4-8 AX49-01

read tape and query read tape and query

Name: read_tape_and_query, rtq

The read tape and query command allows a usSer to interactively inspect and

determine

the contents of a magnetic tape. Physical tape file processing

capabilities are also provided.

Usage

read_tape and query volume id {-control args}

where:
1. volume id

“is the local tape library designation of the requested tape volume.
2. control arg

can be chosen from the following:

-block N, -bk N

specifies the maximum physical record size to be processed, where N
is the number of bytes. The default is 11200 bytes (2800 326-bit
words).

-comment STR, -com STR

displzys STR as a message on the operators console at the time that
tape volume <volume id> is mounted. If STR contains spaces, tabs or
special characters, the entire STR must be enclosed in quotes.

~-density N, -den N

specifies the initial density setting for tape attachment, where N
is the number of bits per inch (bpi). The default is 800 bpi.
Although the density is automatically determined (see "Notes" below),
some tape subsystems may not have tape drives capable of handling
the default density.

-no prompt

suppresses printing of the prompt character string ("-->") when at
rtq command level.

-ring, -rg

specifies that the tape is to be mounted with a write ring. This
allows a tape that is already mounted with a write ring to be attached
without operator intervention. The default is to mount the tape
with no write ring.

-track N, -tk N

7/82

where N is 7 or 9 for 7 or ¢ track tapes. If this control argument
is not specified, ¢ track is assumed.

4-9 AX49-01C

read_tape_and gquery read tape and query

Notes

The read tape and query command requests the specified tape volume to be
mounted. Affer fhe mount request has been satisfied, read tape and query
automatically determines the tape density and checks for a recorded tape label.
If the density can be determined, an informative message is displayed that includes
the density. If the tape has a standard Multics, GCOS, IBM, ANSI or CP& tape
label, an informetive messzge is displayed that includes the standard 1label type
and the recorded volume name. If the tape contains a valid IBM or ANSI label, a
second message is displayed informing the user of the physical block size and
logical record 1length (in bytes) of the first data file. For all standard
labeled tape volumes, the tape is then positioned to the beginning of the first
data file. If the tape label is not recognized as one of the five standard
types mentioned above, it is designated as unlabeled and the tape volume is
repositioned to the beginning of the tape. The read tape and query command then
goes into a request loop after displaying a prompt character string ("-->"),
unless ~no prompt has been specified. Some requests acceptable to
read tape and query take arguments that are optional. These optional arguments
are enclosed In braces. The valid user responses while in this request loop are
as follows:

quit, .q
detaches the tape and returns control to the current command processor.

help, ?
lists the requests of read tape_ and_query.

<rest of line>
passes <rest of line> to the command processor for execution as a
Multics command.

displays the command name read tape and query with its short name
(rtq) in parentheses.

position, pos
displays the current physical tape file and record position for the
user.

bsr {N}
backspace N records. If N is not specified, 1 is assumed.

bsf {N}
backspace N files. If N is not specified, 1 is assumed.

bof
position to the beginning of the current physical tape file.

fsr [N}
forward space N records. If N is not specified, 1 is assumed.

fsf {N}
forward space N files. If N is not specified, 1 is assumed.

7/82 4-10 AXug-01cC

read

tape_and_query read_tape and query

7/82

rewind, rew
issues a rewind command and positions the tape to the beginning of
tape (BOT) marker.

density <N>, den <N>
sets the tape density to <N> bits per inch (bpi), where N can be
6250, 1600, P00, 556 or 200. Density requests must be issued while
the tape is positioned at the BOT marker or a request reject status
results. Tt is not normally necessary to set the tape density as it
is automatically set by read tape and query before the request loop
is entered. - -7

mode STR
sets the hardware mode for reading tape to STR, which can be one of
the following modes:

bin
eight bit bytes are read in and packed (nine eight bit bytes
per memory double word). This is the defazult mode.

bed
reads in tape that was originally written in binary coded decimal
(BECD). The hardware performs input character conversion.

nine
eight bit bytes are read in and converted to nine bit bytes by
forcing the most significant bit of each nine bit byte to "0"b.

read record {-count N}, rdrec {-ct N}

~ reads the current record into a temporary buffer. If the tape is
one of the five known standard labeled tapes, the record is checked
to determine if it is a label or trailer record; if it is, information
pertinent to that particular record type is displayed. Otherwise,
information pertaining to the physical record length in bits, words,
2-bit bytes, °c-bit bytes, and 6-bit characters is displayed. When
the -count argument is specified, N records are read, overlaying
each other in the temporary buffer.

list tape contents {-long} {-label}l, ltc {-1g} {-1bl}

T displays information about each record on the tape. The tape is
positioned to BOT and each record is read in. If the tape is one of
the five known standard types, the current record is inspected to
determine if it is a valid label or trailer record; if so, information
pertinent to that particular label or trailer record is displayed,
in interpreted format. If the -long argument is used, the contents
of the label record is displayed (in ASCII) as well. Otherwise, the
length of the current record is compared to the length of the last
record read. If the lengths are the same, a tally of the number of
records with the same length is incremented. If the length of the
current record is different from that of the last record, or if an
end of file mark is detected, a message is displayed that includes:
the number of records of equal 1length, and the record length in
bits, words, 8-bit bytes, 0-bit bytes, and 6-bit characters. This
display of record lengths can be circumvented by using the -label
argument, which only displays the 1label records. This operation
continues until the logical end of tape is reached (two end of file
marks in succession or an end of volume trailer record, followed by
an end of file mark). The tape 1is repositioned to BOT after the
list tape contents request is complete. Use of the -label argument
with unlabeled tapes is treated as an error.

4-11 AX49-01C

read_tape and query read_tspe and query

7/82

dump {offset} {n words} {char types}

displays the contents of the record buffer (filled with the read record
request) on the users terminal. If no arguments are specified, the
contents of the entire tape buffer are displayed in octal format.
If the n words argument is specified, it must follow offset. However,
these arguments may be positioned before or after any char type arguments
that may be specified. The offset and n words arguments must be
specified in octal. If offset is specified without being followed
by n words, then the tape buffer is dumped starting with the <offset>th-
word and ending with the last word in the tape buffer. - The char type -
optional arguments allow interpretation of the data contained in the
tape buffer in various character formats. Jf more than one char type
argument is specified, then the tape buffer is dumped with the First
character interpretation, followed by the next character
interpretation, and so on until all requested data formats have been
dumped. The value of char type can be selected from the following:

-ascil
displays the contents of the record buffer in octal with an
ASCII interpretation of the data on the right side.

-bed
displays the contents of the record buffer in octal with a BCD
interpretation of the data on the right side

-ebecdic
displays the contents of the record buffer in octal with an
EBCDIC interpretation of the data on the right side.

-hex

displays the record buffer in hexadecimal format.

read file {args}, rdfile {args}

feads the current tapec file intc the segment described by args. The
default action of this request with no arguments queries the user as
to the segment name he wishes the tape file to be read into and then
issues a warning telling the user that the current tape file will be
read in as a stream file with no conversion. The user is asked if
he wishes to continue. If he answers yes, then the tape file is
read intoc the designated segment and a newline character is appended
to each physical record. If the user answers no, then control is
returned to the request loop. If the tape is one of the five standard
types, each record is checked to determine if it is a valid label or
trailer record. If it is, pertinent information about the record is
displayed and the record is not written to the output segment.

The optional arguments associated with the read file request are:
-output file {STR}, -of {STR}
where STR specifies the segment name for the tape file to be

read into. If STR is omitted, the user is queried for the
segment name.

§-12 AX49-01C

read_tape_and_query

read tape and query

7/82

-count N, -ct N

allows reading up to N files, or until logical end of tape is
encountered. After the first file isread in, the -count iteration
count is appended to the end of the user-designated output file
name as s second component. For example:

rdfile -ct 3 -of file1

names the first output file file1, the second filel1.2, and the
third file1.?2. ‘ ,

-multics, -mult

specifies that the input tape file is in Multics standard system
format. (Refer to Section 2 in this manual for a description
of Multics standard tape format.) The data portion of each
unrepeated record is written to the specified stream output
file. No attempt is made to separate the contents of the physical
record into a logical format. Since standard Multics tape format
specifies that an EOF mark be written every 128 records, the
"_.extend" and "-count" arguments should be used to ensure that
all of the data is recovered.

-gcos, -gec

-cps

specifies that the input tape file is in GCOS standard system
format. That is, each record has a block control word and
several record control words dividing the physical record into
logical records. Each record is processed accordingly. BCD
records are converted to ASCII. ASCIIrecords are copied directly.
Binary compressed deck card images are decompressed and converted
to ASCII. If & BCD card image is identified as a "3 object"
card, this card image and all successive binary card imeages,
until a "$ dkend" card image is identified, are copied to a
separate file whose name is formed from columns 723 - 76 of the
$ object card with a suffix of ".obj". 1If a BCD card image 1is
identified as a "% snumb" card, this card and all following
cerd images, until another ¢ snumb card or end of file, are
copied into a file whose name is formed from columns 16 - 21 of
the $ snumb card with a suffix of ".imev". If a BCD card image
is identified as a "¢ <language>" card, this card and all following
card images, until another ¢ <language> card or end of file,
are copied into a file whose name is formed from columns 73 -
76 of the ¢ <language> card with a suffix of ".ascii". This
file is also surrounded by sufficient GCOS "JCL cards" so that
the completed "deck" can be assembled using the Multies CCOS
Environment Simulator. If columns 72 - 76 of the $ <language>
card are blank, the ¢ <language> card image is displayed and
the user is queried for the filename.

specifies that the input tape file is in CP5 standard system
format, which consists of variable length records, recorded in
EBCDIC. Each variable length logical record is written to the
specified stream file, with a newline character appended to the
end. The data read from the tape is automatically converted
from EBCDIC to ASCII.

n-13 AX40-01C

read_tape_and_query read_tape_ and query

7/82

-dec

specifies that the input tape file is in Digital Equipment
Corporation (DEC) standard system format. Each DEC word is 40
bits long, of which the first 22 bits and the last 4 bits are
concatenated together to form one 26 bit word. The other 1
bits are discarded. The converted data is then written to the
specified file in raw format.

-ibm vb {STR}

-ans

-out

-ext

“specifies that the input tape file is standard IBM "VB" formatted
variable length records with. embedded block and control words.

The data encoding mode can be specified by STR, where STR can

be ebedic, aScii, o binary (or bin). The default is EBCDIC.

i db {STR}

specifies that the input tape file is ANSI-standard "DB" formatted
variable length records with embedded record control words. The.
data encoding mode can be specified by STR, where STR can be
ascii, ebedic, or binary (or bin). The default is ASCII.

put description, -ods
alTows the user to specify a standard Multics I/0 attach déscription
to receive the tape file data. User queries ask thé user to
input the attach description and the opening mode. Opening
modes can be. expressed in English terms or the appropriate
abbreviation (e.g., sequential output, sqo).

end
allows the user to concatenate the contents of several tape
files into one output file. This argument has meaning only if
the -count argument is also specified.

-nnl

allows escape from the read file default of appending a new
line character to the end of each physical record, when no
other format specification is given.

-truncate N, -tc N

-ski

allows the user to truncate each physical record to a length of
N characters.

p N

allows the user to skip N characters at the beginning of the
physical tape record. This feature 1is primarily to allow a
record or block control word to be skipped over while processing
tapes of an unfamiliar format.

-logical record length N, -1rl N

allows the user to divide each physical tape record into several
logical records of length N. Each logical record is written to
the specified file with a new line character appended to the
end. Logical records cannot span physical blocks.

414 Axyo-01C

read

tape_and_query read_tape and_query

Tape

-convert STR, -conv STR '
allows the user to convert the data format of each tape record,
where STR can be one of the following:

ebedic to ascii, ebedic
converts input EBCDIC data to ASCII.

bed to ascii, bed

~ converts input BCD data to ASCTI.
comp® to ascii, comp?®

converts input comp® (U bit packed decimal) dsta to its
equivalent ASCII representation.

Positioning

When inspecting multi-file tape reels, you may find the action of various

positioning requests confusing. The table below illustrates the starting and
ending position when using various tape positioning requests:

Start Position Operation End Position
file 6, record 7 rewind file 1, record 1
file 6, record 7 bof file 6, record 1
file A, record 7 bsf file 5, record 1
file 6, record 7 fsf file 7, record 1
file 6, record 7 bsr file 6, record 6
file 6, record 7 fsr file 6, record &
file 6, record 7 bsf & (1) file 1, record 1
file 6, record 7 bsr 10 (2) file 6, record 1
file 6, record 1 read file -count 2 file 9, record 1
note (1): This causes a rewind operation to take place, since the resultant file
number would be less than 1.
note (2): This causes a bof operation to take place, since the resultant record
number would be less than 1.
Examples

A typical example of a read tape and query invocation follows, including

the initial information displayed Tor a labeled tape.

T/82

read tape and query usert]
Tape usert1,bIk=2800 will be mounted with no write ring.
Tape usert1,blk=2800 mounted on drive tape 02 with no write ring.
Tape density is 1600 bpi -
Tape usert1 is a labeled ANSI tape
Volume name recorded on tape label is USERT1
Setting tape dim to read in nine mode
First data file format:
ANSI HDR2 label record. Next file format:
Record format DB; Block length 4000; Record length 4000; Mode ASCII;
Positioning to beginning of physical tape file # 2, (logical file # 1)
-=>

4-14.1 AX49-01C

read

tape_and_query read_tape_and_query

An example of the output produced by the list tape contents request for a

labeled ANSI tape follows. Note the use of the -label and -long arguments:

7/82

--> 1list tape contents -label -long
Listing tape contents of tape volume usert!1 in nine mode.
Starting at BOT (physical file # 1, record # 1)

Physical tape file # 1.

ANSI VOL1 label record. Volume serial number USERT1
("VOL1USERT1 MTF 3M)

ANSI HDR1 label record. Data set ID RTQ.PL1
("HDR1RTQ.PL1 USERT1 00010001000100 80225 0000C QOOQOOMULTICS ANSI")

ANSI HDR2 label record. Next file format:

Record format DB; Block length 4000; Record length 4000; Mode ASCII;
("HDR2DCU0O00CLO00 11 00™)
End of physical tape file # 1, total records read - 3.

Physical tape file # 2.
Logical tape file # 1.

End of physical tape file # 2, (logical tape file # 1),
total records read - 19.
Physical tape file # 3.

ANSI EOF1 label record.
("EOF1RTQ.PL1 USERT1 00010001000100 80225 00000 000019MULTICS ANSI™)

ANSI EOF2 label record.

(WEQF2DON0000UN0D 11 0om)
End of physical tape file # 3, total records read - 2.
Physical tape file # 4.

ANST HDR1 label record. Data set ID RD TFILE.PL1
("HDR1RD_TFILE.PL1 USERT1 00010002000700 80225 C00C0 0O0OCOMULTICS ANSIM)

ANSI HDR2 label record. Next file format:

Record format DB; Block length 4000; Record length 4000; Mode EBCDIC;
("HDR2DCA40O0OOO0OU000 12 0o™)
End of physical tape file # U4, total records read - 2.

Physical tape file # 5.
Logical tape file # 2.

End of physical tape file # 5, (logical tape file # 2),
total records read - 1.

Physical tape file # 6.

ANSI EOF1 label record.
("EOF1RD_TFILE.PL1 USERT1 00010002000100 80225 00000 000001MULTICS ANSIM)

ANSI EQOF2 label record.
("EOF2D0400004000 12 00")

h-14,2 AX40-01C

——

read_tape_and_query read_tape and query

End of physical tape file # 6, total records read - 2.
. End of physical tape file # 7, total records read - 0,
Logical end of tape, positioning to BOT
-=>
An example of the output produced by the list tape contents request for a
labeled IBM tape follows: - -
~-> list tape contents
Listing Tape contents of tape volume usert2 in nine mode.
Starting at BOT (physical file # 1, record # 1)
Physical tape file # 1.
IBM VOL1 label record. Volume serial number USERT?2
IBM HDR1 label record. Data set ID FILE1

IBM HDR2 label record. Next file format:
Record format VB; Block length 8192; Record length 8188;

End of physical tape file # 1, total records read - 3.

Physical tape file # 2.
Logical tape file # 1

1 record: length - 73322 bits, 2037 words, R1U4R nine bit bytes,
9166 eight bit bytes, 12222 six bit chars

1 record: length = 73692 bits, 2047 words, 8182 nine bit bytes,
0211 eight bit bytes, 12282 six bit chars

End of physical tape file # 2, (logical tape file # 1),
total records read - 2.

Physical tape file # 3.
IBM EOF1 label record.
IBM EOF2 label record.
End of physical tape file # 3, total records read - 2.
End of physical tape file # 4, total records read - 0.
Logical end of tape, positioning to BOT
-
An example of the output produced by the list tape contents request for a
labeled GCOS tape follows: - -
--> 1list tape contents
Listing Tape contents of tape volume usert? in binary mode.
Starting at BOT (physical file # 1, record # 1)
Physical tape file # 1.

GCCS BTL header label record; Tape reel # 70322.

7/82 4-14.3 AX19-01C

WS CUNGNNS SN e e

read tape and query read tape_ and query

End of physical tape file # 1, total records read - 1.

Physical tape file # 2.
Logical tape file # 1.

46 records: length = 11124 bits, 209 words, 1226 nine bit bytes,

1390 eight bit bytes, 1854 six bit chars
1T record: length = 2060 bits, £5 words, 30 nine bit bytes,
282 eight bit bytes, 510 six bit chars

End of physical tape file # 2, (logical tspe file # 1),
total records read - U47.

Physical tape file # 3.

GCOS "eof" label record. Block count of previous file U7.
End of physical tape file # 2, total records read - 1.
Physical tape file # X.

GCOS Partial header label record.

Logical end of tape, positioning to BOT
-->

An example of the read file request, using the -count argument, to read in
up to 99 files of a GCOS fape follows. Note that the label records are only

identified and are not written to output files:

Re

> read file -count 99 -gcos -output file 3bt.ascii
ading tape file # 1 in binary mode

GCOS BTL header label record; Tape reel # 70322.
End of file after 1 record read from tape file # 1
Reading tape file # 2 in binary mode
Writing file 3bt.ascii.

End of file after 1 record read from tape file # 2
Reading tape file # 2 in binary mode

GCOS "eof" label record. Block count of previous file 1.
End of file after 1 record read from tape file # 3
Reading tape file # 4 in binary mode

GCOS header label record.

End of file after 1 record read from tape file # 14
Reading tape file # 5 in binary mode
Writing file 3bt.ascii.?.

End of file after U7 records read from tape file # §
Reading tape file # 6 in binary mode

GCOS "eof" label record. Block count of previous file 47.
End of file after 1 record read from tape file # 6
Reading tape file # 7 in binary mode

GCOS header label record.
End of file after 1 record read from tape file # 7
Reading tape file # & in binary mode
Writing file 3bt.ascii.é.
End of file after 1 record read from tape file # 8

7/82 Lh-1b.4

AX49-01C

read

tape and query read_tape and query

7/82

Reading tape file # O in binary mode

GCOS "eof" label record. Block count of previous file 1.
End of file after 1 record read from tape file # Q
Reading tape file # 10 in binary mode

GCO0S Partial header label record.

Logical end of tape at physical file # 10
-——>.

4-14.5

Axh9-01C

tape in tape in

Name: tape in

) The tape in command allows the user to transfer files between magnetic tape
and the storage system. To accomplish a file transfer, the tape in command
accesses either the tape ansi or the tape ibm I1/0 module for the tape
interface, and the vfile I/0 module for ~the storage system interface.
Unstructured format storage system files (for stream I/0) and sequential format
storage system files (for record TI/0) may be specified; 9-track ANSI standard
labeled tapes, 9-track 1IBM standard labeled tapes, and any 9-track unlabeled
tape structured according to 0S standards may be read.

Usage

tape_in path {-control args}

where:

1. path
is the pathname of the control file governing the file transfer. If
path does not end with the tcl suffix, it is assumed.

2. control args

can be chosen from the following:

-severityN, -svN
causes the tape in compiler's error messages with severity less than
N (where N is” 0, 1, 2, 32, or 4) not to be written into the
error output I/0 switch. The default value for i is 0. See "Error
Diagnostics" below for further information on error reporting.

-check, -ck

performs only semantic checking on the Tape Control Language (TCL)
control file. No tapes are mounted if this control argument is

specified.

-ring
mounts volumes of the volume-set with write permit rings.

BASIC TCL CONTROL FILE

The control file that governs file transfer is actually a program, written
by the user, 1in the Tape Control Language (TCL). The contents of this control
file describe the file transfer(s) to take place. When the wuser issues the

tape in or tape out command, the control file named in the command line by the
path"argument Ts compiled and if the compilation is successful, the generated
code 1is interpreted to accomplish the desired file transfer(s). The same

control file may be used with both the tape in command (to read a file from tape
into the storage system) and with the tape Cut command (to write a file from the

storage system onto tape).

7/82 414, 6 AX49-01C

tape_in tape_in

The TCL control file consists of a list of statements of the form:

<keyword>: <argument(s)>;
or
<keyword>;

These statements are combined to form file-groups and file-groups are combined
to form volume-groups. A TCL control file consists of one or more volume-groups.

A file-group is a list of statements that define one tape to storage system
file transfer. A file-group must begin with a File statement and must contain a
path statement. In addition, it may contain one or more local statements. A
file-group 1is terminated by a global statement, an End statement, or another
File statement.

A volume-group is a series of statements that specify the file transfer(s)
to be performed between the storage system and a particular tape volume-set. A
volume-group must Dbegin with a Volume statement, contain one or more
file-groups, and terminate with an End statement. In addition, a volume-group
may optionally contain one or more global statements, which apply to all the
file-groups within the volume-group that follow the global statement.

A1l TCL control <files must have at least four statements: a Volume
statement, a File statement, a path statement, and an End statement; all other
TCL statements are c¢pticnal. The simplest control file has just these four
statements, for example:

Volunme: 012345;

File: Filel;

path: >udd>Project_id>Person_id>demo;
End;

This example control file relies on TCL control file defaults, which are listed
below wunder "Volume-Group Defaults." The file transfers possible with this
sample control file are two: either writing tape file Filel from storage system
file demo; or writing storage system file demo from tape file Filel.

TCL CONTROL FILE STATEMENTS

Volume: <volid>:
The Volume statement specifies the tape volume to be used in file transfer.
This statement causes a tape volume whose volume identifier is <volid> to
be mounted on a 9-track drive. If <volid> contains any of the following
characters, it must be enclosed in quotes.

any ASCII control character
; » or blank
the sequence /¥ or */
. If <volid> itself contains a quote character, the quote mnust be
doubled and the entire <volid> string enclosed in quotes.

SN -

4-15 AX49-01

tape_in tape_in

Some examples of Volume statements are:

Volume: 23; (mounts volume 23)
Volume: 001234; (mounts volume 001234)
Volume: XJ56; (mounts volume XJ56)
Volume: "as"";56"; (mounts volume as";56)
Volume: -00451; (mounts volume -00451)

See the descriptions of tape_ansi_ and tape_ibm_ later in this manual for
more details on volume specifications. Also, see "Multivolume Files" below
for a discussion of multivolume volume-groups.

File: <fileid>;
The File statement specifies the tape file to be read or written. For
output, <fileid> must be from one to 17 characters for ANSI labeled tapes
and must be a valid DSNAME for IBM labeled tapes. A valid DSNAME is from
one to eight characters long. The first character must be an alphabetic or
national . (@,$,#) character; the remaining characters can be any
alphanumeric or national characters, a hyphen (-), or a plus zero (12-0
punch). PFor input, <fileid> may be an asterisk (*) for labeled tapes, if a

tape file sequence number is also specified. For output with labeled
tapes, <fileid> may not be an asterisk. <fileid> for IBM unlabeled tapes,
which are discussed below, must be an asterisk. The File statement marks

the beginning of any local attributes for a given tape file transfer.

path: <{pathname>;
Associated with every File statement must ©be one path statement. The path
statement specifies the pathname of the storage system file +to be read or
written. <pathname> may be either a relative or absolute pathname.

End;
Associated with every Volume statement must be an End statement, to mark
the end of the TCL for that volume-group.

Global Statements

A global statement changes a volume-group default. The Tape and the
Density global statements may appear only once in a volume-group and must
preceed all file-groups. The Block, Expiration, Format, Mode, Record, and
Storage global statements may appear any number of times within a volume-group.
These statements apply to all subsequent file-groups within the volume-group.

4-16 AX49-01

tape

Block

Densi

in tape in

: <blklen>;

The BRlock giobal statement specifies the tape file (maximum) physical block
length, in bytes, to be used with subsequent file-groups. The <blklen>
specification must be a decimal integer >18. For IBMSL, IBMNL, and IBMDOS
formats, the maximum value is 22760 bytes. For ANSI formats, the maximum
value is 99996 bytes. WARNING: <blklen> greater that 204R does not comply
with the ANSI standard for tapes.

ty: <den>;

The Density global statement indicates the density in which the volume is
(to be) recorded. <den> must be either 200, 1600, €250, 2, 2, or 4 (for
IBM compatibility) to indicate 200, 1600 or 6250 bpi respectively. WARNING:
the use of 1600 or 6250 bpi for ANSI interchange taepes 1is nonstandard.
This global statement may appear only once within a volume-group or an
error is indicated.

Expiration: <date>;

The Expiration global statement specifies the expiration date of files to
be written (created). <date> is a string of a form acceptable to the
convert date to binary subroutine, for example "09/12/7a". (See the
convert date to binary subroutine in the MPM Subroutines.) Because
overwriting a file on a tape logically truncates the file set at the point
of overwriting, the expiration date of a file must be earlier than or equal
to the expiration date of the previous file (if any) on the tape; otherwise,
an error 1is indicated. If an attempt is made to overwrite an unexpired
file, the user 1is queried for explicit permission at the time of writing,
unless the -force control argument is specified in the command line (only

possible with tape ocut).

Format: <form>;

Mode:

The Format global statement specifies the tape record format to be used
with subsequent file-groups. <form> must be either u, f, fb, d, db, s, or
sb for ANSI tapes (using tape ansi 1/0 module) and f, fb, u, v, vs, vb, or
vbs for IBM tapes (using tape ibm ~I/0 module).

<mode>;

The Mode global statement specifies the tape mode and character code to be
used with subsequent file-groups. <mode> may be either ascii or ebedic for
IBM tapes (using tape ibm 1I/0 module) and may be either ascii, ebedic, or
binary for ANSI tapes (using tape ansi I1/0 module). WARNING: the use of
ebedic mode or binary mode is not “standard for ANSI tapes. See "I/0 Module
Compatibility and Record Length Tables" below for a description of the
interaction between a given combination of format, block, and record
specification. Values must be carefully chosen to ensure desired results.

Record: <reclen>;

T7/82

The Record global statement specifies the tape file (maximum) logical record
length, in bytes, to be used with subsequent file-groups. <reclen> must be
a decimal integer, such that 11<{!<reclen>!<{!maximum!segment!size in bytes.

4-17 AX49-01C

tape in tape in

Storage: <structure);

The Storage global statement states the internal (logical) structure of the
storage system file(s) to be =specified by subsequent file-groups. An
unstructured file is referenced as a series of 9-bit bytes, commonly called
lines; a sequential file 1is referenced as a sequence of records, each
record being a string of 9-bit bytes. <{structure> must be either
unstructured or sequential. When an unstructured file is written into the
storage system from a tape +the NL character is appended as each line is
written, unless the record already ends 1in a NL character, 1in which case
nothing further is appended. When an unstructured file is written from the
storage system to tape, the NL character is stripped off before writing the
tape record. If a line of an unstructured file consists of Jjust a NL
character, it is written to tape as a zero 1length record. If the Storage
global statement is omitted from a control file volume-group, the assumed
storage system file format is unstructured. If a sequential file is
referenced within that volume-group, the results are undefined and an error
is indicated. Processing is terminated on that file in which the error is
indicated.

Tape: <tape-type>;
The Tape global statement specifies the kind of tape that is processed.
{tape-type> may be ibmsl for IBM standard labeled tape, ibmnl for IBM
unlabeled tape, ibmdos for IBM DOS standard labeled tape, or ansi for ANSI
standard labeled tape. The tape 1label processing is done automatically by
the I/0 module in use. This global statement may appear only once within a
volume-group or an error is indicated.

Local Statements

A file-group may contain one or more local statements. A local statement

overrides the volumc-group defoults in effect at the time a file-group is
evaluated. A local statement has no effect outside of the file-group in which
it occurs and may appear anywhere within the file-group.

The block, expiration, format, mode, record and storage 1local statements
operate exactly as do their global statement counterparts, except that they
affect only the file-group in which they are contained.

generate;
The generate local statement causes the entire contents of a file on an
ANSI tape to be replaced while retaining the structure of the file itself
and incrementing the file generation number. The file to be modified is
identified by the File statement, or by a combination of the File statement
and the number statement.

modify;
The modify local statement causes the entire contents of a file on an ANSI
or IBM 1labeled tape to be replaced while retaining the structure of the
file itself. The file to be modified is identified by the File statement,
or by a combination of the File statement and the number statement.

4-18 AXL9-01

tape_in tape_in

number: {number>;

The number statement specifies the file sequence number of +the file to be
used in the file transfer. <number> mnust be either an integer between 1
and 9999 inclusive, or the character "*"., For input with labeled tapes,
<number> = ¥ is ignored unless * was specified for the <fileid> in the File
statement. (In this case an error is indicated.) For output with labeled
tapes, <number> = * appends the current file toc the volume-set. If a tape
volume has not yet been initialized, that is, if the first file to be
written is the first file on that tape volume, <number> = * is considered a
fatal error. Until a volume has been initialized, files cannot be appended
to it. In this situation, either the number statement should be omitted
or, if used, <number> must be equal to 1.

If the control file is to be wused with the tape_in command, <number>
specified in a number statement must correspond with a file on the
specified tape volume-set. If both the <fileid> in the File statement and
the <{number> in the number statement are specified in the file-group, they
must identify the same tape file; otherwise an error is indicated.

When reading unlabeled tapes, the number statement is required to identify
the file to be read. When writing unlabeled tapes, the number statement is
required to locate the tape position at which to write the file. '

When the control file is to be used with the tape out command for writing
labeled tapes, the number statement is optional. If +the number statement
is given in a control file for use with the tape_out command, the file
location specified in the number statement is the location-where the file
is written on the tape+ Otherwise, with no number statement, the first
file to be written in a volume-group is the first file position on the tape
(for 1labeled tapes only). Subsequent files on that volume are appended
after the first file.

replace: {fileid>;
If an existing tape file 1is to be replaced on .an ANSI or IBM standard
labeled tape and 1its name 1is known, the file +to be overwritten is
identified by <fileid> in the replace local statement and the new file to
be written 1is identified by <fileid> 1in the File statement. If the file
identified in the replace statement does not exist, an error is indicated.

storage_extend;

Normally when a wuser sets up a file-group to transfer a tape file to a
storage system file, it is intended that a new file be created in the
storage system. Should the user want to extend an already existing file in
the storage system, the storage extend 1local statement should be used in
the TCL control file. If the storage system file +to be extended does not
exist, an error is indicated. If the storage extend local statement exists
in a control file used with tape out, it is ignored.

tape_extend;

The tape_extend local statement allows new data records +to be appended to
an existing file on an ANSI or IBM standard labeled tape without in any way
altering the previous contents of the tape file. The tape file to be
extended is identified by the File statement or by the File statement and
number local statement in combination. If the tape file to be extended
does not exist on the tape, an error is indicated. Recorded in the labels
of an ANSI or IBM labeled tape file is the version number. Initially, it
is wgzero when the file 1is created. Every time a file 1is extended, its
version number is incremented. The version number field is two digits and
is reset to zero when the one-hundredth revision is made.

4-19 AX49-01

tape_in tape_in

CONTROL FILE COMMENTS

Comments may be inserted anywhere within the TCL program by surrounding the
comment text with the comment delimiters. /* is +the delimiter that Ybegins a
comment, and ¥/ is the delimiter that terminates a comment.

VOLUME-GROUP DEFAULTS

Associated with a volume-group are a set of default characteristics. 1In
the absence of overriding global statements or local statements, these defaults
apply to all file-groups within the volume-group. If no tape-type is specified
in the control file, ANSI standard labeled tape 1is assumed. If, however, a
tape-type is specified (using a Tape statement), the volume-group defaults for
that tape-type are in effect until overridden.

Tape—tybe ANSI or no Tape statement (this is the default)

. density: 800 bpi

file expiration: immediate

storage system file format: unstructured

mode: ascii

tape file record format: variable length records, blocked
physical block length: 2048 characters (maximum)

. logical record length: 2048 characters (maximum)

~N OV AW —

Tape-type ibmsl, ibmnl, or ibmdos

. density: 1600 bpi

file expiration: immediate

storage system file format: unstructured

mode: ebcdic

tape file record format: variable length records, blocked
physical block length: 8192 characters (maximum)

logical record length: 8188 characters (maximum)

« o ® o e

ARSI R SR\

4-20 AX49-01

tape_in tape_in

I/0 MODULE COMPATIBILITY AND RECORD LENGTH TABLES

tape ansi

mode: ascii (default) | binary ! ebedic
block length: 18 < b < 99906 bytes (2048 default).
for output mode, block length must be divisible by &.
density: d = 800 (default) | 1600 ! 6250
file sequence number: 1 < n < 9999 or ¥
record length: 0 < r < 1040480
format: f = fb | £ T db (default) | d ! s ! sb ! u

tape ibm
mode: ascii | ebedic (default)
block length: 20 < b < 32760 bytes (R192 default)
for output mode, block length must be devisible by .
density: d = 800 | 1600 (default) ! 6250
file sequence number: 1 < n < 9999 or ¥
record length: 0 < r < 104T4%0
format: f = fb | T T vb (default) | v | vbs | u

Format Record Length Block Length
in bytes in bytes
r —

u r is undefined amrl < b < 00006 (tape ansi)

- amrl < b < 22760 (tape ibm)
f r = amrl b=r ~ 7 -~
fb T = amrl b must statisfy

- mod{(b,r) = 0
d amrl+d < r < 99906 b = r
db amrl+4 T T T 90906 bP>T
s amrl < v < ToBUURQ 18 T b < 99996
sb amrl < r < 1044480 18 < b < 99996
v amrl+d < r < 22756 b=zr + 14
vb amrl+ld < v < 32756 bP>7Fr + U
vs amrl < r < 7044480 20 < b < 22760
vbs amrl < r < 10b44uR0 20 < b < 22760
Notes

amrl is the actual or maximum record length of a given record format, i.e.,
the actual or maximum number of characters that can be recorded in a logical
record. The value of r is dependent on the choice of record format. For ANSI
tapes, b must be an integer in the range of 18 < b < ©999€6. For IBM tapes, b
must be"an integer in the range of 20 < b < 22760. For ANSI tapes, in order to
comply with the ANSI standard, b must be in the range of 18< b < 2048. For IBM
tapes, the condition mod(b,%) = 0 must be satisfied. The TCL record statement
should not be used for U-format file transfer.

7/82 4-21 : AXu49-01C

tape in tape_in

ADDITIONAL OPTIONS AVAILABLE FOR THE TCL USER

A number of options are available to the user who wants to do more than the
simple file transfer between a tape volume-set and the storage system. These
features need not be of concern to most users, but for the user with specialized
needs, these additional options are explained below.

Multivolume Files

Multivolume files are specified 1in a control file by a slightly more
complicated Volume statement than shown above. The multiple <volid>s of such a
volume-set are separated from one another by commas and are listed either in the
order in which they became members of the volume-set, for input, or in the order
in which they are candidates for volume-set membership, for output. The entire
volume-set membership need not be specified 1in a Volume statement referencing a
volume-set, but the first (possibly only) member must be mentioned. Up to 64
<volid>s may be specified in a single control file Volume statement.

Volume switching for multivolume files i3 handled automatically by the I/0
modules. If sufficient volume-set members are given in the TCL control file,
the volume switching 1is transparent to the user. If insufficient members of a
volume-set are given or the membership is being developed, the user is queried
during execution for names of additional volume-set members.

Sending Messages to the Operator

If it 1is necessary for the wuser to have a message displayed on the
operator's console, the comment phrase can be included in the Volume statement.
The comment text consists of the keyword -comment followed by the text of the
message. Whenever the volume with the <volid> immediately preceding the comment
phrase is to be mounted, the specified message is displayed on the operator's
console. The message may be from 1 to 64 characters and must be a contiguous
string with no embedded spaces or a quoted string with embedded quotes doubled.
For example:

Volume: 060082 -comment "tape is Smith's"™ 060083 -comment tape also Smith's;

370/D0S Tapes

The tape ibm I/0 Module processes tapes created by or destined for IBM/DOS
installations as well as tapes for IBM/0OS installations. The Tape:!ibmdos;
global statement is used in the TCL control file to specify that the tape files
referenced by the given volume-group are destined for or have been produced by a
IBM/DOS installation. The important difference between tape files created by 0S
and those «created by DOS operating system 1is that the tape file structure
attributes are not recorded in the tape 1labels under DOS. It 1is therefore
necessary for all of the structure attributes of a DOS tape file, namely
encoding mode, logical record format, logical record length, and block size to
be specified in the TCL control file.

h-22 AX49-01

tape_in tape_in

Unlabeled Tapes

The tape_ ibm I/0 Module supports processing of unlabeled tapes, provided
that the tapes are structured according to the 0S standard. DOS leading tape
mark (LTM) unlabeled format tapes cannot be processed. The ibmnl specification
in the Tape statement is mutually exclusive with any statement, global or locail,
which refers to labeled tapes: namely, the Expiration global statement and the
expiration, generate, modify, replace, and tape_extend local statements. If any
of these appear together within +the same file-group, an error is indicated.
When referencing unlabeled tape files in a given file-group, the argument of the
File statement, <fileid>, must be specified Dby an asterisk, and the tape file
desired must be specified by the number local statement. »

ERROR DIAGNOSTICS

The error messages issued during tape_in and tape_out compilation are
graded and have the form:

prefix error number, SEVERITY severity IN STATEMENT m OF LINE n
text of error message

SOURCE:

source statement in error

where n is +the line number on which +the described statement begins and m is a
number identifying which statement in line n is in error. If line n contains
only one statement, "STATEMENT m OF" is omitted from the error message.

The severity numbers produce one of the following prefixes:

severity prefix explanation

0] COMMENT the error message is a comment.

1 WARNING the error message warns that a possible error has
been detected. However, the +translation still
proceeds.

2 ERROR the error message warns that a probable error has

been detected. However, the error is nonfatal,
and the translation still proceeds.

3 FATAL ERROR the error message warns that a fatal error has
been detected. Processing of +the input still
continues to diagnose further errors, but no
translation is performed.

4 TRANSLATOR ERROR the error message warns that an error has been
detected in the operation of the translator. No
translation is performed.

4-2% AX49-01

tape_in tape_in

CONTROL FILE EXECUTION

When the TCL control file 1is being executed 1in response +to the tape in
command, the volume named in each volume-group of the control file is mounted in
turn without a write ring (unless +the -ring control argument has Deen
specified). If any output options appear 1in a control file being executed in
response to the tape_in command, these statements are ignored. Then each
file-group in that volume-group is processed resulting in one file transfer to
the storage system per file-group.

FILE TRANSFER

File transfer is performed as follows. One logical record is read from the
tape file, and as many characters as were read are written- into the storage
system file either as a line with newline (NL) character appended, if necessary,
(unstructured case) or as one logical record in a sequential format file.

EXECUTION TIME DIAGNOSTICS

Any fatal error from an I/0 module during execution of a control file
causes the wuser to Dbe queried as to whether or not he wishes %o continue
processing the other file-groups and volume-groups in the control file or
whether to terminate processing of the control file. In the case of some
correctable errors the wuser will be given the alternative of controlling the
process. This alternative places the user at command level allowing resolution
of the problem. When the user wishes to continue processing, the start command
is used. Executing the release cowmand will cause thce tapc in command to be
terminated. -

CONTROL FILE EXAMPLES

Below are examples of typical control files. In the first example, the
user wishes +to load into the storage system, the contents of volume "2314dp"
which contains a dump of a disk pack containing source and data.

The numbers at the left-hand side of the page in the examples below do not
actually appear 1in the control file, but are included only for annotation
reference.

4-24 AX49-01

tape_in

Example:

tape_in

samplel.tcl

! tape_in samplel.tcl -ring

_, e s a2 2 A A OOV R VN

e ¢ OIOVUIPANN—O

Volume: 2314d4p;

/* Source Pack being loaded */

Tape: ibmsl;

Storage: unstructured;

Density: 800;

Format: fb;

Record: 80;

Block: 800;

File: FILEX;

path: <setup>data entry>FILEX;

File: PILEXX; -

path: <setup>data_entry>FILEXX;
File: FILEY;

path: <setup>data entry>FILEY;

File: FILEYY; -

path: <setup>data entry>FILEYY;
File: FILEZ; -

path: <setup>data_entry>FILEZ;

File: FILEZZ;
path: <setup>data_entry>FILEZZ;

End;

Annotations for samp1e1.tci

10.

mounts the volume 2314dp with a write ring.

comment.

gspecifies an IBM standard labeled tape.

files are created in unstructured format, ready for use in stream I/O.
NL characters are appended as the file is written +to disk. The mode
is the default for the ibmsl tape-type, namely, ebcdic.

tape is recorded at 800 bpi.

all files on tape are in fixed block format unless stated otherwise.
Possible record padding problems may be encountered.

all logical records are 80 characters unless stated otherwise (card
image files).

all files blocked to 800 characters unless stated otherwise.

first file to be read from tape is named FILEX. It may be at any file
location on the +tape. The tape 1is automatically positioned to the
file by name.

read tape file, PFILEX, into storage system file named FILEX. The
relative pathname, <setup>data_entry>FILEX, is expanded.

4-25 AX49-01

tape_in

1.

60.

Example:

tape_in

continue reading files off the tape volume, one by one, into files in
the storage system with the same name.

end of volume-group and end of control file.

sample2.tcl Control File for Reading DOS tape

! tape_in sample2.tcl

= =2 0010 RN -

—- O

Volume: 042281 -comment "Please send tape to accounting”;
Tape: ibmdos;

Density: 800;

Storage: unstructured;

Mode: ebedic;

File: abc;y

record: 80;

block: 800;

format: fb;

path: >udd>Example>Foo>fargo.plt;
End;

Annotations for sample2.tcl

Note: Only selected statements in the control file are annotated here.
1. mount volume 042281 without a ring after printing comment message for
operator.
2. read IBM DOS standard labeled vape.
4. read tape file 1into storage system as unstructured format files
appending NL characters to each record from tape.
Example: sample3.tcl control file for Reading an Unlabeled Tape

! tape_in sample3.tcl

W-JOVT VN —

Volume: 042381

Tape: ibmnl;

Storage: sequential

File: *;

format: vbs

number: 3;

path: >udd>Example>Foo>foobar.data;
End;

4-26 AX49-01

tape_in tape_in

Annotations for sample3.tcl

Note: Only selected statements in the control file are annotated here.

2. unlabeled tape is to be read. Files are unnamed. This statement must
appear when processing unlabeled tapes.

4. <fileid> is specified by "*" for unnamed files.

6. the number statement must be present when processing unlabeled tapes.
The third file on the tape is read.

The tape file record format is VBS, the tape file record 1length for VBS format
is 1044480 bytes, and the tape file block length is 8192 bytes.

4-27 AX49-01

tape_out tape_out

Name: tape_out

The tape out command allows the user to transfer files between the storage
system and magnetic tape. To accomplish a file transfer, the tape out command
accesses either +the tape ansi or the tape_ibm_ I/0 module for the tape
interface, and the vfile I/0 module for ~the storage system interface.
Unstructured format storage system files (for stream I/0) and sequential format
storage system files (for record I/0) may be specified; 9-track ANSI standard
labeled tapes, 9-track IBM standard labeled tapes, and any 9-track unlabeled
tape structured according to OS standard may be written.

Usage
tape_out path {-control args}

where:

1. path
is the pathname of the control file governing the file transfer. If
pathname does not end with the tcl suffix, it is appended.

2. control_args
can be chosen from the following:

-severityN, -svN
causes the tape out compiler's error messages with severity less
than N (where N is O, 1, 2, 3, or 4) not to be written into the
error_output I/0 switch. The default value "tor i is O. See "Error
Diagnostics" in the tape in command for further information on error
reporting.

-check, -ck
specifies that only semantic checking be done on the Tape Control

Language (TCL) control file. ©No tapes are mounted if this control
is specified. ’

-force, -fc
specifies that the expiration date of a tape file to be overwritten
is to be ignored. This control argument extends unconditional
permission to overwrite a ‘tape file, regardless of the file's

"unexpired" status. This unconditional permission supresses any
query made by the I/0 module to inquire about tape file's expiration
date.

-ring
mounts volumes of the volume-set with write permit rings (default).

TCL CONTROL FILE

The control file +that governs file +transfer for the tape_out command is
written in the control file language described in the tape_in command.

4-28 AX49-01

tape_out tape_out

ADDITIONAL OPTIONS AVAILABLE FOR THE TCL USER

A number of options are available to the user who wants to do more than the
simple file transfer between storage and a tape volume-set. These features need
not be of concern to most users, bdbut for the user with specialized needs, these
additional cptions are explained below.

Protecting Tape File From Accidental Overwriting

To protect tape files from being accidentally overwritten tape ansi and
tape_ibm_ include expiration dates in the tape 1labels they write. ~ The
expiration local statement or Expiration global statement can be used in the TCL
source file. To overwrite or delete a tape file the current date must be later
than the expiration date specified in the +tape label. If this is not the case,
the attempt to destroy the tape file will fail and an error will be indicated
unless the -force control argument has been specified in the tape out command
line. In that case expiration date checking will not be done. -

Special Outer Modes

Normally, when a wuser sets up a TCL control file file-group +to write a
storage system file onto a tape volume that is for use with the tape out command
it is intended that a new file be created on the tape volume. The TCL default
output mode is create. This 1is the only output mode available for unlabeled
tapes. For 1labeled tapes however, the TCL language offers four additional
specialized output modes; they are generate, modify, replace, and tape_extend.
The replace mode causes the tape file labels to be rewritten using specified and
default file structure attributes. The +tape_extend, modify, and generate local
statements do not cause the tape file 1labels to be recomposed, so any file
attributes specified in the file-group or volume-group that do not match those
recorded in the tape labels, cause an error.

CONTROL FILE EXECUTION

When the TCL control file is being executed in response to the tape_out
comand, the volume named in each volume-group of the control file is mounted in
turn with a write ring. Then each file-group in that volume-group is processed
resulting in one file transfer to the volume-set per file-group.

FILE TRANSFER

File transfer is performed as follows. ZEither a line or a record is read
from the storage system file depending on whether the file 1is unstructured or
structured. For unstructured format storage system files, a line read is a line
from the file up to and including the first newline character (NL) encountered;
for sequential format storage system files, a record read is one logical record
of the file. The characters read from the storage system are then written on
the tape as one logical record of the tape file.

4-29 AX49-01

tape_out tape_out

Under certain circumstances, tape records being written must be padded in
accordance with a set of per-format padding rules. For a discription of record
and block padding for all formats, see the descriptions of +tape_ansi_ and
tape ibm .) Because of padding rules and treatment of newline characters when
writing Tape, a file that is written out %o tape may not appear the same when
read back in from tape. The following suggestions are offered:

1. to write character data (i.e., source files or text files) use the
defaults; with tape ansi wuse 4, db, s, or sb format with the maximum
block 1length, and the “record length chosen so that the amrl (the
actual or maximum record length of a given record format) is greater
than the longest 1line in the storage system <file. To avoid unwanted
pad characters resulting from block padding, do not wuse f or fb
format.

2. to write binary data with tape_ansi_, use the defaults with mode of
binary or wuse s or sb format, with the maximum permissible block
and/or record lengths and mode of binary.

3. to write character data with tape_ibm_, wuse vbe format with the
maximum block length, and the record length chosen so that the amrl is
greater than the longest line in the storage system file. (vb may
cause one to three blanks to be appended to lines.)

4. when transfering sequential format files +to tape, use a variable
length record format (d, db, s, or sb with tape_ansi_ and v, vb, or
vbs with tape ibm_) to avoid unwanted padding characters being
inserted into ~records. (vb may cause one to three blanks to be
appended to lines.)

EXECUTION TIME DIAGNOSTICS

Any fatal error from an I/0 module during execution of a control file
causes the wuser to be queried as to whether or not he wishes +to continue
processing the other file-groups and volume-groups in the control file or
whether to terminate processing of the control file. In the case of some
correctable errors the user will be given the alternative of "controlling the

process." This alternative places the user at command level allowing resolution
of the problem. When the user wishes to continue processing, the start command

is used. Executing the release command will cause the tape_out command to be
terminated. .

CONTROL FILE EXAMPLES

Below are examples of typical control files. In the first example, the
user wishes to produce two tapes, one for the Multics system, +the other for an
Os installation. The Multics tape contains the source code of user subsystem
SUBSYS, as well as its object code. The OS tape contains only the source code.

4-30 AX49-01

tape_out

Example:

tape_out

samplel.tecl

! tape_out samplel.tcl

e v e L OO OVUT W N =

OOV NN —O

Volume: 001234;

/* Dump source in DB and object in SB format */
File: FILE 1;

path: SUBSYS.pl1;

File: FILE 2;

mode: binary;

path: <object>SUBSYS;
format: SB;

End;

Volume: DFGO54;

/* append source to tape */
Tape: ibmsl;

File: TESTSAVE;

format: VBS;

block: 4096;

path: SUBSYS.pl1;

number: 3;

End;

Annotations for samplel.tcl

1.

10.

mounts volume 001234 with a ring. The volume defaults are set to ANSI
standard labeled tape-type, 800 bpi density, ASCII encoding mode, DB
record format, block length = 2048, and record length = 2048.

is a comment in the control file. Since the storage statement is
missing, the default storage system file format is set to transfer
unstructured files.

since there is no number statement, the default positions the tape so
that FILE 1 is created as a new file at the first file position on the
tape volume.

specifies the pathname of the storage system file to be written to
tape. Since the file-group contains no local statements, the file is
written according to the current volume defaults.

positions the tape so that the file +to be written is appended at file
position two on the tape volume.

specifies that the file is to be written in binary encoding mode.

specifies the pathname of the storage system file to be written to
tape.

specifies that +the file is to be written in 3B format. Notice that
the block length is the current volume default block length (2048) and
the record length is the current volume default record length (2048).

signifies end of volume-group. The I/0 switch is closed and detached.
The volume-set is taken down and the drive is released.

mounts volume DFGO54 with a ring.

4-31 AX49-01

tape_out

1.
12.

13.

14.

15.
16.
17.

18.

Example:

tape_out

is a comment. Storage format is still unstructured.

changes tape-type to IBM standard labeled; changes the volume-group
defaults to those associated with ibmsl: 1600 bpi, ebecdic, VB format,
block length = 8192, and record length = 8188.

specifies name of file to be written onto tape. Notice that the
underscore (_) cannot appear in an IBM file name whereas it can appear
in an ANSI file name.

changes the record format to VBS. A spanned record format transfering
a sequential file 1is needed, so ‘that unwanted block padding is not
inserted into the file as it is +transferred. The default record
length for VBS format is 1044480 bytes.

changes the block length to 4096.
specifies the pathname of the storage system file to be written.

This number statement is required to make sure the file is appended to
an already existing tape volume. Without this number statement, the
file would be created as the first <file on the tape volume,
overwriting any existing files. If files one and two do not exist, an
error is indicated, but if these files do exist, +the file is written
at file position three on the tape volume.

rewinds and takes down the volume since no more file-groups in the
control file reference the current tape volume.

sample2.tcl

! tape out sample2.tcl -fc

- =000V =

- O

Volume: 070067 -comment in_slot_ 1000, 070068;
Tape: ansi;

File: BIG_LISTING;

replace: FILE 20;

number: 20;

expiration: 2weeks;

format: db;

block: 2048;

record: 13%3;

path: >udd>ExampledMega>test.list
End;

Annotations for sample2.tcl

The first member of the volume-set, 070067, is mounted without a ring,
displaying the message "in_slot_10000" on the operator's console.
Later 1if necessary, the volume-set member 070068 may be mounted to
continue writing a large listing file. A message appears upon
mounting the second member of the volume-set.

writing an ANSI standard tape.

4-32 AX49-01

tape_out

10.

1.

tape_out

tape file named BIG_LISTING, into which the storage system file is to
be written.

is to replace tape file named FILE 20.

by the number statement FILE 20 1s the 20th file on the current
volume-set. As no density statement 1is inciuded in the control file,
the default for tape_ansi_, 800 bpi, is used. Upon execution of the
control file, the tape is positioned at the 20th file automatically,
providing 20 files exist on the tape. As no Storage statement is
present 1in the control file, the default storage system format is
unstructured, and as the files are written to ‘tape, the NL character
is stripped.

The file, BIG_LISTING, is protected against accidental overwriting for
two weeks, meaning that if the wuser attempts to overwrite the file
within that +time, he is first queried for permission to do so. The
-force control argument in the command line inhibits a query for
permission to overwrite FILE 20, in case it has not yet expired.

BIG_LISTING 1is recorded in variable length blocked record format.
Vode is the default for tape_ansi_, namely ascii.

Block length is maximum allowed for ANSI interchange standard, 2048.
record length is 133.
the listing file is transferred from test.list in the storage system.

signifies termination of volume-group and of control file.

If, after putting his listing file out onto tape, the user wishes to delete

the on-1lin
storage, h

e listing, and at a later time, read the listing back from tape into
e might type the command line:

tape_in samplel.tcl

The output

statements in the control file, namely the replace local statement

and the expiration local statement are ignored on input.

4-33 AX49-01

SECTION 5

I/0 MODULES

This section contains descriptions of Multics I/0 modules, presented in
alphabetic order. Each description contains the name of +the TI/0 module,
discusses 1its purpose, and describes the attach description and the operations
supported by +the I/0 module. Notes and examples are included when deemed
necessary for clarity.

The I/0 modules described in this section and their functions are:

ntape supports I/0 from/to magnetic tape file
rdisk supports I/0 from/to removable disk packs
tape ansi_ implements the processing of magnetic tape files according to

standards proposed by the American National Standards
Institute (ANSI)

tape ibm implements the processing of magnetic +tape files according to
- standards established by IBM

tape_mult__ supports I/0 from/to Multics standard tape

tape nstd_ supports I/0 from/to tapes in nonstandard or unknown formats

5-1 AX49-01

ntape ntape_

Name: ntape
The ntape I/0 module supports I/0 on files on magnetic tape.

Entry points in the module are not called directly by wusers; rather, the
module is accessed through the I/0 system. See the MPM Reference Guide for a
general description of the I/0 system and a discussion of files.

Attach Description

The attach description has the following form:

ntape reel num -raw {-control args}

where:

1. reel num
is +the tape reel number. If the tape is T-track, reel num must
contain ",7track". If the tape 1is 9-track, reel num may contain
".9track" (if it contains neither, 9-track is assumed).

2. —-raw

indicates that each physical record (block) on the tape represents
one logical record.

AN

control args
may be one of the following arguments:

-write
means that the tape 1is to be mounted with a write ring. This

argument must occur if the I/0 switch is to be cpened for output or
input/output. g

—-extend
specifies extension of the file if it already exists on the tape.

Opening

The opening modes supported are sequential input, sequential output, and
sequential input output. If an I/0 switch attached via the ntape 170 module is
to be opened for output or input output, the -write argument must occur in the
attach description.

Control Operation

This I/0 module does not support the control operation.

5-2 AX49-01

ntape ntape

Modes Operation

This I/0 module does not support the modes operation.

Notes

On input, the logical record contains m=4*ceil(n/%6) bytes, where n is the
number of data bits in the physical record. The first n bits of the input
record are the data bits, the last (9*m-n) bits are O's.

On output, the physical record contains n=k*ceil((36*ceil(m/4))/k) data
bits, where k+1 is the number of tracks on the tape, and m is the length of the
logical record 1in characters. The first 9*m data bits of the physical record
contain the bits of the logical reccrd (i.e., the output buffer). The last
(n~9*m) bits of the physical record are O's.

This I/0 module assumes that there is only one physical file on the tape.
It is not possible to position the tape after a tape mark. The tape nstd_ 1/0
module should be used to read nonstandard formatted tapes containing more than
one tape mark.

5-3 AX49-01

rdisk rdisk

Name: rdisk

The rdisk I/0 module supports I/0 from/to disk packs. Sequential and
indexed file types are supported.

Entries in this module are not called directly by users; rather, the module
is accessed through the I/0 system. For a general description of the I/0 system
and a discussion of files, see the MPM Reference Guide.

Attach Description

The attach description has the following form:
rdisk device id pack_id {-control args}

where:

1. device id
“is a character string identifying the type number of the required
disk device. The supported disk devices are listed 1in the table
below, along with the character string to use for device id:

device id

Character

String Device Type

d181 DSU1 81

d190 DSU190

d191 or 4400 DSU190/MSU0400 with the
high-efficiency format
(40 sectors/track)

d451 MSUO451

d500 M3SUO500

ds501 M3SUO501

2. pack_id
is a character string identifying the disk pack to be mounted.

3. control args
may be chosen from the following and may occur only once:

-write
indicates- that the disk pack may be written on. If omitted, the
operator is instructed +to mount the pack with +the PROTECT button
pressed so that writing is inhibited.

-size N
indicates that +the value of N is to override +the value of the
buff len parameter as a record size 1limit for +the read_record
operation. (See "Notes" below.)

-sys

indicates that the attachment is being made by a system process and
that a disk drive reserved for system functions is to be assigned.

5-4 AX49-01

rdisk__ rdisk

The attachment causes +the specified disk pack to be mounted on a drive of
the specified type.

Opening
The following opening modes are supported:

sequential input
sequential output
sequential update
direct_input
direct update

Notice that if the opening mode is of the output or update type, the attach
description must include +the -write control argument so that the operator does
not press the PROTECT button when the pack is mounted.

Delete Record Operation

This operation is not supported.

Read Length Operation

This operation is not supported.

Position Operation

This operation is supported for only the sequential input and

sequential update opening modes. The type and quantity values are interpreted
as follows:

type gquantity action

-1 - position to the beginning of the file.

+1 - position to the end of the file..

0 N skip N sectors (forward if N > O; backward if N < 0).
2 N position to sector N.

Read Record Operation

If the amount of data to be read does not terminate on a sector boundary,
the excess portion of the last sector is discarded. A code of O is returned in
this case. (See "Notes" below.) This operation is not supported for the
sequential output opening mode.

5-5 ‘ AX49-01

rdisk_ rdisk

Rewrite Record Operation

If +the amount of data to be written does not terminate on a sector
boundary, the remaining portion of +the last sector is filled with spaces in
sequential modes and binary =zeros in direct modes. A code of O is returned in
this case. (See "Notes" below.) This operation is supported for only the
update opening modes.

Seek Key Operation

This operation returns a status code of O for any key that is a valid
sector number. The record length returned is always 256 (current physical
sector size in characters) for any valid key. The specified key must be a
character string that could have been produced by editing through a PL/I picture
of "(8)9". (See "Notes" below.) This operation is supported for only the
direct opening modes.

Control Operation

The following orders are supported when +the I/0 switch is open, except for
getbounds, which is supported while the switch is attached.

changepack
causes the current pack to be dismounted and another pack to be
mounted in its place. The 1info ptr should point +to a varying
character siring (maximum of 32 charscters) containing the
identifier of the pack to be mounted. This operation is not allowed
for MSUOS00 or MSUOS501 devices.

device_info
causes information pertaining to the attached disk device <+o be
returned to the wuser. The info ptr should point +to a structure of
the following form: -

dcl 1 device info table aligned,
2 subsystem name char (4),
2 device name char (8),
2 sect_per dev fixed bin (35),
2 cyl_per dev fixed bin,
2 sect per cyl fixed bin,
2 sect per track fixed bin,
2 num label sect fixed bin,
2 num alt sect fixed bin,
2 sect_size fixed bin (12);
where:

1. subsystem name
is the name of the disk subsystem in use (i.e., D191).

2. device name
is the name of the disk device in use (i.e., dska 0%).

5-6 AX49-01

rdisk rdisk

3. sect_per dev
is the total number of non-T&D sectors on the disk pack.

4. cyl per dev
is the total number of non-T&D cylinders on the disk
pack.

5. sect_per cyl
is the number of data sectors on each cylinder of a disk
pack.

6. sect_per_ track
is the number of data sectors on each track.

7. num_label sect
is the number of data sectors to reserve for label
information.

8. num_alt sect
is the number of data sectors to reserve for alternate
track area.

9. sect size
is the number of 36-bit words in each data sector.

format_trk
causes a format track command to be issued +to the track that was
indicated by a preceding seek key operation. This operation is not
allowed for . MUSO500 or MSUCS501 devices. The info_ptr should point
to a user supplied structure of the following form:

dcl 1 format trk info aligneq,
(2 hz ‘bit (2),
2 ti bit (2),
2 adcyl fixed bin (16),
2 adhd fixed bin (16)) unaligned;
where:
1 hz

is a bit pattern indicating the state of the header
bypass switch. The hz bits are defined as follows:

h z bit pattern meaning

00 format home address and all data records

01 verify home address and record one, format
home address and all data records

10 skip home address, format all data records

11 verify home address and data record one, skip

home address and format all data records

5-7 AX49-01

rdisk

rdisk

is a bit pattern indicating +the state of the track
indicator bits. The ti bits are defined as follows:

t i bit pattern meaning

00 format track good

(O format track alternate

10 format track defective with alternate track
assigned

11 format track defective with no alternate track
assigned

3. adcyl and adhd
are the alternate or defective cylinder and head numbers
used when the track indicator bits equal "O1"b or "10"b.
These two fields are defined as follows:

If the track indicator bits are set to "O1"b (alternate track), then
adcyl and adhd should be equal to the defective c¢ylinder and head
number for which the alternate track is being formatted.

If +the track indicator bits are set %o "10"b (defective with
alternate assigned), then adcyl and adhd should be equal to the
cylinder and head number of +the alternate track. This operation is
not allowed for MUSO500 or MSUO501 devices.

getbounds

causes the 1lowest and highest sector numbers accessible by the
caller under the current modes +to be returned. The info_ptr should
point to a structure of the following form:

del 1 bounds,

2 low fixed bin(35),
2 high fixed bin(35);

rd trk header

causes a read track header command to be issued to the track that
wes indicated by a preceding seek key operation. This operation is
not allowed for MUSO500 or MSUO501 devices. The raw track header
information is passed +to the wuser in a structure (pointed to by
info_ptr) of the following form:

del 1 trk_header_info aligned

(2 ha oyl bit (169,
2 ha head bit (16),
2 padl bit (2),
2 ha %i bit (2)
2 pad2 vit (109,
2 red O ti bit (2),
2 rcd 0 cyl bit (16),
2 rcd O head bit (16),
2 red_ O rn bit (8),
2 pad3 bit (24),
2 rcd O data (8), bit (8)
2 padd bit (4)3 unaligned;
where:
i. ha cyl

is the cylinder number read from the track home address.

5-8 AX49-01

rdisk rdisk

2. ha head
is the head number read from the track home address.

3. ha ti
is the +track indicator bits (defined above in the
format trk order) read from the track home address.

4. rcd O ti
T 7 is the track indicator bits read from record zero. If
the ha ti bits indicate "10"b, then recd O ti should
equal "O1"b <for alternate track. If ha ti indicates
"01"b, then recd O ti should equal "10"b for defective
track. Otherwise red O_ti will equal ha_ti.

5. recd O cyl and rcd O head

T 7 are the cylinder and head number read from record zero.
If ha ti indicates "10"b, then rcd O cyl and rcd_O head
equal the cylinder and head number of the alternate
track. If ha ti indicates "O1"b, then rcd_O _cyl and
recd O head contain the cylinder and head number of the
defective track. Otherwise, rcd O _cyl and rcd_O_head
equal ha cyl and ha head.

6. rcd O rn
is t?e record number for record zero (normally equal to
zZero).

7. rcd O_data
is the eight data byt

data record) and is n

es in record zero (not a normal
mally equal to zero.

8. padn
are unused bits that are returned as "O"b.

setsize
causes the value of the record size override setting +to be reset.
The info ptr should point to an aligned fixed binary(35) quantity
containing the new override value.

Modes Operation

The modes operation is supported when the I/0 switch is attached. The
recognized modes are listed below. Each mode has a complement indicated by the
circumflex character (") that turns the mode off.

label, “label
specifies that a system-defined number of sectors at the beginning
of the pack are reserved for a pack label, and that a seek key or
position operation is to treat any key or position within this area
as an invalid key. (The default is on.)

raw, " raw
’ specifies +that the entire disk pack is available +to the user,
including the T&D cylinder (the last cylinder on the disk pack).
(The default is off.)

5-9 AX49-01

rdisk rdisk

alttrk, "alttrk
specifies that +the pack has been formatted with the assignment of
alternate tracks, so that a system-defined number of sectors at the
end of +the pack are reserved for an alternate track area.
Therefore, a seek key or position operation is to treat any key
within +that area as an invalid key. (The default is off.) This
mode cannot be enabled for a MSUO50C or MSUO501 disk.

wrtcmp, “wrtemp
specifies that the write-and-compare instruction, rather than the
write instruction, 1is used for the rewrite record operation. This
causes all data written to be read back and compared to the data as
it was prior to being written. This mode should be wused with
discretion, since it doubles the data transfer time of every write.
(The default is off.)

Write Record Operation

If the amount of data to be written does not terminate on a sector
boundary, the remaining portion of +the last sector is filled with spaces. A
code of O is returned in this case. (See "Notes" below.) This operation is
supported for only the sequential output opening mode. A series of writes will
write successive records. -

Closing
The closing has no effect on the physical device For the
sequential output opening mode, the effect is as if an end-of- file flag is

placed just beyond the end of the available disk area.

Detaching

The detachment causes the disk pack to be detached from the users process.

Notes

This I/0 module is a very elementary, physical-device-oriented I/0
facility, providing +the ©basic user-level interface +to a disk device. All
operations are performed +through calls to various I/0 interfacer (IOI)
mechanisms and resource control package (RCP) entries. Certain conditions must
be satisfied before a user process can make use of this facility:

1. The system must be configured with one or more disk drives available
as I/0 disks.

2. The user must have access to assign the disk drive with RCP, access to
the I0I gates, and access to the "acs" segment (e.g.,
>sc1>rcp>dskb_18.acs) that 1is used by +the site to control access to
the disk drive.

5-10 AX49-01

rdisk _ rdisk

For input and update opening modes, the file occupies the entire available
disk area (see the getbounds control order). For the sequential output opening
mode, the file is considered to be empty. That is, an open followed by a write
records data in the first sector of the available disk area.

For direct opening modes, the entire disk pack is treated as an indexed
file, with keys interpreted literally as physical sector numbers. Hence, the
only allowable keys are those that can be converted into fixed binary integers
that fall within the range of valid sector numbers for the given disk device
under the current modes, as returned by the getbounds control operation.

For the sequential input and sequential update opening modes, if an attempt
is made to read beyond the end of the user-accessible area, the code
error table $end of info 1is returned. For all other opening modes, if an
attempt is made To "read or write beyond the end of the user-accessible area on
disk, the code error_table_$device_end is returned. If a defective track is
encountered or if any other unrecoverable data transmission error is
encountered, the code error_ table $device parity is returned.

The record 1length is specified through the buff len parameter in the
read record operation, and through the rec len parameter for the write and
rewrite operations, unless overridden by a -size control argument in the attach
description, or by a setsize control order.

The following items must be considered when wusing this I/0 module with

3 "1 A s 4+ .
language input/outputb:

1. Device Attachment and PFile Opening:

a. PL/I: A file can be attached to a disk pack in PL/I by
specifying the appropriate attach description in the title option
of an open statement. After opening, the desired modes should be
set and +the current sector bounds should be obtained through
direct calls to iox $find iocb, iox_$modes, and iox $control.
These iox subroutine entry points are described in the MPM
Subroutines.

b. FORTRAN: It is not possible to attach a file to a disk pack
within FORTRAN. Here, the attachment must be made external to
the FORTRAN program, e.g., through the io call command (described
in the MPM Commands) or through use of a PL/I subroutine.
FORTRAN automatically opens the file with the appropriate
attributes. Also, it is impossible to set modes or obtain sector
bounds from within FORTRAN. This should be done through use of a
PL/I subroutine prior to the first FORTRAN reference to the file.

2. Input:

a. PL/I: The input record length (buff len) is determined by the
size of the variable specified in the Into option.

5-11 AX49-01

rdisk

rdisk

For the sequential input and sequential update opening modes, use
the PL/I read statement with the into option to read data. TUse
the ignore option to skip forward within +the file. An open
statement followed by a read statement will read in the first
record. Successive reads will obtain successive records.

For the direct_input opening mode, use the PL/I read statement
with the into and key options. The set option should not be
used. The key should be a character string containing the
character representation of the desired sector number.

The PL/I get statement can be wused with +the sequential input
opening mode if the record stream I/0 module is referenced in
the attach description of the open statement.

FORTRAN : In FORTRAN, %buff len has no relationship +to input
variable size. Hence, the -size control argument must be
specified 1in the attach description if +the disk pack is to be
read through FORTRAN. The size should be set to +the length of
the longest expected record.

For the sequential input opening mode, use the unformatted
sequential read statement.

For the direct _input opening mode, use the unformatted keyed
version of +the FORTRAN read statement. The key must be an
integer, whose value is the desired sector number.

Output:

PL/1: The size of the varlable referenced in the from option
determines the length of the record written to disk.

For the sequential output opening mode, use the write statement
with the from option. An open statement followed by a write
statement will start writing at the beginning of +the available
area on the disk pack.

For the sequential update opening mode, use the rewrite statement
with the from option. A previous read statement must have been
used to designate which record will be updated.

For the direct _update opening mode, use the rewrite statement
with the from and key options. The key should be a character
string containing the character representation of +the desired
sector number.

The PL/I put statement can be used with the sequential output

opening mode if the record stream I1/0 module is referenced in
the attach description of the open statement.

5-12 AX49-01

rdisk_

rdisk

FORTRAN: The size of the output record is determined by the
amount of data specified in the write list.

For the sequential output opening mode, use +the unformatted
sequential write version of the FORTRAN write statement.

Por +the direct update opening mode, use the unformatted keyed
version of +the write statement. The key should be a character
string containing the character representation of +the desired
sector number.

Control Operations From Command Level

A1l
follows:

control operations may be performed from the io call command, as

io_call control switch order_arg

where:

1. switch

2.

order_arg
must be one of the following:

is the name of the I/0 switch.

changepack newpack
setsize newsize
getbounds

where:

newpack is the name of the new pack to be mounted.

newsize is the new record size in words.

5-13 AX49-01

tape_ansi_ tape ansi_

Name: tape ansi_

The tape ansi I/0 module implements the processing of magnetic tape files
according to Draft Proposed Revision X3L5/419T of +the American National
Standards Institute's ANSI X3.27-1969, "Magnetic Tape Labels and File Structure
for Information Interchange". This document is referred to below as the DPSR
(Draft Proposed Standard Revision). In addition, the I/0 module provides a
number of features +that are extensions to, but outside of, the DPSR. Using
these features may produce a nonstandard file, unsuitable for interchange
purposes.

Entries in the module are not called directly by users; rather, the module
is accessed through the I/0 system. See the MPM Reference Guide for a general
description of the I/0 systen.

Definition Of Terms

For +the purpose of this document, +the following terms have the meanings
indicated. They represent a simplification and combination of the exact and
complete set of definitions found in the DPSR.

record
related information treated as a unit of information.

block
a collection of characters written or read as a unit. A block may
contain one or more complete records, or it may contain parts of one
or more records. A pari of a record is a record segment. A block
does not contain multiple segments of the same record.

file
a collection of information consisting of records pertaining +to a
single subject. A file may be recorded on all or part of a volume,
or on more than one volunme.

volume
a reel of magnetic tape. A volume may contain one or more complete
files, or it may contain sections of one or more files. A volume
does not contain multiple sections of the same file.

file set

a collection of one or more related files, recorded consecutively on
a volume set.

volume set

a collection of one or more volumes on which one and only one file
set is recorded.

5-14 AX49-01

tape_ansi_

tape_ansi_

Attach Description

The att

tape_an

where:

1.

2.

9/80

vni

vnl vn2

ach description has the following form:

si_ vnl vn2 ... vnN {-control_args}

is a volume specification. A maximum of 64 volumes may be
specified. In the simplest (and typical) case, a volume
specification is a volume name, that must be six characters or less
in 1length. If a volume name 1is 1less than six characters and
entirely numeric, it is padded on the left with 0's. If a volume
name 1is less than six characters and not entirely numeric, it is
padded on the right with Dblanks. Occasionally, keywords must be
used with the volume name. For a discussion of volume names and
keywords see "Volume Specification™ below.

... vnN .
comprise the volume sequence list. The volume sequence list may be
divided into two parts. The first part, vnl ... wvni, consists of
those volumes that are actually members of the volume set, listed in
the order that they became members. The entire volume set
membership need not be specified in the attach description; however,
the first (or only) volume set member must be specified, because its

volume name 1is wused to identify the ~file set. If the entire
membership 1is specified, the sequence list may contain a second
part, vni+l ... vnN, consisting of potential members of the volume

set, 1listed in the order that they may become members. These
volumes are known as volume set candidates. (See "Volume Switching"
below.)

control args

-bloc

-clea

is a sequence of one or more attach control arguments. A control
argument may appear only once.

k b, -bk b

specifies the block length in characters, where the value of b is
dependent upon the value of r specified in the -record control
argument. (See "Creating a File" belcow.)

r, -cl
specifies that internal information on a file-set which the I/0

‘module retains from previous attachments is to be deleted. This

-crea

-dens

control argument can be used when it is desired to change attributes
of a file-set which are maintained acreoss attachments for a given
process, e.g. density or 1label standard. For the initial
attachment to a file-set in a given process, this control argument
has no effect.

te, -cr
specifies that a new file is to be created. (See "Creating a File"
below.)

ity N, -den N

specifies the density at which the file-set is recorded, where N can
be 800, 1600, or 6250 bits per inch. (See "File Set Density"
below.)

5-15 AX49-01B

tape_ansi tape_ansi

-device N, -dv N :
specifies the maximum number of tape drives that can be used during
an attachment, where N is an integer in the range 1 < N < 63. (See
"Multiple Devices" below.)

-expires date, -exp date
specifies the expiration date of the file +to be created or
generated, where date must be of a form acceptable +to the
convert date to binary_ subroutine which is described in the MPM
Subroutines. (See "File Expiration" below.)

-extend, -ext
specif%es extension of an existing file. (See "Extending a File"
below.

-force, -fc
specifies that the expiration date of the file being overwritten is
to be ignored. (See "File Expiration" below.)

-format f, -fmt f
specifies the record format, where f is a format code. (See
"Creating a File" below for a list of format codes.)

-generate, -gen
specif%es generation of an existing file. (See "Generating a File"
below.

-mode STR, -md STR
specifies the encoding mode used to record the file data, where STR
is the string ascii, ebedic, or binary. The default is ascii. (See
"Encoding Mode" below.)

-modify, -mod
.~ - . A~ . - - s - . - 1 o~ ar - - . -~ - - - -
specifies modification of an existing file. (See "Modifying a File®
below.)

-name STR, -nm STR
specifies the file identifier of the file where STR is from 1 to 17
characters. (See "Creating a File" below.)

-number N, -nb N
specifies the file sequence number, the position of the file within
the file set, where N is an integer in the range 1 < N < 9999. (See
"Creating a File" below.) -

-record r, -rec r
specifies the record 1length in characters, where the value of r is
dependent upon the choice of record format. (See "Creating a File"
below.)

-replace STR, -rpl STR
specifies the file identifier of the file to be replaced, where STR
must be from 1 to 17 characters. If no file with file identifier
STR exists, an error is indicated. (See "Creating a File" below.)

5-16 AX49-01

tape ansi_ , tape ansi

-retain STR, -ret STR
specifies retention of resources across attachments, where STR specifies
the detach-time resource disposition. (See "Resource Disposition®
below.)

-ring, -rg
specifies that the volume set be mounted with write rings. (See
"Write Rings and Write Protection™ below.)

-speed N1{,N2,...,Nn}, -ips N1{,N2,...,Nn}
specifies desired tape drivé speeds in inches per second, where Ni
can be 75, 125, or 200 inches per second. (See "Device Speed -
Specification" below.)

The following sections define each control argument in the contexts that it
can be used. For a complete list of the attach control arguments, see "Attach
Control Arguments" below.

Creating A File

When a file is created, an entirely new entity is added to the file set.
There are two modes of creation: append and replace. In append mode, the new
file is added to the file set immediately following the last (or only) file in
the set. The process of appending does not alter the previous contents of the
file set. 1In replace mode, the new file is added by replacing (overwriting) an
existing file. The replacement process logically truncates the file set at the
point of replacement, destroying all files (if any) that follow consecutively
from that point.

The -~create and -name control arguments are required to create a file,
where STR is the file identifier. No two files in a file set can have the same
file identifier. If the act of creation would cause a duplication, an error is
indicated.

If no file having file identifier STR exists in the file set, the new file
is appended to the file set; otherwise, the new file replaces the o0ld file of
the same name.

If the user wishes to explicitly specifycreation by replacement, the particular
file to be replaced must be identified. Associated with every file is a name
(file identifier) and a number (file sequence number.) Either is sufficient to
uniquely identify a particular file in the file set. The -number N and -replace
STR control arguments, either separately or in conjunction, are used to specify
the file to be replaced. If used together, they must both identify the same
file; otherwise, an error is indicated. '

T/82 5-17 AX49-01C

This page intentionally left blank.

7/82 AX49-01C

tape ansi tape ansi

When the -number N control argument 1is specified, if N is less than or
equal to the sequence number of the last file in the file set, the created file
replaces the file having sequence number N. If N is one greater than the sequence
number of the last file in the file set, the created file is appended to the
file set. If N is any other value, an error is indicated. VWhen creating the
first file of an entirely new file set, the -number 1 control argument must be
explicitly specified. (See "Volume Initialization" below.)

The -format f, -record r and -~block b control arguments are used to specify
the internal structure of the file to be created. They are collectively known
as structure attribute control arguments.

7/82 -17.1 AX4g-01C

(%)

tape ansi tape ansi

When the -format f control argument is used, f must be one of the following
format codes, chosen according te the nature of the data to be recorded. (For a
detailed description of the var'iocous record formats, see "Record Formats" below.) .

fb for fixed-length records, blocked. Used when every record has the
same length, not in excess of 94996 characters.

db for variable length records, blocked. Used when records are of varying
lengths, the longest not in excess of 99992 characters.

sb for spanned:records,_blocked. Used when the record length is fixed
and in excess. of 99996 characters, or variable and in excess of 99992
characters. 1In either case, the record length cannot exceed 1,044,480

characters.
f for fixed-length records, unblocked.
d for variable-length records, unblocked.
s for spanned records, unblocked.
u for undefined records (records urdefined in format). Each block is

treated as a single record, and a block may contain a maximum of 99996
characters.

NOTE: THE USE OF UNDEFINED RECORDS IS A NONSTANDARD FEATURE.

Records recorded using U format may be irreversibly modified; therefore,
the use of U format is strongly discouraged. (See "Block Padding"
below.)

Unblocked means that each block contains only one record (f, d) or record
segment (s). Blocked means that each block contains as many records (fb, db) or
record segments (sb) as possible. The actual number of records/block is either
fixed (fb), depending upon the block length and record length, or variable (db,
sb), depending upon the block length, record length, and actual records. Because
of their relative inefficiency, the use of unblocked formats is discouraged.

When the -record r control argument is used, the value of r is dependent
upon the choice of record format. In the following list, amrl is the actual or
maximum record length.

fb | f: r = amrl
db ! d: amrl + U < r < 9999¢
sb | s: amrl < r < 7034480
u: r is undefined
Tthe -record control argument should not be used.)

| o]
(1 L T |

7/82 5-18 AXl49-01C

tape ansi tape ansi

When the -block b control argument is used, the value of b is dependent
upon the vslue of r. When the block length is not constrained to a particular
value, the largest possible block length should be used.

f = fb: b must satisfy mod (b,r) = 0
T = f: b =r -
?:dbi P>r

T - 4d: b =r.

T = sb | s: T8 < b < 99a96

z = u: amrT < E < 99CgH

In every case, b must be an integer in the range 18 < b < £192.

NOTE: THE USE OF A BLOCK LENGTH IN EXCESS OF 2048 CHARACTERS IS A NONSTANDARD
FEATURE.

Because the structure attribute control arguments are extremely interdependent,
care must be taken to ensure that specified values are consistent.

Reading A File

The attach description needed to read a file is less complex than the
escription used to create it., When 2 file is created, the structure attributes
pecified in the attach description are recorded in the file's header and trailer
labels. These labels, which precede and follow each file section, also contain
the file name, sequence number, block count, etc. When a file is subsequently
read, all this information is extracted from the labels. Therefore, the attach
description need only identify the file to be read; no other control arguments
are necessary.

d
s

The file can be identified using the -name STR control argument, the -number
N control argument, or both in combination. If the -name STR is used, a file
with the specified file identifier must exist in the file set; otherwise, an
error 1is indicated. If the -number control argument is used, a file with the
specified file sequence number must exist in the file set; otherwise, an error
is indicated. If the -name STR and -number N control arguments are used together,
they must both refer to the same file; otherwise, an error 1is indicated.

Output Operations On Existing Files

Three output operations can be performed on an already existing file:
extension, modification, and generation. As their functions are significantly
different, they are described separately below. They do, however, share a common
characteristic. Like the replace mode of creation, an output operation on an
existing file logically truncates the file set at the point of operation, destroying
all files (if any) that follow consecutively from that point.

7/82 5-19 AX49-01C

tape ansi tape ansi

Extending A File

File extension is the process of adding records to a file without in any
way altering the previous contents of the file.

Because all the information regarding structure, length, etc. can be obtained
from the file labels, the attach description need only specify that an extend
operation is to be performed on a2 particular file. The previous contents of the
file remain unchanged; new data records are appended at the end of the file. If
the file to be extended does not exist, an error is indicated.

The file to be extended is identified using the -name STR control argument,
the -number N control argument, or both in combination. The same rules apply as
for reading a file. (See "Reading a File" above.)

Recorded in the labels that bracket every file section is a version number,
initially set to 0 when the file is created. The version number is used to
differentiate between data that have been produced by repeated processing operations
(such as extension). Every time a file is extended, the version number in its
trailer labels is incremented by 1. When the version number reaches 99, the
next increment resets it to 0.

The user may specify any or all of the structure attribute control arguments
when extending a file. The specified control arguments are compared with their
recorded counterparts; if a discrepancy is found, an error is indicated.

Modifying A File

It is occasionally necessary to replace the entire contents of a file,
while retaining the structure of the file itself (as recorded in the header
labels). This process is known as modification.

Because all necessary information can be obtained from the file labels, the
attach description need only specify that a modify operation is to be performed
on a particular file. If a file to be modified does not exist, an error is
indicated. The entire contents of the file are replaced by the new data records.
The version number in the trailer labels of a modified file is incremented by 1,
as described above.

The file to be modified is identified using the -name STR control argument,
the -number N control argument, or both in combination. The same rules apply as
for reading a file. (See "Reading a File" above.)

If any or all of the structure attribute control arguments are specified,
they must match their recorded counterparts; otherwise, an error is indicated.

5-20 AX49-01

tape ansi ' tape ansi

Generating A File

Recorded in the labels that bracket every file section is a generation
number, initially set to 0 when the file is created. The generation number is
used to differentiate between different issues (generations) of a file, that all
have the same file identifier. The duplicate file identifier rule {(see "Creating
a File" above) precludes multiple generations of a file from existing simultaneously
in the same file set.

The generation number is a higher order of differentiation than the version
number, that is more correctly known as the generation version number. While
the process of modification or extension does not change the generation number,
the process of generation increments the generation number by 1, and resets the
version number to 0. The generation number can only be incremented by rewriting
the header labels, and it is in this respect that the processes of generation
and modification differ.

Producing a new generation of a file is essentially the same as creating a
new file in place of the o0ld; however, the file identifier, sequence number, and
structure attributes are carried over from the old generation to the new. The
attach description need only specify that a generation operation is to be performed
on a particular file. If the file to be generated does not exist, an error is
indicated. An entirely new generation of the file 1is created, replacing (and
destroying) the previous generation. The generation number is incremented by 1;
the version number is reset to 0. When the generation number reaches 9909, the
next increment resets it to 0.

The file to be generated is identified by the -name STR control argument,
the -number N control argument, or both in combination. The same rules apply as
for reading a file. (See "Reading a File" above.)

If any or all of the structure attribute control arguments are specified,
they must match those recorded in the labels of the previous generation; otherwise,
an error is indicated.

Encoding Mode

The tape ansi I/0 module makes provision for three data encoding modes:
A3CII, EBCDIC, and binary. Because the DPSR requires that the data in each
record be recorded using only ASCII characters, the default data encoding mode
is ASCII. File labels are always recorded using the ASCII character set.

When a file is created, the -mode STR can be used to explicitly specify the
encoding mode, where STR is the string ascii, ebedic, or binary. The default is
the string ascii. (If -mode STR is not specified, the list tape contents command
does not supply the specific mode in its report.) - -

NCTE: THE USE OF ENCODING MODES OTHER THAN ASCII IS A NONSTANDARD FEATURE.

T7/82

Wl

-21 AXh49-01C

tape ansi tape ansi_

If STR is the string ascii, the octal values of the characters to be recorded
should be in the range 000 < octal value < 177; characters in the range 200 to
377 are not invalid, but recording such characters is a nonstandard feature;
characters in the range 400 to 777 cause an unrecoverable I/0 error. If STR is
the string ebecdic, the octal values of the characters to be recorded must be in
the range 000 to 177. (See the ascii to ebedic subroutine in the MPM Subsystem
Writers' Guide for the specific ASCII to EBCDIC mapping used by the I/0 module.)
If STR is the string binary, any octal value can be recorded.

The tape ansi I/0 module records the data encoding mode in a portion of
the file labels reserved for system-defined use. If the -mode STR control argument
is specified when the file is subsequently extended, modified, or generated, the
specified mode must match that recorded in the file labels; otherwise, an error
is indicated. When the file is subsequently read, the encoding mode is extracted
from the file labels, so the -mode STR control argument need not be specified.

File Expiration

Associated with every file is a file expiration date, recorded in the file

labels. If a file consists of more than one file section, the same date is
recorded in the labels of every section. A file is regarded as "expired" on a
day whose date is later than or equal to the expiration date. Only when this

condition is satisfied can the file (and by implication, the remainder of the
file set) be overwritten. Extension, modification, generation, and the replace
mode of creation are all considered to be overwrite operations.

The expiration date is recorded in Julian form; i.e., yyddd, where yy are
the last two digits of the year, and ddd is the day of the year expressed as an
integer in the range 1 ¢ ddd < 366. A special case of the Julian date form is

the value "00000" (always expired).

The expiration date 1is set only when a file 1is created or generated.
Unless a specific date is provided, the default value "00000" is used. The
-expires date control argument is used to specify an expiration date, where date
must be of a form acceptable to the convert date to binary subroutine (described
in the MPM Subroutines). If the I/0 module is invoked through the iox $attach ioname
entry point or the iox $attach iocb entry point (described in the MPM Subroutines),
date must be a contiguous string, with no embedded spaces; if invoked through
the io call command, date may be quoted and contain embedded spaces. Julian
form, Including "00000", is unacceptable. Because overwriting a file logically
truncates the file set at the point of overwriting, the expiration date of a
file must be earlier than or equal to the expiration date of the previous file
(if any); otherwise, an error is indicated.

If an attempt is made to overwrite an unexpired file, the user is queried
for explicit permission. (See "Queries"™ below). The -force control argument
unconditionally grants permission to overwrite a file without querying the user,
regardless of "unexpired" status.

5-22 _AX49-01

tape_ansi_ tape ansi

Volume Specification

The volume name (also called the slot identifier) is an identifier physically
written on, or affixed to, the volume's reel or container. The volume identifier
is a six-character identifier magnetically recorded in the first block of the
volume, the VOL1 lazbel. This implementation of the I/0 module assumes the volume
name and volume identifier to be identical. If this is not the case, the volume
identifier must be used in the volume specification field of the attach description.

If a volume name begins with a hyphen (-), the -volume keyword must precede
the volume name. Even if the volume name does not begin with a hyphen, it may
still be preceded by the keyword. The volume specification has the following
form:

~volume vni

If the user attempts to specify a volume name beginning with a hyphen
without specifying the -volume keyword, an error is indicated or the volume name
may be interpreted as a control argument.

Occasionally, it is necessary for a user to communicate some additional
information to the operator in connection with a mount request. This can be
done through the use of the -comment control argument:

vni -comment STR
or)
-volume vni -comment STR

where the -comment STR keyword and text specify that a given message is to be
displayed on the operator's console whenever volume vni is mounted (a comment
can be specified after each volume name supplied). STR can be from 1 to 64
characters. STR can be quoted and contain embedded spaces.

Volume Switching

The DPSR defines four types of file set configurations:

single-volume file a single file residing on a single volume
multivolume file a single file residing on multiple volumes
multifile volume multiple files residing on a single volume
multifile multivolume multiple files residing on multiple volumes

T/82 5-23 AX49-01C

tape ansi tape ansi

The tape ansi I/0 module maintains a volume sequence list on a per-file-set
basis, for the life of a process. A minimal volume sequence list contains only
one volume, the first (or only) volume set member. If the file set is amultivolume
configuration, the sequence list may contain one or more of the additional volume
set members, following the mandatory first volume. If the sequence list contains
the entire volume set membership (that may be only one volume), it may then
contain one or more volume set candidates. Volume set candidates can become
volume set members only as the result of an output operation. When an output
operation causes the amount of data in the file set to exceed the capacity of
the current volume set membership, the first available volume set candidate
becomes a volume set member.

When the first attachment to any file in a file set is made, the volume
sequence list for the file set is initialized from the attach description. At
detach time, the I/0 module empirically determines that one or more volumes are
volume set members, by virtue of having used them in the course of processing
the attached file. The remaining volumes in the sequence 1list, if any, are
considered to be candidates. 1In subsequent attachments to any file in the file
set, the order of volumes specified in the attach description is compared with
the sequence list. For those volumes that the I/0 module knows to be volume set
members, the orders must match; otherwise, an error is indicated. Those volumes
in the sequence list that the I/0 module considers to be candidates are replaced
by attach description specifications, if the orders differ. If the attach
description contains more volumes than the sequence list, the additional volumes
are appended to the list. This implementation maintains and validates the volume
set membership on a per-process basis, and maintains a 1ist of volume set candidates
that is alterable on a per-attach basis.

Once a volume sequence list exists, subsequent attachments to files in the
file set do not require repeated specification of any but the first (or only)
volume, that is used to identify the file set. If the I/0 module detects physical
end ¢f tope in the course of an output .operation, it prepares to switch to the

next volume in the volume set. An attempt is made to obtain the volume name
from the sequence 1list, either from the sublist of members, or the sublist of
candidates. If the 1list of volume set members is exhausted, and the list of

candidates is either empty or exhausted, the user is queried for permission to
terminate processing. If the reply is negative, the I/0 module queries for the
volume name of the next volume, which becomes a volume set member and is appended
to the volume sequence list. If a volume name is obtained by either method, it
is recorded in a system-defined file 1label field at the end of the current
volume, volume switching occurs, and processing of the file continues.

If the I/0 module reaches end of file section (but not of file) in the
course of an input operation, it first attempts to obtain the next volume name
from the volume sequence list. No distinction is made between the member and
candidate sublists, because a volume that ends with a file section must be
followed by the volume that contains the next section. If the sequence list is
exhausted, the file section's labels are examined for a volume name and, if one
is found, it is appended to the sequence list. Should the file labels provide
no name, the user is queried, as described above. If any of these three methods
results in a volume name, volume switching occurs, and processing of the file
continues. This method of searching allows a specified switching sequence to
override a sequence recorded in the file labels.

If the volume set is demounted at detach time, all volume set candidates
are purged from the volume sequence list.

5-24 AX49-01

tape ansi tape ansi

Multiple Devices

If a volume set consists of more than one volume, the -device N control
argument can be used to control device assignment, where N specifies the maximum
number of tape drives that can be used during this attachment.
N is an integer in the range 1 < N < 63. Drives are assigned only con a demand
basis, and in no case does the number actually assigned exceed the device limit
of the process. The default for an initial attachment to a file in a file set
is N equals 1; the default for a subsequent attachment to that (or any other)
file in the file set is N equals the previous value of N.

File Set Density

Although the DPSR requires that file sets be recorded at 800 bpi (bits per
inch), the I/0 module makes provision for three densities: 800, 1600, and 6250
bpi. Every file in a file set must be recorded at the same density; otherwise,
an error is indicated.

The -density N control argument is used to explicitly specify the file set
density, where N specifies the density at which the file set is (to be) recorded.
N can be 800, 1600, €250 bpi. ‘

NOTE: THE USE OF 1600 OR 6250 BPI IS A NONSTANDARD FEATURE.

The file set density can only be changed in a subsequent attachment if the
volume set was demounted by the previous attach.

In the absence of -a -density N control argument, the file set density is
determined as follows:

open for input: N = density of VOL1 label
open for output, creating new file set: N = 200 bpi
open for output, old file set: N = density of VOL1 label

Opening

The opening modes supported are sequential input and sequential output. An
I/0 switch can be opened and closed any number of times in the "course of a
single attachment. Such a series of openings may be in either or both modes, in
any valid order.

All openings during a single attachment are governed by the same attach
description. The following control arguments, all of which pertain to output
operations, are ignored when the switch is opened for sequential input:

-create -generate
-expires -modify
-extend -replace
-force

9/80 5-25 AXh9-01B

tape ansi tape ansi

Device Speed Specification

The -speed control argument is used to specify acceptable tape device speeds
in inches per second. The module only attaches a device that matches a speed
specified by this control argument. If more than one speed is specified, the
module attaches a device that matches one of the speeds. If more than one
device is attached, and more than one speed is specified, the devices will not
necessarily all be of the same speed.

Resource Disposition

The tape ansi I/0 module utilizes two types of resources: devices (tape
drives) and volumeS. Once an 1/0 switch is attached, resources are assigned to
the user's process on a demand basis. When the I/0 switch is detached, the
default resource disposition unassigns all devices and volumes.

If several attaches and detaches to a file set are made in a process,
repeated assignment and unassignment of rescurces is undesirable. Although the
processing time required to assign and unassign a device is small, all available
devices can be assigned to other processes in the interval between one detach
and the next attach. While volumes are not often "competed" for, mounting and
dismounting is both time-consuming and expensive.

The -retain STR control argument is used to specify retention of resources
across attachments, where STR specifies the detach-time resource disposition.
If STR is the string all, all devices and volumes remair assigned to the process.
If STR is the string none, all devices and volumes are unassigned. This is the

default retention.

The I/0 module provides a further means for specifying or changing the
resource disposition subsequent to attachment. If retention of any devices or
volumes has been specified at or subsequent to attach time using the retention
control operation, the unassign resource command cannot be used. Instead, use
the retain none or retention -none control operation before detaching the I/0
module. (See '"retention, retain none, retain all Operations" under "Control
Operations" below.) - -

Write Rings And Write Protection

Before a volume can be written on, a write ring (an actual plastic ring)
must be manually inserted into the reel. This can only be done before the
volume is mounted on a device. When a volume is needed, the I/0 module sends
the operator a mount message that specifies if the volume is to be mounted with
or without a ring.

7/82 5-26 AX49-01C

tape ansi tape ansi

If the attach description contains any output control argument (-extend,
-modify, -generate, or -create), volumes are mounted with rings; otherwise, they

are mounted without rings. When a volume set mounted with rings is opened for
sequential input, hardware file protect is used to inhibit any spurious write
operations. A volume set mounted without rings cannot be opened for

sequential output.

However, the following sequence of events is possible. An attach description
contains none of the output control arguments, but does contain the -retain all
control arguments. The volume set is mounted without rings. After one or more
(or no) openings for sequential input, the I/O switch 1s detached. The volume
set remains mounted because of The -retain all control argument. Subsequently,
an attach is made whose description contains an output control argument, that
requires that the volume set be mounted with rings. However, as rings can only
be inserted in unmounted volumes, the entire volume set must be demounted and
then remounted.

7/82 5-26.1 AX49-01C

This page intentionally left blank.

T7/82 A¥49-01C

tape ansi_ tape ansi

This situation can be avoided by using the -ring control argument to
specify that the volume set be mounted with write rings. If no output control
argument is specified in conjunction with -ring, the I/0 switch cannot be opened
for sequential output.

When a volume set is mounted with write rings and the I/0 switch is opened
for sequential input, the hardware file protect feature is used to safeguard the
file set.

Queries

Under certain exceptional circumstances, the I/0 module queries the user
for information needed <for processing to continue or instructions on how to
proceed.

Querying 1is performed by the command query -subroutine. The user may
intercept one or more types of query by establishing a handler <for the
command gquestion condition, that is signalled by the command query_ subroutine.
Alternately, the answer command (described in the MPM Commands) can be used to
intercept all queries. The use of a predetermined "yes" answer to any query
causes those actions +to be performed that attempt to complete an I/0 operation
without human intervention.

In the following list of gueries, status_code refers to
command question_info.status code. See the MPM Reference Guide for information
regarding the command question condition and the command question info
structure. - - -

status_code = error_table $file aborted

This can occur only when the I/0 switch is open for sequential output. The
I/0 module is unable to correctly write file header labels, trailer labels,
or tapemarks. This +type of error invalidates the structure of the entire
file set. Valid file set structure can only be restored by deleting the
defective file or file section from the file set.

The user is queried for permission to delete the defective file or file
section. If the response is "yes", the I/0 module attempts deletion. The
attempt may or may not succeed; the wuser is informed if the attempt fails.
If the response is "no", no action is +taken. The user will probably be
unable to subsequently process the file, or append files to the file set;
however, this choice permits retrieval of the defective <file with another
I/0 module. In either case, the I/0 switch is closed.

status_code = error_table $unexpired volume

This can occur only when the I/0 switch is open for sequential output. A
volume must be either reinitialized or overwritten; however, the first file
or file section on the volume is unexpired.

The user is queried for permission to initialize or overwrite the unexpired
volume. If the response is "yes", the volume is initialized or overwritten
and processing continues. If +the response 1is "no", further processing
cannot continue, and the I/0 switch is closed.

5-27 AX49-01

tape ansi_ tape ansi_

status_code = error_table $uninitialized volume

A volume requires reinitialization or wuser verification before it can be
used to perform any I/0. The I/0 module distinguishes among four causes by
setting command question info.query_code as follows:

1]
—

the first block of the tape is unreadable. The tape is
either defective, or recorded at an invalid density.
This query code can occur only if the I/0 stream is
opened for sequential output.

query_code

query code = 2 the first block of the tape is not a valid ANSI VOIM
label. The tape is not formatted as an ANSI volume.
This query code can occur only if the I/0 stream is
opened for sequential output.

query_code = 3 the volume identifier recorded in the VOL1 1label is
incorrect. The volume identifier does not match the
volume name.

query code = 4 the density at which the volume 1is recorded 1is

incorrect. The volume density does not match the
specified density. This query code can occur only if
the I/0 stream is opened for sequential output.

If the I/0 stream is opened for sequential output, the user will be asked
whether he wants +to initialize or re-initialize the volume. If the I/0
stream is opened for sequential input, +the user will be asked whether he
wants to continue processing in spite of the discrepancy. If the response
is "yes", the volume is reinitialized and processing continues. If the
response is "no", further processing cannot continue, and the I/0 switch is
closed.

status_code = error_table $unexpired file

This can occur only when the I/O switch is open for sequential output. A
file that must be extended, modified, generated, or replaced is unexpired.

The user is queried for permission to overwrite the unexpired file. If the
response is "yes", processing continues. If the response is "no", further
processing cannot continue, and the I/0 switch is closed.

status_code = error_table $no next volume

This can occur when reading a multivolume file, or when writing a file and
reaching physical end of tape. The I/0 module is unable to determine the
name of the next volume in the volume set.

The wuser 1is queried for permission to +terminate processing. If the
response is "yes", no further processing is possible. If the I/0 switch is
open for sequential output, +the I/0 switch is closed. If the response is
"no", the user is Qqueried for the volume name of the next volume. (See
status code = O below.)

5-28 AX49-01

tape_ansi_ tape ansi

status_code = 0O

This occurs only when the response to the above guery is "no". The user is
requested to supply the name of the next volume. The response must be a
volume name six characters or 1less in length, optionally followed by a
mount message. Even if the volume name begins with a hyphen, it must not
be preceded by the -volume control argument. If a mount message is to be
specified, the response takes the following form:

volume_ name -comment STR

where STR 1is the mount message and need not be a contiguous string. See
"Volume Specification” above. This is the only query that does not require
a "yes" or "no" response. If a preset "yes" is supplied to all queries,
this particular query never occurs.

Structure Attribute Defaults

When a file is created, the I/0 module can supply a default value for any
or all of the file structure attributes. The defaults used are as follows:

1. record format the default is f = db
2. block length the default is b = 2048
3 record length

f = u: undefined

f=1p ; f: r = block length

f =db ; d: r = block length

f =s8b | s: r = 1044480

An injudicious combination of explicit specifications and defaults can
result in an invalid attribute set. Por example, 1if the control argument
-record 12000 is specified, applying the defaults produces the following:

—-format db -block 2048 -~record 12000

This attribute set is invalid because, in D format (See "Record Formats" below),
the record length must be less than or equal to the block length.

Processing Interchange Files

The DPSR makes provision for recording record format, block length, and
record length in specific fields of the HDR2 file 1label. In addition, the I/0
module records +the encoding mode in a portion of the HDR2 1label reserved for
system-defined wuse. Because the DPSR restricts the encoding mode +to ASCII,
there 1s no ‘"standard" label field reserved for recording encoding mode.
Therefore, if a foreign interchange file (a file not created by this I/0 module)

uses an encoding mode other than ASCII, the -mode STR control argument must be
used to specify the mode.

5-29 AX49-01

tape ansi_ tape ansi_

File sets are almost always recorded with HDR2 file labels, with the
exception of those created by "primitive" systems at implementation levels 1 or
2. (See the DPSR for a description of +the facilities supported at different
implementation levels.) It is therefore rarely necessary to explicitly specify
record format, block 1length, or record length when interchange files are read,
extended, modified, or generated. If, however, a file does 1lack HDR2 labels,
explicit attribute specification 1is required; defaults apply only to file
creation.

ASCII Subset

The DPSR suggests that the characters that comprise certain alphanumeric
label fields be limited to a 56-character subset of full ASCII. Furthermore, it
is suggested +that these fields should not contain embedded blanks, nor should
they consist entirely of blanks. In particular, the user need only consider
file identifiers and volume names.

The 56-character subset includes:

uppercase letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ
digits: 0123456789
special characters: <space> "E&E () *¥ 4+, -)y < =>7°

These characters were chosen from the center four columns of the code table
specified in USA Standard Code for Information Interchange, ANSI X3.4-1968,
except for position 5/15 (the underscore () character) and those positions
where there is provision for alternate graphic representation.

The limitation to this subset is intended to provide maximum
interchangeability and consistent printing, especially for international
interchange.

Overriding Structure Attributes

Normally, the -format f, -block b, and -record r control arguments are not
included in +the attach description of an I/0 switch that is opened for
sequential input; the structure attributes are extracted from the file labels.
However, the I/0 module permits +the recorded structure attributes to be
overridden by explicitly specified attach description control arguments.
Because the apparent structure and characteristics of the file can be
drastically altered, great care must be taken to ensure that attribute overrides
do not produce unexpected and unwanted results.

5-30 AX49-01

tape ansi_ tape ansi

If a file has the following recorded attributes:

~format fb -block 800 -record 80

an explicit specification of the -format f and -record 800 control arguments
causes each Dblock of +ten 80-character records +to Dbe treated as a single
800~character record.

If a file has the following recorded attributes:
—-format fb -block 800 -record 80

an explicit specification of the -format f, -block 80, and -record 80 control
arguments causes the last 720 characters of every Dblock to be discarded. No
error 1s 1indicated, because every block of the file contains at 1least one
80-character record.

Record Formats

ANSI files are structured in one of +three record formats: F, D, or S. In
addition, the I/0 module provides for a fourth format, U. When a file is
created, its record format should be chosen in accordance with the nature of the
data to be recorded. For example, data consisting of 80-character card images
is most economically recorded in F format, fixed-length records. Data
consisting of variable length text lines, such as PL/I source code produced by a
text editor, is Dbest recorded in D format, variable-length records. Data of
arbitrary length (that could exceed the maximum block size) must be recorded in
S format, spanned records, so that a lengthy datum can span several blocks.

F, D, and S format files are either blocked or unblocked, blocked being the
normal case. Fach block of an unblocked file contains just one record, whereas
each block of a blocked file can contain several records. Blocking can provide
a significant savings of processing time, because several records are accessed
with a single physical tape movement. PFurthermore, as blocks are separated by
distances of blank tape, blocking reduces the amount of tape needed to contain a
file.

F FORMAT

In F format, records are of fixed (and egual) length, and files have an
integral number (n) of records per block. If the file is unblocked, N is equal
to 1 and the record length (r) is equal to the block length (b). If the file is
blocked, N is greater than 1 and b is equal to (3 * N). N is known as the
blocking factor. -

5-31 AX49-01

tape_ansi_ tape ansi_

For example, if r is equal to 800 and b is equal to 800, then the file is unblocked
and each block contains just one record.

data 800 800 800 800 800 800

block 800 800 800 800 800 800

Ifr is equal to 800 and b is equal to 2400, then the file is blocked, the blocking

factor is 3, and each block contains three records.

data 800 800 800 800 800 800

block 800 800 800 800 800 800

The ANSI standard for F format records permits recording a short block only when the
last block of a blocked file contains fewer than N records and there are no more records
to be written when the file is closed.

There are two special cases in which a datum is padded out to length r. The
first case is that of iobl (the iox_$write record I/0 buffer length; i.e., the number
of characters to be written) equals 0: a record of r blanks is written. When such
a record is subsequently read, it is interpreted as a record of r blanks, and not
as a zero-length record. The second case is that of 0 < iobl < r: the record is
padded on the right with blanks to length r, and the padded record written. When
such a record is read, the original characters plus the padding are returned. The
case of iobl is greater than r is in error.

NOTE: THE ANSI STANDARD PROHIBITS RECORDING A FIXED-LENGTH RECORD THAT CONSISTS
ENTIRELY OF CIRCUMFLEX (") CHARACTERS.

D FORMAT

In D format, records and therefore blocks may vary in length. Each record is
preceded by a four-character record control word (RCW) that contains the total record
length (the length of the data plus the length of the RCW itself).

D format files have an integral number (n) of records per block. If blocked,
r is less than or equal to b. For blocked records, the number of records per block
varies indirectly with the size of the records.

5-32 AX49-01

tapesansi_ tape_ansi_

If r equals b equals 804 and the file is unblocked, records of up to 800 characters
can be written, and each block contains one record.

data 375 280 670 800
3 2 6 8

block 7y 375 81280 1§ 610 0 800
9 4 4 4

If r equals 804, b is greater than or equal to 804, and the file is
blocked, records of up to 800 characters can be written.

data 375 280 610 800

2] J 8]

block I 375 |8|280 1; 610 Oi 800
4 4

O -3 W

Each block can contain a maximum of 201 zero-length records (a record written
as a four-character RCW containing 0004).

S FORMAT

In S format, a single record is formatted as one or more record segments. A
record segment contains either a complete record, the initial portion of a
record, amedial portion of arecord, or the final portion of arecord. No two segments
of the same record can be contained in the same block, but a block may contain the
segments of several different records. The maximum record léngth is limited only
by the maximum size of a storage system segment, currently 1,044,480 characters.

S format files have an integral number of record segments per block. If the
file is unblocked, each block contains only one record segment; if blocked, the number
of record segments per block is variable., In either case, r and b are independent
of one another.

5-33 AX49-01

tape_ansi_ tape .ansi_

Each record segment begins with a five-character segment control word
(SCW). The SCW contains a four-character record segment length, that includes the
length of the SCW itself. The SCW also contains a one-character record segment
code, that indicates if the segment contains a complete record, or an initial, medial,
or final portion. In the examples below, r equals 1000 and b equals 800.

data 200 400 1000
2 4 8 2
block 0} 200 0 Loo 0 795 1{ 205
5 5 0 0
data 200 400 1000
2 4 1 8 2
record 0} 200 0 400 94185 0 795 51 20
segment 5 5 0 0
2 4 1 8 2
block 0 200 0 400 91185 0 795 5% 20
5 5 0 0
U FORMAT

U format files contain records that do not conform to either F, D, or S
format. A U format file is always unblocked. The record length is undefined,
and b is greater than or equal to iobl. Blocks may vary in length.

NOTE: THE USE OF U FORMAT IS A NONSTANDARD FEATURE

The ANSI block padding convention permits a block (in any format) to be padded
out to any length with circumflex characters ("), according to the requirements of
the system that produces the file. These characters are ignored on input. (See
"Block Padding" below.) In U format, block padding can lead to an ambiguity; i.e.,
are trailing circumflexes indeed pad characters, or are they actually valid data
within the nonpadded portion of the block. The DPSR suggests that a U format block
be treated as a single record. In conformance with this suggestion, the I/0 module

5-314 AX49-01

tape_ansi_ tape_ansi_

The special case of writing a record where iobl is less than 20 characters
produces a block padded to length 20 with circumflex characters.

data 60 127 16 156

block 60 128 20 156

Record Format Comparison

At first glance, it might appear as if S format were the format of choice, simply
because it has the fewest restrictions and the greatest flexibility. Although the
latter 1is certainly true, the former 1is by no means a valid inference.
Increased flexibility is almost invariably accompanied by decreased processing
efficiency.

F format requires the least processing time, and should be used if the records
are fixed-length. IfF format is used with nonfixed-length records the record padding
rules apply, so the user must ensure that recorded data is not irretrievably (and
perhaps undetectably) modified.

D format, with explicit inclusion of record length in the RCW, is perhaps the
"safest" format to use: there are no special padding cases, and the RCW provides
an additional validity check. The D format processing overhead is small.

S format permits almost any datum to be recorded, irrespective of length, and
further has the "safety" advantage of D format because each segment includes an
SCW. While S format records provide maximum flexibility, their use entails
considerably more processing time than the use of F or D format.

Block Padding

The DPSR makes provision for extending the recorded length of a block beyond
the end of the last (or only) record whenever such padding is deemed necessary or
advisable. Padding characters are not considered when computing an RCW or SCW
length. Because the Multics system is implemented on a word-oriented computer, the
number of characters in a block must be evenly divisible by four. The I/0 module
automatically pads every block to the correct length, using from 1 to 3 circumflex
characters. 1In addition, the DPSR does not permit recording a block of fewer than
18 characters. To conform with this requirement, the I/0 module pads any block
containing fewer than 20 characters out to length 20.

As long as F, D, or S format is used, the presence or absence of block padding
characters in a particular block is user-transparent. If U format is used, it is
the responsibility of the user to detect and ignore any pad characters that may be
generated.

5-35 AX49-01

tape ansi_ tape ansi

Volume Initialization

The DPSR requires that all volumes be initialized with a VOL1 1label and
dummy file ©before they are wused for output. The I/0 module provides a
semiautomatic volume initialization mechanism that performs this operation as an
integral part of the output function. The rules that govern permission to
initialize a volume are complex, and permission +to initialize wunder most
circumstances is specifically denied (by the DPSR) %o +the application program.
The I/0 module's mechanism strikes a balance between outright denial and
absolute ease. (See "Queries" above.)

It should be noted that a newly initialized volume contains a dummy file.
Thus, if a file is <created on a newly initialized volume without an explicit
specification of +the -number 1 control argument, the <file is appended +to the
file set, resulting in a file sequence number of 2, and not 1 as might be
expected.

Buffer Offset (Block Prefix)

The DPSR provides for each block of a file being prefixed by from 1 to 99
characters of prefix information, known as the buffer offset. The buffer offset
length is recorded in the HDR2 label. If an input file has block prefixes, and
the block length 1is explicitly specified, it must be incremented by the buffer
offset 1length. This calculation should made after the block 1length has been
determined using the normal block-record relationship rules.

The I/C0 modul ores (skipa) buffer offsets on input, and does not
provide for writing buffer offsets on output, except when extending or moditying
an interchange file with a nonzero buffer offset. In this case, each block
written is prefixed with an appropriate number of blanks.

ignor

Conformance To Standard

The I1/0 module conforms to +the ANSI standard for 1level 4 implementations
with the following five exceptions:

1. Volume Initialization -- The I/0 module has a permission-granting
mechanism that can be controlled by the application progranm.

2. Volume and File Accessibility -- On input, the I/0 module always
grants permission to access. On output, the access control fields in
the VOL1 and HDR1 labels are always recorded as blank (" ").

3. Overwriting Unexpired Files -— The 1I/0 module has a

permission-granting mechanism that can be controlled by the
application program.

5-36 AX49-01

A

tape ansi tape ansi

b, User Label Processing -- The I/0 module ignores user labels on input,
and does not provide for writing user labels on output.

5. Buffer Offset Processing -- The I/0 module ignores buffer offsets on

input, and does not provide for writing buffer offsets on output (except
as stated above).

Label Processing

VOL1

The 1label 1is processed on input and output. The owner-identifier field,
character positions (CP) 38 to 51, holds a three-character volume authentication
code.

UVLa
These labels are not written on output, and ignored on input.

HDR1/EOF 1/E0V1
The labels are processed on input and output. The system-code field, CP €1
to 73, is recorded as "MULTICS ANSI ™.

HDR2/ECQF2/EQV2

The labels are processed on input and output. The reserved-for-system-use
field, CP 16 to 50, is recorded as follows:

CP 16 to 47 - full 22-character volume name of next volume (EOV2 only)

CP 48 - blocking attribute (all)
"0" = unblocked; "1" = blocked
CP 490 - data encoding mode (all)

" 1 n
"2"
"3"

ASCII, 9 mode
EBCDIC, 9 mode
binary

Houon

HDR3/ECF3/EOV3 - HDRO/EOFQ/EQVQ

These labels are not written on output and are ignored on input.

UHLa/UTLa

These labels are not written on output and are ignored on input.

7/82 5-37 AXltc-01C

tape ansi_ tape ansi

Error Processing

If an error occurs while reading, the I/0 module makes 25 attempts to
backspace and reread. If an error occurs while writing, the J/0 module makes 10
attempts to backspace, erase, and rewrite. Should an unrecoverable error occur
while reading or writing the, I/0 module "locks" the file so that no further I/0
is possible. (See reset error lock OPERATION, below.) If an unrecoverable error
occurs while writing file labels or tapemarks, the user is queried about preserving
the defective file versus file set consisfency. (See "Queries" above.) If an
lunrecoverable :error-'eceurs during certainaphases of volume switching or label
réading;, the 170 switch may be closed. The overriding -concern. of the ‘error

4',"recovery strategy is:

1. to maintain a consistent file set structure

2. to ensure the validity of data read or written -

gClose Operation

The I/0 switch must be open.

Control Operation

The I/0 module supports eleven control operations.

hardware -status close rewind
status retention
retain none

retain all

volume status reset_Error lock
file status -volume density
feov

In the descriptions below, info_ptr is the information pointer specified in
an iox~$control entry point call.

hardware_status OPERATION

This operation returns the 72-bit IOM status string generated by the last
tape I/0 operation. The I/0 switch must be open. The substr argument (IOM bits,
3, 10) contains the major and minor status codes generated by the tape subsystem
itself. (See MIS500 Magnetic Tape Subsystem, Order No. DB28&, for an explanation
of major and minor sftatus.) The variable to which info ptr points is declared
as follows: -

declare IOM bits bit(72) aligned;

T7/82 5-38 AXl49-01C

tape ansi_ tape ansi

status OPERATION

This operation returns a structure that contains an array of status codes,
providing an interpretation of the IOM status string generated by the last tape
I/0 operation. These codes may be used in calls to the com err subroutine, or
may be converted to oprintable strings by calling the convert status code
subroutine. (See the description of +the com err subroutine in the MPM
Subroutines and the description of +the convert status code subroutine in the
MPM Subsystem Writers' Guide.) The I/0 switch must be open. The structure to
which info_ptr points, device status.incl.pll, is declared as follows:

dcl dstat ptr pointer;
del 1 device status Dbased (dstat ptr),
2 IOM bits bit(72) aligned, /* I0M status */
2 n minor fixed bin, /¥ mumber of minor codes */
2 major fixed bin(35), /¥ major status code */
2 minor (10) fixed bin(35); /* minor status codes */

volume status OPERATION

This operation returns a structure that contains the status of the current
volume. If +the I/0 switch is open, the current volume is +the volume on which
the file section currently being processed resides. If the switch has never
been opened, the current volume is the first (or only) volume in the volume set.
If the switch was opened, but is now closed, the current volume is that on which
the last file section processed resides. If the switch was closed by the I/O
module as the result of an error while writing file header 1labels, trailer
labels, or ‘tapemarks, the current volume is the last (or only) volume in the
volume set. The structure to which info_ pir points,
tape_volume_ status.incl.pll, is declared as follows:

del tvstat ptr pointer;
dcl 1 tape volume status based (tvstat ptr),
2 volume name char(6), /¥ volume name */
2 volume id char(6), /* from VOIL1 label */
2 volume seq fixed bin, /* order in volume set */
2 tape drive char(8), /* tape drive name */
- /¥ "" if not mounted */
2 read errors fixed bin, /* read error count */
2 write errors fixed bin; /* write error count */

In the current implementation of the I/0 module, read errors and
write errors are always zero. Eventually, the resource control package (RCP)
supplies these values.

5-39 AX49-01

tape ansi_ tape ansi

file status OPERATION

This operation returns a structure that contains the current status of the
file specified in +the attach description. If the I/0 switch has never been
opened, no information can ©be returned; this situation is indicated by
tape file status.state = 0. If +the switch was opened, but is now closed, the
current status of the file is its status just prior to closing. If the switch
was closed by the I1/0 module as the result of an error while writing file header
labels, trailer labels, or tapemarks, the entire file may have been deleted. 1In
this case, the structure contains the current status of the previous file in the
file set, if any. The structure to which info ptr points,
tape file status.incl.pll, is declared as follows:

decl tfstat ptr pointer;
dcl 1 tape file status based (tfstat ptr),
2 state - fixed bin, ~ /¥ 0 - no information */
/* 1 - not open */
/* 2 - open, no events ¥/
* 3 — open, event lock */
2 event code fixed bin(35), /* error table code if
state = 3 ¥/
2 file id char(17), /* file identifier */
2 file seq fixed bin, /* order in file set */
2 cur_section fixed bin, /* current or last
section processed */
2 cur_volume char(6), /* volume name of volume
on which cur section
resides */
2 generation fixed bin, /* generation number */
2 version fixed bin, /* version of generation */
2 creation char(5), /* Julian creation date */
2 expiration char(5), /* Julian expiration date */
2 format code fixed bin, /¥ i - U formai %/
/¥ 2 - B format *
/¥ 3 — D format */
/* 4 - 8 format *
2 blklen fixed bin, /* block length *
2 reclen fixed bin(21), /* record len$th */
2 blocked bit(1), /* "0"b - no "y — yes */
2 mode fixed bin, /* 1 - ASCII */
/* 2 — EBCDIC */
/* 3 — binary */
2 cur_blkent fixed bin(35); /* current block count */

The "event" referenced in tape file status.state, above, 1is defined as an
error or circumstance that prevents continued processing of a file. For
example, parity alert while reading, reached end of information, no next volume
available, etc.

feov OPERATION

This operation forces the end of a volume when writing a file. The switch
must be open for sequential output. The operation is equivalient to detection of
the end of tape reflective strip. The info pir should be a null pointer.

5-40 AX49-01

tape ansi tape ansi

close_rewind OPERATION

This operation specifies that the current volume is to be rewound when the
I/C switch is next closed. The info ptr should be a null pointer. The switch
need not be open when the operation 1s issued. The operation effects only one
close; subsequent closings require additional control calls.

retention, retain none, retain all OPERATIONS

These operations cause the tape resources currently in use, i.e., tape
drives(s) and tape volume(s), to be unassigned or retained at detach time according
to the specified retention argument or operation. The info ptr points to a
fixed binary number with value as defined below: -

1 retention -none or retain none
causes none of the tape resources currently in use to remain assigned
at detach time.

2 retention -volume
causes the tape volume(s) currently in use to remain assigned at detach
time.

3 retention -device
causes the tape drives(s) currently in use to remain assigned at detach
time.

y retention -all or retain all

causes all of the devices and volumes currently in use to remain assigned
at detach time.

reset_error_lock OPERATION

This operation unlocks the files so that further I/0 is possible subsequent
to a parity-type 1/0 error while reading. Such an error is indicated by a
previous iox $read record or iox ¢$position call having returned the status code
error table $tape error. In thiS case, the value of tape file status.event lock
is error table ¢tape error. (See file status OPERATION, above.) The I/0C switch
must be open for sequential input. The info ptr should be a null pointer.

NOTE: IF RECORDS ARE BLOCKED AND/OR SPANNED, THE VALIDITY OF ANY RECORDS
READ SUBSEOQUENT TO A PARITY-TYPE I/0 ERROR IS NOT GUARANTEED. (The
parity error is reported for the first read of a logical record in
the block. The actual location of the error in the block is unknown.)

T/82 5-41 AX49-01C

tape ansi tape ensi

volume density OPERATION

This operation returns the encoded density of the volume set. The 1/0
switch need not be open. The variable to which info ptr points is declared as
follows:

declare volume density fixed bin;

The values returned and their meanings are listed below:

value meaning
-1 none specified yet
2 00
3 1600
y 6250

Detach Operation

The 1/0 switch must be closed. If the I/0 module determines that the
membership of the volume set wmight have changed, the volume set members are
listed before the set is demounted; volumes not listed are available for incorporation
into other volume sets.

Modes Operation

This I/0 module does not support the modes operation.

Position Operation

The I/0 switch must be open for sequential input. The I/0 module does not
support skipping backwards. 1In the course of a position operation, events or
errors may occur that invoke the query mechanism. (See "Queries" above.) An
unrecoverable error locks the file, and a severe error causes the I/0 module to
close the I/0 switch.

Read Length Operation

The I/0 switch must be open for sequential input. In the course of a

read length operation, events or errors may occur that invoke the query mechanism.

See” "Queries" above.) An unrecoverable error locks the file, and a severe
error causes the I/0 module to close the I/0 switch.

Read Record Operation

The I/0 switch must be open for sequential input.

Write Record Operation

The I/0 switch must be open for sequential output.

Control Operations from Command Level

All control operations supported by this I/0 module can be executed from
command level by using the io_call command. The general format is:

io_call control switchname operation -control_arg

0/80 5-42 AXL9-01B

tape ansi

tape ansi

where:
1. switchname
is the name of the I/0 switch that is attached through the I/0
module to an ANSI tape file-set.
2. operation
is any of the control operations previously described and summarized
below.
operation abbreviation control arg
status st -all
hardware status hst
reset error lock rel
file status™ fst
volume status vst
retention ret -none, -volume,
-device, -all
retain all reta
retain none retn
close_rewind Crw
feov feov
3. control arg

T/82

1s an operation control argument valid only for the retention and
A control argument is required for the retention
operation; possible control arguments are described below.

the status operations.

-none
causes

none of the tape resources currently in

assigned at detach time.

-volume

use to remain

causes the tape volume(s) currently in use to remain assigned

at detach time.

-device

causes the tape drives(s) currently in use to remain assigned

at detach time.

-all

causes all of the devices and volumes currently in use to remain
assigned at detach time.

The -all control argument is optional for the status operation.

This

control argument prints all available tape status information such

as the device status,
hardware status.

status operation through the io call command.

the volume status,

the file status, and the

The -all control argument is only for use with the

It is not defined for

use in the status operation with iox_fcontrol directly.

AX49-01C

tape ansi tape ansi

Examples

In the following examples, it must be emphasized that an attach description
describes a potential operation, and in and of itself does nothing to the file.
Depending upon the sequence of openings in various modes, one attach description
can perform diverse functions.

tape ansi_ 042381 -nm ARD21 -cr -fmt sb -ret all-

A file named ARD21 is to be appended to the file set whose” first velume is
042381. If a file named ARD21 already exists in the file set, openings for
sequential input access that file, and openings for sequential output create new
files replacing the old. 1If no file named ARD21 already exists in the file set,
openings for sequential input prior to the first opening for sequential ocutput
fail. The first opening for sequential output creates the file by appending it
to the end of the file set. Subsequent openings for sequential ‘input aedesSs the
newly created file, and subsequent openings for sequential output replace it.
Spanned records are specified; the block length defaults €o 2048, the record
length to 1044480, and the encoding mode to ASCII. The density defaults to 800
bpi, and the maximum number of devices defaults to 1. The volume set and devices
are retained after detachment.

tape_ansi_ 042381 -nm fargo.pll -nb 2 -er -force -fmt fb -bk R00 -rec 80

A file named fargo.pl1 is created at position 2 in the file set. If a file
named fargo.pll already exists at position 2, openings for sequential input prior
to the first opening for sequential output access that file. The first opening
for sequential output creates a new file, and subsequent openings for
sequential inpul access the new file. If no file named fargo:pl1l exists at
position Z, openings for segucntial input prior to the first opening for
sequential output fail. If a file exists at position 2, it is replaced irrespective
of its expiration date.

tape ansi 042381 -nm zbx -rpl zbx -cr -md binary -bk 6000 -exp 2weeks

A file named zbx 1is to be created, replacing a file of the same name.
Openings for sequential input prior to the first opening for sequential output
access the old file. Each opening for sequential output creates a new file, and
each subsequent opening for sequential input accesses the most recently created
file. The specified encoding mode is binary. The record format defaults to D,
blocked, and the record length defaults to 6000 because the block length is
specified as 6000. The file is protected from overwriting for a period of two
weeks, so each opening for sequential output subsequent to the initial opening
for sequential output causes the user to be queried for permission to overwrite.

5_44 AX49-01

tape ansi tape ansi

tape ansi 042381 -nb 14 -gen -dv 2 -expires 12/21/77

A new generation of the file at position 14 in the file set is to be
created, replacing the old generation. If the old generation is not expired,
the user is queried for permission to overwrite. Each opening for sequential input
accesses the current generation. Each opening for sequential output creates a
new generation. The new generation has an expiration date of December 31, 1077.
The maximum number of devices that can be used is three. ’

tape ansi 042381 042382 042383 -nm THESIS -rg

A file named THESIS is to be read. The I/0 switch can only be open for
sequential input. The volume set consists of at least three volumes, and they
are mounted with write rings. Only one device can be used.

tape ansi Q42381 -nm FF -nb 3 -ext -dv &4 -ret all

A file named FF at position 2 in the file set is to be extended. Each
opening for sequential input accesses the current version. Each opening for
sequential output produces a new version. A maximum of four devices can be
used, and resources are retained after detachment.

tape ansi 042381 -vol -COS -com in slot 000034 -nb 6 -mod -fec

The file at position 6 in the file set is to be modified, irrespective of
its expiration date. Each opening for sequential input accesses the current
version. Each opening for sequential output produces a new version. The second
volume of the volume set has volume identifier -C0S, and can be found in slot
ocoozu.

5-45 AX49-01

tape ansi tape ansi

Attach Control Arguments

The following is a complete list of all valid attach control arguments in
both long and short forms:

-block b -bk b 18 < b < 09996

-clear -cl

-create -cr

-density N -den N 200 | 1600 | 6250

-device N -dv N N < 63

-expires date -exp date id date

-extend -ext

-force -fc

-format f ~-fmt f fb } £} db } d
- - sb | s ! u

-generate -gen

-mode STR -md STR = ascii | ebedic

-modify -mod

-name STR -nm STR < 17 characters

-number N -nb N 1 < N < 999a

-record r -rec r 17 r < 1044480

-replace” -rpl — STR ¢ 77 characters

-retain STR -ret STR STR = 211 | none

-ring -rg

The following is a list of positional keywords:

-comment STR -com STR STR ¢ 64 characters
-volume vni -vol vni vni < 6 characters
7/82 5-46 AXl49-01C

tape ibm tape ibm

Name: tape ibm

The tape ibm I/0 module implements the processing of magnetic tape files
in accordance with the standards established by the following IBM publications:
08 Data Management Services Guide, Release 21.7, GC26-3746-2; IBM System 360
Disk Operating System Data Management Concepts, GC24-3427-8; and 0S Tape Labels,
Release 21, GC28- -4. These documents are collectively referred to below as
the Standard.

Entries in the module are not called directly by users; rather, the module

is accessed through the I/0 system. See the MPM Reference Guide for a general
description of the I/0 systen.

Definition of Terms

record
related information treated as a unit of information.

block
a collection of characters written or read as a unit. A block may
contain one or more complete records, or it may contain parts of one
or more records. A part of a record is a record segment. A block
does not contain multiple segments of the same record.

file
a collection of information consisting of records pertaining to a
single subject. A file may be recorded on all or part of a volunme,
or on more than one volume.

volume
reel of magnetic tape. A volume may contain one or more complete
files, or it may contain sections of one or more files. A volume
does not contain multiple sections of the same file.

file set

a collection of one or more related files, recorded consecutively on
a volume set.

volume set) ‘
a collection of one or moré volumes on which one and only one file
set is recorded.

The attach description has the following form:

tape_ibm_ vnl vn2 ... vnN {-control_args}

5-47 AX49-01

tape

ibm_

where:

2.

9/80

vni

tape_ibm_

is a volume specification. A maximum of 64 volumes may be
specified. In the simplest (and typical) case, a volume
specification is a volume name that must be six characters or less
in 1length. If a volume name is less than six characters and
entirely numeric, it is padded on the left with O0's. If a volume
name is less than six characters and not entirely numeric, it is
padded on the right with blanks. Occasionally, keywords must be
used with the volume name. For a discussion of volume name and
keywords see "Volume Specification™ below.

vnl vnz2 ... vnN

comprise what 1s known as the volume sequence list. The volume
sequence list may be divided into two parts. The first part, vnl

vni, consists of those volumes that are actually members of the
volume set, 1listed in the order that they became members. The
entire volume set membership need not be specified in the attach
description; however, the first (or only) volume set member must be
specified, because its volume name is used to identify the file set.
If the entire membership is specified, the sequence list may contain

a second part, vni+l ... vnN, consisting of potential members of
the volume set, listed in the order that they may become members.
These volumes are known as volume set candidates. (See "Volume

Switching" below.)

control args

may be one or more attach control arguments. A control argument may
appear only once.

-block b, -bk b

specifies the block length in characters, where the value of
dependent wupon the value of r specified in the -record con
argument. (See "Creating A File" below.)

b is
o al
[V GV IS

-clear, -cl

specifies that internal information on a file-set which the I/0
module retains from previous attachments 1is to be deleted. This
control argument can be used when it is desired to change attributes
of a file-set which are maintained across attachments for a given
process, e.g. density or label standard. For the initial
attachment to a file-set in a given process, this control argument
has no effect.

-create, -cr

specifies that a new file is to be created. (See "Creating A File"
below.)

-density N, -den N

specifies the density at which the file set is recorded, where N can
be 800, 1600, or 6250 bits per inch. (See "File Set Density"
below.)

-device N, -dv N

-dos

specifies the maximum number of tape drives that can be used during
an attachment, where N is an integer in the range 1 < N <63. (See
"Multiple Devices™ below.)

specifies that a file was produced by, or 1is destined for, a DOS
installation. (3See "DOS Files" below.)

5-48 AXU49-01B

tape_ibm : tape ibm_

-expires date, -exp date
specifies the expiration date of the file to be created or generated
where date must be of 2 form acceptable to the convert date to binary
subroutine which is described in the MPM Subroutines. (See "File
Expiration" below.)

-exXxtend, -ext
specifies extension of an existing file. (See "Extending a File"
below.)

-force, -fc

specifies that the expiration date of the file being overwritten is
to be ignored. (See "File Expiration" below.)

-format f, -fmt f
specifies the record format, where f is a format code. (See "Creating
A File" below for a list of format codes.)

-mode STR, -md STR
specifies the encoding mode used to record the file data, where STR
is the string ebedic, ascii, or binary; the default is ebedic. (See
"Encoding Mode" below.)

-modify, -mod
specifies modification of an existing file. (See "Modifying a File"
below.)

-name STR, -nm STR
specifies the file identifier of the file, where STR is from 1 to 17

characters. (See "Creating A File" below.)

-no_labels, -nlb
specifies that unlabeled tapes are to be processed. (See "Unlabeled
Tapes" below.)

-number N, -nb N

specifies the file sequence number, the position of the file within
the file set, where N is an integer in the range 1 < N < 9999. (See

"Creating A File" below.)

-record r, -rec r
specifies the record length in characters, where the value of r is
dependent upon the choice of record format. (See "Creating A File"
below.)

-replace STR, -rpl STR
specifies the file identifier of the file to be replaced, where STR

must be from 1 to 17 characters. If no file with file identifier
STR exists, an error is indicated. (See "Creating A File" below.)

-retain STR, -ret STR

specifies retention of resources across attachments, where STR specifies
the detach-time resource disposition. (See "Resource Disposition”

below.)
-ring, -rg

specifies that the volume set be mounted with write rings. (See
"Write Rings and Write Protection" below.)

9/80 5-149 AX49-01

tape_ibm tape ibm

-speed N1{,N2,...,Nn}, -ips MN1{,N2,...,Nn} _
specifies desired tape drive speeds in inches per second, where Ni
can be 75, 125, or 200 inches per second. See "Device Speed
Specification" below.)

The following sections define each control argument in the contexts in
which it can be used. For a complete list of the attach control arguments see

"Attach Control Arguments" below.

File Identifiers

Associated with every file is a name (file identifier) and a number (file
§ sequence number). The file identifier must be 17 characters or less. When
creating a file, the file identifier must be composed of one or more components
‘ of one to eight characters, with adjacent components separated by a period. The
§ first character of each component must be an uppercase letter or national character
(@, #, or $) and the remaining characters must be uppercase letters, national
characters or the digits 0 to 9. If a file identifier (of an existing file)
does not meet the naming conventions established for files created on the Multics
system, the file must be referenced using the -number control argument and a
file sequence number.

Creating A File

When a file is created, an entirely new entity is added to the file set.
There are two modes of creation: append and replace. In append mode, the new
file is added to the file set immediately following the last (or only) ftile in
the set. The process of appending does not alter the previous contents of the
file set. 1In replace mode, the new file is added by replacing (overwriting) a
particular previously existing file. The replacement process logically truncates
the file set at the point of replacement, destroying all files (if any) that
follow consecutively from that point.

The -create and -name control arguments are required to create a file,
where STR is the file identifier. If no file having file identifier STR exists
in the file set, the new file is appended to the file set; otherwise, the new
file replaces the old file of the same name.

If the user wishes to explicitly specify creation by replacement, the particular
file to be replaced must be identified. Either a file identifier or a file
sequence number is sufficient to uniquely identify a particular file in the file
set. The -number and -replace control arguments either separately or in conjunction,
are used to specify the file to be replaced. If used together, they must both
identify the same file; otherwise, an error is indicated.

When the -number control argument is specified, if N is less than or equal
to the sequence number of the last file in the file set, the created file
replaces the file having sequence number N. If N is one greater than the sequence
number of the last file in the file set, the created file is appended to the

file set. If N is any other value, an error is indicated. When creating the
first file of an entirely new file set, the -number control argument must be
explicitly specified. (See "Volume Initialization" below.)

7/82 5-50 AX49-01C

tape_ibm tape ibm

The -format, -record and -block control arguments are used to specify the
internal structure of the file to be created. They are collectively known as
structure attribute control arguments. When the -format control argument is
used, f must be one of the following format codes, chosen according to the
nature of the data to be recorded. (For a detailed description of the various

record formats, see "Record Formats" below.)

fb for fixed-length records. Used when every record has the same length,
not in excess of 32760 characters.

vb for variable-length records. Used when records are of varying lengths,
the longest not in excess of 22752 characters.

vbs for spanned records. Used when the record length is fixed and in
excess of 32760 characters, or variable and in excess of 22752 characters.
In either case, the record length cannot exceed 1,044,480 characters.
(See "DCS Files" below.)

f for fixed-length records, unblocked.
v for variable-length records, unblocked.

Vs for spanned records, unblocked. (See "DOS Files" below.)

NOTE: Because of padding requirements records recorded using vs format may
be irreversibly modified. (See "Padding" below.)

Unblocked means that each block contains only one record (f, v) or record
segment (vs). Because of their relative inefficiency, the use of unblocked
formats in general is discouraged. Blocked means that each block contains as
many records (fb, vb) or record segments (vbs) as possible. The actual number
of records/block is either fixed (fb), depending upon the block length and record
length, or variable (vb, vbs), depending upon the block length, record length,
and actual records.

u for undefined records. U format records are undefined in format. Each
block is treated as a single record, and a block may contain a maximum
of 32760 characters.

When the -record control argument is used, the value of r is dependent upon
the choice of record format. In the following 1list, amrl is the actual or
maximum record length.

f=1fb | f: r = amrl

T =vb ! v: amrl + 4 < r < 32756
T = vbs | vs: amrl < r < TOTO4URKO
T = u: r is undefined

(the -record control argument should not be used.)

7/82 5-51 AX49-01C

tape_ibm tape ibm_

When the -block control argument is used, the value of b is dependent upon

the value of r. When the block length is not constrained to a particular value,
the largest possible block length should be used.

f = fb: b must satisfy mod (b,r) = 0
T = f: E:l" -
T = vb: P>71 + 14
__f::V: E—:_E+Ll
] f = vbs | vs: 20 < b < 32760
] T=u: amrl < b < 22760

In every case, b must be an integer in the range 20 (b < 8192, and, when
the I/0 switch is opened for sequential output, must satisfy mod (b,4) = 0.

Since the structure attribute control arguments are interdependent, care
must be taken to ensure that specified values are consistent.

Padding

Since the Multics system is implemented on word-oriented hardware, records
recorded in any format are subject to block and/or record padding. On output,
the hardware requires that the number of characters in a block be evenly divisible
by 4; i.e., only words can be written. The I/0 module therefore requires that

J mod (b,84) = 0, and pads a record, if necessary, to meet this requirement. (Warning:
’ this padding may cause IBM-system rejection of a block if block length is not a
multiple of the record length.) The following rules govern padding on output:

f

fb: if iobl (the I/0 buffer length in an iox $write record call; i.e., the
number of characters to be written) is less than r, the record is
padded on the right with blanks to 1length r. The last (or only)
record of the file may be padded on the right with N blanks, where
0 < N <19 is sufficient to satisfy b > 20, and mod (b,¥) = 0.

|
"
-
.

if iobl is less than r, the record is padded on the right with blanks
to length r. Because the specified value of b must satisfy b > 20,
mod (b,4) = 0, and r = b, there are no other padding possibilities.

|+
1]

vb: the last (or only) record in every block is padded on the right with N
blanks, where 0 < N < 12 is sufficient to satisfy b > 20, and mod
(b,4) = 0. Because the number of records in a block iS5 variable, it
is difficult to determine which records of a file are padded, if any.

[
(1}
<

every record is padded on the right with N blanks, where 0 < N < 12 is
sufficient to satisfy b > 20, and mod (b,4) = 0.

f = vbs: the last (or only) record of the file is padded on the right with N

blanks, where 0 < N < 12 is sufficient to satisfy b > 20, and mod
(b,4) = 0. -7 -

7/82 5-52 AX49-01C

tape ibm tape ibm
f = vs: every record or record segment is padded on the right with N blanks,
- where O < N < 12 is sufficient to satisfy b > 20, and mod (b,4) = O.

NOTE: This requirement can result in an indeterminate number of blanks
being inserted into a record at one or more indeterminate positions.

f = u: every record is padded on the right with N blanks, where O < N < 12 is
sufficient to satisfy b > 20, and mod (b,4) = O.

Reading A File

The attach description needed to read a file is 1less complex than the
description wused to create it. When a file is initially created by the I/0
module, the structure attributes specified in +the attach description are
recorded in the file's header and trailer labels. These 1labels, that precede
and follow each file section, also contain the file name, sequence number, block
count, etec. Files created by OS installations also record the structure
attributes in +the file 1labels. (See "DOS 7Piles" Dbelow.) When a file is
subsequently read, all +this information is extracted from the 1labels.
Therefore, the attach description need only identify the file to be read; no
other control arguments are necessary.

The file can be identified using the -name control argument, the -number
control argument, or both in combination. If the -name control argument is
used, a file with the specified file identifier must exist in the file set;
otherwise, an error is indicated. If +the —number control argument is used, a
file with the specified file sequence number must exist in the file set;
otherwise, an error is indicated. If the -name and -number control arguments
are used together, they must both refer to the same file; otherwise, an error is
indicated.

DOS Files

Files created by DOS installations differ from 0S files in one major
respect —-- DOS does not record HDR2 1labels, which contain the structure
attributes. It 1is therefore necessary to specify all of the structure
attributes whenever a file created by a DOS installation is to be processed.

It is further necessary to distinguish between OS and DOS files recorded in
YBS or VS format. The segment descriptor word (SDW) of a zero-length DOS
spanned record has a high-order null record segment bit set, while a zero-length
OE sggnn§d record does not. (See "V(B)S Format" below, for an explanation of
the W.

The -dos control argument must be used when writing a VBS or VS file
destined for a DOS installation, or when reading a VBS or VS file written by a
DOS installation. In the interest of clarity, however, it is recommended that
the control argument always be specified when DOS files are processed,
regardless of record format.

5-53 AX49-01

tape ibm tape ibm_

Output Operations On Existing Files

There are two output operations that can be performed on an already
existing file: extension and modification. As their functions are
significantly different, they are described separately below. They do, however,
share a common characteristic. Like the replace mode of creation, an output
operation on an existing file logically truncates the file set at the point of
operation, destroying all files (if any) +that follow consecutively from that
point. Because +the block 1length is constrained to mod(§,4) = 0 for output
operations, a file whose block length does not satisfy this criterion cannot be
extended or modified.

Extending A File

It is often necessary to add records +to a file without in any way altering
the previous contents of the file. This process is known as extension.

Because all the information regarding structure, length, etc., can be
obtained from the file labels, the attach description need only specify that an
extend operation is +to be performed on a particular file. (See "DOS Fileg"
above.) If the file to be extended does not exist, an error is indicated. New
data records are appended at the end of the file; the previous contents of the
file remain unchanged.

The file to be extended is identified using the -name control argument, the
-number control argument, or both in combination. The same rules apply as for
ading o file. (See "Reading a Pile" abhove.)

reaqi

The wuser may specify any or all of the structure attribute control
arguments when extending a file. The specified control arguments are compared
with their recorded counterparts; if a discrepancy 1is found, an error is
indicated.

Modifying A File

It 1is occasionally necessary to replace the entire contents of a file,
while retaining the structure of +the file itself. This process 1is known as
modification.

Because all necessary information can be obtained from the file labels, the
attach description need only specify that a modify operation is to be performed
on a particular file. (See "DOS Files" above.) If a file to be modified does
not exist, an error is indicated. The entire contents of the file are replaced
by the new date records.

The file to be modified is identified using the -name control argument, the
mber control argument, or both in combination. The same rules apply as for
ding a file. (See "Rezding a File" above.)

5-54 AX49-01

tape ibm tape ibm

If any or all of the structure attribute control arguments are specified,
they must match their recorded counterparts; otherwise, an error is indicated.

Encoding Mode

The I/0 module makes provision for three data encoding modes: EBCDIC,
binary, and ASCII. The default data encoding mode is EBCDIC. File labels are
always recorded using the EBCDIC character set.

When a file is created, the -mode control argument can be used to explicitly
specify the encoding mode (if not used, the list tape contents command does not
supply the specific mode in its report). - -

If STR is the string ascii, the octal values of the characters to be recorded
must be in the range 000 < octal value < 277; otherwise, an unrecoverable I/0
error occurs. If STR is the string ebedic, the octal values of the characters
to be recorded must be 1in the range 000 < octal value < 177. (See the
ascii to ebedic subroutine in the MPM Subsystem Writers' Guide for the specific
ASCII to EBCLIC mapping used by the I/0 module.) If STR is the string binary,
any 9-bit byte value can be recorded. However, data written on IBM equipment
with binary mode may not be compatible with Multics, or vice versa.

Because the data encoding mode is not recorded in the file labels, the
-mode ascii and the -mode binary control arguments must always be specified when
subsequently processing an ASCII or binary file, respectively.

File Expiration

Associated with every file is a file expiration date, recorded in the file
labels. If a file consists of more than one file section, the same date is
recorded in the labels of every section. A file is regarded as "expired" on a
day whose date 1is later than or equal to the expiration date. Only when this
condition 1is satisfied can the file (and by implication, the remainder of the
file set) be overwritten. Extension, modification, and the replace mode of
creation are all considered to be overwrite operations.

The expiration date is recorded in Julian form; i.e., yyddd, where yy are
the last two digits of the year, and ddd is the day of the year expressed as an
integer in the range 1 < ddd < 366. A special case of the Julian date form is

the value "00000", which means always expired.

The expiration date is set only when a file is created. Unless a specific
date is provided, the default value "00000" is used. The -expires control argument

is used to specify an expiration date where date must be of a form acceptable to
the convert date to binary subroutine (described in the MPM Subroutines). If
the I/0 module 1is invoked through the iox $attach ioname entry point or the
iox $attach iocb entry point, date must be a contigudus string, with no embedded
spaces; if Tinvoked through the ioc call command, date may be quoted and contain
embedded spaces. Julian form, including "0QO0000", 1is unacceptable. Because

overwriting a file logically truncates the file set at the point of overwriting,
the expiration date of a file must be earlier than or equal to the expiration

date of the previous file (if any); otherwise, an error is indicated.

7/82 | 5-55 AXY9-01C

tape_ibm tape ibm_

If an attempt is made to overwrite an unexpired file, the user 1is queried
for explicit permission. (See "Queries" below). The -force control argument
unconditionally grants permission to overwrite a file without querying the user,
regardless of "unexpired" status.

Volume Specification

The volume name (also called the slot identifier) is an identifier physically
written on, or affixed to, the reel or container of the volume. The volume
identifier is a six-character identifier magnetically recorded in the first block
of the volume, the VOL1 label. This implementation of the I/0 module assumes
the volume name and volume identifier to be identical. 1If this is not the case,
the volume identifier must be used in the volume specification field of the
attach description.

If a volume name begins with a hyphen (-), the -volume keyword must precede
the volume name. Even if the volume name does not begin with a hyphen , it may

still be preceded by the -volume keyword. The volume specification has the
following form:

-volume vni

If the user attempts to specify a volume name beginning with a hyphen
without specifying the -volume keyword, an error is indicated or the volume name
may be interpreted as a control argument.

Occasionally, it is necessary for a user to communicate some additional
information to the operator in connection with a mount request. This can be
done through the use of the -comment control argument:

vhi -comment STR
or
-volume vhni -comment STR

where the -comment STR keyword and text specify that a given message is to be

displayed on the operator's console whenever volume vni is mounted (a comment
can be specified after each volume name supplied). STR can be from 1 to 64
characters. STR can be quoted and contain embedded spaces.

Volume Switching

The Standard defines four types of file set configurations:
single-volume file a single file residing on a single volume
multivolume file a single file residing on multiple volumes
multifile volume multiple files residing on a single Jolume

multifile multivolume multiple files residing on multiple volumes

7/82 ‘ 5-56 AX49-01C

tape ibm tape_ibm

The I/0 module maintains a volume sequence list on a per-file-set basis,
for the 1life of a process. A minimal volume sequence 1list contains only one
volume, the first (or only) volume set member. If the file set is a multivolume
configuration, the sequence list may contain one or more of the additional volume
set members, following the mandatory first volume. If the sequence list contains
the entire volume set membership (which may be only one volume), it may then
contain one or more volume set candidates. Volume set candidates can become
volume set members only as the result of an output operation. When an output
operation causes the amount of data in the file set to exceed the capacity of
the current volume set membership, the first available volume set candidate
becomes a volume set member.

When the first attachment to any file in a file set is made, the volume
sequence list for the file set is initialized from the attach description. At
detach time, the I/0 module empirically determines that one or more volumes are
volume set members, by virtue of having used them in the course of processing
the attached file. The remaining volumes in the sequence 1list, if any, are
considered to be candidates. In subsequent attachments to any file in the file
set, the order of volumes specified in the attach description is compared with
the sequence list. For those volumes that the I/0 module knows to be volume set
members, the orders must match; ctherwise, an error is indicated. Those volumes
in the sequence list that the I/0 module considers to be candidates are replaced
by attach description specifications, 1if the orders differ. If the attach
description contains more volumes than the sequence list, the additional volumes
are appended to the list. This implementation maintains and validates the volume
set membership on a per-process basis, and maintains a 1list of volume set candidates
that is alterable on a per-attach basis.

Once a volume sequence 1list exists, subsequent attachments to files in the
file set do not require repeated specification of any but the first (or only)
volume, which is used to identify the file set. If the I/0 module detects
physical end of tape in the course of an output operation, it prepares to switch
to the next volume in the volume set. An attempt is made to obtain the volume
name from the sequence 1list, either from the sublist of members, or the sublist
of candidates. If the list of volume set members is exhausted, and the list of
candidates is either empty or exhausted, the user is queried for permission to
terminate processing. If the reply is negative, the I/0 module queries for the
volume name of the next volume, which becomes a volume set member and is appended
to the volume sequence 1list. If a volume name is obtained by either method,
volume switching occurs, and processing of the file continues.

If the I/0 module reaches end-of-file section (but not of file) in the

course of an input operation, it first attempts to obtain the next volume name
from the volume sequence 1list. No distinction is made between the member and

candidate sublists, because a volume that ends with a file section must be
followed by the volume that contains the next section. If the sequence list is
exhausted, the user is queried as described above. If either of these methods

results in a volume name, volume switching occurs and processing of the file
continues.

If the volume set is demounted at detach time, all volume set candidates %
are purged from the volume sequence list.

9/80 5-57 AX49-01B

tape ibm tape ibm_

Multiple Devices

If a volume set consists of more than one volume, the -device control
argument can be used to control device assignment, where N specifies the maximum
number of tape drives that can be used during this attachment (N is an integer
in the range 1 < N < 63). Drives are assigned only on a demand basis, and in no
case does the numbér actually assigned exceed the device limit of the process.
The default for an initial attachment to a file in a file set is N equals 1; the
default for a subsequent attachment to that file or any other in the file set is
N equals the previous value of N.

File Set Density

The I/0 module makes provision for three densities: 200, 1600, and 6250
bpi (bits per inch). Every file in a file set must be recorded at the same
density; otherwise, an error is indicated.

The -density control argument is used to explicitly specify the file set
density, where N specifies the density at which the file set is (to be) recorded
(N can be 800, 1600, and 6250 bpi). The file set density can only be changed in
a subsequent attachment if the volume set was demounted by the previous attach.

In the absence of a -density control argument, the file set density is
determined as follows:

open for input: N = density of VOL1 label
open for output, creating new file set: N = 160
open for output, old file set: N = density of V

(@R

Device Speed Specification

The -speed control argument is used to specify acceptable tape device speeds

in inches per second. The module only attaches a device that matches a speed
specified by this control argument. If more than one speed is specified, the

module attaches a device that matches one of the speeds. If more than one
device is attached, and more than one speed 1is specified, the devices will not
necessarily all be of the same speed.

Opening

The opening modes supported are sequential input and sequential output. An
I/0 switch can be opened and closed any number of times in the course of a
single attachment. Such a series of openings may be in either or both modes, in
any valid order.

7/82 5-58 AYL49-01C

tape_ibm tape ibm

All openings during a single attachment are governed by the same attach
description. The following control arguments, all of which pertain to output
operations, are ignored when the switch is opened for sequential input:

-create -force
-expires -modify
-extend -replace

Resource Disposition

The I/0 module utilizes two types of resources: devices (tape drives), and
volumes. Once an I/0 switch is attached, resources are assigned to the user's
process on a demand basis. When the I/0 switch is detached, the default resource
disposition unassigns all devices and volumes.

If several attaches and detaches to a file set are made in a process,

repeated assignment and unassignment of resources is undesirable. Although the
processing time required to assign and unassign a device is small, all available

devices can be assigned to other processes in the interval between one detach
and the next attach. While volumes are not often "competed"™ for, mounting and
demounting is both time-consuming and expensive.

The -retain control argument is used to specify retention of resources
across attachments, where STR specifies the detach-time resource dispositicn.
If STR is the string all, all devices and volumes remain assigned to the process.
If STR is the string none, all devices and volumes are unassigned. This is the

default retention.

The I/0 module provides a further means for specifying or changing the

resource disposition subsequent to attachment. If retention of any devices or
volumes has been specified at or subsequent to attach time using the retention
control operation, the unassign resource command cannot be used. Instead, use

the retain none or retention -none control operation before detaching the I/0
module. (See '"retention, retain none, retain all Operations"™ under "Control
Operations" below.)

Write Rings And Write Protection

Before a volume can be written on, a write ring (en actual plastic ring)
must be manually inserted into the reel. This can only be done before the
volume is mounted on a device. When a volume is needed, the I/0 module sends
the operator a mount message that specifies if the volume is to be mounted with
or without a ring.

7/82 ‘ 5-59 , AX49-01C

tape ibm_ tape ibm_

If the attach description contains any of the output control arguments
(-extend, -modify, or -create), volumes are mounted with rings; otherwise, they
are mounted without rings. When a volume set mounted with rings is opened for
sequential input, hardware file protect is used to inhibit any spurious write
operations™ A volume set mounted without rings cannot be opened for
sequential output.

However, the following sequence of events is possible. An attach description
contains none of the output control arguments, but does contain the "-retain
all" control argument. The volume set is mounted without rings. After one or
more (or no) openings for sequential input, the I/0 switch 1is detached. The
volume set remains mounted because of the "-retain all" control argument.
Subsequently, an attach is made whose description contains an output control
argument, which requires that the volume set be mounted with rings. However, as
rings can only be inserted in a demounted volume, the entire volume set must be
demounted and then remounted.

This situation can be avoided by using the -ring (-rg) control argument to
specify that the volume set be mounted with write rings. If no output control
argument is specified in conjunction with -ring, the I/0 switch cannot be opened
for sequential output.

When a volume set is mounted with write rings and the I/0 switch is opened
for sequential input, the hardware file protect feature is used to safeguard the
file set. N

Queries

Under certain exceptional circumstances, the I/0 module queries the user
for information needed for processing to continue or instructions on how to
proceed.

Querying 1is performed by the command query subroutine (described in the
MPM Subroutines). The user may intercept oné€ or more types of query by establishing
a handler for the command question condition, which is signalled by the
command query sSubroutine. TAlternately, the answer command (described in the
MPM Commands) can be used to intercept all queries. The use of a predetermined

"yes" answer to any query causes those actions to be performed that attempt to
complete an 1/0 operation without human intervention.

7/82 5-60 AYl49-01C

tape ibm tape ibm

In the following list of gueries, status code refers = to
command question info.status code. See the MPM Reference GUide for information
regarding the command question condition and the command question info structure.

status code = error_table_$file_aborted

This can occur oniy when the I/0 switch is open for sequential output. The
I/0 module is unable to correctly write file header labels, trailer labels,

or tapemarks. This type of error invalidates the structure of the entire
file set. Valid file set structure can only be restored by deleting the

defective file or file section from the file set.

The user is queried for permission to delete the defective file or file
section. If the response is "yes", the I/0 module attempts deletion. The

attempt may or may not succeed; the user is informed if the attempt fails.
If the response is "no", no action is taken. The user 1is probably unable
to subsequently process the file, or append files to the file set; however,
this choice permits retrieval of the defective file with another 1/0 Module.
In either case, the I/0 switch is closed.

status code = error_table $unexpired volume

This can occur only when the I/0 switch is open for sequential output. A
volume must be either reinitialized or overwritten; however, the first file
or file section on the volume is unexpired.

The user is queried for permission to initialize or overwrite the unexpired
volume. If the response is "yes", the volume is initialized or overwritten
and processing continues. If the response is "no", further processing cannot
continue, and the I/0 switch is closed.

status _code = error table $uninitialized volume
A volume requires reinitialization or user verification before it can be

used to perform any I/0. The I1I/0 module distinguishes among four causes by
setting command_question info.query code as follows:

n
s

the first block of the tape is unreadable. The tape is
either defective, or recorded at an invalid density.
This query code can occur only if the I/0 stream is
opened for sequential output.

query code

query code = 2 the first block of the tape is not a valid IBM VOL1
label. The tape is not formatted as an IBM SL volume.
This query code can occur only if the I/0 stream is
opened for sequential_output.

query code = 3 the volume identifier recorded in the VOL1 1label 1is

incorrect. The volume identifier does not match the
volume name.

7/82 5-61 AX49-01C

tape_

ibm tape ibm

query code = U the density at which the volume is recorded is incorrect.
The volume density does not match the specified density.
This query code can occur only if the I/0 stream is
opened for sequential output.

If the response is "yes", processing continues. If the response is "no",
further processing cannot continue, and the I/0 switch is closed.

status_code = error_table_$unexpired_file

This can occur only when the I/0 switch is open for sequential output. A
file that must be extended, modified, or replaced is unexpired.

The user is queried for permission to overwrite the unexpired file. If the
response 1is "yes", processing continues. If the response is "no", further
processing cannot continue, and the I/0 switch is closed.

status_code = error_table_$no_next_volume

7/82

This can occur when reading a multivolume file, or when writing a file and
reaching physical end of tape. The I/0 module is unable to determine the
name of the next volume in the volume set.

The user is queried for permission to terminate processing. If the response
is "yes", no further processing is possible. If the I/0 switch is open. for
sequential output, the I/0 switch is closed. If the response is "no", the
user is queéried for the volume name of the next velume. (See status code = 0

below.)

-61.1 AX49-01C

o

tape ibm tape ibm

In the following list of queries, status code refers ~ to
command question info.status code. See the MPM Reference Guide for information

regarding the command question condition and the command question info structure.

status_code = error_table_$file_aborted

This can occur oniy when the I/0 switch is open for sequential ocutput. The
I/0 module is unable to correctly write file header labels, trailer labels,

or tapemarks. This type of error invalidates the structure of the entire
file set. Valid file set structure can only be restored by deleting the

defective file or file section from the file set.

The user 1is queried for permission to delete the defective file or file
section. If the response is "yes", the I/0 module attempts deletion. The
attempt may or may not succeed; the user is informed if the attempt fails.
If the response is "no", no action is taken. The user 1is probably unable
to subsequently process the file, or append files to the file set; however,
this choice permits retrieval of the defective file with another 1/0 Module.
In either case, the I/0 switch is closed.

status code = error_table_$unexpired_volume

This can occur only when the I/0 switch is open for sequential output. A
volume must be either reinitialized or overwritten; however, the first file

or file section on the volume is unexpired.

The user is queried for permission to initialize or overwrite the unexpired
volume. If the response is "yes", the volume is initialized or overwritten
and processing continues. If the response is "no", further processing cannot
continue, and the I/0 switch 1s closed.

status code = error table_$uninitialized_volume
A volume requires reinitialization or user verification before it can be

used to perform any I/0. The I/0 module distinguishes among four causes by
setting command question info.query code as follows:

n
—

the first block of the tape is unreadable. The tape is
either defective, or recorded at an invalid density.
This query code can occur only if the I/0C stream is
opened for sequential output.

query_code

query code = 2 the first block of the tape is not a valid IBM VOL1
label. The tape is not formatted as an IBM SL volume.
This query code can occur only if the I/0 stream is
opened for sequential output.

query code = 3 the volume identifier recorded in the VOL1 label is

incorrect. The volume identifier does not match the
volume name.

7/82 ' 5-61 AXN9-01C

tape ibm tape ibm

status code = 0

This occurs only when the response to the above query is "no". The user 1is
requested to supply the name of the next volume. The response must be a
volume name 6 characters or less in length, optionally followed by a mount
message. Even if the volume name begins with a hyphen, it must not be
preceded by the -volume control argument. If a mount message is to be
specified, the response takes the following form:

volume name -comment STR

where STR is the mount message and need not be a contiguous string. See
"Volume Specification" above. This is the only query that does not require
a "yes" or "no" response. If a preset "yes" is supplied to 2ll queries,
this particular query never occurs.

Structure Attribute Defaults

When a file is created, the I/0 module can supply a default value for any
or all of the file structure attributes. The defaults used are as follows:

1. record format - the default is f = vb

2. block length - the default is b = 8192

3. record length f = u: wundefined
f = fb | f: r = block length
T =vb } v: T = block length - U4
T = vbs wvs:™ r = 1044480

An injudicious combination of explicit specifications and defaults can result
'in an invalid attribute set. For example, if -record 12000 is specified, applying
the defaults produces the following:

-format vb -block 2192 -record 12000

This attribute set is invalid because, in vb format (see "Record Formats" below)
the record length must be less than or equal to the block length minus 4.

Overriding Structure Attributes

Normally, the -format, -block, and -record control arguments are not included

in the attach description of an I/0O switch that is opened for sequential input;
the structure attributes are extracted from the file labels. However, The I/0
module permits the recorded structure attributes to be overridden by explicitly
specified attach description control arguments. Because the apparent structure
and characteristics of the file can be drastically altered, great care must be
taken to ensure that attribute overrides do not produce unexpected and unwanted
results.

5-62 AX49-01

tape ibm tape ibm_

If a file has the following recorded attributes:
-format fb -block 800 -record 80

an explicit specification of the -format fb and -record 800 control arguments
causes each block of ten 80-character records to be treated as a single
800-character record.

If a file has the following recorded attributes:
-format fb -block 800 -record 80

an explicit specification of the -format fb, -block 80, and -record 80 control
arguments causes the last 720 characters of every block to be discarded. No
error is indicated, because every block of the file contains at 1least one
80~character record.

Record Formats

Files are structured in one of four record formats: F(B), V(B), V(B)S, or
U. When a file is created, its record format should be chosen in accordance
with the nature of the data to be recorded. For example, data consisting of
80-character card images 1s most economically recorded in FB format, blocked
fixed-length records. Data consisting of variable length text 1lines, such as
PL/I source code produced by a text editor, is best recorded in VBS format,
blocked spanned records, so0 that blanks are not inserted except after the last
line.

With the exception of U format, files are either Dblocked or unblocked,
blocked being the usual case. Each block of an unblocked file contains just one
record, whereas each block of a blocked file can contain several records.
Blocking can provide a significant savings of processing +time, because several
records are accessed with a single physical +tape movement. Furthermore, as

blocks are separated by distances of blank tape, blocking reduces the amount of
tape needed to contain a file.

F(B) FORMAT

In P format, records are, of fixed (and equal) length, and files have an

integral number (N) of records per block. If the file is unblocked, N equals 1
and the record length (r) equals the block length (b). If the file is blocked,
N > 1 and b equals (r * N) where N is known as the blocking factor.

5-63 AX49-01

tape_ibm tape_ibm

For example, if r equals 800 and b equals 800, then the file is unblocked and
each block contains just one record.

data 800 800 800 800 800 800

block 800 800 800 800 800 800

If r equals 800 and b equals 2400, then the file is blocked, the blocking factor
is 3, and each block contains three records.

data 800 800 800 800 800 800

block 800 800 800 800 800 800

The Standard for F format records permits recording short blocks. A short block
is a block that contains fewer than N records, when N is greater than 1. Although
the I/0 module can read this variant of F format, it writes a short block in only
one case. The last block of a blocked file can contain fewer than N records if there
are no more records to be written when the file is closed. Therefore, blocked F format
files written by the I/0 module are always in FBS (fixed blocked standard)
format.

There are two special cases in which a datum is padded out to length r. The
first case is that of iobl (the number of characters to be written) equals 0: arecord
of r blanks is written. When such a record is subsequently read, it is interpreted
as a record of r blanks, and Not as a zero-length record. The second case is that
of 0 is less than iobl is less thanr: the record is padded on the right with blanks
to length r, and the padded record written. When such a record is read, the original
characters plus the padding are returned. The case of iobl is greater than r is in
error.

V(B) FORMAT

In V format, records and therefore blocks may vary in length. Each record is
preceded by a four-character record descriptor word (RDW) that contains the actual
record length in binary, including the length of the RDW itself. Each block is
preceded by a four-character block descriptor word (BDW) that contains the actual
block length in binary, including the length of the BDW itself.

5-64 AX49-01

tape_ibm_ tape_ibm_

V format files have an integral number of records per block, N. If the file
is unblocked, b = r + #; if blocked, b > r + 4; For blocked records, the number of
records per block varies indirectly with the size of the records.

If r equals 804, b equals 808, and the file is unblocked, records of up to 800
characters can be written, but each block can contaln only one record.
data 375 280 800
| 313 2]2 8|8
block 818] 376 8181280 ofo 800
4t0 8i4 814

If r equals 804, b equals 808, and the file is blocked, records of up to 800
characters can be written. Each block can contain a maximum of 201 zero-length
records (a record written as a 4Y-character RDW containing the binary value 4).

data 375 280 800

2v

6
block 6 376 8] 280 800
8 4

QO oowWw
O
= O

V(B)S FORMAT

In V(B)S format, a single record is formatted as one or more record
segments. A record segment contains either a complete record, the initial portion
of a record, a medial portion of a record, or the final portion of a record. No two
segments of the same record can be contained in the same block, but a block may
contain the segments of several different records. The maximum record length is
limited only by the maximum size of a storage system segment, currently 1,044,480
characters.

V(B)S format files have an integral number of record segments per block. If
the file is unblocked, each block contains only one record segment; if blocked, the
number of record segments per block is variable. 1In either casée, r and b are
independent of one another.

5-65 AX49-01

tape_ibm_ tape_ibm_

Each record segment begins with a four-character segment descriptor word
(SDW). The SDW contains a four-character record segment length in binary, that
includes the length of the SDW itself. (See "DOS Files™ above.) The SDW also contains
a one-character record segment code in binary, that indicates if the segment contains
a complete record, or an initial, medial, or final portion. 1In the examples below,
r equals 1000 and b equals 800.

data 200 400 1000
22 By 818 22
block 0§0}1200 0jo 4100 019 792 111] 208
84 814 0}6 6}2
data 200 Loo 1000
2 4 1 7 2
record 0} 200 0 400 8}184 9 792 8] 24
segment y y 8 6
812 L 1 817 312
block 0§00} 200 {0 400 8}184 0j9f 792 218124
olu 4 8 0]6
U FORMAT

U format files contain records that do not conform to either F(B), V(B), or V(B)S
format. A U format file is always unblocked. The record length is undefined,
and the block length must equal or exceed the maximum record length. Blocks may vary
in length. The special case of writing a record of less than 20 characters produces
a block padded to length 20 with blanks.

data 60 127 16 156
block 60 i28 20 156

5-66 AX49-01

tape ibm tape ibm_

Volume Initialization

The Standard requires that all volumes be initialized with VOL1 and dummy
HDR1 labels before they are used for output. The I/0Omodule provides a semiautomatic
volume initialization mechanism that performs this operation as an integral part
of the output function. It should be noted that, as stated above, a newly
initialized volume contains a dummy HDR1 label, but not a dummy file. If a file
is created on a newly initialized volume without an explicit specification of
the -number control argument, the I/C module attempts to append it to the file
set, resulting in an error.

Conformance 19 Standard

With two exceptions, the I/0 module conforms to the Standard: the I/0
module cannot process block lengths in excess of 8192 characters; and the I/0
module ignores the data set security field in the HDR1 1label on input, and
records it as 0 on output.

Label Processing

VOLA1
The label 1is ©processed on input and output. The owner-name and
address-code-field, character positions (CP) 42 to 51, holds a three-character
volume authentication code.

UVL1 - UVLe
These labels are not written on output and ignored on input.

HPR1/EOF 1/E0V1
The labels are processed on input and output. The system-code-field, CP 61
to 73, is recorded as "MULTICS IBM ".

HDR2/EQF2/E0QV2

The 1labels are processed on input and output. The 17-character
Jjob/ job-step-identification-field, CP 18 to 34, is recorded as follows:

"MULTICS /" || Julian creation date |} ™ "
HDR3/EOF3/EQV3 - HDR&/EQFE&/E(QVE

These labels are not written on output and are ignored on input.

T7/82 , 5-67 AXY49-01C

tape ibm_ tape_ibm_

These labels are not written on output and are ignored on input.
UHL1/UTL1 - UHL&/UTLS

These labels are not written on output and are ignored on input.

Error Processing

If an error occurs while reading, the I/0 module makes 25 attempts to
backspace and reread. If an error occurs while writing, the I/O module makes 10
attempts to backspace, erase, and rewrite. Should an error while reading or
writing data prove to be unrecoverable, the I/0 Module "locks" the file, and no
further I/0 1s possible. (See reset error lock OPERATION, below.) If an
unrecoverable error occurs while writing file labels or tapemarks, the user is
queried as to preserving the defective file versus file set consistency. (See
"Queries" above.) If an unrecoverable error occurs during certain phases of
volume switching or label reading, the I/0 switch may be closed. The overriding
concern of the error recovery strategy is: '

~

1. to maintain a consistent file set structure

2. to ensure the validity of data read or written

Close Operation

The I/0 switch must be open.

Control Operation

The I/0 module supports eleven control operations.

hardware status close rewind
status retention
retain none

retain all

volume status reset error locke
file status volume density
feov

In the descriptions below, info ptr is the information pointer specified in an
iox_$control call.

7/82 5-68 AXy0-01C

tape ibm tape_ibm_

hardware status OPERATION

This operation returns the 72-bit IOM status string generated by the last
tape I/0 operation. The I/0 switch must be open. The substr argument
(IOM bits, 3, 10) contains the major and minor status codes generated by the
tape subsystem itself. (See MTS500 Magnetic Tape Subsystem, Order no. DB28 for
an explanation of major and minor ~status.) e variable to which info ptr
points is declared as follows: N

declare IOM bits bit(72) aligned;

status OPERATION

This operation returns a structure that contains an array of status codes,
providing an interpretation of the IOM status string generated by the last tape
1/0 operation. These codes may be used in calls to the com_err subroutine, or
may be converted to printable strings by calling the convert status_code
subroutine. (See the description of the convert status code subroutine In the
MPM Subsystem Writers' Guide and the description of the com err_ subroutine in
the MPM Subroutines.) The I/0 switch must be open. The structure to which
info ptr points, device status.incl.pll, is declared as follows:

dcl dstat ptr pointer;
del 1 device_status based (dstat_ptr),
2 IOM bits bit(72) aligned, /* IOM status */
2 n minor fixed bin, /* number of minor codes */
2 major fixed bin(35), /* major status code */
2 minor (10) fixed bin(35); /* minor status codes */

volume status OPERATION

This operation returns a structure that contains the status of the current
volume. If +the I/0 switch is open, the current volume is the volume on which
the file section currently being processed resides. If the switch has never
been opened, the current volume is the first (or only) volume in the volume set.
If the switch was opened, but is now closed, the current volume is that on which
the last <file section processed resides. If the switch was closed by the I/0
module as the result of an error while writing file header 1labels, trailer
labels, or tapemarks, the current volume is the last (or only) volume in the
volume set. The structure to which info_ptr points,
tape volume status.incl.pl!, is declared as follows:

dcl tvstat ptr pointer;
dcl 1 tape_volume status based (tvstat ptr),
2 volume name char§6g, * volume name */
2 volume id char(6), /* from VOIL1 label */
2 volume seq fixed bin, /¥ order in volume set */
2 tape drive char(8), /* tape drive name */
- * "nif not mounted */
2 read errors fixed bin, /* read error count */
2 write errors fixed bin; /* write error count */

5-69 AX49-01

tape ibm tape ibm_

In the current implementation of the I/0 module, read errors and
write errors are always zero. Eventually, the resource control package (RCP)
supplies these values.

file status OPERATION

This operation returns a structure that contains the current status of the
file specified in +the attach description. If the I/0 switch has never been
opened, no information can be returned; this situation is indicated by
tape file status.state = 0. If +the switch was opened, but is now closed, the
current status of the file is its status Jjust prior to closing. If the switch
was closed by the I/0 module as the result of an error while writing file header
labels, trailer labels, or tapemarks, the entire file may have been deleted. 1In
this case, the structure contains the current status of the previous file in the
file set, if any. The structure to which info ptr points, file status.incl.pll,
is declared as follows:

dcl tfstat ptr pointer;
dcl 1 tape file status based (tfstat ptr),
2 state - fixed bin, ~ /* 0 - no information */
/*¥ 1 - not open */
/* 2 - open, no events */
/* 3 — open, event lock */
2 event_code fixed bin(35), /* error table code if
state = 3 ¥/
2 file id char(17), /¥ file identifier */
/*¥ " if —no labels */
2 file _seq fixed bin, /* order in File set */
2 cur_section fixed bin, /* current or last
. section processed */
2 cur_volume char(6), /* volume name of volume
on which cur_section
resides */
2 padl fizxed bin, /* not used */
2 pad?2 fixed bin, /* not used */
2 creation char(5), /¥ Julian creation date */
/¥ "00000" if -no labels */
2 expiration char(5), /* Julian expiration date */
/¥ "00000" if -no labels */
2 format code fixed bin, /*¥ 1 - U format ¥/
/*¥ 2 — F(B) format */
/[* 3 - VEBg format */
/* 4 - V(B)S format */
2 blklen fixed bin, /* block length */
2 reclen fixed bin(21), /* record Length */
2 blocked bit(1), /¥ "O"b - no "1y - yes */
2 mode fixed bin, /*¥ 1 — ASCII %/
* 2 - EBCDIC */
2 cur_blkent fixed bin(35); /* current block count */

The "event" referenced in, tape file status.state above is defined as an
error or circumstance that prevents continued processing of a file. For

example, parity alert while reading, reached end of information, no next volume
available, etc.

5-70 AX49-01

tape ibm tape ibm

feov OPERATION

This operation forces end of volume when writing a file. The switch must
be open for sequential output. ~The operation is equivalent to detection of the
end of tape reflective strip. The info_ptr should be a null pointer.

closeﬁrewind OPERATION

This operation specifies that the current volume is to be rewound when the
I/0 switeh is next closed. info ptr should be a null pointer. The switch need
not be open when the operation is issued. The operation effects only one close;
subsequent closings require additional control calls.

retention, retain none, retain all OPERATIONS

These operations cause the tape resources currently in use, i.e., tape
drives(s) and tape volume(s), to be unassigned or retained at detach time according
to the specified retention argument or operation. The info ptr points to a
fixed binary number with value as defined below: -

1 retention -none or retain none
causes none of the tape resources currently in use to remain assigned
at detach time.

2 retention -volume
causes the tape volume(s) currently in use to remain assigned at detach
time.

3 retention -device
causes the tape drives(s) currently in use to remain assigned at detach
time.

4 retention -all or retain all

causes all of the devices and volumes currently in use to remain assigned
at detach time.

reset_error_lock CPERATION

This operation unlocks the files so that further I/0 is possible subsequent

to a parity-type I/0 error while reading. Such an error is indicated by a
previous iox &read record or iox %position call having returned the status code
error table §tape error. 1In this case, the value of tape file status.event lock

is error table $tape error. (See file status OPERATION, above.) The I/0 switch
must be open for sequential input. The info ptr should be a null pointer.

T7/82 5-71 AX49-01C

tape_ibm tape ibm

NOTE: IF RECORDS ARE BLCCKED AND/OR SPANNED, THE VALIDITY OF ANY RECORDS
READ SUBSEQUENT TO A PARITY-TYPE I/0 ERROR IS NOT GUARANTEED. (The
parity error is reported for the first read of a logical record in
the block. The actual location of the error in the block in unknown.)

volume density OPERATION

This operation returns the encoded density of the volume set. The I/0
switch need not be open. The variable to which info ptr points is declared as
follows: -

declare volume density fixed bin;

The values returned and their meanings are listed below:

value meaning
-1 none specified yet
2 oo
3 1600
4 €250

Detach Operation

The I/0 switch must be closed. If the I/0 module determines that the
membership of the volume set may have changed, the volume set members are listed
before the set is demounted; volumes not listed are available for incorporation
into other volume sets. If the volume set is unlabeled, only the name of the
last volume processed is listed.

Modes Operation

This I/0 module does not support the modes operation.

Position Operation

The I/0 switch must be open for sequential input. The I/0 module does not
support skipping backwards. In the course of a position operation, events or
errors may occur that invoke the query mechanism. (See "Queries"™ above.) An
unrecoverable error locks the file, and a severe error causes the I/0 module to
close the I/0 switch.

9/80 ’ 5-72 AX49-01B

tape ibm tape _ibm

Read Length Operation

The I/0 switch must be open for segquential input. In the course of a
read length operation, events or errors may occur that invoke the query mechanism.
(See™ "Queries™ above.) An unrecoverable error locks the file, and a severe
error causes the 1/0 module to close the I/0 switch.

Read Record Operation

The I/0 switch must be open for sequential input.

Write Record Cperation

The I/0 switch must be open for sequential output.

Unlzabeled Tapes

The I/0 module supports basic processing of unlabeled tapes that are structured
according to the O0S Tape Labels document mentioned at the beginning of this
description. DCS leading tape mark (LTM) unlabeled format tapes cannot be processed.

The -no labels control argument specifies that unlabeled tapes are to be
processed. The -no labels control argument and any of the following control
arguments are mutually exclusive:

-name -extend
-replace -modify
-expires -dos
-force

Volume switching is handled somewhat differently for unlabeled tapes. When
the I/0 module detects a tape mark in the course of an input operation, it
determines whether or not any volumes remain in the volume sequence 1list. If
another volume appears in the 1list, volume switching occurs and processing continues
on the next volume. If the list is exhausted, the I/0 module assumes that end
of information has been reached. Detection of end of tape during an output
operation 1is handled in much the same way as it would be for a labeled tape.
(See the 0S Tape Labels document for a complete description of unlabeled volume
switching Strategy.)

Control Operations from Command Level

A1l control operations supported by this I/0 module can be executed from
command level by using the io call command. The general format is:

io call control switchname operation -control arg

9/80) 5-732 AX4a.01B

tape_ibm_ tape ibm_

where:
1. switchname
is the name of the I/0 switch that is attached through the I/0
module to an IBM tape file-set.
2. operation
is any of the control operations previously described and summarized
below.
operation abbreviation control arg
status st -all
hardware status hst
reset error lock rel
file status fst
volume status vst
retention ret -none, -volume,
~device, -all
retain all reta
retain none retn
close rewind erw
feov — feov

3. control arg
Is an operation control argument valid only for the retention and
the status operations. A control argument is required for the retention
operation; possible control arguments are described below:

-none

causes none of the tape resources currently in use to remain assigned
at detach time.

-volume
causes the tape volume(s) currently in use to remain assigned at
detach time.

-device
causes the tape drives(s) currently in use to remain assigned at
detach time.

-all
causes all of the devices and volumes currently in use to remain
assigned at detach time.
The -all control argument is optional for the status operation. This
control argument prints all available status information such as the
device status, the volume status, the file status, and the hardware
status. The -all control argument is only for use with the status
operation through the io call command. It is not defined for use in
the status operation with iox_$control directly.

Examples
In the following examples, it must be emphasized that an attach description

describes a potential operation, and in and of itself does nothing to the file.
Depending upon the sequence of openings in various modes, one attach description
can perform diverse functions.

7/82 5-74 AX49-01C

tape_ibm tape_ibm_

tape ibm 042281 -nm ARD21 -cr -fmt vbs -ret all

A file named ARD21 is to be appended to the file set whose first volume is
o0uU2381. If 3 file named ARD21 already exists in the file set, openings for
sequential input access that file, and openings for sequential output replace
the old file of that name. If no file named ARD21 already exiSts in the file
set, openings for sequential input prior to the first opening for sequential output
fail. The first opening for sequential output creates the file by appending it
to the end of the file set. Subsequent openings for sequential input access the
newly created file, and subsequent openings for sequential output replace it.
Spanned records are specified; the block length defaults fo 81902, the record
length to 1044480, and the encoding mode to EBCDIC. The density defaults to
1600 cpi, and the maximum number of devices defaults to 1. The volume set and
devices are retained after detachment.

tape ibm 042381 -nm fargo.pll -nb 2 -cr -force -fmt fb -bk 800 -rec 80

A file named fargo.pl1 is created at position 2 in the file set. If a file
named fargo.pl1 already exists at position 2, openings for sequential input prior
to the first opening for sequential output access that file. The first opening
for sequential output creates a new file, and subsequent openings for
sequential input access the new file. If no file named fargo.pll exists at
position 2, openings for sequential input prior to the first opening for
sequential output fail. If a file exists at position 2, it is replaced irrespective
of its expiration date.

tape ibm 042321 -nm zbx -rpl zbx -cr -md ascii -bk €000 -exp 2weeks

A file named zbx is created, replacing a file of the same name. Openings
for sequential input prior to the first opening for sequential output access the
old file. Each opening for sequential output creates anew file, and each subsequent
opening for sequential input access the most recently created file. The specified
encoding mode is ascii. The record format defaults to VB, and the record length
defaults to 5996 because the block length is specified as 6000. The file is
protected from overwriting for a period of two weeks, so each opening for
sequential output subsequent to the initial opening for sequential output causes
the user to be queried for permission to overwrite. -

tape_ibm_ 042381 C42382 -nb 14 -nlb -cr -dv 3

A file is to be created at position 14 on volume 042381. If a file already
exists at position 14, an opening for sequential input prior to the first opening
for sequential output accesses that file; otherwise, an error is indicated. Openings
for sequential output create new files, and openings for sequential input subsequent
to the first opening for sequentisal output access the most recent creation. The
default record format is VBS, the default block length 8192, and the default
record length 1044480. The volume set is unlabeled. If the file exceeds the
capacity of volume 042281, it is continued on volume 042322. If it then exceeds
the capacity of volume 042382, the user is queried for instructions. A maximum
of three devices can be used.

tape ibm 042381 042382 042383 -nm THESIS -ring

9/80 ' 5-75 AX49-01B

tape_ibm_ Lape tum_

A file named THESIS is to be read. The I/0 switch can only be open for
sequential input. The volume set consists of at least three volumes, and they
are mounted with write rings. Only one device can be used.

tape ibm 042381 -nm FF -nb 2 -ext -dv 4 -ret all

A file named FF at position 3 in the file set is to be extended. FEach
opening for sequential input accesses the current version. Each opening for
sequential_output produces a new version. A maximum of four devices can be
used. Resources are retained after detachment.

tape_ibm_ 042381 -vol -COS -com in slot 000034 -nb 6 -mod -fc

The file at position 6 in the file set is to be modified, irrespective of
its expiration date. Each opening for sequential input accesses the current
version. Each opening for sequential ocutput produces a new version. The second
volume of the volume set has volume identifier -CO03, and can be found in slot
000034.

Attach Control Arguments

The following is a complete list of all valid attach control arguments in

both long and short forms:
-block b -bk b 20 < b < 22760
- - mod (b,T) = 0 if open for sequential output
-clear -cl - -
-create -cr
-density N -den N N = 800 | 1600 | £250
-device N -dv N 1 ¢ N < 63
-dos -7
-expires date -exp date valid date
-extend -ext
-force -fe
-format f -fmt f f=fb | £} vb | v
- - - vbs | vs | u
-mode STR -md STR STR = ebcdic | ascii | binary
~ -modify -mod
-name STR -nm STR STR < 17 characters
¢ & characters (restricted subset) with -create
-no labels -nlb -
-number N -nb N 1 < N < 9999
-record r -rec r 1 < r T 1084480
-replace STR -rpl STR STR < 77 characters
-retain STR -ret STR STR = all ! none
-ring -rg

The following is a list of positional keywords:

-comment STR
~-volume vni

7/82

~com STR
-vol vni

STR < 64 characters
volume name < 6 characters

5-76

AX49-01C

tape mult

Name:

Usage

where

1.

2.

T7/82

tape_mult

tape mult

The tape mult 1I/0 module supports I/0 to and from Multics standard tapes.

tape mult reelid {-control args}

reelid

is the name of the tape reel to be mounted for this attachment.

control args

can be chosen from the following:

-comment STR, -com STR

specifies a comment string that is displayed to the operator. It
can be used to give the operator any special instructions that are
relevant to this attachment. The comment string must be enclosed
within quotes if it contains blanks or other spacing characters.

-density N, -den N

specifies the density setting of the attached tape drive, where N
can be 800, 1600, or 6250 bpi. The defaults are 800 for 7-track,
and 1600 for 9-track. When opened for reading, the specified density
is used only as a first guess. If the tape cannot be read at that
density, tape mult tries the other density.

-error tally, -et

when opened for stream input, displays an error summary on the
user output stream upon closing the tape 1/0 switch. This error
summary includes: total number of read errors; number of errors
that were successfully recovered for each of 1 to 10 backspace/re-read
retrys; number of errors that could not ©be recovered by
backspace/re-reading but were successfully recovered by reading forward
and finding a good copy of the original record in error; and the
number of times that both backspace/re-read and read forward recovery
failed, but successful recovery was accomplished by backspacing two
files, forward-spacing two files (thus positioning the tape at the
beginning of the current file after tape motion past the tape cleaner
and head in both directions dislodges any buildup of oxide particles
on the tape or head surface) and then reading forward until original
record in error was read successfully. This information is obtained
from metering data kept in the tape mult work segment, defined by
tmdb.incl.pl1. - -

-speed N1{,N2,...,Nn}, -ips N1{,N2,...,Nn}

specifies desired tape drive speeds in inches per second, where Ni
can be 75, 125, or 200 inches per second. (See "Device Speed
Specification” below.)

-track N, -tk N

specifies the track type of the tape drive that is to be attached,
where N may be either 9 or 7. The default is 9.

577 AX49-01C

tape mult

tape_mult_

-write, -wrt

mounts the tape reel with a write ring. The default is to mount the
tape reel without a write ring.

~-system, -~sys

increases tape performance by using more I/C buffers and other
performance optimizations. Access to
>system control 1>rcp>workspace.acs or recp sys 1is required to use
this control argument. -7

-volume set name STR, -vsn STR

specifies the contents of the volume set name field located in the
tape label record (see section 3 of this manual for a description of
the standard Multics tape label record). When opened for writing,
STR is written into the volume set id field of the tape label record.
If this control argument is not sSpecified, the volume set id field
will be set to blanks. When opened for reading, the volume set id
field of the tape label is compared to STR. If they match or if The
volume set id field is padded with blanks, the open operation is
allowed to be completed. If the volume set id field and STR do not
match and the volume set id is Tnot = padded with blanks,
error table #bad label is returned. STR can be up to 22 characters
in length. — -

| Device Speed Specification

The -speed control argument is used to specify acceptable tape device speeds
in inches per second. The module only attaches a device that matches a speed
specified by this control argument. If more than one speed is specified, the
module attaches a device that matches one of the speeds. If more than one
device 1is attached, and more than one speed is specified, the devices will not
necessarily all be of the same speed.

Opening

The opening modes supported by tape mult are stream_input and stream output.
The extend option is not allowed. If” the opening mode is stream output, the
attach description must have specified the -write control argument. ™

Read Record Operation

The get chars operation reads Multics standard records until either the
caller's buffer is filled, or until the end of the tape volume is encountered.
If not all the characters on a tape record fit into the caller's buffer, they
are saved by the I/0 module for the next get chars call.

7/82

5-78 AXh9-01C

tape mult tape mult

Write Record Operation

The put chars operation formats the data into Multics standard records of
1024 data words each. Each record is written as it is filled. A partially
filled record is not written onto the tape until it is filled with a subsequent
put chars operation, an error count order is done, or the switch is closed.

Control Operation

The tape mult 1I/0 module supports the control operation with three orders.

error count
This order is supported only for the stream output opening mode. It causes
all output currently buffered to be written. An up-to-date error count is
returned in the (fixed bin) variable referenced by the info ptr argument.

boot program

“This order allows the specification of a boot program to be written into
the tape label record (see Section 3 for a discussion of the bootable
Multics tape label record format and function). The specified boot program
must be coded in absolute self-relocating ALM assembly language and must be
less than or equal to 832 (1500 octal) locations in length. The specified
boot program is overlayed starting at absolute location 300 (octal) in the
tape label record. When a Multics tape containing a bootable label record
is bootloaded, control is transferred to location 300 via the tape label
record transfer vector, the first 8 words of a bootable Multics tape label
record. The I/0 switch must be closed when this control order is executed.
The specified boot program is written onto the tape label record when the
tape is subsequently opened for output. The info ptr must point to a structure
of the following form: -

del 1 boot program info based (info ptr),
2 version - fixed bin,
2 boot program ptr pointer,
2 boot program text length fixed bin (21),
2 boot program name char (32) unaligned;
where:
1. version

is the version number of this structure, currently 1.

2. boot program ptr
~ is a pointer to the beginning of the text section of the specified
boot program.

2. boot program text length
~ 1is the length in 26-bit words of the text section of the specified
boot program.

L. boot program name
~ if nonblank, is the name of the boot program that the user wants
recorded in the boot pgm path field of the 1label record. If
boot program name is blank, then the absolute pathname of the boot
program is written into the boot pgm path field of the label record.

T/82 5-78.1 AX49-01C

tape_

mult tape mult

get boot program

This order allows a boot program to be extracted from the tape label when
the tape is opened for input. This control order must be issued immediately
after the tape is opened for input and before the first read operation is
begun. If it is executed later, then error table $no operation is returned.
The info ptr must point to the boot program info structure defined above
for the boot program control order. The user must set the version number.
Then a pointer to a buffer, containing the extracted boot program, its
length, and the entryname portion of the boot program pathname, is returned
to the user. If the get boot program control order 1is executed on a tape
that has a standard tape label record, boot program ptr is set to null.

l Control Operations From Command Level

A1l control operations can be performed from the io call command, as follows:

io_call control switch order arg

| where:
1. switch
is the name of the I/0 switch.
2. order_arg

must be one of the following:

error_count
boot program PATH
get boot program

Operations Not Supported

7/82

The tape mult I/0 module does not support the following operations:

get line
modes

5-78.2 AX49-01C

tape nstd tape nstd

Name: tape nstd

The tape nstd 1I/0 module supports I/0 to/from tapes in nonstandard or
unknown formafs. This module makes no assumptions about the format of the tape
and returns one logical record for each physical record on the tape. Since the
informastion upon the tape, including tape marks, is not interpreted by this 1/0
module, the user must detect the logical end of information on the reel.

Entry points in the module are not called directly by users; rather, the
module 1s accessed through the iox subroutine. See the MPM Reference Cuide for
a general description of the I/0 system and for a discussion of files.

Attach Description

The attach description has the following form:

tape_nstd reel num {-control args}

where:
1. reel num

~ is the tape reel number.
2. control args

can be chosen from the following:

-block N, -bk N
specifies the maximum record length, in bytes, for this attachment.
The default value for N is 11200. Values of N greater than 11888
require access to either the >system library 1>rcp sys gate or
>sc1>rcp>workspace.acs (see "Buffer Size™ below). -7

-comment STR -com STR
specifies a comment string that is displayed to the operator. It
can be used to give the operator any special instructions that are
relevant to this attachment. The comment string must be enclosed
within quotes if it contains blanks or other spacing characters.

-density N, -den N
specifies the initial density to be used for this attachment. Acceptable
values for N are 200, 556, €C0, 1600 and 6250; the default is 800
bpi.

-speed N1{,N2,...,Nn}, -ips N1{,N2,...,Nn}
specifies desired tape drive speeds in inches per second, where Ni
can be 75, 125, or 200 inches per second. (See "Device Speed
Specification" below.)

-track N, -tk N
means that the tape is N track. Acceptable values for N are 7 and
9. If no track argument is supplied then 9 track is assumed.

7/82 5-79 AX49-01C

tape_nstd_ tape nstd

-write
means that the tape is to be mounted with a write ring. This argument
must occur if the I/C switch is to be opened for output or input/output.

| Device Speed Specification

The -speed control argument is used to specify acceptable tape device speeds
in ‘inches per second. The module only attaches a device that matches a speed
specified by this control argument. If more than one speed is specified, the
module attaches a device that matches one of the speeds. If more than one
device is attached, and more than one speed is specified, the devices will not
necessarily all be of the same speed.

Open Operation

The opening modes supported are sequential input, sequential output, and
sequential input output. If an I/0 switch attacheéd via the tape nstd 1I/0 module
is to be Opened” for output or input output, the -write control argument must
occur in the attach description. -

Control Operation

The following control operations are implemented by this I1I/0 module:

backspace file
positions the tape before the file mark next encountered while rewinding
the tape (if no file mark is encountered then the tape is left at load
point).

backspace record
positions the tape before the previous record on the tape (or file
mark if the current record is preceded by a file mark).

bed
sets hardware mode to binary coded decimal (BCD). See "Hardware Modes"
below.

binary

sets hardware mode to binary (this is the default). See "Hardware
Modes" below. . .

data security erase
“erases the tape media from its current position to the end of tape
(EOT) reflective marker. Additional "erase" control orders can be
issued to erase any data written beyond the EOT reflective marker. No
more than 40 additional erase control orders should be issued since
the tape volume could run off the supply reel.

d200
sets density to 200 bpi.

[o
ul
w
(@}

sets density to 556 bpi.

7/82 5-80 AX49-01C

tape nstd tape nstd_

7/82

dgoo
sets density to 800 bpi. This is the default.

d1600
sets density to 1600 bpi.

d6250
sets density to 6250 bpi.

erase
erases tape for a distance of three inches from the current position.

fixed record length
Specifies that no record length information is expected by the caller
since all data records are of a fixed length specified by a fixed
bin(21) value. The record length is specified in bytes.

forward file
positions the tape past the next file mark encountered on the tape.

forward record

positions the tape after the next record (or file mark if one follows
the current record) encountered on the tape.

io call
T supports the io call command protocol for orders that expect nonnull
info pointers. = This order is prepared to interpret and print the
status returned by the saved status and request status orders.

nine
”

sets hardware mode to eight/ninre bit conversion. See "Hardware Modes”

below.

protect
sets write inhibit regardless of the presence of a write permit ring
in the tape reel. The tape unit will remain write inhibited until the
tape is detached.

request status
interrogates the tape controller and returns its status as a bit(12)
aligned quantity.

reset status
causes all resettable statuses of the tape unit to be reset.

retry count
Specifies a fixed bin(17) value which is the number of times an operation
is to be retried before returning an error to the caller. The default
value for the retry count is 10.

rewind :
rewinds the tape to locad point.

saved status
returns the last status returned from the tape controller as a bit(12)
aligned quantity.

unload

rewinds the tape and unloads it (done automatically when the tape is
detached).

5-21 AX49-01C

tape_nstd_ tape nstd

write eof
writes an end of file mark (EOF).

Hardware Modes

In BCD mode, allowed only for 7-track drives, 6-bit characters are translated
and then put on tape one character per frame. The translation is reversed on
input.

In nine mode, on output four 8-bit bytes are written from each word ignoring
the high order bit of each 0-bit byte (by truncating it). On input, R-bit
characters are converted to 9-bit characters by forcing the high order bit to
zero (by appending a zero-bit). This mode should be used to put ASCII or EBCDIC
data on tape for transfer to other systems with R-bit bytes.

In binary mode, all 26 bits of each word are read or written. This mode
should be used for native Multics applications where binary data is written to
tape.

O-track write 0 8&-bit bytes (2 word) are written to 9 frames on tape.
9-track read 9 frames are read into 0 8-bit bytes (2 words).

7-track write 6 6-bit frames from each word.
T-track read 6 frames on tape are read into 6 6-bit characters (1 word).

7-track is € data + 1 parity track.
9-track is 8 data + 1 parity track.

Modes Operation

This I/0 module does not support the modes operation.

Position Operation

This I1/0 module does not support the position operation.

Read Length Operation

This I/0 module does not support the read length operation.

7/82 5-82 AX49-01C

tape_nstd_ tape nstd_

Close Cperation

The close operation rewinds the tape reel. The tape remains mounted, and
positioned at the load point. No further I/0 operations may be performed unless
the I/C switch is opened again.

Detach Operation

The detach operation unloads the tape.

Read Record Operation

The logical record returned by the read record operation contains m=ceil(n/36)
words, where n is the number of data bits in the physical record. The first n
bits of the input record are the data bits, the last m-n bits are 0's. The
buffer supplied to the read record operation must be word aligned. Read requests
are retried 10 times before reporting an error unless a retry count control
order has been used to change the retry count. -

Write Record Operation

The 1logical record supplied to the writearecord operation must be word
aligned, and must contain 0 mod 36 data bits.

Notes

This I/0 module violates those iox conventions that seem ill suited to
processing raw tapes. In particular, read record and skip record operations may
pass file marks., For example, if a tape contains two records, A and B, separated
by a file mark, then the first read request would read record A, a second read
request would return error table $end of info, and a third read request would
return record B. - - T

Buffer Size

The maximum number of bytes that may be transmitted on a read record or
write record operation is 180224, less overhead. This limit may be administratively
restricted to a lower value. To use the full capability, the caller may need
access to >system_library_1>rcp_sys_ or >sci>rcp>workspace.acs.

7/82 5-83 AX49-01C

SECTION 6

PROGRAMMING EXAMPLES

This section gives several examples of the use of +the Multics peripheral
I/0 facilities. The writing out and subsequent reading in of a segment to and
from magnetic tape is performed in several ways throughout this section.

USER-RING I/0 SYSTEM COMMANDS

To write out a tape (for -example, reel 50015) from the segment
>udd>Work>Green>data, issue the following commands at Multics command level:

io_call attach tape switch tape ansi 50015 -name data
-create —number 1 -fmt s

io call open tape switch sequential output

io_call write tape switch -segment >udd>Work>Green>data

io_call close tape switch

io_call detach tape switch

To read a tape back in again, to >udd>Work>Green>new data, issue the
following commands at Multics command level:

io_call attach tape switch tape ansi 50015 -name data

io_call open tape switch sequential input

io_call read tape switch 1048576 -segment new_data

io_call close tape switch

io call detach tape switch

For the meanings of the particular control arguments to the tape_ansi_‘I/O
module, see the description of this I/0 module in Section 5 of this manual.

This sequence of calls writes and reads back an ANSI standard tape. A file
named data, in spanned record format, is created on the tape and read back. The
number, 1048576, is the maximum number of characters to be read. This number
must be given +to the 1o call command on a read request. This value is the
maximum number of characters in a segment. If the tape is not already in ANSI
format, the tape ansi I/0 module queries the user if the tape is to be
initialized to ANSI format. (The io call command is described in the MPM
Commands.) -

6-1 AX49-01

This technique for performing tape I/0 has the advantage that no programs
need be written +to use 1it. Simple commands, without the need for preparing
control files, suffice. Using the abbrev or exec com facilities, a segment can
be written to tape in this manner with one command line. If the only need to be
filled is that of storing a segment or several segments on tape, this method is
completely adequate. The 1list tape contents command, described in Section 4,
can be used to list the contents of the tape produced in this manner.

This method of utilizing +tape has +the obvious disadvantage that it is
completely interactive. A facility that needs to deal with tape from program
code cannot use this method.

PL/I CALLS TO THE USER-RING I/O SYSTEM

Figures 6-1 and 6-2 contain sample programs to write out +the segment
>udd>Work>Green>data to tape 50015 with +the file name data and to read it in
again.

These two PL/I programs are written +to accomplish the same effect as the
I/0 system commands in the previous examples. Each call to the iox_ subroutine
(documented in the MPM Subroutines) has the same effect as one call to the
io call command as used above. Each call to the iox subroutine returns an
error code, represented in the programs by the value of the variable "code." 1In
this case, the code variable always has the value of the status code returned by
the tape ansi I1/0 module. This value is tested at each point to check for
error and report any problem that arises. ‘

This technique for performing peripheral I/0 has the advantage that a
program can call all entries in the user-ring I/0 system and all entries of a
particular I/0 module and, thus, perform all operations documented in the
description of each 1I/0 module. The optimum flexibility in user-ring I/0 is
achieved in this manner.

The disadvantages of this technique lie chiefly in the number of calls that
must be made +to the user-ring I/0 system to attach and detach a device. To
perform correct recovery, should any step fail or should a release be performed
around the stack frame of the program (a contingency dealt with in "Language 1/0
in PL/I with Protocol-Defined Data Format" below), requires the setting of a
number of switches to determine which calls must be undone. Furthermore, the
entries of the wuser-ring I/0 system are not callable from most languages other
than PL/I.

6-2 AX49-01

iox ansi_write: procedure;

/* This procedure writes out a segment to tape, using explicit calls to
the user-ring I/0 system to perform an attachment via tape ansi . ¥/

dcl com err entry options (variable);
del iox $attach ioname entry (char (*), ptr, char (¥), fixed bin (35));
del iox $open entry (ptr, fixed bin, bit (1) aligned, fixed bin (35));
dcl iox $close entry %ptr, fixed bin (35));
del iox $detach iocb entry (ptr, fixed bin (35));
del iox $write record entry (ptr, ptr, fixed bin (21), fixed bin (35));
dcl code fixed bin {(35);
dcl hes $initiate count entry (char (*), char (*), char (*),

fixed bin (24), fixed bin (1), ptr, fixed bin (35));
dcl hes_$terminate noname entry (ptr, fixed bin (35));

dcl p ptr;

del 1iocbp ptr; /¥ Pointer value of switch tape switch */
dcl null builting o

del seg bit (bitcount) aligned based (p);

dcl bitcount fixed bin (24);

call hes $initiate count
~ (">udd>Work>Green", "data", "", bitcount, 0, p, code);
/* Get pointer to segment */
if p = null
then call com err
{code, "iox ansi write", "Cannot initiate segment");
else doj;
call iox $attach ioname ("tape switch", iocbp,
"tape ansi 50015 -name data -create —-number 1 -fmt s",
code); /* Attach switch, mounting the tape */

if code "= O then call com_err (code, "iox ansi write",
"Cannot attach tape.");
else do;

call iox $open (iocbp, Sequential output, "O"b, code);
/¥ Open switch for stream output */
if code "= 0 then
call com err (code, "iox ansi write",
"Cannot open switch");
else do;
call iox $write record (iocbp, p, bitcount/9, code);
/* Write out data, integral
number of characters. */
if code "= O then
call com err (code, "iox ansi write",
"Could not write data"); —
call iox $close (iocbp, (0)); /* Close the switch. */
end;
call iox $detach iocb (iocbp, (0)); /* Demount the tape */
end;

call hes $terminate noname (p, (0)); /* Clean up address space */

end;
return;

%include iox modes; /* defines "Sequential output" */
end; - -

Figure 6-1. Writing Segment to Tape With PL/I Calls to iox_ (via tape_ansi)

6-3 AX49-01

iox ansi_read: procedure;

/* This procedure reads in a segment from tape, using explicit calls from

the user-ring I/0 system to perform an attachment via tape ansi . */
dcl error table $end of info fixed bin (35) external;
dcl com err entry options (variable);
del iox $attach ioname entry (char (*), ptr, char (*), fixed bin (35));
del iox $open entry (ptr, fixed bin, bit (13 aligned, fixed bin (35));
dcl iox $close entry ptr fixed bin (35));
del iox $detach iocb entry (ptr, fixed bin (35));
dcl iox $read record entry (ptr, ptr, fixed bin (21), fixed bin (21),
fixed bin (35));
del code fixed bin (35);
dcl hes_$make seg entry (char (*), char (*), char (*),
fixed bin (5), ptr, fixed bin (35));
dcl hes $set be seg entry (ptr, flxed bin (24), fixed bin (35));
dcl hes_$terminate noname entry (ptr, fixed bin (35));
del p ptr;
dcl iocbp ptr; /* Pointer value of switch tape switch */
del null builting -
dcl Dbitcount fixed bin (24);
dcl char count fixed bin (21); /* Number of characters
- actually read. */
call hes 3make seg (">udd>Work>Green", "new data", "", 1010b, p, code);
B /* Create new segment */
if p = null then call com err (code, "iox ansi read",
"Cannot make new segment"); - -
else doj;
call iox $attach ioname ("tape switch", iocbp,
"tape ansi 50015 -name data", code);
/¥ Attach switch, mounting the tape */
if code "= 0 then call com err_ (code, "iox ansi read",
"Cannot attach tape."); - -
else do;
call iox $open (ioebp, sequential input, "O"b, code);
/* Open switch for stream input */
if code "= O then
call com err (code, "iox ansi read",
"Cannot open sw1tch"T
else do;
call iox $read record (iocbp, p, 1048576, char count,
code); -
/* Read in data, integral
number of characters. */
if code "= O & code "= error table $end of info then
/* We expect fewer Than T048576
(4 * 2 ** 18) characters. */
call com err (code, "iox ansi read",
"Could not read data™);
else do;
bitcount = char count * 9; /* Compute bit count */
call hes $set bc seg (p, bitcount, code);
if code "= O then
call com err (code, "iox ansi read",
‘ "Cannot set bit count to 7d.", bitcount);
end;
Figure 6-2. Reading Segment From Tape With PL/I Calls to iox (via tape ansi)

6-4 AX49-01

call iox $close (iocbp, (0)); /* Close the switch. */
end;
call iox $detach iocd (iocbp, (0)); /* Demount the tape */
end;

call hes_$terminate noname (p, (0)); /* Clean up address space */

end;
return;

%include iox modes; /¥ defines "sequential input" */
end; - .

Pigure 6-2 (Cont). Reading Segment From Tape With PL/I Calls to iox__
(via tape ansi)

6-5 AX49-01

LANGUAGE I/0 IN PL/I

Figures 6-3 and 6-4 show sample programs +to write and read a segment using
the intrinsic I/0 facilities of +the PL/I language to access the +tape via the
tape ansi_ I/0 module.

The PL/I language I/0 system makes all calls to the user-ring I/0 systen,
including those to attach and detach the appropriate switch. The PL/I language
provides no general way to obtain the length of a record +that is read in. The
environment (stringvalue) attribute can be used for +this purpose, but this
requires setting up a varying string, at least as large as the record to be
read, and copying it. This is not always possible, since the record to be read
in can be as large as a segment. Another way is to set up a record buffer as
large as a segment and heuristically determine the 1length of +the segment by
"finding the end of it" via the adjust bit count subroutine (described in the
MPM Subroutines). Obviously, this technique does not work for arbitrary binary
data. (See "Language I/0 in PL/I with Protocol-Defined Data Format" below for
an alternative solution to this problem.) Since a record is ©being read whose
length 1is not known, a record buffer (the variable "segment") is set up as
having the length of a full-size segment. When PL/I reads the tape record, via
a call to the tape ansi module, a record shorter than this is read and the
record condition is ~signalled. The "on record (tape);" on-unit in the reading
program explicitly ignores this condition. Although standard PL/I does not
define the contents of the buffer variable after a return from an on-unit for
the record condition is performed, in +this case Multics PL/I specifies that the
record £ill the low addresses of the buffer for the length of the record.

This technique has the advantage that no knowledge of I/0 system calls is
required. The meaning of PL/I statements that perform I/0 is known to PL/I
programmers on other systems, as opposed to calls to the Multics I1/0 systen.
The use of language I1/0 statements provides the fullest power of the language to
the programmer using peripheral I/O.

The principal disadvantage of using 1language I1/0 is that not all calls
accessible from the user-ring I/0 system can be made via language I/O0. In PL/I,
for instance, no calls corresponding to "control" functions of I/0 modules can
be performed via language 1/0. However, in certain circumstances the
pll io $get iocb ptr subroutine can be used +to remedy this deficiency. See the
MPM Subsystem Writers' Guide for a description of this entry point.) Thus,
end-of-file marks, evtc., cannot be written from language I/0. A more severe
deficiency is the inability to determine +the length of a record on tape. Via
proper protocols, however, this deficiency too can be remedied. (See "Language
I1/0 in PL/I with Protocol-Defined Data Format" below.)

6-6 ' AX49-01

tape write: procedure;

dcl p ptr; /* pointer on which segment image is based */
dcl segment bit (bitcount) based (p) aligned; /* image of the segment */
del bitcount fixed bin (24); /* bit count of the segment */

dcl hes_$initiate count entry (char (*), char (*), char (%), fixed bin (24),
fixed bin (1), ptr, fixed bin (35));
dcl code fixed bin (35); /* status code */
dcl hcs_$terminate noname entry (ptr, fixed bin (35));
del null builting
del com err_entry options (variable);
/* used to report problem to error output */

dcl +tape file internal; /¥ internal file for tape */
call hes_$initiate count (">udd>Work>Green", "data", "", bitcount,
0, p, code); /¥ get pointer and bit count */
if p = null then do; /* could not initiate */

call com err_ (code, "tape write", "Cannot get segment");
/* complain */
return;
end;
open file (tape) sequential output title
/* open the file, mount the tape */
("tape ansi 50014 -nm data -cr -fmt s -nb 1");
/* See description of tape ansi_ */

write file (tape) from (segment);
/¥ Write the segment as a record */

close file (tape); /* Demount the tape */
call hes_$terminate noname (p, (0));
/* Clean up address space of process */
return;
ends;

Figure 6-3. Writing Segment to Tape With PL/I I/0 Facilities

6-7 AX49-01

tape_read: procedure;

del
del
decl
dcl
del

del
del
dcl

dcl
del

decl

p ptr; /* pointer on which segment image is based */
record condition;
segment char (1048576) based (p) aligned; /* image of the segment */
bitcount fixed bin (24); /* bit count of the segment */
adjust_bit_count_ entry (char (168) aligned, char (32) aligned,
bit (1) aligned, fixed bin (24), fixed bin (35));
hcs $make seg entry zchar (*¥), char (*), char (*), fixed bin (5),
~ ptr, fixed bin (35));
code fixed bin (35); /* status code */
hes $terminate noname entry (ptr, fixed bin (35));
null builting
com_err_ entry options (variable);
/* used to report problem to error output */

tape file internal; /* internal file for tape */
call hes_$make seg (">udd>Work>Green", "new data", "", 1010b, p, code);
if p = null then do; /* could not initiate */
call com err_ (code, "tape read", "Cannot make segment");

/* complain */
return;
end;
on record (tape); /* Ignore short records - Multics PL/I fills
buffer anyway. */
open file (tape) sequential input title
/* open the file, mount the tape */
("tape_ansi_ 50014 -nm data"); /* See description of tape ansi_ */

read file (tape) into (segment);

close file (tape); /* Demount the tape */
call adjust_bit_count_ (">udd>Work>Green", "new_data", "1"b,

bitcount, code);
if code "= O then

call com err_ (code, "tape read",

"Cannot set bit count on new segment to "d.", bitcount);

call hes $terminate noname (p, (0));
/* Clean up address space of process */
return;
end;

Figure 6-4. Reading Segment to Tape With PL/I I/0 Facilities

6-8 AX49-01

PROTOCOL-DEFINED DATA FORMAT

The programs in Figures 6-5 and 6-6 write out a segment +to tape as a
nonstandard tape and read it in again. Rather than being of Multics standard
format (described in Section 3), the tape is written in a format known to, and
used by, only these two programs.

A tape written in this nonstandard format contains segments written out in
100-word blocks, with the last fraction written as a short block. ZEach block
occupies one physical +tape record. The first record written on the tape is an
image of the structure "hdr" in both programs, which is identical in both.
Standard PL/I reqguires that the layout of the generation of storage from which a
record is written be identical, or capable of being legally overlaid by, the
layout of +the generation of gstorage into which it is read. The variables in
this record define how many 100-word records follow (they follow immediately
after the header record), the length of the "short" record (zero if there is
none), and the bit count +to be set on the segment. No end-of-file mark is
written: PL/I offers no facility for writing one, and none is necessary. The
reading program knows only to read the header. When it has read the header, it
knows, by convention with the writing program, exactly how many records, and of
what sizes, to read.

The +tape is blocked intc 100-word records for several reasons. For one
reason, the maximum size of any physical 1I/0 buffer is limited by the tape
controller and the other I/0 hardware, as well as the software. Furthermore,
the shorter a record is, the smaller is its chance of being written with errors.
On the other hand, the larger the block size, the more efficient the use of the
tape.

Part of the complexity of these programs stems from the fact that full
error handling is attempted. The on-unit for "undefinedfile" is .invoked if the
tape cannot be attached for any reason. PL/I language I/0 raises this condition
if a call to the attach or open entry points of the tape nstd I/0 module fail
The transmit condition is raised if any error is indicated ~from any call that
reads or writes data. There is no handler for the record condition, as it
should never be raised. The 1length of all records is known by the reading
program.

The entry pl1 io $error code (described in the MPM Subroutines) is used to
extract the I/0 system status code for use in error recovery. The PL/I language
provides no intrinsic means to return error codes of the Multics I/0 system.

A handler for the cleanup condition is provided in these programs to
illustrate its wuse. Any program that performs I/0 attachments should provide
one. The cleanup handler closes the file tape, thus detaching the tape, should
a release be performed around the invocation of the program.

These techniques have the advantage +that the PL/I language can be used
fully and within the language rules of PL/I, and without recourse to heuristies.
These techniques can be used to define multivolume files, error recovery
protocols, and other useful functions.

These techniques have the distinct disadvantage that a data format known
only to +the writer of such programs must be devised each time such an
application is necessary. Such techniques are at cross ends with the goals of
compatibility and standardization.

6-9 AX49-01

nst

/*

dcl

decl
dcl
decl

decl
dcl
del

decl

dcl

dcl

decl

dcl
dcl

d writer: procedure;

This program writes out a segment in the form of a nonstandard tape,
in 100-word records, with a short last record if appropriate. A header
record is written first, to tell the reading program how much

to read, and how to set the bit count. *

tape file;

(cleanup, transmit, undefinedfile) condition;

com err external entry options (variable); /* For errors ¥/
hcs $initiate count entry (char (*), char (*), char (*),
fixed bin (24), fixed bin (1), ptr, fixed bin (35));

hes_$terminate noname entry (ptr, fixed bin (35));

pll_io $error code entry (file) returns (fixed bin (35));

* Gets error code from file. */
p pointer; /* Pointer to segment, and

to sliding "window" */

buffer (3) fixed bin (35); /* Buffer for three-word record

with bit and record counts. */
1 sliding window based (p) aligned, /* Moveable 100~word window

- into segment. */

2 data (100) fixed binary (35), /* Real data words. */
2 next record fixed binary (35); /* Beginning of next record. */
1 hdr aligned automatic, /* Header to be written. */
2 bit count fixed bin (24), /* Bit count of segment */
2 word count fixed bin (19), /* Word count, for info only. */
2 record count fixed bin (17), /¥ Pull records written. ¥/
2 words_Tast record fixed bin (17); /* Words in short last record. */

short last record (hdr.words_last record) fixed binary (35)
“based (p) aligned;

i fixed binary;
code fixed bin (35), null builtin;

Pigure 6-5. Writing Segment to Nonstandard Tape

6-10 AX49-01

call hes_$initiate count (">udd>Work>Green", "data", "", bit count,
0, p, code);
/* Get pointer and length */

if p = null then do; /¥ Can't get it. */
call com err_ (code, "nstd writer", "Cannot initiate segment");
return;

end;

on cleanup call clean up proc; /* On abort, terminate

segment and close file */

on undefinedfile (tape) call problem report ("Cannot attach tape");
T /¥ Set up for problem */

on transmit (tape) call problem report {"Transmission error on tape

"y .
/s
open file (tape) title ("tape nstd 50015 -write")

sequential record output; /¥ Attach the tape.*/

hdr.word count = (hdr.bit count + 35)/36; /* Compute word length */
hdr.record count = hdr.word count/100; /* Find number of full, 100
word records */
hdr.words_last record = mod (hdr.word count, 100); /* figure out
N - short record length. */

write file (tape) from (hdr); /* Write out the header. */

do i = 1 to hdr.record count; /¥ Write out all full records. */
write file (tape) from (sliding window.data); ;
- /¥ Write 100 words */
p = addr (sliding window.next record); /* Slide up the window. */
end; i

if hdr.words_last record "= O then write file (tape)
from (short last record);
/¥ Write last record */

1 clean up proc; /* Detach and terminate. */

)
[
o]
[
n
=

/* Procedure to report problems */

problem report: procedure (plaint);

del plaint char (*); /* Specific message */
call com _err_(pll _io $error code (tape), "nstd_writer", plaint);
call clean up proc; /* Clean up. *
go to finish; /* nonlocal exit */

end problem report;
/* Procedure to clean up, detaching tape and terminating segment. */
clean up proc: procedure;
call hes_$terminate noname (p, (0));
close file (tape); /% It is permissible to
execute this, even if file
is not open. */

end clean up proc;

end nstd _writer;

Figure 6-5 (Cont). Writing Segment to Nonstandard Tape

6-11 , AX49-01

nstd_reader: procedure;

/* This program reads in a segment written out as a nonstandard +tape by the
sample writing-program, nstd writer. It uses the header written by nstd reader
to tell how many record and words to read. */

dcl tape filej;

dcl (cleanup, transmit, undefinedfile) condition;
decl com err external entry options (varlableg /* For errors */
del hes $set_be seg entry (ptr, fixed bin (24), fixed bin (35));
dcl hecs $make seg entry (char (*), char (%), char (*),

fixed bin (5), ptr, fixed bin (35));

dcl hes_$terminate noname entry (ptr, fixed bin (35));

del plil_io $error_code entry (file) returns (fixed bin (35));
/* Gets error code from file. */
dcl p pointer; /* Pointer to segment, and
to sliding "window" */

del Dbuffer (3) fixed bin (35); /¥ Buffer for three-word record
with bit and record counts. */
del 1 sliding window based (p) aligned, /* Moveable 100-word window
- into segment. */

2 data (100) fixed binary (35), /* Real data words. */
2 next_record fixed binary (35); /* Beginning of next record. */

del 1 hdr aligned automatic, /* Header to be written. */
2 bit count fixed bin (24) /* Bit count of segment */
2 word count fixed bin (195 /* Word count, for info only. */
2 record count fixed bin (17), /* Full records written. */
2 words_Tast_record fixed bin (17); /* Words in short last record. */

dcl short last_record (hdr.words_last record) fixed binary (35)
“based (p) aligned;

del i fixed binary;
del code fixed bin (35), null builtin;

Figure 6-6. Reading Segment to Nonstandard Tape

6-12 AX49-01

call hes_3$make seg (">udd>Work>Green",‘"new_data", wr o 1010b, p, code);
/* Create new segment. *

if p = null then do; /¥ Can't get it. */
call com err_ (code, "nstd reader", "Cannot create segment");
return; :

end;

on cleanup call clean up proc; /* On abort, terminate

segment and close file */
on undefinedfile (tape) call problem report ("Cannot attach tape");
/* Set up for problem */
on transmit (tape) call problem report {"Transmission error on tape");

open file (tape) title ("tape nstd 50015") /* Attach the tape. */
sequential record input;

read file (tape) into (hdr); /* Read in header info. */

do i = 1 to hdr.record count; /* Read in all full records. */
read file (tape) Into (sliding window.data); /* Read 100 words. */
p = addr (sliding window.next _record); /* Slide up the window. */
end;

if hdr.words_last record "= O then read file (tape)
into (short last record);
/* Read last record */

call hes_$set be seg (p, hdr.bit count, code); /* Set the bit count. */
if cocde = O then call com err (code, "nstd reader",
"Cannot set bit count to “d", hdr.Dbit count);
call clean up proc; /* Detach and terminate. */
finish: return; =

/* Procedure to report problems */

problem report: procedure (plaint);

dcl plaint char (*); /* Specific message */
call com err_ (pl! io $error code (tape), "nstd reader", plaint);
call clean up_proc; - /* Clean up. */
g0 to finish; /* nonlocal exit */

end problem report;
/* Procedure to clean up, detaching tape and terminating segment. */
clean up proc: procedure;
call hes_$terminate noname (p, (0));
close file (tape); /* It is permissible to
execute this, even if file
is not open. */

end clean up proc;

end nstd_reader;

Figure 6-6 (Cont). Reading Segment to Nonstandard Tape

6-13 AX49-01

PL/I CALLS TO THE USER-RING I/O SYSTEM, MULTICS STANDARD TAPE

The Multics standard tape format is a conventional format for writing
arbitrary data on magnetic tape. The I/0 module that implements this format,
tape mult , is the only program that has, or need have, knowledge of this
format. The Multics standard format provides for blocking and error recovery
within it. '

Figures 6-7 and 6-8 contain programs similar to those wused in Figures 6-1
and 6-2 above, except that the tape mult I/0 module, using stream I/0, is used
instead of the tape ansi I/0 module, with record I/0. By comparison, the
attachment to tape mult is substantially simpler to accomplish. On the other
hand, since the Multics standard format does not provide for multiple files in
one volume, or keeping name or generation information with data, the data on the
tape is useless unless one knows what it represents. Thus, as opposed to the
ANSI tape, the Multics standard tape is not self-identifying. There cannot be a
command similar to list tape contents for this function.

The other advantages and disadvantages of this technique are those of the
technique given in Figures 6-1 and 6-2 above.

There 1is no way to access a stream file of the form written by the
tape mult I/0 module through PL/I language I/O.

6-14 . AX49-01

tape mult writer: procedure;

/¥ This procedure writes out a segment to tape, using expllclt calls %o
the user-ring I/0 system to perform an attachment via tape mult . */

dcl com err entry options (variable);

dcl iox $attach ioname entry (char (*), ptr, char (¥), fixed bin (35));
decl iox $open entry (ptr, fixed bin, bit (13 aligned, fixed bin (35));
del iox $close entry (ptr, fixed bin (35));

dcl iox $detach iocb entry (ptr, fixed bin (35));

dcl iox $put_chars entry (ptr, ptr, fixed bin (21), fixed bin (35));

dcl code fized bin {35);

del hcs_$1n1t1ate_count entry (char (*), char (*), char (%),
fixed bin (24), fixed bin (1), ptr, fixed bin (35));
dcl hes_$terminate noname entry (ptr, fixed bin (35));

del p ptr;

del 1iocbp ptr; /* Pointer value of switch tape switch */
del null builting -

del seg bit (bltcount) aligned based (p);

del Dbitcount fixed bin (24);

call hes $initiate count (">udd>Work>Green", "data", "", bitcount,
0, p, code);
/* Get pointer to segment */
if p = null then call com err (code, "tape mult writer",
"Cannot initiate segment"); -
else do;
call iox $attach ioname ("tape switch", iocbp,
"tape mult 50015 -write™, code);
7* Attach sw1tch mounting the tape */
= O then call com err (code, "tape mult writer",
"Cannot attach tape."); - -
else do;
call iox $open (iocbp, Stream output, "O"b, code);
/* Open switch for stream output */
if code "= 0 then
call com err (code, "tape mult writer",
"Cannot open switch")j
else dog;
call iox $put chars (1ocbp, p, bitcount/9, code);
* Write out data, integral
number of characters. */
if code "= O then
call com err (code, "tape mult writer",
~ "Could not write data™);
call iox $close (iocbp, (0)); /* Close the switch. */
end;
call iox $detach iocb (iocbp, (0)); /¥ Demount the tape */

call hes $terminate noname (p, (0)); /* Clean up address space */

#¢include iox modes; /¥ defines "Stream output" */
end;

Figure 6-7. Writing Segment to Tape With PL/I Calls to iox_(via tape mult)

6-15 AX49-01

tape mult_reader: procedure;

/* This procedure reads in a segment from tape, using explicit calls from

dcl error_table $end of info fixed bin (35) external;
dcl com err entry options (variable);
dcl iox $attach ioname entry (char (*), ptr, char (*), fixed bin (35%);
decl iox $open entry (ptr, fixed bin, bit (13 aligned, fixed bin (35));
del iox $close entry (ptr, fixed bin (35));
decl iox $detach iocb entry (ptr, fixed bin (35));
del iox $get chars entry (ptr, ptr, fixed bin (21), fixed bin (21),
~ fixed bin (35));
del code fixed bin (35);
dcl hes $make seg entry (char (*), char (*), char (*),
fixed bin (5), ptr, fixed bin (35));
dcl hecs_$set _bc seg entry (ptr, fixed bin (24), fixed bin (35));
dcl hes $terminate noname entry (ptr, fixed bin (35));
decl p ptr;
del iocbp ptr; /* Pointer value of switch tape switch */
decl null builtin;
dcl bitcount fixed bin (24);
del char_count fixed bin (21); /* Number of characters
actually read. */
call hes_$meke seg (">udd>Work>Green", "new data", "", 1010b,
p, code);
/* Create new segment */
if p = null then call com err (code, "tape mult reader",
"Cannot make new segment"); - -
else do;
call iox $attach ioname ("tape switch", iocbp,
"tape mult 50015", code);
7* Attach switch, mounting the tape */
if code "= O then call com err: (code, "tape mult reader",
"Cannot attach tape."); - -
else do;
call iox $open (iocbp, Stream input, "O"b, code);
~ /* Open switch for stream input */
if code "= O then
call com err (code, "tape mult reader",
"Cannot open switch")3 -
else do;
call iox $get chars (iocbp, p, 1048576,
chaT count, code);
- /* Read in data, integral
number of characters. */
if code "= 0 & code "= error table $end of info then
/* We expect Tewer Than 1048576
(4 * 2 ** 18) characters. */
call com err (code, "tape mult reader",
~ "Could not read data");
else do;
bitcount = char count * 9; /* Compute bit count */
call hes_$set bc seg (p, bitcount, code);
if code "= O then call com err (code,
"tape mult reader", -
"Cannot set bit count to “d.", bitcount);
end;
Figure 6-8. Reading Segment From Tape With PL/I Calls to iox_ (via tape mult)

the user-ring I/0 system to perform an attachment via tape mult_. */

6-16 AX49-01

call iox $close (iocbp, (0)); /* Close the switch. */
end;
call iox $detach iocb (iocbp, (0)); /* Demount the tape */
end; .

call hcs_$terminate noname (p, (0)); /* Clean up address space */

end;
return;

%$include iox modes; /* defines "Stream input" */
end; -

Figure 6-8 (Cont). Reading Segment From Tape With PL/I Calls to iox
(via tape mult)

6-17 AX49-01

MULTICS TAPE COMMANDS

The tape _in and tape out commands allow magnetic tape I/0 to be performed
to and from Multics segments. These commands require the preparation of a
control file, in which detailed specification of the 1I/0 operations +to be
performed can be given.

The following command:
tape _out data tape

writes out the segment data, and the following command:
tape in data tape

reads it back in. The file data tape.tcl, in the working directory, #hould have
the following contents:

Volume: 050015;

File: data;

path: >udd>Work>Green>data;
mode: asciis;

format: S;

number: 1;

block: 600;

record: 200;

End;

These techniques have the advantage that the simplest command of all can be
used to write +the segment out or read it back in. Another feature is the
standardized control language, which is independent of I/0 module, provided by
the tape in and tape out commands.

The disadvantages of these techniques are the necessity to prepare the
control file and maintain it, and the specification of a large amount of detail
in it. The control file for these requests specifies ASCII-encoded tape; the
ANSI tape standard does not allow for arbitrary or binary data.

6-18 AX49-01

MISCELLANEOUS

270/D0S tapes 4-22

access control segment (ACS)

access control, resources
2-5
effective access
determination

2-6
manipulation of 2-

7
f
acquire resource command 1-2

ACS

see access control segment
assigning devices 2-9
2ssign resource command 1-2

attaching devices 2-10

Block statement 4-17

cancel resource command 1-2

card punch 1-1

card reader 1-1

close_file command 1-2

2-3,
access control segment (ACS)

INDEX

2-5

commands

acquire resource 1-
assign resource 1-2
cancel resource 1-2
close Tile 1-2
console output 1-2
copy file 1-2, u-1,
display pllio error
file output T-2
iocall 1-2

line length 1-2
list resources 1-2
list resource types
list tape contents
print 1-2

print attach table
print reques® types
read tape and query
reserve resource 1-2
set cc " 1-2

set tty 1-2

tape in U4-1, L-14.6
tepe out 4-1, 4-2¢
unassign resource 1-
vfile adjust 1-2
vfile status 1-2

2

communications lines
console output command
copy file command 1-2,

cpf
see copy file command

D
Density statement 4-17
device limits
workspace size 2-7
disk 1-1
I/0 modules
rdisk 51

1
1

1

4-1,

1-2

]
u

2

-2
-2

-2

2
1

7

1-1

1-2

-1,

4-6

TR

4-2

AX49-01C

display plilio_error command

End statement U-16

Expiration statement 4-17

File statement 4-16
file transfer
to magnetic tape
tape out 8§-28
to storage system
tape in 4-14.6

file output command 1-2

Format statement U4-17

generate statement U4-18

1/0
control functions
iox subroutine
copying
copy file U4-2
I/0 modules 2-1
interface
device specific
I/0 modules 2-1
iox subroutine 2-1
iox Subroutine 2-1
storage system
copy file 4-2

y 5-1

I/0 interfacer (IOI) 1-1,

ntape
rdisk™ 5-1

tape ansi 5
tape ibm T 5-
tape mult 5
tape nstd” 5

I/0 modules 2-
2
b

1-2

iocall command 1-2
I0I -
see J1/0 interfacer
iox_ subroutine 2-1
io_call command 6-1
L
limits, devices
workspace size 2-7

line length command 1-2

list resources command 1-2
list resource types command

list tape contents command

l1te

-1,

1-2

L-¢6

see list tape contents command

magnetic tape 1-1
file transfer

to storage system

tape in U-14.6
to tape
tape out U-2°8
format

see tape format
I/0 modules
ntape 5-2
tape ansi
tape ibm
tape mult 5-77
tape nstd~ 5-79
inspectTing contents of
list tape contents
read _tape_and query

5-14
5-47

4-6
4-9
Mode statement U4-17
modify statement U4-18

multivolume files Y§-22

naming devices 2-5

ntape I/0 module 5-1, 5-2
attach description 5-2

AXlh9-01C

ntape I/0 module (cont)
control operation ©§5-2

modes operation 5-3
opening 65-2

number statement 4-1¢

path statement 1-16

performing tape I/0C
system commands 6-1, 6-1Q
user written programs 6-2

peripheral devices
card punch 1-1
card reader 1-1
communications lines 1-1
disk 1-1
magnetic tape 1-1
printer 1-1

print command 1-2
printer 1-1
print attach table command 1-2

print_request types command 1-2

RCP
see resource control package

rdisk I/C module 65-1, E5-4

attach description 5-4

closing 5-10

control operation 65-6
changepack order 5-6
device info order 5-6
format trk order 5-7
getbounds order 5-8
rd trk header order 5-8
setsize order 5-9

delete record operation §-5

detaching 5-10

modes
alttrk 5-10
label 5-9
raw 5-0
wrtcomp 5-10

opening 5-5

position operation 5-5

read length operation 5-5
read record operation 5&§-%
rewrite record operation 5-6
seek key operation 5-6

rdisk T1/C module (cont)
write record operation 5-10

rdisk modes 5-9

read tape and query command 4-1, h-9
Record statement 4-17

replace statement 1-1¢6

reserve resource command 1-2
reserving resources 2-8

resource control package (RCP) 1-1,

2-1, 2-3
functions
access control, resources 2-3,
2-5
access control segment (ACS)
2-3, 2-5

assigning devices 2-3, 2-9
attaching devices 2-3, 2-1
cancelling resources 2-3
control functions, devices 2-3
detaching devices 2-3
reserving resources 2-3, 2-8
resource information 2-3
unassigning devices 2-3

naming devices 2-5

0

resource information 2-R

rtq
see read tape_and query command

set _cc command 1-2
set tty command 1-2
Storage statement 4-18

storage extend statement 4-19

Tape Control Language (TCL) 4-28,
L-t1b.6 ‘
control file U4-28, 4-14.6
comments 4-20
communication with the operator
h_22
global statements
Block 4-17
Density U-17
Expiration 4-17

AX40-01C

Tape statement

tape ansi

Tape Control Language (TCL) (cont)

control file
global statements
Format 4-17
Mode 4-17
Record U4-17
Storage U-18
Tape U-18
local statements
generate U4-18
modify 4-18
number U4-19
replace U4-19
storage extend U4-10
tape extend &-1¢
specification of tape files
multivolume 4-22
specification of tapes
370/D0S 4-22
unlabeled 4-23
statements
End U4-1¢
File U4-16
path U4-16
Volume 4-15
volume-group defaults
control file execution

4-2n

424, L4-29

tape format

ANSI 1-1
tape ansi
IBM 1217

tape ibm 1-1, 5-U47
Multics standard 1-1, 23-1
administrative records
compatibility 3-7
data padding 3-6
record format 3-
record header 3-
record trailer 3-3
tape mult 1-1, 5-77
write error recovery
unstructured
tape nstd

1-1, 5-14

3-3
:
2
5
3-7
5-79

h-1g

I/0 module
ASTII subset 5-30
attach description
block padding 5-35
buffer offset 5-36
close operation 5-38
control operation 5-38
close rewind 5-41
"feov T5-40
file status 5-=40
from command level

5-1, 5-14

5-15

5-42

harware status &§-38
reset error lock 5-U41
retention F-u41

status 5-3¢

volume status 5-39

iU

tape ansi

tape _extend statement

tape ibm

I/0 module (cont)

creating files 5-17
detach operation 5-42
encoding mode 5-21
error processing 5-38
expiration, files 5-22
extending files ©5-20
file expiration 5-22
file set density 5-25
generating files 5-21
label processing 5-37
modes operation 65-42
modifying files &§-20
multiple devices £&5-25

opening 5-25
output operations 5-19
overriding structure attributes
5-30

position operation 5-U42
processing interchange files
queries 5-27
read length operation
read record operation
reading files 5-19
record formats 5-31

d 5-32

T 5221

s 5-33

u 5-34
resource disposition 5-26
structure attribute defaultes
volume specification 5-23
volume switching 5-23
write protection §-26
write record operation
write rings 5-26

5-20

5-42
5-42

5-29

5-42

4-19
I/0 module §-1, 5-47
attach description 5-U7
close operation 5-68
control operation 5-68

close rewind &5-71

feov " 5-71

file status 5-70

from command level ©5-73

hardware status 5-69

reset error lock 5-71

retention B-71

status G5-60

volume status
creating files
detach operation
DOS files 5-53
encoding mode 5-55
error processing 5-68
expiration, files 5-55
extending files 5-51}
file expiration 5-55
file identifier 5-50
file set density 5-58
label processing 5-67

5-69
5-50
5-72

AXH9-01C

tape ibm 1I/0 module (cont) tape nstd I/0 module (cont)

modes operation 5-72 control operation
modifying files 5-5%4 saved status 5-81
multiple devices 5-58 unload 5-21
opening 5-58 write eof £EB-f2
output operations 5-5Y detach operation 5-83
overriding structure attributes modes operation 5-82
5-62 open operation 5-80
padding 5-52 position operation ©5-82
pcsition operation 5-72 read record operation 5-283
queries E5-€0 read length operation 5-82
read length operation 65-73 write record operation 5-83
read record operation 5-73
reading files 5-53 tape out command Y4-1, 4-2¢
record formats 5-63 see Tape Control Language
fb 5-£3
u &-f6 TCL
vb 5-6U4 see Tape Control Language
vbs 5-65
resource disposition 5-59
Sstructure attribute defaults 5-62 U

unlabeled tapes 5-73
volume initialization 5-67

volume specification 5-56 unassign_resource command 1-2
volume switching 5-56
write protection 5-50 unlabeled tapes U4-23

write record operation 5-73
write rings 5-59

tape in command 4-1, 4-14.6
see Tape Control Language
vfile adjust command 1-2

tape mult 1I/0 module 5-1, 5-77
control operation 5-72.1 vfile status command 1-2
error count order 65-78.1 -
get chars 5-78 Volume statement Y4-15
put chars 5-78.1
opening 5-78 volume-group defaults 4-20

tape nstd I/0 module 5-1, 5-7Q
attTach description 5-79 W
buffer size ©5-83
close operation 5-83
control operation 5-R0 workspace size 2-7
backspace file 5-80
backspace record 5-80

bed 5-80"
binary 5-20
d160C 5-81
d200 5-80
d556 5-80
d800 5-81

erase 5H-21

fixed record length 5-21
forward file 5-81
forward record 5-81
io call” 5-81

nine 5-81

protect 5-81
request status 5-81
reset status 5-81
retry count 5-81
rewind 5-81

i-5 AX49-01C

LUl ALUNG LINE

HONEYWELL INFORMATION SYSTEMS

Technical Publications Remarks Form
L

SERIES 60 (LEVEL 68)
TITLE | MULTICS PROGRAMMERS' MANUAL
PERIPHERAL INPUT/OUTPUT

ERRORS iN PUBLICATION

ORDERNO. | Ax49-01

DATED | NOVEMBER 1979

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

and action will be taken as required. Receipt of all forms will be

D Your comments will be investigated by appropriate technical personnel
acknowledged; however, if you require a detailed reply, check here.

FROM: NAME

TITLE

COMPANY

ADDRESS

DATE

PLEASE FOLD AND TAPE—
NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

Honeywell

Honeywell Information Systems
In the U.S.A.. 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sl Avenue East, Willowdale, Ontario M2J 1W5
in Australia: 124 Walker Street, North Sydney, N.S.W. 2060
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F,

26134, 7.5C1179, Printed in U.S,A,

AX49-01

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14.0
	4-14.1
	4-14.2
	4-14.3
	4-14.4
	4-14.5
	4-14.6
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17.00
	5-17.01
	5-17.1
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26.0
	5-26.1
	5-26.2
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61.0
	5-61.1
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78.0
	5-78.1
	5-78.2
	5-79
	5-80
	5-81
	5-82
	5-83
	5-84
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	i-01
	i-02
	i-03
	i-04
	i-05
	replyA
	replyB
	xBack

