
HONEYWELL

I LEVEL 68
MULTles
SYSTEM
PROGRAMMING
TOOLS

SOFTWARE

SUBJECT

MULTICS SYSTEM
PROGRAMMING TOOLS

Description of Multics System Programming Tools of Interest to Experienced
Multics Users

SPECIAL INSTRUCTIONS

This revision supersedes Revision 1 of the manual dated February 1980.

Changes made with this revision are marked by change bars in the margin;
deletions are marked by an asterisk in the margin. Commands and subroutines
that are entirely new do not contain change bars (see Preface for a list of the new
commands and subroutines).

SOFTWARE SUPPORTED

Multics Software Release 9.0

ORDER NUMBER

AZ03-02 January 1982

Honeywell

PREFACE

This manual contains information not of general interest to most users of
the Mul tics system; most users will find all the information they need in the
Multics Programmers' Manual (MPM). The information documented here is used
1nfrequently and 1S 1ntended for experienced programmers who are already familiar
with the Multics system. The commands, subroutines, and data bases described in
this manual receive a level of support that corresponds to their usage. Listed
below there are commands and subroutines that are new to the system and there
are those that are new to this manual having been transferred from the Tools PLM
(Order No. AN51).

I Changes to Multics System Programming Tools, Revision ~, Addendum A

I New Commands

add pnotice
copy dump
display label
display-pnotice
display-pvte
list pnotice names
01 dump -
peruse_crossref

The imormation :m~ spt!Ciflca~ions in this document are subJiect to Cha. lge without. notice .. T1is
docunif~,1t oonl;?ins infmmatio,l arout Ho:,eyv.'i!l~ prodt,cts ot' sern'.!es that muy no, be B'lf..ikbie
outsice the United States Cons" It your Honeywell J Aarketing Repre >f:nt2tive.

@ Honeywell In formation Systems Inc., 1982

7/82

Fi 1 e No.: 1 L 13, 1 U 13

AZ03-02A

·Section

Section 2

CONTENTS

Reference to Commands and Subroutines by
Function • . • • • •

Command Repertoire
Subroutine Repertoire

Command Descriptions
Command Description Format .
add copyright
add-pnotice ..••...•.
change kst attributes .
change-tunIng parameters, ctp
check rndcs . 7
check-mst, ckm •.•.••.
clear-partition
compare configuration deck .
comp dir info ... 7 .
compare dump tape
compare-dump-tape status .
compare-mst -. . 7
compare-object, cob
copy dump • . . .

-cop·y dump$set fdump num, copy dump$sfd n
copy dump-tape . . -. . .-
copy-mst,-cpm .•...
copyright archive
cross reference, cref
date deleter . . .
deactivate seg . .
delete old-pdds
display branch .
display-ioi data .
display-kst-entry
display-label
display-pnotice
display-psp
display-pvte ..•.•..
do subtree

do subtree$recover . . •
do-subtree$abort . •
do-subtree$status

dump partition
excerpt mst. . . • . •
expand 7
fix quota used .
generate rnst, gm .

FormaL of an MST Header .
generate pnotice . .
get ips mask • . . .
get-library segment, gls .
hp delete vtoce
hunt . . 7
hunt dec
library descriptor, Ids
I ibra.ry-fetch, If
list dir info
list-mst-..... .
list-partitions .
list=pnotice_names .

iii

Page

1-1
1-1
1-5

2-1
2-1
2-4
2-4. 1
2-5
2-7
2-8
2-9
2-13
2-14
2-17
2-20
2-22
2-23
2-24
2-25.1
2 -25. 1
2-26
2-28
2-29
2-31
2-37
2-39
2-40
2-41
2-42
2-44
2-44. 1
2-44.3
2-45
2-45. 1
2-46
2-48
2-48
2-4R
2-49
2-51
2-52
2-53
2-5 11

2-55
2-62
2-64
2-65
?-70
2-72
2-74
2-76
2-79
2-84
2-85
2-86
2-86. 1

AZ03-02

Section 3

CONTENTS (cont)

list sub tree, 1st
mcs versIon
merge_mst
mex p
monitor log
monitor-quota
nothing~ nt
ol_dump .•...•.......
pause • . . .
perprocess static sw off
perprocess-static-sw-on
peruse crossref, pcref •••...
prel inK
print apt entry, pae
print-conTiguration deck, pcd
print-error message~ pem, pel, peo, peol ..

pe 1 . :- . .
peo . . •
peol

print relocation info, pri
prInt sample refs, psrf .

print tuning parameters, ptp .
priviLeged prelink
process id-. . •
rebuild-dir .
record to sector . . .
record-to-vtocx ...
reductIon-compiler, rdc
repeat line, rpl ...
reset Tps mask

reset tpd
ring zero dump, rzd
sampLe reTs, srf

save dir Tnfo . •
save-history registers
sec tor to record •
send ips :- . . •
send-wakeup .
set Tps mask .
set-timax, stm
set-tpd
teco•
A teco Summary .
teco error . .
teco-ssd . . .
test-archive •
vfile find bad nodes
vfile-find-bad-nodes . .•.......
vtoc pathname -.
vtocx to record •
write-mst

Subroutine Descriptions .
abbrev

aobrev $abbrev . . .
abbrev-$expanded line .•
abbrev=$set_cp :- ...

ask . . . •
Clsk $ask
ask-$ask-clr
ask-$ask-int
ask-$ask-flo ,
ask-$ask-yn .
ask-"$ask-l ine
ask=)ask=c

iv

Page

2-87
2-88
2-89
2-91
2-97
2-99
2-101
2-101 • 1
2-102
2-103
2-104
2-104.1
2-105
2-111
2-115
2-116
2-116
2-116
2-117
2-118
2-119
2-121
2-122
2-123
2-125
2-126
2-127
2-128
2-164
2-165
2-166
2-167
2-170
2-172
2-172
2-173
2-174
2-175
2-176
2-177
2-178
2-179
2-205
2-212
2-213
2-214
2-215
2-218
2-220
2-221
2-222

3-1
3-2
3-2
3-2
3-3
3-5
3-5
3-5
3-6
3-6
3-7
3-7
3-8

AZ03-02

CONTENTS (cont)

ask $ask cint • . • • •
ask-$ask-cflo • .
ask-$ask-cline
ask-$ask-cyn •.••
ask-$ask-n
ask-!task-nint •
ask-$ask-nflo •
ask-$ask-nline
ask-$ask-nyn •
ask-$ask-setline
ask-$ask-prompt . . • • .

copyright notice ••• •
copyrignt notice $set suffix ...•.
copyright-notice-$tes~

create ips masK -
datebin .-.. :- .•.

da~ebin $datebin
datebin-$shift .•.
datebin-$time . .
datebin-$wkday . . . •
datebin-$dayr clk • • . .
datebin-$revert . .
datebin-$revertabs
datebin-$datofirst
datebin-$dayr mc . • • . . • . .
datebin-$clocKathr
datebin-$last midnight ..••.
datebin-$this-midnight ..
datebin-$preceding midnight .
d atebin-$followi"ng-midn ight .
datebin-$next shif~ change

decode definition - ... - ...•.
decode definition $decode cref . • . •
decode-definition-$init .-.
decode-definition-$full ..

display file value .-...•.
find incl ud e -fil e -. . . . •

-find include-file $initiate count .
find partition - - -
get oound seg Info . . • •
get-initi~l ring -. • • • •
hasn ..:-.. -.

-hash $make . . . • • • .
hash-$opt size
hash-$in -. . •
hash-$inagain • . . . • .
hash-$search •
hash-$out . .• ...••••••.

hcs $get page trace • • • •
hphcs $ips waKeup • . . • .
hphcs-$reaa partition .•••...••
hphcs-$write partition
lex error .-.•.••
lex-strini .••••.••..••••

- lex s~ring $init lex delims •
lex-string-$lex:- - .••..•••

link unsnap - ••.••
1 ist-d ir inTo . • • • .
mdc $pvname info • • • • • . •
parse channel name
parse-file :- •• - ••

parse-file $parse file init name
parse-file-$parse-file-init-ptr .
parse-file-$parse-file-set oreak
parse=file=$parse=file=unset_break

v

Page

3-8
3-9
3-9
3-10
3-10
3-11
3-11
3-12
3-12
3-12
3-13
3-14
3-14
3-15
3-16
3-17
3-18
3-18
3-19
3-19
3-19
3-20
3-20
3-20
3-21
3-21
3-21
3-22
3-22
3-22
3-23
3-24
3-25
3-26
3-27
3-30
3-31
3-31
3-33
3-35
3-36
3-37
3-37
3-38
3-38
3-39
3-39
3-40
3-42
3-44
3-45
3-47
3-49
3-53
3-53
3-55
3-65
3-66
3-68
3-69
3-70
3-70
3-70
3-71
3-71

CONTENTS (cont)

parse file $parse file . . • .
parse-file-$parse-file-ptr
parse-file-$parse-file-cur line •
parse-file-$parse-file-line no . • . •

phcs $read-disk-label -. - •• - ••...•
reha~h .-.. ~ • . .• .•.••.••
ringO get •• • • • . . .

ringTI get $segptr • • •
ringO-get-$segptr given sIt.
r in gO - get - $ n am e . -. . . -. . . . • • . .
ringO-get-$name given sIt ..
ringO-get-$name~ . • -. • • .
ringO-get-$definition••.•
ringO-get-$definition given sIt.

r in g ze rope e k - • • . . . -.
-ring-zero-peek $by name •

ring-zero-peek-$by-definition ..
ring-zero-peek-$get: max lengt:' .
ring-zero-peek-$get-max-length ptr

so r tit ems • -. . ~ . . -. . - . - . . . •
-sort Ttems $fixed bin . .

sort-items-$float-bin . . •••.
sort-items-$char - •...
sort-items-$varying char
sort-i tems-$bi t • . -. . .
sort-items-$general •..

sort items indirect •.•....
-sort Ttems indTrect Sfixed bin

sort-items-indirect-$float-bin .••.
sort-items-indirect-$char ~ . . .
sort-items-indirect-$varying char •
sort-items-indirect-$bit -
sort-items-indirect-$general
sort=items=indirect=$adj_char

stu•..•...•
stu $decode runtime value . .
stu-$find block .. -. . . .•.
stu-$find-containing block
stu-$find-header . ~ . • .
stu-$find-runtime symbol
stu-$get Dlock . -.
stu-$get-implicit qualifier •
stu-$get-line .• -.
stu-$get-line no
stu-$get-locat:ion .
stu-$get-map index
stu-$get-runt:ime address
stu-$get-runtime-block
stu-$get-runtime-line no
stu-$get-runtime-location
stu-$get-statement map
stu-$offset to pointer
stu-$pointer to offset
stu-$remote Iormat

sweep disk
sweep-disk $dir list
sweep-disk-$louQ

teco :set macro -
t ran sl at 0 r J. n fo

trans~ator-ir.fo $get sourae info
t ran s 1 at 0 r tern !-,- • • • • ~ • • . • • • •

tr8nsTJtor-temp $get segment
transl&tor-temp-$get-next segment .
cransl ator-temp-$allocate -.
translator=temp=$release_all segments .

vi

Page

3-72
3-72
3-73
3-73
3-75
3-76
3-77
3-77
3-77
3-78
3-79
3-79
3-80
3-81
3-83
3-83
3-84
3-85
3-86
3-87
3-87
3-87
3-BP
3-89
3-89
3-90
3-92
3-94
3-95
3-95
3-96
3-96
3-97
3-98
3-99
3-99
3-100
3-101
3-101
3-102
3-103
3-104
3-105
3-106
3-107
3-107
3-108
3-109
3-110
3-iii
3-112
3-112
3-113
3-114
3-117
3-11P
3-119
3-120
3-121
3-121
3-123
3-123
3-123
3-124
3-125

AZ03-02

Section 4

Index

Figure 2-1-
Figure 2-2.
Figure 2-3·
Figure 2-4.

Figure 2-5.

Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.

Figure 2-10.
Figure 2-11 .
Figure 2-12.
Figure 2-13.
Figure 3-1.
Figure 3-2.
Figure 3-3.

Table 2-1.
Table 2-2.
Table 2-3.

Table 2-4.

Table 2-5.

CONTENTS (cont)

translator_temp_$release_segment

whotab Data Base

ILLUSTRATIONS

Organization of a Translator · · · · Two Steps of Compil ing · · · · Input Tokens and Their Descriptors
Tokens, Token Descriptors, and Statement
Descriptors · · · · · · . · · · · · Semantically Analyzing Those Tokens, and
Returning . · . · · · · · · · · ·

·
· · The Current Token Phrase Used by Reductions

BNF Syntax for a Tape Language · · Reductions for the Tape Language
Reductions for the Tape Language
(Error-Diagnosing Actions Qnitted) · · · · error control table for the Tape Language · Complete Reductions for the Tape Language · BNF Specification for the Value Language

Red uc tions for the Value Language · · · Sample Input to lex string . · · Input Tokens and Their Descriptors
Tokens, Token Descriptors, and Statement
Descriptors · . · · · · · · · · ·

TABLES

· ·

· ·

· ·

Delimiting Characters Used by rdc
Ignored Delimiting Characters•...
Relationship of error control table.severity no
to Error Message Prefix ..•...•. -

SERROR CONTROL Bits Control the
error-message text • . . •

Elements of the Reduction Language

vii

Page

3-125

4-1

i-1

2-131
2-132
2-134

2-134

2-135
2-140
2-145
2-146

2-152
2-154
2-158
2-158
2-162
3-59
3-59

3-59

2-137
2-138

2-154

2-155
2-163

AZ03-02

SECTION 1

REFERENCE TO COMMANDS AND SUBROUTINES BY FUNCTION

COMMAND REPERTOIRE

The Mul tics commands described in this manual are organized by function
into the following categories:

Administrative Utilities
Debugging Facility
Directory Checking
General Purpose
Object Segment Manipulation
MST Maintenance

Detailed descriptions of these commands, arranged alphabetically rather than
functionally, are given in Section 2 of this document.

Administrative Utilities

check mdcs

compare_configuration_deck

copy_dump_tape

compare_dump_tape_status

date deleter

display_ioi_data

fix_Quota_used

mcs version

monitor_log

prelink

performs maintenance and verification of MDC
data

•
compares the configuration deck

.running system to a second copy
for the I

verifies tape copies of an original Multics
storage-system-hierarchy dump tape

generates tape copies of an original Multics
storage-system-hierarchy dump tape

prints true or false

directory-housekeeping tool: deletes
segments not used in a given length of
time

I
I
I

deletes old copies of >process dir dir I
created during previous bootload - -

displays the ring 0 data base iOi_data

repairs inconsistencies in storage system

prints version of the core image most recently
loaded into a specified FNP

I
I

moni tors acti vi ty in standard
segments

format log I
creates a prelinked subsystem

1-1 AZ03-02

I

I

privileged_prelink

reset_tpd

save history_regs

set timax

Debugging

copy_dump

deactivate_seg

display_branch

01_ dump

print_apt_entry

process_id

vfile fino bad nodes

7/82

prints system configuration information from
configuration deck

creates a prelinked sUbsystem in lower rings

resets the transparent
attribute of a segment

paging device

saves processor history registers upon each
occurrence of a signal able faul t in the
signaler's stack frame

adjusts schedul ing parameters of the call ing
process

sets the transparent paging device attribute
of a segment

modifies specialized per-initiation segment
attributes

copies an fdump image taken by BOS out of
the dump partition into the Multics
hierarchy

causes the deactivation of a segment

displays internal system information in a
directory branch wi thout attempting VTOC
access

displays internal system information in the
KST entry

looks at selected parts of an onl ine dump
created by the BOS FDUMP command and copied
into the Mul tics hierarchy by the copy dump
command -

displays the contents of specified APT entries
in either octal or interpreted form.

prints the interpretation of standard Mul tics
status codes

interprets the three data segments produced
by the sample refs command and produces a
suitable output segment

prints (or retut~ns) the process id of a
specified user

samples the machine registers
determine which segments a
referencing

in order to
process is

exaMines (1 .file keyed file to determine
wh ~ther the vf£le MSF components which
cO;'1tain ~ertair. ve-ys are in a consistent
state

1-2 AZ03-02A

vtoc_pathname

Directory Checking

comp _ dir _ info

list dir info

list sub tree

rebuild dir

save dir info

General Purpose

add_pnotice

clear_partition

cross reference

d ispl ay_Iabel

display_pnotice

do subtree

dump_partition

expand

7/82

prints the pathname of a segment given the
location of its VTOC entry

compares and reports the differences between
two directory information segments

obtains system source programs from system
libraries

pr ints information
directory saved
command

about the
by the

state of a
save dir info

lists the segments in a specified subtree
of the hierarchy

reconstructs a directory from information
saved by the save_dir_info command

saves information about the state of a
directory and the segments and I inks in
it

protects source code programs by adding, at *1
the beginning of a program, a software
protection notice in a box delimited as a
comment

overwrites the contents of a disk partition
with zeroes or an optional user-supplied
word

creates a cross-reference listing of object
programs and include files

*

prints information recorded in the physical I
volume label for a storage system disk
vol ume

information
installed

displays
software
libraries

about distributed
in onl ine system

displays information on software protection I
notices contained in source programs

prints information recorded in the Physical
Volume Table Entry (PVTE) for a storage
system disk volume

executes one or two command lines after
substituting the pathname of a given
directory in the command line

displays data from a moved data partition

generates copies of source programs wi th
include file texts included

1-3 AZ03-02A

I

I

I

generate_pnotice

get_ips_mask

hp_delete vtoce

hunt

list_partitions

mexp

monitor_quota

nothing

pause

peruse_crossref

record to sector

record to vtocx

reduction_compiler

reset_ips_mask

sector to record

send ips

send_wakeup

teco

7/82

protects Mul tics source, object archives,
and executable software via copyright

prints the current state of the IPS mask
for the calling process

deletes a specified VTOC entry

searches portions of the hierarchy for
segments with names matching a given star
name

lists the locations and sizes of all
partitions on a specified physical volume

displays the primary names of all protection
notice templates

takes mexp source segments, expands any macros
found therein, and generates as ou·tput an
expanded text segment sui table as input
to the ALM assembler

notifies user of record quota overflow
condition

does nothing: useful for metering and command
language programming

waits a specified real-time interval

displays information extracted
output fil e generated
cross reference command

from
by

the
the

converts an octal sector number to a disk
sector address

finds the VTOC entries, if any, corresponding
to a specified record number on a storage
system vol ume

compiles a segment containing reductions and
action routines into a PL/I source segment

executes a given command line repeatedly

sets the IPS mask for the current process
to unmask some or all IPS signals

converts an octal sector address to a Mul tics
record number

sends an IPS signal

sends an IPC wakeup

sets the IPS mask for the current process
to mask some or all IPS signals

is a powerful,
character-oriented,
edito;,

1-4

general-purpose,
programmable text

AZ03-02A

teco error

teco ssd

test archive

vtocx to record

Object Segment

compare_object

hunt dec

perprocess_static sw off

7/82

prints the long form of a teco error message
given the short term

allows the user to specify a directory for
teco to search when trying to find a teco
macro to execute

checks an archive segment for archive format
errors and other inconsistencies

converts an octal VTOCE index to a Multics
record number and sector offset

details discrepancies between object segment

searches a subtree for PL/I object segments

turns off an object segment's per-process
static switch

turns on an object segment's per-process
static switch

1-1I. 1 AZ03-02A

MST Maintenance

check mst

compare_mst

list mst

write mst

SUBROUTINE REPERTOIRE

produces report of contents of an MST and
some cross-reference information

reports discrepancies between two MSTs

copies an MST onto a new reel of tape

extracts selected segments from an MST

creates an MST from storage-system segments
and an MST header

produces brief report of the contents of an
MST

creates a new MST from an
storage-system segments,
substitutions

old one and
performing

allows writing of short MST without the use
of a header file

The Multics subroutines described in this manual are organized by function
into the following categories:

General Purpose
Interface to System Functions
Object-Segment Manipulation
Reduction-Compiler Utilities

Detailed descriptions of these subroutines, arranged alphabetically rather
than functionally, are given in Section 3 of this document.

General Purpose

ask

copyright_notice

create_ips_mask

display_file value

find include file

hash

flexible terminal-input facility for numbers
and strings

add (and optionally deletes) copyright I
notices to source-program segments

returns a bi t string that can be used to
disable specified IPS interrupts

outputs information about a file on a
user-supplied switch

locates an include file
include-file search rules

via system

I

ascertains information about a disk parti tion I
located on some mounted storage-system disk

is used to maintain a hash table; contains
entry points that initialize a hash table
and insert, delete, and search for entries
in the table

1-5 AZ03-02

I

I
I
I

I

I

I

I
I
I
I

rehash

sort items

sort items indirect

Interface to System Functions

abbrev

d atebin

get_initial_ring_

hcs_$get_page_trace

link_unsnap_

list dir info

teco error

teco_get_macro

reads words of data from a specified disk
partition on some mounted physical storage
disk

writes words of data into a specified disk
partition on some mounted physical
st~rage-system disk

gets various information about a specified
storage-system physical volume

parses ASCII text into symbols and break
characters

reads the label of a storage-system disk
volume

reformats a hash table of the form maintained
by the hash subroutine into a different
size

provides a general sorting facility

provides a facility for sorting a group of
data items

walks a given subroutine over a subtree of
the directory hierarchy

subroutine interface to the abbrev command

decodes calendar clock values into binary
integers

obtains a process' initial ring number

retrieves trace of process' page faults from
the supervisor

sends a specified IPS signal to a specified
process

unsnaps all links pointing to a given segment

internal interface to the list dir info
command

parses a character string that is intended
to be an 10M channel number

suppl ies name, segment-number, and entry-point
information about ring 0 segments

prints the long form of a teco error message
given the short term

called by teco to search for an external
macro

1-6 AZ03-02

Object Segment

decode definition

stu

translator info

Reduction Compiler Utilities

lex error

lex_string_

translator_temp_

returns information about a defini tion in
the object segment

supplies structural information about a bound
segment

retrieves information from the
runtime-symbol-table section of an object
segment.

supplies source-segment information for use
by translators building object segments

generates compiler-style error messages

parses ASCII character strings

provides a temporary storage-management
facility for translators

1-7 AZ03-02

SECTION 2

COMMAND DESCRIPTIONS

COMMAND DESCRIPTION FORMAT

This section contains descriptions of Multics commands, presented in
alphabetical order. Each description contains the name of the command (including
the abbreviated form, if any), discusses the purpose of the command, and shows
the correct usage. Notes and examples are included when deemed necessary for
clarity. When a command may also be used as an active function, its usage and
function are described near the end of the command description. The discussion
below briefly describes the content of the various di visions of the command
descriptions.

Name

I

I

The "Name" heading lists the full command name and its abbreviated form. I
The name is usually followed by a discussion of the purpose and function of the
command and the expected results from the invocation.

I

This part of the command description first shows a single line that demonstrates I
the proper format to use when invoking the command and then explains each element
in the line. The following conventions apply in the usage line.

1.

2.

Optional arguments are enclosed in braces (e.g.,
All other arguments are required.

{path} , {User_ids}).

Control arguments are identified in the usage line wi th a leading
hyphen (e. g., {-control args}) simply as a reminder that all control
arguments must be preceded by a hyphen in the actual invocation of the
command.

2-1 AZ03-02

I

I

I

I

I
I

I
I

3. To indicate that a command accepts more than one of a specific argument,
an "s" is added to the argument name (e.g., paths, {paths},
(-control_args}).

NOTE: Keep in mind the difference between a plural argument name that is
enclosed in braces (i. e. , optional) and one that is not (i. e. , required).
If the plural argument is enclosed in braces, clearly no argument of
that type need be given. However, if there are no braces, at least
one argument of that type must be given. Thus "paths" in a usage
line could also be written as:

4.

5.

6.

pathl {path~ ..• path~}

The convention of using "paths" rather than the above is merely a
method of saving space.

Different arguments that must be given in pairs are numbered (e.g.,
xxxl yyyl { ••• xxx~ yyy~}).

To indicate that the same generic argument must be' given in pairs, the
arguments are given letters and numbers (e. g., pathA 1 pathB 1 {... pathA!!.
pathB!!.}) . - -

To indicate one of a group of the same arguments, an "in is added to
the argument name (e.g., path!, User_id!).

I To illustrate these conventions, consider the following usage line:

I command {paths} {-control_args}

I The lines below are just a few examples of valid invocations of this command:

I
command
command path path
command path -control arg
command -control arg =control arg
command path patK path -contr~l_a~g -control_arg -control_arg

I In many cases, the control arguments take values.
values are indicated as follows:

For simplicity, common

I
I
I
I
I

I

STR

N

DT

path

any character string. Individual command descriptions indicate any
restrictions (e.g. ~ must be chosen from specified list, must not
exceed a particular length, etc.).

number; individual command descriptions indicate whether it is octal
or decimal and any other restrictions (e.g., cannot be greater than
a certain limit).

date-time character string i~ a form acceptable to the
convert_date_to_binary_ subroutine described in the MPM Subroutines.

pathname of an entry; unless otherwise indicated, it may be either a
relative or an absolute pathname.

The lines below are samples of control arguments that take values:

-access name STR, -an STR
-ring N7 -rg N
-date DT, -dt DT
-home_dir path, -hd path

2-2 AZ03-02

Notes I

Comments or clarifications that relate to the command as a whole are given I
under the "Notes" heading. Also t where applicable, the required access modes,
the defaul t cond i tion (invoking the command wi thout any arguments), and any
special case information are included.

Examples I

The examples show different valid invocations of the command. An exclamation I
mark (!) is printed at the beginning of each user-typed line. This is done
only to distinguish user-typed lines from system-typed lines. The results of
each example command line are either shown or explained.

Other Headings I

Addi tional headings are used in some descriptions, particularly the more I
lengthy ones, to introduce specific subject matter. These additional headings
may appear in place of, or in addition to, the notes.

2-3 AZ03-02

add_copyright add_copyright

Name: add_copyright

This command has been replaced by the add_pnotice command.

7/82 2-4 AZ03-02A

add_pnotice add_pnotice

Name: add_pnotice

The add pnotice command protects source code programs by adding, at the
beginning of a program, a software protection notice (copyright or trade secret)
in a box delimited as a comment. Multiple protection notices are supported.
Archives of source code programs can be protected using this command. The
archive pathname convention is supported. If a particular language or suffix is
not supported, an appropriate message is printed. By default, protection notice
templates in)tools are used.

add_pnotice path {-control arg}

where:

1 . path
is the name of a source code program or an
programs that require ~rotection notices. The
archive suffix must be included.

archive of source
language suffix or

2. control args

Notes

can be chosen from the following:

-name STR, -nm STR
where STR specifies the name of a protection notice template to be
added (see Notes below).

-trade secret
specifies that the notice to be added to the segment is the default
Honeywell's trade secret notice (which has an added name of
default_trade_secret.pnotice).

If no control arguments are specified, the notice added is the Honeywell's
copyright notice with the name default.pnotice.

A list of available copyright and trade secret protection notice template
names can be obtainec with the list pnotice names command. The -name can be
used to specify any of these templates~ -

For further information on the software protection facility see the Multics
Library Maintenance PLM Manual (Order No. ANPO).

7/R2 2-4. 1 AZ03-02A

Name: change_kst_attributes

The change kst attributes command allows a user to change selected per-process
attributes of a-segment. tt

change_kst attributes {-control_arg} target attributes

where:

1. control arg

2. target

can be -name (or -nm) and is only used if the target is a relative
pathname that looks like a segment number.

specifies the segment whose KST (known segment table) attributes are *
to be changed. Either a relative pathname or an octal segment number
may be specified.

3. attributes

tpd

tms

tus

specifies those attributes that are to be· changed. One or more of
the following must be given:

if set, pages of this object are not placed on the paging device on
the account of the user.

if set, date-time-modified is not updated on the account of the
user.

if set, date-time-u~ed is not updated on the account of the user.

allow deactivate
if set, permits explicit deactivation of the segment.

allow write

audit

Tf set, the user is not prevented from writing into the segment or
directory if he has permission to do so.

if set, enables auditing.

2-5 AZ03-02

Notes

I Because directories are activated when their segment numbers are assigned,
it is not possible to meaningfully set the tpd, tms, tus, or allow_deactivate
attributes for a directory.

If an attribute is preceded by the circumflex character (A), then the attribute
is reset. Otherwi se, the at tr ibute is set. At tr i butes not mentioned are unaffected.

This command requires access to the hphcs gate if the tms or tus attributes
are to be set; otherwise, access to the phcs_ gate is required.

2-6 AZ03-02

Name: change_tuning_parameters, ctp

• The description of the change tuning parameters command may now be found in I
MulticsSystem Metering, Order No.-AN52. -

2-7 AZ03-02

check mdcs check mdcs

Name: check mdcs

The check mdcs command checks for valid format and invalid unique identifier
(UID) pathnames in the master directory control segment (MDCS) for a given volume.

I These segments are found in > lv, and are sometimes damaged by system crashes.
Any errors found are reported via the syserr log and, if possible, corrected.

check mdcs volume

where volume is the name of a storage system volume.

Note

Access to the mdc_priv_ gate is required to use this command.

2-8 AZ03-02

check mst check mst

Name: check_mst, ckm

The check mst command reads a Mul tics system tape (MST) and provides information
about improper combinations of attributes and missing procedures. It also provides
information about the segment numbers assigned for supervisor and initialization
segments, their names, attributes, and whether or not they were referenced.

check mst reel id {-control_args}

where:

1. reel id
is the reel identification number of the tape to be written. The I
reel identification number, which is site dependent, may be up to 32
characters long. The reel id may also include a density specification
to indicate the density of the tape being written, as in
"060341,den:1600".

2. control args

Notes

~an be seleeted from the following:

-collection, -colI
succeed ing numeric arguments define the collections after which a
cross-reference check is desired. If this argument is not supplied,
a cross-reference check is performed only after collections two and
three.

-debug, -db

-file

sets a switch that preserves the tables constructed during checking;
should not normally be used.

checks a file rather than a tape.

For normal use in checking out a new Multics system, the usage is:

check mst NNN

where NNN is the reel identification number desired.

Provision is made for up to three collections to be loaded and checked for
cross-references.

A BOS tape may not be checked with this command.

2-9 AZ03-02

I

I

check mst check mst

Diagnostics and Results

Output produced is directed to the segment NNN.ckrout where NNN is the reel
identification number of the specified tape.

After each collection is read, the system prints the number of words to be
loaded into segments directly from the tape. When the tape is dismounted, the
system prints the total number of words read from the tape, includ ing both
segment contents and loading information.

If the grand total line does not immediately follow a collection total
line, the ckrout segment should be examined immediately to discover the cause.
Certain diagnostics relating to improper format or sequencing should occur within
the first 20 to 50 lines.

The following messages can be written into the ckrout segment while processing
a tape.

1. "Loading collection No.i": The system is starting to read the ith collection
from the tapes, extrac£lng names and linkage information. -

2. "Collection-mark K": A collection mark with a value of K was read from the
tape, completing the loading phase for the collection.

Following the "Collection-mark" message, the running count of segments
processed in the various categories and the number of words used for each category
are listed. The previous two messages are the only ones that normally occur;
however, various other diagnostics can appear in various other cases listed
below.

3.

4.

5.

6.

7.

"Illegal control word ~ after seg 1": The format of the tape was incorrect,
such that the 12-octal-digit string xxx was not valid in the context in
which it was encountered; an error in-efenerating the tape or an unnoticed
tape error may have been responsible. If this condition occurs, no more
information is read from the tape.

"Possible tape format error or incorrect switch setting": The physical
tape cannot be successfully read by the Mul tics tape reader package; or,
the number of collections to be checked as specified in the argument list
to the command does not exist on the tape.

"Name <z) also on seg No .1": Duplicate names appear on the tape. This
occurs normally only in collection 3 for two segments that are different in
ring 0 and in some outer ring.

"~eg !.: message tt : Certain checks are mad e for unusual combinations of
attributes in the description of the segment, and message describes the
conflict.

"Bad text-link sequence after z": The next segment after a text segment
was not the linkage segment it should have be~n; or, a linkage segment was
found not preceded by its text segment. The same actions occur as for (3)
above.

"Status conflict": Wired code is referencing nonwired code. This condition
is not necessarily an error, since program logic may permit it.

2-10 AZ03-02

check mst check mst

Cross-Reference Output

For each group of collections for which a cross-reference listing was requested,
the following output appears in the ckrout segment.

1. For each collection, in sequence:

2.

Collection No.1, collection mark k

(values of i and k are as before).

For each segment for which one or more diagnostics appear:
number, and all its names.

its segment

3. Diagnostic messages

a. First character is <
the link could not be satisfied, for the reason given.

b~ "message name" .
advisory diagnostic pertaining to possible mismatching attributes be'tween
the referencing and referenced segments.

Segment Summary Listing

1 •

2.

3.

For each segment on the tape(s) read, the following information appears:

Segment No.

Segment name

Acc

the system assigned segment number (in octal).

the primary name of the segment as specified on the tape
(secondary names appear indented on successive lines).

the access to the segment as specified on the tape.

4. Switches (miscellaneous attributes)

Segment Status

W Wired down.

G The segment is paged.

p The segment is a per-process segment.

S The segment is to be deleted at shutdown.

B The segment is an abs segment.

T The segment is a temporary segment.

L The segment has an associated linkage segment.

C The segment's linkage section will be combined.

K The segment's linkage section will be wired.

N The segment is not referred to by linkage
reference, and is not it-self a linkage section.

2-11 AZ03-02

I

check mst - check mst

A The segment is encacheable.

* The segment is never referenced.

5. Ring brackets

6. Length (a multiple of 16 words)

7. Pathname

Notes

Between collections, the new collection number (i), is printed out. Segments
1 isted for collection 0 are those bootstrap 1 manufactures before load ing real
segments.

If unexpected status is received during reading of the tape, a message is
printed on the user's terminal and the debug command is called. If maintenance
personnel are available, they should be contacted for further information; otherwise,
type • q<NL) to ex it from the debug command so that cleanup operations can be
performed.

2-12 AZ03-02

clear_partition clear_partition

Hame: clear_partition

The clear partition command overwrites the contents of a disk parti tion
with zeroes or~n optional user-supplied pattern words. See also dump partition
and list_partitions commands in this manual. -

clear_partition pvname partname {control_args}

where:

1. pvname
is the name of the physical volume on which the parti tion to be
cleared exists.

2. partname
is the name of the partition to be cleared. It must be four char:-acters
or less in length.

3. control arg

Notes

may be chosen from the following:

-brief, -bf
produces brief format messages.

-long, -lg
produces longer format messages. (Default)

-pattern word
overwrites the partition with data consisting of the specified octal
pattern word. The specified word is written into every location in
the partition. If this control argument is not. specified, a default
of all zeroes is used.

Access to the phcs_ and hphcs_ gates is required.

The user is always queried as to whether the partition should be overwritten;
by default (if -brief has not been specified), the contents of the first eight
words in the partition are displayed (in octal and as ASCII characters) as part
of this question, to aid in preventing accidental overwri ting of the wrong parti tion.

2-13 AZ03-02

compare_con figuration_deck compare_configuration~deck

Name: compare_configuration_deck

The compare configuration deck command compares the configuration deck for
the running system to a saved copy.

compare_configuration_deck path {-control_arg}

where:

1. path
is the pathname of a saved copy of the configuration deck.

2. control arg
may be one of the following:

-brief, -bf
suppresses the message- if the two configuration decks are identical,
and suppresses printing of the identifying headers.

-long, -lg
prints all output. (Default)

Output format (-long mode)

The long output format consists of up to four sections, each of which is
printed, with an identifying header, if it is not empty. The four sections are
added cards, deleted cards, changed cards and MEM cards. The section for MEM
cards is only printed if the order or number of MEM cards in the two decks
differs; otherwise, only changed MEM cards are printed. The changed cards are
listed in pairs, such as: '

Was: mem a 123. on
mem a 123. off

The first line (prefaced by Was:) is the card from the saved deck, and the
second line is the current card. If the two decks are different in order or
number, this is announced, and both decks are printed in their entireties.

Output format (-brief mode)

The brief output format omits the section headings and the message: "The
two decks are identical." Cards are identified by preface--added cards are
prefaced by "New:" and deleted cards by "Old:". Changed cards are listed in
pairs, in the same format as in the long output mode. If the MEM cards sectior
is printed, it is the last section. The MEM cards are listed in two groups,
wi th the first card in each group prefaced by "Was:" (for the first group) or
"Now:" for the second group, and all the other cards in the group are lister
with no preface.

2-14 AZ03-G

compare_configuration_deck

Examples

Long mode output

Note that because the MEM cards have been reordered, the changed card for
MEM A is not listed in the changed cards section.

Cards added in current deck:
parm chwm dirw ttyb 7000.
salv pdlv 1

Cards deleted from old deck:
intk warm 3 star

Changed cards:
Was: cpu b 6 off

cpu b 6 on

MEM cards are reordered:
Was: mem a 258. on

mem c 258. on
mem b 258. on

Now: mem c 258. on
mem a 258. off
mem b 123. on

Brief mode output

This output is equi valent to the sample output for the long mode shown
above.

Old: parm chwm dirw ttyb 7000.
Old: salv pdlv 1
New: intk warm 3 star
Was: cpu b 6 off
Now: cpu b 6 on
Was: mem a 258. on

mem c 258. on
mem b 258. on

Now: mem c 258. on
mem a 258. off
mem b 123. on

Usage ~ Active Function

[ccdk path]

When used as an active function, ccdk returns either "true" or "false" to
indicate whether the current configuration deck and the copy are equivalent.

2-15 AZ03-02

compare_con figuration_deck compare_configuration_deck

Notes

This command attempts to be as accurate as possible when identifying "changed"
cards--it knows about the cards (such as MEM, CPU, etc.) that may appear several
times and specify multiple items and identifies them by their operands as well
as by name. It decides that the two decks are "completely" different if there
appear to be more than 32 differences between them.

2-16 AZD3-D2

The comp dir info command compares two directory information segments created
by save dir info and reports on the differences.

comp_dir info path1 path2 {-control_arg}

where:

1. path 1
is the pathname of the old directory information segment. If the
dir_info suffix is not supplied, it is assumed.

2. path2
is the pathname of the new directory information segment. _ If the
dir info suffix is not supplied, it is assumed.

3. control arg
can be one of the following:

-brief, -bf
compares and prints minimum information.

-verbose, -vb
compares and prints almost all information.

-long, -lg
compares and prints all information.

Notes

If no control argument is specified, the -verbose control argument is assumed.

Output from the comp_dir _info command is written on the user_output I/O
switch.

Unless the -brief control argument is specified, a form feed character is
transmitted and then a heading is printed that identifies the directories being
compared and the times the information was saved.

Output is in three sections:

modified entries
deleted entries
added entries

and is identified by entry type (dir, seg, or link) and the entryname.

2-17 AZ03-02

For deletions and additions, a heading of the form:

deleted: entry entryname

is printed, followed by a listing of the attributes of the deleted or added
entry, in the format:

item name: value

For segments that have been modified, a heading of the form:

modified: entry entryname

is printed, followed by a line of the following formats:

item name changed from value1 to value2
item-name added: value

(The second format is used to report the addi tion or deletion of names, ACL
entries, etc.)

The list below shows the output items according to the control argument and
entry type. The control arguments are listed in order of their verbosity; i.e.,
the -brief (-bf) control argument prints out the least information, the
-verbose (-vb) control argument prints out more information (including the It-bf"
items), and the -long (-lg) control argument prints out all of the items listed.

segments:

-bf names
ring brackets
damaged switch
property list
deletion of ACL
truncation

-vb safety switch
copy switch
tpd switch
no complete dump switch·
no-incremental dump switch
security OOS switch
audit flag
multiclass switch
access class
author
bit count author
ACL
date branch modified
records used
max length

-lg date modified
volume
bit count
entry point bound

2-18 \Z03=0

directories:

-bf names
ring brackets
damaged switch
property list
deletion of ACL
sons volume
master dir
quota
MSF indicator

-vb safety switch
copy switch
tpd switch
no complete dump switch
no-incremental dump switch
security OOS switch
audit flag
multiclass switch
access class
author
bit count author
ACL
initial seg ACL
initial dir ACL

-lg ACL

links:

-bf

-vb

-lg

date branch modified
date modified

names
type
link target

date link modified

link dumped

When looking for a match between the old and new dir info segments, the
comp dir info command looks first for a match on the unique ID item. If no
match is-found, it looks for any entry with a name matching the primary name of
the old entry.

If a match is found, the comp dir info command checks a set of i terns (depending
on the specified control argument) to determine whether to report the entry as
modified.

The names item is always checked. The date dumped and date used items are
never compared. Other checking is dependent upon the control argument.

If comp dir info completes a pass wi thout finding any modifications, deletions,
or additions, it prints "Identical." Invoking the command wi th a more verbose
control argument may detect some changes.

2-19 AZ03-02

The compare dump tape command provides a method of verifying that copies of
an original Multlcs storage system hierarchy dump tape are correctly made.

where:

1. control args
are optional and may be one or more of the following:

-master volume STR1 ••• STRn, -mvol STR1 .•• STRn
provides a list of master tape volume names forming the master volume
set used for comparison. The names are separated from one another
by a blank. Up to 10 volume names may be given. If not specified,
the user is queried for master tape volume names as each tape in the
v~lume set is read.

-copy volume STR1 •.. STRn, -cvol STR1 ••• STRn
provides a list of tape volume names forming the copy volume set
being compared with the master volume set. The names are separated
from one another by a blank. Up to 10 volume names may be given.
If not specified, the user is queried for volume names as each tape
in the copy volume set is compared with the master volume set.

-track N, -tk N
specified that tapes in one of the volume sets are to be mounted on
a tape dri ve capable of hand ling tapes conta ining N tracks. The
default track size is 9. (See "Notes" below.)

-density N, -den N
specifies that tapes in one of the volume sets are to be mounted on
a tape drive capable of handling tapes written at density N. However,
the actual densi ty at which the tapes were written determines the
density that is used. If omitted, the default density is 1600 BPI.
(See "Notes" below.)

-abort
aborts the verification when the first tape discrepancy is found.
The default is to report all discrepancies found between the master
and copy tape sets.

-select
specifies that the copy set being compared is a subset of the contents
of the master set being compared. The purpose of this control argument
is to allow the comparison software to skip those components on the
master set that do not appear on the copy set.

2-20 AZ03-02

Notes

If the -master volume or -copy volume control argument or both are not
specified, the user -is queried for the tape labels of the master or copy tape
set or both.

The -track and -density arguments may only be given after the =master volume
or -copy volume control arguments. Thus, if default track and density are not
correct,--master_volume or -copy_volume must be given.

The -track and -density arguments apply only to the tapes composing the
master or copy volume set associated with the preceding -master volume or
-copy volume argument. Different -density and -track arguments can appear with
each ~master volume or -copy volume control argument if the default track size
and density are not appropriate for that volume set.

If the user wishes to specify nondefault track size or density, then specific
values must be provided in the list of tape reels. The specification is ~ade as
part of the reel label. Each specification is separated by a comma. For example:

compare_dump_tape -abort -mvol M1, 9track,den:800 M2,9track,den:800 -cvolC1 C2

Examples

compare_dump_tape -mvol M1 M2 M3 -cvol C1 C2 C3

compares master tape volumes M1, M2, and M3 with copy volumes C1, C2, and C3.

compare_dump_tape -abort -mvol M1 -cvol C1 -den 800 -tk 7

compares master tape voluem M1 with copy volume C1, which is mounted on a 7-track,
800 BPI tape drive.

2-21 AZ03-02

The compare dump tape status command prints either "true" or "false" depending
on the just-comj)1etea invocation of the compare dump tape command. If invoked
as an active function, the values true or false are returned to the caller. The
program does not accept input arguments in either case.

As an active function:

2-22 AZ03-02

compare_mst

Name: compare_mst

The compare mst command is used to read two Multics system tapes (MSTs) and
to list all differences between them. All differences in segment headers sand
the starting -address of any inequalities or differing lengths of segment contents
are noted. Additions, deletions, and moves of segments are handled. One can
optionally save the contents of differing segments in the user's working directory
for further detailed comparisons. Any number of collections can be handled, but
a warning message is printed if a tape does not end in a collection mark. If
the active all rings data segment is found on the first tape, a message containing
the system-identifiers of both tapes is printed.

compare_mst reel id1 reel id2 {-control_arg}

where:

1. reel id 1
is the reel identific~tion number of the tape to be wri tten. The I
reel identification number, which is site dependent, may be up to 32
characters long. The reel id may also include a density specification
to indicate the density of the tape being written, as in
"060341,den=1600".

2. reel id2
- is the reel identification number of the new tape.

3. control arg
1s -save to save the contents of corresponding segments with
discrepancies in the user's working directory under the names
tp1.<segment name> and tp2.<segment name>. An added segment is saved
under the name tp2.<segment_name>. -

2-23 AZ03-02

compare_object compare_object

Name: compare_object, cob

The compare object command compares two object segments and, optionally,
prints out the changes made to the segment specified by oldpath to yield the
segment specified by newpath. The assumption is that the first segment is older
than the second, and that they were both produced from the same source segment
but, potentially, by different versions of a language processor.

compare_object oldpath newpath {-control_args}

where:

1. oldpath
is the pathname of the first segment.

2. newpath
is the pathname of the second segment.

3. control args
may be chosen from the following:

-brief, -bf

-text

-defs

prints out by section a summary of discrepancies in the object segments,
suppressing detailed listing of the discrepancies.

compares the text sections of the two segments.

compares the definition sections of the two segments.

-link, -lk
compares the linkage sections of the two segments.

-all, -a
compares the text s definition, and linkage section of the two segments.
If the segments have separate static sections, these are compared
also. This is the default.

-static
compares the static section of two segments wi th separate static;
otherwise, compares the linkage sections.

2-24 AZ03-02

Name: copy_dump

The copy dump command copies an fdump image taken by BOS out of the dump
partition into the Multics hierarchy. It creates as many segments (up to ten)
in >dumps as necessary to hold the fdump image.

copy_dump

The name of each segment has the form:

mmddyy.tttt.s.eee

where:

1- mmddyy
is the date the dump was taken.

2. tttt
is the time the dump was taken.

3· s
is a sequence number (0, 1, 2, 9) •

4. eee
is the error report form (ERF) number used in reporting this dump.

This entry sets the value of the next FDUMP to be taken by changing the
value associated with the ERF number in the dump partition.

copy _ dump$set _ fdump _.num er fno

where:

1. erfno
is the ERF number for the next fdump to be taken.

This entry point will modify the dump partition only after the last dump
taken has been copied. If an ~ttempt is made t~ change the ERF number before a
dl;mp han been (!opied, an error message will be r'~tl1rnec!.

7/82 2-25. 1 AZ03-02A

copy_dump

Notes

This command does not allow a particular dump to be copied twice;
therefore, it will return an error code if an attempt is made to recopy a dump.

This command interfaces to hphcs_$copy_fdump and to hphcs_$set fdump num;
it requires hphcs_ access.

7/82 2-25.2 AZ03-02A

compare_object compare_object

Notes

If no control arguments are specified, the text, definition, and linkage
sections of the two segments are compared.

The equal convention may be used.

In comparing the lengths of the symbol sections of the two segments, the
compare object command uses a heuristic to determine whether a discrepancy is
serious-or trivial (e.g., caused by differences in pathnames of include files).
This heuristic errs in the direction of caution and tends to be inaccurate for
large object segments.

2-25 AZ03-02

I

I

copy_dump_tape copy_dump_tape

The copy dump tape command generates tape copies of an original Mul tics
storage system- hierarchy dump tape.

where:

1. control args

7/82

can be one or more of the following:

-density N, -den N
specifies that output tape volume sets are to be written at a density
of N. If specified for input tape volume sets, the tapes are mounted
on a tape drive capable of handling tapes written at density N.
However, the actual density at which the input tapes were written
determines the density that is used. If omitted, the default density
is 1600 BPI. (See "Notes" below.)

-input volume STR1 ... STRn, -ivol STR1 ... STRn
provides a list of input tape volume names (STR) forming the input
volume set being copied. The names are separated from one another
by a blank. Up to 10 volume names can be given. If not specified,
the user is queried for input tape volume names as each tape in the
volume set is copied.

-map {NAME}
cont rol s the gener ation and nam ing 0 f a dump map. If -select is
used, and -map is used wi thout a NAME, the map wi 11 have a name of
"SELECTION FILE NAME.map". If a NAME is given, the map will have a
name of "NXME.m~p". If -select is not used and -map is used without
a NAME, the map will have a unique name with the .map suffix added;
otherwise, the map will have a name of "NAME.map".

-output volume STR1 ... STRn, -ovol STR1 ... STRn
provides a list of tape volume names forming one of the output volume
sets produced by the copy operation. Volume names are separated
from one another by a blank. Up to 10 volume names can be given in
each output volume set. More than one copy of the input volume set
can be pro d u c E'd by s p e c i f yin g s eve r a 1 - 0 u t put v 0 I urn e con t r 0 I a r gum e n t s •
If not specified, only one copy of the input volume set is produced.
The user is queried for output tape volume names as each tape is
written.

-select STR
STR is the pathname of a file similar to a standard backup dump dump
control file. See Notes below for further details. For complete
information regRrding the format of a dump file, see the writeup on
b;Jckup_dun;p in the ~ultics Ope:-"Dtor'! .!iandbc~~ (Orde- Ho. AMP1).

2-26 AZ03-02A

copy_dump_tape copy_dump_tape

Notes

-track N, -tk N
specifies that tapes in one of the volume sets are to be mounted on
a tape drive capable of handling tapes containing N tracks. The
default track size is 9. (See "Notes" below.)

If only one copy is being made, the -output vol ume control argument is
optional. The user is queried for the volume name -of each output volume as it
is written.

When several copies are made at the same time, the -output volume control
argument must appear once for each copy being made, followed by-a list of tape
volume names comprising that copy. The -track and -density arguments can only
be given after the -input volume or -output volume control arguments, and apply
only to the tapes composing the input or output volume set associated with the
preceding -input volume or -output volume argument. If more than one copy is
being made, difrerent -density and -track arguments can appear after each
-output volume control argument if the defaul t track size and density are not
appropriate for that volume set.

Pathnames in the optional selection file must contain only primary names.
They must also be full pathnames; relative pathnames are not allowed.

The map generated does not denote the tape number on which an object was I
written. Only one map is generated even though more than one output volume set
may be specified.

Examples

copy_dump_tape -ivol i1 i2 -ovol 01 02

copies volumes i1 and i2 onto output volumes 01 and 02.

copy_dump_tape -ivol i1 i2 -ovol 01 02 -ovol 03 04

copies volumes i1 and i2 onto two output volume sets, 01 and 02, and 03 and 04.

*

7/82 2-27 AZ03-02A

I

copy_mst

Name: copy_mst, cpm

The copy mst command is used to copy a Mu1tics system tape (either a Mu1tics
or BOS boot10ad tape) onto another reel of tape.

copy_mst reel id1 reel id2

where:

1 •

2.

Note

reel id1
is the reel identi fication number of the tape to be written. The
reel identification number, which is site dependent, may be up to 32
characters long. The reel id may also include a 'density specification
to indicate the density of the tape being written, as in
"060341,den:1600".

reel id2
is the reel identifier number of the tape onto which the copy is to
be made.

The message:

"Tape tape_id1 does not end in a collection mark"

is normal for BOS tapes.

2-28 AZ03-02

copyright_archive copyright~archive

Name: copyright_archive

This command has been replaced by the add_pnotice command.

7/82 2-29 AZ03-02A

This page intentionally left blank.

7/82 2-30 AZ03-02A

cross reference cross reference

Name: cross_reference, cref

The cross reference command creates a cross-reference listing of any number
of object programs. The listing contains information about each object module
encountered, including the location of each program, its entry points and
definitions, its synonyms, if any, and which other modules encountered reference
each entry point or definition. It also optionally supplies a cross-reference
listing of include files used by the modules encountered.

cross reference library descriptions {-control_args}

where:

1. library descriptions
have three forms:

pathl path2 •.• pathN

-library library_name pathl path2 •.. pathN

-library library_name -all pathl path2 pathN

(The control argument "-library" can be abbreviated as "-lb".) Each
pathi is the pathname of a segment to be examined and cross-referenced.
The star convention is allowe"d. The library name can be any user-chosen
identifier. All modules represented by path 1 ••• pathN are treated
by the cross-referencer as if they were in a common library of that
name. If the library description contains the control argument "-all,"
all the module names encountered are considered external (see "Resol ving
References" below). This control argument is generally used only
for cross-references of the Multics Hardcore libraries.

2. control_args
are one or more consistent combinations of the following:

-input file, -if path
specifies that a'" control file describing the modules to be
cross-referenced is to be used instead of the library descriptions.
If the crl suffix is not part of the supplied filename, it is assumed.
If this control argument is used, no library descriptions are allowed.

-output file file, -of file
specifies that the cross-reference list is to be created in a segment
of the specified name. If the crossref suffix is not part of the
supplied filename, it is assumed. If this control argument is not
supplied, but its -input file control argument is supplied, the output
file takes its name fro~ the input file, with the suffix ".crossref"
replacing the suffix ". crl". Otherwise, the output file is named
"crossref.crossref".

-brief, -bf
suppresses nonfatal error messages. This control argument does not
affect the reporting of error messages to the output file.

2-31 AZ03-02

,

cross reference cross reference

-first
specifies, in conjunction with the -input file control argument, that
once any instance of particular module has been located, the
cross-referencer need not search the remaining directories for other
instances of modules with the same name. If this control argument
is omitted, the cross-referencer searches all libraries in the search
list for each module name supplied.

-include files, -icf
specifies that include files used by all modules examined are also
to be cross-referenced.

-short, -sh
specifies that referenced modules that are not included in the scope
of any 1 i brary desci should not be included in the output. This
control argument -causes the output to reflect only the
interrelationships among the modules in the libraries specified.

-line length N, -11 N
causes lines in the output file to be formatted to the given line
length. The default is 132.

Module Examination

Module examination is performed in two passes. The first pass defines all
the segment names, synonyms, and definitions. The second pass examines external
references, and attempts to resolve them with existing definitions.

Segments encountered fall into four classes:
stand-alone modules, and archives.

nonobject, bound segments,

When a nonobject segment is encountered, a warning message is printed to
that effect, and the segment is included in the results of the cross reference.

When a bound segment is encountered, a warning message is printed to that
effect, and the segment is ignoreq. Bound s"egments are of no use to the
cross-referencer, since information necessary to determine which components make
use of which external reference links is no longer available due to the binding
process. Instead, the object archive from which it was bound should be used.

When a stand-alone segment is encountered, it is analyzed for entry pOln~s,
definitions, and external references. All additional names on the segment are
entered as synonyms for the module. This information is then included in the
results of the cross-reference.

When an archive is encountered, each component is analyzed for entry points,
definitions, and external references. If a bindfile exists, synonyms for each
component are derived from "synonym" statements in the bindfile, when they exist.
This information is then included in the results of the cross-reference.

2-32 AZ03-02

cross reference cross reference

Modules are also identified by the segment in which they were found (either
themselves, for a stand-alone segment, or the containing archive, for an archive)
and by the library_name of the directory in which they are found. If the directory
is specified without a library name, the pathname of the directory is used as
the library name. This makes it-possible to have multiple occurrences of segments
with the same name, as long as they differ by at least one of these identification
criteria.

Resolving References

When a module is examined by the cross-referencer, its name and synonyms
are classified as "internal" or "external" by the following criteria:

1. If the module is stand alone, its name and synonyms are external.

2. If the module is archived, and the library description contained the
"-all" control argument, its name and all its synonyms are considered
external.

3. If the module is archived, and the library description did not contain
the "-all" control argument, its name and each of its synonyms is
external only if it appears in the "Addname:" statement of the bindfile.
If no bindfile exists, the name and synonyms are considered internal.

The cross-referencer attempts to resolve external references on a best-match
basis by using the following criteria:

1. If the reference can be satisfied by a definition in the same module,
that definition is used.

2. If the referencing module is part of a bound segment, and it can be
satisfied by a definition in' the same bound segment, that defini tion
is used.

3. If the reference can be satisfied by an external definition in the
same library_name, that definition is used.

4. Otherwise, the first external definition encountered that satisfies
the reference is used. If more than one such defini tion exists, a
warning message is printed.

Format of a Driving File

If the -input file control argument is specified, the cross-referencer takes
its i~put from a special file.

2-33 AZ03-02

cross reference cross reference

The first lines of the file must contain the names of one or more directories
to be searched. They are specified in the following manner:

-library:
pathname 1
pathname:2

pathname_N

(OR -library -all:)
library name a
library:name:b

Each pathname i specifies a directory to be searched. When present, a
library name (which-may contain spaces) is used to describe the preceding directory
name. (See "Module Examination" above.) The tokens "-wd" or semicolon ends the
search list.

The next information in the file is a list of the segments to be examined.
They must appear one to a line.

If the user wishes to explicitly define synonyms for any modules that would
not otherwise be generated (e.g., a nonapparent reference name by which a segment
is sometimes initiated), they can be included in this section with one or more
lines of the form:

modulename syn1 syn2 •.. synN

These lines will not by themselves cause the cross-referencer to search for
the module "modulename ;-"Since it may not be a freestanding segment. Any synonyms
defined in this manner are considered external.

A file can consist of several repeti tions of the format described above;
is, a search list, segment names, another search list, more segment names, that

etc.
list.
having
by the

Whenever a new search list is encountered, it replaces the old search
If a driving file is to be used, the greatest efficiency can be gained by
it consist of multiple occurrences of a one-directory search list followed
segments contained in that directory.

For example, a control file constructed to cross-reference a student subsystem
might look like the following:

-library:
)udd)Class)systemdir)object CLASS SUBSYSTEM;

class login responder.archive
class-tests:archive
student grades database
audit procedure
class-utilities. archive
unallowed compiler stub fortran p11
unallowed:compiler:stub

Special Cases

Segments with unique names and segments whose last component is a single
digit are ignored, since these are conventions used by the system library tools
to denote segments that are to be deleted shortly.

2-34 AZ03-02

cross reference cross reference

Archives whose names are identical with the exception of a different numeric
next-to-last component are considered the same archive.

Definitions or entry points in archive components that masquerade as segment
names by the expedient of an added name on the bound segment, without benefit of
being defined as a synonym for their containing component, are not cross-referenced
satisfactorily.

Include Files

The cross-reference listing of include files, when requested, is appended
to the regular output of the cross-referencer. Each include file encountered is
classified by its entryname and its date/time modified. This ensures that modules
that use different versions of the same include file are apparent.

Example

The following command produces a cross reference listing of the Standard
Service System in the file "standardocrossrefii:

cref -library STANDARD >ldd>sss>o>** -of standard

To produce a cross reference listing of the hardcore library, the following
command line can be used:

cref -library HARD -all >ldd>h>x>* >ldd>h>o>*.archive -of hard

(Note the use of the "-all" control argument.)

Output Example

Entries are separated by dashed.lines in the output listing. The following
is a sample entry:

---------------------------*****bound x in SSS *****---------------------------
sample segname SYNONYM: one syn,-another syn

one entrypoint program_a program b -
second entrypoint program_a program-c,
unused-entrYPoint -
undefined_ent (?) program_d

2-35 AZ03-02

I

cross reference cross reference

The entry shown is for segment "sample segname", which is a component of
bound x in the library specified as SSS. - It possesses three entry points:
"one inIrypoint", "second entrypoint", and "unused entrypoint". The information
shows that "sample segname$one entrypoint" is called by module "program a" and
module "program b".- The question mark after entry point "undefined ent" signifies
that this entry-point is an implicit definition; that is, that modu"te "program d"
refers to "sample segname$undefined ent", but that entry point does not actuaIlY
exist. (A diagnostic is printed whin this situation is encountered.)

All error messages produced during the run, including warning messages that
may not have been printed at the terminal due to use of the "-brief" control
argument, are appended to the end of the output file for reference.

2-36 AZ03-02

date deleter date deleter

Name: date deleter

The date deleter command is used to perform a delete-by-date operation in a
directory by removing all segments and multisegment files older than a specified
number of days.

date deleter dir_path n_days {star_names} {-control_args}

where:

1. dir path

I

- is the pathnarne of the directory in which the deletions are to occur. I
The dir path can be -working_directory or -wd to indicate the working
directory.

2. n_days
is the number of days that must have elapsed since a segment was
last modified in order for it to qualify for deletion. The time I
elapsed is measured from date_time_contents modified.

3. star names

4.

are the optional names of files to be deleted. If none are specified,
all files older than the specified number of days are deleted.
Otherwise, only files matching one or more of the starnames, and
older than the specified number of days, are deleted.

control args
may be chosen from the following:

-date time contents modified, -dtcm
uses ~he dtcm of each entry. This is the default.

-date time dumped, -dtd
uses the dtd of each entry instead of the dtcm.

-date time entry modified, -dtem
uses the dtem of each entry instead of the dtcm.

-date time used, -dtu
uses the dtu of each entry instead of the dtcm.

I
I
I
I
I

-name STR, -nm STR I
specifies a starname STR that begins with a minus sign, to distinguish
it from a control argument.

2-31 AZ03-02

date deleter date deleter

Examples

The command line:

date deleter >ldd>old 7

deletes all files in >ldd>old last modified more than one week ago.

The command line:

date deleter >udd>Proj>listing_pool 2 **.list

deletes all listing files in the >udd>Proj>listing_pool directory that are more
than two days old.

2-38 AZ03-02

deactivate_seg deactivate_seg

Name: deactivate_seg

The deactivate_seg command allows a user to deactivate a segment or
directory.

deactivate_seg segment {-control_arg}

where:

I

1. segment I
is the pathname of the segment or directory to be deactivated, or a
segment number.

2.

Notes

control arg
may be the following:

-force, -fc
causes the segment to be deactivated, if at all possible, by using
the highly privileged demand deactivate entry.

I
I
I

This command requires access to the phcs gate.
argument is used, it requires access to the hphcs_ gate.

If the -force control I
If -force is not specified, the segment is only deactivated if all processes I

connected to the segment have the allow deacti vate at tr ibute set for it. See
the change kst attributes command for a description of the allow deacti vate
attribute. -If :-force is specified, the segment is deactivated unless itsentry-hold
switch is set or it is a directory with active inferiors.

2-39 AZ03-02

delete_old_pdds

The delete old pdds command deletes old copies of >process dir dir created
during bootload;- Thls command is intended mainly for use in the system_start_up.ec.

where:

1 • control arg

Notes

~ay be chosen from the following:

-exclude first N
specifies that the first N old copies of >process_dir_dir (that is,
the N oldest ones) are not to be deleted.

-exclude last N
specifies that the last N old copies of >process dir dir (that is,
the N most recent ones) are not to be deleted. - -

The old copies of >process_dir_dir are named pdd. [unique], and branch directly
off the root.

The control arguments for specifyi"ng that some old process dir copies are
not to be deleted are useful when it is necessary to have the process directory
contents of processes at the time of a crash, when debugging system problems.

This command requires access to the hphcs_ gate.

2-40 AZ03-02

display_branch display_branch

Name: display_branch

The display branch command prints out information about directory entries
that is not returned by the status command. It also lists the segment UlD and
the location of the branch. No attempt is made to access the VTOCE of the
segment for any information.

display_branch {-control_arg} target

where:

1. control arg

2. target

Note

can be -name (or -nm) and must be specified before any pathname that
is a valid octal number or that can be construed as a valid octal
pointer.

indicates the segment ~hose branch is to be displayed. Any of the
following forms can be used to specify the target segment: the
pathname of the segment, the octal segment number of the segment, or
the octal pointer representation of the address of the branch to be
displayed (e.g., 26011664)

This command requires access to the phcs_ gate.

2-41 A203-02

The dipslay 101 data command can be used to display the ring 0 data base
101 data. It can be- used on a running system, an fdump, or a copy- of ioi data
made with the copy_out command.

display_ioi data {-control_args}

where:

1 • control args
are selected from the lists below. The following control arguments
are used to select where ioi data is to be found. Only one control
argument may be selected from this list. If none are specified,
ioi data is copied from ring_O of the running system.

-erf erfno
specifies the number of the fdump to be analyzed.

-segment path, -sm path
specifies the pathname of the segment containing iOi_data. Normally,
this segment would be obtained from the running system using the
copy_out command or from an fdump using the extract command.

The following control arguments specify which control blocks in ioi data
are to be displayed. Only one control argument may be selected-from
the following list. If none of these control arguments are specified,
all control blocks are displayed.

-group {device name}, -gp {device name}
displays the group table entry (gte) for the device specified. If
device name is omi tted, all gte's are displayed. The device name
may be ei ther the full name of a nonmul tiplexed device, suCh as
prta, or the full name or first four characters in the name of a
multiplexed device, such as tape or tape_02.

-device {device name}, -dv {device name}
displays the device tabfe entry (dte) for the device specified. If
device_name is omitted, all dte's are displayed.

-channel {channel name}, -chn {channel name}
displays the- channel table entry- (cte) for the channel specified.
If channel name is omi tted, all cte' s are displayed. The channel
name argument is in the form {tag}number, where tag is an 10M tag (a
through h) and number is an octal channel number. If tag is omitted,
10M a is assumed.

-gte {octal offset}
displays the gte at iom data:octal offset. If offset is omitted,
all gte's are displayed. - -

-cte {octal offset}
displays the cte at iom dataioctal offset. If offset is omitted, - -all cte'.s are displayed.

2-42 AZ03-02

-dte {octal offset}
displays the dte at iom data loctal offset.
all dte's are displayed.

-user {Person id.Project id}

If offset is omitted,

displays-the dte's-of all devices assigned to the specified user.
If Person id.Project id is omitted, the user's person id is assumed.
Either Person id or Project id may be omitted or an asterisk (*) can
be used in their place. This argument is not allowed for -erf and
will not work wi th -segment if the segment was created during a
previous Multics bootload or if the users have since logged out.

Other control arguments:

Notes

-header, -he
causes the ioi data header to be displayed. This is the default if
no control blocks are selected.

-no header, -nhe
- suppresses the display of the ioi header. This is the default when

a control block is selected.

-all, -a
may be used in conjunction wi th -group or -gte. Causes all the
cte's and dte's associated with the group(~) selected to be displayed
also.

-force, -fc
forces the display of certain control block or fields or both that
the command might not otherwise display. For example, '-gte' will
display only allocated gte's; '-gte -force' would display all gte's,
allocated or not.

To use this command on a running system, access to the gate phcs_ is required.

The default action of this commmand, when invoked with no arguments is:

display_ioi_data -group -all -header.

2-43 AZ03-02

The display kst entry command prints the contents of a KST (known segment
table) entry. The KST entry to be dumped may be indicated by either a segment
number or a relative pathname of the associated object.

display_kst entry {-control_arg} target

where:

1. control arg
can be -name (or -nm) and must appear if target is a relative pathname
that looks like a segment number.

2. target
is either a segment number or a relative pathname.

Example

segno:
usage:
entryp:
uid:
dtbm:
mode:
ex mode:
infcount:
hdr:
flags:

256 at 155:470
0, 0, 0, 0, 2, 0, 0, 0
243:5452
033100743603
416334652254
7 (4, 4, 4)
000000000000 (0, 0, 0)
o
4
write

2-44

display_label

Name: display_label

The display label command prints information recorded in the physical
volume label for a storage system disk volume. Optionally, it displays
information recorded in the Physical Volume Table Entry (PVTE) for the
associated disk unit.

display label {dskX NN} {-control args}
display=label {PVNARE} {-control_args}

where:

1. dskX NN
specifies the disk sUbsystem and unit on which the volume is mounted
(e.g., dska_07).

2. PVNAME
is the physical volume name of the disk volume (e.g., rpv).

3. control args

Notes

7/82

can be selected from the following:

-pvid PVID
is used to specify the disk volume by the unique
to the volume at the time it was registered
12-digit octal number. This control argument
either dskX NN or PVNAME is specified.

-long, -lg

identifier assigned
(PVID). PVID is a
cannot be used if

causes information from the PVTE to be printed also.

The disk volume specified must be a mounted storage system volume.

This command requires access to phcs_.

2-44. 1 AZ03-02A

display_label

Example

display_label root3

Label for Multics Storage System Volume root3 on dska 18 d501

PVID
Serial
Logical Volume

LVID

Registered
Dismounted
Map Updated
Sal vaged
Bootload
Reloaded
Dumped

Incremental
Consolidated
Complete

Inconsistencies

Minimum AIM
Maximum AIM

Volume Map from Label

First Rec
o
8

21.131
31.131
3687

61816
66P16

(Octal)
o

10
l.t577
651.17
711.17

170570
2021.100

237203135203
root3
root
257741.1057715

12/03/80
03/29/82
03/29/82
03/29/82
03/29/82

o

0:000000
7:777777

Size
8

21.123
1000
256

58129
5000

381.1
67200

1206.8
2107.7
2108.1.1
2008.2
2108.0

Label
VTOC
he
log
Paging
dump
bos
Total

2-1.11.1.2

Region
Region
Partition
Partition
Region
Partition
Partition
Size

display_label

AZ03-02

display_pnotice display_pnotice

Name: display_pnotice

The display pnotice command displays information on software protection
notices contained-in source programs.

display_pnotice name {control_arg}

where:

1. argument

name
is the full or relative pathname of the source language module. The
language suffix or the archive suffix must be included if an entire
archive is to be processed. The archive pathname convention is
supported, but the star convention is not.

2. control args
can be chosen from the following:

-long, -lg
specifies that the full text of notices found will be displayed.

Notes

-brief, -bf
specifies that the primary name of notices, without
suffix, is printed instead of text of notices found.
default.

the "pnotice"
This is the

By default, the primary names of protection notices are printed instead of the
entire notice text. If path includes the full archive name, then archives of
source code programs can be audited for protection notices. If a source module
does not contain any notices, or contains conflicting notices (copyright and
trade secret), an error message is displayed. A warning message is also
displayed if there is an embedded notice found in a source program (protection
notices should be the first comment encountered).

Example

7/82

! display pnotice add pnotice.p11
add_pnccice.pI1: HIS.1981

! display pnotice add pnotice.p11 -lg
Notices in add_pnotice.p11:

Copyright, (C) Honeywell Information Systems Inc., 1981

! display pnotice farf.p11
Warning: Tarf.pl1 has no protection notice.

2-44.3 AZ03-02A

Name: display_psp

The display psp command displays selected information about distributed
software found installed in online systems libraries. The information includes
marketing identifier, software technical identifier~ copyright~ and titles for
the software requested.

where:

1. control args

Notes

may be chosen from the following:

-all, -a
returns selected information of all products found ,installed in the
systems libraries. This is the default.

-brief, -bf
prints only the software technical identifier. This is the default.

-long, -lg
prints the marketing identifier, software technical identifier,
copyright, and titles selected.

-copyright
returns the copyright notice for selected products if found installed
in the system library.

-match STR
where STR is the marketing identifier. This argument returns selected
information for a specific product if it is installed in the systems
library.

-name, -nm
returns selected information about a named product. The name of the
product will be the long name by which the product is most commonly
referred, i.e., compose, cobol, or ted.

The -brief and -long arguments are mutually exclusive, and only one argument
can be given in a command.

The -match, -name, and -all arguments are mutually exclusive, and only one
argument can be given in a command.

2-45 AZ03-02

Name: display_pvte

The display pvte command prints information recorded in the Physical Volume
Table Entry (PV1E) for a storage system disk volume. Optionally, it displays
information recorded in the physical volume label.

display pvte
d ispl ay=pvte

{dskX NN} {-control args}
{PVNARE} {-control_args}

where:

1. dskX NN
specifies the disk subsystem and unit on which the volume is mounted
(e.g., dska 07).

2. PVNAME
is the physical volume name of the disk volume (e.g., rpv).

3. control args

Notes

can be selected from the following:

-pvid PVID
is used to specify the disk volume by the unique identifier assigned
to the volume at the time it was registered (PVID). PVID is a
12-digit octal number, which can be obtained by using the
list volume registration (lvr) command. This control argument
cannot be used if either dskX NN or PVNAME is specified.

-long, -lg
causes information from the volume label to be printed also.

The disk volume specified must be a mounted storage system volume.

This command requires access to metering gate. If the -long control
argument is specified, then access to phcs_ is requirea.

7/82 2-45. 1 AZ03-02A

Example

! display_pvte root3

PVTE for Multics Storage System Volume root3 on dska 18 d501 at pvt:636

PVID
LVID

VTOCEs
Number
Left

Records
Number
Left

Inconsistencies

Volume Map
volmap seg ASTE
record-stock
Page 0 - Base

Free
Page - Base

Free
Page 2 - Base

Free
vtoce stock

237203135203
257744057715

12115
3933

58129
9842

o

17:15140
77: 1400

7147
47

103147
23113

203147
o

77:2134

ON: storage_system permanent hc_part_used

OFF: being mounted being_demounted device_inoperative
vacatIng

Volume Map from PVTE

7/82

First Rec
o
8

2431
3687

61816

(Octal)
o

10
4606
7147

170570

Size
R

2423
1256

58129
5383

67200

2-45.2

Label Reg ion
VTOC Region
Parti tions
Paging Region
Parti tions
Total Si ze

AZ03-02A

I

do subtree do subtree

Name: do subtree

The do subtree command operates a given directory (called the starting node)
and all directories inferior to the starting node, by executing one or two given
command lines after substituting the pathname of that directory in the command
line. The substitution is performed by the do command (See MPM Commands), the
directory pathname being taken as the first executed at each node before inferior
nodes are operated on (the top down command line) and after inferior nodes are
operated on (the bottom ~ commana-line).

The do subtree command enables the user to execute the argument command lines in
several processes. The walking of the hierarchy can be substantially speeded up
by use of this facility. The process to which the initial command lines in
starting mode was gi ven is called the master process: the other cooperating
processes are called the slave processes. The cooperating processes communicate
via a segment called dos mp seg, which is found (or created if not found) in the
working directory at the time the do subtree command is issued. The master
process must be logged in and begin executing first when multiple processes are
used.

Master process or single process invocations:

do_subtree path -control_args

or, for slave process invocations:

do subtree -slave

where:

1. path
is the starting node. This must be the first argument. A path of
-wd specifies the working directory (of the master process, if multiple
processes are being used.)

2. control args
may be chosen from the following. They can appear in any order on
the command line.

-bottom up SiR, -bu SiR
specifies the bottom-up command line. It is taken as one argument,
i • e., if it conta ins blanks, it must be enclosed in quotes. The
name of the directory of execution is the first do command argument.
It is recommended that this value be accessed wi th the string "&r1 ,­
rather than "&1" in case any directory names contain special characters.

2-46 AZ03-02

do subtree do subtree

-first N, -ft N
makes N the first level of the directory hierarchy at which the
command lines will be executed. By definition, the starting node is
at level 1. The defaul t is -first 1. See the description of the
walk_subtree command in the MPM Commands for examples of the use of
-first.

-last, -It N
makes N the last level in the storage-system hierarchy at which the
command lines are executed. The default is 99999, i.e9, all levels.

-long, -lg
causes printing of the names of directories at which the command
lines are executed. Unlike wi th the walk subtree command, this printing
is off by default. In mul tiprocess executions wi th a bottom-up command
line, an asterisk will preced~ all directory names for which the
process executing the bottom-up command line is not the process that
entered the directory first.

-multiprocess, -mp
specifies that the invoking process is to be the master process of a
mul tiprocess execution. The dos mp seg segment is created in the
current working directory and execu£lon begins. As slave processes
are started, work is distributed by the master and slave processes
amongst themselves. Execution ends in all processes simultaneously.
The top-down/bot tom-up order of execution is guaranteed by all
processes: no command line is executed at a given directory until
the top-down command line (if any) is executed in all superior
directories. The bottom-up command line (if any) is not executed at
a given directory until all command lines have been executed in all
inferior directories.

•

-no msf I causes multisegment files not to be treated as directories. Unlike
wi th the walk subtree command, mul tisegment files are treated as
directories by-default. Most storage-system maintenance operations
should not specify this control argument.

-slave
causes the command wi th this control argument to be executed in
another process. This other process must be in a working directory
where an active master process has begun executing a multiprocess
invocation of do subtree. All control arguments and command lines
of the slave process will be the control arguments and command lines
of that master process. The do subtree command will finish execution
in all processes at the same time. No more than 35 slave processes
may be used.

-top down 8TH, -td 3TR
-specifies the top-down command line. It is taken as one argument,
i.e., if it contains blanks, it must be enclosed in quotes. The
name of the directory of execution is the first do command argument. I
It is recommended that this value be accessed with the string "&r1"
rather than "&1" in case any directory names contain special characters.
At least one of the control arguments -top down or -bottom up must
appear. It is permissible to specify both. - -

2-47 AZ03-02

do subtree do subtree

AUXILIARY ENTRIES

Entry: do_subtree$recover

The do sUbtree$recover entry point is used to pick up the work load of a
process that has died in a multiprocess execution.

do_subtree$recover processnumber

where:

1. processnumber
is the process number of the dead process. The process number of a
do subtree process in a mul tiprocess execution is typed out as it
jOlns the execution.

The process that is to pick up the work load of the dead process must have
as its working directory the directory in which the dos_mp_seg segment for the
current multiprocess execution exists.

Entry: do_subtree$abort

The do subtree$abort entry point brings an immediate halt to a multiprocess
execution of the do subtree. All processes return to command level at once.
The process that executes this command must have as its working directory the
directory in which the dos mp seg segment of the current multiprocess execution
exists. - -

do_subtree$abort

Entry: do_subtree$status

The do subtree$status entry point prints out a large amount of debugging
and status lnformation about all processes involved in a multiprocess execution
of do subtree, including the process identifiers and command lines. The process
that executes this qommand must have as its working directory the directory in
which the dos_mp_seg of the current multiprocess execution exists.

2-48 AZ03-02

dump_partition dump_partition

Name: dump_partition

The dump partition command displays data from a named disk partition. By
defaul t this data appears in octal, four words per line, though other output
formats can also be selected. Also see the clear partition and list partition
commands in this manual. - -

dump_partition pvname partname offset {length} {-control_args}

where:

1. pvname
is the name of the physical volume on which the parti tion to be
dumped exists.

2. partname
is the name of the partition to be dumped. It must be four characters
or less in length.

3. offset
is the octal offset at which to begin dumpinge

4. length
is the number of words to be dumped. If not supplied, one word is
dumped.

5. control args
may be chosen from the following:

-short, -sh
produces data in short form, similar to dump_segment -short.

-long, -lg
produces data in long form, similar to dump_segment -long.

-bcd
produces data including the BCD character representation.

-no header, -nhe
- suppresses the header.

2-49 AZ03-02

dump_partition dump_partition

Access to phcs_and hphcs_ gates is required.

Usage as ~ Active Function

[dump~partition pvname partname offset {length}]

As an active function, dump partition returns the contents of the specified
words in octal, separated by spaces, rather than printing them.

2-50 AZ03-02

Name: excerpt_mst

The excerpt mst command is used to excerpt given segments from a Mul tics
system tape (either a Multics or BOS bootload tape).

excerpt_mst reel id {names}

where:

1 • reel id

2. names

Note

is the reel identification number of the tape to be written. The I
reel identification number, which is site dependent, may be up to 32
characters long. The reel id may also include a density specification
to indicate the density of the tape being written, as in
"060341,den=1600".

are the names of the specific segments to be extracted. The star
convention is allowed. If no namei arguments are given, all of the
segments on the tape are extracted. - If a given segment has a separate
linkage and definitions on the tape, and has been extracted, the
separate linkage and definitions are extracted as well. Segments
extracted are created in the current working directory. Bit counts
are set from theSLT entry on the tape, as opposed to the actual
length of the segment on the tape.

A message is printed whenever a segment is extracted. A diagnostic is
issued if names are provided that match no segments on the tape.

2-51 AZ03-02

expand expand

Name: expand

The expand command substitutes appropriate files for ~ include statements
in ASCII files that are in either PL/I or assembler (ALM) syntax. PL/I syntax
is assumed unless the name of the file to be expanded ends in the suffix aIm.

I expand path1 {path2 ••• pathN}

I where path1, path2 .•• pathN are the relative pathnames of files to be expanded.

Notes

The expand command checks for some PL/I or ALM syntax errors, but only when
necessary.

The expand command does not query the user under any circumstances.

If the name of the file to be expanded is of the form id .lang, then the
name of the expanded file is id. ex .lang. An include statement such as: ~ include a;
looks for a fi Ie called a. i ncl.lang, accord ing to the user's translator search
paths. If lang is aIm, then assembler syntax is assumed; otherwise, PL/I syntax
is assumed.

Since processing of include files is exactly the same as processing of the
original source file (include files may contain ~ include statements), it is not
enough to specify the line number on which an error occurred. The filename and
recursion level must also be specified. If more than one consecuti ve error
occurs in the same file at the same recursion level, then a line is typed
specifying the filename and recursion level followed by at least one line for
each error that occurred.

If there is infinite recursion of include files, the message "Recursion of
include files starting with a.incl.p11 is two levels deep." is returned. This
means that a.incl.p11 contains an include statement such as: ~ include b; where
b.incl.p11 contains the statement: % include a;.

2-52 AZ03-02

The fix quota used command repairs inconsistencies in storage-system quota
used for a drrectory.

where:

1. pathname

Notes

is the pathname of the directory for which quota is to be made
consistent.

The normal use of this command is from the fix quota used.ec exec com, or
by the "x repair" operator command. When a quota rsegment quota or d"Irectory
quota) is found inconsistent and corrected, a message is printed. If the correction
causes a directory to have greater quota used than allocated, another message is
printed.

Access to the hphcs_ gate is required.

2-53 AZ03-02

generate mst

Name: generate_mst, gm

The generate mst command is used to generate a Multics system tape (MST),
which can later De "bootloaded" by BOS as the first step in bringing up a

I Multics system, or to create the BOS tape itself. The procedures that generate
the MST must first find the necessary segments to place on the MST and put them
there in a manner that can later be read by BOS and the initializing programs
themselves. The MST generating procedures find this information by scanning a
header segment. This header segment contains names of programs and data bases
to be placed on the tape along with other control information about the segments.

There is a set of search rules specifying which directories are to be
searched and the order of search when looking for the specified segments. These
rules may be contained in a segment, or default rules may be used. The name of
the header segment and the optional name of a segment containing the search

I
rules are given as arguments to the generate mst command. If no search segment
is used, only the directory >ldd>hardcore>execution is searched for the programs
to be placed on the tape.

I The standard MST header used to generate the Multics supervisor is located
in the segment:

I >ldd>hardcore>info>hardcore.header

I The standard MST header used to generate a BOS system tape is located in
segment:

the

I >ldd>bos>info>bos.header

I The standard headers contain many examples of valid header syntax. When a header
is modified, an example of the modification should first be located elsewhere in
the header if possible, since the semantics of the header are quite complicated.

I

generate_mst path reel id {-control_args}

where:

1. path

2. reel id

is the pathname of the header segment without the header suffix.

is the reel identification number of the tape to be wri tten. The
reel identification number, which is site dependent, may be up to 32
characters long. The reel id may also include a density specification
to indicate the density of the tape being written, as in
"060341,den:1600".

2-54 AZ03-02

3. control args
may be chosen from the following:

Notes

-directory, -dr
specifies that a search rule segment is provided in the working
directory. The name of the search rule segment is path.search, where
path is the entryname portion of the pathname given as the first
argument to the generate_mst command.

-notape
specifies that no tape is generated. This control argument can be
used to check the consistency of the header segment and produce an
output listing without actually generating a tape.

-file, -fl
specifies that output is directed to a file in the storage system
rather than to a tape. The file name (which may specify a multisegment
file) has the same name as the reel_id argument.

-sys id STR, -sysid STR
-sets the system identifier to STR (which may be up to eight characters

-hold

long). If this control argument is omitted, the first eight characters
of the entryname portion of the pathname given as the first argument
to the generate_mst command are used by default.

does not detach the tape when generation is completed. A checker
run may then be performed on the same tape wi thout remounting the
reel

-vers_id STR, -versid STR I
sets the version identifier to STR (which may be up to eight characters
long) • If this control argument is omi tted, the first eight characters
of the entryname portion of the pathname given as the first argument
to the generate_mst command are used by default.

The generate_mst command assumes the name of the header segment is path.header,
where path is the first argument to the command. The output listing is placed
in a segment path.list in the working directory. If the -directory control
argument is specified, the command assumes the segment path.search exists in the
working directory.

The search file must contain a list of directories to be searched, one
directory name per line. A blank line signifies the working directory.

Format of an MST Header

An MST header is an ASCII file (in free format) consisting of keywords
followed by optional control arguments. Comments may be placed anywhere in the
header except within a keyword name or control argument and are separated from
the rest of the text. by n/_n and n_I". .

2-55 AZ03-02

There are two levels of keywords, major and minor. The major keywords are
listed below:

add segnames
boot program
collection
data
delete name
end
fabricate
fini
first name
linkage
name
object
text

The fabricate, first name, name, object, and text keywords are initial keywords
and indicate the start oIa description of control arguments for a single segment
to be placed on the MST. The linkage keyword is only valid if found in a
Segment Description List (SDL). The end keyword indicates the end of an SDL.
The collection keyword, which cannot occur in an SDL, instructs the generator to
write a collection mark (see below) on the MST. The fini keyword, which cannot
occur within an SDL, instructs the generator to close out the tape by writing an
EOF and dismounting it.

The syntax of the header consists of some number of SDLs occasionally separated
by collection keywords and ending with a fini keyword.

Keywords that do not have arguments are followed immediately by semicolons.
Those that have arguments are followed immediately by a colon, which is followed
by arguments, separated by commas; the arguments end with a semicolon.

I The keywords add segnames, end I fini, and linkage have no arguments; all
others have arguments as described below:

Keyword

I add _ segnames

I

I

7/82

Meaning of Arguments

no arguments. It causes the segnames defined in an object
segment to be added to the list of names for that segment,
as if they had appeared in the list following an "object" or
a "name" statement. All names that appear as segname
definitions in the object segment will be added to the list
of names for this segment. This keyword can only be used in
the SDL for a bound object segment and must come immediately
after the keyword that begins the SDL. It can be usually
used to replace the list of names associated with a bound
segment.

2-56 AZ03-02A

generate_mst

collection

data

delete name

end

fabricate

fini

first name

7/82

begins the definition of a segment that will be placed in
the bootload portion of the MST 1 abel. This is used only
for BaS tapes. The bootload program portion of the MST label
will be executed when the -Initialize/Bootload sequence is
executed via the 10M swi tch or OC command sequence. Only
the text section of the program is placed on the tape. and
it must be less than 1500 (octal) words long; if shorter, it
is padded to 1500 words with Nap instructions. This keyword
must appear as the very first keyword in the header file.
It is incompatible with the first_name keyword.

a number indicating which collection mark is to be written.
This keyword causes a collection mark to be written on the
tape containing the collection number that follows the
collection keyword. It must appear between segments, not in
a segment definition.

begins a 1 ist of names associated wi th the segment. This
keyword places the entirety of the named segment on the tape,
preceded by a preface area containing all the information
specified in the SDL. The data keyword is used only for I
segments that are not Multics standard object segments, such
as ASCII files. The linkage keyword cannot be used with the
data keyword.

is followed by a list of one or more names that are to be
deleted from the list of names for the current segment. This
keyword is used to remove ex tra names that were added wi th
the add segnames statement but that should not appear on the
segment; like add segnames, it can be usually used to replace
the 1 ist of names assoc iated wi th a bound segment. It must
appear after add_segnames in an SDL.

no arguments. This keyword specifies the end of a segment
definition. An end keyword must conclude every use of an
object, name, first_name, fabricate, or text keyword.

a 1 ist of names associated wi th the segment. This keyword
fabricates a segment of all zeros and places it on the tape.
The attr ibutes for the segment (si ze, etc.) are derived
from the SDL. The linkage keyword cannot be used wi th the
fabricate keyword.

no arguments. This keyword specifies the end of an MST header.
Any keywords appearing in the header after the first fini
keyword are ignored.

a name associated with the segment. This keyword indicates
that the segment associated with this SDL is the first segment
on the tape and is specially processed, i.e., the first 32
decimal words of the segment are overwritten with tape header
information when the tape is bootloaded.

2-57 AZ03-02A

generate_mst

linkage

7/82

no arguments. This keyword causes the I inkage and definitions
sections of an object segment to be pI aced on the tape,
following the object segment itself (if the object keyword
was used to define it) or the text section (if the name or
text keywords were used). The linkage keyword must appear
iOn an object definition between the object, text, or name
keyword for the segment and the end keyword. Any minor keywords
following a linkage keyword, such as wired and init seg, are
appl ied to the 1 inkage section rather than to the text-section;
this can be used to direct the linkage section into a different
supervisor-combined linkage segment than would be used by
default. The linkage keyword must be specified in order to
cause definitions to be included on thp. tape and copied into
the supervisor definitions segment, even if the segment has
no linkage section. This is often true for object segments
created with create data segment. If such an object segment
is used by the supervisor, its definitions sections must be
placed on the tape by specifying the linkage keyword, even
if the segment is started with the object statement, so that
the defini tions section is included along wi th the text section.

2-57.1 AZ03-02A

I

name

object

text

a list of names associated with the segment. This keyword
places the named segment on tape preceded by a preface area
for the segment containing all of the information specified
in the SOL. If the linkage keyword is found in the SOL, the
generator splits apart the object segment named and places
only the text on the tape. Then, the linkage section by
itself (preceded by a preface area for the linkage section)
follows the text and defini tions section (preceded by its
preface) on the tape. Otherwise, the entire object segment
is placed on the tape. The name keyword must be used for
nonobject segments. For a Multics supervisor tape, the names
specified in the header for a segment are the only names by
which the segment may be referenced. . Extra names on the
segment itself are ignored. When adding a new program to an
ex isting bound segment, it is necessary to update the MST
header, as well as the bindfile, before adding the name of
the new program to the list of names for the bound segment.

a list of names associated with the segment. This keyword
behaves exactly as the name keyword except that the entire
object segment is placed on tape rather than just the text
section. It is also followed by the (redundant) linkage and
definition sections if the linkage keyword is used.

a list of names associated with the segment. This keyword
places the text section alone on tape. This keyword is used
if only the text part of an object segment is wanted.

The following are "minor" keywords with the meaning of their arguments:

access

acl

bit count -

cache

ei ther yes or no. Indicates whether or not to suppress creation
of a segment when current length/maximum length is not zero.

the SOW access mode for the segment in the supervisor's address
space. The list may contain any. combination of read, write,
execute, and privileged.

an ACt entry pl aced in the branch of the segment. Only
segments placed in the hierarchy (via "path name") can have
ACt entries. The ACL entry consists of a
Person id.Project id.tag followed by a list of read, execute,
and wrlte access rights. The Person id.Project id.tag must
include all three components. The abbreviated-form (i.e.,
that which omits the tag) accepted by the ACL commands is
not acceptable.

a number specifying a bit count to be associated with the
segment.

either yes or no. Indicates whether or not to override the
default encacheability of the segment. If the cache keyword
is not gi ven, the following defaul ts are used: If the
per process keyword is specified as yes, then cache is yes.
Othirwise, if the in it seg cr temp seg keywords are specified
as yes, O~ w~it,~ accesS-is ~ge(;ifiid under +:.he acC"es~ keyword,
th~n cache is no. Otherwis~, cathe is yes.

2-58 AZ03-02

cur_length

delete at shutdown

init_seg

link sect wired

paged

per_process

ringbrack

vers id

generate_mst

for unpaged segments and segments loaded in collection 1, a
number specifying the number of words to be allocated to the
segment. If this segment is a collection1 segment that is
to be made paged, cur_length is its length while unpaged.

ei ther yes or no. Ind icates whether or not to return the
pages of the segment to the appropriate free pool at shutdown
time.

ei ther yes or no. Indicates whether or not to delete the
segment at the end of initialization.

ei ther yes or no. Indicates whether or ·not the linkage for
the segment is to be combined in the supervisor t s wired linkage
section even though the segment itself might not be wired.

for paged segments, a number specifying the number of pages
to be allocated to this segment. The greater of max length
(if given) and cur length (converted to pages) determines
the size of the page table and the segment bound.

either yes or no. Indicates whether or not the seg~ent·is
to be constructed as a paged segment.

specifies that the segment is to be placed in the hierarchy,
the value of the argument is the pathname of the directory
in which the segment is placed. This keyword is required
for segments in collection 3. If the path_name keyword is I
specified, all names listed for the segment are added to the
version in the hierarchy. If an object segment is to be
placed in the hierarchy, it should be defined with the object
keyword, so the whole segment will appear rather than just
the text section.

ei ther yes or no. Indicates whether or not to suppress copying
of the SDW for this segment at process creation time.

is 1, 2, or 3 numbers (separated by commas) to be interpreted
as the ring brackets to be placed in the branch for segments
that are to go in the hierarchy. Default ring brackets are
(0,0,0). Rules for assigning ring brackets are described in
the set ring brackets command in the MPM Subsystem Writers'
Guide. - -

specifies an external name in this segment identifying a I
location that will be set to the eight-character system
identifier (which can be specified by the -sys id control
argument) • This normally appears only for Multics system
tapes, and identifies the symbol
active all_rings_data$system_id.

ei ther yes or no. Indicates whether or not to delete the I
segment at the end of the collection in which it was loaded.

specifies an external name in this segment identifying a
location that will be set to the eight-character version
identifier (which can be specified by the -vers id control
argument) . This normally appears only for Mul tics system
tapes, and identifies the symbol
.active_all_rings_data$version_id.

2-59 AZ03-02

I

generate_mst

wired either yes or no. Indicates whether or not the pages of the
segment are to be wired.

The generator works by reading the header segments and performing one of
the following:

1. If the word found is an initial keyword, the information about the
specified segment (i.e., all information up to the next end keyword)
is gathered together and written on the MST followed by the data for
the segment itself.

2. If the keyword is collection, a special mark is wri tten on the tape
indicating the end of the specified collection.

3. If the keyword is fini, the tape is closed out and dismount~d.

For segments that are placed on tape (i. e., segments specified wi th an
ini tial keyword), the first argument to the ini tial. keyword is the name used
when searching for the actual segment to be placed on tape. All subsequent
arguments are treated as secondary names and although they are placed on the
tape in the preface area for each segment they are not used by the generator.

I Hardcore profiling

I
If hard core programs are compiled with the -profile or -long profile options,

it is possible to profile the behavior· of the supervisor. See- the description
of the -hard core control argument to the profile command, in MPM Commands and
Active Functions (Order No. AG92).

There are several common pitfalls encountered in hardcore profiling. The
size of the supervisor linkage segments must be increased to contain the additional
static data generated by the profiling code. The required sizes can be determined
from the loading summary information following collection two in the output file
from check mst. The supervisor linkage segments are as linkage <"Active
Supervisor"}, ai linkage ("Active Initialization"), ws-linkage ("Wired
Supervisor"), and -wi linkage ("Wired In i tiali zation") . The'y - are defined near
the beginning of the standard header. Unless the "ini t seg" and "temp seg"
keywords are removed from initialization programs and their-linkage sections, it
is not possible to profile supervisor initialization programs (because the profiling
information would otherwise be discarded as the system finished initialization),
but this is rarely a problem.

I If wired code is to be profiled, and the -long profile option is selected,
the hcs gate and its linkage section must be wired,-because they are referenced

I
by the virtual CPU time and paging calculation operators. This is not necessary
if only -profile is used.

2-60 AZ03-02

generate_mst

If profiling a procedure that is specified as wired in the header, but I
whose 1 inkage section is specified as unwired, it is necessary to change the
linkage section to be wired~

Interrupt side code can be meaningfully profiled only wi th -profile, not
with -long profile, because interrupt code is not run in any particular process,
and therefore the virtual CPU time calculation (which is per process) will return
random results. This may lead to overflow faul ts while running on the PROS.
Because -profile does not require these calculations, it may be used with interrupt
code.

2-61 AZ03-02

generate_pnotice generate_pnotice

Name: generate_pnotice

The generate pnotice command allows Multics source and object archives and
executable software to be legally protected via copyright or trade secret notices.
It also provides software identification via Software Technical Identifiers (STIs).

generate_pnotice {control_args}

where:

1. control args

Notes

can be chosen from the following:

-name STR, -nm STR
where STR specifies the product's generic name found in psp_info_.

-id STR
where STR specifies the Marketing Identifier (MI) of the product as
derived from psp info. This argument and the -name argument are
mutually exclusive. -

-sti STR
where STR is a valid 12-character STI. This argument can be used to
override the STI found in psp_info_ via use of the -name or -id
arguments.

-special
this argument is intended for use in cases where there may be no
entry in psp info for the software being protected. This is most
likely to occur when the user is protecting software in an experimental
or development library. The user is prompted for the information to
be put into the PNOTICE segments. See" Notes" for further information.

I This command allows protection of software that resides in a library other
than the one specified in psp info , as well as software not specified at all in

• psp_info_, via use of the -special-control argument.

The command generates ALM source and object segments wi th the names of
"PNOTICE.<generic name>.alm" and "PNOTICE.<generic name>", where <generic name>
comes from the psp_info_ data base, or, if -special is used, the user may provide
a name.

These segmects contai~ the ~ext of one or more software prot~ction notices
and t,hr~e 1 ?-charactt::r STIs. The scgrner1t:-; a,~e a;::l")er.<i.::d ';0 a proJuc t' s pr imary
source and object. arch:.ves, as defirJed in th€..' pep info dat 3 base. If -special
is u5ad, the user must provide these archive name~~ -

7/82 2-62 AZ03-02A

generate_pnotice generate_pnotice

If PNOTICE segments wi th the same name exist in the archives, they are
replaced. The archives should be ordered by the owner such that these segments
are the first components. The binding of the object archive places the protection
notices and STIs into the bound segment as well. The bindfile "Order" statement
should state that the PNOTICE component is first ~ The PNOTICE segment name
should not be retained in the bound segment.

The information contained in the PNOTICE segments for installed products is
available via the display_psp command.

Unless the -special control argument is used, the source and object archives
must be in the user's working directory; in which case, the user must have sma
access to the directory as well as rw access to the archives. Then, the user
can specify archive pathnames to the command. On the other hand, if -special is
used, access is checked, and if it is not sufficient, it will be forced; otherwise,
access is not forced.

If the user wishes to protect software in a library other than that specified
in psp_info_, the -special control argument should be used.

The following set of questions is asked by the command when -special has
been specified. The user should have the requested information readily available.

Generic name?

STI?

User suppl ies a short «= 20 characters) name that is descriptive of the
module(s) being protected. The name may be the same as contained in psp info
if the module is a newer version; otherwise, the user can create the name.-

The Software Technical Identifier. This is a 12-character identifier used
by Honeywell to provide information on released software products. It may I
be blank for nonproducts. Type help sti .gi" for more information.

Include the notices from psp info?
The module(s) being protected have an entry in psp_info_. User is asked
whether the notices there are to be included.

Source pnotice name? ,

7/82

User is asked to provide primary names of notices, without the ".pnotice"
suffix, for protection of source. ,,'hen done, type "q". Avail able names I
can be determined by typing "list_pnotice_names".

2-63 AZ03-02A

I

I

generate_pnotice generate_pnotice

Object pnotice name?
User is asked to provide primary names of notices, wi thout the ".pnotice"
suffix, for protection of object and executable ~ When done, type "q".
Available names can be determined by typing "list_pnotice_names lt •

Pathname of source ar-chive?
User is asked to provide an archive pathname of the source archive. The
It.archive" suffix is not required, but can be given.

Pathname of object archive?
User is asked to provide an archive pathname of the object archive. The
".archive" suffix is not required, but can be given. These two archives
need not reside either in the same directory or in the working directory.

Further information on this command and other commands for the software
protection facility can be found in the Multics Library Maintenance PLM
(Order No. AN8D).

7/82 2-63. 1 AZ03-02A

The get ips mask command prints the current state of the IPS mask for the
calling process.-

Usage

get_ips_mask {-control_args}

where:

1. control args
can be selected from the following:

Notes

-brief, -bf
prints nothing if no IPS signals are masked; otherwise, prints the
names of masked signals.

-long, -lg
prints a more descriptive message about the status of IPS signals,
masked or unmasked. (Default)

If all undefined IPS signals are either masked or unmasked, they are not
mentioned. If, however, some are masked and others are not, an octal list will
be printed. This can only happen when an invalid (probably reinitialized) value
has been supplied in a 'call to set that mask.

2-64 AZ03-02

Name: get_library_segment, gls

The get library segment command can be used to find source or object segments
in the MultfCs system libraries and to copy the segments found into the user's
current working directory. The user can specify which system libraries are to
be searched, and the order in which they are to be searched. There are also
provisions for searching user libraries that mayor may not be organized like
the Multics system li~raries. (See "Operation" below.)

where:

1. seg_names
are the names of the segments to be found, including any language
suffix.

2. control args
can be chosen from the following list. With the exception of -rename,
each control argument in the command line applies to all seg_names.

-sys Iname I
specifies that get library segment should use the control segment
"lname.control".

-long, -lg
prints the pathname of the segment from which each segment is copied. I

-brief, -bf
does not print pathnames. This is the default.

copies - the immediately preceding seg name into the user's process
-rename new name, -rn new name I·

directory and then into a segment in the working directory. The
new name may be an equal name, in which case the equal convention is
appIied to the seg name; otherwise, the segment created in the working
directory will be named new_name. The new_name may not be a pathname.

-control path, -ct path
looks in the directory specified by path to find the control segments.
The path argument can be -working directory or -wd, in which case
the get library segment command looKs in the current working directory
for i ts- control segments (see "Operation" below). If this control
argument is not specified, the get library segment command looks in
the directory)ldd to find its control segments.

2-65 AZ03-02

Notes

'

If the -sys control argument is not gi ven, then get library segment uses
all the control segments specified in the root directory. The -default root
directory is >ldd. For a complete list of the control segments, type:

I list -pn >ldd -all **.control

hard
standard
unbundled
auth maint
network
languages
tools

Several -sys control arguments can be specified in the same command invocation.

I If so, all of the control segments referenced by the Inames in these arguments
are searched. The order in which the control segments are ,processed and then
searched is determined by the order in which the Inames appear in the command
and the order in which the d irectores referenced by each Iname appear in the
Iname control segment •

...
Control arguments.and segment names can be interspersed throughout the command

invocation.

Examples

The command line:

get_library_segment abc.p11 -sys tools -sys sss random.alm

I copies abc.p11 and random.alm from the directories specified in >ldd>tools.control
and >ldd>sss.control if they exist.

get_library_segment -sys lang xyz.p11 -sys os -sys hard

searches for xyz.p11 in the directories specified by the set of control segments
in >ldd.

get_library_segment gorp.p11 -rename glop.p11

I searches the default group of directories for segment gorp.p11 and copies it
into the user's working directory with the name glrp.p11.

I get_library_segment fortran_blast_ bound_parse_.bind -sys lang.o

I ~~a~~~e~i~~~t~~~e:e~~:~Ifi~~t~~n)~~~~~an:~~~~~~t~~~~ segment, bound_parse_.bind t

2-66 AZ03-02

Operation

If no -control control argument is specified, the get library segment command
searches for segments in one or more of the Multics system libraries. From each
keyword gi yen in a -sys control argument, get library segment constructs a pathname
of v the form >ldd>keyword .control. It uses this as the pathname of a control
segment. This control segment tells the get library segment command which
directories are to be searched and how to search them. -

Each control segment contains one or more lines of the form:

directory_path: search_procedure;

where:

1. directory path
is-the absolute pathname of a directory to be searched.

2. search procedure
-is the name of a procedure that searches the directory to find seg_name.

This name can have the form:

or:
segment_name

segment_name$entry_name

For each directory path specified in the control segment, the get library segment
command ini tiates -the search procedure", and calls it to searcn the directory.
The calling sequence for search_procedure is:

declare search_procedure (char(*), char(*), char(*), fixed bin(35»;

call search_procedure (directory_path, seg_name, containing_seg, code);

where:

1. directory path (Input)
is-the absolute pathname of a directory to be searched.

2. seg_name (Input)
is the name of the segment to be found, including any language suffix.

3. containing_seg (Output)
is the name of the segment in directory path in which seg name was
found. This name is either the same as-seg_name or the name of an
archive containing seg_name.

4. code (Output)
is a standardstorage-system status code. 0 seg name was found in
directory_path>containing_seg 1, seg_name was not-found.

2-67 AZ03-02

Notes

If code is 0, and the final eight nonblank characters of containing_seg are
the archive suffix, get_library_segment issues the command:

archive x directory_path>containing_seg seg_name

I
to extract the segment into the current working directory. If the -rename control
argument was specified for seg_name, the segment is extracted and given the new
name.

If code is 0 and the final eight nonblank characters of containing seg are
not the archive suffix, the get library segment command calls copy seg -to copy

I directory path>seg name into the current directory, unless a -rename control
argument -has been specified, in which case the segment is copied into
directory_path>new_name.

If code is 1, the get library segment command continues the search with the
next directory path in the current control segment. If the current control
segment contains no more directory paths, the search continues wi th the first
directory path in the next control segment specified by the user. If the segment
has not -been found after all control segments have been exhausted, the
get library segment command prints an error message and begins searching for the
next seg_naiiie.

If search procedure returns a code that is neither 0 nor 1, the
get library segment command prints the·error message corresponding to the error
code, and continues the search as if code were 1.

I The get primary name procedure is used to find segments in the Multics
system libraries. -

I If no -sys control argument is specified, the get_library_segment uses all
the control segments in >ldd.

User Libraries

The get_library_segment command can be used with the -control control argument
to extract segments from a user library. This control argument causes the
get library segment command to use a control segment with the pathname
patFi>keywora. control. The -control control argument thus allows the user to
search his own library structure, using his own search procedure or one of the
Multics system library search procedures listed above. -

2-68 AZ03-02

For example, user Person id. Project id can use the get library segment command
to extract a copy of the source program-alpha.pI1 from aprivatelibrary archive
with the command:

gls -ct >udd>Project_id>Person_id -sys source alpha.pl1

if >udd>Project_id>Person_id>source.control contains the line:

>udd>Project_id>Person_id>library: get_primary_name_;

and if alpha.pl1 is a component of some archive segment
>udd>Project_id>Person_id>library, having alpha.pl1 as one of its names.

2-69 AZ03-02

The hp delete vtoce command deletes a specified VTOC entry. This can be
used when c"leaning- up after a sweep pv to get rid of orphans, or whenever a
forward connection failure is desired~

hp_delete vtoce pvname vtoc index {-control_args}

where:

1. pvname

2.

3.

is the name of the physical volume on which the VTOCE to be expunged
exists.

vtoc index
is the index (in octal) of the VTOCE to be expunged.

control args
may be chosen from the following:

-force, -fc
suppresses the question about really deleting the VTOCE if it is an
orphan. If it is not an orphan, the -no check control argument must
also be supplied to suppress all questions.

-no check, -nch
- suppresses the check made to see whether the VTOCE is an orphan or

not. If it is not an orphan, deleting it wi 11 cause a forward
connection failure in its parent directory.

-brief, -bf
suppresses the message announcing the deletion of the VTOCE, which
is only printed if no questions were asked, anyway.

-query, -qy
always asks the question about whether to delete the VTOCE, even if
it is an orphan.

-clear
uses the privileged entry that sets an entire VTOCE to zero, rather
than deleting it normally. This should be used only when a VTOCE
contains invalid information that might cause problems (reused
addresses, crashes, etc.) if it was deleted by the normal means,
since it will leave the volume on which the VTOCE existed in an
inconsistent (though benign) state to use -clear. The volume in
question should be salvaged with the volume salvager after all the
seriously inconsistent VTOCEs have been deleted. The -clear control
argument should not be used to delete an ordinary orphan, reverse
connection failure VTOCE.

2-70 AZ03-02

Notes

This program cannot be used to delete the VTOCE of an active segment. The
default action is to check whether the VTOCE is an orphan VTOCE, and delete it
if it is, or ask whether to delete it if is not an orphan. The question is
suppressed by the -force control argument, and can be forced by using the -query
control argument.

Access to phcs_ and hphcs_ is required.

2-71 AZ03-02

I
I

hunt hunt

Harne: hunt

The hunt command searches a specified subtree of the hierarchy for all
occurrences of a named segment that is either free standing or included in an
archive file. The segment(s) searched for can be specified by a star name. Any
matching segments are reported.

hunt name {path} {-control_args}

where:

1. name

2. path

is the name of a segment for which the hunt command is to search.
The star convention is allowed.

is the pathname of a directory to be interpreted as the root of the
subtree in which to search for the specified segment(s). If no path
argument is specified, the hunt command searches the subtree rooted
at the current working directory.

3. control args
can be chosen from the following:

-all, -a
reports on finding links and directories as well as segments.

-first
stops searching as soon as the first occurrence of the specified
segment is found.

-archive, -ac
looks inside archi ves for components whose names match the name argument.
This is the default.

-no archive, -nac
- suppresses searching of archives for matching components when seeking

for an executable segment.

I Notes

I The hunt command displays the type of entry found (segment, directory, or
link) followed by the pathname itself. The total number of occurrences found is
displayed at the end of the list.

I Usage ~ ~ Active Function

2-72 AZ03-02

hunt hunt

Notes I

All arguments accepted by the hunt command are accepted by the acti ve function. I

When invoked as an active
separated by spaces. Archive
component_name".

function, hunt returns a
components are returned

2-73

string of pathnames I
as "archive_path:;

AZ03-02

hunt dec hunt dec

Name: hunt dec

The hunt dec command searches a specified subtree of the hierarchy for all
PL/I object segments that are either freestanding or included in anarchi ve
file. Each PL/I object segment is classified according to its use of arithmetic
decimal instructions and how these instructions access the data. The three
classes are "no decimal," "aligned decimal," and "unaligned decimal."

If no control arguments are specified, two ASCII segments are created in
the working directory. One segment, aligned decimal.hd, is a list of the absolute
pathnames of PL/I object segments and archi ve segments containing PL/I object
segments classified as "aligned decimal." The absolute pathname of the archive
segment is followed by a space then by the name of the component of the archive
that was classified as "aligned decimal." This occurs for each component of the
archive that is classified as such. Similarly, a segment, unaligned decimal.hd,
is created in the working directory for the class "unaligned decimal.,r No segment
is created for the class "no decimal."

I hunt dec {path} {-control_args}

I

I

I

*

where:

1 •

2.

path
is the pathname of a directory to be interpreted as the root of the
subtree in which to search and classi fy PL/I object segments. If
this argument is not specified, the working directory is assumed.

-control args
are used to override the defaul ts gi ven above in the command description
and can be selected from the following:

-aligned decimal path, -ad path
specifies that the ASCII segment listing the absolute pathnames of
PL/I object segments and archive segments containing component
classified as "aligned decimal" will be created wi th the pathname
path suffixed with "hd" •.

-unaligned decimal path, -ud path
speciTies that the ASCII segment listing the absolute pathnames of
PL/I object segments and archive segments containing components
classified as "unaligned decimal" will be created with the pathname
path suffixed with "hd".

2-74 AZ03-02

hunt dec hunt dec

N.otes

The hunt dec command is a tool to aid the user when PL/I programs compiled
using "unaligned decimal" are to be recompiled using the newer PL/I compiler
implementing packed decimal, which was part of Multics Release 8.0. This was an
incompatible change because the layout of variables containing both the unaligned
and decimal attributes was changed. Therefore, it is necessary for the user to
find those PL/I programs that used "unaligned decimal" so that the appropriate
program and data base changes can be made before recompiling the program using
the new compiler.

The algorithm hunt dec uses to classify PL/I object segments is simple.
The text section is scanned for EIS decimal arithmetic instructions generated by
the PL/I compiler. If none are found the object segment is classified as "no
decimal." If decimal instructions are found, they and their descriptors are
examined for address modification and nonzero digit offsets. If ei ther is present,
the object segment is classified as "decimal unaligned"; otherwise, it is classified
as "decimal aligned."

The validity of the classification algorithm rests upon knowledge of how
the PL/I compiler generates machine code. Below is a table listing the reliabili ty
of the algorithm for the different classifications.

CLASSIFICATION

aligned decimal

unaligned decimal

no decimal

RELIABILITY

Always correct.

Fails when an unaligned decimal variable happens to fall
on a word boundary. For example,

dcl 1 record aligned,
2 item1 fixe~ bin(17),
2 item2 fixed dec(3) unaligned;

The variable, item2, is unaligned decimal. But, since it
is located one word from the beginning of the structure,
the instruction accessing it appears to be accessing aligned
decimal data.

If fixed decimal variables are present in the source program
but are never referenced or do not have the initial attribute,
no EIS fixed decimal instructions are generated by the
compiler.

The important point to be made is that the hunt dec command will correctly
identify PL/I object segments that use unaligned declmal data most of the time
while letting a few segments slip by misclassified as aligned decimal or no
decimal.

The hunt dec command attempts to force access to all segments in its search
path. If unable to access a segment for any reason, hunt dec bypasses the
segment without classifying it.

2-75 AZ03-02

I

library_descriptor library_descriptor

Name: library_descriptor, Ids

A library descriptor is a data base that associates directories or archives
in the Mul tics storage system wi th the roots of a logical library structure.
Library descriptors are discussed in detail in Section 2 of Mul tics Library
Maintenance PLM Preliminary Edition (Order No. AN80).

This command prints information about library descriptors on the user t s
terminal, and controls the use of library descriptors by the other library descriptor
commands. It can print the pathname of the directory or archive associated with
a library root; can print detailed information about one or ·more library roots;
can set and print the name of the default library descriptor used by the other
library descriptor commands; and can print the default library and search names
associated with each library descriptor command. The relationship between
library descriptor and the other library descriptor commands is discussed further
in the Multics Library Maintenance PLM.

library_descriptor key {arguments}

where the keys and their arguments are described below.

Key: name, nm

The name key returns the name of the default library descriptor that is
currently being used. The library descriptor command may be invoked as an active
function when the name key is used~

library_descriptor name

Key: set

The set key sets the name of the default library descriptor.

2-76 AZ03-02

library_descriptor library_descriptor

library_descriptor set {desc_name}

1 • desc name
is the pathname or reference name of the new defaul t library descriptor.
If a reference name is given, the descriptor is searched for according
to the search rules~ which are documented in Section 3, "Reference
Names," of the MPM Reference Guide (Order No. AG91). If desc name
is omitted, then the defaul t library descriptor is set as the descrlptor
for the Multics System Libraries.

Key: pathname, pn

The pathname key returns the pathname of the library root(s) that are
identified by one or more library names. The library descriptor command may be
invoked as an active function when the pathname key is-used.

library_descriptor pathname library_names {-control_args}

where:

1. library names
are the names of the libraries whose pathnames are to be returned.
The Mul tics star convention may be used to identify a group of libraries.
Up to 30 library names may be given.

2. control args
are selected from the following list of control arguments and can
appear anywhere after the key in the command:

-descriptor desc name
gi ves the pathname or reference name of the library descriptor defining
the 1 ibrary roots whose pathnarnes are to be returned. If the -descriptor
control argument is not specified, then the default library descriptor
is used.

-library library name, -lb library name
identifies a library name that begins with a minus (-) to distinguish
the library name from a control argument. There are no other differences
between the library names described above and those given with the
-library control argument. One or more -library control arguments
may be given in the command.

Key: default, dft

The default key prints the default library name(s) and search name(s) associated
with one or more of the library descriptor commands.

2-77 AZ03-02

library_descriptor library_descriptor

library_descriptor default {command_names} {-control_arg}

where:

1. command names
are the names of the library descriptor commands whose default library
and search names are to be printed. If no command names are given,
the defaults for all of the library descriptor commands are printed.

2. control arg
may be the -descriptor control argument as described above. It may
appear anywhere after the key in the command.

Key: root, rt

The root key prints detailed information about library rO'ots on the. user's
terminal. The information includes the names on each library root, its pathname,
and its type.

library_descriptor root library_names {-control_args}

where:

1. library names
Identify the library roots about which information is to be printed.
The Mul tics star convention may be used to identify a group of libraries.
Up to 30 library names may be given.

2. control args
are selected from the following list of control arguments and can
appear anywhere after the key in the command:

-name, -nm
causes all of the names on each library root to be printed.

-primary, -pri
causes the primary name on each library root to be printed.

-match
causes all library root names that match any of the library names to
be printed. This is the default.

-descriptor desc name
is as above-:-

-library library name, -lb library_name
is as above-:-

2-78 AZ03-02

library_fetch library_fetch

Name: library_fetch, If

This command copies entries from a library into the user's working directory.
Control arguments allow copying the entries into another directory or renaming
them as they are copied; select which library entrynames are placed on the copy;
allow copying the library entry that contains a matching entry instead of the
matching entry itself (e.g., copying the archive that contains a matching archive
component) , or copying all of the components of the containing entry. A documentation
facility is provided for recording in a file the status of each entry that is
copied.

This command uses a library descriptor and library search procedures, as
described in the Multics Library Maintenance PLM Preliminary Edition
(Order No. AN80). The initial default descriptor describes the Multics System
Libraries and allows this command to extract source programs, object segments
and bind files, include and info segments, and compilation listings from the
System Libraries. This command functionally replaces the get library segment
command. Refer to the library descriptor command description in-this manual for
information about the default-library descriptor and the library names defined
in the library descriptors.

library_fetch {search_names} {-control_args}

where:

1. search names
-are entrynames that identify the library entries to be copied. The

Multics star convention may be used to identify a group of entries
with a single search name. Up to 100 search names may be given in
the command. If none are gi ven, then any defaul t search names specified
in the library descriptor are used.

2. control args
are selected from the following list of control arguments and can
appear anywhere in the command:

-library library name,
-lb library name-

identifies a library that is to be searched for entries matching the
search names. The Multics star convention may be used to identify a
group of libraries to be searched. Up to 100 -library control arguments
may be given in each command. If none are given, then any default
library names specified in the library descriptor are used.

-name, -nm
indicates that all of the names on each matching library entry are
to be placed on the copy. See the discussion of naming considerations
under "Notes" below.

-primary, -pri
indicates that the first name of each matching library entry is to
be placed on the copy. See the discussion of naming considerations
under "Notes" below.

2-79 AZ03-02

library_fetch library_fetch

-match
indicates that, for each matching library entry, the entrynames that
match any of the search names are to be placed on the copy. See the
discussion of naming considerations under "Notes" below. This is
the default.

-into path
identifies the directory into which library entries are copied and
indicates how they are renamed. An absolute or relati ve pathname
may be given. The directory portion of the pathname identifies the
directory into which each library entry is copied. The final entryname
of the pathname is used to rename each library entryname being placed
on the copy, under control of the Mul tics equal convention. The
-into control argument may appear only once in a command line. If
-into is not given, matching entries are copied into the user's
working directory and no renaming occurs.

-chase
indicates that the target of a matching library link is to be copied.

-no chase
indicates that a warning message is to be printed when a matching
link is found in the library, and that no copying is to occur. This
is the default.

-long, -lg
causes the pathname of each matching entry to be printed on the
user's terminal as the entry is copied.

-brief, -bf
suppresses printing of the pathname of matching entries. This is
the default.

-container
causes the library entry that contains each matching entry to be
copied, instead of the matching entry itself. See the discussion
under "Notes" below.

-components
causes all of the component library entries of a matching library
entry to be copied, rather than just the matching entry itself. It
also causes all components of a library entry containing a matching
component to be copied. See the discussion under "Notes" below.

-entry, -et
causes each matching library entry itself to be copied. This is the
default.

-search name search name
identifies a search name that begins with a minus (-) to distinguish
the search name from a control argument. There are no other differences
between the search names described above and those gi ven wi th the
-search name control argument. One or more -search name control
arguments may be given in the command.

-descriptor desc name
gi ves a pathname or reference name that identifies the library descriptor
describing the libraries to be searched. If no -descriptor control
argument is given, then the default library descriptor is used.

2-80 AZ03-02

library_fetch library_fetch

Notes

-retain, -ret

-omit

indicates that library entries that are awaiting deletion from the
library (as determined by the library search program) are to be
copied.

indicates that library entries awaiting deletion from the library
are to be omitted from the search, and are not to be copied. This
is the default.

-output file file, -of file
indicates that status information for each copied library entry is
to be appended to a file. A relati ve or absolute pathname of the
file may be given. If it does not have a suffix of fetch, then one
is assumed.

-all, -a
indicates that all available status information for copied library
entries is to be recorded in the output file.

-default, -dft
indicates that only default status information is to be recorded in
the output file. This is the default.

Any combination of the control arg~ments governing naming (-name, -primary,
and -match) may be gi ven in the command. However, the following groups of
control arguments are mutually exclusive, and only one argument from each group
may be given in the command: -chase and -no chase; -long and -brief; -container,
-components, and -entry; -retain and -omit;-and -all and -default.

An -all or -defaul t control argument may only be specified when the -output file
control argument is also given. The particular status information recorded in
the output file for the -default control argument is under the control of the
library search program. It includes the information deemed most important for
the type of entry contained in the library.

If the file given in the -output file control argument does not exist, it
is created by library fetch. If it does exist, new status information is appended
to the end of the file preserving any previously recorded status. This feature
allows the user to build a history of the entries copied out of a library.

When using the -into control argument, care must be taken to ensure that
the equal name included in the -into pathname can be applied to all names to be
placed on each of the copied entries. Name duplications can easily result when
more than one library entry matches the search names.

2-81 AZ03-02

library_fetch library_fetch

The -container and -components control arguments are provided to facilitate
copying all of the library entries included in a given bound segment or related
to a given subsystem. For example, by identifying a component of the source
archive for a bound segment and using the -container control argument, the entire
source archive is copied into the user's directory. Similarly, by identifying a
directory in the library containing all of the component entries of a subsystem
and using the -components control argument, each component is copied into the
user's directory.

When the -container, -components, or -chase control arguments are used, it
may happen that none of the entrynames on a copied library entry matches any of
the search names. Because the user may have requested that .only matching names
be placed on the copies, the library search program causes the first entryname
to be placed on the copy when one of these three control arguments is used, in
addition to any names requested by the user.

The user is automatically given re access to object segments that are copied
and rw access to all other segments.

Examples

library_fetch abbrev.p11 -into >udd>Multics>user>new_=.=

copies the source segment abbrev. p11 into the directory >udd>Mul tics>user, renaming
the copy new_abbrev.p11.

library_fetch bound_qedx_.** -library online

copies all of the segments in the online libraries whose names begin wi th bound qedx
into the user's working directory. This might include the source archi ve, bindable
object archive, bound object segment, and bind listing.

If bound_qedx_.** -library online.source -components

copies all of the source components from the source archive for bound_qedx_ into
the user's working directory.

If qedx.p11 -components

copies all of the source components in the archive containing qedx.p11 into the
user's working directory.

library_fetch •• alm -lb network.source -into new_=.alm

copies all ALM source segments from the network source library into the user's
working directory, and adds a new prefix to the names placed on each segment.

library_fetch p11 status.info -nm -lb info

copies the p11 status. info segment from the info segment libraries into the
user's working directory, copying all entrynames from the library entry onto the
copy.

2-82 AZ03-02

library_fetch library_fetch

library_fetch **.ec -library online.??????

copies all exec com segments from the online source and object libraries into
the user's working directory.

library_fetch -lb supervisor.be bound sss wired .*

copies the bind segment from the bindable object archive called
bound sss wired .archive. Note that although the object archive itself matches
the search name that was gi ven, only the matching archi ve component is copied
because the -container control argument was not given.

library_fetch -lb include stack frame.incl.*

copies the stack frame declaration include segments for all source languages
from the include library into the user's working directory.

2-83 AZ03-02

list dir info list dir info

Name: list dir info

The list dir info command lists the contents of a directory information
segment created by the save dir info command.

list dir info path {-control_arg}

where:

1. path
is the pathname of the directory information segment. If path does
not end in the suffix dir_info, it is assumed.

2. control arg
can be chosen from the following:

-long, -lg
produces a long form of output. All items are listed.

-brief, -bf
produces a short form of output.

Notes

If neither the -long nor -brief control argument is selected, an intermediate
verbosity level is used.

The output of this command is written on the user_output I/O switch.

For each entry, a series of lines of the form:

item name: value

is written. Entries are separated by a blank line.

See the description of the list dir info subroutine for information on the
items printed for each verbosity level. - -

2-84 AZ03-C'~

list mst list mst

Name: list mst

The list mst command is used to find out what segments are on a Multics
system tape (either a Multics or BOS bootload tape).

list mst reel id {names}

where:

1. reel id

2. names

Note

is the reel identification number of the tape to be wri tten. The I
reel identification number, which is site dependent, may be up to 32
characters long. The reel id may also include a density specification
to indicate the density of the tape being written, as in
"060341,den:1600".

are names of segments to be listed. The star convention is allowed.
If no namei arguments are given, all of the segments on the tape are
listed.

A summary line, giving the length of each segment and its primary name, is
printed out for each segment listed. A special name is printed out for segments
wri tten wi th the first name keyword of the generate mst command because the
proper name of such segments does not appear on the tape. A diagnostic is
issued if names are provided that match no segments on the tape.

2-85 AZ03-02

list_partitions list_partitions

Name: list_partitions

The list parti tions command lists the locations and sizes of all the partitions
on a specified physical volume. Also see the clear_partition and dump_partition
commands in this manual.

list_partitions pvname

where:

1. pvname
is the name of the physical volume whose partitions are to be listed.

Output Format

The output consists of a header, which lists the physical and logical volume
names, the PVID and LVID, the size of the volume in pages, the size of the VTOC
in both pages and VTOCEs, the si ze of the paging region, and the number of
partitions. It is followed by a table listing the name, first record, and size
of all partitions and other regions on the volume. All numbers in the table are
given in both decimal and octal (in parentheses), and all other numbers .in the
output are decimal.

Example

Volume root2 (740651611731) of logical volume root (225072707470):
38258. total records. 2000. VTOC records, for 1000. VTOCEs.

Volume map (including 4 partitions):
Name First record Size

Volume header o. (0) 5. (5)
VTOC area 5. (5) 2000. (3720)

BOS 2005. (3725) 200. (310)
DUMP 2205. (4235) 2000. (3720)

Paging region 4205. (10155) 34712. (103630)
HC 36917. (110065) 1200. (2260)
ALI 38117. (112345) 141. (215)

2-86 AZ03-02

The list pnotice names command displays the primary names of all protection
notice templates. -

list_pnotice_names {-control_arg}

where:

1. control args
can be chosen from the following:

-check, -ck
specifies that the entire pnotice search list is to be processed and
that all templates, including duplicates, are to be listed. Checks
are also made to the text of each template, and any errors
encountered are reported.

-all, -a
specifies that the entire pnotice search list is to be processed and
all templates, including duplicates, are to be listed.

Notes

Default copyright and trade secret notices are indicated.
by this command are shown as they should be input to the
generate pnotice commands. If no control arguments are used,
in searcn list order, omitting duplicates.

7/82 2-86.1

Names d ispl ayed
add pnotice and

names are output

AZ03-02A

list sub tree list sub tree

The list sub tree command lists the segments in a specified subtree of the
hierarchy. The complete subtree is listed unless the -depth control argument is
specified.

list sub tree {pathnames} {-control_args}

where:

1. pathname
is the relati ve pathname of the subtree to be searched. If more
than one pathname is specified, only the last one is listed. If no
pathname is given, then the working directory is assumed.

2. control args

Notes

can be selected from the following:

-all, -a
specifies that all the names of a segment will be printed. The
default is to print only the primary names.

-depth NNN, -dh NNN
specifies the depth to which the hierarchy is to be scanned. The
depth is relative to the base of the specified subtree. The depth
must be specified by a decimal integer.

For each level in the hierarchy listed, the names are indented three more
spaces to indicate which segments exist at which depth in the hierarchy.

Each segment printed includes a number indicating the number of records
used by the segment.

2-87 AZ03-02

mcs version mcs version

Name: mcs version

The mcs version command prints on the user's terminal the version of the
core image most recently loaded into the specified FNP. This command can also
be used as an active function.

mcs version {fnp_tag}

where fnp tag is the identifier of the FNP whose version is to be printed. It
may be a,-b, c, d, e, f, g, or h. If it is omitted, a is assumed.

2-88 AZD3-02

Name: merge_mst

The merge mst command is used to copy a Multics system tape (MST) (either a
Mul tics or BOS boot load tape) onto another reel of tape, replacing selected
segments with segments from the storage system.

merge_mst reel id1 reel id2 {-control_arg} {names}

where:

1. reel id1
is the reel identification number of the tape to be wri tten. The I
reel identification number, which is site dependent, may be up to 32
characters long. The reel id may also include a density specification
to indicate the density of the tape being written, as in
"060341,den:1600".

2. reel id2
is the reel identifier number of the new MST to be made.

3. control arg

4. names

may be ei ther -stop name (or -sp name) to call debug before the
segment identified by name is written out whether or not it has been
replaced. This allows the user to inspect or modify the SLT entry
in any arbitrary way. Before such a call is made, a message is
printed, giving the address of the segment and the SLT entry. The
-stop control argument can be gi ven more than once in the command
line and applies only to the segment name argument immediately following
it. The segment name argument to the -stop control argument is
operated on as described under names in the following paragraph.

are names of segments to be copied. The star convention is allowed.
Any segment on the tape that matches any of the names is sought in
the current working directory and replaced in the tape copy. If no
namei arguments are gi ven, replacements are sought for all of the
segments on the tape in the current working directory. If a segment
with a separate linkage and definitions is replaced, separate linkage
and definitions are sought in the working directory to replace it.
However, if there is none, the linkage and definitions are obtained
from the object segment in the working directory. If a segment on
the tape being replaced is not an object segment, but the matching
segment in the working directory is, only the text of the segment is
written to the new tape. A separate linkage or definitions section
cannot be replaced without replacing the segment from whence it was
separated.

2-89 AZ03-02

merge mst

Notes

A message is printed out each time a segment is replaced on the tape with
one from the working directory. A diagnostic is issued if names are provided
that match no segment on the tape or match segments on the tape but match no
segments in the working directory.

Segments written with the generate mst command first name keyword cannot be
replaced because the names do not appear on the tape. -

2-90

mexp mexp

Name: mexp

This command is obsolete and should not be used in new programs.
been replaced by the ALM macro facility.

It has ,

The mexp command is a fairly simple text-manipulative program to be used in
conjunction wi th the ALM assembler. The program takes mexp source segments,
expands any macros found therein, and generates as output an expanded text segment
suitable as input to the ALM assembler.

The mexp command is purely text manipulative and does not have the capability
for doing any expand-time decision making other than comparison of character
strings. Conditional expansion of code is possible with the use of the
pseudo-operations ine, i fe, and i farg. In add i tion, the abili ty to generate
unique symbols within macros is provided. A limited form of interaction is also
provided that allows for repetitive expansion of macro components.

mexp name args

where:

1. name

2. args

Notes

is the input text segment name. The mexp command searches for name .mexp
(unless name ends in the suffix mexp) and generates as output name.-alm.

can be any character strings that can be embedded in expanded macros
with the use of the &A£ control expansion (see below).

The format of a mexp source program is quite similar to an ALM source
program. The main difference is that macro-definition and macro-expansion
statements are interspersed with the normal ALM statements. To define a macro,
the pseudo-operation ¯o is used. The format of this is as follows:

¯o macro name

- macro-body

&end

If the string ¯o is found in the context of an ALM opcode or pseudo-operation,
it is interpreted as the start of a macro definition.

2-91 AZ03-02

mexp mexp

The name of the macro is the next "word" on the 1 ine. The body of the
macro is all of the text up to but not including the next &end found in the
source text. The body of the macro can include any text that, when expanded by
the rules specified below, yields valid ALM source code.

Macros are used by specifying the name as if it were an opcode or pseudo-operation
and specifying the arguments, separated by commas, in the variable field. A
comment field can follow the parameter list separated from it by a quote (") or
white space.

The following control sequences direct the macro expander to act in a special
way:

1. &0, &1, &2, •.•

2. &u

3. &p

4. &n

5. &U

6. & (E.

..,
I • ife

8. dup

9. &i

10. &x

the character & followed immediately by any decimal integer « 100) is
replaced, upon expansion, wi th the corresponding argument passed to
the macro (see "Examples" below.)

is expanded to be a unique character string of the form •• ~ 00000,
••. 00001, etc. that is different from any other such strings expanded
with &u control.

is expanded to be the same string as the previous &u expansion.

is expanded to be the same string as the next &u expansion.

is expanded to be a unique character string of the form •• 00000,
•• 0000 1; however, mul tiple occurrences of &U wi thin the same macro
yields the same string.

-
indicates the beginning of an iteration sequence. The text following
the &(n and up to but not including the next &) is expanded at expand
time only if there are addi tional parameters to the macro iteration
argument that have not been used up (see below).

Cine) _
if ife or ine occur in the context of an opcode or pseudo-operation,
it causes conditional expansion of the text up to the next ifend found
in the text, depending on the equality (inequality) of the first two
parameters to the pseudo-operation. The equality comparison is strictly
a character-string compare.

causes the text up to the next dupend found in the text to be duplicated
n times where n is the decimal value of the (first) parameter to the
pseudo-operation.

is expanded to be the particular parameter in an iterated list for
which the current iteration expansion is being done (see below).

is expanded into the decimal integer corresponding to the argument
position of the iteration argument for which the current iteration is
being done (see "Examples" below).

2-92 "·Z03-0

mexp mexp

11 . &An

12. ifarg

is expanded to be the n+1'st argument to the mexp command.

if i farg occurs in the context of an opcode or pseudo-operation, it
causes conditional expansion of the text up to the next ifend depending
on whether or not the first parameter to the pseudo-operation is one
of the arguments to the mexp command (other than the source name).

If a parameter is not specified for a particular parameter posi tion, a
zero-length string is used for expansion.

The argument &0 expands to be the first label on the statement involving a
macro.

Any parentheses around a parameter are stripped off upon expansion. Parentheses
used in this manner are treated as quoting characters.

Blanks cannot appear in a macro parameter list unless within a parenthesized
parameter.

Iteration

The iteration feature is invoked by.passing a parenthesized list of parameters
in the parameter position for the specified iteration. The parameter number for
an iteration sequence immediately follows the & (of its definition. (If no
parameter number is specified, 1 is assumed.) Iterated arguments are scanned in
the same manner as macro arguments, and hence quoting can be done with the use
of parentheses.

If more than one &i occurs wi thin a single iteration bound, the same parameter
is substituted for the &1 throughout the expansion. That is, the parameter
number specifying which parameter is to replace the &i is only changed when the
&) to end the iteration is reached.

External Macros

The pseudo-operation &include can be used to define macros from an external
segment. When this is done, the parameter to the pseudo-operation is treated as
a mexp include file of macro definitions. The file name.incl.mexp (where name
is the parameter to the pseudo-operation) is searched for, using the include
file search rules. The macros contained in the specified segment are defined in
the same way as though the macro definitions were in the text directly. (The
same rules of requiring a macro to be defined before it is used apply.)

A macro can be redefined with no ill effect. The latest definition is the
one used.

2-93 AZ 03-02

mexp mexp

Recursion

Macros can be used recursively with the following restrictions:

1. A macro must be defined before it is expanded. It can be used previously
in another macro definition as long as the other macro is not expanded
(i.e., the name of the macro occurs in the pseudo-operation position
of some line).

2. A maximum allowed recursion depth of 32 is arbitrarily imposed.

Continuation

If all of the parameters to be passed to a macro do not fit on one line,
they can be continued on the next line. This is indicated by leaving a comma
(,) as the last character in a parameter list. No opcode or pseudo-operation
should be specified for subsequent continued lines. It is not possible to split
a single parameter (which means a parameter that is a list) in this way.

Examples

The following macro definitions show typical expansions.

¯o load
Id&1 &2
&end

might be used as follows:

load xO,temp IdxO temp

or:
load a,(spI3,*) Ida spI3,*

The use of parentheses in_ the second example causes the comma to be ignored as a
parameter delimiter.

¯o test
&U: Ida &1

tnz &U
sta &2
&end

might be used as follows:

test a,b .. 00000: Ida a
tnz 00000

test c,d .. 00001: Ida c
sta d

2-94 AZ03-C~

mexp mexp

The following example shows how iteration is used. The macro definition:

¯o table
& (1 vfd 18/&i,18/&0
&)

&end

might be used as follows:

e 1 : table (4,6,8,10) vfd 18/4,18/e1
vfd 18/6,18/e1
vfd 18/8,18/e1
vfd 18/10,18/e1

The following example shows how condi tional expansion can be used. The
macro definition:

¯o
Ida
ife
aos
ifend
&end

meter
&1
&2,on
meterword,al

might be used as follows:

meter foo~on Ida
aos

foo
meterword,al

The following macro shows how &x might be used. The macro definition:

¯o callm
&(3 eppbp &i

spribp &2+&x*2
&)

eaq 2*&x-2
lIs 36
staq &2
call &1(&2)
&end

might be used as follows:

callm
Ad) ,did)

sys,arg,(=1,(=20aError from device

yielding:

=1
arg+1*2

eppbp
spribp
eppbp
spribp
eppbp
spribp

=20aError from device Ad
arg+2*2
did
arg+3*2

eaq 2*4-2
11 36
staq arg
call sys(arg)

2-95 AZ03-02

mexp mexp

The following example shows how conditional expansion might be used. The
macro definition:

&(
¯o
ife
vfd
ine

,09/&iifned
&)

&end

might be used as follows:

tab9
&x,1
09/&iifend
&x,1

tab9 (61,62,63,64,65,66)

yielding:

vfd 09/61,09/62,09/63,09/64,09/65,09/66

Notice the position of the ifend and &) sequences.

2-96 AZ03-02

monitor_log monitor_log

Name: monitor_log

The monitor log command monitors activity in standard-format log segments.
Logs segments are periodically examined, and any new messages are printed on the
user's terminal or given as arguments to a specified command line.

where:

1. log_name
identi fies a log segment.
the entryname alone may be
entryname being monitored.
-all or -number.

If the log is already being moni tored,
used if there is no other log or that
A log_name may not be specified wi th

2. control args
can be selected from the following:

-all, -a
applies the other control. arguments to all logs currently being
monitored. This control argument may not be given with -number or a
log_name.

-number N, -nb N
where N identifies a log by its number.
not be gi ven if -all or a log name is gi ven.
with the -print control argument.

This control argument may
Log numbers are displayed

-print, -pr

-off

pr ints the current state of the selected log (s) • The log number,
wakeup interval, current-log message number, and any called command
are printed.

removes monitoring from the specified log(s).

-time N, -tm N
where N specifies the interval in seconds between examinations of
the active logs. Each time the logs are examined, any new entries
are processed.

-call STR
where STR specifies that the new log entries in the specified log(s)
are to be gi ven as arguments to a command line instead of being
printed on the terminal. If STR is a null string (""), messages are
printed on the terminal instead.

-match STR
selects only messages from the specified log(s) containing the string
STR for processing. This control argument may be given more than
once. If multiple matches are supplied, all messages matching all
of the STRs are printed.

2-97 AZ03-02

Note

-exclude STR, -ex STR
where STR specifies messages to be excluded from processing. This
control argument may be given more than once. If multiple excludes
are given, all messages matching any of the STRs are excluded.

-remove match, -rm match
removes all match specifications from the specified log(s).

-remove exclude, -rm ex
removes all exclude specifications from the specified log(s).

-severity N, -sv N
processes only messages with severity greater than or equal to N.

-no severity, -no sv
- processes all messages regardless of their severity.

Read access is required to the log(s) being monitored.

2-98 AZ03-02

monitor_quota monitor_quota

Name: monitor_quota

The monitor quota command calculates storage of a directory and will send a
warning message at the approach of a record quota overflow condition.

monitor_quota {-control_arguments}

where:

1. control args

7/R2

can be chosen from the following:

-pathname, -pn
is the pathname of the directory to be monitored. Only one path can
be given when invoked. The default is the user's working directory.

-call STR {N}
specifies that STR is to be passed to the command processor as a
command when a directory's segment quota used is found to be greater
then 90 percent of the quota assigned. If {N} is given, then the
default of 90 percent will be overridden. (See "Notes" below.)

-console {N}
sends a warning of an approaching record quota overflow condition to
the system console. Access to the phcs gate is required to issue
warnings on the system console. If {N} is specified, then the default
percent value at which the warning is to be issued (as given in the
functional description) will be overridden.

-warn Person id.Project id {Person id.Project id ... } {N}
sends the warning message to the - individual specified in
Person id.Project id. A limit of ten users can be listed with the
use 01 this control argument. The invoking user will be sent a
message by default if this control argument and -console is omitted.
If {N} is specified, then the defaul t percent value at which the
warning is to be issued (as given in the functional description)
will be overridden.

-repeat DT, -rpt DT

-off

identifies the interval for
overrides the default time
>= 1 minute and acceptable
1hr) .

setting the monitor time. This argument
calculation. The DT is a relative time
to convert_date_to_binary_ (e.g. 10min,

turns off completely all monitoring in the current process. This
control argument must not be given with any other arguments.

2-99 AZ03-02A

I

monitor_quota monitor_Quota

Notes

This command can be used several times in a process to monitor several
different directories. Use of the -off control argument stops monitoring of all
directories.

The number of records given with the -call, -console, and -warn {N} control
arguments must be less than the quota assigned to the directory.

The default interval when invoked without the -repeat control argument will
automatically be set with a time interval dependent on how much available storage
was found. That is, if the directory was 50 percent full, then an alarm would
be set to trigger in 30 minutes to check again. If the Quota was found to be at
80 percent, then a message would be sent, and an alarm time of two minutes would
be set. At go percent, it would send a warning every minute, and if -call has
been provided, then the specified string will be passed to the command processor.

2-100 \Z03-02

The 01 dump command looks at selected parts of an online dump created by
the BOS FDTIMP command and copied into the Multics hierarchy by the copy dump
command. The command'is designed to aid system programmers in the task of crash
analysis.

ol_dump {erfno} {-control_arg}

where:

1. er fno
is an error report form number given in decimal, or "last" if the
latest dump taken is to be selected. If erfno is not specified,
01 dump enters its request loop described below. If an erfno is
gIven, 01 dump searches its currently referenced dump directory (see
below) for a copy of the dump: if it finds the dump, it initializes
itself to be able to process the given dump; if it doesn't find it,
the user is told and the request loop is entered.

2. control_arg
can be:

-pathname path, -pn path
specifies a directory
If it is not given,
used.

pathname where online dumps are to be found.
the default dump directory of >dumps will be

Request Loop

Once 01 dump has processed the erfno argument, it enters a loop-reading
requests from user input. The requests allow the user to look at selected
regions of the dump-currently under analysis or to choose another dump (erfno)
for analysis. The following requests are implemented (letters in parentheses
are abbreviations):

7/82

erf arg
selects another dump for immediate analysis; arg can be either an
erf number or "last" if the latest dump taken is to be analyzed.

quit (q)
returns.

command (c) or (.•)
passes the rest of the request line onto the current command
processor.

list (1)
lists the dumps in the current dump directory by showing the name of
the first component of the dump. The names of dumps tell when the
dump was taken and what the erfno is.

2-101. 1 AZ03-02A

7/82

help (?)
lists the requests of ol_dump.

dum p (d) { a r g 1 a r g 2 a r g 3 a r g 4 a r g 5 }
displays selected words located in the current dump under analysis.
Arguments are as follows:

arg1 must be one of the following:

seg s displ ays selected words from segment "s" in the current
process, where "s" can be a segment number or name. If
no other arguments are specified, then the entire segment
is dumped in octal.

mem displays selected words starting at absolute memory
location indicated by arg2. A search is made of all
running process's descriptor segments and AST/PT entries.
If the requested address is found, the segment number and
name, segment offset, and the process DBR value is output
as well as the requested number of words. If the
requested memory address is not found, it is assumed to
be in free store.

arg2 segment offset (if arg1 is seg s) or the absolute memory
address (if arg1 is mem).

arg3 if the first character of arg3 is a "+,, or "-", then the rest
of arg3 is either added or subtracted (as an octal number) from
the base of arg2. If the fiist character of arg3 is not a "+,,
or "-", then arg3 is the number of elements to be dumped.

argq if the "+,, or "-,, option of arg3 is present, then arg4 is the
number of elements to be dumped. If the "+,, or "-" option was
not used with arg3, then arg4 is any of the output modes used
with the debug command ("0" for octal, "a" for ASCII, "p" for
pointer, "i" for instruction format, etc.). If the instruction
mode ("i") is used, and if the requested segment is not found
in the dump (only segments with read and write access are found
in the dump, which fact usually precludes executable object
segments from being dumped), then a search of the library
directories is made. If the segment is then found, the segment
is dumped in instruction format.

arg5 if present, arg5 is used to specify the output mode, as above.

dbr arg In}
switches to another process (in the same dump). Arguments are as
follows:

cpu switches to process that is executing on CPU n. n can be
either the cpu number (0 to 7) or cpu tag (a to h).

value switches to another process by specifying the dbr value for the
new process.

name (n) segno {offset}
displays the SLT or SST name.

segno is a segment number.

2-101.2 AZ03-02A

7/82

offset displays the bound segment name as well as the component name
and the relative offset in that component (if the specified
segment is bound).

amsdw (ams) {prds}
displays the saved contents of the SOW associative memory. If the
optional prds argument is present, the saved SOW associative memory in
the prds is displayed. If the prds argument is not present, then the
saved contents of the SOW associative memory at the time of the dump
in the bootload CPU is displayed.

amptw (amp) fprds}
displays the saved contents of the PTW associative memory. If the
optional prds argument is present, the saved PTW associative memory in
the prds is displayed. If the prds argument is not present, then the
saved contents of the PTW associative memory at the time of the dump
in the bootload CPU is displayed.

syserdta (sdta)
displays the
"syserr_data".

message entries in the wired message segment

syserlog (slog) n
displays the specified number of message entries in the paged message
segment "syserr_log" starting with the most recent entry.

proc (p) arg

stack

displays some APT data for the process specified.
follows:

all displays all of the APT entries.

cur displays only the APTE for the current process
dbr value).

run displays only those APTEs that are currently
configured CPUs.

rdy displ ays only those APTEs whose execution state

wat displays only those APTEs whose execution state

blk displays only those APTEs whose execution state

stp displays only those APTEs whose execution state

emp displ ays only those APTEs whose execution state

n displays APTE whose number is n.

(s) seg {os args 19 fwd}

Arguments are as

(as defined by the

executing on the

is "ready."

is "waiting."

is "blocked. "

is "stopped."

is "empty. "

displays a stack trace of the stack segment specified by seg.

seg is ei ther a segment name or number, or the key word "ring"; in
which case, the next arg would be the ring number of the stack to
be traced (i.e. stack ring 0).

2-101. 3 AZC3-02A

7/82

os starts trace at the frame whose offset is os and continues to the
end of the stack. If the offset argument is omitted, then the
trace is started at the stack base. The segment name of the
return pointer is displayed for all segments. If the name is a
bound segment, the component name as well as the relative offset
is displayed in the form "bound seg$comp nameloffset". If the
return pointer indicates "p11 operators", tnen Pointer Register 0
is picked up and used instead. This is indicated by the flag
"[prO]" being displayed after the segment name.

args displays the stack frame arguments in interpreted format.

19 produces an octal dump of each stack frame,' as well as
interpreting the arguments as above.

fwd starts the trace at the beginning of the stack (as defined by the
stack begin pointer) and continues to the end of the stack (as
defined by the stack_end pointer).

mcprds (mcpr) arg {lg}
displays the PRDS machine conditions for the specified argument. Only
an interpreted version of the SCU data is displayed, unless the "lg"
argument is used.

arg can be one of the following:

int displays machine conditions for prdslinterrupt data.

systroub displays machine conditions for prdslsystem trouble
data.

fim displays machine conditions for prdslfim data.

all displays all machine condition save areas in PRDS.

Ig displays pointer registers and processor registers as well as SCU
data.

mcpds (mcp) arg {lg}
displays the PDS machine conditions for the specified argument. Only
an interpreted version of the SCU data is displayed unless the "lg"
argument is used.

arg can be one of the following:

pgflt displays machine conditions for pdslpage fault data.

fim displays machine conditions for pdslfim data.

sig displays machine conditions for pdslsignal data.

all displays all machine condition save areas in PDS.

19 displays pointer registers and processor registers as well as SCU
data.

mc arg1 arg2 {arg3 19}
displays machine conditions from anywhere. Only the SCU data is
displayed unless the nlg" argument is used. Arguments are as follows:

arg' segment name/number or "cond", to display machine conditions
from a condition frame specified in the following arguments.

2-101 . 11 AZ03-02A

7/82

arg2 segment offset, if arg1 is a segment name/number, or segment
name/number, if arg1 is equal to "cond".

arg3 if arg1 is equal to "cond", then arg3 is the segment offset of
the condition frame. If arg3 is not specified, and arg1 is
equal to "cond"i then the entire stack segment (from arg2) is
searched for a condition frame. In this case the first
condition frame found (starting from the stack end ptr and
working toward the stack_begin_ptr) is displayed. - -

19 displays the pointer registers and processor registers as well
as the SCU data.

dumpregs (dregs) {arg}
displays the processor registers that were saved at the time of the
dump, from the bootload CPU. If no arguments are given, all of the
registers are displayed. The optional arguments are as follows:

ptr displays the pointer registers only.

preg displays the processor registers only.

scu displays the saved SCU data only.

all displays all of the above.

lrn {segno1 segno2}
displays a breakout of the descriptor segment (dseg) by printing the
SDW's segment numbers and names for specified segment numbers of dseg.
If no optional arguments are given, the descriptor segment is
displayed from segment number 0 to the last segment in dseg.

segno1 segment number at which display starts.

segno2 segment number at which display stops. If this argument is not
given, but segno1 is, display continues to the end of dseg.

segno (segn) name
displays the segment number for a given entry name.

ssd arg {paths}
allows the user to specify up to three directories for finding offsets
and bindmaps for- hardcore segments. The default directory is
>ldd>hardcore>execution.

arg can be chosen from the following:

pr displays the current directories searched.

def resets the directories searched to the default value.

paths pathnames of directories to search (maximum of three). If no
arg argument is given, at least one path argument must be
given. When more than one path argument is specified, the
directories are searched in the order specified.

2-101.5 AZ03-02A

7/82

hisregs (hregs) arg1 {arg2 arg3}
displays a composite analysis of the processor history registers.
Arguments are as follows:

arg1 can be chosen from the following:

pds displays the stored history registers from the PDS.

dmp displays the history registers stored at the time of the
dump by the bootload processor.

help displays both a list of the abbreviations used in the
history register analysis and their meaning.

seg can a segment name or number.

cond displays history registers from a condition frame, the
location of which is described by arg2 and arg3.

arg2 if arg1 is "seg" then arg2 describes the segment offset to the
beginning of the history register area. If arg1 is "cond" then
arg2 defines the segment name or number for the desired history
registers.

arg3 if arg1 is "cond", then arg3 describes the segment offset to the
start of a condition frame. If
"cond", then the entire stack
searched for a condition fram~.

arg3 is not present and arg1 is
segment (specified by arg2) is

pcd {arg}
displays the contents of the "config deck" segment in an interrupted
fashion. Arguments can be anyone-of the card types found in the
configuration deck (cpu, mem, prph, etc.). The pcd command will
process from one to 32 arguments. If no arguments are given, the
entire config deck is displayed.

as t (p t) n am e
displays the AST entry and page table for the given segment. Name can
be an segment name or number.

queue (tcq)
displays the scheduler's priority queue in order of priority.

dumpdir path
sets the dump directory to that specified by path. If the request
line is none of the above, an error message is displayed, and the
request loop is reentered.

absadr segment {offset}

erf?

provides an absolute address for the
segment name or a number. Offset is
the segment.

given segment. Segment can be a
an octal offset from the base of

displays the current dump number and date dumped for the dump being
processed.

2-101.6 AZ03-02A

1/82

dump events (de) {args}
-displays "interesting" events from an Online dump in reverse

chronological order. Use of this request will not change any of the
current parameters used by ol_dump. Arguments are as follows:

why

-erf <n>
selects an online dump. If this argument is not provided, the
current dump is processed.

-dump dir path, -dd path
-specifies a directory where the online dump can be found. If
this argument is not provided, the current directory is used.

-last <n>, -It <n>
specifies the number of events to print.
print all.

-time <sec>, -tm <sec>

The default is to

specifies the time in seconds before the dump was taken when
events were "interesting." The default is 10 seconds.

-brief, -bf
specifies the brief output format, which is one line per event.

-long, -lg
specifies long output format, which is multiple lines per event.

The why request attempts to tell why the system crashed. In some
cases, the reason given may be the actual cause of the crash, most
often not. It chases down the cause of the crash to:

1. A fatal (code 1) call to syserr.
printed.

The crash message will be

2. A manual (execute switches) return to BaS by the operator. The
BaS machine conditions, including the execution point at which
the switches were forcibly executed, are displayed.

3. A fault taken under invalid circumstances; e.g., a parity fault
in interrupt code, an illegal fault, or an execute fault. The
fault machine conditions are displayed.

4. A deliberate call to BaS, perhaps by a dump taken after
successful shutdown, or a call to hphcs $call bos, perhaps by
the Initializer "bosH command. A message- indi~ating that this
is the case is printed.

The why request searches through the dump, following BaS
pointers and sys trouble data in as many processes as necessary,
to determine whIch process initiated the return to BaS. This
request leaves ol_dump in that process.

If the why request cannot determine the crash cause of a dump,
it says so. This can happen if a dump is in sufficiently bad
shape or if the reason of the system's crash is obscure. In
this case, manual checking of prds$sys trouble data,
pds$fim data, and pds$signal data (with the "mc" or 1rmcpr "
requests) in all processes dumped is a good place to start.

2-101.1 AZ03-02A

After the why request has run, tracing of the stack at the crash
point (via "stack" with no arguments) is a good place to go.
Specifically, when crawlouts or process terminations of the
Initializer were the reason for a crash, a fim-frame is often
found in the crash process. Investigation of such a frame with
the "me" request often produces more insight into the reason for
system failure.

pdstrace {N}
formats and displays the contents of the system trace table in the
pds. The number of trace entries displayed can be specified by N
(where N is a positive decimal integer). If N is not specified, all
entries in the trace are displayed.

If the request line is none of the above, an error message is displayed,
and the request loop is reentered.

7/82 2-101.8 AZ03-02A

nothing nothing

Name: nothing, nt

The nothing command performs a return to its caller and does nothing, thereby I
allowing timing tests to be made at command level.

nothing {argsl

where:

1. args
are optional arguments that may have any value and are ignored.

Notes

This command makes use of a special feature in the Multics Linking Mechanism
that allows it to be executed by any reference name. Thus, it can be used as a
"do nothing" substitute for the routine normally known by that name. To do
this, initiate it with the reference name of the program it is supposed to
replace. It cannot be used in this fashion if the entry-point name is different
from the reference name.

2-101 AZ03-02

I

I
I

I
I

pause pause

!!.!!!!: pause

The pause command is an interface to the timer manager $sleep entry point
that allows the caller to "sleep" for a given number of seconds. -(The timer _manager_
subroutine is described in the MPM Subsystem Writers' Guide, Order No AK92.)

Usage

pause {time}

where time is the number of seconds (decimal integer) to sleep. If time is not
specified, a time of 10 seconds is used.

2-102 A7J3-02

The perprocess static sw off command turns off an object segment's per-process
static switch, so that the-segment's internal static storage will be reset within
a run unit.

perprocess_static sw off path

where:

1 • path
is the pathname of a segment whose per-process static switch is to
be turned off.

2-103 AZ03-02

The perprocess static sw on command turns on an object segment's per-process
static switch. ThfS switCh Should be on in all segments whose internal static
storage is not to be reset within a run unit.

perprocess_static_sw on path

where:

1. path
is the pathname of a segment whose per-process static switch is to
be turned on.

Notes

This switch is a property of the segment itself, not the branch, so it must
be set again after recompilation.

If the segment is a bound segment, the bindfile keyword Perprocess_Static
should be used instead of the command. .

2-104 AZ03-02

peruse_crossref peruse_crossref

Name: peruse_crossref, pcref

The peruse crossref command displays information extracted from the output
file generated by the cross reference command.

pcref {cref_path} search name{s} {-control_args}

where:

1.

2.

cref _path
is the pathname of the crossref output file to search. It may be an
MSF. It must contain a ")" or "<" character in order to distinguish
it from a search name. If no cref path is supplied, the total
system cross-reference ()ldd)crossref>total.crossref) is used. To
specify a cross-reference in the working directory, use -pathname.

search name{s}
are one or more names to search for references to in the crossref.
They can be either symbolic linker references or include file names.
They can have any of the following forms:

segname
segname$entryname
XXX.incl.YYY

Any component of a search name can be a starname, with the
exceptions that neither a segname nor an include file name can begin
with a starname character, and the string ".incl" must appear in
toto. If no entryname is specified with the segname, all references
to any entry points in the segment are listed. XXX.incl is accepted
as an abbreviation for XXX.incl.*. The characters ")" and "<,,
cannot appear in a search name.

3. control args

7/82

can be one of the following:

-brief, -bf
do not print any information for selected cross-reference items that
have no entries (callers).

-long, -lg
print selected cross-reference items that have no entries (default).

-pn crossref path
specifies crossref path as the crossref to search.

2-104.1 AZ03-02A

peruse_crossref

Examples

pcref
pcref
pcref

phcs
hphcs $*ac1
)ldd)crossref)tota1.crossref

Output Example

peruse_crossref

stack frame.inc1

References to objects matching search names are displayed like this:

References to phcs_$ring_O_peek: (STAND-ALONE in HARDCORE)

as meter, copy salvager output, display branch, namef ,
ring_zero_peek_~ sweep_pv, vpn_cv_uid_path_ -

If a matching object is not referenced by anything, it will be identified as
such. If a search name does not match anything found in the crossref, a
diagnostic is displayed. The listing is a maximum of 72 characters wide.

Notes

This command uses a binary search to locate the desired information and
thus is quite inexpensive, even when searching the total system crossref.
Average cost for a single search of the system crossref seems to be about
45-page faults and 0.5 CPU seconds, or roughly ~O times cheaper and far more
convenient than using an editor.

No attempt is made to combine the results of the search names--if you ask
for something twice, it will get printed twice.

This command does not perform any significant validation on the input file,
and is likely to either take faults or signal the logic error condition if asked
to search something other than a crossref output file. -

There is no support for synonyms; a search name must be the primary name of
a segment, and not a synonym established in a bindfile or the hardcore header.

There is no way to select specific types of things, such as all the
unresolvable references in the crossref.

7/R2 2-104.2 AZ03-02A

prelink prelink

Name: prelink

The prelink command generates a set of data segments that can be used
during process and ring ini tialization to minimize the overhead. Many of the
1 inkage faul ts associated wi th bringing up a new process can be avoided, and
some of the storage used by linkage sections can be shared. Both of these
features lead to smaller working sets for the entire system.

The prelinker must be run anew after each bootload to assure that links to
segments that come in off of the boot load tape are consistent. Thus, it is
advantageous to use prelinked environments only when several user processes make
use of them, per bootload, since it is somewhat costly to prelink a subsystem.

The prelinker takes an ASCII driving file as input and places all output
segments it creates in the same directory in which the driving file is located.
This directory contains the necessary data bases to initialize a prelinked process
and is the directory specified wi th the -subsystem control argument to login
(see MPM Commands) or the subsystem keyword used in the PMF (see MAM Project).

prelink {path} {-control_args}

where:

1. path
is the pathname of the directory containing the prelinker dri ver
table that must have an entryname of pldt. If path is not specified,
the current working directory is used.

2. control args
may be chosen from the following:

-delete, -dl
causes the prelinker to delete any segments created by a previous
invocation of the prelinker. These segments are named as follows:

template kst
template-dseg
stack ? -
*.area.linker
*.area.prelinker

where the star convention is applied to the above names.
template kst and template dseg have ring brackets of 0,
cannot be deleted by normal means.

-debug, -db

Note that
and hence

causes the prelinker to retain its environment in the event of an
unexpected fault or condition during prelinking. The default action
(if this control argument is not specified) is to clean up the environment
and report an appropriate error message.

2-105 AZ03-02

prelink prelink

Notes

The key to generating a prelinked subsystem is the generation of the prelinker
driver table (PLDT). The PLDT contains all instructions on which segments to
prelink, which search rules to use during prelinking, which rings to prelink,
and how to layout the various linkage sections that are used.

The basic concept of the prelinker is to allocate linkage sections (and
static sections when necessary) in template linkage segments, point to these
sections wi th pointers in a template LOT (and ISOT), allocate segment numbers
for all prelinked segments, and snap as many of the links in the template linkage
segments as possible. Clearly, since snapping a link requires knowledge of the
segment number of the target of the link, only segments in the prelinked set can
be prelinked to. This means that if the set of programs prelinked is not "transitively
closed" there are links in the template linkage segments that cannot be snapped.
These links are snapped if and when they are referenced as the prelinked process
actually executes.

Internal Static

The goals of prelinking are to:

1. minimize linkage faults in a newly created process (and any associated
paging), and

2. mlnlmlze the system working s~t by sharing data that would otherwise
be per process (i. e., linkage sections).

Since the default location of internal static storage is the linkage section
and since internal static storage cannot be shared, some mechanism must be used
to remove internal static from the linkage section so that the linkage section
can be s h are d . Th ere are two way s t his i s don e • Fir s t , all in t ern a 1 s tat i c
variables that might be allocated in the linkage section are removed from the
program. This can be done by declaring "constant" internal static variables
with the "options (constant)" attribute and thereby get the "variable" allocated
in the (shared) text, or by recoding the program to remove such variables from
the program.

The second way to remove internal static from the linkage section is to use
the "separate static" option of the PL/I and ALM translators. (In PL/I this is
done wi th the -separate static control argument; in ALM this is done wi th a
join/staticl statement.)- This forces a separate region of the object segment
for internal static that is allocated independently of the linkage. Programs
whose static is separate can have their linkage shared and their internal static
per process.

2-106 AZ03-02

prelink prelink

Unsnapped Links

Since most prelinked systems probably have some links left unsnapped, it is
important to understand what happens when a linkage fault occurs on one of these
links. If the link is in a per-process linkage segment (e.g., those containing
linkage sections with internal static), the link is snapped in the normal way.
If, however, the link is in a shared linkage segment, an attempt to snap the
link results in a copy-on-write fault, which causes a copy of the shared linkage
segment to be placed in the process directory (wi th wri te permission to the
user) so that the link can be snapped. This has the disadvantage of causing the
working set of the system to be increased by those pages referenced by the given
user in the once-shared linkage segment. For this reason, it is often advantageous
to force segments with unsnappable links into per-process linkage segments, even
though they might appear to be good candidates for shared linkage.

Unsnapping Links

If a user wants to make a segment unknown that is linked to by a program
whose linkage is allocated in the shared linkage segment, a similar problem to
that mentioned above occurs. Namely, the attempt to reset such links to their
virgin state causes a copy of the shared linkage to be created and used. Again,
if it is expected that links allocated in shared linkage wi 11 commonly be unsnapped,
it might be advantageous to force such linkage sections into per-process linkage.

Internal Static Storage

The prelinker does not allocate separate internal static sections unless
some prelinked program links to the static section (in which case the address is
required to map the link). Instead, ISOT faulting packed pointers are placed in
the ISOT for segments with separate static. If, during execution of a prelinked
process, the static storage is referenced, the ISOT fault occurs and results in
allocation of the static storage in a per-process segment. This has the advantage
of not allocating static storage until it is needed--again resulting in smaller
working sets. '

Caveats for Prelinking

There are some reasons why prelinking might not be advantageous for a particular
subsystem. One such reason is that the prelinker acts similar to a multisegment
binder and resolves name searches at prelink time instead of at runtime. This
is a tradeoff of function for better performance that may not be most appropriate
for all applications.

Another problem that prelinking can cause is the potential for larger linkage
segments than would otherwise be used in a nonprelinked system. This can occur
if too many programs are included in the prelinked set, many of which are never
referenced. Some thought must therefore be given to which programs to include
in a prelinked subsystem. Programs not included can, of course, be dynamically
linked to in the usual manner.

2-107 AZ03-02

prelink prelink

General Recommendations

In order to mInImIze the number of segments used by a process, it is usually
best to place the first linkage region (general area, in fact) in the stack
segment. The linker is ready to handle any overflow by creating further segments
in the process directory as part of the same logical area.

Similarly, since the entry sequence of PL/I programs references the LOT and
ISOT, it is best to limi t these to 512 words each so that they can both be
placed in the first page of the stack. Again, the linker is ready to handle an
overflow if 512 is not large enough.

Other tuning should be done by examining processes created from prelinked
templates to check for unnecessary programs or programs that are dynamically
linked to and should therefore possibly be included in the original prelinked
set.

Prelinker Driving Table (PLDT)

The PLDT directs the prelinker by specifying which segments to create, how
big to make them, and which linkage sections to allocate where. The format of
the PLDT is a header consisting of a Max segno statement and a Search rules
statement. The syntax of these is: -

N· ,

Search rules: [referencing_dir,] path1, ••• , pathM;

These may occur in either order. The Max_segno statement is used to specify the
initial size of the LOT and ISOT. The Search rules statement is used to specify
the search rules to use while resolving name;ambiguities during the snapping of
links.

One or more "ring groups" are required after the two required statements.
A ring group specifies in which rings the following segments are to be prelinked.
The format of a ring group is:

ring: low;
ring body statements

_V'IoA.
1;;11U,

or

ring: low, high;
ring body statements

end;

where rings low to high are prelinked using the information in the ring body
statements.

2-108 AZ03-02

prelink prelink

The first three ring body statements must be linkage statements to specify
the maximum size that the three kinds of linkage regions can attain. The three
regions are referenced as "stack," "shared," and "combined." For example:

ring: 4;
linkage~
linkage:
linkage:

end;

stack, 4096;
shared, 16384;
combined, 65536;

The linkage statements may appear in any order, but all three must appear.

After the linkage statements are the directory statements, which have either
of the two forms:

or

directory:
segment:
segment:

path;
segname1;
segname2;

directory: path, -all;

Any number of directory and linkage statements can appear in the body of a
ring group. (Subsequent linkage statements merely change the size of the specified
type of linkage region.)

The -all parameter of a directory statement directs the pre linker to prelink
all segments (or segments linked to) in the specified directory. All names on
the gi ven segments are potential reference names to be used in the segment
search. If -all is not specified, only the segments specified (with all names
on the segments being used) in subsequent segment statements are prelinked.

For each ring of each ring group specified, a stack, and possibly a shared
linkage segment, and a combined linkage segment are created. The ring brackets
on these per-ring segments is r,r,r where r is the ring number.

At any time where a break or white space appears in a PLDT, a comment may
be inserted. The syntax of comments is merely 1* ••• *1 as in PL/I.

2-109 AZ03-02

prelink

Example PLDT

Max segno:
Search rules:

ring:
linkage:
linkage;
linkage;

directory:

directory:
segment:
segment:
segment:

end; I*ring
ring:

linkage:
linkage:
linkage:

directory:
directory:

segment:
segment:
segment:

directory:
segment:
segment:

512;
referencing dir,
>system library standard,
>system-library-unbundled,
>system:library:1;

1 . ,
stack, 0;
shared, 16384;
combined, 16384;

>system_library_1, -all;

>system_library_standard;
mseg ;
bound message segments ;
mail;- - -
*1
4,5;
stack, 8192;
shared, 16384;
combined, 16384;

>system library 1, -all;
>system-library-unbundled;
bound fast; -
bound-basic ;
bound:basic=runtime~;

>system library standard;
print; - -
p11 ;

end; I*rings 4 and 5*1

end;

2-110

prelink

AZ03-02

print_apt_entry

The print apt entry command prints one or more Active Process Table entries
(APTEs). Each-APT~ can be printed in octal form, interpreted form, or both.

print_apt_entry {identifiers} {-control_args}

where:

1. identifiers
can be User ids, channel names, or process IDs. The three types of
identifier are distinguished from one another by their format (see
"Notes" below). They can be preceded by control arguments to eliminate
any ambiguity (see control_args, below).

2. control args
can be chosen from the following:

Entry-selection arguments:

-user User id
selects this user.

-channel CHN, -chn CHN
selects the user logged in over channel CHN.

-process id PID, -pid PID
selects the specified process.

-interactive, -ia
selects interactive users.

-absentee, -as
selects absentee users.

-daemon, -dmn
selects daemon users.

-all, -a
selects all three process types. This is the default.

Output-format arguments:

-dump
dumps the selected APTE(s) in octal.

-no dump
- eliminates octal dump of APTEs. This is the default.

-short, -sh
causes octal dumps (when selected) to be four words per line instead
of the default of eight.

2-111 AZ03-02

Notes

-long, -lg
causes octal dumps (when selected) to be eight words per line. This
is the default.

-display
prints a header and a four-line interpretation of some of the variables
in the APTE. (See "Output Format" below.) This is the default.

-brief display
prints the heading and only the first line of the interpretation
produced by -display.

-no display
- prints the heading, but none of the interpretation.

-process dir, -pd
prints or returns the process directory pathname. See "Notes."

-term channel, -tchn
prints or returns the process-termination event channel. See "Notes."

If no process-selection arguments are given, the APTE of the current process
is printed.

The type of an identifier not preceded by a control argument is determined
as follows: if it contains only octal digits, it is a process ID; if it contains
any uppercase letters, it is a User_id; otherwise, it is a channel name.

Channel names and User ids can be starnames. User ids are of the form
Person.Project.tag. Any of the three components can be omltted, along with any
trailing periods. Omitted components are treated as if they had been ".". The
presence of a tag component restricts the search to the corresponding user table,
for that user only.

A channel is a communications channel for an interacti ve process (e. g. ,
a. hO 17), an absentee slot number for an absentee process (e. g., abs3), or a
message-coordinator source name for a daemon process (e.g., bk, prta).;

If a process id of six digits or less is given, it is assumed to be the
left half of a process id, which is the octal offset of the APTE.

When mutually exclusi ve control arguments are gi ven, the last one on the
line from each set is used. This allows each user to define his own defaults by
means of an abbreviation and to override them conveniently by using opposing
control arguments on a command line. In particular, -ia, -as, and -dmn are not
mutually exclusi ve wi th each other but are all mutually exclusi ve wi th -all;
-dump and -no_dump are mutually exclusi ve; -short and -long are mutually exclusi ve;
and -display, -brief_display, and -no_display are mutually exclusive.

2-112 AZ03-Q2

This command can be invoked as an acti ve function, to return individual
items from the APTE. Currently, only two items are available for active-function
return: process directory pathname and process-termination event channel. Using
it as an active function without specifying one of those items is an error.

Read access to the three user tables (absentee user table, answer table,
and daemon user table) in >sc 1 .i s required, as wen as - access to the gate
metering_ring_zero_peek_.

Output Format

The print apt entry command prints, for each APTE selected, a heading line,
an optional interpretation of one to four lines, and an optional octal dump.
The contents of the heading and interpretation are described here. Fields enclosed
in square brackets ([]) are omitted if they contain null values, such as zero.

The heading:

Pers.Proj.tag <channel> at <offset> in tC_data >pdd><pdir>

gives the User id, communications channel, octal offset of the APTE, and process
directory name. This line is always printed.

Line 1:

[F:<flags>][E:<event>]PID:<proc_id> TRM:<term channel>

gives the flag word (omitted if zero or if line four, containing flag names,
will be printed), the event word (omitted if zero), the process id, and the
event channel over which this process's termination will be signalled. All of
these are in octal. This line is printed unless -no_display is given.

The remaining three lines are printed by default, but are suppressed by the
-brief_display or -no_display arguments.

Line 2:

<state> for <interval> (since <time>[<date>]).
Usage: cpu <sec>; vcpu <sec>; pf <n>.

gives the process state (blocked, running, etc.) and the time interval since
state change and the time of state change (the date is printed only if it is
different from the current date). These are followed by the total real and
virtual cpu time used, in seconds, and the number of page faults.

2-113 AZ03-02

Line 3:

te/s/i/x: <te> <ts> <ti> <timax>.[<ips name> pending.]
[Flags: <flag names>.]

gives the four scheduling parameters, te, ts, ti, and timax, in seconds of CPU
time. These parameters are described in Multics System Metering (Order No. AN52);
briefly, they are time eligible, time since scheduled, min (time since interaction,
timax), and the upper limit on tie Following these parameters, any ips signals
pending in the process are printed, as well as the names of any flags that are
on (except for the "firstsw" flag, which is only printed if it is off, an
indication that the process has never run).

Line 4:

[Alarm in <interval> (at <time>[<date>][«interval> after block)]).
[CPU monitor in <interval> vcpu sec.]

is omitted unless the process has an alarm timer or a CPU monitor set. If an
alarm timer is set, its time (and date, if different from the current date) ar~
printed. If the process is blocked, the interval between the time of blocking
and the alarm timer is printed. If a CPU monitor is set, the amount of virtual
CPU time remaining until it goes off is printed.

Examples

This example selects a process by its message-coordinator source name:

pae bk

Backup.SysDaemon.z bk at 4700 in tc data, >pdd>!BMICKBGBBBBBBB
PID:004700234010 TRM:064472406353 302704222432
Ready for 0.0 (since 01:08:53). Usage: cpu 31:18; vcpu 9:07.6; pf 363582
te/s/i/x: 0.294 2.291 8.235 32.000. Flags: wakeup_waiting, loaded, eligible.

This example selects a process by its APTE offset:

pae 3000

Initializer.SysDaemon.z sysctl at 3000 in tc data, >pdd>!zzzzzzzbBBBBBB
PID:003000777777 TRM:OOOOOOOOOOOO 000000000000 .
Ready for 0.034 (since 01:08:53). Usage: cpu 1:51:28; vcpu 37:14; pf 1258108.
te/s/i/x: o~ooo o~ooo o~ooo O~OOO. Flags: wakeup waiting.
Alarm in 53.947 (at 01:09:47). -

2-114 AZ03-02

Name: print_configuration_deck, pcd

The print configuration deck command displ ays the contents of the Mul tics I
config deck. The data is kept up-to-date by the reconfiguration commands and,
hence~-reflects the ~urrent configuration being used.

print_configuration_deck {card_names} {-control_args}

Syntax as an active function: I
I [pcd {card names} {-control_args}]

where:

2.

7/82

card names
are the names of the particular configuration cards to be displayed. I
Up to 32 card names can be specified. (See Section 6 of the Multics
Operator's Handbook, Order No. AM81, for the names of the configuration
cards.) -

control args
can be selected from the following:

-brief, -bf
suppresses the error message when a requested card name is not found.
(Default)

-exclude FIELD SPECIFIERS, -ex FIELD SPECIFIERS
where fie'"Id specifiers can be used to exclude particular cards or
card types Trom being displayed. One to 14 field specifiers can be
supplied with each -exclude control argument, and up to 16 -exclude
arguments can be specified. To be eligible for exclusion, a card
must contain fields that match all field specifiers supplied with
any -exclude argument.

-long, -lg
prints an error message when a requested card name is not found.

-match FIELD SPECIFIERS
where fleld specifiers can be used to select particular cards or
card types to be displayed. One to 14 field specifiers can be supplied
with each -match control argument, and up to 16 -match arguments can
be specified. To be eligible for selection, a card must contain
fields that match all field speci fier s suppl ied wi th any -match argument.

-pathname PATH, -pn PATH
prints card(s) from the copy of the configuration desk at PATH,
rather than the one for the running system.

2-115 AZ03-02A

"

Notes

Field specifiers can consist of a complete card field or a partial field
and an asterisk (*). An asterisk matches any part of any field. For example,
the field specifier "dsk*" would match any card containing a field beginning
with the characters "dsk". Specifiers for numeric fields can be given in octal
or decimal, but if decimal they must contain a decimal point. Asterisks cannot
be specified in numeric field specifiers. All numeric field specifiers are
converted to decimal and matched against numeric card fields, which are also
converted to decimal. Hence, the field specifier "1024." would match a card
contain ing the octal field 2000, and the field speci fier "1000" would match a
card containing the decimal field 512.

Selection is performed as follows. If no card names are specified, all
cards are el ig ible for selection. On the other hand, if any card names are
supplied, only the cards matching those names are eligible; and if more than one
card exists with a specified name, all such cards are displayed. If a nonexistent
card is requested, and the -long control argument is specified, an error message
is displayed.

If any -match arguments are suppl ied, those el igible cards are matched
against all field specifiers of each -match argument group; however, at least
one -match group must have all its field specifiers match some field on the card
to make that card eligible. A similar algorithm is used for any -exclude argument
groups. So, if a card is eligible, and if -exclude arguments are supplied, then
at least one -exclude group must have all its field specifiers match some field
on the card to make that card ineligible. If no match for a given card name or
-match group is found in the config deck, nothing is displayed for that name or
group, and no error is displayed. - If no arguments are present, the complete
config_deck is displayed.

I Note that all card names must be specified before the first -match or
-exclude argument. Field specifiers following a -match or -exclude argument
include all arguments until the next -match or -exclude argument.

I When called as an active function, the selected cards are returned in quotes,
separated by a single space.

No action is taken for misspelled arguments or valid arguments for which
there are no corresponding configuration cards.

7/82 2-"5.' AZ03-02A

Examples

print_configuration_deck cpu
cpu a 7 168 BO. on I

cpu b 6 168 80= on
cpu c 5 16e 80. off

(For the configuration deck displayed above.)

pcd cpu -match on
cpu a 7 168 BO. on
cpu b 6 168 80. on

pcd -match 16 -ex off -ex b
cpu a 7 168 80. on

7/82 2-115.2 AZ03-02A

Name: print_error_message, pem, pel, peo, peol

The print error message command prints out the standard Multics (error table)
interpretation- of a -specified error code. The various entries specified below
allow the user to spe'cify the error code in either decimal or octal and have the
output come out in either the short or long error_table_ form.

print_error_message code

where code is the decimal integer to be interpreted. The short form of the
error message is printed.

Entry: pel

This entry is the same as print_error_message except that the long form of
the error message is printed.

pel code

Entry: peo

This entry is the same as print_error_message except that the input code is
assumed to be octal.

peo code

2-116 AZ03-02

Entry: peol

This entry is the same as pel except that the input code is assumed to be
octal.

peol code

2-117 AZ03-02

Name: print_relocation_info, pri

* I The print_reloction_info command is obsolete and has been deleted from this
manual.

2-118

Name: print_sample_refs, psrf

The print sample refs command interprets the three data segments produced
. by the sample refs corrtmand, and produces a printable output segment that contains
·the following information: a detailed trace of segment references, a segment
number to pathname dictionary, and histograms of the Procedure Segment Register
(PSR) and Temporary Segment Register (TSR) segment-reference distributions. (See
the description of the sample_refs command.)

where:

1. name
specifies the names of the data segments to be interpreted, as well
as the name of the output segment to be produced. name may be
either an absolute or relative pathname. If name does not end with
the suffix srf, it is assumed.

The appropriate directory is searched for three segments wi th entrynames
as follows:

(entry portion of) name.srf1
(entry portion of) name.srf2
(entry portion of) name:srf3

The output segment is placed. in the user's working directory wi th
the entryname:

(entry portion of) name. list

2. control_arg

Notes

may be the following:

-brief, -bf
specifies that the detailed trace of segment references is not to be
generated.

The print sample refs command is able to detect a reused segment number.
The appearance of a parenthesized integer preceding a segment number indicates
reusage.

(1)
(2)

234:6542
234:2104
234:6160

>udd>user>bound alpha :6542
>udd>user>max35T512 -
>system_library_languages>assign_:6160

2-119 AZ03-02

The occurrence of the above three lines in the detailed trace indicates the
following:

1. a reference was made to location 6542 in bound alpha. The particular
component of bound alpha being referenced could not be determined.
bound_alpha_ was assigned-segment number 234.

2. a reference was made to location 512 in max35. max35 is a component
of a bound segment whose name can be determined from the segment number
to pathname dictionary. The segment bound alpha has been terminated
and, when the segment .of which max35 is a component was initiated, it
was assigned segment number 234.

3. a reference was made to location 6160 in assign. The segment of
which max35 is a component has been terminated and, when assign_ was
initiated, it was assigned segment number 234.

The appearance of a segment number suffix (i. e., 1, 2, etc.) ind icates a
component of a bound segment.

310
310. 1
310.2

>system library standard>bound ti term
tssi - - - - -
translator info

The appearance of the above lines in the segment number to pathname dictionary
indicate that tssi was the first component of bound ti term to be referenced,
and that transl ator info was the second component 01' bound ti term to be
referenced.

2-120 AZD3-02

Name: print_tuning_parameters, ptp

..
The description of the prln~ ~uning_parameters command may now be found in I

Mul tics System Metering, Order No:- AN52.

2-121 AZ03-02

privileged_prelink privileged_prelink

Name: privileged_prelink

The privileged prelink command can be used to prelink subsystems that include
rings lower than £he validation level of the caller. Special access to the
prelinker_gate_ is needed to u~e this command.

privileged_prelink {path} {-control_args}

where:

1 • path
is the pathname of the directory in which the prelinker driver table
(PLDT) is to be found. If path is not specified, the current working
directory is used.

2. control args
may be chosen from the following:

-delete, -dl
causes the prelinker to delete any segments created by a previous
invocation of the prelinker. The segments are named as follows:

template kst
template-dseg
stack ? -
*.area.linker
*.area.prelinker

where the star convention is applied to the above names.
template kst and template dseg have ring brackets of 0,
cannot be deleted by normal means.

-debug, -db

Note that
and hence

causes the prelinker to retain its environment in the event of an
unexpected fault or condition. The default action (if this control
argument is not specified) is to clean up the environment and report
an appropriate error message.

2-122 AZ03-02

process_id

Name: process_id

The process id command or active function prints or returns a 12-digi t
octal number, the-process id of a specified process.

[process_id {identifiers} {-control_args}]

where:

1. identifiers
can be User ids, channel names, or APTE offsets. The three types of
identifier are distinguished from one another by their format (see
Notes below). Two of the types can be preceded by a control argument
to eliminate any ambiguity (see control_args).

2. control args

Notes

can be selected from the following:

-user User id
selects this user.

-channel CHN, -chn CHN
selects the user logged in over channel CHN.

-interactive, -ia
selects interactive users.

-absentee, -as
selects absentee users.

-daemon, -dmn
selects daemon users.

-all, -a
selects all three process types~ This is the default.

-single
requires that the arguments select exactly one process. This is the
default, unless more than one identifier is given.

-multiple
allows more than one process to be selected. Their process ids are
returned, separated by spaces. This is the default if more than one
identifier is given.

Unless the -multiple control argument is given, or more than one identifier
is given, it is an error if the arguments do not select exactly one process.

If no identifier is given, the process id of the current process is returned.

2-123 AZ03-02

process_id

The type of an identifier not preceded by a control argument is determined
as follows: if it contains only octal digits, it is an APTE offset; if it
contains any upper case letters, it is a User _id; otherwise, it is a channel
name.

Channel names and User ids can be starnames. User ids are of the form
Person.Project.tag. Any of the three components can be omItted, along with any
trailing periods. Omitted comporients are treated as if they had been ".". The
presence of a tag component restricts the search to the corresponding user table
for that user only.

A channel is a communications channel for an interacti ve process (e. g. ,
a. hO 17), an absentee slot number for an absentee process (e. g., abs3), or a
message coordinator source name for a daemon process (e.g., bk, prta).

The APTE offset is given as a 4 to 6 digit octal number.
of the print apt entry command, in this manual, for more
APTE.) --

(See the description
information on the

The -as, -ia, and -dmn arguments may be gi ven in any combination. The
default, when none of these arguments is given (and a User id with a tag is not
given) is to search all three user tables.

Read access to the three user tables (absentee user table, answer table,
and daemon user table) in >sc1 is required, as well as- access to the gate
metering ring zero peek (the latter only if an APTE offset is given as an
identifier). -None-of tne above access is required when no identifier is given
and the id of the current process is returned.

Example

ioa [process_id •. SysAdmin -as]

prints the process id of the single absentee process from the SysAdmin project.
The example is in -error if there is 'more than one absentee process from that
project.

2-124 AZ03-02

rebuild dir rebuild dir

Name: rebuild dir

The rebuild dir command compares a saved directory information segment created
by the save dir -info command wi th the current version of the directory in the
storage system. -If any subdirectories are missing, rebuild dir attempts to recreate
them. If any links are missing, rebuild dir attempts to relink them. If any
segments are missing, rebuild dir prints ~comrnent.

rebuild dir path {-control_arg}

where:

1. path
is the pathname of a directory information s'egment. If path does
not have the dir info suffix, it is assumed.

2. control arg
may be one of the following:

-brief, -bf
suppresses the comments "creating directory X" and "appending link
X."

-long, -lg

-priv

prints full information about any missing segments.

sets quotas and attempts to set the sons logical volume identifier.
Access to the hphcs_ gate is needed to use this control argument.-

2-125 AZ03-02

record to sector record to sector

Name: record to sector

The record to sector command converts an octal sector number to a disk
sector address.-

record to sector record no {device_name}

where:

1. record no
is the octal Multics record number.

2. device name
-is a valid device name (e.g., "m400", "m451").

2-126 AZ03-02

record to vtocx record to vtocx

Name: record to vtocx

The record to vtocx command finds the VTOC entries, if any, corresponding
to a specified record number on a storage-system volume.

or

record to vtocx pv_name -sector sector_argl ••. -sector sector_arg~

where:

1- pv_ name
is the name of the physical device.

2. arg,!.
is the octal number record.

3. sector _arg,!.
is the octal sector number.

Notes

The record to vtocx command requires access to the phcs_ gate.

This command scans the VTOCEs in ascending order for each argument looking
for the correct match and therefore uses great amounts of CPU time and requires
a lot of disk I/O.

2-127 AZ03-02

reduction_compiler reduction_compiler

Name: reduction_compiler, rdc

The reduction compiler generates language translators. It compiles a segment
containing reductions and action routines into a PL/! source segment. The reductions
specify the syntax and semantics of a new language. The action routines perform
the basic operations required to translate the language (such as generating code
or building a data structure). The reduction compiler compiles these reductions
and action routines into a PL/I source program that translates the new language.

Reductions are expressed in a highly compact form that emphasizes the syntax
and semantics of the new language. The reduction compiler command compiles these
reductions into tables that dri ve an rdc-provlded semantic analyzer for the
language. This analyzer compares the tokens (basic units) of a program written
in the new language wi th the valid token phrases defined in the reductions.
When a valid phrase is found, the action routines defined by the reduction are
invoked to translate the phrase.

Translators generated by the reduction compiler command can be written mor~
quickly than hand-programmed translators because rdc provides the semantic analyzer
for the language. They are easier to understand and to maintain because the
all-important language syntax and semantics is concentrated in the reductions,
rather than being spread throughout the semantic analyzer.

The reduction compiler command can. generate translators for the simplest
type of language, a right-linear (finite state automaton) language. Often such
languages are composed of keywords with operands, such as the control language
of the bind command.

The organization of an rdc translator, the translation process, and the
reduction language are described below.

reduction_compiler path {-control_args}

where:

1. path
is the pathname of a translator source segment that is to be compiled
by the reduction compiler command. If path does not have a suffix
of rd, then one 1s assumed. However, the rd suffix must be the last
component of the name of the source segment.

2. control args
can be chosen from the following:

-long, -lg
prints all error messages with a detailed description of the error
that has occurred.

2-128

reduction_compiler reduction_compiler

Note

-brief, -bf
prints all error messages wi th only a brief summary of the error
that has occurred.

By default, a detailed description is printed the first time an error occurs
in a gi ven compilation, and a brief description is printed in subsequent occurrences
of that error.

Overview of the Translation Process

A translator for a given language must perform three steps to translate a
source string written in the language:

1. Parse the source string into a list of tokens. These tokens are the
basic uni ts of the language being translated. They are character strings
in the source that are separated from one another by language-defined
delimiter characters.

2. Analyze the syntax of the tokens to identify groups of tokens (token
phrases) that are valid in the language. Also identify invalid token
phrases.

3. Assign some semantic meaning to each valid token phrase by performing
a translation action. Print error messages diagnosing invalid token
phrases.

Parsing the source string into tokens is a process that depends upon the
types of units that make up the language, the delimiter characters defined by
the language, and other language characteristics. For most languages, the
lex string subroutine provides facili ties that are sufficient to parse the language.
However, some languages have syntax characteristics that cannot be handled by
the lex string subroutine. For such languages, the programmer must code a
special -parsing routine. The nature of the parsing is further considered under
"Parsing the Source into Tokens" below. See the description of the lex string
subroutine for more information about its parsing capabilities. --

Once the source string is parsed into a list of tokens, these tokens are
analyzed by a semantic analysis procedure. This procedure is generated by the
reduction compiler command from the reductions specified in the translator source
segment. -The procedure contains tables generated from the reductions, tables
that define all of the valid token phrases accepted by the language.

For each valid token phrase, the semantic analyzer invokes the
programmer-supplied action routines gi ven in the reductions to translate the
phrase. For invalid phrases, the reduction compiler command provides a mechanism
for diagnosing the errors in printed errorInessages.

2-129 AZ03-02

reduction_compiler reduction_compiler

Contents of a Translator

The source segment for a translator to be compiled by the reduction compiler
command contains the following items, which are organized as shown In Figure
2-1.

1. An optional copyright n6tice and other PL/I comments.

2. A set of reductions consisting of reduction attribute declarations and
reduction statements. The delimiter 1*++ opens the set of reductions,
which is closed by the delimiter ++*1 •

3. A PL/I procedure statement for the main procedure of the translator.

4. PL/I declarations for the translator's variables.

5. An optional PL/I declaration for an error control table, which defines
the text of error messages to be generated by €"he translator. This
error control table is used by the error-reporting mechanism provided
by reduction_compiler.

6. Code to parse source strings of the new language into tokens. This is
shown in Figure 2-1 as a call to the lex string subroutine, but
programmer-supplied code could be used here instead.-

7. A PL/I call statement invoking SEMANTIC ANALYSIS, the semantic analyzer
procedure generated by the reduction_compiler from the reductions.

8. A PL/I return statement to return after the translation process is
complete.

9. One or more optional PL/I function subprograms that are used to define
the syntax of valid token phrases. These programmer-supplied functions
are called relative syntax functions.

10. One or more PL/I subroutines that are invoked to translate valid token
phrases. These programmer-supplied subroutines are called action
routines.

2-130 AZ03-02

reduction_compiler reduction_compiler

/* ******************** -,
I

* c Copyright ~~a * : copyright notice
******************** */ • I

1*++
MAX DEPTH 5 \
BEGTN

/
I

I
I

I \
I RETURN \ :

++*1-

reduction statements and
attribute declarations

translator: procedure;

dcl , ,
-.

I

: translator's
:...1 declarations

dcl error control_table .•. ;

call lex string $lex(.•);1 calls to parse translator
Pthis token = .:-.; : input into tokens,
call SEMANTIC ANALYSIS();: translate these tokens,
return; - . : & return

fcn: procedure returns
(bit(1) aligned);

end fcn;

action: proe(•••);

end action;

-.
I

: relative syntax
I functions

-: action
subroutines

Figure 2-1. Organization of a Translator

The definition of the reductions, the error-reporting mechanism, the parsing
routine, relati ve syntax functions, and action routines are described further
below.

Notice that no PL/I end statement is included for the main procedure of the
translator in the translator source segment. The reduction compiler command
appends code for the SEMANTIC ANALYSIS subroutine and for other utility programs
to the contents of the translator source segment. It then appends the end
statement for the translator's main procedure. Therefore, care must be taken
when coding the translator source segment to ensure that all of the relati ve
syntax functions and action routines are ended correctly, and that no end statement
is included for the main procedure of the translator.

2-131 AZ03-02

reduction_compiler reduction_compiler

Compiling the Translator

A typical translator source segment, translator.rd, is compiled by a two-step
process as shown in Figure 2-2. Fi rst, the reduction compi ler compi les translator. rd
into a PL/I source segment, translator.pI1, which it creates in the user's working
directory. Second, the pl1 command compiles translator.p11 into an object segment
called translator that it creates, again, in the user's working directory.

translator.rd
II 1111111111***11

* c Copyright *
*************** *1

1*++ reductions ++*1
1. rdc

translator.~11
II I I I I I I I 17
1* heading *1
1* * * * * * * * * *1

7*-*T~T*T*T*T*T*T*- - -
* c Copyright *
*************** *1

1*++ reductions ++*1

translator: proc(•••); =======> translator: proc(•••);

dc 1 •.• ,
error control_table ••. ;

call lex string $lex •. ;
call SEMANTIC ANALYSIS;
return; -

fcn: proc returns
(bit(1) aligned);

end fcn;

action: proc(•••);

end action;

translator

dcl ••• ,
error control_table ••• ;

call lex string $lex •• ;
call SEMANTIC ANALYSIS;
return; -

fcn: proc returns
(bit(1) aligned);

end fcn;

action: proc(•••);

end action;

SEMANTIC-ANALYSIS:
procedure();

end SEMANTIC_ANALYSIS;

I
I
I
I
I
I
I
I

I
I

2. p11 Jinclude-rac-lex-;- --:
<======= %include rdc-error ;

%include rdc=delete_;

Figure 2-2. Two Steps of Compiling

2-132 AZ03-02

reduction_compiler reduction_compiler

The output of the reduction_compiler is a PL/I source segment that contains:

1. A heading that identifies the translator source segment, the version
of the reduction compiler command used to compile the translator source
segment into the 'P'L/I source segment, and the date and time of compilation.

2. The contents of the translator source segment.

3. The SEMANTIC ANALYSIS 'procedure generated by the reduction compiler
command from the reductions in the translator source segment.

4. PL/I ~include statements for utility procedures used in SEMANTIC ANALYSIS
and perhaps in the action routines to perform various functions.

5. A PL/I end statement for the main procedure of the translator. This
is provided by the reduction_compiler command.

The Translation Process

The next few paragraphs describe the process of translating a language
source string. It is important to understand how these steps are performed in
rdc-generated translators. The reduction compiler command or the lex string
subroutine provide code to perform many of tEese steps. For others, the programmer
must supply a procedure to perform the steps.

PARSING THE SOURCE INTO TOKENS

As mentioned above, the first step of the translation process is for a
translator to parse its input source string into a list of tokens. These tokens
are the basic units of the language. For many languages, the lex string subroutine
provides sufficient facili ties to parse the language. However, some languages
may have a syntax that requires the special parsing facilities of a
programmer-supplied parsing routine.

The lex string subroutine or the supplied parsing routine must generate a
chained list- of token descriptors, as shown in Figure 2-3. Each descriptor
describes one of the tokens in the source string. The token descriptors are
chained together (forward and backward) in the order in which their respective
tokens appear in the source string. .

2-133 AZ03-02

reduction_compiler reduction_compiler

Volume: 70092;
Write;
File 4;

might be
parsed as

-->:--:-->:--:-->:--:-->:--:-->:--:-->:--1-->:--:-->:--:-->:--:
I 1<-- : I < __ I 1<--:·: <--I : <--I 1<-- : I <--I : <--I :
I I I I I I I I I I I I I I I I I I
, , , , , , I , , I , I I , , , I I .- -.- -.- -.- -.- -.- -.- -.- -.-

I , , I , I , , I

V V V V V V V V V
Volume 70092 Write File 4

Figure 2-3. Input Tokens and Their Descriptors

Languages whose syntax includes statements separated by explicit statement
delimiters can use a statement descriptor to identify the group of tokens forming
each statement. The statement descriptor points to the descriptors for the
first and last tokens in the statement. In turn, each token descriptor points
to its respecti ve statement descriptor. The statement descriptors are chained
together (forward and backward) to create an ordered list of the statements
appearing in the source string, as shown in Figure 2-4.

: :------------>:--·-:-------------->1 :
: : <------------ : : <--------------1 I
I I I I I I

--------- I ,--------- , . ,----- ----- , ,------

: -------> : : <-------1 : : <---I : ---> : I <---- :
II ~ II -r:r- II II -..- II
, , , , , , , , , , I I I I'
I I I I I I I I I I I I I I I
, , , , I I , , , , , , I I'
II 1- II II II II I II
, 'I , I , I I' I I I , ,

V: : , :V tl :t t: : It
-->:--:-->:--:-->:--:-->:--:-->:--:-->:--1-->1--:-->:--:-->:--:

: < __ : : < __ : : < __ : 1<-- : I < __ I : < __ I 1<-- : I <-- : :
I I I I I I , I I· I I I I I I I I

I , I , I I I I , , , , , , , , I , -.- -.- -.- -.- -.- -.- -.- -.- -.-, , , , , , , , ,
t t V t . t t t t t

Volume 70092 Write File 4

Figure 2-4. Tokens, Token Descriptors, and Statement Descriptors

There are no special requirements for a programmer-supplied parsing routine
other than that it create a list of token descriptors and optional statement
descriptors. The format of these descriptors is defined in the description for
the lex string subroutine. Refer to this description for more information about
descriptors, as well as for information on the use of the lex_string_ subroutine.

2-134 A703-02

reduction_compiler reduction_compiler

Figure 2-5 shows the lex string subroutine being invoked first to initialize
the lex delims and lex contrOl chars break definition strings, and then to parse
the translator's source string-(described by Pinput and Linput) into tokens. In
this example: a double quote (") character is used to open and close quoted
strings; the characters 1* open comments, which are closed by *1; a semicolon
(;) is the statement delimiter; and the colon (:), comma (,), space (), and all
of the ASCII control characters including the PAD character operate as delimiters.
The space character and all control characters except backspace are ignored
delimiters that are not returned as tokens themselves, even though they separate
tokens. Both token descriptors and statement descriptors are generated by the
lex string subroutine in this example. No descriptors are generated for the
double quotes that enclose quoted strings, although descriptors are generated
for the quoted strings themselves.

breaks = substr(collate,1,33) I I ":," I: substr(collate,128,1);
ignored breaks = substr (collate, 1,8) :: substr (collate, 10,24) ::

substr(collate,128,1);
call lex_string $init lex delims("""", """", "1*", "*1", ";", "10"b,

breaks, ignored breaks, lex delims, lex control chars);
call lex string $lexTPinput, Lin~ut, Linput Ignore, ~segment, "100"b, """"~

'tt11'H "1*"- ff* 1" ". " breaks ignored-breaks lex delims , , ", , - , - ,
lex control chars, Pfirst stmt descriptor, Pfirst token descriptor,
code) ; - - - - -

Pthis token = Pfirst token descriptor;
call SEMANTIC ANALYSTS(); -
return; -

Figure 2-5. Parsing Translator Input Into Tokens,
Semantically Analyiing Those Tokens,

and Returning

ANALYZING AND TRANSLATING THE TOKENS

Once the source string has been parsed into tokens, the translation continues
by analyzing the syntax of the source tokens. The syntax specifications of the
language are used to identify groups of t"okens (token phrases). Valid token
phrases are translated according to the language semantics (translation action
specifications), and invalid token phrases are diagnosed to the user.

The language syntax and translation action specifications are coded in the
set of reductions contained in the translator source segment. The reduction compiler
command uses these reductions to generate a SEMANTIC ANALYSIS internal procedure
that is appended to the translator when it is compiled.

2-135 AZ03-02

reduction_compiler reduction_compiler

When the SEMANTIC ANALYSIS procedure is invoked as shown in Figure 2-5, it
compares token phrases found in the list of source tokens wi th the syntax
specifications defined in the reductions. If a token phrase matches the syntax
specifications of a given reduction, the translation action routines associated
wi th the reduction are invoked to translate the phrase. Then action routines
are invoked to move on to the next token phrase, which is translated in a
similar manner.

The translation is complete when each of the token phrases in the list of
source tokens has been identified as a valid token phrase and translated, or has
been diagnosed as an invalid token phrase.

Reduction Language

The reductions that define the syntax and semantics of a language to be
translated are wri tten in the reduction language. This translator generation
language consists of two kinds of statements: reduction statements and attribut~
declarations.

Reduction statements specify the syntax of token phrases in the language
being translated. They also name action routines that are invoked to translate
valid phrases and to diagnose invalid token phrases.

Attribute declarations control the size of some fixed-length tables that
the generated translator uses and cause translation action routines provided by
the reduction compiler command to be included in the translator. They are described
below under '~ttribute Declarations."

THE SYNTAX OF REDUCTION STATEMENTS

All reduction statements contain four parts: a reduction-label field, a
syntax-specification field, an action-specification field, and a next-reduction
field~ A reduction statement has the form:

labels I syntax specifications I action routines I next-reduction label \

All of the fields must appear in each reduction, in the order shown above. The
fields are separated from one another by a right slant (I) character, and the
next-reduction field is terminated by a left-slant (\) statement delimiter. Ine
fields of a reduction statement may span any number of lines in the translator
source segment.

The syntax specifications, action routines, and other items that appear in
a reduction statement are separated from one another by one or more of the
delimiters shown in Table 2-1 below. When these delimiter characters are used,
they are treated as part of the reduction. The meaning of left and right slant
was described above. The double quote (") character is used as a quoting character
to delimit quoted character strings in the PL/I convention. When any of the
delimi ter characters appears in a quoted string, it is treated as a regular
character rather than as a delimiter. The use of the other delimiters is described
in more detail as each field of the reduction statement is described belnw.

2-136 AZ ')3-02

reduction_compiler reduction_compiler

I

\

Table 2-1. Delimiting Characters Used by rdc

separates fields of a reduction statement.

ends each reduction statement or attribute declaration.

< > delimi ts a syntax function in the syntax field of a reduction. For
example, <no-token> •

[] delimi ts a PL/I statement in the action field of a reduction. For
example, [file_no = token.Nvalue] .

separates PL/I statements in the action field of a reduction when more
than one statement is gi ven between [] delimiters. For example,
[a=b; c=d] •

() delimi ts the argument list of a PL/I subroutine call in the action
field of a reduction. For example, perform_io (volume, file_no) •

II

=

backspace

\"

separates arguments in the argument list of a PL/I subroutine call
given in the action field of a reduction.

begins and ends quoted strings within a reduction statement. Inside a
quoted string, a double quote (II) character is expressed by two double
quotes (1111).

used to detect the special PL/I character sequence, -> , which may
appear in an action specification.

used to detect the special PL/I- character sequences, = <= >= , which
may appear in an action specification.

used to detect the special PL/I character sequences, = A< A> , which
may appear in an action specification.

used in the syntax field of a reduction to detect an underlined delimiter
character. The special meaning of such a character is ignored, and
the character is treated as a syntax specification character.

begins a comment in a reduction statement. The comment ends with the
next newline character.

2-137 AZ03-02

reduction_compiler reduction_compiler

There are also four delimi ters that delimi t i terns in a reduction but are
ignored by the reduction compiler command unless enclosed in a quoted string.
These characters have no-meaning in the reduction language but serve mainly to
separate the specifications in a reduction statement. They are defined in Table
2-2.

Table 2-2. Ignored Delimiting Characters

space
newline

SEMANTICS OF REDUCTION STATEMENTS

horizontal tab
newpage

The most important part of any set of reductions are the syntax fields
given in the reduction statements. These fields describe the syntax of the
valid and invalid token phrases in the language to be translated. The syntax
specifications can require a token in a particular phrase to have a specific
character-string value, or to have a value that meets some general list of
requirements defined in a syntax function (a PL/I function subprogram).

When a token phrase does not match the syntax requirements of a reduction
it is compared with, it is compared with the syntax requirements of the reduction
that follows. This process continues until the syntax requirements of some
reduction are matched.

When a token phrase matches the syntax specifications of a particular reduction,
the phrase is translated by invoking the action routines gi ven in the action
field of that reduction. Action routines can be simple PL/I statements or calls
to PL/I subroutines wi th arguments. The routines can perform some constant
translation operation, or an operation that depends on the values of one or more
tokens in the matching token phrase. They can also skip over one or more of the
tokens in the matching token phrase to permit the next token phrase to be examined.

After the action routines have been invoked, the next-reduction field of
the matched reduction controls which reduction syntax field the next token phrase
is compared with. The next reduction can be identified by label, using one of
the reduction labels given in a label field. Also, the reduction following the
matched reduction can be used next. In addi tion, special next-reduction operations
are provided to return from the SEMANTIC ANALYSIS procedure, and to return from
a group of reduction statements used as a-reduction subroutine.

2-138 AZ03-02

reduction_compiler reduction_compiler

Label Field of a Reduction Statement ----- ----- -- - ~~~---

One or more labels may be specified in the label field of a reduction
statement to identify the reduction. A label is a character string that begins
with an alphabetic character, and contains 32 or fewer alphanumeric or underline
() characters.

The labels on a reduction statement can be referenced in the next-reduction
field of reduction statements to direct the order in which tokens are compared
with the reduction syntax specifications. To prevent any ambiguities in these
references, each of the labels defined in a set of reductions must be unique.

In every set of reductions, any attribute declarations that are given must
appear before all of the reduction statements. To distinguish between the attribute
declarations and reduction statements, the first reduction statement must have a
special first label called BEGIN.

The BEGIN label acts as a keyword that separates the attribute declarations
from the reduction statements. It also identifies the first reduction wi th
which token phrases are compared. Thus, the comparison of token phrases wi th
reductions starts with this beginning reduction, the first reduction following
the attribute declarations, the reduction with the BEGIN label.

With the exception of the BEGIN label on the first reduction statement, no
labels are required on any reduction statement. Their use is optional, and is
intended to facilitate· the division of· the set of reductions into groups of
reduction statements or reduction subroutines. However, every reduction statement
must have a label field even if it consists of an empty label field with a field
delimiter (/). All four of the fields mentioned above must appear in every
reduction statement.

Use of reduction labels is discussed further in the description of "The
Next-Reduction Field" below.

Syntax Field of ! Reduction Statement

The syntax field of a reduction statement defines the syntax of one token
phrase in the language being translated. The tokens in the input list are
compared with the syntax fields of one or more reductions. When the tokens
match the syntax field of a reduction, then the action field of that reduction
is invoked to perform a translation action. If the reduction specifies the
syntax for a valid token phrase, the translation action can compile code to
implement the semantic meaning of the phrase or it can immediately interpret the
phrase or store a value in a table or perform any other translation action. If
the reduction specifies the syntax for an invalid token phrase, then the translation
action can diagnose the error in an error message.

2-139 AZ03-02

reduction_compiler reduction_compiler

CURRENT TOKEN PHRASE

Before learning how syntax specifications are defined, some terminology for
dealing with the tokens in the token list must be developed.

In Figure 2-3 above, a list of tokens is described by token descriptors
that are chained together. The reduction compiler command declares a pointer in
the main procedure of the translator that points to the particular tokens being
compared with reductions at any given time. This pointer is called Pthis token,
and it points to the descriptor of the "current token." The current token and
those tokens that follow it in the list of tokens are the tokens being compared
wi th the reduction syntax specifications. This group of tokens is called the­
"current token phrase." These relationships are shown in Figure 2-6 below.

Notice that the current token phrase does not contain a fixed number of
tokens. Instead, the number of tokens varies to accommodate the number of syntax
specifications in the reduction being examined. Of course, if there are fewer
tokens remaining to be translated than syntax specifications in a reduction, the
current token phrase cannot match that reduction.

At any point in time, one of the tokens in the current token phrase is
being compared with its corresponding syntax specification in a reduction. The
descriptor for this token is pointed to by Ptoken, another pointer variable
declared by the reduction_compiler command in the main procedure of the translator.

Pthis token Ptoken
I
I

t t -->:--:-->:--:-->:--:-->:--:-->:--:-->:--:-->:--:-->:--:-->:--:
: : <-- : : <-- : : <-- : : <-- : : <-- : : <-- : : <-- : : <-- : :
I I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I I .- .,-- .- .- .- .- .- or- or-

I I I I I I I I I

t t t t t t t t t
Volume 70092 Write File 4

...
!

...
I

TOKEN BEING EXAMINED

CURRENT TOKEN

CURRENT TOKEN PHRASE

Figure 2-6. The Current Token Phrase Used by Reductions

2-140 AZ03-02

reduction_compiler reduction_compiler

SYNTAX SPECIFICATIONS

The tokens in the current token phrase are compared consecutively with the
syntax specifications in a reduction syntax field to identify valid and invalid
token phrases. The syntax specifications place requirements on the tokens in
the current token phrase. If each token in the phrase meets the requirements of
its corresponding syntax specification in the reduction, the entire phrase matches
the reduction, and the reduction action field is invoked.

Three types of syntax specifications are allowed by the reduction language:
absolute syntax specifications, relative syntax functions, and built-in syntax
functions.

Absolute Syntax Specifications

Absolute syntax specifications require that their corresponding input tokep
equal a particular character string. Absolute specifications are defined in the
syntax field of a reduction statement by using their character-string value.
For example, a reduction statement that would identify the first two tokens in
Figure 2-6 might be:

vol stmt / Volume / / \

If reductions were wri tten to translate all of the tokens in Figure 2-6 then
"Volume," "Write," "File," ":", and ";" would probably be specified as absolute
syntax specifications.

The delimiter characters used in the reduction language (see Table 2-1 and
Table 2-2 above) may be used in an absolute specification by enclosing the
entire specification in quotes. For example, "and/or", ">udd>Project id>prog",
"fI'''', "(", and ",". In addi tion, the delimi ters that have a special meaning
wi thin the syntax field (/ < » can be used as one-character absolute specifications
by underlining the delimiter character. Thus, / < and > are treated as
single-character absolute syntax specifications. --

Relative Syntax Functions

Relati ve syntax functions are a second type of syntax specification. A
relative syntax function requires that its corresponding input token meet some
special requirements that are defined by a PL/I function subprogram. The
requirements defined by such functions may be quite specific or very general in
nature.

A relative syntax function is defined as a specification in the syntax
field of a reduction by enclosing the name of the function in angle brackets
(i. e., <function name». For example, if the volume id function defines the
requirements for~ volume identifier like that used in ~igure 2-6, the following
reduction would match the first four tokens of Figure 2-6. '

vol stmt / Volume : <volume id> ; / / \

2-141 AZ03-02

reduction_compiler reduction_compiler

Other examples of relati ve syntax functions might be: a <relati ve pathname>
function that requires that a token be a relative pathname, and that-calls the
absolute pathname subroutine to associate an absolute pathname as the semantic
value of-this pathname token; a <positive integer> function that requires that
the token be a character-string representation of a posi ti ve integer; and <date time>
that requires a token that is acceptable as input to the convert date to bInary
subroutine. - - - -

Relative syntax functions must be coded by the programmer and included in
the main procedure of the translator source segment. Their calling sequence is
shown below.

declare function_name entry returns (bit(1) aligned);

tOken_meets_requirements = function_name();

where the function returns a value of "1 fIb if the input token meets the requirements
of the function, and "O"b otherwise. The function can have any valid PLfI
function name that is 32 or fewer alphanumeric or underline characters in length,
and that contains at least one lowercase alphabetic character. The lowercas~
letter is required to avoid naming conflicts with variables and procedures declared
by rdc for use in the SEMANTIC_ANALYSIS procedure.

Relative syntax functions must be internal procedures of the main procedure
of the translator so that they can reference the token to be examined. Ptoken
points to the descriptor for this token as shown in Figure 2-6. The token
descriptor itself is a structure variable named token that is based on Ptoken,
as described in the lex string subroutine description. The character-string
value of the token can be-referenced by way of the token value variable. Ptoken,
the token structure, and token value are variables declarecfby the reduction compiler
in the main procedure of the-translator. -

A relati ve syntax function can associate a semantic value wi th the token
being examined in one of three ways. It can set a variable that has been
declared in the main procedure of the translator. It can set token. Nvalue to
some integer semantic value, such as the numeric value of a token that matches
the <positive integer> function. Or it can allocate a semantic value structure
in the temporary segment used for token descriptors, and chain this structure
onto the token descriptor using the token. Psemant pointer. Refer to the description
of the lex_string_ subroutine for a complete declaration of the token structure.

Built-in Syntax Functions

The third type of syntax specification that can be used in a reduction
syntax field is the built-in syntax function. These are relative syntax functions
that have been predefined by the reduction compiler. Although several of these
built-in syntax functions make requirements-on the input token string that would
be difficul t to implement directly as relati ve syntax functions, most of the
built-in syntax functions are defined merely to facilitate the implementation of
the reduction_compiler itself.

2-142 AZ03-02

reduction_compiler reduction_compiler

Below is a list of the built-in syntax functions and the requirements they
place on the input tokens.

1 . <no-token>
requires that no corresponding token exists in the current token
phrase, that the list of input tokens is exhausted, and that no more
tokens remain to be translated. It differs from other syntax functions
that require the existence of a corresponding token in the token
phrase. It is used to determine when the translation is complete.

2. <any-token>

3. <name>

requires that a corresponding token exist in the current token phrase.
It places no other requirements on the token. It is used when any
token value is acceptable in the language being translated.

requires that a corresponding token exist in the current token phrase,
and that the token is a character string that begins with an alphabetic
character and contains 32 or fewer alphanumeric, underline (), or
dollar sign ($) characters. -

·,·,4,. '.' <decimal-integer.) .
. , require's that a corresponding tok,~n exist in the current token phrase,

and that the token is a valid, o~tionally signed decimal integer (as
defined by the cv dec check su~routine). The numeric value of the
token is stored as its semantic value in the token.Nvalue element of
the token descriptor.

5. <quoted-string>

6. <BS>

requires that a corresponding token exist in the current token phrase,
and that the token.S.quoted string bit is turned on in the descriptor
of the token. The lex string subroutine turns on this bit if the
token is enclosed wi thin quoting delimi ters when the input to the
translator is parsed.

requires that a corresponding token exist in the current token phrase,
and that the token is a single backspace character. It is used as a
convenience for defining syntax specifications for one-character,
underlined tokens.

COMPLETENESS OF THE SYNTAX SPECIFICATIONS

One of the most difficul t aspects of writing a translato~ is identifying
all possible invalid token phrases that could be received as input so that error
messages can be issued. This problem m~.t be addressed in each set of reductions,
and in each group of reductions within a set as well, if the translator is to
operate deterministically and to perform the expected translation.

2-143 AZ03-02

reduction_compiler reduction_compiler

A typical solution for the problem is to have a group of reductions that
identify all possible valid token phrases, followed by one or more reductions
that use the <any-other> buil t-in syntax function or an empty syntax field to
identify all other invalid token phrases. For example, if the language for the
tokens in Figure 2-6 requires that a colon, volume identifier, and semicolon
always follow the Volume keyword, then the following group of reductions might
be used to diagnose an error.

vol stmt / Volume : <volume - id> ; / / \
/ Volume : <any-token> ; / / \
\" check for bad volume identifier.
/ Volume / / \
\" check for bad volume statement.
/ / / \
\" check for unknown or unexpected statement.

The Next-Reduction Field of a Reduction Statem~nt

The next-reduction field governs the flow of control between reductions.
When the translator calls the SEMANTIC ANALYSIS procedure, control passes to the
reduction whose label is BEGIN. l'he- first of the current token phrases is
compared with this beginning reduction and those that follow until it matches
the syntax requirements of one of the reductions. The action field of that
reduction is then invoked to translate to the current token phrase, and to make
the next token phrase current.

The next-reduction field of the matched reduction controls which reduction
the new current token phrase is compared with. The next-reduction field may be
blank, or it may contain a reduction label. If it is blank, the reduction
immediately following the matched reduction is used in the next comparison. If
a reduction label is specified, then toe reduction identified by that label is
used in the next comparison. In either case, comparison of the new current
token phrase with reductions continues until a matching reduction is found.

This process of analyzing token phrases continues until all of the input
tokens have been translated. Each set of reductions must contain one or more
reductions that use the <no-token> built-in syntax function to detect when all
the input tokens have been translated. When such a <no-token> reduction is
invoked, its next-reduction field usually contains the RETURN keyword, instead
of a reduction label, to specify that the flow of control should return to the
caller of the SEMANTIC ANALYSIS procedure. On return from SEMANTIC ANALYSIS,
the translation is comprete. -

2-144 .l\Z03-02

reduction_compiler reduction_compiler

Often if several <no-token> reductions appear in a set of reductions, a
reduction label is used in their next-reduction field (rather than a RETURN
keyword) to branch to a final <no-token> reduction that performs epilogue actions
and then returns via a RETURN keyword. Having only one of the <no-token> reductions
perform the epilogue actions reduces the amount of translation code generated by
rdc.

SAMPLE REDUCTIONS

Figure 2-7 shows the Backus-Naur Form (BNF) for the syntax of a language
that identifies records to be read or written from a tape file on a particular
volume, using a given record format. Several examples below employ this language
to illustrate the use of reductions.

<spec> Volume: <volume-id>[,{9trackI7track}]
{ReadIWrite} ;
File <number> ;
Records: <number>[, <number>] •••
Format: {FIFBIFBSIVIVBIVBSIU} ;

Figure 2-7. BNF Syntax for a Tape Language

Figure 8 shows how reduction statements can be used to define the syntax of
the tape language. <positive integer> and <volume id> are the relative syntax
functions described under "Relative Syntax Functions" above.

Note that reductions containing only an <any-token> or <no-token> syntax
specification are included in each group of reductions to detect errors. The
<any-token> reduction matches any token phrase except the empty token phrase (a
phrase containing no tokens because all of the input tokens have been translated).
The <no-token> reduction matches empty token phrases.

2-145 AZ03-02

reduction_compiler reduction_compiler

BEGIN
stmt I Volume : <volume id> I I vol ,

I Read ; I I stmt ,
I Write ; I I stmt ,
I File <positive_integer> I I stmt ,
I Records : I I numbers'
I Format : I I format ,
I <any-token> I I stmt ,
I <no-token> I I RETURN ,

vol I I I stmt ,
I , 9track ; I I stmt ,
I , 7track ; I I stmt ,
I <any-token> I I stmt ,
I <no-token> I I RETURN ,

numbers I <positive_integer> I I punct ,
I <any-token> I I punct ,
I <no-token> I I RETURN ,

punct I , I I numbers\
I ; I I stmt ,
I <any-token> I I numbers'
I <no-token> I I RETURN ,

format I F ; I I stmt ,
I FB ; I I stmt ,
I FBS ; I I stmt ,
I V ; I I stmt ,
I VB ; I I stmt ,
I VBS ; I I stmt ,
I U ; I. I stmt ,
I <any-token> I I stmt ,
I <no-token> I I RETURN ,

Figure 2-8. Reductions for the Tape Language

Action Field of a Reduction Statement ------ ----- -- - --------- ---------

When a valid token phrase matches the syntax specifications of a reduction
statement, the phrase must be translated according to the semantics of the source
language. The translator does this by invoking the action routines specified in
the action field of the matched reduction. These routines are invoked in the
order of their appearance in the action field.

2-146 AZ03-02

reduction_compiler reduction_compiler

There are two types of action routines: those that perform some translation
action on the current token phrase, and those that perform a lexing action to
make another token the current token so that a new token phrase can be translated.
Translation action routines are described below, and lexing routines are described
under "Lexing Action Routines," which follows.

TRANSLATION ACTION ROUTINES

Translation action routines translate token phrases that match reductions
according to the semantics of the source language. For example, they can construct
tables; build compilation trees; generate object code, ALM statements, or PL/I
statements; or perform any other type of translation function that can be expressed
in the PL/I language.

There are two kinds of translation action routines: action statements and
calls to action subroutines.

Action Statements

An action statement is a PL/I statement that appears in the action field of
a reduction, enclosed in square brackets without its semicolon statement delimi ter.
For example, a tape language source string of:

Write;

might be translated by setting a mode variable as follows:

[mode = "w"]

Action statements can be used to perform the simplest translation operations,
such as turning on a bit or assigning a particular value to a variable. Such
simple operations occur frequently in translators, and are most clearly and
easily expressed as a PL/I statement.

Action statements can use the token value variable, just as relative syntax
functions do, to reference the character=string value of the current token. For
example, the tape language string:

Volume: 70092;

might be translated by making 70092 the current token, and then invoking an
action statement like:

[volume = token_value]

2-147 AZ03-02

reduction_compiler reduction_compiler

Action statements can also use the token structure to reference the descriptor
of the current token or a semantic value structure chained to the descriptor.
For example, the tape language source string:

File 4;

might be translated by a reduction of the form:

I File <positive_integer> I LEX [file no=token.Nvalue]
LEX(2) - I \

where LEX and LEX(2) are a lexing action routines that make the next, or second
next, token be the current token. Notice that, in the reduction above, the
<positive integer> relative syntax function sets token.Nvalue when it validates
the syntai of the "4" token.

More than one PL/I statement can be used as an action statement if the PL/I
statements are separated by a semicolon (;). This allows compound PL/I statements
to be used as action statements. For example, the action statement:

[if token value = "SCRATCH" then volume = "scratch";
else volume = token value]

checks for the special tape volume name SCRATCH and uses scratch in its place if
found; otherwi se, the token value given in the source string is used as the
volume name.

Action Subroutines

An action subroutine is a PL/I subroutine that performs some translation
operation. It appears in the action field of a reduction as a PL/I call statement,
without the call keyword or the semicolon statement delimiter. For example, the
subroutine:

call perform_io ("tape_input", volume, file_no, mode, "l"b);

appears in the action field as:

perform_io ("tape_input", volume, file_no, mode, "l"b)

A subroutine with no arguments, such as:

appears as:

set record no

An example of a reduction containing action subroutines is

I <no-token> I perform io("tape input",
volume,-file_no,-mode, "l"b)1

2-148

\

AZ03-02

reduction_compiler reduction_compiler

The programmer must supply these action subroutines as part of the translator.
Usually they are internal procedures defined in the main procedure of the translator.
This facili tates references to the tokens being translated and to other data
declared in the translator. However, an external procedure can be used as an
action subroutine by calling it with arguments to pass any required information.

Naming Requirements for Action Routines

Several facts must be considered when defining action subroutines and other
variables used in the action field of a reduction. First, action statements and
subroutines are executed within the SEMANTIC ANALYSIS procedure. Therefore, all
variables used in action statements or as arguments to action subroutines must
be declared in the main procedure of the translator. Similarly, internal action
subroutines must be defined in this main translator procedure, and external
action subroutines must be declared there. Figure 2-2 illustrates the relationship
between the main translator procedure and the SEMANTIC_ANALYSIS procedure.

Second, care must be taken to avoid naming conflicts between the variables
declared by SEMANTIC ANALYSIS and the variables and subroutines used in the
action field. With only a few exceptions, the variables used by SEMANTIC ANALYSIS
have uppercase names. Therefore, the programmer can avoid name confl icts by
using names with one or more lowercase letters or digits.

There are three classes of exceptions to the uppercase naming rules used in
SEMANTIC ANALYSIS. First, SEMANTIC ANALYSIS has declared the following PL/I
built-in- functions: addr, max, nUll, ·search, substr, and verify. Second,
SEMANTIC ANALYSIS has declared the cv dec check subroutine to implement the
<decimal=integer) built-in syntax function. Third, the variables and structures
required to reference tokens and their descriptors are declared by the
reduction compiler command in the main procedure of the translator.
SEMANTIC ANALYSIS assumes the existence of these declarations, which have lowercase
names. TRefer to the description of the lex string subroutine for a complete
declaration of these variables.) All three classes or exceptions must be avoided
when naming variables and action subroutines.

LEXING ACTION ROUTINES

Lexing action routines are useful in two ways. They can skip over a token
phrase once it has been translated so that the next token phrase can be analyzed.
Also, they can skip from the first token of a phrase to another of its tokens so
that a translation action routine can reference that token. By default, the
first token of the phrase that matches the reduction syntax field is the current
token when the routines in the action field are invoked.

2-149 AZ03-02

reduction_compiler reduction_compiler

The following lexing action routines are provided by the reduction_compiler
command.

1. LEX(N)

2. LEX

makes the Nth token the new current token, where N is the token
number relati ve to the existing current token. The current token
has a relative token number of 0. Positive relative token numbers
denote tokens following the current token, while negati ve numbers
denote tokens preceding the current token. Thus, LEX(3) makes the
third token following the current token the new current token.

is equivalent to LEX(1).

3. NEXT STMT

4.

5.

makes the first token of the next statement (the statement following
the statement that contains the current token) the new current token.
This lexing routine can only be used when the tokens have been parsed
with statement descriptors. NEXT STMT is most useful to skip over
the remaining tokens of a statement when an unrecoverable error has
been detected in the statement.

DELETE(M,N)
unthreads tokens from the token list so that they are not scanned by
subsequent reductions. Tokens are unthreaded (deleted) from the Mth
token relative to the current token through the Nth relative token.
Thus, DELETE(2,3) deletes the second and third tokens following the
current token. When the current token is one of those being deleted,
the next token following those deleted becomes the current token.
Thus, DELETE(-1,+1) deletes the token preceding the current token,
the current token, and the token following the current token, and
makes the second token following the current token the new current
token.

DELETE(N)
is equivalent to DELETE(N,N).

6. DELETE
is equivalent to DELETE(O,O).

7. DELETE STMT
-deletes all tokens of the current statement, making the first token
of the next statement the new current token. The current statement
is the statement containing the current tokens. DELETE STMT can
only be used when the tokens have been parsed wi th statement descriptors.

Using Lexing Routines in Translation Subroutines

Lexing action routines can be invoked from translation action subroutines
if it is necessary for the subroutine to examine more than one token in the
current token phrase. However, use of lexing routines from translation subroutines
can obscure the translation process because the lexing is performed unexpectedly
by a translation subroutine, rather than in the action field of a reduction
where it is highly visible. If a translation routine examines only one token,
it is best to place a LEX operation in the action field to make the desired
token current before the translation routine is invoked.

2-150 AZ03-02

reduction_compiler reduction_compiler

A translation subroutine can call the internal procedures that rdc defines
in a translator to perform the lexing actions. These internal procedures have
the following calling sequences.

declare LEX entry (fixed bin);

call LEX(N);

where N is as described above for the LEX(N) lexing routine.

declare NEXT STMT entry;

call NEXT_STMT();

~eclare DELETE entry (fixed bin, fixed bin);

call DELETE (M, N);

where M and N are as described above for the DELETE(M,N) lexing routine.

declare DELETE STMT entry;

call DELETE_STMTC);

Notice that only the two-argument version of DELETE and the one-argument
version of LEX may be used from translation routines. If the particular routine
to be called has not been used in any reduction, it must be explicitly included
in the translator by using an INCLUDE attribute declaration statement, as described
below under "Attribute Declarations." .

SAMPLE REDUCTIONS

Figure 2-9 shows the reductions for our tape language, wi th the action
fields filled in. Notice that only one of the <no-token> reductions performs
epilogue functions, and that this reducti.on recei ves control from all other
<no-token> reductions. The action field of reductions that identify invalid
phrases have not, as yet, been specified.

2-151 AZ03-02

reduction~compiler reduction_compiler

BEGIN
stmt

vol

/ Volume

/ Read ;
/ Write ;

<volume id>

/ File <positive_integer>

/ Records :
/ Format :
/ <any-token>
/ <no-token>

/
/ , 9track ;
/ , 7track ;
/ <any-token>
/ <no-token>

/ LEX(2) [volume=token value]
[track = 9] LEX -

/ LEX(2) [mode="r"]
/ LEX(2) [mode="w"]
/ LEX [file no=token.Nvalue]

LEX(2) -
/ LEX(2)
/ LEX(2)
/ NEXT STMT
/ perform io("tape input",

/ vol
/ stmt
/ stmt

\
\
\

/ stmt \
/ numbers\
/ format \
/ stmt \

volume,-file_no,-mode, "1"b)/ end \

\
\
\
\
\

/ LEX
/ LEX(3)
/ [track = 7] LEX(3)
/ NEXT STMT
/

/ stmt
/ stmt
/ stmt
/ stmt
/ end

numbers / <positive integer>
/ <any-token>

/ set record no LEX
/ LEX-

/ punct \
/ punct .\
/ end \

punct

/ <no-token>

/ ,
/ ,
/ <any-token>
/ <no-token>

/

/ LEX
/ LEX
/ LEX
/

/ numbers\
/ stmt \
/ numbers\
/ end \

format / F ; / LEX(2) format(1)
/ LEX(2) format(2)
/ LEX(2) format(3)
/ LEX(2) format(4)
/-LEX(2) format(5)
/ LEX(2) format(6)
/ LEX(2) format(7)
/ NEXT STMT

/ stmt
/ stmt
/ stmt
/ stmt
/ stmt
/ stmt
/ stmt
/ stmt
/

\
\
\
\
\
\
\
\
\

end

/ FB ;
/ FBS ;
/ V ;
/ VB ;
/ VBS ;
/ U ;
/ <any-token>
/ <no-token>

/ <any-token>
/ <no-token>

/

/ epilogue
/ epilogue

Figure 2-9. Reductions for the Tape Language
(Error-Diagnosing Actions Omitted)

/ RETURN \
/ RETURN \

ERROR-DIAGNOSING ACTION ROUTINES

Translators must identify and translate all valid token phrases in the
source string, and must identify and diagnose all invalid token phrases to aid
in their correction. Invalid token phrases can be detected in several ways.

1. Following a series of reductions that identify the valid token phrases
for a given language construct, a reduction with an <any-token> syntax
specification can be used to match all other invalid token phrases.

2. Speci fic reductions can identi fy predictable errors, such as tokens
that do not match the specifications of the relative syntax function
in a preceding reduction, or token phrases that have missing or invalid
punctuation, misspelled or invalid keywords, and the like.

2-152 AZ03-02

reduction_compiler reduction_compiler

3. A reduction wi th a <no-token> syntax specification can be used to
detect a premature end of the source string.

4. Action routines may detect an inconsistency in the semantic meaning of
the source string and may diagnose the error.

When an error is detected, the translator must notify the user of the type and
location of the error. The reduction compiler command provides two facilities
for printing error messages: the ERROR action subroutine and the lex error
external subroutine.

The ERROR Action Subroutine

The ERROR action subroutine is an internal
reduction_compiler command to print error messages.

procedure provided by the
It may be called as follows.

declare ERROR entry (fixed bin(17));

call ERROR (error_number);

ERROR can be used in the action field of a reduction that identifies invalid
token phrases. For example,

/ <any-token> / ERROR(1) NEXT_STMT / stmt \

or it can be called from an action subroutine to diagnose a semantic inconsistency.

ERROR prints messages that have the following form.

prefix error number, SEVERITY severity_no IN STATEMENT k of LINE 1.
error message text
SOURCE: -
statement_containing_current token_phrase

For example,

ERROR 7, SEVERITY 2 in STATEMENT 2 OF LINE 2.
A bad track specification was given in a Volume statement.
9track has been assumed.
SOURCE:
Volume: 70082, 8track;

ERROR prints the error messages declared in an error control table structure
array variable that the programmer declares in the main procedure of the translator.
Each structure element in the array defines an error message, and the error number
is the array index of the desired error message. The structure contains a
severity level associated with the error, a switch that controls the printing of
the current statement as part of the error message, a long form of the error
message text, and a brief form of the error message text. The error control table
must be declared as a one-dimensional array of structures, with a Tower bound of
one, and an upper bound equal to the highest error number that can be used.
Figure 2-10 below shows a typical error control table declaration.

2-153 AZ03-02

I
I

I

reduction_compiler reduction_compiler

dcl 1 error_control_table (7) internal static options(constant),
2 severity fixed bin(17) unaligned init (3, 2, 3, 2, 3, 2, 2),
2 Soutput stmt bit(1) unaligned

init ("T"b, "1"b, "O"b, "1"b, "1"b, "1"b, "1"b),
2 message char(70) varying init(

"An unknown statement has been encountered.",
",Aa' is an invalid record number.",
"Translator input end~ with an incomplete statement.",
",Aa' is invalid punctuation in a list of record numbers.",
",Aa' is an invalid record format.",
"Input follows the end of the tape file specification.",
"A bad track specification was given in a Volume statement.
9track has been assumed .. "),

2 brief message char(28) varying init(
"Unkn5wn statement.",
"Bad record number ,Aa ,.",
"Incomplete statement.",
"Invalid punctuation ,A a ,.",
"Invalid record format ,A a ,.",
"Too much input.",
"Bad track in Volume.");

Figure 2-10. error_control_table for the Tape Language

The severity no associated with an error controls the prefix that is placed
in the error message, as shown in Table 2-3 below.

SEVERITY

o

2

3

4

Table 2-3. Relationship of error control table.severity no
to Error Message Prefix-

PREFIX

COMMENT

WARNING

ERROR

FATAL ERROR

TRANSLATOR ERROR

EXPLANATION

Comment. The error message is a comment, which
does not indicate that an error has occurred, but
merely provides information for the user.

Warning only. The error message warns of a statement
that mayor may not be in error, but compilation
continues without ill effect.

Correctable error. The message diagnoses an error
that the translator can correct, probably without
ill effect. Compilation continues, but correct
results cannot be guaranteed.

An uncorrectable but recoverable error. The
translator has detected an error that it cannot
correct. Translation continues in an attempt to
diagnose further errors, but no output is produced
by the translation.

An unrecoverable CI I VI • The translator cannot
continue beyond this error. The transl ation is
aborted after the error message is printed.

2-154 AZ03-02

reduction_compiler reduction_compiler

The statement and line numbers in the printed message are obtained from the
descriptor of the current statement, if statement descriptors are available, or
from the descriptor of the current token.

The phrase "IN STATEMENT k OF LINE 1" appears if statement descriptors are
available. Line 1 is the line number on which the statement containing the
current token begins. Statement k identifies which statement in line 1 is in
error, if more than one statement appears in line 1. "STATEMENT k OF" is omitted
from the message if only one statement appears in Line 1.

If no statement descriptors are available, the phrase "STATEMENT k OF" is
omitted from the message. Line 1 is the line number on which the current token
appears.

If Pthis token is null, the phrase "IN STATEMENT k OF LINE 1" is omitted
altogether, since there is no current statement and no current token.

When the output stmt sw of an error is on, the current statement is included
in the printed error-message. The stmt.output in err msg switch is turned on in
the statement descriptor to prevent the source-statement from being reprinted in
subsequent error messages. Since the current statement is obtained from its
statement descriptor, the translator must parse its source string with statement
descriptors. If statement descriptors are not present,
error control table.output stmt sw has no effect. Refer to the description of
the lex string subroutine for- information about the structure, contents, and
generation of statement descriptors.

The printed error message contains - ei ther the error message text or the
brief message text, depending upon the value of the SERROR CONTROL variable.
This variable-is declared by the reduction compiler command, in-the main procedure
of the translator, as follows: -

dcl SERROR_CONTROL bit(2) initial ("OO"b);

Table 2-4 below shows how the setting of these bits controls the r_message_text
in the printed error message.

Table 2-4. SERROR CONTROL Bits Control the error_message_text

SERROR CONTROL INTERPRETATION

"OO"b The printed error contains the error message text the first
time the error occurs and the brief message text for subsequent
occurrences of that error during a given translation.

"10"b The printed error always contains the error_message_text.

"11"b The printed error always contains the error_message_text.

"01"b The printed error always contains the brief_message_text.

2-155 AZ03-02

reduction_compiler reduction_compiler

The reduction compiler command declares the SERROR PRINTED variable in the main
procedure of the translator as follows. -

dcl SERROR PRINTED (dimension(error control table),1) bit(1) unaligned
initial(dimension(error_controI_table,T)(1)"O"b);

The ERROR routine turns on SERROR PRINTED(error number) whenever an error message
is printed, and uses the current value of SERROR PRINTED to control the printing
of the error _message_text or brief;...message_text when SERROR_CONTROL equals "OO"b.

The translator can be implemented with control arguments to alter the use
of error message text or brief message text in error messages. For example, the
reduction compiler command uses-the normal value ("OO"b) by default, but implements
the -briel' (-bf) control argument to set a brief value ("01"b) and the -long
(-lg) control argument to set a long value ("10"b).

The error message text and brief message text of an error are defined as
ioa control strings that may containup to three occurrences of the Aa control
code. Each occurrence of A a is repl aced by the token value character-string
value of the current token. In addi tion, any number -of the following ioa­
control codes that do _ not require an input argument may be used in the
error message text and brief message text strings: A_, AI, AI, AX, and AA. The
ioa subroutine imposes a maximum length of 256 characters on the error message text
and-on the brief_message_text after all ioa_ substitutions have been performed.

The ERROR routine maintains the severi ty of the highest-severi ty error
encountered during a translation in the variable:

dcl MERROR SEVERITY fixed bin(17) initial (0);

. which the reduction compiler command declares in the main procedure of the
translator. The translator may reference the value of this variable to determine
whether an uncorrectable error has occurred or to determine when to abort the
translation due to an unrecoverable error.

The ERROR action routine and declarations for SERROR CONTROL, SERROR PRINTED,
and MERROR SEVERITY are automatically included in the main procedure of the
translation- when ERROR is used in the action field of one or more reductions.
An INCLUDE attribute declaration can be used to include these error diagnostic
facili ties when the ERROR routine is used only by other action routines, and
does not appear in any reductions. Refer to "Attribute Declarations" below for
more information.

The lex error Subroutine - -

The ERROR action routine is a very simple diagnostic tool, but this simplicity
is possible only because ERROR does not generate highly specific error messages
containing several different variable information fields. ERROR only allows the
character-string value of the current token to be included in the message.

2-156 A203-02

reduction_compiler reduction_compiler

ERROR uses the lex error subroutine to pr int its error messages. The
translator can call the lex error subroutine directly to produce more flexible
error messages. In this way, error messages containing more than one token
value, or containing variables defined by the translator, can be printed using a
standard mechanism. Refer to the description of the lex error subroutine for
information about its calling sequence and operation. -

SAMPLE REDUCTIONS - COMPLETE

Figure 2-11 shows the reductions for the tape language wi th errors being
diagnosed by the ERROR action routine. The error control table used with these
reductions was shown above.

BEGIN
stmt

vol

/ Volume

/ Read ;
/ Write ;

<volume id>

/ File <positive_integer>

/ Records :
/ Format :
/ <any-token>
/ <no=token>

/
/ , 9track ,
/ , 7track ;
/ <any-token>
/ <no-token>

numbers / <positive integer>
/ <any-token>

punct

/ <no-token>

/ ,
/ ,
/ <any-token>
/ <no-token>

format / F ;

end

/ FB ;
/ FBS ;
I V ;
/ VB ;
/ VBS ;
/ U ;
/ <any-token>
/ <no-token>

/ <any-token>
/ <no-token>

/ LEX(2) [volume=token value]
[track = 9] LEX -

/ LEX(2) [mode="r"]
/ LEX(2) [mode="w"]
/ LEX [file no=token.Nvalue]

LEX(2) -
/ LEX(2)
/ LEX(2)
/ ERROR(1) NEXT STMT
I perform io(fftape input",

/ vol
/ stmt
/ stmt

, -, ,
/ stmt ,
/ numbers'
/ format ,
/ stmt ,

volume,-file_no,-mode, "1"b)/ end ,
, , , , ,

/ LEX
/ LEX(3)
F [track = 7] LEX(3)
/ ERROR(7) NEXT STMT
/ ERROR(3)

/ set record no LEX
/ ERROR(2) LEX
/ ERROR(3)

/ LEX
I LEX
/ ERROR(4) LEX
/ ERROR(3)

/ LEX(2) format(1)
/ LEX(2) format(2)
/ LEX(2) format(3)
i LEX(2) format(4)
/ LEX(2) format(5)
/ LEX(2) format(6)
/ LEX(2) format(7)
/ ERROR(5) NEXT STMT
/ ERROR(3)

/ ERROR(6) epilogue
/ epilogue

/ stmt
/ stmt
/ stmt
/ stmt
/ end

I punct ,
/ punct ,
/ end ,

/ numbers'
/ stmt ,
/ numbers'
/ end ,

/ stmt
/ stmt
/ stmt
/ stmt
/ stmt
/ stmt
/ stmt
/ stmt
/

, , , , , , , , ,
/ RETURN ,
/ RETURN ,

Figure 2-11. Complete Reductions for the Tape Language

2-157 AZ03-02

reduction_compiler reduction_compiler

Reduction Subroutines

Often a new language contains phrases that are similar in form but that
differ in their use of keywords, types of keyword operand values expected, or in
other minor ways. As an example, the value language speci fied in Figure 2-12
below includes three types of statements, each of which begins wi th a keyword
followed by a punctuated list of keyword operand values.

<stmt>

<name>

<attr>

Name: <name> [, <name>] . . . ;
Attribute: <attr>[,<attr>] •••
Value: <number>[,<number>] .•.

is the name of a variable.

fixed I float I decimal I binary

<number> ::= is a numeric value to be assigned to a variable.

Figure 2-12. BNF Specification for the Value Language

Since all the punctuated lists used in each statement have the same form, a
single group of reductions can be written to translate the punctuation for all
three types of statements. This sharing of reductions reduces the total number
of reductions needed to translate the value language. Reduction subroutines
provide the facility for shared reductions.

A reduction subroutine is a group of reductions. As with a PL/I subroutine,
a reduction subroutine has a primary entry point named by the label given in the
label field of its first reduction. Alternate entry points are identified by
the labels on other reductions in the subroutine. For example, the following
reduction subroutine has a primary entry point of punct and an alternate entry
of punct_no_comma.

punct I ,
punct no comma

- - I ;
I <any-token>
/ <no-token>

I LEX

/ LEX
/ ERROR(7) NEXT STMT
/ ERROR(4)

/ STACK POP \

/ STACK POP \
/ stmt \
/ RETURN \

A reduction calls a reduction subroutine by storing a return label in a label
stack (a pushdown stack of label values), and then gi ving the subroutine entry-point
name in the next=reduction field. 'rh"", C!"h",,,"+;,,,,,,,, "''''''~11''''+;''''' '"",h"",'",,~ h" +h ... ~

..... ~"'" ...,""'..,,, "" ... ".&.&.&v .& """"'\011""'" """"V'" Qu\';'OO ~u ""3 "'''.I.Q",

entry-point name is then the next reduction that is compared wi th the current
token phrase. When the reduction subroutine has completed its translation of
input tokens, it returns to the calling reduction (or group of reductions) at a
label that the caller stores in a label stack prior to the call. For example,
the punct subroutine shown above is called by each reduction in the group shown
below.

attr / fixed
/ float
/ <any-token>

/ LEX attr(1) PUSH(attr)
/ LEX attr(2) PUSH(attr)
/ ERROR(5) LEX PUSH(attr)

2-158

/ punct
/ punct
I punct

\
\
\

AZ03-02

reduction_compiler reduction_compiler

The label stack performs the same function as the acti vation stack for PL/I
subroutines. A caller stores the desired return point label on the top of the
stack by giving that return point label in the PUSH label stacking action routine.
The caller then transfers to the desired subroutine entry point by giving that
entry-point label in its next-reduction field. The called subroutine returns by
using the STACK POP keyword in the next-reduction field of one or more of its
reductions. STACK POP causes a transfer to the label on top of the label stack
as it removes that-label from the stack.

The next few paragraphs describe more fully the facilities for writing and
calling reduction subroutines. A set of reductions for translating the value
language follows this description.

LABEL STACK ACTION ROUTINES

Two action routines manipulate the label stack used by reduction subroutines:
PUSH and POP.

1. PUSH(label

2. POP

pushes the named label onto the top of the stack. Up to 10 labels
may be stored in the stack by default.

pops the top label off the top of the label stack. The label below
the popped label becomes the new top of the stack. If the popped
label is the only label in the stack, the stack becomes empty. If
no labels are on the stack before poppihg, the POP is ignored.

If a PUSH would cause the label stack to overflow, then PUSH calls the
lex error subroutine to report a severi ty 4 error and then calls the cu $cl
entry point to return to command level. A start command cannot be given, -but
translator maintenance personnel can perform debugging operations to determine
why the stack has overflowed.

By default, only 10 labels can be stored in the stack. This number can be
increased by use of the MAX DEPTH attribute declaration. See "Attribute
Declarations" below for more infOrmation.

POP is useful for reduction subroutines that are called by stacking two
return labels, a normal return label, and an error return label, before transferring
to the subroutine. The following example illustrates this usage.

attr / fixed

punct

/ float

/ <any-token>

/ ,
/ ,
/ <any-token>

/ LEX attr(1) PUSH(attr)
PUSH(syntax err)

/ LEX attr(2)-PUSH(attr)
PUSH(syntax err)

/ ERROR(5) LEX PUSH(attr)
PUSH(syntax_err)

/ ERROR(6) POP NEXT STMT

/ LEX POP
/ LEX POP
/

2-159

/ punct

I punct

/ punct

I stmt

\

\

\

\

I STACK POP \
I STACK-POP \
I STACK-POP \

AZ03-02

reduction_compiler reduction_compiler

The label stack is implemented as an array of fixed binary integers. The
reduction compiler command converts all labels appearing in a PUSH action routine
to a redu~tion number that is passed as an argument to a PUSH internal procedure
provided by the reduction compiler command. The PUSH procedure increments a
STACK DEPTH variable that records the array index of the top stack element, and
then stores its input reduction number in the new top-of-label-stack element.
POP pops the top label from the stack by decrementing STACK DEPTH. It is sometimes
useful to clear the label stack when an error occurs. ~his can be done by an
action statement that sets STACK DEPTH to zero.

LABEL STACK NEXT-REDUCTION KEYWORDS

Two keywords may be gi ven in the next-reduction field of a reduction to
perform reduction subroutine return operations: STACK and STACK_POP.

1. STACK
transfers to the label stored on top of the label stack. If the
label stack is empty, then no STACK operation occurs, and a transfer
occurs to the next reduction (the reduction following the one that
used the STACK keyword) just as if an empty next-reduction field had
been given.

2. STACK POP
performs a STACK operation followed by a POP operation. This implements
the typical subroutine return operation.

SAMPLE REDUCTIONS USING REDUCTION SUBROUTINES

Figure 2-13 below shows the reductions required to translate the value
language described in Figure 2-10. The punct reduction subroutine is called to
process the list punctuation symbol.s by the names, attr, and values reduction
groups. These groups in turn are reduction subroutines that are called to process
statement operands by the stmt group of reductions.

The error messages used below may be summari zed as follows: ERROR (1)--severi ty
?, unrecognized statement; ERROR(2)--severity 2, unexpected ,Aa' punctuation mark
In a name list; ERROR(3)--severity 2, invalid name ' a' in a Name list;
ERROR (4) --sever i ty 3, incomplete statement; ERROR (5) --severi ty 2, i nval id at tri bute
,Aa' in an Attribute list; ERROR(6)--severity 2, invalid number ,Aa' in a Value
list; and ERROR(7)--severity 3, unexpected ,Aa' when a punctuation mark was
expected in a name list.

2-160 AZ03-02

reduction_compiler reduction_compiler

MAX DEPTH 2 \
BEGIN
stmt / Name / LEX(2) PUSH(stmt) / names \

/ Attribute / LEX(2) PUSH(stmt) / attr \
/ Value : / LEX(2) PUSH(stmt) / values \
! <any-token> I ERROR(1) NEXT STMT I stmt \ /

/ <no-token> / / RETURN \

names· / <name> / set name LEX PUSH(names) / punct \
/ / ERROR(2) LEX / STACK POP \
/ , / ERROR(2) LEX / names \
/ <any-token> / ERROR(3) LEX PUSH(names) / punct \
/ <no-token> / ERROR(4) / RETURN \

attr / fixed / attr(1) LEX PUSH(attr) / punct \
/ float / attr(2) LEX PUSH(attr) / punct \
/ decimal / attr(3) LEX PUSH(attr) / punct \
/ binary / attr(4) LEX PUSH(attr) / punct \
/ / ERROR(2) LEX / STACK POP \
/ , / ERROR(2) LEX / attr \
/ <any-token> / ERROR(5) LEX PUSH(attr) / punct \
/ <no-token> / ERROR(4) / RETURN \

values / <decimal number>
/ set num LEX PUSH(values) / punct \

/ / ERROR(2) LEX / STACK POP \
/ , / ERROR(2) LEX / values \
/ <any-token> / ERROR(6) LEX PUSH(values) / punct \
/ <no-token> / ERROR(4) / RETURN \

punct / / LEX POP / STACK POP \
/ , / LEX / STACK-POP \
/ <any-token> / ERROR(7) NEXT STMT POP / STACK""":"POP \
/ <no-token> / ERROR(4) / RETURN \

Figure 2-13. Reductions for the Value Language

Attribute Declarations

Two attribute declarations control the maximum depth of the reduction subroutine
label stack and inclusion of rdc-provided internal procedures for use in
translator-provided action subroutines. These attribute declarations are described
below.

1. MAX DEPTH number \
- defines number, a decimal integer, as the maximum depth of the reduction

subroutine label stack.

2. INCLUDE action routine \
causes the reduction compiler command to include an internal procedure
that implements the named lexing or error action routine. NEXT STMT,
ERROR, DELETE, and DELETE STMT may be given as action routine values.
The action routine internal procedures can then be called by the
translator's action routines.

2-161 AZ03-02

reduction_compiler reduction_compiler

Summary of the Reduction Language

Figure 2-5 below summarizes the elements of the reduction language.

Table 2-5. Elements of the Reduction Language

labels syntax actions next-reduction

MAX DEPTH label stack depth number \
INCLUDE NEXT STRT \ '
INCLUDE ERROR \
INCLUDE DELETE \
INCLUDE DELETE STMT \
BEGIN / absolute spec / semant(.•.) / label

/ <relativi fcn> / [var="1"b] /
label
labe12 / /

/ <no-token> / LEX
/ <any-token> / LEX(n)
/ <name> / NEXT STMT
/ <decimal-integer>

/ DELETE
/ <quoted-string>/ DELETE(n)
/ <BS> / DELETE(m,n)
/ / DELETE STMT
/ / ERROR(n)
/ / PUSH(label)
/ / POP

2-162

/
/ RETURN
/ STACK
/ STACK POP

/
/
/
/
/
/
/

\
\

\
\
\
\

\
\
\
\
\
\
\

AZ03-02

Name: repeat_line, rpl

The repeat line command allows certain limited testing of the performance
of a user t s interacti ve terminal by "echoing" an arbi trary message typed in by
the user.

repeat_line {N} {string}

where:

1. N

2. string

is the number of times the message is to be printed. If N is not
specified, or is 0, its previous value is used; the default first-time
value is 10.

string is the message to be printed (quotes can be used to permi t
embedded blanks in the message). If string is an asterisk (*), the
previous message is reused. The first time the repeat line command
is used in a process, a canned message, consisting of "The quick
brown fox ••• " (al tern ate words in red- and black-shi ft), followed
by three separate lines, each containing one horizontal tab character
plus ASCII graphics in ascending numeric sequence, is used. If string
is not specified, the user is requested to type in a new string (see
"New Input" below). Once the message to be printed has been determined,
it is printed N times. (Notice that in the case of the "quick brown
fox" message, 4N lines are printed.)

When printing of the message is completed (or no ini tial message is specified),
the line:

Type line (or q or <NL»:

is printed. Typing only the newline «NL» character causes the previous message
to be printed another N times. The letter q (in lowercase), followed by <NL>,
causes the repeat line command to return to its caller. Any other line is
interpreted as a new message to be printed N times.

2-163 AZ03-02

reset_ips_mask reset_ips_mask

The reset ips mask command sets the IPS mask for the current process to
unmask some or-all~PS signals.

reset_ips_mask {signal_names} {-control_args}

where:

1. signal names
-are the names of one or more IPS signals to be ~nmasked. The signal

names must be defined in sys info$ips mask data. Presently, the defined
signal names are qui t, airm, neti ,- cput', trm , sus , and wkp. At
least one signal_name or the -all control argument must be specified.

2. control args

Notes

can be selected from the following:

-all, -a
sets the IPS mask to unmask all IPS signals. This may not be speci fied
if any signal names are also specified.

-brief, -bf
suppresses printing of the previous state of the IPS mask after
setting it.

-long, -lg
prints the previous state of the IPS mask after setting it. (Default.)

If all undefined IPS signals are ei ther masked or unmasked, and -long is
specified, they are not mentioned. If, however, some are masked and others are
not, an octal list will be printed. This can only happen when an invalid (probably
uninitialized) value has been supplied in a call to set that mask.

2-164 AZ03-02

Name: reset_tpd

The reset tpd command resets the transparent paging device swi tch of a
directory entr~ Resetting this switch allows pages of the segment or directory
to be placed on the paging device. If the system is not using a paging device,
then this switch has no effect.

reset_tpd path

where:

1. path

Note

specifies the relative pathname of the object whose transparent paging
device switch is to be reset.

This command requires access to the gate hphcs_.

2-165 AZ03-02

The ring zero dump command prints the locations of the specified ring 0 or
user-ring segment -in full-word octal format. This command does not require
access to phcs_ for those segmerits accessible through the ring_zero_peek_ subroutine.

I ring_zero_dump segname {offset} {length} {-control_args}

I where:

I 2.

I

I

I
I
I
I

I

segname
is either an octal segment number, the name of a ring 0 segment, or
a pathname. To specify a segment name that consists entirely of
octal digits, the name must be preceded by the -name control argument.

control args

-4bit

may be chosen from the following:

prints out, or returns, a translation of the octal or hexadecimal
dump based on the Multics unstructured four-bit byte. The translation
ignores the first bit of each nine-bit byte and uses each of the two
groups of four bits remaining to generate a digit or a sign.

-address, -addr

-bcd

prints the address (relative to the base of the segment) wi th the
data. This is the default.

prints the BCD representation of the words in addition to the octal
or hexadecimal dump. There are no nonprintable BCD characters, so
periods can be taken literally. This control argument causes the
active function to return BCD.

-block N, -bk N
dumps words in blocks of N words separated by a blank line 8 The
offset, if being printed,is reset to initial value at the beginning
of each block.

-character, -ch, -ascii
prints the ASCII representation of the words in addition to the
octal or hexadecimal dump. Characters t.nat. cannot be prlnt.ed are
represented as periods. This control argument causes the acti ve
function to rerun ASCII.

-ebcdic9
prints the EBCDIC representation of each nine-bit byte in addition
to the octal or hexadecimal dump. Characters that cannot be printed
are represented by periods. This control argument causes the active
function to return nine-bit EBCDIC.

2-166 AZ03-02

ring_zero_dump

-ebcdic8
prints the EBCDIC representation of each eight bits in addition to
the octal or hexadecimal dump. Characters that cannot be printed
are represented, by periods. If an odd number of words is requested
for dump, the last four bits of the last word do not appear in the
translation. This control argument causes the active, function to
return eight-bit EBCDIC.

-head er, -he I prints a header line containing the pathname (or segment number) of
the segment being dumped as well as the date or time printed. The
defaul t is to print a header only if the entire segment is being
dumped, i.e., if neither the offset nor the length argument is specified.

-hex8

-hex9

prints the dumped words in hexadecimal with nine hexadecimal digits
per word rather than octal with 12 octal digits per word.

prints the dumped words in hexadecimal with eight hexadecimal digits
per word rather than 12 octal digits per word. Each pair of hexadecimal
digits corresponds to the low-order eight bits of each nine-bit byte.

-long, -lg
prints eight words on a line. Four is the defaul t. This control
argument cannot be used wi th -character, -bcd, -4bi t, -ebcd ic8,
-ebcdic9, or -short. (Its use with these control arguments, other
than -short, results in a line longer than 132 characters.

-name PATH, -nm PATH
indicates that PATH is the name of a ring 0 segment or a pathname,
even though it may look like an octal segment number.

-no address, -nad
- does not print the address.

I
I
I
I
I

-no header, -nhe I
- suppresses printing of the header line, even though the entire segment

is being dumped.

-no offset, -nofs
- does not print the offset. This is the default.

-offset N, -ofs N
prints the offset (relati ve to N words before the start of data
being dumped) along with the data. If N is not given, zero is
assumed.

-short, -sh
compacts lines to fit on a terminal with a short-line length. Single
spaces are placed between fields, and only the two low-order digits
of the address are printed, except when the high-order digits change.
This shortens output lines to less than 80 characters.

2-167 AZ03-02

I

I

I

I Notes

I Only one of the control arguments -ebcdic8, -ebcdic9, -character, -bcd, or
-4bit can be specified.

I

When invoked as an active function, ring zero dump returns only one word of
information, which is located at offset with-the segment. If the -4bit, -bcd,
-character, -ebcdic9, -ebcdic8, -hex8, or -hex9 control arguments are invoked,
the information is returned in the specified format only. All other arguments
are ignored in active-function invocation.

2-168 AZ03-02

Name: sample_refs, srf

The sample refs command periodically samples the machine registers in order
to determine whIch segments a process is referencing. Three output segments are
produced that are interpretable by the print sample refs command. (See the
description of the print_sample_refs command.) - -

sample_refs -control_args

where:

control_args can be chosen from one of the following two control groups:

1. arguments that initiate sampling are:

-time n, -tm n
specifies the rate in milliseconds at which the process is sampled.
n must be a positive integer. The default is n = 1000; i.e.,
the process is sampled once every second.

-segment name, -sm name
specifies the names to be given the three output segments. The
name argument can be either an absolute or relative pathname.
If name does not end with the suffix srf, it is assumed. The
output segments are named as follows:

(entry portion of) name.srf1
(entry portion of) name.srf2
(entry portion of) name.srf3

The defaul t causes the output segments to be placed in the
user's working directory, with entrynames as follows:

mm/dd/yy hhmm.m zzz www.srf1
mm/dd/yy--hhmm.m-zzz-www.srf2
mm/dd/yy::hhmm.m=zzz=www. srf3

2. the argument that terminates sampling is:

-reset, -rs
specifies that the process is no longer to be sampled.

Notes

Only one active invocation per process is permitted. Attempting a secondary
invocation of sample refs causes the first invocation to be terminated, whereupon
the new invocation proceeds normally.

2-169 AZ03-02

The machine registers can be sampled only when the process is running in a
ring other than ring o. Were a process to use, for example, a total of 100
seconds of processor time, and sample refs, running at a sample rate of n =
1000, were to record only 23 samples:- it would indicate that 77 seconds- of
processor time were spent in ring O.

Under certain condi tions, the contents of one of the machine registers
sampled--the Temporary Segment R~gister (TSR)--can be invalid. This invalidity
is noted, but does not necessarily indicate that the process is in error.

At the maximum sample rate, 1 millisecond, execution time can be increased
by as much as 50%. Using a 1 second sample rate, the increase in execution time
is negligible.

Accuracy of sample rates less than 1000 milliseconds (sample rates n <
1000) is not guaranteed due to load factors. The accuracy of such sample rates
increases with load.

If the process being sampled should be terminated without an invocation of
sample refs wi th the -reset option, interpretable output segments are still produced;
however, both the off-time and the last recorded sample can be invalid.

2-170 AZ03-02

save.dir info

Name: save dir info

The save dir info command creates a segment containing all information
available from-the-storage system about a directory and its contents. The command
is not recursive; that is, the entire subtree inferior to the selected directory
is not scanned, . just the immediately inferior branches and links. The saved
information segment can be processe~ by the comp_dir _info and list_dir _info commands.

save_dir_info dir_path {seg_path}

where:

1. dir path
- is the pathname of the directory to be scanned.

2. seg path
- is the pathname of the directory information segment to be created.

If seg path is omitted t the entryname of dir path is assumed. It
seg_path does not end with the dir_info suffix-;- it is assumed.

2-171 AZ03-02

I
Name: save_history_registers

The save history registers command allows a user to save processor history
registers upon each occurrence of a signal able faul t in the signalers stack
frame. By default, the history registers are not saved, and the history register

I

block in the signalers stack frame is set to all zeros.

save_history_registers {state} {-control_args}

where:

1. state
can be either "on" or "off." If state is not specified, it is off.

2. control args

Note

7/82

can be chosen from the following:

-print, -pr

-priv

will display the current state of the history register save switch
if it is present without the state argument; with this argument, the
state of the switch will be displayed before the new state is applied.

specifies manipulation of the per-system state by directing the state
and -print arguments to operate on the per-system history register
save switch, wired hardcore data$global hregs. When set, this switch
will cause all processes to save their- history registers upon each
o c cur r e n ceo f a s i g n a 1 a b 1 e fa ul tin the s i g n ale r sst a c k fr am e . If
-priv is not specified, then the state and -print arguments operate
on pds$save history regs, the per-process history register save switch
of the user's process executing this command.

When the -priv control argument is used, hphcs_ access is required.

2-172 AZ03-02A

sector to record sector to record

Name: sector to record

The sector to record command converts an octal sector address to a Multics
record number.

sector to record record no {device_name}

where:

1. record no
is the octal Multics record number.

2. device name
-is a valid device name (e.g., "m400", "m451").

2-173 AZ03-02

Name: send_ips

The send ips command sends an IPS signal. It is a command interface to the
hphcs_$ips_waKeup subroutine entry point, described in Section 3 of this manual.

send_ips process_id signal_name

where:

1 • process id
Is a 12-digit octal number specifying the ID of the process that is
to receive the signal.

2. signal name

Notes

-is the four-character name of one of the system-defined ips signals~
See the description of the set ips mask command in Section 2 of this
manual for a list of valid IPS-signal names.

No error message is given if an undefined ips signal or a nonexistent
process is specified.

Leading zeros may be omitted from the process_ide

The process id active function (described in Section 2 of this manual) is a
convenient way o? obtaining a process_id, given a user id or channel name.

Access Requirements

Access to the highly privileged gate, hphcs_, is required.

2-174 AZ03-02

send_wakeup send_wakeup

Name: send_wakeup

The send wakeup command sends an IPC wakeup. It is a command interface to
the hcs $wakeup subroutine entry point, described in the MPM Subsystem Writers'
Guide (Order NOe AK92).

send_wakeup process_id event channel {event_message}

where:

1 . process id
Is a 12-digit octal number specifying the ID of the process that is
to receive the wakeup.

2. event channel
is a 24-digit octal number specifying the event channel over which
the wakeup is to be sent.

3. event message

Notes

- is an optional 72-bi t event message. It can be gi ven as ei ther a
24-digit octal number Qr an eight-character ASCII string. The default
is all zero bits.

Leading zeros may be omitted from the process_id and event channel. Leading
zeros or trailing blanks may be omitted from the event message. The event
message is assumed to be in octal form if it contains only octal digits.

Nonexistent processes and event channels of invalid format are diagnosed;
however, validly formed but nonexistent event channels are not diagnosed.

The process id active function (described in Section 2 of this manual) is a
convenient way of obtaining a process id, given a user id or channel name.

2-175 AZ03-02

The set ips mask command sets the IPS mask for the current process to mask
some or allTpS signals.

set_ips_mask {signal_names} {-control_args}

where:

1. signal names
-are the names of one or more IPS signals to be masked. The signal

names must be defined in sys info$ips mask data. Presently, the defined
signal names are qui t, airm, neti ,- cput, trm , sus , and wkp. At
least one signal_name on the -all control argument must be speclfied.

2. control args

Notes

can be selected from the following:

-all, -a
sets the IPS mask to unmask all IPS signals. This may not be specified
if any signal names are also specified.

-brief, -bf
suppresses printing of the previous state of the IPS mask after
setting it.

-long, -lg
prints the previous state of the IPS mask after setting it. (Default)

If all undefined IPS signals are either masked or unmasked, and -long is
specified, they are not mentioned. If, however, some are masked and others are
not, an octal list will be printed. This can only happen when an invalid (probably
uninitialized) value has been supplied in a call to set that mask.

2-176 AZ03-02

set timax set timax

Name: set_timax, stm

The set timax command is used to set the value of timax for the user. The
user must have access to both the pri vileged and the highly pri vileged gates
phcs_ and hphcs_.

set timax N

where N is the number of seconds to which timax is to be set. A value less than
or equal to zero causes it to use the default timax from tC_data$timax.

Examples

The command line:

set timax 3.5

sets timax to 3500000 microseconds for the current 'user's process and prints
appropriate messages on both the user's terminal and operator console.

The command line:

set timax 0

sets timax to the default timax and prints messages on the user's terminal and
operator console.

2-177 AZ03-02

The set tpd command sets the transparent paging device switch of a directory
entry. Setting this swi tch prevents pages of the segment or directory from
being placed on the paging device. If the system is not using a paging device,
this switch has no effect.

This command requires access to the hphcs_ gate.

where path specifies the relative pathname of the object whose transparent paging
device switch is to be set.

Note

The paging device is not flushed of pages of the object when the transparent
paging device switch is set.

2-178 AZ03-02

teco teco

Name: teco

The teco command is a character-oriented text editor that provides a basic
set of requests for creating and editing ASCII text segments and an extensi Ve
macro facility for creating sophisticated text editing-request combinations.

teco {path1} {path2}

where path 1 is the pathname of a text segment to be read into the teco text
buffer and path2 is the pathname used when writing out the text. If neither
pathname is specified, the buffer is initially empty and the user can read in or
enter text segments from the terminal. If path2 is not specified, path1 is used
when writing out the segment. (See "Start-Up Macro" below.)

OVERVIEW OF TECO

The teco editor implemented for Multics is modeled after the TEeO in general
use on the Digital Equipment Corporation PDP-10, which was originally written at
MIT's Artificial Intell igence proj ect. The teco ed i tor allows simple editing
requests on a line basis as well as a character basis. In addition, iterative
and cond it ional facil i ties are prov ided for wr i ting macro definitions. These
permit the user to do simple manual editing of ASCII files or to write complex
macros that do automatic editing. Although this implementation is modeled after
the teco editor in general use, many new-requests and features have been added
that make the macro facility more powerful and easy to use. Some of the additions
include adding if ..• then ... else ..• statements, allowing the contents of
Q-registers to be used as quoted strings; allowing numeric and string arguments
to be passed to macros; allowing searches using regular expressions, automatically
executing a start up macro whenever teco is invoked; and allowing macros that
reside in files to-be called directly from the editor.

The line-oriented features of teco are similar to those of the edm and qedx
commands. The character-oriented requests use a pointer that can be positioned
between any two characters in the buffer, permitting insertion, deletion, and so
on of characters without the need to retype the line.

The teco editor reads request lines from the user's terminal line by line
until a line ending with a dollar sign ($) is typed. Execution of the complete
request string is started when this line is read. The teco editor will type "I"
when it is waiting for anew request string. To exit from the editor, type the
EQ request (followed by $ and a newline).

2-179 AZ03-02

teco teco

teco$macro macro {macro_arguments}

where macro is the name of a teco macro to be executed when the edi tor is
invoked and macro arguments are optional arguments processed by the macro invoked.
This entry point 1s provided for users who write teco "programs" that are intended
to run without ever reaching teco request level. The command line:

teco path1 path2

is equivalent to:

teco$macro start_up {path1} {path2}

TECO STORAGE AREAS

The teco editor uses four storage areas:

1. The buffer
an area where text to be edited is examined and modified. At all
times it contains a (possibly null) character string. There is a
pointer into the buffer, denoting the current position. This pointer
does not point to a character; it points between two characters. The
pointer can assume any value between 0 and Z, where Z is the number of
characters currently in the buffer. 0 indicates that the pointer is
to the left of the first character, and Z would represent the position
to the right of the last character in the buffer. The value of the
pointer is represented by".".

2. Request String Area
editor requests are read into the request string area as a continuous
character stream for subsequent parsing into operational requests.
Uppercase and lowercase letters can be used interchangeably in requests.

3. Q-registers

4.

locations for storing either numeric quantities or strings of text for
later use. Each Q-register is designated by a single character name.
There are 95 Q-registers, on~ for each printing ASCII character. Each
Q-register can contain a positive or negative integer or a character
string.

Q-register pushdown list
a last-in-first-out (LIFO) list that can be used
the contents of a Q-register. It is cleared (i.
lost) every time the user returns to teco request
is typed).

2-180

to temporarily store
e., the contents are
level (i. e., a "II"

AZ03-02

teco teco

NUMERIC EXPRESSIONS

The teco editor uses numeric expressions for many of its operations. These
consist of operators and operands. Operands can be decimal numbers, octal numbers,
teco requests that return values, teco macros that return values, or teco special
symbols. Operators are unary minus (-), ari thmetic binary operators add i tion
(+), subtraction (-), mul tiplication (*), division (I), and the boolean binary
operations or (I)~ and (&). All operators are of equal precedence and expressions
are evaluated from left to right. Notice, however, that parentheses can be used
in their normal manner. Spaces are ignored except to terminate numbers. If two
numeric quantities are given with no operator between them, the default operator
+ is used. Notice that a string of digits followed immediately by a ". It is
interpreted as an octal rather than a decimal number. Di vision using the "I"
operator is integer division, i.e., the remainder is ignored. The special symbols
allowed in an expression at any point are:

B (Beginning) equivalent to O.

Z equivalent to the number of characters in the buffer.

equi valent to the current value of the pointer or the number of characters
to the left of the pointers.

H (wHole) equivalent to O,Z. It is the only symbol to have two values.
It is useful for referring to the entire buffer.

Requests that return values can also be used in expressions, but they cannot
appear immediately to the right of an operator if it requires arguments. This
is because requests that take arguments· assume that everything to its left is
part of one of its arguments. If a request appears wi thin parentheses, its
arguments are entirely contained by the the closest left parenthesis that encloses
the request. A request does not read parts of an expression outside the parentheses
in which it is enclosed.

The plus and minus binary operators assume a right operand of 1 if none is
given.

The examples below show the evaluation of numeric expressions in teco.
Assume that the current value of the pointer is 500.

eXEression value

(1) (7 12)/3 = 6
(2) 9+ = 10
(3) b- = -1
(4) = -1
(5) 4+8/2 = 6
(6) 101. = 65
(7) 3110 = 11
(8) 1++++ ++ +++ + = 11
(9) 9*-2 = -18
(10) 9*--2 = 18
(11) .10 = 510
(12) 10. = 8

2-181 AZ03-02

teco teco

QUOTED STRINGS

Quoted strings are strings of text delimited by a quoting character. The
quoting character can be any character not contained in the string except a
letter or a digit. The contents of a Q-register can be used as a quoted string
if the letter "q" followed immediately by the letter specifying the Q-register
is typed instead of the first quoting character. The following examples show
valid quoted strings.

(1) "hello"
(2) IThis is a quoted stringl
(3) ,This string is delimited by the comma character and contains 2 newline

characters.
,

(4) q1

ERROR MESSAGES

Error messages are printed by teco in one of two modes: long or short.
Short error messages are from one to eight characters long while long error
messages are less than 50 characters long. The default mode is short. To
change the error mode teco is using, give the following Multics commands:

or
teco$teco_error_mode long

teco$teco_error_mode short

If a short error message, such as "I: -?", cannot be understood, the following
Multics command prints the long error message:

teco$teco_error "I: ?"

The above holds for teco error messages only.

IMPLEMENTATION RESTRICTIONS

The maximum number of characters allowed in a Q-register, in a quoted string,
or in a teco request line is 1044480 characters. Notice that these sizes are
all one segment long. wnen tne MUltlCS segment size changes, ~nese restrictions
also change. The maximum number of items in the pushdown list is 20. The
maximum depth of macro calls is 20. The maximum depth of parentheses is 20.

2-182 AZ03-02

teco teco

teco REQUESTS

The teco editor requests have the basic form:

m,nX/stringl

where m and n are optional numeric arguments, X is the request to be executed,
and Istringl is a quoted string. In most cases, the request is just one character,
though in some cases, it is two characters. Not all of the requests take arguments.
Those that do generally have default values for missing arguments. Only a few
requests expect quoted strings. The string must not be omitted if the request
expects one. Some requests also return values; this is discussed later in "Advanced
teco Commands."

Some letters chosen for requests have mnemonic meanings, which are indicated
in the description of each request. Unfortunately, teco has a fairly long history,
having originally been developed for edi ting paper tapes, and so some of the
mnemonic meanings are lost now. As many requests as one wishes can be typed at
a time. Execution of the requests does not start until after a line is typed
ending wi th a "$". Spaces can be inserted anywhere except in the middle of
numbers, and newline characters can be inserted anywhere except between a request
and its arguments. Uppercase and lowercase letters can be used interchangeably
as requests.

Reading a File - EI (External Input)

EI/pathnamel
reads in the file specified by pathname, which is assumed to be a
standard Mul tics pathname. The contents of the file are inserted in
the buffer at the current pointer posi tion, and then the pointer is
moved to the right of the text inserted.

Writing a File: - EO (External Output)

EO/pathnamel
is equivalent to HEO/pathnamel. It writes the contents of the entire
buffer to the file specified by pathname. This request takes arguments
similar to the T request; it writes out that part of the buffer that
would be printed by T. However, if no arguments are given, EO assumes
B, Z as the default rather than 1.

NOTE: The pointer is never moved by the EO request.

Typing the Buffer - T (Type)

T

nT n)O

is equivalent to 1T

prints the buffer beginning at the current pointer posi tion and terminating
after n newline characters have been encountered. T prints the rest
of the current line, and 2T prints the rest of the current line and
the next line. The last character printed by T is a newline. If n is
greater than the number of new line characters to the right of the
pointer, all text to the right of the pointer is printed.

2-183 AZ03-02

teco

n<O

, m,nT

teco

prints the characters between the (-n+1)th newline character and the
pointer. The (-n+1)th newline character is not printed. If (-n+1)th
is greater than the number of newline characters to the left of the
pointer, all text to the left of the pointer is printed. aT prints
the beginning of the line up to the current pointer. -T prints the
previous line and the beginning of the current line. If the pointer
is at the beginning of a line, -T prints the previous line.

prints the (m+1)th through the nth characters of the buffer.

NOTE: The pointer is never moved by the T request. Usually two T requests are
given at once, such as OTT, which prints the entire line that the pointer
is in.

Moving the Pointer - J (Jump), C (Characters), R (Reverse), and L (Lines)

nJ

nC

nR

nL n)O

n<O

moves the pointer to the right of the nth character in the buffer,
i.e., sets n." to the value of n. If n is not specified, a is
assumed. That is, the pointer is moved to the left of the first
character in the buffer. The value of n must be from a to z.

moves the pointer n characters to the right of its current posi tion
(equivalent to .+nJ). If n is omitted, 1 is assumed. The new value
of ".n must be from a to z.

like nC except it moves the pointer to the left (equivalent to -nC).
If n is omitted, 1 is assumed. The new value of n.n must be from a
to z.

positions to the beginning of a line. Moves the pointer to the right,
stopping after it has passed over n newline characters. If n is omitted,
1 is assumed. L moves the pointer to the beginning of the next line.
There must be at least n newline characters to the right of the pointer.

moves the pointer to the left, stopping after it has passed over (-n+1)
newline characters and then moving it to the right of the last newline
character passed over. OL moves the pointer to the beginning of the
current line. -L moves the pointer to the beginning of the previous
line. There must be at least (-n+1) newline characters to the left of
the

Deleting Text - D (Delete) and K (Kill)

nD
deletes n characters. If n is positive, the characters are deleted to
the right of the pointer. If n is negative, the characters are deleted
to the left of the pointer. If n is omitted, 1 is assumed. If n is
zero, nothing is deleted.

2-184 AZ03-02

teco

K

n)O

n<O

m,nK

teco

takes arguments like the T request except it deletes the text T prints.
The pointer is moved to where the deletion took place. If no arguments
are specified, 1K is assumede

deletes all the characters beginning at the current pointer position
and terminating after n newline characters have been encountered. There
must be at least n newline characters to the right of the pointer. K
deletes the rest of the current line and the newline character at the
end of the line, while 2K deletes the rest of the current line and the
next line. OLK deletes the current line as does OKK.

deletes all the characters between the (-n+1)th newline character and
the pointer. There must be at least (-n+1) newline characters to the
left of the pointer. OK deletes the beginning of the current line
wi thout deleting the newl ine character at the end of the previous
line. -K deletes the previous line and the beginning of the current
line. To ensure that only the previous line is deleted, the request
sequence OL-K is used.

deletes the (m+ 1) th throu~h the nth characters of the buffer. The
pointer is moved to m. Equivalent to mJ n-mD. HK deletes the entire
buffer.

Inserting Text - I (Insert)

I/textl

nI

inserts the text of the quoted string at the current pointer position
and moves the pointer to the right of the inserted text. Itextl can
also be specified as a Q-register, for example, Iq2.

inserts the character whose ASCII code value is n. It moves the pointer
to the right of the inserted character.

Search for Text - S (Search)

S/stringl

nS/stringl

is equivalent to 1S/stringl

searches for the nth occurrence of the quoted string. If n is positive,
the text is searched from the current pointer through the end of the
buffer for the nth occurrence of the string. If found, the pointer is
set to the right of the matching string. Otherwise, the pointer is
not moved, and an error message is printed. If n is negati ve, the
text is searched from the current pointer position to the beginning of
the buffer for the (-n)th occurrence of the quoted string. The pointer
is set to the left of the matched string. If the string is not found,
the pointer is not moved, and an error message is printed.

2-185 AZ03-02

teco teco

m,nS/stringl
searches m lines from the current pointer for the nth occurrence of
the quoted string instead of searching the entire buffer. If m is
positive, n must be positive, and the only part of the buffer that is
searched is from the current pointer to just after the mth newline
character after the current pointer. If m is 0 or negative, n must be
negative, and the only part of the buffer that is searched is from the
current pOinter to just after the (m+1)th newline before the current
pointer. 1, 1S/texti only searches the rest of the current line.
O,-1S/textl only searches the beginning of the current line.

Search for Regular Expression - N

N/stringl

nN/stringl

is equivalent to 1N/string/; searches from the current pointer position
through the end of the buffer for the first occurrence of the regular
expression, string.

The term "regular expression" refers to the character string used to
address a line of text that contains that string of characters. In
its simplest form, a regular expression is a character or string of
characters delimi ted by the right slant character (I). For example,
in the following text, the regular expression labcl matches line 2:

a:procedure
abc = def

x = y
end a

searches from the current pointer posi tion to the end of the buffer
for the nth occurrence of the regular expression, string. The value
of n must be greater than O.

m,nN/stringl
searches the next m lines for the nth occurrence of the regular expression.
The values of m and n must be greater than O.

Printing Values - = (Equals)

n= or m,n=
prints the decimal value of its arguments, separated by spaces and
followed by a newline.

n:= or m,n:=
prints ~ne oc~al. value of its arguments, separated by spaces and followed
by a newline.

Leaving TEeO - EQ (External Quit)

EQ
returns to the caller of teco (e. g., Mul tics command level). (The
user must remember to do an EO request before the EO if the editing is
to be saved.)

2-186 AZ03-02

teco teco

Restarting teco After ~ Quit

If a quit signal is used to abort a request string, the Multics program interrupt
(pi) command can be used to restart the teco editor. Issuing a qui t does not
abort the entire command string; only those commands not yet executed. The
current request is aborted when it is completed.

At times it is desirable to get around this feature. When doing an EO, for
instance, teco does not allow the user to return to teco request level until it
has completed writing the file. To get around this, the user types:

(quit)
teco$abort

When teco$abort is called, the most recent invocation of teco aborts its
current operation without checking for consistency of states. This is useful if
an EO request fails because of insufficient access. Using the program interrupt
command would cause teco to reattempt the write. Notice that teco is in a
consistent state whenever it actually accesses a file, and so there should be no
problems encountered if this feature is used to get out of an EO request. Under
other circumstances, however, it is wise for the user to type:

-5t5t

to ensure that control is maintained. Except for the case of an unsuccessful EO
request, this feature should not be used.

STAND-ALONE EXAMPLES ------
Entering Teco

teco source.pl1
enters teco and reads in the file source.pl1 from the working directory.

teco <x>y>z>a.ec
enters teco and reads in the file specified.

teco
enters the buffer initially empty.

teco >t>start up.teco start up.teco
enters teco and reads in >t>start_up. teco.
start_up.teco.

Reading ~ File

EI/source.pl11

Q-register * is set to

inserts the text contained in source.pl1 at the current point in the
buffer.

2-187 AZ03-02

teco teco

Writing .! File

EO/new source.p11/
- writes the whole buffer out into new_source.p11 •

. ,zEO/bottom/

2EO/lines/

wri tes out the buffer from the current pointer to the end into the
file named bottom.

writes out two lines starting at the current pointer position to the
file named lines.

Printing Text

2T
prints from the pointer to the end of the next line.

OT
prints the current line from its beginning to the pointer.

OTT
prints all of the current line.

25,100T
prints the 25+1 (26th) through the 100th character of the buffer.

Moving the Pointer

J
positions the pointer at the beginning of the buffer.

ZJ
positions the pointer at the end of the buffer.

L
positions the pointer at the beginning of the next line in the buffer.

OL
positions the pointer at the beginning of the current line.

-L
positions the pointer at the beginning of the previous line.

R
backs up the pointer by one character position.

812-388C
moves the pointer ahead 812-388 (424) character positions.

2-188 AZ03-02

teco teco

Deleting Text

19,22K

19J 3D

HK

-D

deletes the 19+1 (20th) through the 22nd character of the file. Sets
the pointer to 19.

moves the pointer to the right of the 19th character and then deletes
the next three characters (20-22).

deletes the whole buffer.

deletes the character just to the left of the pointer.

Inserting Text

I/abc
/

I.abc.

65I

inserts the line abc followed by a newline character at the current
pointer position.

inserts the string abc without a newline character.

inserts the character wi th ASCII code 65 (A) at the current pointer
position.

Printing Values

Z =

Z, • =

=

Q6+53 =

prints how many characters are in the buffer.

prints how many characters are in the buffer followed by the current
pointer position.

prints a newline character.

prints the value 53 plus the value contained in Q-register 6.

Searching for Text

J S/Hello/
positions the pointer just to the right of the first occurrence of the
string Hello in the buffer.

2-189 AZ03-02

teco teco

ZJ -S"Hello"
positions the pointer just to the left of the last occurrence of the
string Hello in the buffer.

J 3S"*
" positions the pointer just after the third occurrence of a line ending

with an asterisk (*).

J 1,1S/Hello
I

posi tions the pointer just after the first line in the buffer if it
ends in Hello. If the first line does not end in Hello, prints an
error message.

EXAMPLES OF BASIC EDITING REQUESTS

In the following examples, underlined text is produced by teco.

teco abc.pl1

!5LT$

dcl a fixed bin;

!S/a/-DI/b/OLT$

dcl b fixed bin;

!S/dcl d/OLKT$

dcl f fixed bin;

IKI/dcl g char(2);
7$

!EO/abc.pI1/EQ$

ADVANCED teco COMMANDS

enters teco and reads in the segment abc.pI1.

moves to the 6th line and prints it out.

changes the "a" to a "b" and prints the line.

searches for "dcl d" and deletes the line that contains
it. Then prints out the next line.

deletes this line and then insert a declaration of g.

writes the edited text out to the file and then returns
from teco.

In "teco Requests" above, the general form of a teco request was gi ven.
Some items were left out, however. A more complete format is:

m,nXq/string11Istring2/ ••• /stringnl

The q indicates a Q-register on which the request is to act.

2-190 AZ03-02

teco teco

It should also be noted that more than one string can be given. Although
no teco request currently accepts more than one quoted string, a macro can be
called with multiple string arguments that can be retrieved inside the macro by
the :X request.

"Numeric Expressions" specifies that expressions can be built from numbers,
special valued requests, and symbols. Examples of valued requests are given in
this section. Notice that requests wi th values that require arguments only
appear on the left side of the first operator, or within parentheses. Otherwise,
the part of the expression preceding the request is considered to be an argument
to the request.

The effect of many requests can be changed by preceding the request with a
colon (:). The colon has no fixed meaning--i t is defined for each request
indi vidually. The following requests given earlier have the following changed
effect:

:Iq/string/ or n:Iq

n:L

:S/string/

:n/string/

:T/string/

:EI

:J,n:J

: C, : R

is similar to the I request except that the specified string is inserted
into Q-register q instead of the buffer. The former contents of Q-register
q are lost.

is equivalent to nLR. :L moves to the end of the line rather than the
beginning.

is similar to S except that it returns a value. The value is 0 if the
search fails and -1 if it succeeds. Even if the search fails, teco
continues execution.

is similar to N except that it returns a value. The value is 0 if the
search fails and -1 if it succeeds. Execution continues even if the
search fails.

prints the specified string on the- user's terminal. This request takes
no arguments.

is identical to = except it prints values in octal instead of decimal.

is similar to EI except that it returns a value. The value returned
is -1 if the read succeeds and- 0 if the read fails. No error is
printed if the read fails.

is similar to J except that errors cannot occur. If n is less than 0,
the pointer is moved to the beginning of the file. If n is greater
than Z, the pointer is moved to the end of the file.

are similar to C or R except that errors cannot occur. If the pointer
would be moved to before B, move it to B. If the pointer would be
moved beyond Z, move it to Z.

2-191 AZ03-02

teco teco

Numeric Q-Registers

Q-registers can be used to hold numeric values. These values can be used
in expressions.

SAVING A VALUE - U (Update)

Uq
sets Q-register q to a very large positive number.

nUq
sets Q-register q to n.

m,nUq
sets Q-register q to n and returns m as its value.

READING Q-REGISTERS - Q (Q-register)

Qq
returns the number stored in Q-register q as the value. Notice that Q
is not a request--i t is a special symbol. Thus, in the expression
5+Q3 the 5+ is not considered an argument to Q; the result is the sum
of Q3 and 5. Notice if Q-register q contains text, the length of the
text, in characters, is returned.

INCREMENTING Q-REGISTERS - ~

~q
adds 1 to Q-register q and returns the new number as the value. Q-register
q cannot contain text. Notice that %, like Q, is a special symbol,
not a request.

Text Q-Registers

Q-registers can also be used to hold character strings. They can be used
to move text from one place in the buffer to another, to save request lines for
execution as macros, or to provide quoted strings.

EXTRACTING TEXT TO A Q-REGISTER - X (eXtract)

Xq
takes arguments like the T request, but copies the text that T would
print into Q-register q. The former contents of Q-register q are
deleted. The text is not deleted from the buffer and the current
pointer is not moved.

nXq n)O
copies all the text from the current pointer to just past the nth
newline character to the right of the pointer into Q-register q. X1
copies the rest of the current line including the newline at the end
of the line into Q-register 1. 2Xa copies the text on the rest of the
current line and all of the next line into Q-register a.

2-192 AZ03-02

teco

m,nXq

teco

n(O
copies the characters between the (-n+1)th character and the pointer.
The (-n+1)th newline character is not copied. OXI copies the beginning
of the current line into Q-register I. In this case, no newline character
is put into Q-register I. -Xa puts the previous line and the beginning
of the current line into Q-register a.

copies the (m+1)th character through the nth character into Q-register
q.

APPENDING TEXT TO A Q-REGISTER - P (aPpend)

Takes arguments like the X request, except it appends to the former contents
of the q-register instead of deleting the former contents. The text is not
deleted from the buffer and the current pointer is not moved.

INSERTING TEXT DIRECTLY INTO A Q-REGISTER - :1 (Insert)

:Iq/stringl

n:Iq

is similar to the normal I request except that the text is inserted
into Q-register q rather than the buffer. The former contents of
Q-register q are deleted. The text buffer is not affected.

is similar to :1 except that it puts the character corresponding to n
into the Q-register q.

GETTING TEXT FROM A Q-REGISTER - G (Get)

Gq
inserts the text contained in Q-register q into the buffer to the left
of the current pointer. If the Q-register contains a number, the
decimal representation of the number is inserted.

Obtaining Quoted Strings from Q-Registers

Whenever teco expects a quoted string, it is possible to indicate that the
string is in a Q-register. Normally, letters and digits are considered invalid
quoting characters. If, however, the letter Q is found where a quoted string is
expected, the next character after the Q is considered a Q-register name. Whenever
a quoted string is retrieved by any request, it is loaded into Q-register fl. As
an example, SQ", immediately after another search, searches again for the same
string. This notation is invalid if the specified Q-register contains a number.

The Q-Register Pushdown Stack

There is one Q-register pushdown stack (not one per Q-register) in which
the values of Q-registers can be saved. It is organized as a pushdown
(Last-In-First-Out) list. It is emptied every time teco waits for a new request
string, i.e., a "I" is typed.

2-193 AZ03-02

teco teco

PUSHING A VALUE ONTO THE STACK - [(opposite of])

[q
pushes the current value of Q-register q onto the top of the stack.
The Q-register is not affected.

POPPING A VALUE FROM THE STACK -] (opposite of [)

]q
pops the top value on the stack into Q-register q. The previous contents
of the Q-register are lost. It is an error to do a] request if the
stack is empty.

The teco editor has the abili ty to execute a request string repeatedly,
just as FORTRAN or PL/I provides do-loops.

LOOPS - < and> (opposite of each other)

<

n<

:<,n:<

>

n < ••• >

begins a loop. It is equivalent to n< except that n is set to a very
large number that is for all practical purposes infinite.

begins a loop to be executed n times. The value of n and the position
of the < in the request string are saved. The value of n must not be
negative.

is similar to < except that errors that occur within the iteration
group just terminate the iteration group and the > returns a value.
The returned value is -1 if no errors occurred, and it is 0 if the
group was terminated by an error. The error message that terminates
the loop is not printed.

ends a loop. It returns to just after < if the string has not yet
been executed n times.

executes the string between the angle brackets n times.

TERMINATING A LOOP BEFORE n EXECUTIONS - ;

n· ,
if n is less than 0, then nothing is done. Otherwise, execution of
the current loop is aborted and teco skips to just after the closing
>. If n is not specified, the resul t of the most recent S or N
request is used (terminate loop if search failed). The request
cannot appear outside of a loop.

2-194 AZ03-02

teco

. ,

teco

is similar to ; except that the sense of the test is inverted. If n
is less than 0, execution of the current loop is terminated and teco
skips to just after the corresponding >.

SPECIAL LOOP FACILITIES - throwing and catching values

F<!label!

:F<!label!

provides for a nonlocal transfer of control. F< and> define an iteration
group like < and >. From the time that the F< iteration group is
entered until the time it is exited, F< sets up a handler to "catch"
values "thrown" by the F; /label/ request. If no F; /label/ request
with matching-string argument is executed before the F< iteration group
is exited, the iteration group returns -1 as a value. If, however, an
F;/label/ request is executed (where the label string matches the one
in the F<! label!), the execution of all macros and iteration groups
encountered since the F< is abandoned, and the F< iteration group
returns the numeric argument of the F; request as a value.

is similar to F< except that if an error is encountered during the
execution of the : F< iteration group, the latter returns zero as a
value.

nF;/string/
"throws" the numeric value n to the most recent F< or : F< iteration
group where the string argument matches the string argument of the F;
request. It is an error to execute a F;/string/ request when there is
no F< or : F< iteration group in executi·on wi th a matching-string argument.

NOTE: These requests provide a method of exiting several nested loops at once.

Gotos

Execution of a F; request terminates the F< loop as well as any contained
loops.

The teco editor provides the ability to transfer control to a different
part of the request string.

GOTO - a (gOto)

O/string/
searches the current macro (or, if we are not in a macro, the request
line) for the label !string!. If it is found, teco begins interpreting
requests just after the label. If not found, but execution is currently
in a macro, the search is repeated in the previous execution level,
i.e., the caller of the macro. This is repeated until teco has checked
all the way down to the request line typed by the user. Notice that
although teco can exit a macro using an a request, it cannot use that
request to exit a loop. Only a semicolon (;) can be used to terminate
a loop.

2-195 AZ03-02

teco teco

Macros

The teco editor has the ability to execute strings of text (macros) other
than those read from the user's terminal. The associated requests are listed
below:

EXECUTING A MACRO IN A Q-REGISTER - M (Macro)

Mq

:Mq

executes the contents of Q-register q as a request string. Notice
that if the M request is given any numeric arguments, they are passed
to the first request inside the macro. String arguments can be fetched
by the :X request.

is similar to the M request except that if issued within a macro, the
return from Q-register q causes the invoking macro to return also.

EXECUTING A MACRO IN A FILE - EM (External Macro)

EM/string/
is similar to the M request except that the request string is found in
a file whose entryname is string.teco. This file is looked for in
three directories: the working directory, the user's login directory,
and the teco library.

OBTAINING A STRING ARGUMENT TO A MACRO

: Xq

NOTES

suspends execution of the current macro, returns to its caller to
fetch a quoted string into Q-register q, and then restores the macro
that was being executed. Notice that each :X request in a macro fetches
another quoted string. The U request (s) should be the first request
in a macro if one wishes to fetch numeric arguments in a macro.

1. Loops cannot cross macro boundaries, i.e., a loop cannot start in one
macro and end in another. This does not, however, prohibit the M or
EM request from being used within a loop.

2. A macro can modify itself if it is in a Q-register. Notice, however,
that the current invocation of the macro is not affected; only future
accesses to the Q-register. If the macrQ is invoked by the EM request,
the resul ts of modifying the file are hard to predict as teco reads
the request string directly from the file.

3. When a macro is invoked by the EM request, it should be noted that the
name of the macro is found in the Q-register named ". Thus several
macros can be put in one segment with the first request in the segment
being OQ". (The user must not forget to put all the appropriate names
on the segment.)

2-196 AZ03-02

teco

4.

5.

teco

If an M or EM request is given as the last request in one macro, the
request is interpreted as a goto rather than a call. Thus, unlimited
M's can be done in this manner al though there is an implementation-defined
limit to the depth of calls.

When the teco editor is entered, a macro named start up is searched
for. If it is found, the arguments to teco are put onto the pushdown
stack, and the start up macro is executed. There is a default start up
macro if the user does not provide his own. This macro is described
below.

CODING CONVENTIONS FOR MACROS

Since there are only a small number of Q-registers (95), each with a
one-character name, there are serious problems in writing a set of macros that
are compatible. A set of macros become incompatible if one macro uses a Q-register
for long-term storage that any other macro uses at all. There are two ways this
effect can be combated. First, by establishing certain coding conventions, and
second, by use of a documented macro library. Probably the most important coding
convention is the specification of which Q-registers can be used inside a macro
for temporary storage. Many library teco macros use the ten Q-registers
1 ,2,3,4,5,6,7,8,9, and 0 for temporary storage. If one macro calls another
macro that destroys the contents of one of these registers, the calling macro
can save the value of the Q-register in the pushdown list and then restore it
after the other macro has been called.

Fortunately, calling a macro is a very inexpensive operation in teco if the
macro is in a Q-register. The EM request is more expensive. This leads to the
practice of creating a macro in a macro library that loads a Q-register with a
useful macro. When the user realizes that he wants the macro, he gives the EM
request that loads the macro he wants into a Q-register, where he can then call
it whenever he wishes. It now becomes necessary to have coding conventions that
specify which registers can be loaded permanently with macros. Since it should
be easy to type the macro names, the lowercase alphabetic letters should be used
for this purpose. Sometimes a macro uses a Q-register for long-term storage.
If the user does not have to type the name· of this Q-register, names that must
be escaped are good; otherwise, other special characters can be used. This
leaves the uppercase alphabetic letters entirely to the user to use to store
intermediate results in editing. Also· the special characters -, " ., I, space,
tab, and newline should be reserved for the user since these are all lowercase
on most terminals.

An extremely useful feature of teco is that the last quoted string is
loaded into Q-register ". To allow this to continue to be useful, all macros
should make sure that Q-register " either contains the last quoted string argument
to the macro, if there are any, or contains what it contained before the macro
was called. Q-register" can be saved on the pushdown list on entry to a macro
and then restored just before leaving the macro. Use of the pushdown list is
very inexpensive.

2-197 AZ03-02

teco teco

RELATIVE COSTS IN teco

The teco editor stores the buffer in two pieces. The first piece, all the
characters from the beginning of the buffer to the current pointer, is stored at
the beginning of one buffer segment. The second piece, all the characters from
the current pointer to the end of the buffer, is stored at the end of another
buffer segment. Inserting text merely adds text to the end of the first buffer
segment and increases the number of valid characters in the first buffer segment.
Deleting text merely changes the number of valid characters in one or both of
the buffer segments. In order to move the pointer, a string copy from one
buffer segment to the other is performed unless an unmodified copy of the string
already exists in the other buffer. It does not matter to teco which direction
the pointer is moved.

Reading a file into an empty buffer causes that file to be used as the
buffer until the text is modified. Thus this request string causes an invalid
segment fault:

HK EI/Fi1e/ EC/d1 Fi1e/$

Positioning to the end of the buffer (ZJ) puts all the text into one temporary
segment. Thereafter, pointer moves do not actually move text. As long as all
the text remains in one temporary segment, pointer moves do not actually move
text. An insertion or deletion anywhere but at the end of the text causes the
text to be split up.

Each text Q-register is presently kept in its own segment. This means that
if a start up macro loads many Q-registers wi th macros, entering teco for the
first time in a process is somewhat slow since all these segments must be created.
The teco command has its own segment manager (get temp seg) that allows it to
reuse segments without calling hard core to create-and ae1ete segments when the
values of Q-registers are changed. Whenever a string is quoted, or a Q-register
loaded with text, a new segment is retrieved from get temp seg and loaded with
the value. If the string that is being loaded into the Q-register is in another
Q-register, the new Q-register is just made to point to the same copy of the
text in the first Q-register. : IAQB is therefore a very simple operation, as
are [(Push) and] (Pop). The feature of keeping the last quoted string in
Q-register " lets the user take advantage of this scheme.

If the user wants to wri te a macro that must do some editing on another
file, it is much cheaper if he saves the value of "." and "Z-." , i~serts the
text to be edited, edits it, writes it out or copies it into a Q-register, and
then deletes what he was just editing from the buffer. The net change to the
buffer by all these operations is zero, but the text that the user was editing
was never moved. This method is much cheaper than storing the entire buffer in
one Q-register, the value of the pointer in another, and then using the buffer
for the editing within the macro.

2-198 AZ03-02

teco teco

There are four ways to transfer control in teco, by the> request, the ;
request, the" or :' request, and the 0 request. Of these, the> request is the
fastest, since teco already knows exactly where to transfer it. The;, If, and
:' requests are next, since they merely search from where they are. Although
the > request and the ; request cannot change macro levels, the it, and : i

requests can. This adds a small expense. The; and :; requests have to check
so that a ; request completely skips over another nested loop and looks beyond
it for a >. Similarly, the" transfer skips over nested if statements, as does
the :' request. Usually, the matching' or > is not far from the transfer, so
this only causes a short search.

WARNING: The teco editor implements < and> searches very simply. It does
not check the semantics of the request string. The request string
is searched forward for the first < or >. Ifa < is encountered,
a counter is incremented. If a > is encountered and the counter
is zero, the search is complete; otherwise the counter is decremented.
Any and all < and > appearing in the searched portion of a request
string participate in this process.

o is the most general and most expensive transfer of control in teco. It must
search the entire macro from the beginning, then the entire macro that called
the present macro, etc., until it finds it or finishes searching the request
line and gives an error. Although this is the most expensive transfer, its cost
is proportional to the distance of the label from the goto request.

Conditionals

The teco editor has the ability to conditionally execute strings. The"
request corresponds to the PL/I statement "if then do;". The t request
corresponds to the PLII statement "end;". "and' are matched and can be nested.

WARNING: The teco editor implements" and ' searches very simply. It does
not check the semantics of the request string. The request string
is searched forward for the first" or '. If a " is encountered,
a counter is incremented. If a t is encountered and the counter
is zero, the search is complete; otherwise the counter is decremented.
Any and all " and ' appearing the searched portion of a request
string participate in this process.

The letter following the " determines what test is made.

NUMERIC COMPARISONS - "E (Equals), "N (Not equal), "G (Greater), "L Less
than)

m,n"E

n"E

m,n"N

if m=n, then execution continues; otherwise, execution skips to just
after the corresponding ,

is identical to n,O"E.

is similar to m,n"E except it tests for mA=n.

2-199 AZ03-02

teco teco

n"N
is identical to n,O"N.

m,n"G
is similar to m,n"E except it tests for m>n.

n"G
is identical to n,OnG.

m,n"L
is similar to m,n"E except it tests for m<n.

n"L
is identical to n,O"L.

TESTING FOR A SYMBOL CONSTITUENT - ftC (Symbol Constituent)

n"C
if n is the ASCII code for a letter, a digit, or one of the characters
• , ,or $; then execution continues. Otherwise, execution skips to
the-corresponding ,

STRING COMPARISON - "M (Match)

"m/string/
if the specified string appears immediately to the right of the pointer,
then execution continues; otherwise, execution skips to just after the
corresponding ,

:"m/string/
is similar to "m/string/ except that the sense of the test is inverted.

TERMINATING A CONDITIONAL DO - , (Matches II)

. ,
is ignored when executed in normal execution. It is used to close a
conditional statement .

transfers to the next " just as a 1"e does. Since this request looks
like a " it can serve to close a conditional statement. This is
useful if an if then ••• else ••• statement is desired. The if
expression is a " statement, then the expression is terminaied by the
:' request and the else expression is terminated by the ' request.
(See the warning under UConditionals~ above.)

Reading Input from the User's Terminal - VW (V then Wait for input)

VW

:VWq

does a V request (presently does nothing on Multics) and then reads
one character from the user's terminal. The ASCII value of the character
is returned as the value of the request.

does a V request and then reads one line from the user's terminal.
The line is put into Q-register q. The newline is the last character
read in.

2-200 AZ03-02

teco teco

Passing a Command to the Command Processor - EC (External Command)

EC/string/
passes the specified string to the Mul tics request processor for execution.

Invoking an Active Function - EA

EAq/string/
passes the specified string to the command processor's active-function
application entry. The result of the active-function application is
returned in Q-register q. The specified string must not include square
brackets.

Examining a Character in the Buffer - A (ASCII)

nA
The ASCII code for the (.+n)th character in the buffer is returned as
the value of the request. n must be specified. (Notice that 1 indicates
the character just to the right of the current pointer; 0 indicates
the character just to the left.)

Tracing Command Execution - ?

?

??

turns tracing on. When tracing is on, each request executed by teco
is printed on the user's terminal just before it is executed.

turns off tracing.

Translating Numbers to ASCII and Vice Versa - \

\

n\

m,n\

:\

reads the decimal number found to the right of the current pointer and
returns its value as the value of the request. The pointer is moved
to the right of the number. The number can be signed and can be
preceded by any number of blanks or tabs. It is an error if no number
is found.

inserts the decimal interpretation of n into the buffer to the left of
the current pointer.

inserts the decimal interpretation of m into the buffer to the left of
the current pointer. The interpretation is padded on the left to be
at least n characters wide.

is similar to \ except that it converts to and from octal representations
of numbers.

2-201 AZ03-02

teco teco

Null Command - W

W
does nothing. It is most useful for throwing away unneeded numeric
arguments.

newline character
has the same effect as w.

$
has the same effect as W.

EXAMPLES OF MACROS

Write Macro

This macro wri tes out the entire buffer into a file whose name is in Q-register
* The pathname is changed by doing:

EOQ*

:i*/new name/

assumes that the name of the file we are editing is in Q-register *
It writes out the entire buffer into this file.

A Restart Macro

This macro zeros out the buffer, changes Q-register * to be a new file name
and reads the file into the buffer:

:x* hk eiq* j

:X*
takes one string argument and loads it into Q-register *.

HK
deletes all the text in the current buffer before editing is restarted.

EIQ*
reads the new file into the buffer.

J
puts the pointer at the beginning of the buffer.

2-202 0.3-0.~

teco teco

Start-Up Macro

This macro only uses the first and second argument to teco. It treats it
as a file name, loads it into Q-register * and reads the file into the buffer.
It also loads the writing macro into Q-register w:

]1 :iwleoq*lifqwq1"n]* eiq* j q1-1"q]*'

] 1

:iwleoq*l

: ifqw

q 1 fin

]*

eiq*

j

q1-1"q

]*

pops the top item off the pushdown list and puts it into Q-register 1.
This is the number of arguments teco was called with.

loads Q-register w with the write macro given in the above example.

loads Q-register f with a copy of the contents of Q-register w.

if the contents of Q-register 1 are not zero, then execute the following
statements; otherwise, transfer to the matching '.

pops the first argument to teco off the pushdown list and into Q-register
*

reads the file whose name is the contents of Q-register *, into the
buffer.

moves the pointer to the beginning of the buffere

if the value of the expression (q 1-1) is greater than zero, execute
the following; otherwise, skip to the matching'

pops the next (second) argument off the pushdown list and into Q-register
*

matches q1-1"q. End of request string for second argument.

matches q1"n. End of request string for processing arguments.

Substitute Macro

This macro takes two string arguments. The first string argument is searched
for, then it is deleted, and the second string inserted.

:x1 :x2 sq1 -q1d g2

:x1
loads the first string argument into Q-register 1.

2-203 AZ03-02

teco teco

:x2
loads the second string argument into Q-register 2.

sq1
searches for the first string.

-q1d
deletes the first string when it is found. (Could also be -q"d.)

g2
replaces the string found with the second string argument.

When the macro returns Q-register, 1 and 2 contain the first and second
strings, respectively. Q-register" contains the second quoted string.

2-204 AZ03-02

teco teco

A teco SUMMARY

NAME USE AND EXPLANATION

a

b

c

: C

d

ea

ec

ei

:ei

em

eo

eq

nA
The value of the reque~t is the ASCII code for the (.+n)th character
in the buffer.

B
The value of this symbol is always zero.

nC
moves the pointer n characters to the right. If n is omitted, 1 is
assumed.

n:C
is similar to c, only error messages are not printed.

D
deletes the one character to the right of the pointer.

+nD
deletes n characters to the right of the pointer.

-nD
deletes n characters to the left of the pointer.

EAq/string/
passes the string to the Multics active-function command process; result
is put in Q-register q.

EC/request/
passes the string to the Multics command processor.

EI/file/
reads the file into the buffer to the left of the current pointer.

:EI/file/
is similar to EI, only no errors are possible.
fails; -1 if it succeeds.

EM/macro name/

Returns 0 if read

searches-for the file macro name.teco, first in the working directory,
then the login directory, then the teco library. If found, it executes
it as a macro.

EO/file name/
writes out the entire buffer into the file specified.

+nEO/file name/
writes our the next n lines.

(0 or -n)EO/file name/
writes out the last n lines.

m,nEO/file name/
writes out-the (m+1)th through the nth characters.

EQ
returns to its caller.

2-205 AZ03-02

teco teco

NAME USE AND EXPLANATION

g GQ
inserts the text contained in Q-register q into the buffer to the left
of the pointer. If Q-register q contains a number, it is converted to
a character string and inserted.

h H

i

: i

j

: j

k

1

: 1

is equivalent to O,Z. It is the only symbol that has two values.

I/string/
inserts the quoted string to the left of the pointer.

nI
n is the ASCII code for a letter that is inserted.

:Iq/string/
inserts the quoted string into Q-register q.

- n: Iq
inserts the single character whose code is n into register q.

nJ
moves the pointer to the right of the nth character in the buffer. If
n is omitted, 0 is assumed.

n:j
is similar to j, only no errors.

K
deletes the rest of the current line from the buffer.

+nK
deletes the next n lines from the buffer.

(0 or -n)K
deletes the last n lines from the buffer.

m,nK
deletes the (m+1)th through the nth characters from the buffer.

L
moves the pointer to the beginning of the next line.

+nL
moves the pointer to the beginning of the next nth line.

(0 or -n)L
moves the pointer to the beginning of the last nth line.

:L
moves the pointer to the end of the current line.

+n:L
moves the pointer to the end of the next (n-1)th line.

(0 or -n):L
moves the pointer to the end of the 1st (n+l)th line.

2-206 AZ03-02

teco

NAME

m

:m

n

:n

o

p

q

r

:r

s

teco

USE AND EXPLANATION

m,nMq/string11Istring21 ••• /stringnl
starts executing the text in Q-register q as a macro. m and n are
numeric arguments to the first request in the macro. string1 through
stringn are string arguments to the macro that can be retrieved with
the :X requeste EM als6 takes all these arguments.

m,n:M/string11Istring21 ••• /stringnl
is similar to m only when control returns from Q-register q, macro
containing :m request returns as well.

N/stringl
searches from the current pointer to the end of the buffer for the
regular expression "string."

:N/stringl
is similar to N/stringl except that :N returns a value. It returns 0
if the string is not found; -1 if it is.

O/labell
transfers control to just after label in the current macro, its caller,
etc., or the request string.

Pq
appends texts to Q-register q.

Qq
the value of this request is· the value of Q-register q if it is a
numeric Q-register or the number of characters in Q-register q if it
contains text. This request can also replace any quoted string if
Q-register q contains text. The contents of the Q-register are used
as the quoted string.

R
moves the pointer one character to the left.

nR
moves the pointer n characters to the left.

R
is similar to R only no errors are possible.

S/stringl
searches from the current pointer to the end of the buffer for "string";
if found, it moves the pointer to the right of the string.

+nS/stringl
searches for n occurrences of the string. Moves the pointer to the
right of the nth occurrence.

-nS/stringl
searches for n occurrences of "string" from the current pointer to the
beginning of the file. If found, it moves the pointer to the left of
the nth occurrence.

+m,+nS/stringl
only searches from the current pointer to the beginning of the next
mth line.

2-207 AZ03-02

teco

NAME

t

:t

u

teco

USE AND EXPLANATION

(0 or -m),-nS/string/
only searches from the current pointer to the beginning of the last
mth line.

:S/string/
takes arguments in all the ways S does, except that if S does not find
the string, it prints out an error message and returns to teco request
level. :S does not. Instead, :S has the value -1 if the search
succeeds and 0 if the search fails.

T
prints out the rest of the current line of the terminal.

+nT
prints out the buffer from the current pointer to the beginning of the
next nth line.

(0 or -n)T
prints the buffer from the beginning of the last nth line to the
current pointer.

m,nT
prints the (m+l)th through the nth characters of the buffer.

:T/string/
prints the quoted string on the terminal.

Uq
sets Q-register q to a very large positive number.

nUq
sets Q-register q to n.

m,nUq
sets Q-register q to n and returns m as its value. This may be used
inside a macro to get the numeric arguments to the macro.

vw VW
when this request is executed, one character is read from the terminal.
The ASCII code for the character read is the value of the VW request.

: vw : VWq
reads in an entire line from the terminal and puts it into Q-register
q. The newline character is the last character in the register.

w W

x

is used for throwing away unwanted numeric arguments.

Xq
loads the rest of the current line into Q-register q.

+nXq
loads Q-register q wi th everything from the current pointer to the
beginning of the next nth line.

(0 or -n)Xq
loads Q-register q with everything from the beginning of the last nth
line to the current pointer.

2-208 AZ03-02

teco

NAME

:x

z

$

newline

?

??

\

: \

: [

]

<

: <

teco

USE AND EXPLANATION

m,nXq
loads Q-register q with everything from the (m+1) character to the nth
character.

: Xq
loads Q-register q with the next string argument to the macro we are
executing in.

Z
is the total number of characters in the buffer. ZJ moves the pointer
to the right of the last character in the buffer.

%q
if Q-register q contains a numeric value, this request increments the
register by 1. The value of the request is the new value of the
Q-register.

$
throws away its arguments and does nothing.

newline
throws away its arguments and does nothing.

?
turns tracing on.

??
turns tracing off.

\
is the decimal number immed iately to the right of the pointer. It
moves the pointer to just after the number.

n\
inserts the decimal representation of n to the left of the pointer.

m,n\
inserts the decimal representation of m to the left of the pointer.
The representation is padded on the left to be at least n characters
wide.

:\
is similar to \ except the values are octal and not decimal.

[q
pushes the contents of Q-register q onto the pushdown list.

]q
pops the top element off the pushdown list and into Q-register q.

<
marks the place in the request string that is transferred to by the >
request. This loop can only be exited by the; request.

: <
is similar to < except inhibits errors within the loop and causes > to
return a value.

2-209 AZ03-02

teco

NAME

>

. ,

tIC

"e

fIg

"1

tIn

"m

teco

USE AND EXPLANATION

>
transfers control to just after the last < request executed and decrements
the loop count. If enough loops have occurred, this request does
nothing. Nested loops are allowed.

,
if the last : s, n, *s, or : n request was unsuccessful, transfers to
just after the next > and exits the present loop; otherwise, does
nothing.

n;
if n is positive, transfers control to just after the next > request
and exits the present loop; otherwise, does nothing •

. ,
is similar to ; except that the sense of the test is inverted.

n"C
if n is the ASCII code for a letter, a digit,., ,or $ does nothing.
Otherwise, it transfers to just after the matching '.

m,n"E
if m=n, then "E does nothing; otherwise, transfers to just after the
next '

n"E
if n=O, then "E does nothing; otherwise, it transfers to just after
the matching '.

m,n"G
if m>n, then "G does nothing; otherwise, it transfers to just after
the matching '.

n"G
if n>O, then fiG does nothing; otherwi se, it transfers to just after
the matching '.

m,n"L
if m<n, then "L does nothing; otherwise, it transfers to just after
the matching '.

n"L
if n<O, then "L does nothing; otherwi se, it transfers to just after
the matching '.

m,n"N
if mA=n, then tiN does nothing; otherwise, it transfers to just after
the matching '.

n"N
if n =O, then "N does nothing; otherwise, it transfers to just after
the matching '.

"m/string/
if characters immediately to the right of the pointer are equal to
string, tIm does nothing; otherwi se; it transfers to just after the
matching ,

2-210 AZ03-02

teco

NAME

:"m

: '

=

F<
F;

teco

USE AND EXPLANATION

:"m/string/
if the characters immediately to the right of the pointer are not
equal to string, "m does nothing; otherwise, it transfers to just
after the matching ,

marks the location a " request transfers to. If executed as a request,
it does nothing.

: '
marks the location a " request transfers to. If executed as a request,
it transfers to just after the next '

!label!
is a label; it is ignored if it is executed.

its request is the value of the current pointer.

=
prints a newline.

n=
prints n in decimal followed by a newline.

m,n=
prints the value of m followed by a space, followed by the value of n,
followed by a newline. The values are printed in decimale

m,n:=
is similar to = except that the values are printed in octal.

used to define throw-catch loops.

2-211 AZ03-02

teeo error teeo error

Name: teeo error

The teeo error command prints the long form of a teeo error message given
the short term.

declare teeo_error entry (ehar(*»;

call teeo_error (name);

where name is the short form of a teeo error message. (Input)

2-212 AZ03-02

teco ssd teco ssd

Name: teco ssd

The teco ssd command allows the user to specify a directory for teco to
search when trying to find a teco macro to execute. The directory so specified
is searched instead of the user's directory.

teco_ssd path

where path is the absolute pathname of a directory to be searched by teco_get_macro_
instead of the user's home directory.

2-213 AZ03-02

test archive test archive

Name: test archive

The test archive command is a library maintenance tool that checks an archive
segment for archive format errors and other inconsistencies. It is run weekly
to check all archive segments in the online libraries.

test_archive paths

where paths are the pathnames of the archive segments in question (without the
suffix archive).

2-214 AZ03-02

vfile find bad nodes vfile find bad nodes

Name: vfile find bad nodes - -

As a command, the vfile find bad nodes command examines a vfile keyed file
to determine whether the vfile MSf"" components that contain keys are in a consistent
state. The keys in a keyed -file are maintained in a tree structure in which
each node of the tree is stored in a separate page of an MSF component. The
consistency checks that are performed are summarized below. Nodes reported as
bad by this heuristic are almost ~ertainly damaged.

vfile find bad nodes {pathname} {-control_args}

Node-branch checks:

1) Is this a freed node? If so, skip further checks.
2) Are there any branches (keys) in this node? If not, skip further checks.
3) Is branch count> 313? If so, node is bad, because space in a page limits a

node to having, at most, 313 one-character keys.
4) Is branch count < O? If so, node is bad.

Key-region checks:

5) Is start of key region > 4096? If so, node is bad, because the character
position-of-the-first key must lie within the node page.

6) Does start of key region overwri te the branch array? If so, node is bad,
because keys have-overwritten the array of branches in the node.

7) Is scattered free key space> 4096-start of key region? If so, node is bad,
because the count- of unused space wi thin toe key region is greater than the
size of the key region itself.

8) Is scattered_free_key_space < O? If so, node is bad.

Key-location checks:

9) Does any branch declare its key to begin prior to start_of_key_region? If
so, node is bad.

10) Does any branch declare its key to extend beyond end of node page? If so,
node is bad.

Key-overlap check:

1 1 ,
I I J DOeS the storage for any key overlap storage for another key?

is bad. Note that this test is somewhat time-consuming.

Key-order check:

If so, node

12) Are the keys within the node ordered in increasing ASCII collating sequence?
If not, the node is bad. Note that this test is somewhat time-consuming.

2-215 AZ03-02

vfile find bad nodes vfile find bad nodes - - - - - -

where:

1. pathname
is path of the indexed file whose nodes are to be checked.

2. control args
~an be chosen from the following:

-io switch STR, -isw STR
- identifies an 1/0 swi tch that is already attached to the indexed

file to be checked. The switch may be closed. If open, it must be
opened for keyed_sequential_input.

-request loop, -rql
enters the request loop when bad nodes are found.

-no request loop, -nrql
- simply-prints information about the bad nodes, and then continues

checking.

-check MODES, -ck MODES
enables only the types of checking given in the MODES string. See
"List of Modes" below. (Default: -check default.)

List of modes:

node branch, Anode branch
-performs node=branch checking, as described above.

key region, Akey region
- performs key-region checking, as described above.

key 10c, Akey loc
- performs-key-location checking, as described above.

key overlap, Akey overlap
- performs key=overlap checking, as described above.

key order, Akey order
- performs key-order checking, as described above.

default

all

is a shorthand way of enabling checks that can be quickly performed. It is
equivalent to node branch,key region,key loco The settings of other modes
are not affected. - - -

is a shorthand way of enabling all possible checking. It it equivalent to
node_branch,key_region,key_loc,key_overlap,key_order.

2-216 AZ03-02

vfile find bad nodes vfile find bad nodes - -

Request loop operation:

When a bad node is found, its location is printed out, followed by the number of
branches in the node, its low key pos, and its unused key space (scat space).
Then a request loop is enteredlthat allows the user to continue checking other
nodes, to qui t further checking, or to enter a totaling loop that counts the
number of damaged nodes in the current component wi thout printing their statistics.
The request:

.• ds node_seg node_offset count -ch

is a useful thing to do. Type "c" in the request loop to continue checking the
next node.

List of requests:

continue, c
continues searching for damaged nodes.

quit, q
stops further processing, reporting total of damage found so far.

total, tt

?

for remainder of this MSF component, stops reporting information about each
damaged node and just counts the damaged nodes in this component.

gives name and version number of this program, plus pathname or I/O switch
of file being examined.

command line
escapis a command_line to Multics command level.

lists available requests.

2-217 AZ03-02

vfile find bad nodes vfile find bad nodes - - - - -

Name: vfile find bad nodes - - -
As an active function, the vfile find bad nodes command returns true if bad

nodes are found, false otherwise. Normal aiagnostic messages are still printed.

[vfile_find bad nodes {pathname} {-control_args}]

Notes

Either a pathname argument or -io switch must be given to identify the file
to be checked. When invoked as an active function, -no request loop is the
default. When invoked as a command, -request_loop is the default. -

Examples

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

vfile_find_bad_nodes >sc1>perm_syserr_log -ck default,key_order

Begin checking free node list (node ptr = 4731314000).
Found 59 undamaged free nodes. Processing continues.

Begin checking component 0, node:
25 50 75 100 125 150 175 200 225 250

Begin checking component 6, node:
25 50 75 100 125 150 175 200 225 250

No damaged nodes.

Lines [2-3] of the output show that the key containing components of the file
contain some unused node pages. These free node pages are catalogued, and no
further checking occurs on them.

Line [5] shows the beginning of testing" in component 0 of the file. Each component
contains 255 pages, numbered from 1 to 255. The numbers printed on line [6]
show the progress of checking through these pages (i.e., 25 is printed after the
first 25 pages are checked, 50 is printed when 50 pages are checked, etc).

Line [9] is printed when no damage is found.

[1)
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]

vfile_find_bad_nodes user_reg -check all

Begin checking component 0, node:

ERROR 13 in Comp 0, node 5 (node_ptr = 464110000)
Key(2) > Key(3)

branch count = 203 keys
start of key region = char posit~on 2470
key space = T626 chars,
scattered free key space = 0 chars

vfile find bad nodes: -! c - - -

2-218 AZ03-02

vfile find bad nodes vfile find bad nodes

[12] ERROR 1 in Comp 0, node 6 (node_ptr = 464:12000)
[13] branch count> 313
[14] branch count = 9420723823 keys
[15] start ;f key region = char position 15733420590
[16] key space = =15733416494 chars,
[17] scattered free key space = 11171849844 chars
[18] vfile find bad nodes: -! tt
[19] 25 50 75 Too T25 150 175 200 225 250
[20] 4 bad nodes in comp 0
[21]
[22) 4 key nodes were damaged.

Line [2] shows beginning of checking on component 0 of another file.
The error message on lines [4-9] shows a key-order error in node 5 of
component O.

Line [10) shows the request loop. The c request was issued to
continue checking.

Lines [12-17] show a second error, in node 6 of component O. In this
error, more than 313 keys were found in the node.

Line [18J shows issuing the tt request to simply get a count of the
remaining errors in component o. The count is shown in line [20), 4
bad nodes, which includes the two for which errors were shown plus two
others.

Line [22] prints a summary of all checking, showing that a total of
found-damaged nodes were found among all of the components of the file.

2-219 AZ03-02

vtoc_pathname vtoc_pathname

Name: vtoc_pathname

The vtoc pathname command is used to determine the pathname of a segment
from the location of its VTOC entry (VTOCE). The location of the VTOCE is
specified by giving its volume name (or physical volume table index, if known)
and an index into the VTOC of that volume.

The vtoc pathname command requires access to the phcs_ gate, since it must
copy directorles.

or
vtoc_pathname volname vtocx {-control_arg}

vtoc_pathname pvtx vtocx {-control_arg}

where:

1. volname

2. pvtx

3. vtocx

is the physical volume name of the volume on which the VTOCE resides.
This volume must be mounted and must be part of a mounted logical
volume.

is the physical volume table index of the volume on which the VTOCE
resides, if known. It must be given in octal.

is the VTOC index of the VTOCE. It must be given in octal.

4. control arg
can be -brief or -bf to suppress the printing of an error message
when the VTOCE is free.

Note

The user's process must have status access to each of the containing directories
of the segment in question. The command supplies "-NO-ACCESS-" as the'entryname
at the level at which further access is necessary, if needed. If one of the
containing directories specified in the VTOCE does not exist in its containing
directory, fi-NOT-LISTED-fi is supplied as the entryname at that level. The command
supplies "-????-" as the entryname at any level below that at which either of
the problems mentioned occurs.

2-220 AZ03-02

vtocx to record vtocx to record

Name: vtocx to record

The vtocx to record command converts an octal VTOCE to index a Mul tics
record number and sector offset.

vtocx to record vtoc index {device_name}

where:

1. vtoc index
- is the octal VTOCE index.

2. device name
is a valid device name (e.g., "m400", "m451").

2-221 AZ03-02

write mst write mst

Name: write mst

The write mst command is used to write Multics system tapes. This is usually
useful only for Multics tapes for BaS, either complete BaS tapes, or tapes to be
used with the BaS LOADDM command (see the Multics Operators' Handbook,
Order No. AM81). Each segment is wri tten wi th the entryname supplied as its
name on the tape. Its bit count. current length, and actual length are derived
from its bit count in the storage system. Other than the bit count and current
length, its SLT entry is given as zero. The various control arguments allow the
user to specify collection marks on the tape and text-link definitions decoding
of the segments.

write mst reel id {-control_args} names

where:

1. reel id
is the reel identifier number of the tape to be written.

2. namei
is the pathname of a segment to be written on the tape. The manner
in which the segment is written is determined by the control arguments
immed iately preced ing name.!.. If ei ther or both of the -text or
-link control arguments precede name.!., namei must specify a standard
object segment.

3. control args

Note

may be chosen from the following:

-collection, -col
wri tes sequential collection marks every time it appears in the command
line.

-text, -tx
writes only the text of the segment specified by namei rather than
the whole segment.

-link, -lk
writes two separate segments for each namei argument:
name>.link contains the separated linkage -
name>.defs contains the separated definitions

-stop, -sp
calls debug before the segment is written out so that the user may
modify the SLT entry in any desired way. A message giving the location
of the segment and the SLT entry is printed out before such a call
is made.

If a namei argument is not preceded by any control arguments, the segment
specified by namei is written on the tape in its entirety.

2-222 AZ03-02

write mst write mst

Example

A common use of this command is the preparation of tapes for loading via
the BOS LOADDM command. For example, to wri te new versions of the DUMP and
PATCH programs on tape 26105, type:

write mst 26105 -tx >udd>Opr>bos_dir>dump -tx >udd>Opr>bos_dir>patch

Notice that only the -text (-tx) control argument is used; BOS expects only the
text of each segment and no collection marks.

2-223 AZ03-02

SECTION 3

SUBROUTINE DESCRIPTIONS

This section contains descriptions of Mul tics subroutines, arranged in
alphabetical order. The format of each subroutine description is the same as
the format of the Mul tics subroutines described in the MPM Subroutines. See
Section 2 of the MPM Subroutines for detailed information regarding this format.

3-1 AZ03-02

abbrev abbrev

Name: abbrev

The abbrev subroutine provides a means of expanding abbreviations in command
lines and changlng data in and extracting data from the profile segments used by
the abbrev command. All of the features of the command itself are available and
a simple expand entry point is provided for returning expanded command lines.

This entry point is used to expand and execute a command line. The command
line can be an abbrev request line, as recognized by the abbrev command documented
in the MPM Commands. An abbrev request line can be used to add and delete
abbreviations and change the modes of operation of abbrev. The abbrev command
need not be invoked in the process before the abbrev_ subroutine can be called.

declare abbrev_$abbrev_ entry (ptr, fixed bin, fixed bin);

call abbrev_$abbrev_ (line_ptr, line_len, code);

where:

1. line_ptr (Input)
is a pointer to an aligned character string to be interpreted as a
command line or an abbrev request line.

2. line len (Input)
is the number of characters in the input line.

3. code (Output)
is a standard status code returned by the command processor.

This entry point returns an expanded version of an input string. See the
description of the abbrev command in the MPM Commands for a discussion of abbrev
expansion.

3-2 AZ03-02

abbrev abbrev

declare abbrev $expanded line entry (ptr, fixed bin, ptr, fixed bin, ptr,
fixed bin); -

call abbrev $expanded line (in_ptr, in_len, space_ptr, space_len, out_ptr,
out_len,) ; -

where:

1. in_ptr (Input)
is a pointer to an aligned character string to be expanded.

2. in len (Input)
is the number of characters in the input string.

3. space_ptr (Input)
is a pointer to a work space where the expanded character string can
be placed.

4. space_len (Input)
is the number of characters available in the work space.

5. out ptr (Output)
- points to the expanded string.

6. out len (Output)
is the number of characters in the expanded string.

Notes

If the length of the expanded string exceeds the length of the work space
provided, the expanded line is allocated in system free n , where n is the current
ring. It is the user's responsibility to free thTs storage when it is no longer
needed.

The space ptr pointer should not point to the same string as in_ptr since
expansion is done directly into the work space.

This entry point sets up a different command processor to be called by the
abbrev subroutine after a command line is expanded. Its argument is an entry.
If the-first pointer in the entry is null, the command processor to be called is
command_processor_.

3-3 AZ03-02

I

abbrev

declare abbrev_$set_cp entry (entry);

call abbrev_$set_cp (cp_entry);

where cp_entry is a command processor entry point.

Examples

The code:

chars = ".a ab1 " :: char string;
call abbrev (addr (chars), length (chars), code);

sets up ab1 as an abbreviation for the character string stored in chars.

The code:

chars = "delete foo; logout";
call abbrev (addr (chars), length (chars), code);

abbrev

calls the command processor with the string arrived at by expanding the command
line:

delete foo; logout

That is, if foo is an abbreviation for l.p11, the command processor is given the
line:

delete l.p11; logout

to be executed.

The code:

chars = some string;
cp = addrTchars);
xcp = addr(xchars);
call abbrev $expanded line (cp, length (chars),

xcp, length (xchars), out_ptr, out_len);

copies some string into chars and leaves the expanded version in xchars, unless
the length of the expanded version is greater than length(chars). In that case
the expanded version is in allocated storage. In either case, out ptr points to
the expanded version and out_len is its length. -

3-4 AZ03-02

ask ask

Name: ask

The ask subroutine provides a flexible terminal input facility for whole
lines, strings delimited by blanks, or fixed-point and floating-point numbers.
Special attention is given to prompting the terminal uSer.

This entry point returns the next string of characters delimited by blanks
or tabs from the line typed by the user. If the line buffer is empty, the ask
subroutine formats and types out a prompting message and reads a line from thi
user_input I/O switch.

declare ask entry options (variable);

call ask_ (ctl, ans, ioa_args);

where:

1. ctl

2. ans

(Input)
is an ioa control string (char(.» in the same format as that used
by the ioa subroutine (described in the MPM Subroutines).

(Output)
is the return value (char(.».

3. ioa_args (Input)
are any number of arguments to be converted according to ctl.

This entry point clears the internal line buffer. Because the 'buffer is
internal static, the input of one program can accidentally be passed to another
unless the second begins with a call to this entry point. If a value typed by
the user is incorrect and if the program wishes to ask for the line to be
retyped, the ask_$ask_clr entry point can also be called.

3-5 AZ03-02

I

ask

declare ask_$ask_clr entry;

call ask_$ask_clr;

There are no arguments.

ask

This entry point works the same as the ask $ask entry point except that
the next item on the line must be a number. An integer value is returned.
Numbers can be fixed point or floating point, positive or negative. A leading
dollar sign or a comma is ignored. If the value typed is not a number, the
program types:

"string" nonnumeric. Please retype:

and waits for the user to retype the line.

declare aSk_$ask_int entry options (variable);

call aSk_$ask_int (ctl, int, ioa_args);

where:

1. ctl (Input)
is as above. If a period is typed, zero

2. int (Output)
is the return value (fixed bin).

3. ioa_args (Input)
are as above.

is returned.

This entry point works like the ask~$ask_int entry point except that it
returns a floating value.

3-6 AZ03-02

ask

declare ask_$ask_flo entry options (variable);

call ask_$ask_flo (ctl, flo, ioa_args);

where:

1. ctl (Input)
is as above.

2. flo (Output)
is the return value (float bin).

3. ioa args (Input) - are as above.

ask

This entry point works like the ask $ask int entry point except that it
returns a value of "yes" or "no." Its arguments are the same as those used with
the aSk_$ask_int entry point.

declare ask_$ask_yn entry options (variable);

call ask_$ask_yn (ctl, ans, ioa_args);

where:

1. ctl (Input)
is as above.

2. ans (Input)
is a value of "yes" or "no" if such a value was

3. ioa - args (Input)
are as above.

present.

This entry returns the remainder of the line typed by the user. Leading
blanks are removed. If there is nothing left on the line, the program prompts
and reads a new line.

3-7 AZ03-02

ask

declare ask_$ask_line entry options (variable);

call ask_$ask_line (ctl, line, ioa_args);

where:

1. ctl (Input)
is as above.

2. line (Output)
is the return value (char(*».

3. ioa args (Input) - are as above.

ask

This entry point tests to determine if there is anything left on the line.
If so, it returns the next symbol, as in the ask $ask entry point, and sets a
flag to 1. Otherwise, it sets the flag to 0 and returns.

declare ask_$ask_c entry (char(*), fixed bin);

call ask_$ask_c (ans, flag);

where:

1 • ans

2. flag

(Output)
is the next symbol, if any.

(Output)
is the symbol flag. Its value can be:
1 if the symbol is returned
o if there is no symbol

This entry point is a conditional entry for integers. If an integer is
available on the line, it is returned and the flag is set to 1. If the line is
empty, the flag is set to O. If there is a symbol on the line, but it is not a
number, it is left on the line and the flag is set to -1.

3-8 AZ03-02

ask ask

declare ask_$ask_cint entry (fixed bin, fixed bin);

call ask_$ask_cint (int, flag);

where:

1. int (Output)
is the returned value, if any.

2. flag (Output)
is the int flag. Its value can be:

1 if int is returned
0 if the line is empty

-1 if there is no number

This entry point works like the ask_$ask_cint entry point but returns a
floating value, if one is available.

declare ask_$ask_cflo entry (float bin, fixed bin);

call ask_$ask_cflo (flo, flag);

where:

1. flo

2. flag

(Output)
is the returned value, if any.

(Output)
is the flow flag. Its va~ue can be:
o if the line is empty
1 if the value is returned

-1 if it is not a number

This entry point returns any part of the line that remains. A flag is set
if the rest of the line is empty.

3-9 AZ03-02

ask

declare ask_$ask_cline entry (char(*), fixed bin);

call ask_$ask_cline (line, flag);

where:

1. line

2. flag

(Output)
is the returned line, if any.

(Output)
is the line flag. Its value can be:
1 if the line is returned
o if the line is empty

ask

This entry point works like the ask $ask cint entry point except that it
returns a value of "yes" or "no" if one is-available.

declare ask_$ask_cyn (char(*), fixed bin);

call ask_$ask_cyn (ans, flag);

where:

1. ans

2. flag

(Output)
is a value of "yes" or "no" if such a value is present.

(Output)
is the yn flag. Its value can be:
, if a "yes" or "no" value is returned
o if the line is empty
-1 if the next value on the line is not "yes" or "no"

This entry point scans the line and returns the next symbol without changing
the line pointer. A call to the ask_$ask_ entry point later returns the same
value.

3-10 AZ03-02

ask

declare ask_$ask_n entry (char(.), fixed bin);

call ask_$ask_n (ans, flag);

where:

1. ans

2. flag

(Output)
is the returned symbol, if any.

(Output)
is the ans flag. Its value can be:
o if the line is empty
1 if the symbol is returned

ask

This entry point scans the line for integers. The second argument is returned
as -1 if there is a symbol on the line but it is not a number, 1 if successful,
and 0 if the line is empty.

declare ask_$ask_nint entry (fixed bin, fixed bin);

call ask_$ask_nint (int, flag);

where the arguments are the same as in the ask_$ask_cint entry point.

This entry point scans the line for floating point numbers.

declare ask_$ask_nflo entry (float bin, fixed bin);

call ask_$ask_nflo (flo, flag);

where the arguments are the same as in the ask_$ask_cflo entry point.

3-11 AZ03-02

ask ask

This entry pOint initiates a scan of the rest of the line.

declare ask_$ask_nline entry (char(*), fixed bin);

call ask_$ask_nline (line, flag);

where the arguments are the same as the ask_$ask_cline entry point.

This entry point returns the next symbol, if it is a "yes" or "no" value,
wi thout changing the line pointer. The arguments are the same as those used
with the ask_$ask_cint entry point.

declare ask_$ask_nyn entry (char(*), fixed bin);

call ask_$ask_nyn (ans, flag);

where:

1. ans

2. flag

(Output)
is a value of "yes", or "no" if such a value is present.

(Output)
is the yn flag. Its value can be:
1 if a "yes" or "no" value is returned
o if the line is empty
-1 if the next value on the line is not "yes" or "no."

This entry point sets the internal static buffer for the ask subroutine to
the given input line so that the line can be scanned.

3-12 AZ 03-02

ask ask

declare ask_$ask_setline entry (char(*»;

where line is the line to be placed in the ask buffer. Trailing blanks are
removed from line. A carriage return is optional-at the end of line. (Input)

This entry point deletes the current contents of the internal line buffer
and prompts for a new line. The line is read in and the entry returns.

declare ask_$ask_prompt entry options (variable);

call ask_$ask_prompt (ctl, ioa_args);

where:

1. ctl (Input)
is a control string (char (*» similar to that typed by the ioa
subroutine.

2. ioa args (Input)
are any number of arguments to be converted according to ctl.

3-13 AZ03-02

Name: copyright_notice_

The copyright notice subroutine adds (and optionally deletes) copyright
notices to source-program segments.

declare copyright notice entry (char(*) aligned, char(*) aligned,
fixed bin (35» ;

call copyright_notice_ (dir_name, entryname, code);

where:

1. dir name (Input)
is the pathname of the directory containing the segment to be modified.

2. entryname (Input)
is the entryname of the segment.

3. code (Output)
is a standard status code.

Operation

The copyright notice subroutine extracts the language suffix from its second
argument and searches the notice directory for segments named suffix. Z and
suffix. Z delete, where Z is the string copyright unless changed by a call to
copyright_notice_$set_suffix.

If a delete notice exists and is in the segment, it is removed. If the
segment does not contain a copy of the new notice, it is added at the top of the
segment or following an initial percent-semicolon character string.

If no notice segments are found for the given language type, the error code
error_table_$typename_not_found is returned.

This entry point sets the name of the copyright notice segments. The default
is suffix. copyright and suffix. copyright_delete where suffix is the language
suffix.

3-14 AZ03-02

declare copyright_notice_$set_suffix entry (char(*»;

call copyright~notice_$set_suffix (x);

where x (Input) is the new suffix.

This entry sets the directory to be searched for copyright notice segments.
The default is)ldd)include.

declare copyright_notice_$test entry (char(*»;

call copyright_notice_$test (d);

where d (Input) is the directory to be searched for copyright notices.

3-15 AZ03-02

The create ips mask subroutine returns a bi t string that can be used to
disable specified ips interrupts (also known as ips signals).

declare create_ips_mask_ entry (ptr, fixed bin, bit(36) aligned);

call create_ips_mask_ (array_ptr, lng, mask);

where:

1. array_ptr (Input)

2. Ing

3. mask

Notes

is a pointer to an array of ips (interprocess signal) names that are
char(32) aligned.

(Input)
is the number of elements in the above array.

(Output)
is ~ mask that disables all of the ips signals named in the array
pointed to by array_ptr. (See "Notes" below.)

If any of the names are not valid ips signal names, the condition
create_ips_mask_err is signalled.

If the first name in the array is -all, then a mask is returned that masks
all interrupts.

Currently, the allowed ips names are:

quit
cput
alrm
neti
sus
trm-
wkP:

The returned mask contains a "O"b in the bit position corresponding to each ips
name in the array and a "l"b in all other bit positions. The bit positions are
ordered as in the above 1 ist. It should be noted that it is necessary to
complement this mask (using a statement of the form "mask = "'mask") in cases
where the requirement is for a mask with "1" bits corresponding to specified
interrupts. An ips mask is used as an argument to the following entry points:
hcs_$reset_ips_mask, hcs_$set_automatic_ips_mask, and hcs_$set_ips_mask.

3-16 AZ03-02

datebin datebin

Name: datebin

The datebin subroutine has several entry points to convert clock readings
into binary integers (and vice versa) representing the year, month, day, hour,
minute, second, current shift, day of the week, number of days since January 1,
1901, and the number of days since January 1 of the year indicated by the clock.

All the arguments found in the datebin entry points are listed and defined
below. Clock readings are Mul tics Greenwich mean time (GMT) and all other arguments
represent local time.

1. clock

2. absda

3. mo

4. da

5. yr

6. hr

7. min

8. sec

9. wkday

10. s

11. dayr

is a calendar clock reading wi th the number of microseconds since
0000 GMT January 1, 1901.

is the number of the days the clock reading represents (with January
1 = 1) •

is the month (1 12).

is the day of the month (1 - 31).

is the year (1901 - 1999).

is the hour of the day (0 23).

is the minute of the hour (0 - 59).

is the second of the minute (0 - 59).

is the day of the week (1 = Monday, 7 = Sunday).

is the shift, as defined in installation_parms.

is the day of the year (1 - 366).

12. datofirst
is the number of days since January 1, 1901, up to, but not including
January 1 of the year specified.

13. oldclock

14. ZZ

is a calendar clock reading in microseconds since January 1, 1901,
0000 GMT.

is the desired hour and minutes expressed as hhmm in decimal (e.g.,
1351).

3-17 AZ03-02

datebin datebin

15. newclock
is the time the shift changes next after clock.

16. shift
is the current shift at time clock.

17. newshift
is the shift that begins at time newclock.

If arguments passed to datebin are not in the valid range, the returned
arguments are generally 0 (in certain cases, no checking should be done).

Entry: datebin_$datebin

This entry point returns the month, day, year, hour, minute, second, weekday,
shift, and number of days since January 1, 1901, given a calendar clock reading.

declare datebin entry (fixed bin(71), fixed bin, fixed bin, fixed bin,
fixed bin,-fixed bin, fixed bin, fixed bin, fixed bin, fixed bin);

call datebin (clock, absda, mo, da; yr, hr, min, sec, wkday, s);

where clock is an input argument and the remaining arguments are output arguments.

Entry: datebin_$shift

This entry point returns the shift given a calendar clock reading. If
clock is invalid, -1 is returned.

declare datebin_$shift (fixed bin(71), fixed

call datebin_$shift (clock, s);

where clock is an input argument and s is an output argument.

3-18 AZ03-02

datebin datebin

Entry: datebin_$time

This entry point returns the hour, minute and second given a calendar clock
reading. If clock is invalid, hrj min, and sec are -1.

declare datebin $time entry (fixed bin(71), fixed bin, fixed bin,
fixed bin);

call datebin_$time (clock, hr, min, sec);

where clock is an input argument and the remaining arguments are output arguments.

Entry: datebin_$wkday

This entry'point returns the day of the week (Monday = 1 ••• Sunday = 7)
given a calendar clock reading. If clock is invalid, 0 is returned.

declare datebin_$wkday entry (fixed bin(71), fixed bin);

call datebin_$wkday (clock, wkday);

where clock is an input argument and wkday is an output argument.

This entry point returns the day of the year (1 - 366) given a calendar
clock reading. If clock is invalid, -1 is returned.

declare datebin_$dayr_clk entry (fixed bin(71), fixed bin);

call datebin_$dayr_clk (clock, dayr);

where clock is an input argument and dayr is an output argument.

3-19 AZ03-02

datebin datebin

Entry: datebin_$revert

This entry point returns a calendar clock reading for the month, day, year,
hour, minute, and second specified.

declare datebin $revert entry (fixed bin, fixed bin, fixed bin, fixed bin,
fixed bin,-fixed bin, fixed bin(71»;

call datebin_$revert (mo, da, yr, hr, min, sec, clock);

where clock is an output argument and the remaining arguments are input arguments.

Entry: datebin_$revertabs

This entry,point returns a calendar clock reading given the number of days
since January 1, 1901.

declare datebin_$revertabs entry (fixed bin, fixed bin(71»;

call datebin_$revertabs (absda, clock);

where absda is an input argument and clock is an output argument.

Entry: datebin_$datofirst

This entry point returns the number of days since January 1, 1901, up to
but not including January 1 of the year specified.

declare datebin_$datofirst entry (fixed bin, fixed bin);

call datebin_$datofirst (yr, datofirst);

3-20 AZ03-02

datebin datebin

This entry point returns the day of the year when given a month, day, and
year.

declare datebin $dayr mo entry (fixed bin, fixed bin, fixed bin,
fixed bin); -

call datebin_$dayr_mo (mo, da, yr, dayr);

where dayr is an output argument and the remaining arguments are input arguments.

Entry: datebin_$clockathr

This entry point returns a clock reading for the next time the given hour
occurs.

declare datebin_$clockathr entry (fixed bin, fixed bin(71»;

call datebin_$clockathr (zz, clock);

where zz is an input argument and clock is an output argument.

This entry point returns a clock reading for the midnight (lqcal time)
preceding the current day.

declare datebin_$last_midnight entry (fixed bin(71»;

call datebin_$last_midnight (clock);

where clock is an output argument.

3-21 AZ03-02

datebin datebin

This entry point returns a clock reading for midnight (local time) of the
current day.

declare datebin_$this_midnight entry (fixed bin(11»;

call datebin_$this_midnight (clock);

where clock is an output argument.

Entry: datebin_$preceding_midnight

This entry point, given a clock reading, returns a clock reading for midnight
(local time) of the preceding day.

declare datebin_$preceding_midnight entry (fixed bin(11), fixed bin(11»;

call datebin_$preceding_midnight (oldclock, clock);

where oldclock is an input argument and clock is an output argument.

Entry: datebin_$following_midnight

This entry point, given a clock reading, returns a clock reading for midnight
(local time) of that day.

declare datebin_$following_midnight entry (fixed bin(11), fixed bin(11»;

call datebin_$following_midnight (oldclock, clock);

where old clock is an input argument and clock is an output argument.

3-22 AZ03-02

datebin datebin

This entry, gi yen a clock reading, returns the time of the next shift
change, the current shift, and the new shift.

declare datebin $next shift change entry (fixed bin(71), fixed bin(71),
fixed bin,-fixed-bin);-

call datebin_$next_shift_change (clock, newclock, shift, newshift);

where clock is an input argument and the remaining arguments are output arguments.

3-23 AZ03-02

decode definition

Name: decode definition

The decode definition subroutine, gi ven a pointer to an object segment
definition, returns the decoded information of that definition in a structured,

I directly accessible format. This subroutine can only be used on one segment at
a time because it uses internal static storage.

declare decode definition entry (ptr, ptr, bit 1 aligned)

call decode definition (def_ptr, structure_ptr, eof)

where:

1. def_ptr (Input)
is a pointer to the selected definition. (The caller extracts this
from the previously returned information.) The initial pointer with
which decode definition can be called is a pointer to the base of
the object - segment n. e. , wi th a zero offset), unless the
decode defini tion $ini t entry point has been called, in which case
the initial pointer can be a pointer to the beginning of the definition
section (as returned by the object_info_ subroutine).

2. structure ptr (Input)
is-a pointer to the provided structure in which decode definition

3. eof

Notes

returns the desired information. (See "Notes" below.) - -

(Output)
is a binary indicator that is "1 fIb if the current invocation of
decode definition causes the search to go beyond the end of the
definition list. -If that is the case, the returned information in
the structure is nUll. It may also be "1"b if any error occurs.

I The structure, contained in the decode defini tion str. incl. pl1 structure,
has the following format: --

dcl 1 decode definition common header based aligned,
2 next def ptr,-
2 prev-def ptr,
2 block ptr ptr,
2 section char (4) aligned,
2 offset fixed bin,
2 entrypoint fixed bin;

dcl 1 decode definition str based aligned,
2 header- like decode definition common header,
2 symbol char (32) aligned; - -

3-24 AZ03-02

decode definition decode definition

where:

1. next de£'
is a forward pointer to the next definition in the list. It can be
used to make a subsequent call to decode_definition_.

2. prev def
- is a backward pointer to the preceding definition on the list. This

pointer may be null if the definition is of the old format.

3. block_ptr
is a pointer to the head of the definition block if this is a segn
definition and to the head of a segname list if this is not a segn
defini tion. This pointer may be null if the defini tion is of the
old format.

4. section

5. offset

is a symbolic code defining the type of definition. It can assume
one of the following values: text, link, stat, symb, or segn.

is the offset of the definition within the given section. This is
set to 0 if section is segn.

6. entrypoint
is nonzero, if this definition is an entry point. The value of this
item is the entry point's offset in the text section.

7. symbol
is the character-string representation of the definition.

This entry point, given a pointer to an object segment definition, returns
the decoded information of that definition in a structure similar to that returned
by decode defini tion , but wi th a pointer to the symbol name instead the name
itself. It is used only by cross ref.

dcl decode_definition_$decode_cref entry (ptr, ptr, bit (1) aligned, ptr);

call decode definition $decode cref (def_ptr, decode_def=acc_ptr, eof,
link_ptr); - -

where:

1. def ptr (Input)
- must be a pointer to the beginning of the definition section.

2. decode def acc ptr (Input)
-is a pOlnter to a structure in which the entry point is to return

information. (See "Notes" below.)

3-25 AZ03-02

decode definition

3. eof (Input)
is the same as for the decode definition entry point.

4. link_ptr (Input)
is a pointer to the base of the linkage section of the object segment
the first time this entry is called for a given object segment. It
is to be null for subsequent calls.

Notes

The structure filled in by this entry point has the following format. It
may be found in decode_descriptor_str.incl.pI1

dcl 1 decode definition acc based aligned,
2 header- like decode definition common header,
2 acc_ptr ptr; - --

where:

1. header
all i terns in this substructure are the same as for the
decode definition str substructure header.

2. acc ptr
- is a pointer to the ACC string that is the symbolic name of this

definition.

This entry point is used for initialization and is especially useful when
the object segment does not begin at offset 0 (as for an archi ve component).
This entry point has no effect when the decode_definition_$full entry point is
being used.

declare decode_definition_$init entry (ptr, fixed bin(24»;

call decode_definition_$init (seg_ptr, bit_count);

where:

1. seg_ptr (Input)
is a pointer to the beginning of an object segment (not necessarily
with an offset of 0).

2. bit count (Input)
is the bit count of the object segment.

3-26 AZ03-02

decode definition decode definition

This entry point, given a pointer to an object segment definition, returns
more complete information about that definition. The symbolic name returned by
this entry point can contain up to 256 characters. This entry point does not
use internal static storage.

declare decode definition $full entry (ptr, ptr, ptr, bit (1) aligned)
returns (bit(l) aligned);

where:

1. def_ptr (Input)
is a pointer to the selected definition and is extracted from previously
returned information. The initial pointer wi th which the
decode definition $full entry point can be called is a pointer to
the base of the definition section of the object segment.

2. structure_ptr (Input)

~
oJ·

4.

Notes

is a pointer to the· provided structure into which the
decode definition $full entry point returns the desired information.
(See "Notes" below.)

oi_ptr (Input)

eof

is a pointer to the structure returned by any entry point of the
object_info subroutine.

(Output)
same as for the decode definition entry point.

The structure, contained in the decode_definition_str.incl.pll structure, I
has the following format:

dcl 1 decode definition full based aligned
2 header like decode definition common_header,
2 symbol char (256) aligned, -

2 symbol _lng fixed bin,
2 flags,

3 new format bit (1) unaligned,
3 ignore bit (1) unaligned,
3 entrypt flag bit (1) unaligned,
3 retain - bit (1) unaligned,
3 arg count bit (1) unaligned,
3 desc sw bit (1) unaligned,
3 unused bit (30) unaligned,

2 nargs fixed bin,
2 desc ptr ptr; -

3-27 AZ03-02

decode_definition decode definition

where:

1.

2.

3.

4.

5.

6.

1.

8.

9.

10.

next def - is the for the decode definition entry point. same as - -
prev_ de.f

is the same as for the decode definition entry point. - -
block ptr - is the same as for the decode definition entry point. - -
section

is the same as for the decode definition entry point. - -
offset

is the same as for the decode definition entry point.

entrypoint
is the same as for the decode definition entry point.

symbol
is the same as for the decode definition entry point. - -

symbol _lng
is the relevant length of the symbol in characters.

new format
indicates that the definition is in the new format.

ignore
is the linker ignore switch.
"1"b the linker should ignore this definition.
"O"b the linker should not ignore this definition.

11. entrypt flag

12. retain

Is the entry-point switch.
"1"b the definition is for an entry point
"O"b the definition is for a segdef •.

is the retain sw tch.
"1"b the definit on should be retained.
"O"b the definit on should not be r~tained.

13. arg_count
is the arg count switch.
"1"b there-is an arg count for this definition.
"O"b there is no arg:count for this definition.

3-28

- -

AZ03-02

decode definition decode definition

14. desc sw

15. unused

16. nargs

is the descriptor switch.
"1"b there are descriptors for this definition.
"O"b there are no descriptor for this definition.

is padding.

indicates the number of arguments expected by this entry, if descr sw
equals "1"b.

17. desc ptr
- points to an array of 18-bi t pointers to the descriptors for the

entry, if descr sw equals "1"b.

3-29 AZ03-02

The display file value subroutine outputs information about a file on a
user-supplied swftch.-

dcl display_file_value_ entry (ptr, file, fixed bin (35»;

call display_file_value_ (switch, a_file, code);

where:

1. swi tch (Input)
is a pointer to the iocb of the swi tch on which output is to be
written. If it is null, then iox_$user_output is used.

2. a file (Input)
is the file, variable, or constant whose value is to be displayed.

3. code (Output)
is a standard status code.

Notes

The output produced is, first, the values of the two pointers that comprise
a file. If the file is closed, then a note to that effect is produced, and the
values of the file attribute block are given, and that is all.

For all open fi les, the file name, address of its iocb, and pathname are
given. If the file is neither stream nor record type, or if it is both, then a
note to the effect that the fsb is inconsistent is given. Attributes relevant
to the type of file (stream or record) are given. For stream input files, the
current input buffer is printed, with a circumflex above the next character that
will be parsed.

3-30 AZ03-02

find include file - -

Name: find include file

The primary entry point of the find include file subroutine searches for
an include file on behalf of a translator. If the include file is found , additional
information about the found segment is returned in the parameters. The "translator"
search list is used to locate the include filea

This entry point is the interface presented to translators. A translator
calls this entry point to invoke a search for a single segment include file
using the "translator" search list. For more information about search lists,
see the search facility commands, and in particular the add search paths command
in the MPM Commands manual, Order No. AG92. --

declare find include file $initiate count entry (char(*), ptr, char(*),
fixed bIn(24), ptr, fixed bin(j5»;

call find include file $initiate count (translator, referencing=ptr,
file=name, bIt_count, seg_ptr, code);

where:

1. translator (Input)
is the name of the translator that is calling this procedure (e.g.,
p11, aIm).

2. referencing ptr (Input)
is a pointer into the segment (normally a pointer to the source
line) that caused the invocation of this instance of this procedure.

3. file name (Input)
is the complete entryname of the include file this procedure is to
locate (e.g., include.incl.p11).

4. bit count (Output)
is the bit count as obtained from the storage system of· the found
include file. If an include file is not found, this parameter is
set to O.

5. seg_ptr (Output)
is a pointer to the first character of the include file, if found;
if not found, this parameter is set to the null pointer value.

3-31 AZ03-02

find include file find include file

6. code

Note

(Output)
is a standard status code. The code may be:

o
The requested file was found normally. All output parameters
have been set normally.

error table $zero length seg
The requested file was found, but the bit count was zero. All
output parameters have been set normally.

error table $noentry
The requested file was not found in any of the search directories.

other storage system error codes
The requested file was not found because of some error.

If this procedure finds an include file by a link, the seg ptr parameter
correctly designates the actual location of the include file. It is possible,
however, that the name of the actual include file is not the same as the file name
argument passed to this procedure. It is the responsibility of the translator
to determine if the file name passed to this procedure is also on the include
file actually found. It-is also the responsibility of the translator to call
the hcs $terminate noname entry point (described in the MPM Subroutines,
Order No: AG93) on the include file when processing is complete.

3-32 AZ03-02

find_partition_

Name: find_partition_

The find parti tion subroutine is used to ascertain information about a
disk partition located on some mounted storage-system disk. It reads the label
and locates the partition, returning information about its size and location, as
well as returning the PVID of the volume, for use in a later call to one of the
hardcore entries for partition reading and writing. Use of this subroutine
requires access to phcs_.

dcl find partition entry (char (*), char (*), bit (36) aligned,
fixed bin (35;, fixed bin (35), fixed bin (35»;

call find partition (pvname, partition_name, pvid, first_record,
partItion_size~ code);

where:

1. pvname (Input)
is the name of the physical volume on which the partition is located.
The volume must be a presently mounted, storage system disk volume.

2. partition name (Input)

3. pvid

is - the name of the disk parti tion to be located. It must be four
characters long or shorter.

(Output)
is the physical volume ID of the volume the partition is located on.
This is returned as a convenience, for use in a later call to one of
the hardcore entries for partition 1/0.

4. first record (Output)
is the number (zero origin, from the beginning of the volume) of the
first record in the partition.

5. partition size (Output)
is-the number of words in the partition.

3-33 AZ03-02

find_partition_

6. code (Output)
is a nonstandard status code. It will be one of the following:

o
indicates that the partition exists and that the returned
parameters are all correct.

error table $pvid not found
Indicates that the specified physical volume is not presently
mounted.

error table $entry not found
Indicates that the specified partition could not be found.

an integer between 1 and 10
indicates that a physical disk error occurred while trying to
read the label. Error messages for physical disk errors are
declared in the include file fsdisk errors.incl.p11, in the array
fsdisk_error_message. -

3-34 AZ03-02

The get bound seg info subroutine is used by several object-display programs
concerned with bound segments to obtain information about a segment as a bound
segment as well as general object information.

declare get bound seg info entry (ptr, fixed bin(24), ptr, ptr, ptr,
fixed bin(35T); - -

call get bound seg info (obj ptr, bit_count, oi_ptr, bm_ptr, sblk_ptr,
code') ; - - - -

where:

1. obj_ptr (Input)
is a pointer to the beginning of the segment.

2. bit count (Input)
is the bit count of the segment.

3. oi_ptr (Input)
is a pointer to the object format structure to be filled in by the
object info $display entry point (see structure declaration in the
description-of the object_info_ subroutine).

4. bm_ptr (Output)
is a pointer to the bind map.

5. sblk_ptr (Output)
is a pointer to the base of the symbol block containing the bindmap.

6. code (Output)
is a standard status code.

Note

If obj ptr pOints to an object segment but no bindmap is found, two possible
codes are returned. One is error table $not bound, indicating that the segment
is not bound. The other is error table $oldoDj, indicating that the segment was
bound before the binder produced internal bind maps. If either one of these is
returned, the structure pointed to by oi_ptr contains valid information.

3-35 AZ03-02

The get initial ring subroutine returns the current value of the ring number
in which the-process-was Tnitialized.

declare get_initial_ring entry (fixed bin);

call get_initial_ring_ (i_ring);

where i_ring is the initial ring for the process. (Output)

3-36 AZ03-02

hash hash

Name: hash

The hash subroutine is used to maintain a hash table. It contains entry
points that initialize a hash table and insert, delete, and search for entries
in the table.

A hash table is used to locate entries in another data table when the
length of the data table or the frequency with which its entries are referenced
makes linear searching uneconomical.

A hash table entry contains a name and a value. The name is a character
string (of up to 32 characters) that is associated in some way with a data table
entry. The value is a fixed binary number that can be used to locate that data
table entry (for example, an array index or an offset wi thin a segment). The
entries in the hash table are arranged so that the location of any entry can be
computed by applying a hash function to the corresponding name.

It is possible for several names to hash to the same location. When this
occurs, a linear search from the hash location to the first free entry is required~
to find a place for a new entry (if adding), or to find out whether an entry
corresponding to the name exists (if searching). The more densely packed the
hash table, the more likely this occurrence is. To maintain a balance between
efficiency and table size, hash keeps a hash table approximately 75 percent
full, by rehashing it (i.e. rebuilding it in a larger space) when it becomes
too full.

The number of entries is limited only by the available space. The table
uses eight words per entry plus ten words for a header. If an entire segment is
available to hold the table, it may have over 32,000 entries.

This entry point initializes an empty hash table. The caller must provide
a segment to hold it, and must specify its initial size (see hash_$opt_size).

declare hash_$make entry (ptr, fixed bin, fixed bin(35»;

call hash_$make (table_ptr, size, code);

where:

1. table_ptr (Input)
is a pointer to the table to be initialized.

3-37 AZ03-02

hash

2. size

3. code

hash

(Input)
is the initial number of entries. It is recommended that the value
returned by hash_$opt_size be used.

(Output)
is a standard status code. It will be zero if there is no error, or
error_table_$invalid_elsize if size is too large.

This entry point, given the number of entries to be placed in a new hash
table initially, returns the optimal size for the new table. This function is
used when rehashing a full hash table, and should be used when making a new hash
table.

declare hash_$opt_size entry (fixed bin) returns (fixed bin);

size=hash_$opt_size (n_entries);

where:

1. n entries (Input)
is the number of entries to be added.

2. size (Output)
is the optimal 'table size for that number of entries.

This entry point adds an entry to a hash table. If the additional entry
would make the table too full, the table will be rehashed before the new entry
is added (see the description of the rehash_ subroutine).

declare hash_$in entry (ptr, char(*), fixed bin, fixed bin(35»;

call hash_$in (table_ptr, name, value, code);

where:

1 • table ptr (Input)
- is a pointer to the hash table.

3-38 AZ03-02

hash

2. name

hash

(Input)
is a name associated wi th a data table entry. It may be up to 32
characters long.

3. value (Input)
is the locator (e. g., index or offset) of the data table entry associated
with name.

4. code (Output)
is a standard system error code with the following values:

o
entry added successfully

error table $segnamdup
entry already exists, with same value

error table $namedup
entry already exists, with different values

error table $full hashtbl
hash table is full and there is no room to rehash it into a
larger space.

Entry: hash_$inagain

This entry point adds an entry to a hash table. It is identical to the
hash $in entry except that it will never .try to rehash the table. The new entry
will-be added unless the table is completely full. This entry point is used by
the rehash subroutine to avoid loops. It can also be used by an application
that has a-hash table embedded in a larger data base, where automatic rehashing
would damage the data base.

declare hash_$inagain entry (ptr, char(*), fixed bin, fixed bin(35));

call hash_$inagain (table_ptr, name, value, code);

where:

the arguments are the same as those for the hash_$in entry point, above.

This entry point searches a hash table for a given name and returns the
corresponding locator value.

3-39 AZ03-02

hash

declare hash_$search entry (ptr, char(*), fixed bin, fixed bin(35»;

call hash_$in (table_ptr, name, value, code);

where:

1 . table_ptr (Input)
is a pointer to the hash table.

2. name (Input)

hash

is the name to be searched for. It may be up to 32 characters long.

3. value (Output)

4.

is the locator value corresponding to name.

code (Output)
is a standard status code. It can be:

o
name was found

error table $noentry
name was not found in the hash table

This entry point deletes a name from the hash table.

declare hash_$out entry (ptr, char(.), fixed bin, fixed bin(35»;

call hash_$out (table_ptr, name, value, code);

where:

1 . table_ptr (Input)
is a pointer to the hash table.

3-40 AZ03-02

hash hash

2. name (Input)
is the name to be deleted. Its maximum length is 32 characters.

3. value (Input)
is the locator value corresponding to name.

code (Output)
is a standard status code. It can be:

o
name was found and deleted

error table $noentry
name was not found in the hash table

3-41 AZ03-02

The hcs_$get_page trace entry point returns information about recent paging
activity.

declare hcs_$get_page_trace entry (ptr);

call hcs_$get_page_trace (data_ptr);

where data ptr is a pointer to a user data space where return information is
stored. (Input)

Notes

The format of the data structure returned by hcs $get page trace is described
below. The amount of data returned cannot be known in advance other than that
there are less than 1024 words returned.

dcl 1 trace aligned based(tp)
bit(18) aligned,
bit(18) aligned.,
fix ed bin (7 1) ,
fixed bin (35) ,
bit(17),

where:

2 next available
2 size
2 time
2 pad1
2 index
2 pad2
2 data

3 info
3 type
3 pageno
3 time delta

fixed bin (71) ,
(512 refer(divide (trace.size,2,17,0»),
bit(36) aligned,
bit(6) unaligned
bit(12) unaligned,
bit(18) unaligned;

1. next available

2. size

3. time

4. pad i

is a relative pointer (relative to the first trace entry) to the
next entry to be used in the trace list.

is the number of words in the trace array
number of entries in the array.

--...I auu,

is the real-time clock reading at the time the last trace entry was
entered in the list.

is unused.

3-42 AZ03-02

5. index

6. pad2

7. info

8. type

is a relative pointer to the first trace entry entered in the last
quantum. Thus, all events traced in the last quantum can be determined
by scanning from trace.index to trace.next available (minus 1) with
the obvious check for wrap-around.

is unused.

is information about the particular trace entry.

specifies what kind of a trace entry it is. The following types are
currently defined:

o page fault
2 segment fault begin
3 segment fault end
4 linkage fault begin
5 linkage fault end
6 bound fault begin
7 bound fault end
8 signaller event
9 restarted signal

10 reschedule
11 user marker
12 interrupt

9. pageno
is the page number associated with the fault. Certain trace entries
do not fill in this field.

10. time delta
- is the amount of real time elapsed between the time this entry was

entered and the previous entry was entered. The time value is in
units of 64 microseconds.

3-43 AZ03-02

The hphcs_$ips_wakeup entry point sends a specified IPS signal to a specified

I process. That process is interrupted immediately unless it has the specified
IPS signal masked off. See the description of the hcs $get ips mask,
hcs $reset ips mask J.. and hcs$set ips mask entry points in the MPM Subsystem WrIters'
Gui~e (Order No. AK~2) for a discussion of ips masking.

declare hphcs_$ips_wakeup entry (bit(36) aligned, char(4) aligned);

call hphcs_$ips_wakeup (process_id, eps_name);

where:

1. process_id (Input)
is the process identifier of the target process.

2. ips_name (Input)
is the name of the ips signal to be sent to the target process.

Notes

See the description of the set ips mask command in Section 2 of this manual
for a list of valid ips signal names. -

I f the arguments are inval id (nonex istent process, undefined ips signal
name) or are not properly aligned, the call is ignored; i.e., no signal is sent,
and no error indication is given.

3-44 AZ03-02

Name: hphcs_$read_partition

This entry point is used to read words of data from a specified disk partition
on some mounted physical storage-system disk.

dcl hphcs $read partition entry (bit (36) aligned, char(*), fixed bin (35),
pointer, fIxed bin (19), fixed bin (35»;

call hphcs $read partition (pvid, partition_name, offset, data_pointer,
word_count,-code);

where:

1 • pvid (Input)
is the physical volume id of the disk from which to read. The
physical volume id is used instead of the volume name because this
is a ring zero interface, and volume names are not accessible by
ring zero; hence, all ring-zero interfaces that reference physical
volumes use the pvid. A pvname may be converted to a pvid by a call
to mdc $find pvname, or the pvid may have been returned by a previous
call to find:partition_.

2. partition name (Input)
is-the name of the disk partition to be read from. It must be four
characters long or shorter.

3. offset (Input)
is the offset in words, from the first word of the partition, of the
first location to be read. It must be nonnegative and less than the
number of words in the partition.

4. data ptr (Input)
is a pointer to the user-supplied buffer into which the data is to
be read. It must be aligned on a word boundary.

5. word count (Input)
is the number of words to be read. The sum of offset and word count
must be less than or equal to the number of words in the partition.
The sum of word count and binary (reI (data ptr» must also be less
than or equal to sys info$max seg size, in order to avoid accessing
past the end of the segment pOinted to by data_ptr.

3-45 AZ03-02

6. code

hphcs $read_partition

(Output)
is a nonstandard status code. It will be one of the following:

o
indicates that the data was successfully read.

error table $pvid not found
Indicates that the specified physical volume is not presently
mounted.

error table $entry not found
Indicates that the specified partition could not be found.

error table $out of bounds
Indicates that-read request attempts to access data outside the
parti tion; that is, the sum of offset and word count is too
large.

an integer between 1 and 10
indicates that a physical disk error occurred while trying to
read the label. Error messages for physical disk errors are
declared in the include file fsdisk errors.incl.pI1, in the array
fsdisk_error_message. -

3-46 AZ03-02

Name: hphcs_$write_partition

This entry point is used to write words of data into a specified disk
partition on some mounted physical storage-system disk. No protection is provided
against simultaneous use of this entry point by several processes writing to the
same partition; thus, care must be exercised when using it.

dlc hphcs $write partition entry (b~t (36) aligned, char (*),
fixed bin (35), pointer, fixed bin (18), fixed bin (35»;

call hphcs $write partition (pvid, partition_name, offset, data_pointer,
word_count, code);

where:

pvid (Input)
is the physical volume id of the disk from which to read. The
physical volume id is used instead of the volume name because this
is a ring zero interface, and volume names are not accessible by
ring zero; hence, all ring-zero interfaces that reference physical
volumes use the pvid. A pvname may be converted to a pvid by a call
to mdc $find pvname, or the pvid may have been returned by a previous
call to find:partition_.

2. partition name (Input)
is-the name of the disk partition to be read from. It must be four
characters long or shorter.

3. offset (Input)
is the offset in words, from the first word of the partition, of the
first location to be read. It must be nonnegative and less than the
number of words in the partition.

4. data ptr (Input)

5. word

is wri tten into the partition. from the user-supplied buffer. It
must be aligned on a word boundary.

count (Input)
is the number of words to be read. The sum of offset and word count
must be less than or equal to the number of words in the partition.
The sum of word count and binary (reI (data ptr» must also be less
than or equal to sys info$max seg size, in order to avoid accessing
past the end of the segment pOlntea to by data_ptr.

3-47 AZ03-02

6. code (Output)
is a nonstandard status code. It will be one of the following:

o
indicates that the data was successfully read.

error table $pvid not found
Indicates that the specified physical volume is not presently
mounted.

error table $entry not found
Indicates that the specified partition could not be found.

error table $out of bounds
Indicates tliat-read request attempts to access data outside the
parti tion; that is, the sum of offset and word count is too
large.

an integer between 1 and 10
indicates that a physical disk error occurred. while trying to
read the label. Error messages for physical disk errors are
declared in the include file fsdisk errors. incl.pI1, in the array
fsdisk_error_message. -

3-48 AZ03-02

lex error lex error

Name: lex error

The lex error subroutine generates compiler-style error messages on the
error output r/o swItch for translators generated by the reduction compiler command
and for other procedures that process tokens generated by the lex string subroutine.
See "Notes" below for a description of the error-message format. -

declare lex_error_ entry options (variable);

call lex error (error number, Serror printed, severity no,
max-severIty no, Pstmt, Ptoken, Scontrol, message,-brief_message,
argI, ••• , arg!!.);

where:

1. error number (Input)
is the error number (fixed bin), as it should appear in the error
message.

2. Serror printed (Input/Output)
-is a switch (bit(1) unaligned) that is "1"b if the text of the error

message has been printed in a previous error and "O"b, otherwise.
If Serror printed is "1"b, the text is omitted from the error message.
Otherwise-; text is included and the switch is set to "1"b to suppress
this text in any subsequent occurrence of the same error.

3. severity_no (Input)
is the severity number
value from a through 4.
the severity_no value.

(fixed bin) of the error. It must have a
See "Notes" below for an interpretation of

4. max severity no (Input/Output)
is the severity number (fixed bin) of the highest-severity error
message that has been printed by the lex error subroutine. Before
the lex error is invoked by a translator~ max severity no should be
initialIzed to O. Each time it is called, the-lex error subroutine
compares this value with the severity no of the current-message and
sets max_severity_no to the higher of these two numbers.

5. Pstmt (Input)
is a pointer to the statement descriptor generated by the lex string
subroutine for the statement that is to be printed after the error
message. The line number and statement number given in this statement
descriptor are included in the error message.

6. ptoken (Input)
is a pointer to the token descriptor of the token that is in error.
If Pstmt is null, then the number of the line that contains the
token described by the descriptor is included in the error message.
If both Pstmt and Ptoken are null, then no line number is included
in the error message.

3-49 AZ03-02

lex error lex error

7. Scontrol (Input)
is a control bit string (bit(.» that determines whether the message
character string or the brief message character string is used in
the error message. The interpretation of the bits in this string is
described in "Notes" below.

8. error message text (Input)
- is an 10a control string (char(.) or char(.) varying) that contains

the long form of the error message text.

9. brief message text (Input)
- is an 10a control string (char(.) or char(.) varying) that contains

the brief-form of the error message text.

Notes

(Input)
are optional arguments that are substi tuted into the ioa message
texts, in place of the ioa control characters.

The error messages that are generated by the lex_error_ subroutine have the
form shown below.

prefix error number, SEVERITY severity_no IN STATEMENT k of LINE 1.
error message text
SOURCE: -
statement in error

For example,

ERROR 7, SEVERITY 2 in STATEMENT 2 OF LINE 2.
A bad track specification was given in a Volume statement.
9track has been assumed.
SOURCE:
Volume: 70082, 8track;

3-50 AZ03-02

lex error lex error

The severity no associated with an error controls the prefix that is placed
in the error message, as shown in the table below.

SEVERITY PREFIX

o COMMENT

WARNING

2 ERROR

3 FATAL ERROR

4 TRANSLATOR ERROR

EXPLANATION

Comment. The error message is a comment, which
does not indicate that an error has occurred, but
merely provides information for the user.

Warning only. The error message warns of a statement
that mayor may not be in error, but compilation
continues without ill effect.

Correctable error. The message diagnoses an error
that the translator can correct, probably without
ill effect. Compilation continues, but correct
results cannot be guaranteed.

An uncorrectable but recoverable error. The
translator has detected an error that it cannot
correct. Translation continues in an attempt to
diagnose further errors, but no output is produced
by the translation.

An unrecoverable error. The translator cannot
continue beyond this error. The translation is
aborted after the error message is printed.

The phrase "IN STATEMENT k OF LINE 1" appears in the error message only if
Pstmt is a nonnull pointer. Pstmt is assumed to point to a statement descriptor
generated by the lex string subroutine. The values for k and 1 come from this
descriptor. If the error occurred in the first statement of line 1, then the
phrase "STATEMENT k OF" is omitted from the error message.

If Pstmt is null, then "STATEMENT k OF" is omitted from the error message,
and 1 is the line number on which -the token described by Ptoken appears. If
Ptoken is a null pointer, "IN STATEMENT k OF LINE 1" is omitted altogether.

Currently, only the first two bits of the Scontrol bit string have meaning,
as shown in the table below.

3-51 AZ03-02

lex error

Scontrol

"DD"b

"1D"b

"11"b

"D1"b

lex error

INTERPRETATION

The printed error contains the error message text the first
time the error occurs, and the brief message text for subsequent
occurrences of that error during a given translation.

The printed error always contains the error_message_text.

The printed error always contains the error_message_text.

The printed error always contains the brief_message_text.

If Serror printed is "1"b, then the lex error subroutine assumes the text
of the error message has already been printed in a previous message. It uses
the long or brief error message text, according to the value of Scontrol.

If Pstmt points to a statement descriptor, then the lex error subroutine
sets the error in stmt switch in the statement descriptor. It also checks the
value of the output in err msg swi tch in the descriptor. If this swi tch is
"D"b, the lex error -subroutine sets it to "1 "b and prints the character string
representation of the statement in the error message. If it is already "1 lIb,
then the lex error subroutine assumes that the statement has already appeared
in another error message and omits the "SOURCE:" phrase from the error message.

If max severity no is less than severity no, then the lex error subroutine
sets max_severity_no-equal to severity_no. - --

Refer to the lex_string_ subroutine for a description of statement and
token descriptors.

3-52 AZD3-D2

lex_string_ lex_string_

The lex string subroutine provides a facility for parsing an ASCII character
string into tokens <Character strings delimited by break characters) and statements
(groups of tokens). It supports the parsing of comments and quoted strings. It
parses an entire character string during one invocation, creating a chain of
descriptors for the tokens and statements in a temporary segment. The cost per
token of lex string is significantly lower than that of parse file because the
overhead of calling-parse file to obtain each token is eliminated: Therefore,
the lex string subroutine is recommended for translators that deal with moderate
to large amounts of input.

The descriptors generated when the lex string subroutine parses a character
string can be used as input to translators generated by the reduction compiler
command, as well as in other applications. In addition, the information in the
statement and token descriptors can be used in error messages printed by the
lex error subroutine.

Refer to the the reduction compiler and lex error descriptions for details
on the use of these facilities.-

This entry point constructs two character strings from the set of break
characters and comment, quoting, and statement delimiters: one string contains
the first character of every delimiter or break character defined by the language
to be parsed; the second string contains a character of control information for
each character in the first string. These two character strings form the break
tables that the lex string subroutine uses to parse an input string. It is
intended that these -two (delimiter and control) character strings be internal
static variables of the program that calls lex string , and that they be initialized
only once per process. They can then be used i"ii successi ve calls to lex string $lex,
as described below. - -

declare lex string $init lex delims entry (char(*), char(*), char(*),
char(*), charT*), bit(*), char(*) varying aligned,
char(*) varying aligned, char(*) varying aligned,
char(*) varying aligned);

call lex string $init lex delims (quote open, quote close, comment_open,
comment close, statement delim, Sinit, break chars,
ignored=break_chars, lex=delims, lex_control=chars);

3-53 AZ03-02

lex_string_

where:

1. quote_open (Input)
is the character string delimiter that begins a quoted string. It
may contain up to four characters. If it is a null character string,
then quoted strings are not supported during the parsing of an input
string.

2. quote_close (Input)
is the character string delimiter that ends a quoted string. It may
be the same character string as quote_open, and may contain up to
four characters.

3. comment open (Input)
Is the character string delimiter that begins a comment. It may
contain up to four characters. If it is a null character string,
then comments are not supported during the parsing of a character
string.

4. comment close (Input)
is the character string delimiter that ends a comment. It may be
the same character string as comment_open, and may contain up to
four characters.

5. statement delim (Input)
is- the character string delimi ter that ends a statement. It may
contain up to four characters. If it is a null character string,
then statements are not delimited during the parsing of a character
string.

6. Sinit (Input)
is a bit string that controls the creation of statement descriptors,
and the creation of token descriptors for quoting delimiters. The
bit string consists of two bits in the order listed below.

Ssuppress quoting delims
is "i"b if token descriptors for the quote opening and closing delimi ters
of a quoted string are to be suppressed. A token descriptor is
still created for the quoted string itself, and the quoted string
switch in this descripto'r is turned on. If Ssuppress quoting-delims
is "D"b, then token descriptors are returned for th~ quote ~pening
and closing delimiters, as well as for the quoted string.

Ssuppress stmt delims
is '''1''b if the token descriptor for a statement delimiter. is to be
suppressed. The end of stmt switch in the descriptor of the token
that precedes the statement delimiter is turned on, instead. If
Ssuppress stmt delims is ~O~b, then a token descriptor is returned
for a statement-delimiter, and the end of stmt swi tch in this descriptor
is turned on.

7. break chars (Input)
is a character string containing all of the characters that may be
used to delimit tokens. The string may include characters used also
in the quoting, comment, or statement delimiters, and should include
any ASCII control characters that are to be treated as delimiters.

8. ignored break chars (Input)
Is a character string containing all of the break chars that may be
used to delimit tokens but that are not tokens themselves. No token
descriptors ~re created for these characters.

3-54 AZD3-0'

lex_string_

9. lex delims (Output)

10.

is an output character string containing all of the delimiters that
the lex string subroutine will use to parse an input string. This
string IS constructed by the init lex delims entry from the preceding
arguments. It must be long enough to-contain all of the break chars,
Dlus the first character of the quote open delimiter, the comment open
delimiter, and the statement delim- delimi ter, plus 30 additIonal
characters. This length will -not exceed 128 characters, the number
of characters in the ASCII character set.

lex_control_chars (Output)
is an output character string containing one character of
information for each character in lex delims. This string
constructed by init lex delims from the-preceding arguments.
be as long as lex delims.

control
is also
It must

This entry point parses an input string, according to the delimiters, break
characters, and control information gi ven as its arguments. The input string
consists of two parts: the first part is a set of characters, which are to be
ignored by the parser except for the counting of lines; the second part is the
characters to b_e parsed. It is necessary to count lines in the part that is
otherwise ignored so that accurate line numbers can be stored in the token and
statement descriptors for the parsed section of the string.

declare lex string $lex entry (ptr, fixed bin(21), fixed bin(21), ptr,
bit(*)~ char(T), char(*), char(*), char(*), char(*),
char(*) varying aligned, char(*) varying aligned,
char(*) varying aligned, char(*) varying aligned, ptr, ptr,
fix ed bin (3 5)) ;

call lex string $lex entry (Pinput, Linput, Lignored input, Psegment, Slex,
quote open~ quote close, comment open, comment close, statement delim,
break-chars, ignored break chars~ lex delims, lex control chars~
Pfirst_stmt_desc, PfIrst_token_desc, code); - -

where:

1. Pinput (Input)
is a pointer to the string to be parsed.

2. Linput (Input)
is the length (in characters) of the second part of the input string,
the part that is actually to be parsed.

3. Lignored input (Input)
is the length (in characters) of the first part of the input string,
the part that is ignored except for line counting. This length may
be 0 if none of the input characters are to be ignored.

3-55 AZ03-02

4. Psegment (Input)

5. SLex

is a pointer to a temporary segment created by the translator_temp_
subroutine.

(Input)
is a bit string that controls the creation of statement and comment
descriptors, the handling of doubled quotes within a quoted string,
and the interpretation of a comment close delimiter that equals the
statement delim. The bit string consists of four bits in the order
listed below.

Sstatement desc
is "f"b if statement descriptors are to be created along wi th the
token descriptors. If Sstatement desc is "O"b, or if the statement
delimiter is a null character strIng, then no statement descriptors
are created.

Sscomment desc
is "1 "b if comment descriptors are to be created for any comments
that appear in the input string. When Scomment desc is "O"b,
comment open is a null character string, or statement descriptors
are not-being created, then no comment descriptors are created.

Sretain doubled quotes
is-"1"b if-doubled quote close delimiters that appear within a quoted
string are to be retained. If Sretain doubled quotes is "O"b, then
a copy of each quoted string containing doubled quote close delimiters
is created in the temporary segment wi th all doubled quote close
delimiters changed to single quote_close delimiters. -

Sequate comment close stmt delim
is-"1 "b if the comment close and statement delim character strings
are the same, and if the closing of a comment is to be treated as
the ending of the statement containing the comment. It could be
used when parsing line-oriented languages that have only one statement
per line and one comment per statement.

6. quote_open (Input)
is the character string delimiter that begins a quoted string. It
may contain up to four characters. If it is a null character string,
then quoted strings are not supported during the parsing of an input
string.

7. quote_close (Input)
is the character string delimiter that ends a quoted string. It may
be the same character string as quote_open, and may cont,ain up to
four characters.

8. comment open (Input)
Is the character string delimiter that begins a comment. It may
contain up to four characters. If it is a null character string,
then comments are not supported during the parsing of a character
string.

9. comment close (Input)
is the character string delimi ter that ends a comment. It may be
the same character string as comment_open, and may contain up to
four characters.

3-56 AZ03-02

10. statement delim (Input)
is- the character string delimi ter that ends a statement. It may
contain up to four characters~ If it is a null character string,
then statements are not delimited during the parsing of a character
string.

11. break chars (Input)
is a character string containing all of the characters that may be
used to delimit tokens. The string may include characters used also
in the quoting, comment, or statement delimiters, and should include
any ASCII control characters that are to be treated as delimiters.

12. ignored break chars (Input)
Is a character string containing all of the break chars that may be
used to delimit tokens but that are not tokens themselves. No token
descriptors are created for these characters.

13. lex delims (Input)
is the character string initialized by lex_string_$init_lex_delims.

14. lex control chars (Input)
is the character string initialized by lex_string_$init_lex_delims.-

15. Pfirst_stmt_desc (Output)
is a pointer to the first in the chain of statement descriptors.
This is a null pointer on return if no statement descriptors have
been created.

16. Pfirst token desc (Output)

17. code

Notes

is a pointer to the first in the chain of token descriptors. This
is a null pointer on return- if no tokens were found in the input
string.

(Output)
is one of the following status codes:

o
the parsing was completed successfully.

error table $zero length seg
no tokens were found in the input string.

error table $no stmt delim_
the input string did not end wi th a statement delimiter, when
statement delimiters were used in the parsing.

error table $unbalanced quotes
the input string ended wi th a quoted string that was not terminated
by a quote_close delimiter.

Any character may be used in the quoting, comment, and statement delimiter
character strings, including such characters as new line and the space character.

3-57 AZ03-02

lex_string_

A quoted string is defined in the PL/I sense, as a string of characters
that is treated as a single token, even though some of the characters may be
delimi ters or break characters. The string must begin wi th a quote open delimiter,
and must end with a quote close delimiter. Two consecutive quote close delimiters
may be used to represent a quote close delimi ter wi thin the quoted string.
entry point lex string $entry point lex provides the option of retaining any
doubled quote clOse delimi ters in the quoted string token, or of copying the
quoted string-into the temporary segment, changing double quote_close to single
quote close delimiters, and treating the modified copy as the quoted string
token: Switches in the token descriptor of a quoted string are turned on: to
indicate that the token is a quoted string; to indicate whether any quote close
delimi ters appear wi thin the quoted string; and to indicate whether doubled
quote_close delimiters have been retained in the token.

Statements are defined as groups of tokens that are terminated by a statement
delimi ter token. The lex string $lex subroutine can optionally return a token
descriptor for the statement delimiter or it can suppress the token descriptor
of the statement delimiter. It always turns on the end of stmt swi tch in the
final token descriptor of each statement, even if the token descriptor of the
statement delimiter has been suppressed. Also, it can optionally return a statement
descriptor that points to the descriptors for the first and last tokens of a
statement, contains a pointer to and the length of the part of the input string
containing the entire statement, and describes various other characteristics of
the statement. These descriptors are described in the next section.

Comments are defined in the PL/I sense, as a string of characters that
begin with a comment open delimiter, and that end with a comment close delimiter.
Comments that appear in the input string act as breaks between tokens. The
lex string $lex entry point can optionally create descriptors for each comment
that appears in a statement. These descriptors are chained off of the statement
descriptor for that statement. Switches are set in each comment descriptor of a
given statement to indicate whether the comment appears before any of the tokens
in that statement, and whether any tokens intervene between this comment and any
previous comments in that statement.

The lex string subroutine uses the translator temp facility to allocate
space for the-descriptors in the temporary segment. Refer to the translator temp
subroutine description for details on the use of these temporary segments.- -

Descriptors

If the lex_string_$lex entry point were invoked using standard PL/I parsing
conventions to parse the input shown in Figure 3-1, then tokens and token descriptors
created by the lex_string_ subroutine would have the form shown in Figure 3-2.

3-58 AZ03-02

-->1 1--> I , 1<--1 I , , ,
I I I .-- .--

I I

V V
Volume

1-->1
:<--1 , ,
I I

Volume: 70092;
Write;
File 4; /* Process 4th file on the tape. */
/* END */

Figure 3-1. Sample Input to lex_string_

1-->\ \-->: 1-->1 \-->1 1-->\ \-->1
1<--1 1<--1 1<--1 1<--1 1<--1 :<--1 , , , I , , , , I , , ,
I I I I I I I I I I I I .-- .-- .-- .-- .-- .-- .--

I I I I I I I

V V V V V V V
70092 Write File 4

Figure 3-2. Input Tokens and Their Descriptors

I

If statement descriptors were-being created by the lex_string_ subroutine, then
the output would have the form shown in Figure 3-3.

i--· 1------------> :-: --------------> :-1
I \ <------------1 I <-------------- I :

--------- : 1--------- : --... -- -----1 1------
: -------> : 1<------- : I I <--- I I ---> I : <----1
'I ~ "~" 'I --:r:-- II
I I I I I I I I I I I I I I I
, I I I I" , , , , , , I'
I I I I I I I I I I I I I I I
'I 1- -, " 'I " " , I'
I I I I I I I I I I I I I I I

vI I I Iv vI Iv vI I Iv
--> 1-1--> 1-1--> 1-1--> 1-1--> 1-1--> 1-1--> 1-1--> 1-1--> I-I

\ \ <-- I I <-- I I <-- I I <-- I I <-- I I <-- I I <-- I I <-- I
, I I " I"'" I , , I I
I I I I I I I I I I I I I I I I -,-

I

V
Volume

-1- -,-
I I

V V
70092

-,- -,-
I I

V V
Write

-,-
I

V

-I-
I

V
File

-,-
I

V
4

-I-
I

V

Figure 3-3. Tokens, Token Descriptors, and Statement Descriptors

Below is a declaration for the token descriptor structure.

dcl 1 token
2 group1

3 version
3 size

2 Pnext
2 Plast
2 Pvalue
2 Lvalue
2 Pstmt
2 Psemant
2 group2

aligned based (Ptoken),
unaligned,
fixed bin(17),
fix ed bin (1 7) ,
ptr unal,
ptr unal,
ptr unal,
fixed bin (18) ,
ptr unal,
ptr unal,
unaligned,

3-59 AZ03-02

r

3 Itoken in stmt
3 line no -
3 Nvalue
3 S,

4 end of stmt
4 quoted-string
4 quotes-in string
4 quotes-doubled
4 pad2 -

fixed bin(17),
fix ed bin (1 7) ,
fix ed bin (35) ,

bit(1),
bit(1),
bit(1),
bit(1) ,
bit(32);

dcl ptoken ptr;
dcl token value char(token.Lvalue) based (token.Pvalue);

1. version

2. size

3. Pnext

4. Plast

5. Pvalue

6. Lvalue

7. Pstmt

is the version number of the structure. The structure shown above
is version 1.

is the size of the structure, in-words.

is a pointer to the descriptor for the next token in the input. If
this is the last token descriptor, then the pointer is nUll.

is a pointer to the descriptor for the previous token in the input.
If this is the first token descriptor, then the pointer is nUll.

is a pointer to the token character string.

is the length of the token character string, in characters.

is a pointer to the statement descriptor for the statement that
contains this token. If statement descriptors are not being created,
then this pointer is nUll.

8. Psemant
is a pointer available for use by the caller of lex string. It is
initialized as a null pointer. It might be used to chain a structure
defining the semantic value of the token to the token's descriptor.

9. Itoken in stmt
-is-the position of the token with respect to the other tokens in the

statement containing this token. If no statement delimi ters are
being used in the parsing, then this is the position of the token
with respect to all other tokens in the input.

10. line no

11. Nvalue

is the line_no on which this token appears.

is a number available for use by the caller of lex string. It is
initialized to O. It might be set to the numeric value of a token
that is the character string representation of an integer.

12. end of stmt
-is "1"b if this is the last token of a statement.

3-60 AZ03-0Z

13. quoted string
-is "l"b if this token appeared in the input as a quoted string.

14. quotes in string
-is-"l"b is quote_close delimiters appear within this quoted string

token.

15. quotes doubled
-is "l"b if quote close delimiters that appear in a quoted string

token are still represented by doubled quote close delimiters, rather
than having been converted to single quote_close delimiters.

16. pad2
is available for use by the caller of lex_string_
to ""b by lex_string_.

It is initialized

17. Ptoken
is a pointer to a token descriptor.

18. token value
is the character string representation of the token described by the
token descriptor pointed to by Ptoken.

Statement descriptors are declared by the structure shown below.

dcl stmt
2 group1

3 version
3 size

2 Pnext
2 Plast
2 Pvalue
2 Lvalue
2 Pfirst
2 Plast token
2 Pcomments
2 Puser
2 group2

3 Ntokens
3 line no
3 Istmt in line
3 semant type
3 S, -

4 error in stmt
4 output in err msg
4 pad - - -

dcl Pstmt
dcl stmt value

1. version

aligned based (Pstmt),
unaligned,
fix ed bin (1 7) ,
fix ed bin (1 7) ,
ptr unal,
ptr unal,
ptr unal,
fixed bin(18),
ptr unal,
ptr unal,
ptr unal,
ptr unal,
unaligned;
fixed bin(17),
fix ed bin (1 7) ,
fix ed bin (1 7) ,
fix ed bin (1 7) ,

bit(1),
bit(1),
bit(34);

ptr;
char(stmt.Lvalue) based (stmt.Pvalue);

is the version number of this structure.
above is version 1.

The structure declared

2. size
is the size of this structure, in words.

3-61 AZ03-02

I

3. Pnext

4. Plast

5. Pvalue

6. Lvalue

lex_string_

is a pointer to the statement descriptor for the next statement. If
this is the descriptor for the last statement, then this pointer is
null.

is a pointer to the descriptor for the previous statement. If this
is the descriptor for the first statement, then the pointer is null.

is a pointer to the character string representation of the statement
as it appears in the input, excluding any leading newline characters
or leading comments.

is the length of the character string representation of the statement,
in characters.

1. Pfirst token
is a pointer to the descriptor of the first token in the statement.

8. Plast token
is a pointer to the descriptor of the last token in the statement.

9. Pcomments

10. Puser

is a pointer to a chain of comment descriptors associated with this
statement.

is a pointer available for use by the caller of lex_string_.

11. Ntokens
is a count of the tokens in this statement.

12. line no
is the line number on which the first token of this statement appears
in the input.

13. semant type
-is a number available for use by the caller of lex string. It is
initialized to 0 by lex string. It might be used-to classify the
statement by its semantic type.-

14. error in stmt
is "1 fIb if an error has occurred while processing this statement.
This switch is never set by lex string, but it is set by lex error
when a statement descriptor is used to-generate an error message. -

15. output in err msg

16. pad

11. Pstmt

-is- "1 fib if the statement has already been output in another error
message. This switch is referenced and set by lex_error_ to prevent
a statement from being printed in more than one error message.

is available for use by the caller of lex_string_. It is initialized
to ""b by lex_string_.

is a pointer to a statement descriptor.

3-62 AZ03-02

18. stmt value
is the character string value of the statement, as it appears in the
input, excluding any leading newline characters or leading comments.

Comment descriptors are declared as follows.

dcl 1 comment aligned based (Pcomment),
2 group1 unaligned,

3 version fix ed bin (1 7) ,
3 size fi x ed bin (1 7) ,

2 Pnext ptr unal,
2 Plast ptr unal,
2 Pvalue ptr unal,
2 Lvalue fi x ed bin (1 8) ,
2 group2 unaligned

3 line no fix ed bin (1 7) ,
3 s,

4 before stmt bit(1),
4 contiguous bit(1),
4 pad bit(16);

dcl Pcomment ptr;
dcl comment value char(comment.Lvalue) based (comment.Pvalue);

1. version

2. size

3. Pnext

4. Plast

5. Pvalue

6. Lvalue

7. line no

is the version number of this structure.
above is version i.

is the size of this structure, in words.

The structure declared

is a pointer to the descriptor for the next comment associated with
the statement containing this comment. If there are no more comments
associated with that statement, then the pointer is nUll.

is a pointer to the descriptor for the previous comment associated
wi th the statement containing this comment. If this is the first
comment associated with the statement, then the pointer is null.

is a pointer to the character string value of the comment string,
exactly as it appears in the input, excluding the comment_open and
comment close delimiters.

is the length of the character string value of the comment, in characters.

is the line number on that the comment begins.

8. before stmt
-is "1"b if the comment appears in its statement before any tokens.

3-63 AZ03-02

I
I

9. contiguous
is "1 fIb if no tokens appear between this comment and the previous
comment associated with this statement.

10. pad
is available for use by lex_string_'s caller.

11 . Pcomment
is a pointer to a comment descriptor structure.

12. comment value
Is the character string value of a comment.

The above declarations are available for inclusion in PL/I programs in
lex_descriptors_.incl.p11.

3-64 AZ03-02

link_unsnap_ link_unsnap_

The link unsnap subroutine restores snapped links pointing to a gi ven segment
or its linkage section. Such links then appear as if they had never been snapped
(changed into ITS pairs)= This is accomplished by sequentially indexing through
the linkage offset table (LOT) and for each linkage section listed there, searching
for links to be restored.

declare link_unsnap_ entry (ptr, ptr, ptr, fixed bin(17), fixed bin(17»; I

call link_unsnap_ (lot_ptr, isot_ptr, linkage_ptr, hcsc, high_seg); I
where:

1.

2.

3.

4.

lot ptr (Input) - is a pointer to the LOT.

isot_ptr (Input)
is a printer to the ISOT.

linkage ptr (Input)
is a pointer to the linkage section to be discarded.

hscs (Input)
is one less than the segment·number of the first segment that can be
unsnapped.

5. high_seg (Input)
is the number of LOT slots used in searching for links to be restored.

3-65 AZ03-02

I

list dir info list dir info

Name: list dir info

The list dir info subroutine is us'ed by the list dir info, rebuild dir,
and comp_dir_rnfo-commands to list the values in a singre entry in a directory
information segment created by the save dir info command.

declare list dir info entry (ptr, fixed bin, char(1»;

call list_dir_info_ (ptr, mode, prefix);

where:

1. ptr

2. mode

(Input)
points to an entry in the dir info segment (created by invoking the
save dir info command).

(Input)
is the verbosity desired.
least verbose).

It can be 0, 1, 0 r 2 (wh ere 0 i s the

3. prefix (Input)
is a one-character prefix for every line printed.

Notes

Output from the list dir info subroutine is written on the user_output 1/0
switch. It consists of a-series of lines, each of the form:

item name: value

The prefix character is appended to the beginning of each line.

The list below gives the output items for each verbosity level, for segments,
directories, and links. Verbosity level 1 returns information listed in 0 and
1; verbosity level two returns information listed in 0, 1, and 2.

For segments:

o. names
type
date used
date modified

1. date branch modified
records used
bit count
bit count author
max length
safety switch
property list

3-66 AZ03-02

list dir info list dir info

2. ACL
data dumped
current length
device ID
move device ID
copy switch
ring brackets
unique ID
author

For directories:

o. names
type
date used
date modified

1 • date branch modified
bit count
records used
quota
date dumped
current length
device ID
move device ID
copy switch
ring brackets
unique ID
author
bit count author
max length
safety switch
property list

2. ACL
initial seg ACL
initial dir ACL

For links:

o. names
type
target

1. date link modified

2. date link dumped

3-67 AZ03-02

mdc_$pvname_info

This entry point gets various kinds of information about a specified
storage-system physical volume.

dcl mdc $pvname info entry (char (*), bit (36) aligned, char (*),
bit-(36) alIgned, fixed bin, fixed bin (35»;

call mdc_$pvname_info (pvname, pvid, lvname, lvid, device_type, code);

where:

1. pvname (Input)
is the name of the physical volume about which information is to be
returned.

2. pvid (Output)
is the physical volume id of the specified volume. It can be used
as a parameter to ring-zero volume and partition interfaces.

3. 1 vname (Output)
is the name of the logical volume to which the physical volume belongs.

4. I vid (Output)
is the logical volume id of the logical volume to which the physical
volume belongs.

5. device_~ype (Output)
1S a number indicating what type of device the specified physical
volume is mounted on. The names and characteristics of these devices
are listed in various arrays declared in the include file
fs_dev_types.incl.pI1.

6. code (Output)
is a standard system-status code. It is nonzero if the information
about the volume cannot be obtained or if the volume does not exist.

3-68 AZ03-02

The parse channel name subroutine parses a character string that is intended
to be an rOM channel number:

dcl parse channel name entry (char (*), fixed bin (3), fixed bin (6),
fixed bin (35»; -

call parse_channel_name (arg, iom, channel, code);

where:

1. arg
is the character string to be parsed. It must be of the format:

{tag}number

2. iom

3. channel

4. code

where tag is 10M tag (a through d) and number is an octal channel
number from 0 to 77. If tag is speci fied, the 10M selected must
appear in the configuration deck. The tag must be specified if
multiple IOMs are configured.

(Output)
is the iom the channel is connected.

(Output)
is the channel number.

is 0 if arg is a valid representation of a channel; otherwise,
error table $bad_channel.

3-69 AZ03-02

The parse_file subroutine provides a facility for parsing ASCII text into
symbols and break characters. It is recommended for occasionally used tex t-scanning
applications. In applications where speed or frequent use are important, in-line
PL/I code is recommended (to do parsing) instead.

A restriction of the subroutine is that the text to be parsed must be an
aligned character string.

The initialization entry points, parse file $parse file init name and
parse file $parse file init ptr, save a pOinter-to the text-to be scanned and a
character count in internal static storage. Thus, only one text can be parsed
at one time.

This entry point initializes the subroutine given a directory and an entry-point
name. It gets a pointer to the desired segment and saves it for subsequent
calls in internal static.

declare parse file $parse file init name entry (char(.), char(.), ptr,
fixed bin(35)T; - - -

call parse_file_$parse_file_init_name (dir_name, entryname, ptr, code);

where:

1. dir name (Input)
is the directory name portion of the pathname of the segment to be
parsed.

2. entryname (Input)

3. ptr

4. code

is the entryname of the segment to be parsed.

(Output)
is a pOinter to the segment.

(Output)
is a standard status code. It is zero if the segment is initiated.
If nonzero, the segment cannot be initiated. It can return any code
from hcs_$initiate except error_table_$segknown.

3-70 AZ03-02

This entry point ini tializes the parse file subroutine wi th a supplied
pointer and character count. It is used in cases Where a pointer to the segment
to be parsed is already available.

declare parse_file_$parse_file_init_ptr entry (ptr, fixed bin);

call parse_file_$parse_file_init_ptr (ptr, cc);

where:

1. ptr (Input)
is a pointer to a segment or an aligned character string.

2. cc (Input)
is the character count of the ASCII text to be scanned.

Entry: parse_file_$parse_file_set_break

This entry point is used to define break characters. Normally, all
nonalphanumeric characters are break characters (including blank and newline).

declare parse_file_$parse_file_set_break entry (char(*»;

call parse_file_$parse_file_set_break (cs);

where cs is a control string.
character. (Input)

Each character found in cs is made a break

This entry point renders break characters as normal alphanumeric characters.
It is not possible to unset blank, newline, or comment delimiters, however.
These are always treated as break characters.

3-71 AZ03-02

declare parse_file_$parse_file_unset_break entry (char(*»;

call parse_file_$parse_file_unset_break (cs);

where cs is a control string, each character of which is made a nonbreaking
character. (Input)

This entry point scans the text file and returns the next break character
or symbol. Blanks, newline characters, and comments enclosed by 1* and *1,
however, are skipped over.

declare parse file entry (fixed bin, fixed bin, fixed bin(1),
fixed bi"n(1 »;

call parse_file_ (ci, cc, break, eof);

where:

1 • ci (Output)
is an index to the first character of the symbol or break character.
(The first character of the text is considered to be character 1.)

2. cc (Output)
is the number of characters in the symbol.

3. break (Output)
is set to 1 if the returned item is a break character; otherwise, it
is o.

4. eof (Output)
fin
is set to 1 if the end of text has been reached; otherwise, it is O.

This entry point is identical to the parse file$parse file entry point
except that a pointer (with bit offset) to the break character or the symbol
is returned instead of a character index.

3-72 AZ03-02

declare parse file $parse file ptr entry (ptr, fixed bin~ fixed bin(1),
fixed bin(1»"; --

call parse_file_$parse_file_ptr (ptr, cc, break, eof);

where:

1 • ptr (Output)
is a pointer to the symbol or the break character.

2. cc (Output)
is the same as above.

3. break (Output)
is the same as above.

4. eof (Output)
is the same as above.

This entry point returns to the caller the current line of text being
scanned. This entry is useful in printing diagnostic error messages.

declare parse_file_$parse_file_cur_line entry (fixed bin, fixed bin);

call parse_file_$parse_file_cur_line (ci, cc);

where ci and cc are the same as in the parse_file_$parse_file_ above.

This entry point returns to the caller 'tne current line number of text
being scanned. This entry is useful in printing diagnostic error messages.

declare parse_file_$parse_file_line_no entry (fixed bin);

call parse_file_$parse_file_line_no (cl);

where cl is the number of the current line. (Output)

3-73 AZ03-02

Examples

Suppose the file zilch in the directory dir name contains the following
text:

name: faa; I*foo program* I
pathname: >bar;
linkage;
end;
fini;

The following calls could be made to initialize the parsing of zilch:

call parse file $parse file init name (dir name, zilch, ptr, code);
call parse-file-$parse-file-unset break ("> II);
declare atom char (cc)-unalIgned based (p);-

Subsequent calls to the parse_file_$parse_file_ptr entry point would then yield
the following:

atom break eof

name 0 0
1 0

foo 0 0
; 1 0
pathname 0 0

1 0
>bar 0 0
; 1 0
linkage 0 0
; 1 0
end 0 0
; 1 0
fini 0 0

1 0

3-74 AZ03-02

This entry point is used to read the label of a storage-system disk drive.
The label is described by the structure "label," in the include file
fs_vol_label.incl.p11.

dcl phcs tread disk label entry (bit (36) aligned, pointer~
fixed bin T35»;

call phcs_$read_disk_label (pvid, label_ptr, code);

where:

1. pvid (Input)
is the physical volume id of the disk whose label is to be read.
The physical volume id is used instead of the volume name because
this is a ring-zero interface, and volume names are not accessible
by ring zero; hence, all ring-zero interfaces that reference physical
volumes use the pvid. A pvname may be converted to a pvid by calling
the subroutine mdc $find volname or may have been returned by a previous
call to find_partrtion_~

2. label_ptr (Input)

3. code

is a pointer to the user-supplied buffer in which to read the label.
The label is 1024 words long and is described in fs_vol_label.incl.p11.

(Output)
is a nonstandard status code. It will be one of the following:

zero
indicates that the label was successfully read.

error table $pvid not found
Indicates that the specified physical volume is not presently
mounted.

an integer between 1 and 10
indicates that a physical disk error occurred while trying to
read the label. Error messages for physical disk errors are
declared in the include file fsdisk errors.incl.p11, in the array
fsdisk_error_message. -

3-75 AZ03-02

rehash rehash

Name: rehash

This subroutine rehashes (reformats into a different size) a hash table of
the form that is maintained by the hash subroutine. In most cases, hash calls
rehash automatically when a table becomes too full. For hash tables that are
embedded in larger data bases, the data base maintainer must monitor the density
of the hash table and call rehash when necessary to maintain the optimal table
size. See the description of thelhash subroutine for more information.

declare rehash entry (ptr, fixed bin, fixed bin(35»;

call rehash (table_ptr, size, code);

where:

1. table_ptr (Input)

2. size

3. code

is a pointer to the table to be rehashed.

(Input)
is the new size of the hash table. See the description of hash_$opt_size.

(Output)
is a standard status code. It may be:

o
table rehashed successfully

error table $invalid elsize
size is too large

error table $full hashtbl
size is not Iarge enough to hold all the entries in the current
hash table.

3-76 AZ03-02

The ringO get subroutine returns the name and pointer information about
hardcore segments.

This entry point returns a pointer to a specified ring 0 segment. Only the
name is used to determine the pointer.

declare ringO_get_$segptr entry (char(*), char(*), ptr, fixed bin);

call ringO_get_$segptr (dir_name, entryname, seg_ptr, code);

where:

1. dir name (Input)
is ignored.

2. entryname (Input)
is the name of the ring 0 segment for which a pointer is desired.

3. seg_ptr (Output)

4.

Notes

code

is a pointer to the segment.

(Output)
is a standard status code. It is nonzero if, and only if, the entry
is not found.

If the entry is not found, seg_ptr is returned nUll.

This entry point is analogous to the segptr entry point except that external
SLT (Segment and Loading Table) name tables are used, instead of the versions of
these tables currently being used by the system.

3-77 AZ03-02

declare ringO get $segptr given sIt entry (char(*), char(*), ptr,
fixed bi~);- - -

call ringO get $segptr given sIt (dir_name, entryname, seg_ptr, code, sltp,
namepT; - -

where:

1. dir name (Input)
is ignored.

2. entryname (Input)
is the name of the ring 0 segment for which a pointer is desired.

3. seg_ptr (Output)

4. code

is a pointer to the segment.

(Output)
is a standard status code. It is nonzero if, and only if, the entry
is not found.

5. sl tp (Input)
is a pointer to an SLT that contains information about the segment.

6. namep (Input)
is a pointer to a name table (associated with the above SLT) containing
the names of segments.

This entry point returns the primary name and directory name of a ring 0
segment when given a pointer to the segment.

declare ringO_get_$name entry (char(*), char(*), ptr, fixed bin);

call ringO_get_$name (dir_name, entryname, seg_ptr, code);

where:

1. dir name (Output)
is the pathname of the directory of the segment. If the segment
does not have a pathname (as is the case for most hardcore segments),
this is returned as a null string.

2. entryname (Output)

C!Od~ ni-
.... """C)_t-'V&

is the primary name of the segment.

is a pointer to the ring 0 segment.

3-78 AZ03-02

4. code (Output)
is a standard status code. It is nonzero
does not point to a ring 0 segment.

; f' , and only ; f' ,

This entry point is analogous to the name entry point except that external
SLT (Segment Loading Table) and name tables are used, instead of the versions·of
these tables currently being used by the system.

declare ringO_get_$name_given_slt entry (char(*), char(*), ptr, fixed bin);

call ringO get $name given sIt (dir_name, entryname, seg_ptr, code, sltp,
namepT; - - -

where:

1. dir name (Output)
is the pathname of the directory of the segment. If the segment
does not have a pathname (as is the case for most hardcore segments),
this is returned as a null string.

2. entryname (Output)
is the primary name of the segment.

3. seg_ptr (Input)
is a pointer to the ring 0 segment.

4. code (Output)
is a standard status code. It is nonzero if, and only if, seg_ptr
does not point to a ring 0 segment.

5. sltp (Input)
is a pointer to an SLT that contains information about the segment.

6. namep (Input)
is a pointer to a name table (associated with the above SLT) containing
the names of segments.

This entry point returns all the names and the directory name of a ring 0
segment when given a pointer to the segment.

3-79 AZ03-02

declare ringO_get_$names entry (char(*), ptr, ptr, fixed bin);

call ringO_get_$names (dir_name, names_ptr, seg_ptr, -code);

where:

1 . d ir name (Output)
is the pathname of the directory of the segment.

2. names_ptr (Output)
is a pointer to a structure (described in "Notes" below) containing
the names of the segment.

3. seg_ptr (Input)

4.

Notes

code

is a pointer to the ring ° segment.

(Output)
is nonzero if, and only if, seg_ptr does not point to a ring °
segment.

The following structure is used:

dcl 1 segnames
2 count
2 names

3 length
3 name

based (namesptr) aligned,
fixed bin,
(50 refer (segnames.count»,
fixed bin,
(char(32);

where:

1. count
is the number of names.

2. names
is a substructure containing an array of segment names.

3. length
is the length of the name in characters.

4. name
is the space for the name.

This entry point is used to ascertain the offset of a symbol in a hardcore S~t
in the running Multics Supervisor.

3-80 AZ03-02

declare ringO get $definition entry (ptr, char(*), char(*), fixed bin(18),
fixed bin, fIxed bin(35»;

call ringO get $definition (seg ptr, component_name,
sym_name,-offset 7 type, code);

where:

1. seg_ptr (Input/Output)
is a pointer to the base of the segment in which it is desired to
obtain a symbol offset. If suppl ied as null, the segment which
bears the name component name in the SLT will be used, and seg ptr
will be returned as output as a pointer to the base of this segment.

2. component name (Input)
is-the name of the segment or segment bound component in which the
symbol, sym name, is to be found. If sym name is an unambiguous
reference in the segment defined by seg ptr-; this parameter may be
given as a null string. If seg ptr is given as null, this parameter
must be supplied, and specifies-the segment name as well.

3. sym_name (Input)
is the name of the external symbol in the segment specified by seg ptr
or component name. If more than one external symbol of this name
appears in this segment, component_name is used to select the correct
component.

4. offset (Output)
is the offset of this definition, if found, into the section of the
specified segment as specified by type.

5. type (Output)
is the definition type of this definition, as specified in the MPM
Subsystem Writer's Guide, detailing in which section of the specified
segment this definition resides.

6. code (Output)
is a standard status code. If the the segment speci fied has no
definitions, error_table_$no_defs is returned.

This entry point is used to ascertain the offset of a symbol in a hardcore
segment in other than the running Mul tics supervisor. Copies of the SLT, SLT
name table, and hardcore-definitions segment are supplied.

3-81 AZ03-02

declare ringO get $definition given sIt entry (ptr, char(*), char(*),
fixed bin(18j, fixed bin~ fixed bin(35), ptr, ptr, ptr);

call ringO get $definition given sIt (seg ptr, component name, syn_name,
offset, type, code, sIt_ptr~ nametbl:ptr, deftbl_ptr):

where:

1. seg_ptr (Input/Output)
is as above.

2. component_name (Input)
is as above.

sym_ name (Input)
is as above.

4. offset (Output)
is as above.

5. type (Output)
is as above.

6. code (Output)
is as above.

7. slt_ptr (Input)
is a pointer to the copy of the segment loading table (SLT) to be
used.

8. nametbl ptr (Input)
Is a pointer to the corresponding copy of the SLT name table.

9. deftbl_ptr (Input)
1S a pointer to the corresponding copy of the hard core definitions
segment (definitions_).

3-82 AZ03-02

The ring zero peek subroutine is used to copy information out of an inner~ring
segment. The user must have access to either the phcs gate or the
metering ring zero peek gate in order to use any of the entry points in this
subroutine. The pncs gate allows unrestricted access to all inner-ring segments;
metering ring zero peek allows the user to examine specifically those data bases
that are- useful for metering the system. The program chooses the appropriate
gate depending on the user's access and the segments being examined.

declare ring_zero peek entry (ptr, ptr, fixed bin(19), fixed bin(35»;

call ring_zero_peek_ (ptrO, ptr~user, nwords, code);

where:

1. ptrO (Input)
is a pointer to the data in ring 0 that is to be copied out.

2. ptr_user (Input)
is a pointer to the region in the user's address space where the
data is to be copied.

3. nwords (Input)
is the number of words to be copied.

4. code (Output)
is the standard status code that is nonzero if the user did not have
access to the requested data.

This entry point is used to copy information out of a named segment in the
Mul tics supervisor. It is like ring zero peek , except that the name of the
ring zero segment is provided, rather than a pointer to it.

dcl ring zero peek $by name entry (char(*), fixed bin(18), pointer,
fixed bin(19)~ fixed bin(35»;

call ring zero peek $by name (segment_name, offset, copy_ptr, word_count,
code); - - -

where:

1. segment name (Input)
Is the name of the supervisor segment from which data is to be
copied. It may not be a pathname.

3-83 AZ03-02

*

ring_zero peek ring_zero_peek_

2. offset (Input)
is the offset from the beginning of the segment at which copying is
to start. It may be specified as zero to cause copying to start
from the base of the segment.

3. copy ptr (Input)
- is a pointer to the area in the outer ring where the data is to be

copied.

4. word count (Input)

5. code

Notes

is the number of words to be copied.

(Output)
is a standard status code. It is nonzero if the segment cannot be
found, or if the user does not have sufficient access to copy the
requested data from it.

This entry point can be used to avoid a call to ringO get. For examInIng
segments in the supervisor, this entry point and the by definition entry point
are recommended because they are much simpler to use than ringO get , and they
are only minimally less efficient. Generally, it will be nearly as efficient to
use this entry point as it would be to save static pointers to inner-ring objects.

This entry point is used to copy Information out of a named segment in the
Mul tics super v isor, starting at a named symbol. It is 1 ike ring zero peek $by name,
except that the copying is done from the specified definition, rather-than from
the base of the segment.

dcl ring zero peek $by definition entry (char(*), char(*), fixed bin(18),
pOinter,-fixed bin(19), fixed bin(35»);

I call ring zero peek $by definition (segment_name, symbol_name, offset,
• ptr_usar,-word=count, code);

where:

1. seg'ment name (Input)
is the name of the supervisor segment from which words are to be
copied. It may not be a pathname.

2. symbol_name (Input)
is the name of the external symbol in the specified segment at which
copying is to start.

3-84 AZ03-02

ring_zero_peek_

3. offset (Input)
is the offset from the specified definition at which copying is to
start. It may be specified as zero to cause copying to start at the
specified definition.

4. ptr_user (Input)

5.

6.

Notes

is a pointer to the area in the outer ring where the data is to be
copied.

word count (Input)

code

is the number of words to be copied.

(Output)
is a standard status code. It is nonzero if the segment cannot be
found, if the specified external symbol does not exist or is ambiguous,
or if the user does not have sufficient access to copy the requested
data.

This entry point is used to determine the maximum length of a named ring­
zero segment.

dcl ring zero peek $get max length entry (char(*), fixed bin(19),
fixed bin(35»); - -

call ring zero_peek_$get_max_length (seg_name, max_length, code);

Arguments:

1 . seg_ name (In put)
is the name of the ring-zero segment.

2. max length (Output)
- is the maximum length (in words) of the segment.

3. code (Output)
is a standard status code. It is nonzero if the user does not have
sufficient access to copy the requested data, or if the segment does
not exist.

3-85 AZ03-02

I

I

ring_zero_peek_

This entry point is used to determine the maximum length of a specified
segment by examining its SDW. The user must have sufficient access to examine
the SDW for the segment.

dcl ring zero peek $get max length ptr entry (pointer, fixed bin(19),
fixed bin(35»; - - -

call ring_zero_peek_$get_max_length_ptr (seg_ptr, max_length, code);

where:

1. seg_ptr (Input)
is a pointer to the segment for which the max length is to be returned.
If the segment is not active at the time of the call, the user must
have sufficient acce~s to reference the segment, and this reference
will cause a segment fault.

2. max length (Output)
- is the maximum length (in words) of the segment.

3. code (Output)
is a standard status code. It is nonzero if the user does not have
sufficient access to copy the requested data, or if the segment does
not exist.

3-86 AZ03-02

sort items sort items

Name: sort items

The sort items subroutine provides a generalized, yet highly efficient,
sorting facilfty. EXitry points are provided for sorting fixed binary (35) numbers~
float binary (63) numbers, fixed-length character strings, varying character
strings, and fixed-length bit strings. A generalized entry point is provided
for sorting other data types (including data structures and data aggregates) and
for sorting data into a user-defined order.

The procedure implements the QUICKSORT a1gori thm of M. H.
including the Wheeler modification to detect ordered sequences.

van Emden,

The subroutine takes a vector of unaligned pointers to the data items to be
sorted and rearranges the elements of this vector to point to the data items in
correct order. Only the pointers are moved or copied into temporary storage;
the data items remain where they were when sort items was invoked.

Entry: sort items $fixed bin

This entry point sorts a group of aligned fixed binary (35,0) numbers into
numerical order by reordering a pointer array whose elements point to the numbers
in the group.

declare sort_items_$fixed_bin entry (ptr);

call sort_items_$fixed_bin (v_ptr);

where v ptr points to a structure containing an array of unaligned pointers to
the aligned fixed binary (35,0) numbers to be sorted. (Input)

Notes

The structure pointed to by v_ptr is to be declared as follows, where n is I
the value of v.n:

dc1 1 v aligned,
2 n fixed bin (18),
2 vector (n) ptr unaligned; I

7/82 3-87 AZ03-02A

sort items sort items

This entry point sorts a group of aligned float binary (63) numbers into
numerical order by reordering a pointer array whose elements point to the numbers
in the group.

declare sort_items_$float_bin entry (ptr);

call sort_items_$float_bin (v_ptr);

where:

(Input)
points to the above structure containing an array of unaligned pointers
to the aligned float binary (63) numbers to be sorted.

This entry point sorts a group of fixed-length unaligned character strings
into ASCII collating sequence by reordering a pointer array whose elements point
to the character strings in the group.

I declare sort_items_$char entry (ptr, fixed bin (24»;

where:

1 • (Input)
points to the structure (described in "Notes" above) containing: an
array of unaligned pointers to the vary~ng character strings to be
sorted.

2. string lth (Input)
-is the length of each character string.

7/82 3-88 AZ03-02A

sort items sort items - -

This entry point sorts a group of varying character strings into ASCII
collating sequence by reordering a pointer array whose elements point to the
character strings in the group.

declare sort_items_$varying_char entry (ptr);

call sort~items_$varying_char (v_ptr);

where v ptr points to the structure (described in "Note" above) containing an
array of unaligned pointers to the varying character strings to be sorted. (Input)

This entry point sorts a group of fixed-length unaligned bit strings into
bit string order by reordering a pointer array whose elements point to the bit
strings in the group. Bit string ordering guarantees that, if each ordered bit
string were converted to a binary natural number, the binary value would be less
than or equal to the value of its successors.

declare sort_items_$bit entry (ptr, fixed bin (24»;

call sort_items_$bit (v_ptr, length);

where:

1.

2. length

(Input)
points the structure (described in "Note" above) containing an array
of unaligned pointers to the fixed-length unaligned bit strings to
be sorted.

(Input)
is the number of bits in each string.

3-89 AZ03-02

sort items sort items - -

This entry point sorts a group of arbitrary data elements, structures, or
other aggregates into a user-defined order by reordering a pointer array whose
elements point to the data items in the group. The structure of data items, the
information field or fields within each item by which items are sorted, and the
data ordering principle are all decoupled from the sorting algorithm by calling
a user-supplied function to order pairs of data items. The function is called
with pointers to a pair of items. It must compare the items and return a value
that ind icates whether the first i tern of the pair is less than, equal to, or
greater than the second item. The sorting algori thm reorders the elements of
the pointer array based upon the results of the item comparisons.

declare sort_items_$general entry (ptr, entry);

call sort_items_$general (v_ptr, function);

where:

1. (Input)
points the structure (described in "Note" above containing an array
of unaligned pointers to the data items to be sorted.

2. function (Input)
is a user-supplied ordering .function. Its calling sequence is shown
under "Note" below.

Note

The sort items $general entry point calls a user-supplied function to compare
pairs of data items. This function must know the structure of the data items
being compared, the field or fields wi thin each item that are to be compared,
and the ordering principle to be used in performing the comparisons. The function
returns a relationship code as its value. The calling sequence of the function
is shown below.

declare function entry (ptr unaligned, ptr unaligned)
returns (fixed bin(1»;

value = function (ptr_first_item, ptr_second_item);

where:

1. ptr_first item (Input)
is-an unaligned pointer to the first data item.

2. ptr second item (Input)
is an unaligned pointer to a data item to be compared with the first
data item.

3-90 AZ03-02

3. value (Output)
is the value of the first data item compared to the second data
item. It can be:

Example

-1 the f.irst data item is less than the second.
o the first data item is equal to the second.

+1 the first data item is greater than the second.

A simple example of a user-supplied ordering function is shown below. It
compares pairs of fixed binary (35, 0) numbers. If this function Is passed to
the sort items $general entry point, it performs the same function as a call to
the sort-l tems-$flxed bin entry point, ,but wi th less efficiency because of the
overhead-involved in calling the function.

function: procedure (pl, p2) returns (fixed bin(1»;

declare (p1, p2) ptr unaligned,
datum fixed bin(35,O) based;

if p1 -> datum < p2 -> datum then
return (-1);

else if p1 -> datum = p2 -> datum then
return (a);

else
return (+1);

end function;

3-91 Azo3-02

sort items indirect sort items indirect

Name: sort items indirect

The sort i terns indirect subroutine is a variation of the sort items $general
entry point. - It provides a-facility for sorting a group of data items, based
upon the value of an' information field that is logically associated wi th each
item but resides at a varying offset from the beginning of each item. A name in
the name list associated wi th the status block returned by the hcs $status
entry point is an example of such an information field. --

The sort items indirect subroutine provides high performance entry points
for sorting Oata items by tne value of a single fixed binary (35) field, float
binary (63) field, fixed-length bit string field, fixed-length character string
field, or adjustable length character string field associated with each item. A
generalized entry point is provided for sorting other types of information fields,
for sorting aggregate information fields, or for sorting items into a user-defined
order.

I To use the sort items indirect subroutine, for some entries the caller
must create three arrays: a vector -of pointers to the data items being sorted
(the item vector), a vector of pointers to the single information field within
each item on which the sort is based (the field vector), and an array of indices

I into these two vectors. For other entries, only two arrays are required: a
vector of pOinters to the data items being sorted and an array of indices into
the vectors. This index array is initialized sequentially with integers by
sort items ind irect , which then reorders these ind ices to index the pointer
vectors to-the data-items in correct order.

Only indices are moved or copied into temporary storage.
and data items remain where they were when sort items indirect

Vector elements
was invoked.

This procedure differs from that used in the sort items subroutine in that
an array of indices into the vector is sorted rather than- the vector itself.
This allows the caller to create two vectors of pointers: one containing pointers
to the data i terns to be sorted and one containing pointers to the particular
data field wi thin each i tern on wh ich the i tern is to be sorted. There is a
one-to-one correspondence between the elements of the data items vector and the
elements of the data field wi thin each i tern vector. This correspondence is
maintained across the reordering of the index array. Thus, the index array
provides indices into the sorted list of data fields and also into the sorted
list of data items containing these fields.

Notes

To use the sort items indirect $adj char entry point, one additional array
must be created: an-array-of lengtns or-the adjustable length character string
information fields on which the sort is based.

For the sake of simplicity, the sort information field is shown as part of
the items being sorted in each of the diagrams below. A more general application
might show each item containing a locator variable that addresses the sort field(s)
associated with that item.

7/82 3-92 AZ03-02A

sort items indirect - - -

The one-to-one correspondence between elements. of the item vector and elements
of the field vector is shown below.

item
------->: :

:-fIeId- -1<------.- - - - -, , ,
item

----->: t
: :-fIeId- -;<-----

item vector : :- - - - -: : field vector
X------~-- : : --~------X
X------~---- item ----~------x
X------~--~----->; ; ----~------X
x------~-- ;-fIeId- -:<----: --~------X . .- - - - -, . , , . , , .

I I

I item ;
-------> I : :

;-fIeid- -:<-------,- - - - -.
I I

The array of indices can be used to reference elements of both vectors 0

The field vector and index array are passed to the sort items indirect subroutine,
which references the sorting field in each item through elements of these two
arrays, as shown below.

index field vector
--~1~--1 • it
-~r--: :. em • 2 I I"
--~3~--:----I-----~xr-----------~-------->:-fieTd- -;
-~4~--' ,- - - - -. _____ I "

The sort items indirect subroutine reorders the index values so that values
selected sequentiallY from £fie index array reference pointer to the elements of
a sorted list of information fields. Because the sorting process involves only
the interchange of index values, there is still a correspondence between the
elements of the item vector and the elements of the field vector after the sort
is complete.

index item

item
------->: :
: :-rreId- -: · ,- - - --, , . .
• ,
• • item
: ----->: :
:: :-rreId- -:

vector ;; :- - - - -;
X------~-- :
X------~---- item
X------~-------->: :
X------~-- ;-rreTd- -;

3-93

· .- - - - -,
• I • • • ,
• item
------->; ;

;-rIeTd- -: .- - - --.
• •

AZ03-02

I

I

I
I
I

sort items indirect sort items indirect

If the information field upon which the sort is based is located at a known
offset from the beginning of each item, then the calling program can avoid
creating the index array and the item vector by using the sort items subroutine.
(This subroutine cannot process adjustable length fields.) The field vector is
passed to the sort items subroutine, and then the elements of the item vector
are computed by appLying ~he appropriate offset to the corresponding field vector
elements.

The- QUICKSORT algorithm of M. H. van Fmden (including the Wheeler modification
to detect ordered sequences) is used to perform the sort.

This entry point sorts a group of information fields, which are aligned
fixed binary (35,0) numbers, into numerical order by reordering an index array.
The elements of this index array are indices into an array of unaligned pointers
to the numbers in the group.

declare sort_items_indirect_$fixed_bin entry (ptr, ptr);

call sort_items_indirect_$fixed_bin (v_ptr, i_ptr);

where:

2.

7/82

(Input)
points to a structure containing an array of unaligned pointers to
the aligned fixed binary (35,0) numbers to be sorted. The structure
pointed to by v ptr is to be declared as follows, where n is the
number of elements to be sorted.

dcl 1 v
2 n
2 vector

al igned,
fixed bin (18),
(n) ptr unaligned;

(Input)
points to a struc ture containing an ordered array of fixed binary
(2~) indices into the unaligned pointer array. The structure pointed
to by i ptr is to be declared as follows, where n is the number of
elements to be sorted. Since sort items indirect sets the i.n and
i .array elements, the user needs not set them prior to calling the
subroutine.

dcl 1 i aligned,
2 n fixed bin (18),
2 array (n) fixed bin (18);

3-94 AZC'3-02A

sort items indirect sort items indirect - - - - -

This entry point sorts a group of information fields, which are aligned
float binary (63,0) numbers, into numerical order by reordering an index array.
The elements of this index array are indices into an array of unaligned pointers
to the numbers in the group.

declare sort_items_indirect_$float_bin entry (ptr, ptr);

call sort_items_indirect_$float_bin (v_ptr, i_ptr);

where:

1.

2.

(Input)
points to the above structure v containing an array of unaligned
pointers to the aligned float binary (63,0) numbers to be sorted. -

(Input)
points to the above structure i containing an ordered array of fixed I
binary (18) indices into the unaligned pointer array.

I

I

This entry point sorts fixed-length unaligned character strings into ASCII I
collating sequence by reordering an index array whose elements are indices into
a pointer array that points to the strings. All the strings must be the same
length.

declare sort_items_indirect_$char entry (ptr, ptr, fixed bin (21»;

call sort_items_indirect_$char (v_ptr, i_ptr, string_lth);

where:

I

I

I
I

(Input) I
points to the above structure v containing an array of unaligned
pointers to the fixed-length unaligned character string to be sorted.

1 •

2.

3.

(Input)
points to the above structure i of fixed bin indices into the unaligned
pointer array.

string Ith (Input)
-indicates the length of each character string.

3-95 AZ03-02

I
I

I

I

sort items indirect sort items indirect

This entry point sorts a group of information fields, which are varying
unaligned character strings, into ASCII collating sequence by reordering an index
array. The elements of this index array are indices into an array of pointers
to the character strings in the group.

declare sort_items_indirect_$varying_char entry (ptr, ptr);

call sort_items_indirect_$varying_char (v_ptr, i_ptr);

where:

1. v_ptr (Input)
points to the above structure v containing an array of unaligned
pointers to the varying fixed-length character strings to be sorted.

2. i_ptr (Input)

Entry:

points to the above structure i containing an ordered array of fixed
binary (18) indices into the unaligned pointer array.

This entry point sorts a group of information fields, which are fixed-length
unaligned bit strings into bit-string order by reordering an index array. The
elements of this index array are indices into an array of pointers to the bit
strings in the group. Bit string ordering guarantees that, if each ordered bit
string is converted to a binary natural number, the binary value is less than or
equal to the value of each of its successors.

declare sort_items_indirect_$bit entry (ptr, ptr, fixed bin (24»;

call sort_items_indirect_$bit (v_ptr, i_ptr, length);

where:

1. v_ptr (Input)
points to the above structure v containing an array of unaligned
pointers to the fixed-length unaligned bit strings to be sorted.

2. i_ptr (Input)
points to the above structure i containing an ordered array of fixed
binary (24) indices into the unaligned pointer array.

length (Inout)
is the number of bits in each string.

3-96 AZ03-02

This entry point sorts a group of information fields (which are arbitrary
data elements, structures, or other aggregates) into a user-defined order. It
does this by reordering an array of indices into a pointer array_ The elements
of this index array point to the sort information field within the data items of
the group. The structure and data type of the information field and the data
ordering principle are decoupled from the sorting algorithm by calling a
user-supplied function to order pairs of information fields. The function is
called with pointers to a pair of fields. It must compare the fields and return
a value that indicates whether the first field of the pair is less than, equal
to, or greater than the second field. The sorting algorithm reorders the elements
of the index array based upon the results of the information field comparisons.

declare sort_items_indirect_$general entry (ptr, ptr, entry);

call sort_items_indirect_$general (v_ptr, i_ptr, function):

where:

1. (Input)
points to the above structure v containing an array of unaligned
pointers to the information fields to be sorted.

2. (Input)
points to the above structure i containing an ordered array of fixed I
bin (18) indices into the unaligned pointer array.

3. function (Input)
is a user-supplied ordering function. (See "Note" below.)

The sort items indirect $general entry point calls a user-supplied function
to compare pairs o'-data items. This function must know the structure and data
type of the information fields, and it must know the ordering principle to be
used to compare a pair of information fields. The function returns a relationship
code as its value. The calling sequence of the function is shown below.

declare function entry (ptr unaligned, ptr unaligned) returns
(fix ed bin (1)) ;

value = function (ptr_1st_field, ptr_2nd_field);

where:

1. ptr 1st field (Input)
- rs an unaligned pointer to the first information field.

2. ptr 2nd field (Input)
- Is an unaligned pointer to an information field to be compared with

the first information field.

3-97 AZ03-02

I

sort items indirect sort items indirect

3. value (Output)
is the value of the first information field compared to the second
information field. It can be:

-1 first information field is less than the second.
o first information field is equal to the second.

+1 first information field is greater than the second.

A simple example of a user-supplied ordering function is shown in the sort items
subroutine. - -

This entry point sorts a group of information fields, which are unaligned
adjustable length character strings, into ASCII collating sequence order by
reordering an index array. The elements in this index array are indices into an
array of unaligned pointers to the character strings in the group.

where:

1 •

2.

3.

7/82

declare sort_items_indirect_$adj_char (ptr, ptr, ptr);

call sort_items_indirect_$adj_char (v_ptr, i_ptr, l_ptr);

(Input)
points to the above structure v containing an array of unaligned
pointers to the unaligned adjustable length character strings to be
sorted.

(Input)
points to the above structure i containing an ordered array of indices
into the unaligned pointer array.

(Input)
points to a structure containing an array of lengths of the unaligned
adjustable length character strings to be sorted. The structure
pointed to by 1 ptr is to be decl ared as follows, where n is the
number of elements to be sorted.

dcl 1 I aligned,
2 n fixed bin (18),
2 vector (n) fixed bin (21);

3-98 AZ03-02A

stu stu

Name: stu

The stu (symbol table utility) subroutine provides a number of entry points
for retrieving information from the runtime symbol table section of an object
segment generated by the PL/I, FORTRAN, or COBOL compilers. (See the p11, fortran s

and cobol commands in the MPM Commands, Order No. AG92.) A runtime symbol table
is produced when a program is compiled with the -table control argument or when
a runtime symbol table is required to support a feature of the language such as
PL/I data-directed or FORTRAN NAMELIST input/output statements. A partial symbol
table, containing only a statement map, is produced when a program is compiled
with the -brief_table control argument.

It is anticipated that the format of the symbol table will change sometime I
in the future. In that case, the entry points described below will not work
with the new format.

This entry point is called to decode encoded values (e.g., string length or
arithmetic precision) stored in a runtime_symbol node~

declare stu $decode runtime value entry (fixed bin(35), ptr, ptr, ptr, ptr,
ptr, fIxed binT returns (fixed bin(35»;

value = stu $decode runtime value (v, block_ptr, stack_ptr, link_ptr,
text_ptr, ref_ptr, code);

where:

1. v (Input)
is an encoded value
runtime_symbol.size.

from a runtime_symbol node, e. g. ,

2. block_ptr (Input)
points to the runtime block node that corresponds to the block that
contains the declaratIon of the identifier whose runtime symbol node
contains the encoded value. Normally, the value of block ptr is
obtained from a call to the stu $find runtime symbol entry point
d escri bed above. - - -

3. stack_ptr (Input)
is a pointer to the active stack frame associated with the procedure
or begin block that corresponds to the specified runtime block node.
If the specified block node is quick, stack ptr should point to the
stack frame in which the quick block is placing its automatic storage.
If the specified block is not active and does not have a current
stack frame, stack_ptr can be null.

3-99 AZ03-02

stu stu

4. link ptr (Input)
- is a pointer to the linkage section of the speci fied block. If

link ptr is null, the stu $decode runtime value entry point attempts
to obtain the linkage p01nter, if it is needed, from the linkage
offset table (LOT); decoding fails if a pointer to the linkage section
is needed and text ptr, block ptr, and link ptr are all null or if
the segment has never been executed. -

5. text_ptr (Input)
is a pointer to the base of the object segment that contains the
specified block. If text ptr is null, the stu $decode runtime value
entry point attempts to 'Obtain the text pointer, if it is needed,
from the active stack frame or the block ptr; decoding fails if a
pointer to the object segment is needed and stack ptr, block ptr,
and text_ptr are all null. --

6. ref ptr (Input)
is the value of the pointer to be used as locator qualifier if the
variable that corresponds to the runtime symbol node that contains
the encoded value is based. The value of ref ptr can often be determined
by means of the stu $get impl ici t qual ifler entry point described
below. - - -

7. code (Output)
is a status code. It is:
o if the encoded value was successfully decoded
1 if the value could not be decoded

8. value (Output)
is the decoded value if the value of code is O.

This entry point, given a pointer to the symbol table header of an object
segment, searches the runtime symbol table of the object segment for the runtime block
node that corresponds to a given procedure block in the object program. -

declare stu_$find_block entry (ptr, char(*) aligned) returns (ptr);

where:

1. header ptr (Input)
-points to a symbol table header.

2. name (Input)
is the ASCII name of the runtime block node to be found. The name
of a runtime block node is the same as the first name written on the
procedure statement that corresponds to the runtime block node.

3-100 AZ03-02

stu stu

3. block_ptr (Output)
is set to point to the runtime block node if it is found or is null
if the block is not found.

I

i

This entry point, given a pointer to the symbol table header of a standard I
object segment and an offset into the text section, returns a pointer to the
runtime block node corresponding to the smallest procedure or begin block that
lexically contains the source line for the instruction pointed to, or null if
none could be found. .

Usage I

declare stu· $find containing block entry (ptr, fixed bin (18) unsigned) I
returns (ptr); -

bp = stu_$find_containing_block (hp, offset); I
where: I
i. hp (Input)

is a pointer to the symbol table header.

2. offset (Input)
is the offset from the base of the segment of an instruction.

3. bp (Output)
is the returned pOinter to the runtime block node, or nUll.

This entry point, given an ASCII name or a pointer or both to any location
in a (possibly bound) object segment, searches the given segment for the symbol
table header corresponding to the designated program.

declare stu $find header entry (ptr, char(32) aligned, fixed bin(24»
returns (ptr);

header_ptr = stu_$find_header (seg_ptr, name, bc);

where:

1. seg ptr (Input)
- points to any location in the object segment.

3-101 AZ03-02

I
I
I

stu

2. name

3. bc

stu

(Input)
is the ASCII name of the program whose symbol header is to be found.
If seg ptr is null, name is treated as a reference name and the
segment is determined according to the user's search rules. If the
designated segment is bound, name specifies the component.

(Input)
is the bit count of the object segment; if 0, the stu_$find_header
entry point determines the bit count itself.

4. header ptr (Output)
-points to the symbol table header if it is found or is null if the

header is not found.

Note

Since determining the bit count of a segment is relatively expensive, the
user should provide the bit count if he has it available (e.g., as a result of a
call to hcs_$initiate_count, described in the MPM Subroutines, Order No. AG93)~

This entry point, given a pointer to the runtime block node that corresponds
to a procedure or begin block, searches for the runtime -symbol node that corresponds
to a specified identifier name. If the name is not found in the given block,
the parent block is searched. This is repeated until the name is found or the
root block of the symbol structure is reached, in which case a null pointer is
returned.

declare stu $find runtime symbol entry (ptr, char(*) aligned, ptr,
fixed bin) returns (ptr);

symbol_ptr = stu_$find_symbol (block_ptr, name, found_ptr, steps);

where:

1 = block ptr (Input)

2. name

- points to the runtime block node in which the search is to begin.

(Input)
is the ASCII name of the runtime symbol node to be found. A name
can be a fully or partially qualified structure name (e.g., "a.b.c"),
in which the runtime symbol node that corresponds to the lowest level
item is located. -

3. found_ptr (Output)
is set to point to the runtime block node in which the specified
identifier is found.

3-102 AZ03-02

stu stu

4. steps (Output)
is set to the number of steps that must be taken along the
pl1 stack frame.display ptr chain to locate the stack frame associated
with the block designated by found ptr starting at-the stack frame
for the block designated by block ptr. (See "Example" below.) If
the given identifier is found in the specified block, the value of
steps is O.

If the search fails,- the value of steps indicates the reason for the
failure as follows:

-1 block ptr is null
-2 more than 64 structure levels
-3 name too long
-4 no declaration found
-5 symbol reference is ambiguous

5. symbol_?tr (Output)
1S set to point to the runtime_symbol node if it is found or is null
if an error occurs.

I

I

Given a pointer to the stack frame, gets a pointer to the runtime block for I
the entry that created the frame and to the header for the object segment. This
entry point is equivalent to stu $get runtime block, except that the location is
determined by the information in-the stack frame.

dcl stu_$get_block entry (ptr, ptr, ptr);

call stu_$get_block (sp, hp, bp);

where:

1. sp (Input)
points to the stack frame in question.

I

I
I
I

I
2. hp (Output) I points to the header for the runtime symbol table of the object

segment that contains the entry that created the frame. It will be
set to null if the object segment has no symbol table, or if the
object segment cannot be interpreted.

3. bp (Output)
points to the runtime block node for the entry that created the
frame. It will be set-to null if the object segment has no symbol
table or could not be interpreted.

3-103 AZ03-02

I

stu stu

This entry point, given a pointer to the symbol node that corresponds to a
PL/I based variable, attempts to return the value of the pointer variable that
appeared in the based declaration (e.g., the value of "p" in "dcl a based (p);").
A null pointer is returned if the declaration does not have the proper form or
if the value of the pointer cannot be determined.

declare stu $get implicit qualifier entry (ptr, ptr, ptr, ptr, ptr) returns
(ptr);- - - -

ref ptr = stu $get implicit qualifier (block_ptr, symbol_ptr, stack_ptr,
- link_ptr~ text_ptr); -

where:

1. block_ptr (Input)
points to the runtime block node that corresponds to the procedure .
or begin block in which the based variable is declared.

2. symbol ptr (I nput)
-points to the runtime_symbol node that corresponds to the based variable.

3. stack ptr (Input)
- is a pointer to the active stack frame associated with the block in

which the based variable is declared. If the specified block node
is quick, stack ptr should point to the stack frame in which the
quick block is placing its automatic storage. If the specified block
is not active and does not have a current stack frame, stack ptr can
be nUll. -

4. link_pt: (Input)
IS a pointer to the linkage section of the specified block. If
link ptr is null, the stu $get implicit qualifier entry point attempts
to Obtain the linkage pointer, if it is needed, from the active
stack frame; the implicit qualifier cannot be determined if a pointer
to the linkage section is needed and stack ptr and link ptr are both
nUll. --

5. text_ptr (Input)
is a pointer to the base of the object segment that contains the
specified block. If text ptr is null, the stu $get implicit qualifier
entry point attempts to -obtain the text poInter ~ if it 1S needed,
from the active stack frame; the impl ici t qual ifier cannot be determined
if a pointer to the object section is needed and stack ptr and text ptr
are both nUll. --

6. ref ptr (Output)
is set to the value of the implici t qualifier or is null if the
value cannot be determined.

3-104 AZ03-02

stu stu

Notes

A null pointer is returned for anyone of a number of reasons. Some of
these are:

1. The based variable was declared without an implicit qualifier, e.g.,

dcl a based;

2. Determining the implicit qualifier involves evaluating an expression,
for example, the based variable was declared as:

dcl a based(p(i»;

3. The based variable was declared with an implicit qualifier, but it is
not possible to obtain the address of the qualifier (e.g., it is an
authentic pointer, and stack_ptr is null).

This entry point, given a pointer to the symbol header of a standard object
segment and an offset in the text section of the object segment, returns information
that allows the source line that generated the specified location to be accessed.
This entry point can be used wi th programs that have only a partial runtime
symbol table.

declare stu $get line entry (ptr, fixed bin(18), fixed bin, fixed bin(18),
fixed bin(1~), fixed bin, fixed bin);

call stu $get line (head ptr, offset, n_stms, line_no, line_offset,
line_length, file);-

where:

1. head_ptr (Input)
is a pointer to the symbol section header of a standard obje·ct segment.

2. offset (Input)
is the offset of an instruction in the text sectione

3. n stms (Input)
indicates the number of source statements about which information is
desired; the string specified by file, line offset, and line length
is the source for n stms statements, starting wi th the statement
that contains the given instruction.

4. line no (Output)
is set to the line number, in the file in which it is contained, of
the statement that contains the specified instruction or is -1 if
the given offset does not correspond to a statement in the object
program.

3-105 AZ03-02

stu stu

5. line offset (Output)
- is set to the number of characters that precede the first character

of the source for the specified statement.

6. line_length (Output)

7. file

is set to the number of characters occupied by the n stms statements
that start with the statement that contains the specified location;
the source for these statements is assumed to be entirely contained
wi thin a single source file. Let S be the contents of the source
file that contains the specified statements consiqered as a single
string; then the source string for the n stms statements is
substr(S,line_offset+1,line_length).

(Output)
is the number of the source file in which the source for the desired
statements is contained (see "Source Map" in Section 10f the MPM
Subsystem Writers' Guide, Order No. AK92).

This entry point, given a pointer to a runtime block node and an offset in
the text segment that corresponds to the block, determines the line number,
starting location, and number of words in the source statement that contains the
specified location.

declare stu $get line no entry (ptr, fixed bin(18), fixed bin(18),
fixed bin(18» returns (fixed bin(18»;

line no = stu_$get_line_no (block_ptr, offset, start, num);

where:

1. block ptr (Input)
- points to the runtime block node that corresponds to the block in

which the instruction offset exists.

2. offset (Input)
is the offset of an instruction in the text segment.

3. start (Output)
is set to the offset in the text segment of the first instruction
generated for the source line that contains the specified instruction
or is -1 if the line is not found.

4. num (Output)
is set to the number of words generated for the specified source
line.

5. line no (Output)
is set to the line number, in the main source file, of the statement
that contains the specified instruction or is -1 if the specified
offset does not correspond to a statement in the program.

3-106 AZ03-02

stu stu

Notes

All line numbers refer to the main source file and not to files accessed by
means of the %include statement.

No distinction is made between several statements that occur on the same
source line. The start argument is the starting location of the code generated
for the first statement on the line and num is the total length of all the
statements on the line.

This entry point, given a pointer to a runtime block node and the line
number of a source statement in the block, returns the location in the text
segment of the first instruction generated by the specified source line.

declare stu $get location entry (ptr, fixed bin(18» returns
(fixed-bin (Ta» ;

offset = stu_$get_Iocation (block_ptr, line_no);

where:

1. block_ptr (Input)
points to the runtime block node.

2. line no (Input)
specifies the source line number, which must be in the main source
file.

3. offset (Output)
is set to the offset in. the text segment of the first instruction
generated for the given line or is -1 if no instructions are generated
for the given line.

I

I

This entry point, given a pointer to the symbol header of a standard object I
segment and an offset into the text section, returns the index of the statement
map entry for the source line that generated the instruction at the offset and a
pointer to the map entry. This entry can be used with object segments that have
only a partial runtime symbol table.

3-107 AZ03-02

stu stu

I Usage

I declare stu $get map index entry (ptr, fixed bin (18) unsigned, fixed bin,
ptr); - - -

I
I where:

header (Input)
is a pointer to the symbol header for the object segment.

offset (Input)
is the offset of an instruction, relative to the base of the segment.

map_index (Output)
is the index in the statement map array of the statement map entry
for the line corresponding to the instruction, or -1 if no such map
entry could be found.

map_entry ptr (Output)
is a pointer to the map entry identified by map_index, or null if no
such entry could be found.

I Even though the map entry index and map entry pointer can be computed from
each other, both are supplied to the user for convenience.

This entry point, given a pointer to a runtime symbol node and information
about the current environment of the block in which-the symbol that corresponds
to the runtime symbol node is declared, determines the address of the specified
variable. -

declare stu ~get runtime address entry (ptr, ptr, ptr, ptr, ptr, ptr, ptr)
returns (ptr); -

add ptr = stu $get runtime address (block ptr. symbol_ptr. stack_ptr.
- link_ptr~ text_ptr, ref_ptr, subs_ptr);

where:

1. block_ptr (Input)
points to the runtime block node that corresponds to the block in
which the symbol, whose address is to be determined, is declared.

2. symbol ptr (Input)
-points to the runtime symbol node that corresponds to the symbol

whose address is to be-determined.

3-108 AZ03-02

stu stu

3. stack_ptr (Input)
is a pointer to the active stack frame associated with the procedure
or begin block that corresponds to the specified runtime block node.
If the specified block is quick, stack ptr should point to the stack
frame in which the quick block is placIng its automatic storage. If
the specified block is not active and does not have a current stack
frame, stack_ptr can be null.

4. 1 ink ptr (Input.)
is a pointer to the linkage section of the specified block. If
link ptr is null,thestu $get runtime address entry point attempts
to obtain the linkage pOinter,- if it IS needed, from the LOT; the
address of the specified symbol cannot be determined if a pointer to
the linkage section is needed and text ptr, block ptr, and link ptr
are all null or the segment has never been executed. -

5. text_ptr (Input)

6.

is a pointer to the base of the object segment that contains the
specified block. If text ptr is null, the stu $get runtime address
entry point attempts to obtain the text pointer, if i t is-needed,
from the active stack frame or the block ptr; the address of the
specified symbol cannot be determined if -a pointer to the object
segment is needed and stack ptr, block ptr, and text ptr are all
nUll. - - -

ref_ptr (Input)
is the value of the reference pointer to be used if the runtime symbol
node corresponds to a based variable. If ref_ptr is null, the
stu $get runtime address entry point calls the
stu-$get-implicit qualifier entry point (described above) to determine
the-value of the-pointer that was used in the declaration of the
based variable.

7. subs_ptr (Input)
points to a vector of single-precision fixed-point binary subscripts.
The number of subscripts is assumed to match the number required by
the declaration. This argument can be null if the runtime_symbol
node does not correspond to an array_

8. add_ptr (Output)
is set to the full bit address (with full bit offset) of the variable
that corresponds to the symbol node or is null if the address cannot
be determined.

This entry point, given a pointer to an active stack frame and a location
within the object segment that created the frame, returns pointers to the symbol
table header of the object segment and the runtime block node that corresponds
to the procedure or begin block associated with the-stack frame. Null pointers
are returned if the stack frame does not belong to a PL/I, FORTRAN, or COBOL
program or if the object segment does not have a runtime symbol table.

3-109 AZ03-02

stu

declare stu_$get_runtime_block entry (ptr, ptr, ptr, fixed bin(18»;

call stu_$get_runtime_block (stack_ptr, header_ptr, block_ptr, loc);

stu

where:

1. stack ptr (Input)
- points to an active stack frame.

2. header_ptr (Output)
is set to point to the symbol table header or is null if the object
segment does not have a runtime symbol table.

3. block_ptr (Output)

4. loc

is set to point to the runtime block node that corresponds to the
procedure or begin block associated with the stack frame or is null
if the object segment does not have a runtime symbol table.

(Input)
is an address within the object segment (e.g., where execution was
interrupted); a negative value for loc means no location information
is specified. The additional information provided by loc enables
the stu $get runtime block entry point to return the runtime block
node that correspondS to the quick PL/I procedure or begin -block
that is sharing the designated stack frame and was acti ve at the
time execution was interrupted.

This entry point, given a pointer to the symbol header of a standard object
segment and an offset in the text section of the object segment, returns information
about the line that caused the specified instruction to be generated. Since the
symbol header is used to locate the statement map, this entry point can be used
with object segments that have only a partial runtime symbol table.

declare stu $get runtime line no entry (ptr~ fixed bin(18)j fixed bin(18),
fixed bin(1~), fixed binT18»;

call stu_$get_runtime line no (head_ptr, offset, start, num, line_no);

where:

1 . head _ptr (In put)
is a pointer to the symbol section header of a standard object segment.

2. offset (Input)
is the offset of an instruction in the text section.

3-110 AZ03-02

stu stu

3. start (Output)
is set to the offset in the text segment of the first instruction
generated for the source line that contains the specified instruction
or is -1 if the line is not found.

4 e num (Output)
is set to the number of words in the object code generated for the
specified source line.

5. line no (Output)

Notes

is set to the line number, in the main source file, of the statement
that contains the specified instruction or is -1 if the specified
offset does not correspond to a statement in the program.

All line numbers refer to the main source file and not to files accessed by
means of the %include statement.

No distinction is made between several statements that occur on the same
source line. The start argument is the starting location of the code generated
for the first statement on the line and num is the total length of all the
statements on the line.

This entry point, given a pointer to the symbol header of a standard object
segment and a line number in the main source file, returns the starting location
in the text section of the object code generated for the line. This entry point
can be used with object segments that have only a partial runtime symbol table.

declare stu $get runtime location entry (ptr, fixed bin) returns·
(fixed-bin(T8»; -

offset = stu_$get_runtime_location (head_ptr, line_no);

where:

1. head_ptr (Input)
is a pointer to the symbol section header of a standard object segment.

2. line no (Input)
is the line number of a statement in the main source file.

3. offset (Output)
is set to the location in the text segment where the object code
generated for the specified line begins or is -1 if no code is
generated for the given line.

3-111 AZ03-02

stu stu

This entry point, given a pointer to the symbol header of a standard object
segment, returns information about the statement map of the object segment.
This entry point can be used wi th object segments that have only a partial
runtime symbol table.

declare stu_$get_statement_map entry (ptr, ptr, ptr, fixed bin);

call stu_$get_statement_map (head_ptr, first_ptr, last_ptr, map_size);

where:

1. head ptr (Input)
- is a pointer to the symbol section header of a standard object segment.

2. first_ptr (Output)
is set to point to the first entry in the statement map of the
object segment or is null if the object segment does not have a
statement map.

3. last ptr (Output)
- . is set to point to the location following the last entry in the

statement map of the object segment or is null if the object segment
does not have a statement map.

4. map_size (Output)
is set to the number of words in an entry in the statement map.

This entry point attempts to convert an offset variable to a pointer value
using the area, if any, on which the offset was declared.

declare stu $offset to pointer entry (ptr,ptr, ptr, ptr, ptr, ptr) returns
(ptr);- - -

off ptr = stu $offset to pointer (block ptr, symbol_ptr, data_ptr,
- stack_ptr, link_ptr~ text_ptr); -

where:

1. block_ptr (Input)
points to the runtime block node that corresponds to the procedure
or begin block in which the offset variable is declared.

3-112 AZ03-02

stu stu

2. symbol ptr (Input)
-points to the runtime_symbol node that corresponds to the offset

variable.

3. data ptr (Input)

4.

- points to the offset value to be converted to a pointer.

stack ptr (Input)
is a pointer to the active stack frame associated with the block in
which the offset variable is declared. If the specified block node
is quick, stack ptr should point to the stack frame in which the
quick block is placing its automatic storage. If the specified block
is not active and does not have a current stack frame, stack ptr can
be nUll. . -

5. link_ptr (Input)
is a pointer to the I inkage section of the speci fied block. If
link ptr is null, the stu $offset to pointer entry point attempts to
obtaIn the linkage pointer, if it is needed, from the stack frame;
conversion fails if a pointer to the linkage section is needed and
stack_ptr and link_ptr are both nUll.

6. text_ptr (Input)
is a pointer to the base of the object segment that contains the
specified block. If text ptr is null, the stu $offset to pointer
entry point attempts to obtain the text pointer-;- if it -is-needed,
from the active stack frame; conversion fails if a pointer to the
text section is needed and stack_ptr and link_ptr are both nUll.

7. off ptr (Output)
is set to the poihter value .that corresponds to the offset value; it
is null if the conversion fails or if the offset value is itself
nUll.

This entry point attempts to convert a pointer value to an offset variable
using the area, if any, on which the offset was declared.

declare stu $pointer to offset entry (ptr, ptr, ptr, ptr, ptr, ptr) returns
(offset); --

off val = stu $pointer to offset (block ptr, symbol_ptr, data_ptr,
- stack_ptr, link_ptr,-text_ptr); -

where:

1. block_ptr (Input)
is as above.

2. symbol_ptr (Input)
is as above.

3-113 AZ03-02

stu stu

3. data ptr (Input)
points at the pointer value to be converted to an offset. This
pointer value must be an unpacked pointer value.

4. stack ptr (Input)
- is as above.

5. link_ptr (Input)
is as above.

6. text_ptr (Input)
is as above.

7. off val (Output)
is set to the offset value that corresponds to the pointer value; it
is null if the conversion fails or if the pointer value is itself
nUll.

This entry point decodes a remote format specification.

declare stu $remote format entry (fixed bin(35), ptr, ptr, label) returns
(fixed-bin) ; -

code = stu_$remote_format (value, stack_ptr, ref_ptr, format);

where:

1. value (Input)
is the remote format value to be decoded.

2. stack ptr (Input)
- is a pointer to the active stack frame of the block that contains

the format being decoded.

3. ref ptr (Input)
is the pointer value to be used if the format value being decoded
requires pointer qualification.

4. format (Output)
is set to the format value if decoding is successful.

5. code (Output)
is a status code. It is:
o if decoding is successful
1 if decoding is not successful

3-114 AZ03-02

stu stu

Example

The use of some of the entry points documented above is illustrated by the
following sample program, which is called with:

stack ptr
a pointer to the stack frame of a PL/I block

symbol
an ASCII string giving the name of a user symbol in the PL/I program

subs ptr
-a pointer to an array of binary integers that give subscript values

The procedure determines the address and size of the specified symbol. If
any errors occur, the returned address is nUll.

example: proc (stack_ptr, symbol, subs_ptr, size) returns (ptr);

declare stack ptr ptr,
symbol char(*) aligned,
subs ptr ptr,
size- fixed bin(35);

declare (header ptr, block ptr, symbol ptr, ref_ptr, sp, blk_ptr,
stack ptr, add ptr) ptr, -

(i, steps) fixed bin,
code fixed bin(35),
stu $get runtime block entry(pt~, ptr, ptr, fixed bin(18»,
stu-$find runtime symbol entry(ptr,char(*) aligned,ptr,fixed bin)
returns(ptr), -

stu $get runtime address entry(ptr,ptr,ptr,ptr,ptr,ptr,ptr)
returnsTptr), -

stu $decode runtime value entry(fixed bin(35),ptr,ptr,ptr,ptr,ptr,
fixed bin)-returnsTfixed bin(35»;

%include pl1 stack frame;
%include runtime_symbol;

1* determine header and block pointers *1

call stu_$get_runtime_block(stack_ptr,header_ptr,block_ptr,-1);

if block_ptr = null then return(null);

1* search for specified symbol */

symbol_ptr = stu_$find_runtime_symbol(block_ptr,symbol,blk_ptr,steps);

if symbol_ptr = null then return(null);

1* determine stack frame of block owning symbol *1

sp = stack ptr;
do i = 1 to steps;

sp = sp -> pl1 stack frame.display ptr;
end; - - -

3-115 AZ03-02

stu stu

1* determine address of symbol *1

ref ptr = null;
add-ptr = stu $get runtime address(blk ptr,symbol ptr,sp,null,null,
ref_ptr,subs:ptr); - - -

if add_ptr = null then return(null);

1* determine size *1

size = symbol_ptr -> runtime_symbol.size;

if size < 0
then do;

size = stu $decode runtime value(size,blk ptr,sp,null,null,
ref ptr,code); - - -

if code A= 0 then return(null);
end;

return(add ptr);
end example;

3-116 AZ03-02

The sweep disk subroutine walks through the subtree below a specified node
of the directory hIerarchy, calling a user-supplied subroutine once for every
entry in every directory in the subtree.

declare sweep_disk_ entry (char(168) aligned, entry);

call sweep_disk_ (base_path, subroutine);

where:

1. base path (Input)
- is the pathname of the directory that is the base node of the subtree

to be scanned.

2. subroutine (Input)
is an entry point called for each branch or link in the subtree (see
"User-Supplied Subroutines" below).

User-Supplied Subroutines

The subroutine is assumed to have the following declaration and call:

declare subroutine entry (char(168) aligned, char(32) aligned, fixed bin,
char(32) aligned, ptr, ptr);

call subroutine (path, dir_name, level, entryname, b_ptr, n_ptr);

where:

1. path (Input)
is the pathname of the directory immediately superior to the directory
that contains the current entry.

2. dir name (Input)
- is the name of the directory that contains the current entry.

3. level (Input)
is the number of levels deep from the base_path directory of the
subtree.

4. entryname (Input)
is the primary name on the current entry.

5. b_ptr (Input)
is a pointer to the branch structure returned by hcs_$star_Iist for
the current entry.

6. n_ptr (Input)
is a pointer to the names area for the immediately superior directory
of the current entry returned by hcs_$star_Iist.

3-117 AZ03-02

This entry point operates in the same way as sweep disk but is much less
expensive to use and does not return date time contents modified, date time used,
or bi t count. - - - --

declare sweep_disk_$dir_Iist entry (char(168) aligned, entry);

call sweep_disk_$dir_Iist (base_path, subroutine);

The user-supplied subroutine is called in the same way as sweep disk , but
b ptr points instead to the branch structure returned by hcs $staF dir -list.
See the hcs_$star _ subroutine in the MPM Subsystem Wri ters I Guide (Order No. AK92).

Notes

If the base path argument to the sweep disk subroutine is the root (">"),
the directory >process_dir_dir is omitted from the tree walk.

The sweep disk subroutine attempts to force access to the directories in
the subtree by-adding an ACL term of the form "sma Person.Project.tag" to each
directory ACL, and deleting that ACL term when finished processing the directory.
I f the user does not have sufficient access to add this ACL term for a given
directory, the subroutine will process those parts of the subtree under it where
the user already has sufficient access to list the directories.

3-118 AZ03-02

This entry point is used for debugging subsystems that use the sweep disk
subroutine. It sets an internal static flag in sweep disk that causes sweep-disk­
to call com err and report any errors encountered in- listing directories or
setting ACLs. Since sweep disk $loud takes no arguments, and should only be
used for debugging, it can readily be invoked as a command ("sweep disk $loud If)
to cause sweep disk to exhibi t this debugging behavior for the - rest- of the
process. There-is no corresponding entry point to turn the switch off. Because
this is a static switch, and affects all callers of sweep disk , it should not
be turned on, except to debug, when it is important to -understand the exact
nature of any errors encountered. Normally, sweep disk ignores errors and continues
as best it can. - -

declare sweep_disk_$loud entry ();

call sweep_disk_$loud ();

3-119 AZ03-02

I

I

I
I

teco_get_macro_ teco_get_macro_

The teco_get_macro subroutine is called by teco to search for an external
macro.

By default the following directories are searched:

1. working directory
2. home directory
3. system_Iibrary_tools

declare teco get macro entry (char(*) aligned, ptr, fixed bin,
fixed bIn (35» ;

call teco_get_macro_ (mname, mptr, mIen, code);

where:

1. name (Input)
is the name of the macro to be found.

2. mptr (Output)
is a pointer to the macro.

3. mIen (Output)
is the length of the macro.

4. code (Output)
is a standard Multics status code.

3-120 AZ03-02

translator info translator info . -

Name: translator info

The transl ator info s.ubrouttne con~ains utili t-y routines. needed by. the
various system trarislators~'theyare centralized here tocfV;.Ol'd repe~ttions in
each of the individual translators.

This entry point returns the information about a specified source segment
that is needed for the standard object segment: storage-system location, date-time
last modified, unique ID.

declare translator info $get source info entry (ptr, char(*), char(*),
fixed bin(71)~ bit(36) aligned~ fixed bin(35»;

call translator info $get source info entry (source ptr, dir_name,
entryname,-date=time=mod, unique_id, code); -

where:

1. source_ptr (Input)
is a pointer to the source segment about which information is desired.

2. dir name (Output)
is a pathname of the directory in which the source segment is located.

3. entryname (Output)
fin
is the primary name of the source segment.

4. date time mod (Output)
is the date-time modified of the source segment as obtained from the
storage system.

5. unique id (Output)

6. code

Status Code

-is the unique ID of the source segment as obtained from the storage
system.

(Output)
is a storage system status code.

A status code of zero indicates that all information has been returned
normally.

3-121 AZ03-02

transl ator in fo translator info

A nonzero status code returned by this entry is a storage-system status
code. Because the interface to this procedure is a pointer to the source segment,
the presence of a nonzero status code probably indicates that the storage-system
entry for the source segment has been altered since the segment was initiated,
i.e., the segment has been deleted, or this process no longer has access to the
segment.

Note

The entryname returned by this procedure is the primary name on the source
segment. It is not necessarily the same name as that by which the translator
initiated it.

3-122 AZ03-02

Name: translator_temp_

This subroutine provides an inexpensive temporary storage management facility
for translators in the Tools Library. It uses the get temp segment subroutine I
to obtain temporary segments in the user t s process directory. Each segment
begins wi th a header that defines the amount of free space remaining in the
segment. An entry is provided for allocating space in temporary segments, but
once allocated, the space can never be freed.

This entry point should be called by each program activation to obtain the
first temporary segment to be used during that activation. Before the activation
ends, the program should release the temporary segment for use by other programs.
(See the translator_temp_$release_all_segments entry point below.)

declare translator temp $get segment entry (char(*) aligned, ptr,
fixed bin (35); - -

call translator temp_$get_segment (program_id, Psegment, code);

where:

1. program id (Input)
Is the name of the program that is using the temporary segment.
This name is printed out by the list_temporary_ segments command.

2. Psegment (Output)

3. code

is a pointer to the temporary segment that was created.

(Output)
is a status code.

This entry point may be called by a program activation to obtain additional
temporary segments.

3-123 AZ03-02

declare translator_temp_$get_next_segment entry (ptr, ptr, fixed bin(35»;

call translator_temp_$get_next_segment (Psegment, Pnew_segment, code);

where:

1. Psegment (Input)
is a pointer to one of the temporary segments that the program has
previously obtained during its current activation.

2. Pnew segment (Output)

3. code

is a pointer to the new temporary segment.

(Output)
is a status code.

Entry: translator_temp_$allocate

This entry point can be called to allocate a block of space within a temporary
segment.

declare translator_temp_$allocate entry (ptr, fixed bin) returns (ptr);

Pspace = translator_temp_$allocate (Psegment, Nwords);

where:

1. Psegment (Input/Output)
1S a pointer to the temporary segment in which space is to be allocated.
Psegment must be passed £l reference rather than by value, because
the allocation routine may change its value if there is insufficient
space in the current temporary segment to perform the allocation.

2. Nwords (I nput)
is the number of words to be allocated. It must not be greater than
sys_info_$max_seg_size-32.

3. Pspace (Output)
is a pointer to the space that was allocated. If Nwords >
sys_info$max_seg_size-32, then Pspace will be a null pointer on return.

3-124 AZ03-02

Notes

As an alternative to calling translator temp $allocate, a procedure that
must perform many allocations can include translator temp alloc.incl.p11. This
include segment contains the program defini tion of an "allocate" function that
can be called like the $allocate entry point above. The allocate function is a
quick internal PL1 procedure that adds about 60 words to the external procedure I
and that shares its stack frame. Use of the allocate internal procedure can
significantly reduce the cost of performing many allocations.

This entry point releases all of the temporary segments used by a program
activation for use by other programs. It truncates these segments to conserve
space in the process directory. It should be called by each program activation
that uses temporary segments before the activation is terminated.

declare translator_temp_$release_all_segments entry (ptr, fixed bin(35»;

call translator_temp_$release_all_segments (Psegment, code);

where:

1. Psegment (Input)

2. code

is a pointer to anyone of the temporary segments.

(Output)
is a status code.

This entry point releases one of the temporary segments used by a program
activation. It truncates the temporary segment to conserve space in the process
directory.

3-125 AZ03-02

It

declare translator_temp_$release_segment entry (ptr, fixed bin(35));

call translator_temp_$release_segment (Psegment, code);

where:

1. Psegment (Input)

2. code

is a pointer to the temporary segment to be released.

(Output)
is a status code.

3-126 AZ03-02

SECTION L!

whotab DATA BASE

The >sc1>whotab segment is the public information base for the system. All
logged-in users, except those with the nolist attribute, have an entry in this
table. These entries are listed by the who command. In addition, various system
parameters of interest to all users are recorded in whotab. Many of these
parameters are returned by the system info subroutine (described in the MPM
Subsystem Writers' Guide, Order No. AK92) andt.he system active function (described
in the MPM Commands, Order No. AG92). Only the initializer process can modify
the segment.

7/82

The structure of the whotab data base is given below.

dcl 1 whotab
2 mxusers
2 n users
2 mxunits
2 n units
2 tTmeup
2 obsolete sysid
2 nextsd
2 until
2 1 astsd
2 er fno
2 obsolete why
2 installation id
2 obsolete message
2 abs event
2 abs-procid
2 max-abs users
2 abs-users
2 n daemons
2 request channel
2 request-process id
2 shift - -
2 next shift change time
2 last-shift-change-time
2 fg aDs users -
2 n rate-structures
2 pad1
2 pad (3)
2 version
2 header size
2 entry size
2 laste-adjust
2 laste-
2 freep
2 header extension mbzl
2 nabs 1(4)
2 aDs qres (4)
2 abs=cpu_limit (4)

based aligned
fix ed bin,
fixed bin,
fix ed bin,
fixed bin,
fix ed bin (71),
char un
fix ed bin (7 i) ,
fix ed bin (7 1) ,
fixed bin (71),
char (8),
char (32),
char (32),
char (32),
fix ed bin (71),
bit (36),
fixed bin,
fixed bin,
fixed bin
fix ed bin (7 1) ,
bit (36),
fixed bin,
fixed bin (71),
fixed bin (71),
fixed bin (17) unal,
fixed bin (9) unsigned, unaligned,
bit (9) unaligned,
fixed bin,
fix ed bin,
fix ed bin,
fixed bin,
fix ed bin,
fixed bin,
fixed bin,
fixed bin,
fixed fin,
fixed fin,
fixed bin (35),

4-1 AZ03-02A

I

I
I

I
I

I

I

I

2 abs control,
3 rnnbz bit (1) unaligned,
3 abs maxu auto bit (1) unaligned,
3 abs-maxq-auto bit (1) unaligned,
3 abs-qres-auto bit (1) unaligned,
3 abs-cpu Timit auto bit (1) unaligned,
3 queue dropped-(-1:4) bit (1) unaligned,
3 abs up bit (1) unaligned,
3 abs-stopped bit (1) unaligned,
3 control pad bit (24) unaligned,

2 installation_request_channel
fix ed bin (7 1) ,

2 installation requestpid
- - bit (36),

2 sysid char (32),
2 header_extension_pad1 (7)

fixed bin,
fixed bin,
char (124),
fixed bin,
char (124),

2 header extension mbz2
2 message
2 header extension mbz3
2 why
2 e (1000),

3 active
3 person
3 project
3 anon
3 padding
3 timeon
3 units
3 stby
3 idcode
3 chain
3 proc_type
3 group
3 fg abs
3 disconnected
3 suspended
3 pad2
3 cant bump until
3 process_authorization

fix ed bin,
char (28),
char (28),
fixed bin,
fixed bin (71)
fix ed b in (71),
fixed bin,
fixed bin,
char (4),
fixed bin,
fixed bin,
char (8),
bit (1) ~naligned,
bit (1) unaligned,
bit (1) unaligned,
bit (33) unaligned,
fi xed bin (71),
bit (72);

Header variables:

mxusers
is the maximum number of users allowed on the system ;;

n users
is the current number of users.

mxunits
is the maximum number of load units allowed.

n units
is the current load ;;

timeup
is the time the system was started.

obsolete sysid
is obsolete; use the field sysid instead.

nextsd
is the time the system will be shutdown, if nonzero.

until
is the projected time of the next system start-up.

7/82 4-2 AZ03-02A

7/82

lastsd
is the time of last crash or shutdown.

erfno
is the error number of the last crash, if known.

obsolete why
is obsolete; use why instead.

installation id
is the name of the installation.

obsolete message
is obsolete; use message instead.

abs event
is the event channel for signalling absentee requests.

abs procid
- is the process identifier of the absentee user manager.

max abs users
1S the current maximum number of absentee users.

abs users
is the current number of absentee users.

n daemons
is the number of daemons logged in via the message coordinator.

request channel
1S the event channel over which requests to the answering service
should be sent.

request processid
1S the identifier of the process to which answering service requests
should be sent.

shift
is the number of the current shift.

next shift change time
- is the time the current shift is scheduled to end.

last shift change time
- is the time the current shift started.

fg abs users
-is the current number of foreground absentee users.

n rate structures
-is the number of rate structures defined at the site.

pad1
is unused.

pad
is unused.

version
is the structure version.

header size
-is the length of the header (in words).

entry size
- is the length of the entry (in words).

4-3 AZ03-02A

I

I

I

7/82

laste adjust
- is used only by answering service programs. It gives the count of

32-word blocks in the header from header extension mbz1.

laste
is the index of the last entry in use.

freep
is the index of the first free entry chained through "chain."

header extension mbz1
-offset 1000.

nabs (4)
gives the number of processes from each background queue.

abs_qres (4)
gives the number of absentee positions reserved for each queue.

abs cpu limit (4)
- gives the current absentee cpu limits.

abs control
see absentee user table.

mnbz
must not be zero.

abs maxu auto
is one if automatic.

abs maxq auto
- is one if automatic.

abs qres auto
- is one if automatic.

abs cpu limit auto
- 1s one-if automatic.

abs cpu limit auto
- 1s one-if automatic.

queue dropped (-1:~)

- is one if queue is dropped. Queue - 1 is the foreground; 0-4 are
respective background queue numbers.

abs_up
is one if the absentee facility is running.

abs stopped
- is one if the absentee facility is stopped.

control_pad

installation request channel
is the IPC channel for the install command.

installation request pid
is the instalTation process identifier.

sysid
is the current system name.

header extension pad1
-is not used at present.

header extension mbz2
-offset 1400.

4-4 AZ03-02A

7/82

message
i~ the message for all users.

header extension mbz3
-offset 20"00.

why
is the reason for the next shutdown.

User entry variables, with whotab.e(i):

active

person

project

anon

padding

timeon

units

stby

idcode

chain

is nonzero if this entry describes a logged-in user.

is the person name (Person id).

is the project identifier (Project_id).

indicates whether the user is an anonymous user:
1 yes
o no

is unused.

is the time of login.

is the number of load units for the user.

indicates whether the user has secondary status:
1 yes
o no

is the terminal identifier.

is a chain for the free list.

proc type
- indicates the process type:

1 interactive
2 absentee
3 daemon

group
is the user's load-control group identifier.

fg_ abs
is "1"b if this entry describes a foreground absentee user.

disconnected
is "1"b if the process is disconnected.

4-5 AZ03-02A

suspended
is "1"b if the process is suspended.

pad2
is unused.

cant bump until
- is-the time at which the user will (or did) become subject to preemption.

process authorization
Is the AIM authorization of the user's process.

7/82 It-6 AZ03-02A

MULTICS SYSTEM
PROGRAMMING TOOLS

ADDENDUM A

SUBJECT

Additions and Changes to the Manual

SPECIAL INSTRUCTIONS

This is the first addendum to AZ03, Revision 2, dated January 1982.

Insert the attached pages into the manual according to the collating instruc­
tions on the back of this cover.

Throughout the manual, change bars in the margin indicate technical
additions and changes; deletions are marked by an asterisk in the margin.
Commands that are entirely new do not contain change bars (see Preface for a
list of the new commands). These changes will be incorporated into the next
revision of this manual.

Note:
Insert this cover behind the manual cover to indicate the updating of the
document with Addendum A.

SOFrWARESUPPORTED

Multics Software Release 10.0

ORDER NUMBER

AZ03-02A

34910
7.5C682
Printed in U.S.A.

July 1982

Honeywell

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

title page, preface

iii through viii

1-1 through 1-4

2-3, 2-4

2-25 through 2-30

2-45, 2-46

2-55 through 2-58

2-61 through 2-64

2-99 through 2-102

2-115, 2-116

2-171, 2-172

Insert

title page, preface

iii through vii

1-1 through 1-4.1, blank

2-3, blank
2-4, 2-4. 1

2-25, 2-25.1
2-25.2, 2-26
2-27, 2-28
2-29, 2-30

2 -4 4. 1, 2 - L~ 4 . 2
2-44.3, blank

2-45, 2-45.1
2-45.2, 2-46

2-55, 2-56
2-57, blank
2-57.1, 2-58

2-61, 2-62
2-63, blank
2-63.1, 2-64

2-86.1, blank

2-99, 2-100
2-101, blank
2-101.1, 2-101.2,
2-101.3, 2-101.4
2-101.5, 2-101.6
2-101.7, blank
2-101.8, 2-102

2-104.1, 2-104.2

2-115, 2-115.1
2-115.2, 2-116

2-171, 2-172

The ipformation and specifications lIt thi& dOC'llllent are Gubject to change withlut notL..e, Thi;J
document contains informatjon about Honeywell products or s~rvices that :nay rot be availabJe
outsidr, the Udted Sta~ es. CO;}sult yOUi' HOTleyv. el1.MarkeLihg Representa.tJv~.

o Honeywell In formation Systel!'!s Inc. ~ 1982

7/82

Fi I e No.: 1 L 1 3 , 1 U 1 3

AZ03-02A

3-87, 3-88 3-87, 3-88
3-91 through 3-94 3-91 through 3-94
3-97, 3-98 3-97, 3-98

4-1 through 4-4 4-1 through 4-6

i-1 through i-6 i-1 through i-5, blank

7/82 AZ03-02A

INDEX

A

abbreviations
abbrev subroutine 3-2

abbrev subroutine 3-2

add_copyright command 2-4

add_pnotice command 2-4.1

ask subroutine 3-5

B

bound segment
get_bound_seg_info subroutine 3-35

branch
display_branch command 2-41

c

change_kst_attributes command 2-5

change_tuning_parameters command 2-7

check mdcs command 2-8

check mst command 2-9

ckm
see check mst command

clear_partition command 2-13

cob
see compare_object command

command line
execution

repeat_line command 2-164

compare configuration deck command
2-14· -

compare_dump_tape command 2-20

compare_dump_tape_status command 2-22

compare_mst command 2-23

i-1

compare_object command 2-24

compiler
reduction~compiler command 2-128

comp_dir_info command 2-17

conversion
locator

stu $offset to pointer
stu=$pointer_to_offset

conversion routines
ask 3-5
datebin 3-17

3-112
3-113

copyright_archive command 2-29

copyright_notice_ subroutine 3-14

copy_dump command 2-25.1

copy_dump_tape command 2-26

copy_mst command 2-28

cpm
see copy_mst command

cref
see cross reference command

cross reference command 2-31

ctp
see change_tuning_parameters command

D

datebin subroutine 3-17

date deleter command 2-37

deactivate_seg command 2-39

debugging
utilities

stu $decode runtime value 3-99
stu-$find brock 3-100
stu-$find-containing block 3-101
stu-$find-header 3-101
stu-$find-runtime symbol 3-102
stu-$get clock 3~103
stu=$get=implicit_Qualifier 3-104

AZ03-02A

debugging (cont)
utilities

stu $get line 3-105
stu-$get-line no 3-106
stu-$get-location 3-107
stu-$get-map index 3-107
stu-$get-runtime address 3-108
stu-$get-runtime-block 3-109
stu-$get-runtime-line no 3-110
stu-$get-runtime-location 3-111
stu-$get-statement map 3-112
stu-$offset to pointer 3-112
stu-$pointer to offset 3-113
stu=$remote_Iorm-at 3-114

decode definition subroutine 3-24

delete_old_pdds command 2-40

directory
delete-by-date operation

date deleter command 2-37
entries

display branch command 2-41
information

comp dir info command 2-17
list-dir-info command 2-84
save-dir-info command 2-172

quota
fix quota used command 2-53

reconstruction
rebuild dir command 2-125

display_branch command 2-41

display_file_value_ subroutine 3-30

display_ioi_data command 2-42

display_kst_entry command 2-44

display_label command 2-44.1

display_pnotice command 2-44.3

display_psp command 2-45

display_pvte command 2-45.1

do subtree command 2-46

dump_partition command 2-49

E

editor
teco command 2-179

excerpt_mst command 2-51

expand command 2-52

F

find include file subroutine 3-31

find_partition_ subroutine 3-33

G

generate_mst command 2-54

generate_pnotice command 2-62

get_bound_seg_info_ subroutine 3-35

get_initial_ring_ subroutine 3-36

get_ips_mask command 2-64

get_Iibrary_segment command 2-65

gls
see get_library_segment command

gm
see generate_mst command

H

hash subroutine 3-37

hcs_$get_page_trace entry point 3-42

hphcs_$ips_wakeup entry point 3-44

hphcs $read partition entry point
3-45 -

hphcs $write partition entry point
3-47 -

hp_delete_vtoce command 2-70

hunt command 2-72

hunt dec command 2-74

I

include file
expand command 2-52

ips mask
creation of

create_ips_mask

K

3-16

known segment table (KST)
change kst attributes command 2-5
display_kst_entry command 2-44

L

Ids
see library_descriptor command

i-2 AZ03-02A

lex error subroutine 3-49

lex_string_ subroutine 3-53

If
see library_fetch command

library tools
get library segment command 2-65
library descriptor 2-76
library_fetch 2-19

library_descriptor. command 2-76

library_fetch command 2-79

link_unsnap_ subroutine 3-65

list dir info command 2-84

list dir info subroutine 3-66·

list mst command 2-85

list_partitions command 2-86

list_pnotice_names command 2-86.1

list sub tree command 2-87

1st
see list sub tree command

M

master directory control segment
check mdcs command 2-8

mcs version command 2-88

mdc_$pvname_info entry point 3-68

merge_mst command 2-89

mexp command 2-91

monitor_log command 2-97

monitor_quota command 2-99

MST
see Multics system tapes

Multics storage system hierarchy
dump tape

copy_dump_tape comand 2-26

Multics system tapes
copying

copy mst command 2-28
creating

generate mst command 2-54
merge ms~ command 2-89

extractTng
excerpt mst command 2-51

information
check mst command 2-9
list mst command 2-85

i-3

Multics system tapes (cont)
reading

compare mst 2-23
writing -

write mst command 2-222

N

nothing command 2-101

nt
see nothing command

c

object segment
information

compare object command 2-24
decode aefinition subroutine

3~24
get bound seg info 3-35
hun~ dec command ~-74
prin~ relocation info command

2-11P -
symbol table

stu $decode runtime value 3-99
stu-$find brock 3-100
stu-$find-containing block 3-101
stu-$find-header 3-101
stu-$find-runtime symbol 3-102
stu-$get clock 3~103
stu-$get-implicit qualifier 3-104
stu-$get-llne 3-105
stu-$get-line no 3-106
stu-$get~loca~ion 3-107
stu-$get-map index 3-107
stu-$get-run~ime address 3-10P
stu-$get-runtime-block 3-109
stu-$get-runtime-line no 3-110
stu-$get-runtime-Ioca~ion 3-111
stu-$get-statement map 3-112
stu-$offset to pointer 3-112
stu-$pointer to offset 3-113
stu=$remote_format 3-114

ol_dump command 2-101.1

p

pae
see print_apt_entry command

parse_channel name subroutine 3-69

parse_file_ subroutine 3-70

pause command 2-102

pcd
see print_configuration_deck command

pcref
see peruse_crossref command

AZ03-02A

pel
see print_error_message command

pem
see print_error_message command

peo
see print_error_message command

peol
see print_error_message command

perprocess static sw off command
2-103- -.,-

perprocess_static_sw_on command 2-104

peruse_crossref command 2-104.1

phcs $read disk label entry point
-3-75 - -

prelink command 2-105

prelinking
prelink command 2-105
privileged_prelink command 2-122

pri
see print_relocation info command

print_apt_entry command 2-111

print configuration deck command
2-115 -

print_error_message command 2-116

print_relocation_info command 2-11P

print_sample_refs command 2-119

print_tuning_parameters command 2-121

privileged_prelink command 2-122

process_id command 2-123

psrf
see print_sample_refs command

ptp
see print_tuning_parameters command

R

rdc
see reduction_compiler command

rebuild dir command 2-125

record to sector command 2-126

record to vtocx command 2-127

reduction_compiler command 2-128

rehash subroutine 3-76

repeat_line command 2-164

reset_ips_mask command 2-165

reset_tpd command 2-166

ringO_get_ subroutine 3-77

ring_zero_dump command 2-167

ring_zero_peek_ subroutine 3-83

rpl
see repeat_line command

rzd
see ring_zero_dump command

s

sample_refs command 2-170

save dir info command 2-172

save_history_registers command 2-172

schedul ing
set timax command 2-177

sector to record command 2-173

segment
deactivation

deactivate_seg command 2-39
pathname

vtoc_pathname command 2-220

send_ips command 2-174

send_wakeup command 2-175

set_ips_mask command 2-176

set timax command 2-177

set_tpd command 2-178

sorting
sort items subroutine 3-87
sort-items-indirect subroutine

-3-92 -

sort items subroutine 3-87

sort items indirect subroutine 3-92

i-4

source program
inc 1 ud e f i 1 e s

expand command 2-52
information

copyright notice subroutine
get library segment command
translator Info subroutine

protection
add_pnotice command 2-4.1

srf
see sample_refs command

3-14
2-65
3-121

AZ03-02A

stack
exam1n1ng frame

stu $decode runtime value 3-99
stu-$find runtime symbol 3-102
stu-$get clock 3~103
stu-$get-implicit qualifier 3-104
stu-$get-runtime address 3-108
stu-$get-runtime-block 3-109
stu-$offset to pointer 3-112
stu-$pointer to offset 3-113
stu=$remote_Iormat 3-114

statement map
stu_$get_statement_map 3-112

status code
print_error_message command 2-116

stm
see set timax command

stu subroutine 3-99

sweep_disk_ subroutine 3-117

symbol table
using

stu $decode runtime value 3-99
stu-$find block 3-100
stu-$find-containing block 3-101
stu-$find-header 3-T01
stu-$find-runtime symbol 3-102
stu-$get block 3~103
stu-$get-implicit qualifier 3-104
stu-$get-line 3-T05
stu-$get-line no 3-106
stu-$get-location 3-107
stu-$get-map ihdex 3-107
stu-$get-runtime address 3-108
stu-$get-runtime-block 3-109
stu-$get-runtime-line no 3-110
stu-$get-runtime-location 3-111
stu-$get-statement map 3-112
stu-$offset to pointer 3-112
stu-$pointer to offset 3-113
stu=$remote_Iormat 3-T14

T

teco command 2-179

teco error command 2-212

teco_get_macro_ subroutine 3-120

teco ssd command 2-213

test archive command 2-214

translators and tools
find include file 3-31
reduction compiler 2-12P
translator info 3-121
translator=temp= 3-123

translator info subroutine 3-121

translator_temp_ subroutine 3-123

i-5

transparent paging device
reset tpd command 2-166
set_tpd command 2-178

tuning parameters
print_tuning_parameters 2-121

v

vfile find bad nodes command 2-215

vtocx to record command 2-221

vtoc_pathname command 2-220

w

write mst command 2-222

AZ03-02A

w
Z
-'
(!)
z
o
-'
~
I­
::>
u

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE MULTICS SYSTEM PROGRAMMING TOOLS
ADDENDUM A

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME --~--
TITLE ____________________________ . ______________ ___

COMPANY -------
ADDRESS __ __

ORDER No·1 AZ03-02A

DATED I JULY 1982

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

(,
I
I

w
Z

-'
C)
z
o
-'
oct
~
:::l
U

I
I
I
I
I
I ~
I ..J

I <.:)

I Z S
<t
a
..J
o
lJ..

w
2.

l:)

2

~S
«
a
..J
o
U.

Honeywell
Honeywell Information Systems

in the U.S.A.: 200 Smith Street, MS 486, Waitham, Massachusetts 02154
In Canada: 155 Gordon Baker Road, Willowdale, Ontario M2H 3N7

In the U.K.: Great West Road, Brentford, Middlesex TW8 9DH
In Australia: 124 Walker Street, North Sydney, N.S.w. 2060

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D. F.

33889, 7.5C282, Printed in U.S.A. AZ03-02

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04.0
	1-04.1
	1-05
	1-06
	1-07
	2-001
	2-002
	2-003
	2-004.0
	2-004.1
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025.1
	2-025.2
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044.0
	2-044.1
	2-044.2
	2-044.3
	2-045.0
	2-045.1
	2-045.2
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057.0
	2-057.1
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063.0
	2-063.1
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086.0
	2-086.1
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101.1
	2-101.2
	2-101.3
	2-101.4
	2-101.5
	2-101.6
	2-101.7
	2-101.8
	2-101
	2-102
	2-103
	2-104.0
	2-104.1
	2-104.2
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115.0
	2-115.1
	2-115.2
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	2-134
	2-135
	2-136
	2-137
	2-138
	2-139
	2-140
	2-141
	2-142
	2-143
	2-144
	2-145
	2-146
	2-147
	2-148
	2-149
	2-150
	2-151
	2-152
	2-153
	2-154
	2-155
	2-156
	2-157
	2-158
	2-159
	2-160
	2-161
	2-162
	2-163
	2-164
	2-165
	2-166
	2-167
	2-168
	2-169
	2-170
	2-171
	2-172
	2-173
	2-174
	2-175
	2-176
	2-177
	2-178
	2-179
	2-180
	2-181
	2-182
	2-183
	2-184
	2-185
	2-186
	2-187
	2-188
	2-189
	2-190
	2-191
	2-192
	2-193
	2-194
	2-195
	2-196
	2-197
	2-198
	2-199
	2-200
	2-201
	2-202
	2-203
	2-204
	2-205
	2-206
	2-207
	2-208
	2-209
	2-210
	2-211
	2-212
	2-213
	2-214
	2-215
	2-216
	2-217
	2-218
	2-219
	2-220
	2-221
	2-222
	2-223
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	3-126
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	_001
	_002
	_003
	i-1
	i-2
	i-3
	i-4
	i-5
	replyA
	replyB
	xBack

