HONEYWELL

MULTICS LOGICAL
INQUIRY AND
UPDATE SYSTEM
REFERENCE
MANUAL

SOFTWARE

MULTICS LOGICAL INQUIRY AND UPDATE SYSTEM
REFERENCE MANUAL

SUBJECT
Description of the Multics Logical Inquiry and Update System

SPECIAL INSTRUCTIONS

This manual supersedes AZ49, Revision 2, dated June 1980, and its addenda
AZ49-02A dated July 1981 and AZ49-02B dated April 1983. Refer to the Preface
for “Significant Changes.”

The manual has been extensively revised and reorganized. Throughout the
manual, change bars in the margins indicate technical additions and asterisks
denote deletions. Section 4 and Section 6 are new and do not contain change
bars.

SOFTWARE SUPPORTED
Multics Software Release 10.2

ORDER NUMBER
AZ749-03 December 1983

Honeywell

PREFACE

This manual describes a facility used toc access Multics Relat1ona‘ Data Store
data bases and to prepare data for report generation.

This manual presupposes some basic knowledge of the Multics system, and does not
attempt to provide information covered in either of the following two manuals: the
New Users' Introduction to Multics - Part I and Part II, Order No. CH2U and CH25
respectively.

Throughout this manual, references are frequentlymade to other Multics manuals.
For convenience, these references are as follows:

DOCUMENT REFERRED TO IN TEXT AS

Multics Relational Data Store MRDS Manual
Reference Manual, Order No. AW53

Multics PL/I Language Specification, PL/T Manual
Order No. AGO9H

Multics WORDPRO Reference Manual, WORDPRO Manual
Order No. AZ98

Multics Report Program Generator MRPG Manual
Reference Manual, Order No. CC69

Multics Programmers'Reference Manual, REF Manual
Order No. AG91

Multics Subroutines and I/0 Modules, Subroutines Manual
Order No. AG93

Significant Changes in this Addendum

Section 5 -- added Linus request names in the page header, added a new linus
request (opened_database), substituted long names for all abbrevs in request
examples, and added active request capabilities to the following linus requests:

assign_values
del_ scope
list_scope
list_values
open
set_scope

The information and specifications in this document are subject to change without notice. Con-

sult your Honeywell Marksting Represcantative for product or service availability.

© Honeywell Information Systems Inc., 1986 File No.: 1L13

8/86 AZ49-03A

New Section 7 -- relocated Exec Com Facility description from Section 5.

Appendix A -- added parameters defining generation of linus_lila_tokens.

8/86 iii AZ49-034

Section 1

Section 2

Section 3

Section 4

8/86

CONTENTS

Selection Language . . .

Syntax and Semantics of the Selectlon

Language . . . « .+ .

Built-in and Installation-Defined

Built-in Functions . . .
abs
after . .
avg . . .
before
ceil .
concat
count .
floor .
index .
max
min
mod .
reverse
round
search
substr
sum . .
verify . .

* e & s o e o

" e e & e s e o+ » 8 ® s e .
.
" s e o o o

€ e o 5 s e e e e e s+ e s o e e o
o o
e e e o e 4 8 + s e e e e o e o »

e ¢ o ® e e o & e » 2 o s o

* » v ® e e s »

Writing Nonstandard Functlons

Data Base Creation

Report Writer

System Overview .
Basic Operation . .
Formatting Options .
Requests . .

Default Report Elements
Page Layout and Titles
Separators
Folding and W1dth . .
Alignment

Optional Report Elements
Editing
Headers/Footers . .
Column Titles . .
Active Requests . .
Page Breaks . . .
Excluding Columns
Ordering Of Columns .
Grouping .

Outlining . .
Totals and Subtotals
Counts and Subcounts

* e s o o

¢ 6 e & o e s e e s s e e+

.

.

® e e s e+ e+ o e o o

® e e o o s s o e e o s s o o

e o e e s o+ o e o 8 & e e 2 e @

Separators and Delimiters .

Format Document Controls and Hyphenatlon

Full Page Formatting .
User Session . .

General Report Optlons 1
Specific Column Options
General Report Options-2

iv

Functions

e e e © o & 6 o s o e o e o o

e s s s e

.

e e e e ® o s e e e &

e + o e & s + e s e 0

.

e o & o ® 8 6 & e e ¢ o e 8 o e e e

® e e o o o e &+ e ¥ e e 2 4 .

e e o & 8 8 s e e ¢ & 6 ¢ o & &6 ¢ 0+ s .

s e e e e

e ¢ 6 s o 8 s 4 e e e + = »

e« o s s ¢ o e

e o o & e e & e+ ¢ o s e & & + e e e

1
~N~_OOOWUIUNIUVIEEEWWWNHNON = = a

| TR T T A L e A e I |
OO WOOWOWWOWOVOWRWWEVOTOOATVITUVITUITU & = =

] |-l=-:=4=-:=-:=~:=-l=-l=-l=-l=-l=-l=-=-l=J=-=-=J=J=:J=J=J= w NNV
[} |
—

J:-B“FJ:'-:":
N = e ed 3]

AZ49-03A

CONTENTS (cont)

Special Editing of a Report 4-33
Saving a Report and Resetting Optlons 4-34
Restoring a Saved Report 4-35
General Column Options 4=36

Saction 5 Command Description
linus . e e e e e e s
linus Raquests e e e e e .

J

T e e e e e e e

abbrev, ab
answer
apply, ap . . e e
assign_values, av . .
close, ¢
column_value, clv
create_list, cls
declare, del
define temp table, dtt .
del_scope, ds
delete, d1 « . . .
delete temp table, ditt . .
display, di . . . e
display_builtins, d1b . e .
do« e e e .
exec_com, ec . e
execute, e
format_line, f1
help . + ¢ ¢« « ¢ ¢« o« « &
if . . e e e e e s
input_ query, igq
list_db, 1db
llst format _options, 1lsfo . . .
list help, Th . . . 0 0 0.
llst_requests, Ir o o000 .
list_scope, 1ls .
list_values, 1lv
ltrim
modify, m
open, o . .
opened__ database
plcture, pic . .
print, pr
print_query, pq .
qedx, gx
quit, 9
report, rpt . . .
restore_format optlons, rsfo
rtrim
save_format optlons, svfo .
save_query, SQ + « o« e .
set_format_options, sfo
set_mode, sm
set_scope, ss
store, s e .
store_from_ data flle, sdf
strlng e o ¢ e o s .
subsystem name
subsystem_version . . .
translate_query, tq
write, w . .
write_ data flle, wdf .

s e & e e e @
.
.

[P IRO R0) RV, R0, R0, R
[}

e ® &+ e e b a e
[
VIEENOOOEN—

L S I)
.
.
U'IU'\\'J'IU'IU'!
P e = |

.
.
U
i
—_
(o))

s & e o e & e s e

o e e o
(%]
i
N
(@]

" e e e s o

.
ul
1
N
(o))

e e o s
.
e v e v s P
e ¢ o s 8 e s+ e e »
t [R B B N |
EEZTLWWWWWWWNON

U'IU'I\HU'IU'I\{IU‘IU’\U'IU‘!U‘lU'I
WN =00V —L00u0

.
D)
.
w
1
=
=

5-44

« e e e
« s .
" s e o o

e e o o o
.
.
.
DI T T T)
. .
. .
. .
e e e s s »
wn
[| Ve e
(§)]
n

[}
T\JQ-J-QNINIO\O‘\O\U'IU'IU'IU'I\DU'IW

U'lU'IU'IU'IU'\U\\i"IU'lmU'IU'lU'IU'I

N= =200V~ JUT&EwWwWw N

Uil
[

-3

w

e o & s s o
L)
o o ¢ o e

.
e o o o e o s o
e e o o s s e e

5-74

Section 6 Obsolete Linus Control Arguments/Requests . . . 6-1

8/86 v AZ49-03A

Section 7

Appendix

8/86

CONTENTS (cont)

linus
linus Requests
invoke, 1 .
lila
Macro Facility . .

Exec Com Facility . . .
exec_com Facility . .

Static Data Parameters

vi

AZ49-034

SECTION 1

SELECTION LANGUAGE

The Logical INquiry and Update System (LINUS) is a powerful, yet "easy-to-use"
facility for accessing centralized Multics Relational Data Store (MRDS) data
bases. However, it is also possible for users to define private data bases and
utilize LINUS to access and maintain them (refer to Section 3). LINUS provides
a complete data base management capability including both retrieval and update
operations. Data to be selected is specified via a selection language which is I
a high-level nonprocedural language capable of being understood and used by
individuals who are not necessarily computer specialists.

Several of the LINUS requests (e.g., modify, delete, and print) ocperate on
well-defined subsets of a data base. These data base subsets are selected via
query statements. The user views the data base as a set of tables containing l
rows and columns of data. LINUS allows the selection algorithm to be specified
as a series of table lookup operations, very similar to the way an individual
manually scans a set of tables for information. For example, envision a telephone
directory as being a table with three columns of information: name, address,
and phone number. This table contains one row of information for each individual
listed in the directory. Normally, to find the phone number for John C. Smith,
the name column is scanned for the name "Smith John C", and the value is taken
from the phone number column in the same row. In LINUS, this operation is |
described as:

select number

from phone_book
where name = "Smith John C"

1-1 AZL49-03

Various features of LINUS are introduced via examples referencing a data
base consisting of the following five tables that describe the operation of a
department store:

emp sales
name emp_no dept mgr sal comm dept item vol
supply loc class
supplier items vol dept floor item type

The emp table contains a row of information on every employee, giving employee
name, employee number, department, manager's employee number, salary, and commission
for the 1last year. The sales table gives the volume of sales for every item
Wwithin each department. The supply table provides the volume of each item supplied
by every supplier. The loc table gives the floor on which every department is
located, and the class table specifies the type of each item.

In each of the tables, the underscored words denote key columns. Every row
in a table is uniquely identified by its values in the key columns. The LINUS
user need not be concerned with the key column concept except when using the
modify and define_temp_table requests discussed later.

The basic component of the selection language is the select-from-where block,
which is used to select column values from one or more tables where rows of the
tables satisfy certain conditions. It should be noted that the indention of the
following examples is for readability only, and is not required in actual usage.
In fact, the entire query may be contained in one line.

The select clause and the from clause must always be specified 1in a
select-from-where block. The where clause of a block may be omitted, in which
case all rows are returned.

Example 1

List all departments from the emp table.

select dept
from emp

This could alternately be written as:

select dept from emp

1-2 AZ49-03

A select clause may contain one or more column names, or may contain an
asterisk (*) which indicates that all columns from qualifying rows are to be
selected.

Example 2

List all information pertaining to every employee whose salary is greater
than $8, 000.

select ¥
from emp
where sal > 8000

More complex conditions may be specified in the where clause, as shown in
the remaining examples in this section. Specifically, a where clause may contain
one or more terms. Each term consists of a column name or an arithmetic expression;
followed by a relational operator; followed by a column name, arithmetic expression,
or constant. Allowable relational operators are:

greater than

less than

less than or equal to (or not greater than)
greater than or equal to (or not less than)
equal to

not equal to

uon

YH WV AANANV

Terms within the where clause must be separated by logical operators, and may be
grouped using parentheses () to explicitly specify order of evaluation. Allowable
logical operators are:

logical conjunction (and)
logical inclusive (or)
logical negation (not)

> = go

Character string constants within terms must be enclosed within quotes "". If a
quote is to appear within a character string, a double quote must be specified.

Example 3

Find the names and salaries of employees in the toy department who work for
Anderson, whose employee number is 1423.

select name sal
from emp
where dept = "Toy" & mgr = 1423

Example y

Arithmetic expression may be contained in both the select clause and the
where clause. All columns used in any given arithmetic expression must be defined
over the same domain. Allowable operators in an arithmetic expression are:

addition
subtraction
multipiication
division

w® b+

~

1-3 AZ49-03

Find the names of employees who are either in the Admin department or whose
sum of salary and commission exceeds $10,C00.

select name
from emp
where dept = "Admin" ! sal + comm > 10000

It is possible to specify more complex table lookup operations by using a
select=from-where block as the last component of a term in the where clause.
This indicates that the comparison specified in the term is to be performed for
every value selected by the inner block. All inner select-from-where blocks
must be delimited by braces {}.

Example 5

Find all items sold by departments located on the second floor.

select item
from sales
where dept = {select dept
from loc
where floor = 2}

One can apply set functions to the results of a select-from-where block, as
shown by the following examples. Allowable set functions are: min, max, count,
avg, sum, and user-defined functions. User-defined functions are discussed in
Section 2 (Writing Nonstandard Functions) and in Section 4 (Declare Request).

Example 6

Find the average salary of employees in the shoe department.

avg {select sal
from emp
where dept = "Shoe"}

Example 7

Find all employees whose salary is greater than that of any employee in the
shoe department.

select name
from emp
where sal > max {select sal
from emp
where dept = "Shoe"}

A select clause can also contain an arithmetic expression as shown in the
following example.

1-4 AZ49-03

Example 8

Find each employee in the shoe department, together with her/his deviation
from the average salary of that department.

select name sal - avg {select sal

from emp

where dept = "Shoe"}
from emp
where dept = "Shoe"

Set operations can be applied to the results of select-from-where blocks.
In LILA the set operations are union, differ, and inter, which correspond to the
union, difference, and intersection operations as normally defined. That is,
the union of two sets consists of all items that belong to one or both of the
sets. The intersection of two sets consists of those items belonging to both
sets. The difference of two sets consists of those items which belong to the
first set, but not to the second. For example, assume that set A contains the
elements "a", "b%", and "c¢" and the set B contains the elements "e", "d", and
"e", then:

A union B (and B union A) is abede (all items belong to one or both

sets)
Set A Set B
A inter B (and B inter A) is ¢ (items belong to both sets)
Set A Set B
A differ B is ab (items belong to the first, but not second set)

Set A Set B

1-5 AZ49-03

B differ A is de (items belong to the first, but not second set)

Set A Set B

Example -9

Find those items which are supplied by Levi and sold in the men's department.

select item

from supply

where supplier = "Levi"
inter

select item

from sales

where dept = "Men"

Nesting of select-from-where blocks is possible in order to specify complex
selection criteria.

Example 10

Find the total volume of type A items sold by departments on the second floor.

sum {select vol
from sales
where item = {select item
from class
where type = "A"} &
{select dept
from loc
where floor = 2}}

dept

It is also acceptable to bypass the nested block notation and use table names to
qualify column names (including ¥) within the select and where clauses. This
qualification is accomplished by prefixing a column name with a table name followed by
a dot (.). Whenever two or more table names are specified in the from clause of a
block, all column names used within that block must be qualified. Using this
approach, the above expression becomes:

sum {select sales.vol
from sales class loc
where sales.item = class.item & class.type = "A"
& sales.dept = loc.dept & loc.floor = 2}

Finally, variables that assume rows of a designated table can be specified as
values. In certain complex queries requiring comparisons among different rows of the
same table, such rowdesignators arerequired toresolve ambiguity. In essence, this
@allows a single table to be treated as multiple tables in the select and where clauses,

A row designator is associated with a table by adding a prefix consisting of the row
designator name followed by a colon (:) to the table name in the from clause. Several

8786 1-6 AZH9-03A

row designators may be associated with a single table. The row designator is used in '
the select clause and where clause like a table name to qualify a column name.

Example 11

For all employees who earn more than their‘managers, select the employee's name
and that of his manager.

select employee.name manager .name
from employee:emp manager iemp
where employee.mgr = manager.emp_no & employee.sal > manager.sal

These examples are intended as an introduction to basic features of the selection
language. The information should aliow the reader towrite queries tosatisfy a large
class of data selection requirements. However, users should become familiar with the
information in the remainder of this section for precise descriptions of the complete
capabilities of the selection language.

SYNTAX AND SEMANTICS OF THE SELECTION LANGUAGE

A formal syntax is presented belowusing a metalanguage derived from Backus-Naur Form.
The metalanguage symbols are defined as:

< > denotes a syntactical construct

= means "is defined as"

[1] denotes zero or one occurrence of (optional)

... denotes one or more occurrence of

i denotes the logical inclusive M™ORY

The inclusion of an underscore character under any 6f the symbols distinguishes that
symbol as not being a part of the metalanguage, but as being a part of the selection

language syntax (see <bool_op> below).

{select_expr> ::=
{set_value> | <select_set>

{set_value> ::=
<{set_fn> {<select_set>}

{set_fn> ::=
{set_builtin> | <user_set_fn>

{select_set> ::=
{select_block> | <select_set> <set_op> <select_block> |
{<select_set>}

{set_op> ::=
union | inter | differ

<{select_block> ::=
select <{select_list> from <from_list>

i select <select_list> from <from_list> where <{conditional>

<select list> ::=

i <{select_item list>
{ dup <select_item_list> | unique <select_item_ list>

8/86 1-7 AZ49-03A

8/86

<select_item_list>
<{select_item>

{select_item_list> <select_item>

{select_item> ::=
{table_name>.* | <row_desig>.* | <expr>

{expr> ::=
<column_spec> | <scalar_fn> (<arg_list>)
i <expr> <arith op> <arithmetic_constant>
i <expr> <arith_op> <linus_variable>
i <expr> <arith_op> <set_value>
| <expr> <arith_op> <expr> | (<expr>)

<column_spec> ::

P BT T e P
<U\).I. uii riain
S

4
<l
Q
o
e
[
§
a
\
”N
Q
(o)
ot
[+
£t
o]
jul?
)
=]
[
\Y4

{scalar_fn> ::=
<{scalar_builtin> | <user_scalar_fn>

{arg_list> ::=
<arg> | <arg_list>, <arg>

arg> ::=
<expr> | <constant> | <set_value>

<arith_op> ::=
R I

{from_list> ::=
{table_item> | <table_item> <from_list>

{table_item> ::=
<{table_name> | <row_tab_pair>

{row_tab_pair> ::=
<row_desig>: <table_name>

{conditional> ::=
<term> | <conditional> <bool_op> <term>
i "“(Kconditional>) | (<Kconditional))

{term> ::=
<expr> <rel_op> <atom>

{rel_op> ::=
=1 = > <o <

<bool_op>

&1l

<atom> ::=
{expr> | <constant> | <set_value> | {<select_block>}

{constant> ::=

<arithmetic_constant> | <bit_string_constant> |

<character_string_constant> 7 <linus_variable>

. €linus variable> ::=

T1<identifier>

{table_name> ::=
{identifier>

{row_desig>

£3AAanes £3
NLMTCH Ve

1-8

AZ49-03A

8/86

{column_name> ::=

<identifier>

{user_set_fn> ::=

{fa_name>

{user_scalar_fn> ::=

<fn_name>

{identifier>::=

<letter>[<letter>i<digit>|_i$}...

o
=
=
=
=
o
=
=
=
=

NOTES: A <set_builtin> is one of the built-in set functions described in Section

2. A <scalar_builtin> is one of the built-in scalar functions described
in the same section. A <user_set_fn> and a <user_scalar_fn> must be
declared according to the specifications contained in the declare
request description (refer to Section 4).

If <{select_set>s are within a <select_set>, they may optionally be
grouped by braces {1} to explicitly specify the order of evaluation. If
not explicitly specified, intersections and differences are evaluated
prior to unions, and evaluation proceeds from left toright for operators
of equivalent precedence.

The <set_op>s union, inter, and differ correspond to the set operations
union, intersection, and difference respectively.

The <select_list>s of all <select_block>s within a <{select_set> must be
union-compatible; that is, corresponding columns must take their values
from the same domain. Also, such<select_list>s maynot contain <expr>s
other than <column_spec>s.

If the where clause is omitted from a <select_block>, all rows within the
{from_list> qualify.

A <select_list> of * indicates that all column values from the roware to
be selected. If the {select_list> is a *, then the <from_list> must be a
{table_name>.

A specification of dup within a <select_list> indicates that duplicate
sets of selected values are not to be eliminated, whereas a specification
of unique indicates that duplicates are to be eliminated. If neither is
specified, the default rule applies. The default isdup if a <set_fn> is
to be applied to the selected values and is unique otherwise.

It should be noted that the use of scalar functions in the select clause
may result in duplicate rows even though unique is specified. That is,
LINUS applies scalar functions to column values returned from MRDS
because of the select clause. MRDS actually does the duplicate
elimination processing, but it does not know about built-in functions in
the select clause.

1-9 AZ49-034

8/86

A <select_item> of <table_name>.* or <row_desig>.* indicates that all
columns from the row are to be selected. A <table_name> is the nameof a
previously defined temporary table, or a table defined within the data
base. A <row_desig> is a row designator that is associated with a
{table_name> in a <from_list>.

All <column_spec>s within an <expr> or <arg_list> must refer to column
values from the same row.

Items within an <expr> may optionally be grouped by parentheses () to
explicitly determine the order of evaluation. If not explicitly
specified, 21l multiplications (¥) and . divisions (/) are performed
before any additions (+) or subtractions (-). Multiplications and
divisions are performed from left to right, as are additions and
subtractions.

A <row_tab_pair> is used to specify the association of a row designator
with a table. A <row_desig> must be unique for the entire
<{select_block>.

Items within a <conditional> may optionallybe grouped by parentheses to
explicitly specify the order of evaluation. If the order is not
explicitly specified, the and (&) operators are evaluated prior to the or
(1) operators; the and evaluation proceeds from left to right for

" operators of equivalent precedence.

The items <arithmetic_constant>, <bit_string_constant>, and
{character_string_constant> are as defined in the PL/I Manual. An
{identifier> is as defined in Multics PL/I with the exceptions that the
dollar sign ($) is not allowed and the hyphen (-) is allowed, so long as it
is not the first or last character of the <identifier>. An <fn_name> is
the same as the <identifier> except that the hyphen is not allowed.

1-10 AZ49-03A

SECTION 2

BUILT-IN AND INSTALLATION-DEFINED FUNCTIONS

BUILT-IN FUNCTIONS

The available built-in functions in LINUS are listed alphabetically and are
immediately followed by a detailed description. Several of the built-in functions
are used in the numbered examples included in Section 1.

abs count reverse
after floor round
avg index search
before max substr
ceil min sum
concat mod verify

Function: abs

This is an arithmetic scalar function whose reference has the form:
abs (X)

The result of this function is the absolute value of X, where X must be a
numeric data item. X can only be real and the result value is a float decimal

(59).

Functiong after

This is a string scalar function whose reference has the form:
after (81, 52)

The result is that portion of S1 that occurs to the right of the leftmost
occurrence of S2 within S1. If 82 is a null string, the result is S1. If S2
does not occur within S1, the result is a null string. For example:

after ("abede", "be") = "de"
after ("abede"™, "") - "abcde"
after ("abede"w, nfnr) = nv

after ("10101"b, ™10"b) = "101"b

2-1 AZ49-03

Function: avg
This is an arithmetic set function whose reference
has the form:

avg {select X
from ...}

The result is the average (mean) of all X values selected. For example:
avg {select sal
from emp
where dept = "Shoe'"}

is the average salary of all employees in the shoe department.

Function: before

This is a string scalar function whose reference has the form:
before (S1, S2)

The result is that portion of S1 that occurs to the left of the leftmost occurrence
of S2 within S81. If S2 is a null string, the result is a null string. If S2
does not lie within S1, then the result is S1. For example:

before ("abcde", "be") = "a"
bef'ore (llabcde", "ll) = nn
before ("abede", "f") = "abcde"
before ("10101"b, "10"b) = ""p

Function: ceil

This is an arithmetic scalar function whose reference has the form:
ceil (X)
where X must be real. The result is the smallest integer (I) such that:
I> X
For example:
ceil (20.5) = 21

ceil (-14.6) = -14
ceil (12) = 12

2-2 AZ49-03

Function: concat

This is a string scalar function whose reference has the form:
concat (81, S2)
The result is the concatenation of S1 and S2. For example:

concat ("abe", "de") = "abcde"
concat ("101"b, "01"b) = "10101"b

Funetion: count

This 1s an arithmetic set function whose reference has the form:

count {select X1 X2 ...
from ...}

The result is the number of sets of Xi which are selected. For example:

count {select name
from emp
where dept = "Shoe"}

is the number of employees in the shoe department.

Function: floor

This is an arithmetic scalar function whose reference has the form:

floor (X)
where X is real. The result is the largest integer (I) such that:
I <=X
For example:
fleor (20.5) = 20

floor (-14.€6) = <15
floor (12) = 12

2-3

AZ49-03

Function: index

This is a character string scalar function whose reference has the form:
index (S1, s2)

The result is an integer that is the position of the beginning of the leftmost
occurrence of S2 within S1. If S2 is not in S1 then the result is C. If S2 is
a null string, the result is 0. For example:

index ("abede", "bec") = 2
index ("abecde", "f") = O
index ("abede", "") = 0

Function: max

This is an arithmetic set function whose reference has the form:

max {select X
from ...}

The result is the largest X value selected. For example:
max {select sal
from emp
where dept = "Shoe"}

is the highest salary paid to any employee in the shoe department.

Function: min

This is an arithmetic set function whose reference has the form:

min {select X
from ...}

The result is the smallest X value selected. For example:
min {select sal
from emp
where dept = "Shoe"}

is the lowest salary paid to any employee in the shoe department.

2-4 AZ49-03

Function: mod

This is an arithmetic scalar function whose reference has the form:
mod (X, Y)
where X and Y are real. The result is X modulus Y, such that:

if Y ®= 0 then mod (X, Y) = X = Y % floor (X / Y)
if Y = 0 then mod (X, Y) = X

For example:
mod (42, 5) = 2

mod (129.2867, 25) = 4.2867
mod (10, 0) = 10

Function: reverse

This is a string scalar function whose reference has the form:
reverse (3)
The result is a string which is the reverse of the value of S. For example:
reverse ("abcde") = "edcba"
reverse ("a") = "a"

reverse (mm) - un
reverse ("™10110"b) = "01101"b

This is an arithmetic scalar function whose reference has the form:

round (X, Q)

The result is a rounding of the value of X. When a value is rounded to n
digits, the digits after the nth digit are dropped, and the nth digit is increased
by 1 if the (n+1)th digit is 5 or greater for decimal, or 1 for binary. If X is
float, then Q must be positive and the mantissa is rounded to Q digits. If X is
fixed, it is rounded to a value that has Q fractional digits. For complex

values, the function is defined by:
round (X + Yi Q) = round (X, Q) + round (Y, Q)i
For negative values the following algorithm is used:
round (x) = round (abs(X)) ¥ -1
For example:
round (183.629%6, 4) = 183.6eb
round (183.629, 2) = 183.63

round (183.629, -1) = 180
round (21.56 + 6.21i, 0) = 22 + 6i

2-5 AZ49-03

Function: search

This is a character string scalar function whose reference has the form:
search (C1, C2)

The result is an integer value that is the position in C1 of the 1leftmost
occurrence of any character contained in C2. If C1 does not contain any character
in C2, the result is 0. For example:

search (Yabcde®, "b") = 2
search ("abcde", "") = O

search ("abede", "f") = 0
search ("abcde", "be") = 2

Function: substr

This is a string scalar function whose reference has the form:
substr (S, I, J)
-or-
substr (S, I)
The result is that portion of S that begins with the Ith character and has
length J (if J is present), or is that portion of S that begins with the Ith

character and continues to the end of S (if J is not present). For example:

substr ("abede", 3, 2)
substr ("abede", 3, 0)
substr ("abecde", 3) = "cde"

substr ("10101"b, 3) = "101"b

L Cd n
nn

Function: sum

This is an arithmetic set function whose reference has the form:

sum {select X
from ...}

The result is the total of all selected values. For example:
sum {select vol
from sales
where dept = "Shoe"}

provides the total sales volume of the shoe department.

2-6 AZ49-03

Function: verify

This is a character string scalar function whose reference has the form:
verify (C1, C2)

The result is an integer value that is the position of the first character of C1 that
does not occur in C2. When C1contains only characters that are in C2, the result is O.
For example:

verify ("xyz", "abe") =
verify ("xyz"™, "xyz") =
verify (™abcde", "cba")

W o—

WRITING NONSTANDARD FUNCTIONS

Nonstandard (or installation-defined) functions may be written in any language
that accepts and processes a standard Multics argument 1list. It is assumed that these
functions are written by experienced programmers. (Refer to the linus command
"declare" request in Section 5 for an example of declaring a nonstandard function.)

Scalar functions are passed a complete standard Multics argument list containing
argument pointers and descriptor pointers for both the input arguments and the return
argument. The call is equivalent to:

return_val = fn_name$fn_name (in_argl, ..., in_argn);

Set functions are called differently in that they are called several times and
require three procedure entry points.

The first entry point is the init entry, which is callied one time for evaluation
of each set function. The method of evaluating a set function requires that data be
accumulated in static storage. The purpose of this entry point is to initialize that
static storage. The init entry is equivalent to:

call fn_name$fn_name init;

. The second entry point is the calc entry, which is called one time for each set of
selected values. This entry is passed a complete standard Multics argument 1list
containing argument pointers and descriptor pointers for all of the declared input
arguments. The purpose of the calc entry point is to calculate (or accumulate) the
value for the set function. The call to the calec entry is equivalent to:

call fn_name$fn_name_calc (in_argl, ..., in_argn);

The third entry point of a set function is the assignentry. This entry is called
after the calc entry has been called for all sets of selected values. The purpose of
the assign entry is to actually assign a return value for the set function. The call to
this entry is equivalent to:

return_val = fn_name$fn_name_assign ();
Two restrictions on arguments to nonstandard functions are:

1. No ¥ extents are permitted.

8/86 2-7 AZ49-03A

2. Data types are restricted to those data types permitted in a MRDS data
base. The use of pointers, entries, labels, structures, offsets, and
arrays is not allowed.

Example of the pl1 source for a scalar function:
user_substr: proc(character_argument) returns(char(6));

del character_ argument char(30);
decl substr builtin;

return(substr(character_argument, 1, 6));

end user_substr;

Exampie of pl1 source for a set function:
standard_deviation: proc;

del number of calls fixed binary internal static;
del (sum_of x, sum_of x_square) float decimal(59) internal static;
decl (1nput parameter, return _value) float decimal(59);

return; /% This entry point is only
used for declaring the
set function. ¥/

standard_deviation_init: entry;
/% "Entry to initialize static data.
This entry is used once before
each evaluation of the set
function. #*/
number_of calls = 0;
sum of x = 0.0;
sum_of_x_square = 0.0;
return;

standard_deviation_calec: entry(parameter);
/% TAccumulate the needed
information from the
set of data. This entry
point is called once for
each row retrieved. %/

number_of calls = number_of calls + 1;
sum_of x = sum_of x + parameter;
sum_ of X square = sum of x square +

~ (parameter #** 2);
return;

standard_deviation_assign: entry returns(float decimal(59));
/% "This entry is called when
there are no more rows
to be looked at. It
determines what the final
value of the set function

will be. ¥/

n
|
oo
1=
~N
£
0
1
[=]
A

if number of calls > 1 then
return value = ((number of calls ¥
- sum of x square -
sum of x ¥¥ 2) /
(number_of calls *¥ (number_ of_calls
- 1))) ¥* 5
else
return_value = 0.0;

return(return value);

end standard deviation;

2.9 AZ49-03

SECTION 3

DATA BASE CREATION

LINUS was designed primarily to allow users to access a centralized MRDS
data base. However, it is also possible for users to define private data bases
and utilize LINUS to access and maintain them. Users who wish to define a data
base should refer to the MRDS Reference Manual, specifically to the introductory
portion and to the description of the create_mrds_db command.

Certain differences in terminology between LINUS and MRDS are:

A MRDS relation is a LINUS table.
A MRDS tuple is a LINUS row.
A MRDS attribute is a LINUS column.

A MRDS domain is a LINUS domain and is the set of values that an

attribute (column) may assume.

An example of the dept store

created by invoking a text editor and

domain: name

vol
supplier
floor
type

attribute:
mgr

char (30)
fixed bin
char (12)
fixed dec
fixed dec
fixed bin
fixed bin
char (30)
fixed bin

data base, discussed in Section 1, may be
creating the source segment, dept_store.cmdb:

unal,

(17) unal,
unal,

(13,2) unal,
(13,2) unal,
(35) unal,
(35) unal,
unal,

(8) unal,

char (4) unal;

emp_no;

relation: emp (name* emp no dept mgr sal comm),
sales (dept¥* item¥* vol),
supply (supplier¥® item¥* vol),
loc (dept#* floor),
class (item¥* type);

3-1 AZ49-03

Then the data base may be created by invoking the command:

create _mrds_db dept_store dept store -list

The dept store data base is now ready for loading, using the LINUS store request.
(See linus command "store request" in Section 5.)

NOTE: LINUS can also open a data base from a submodel. (Refer to the
create mrds_dsm command in the MRDS manual for a description of
submodels, and their creation.)

3-2 AZ49-03

SECTION 4

REPORT WRITER

SYSTEM OVERVIEW

The LINUS report writer produces formatted reports from a relational data
base. Through this facility the user can control:

® page width and length

* page breaks

[) page, group, and row headers/footers

] counts, subcounts, totals, and subtotals

L hyphenation of overlength values

[] reordering and excluding selected columns

duplicate suppression

 J column alignment, editing, folding, separators, titles, and widths
L sorting on one or more columns

L directing of the report to the terminal, a file, or an io switch
@ nhorizontal and vertical scrolling through the report

The report writer is designed to serve the needs of the casual and experienced
user. A casual user can have a default report layout provided by the system,
while an experienced user can precisely define the report layout.

Basic Operation

The report writer system retrieves rows of information (tuples) from a
relational data base and produces a formatted output report. The rows retrieved
are specified via a selection expression. (Refer to Section 1 for additional
information and selection examples.)

b-1 AZ49-03

Formatting Options

A formatted report is produced under the control of "formatting options."
Formatting options consist of a name (for identity) and a set value. An example
of a formatting option is:

-page_width 80

where -page width is the name of this option and "80" is the set value associated
with the name. Formatting options which deal with columns require an "option
identifier"™ to uniquely identify the column. For example, to set the width of a
column, an identifier is needed to determine which column the width is to be set
for. Identifiers can be given as the number of the column in the query, the
name of the column as defined in the open model or submodel, or a star name
which is matched against the column names. Examples of formatting options with

identifiers are:

-width salary 10
-folding 3 fill
-alignment ¥¥ center

The formatting options are grouped into the following classifications:

general report options
control the overall characteristics of a report. They are assigned
default values when linus is first invoked, but can be changed by the
user at any time. These values are retained for the entire linus
session. General report options consist of:

-delimiter

-format document controls
-hyphenation -

-page footer value

-page header value
-page_length

-page_width

-title_line

-truncation

general column options
control the overall characteristics of the columns, such as examining
the value of certain columns to determine if a page break is to be
generated. They are assigned default values for every new query, but
can be changed by the user at any time. These values are retained
only during the current query (i.e., until the next new query is generated).
General column options consist of:

-column_order

-count

-exclude

-group
-group_footer_trigger
-group_footer_value
-group_header trigger
-group header value
-outline -

-page break
-row_tooter value
-row_header_value

4.2 AZU49-03

-subcount
-subtotal
-total

specific column options
control the characteristics of one specific column. They are assigned
default values for every new query, but can be changed by the user at
any time. These values are also retained only during the current
query (i.e., until the next new query). These formatting options require
an identifier to determine which column the particular option applies
to. Specific column options consist of:

-alignment
-editing
-folding
-separator
-title
-width

The values of formatting options are listed and set through use of the
list_format_options and set_format options requests. These requests take control
arguments which are the names of the formatting options. For example, to determine
the current page width, enter:

list_format_ options -page width
and to change page width, enter:
set_format_options -page width 71

A concept of "active" options is employed to make the system easier to use
and to provide flexibility. For example, if a novice user does not set page
headers, then no reference is made to them. If a user defines a page header, it
then becomes active and appears in the output of the various reporting requests.
If a user decides to eliminate a previously set page header, that is, by invoking
the "set format_options -page header_value -default", it reverts back to the
"inactive™ state. This concept reduces the number of options listed when the
user invokes the 1list format options request with no control arguments. The

page _header_value is not listed if set to its default value as previously described.

Specific column options are active at all times, whereas general column
options and general report options are active only when their value is set
different from the original default value. For example, if the page width is
assigned its default value by the system, or is reverted to by the user, it is
not active. The moment that it is changed to a value different from its default,
it is considered active.

5.3 Az49-03

Requests

A number of requests are available for use in the creation of reports.
Following is a brief summary of the report requests (refer to Section 5 for a
detailed discussion of all requests):

column_value
returns the value of the specified column for the current row, previous
row, or the next row.

display
retrieves selected data, creates a report, and displays the information
or writes it to a file or an io switch.

display_builtins
returns the current values for requested built-ins.

format_line
returns a single, quoted character string, formatted from an ioa control
string. -

list_format_options
displays the names and values of formatting options.

ltrim
returns a character string trimmed of specified characters on the left.

picture
returns one or more values processed through a specified PL/I picture.

restore_format_options
restores saved report layouts.

rtrim
returns a character string trimmed of specified characters on the right.

save_format_options
saves current values of formatting options for future use.

set_format_options
changes/sets report formatting options.

string
returns a single character string formed by concatenating all of its
arguments together, separated by single spaces.

4oy AZ49-03

DEFAULT REPORT ELEMENTS

Page Layout and Titles

A page consists of a title line followed by as many rows as fit on the
remainder of the page. The default title line is made up of one or more column
titles, one column title for each column on the page. The column title is the
column name (attribute name), which is found in the open submodel or model. If
the column is the result of an expression or function invocation, the column
title is "eN", where N begins at 1 and increases by 1 for each function invocation
or expression encountered in the query. The row is made up of one or more
columns, all concatenated together to form the row. The page width is 79 character
positions and the page length is 66 lines, with 3 of these lines, at the top and
bottom, reserved for margins.

Separators

A separator is provided for each column value and each column title. The
default separator is two blanks placed between each pair of column titles and
column values. The last column title or column value of a row has no separator.

Folding and Width

Sometimes when formatting a report, the user finds that the report elements
do not fit within the defined width. To rectify this situation, "folding" takes
place. Folding can occur in two different ways. The first 1is "truncation."
Truncation means that the value is truncated to the defined width and the last
displayable character is replaced by the truncation character(s) (normally "¥m),
The second is "filling." Filling means that portions of the value are moved
down to the next line(s), allowing the newly formatted value to appear within
its defined width. The format document subroutine (described in the Subroutines
Manual) is used to provide filling of overlength values, and format document
controls can optionally be supplied to provide greater control over the filling
action. Filling takes place when a value is wider than its display width; when
the value contains vertical tabs characters, horizontal tab characters, backspace
characters, or newline characters; or when the alignment mode is set to "both."
When column values do not have editing requests associated with them, the value
is trimmed first (i.e., before the test for filling is done). Character and bit
data types have trailing blanks trimmed, and all other data types have leading
and trailing blanks trimmed.

The default width for a column value is derived from the open model or
submodel. The width chosen is the exact number of characters needed to contain
the value after it is converted from the internal data base data type, to character
format, via PL/I conversion rules. When the default width is used, the column
value always fits, but this width can be reduced by the user. The reduction of
the column width can cause folding to occur. Column folding can be set to
"fill"™ or "truncate™ and proceeds as described above. The default for column
values is "fili."»

The concatenation of all column values and separators (used to determine
row value) can cause row folding to occur. This happens when the resulting row
is wider than the defined page width. 1In this case, columns which appear on or
to the right of the right page boundary are moved down to the next line(s). The
corresponding titles are moved so that they appear directly over the columns.

4-g AZ49-03

Columns whose widths are greater than the page width are automatically reduced
to the page width.

Alignment

The alignment for column values is derived from the data type of the column,
as defined in the open model or submodel. Character and bit strings default to
"jeft alignment," decimal data with a non-zero scale defaults to "decimal point
alignment," and all other data types default to "right alignment." The user can
set the alignment of individual columns to left, right, center, both, or decimal
point alignment.

The alignment for a column title is center (i.e., the title is centered
Wwithin its defined width).

The alignment for a title line or a row is left (i.e., the title line or
row is placed against the left page boundary).

OPTIONAL REPORT ELEMENTS

A number of optional features (for greater control over report appearance)
are available for more sophisticated report formatting. These optional features
are:
editing
headers/footers
column titles
active requests
page breaks
excluding columns
ordering of columns
grouping
outlining
totals and subtotals
counts and subcounts

separators and delimiters

embedded control lines and hyphenation

Editing can be specified for any column value; and is provided by linus
active requests and Multics active functions. The column_value request is used
to pass the value to other active requests, and the returned value is then

4-6 AZ49-03

folded and aligned as described above (see "Folding and Alignment"). The report
Wwriter does not strip a level of quotes from the editing request; the first time
quote stripping occurs is when ssu $evaluate active string subsystem utilities
procedure is invoked. Editing of column valués is not provided by default.

Headers/Footers

A header or footer is a character string provided by the user. The character
string can contain active requests, be made up of more than one "portion," and
consist of more than one line. A delimiter character is used to separate the
different portions of a header or footer. The delimiter character default is
"in, but can be changed by the user. THe header/footer can consist of a left,
right, and center page portion.

Evaluation of a header/footer is a two-part operation that proceeds in the
following manner: first, the header/footer is divided into its portions based
on the delimiter character; and second, active requests are evaluated. Quote
stripping 1is not done by the report writer during these two operations; the
first time quote stripping occurs is when the ssu $evaluate active string subsystem
utilities procedure is invoked. The 1linus display builfins active request can
be used to obtain built-ins like the current page number in a header/footer, and
the linus column_value active request can be used to obtain the value of a
column.

A header or footer can be made up of a left, right, and center page portion.
These portions are determined by the delimiter characters. The portions are
aligned to the left, right, and center of the page. Folding on headers/footers
proceeds independently for each part. Portions of a header or footer (left,
right, or center) with zero length are redistributed to other portions whose
lengths are not zero. For example, if the page header contained only a center
portion as:

11Sample Center Portiont!!

the text would be centered on the page, but would have the full page width
available for the text. Similarly, a left portion or right portion only is
aligned to the left or right of the page, but has the full page width available
for placement of its text. Two exceptions to this action are when the header or
footer has a left, right, and center portion, and the left or right portion has
a zero length. For example:

1left part!center part!!
or
!!'center part!iright part!

In both cases the left or right part of the page is unavailable for placement of
text (i.e., the space is not redistributed to the other two portions).

If redistribution of the available page width is not desired, the placement
single blank into a portion prevents the redistribution from taking place
ause the portion has a length greater than zero. For examplie:

! tCenter Part! !

Headers and footers can be defined for a page, group, and a row. The first
row that appears on the page is available for the page header, and the last row
that appears on the page is available for the page footer. The first row of a

47 AZ49-03

group is available for the group header, and the last row of a group is available
for the group footer. The current row is available for use in the row header
and row footer.

Column Titles

A column title is a character string that is placed above its associated
column. The display width available for the title is 1inherited from its parent
column, along with the folding action. If the title is exactly the same number
of characters as the display width, it is placed without any folding or alignment
action. If the title is shorter, it is centered within the display width. If
the title is wider, it is truncated or filled, depending on its parent column's
setting.

i

Active Requests

Active requests are used in headers/footers to substitute values into the
header/footer at the time the report is being formatted. For example, the Multics
date active function can be used to provide the current date as part of the
header or footer. ‘

Active requests are also used to provide editing for column values which
become part of the row value. For example, the linus picture active request can
be used to provide editing features such as dollar signs and commas.

The user specifies linus active requests through the construct "[name STR]",
where name is the name of the desired active request and STR is any argument(s)
required by the active request. Multics active functions are invoked via the
linus [execute] active request. They are specified by the user through the
construct [execute name STR], where name is the name of the Multics active
function and STR is any argument(s) required by the active function. The active
function/request is evaluated and its returned value is substituted into the
original string before folding and alignment take place.

Page Breaks

Page breaks can be set to occur when the value of one or more columns
change. The occurrence of a new value in the column(s) being examined closes
out the current page and a new page is started. The new row which caused the
page break is not made available until the start of the next page. This allows
the page footer to access the correct row (the last row on that page).

Excluding Columns

Columns selected in the query can be excluded from the row value. Through
use of the [column value] active request, the column value can be obtained for
placement elsewhere on the page. For example, a user may exclude the display of
a column that is being used to determine when to generate page breaks, and place
the value of the column in the page header with the column_value active request.

4.8 AZU49-03

Ordering Of Columns

Columns appear on the page in the order they were selected in the query.
This order can be changed by the user without having to go back and change the
query.

Grouping

One or more columns can be used to define a "group" of rows based on the
values of these columns. The named columns make up a major to minor hierarchy
and can be used in conjunction with the outlining, page break, subtotal, and
subcount features.

Outlining

One or more columns can have duplicate values suppressed. If the value of
the current column is the same as the previous value, then its display is suppressed
unless it is the first line on a new page.

If any named column is a member of the group of columns defined via the
grouping feature, it and any columns more major in the hierarchy are outlined.
A change in value of any one column displays all values of columns lower in the
hierarchy in addition to the changed column. An exception is the first line on
a new page, when duplicate values are never suppressed.

Totals and Subtotals

Totals and subtotals can be specified for columns. The totals and subtotals
are placed directly under the associated columns.

A column subtotal is generated when the value of the column(s) the subtotal
is associated with changes. The subtotal can be associated with one or more
columns. Several subtotals can be specified, each associated with different
columns. Subtotals can be "reset" or "running." A column total is generated
after the last input row is processed.

The width, alignment, folding, and editing request for a total or subtotal
is inherited from its parent column. During the generation of a total or subtotal,
the column value request returns the value of the total or subtotal, rather than
the column value. When the parent column is excluded from the page, the total
or subtotal associated with it is also excluded. An exception to this rule is
when all of the columns have been excluded. They are provided in this case to
produce reports containing some combination of subecounts, subtotals, counts, and
totals only.

Counts and Subcounts

Counts and subcounts can be specified for columns, and work as described
above under "Totals and Subtotals." A count or subcount counts occurrences of
values, whereas a total or subtotal accumulates values.

B.9 AZY49-03

Separators and Delimiters

The separators used to separate column values and column titles from each
other can be set to any string of displayable characters by the user. The
delimiter character used to delimit the different portions of a header/footer
can also be set by the user.

Format Document Controls and Hyphenation

The report writer uses the format document subroutine (refer to the Subroutines
Manual) to "fill" overlength text.” A user can embed format document control
lines in text to achieve greater control of the filling action. A user can also
specify that hyphenation of words should be attempted when filling overlength
text.

FULL PAGE FORMATTING

The report writer system formats a full page before any output is provided.
It operates in this fashion because it is sometimes necessary to back up on a
page and defer report elements to the next page so that associated report elements
remain on the same page. A full page with all report elements present is outlined
in the following diagram.

Formatted Page

PAGE HEADER

TITLE BLOCK

DETAIL BLOCK 1 4= expanded in diagram below

DETAIL BLOCK N

PAGE FOOTER

Detail Block

GROUP HEADER

ROW HEADER

ROW VALUE

SUBTOTAL BLOCK

SUBCOUNT BLOCK

TOTAL BLOCK

COUNT BLOCK

ROW FOOTER

GROUP FOOTER

-

+
i
o
x=
™~
£
0
[}
(@]
W)

A1l of the defined report elements are optional, but at least one must be
present or a zero length page is the result. A zero length page is treated as
an error and the report formatting is terminated.

Backing up on a page 1is accomplished via a detection/prevention method, and
proceeds as follows:

The page header, if present, is processed first. If the page header
does not fit on the page, it is treated as an error and the report
formatting is terminated. The formatted page header can fill the complete
page if no other report elements are defined.

The title line, if present, is processed next. If the title line does
not fit on the page, it is treated as an error and the report formatting
is terminated. The formatted title block can fill the complete page
if no other report elements are defined.

The detail block is processed next. A detail block can be made up of
a group header, a row header, a row value, a subtotal block, a subcount
block, a total block, a count block, a row footer, and a group footer.
These different elements are treated as one unit and must all appear
on one page or the detail block is deferred to the next page. If any
of these elements are defined, then at least one detail block must fit
on the page or it is treated as an error and the report formatting is
terminated. The formatted detail block can fill the complete page if
no other report elements are defined.

a. The group header, if present, is processed first. If the current
row is the first row of the report, or if the column associated
with the -group header trlgger option has just changed with the
current row, the header is generated. If the group header does
not fit on the page, the detail block is deferred to the next
page, provided one detail block is already placed on the page.

b. The row header, if present, is processed next. If the row header
does not fit on the page, the detail block is deferred to the
next page, provided one detail block is already placed on the
page.

c. The row value, if present, is processed next. If the row value
does not fit on the page, the detail block is deferred to the
next page, provided one detail block is already placed on the
page. The editing requests associated with any columns are evaluated
before an attempt is made to place the row value on the page. If
the row value is deferred to the next page for any reason, the
editing requests associated with the columns are evaluated again
when the row value is processed on the next page. This is necessary
to ensure that obtained values, such as the page number display
built-in are correct. For users who are doing calculations based
on accumulations, this could produce incorrect calculations. That
is, the value of a row could be accumulated more than once. The
yf"c‘v’lOuSlfy‘ processed row display built-in provides a mechanism to
ensure this does not happen. If the value of this built-in is
true, a user doing accumulations would not add in the current row
value as it was already added in when the editing requests for
the row were processed the first time.

d. The row subtotal, if present, is processed next. If subtotal
generation is necessary, and the row subtotal does not fit on the

411 AZ49-03

page, the detail block is deferred to the next page, provided one
detail block is already placed on the page. The editing requests
associated with any subtotals are only evaluated when subtotal
generation 1is done, and proceed as described above under "row
value" editing requests evaluation. The previously processed row
display built-in also works as described above.

e. The row subcount, if present, is processed next. It proceeds as
described above under row subtotal (item d).

f. The row total, if present, is processed next. If total generation
is necessary, and the row total does not fit on the page, the
detail block is deferred to the next page, provided one detail
block is already placed on the page. The editing requests associated
with any totals are conly evaluated when total generation is done,
and proceed as described above under "row value" editing requests
evaluation. The previously processed row display built-in also
works as described above. -

g. The row count, if present, is processed next. It proceeds as
described above under row subtotal (item d).

h. The row footer, if present, is processed next. If the row footer
does not fit on the page, the detail block is deferred to the
next page, provided one detail block 1is already placed on the

page.

i, The group footer, if present, is processed last. If the current
row is the last row of the report, or the column associated with
the -group footer trigger option is about to change with the next
row, the footer is generated. If the group footer does not fit
on the page, the detail block is deferred to the next page, provided
one detail block is already placed on the page.

The page footer, if present, is processed 1last. If the page footer
does not fit on the page, the last detail block on the page is removed
and the page footer is processed again. Active requests found in the
footer are evaluated again to ensure correct processing of display
built-ins like current row number. If the page footer still does not
fit, another detail block 1is removed from the page and the footer is
evaluated again. This process continues until the footer fits, or
there are no more detail blocks to remove from the page. The first
detail block that appears on the page is never removed, and if its
removal 1is necessary to provide a fit for the page footer, it is
treated as an error and report formatting is terminated.

412 AZ49-03

USER SESSION

The remainder of this section consists of report writer examples organized
into a sample user session. User-typed lines and lines displayed by the system
are shown together in the example. To differentiate between these lines, an
exclamation mark (!) precedes user-typed text. This is done only to distinquish
user text from system-generated text; it is not to be included as part of the
input 1line. Also, a M"carriage return" (moving the display mechanism to the
first column of the next line, called a newline or NL on Multics) is implied at
the end of every user-typed line. Line numbers are also included in the examples
for purposes of commentary immediately following the example.

Note: Because of page constraints in this document, certain character
strings of data used in examples may not match exactly the information
as seen on a user's terminal. That is, the character strings in
examples may be folded or multiple-lined, whereas the actual
interactive (live) session may display the same information on a
single line or multiple lines with different line breaks than
shown here. Additionally, blank lines have been removed in the
examples for space consideration in this document. In most cases
this can be recognized by the reader. For example:

55 t linus: display -page 1
59 (system display)
Only one space is used to separate the two lines in the example,

but the line numbers to the left of the lines imply there are
actually three spaces here.

Following is a list of request and control argument abbreviations used in
the examples. They are included here for the purpose of saving the reader from
referring to other sections if a term is unfamiliar.

REQUEST ABBREVIATIONS

clv column value

di display

dib display builtins

e execute

ec exec com

iq input query

1db list db

ls list (Multics command level)
1sfo list format options

o open -

pr print (Multics command level)
q quit

rsfo restore format options

sfo set format options

ss set scope

svfo save format options

tq translate_query

Pt T} . e T mere A e o wy o

-a ~-all

-al -alignment
-bf ~brief

=Co -column order
-dm ~-delimiter
-ed -editing

4-13 AZ49-03

This page intentionally left blank.

L1y AZ49-03

8/86

-ex
-f2
-fold
-gft
-gfv
-ght
-ghv
-gr
~it
-Xr
-krp
-nr
-of
-or
-orp
-out
_pb
-pfv
-pg
-phv
-pl
-pw
-rfv
-rhv
-rs
-se
-sep
-stt
-te
-td
-ti
-t1
-tt
-ttl
-wid

-exclude

-force

-folding
-group_footer_trigger
-group_footer_value
-group_header_trigger
-group_header_value
-group

~iteration
-keep_retrieval
-keep_report
-new_retrieval
-output_file
-old_retrieval
-o0ld_report

-outline

-page_break
-page_footer_value
~-page

-page header_value
-page_length

-page width
-row_footer_value
-row_header_value
-reset -
~selection expression
-separator

-subtotal

~-truncation -0R- -truncate
-temp_dir
-terminal_input
-title_line

-total

~title

-width

AZ49-03A

General

Report Options-1

Fwn =

o swm ewy vem

linus -it

r u

DECLARATION

char (10)

fixed dec

fixed dec

linus: o employee r
linus: ss employee
linus: 1ldb -1lg
TABLE COLUMN
employee (perm)

name

job

salary

age

sex

family

state

city
linus: 1lsfo =-a
-delimiter
-format_document_con
-hyphenation

-page footer value
-page_header_value
-page_length™
-page width

-title line
~truncation

linus: 1sfo

fixed dec
char (1)
char (1)
char (2)

char (13)

trols

(2) unal
(7,2) unal
(2) unal

Hin
H

"off"
"off"
nn

nn
n66"
u79n

non"
nEn

All of the formatting options are set to
There are no column options defined.

linus: sfo -pw O
linus: 1sfo
~-page_width

linus:
linus:

sfo -pw -def
1sfo

ault

"Oﬂ

DOMAIN

name
job
salary
age
sex
family
state

city

TYPE

key

key index
data index
data index
key index
data

data index

data index

their default values.

All of the formatting options are set to their default values.
There are no column options defined.

AZ49-03

line 1-4
Invoke linus, open, set scope, and list information about the data base.

line 5
List the names and values of "all" report formatting options. All of
the displayed values in this case are "default" values. These options
are the m"general report options." They remain in effect across the
entire linus session. For example, if the page width is changed, it
remains at this new value until it is explicitly changed back, or until
the linus session is terminated.

-dm nyn character used to delimit portions of header/footer.

-fde M"offn used when filling overlength character strings. If
"off," ignore embedded controls.)

-hyphenation "off" used when filling overlength character strings. If
"off," do not attempt to hyphenate words.

-pfv nn footer placed at bottom of each page.

-phv nn header placéd at top of each page.

-pl n"een length of each formatted page (number of lines).

-pw n7gn width of each formatted page {(number of character

positions).

-tl "on" print the title 1line.

-te nEn character that indicates truncation has occurred.
line 6-10

List options, set page width, list options again, reset page width, and
list options once again. If line 10 included the -all control argument,
the display would be the same as that following line 5.

4-17 AZ49-03

Specific Column Options

The following example looks at "specific column options."

These options are

always listed and are assigned new default values cach time a new quary is processed.
Yy g e

OUGTEW N —

14

22

30

38

46

53

8/86

!
!
H
!
!

linus: iq =-bf

select * from employee

linus: tq

linus: 1sfo

-alignment
-alignment
-alignment
-alignment
-alignment
-alignment
-alignment
-alignment

age
city
family
job
name
salary
sex
state

-editing age
-editing city
~editing family
-editing job
~editing name
-editing salary
-editing sex
-editing state
-folding age
-folding city
-folding family
-folding job
~folding name
-folding salary
-folding sex
-folding state

-separator
-separator
-separator
-separator
-separator
-separator
-separator
-separator
-title age

-title city

age
city
family
job
name
salary
sex
state

-title family

-title job

-title name

-title salary

-title sex

-title state

-width age

-width city

-width family

-width job

-width name

-Wwidth salary

-width sex

-width state

"right"
nleft"
"left®
"right®
"left"
"decimal 8"
"left"
nleft"

nn

"N .

nn

nn

nn

nn

nn

"nn
nEilym
nEiln
mEiLLm
nEillm
mFil1M
nEilin
mEilLm
nEilLn
" "

" 1"

L1 "

n "

n "

Al "

" "

" "

llage“
"city"
"family"
"job“
"name"
"salary"
"Sex "
"state"
"5"

"13"

"1 "
|I5"
"’10"
Il“O"

"1 n

"2 "

AZ49-03A

line 1-5
Invoke input_query, build query, translate query, and list the names and
values of the column cptions.

line 6-13
System display -- the alignment option specifies how a value is to be
aligned within its display width.
- Character and bit strings default to left-alignment.
) Decimal data with a non-zero scale defaults to

decimal-point-alignment.
~ All other data types default to right-alignment.

line 14-21
System display =-- the editing option provides additional editing for
column values. {(Default is no editing)

line 22-29
System display -- the folding option specifies the action taken when the
column value exceeds the display width for the column. (Default is
fill)

line 30-37
System display -- the separator option specifies the character string
that separates the specified column from the following column. (Default
is two blanks)

line 38-45
System display -- the title option specifies the character string to be
placed at the top of the page above the column. (Default is the name
found in the open model or submodel)

line 46-53 .
System display -- the width option specifies the display width of the
detail line of the column. (Default is the number of characters needed
after conversion to character format)

4-19 AZ49-03

The following examples lcook at a report utilizing the available specific
column options.

ag

e

36
55
61
61
41
25
35

(4]

g8mmmg 573

(TR Y

nuans3 a3 n

st
at

ak
az
ca
ca
ca
ca
ca

city

juneau
phoenix
fresno
sacramento
los angeles
san diego

san francisco

springfield

Data is retrieved from the data base and formatted by

55 ! linus: di -pg 1
59 name job salary
66 abel 1 14555. 01
67 abell 2 13000.01
68 abernathy 3 12500. 01
69 abodoura 5 12900. 01
70 aboe 4 10201. 01
71 abraham 6 15000.01
T2 abrahms 7 14300.01
(45 data lines)
118 baker 1 12000. 10
line 55
Display page 1.
default parameters.
line 59-118

System display

AZ49-03

120 ! linus: 1sfo -wid state
-width state nan

123 ! linus: sfo -wid state 5
125 ! linus: di -pg 1

129 name job salary age s f state city
e a
X m
i
1
y
136 abel 1 14555. 01 36 m s ak Jjuneau
137 abell 2 13000.01 5% f m az phoenix
138 abernathy 3 12500. 01 61 m d ca fresno
139 abodoura 5 12900. 01 61 m m ca sacramento
140 aboe 4 10201.01 41 £ s ca los angeles
141 abraham 6 15000. 01 25 £ d ca san diego
142 abrahms 7 14300. 01 35 m s ca san francisco
. (45 data lines)
188 baker 1 12000. 10 71 m s il springfield

line 120
List the width value of the "state" column.

line 123-125
Set the width value for state column to "5" from its default value of
"2 and display page 1.

line 129-188

System display -~ note the difference in the state column header on line
129 from that displayed on line 59-61.

4-21 AZ49-03

190 ! linus: 1sfo -wid 8
-width city mq3n
193 ' linus: sfo -wid 8 10
195 t linus: di -pg 1
199 name Jjob salary age s f state city
e a
X m

i

1

y
206 abel 1 14555, 01 36 m s ak juneau
207 abell 2 13000. 01 55 f m az phoenix
208 abernathy 3 12500. 01 61 m d ca fresno
209 abodoura 5 12900.01 61 m m ca sacramento
210 aboe 4 10201.01 41 f s ca los :
211 angeles.
212 abraham 6 15000. 01 25 f. d ca san diego
213 abrahms 7 14300. 01 35 m s ca san
214 francisco

. (37 data lines)
252 arnold 22 18210.01 53 f d pa philadelph
253 ia
254 ashman 23 12400.01 52 m s tn chattanoog
255 a
256 ashworth 24 9301.01 61 f m tx austin
257 asin 1 15100. 01 51" m d tx dallas
258 auburn 2 13101.01 70 £ s vt rutland
line 190

List the width value of column 8 (city)

line 193-195
Set the width value of the 8th column to ™10V
"13" and display page 1.

from its default value of

line 199-258
System display -- note the difference under the city header (line 210-214)
from that displayed on 1line 140-142. Also notice the not-so-pleasant
breakup of line 252-255. This is an example of column "filling."

422 AZ49-03

260 ! sfo -wid 8 -default;lsfo -wid name
-width name nign

263 ! linus: sfo -wid name 7 -fold name truncate
265 ! linus: di -pg 1

270 name job salary age s f state city
e a
X m
i
1
y
277 abell 2 13000.01 55 f m az - phoenix
278 aberna#* 3 12500.01 61 m d ca fresno
279 abodou#* 5 12900. 01 61 m m ca sacramento
280 aboe 4 10201. 01 41 f s ca los angeles
. (47 data lines)
328 baker 1 12000. 10 7T m s il springfield

- - - — - - wn = - A - " - - —— . - o . " - S - - e S - - . - - . - - e = V" - - - - -

line 260
Set the width value of column 8 (city) to its default value (13) and list the
width value of the name column. Notice that multiple linus requests can be
included in a single request line by utilizing the request termination
character (;) between requests. Any number of requests may be included on a
line using this format.

line 263-265
Set the width value of the name column to "7", truncate the data listed under
the name column, and display page 1.

line 269-279
System display -- note the difference under name header (line 278-279) from
that displayed on line 208-209.

330 ! sfo -sep %% w0 | n
332 1 linus: di -pg 1

336 name i job | salary i age | s | f | state | city
i H i 1 et a| i
i i 1 P X gom) i
!] i i HE W i
i i i i HI i
i H i] iy H
343 abel i 14 14555.01 | 36 1 m | s | ak i juneau
34y abell ! 2 | 13000.01 } 5 { £ i m | az i phoenix
345 aberna¥® | 31 12500.01 | Tt im it d) ca { fresno
346 abodou¥* | 5 1 12900.01 | 61 {m | m | ca | sacramento
347 aboe H y | 10201.01 | 41 } £ | s | ca i los angeles
Lot data lines)
395 baker i 1} 12000. 10 |} 71 1 m | s | il | springfield

- — D D P D O U = - . M = - = A S R T R A P =S & = e A S v A > S M A S - e -

8/86 4-23 AZ49-03A

line 330-332
Set the column separator value to "<SP>!<SP>" from its default value of
<SP><SP> (two blanks) and display page 1.

line 336-395
System display -- note that the columns have shifted to the right because the

separator was increased to three character positions.

separators were only two character positions.

age

36
55
61
61

s | £ | state
e | a |
X I m)

Pi

R

Py
m | s | ak
f i m | az
mi)di}| ca
mim/! ca

Previous example

city

juneau
phoenix
fresno
sacramento

springfield

. - - —— - " - W W= n W = P - = > . . W e e A e S S me e S . S e A e e e -

397 linus: sfo -al age left -ed salary -prompt
398 Enter -editing salary.
399 [pic $2z,229v.99 [clv salary]l]
400 .
kﬁOZ linus: di -pg i
406 name i job .} salary H
)]]
o |
| i i
i : i
i i '
413 abel | 11 $14,555.01 !
abell | 2 | $13,000.01 |
aberna* | 3) $12,500.01
abodou¥* | 5 1 $12,900.01 |
. (48 data lines)
464 baker | 11 $12,000.10 |
line 397

Set alignment value for age column to
"right," and invoke the editing option

line 399-402
Edit request, termination, and display

line 406 - U464
System display -- note that the information under the age column is now
aligned to the left of the column and the data under the salary column contains

8/86

the "$" and "," characters.

424

"left" from its default value of

with prompt.

page 1.

AZH49-03A

1sfo -ttl ¥¥

age

city

family

Jjob

name

salary

sex

state

"age"
"city"
"family"
"job"
"name"
"salary"
Hsex"
"state"

sfo -al age -default;sfo -ttl (1 2 3 4 5 6 7 8) -prompt

title name.

title job.

title salary.

title age.

title sex.

title family.

title state.

title city.

di -pg 1

i JOoB |

(]]

1]

i '

i i

]]

i :

! 11 $1
H 2 1 $1
H 30 $1
data lines)

i 11 #$1

SALARY

4,555.01
3,000. 01
2,500.01

2,000. 10

AGE

36
55
61

g8 m3

<o

HOHX BT

[o 7= /]

STATE

ak
az
ca

CITY

Jjuneau
phoenix
fresno

i springfield

466 linus:
~title
-title
~title
-title
-title
-title
-title
-title

476 linus:

L77 Enter -

478 1 NAME

479 1t .

480 Enter -

481 ¢ JOB

482 .

483 Enter -

484 SALARY

485 .

486 Enter -

487 ' AGE

488 1 .

489 Enter -

490 ' SEX

491 .

Lg2 Enter -

493 1 FAMILY

4oy v |

495 Enter -

496 STATE

497 .

498 Enter -

499 CITY

500 .

502 ! linus:

506 NAME
abel
abell
aberna#%*
. (ug

565 baker

line 466

List the title values of all

line 476-502

Set the title v
e

hmsra ko
ifave vco

alu
~ PR Py - £
Tl Cilaupcu 1

line 506-565
display -- note that the column header values on line 506 are
different from that displayed on line 406.

System

e
r

columns.

for all columns to new values

b IRy

Oom 10wWercase

4-25

. ..
LU u

ppercase

\ A
), ana

(in this case, all
5 €

- I - -
iSpiay pag Te

AZ49-03

General Report Options-2

The following examples 1look at the
extension to the example shown above under "General Report Options-1."

"general report options" and are an

1 1 linus: sfo -pl 26
3 ! linus: di -pg 1
7 NAME i JOB |} SALARY ! AGE | S | F | STATE | CITY
i |] P E A i
i i] P XM i
] | ! R i
! ! ! A T i
i i ! D i
abel ! 1 | $14,555.01 | 36 ''m |} s | ak ! juneau
abell] 2 1 $13,000.01 | 55 1 f i m | az ! phoenix
aberna¥* | 3 1 $12,500.01 61 ' m | d | ca ! fresno
. (9 data lines)
27 agee H 14 { $30,900.01 | 70 ' m } s | hi ! honolulu
line 1-3
Set the page length value to "26" from its default value of "66," and
display page 1.
line T7-27
System display -- note that the report length has decreased. There are

now 20 text lines and three "margin lines" at the top and at the bottom
of the page. When the report is sent to a file (for later printing),
these six margin lines are put in the report by the line printer software.

This produces the same page format,

hardcopy.

§-26

whether viewed at a terminal or on

AZ49-03

29! linus: sfo -phv -prompt
30 Enter -page header_value.
31 1t 1[le date]liSample Reporti[e time]!
32 1
33!
35 ! linus: di -pg 1
39 04/29/83 Sample Report
NAME i JOB | SALARY i AGE |} S | F | STATE | CITY
! I i { E | A | !
1 i ! P XM H
] i i] I]
' | ! H i L i]
i i i i Y |
abel i 1} $14,555.01 | 36 |m | s | ak ! juneau
abell H 2 1 $13,000.01 | 5 £ I m | az ! phoenix
aberna¥* | 3 1 $12,500.01 | 61 I{m | d | ca { fresno
(7 data lines)
58 adkins | 11 | $20,700.01 | 75 im}m} fl ! key west
line 29 _
Set the page header value when prompted by the system.
line 30
System display -- prompt
line 31-35 -
Set page header to contents of line 31-32 (two header lines), terminate,
and display page 1.
line 39-58

System display -- note that a page header (line 39) is now included as
part of the report. This two-line page header reduces the page content
of the report (i.e., the report now consists of 18 data lines whereas
the previous example contained 20 lines). The page header fills the
entire page width, but the column values do not. If the page width is
set to zero, the display request calculates the page width to be an
exact fit (i.e., contains all of the column values and separators).

4-27 AZ49-03

60 ! linus: sfo -pw O
62 ' linus: di -pg 1

66 04/29/83 Sample Report 10: 26
NAME i JOB | SALARY i AGE | S | F | STATE ! CITY
: | ! i E | A !
!]] X0 M i
]]]] III 1
[} I I 1] | [}
i | : A P |
i i ! N A]
abel ! 11 $14,555.01 | 36 'm)} s | ak ! juneau
abell H 2 1 $13,000.01) 55 + £ | m | az ! phoenix
aberna¥® | 31 $12,500.01 | 61 | m | d | ca ! fresno

. (7 data lines)

85 adkins | 11 |} $20,700.01 | 7% ''m | m } f1 | key west

line 60-62
Set the page width value to "0O" from its default of "79," and display
page 1.

line 66,85
System display -- note that the page header is now centered over the

columns. Setting the page width to zero has one disadvantage: when set
to some positive integer and a column width exceeds the page width, that
column width is reduced to the page width. For example, if the page
width is set to 80 and the width for a column is set to 1024, the column
width is reduced by the display request to 80. The reduction of a
column display width does not take place when the page width is set to
zero.

4-28 AZ49-03

sfo -pfv =-prompt

Enter -page footer_value.

{1- Page [dib page number] -1!!

di -pg 1

Sample Report

JOB SALARY

! $14,555.01 |
! $13,000.01 |
! $12,500.01 |
! $12,900.01 |
! $10,201.01 |}
! $15,000.01 |}
| $14,300.01 |
i $12,700.01 |
! $10,500.01 |

WO~ ENWN =

AGE

- - - ——
———— - ————

BmE mw3 38 mm3

<

a3l n

ak
az
ca
ca
ca
ca
ca
co
ct

10: 26
CITY

Jjuneau
phoenix
fresno
sacramento
los angeles
san diego

san franecisco
denver
hartford

o a2 e GE D S S D D D D G O GE GE e R B D D G3 GD G OB D e G AR R B S G e 3 e R T CIR G D O G TR G G e e D e R S R S S D W S W - . em = = -

87 ! linus:
88
89 1 1111
90 !
91 1t .
93 ! linus:
97 04/29/83
NAME
abel
abell
aberna¥*
abodou¥*
aboe
abraham
abrahms
acee
114 acord
116
line 87
Set the
line 88
line 89-93

line 97-116
System display -- note that a page footer (line
This two-line page footer reduces the page content

page footer value when

System display -- prompt

prompted by

the

system.

Set the page footer to contents of line 89-90 (two footer
and display page 1.

part of the report.

lines), terminate,

116) is now included as

of the report by another two lines (now 16 lines of data between header
and footer).

4-29

AZ49-03

118 ! linus: sfo -pl -default;di -pg 1

122 04/29/83

NAME SALARY

abel ' i $14,555.01
abell H 2 | $13,000.01
aberna¥* | i $12,500.01

. (45 data lines)

AGE

36
55
61

Sample Report

S
E
X

=OH X P>

Q3 u

STATE

ak
az
ca

va

10: 26

CITY

juneau
phoenix
fresno

! norfork

179 azer i 5 1 $12,600.01
181
line 118

Set the page length to "default"

"26" (see line 1 of this example set).

line 122-181

(66 lines) from its

previous setting of

System display -- note that the page now consists of 66 lines (3 blank
margin lines at top and bottom and 60 lines of report).

AZ49-03

183 ' linus: sfo -tc <MORE>;di -pg 1
187 04/29/83 Sample Report 10: 26
189 " NAME i JOB |} SALARY ! AGE } S | F } STATE | CITY
i i H i E 1 A 1
H | | P X T M 1
]]] 1 1 T] 1
i 1] 1 I + 1 1
] i i i i L 1
194 1 1 | H VY |
abel H 1 1 $14,555.01 | 36 ' m | s | ak ! juneau
abell H 2 1| $13,000.01 ! 56 1 £ | m | az ! phoenix
198 a<MORE> | 31 $12,500.01 | 61 | m | d | ca | fresno
199 a<MORE> ! 5 1 $12,900.01 | 61 | m | m | ca | sacramento
aboe H 4 1 $10,201.01 | 41 } £ | s | ca { los angeles
. (43 data lines)
244 azer H 51 $12,600.01 4y ' m } s | va ! norfork
246 - Page 1 -
line 183

Set the truncation value to "<MORE>" from its previous default value of
"¥. " and display page 1. Refer to 1line 263 in the "Specific Column
Options" example (above) where the width value of the name column was
set to "7" and the folding option, with truncation (Default = #¥), was
turned on for the name column.

line 187-246

System display -- note the different truncation of the name column values
(line 198-199) from that displayed in the earlier example identified
above (line 278,279).

4-31 AZ49-03

248 ! linus: sfo -tl off;di -pg 3

252 04/29/83 Sample Report 10: 26
254 c<{MORE> | 31 $12,501.01 76 I1'm | m | ca | san francisco
cummins | 4 } $10,100.01 | 78 1 £ 1 d } co | denver
cutchin | 5 1 $12,600.01 } 62 ' m |} s | ct i hartford

. (52 data lines)
309 goodwyn | 15 1 $12,400.01 ! 39} £ 1 d) et ! hartford
311 - Page 3 -

313 ! linus: sfo -tl on

- - - - - W S WD P e W P M WS = D = . - - W A P AP W D R P en = e - - - - - - - -

line 248
Set the title line value to "off" from its previous default value of
"on," and this time display page 3. Turning the title line off inhibits
the column header or title display from that displayed in the previous
example (line 189-194).

line 313

Set the title line value to "on." This restores the display of column
header or title lines.

4-32 AZ49-03

SPECIAL EDITING OF A REPORT

The following example shows how to utilize a user-defined exec_com and
interact with the editing request.

1 ! 1linus: sfo -wid sex 6 -ed sex "[ec sex_lookup [elv sex]]"
3 ! linus: ..ted
4 v a
5 1 &version 2
6 ! &trace off
71 &if &[e equal m &1]
8 ! &then &return male
9 ! &else &return female
10 1 \f
11 ! w sex_lookup.lec
12t gq :
14 ' linus: di -pg 1
18 04/29/83 Sample Report 10: 26
20 NAME ! JOoB | SALARY i\ AGE | SEX i F | STATE | CITY
: : | | PA]
: | | | M !
! | : : T !
| | : : P L !
! : : : Y 5
27 abel ! 1 1 $14,555.01 | 36 | male ! s | ak | juneau
28 abell i 2 1 $13,000.01 | 55 | female | m | az i phoenix
. a<{MORE> | 31 $12,500.01 |} 61 | male 1 d 1} ca \ fresno
. (45 data lines)
75 azer H 5 1 $12,600.01 } 44 | male ' s | va ! norfork
T7 - Page 1 -
line 1
Set the width of the sex column to "6" from its previous default value
of "1," and prepare for special editing of the sex column data.
line 3-12
Invoke the ted editor, append the following exec_com data (line 5-9)
into the ted buffer, terminate append mode, write the buffer to permanent
storage, and quit the ted editor.
line 14
Display page 1
line 18-77

System display -- note the change in width of the sex column (line 20)
from that displayed in the previous example (line 189) and the change of
data by the exec_com (m = male and f = female).

4-33 AZ49-03

SAVING A REPORT AND RESETTING OPTIONS

The following example shows how to save a report after it is in the desired
format.
report back to its original format.

1

!
:

Additionally, the example shows how to reset all options and revert the

linus: svfo EXAMPLE-1.fo.lec -query;sfo -rs;-di -pg 1

5 name job salary age s f st city
e a at
X m e

i

1

y
abel 1 14555, 01 36 m s ak juneau
abell 2 13000, 01 55 f m az phoenix
abernathy 3 12500.01 61 m d ca fresno
abodoura 5 12900.01 © 61 m m ca ‘sacramento
aboe 4 10201.01 41 f s ca 1los angeles
abraham 6 15000. 01 25 f d eca san diego

(46 data lines)
64 baker 1 12000. 10 7" m s il springfield
line 1
Save the current values of format options as a linus subsystem exec_com
(EXAMPLE-1.fo.lec) which can be restored later with the
restore_format_options request. Then reset all options to their default
values, and display page 1.
line 5-64

System display -- note that the report has reverted back to its original
format (i.e., it is now the same as the first example in this sample user
session).

At this point you may wish to terminate the linus session by entering:

65
66

8/86

linus: gq
(Multics ready message)

4-3Y4 AZ49-03a

RESTORING A SAVED REPORT

The report saved in the previous example may be recalled at will.

1 ! linus

2 Y linus: o employer r

3 ! linus: ss employece r u

4 ¢ linus: rsfo EXAMPLE-1.fo.lec

5 1 linus: di -nr -pg 1

9 04/29/83 Sample Report
NAME i JOB | SALARY i AGE | SEX

[|] 1 1

L o

] [] t]

] 1]]

] 1 1]

] 1 1]

] 1]]

] ' 1]
abel i 1 1 $14,555,.01 | 36 | male
abell i 2 | $13,000.01 § 55 | female
a<{MORE> | 31 $12,500.01 ¢ 61 | male
a<{MORE> | 5 1 $12,900.01 } 61 | male
aboe i 4 % $10,201.01 | 41 | female

(43 data lines)

azer i 5 1 $12,600.01 | 44 | male

69 - Page 1 -

71 t linus: di -of example-1

line 1-4
Set up for restoring the saved format options.

line 5
Display page 1 of the report as a verification (i.e., is this the desired
report?).

line 9-69
System display -- note that the report is restored to its original condition
(i.e., restored to the same format as that shown in the example under "Special
Editing of a Report" above).

line T1

The full report (example-1),

Write the complete formatted report to permanent storage in the user's

working directory with pathname of "example-1",

KO HZ ™

©w B a3n

STATE

ak
az
ca
ca
ca

va

Assuming you
want to have the report printed, then the following sequence of events must be set up:

10: 26

CITY

juneau
phoenix

fres
sacr
los

no
amento
angeles

norfork

along with the saved format options segment

(EXAMPLE-1.fo.lec) nowresides in the user's working directory and may be printed or
retained in permanent storage at the user's discretion.

8/86

4-35

AZ49-03A

%*

General Column Options

The following examples look at the "general column options." These options
remain in effect only for the duration of the current query. Every time a new
query 1is performed, new default values are assigned. The options are 1listed
(through use of the list format options request) when their value is different
from the default, or when asked for by name.

1 ! linus: 1sfo -co

2 -column_order "name job salary age sex family state city"
4 1 linus: sfo -co 8 7 12 3 4 5 6;di -pg 1
8 04729783 ’ Sample Report 10: 28
©CITY | STATE | NAME ! JoB | SALARY ! AGE | SEX \ F
i ' i | i i i A
' ! i i i | P M
i !] i H i 1 I
i i : !] i i L
i ' i i H i P Y
juneau ! ak ! abel ! 11 $14,555.01 | 36 | male I s
phoenix | az | abell H 2 | $13,000.01 |} 55 | female | m
fresno ! ca | a<MORE> | 31 $12,500.01 | 61 | male i d
. (45 data lines)
norfork | va | azer ! 5 1 $12,600.01 | 4Y4 | male ! s
67 - Page 1 -
line 1
List the current names and order of the report columns.
line 4
Reorder the sequence of report columns and display page 1.
line 8-6T
System display -- note that the column order has been changed from that

displayed in the previous example.

Even though the columns are re-ordered (line 4 above), the user must still set
and list them in the query order sequence. For example:

69 ! linus: sfo -wid 8 -default;isfo -wid 8
-width city ni3n

Although city appears on the page first (i.e., left column in above example),
the column is still column 8.

71 t linus: sfo -co 7 8;1lsfo -co
T2 -column_order "state city name job salary age sex family"

Notice that all columns were not named in the -column_order request above (line
71) and that the system defaults all names (line 72). Future displays of the
report will have the columns reordered to 7 8 1 2 3 4 5 6 until changed by the
user.

4-36 AZ49-03

T4 t linus: 1sfo -ex
75 -exclude nn

77 ' linus: sfo -ex age job;di -pg 1

81 04/29/83 Sample Report 10: 31
STATE | CITY i NAME H SALARY i SEX i\ F
| : : i .\
: | | | DM
| | ' i I
i] i 1 i L
i i H i P Y
ak | juneau i abel ! $14,555.01 | male i s
az | phoenix i abell ! $13,000.01 | female | m
ca }! fresno i a<MORE> | $12,500.01 | male i d
. (45 data lines)
va { norfork ! azer i $12,600.01 | male 1 s
140 - Page 1 -
line T4
List columns currently excluded from the report.
line 75
System display -- the response is "", meaning that no columns are currently
excluded.
line 77
Exclude the age and job columns and display page 1.
line 81-140
System display -- note that the age and job columns have been excluded

from the report (i.e., the report now consists of six columns of data
instead of the eight previously included).

142 ! linus: sfo -ex "";1sfo =-ex
143 -exclude o

Execution of line 142 restores the age and job columns previously excluded by
execution of line 77. Line 143 is the system display indicating that no columns
are currently excluded.

§-37 AZ49-03

The next few examples look at the "group" option which is used in conjunction
of rows based on

with other requests.

the content of one or more columns.

145 1
146

148 !
149

151 ¢!
155

201

214

linus: 1sfo

-group

-gr‘
linus:
-outline
linus:
0u4/29/83

STATE | “CITY

ak Jjuneau

. (16 data lines)

az ! phoenix
]
1

]

. {12 data lines)

tucson

ca fresno

. (6 data lines)

nn

"n

sfo -gr state city sex;lsfo -out

This option is used to define a

sfo -out sex;di -sort state city sex -pg 1,2

Sample Report

NAME

bambry
gaskins
justin

abell
c¢<{MORE>
june

monaco
nevitte
pauley
n<{MORE>
ordeman
bane

a<{MORE>
c<MORE>
jupiter

4-38

JOB

-
OO

18

20

15
10

13

23
19

- Page 1

[}
i
i
I
[}
L}
1
I
'
|
1
|

SALARY

$11,501.01
$14,700.01
$12, 000. 01

$13,000.01
$18, 300.01
$10, 900. 01

$12,300.01
$12,300.01
$11,600.01
$12, 400. 01
$15, 200.01
$15,200.01

$12,500. 01
$12,1400.01
$ 4, 100.01

"group"

AGE

66
78

55
38
73

30
77
56
57
21
50

61
53
47

10: 33

SEX | F
VA

M

s

I L

1Y

female | d
1 s

'm

female | m
1 d

-]

female | d
1S

i m

male I'm
1 d

female | m
male 1 d
' s

'm
AZ49-03

This ends the first page of the report (refer to line 151 that set up a two-page
display). The second page of the report immediately follows the commentary
describing the setup for page 1. .

line 145

List the columns currently set for grouping purposes.
line 146

System display -- no current grouping set.
line 148

Set grouping for columns (state, city, and sex), and list the columns
currently set as candidates for duplicate suppression.

line 149

System display -- no current outline set.

line 151

Set the outline column value to "sex." The outline option is used to
suppress duplicate columns. Outlining is done when the value of a column
is the same for the current row as it is on the previous row. Outlining
is never done when it is the first row of a new page. The example sets
outlining for the sex column. The sex column is the most minor column
in the group and therefore all columns more major have outlining done
also. The second request on the line invokes display (with sort) of
pages 1 and 2. First the data has to be sorted so that use of this
option can be ‘further described in later examples.

The following example is page 2 of the report invoked by the second request on

line 151.

04/29/83 Sample Report . 10: 33

STATE | CITY ! NAME i JOB | SALARY i AGE | SEX | F
: : : : : : A
: ! : : : : P M
! : ! H ! ! VI
: : : : : : L
H : i H H i P Y

ca | fresno { leeland | 14 | $32,800.01 } 77 | male 1 d
! ! m<MORE> | 9 | $10,200.01 !} 32 | H-)
| ! mcclung | 5 1 $13,100.01 | 71 | im
H ! m<MORE> | 1} $14,100.01 |} 26 | i d
i | monger | 21 | $12,600.01 61 | 1 s
! los angeles ! aboe ! 4 1 $10,201.01 } 41} female | s

. (37 data 1lines)
i san diego i abraham | 6 | $15,000.01 | 25 | female | d
] i c<MORE> } 2 | $13,000.01 |} By H-}
' ! kang ' 22) $19,201.01 ! 23 | i m
1 i levy ! 18 | $10,800.01 | 66 | i d
i ! m<MORE> |} 13 } $14,800.01 | 71 4 I s
1 { meccrary | 8 | $13,000.01 } 25 | i m

- Page 2 -

4-39 AZ49-03

Sorting is done external to MRDS. The values must all be retrieved before
sorting can be done. When display is invoked without control arguments, the
system defaults to a new retrieve on each invocation. The next two examples
show how this retrieve can be kept and then recalled.

216 ! linus: di -sort state city sex -kr -pg 2

220 04/29/83 Sample Report 10: 34
STATE } CITY i NAME v JOB |} SALARY ! AGE i SEX Y
d i i : H i S
i H i] H : M
i 1 i i i i I
]] 1] i i 1 L
i H i i : H HE 4
ca i fresno i leeland | 14 | $32,800.01 | 77 | male 1 d
! ! m<MORE> | 9 | $10,200.01 |} 32 | is
! ! meclung | 5 1 $13,100.01 | 71 i m
! ! m<MORE> | 11 $14,100.01 | 26 | i d
' | monger | 21 | $12,600.01 | 61 | i's
234 | los angeles } aboe | 4 1 $10,201.01 | 41 | female | s
. (37 data lines)
! san diego | abraham | 6 | $15,000.01 | 25 | female | d
! ! ¢<MORE> | 2 1 $13,000.01 | 4y I}
! ! kang ! 22 | $19,201.01 | 23 | im
H i levy | 18 | $10,800.01 | 66 | i d
! ! m<MORE> | 13 | $14,800.01 | 71 | -
! | meerary | 8 | $13,000.01 | 25 | I m
279 - Page 2 -
line 216

Sort the state, city, and sex columns; then display page 2. In addition,
keep the results of the retrieve.

line 220 - 279
System display.

The sorted data is now retained for future use (see -kr on line 216). Future
display requests may now re-call the kept data (i.e., the amount of system time
required after execution of line 216 until the report is displayed can be minimized
in future displays).

281 ' linus: di -kr -or =-pg 2

The display results (provided by execution of line 281) would be an exact copy
of that provided in line 220-279 above, except that the time required to produce
the report is less.

440 AZY49-03

Outlining can also be done on columns which are not a member of the group. For
example:

283 ! linus: 1sfo =-out
-outline Msex"

286 ' linus: sfo -out sex family
288 ! linus: di -kr -or -pg 1,2

292 04/29/83 Sample Report 10: 36
STATE | CITY i NAME i JOB | SALARY i AGE | SEX i F
: ! : : : : DA
! : : : : ! | M
i | i i | i "
i | i] 1 i i L
i i | i i i Py
ak | juneau \ bambry | 10 | $11,501.01 | 66 | female | d
! i gaskins | 6 | $14,700.01 | 31 | I s
H { Jjustin | 2 1 $12,000.01 | 78 | i m
. (16 data lines)
az { phoenix { abell H 2 | $13,000.01 | 55 | female | m
H i ¢<MORE> | 22 | $18,300.01 | 38 | i d
! ! june ! 18 | $10,900.01 ! 73 | | s
. (12 data lines)
! tucson | monaco | 20 | $12,300.01 |} 30 | female | d
! { nevitte | 15 | $12,300.01 } 77 |]
H \ pauley | 10 | $11,600.01 | 56 | |
338 ! i n<MORE> | 5 1 $12,400.01 | 57 | male '
i { ordeman | 1 1 $15,200.01 | 21 | 1 d
ca i fresno | bane ! 13 { $15,200.01 | 50 | female | m
. (6 data lines)
' { a<MORE> | 31 $12,500.01 61 | male i d
i i c<MORE> | 23 | $12,400.01 | 53 | i s
! ! jupiter | 19 | $ 4,100.01 | 47 | ''m
351 - Page 1 -
line 283
List the columns currently set as candidates for duplicate suppression.
line 286
Set the outline column value to "sex" and "family." (Refer to additional
description regarding outlining in the commentary of line 151 above.)
line 288

Display page 1 and 2 using the data retrieved during the previous invocation
(-or), and keep the retrieved data (-kr) from this execution for use in
subsequent invocations of the display request.

line 292-351
System display -- note the family entry for line 338 is blank indicating
duplicate suppression of "m" which would normally have displayed (see
line 201 above).

Page 2 of the report is not shown.

4oy AZL49-03

This page intentionally left blank.

5-42 AZY49-03

The size of aretrieved table can cause a process directory quota overflow when working
with large tables. The-temp_dir control argument for the displayrequest allows the
user to provide a directory for the retrieved table where enough quota is available.
The -temp_dir argument can only be used when requesting a new table.

353 ! linus: di -or -kr -td [e wdl -pg 1
354 linus (display): Warning: The temp_dir >udd>Demo>linus_test won't be used.

line 353
Display page 1 using the data retrieved during the previous invocation (-or)
and keep the retrieved data (-kr) from thls execution, utilizing the
temporary directory "wd" .

line 354
System display -- warning message because a newretrieval was not requested
(i.e., =-0ld retrieval was used).

Page 1 of the report is not shown. It would be an exact duplicate of that shown in line
292-351 above, if it were included here.

356 ! linus: di -kr ~td [e wd] -pg 1 -sort state city sex

line 356
Display page 1 using a newretrieval, keep the retrieved data for future use,
and utilize "wd" for a temporary directory.

Page 1 of the report is not shown. It would be an exact duplicate of that shown in line
292-351 above, if it were included here.

- = - T - — - - - - - . = D D > =S W D = - P P = =D T = - WD W - = D - . - —" - D = — - b =P

To verify that the working directory (wd) was in fact used for the temporarydirectory,
enter:

358 ! linus: .. 1s
359 Segments = 224, Length = 353

360
361 rew 0 !BBBJNHFGnQJX1w.temp.0565
369 r w 0 !BBBJNHFGmXFcFB.LINUS.table
370 rw i EXAMPLE-1.fo.lec
317 row 1 sex_lookup.lec

line 358

Escape out of linus and list the current contents of the working directory.

line 359-371 ’
System display -- lines 359-369 outlines the areas used for the temporary
directory. Note that 1ine 370 is associated with an earlier example where the
contents of a report was saved (refer to "Saving a Report and Resetting
Options") and line 371 identifies the segment which contains the exec_com
used to change "m" and "f" to "male" and "female" for the sex column (refer to
"Special Editing of a Report").

8/86 4-43 AZ49-03A

375 ' linus: 1sfo -pb
376 -page_break '

"n

378 ! linus: sfo -pb state;di -kr -or -pg 1,4

Line 375 is a request to list the current columns that are candidates for new
page breaks and 1line 376 says there are no current candidates. The following
four examples show full-page representations of the results of the requests in

line 378 (set page break value to "state"™ and display pages 1 through 4).

4-yy AZY49-03

10: 39

Sample Report

04/29/83

froet =+ >

SEX

AGE

SALARY

NAME

CITY

STATE

TNETVNETNENETNETNEDTD®

———————— —— ———— ————— —————— ———————— - e . -

female
male

OO MMt~ O — =MNr— OV MM
O M=o NO =AM MO AN O OO B

1
|
1
1
1
1
1
i
[}
[}
1
1
1
|
1
|
!
1
]
}
t
|
[l
]
[}
|
[}
i
t
]
i
i
1
i
1
1
1
|

Lol el el sl ol ol ol ol il il i i ol o i
QOOO0OO0OOCOOO0OO0OO0OOODOOOOO
e & o s s s & 8 s s s 2 e 4 s e s e o
—TO OO0 O0OQOONOO0OOOOOOOO
[efeNoNolaJoNolaNoligloRoRoNoeNoNoRoNoN o]
N~-OUOQOOO NN OO =ML Mm
L I T T T T T S N N NS
T NOOTNONT NN NNTNO
Ll el Bl B — e O\ o
B 6 7 FF 3 7) O)) A B BB DN B
OWANNOMOF S~ = O~ - O
A A = — N ANl = = Al —

n T AANO QN Y]
e S O S Log I > o
o - O @O e o0 oS O -
OO SO0 —NMOWAO T
ENNOCETEE NTOVOLCTOE @t > 3
TOCIWAOAVVOLOOOODOY OO O®
ODMESEECcOoOOMN-HEEEEC Q
o
©
(3}

[«
3
b]
A
©

- Page 1 -

AZ49-03A

4-45

8/86

10: 40

Sample Report

0l4/29/83

(o, et 35 b] D

SALARY

JOB

NAME

CITY

STATE

ETCTWNWEUDNENETNETDTN >0 0NE el

female
‘male
female
male

WO M™~ONO™ OO I~-NWO MO
DN~ MO NSNS~ O NN

i
!
1
)
1
1
1
]
[
1
1
1
]
1
1
1
1
'
!
]
!
i
1
t
1
1
i
I
t
I
1
]
]
]
]
]
I
1
!
I

T T T T T T e O
[sjoojeooNojofeooloeoNololleNoNeloNoNe N o)
¢ s e e o o " e & 2 s e e s o s e »
COO0OO0OOOOO0OOOOOO0OO0OOO00OOO
[ejejoloolojolooooeloNoloojlole ool
CMOOWVOO—OMUNNANMNNO MMO TN
L N L L . N S N Y N ST N -~ o on
MOOUNMNON—aANNT —ONNN— NN
= Al — — «— M= = ™ ™ ™ ™

m<MORE>
m<MORE>
maclin
manzo
mcecoy

| meagher
dupuis
monaco
nevitte
pauley
n<{MORE>
ordeman

az

- Page 2 -

AZ49-03

4146

Sample Report 10: 40

04/29/83

SR ol S .]

NAME

CITY

STATE

ECNETNETNETNEDTN ETDNETVNNETDNTNETNEUTNENETNEUTNETET®N EDN

37721-61-100”.926720485072”690574452661!110.4587
WO =N WO ST MO N NO NN~ ~DOINMNMMNME~-OT NN O N O NN N

1
)
]
1
'
i
1
r
!
1
)
i
I
]
)
1
)
I
!
i
!
I
]
]
!
1
1
I
I
)
i
|
!
i
1
|
1
1
i
|
1
|
'
I
[}
!
1
I
'
i
]
I
!
1
!
1
1
i
I}
I
t
|
[}
I
I
|
1
|
1
|
'
!
1
[}
1
I
1
|
]
i
[}
i
t
|
[}
J
1
1
!
I
i
L}
[
]
'
1
]
I

A anll nd el el el et e ol el St it i 2t i el i el i i s el sl e S e e it el i e ol sl e sl ol i ol Sl B i sl Sl el el
[ojeojojoojojojolojojeojolojojelojajojoNojojojojojojojojajojojojojojajejojojojoojojoolojololoNolo]
¢ 6 e s 8 s e s e e s e 8 s e e s s e s e s e o * e & 4 o ¥ 3 * & 6 s s s s s 6 s & e s o s o o o
[eoleojoReololoojojolooloolohvicloRojojoolojoolojojoloNolooloojoloJojloNooojoolola oo o o
[eReoloReNoNololojojoNoeololeolofooReooNaolojoNoNooololaJolojoNo oo oNulojojo oo oo No NN o)
N~ OM~ONOVNTF~ON"T—ONNOMNITOWAHROOWRAITFOVO~OANAITOVO—N~-OVMMMNONMITr VINO
77777777777777777777777777777777 “ " m e e AR e R e
LMANOONN~ANNITNOMNTNOONNN—INANXOTIFNONFNN—TANN—TNOOTNONIF NN e~
o - M= — = — — Ll el ol el el el et 00 I ol i B B AV B i o B B B ol e el el ol e e el i -

P) G A) B 3 O R R A B AR A R DN R SRR G D R R B R R R R R DR R R R R TR R R R

Lad NN — ANl v — [qV¥] [QUNQVEL i o Al v v N — — - A} = — N — v
Q@ AN LTA N AN~ NOA o P NN DuANAN TO
o L ol o o oid g, CERNK OO > MW B wn o + =]] S oM L. 0O
o SO @-HES P K IO N PEE SO TCO O o3 L oP [Qe > OO @ @ >
VL O0LMOOHAO O WY VP MO0 WL OHANMONQ OO A 2O 00 00O VS o
COCOLOTEZ QOEOECOINIOIZCOR>LELELOODHLAHOODELEUOZAEZZ S 000
TOOOWUWOAOVYVYIOVOVOOOIOVVIOIOLONOYVY TVIOOLVLLOTHAOY TV OOLVYV OCOOO
OMM EEEECONHEEEEVTONAEEEECQO WM EEEECOCOWMNEEEECO®ONHEE
2]
@ o
— +
) =t
0o [}
o < E
=} © ©
n 1S
[2] Q
S o @
Gy — 2]
@
9]

- Page 3 -

AZ49-03

4-47

This page intentionally left blank.

4-48 AZ49-03

10: 40

Sample Report

04/29/83

oo« 2

SEX

AGE

SALARY

JOB

NAME

CITY

STATE

ETVNETNETVTNETVTNETENETNEDVNIONETNETNENETNETDNETDTNTNET

® [0} [}

— — —
5} ® [} @©) @ o
— a — IS — g ~
@®© 3 ® [© [} @
15 Gt & G = Gt g

OO MO—=INN—NTOMNMOANN—~-ONONOINMINANOWNWOINONO— MEI=-NN O
T OMANTNO-ANS-ANNNSFEOOOMNMANNNAN—FONOS-NSTONME-NDND=NWO NN Nt

I
1
1
1
1
[}
i
1
1
!
1
|
[}
)
I}
1
!
i
1
i
1
1
1
!
1
i
]
}
]
]
1
1
1
1
1
1
1
)
1
1
1
1
1
1
]
t
i
]
'
'
!
]
t
i
]
1
1
i
1
L}
[}
1
1
1
1]
!
i
I
1
I
1
L}
1
I
!
I
]
I
]
I
'
|
!
|
1
I
[}
!
I
]

T T T T T T T f e P P T e e T e T T B e e T T T T T T R T T e e T T T T T T T T v
ejejejojojojojooolooojoooojelaojoooojojojoojoNoloooloolelooNolole ool oo N ol
.......... * e e & b s s s 4+ s s & o s s e e & & 2 s e e & + e 6 ¢ o s o
[ejojojololohnici=dcleioolaolojojololojololololojooolojololoRoh deloloRo oo ool oNoNe Nl
[ejejojolololoioololojoRololisioelojoloolaoolJoleoojojoloooNoloJooNooloNeoloNoRe N o)
O NTOONXXO-MT MO ITOWOTNMAT I — MMM O MNUNOM-OV OV v
ANMNMITOLMOOTMOOMANNITNNTOONOTNOOTNNrm I aTANNIT —ONNNNT NN —
- — Mr— — ™ = = ™ — oo M= ™ — = — — e e e M- — v — — — — — Q]
G 5 6 O 6 7 B O R R R P R R K G DR D H D S H) D D R R D D R D

Al — — N — — NN~ AN — — - NN~ O} v A A andl and
g AN A > o XA NN — A Q A S nA [& o Qac
c oo @] M >»oogo oMM g0~ M -+ O oMl <o EMX — o = g o
— 0 © o .o L moOooOo0X oMM © @A T > UK © C 0o C OO LVATON
Mngg oO a0 rlttcOnOOOthPnlnkOimiaOZ.lnontYC.l_ncl
TO2RLECPE OOCIOCZOZEZE O30T~ O =T S P OO0 Q0SS I >O0 2D
VOOV TV OOLVLOLVLIIVIVVV OOV IOCOLDAKITYV OOL.AV O OCOOUOWIOL O
EECOQUONMMEEEECQONEESEEECOLOWNX EEEECOOONAHEEEECQAC OC Q
o]
o
%]
[e) o N
L o] (9} 3
= <] = ~
[} [}] 9]
g o £
© o Gt]
= +
O = j= =i
© © © 4]
%] n 7] w

]
]
t
i
1
i
i
I
]
1
1
]
3
[}
1
[}
!
1
[}
1
1
I
]
1
[}
i
1
[}
[}
[}
1
L}
1
1
1
1
1
i
}
|
[}
1
1
[}
[}
1
!
i
]
1
1
1
t
1
1
1
'
1
1
]
I
I
t
'
I
I
i
'
1
i
1
1
]
i
[}
1
t
|
1
|
'
]
1
1
[}
|
[
1
t
I

ca

- Page 4 -

AZ149-03

4-49

Now we will experiment with column subtotals and totals. A subtotal specification
is given in the form of one or more "triplets." A triplet is given as the
column to be subtotaled, followed by the column whose value change should generate
the subtotal, and optionally followed by "reset"™ or "running" to indicate what
type of subtotal is desired. Reset is the default. In the following example,
line numbers 1-8 are intentionally left blank.

9 !t linus: sfo =-rhv """ —rfy w»
11 ! linus: 1sfo -stt
12 -subtotal nn

14 ¢ linus: sfo -stt salary,state,reset

The subtotal inherits its width, editing request, ete. from the parent column.
The width of the salary column must be increased or the subtotal will be folded,
and a larger picture is needed to edit it through. The age and job columns are
left at their present width so the filling of numbers can be seen later when the
numbers become large enough.

16 ' linus: 1sfo -wid salary
17 -width salary nion

19 ! linus: sfo -wid salary 14
21 Y linus: 1sfo -ed salary
22 -editing salary "[pic $22,2z9v.99 [clv salaryl]l"

24 1 linus: sfo -ed salary "[pic $zz,2zz,zz9v.99 [clv salary]l]"
26 ' linus: 1sfo -al salary
27 -alignment salary "decimal 8"

29 ' linus: sfo -al salary decimal 12
31 ! linus: di -nr -kr -sort state city sex -pg 1,4

35 04/29/83 Sample Report 10: 42
STATE | CITY ! NAME ! JOoB | SALARY 1 AGE t SEX ! F

H i ' 1 d | | A

1 i d H i i i M

i i | i] i P I

! | | i g ' i L

H i |] i i Y

ak ! juneau ! bambry | 10§ $ 11,501.01 | 66 | female | d

! | gaskins | 6 1 $ 14, 700.01 | 31 | I s

H i justin H 21 3 12,000.01 | 78 | I m

. (15 rows of data)

paul

73

i3 262, 056.19 |

64 ak
. (30 blank lines)

95 - Page 1 -

450 AZ49-03

line 9

Set row header and row footer values to "default.”

line 11-14

List current value for subtotal,

line 16-29

and set up new value.

List current value for width, editing, and alignment of the salary column,

and set up new values.

line 31

Display pages 1 through 4 of the report, starting with a new retrieval,

sorting the report as indicated to get back into the full format,
keep the retrieval for re-use.

line 35-281

System

(total by state

display

pages of the report follow.

97 04/29/83
STATE

[
]
1
1
]
I
]
]
i
i
!
!

az H
]

. (13 rows of data)

127 az

. (31 blank lines)

157

CITY

phoenix

tucson

abell
c<MORE>

monaco
nevitte
pauley

n<MORE>
ordeman

see line 64,

127,

and 276).

Sample Report

JOB

20
15
10

- Page

4-51

SALARY

13, 000.01
18, 300.01

A

$ 12, 300. 01
$ 12,300.01
$ 11, 600. 01
$ 12, 400. 01
$ 15, 200. 01

$ 272, 700.19

55
38

30
7
56
57
21

-- note the inclusion of subtotals in the salary column
The remaining three

and

10: 42
SEX I F
1A
I M
VI
i L
S
female | m
i d
female | d
H-
im

male !
i d

i

H

AZ149-03

This page intentionally left blank.

452 AZ49-03

10: 42

Sample Report

04/29/83

159

foyoed 2 >

SALARY

NAME

CITY

STATE

b

fresno

ca

(13 rows of data)

10, 201.01
9, 500. 01

aboe
cowes

! los angeles
]
]

(17 rows of data)

12, 800.01

barrett
i gill

| sacramento
]
[}

(12 rows of data)

7

14, 000.01

$

meecoy

- Page 3 -

219

143

10

Sample Report

04/29/83
STATE

221

£ 9

SEX

SALARY AGE

JOB

NAME

CITY

Lo - o e -]

EonEvD®V

900.01
000.01

’’’’’’

12
13

I
15
13

AN
ccc © [
- O © © . o
XNungEg oo
[=T P I S
VoL mav
EEC QWO
o
- o
o o0
[3]
=} o
@ ©
[

%) =1
© ®
% %
©
S}

(16 rows of data)

10, 100. 01
14, 700.01 -

baur
i gnandt

H
I

t san francisco
]
]

(17 rows of data)

TN EDT

L]

~

© Qo

=) —

[[

Gt £

B~ 0N Oy

o b=t T

- | N

OCOoOOoCOoO 1O

o e o o | o

OO 1M

COCO 1IN

SO~ N

[S

NN~ 1N

— QN |.O
1M
1 =
| el
!

! santa cruz
]
]
]
]
[}
]
(]
]
1
]

ca

276

{4 blank lines)

- Page 4 -

281

AZU49-03

4-53

The following example shows how to get subtotals for multiple columns in addition to more
than one subtotal per column.

- - — - - - — - - -~ - — — " A W W . . = - . - > W W W - - -

Sample Report

JOB

1 linus: sfo -stt -prompt
2 Enter -subtotal.
3
4 salary,state job,state
5 .
7 linus: di -or -kr -pg 1,3
11 04/29/83
STATE | CITY i NAME
.] 1
| |
H H
]]
] 1
H i
ak i juneau | bambry
i \ gaskins
H i Jjustin
H { macleod
i | manuel
! { m<MORE>
\ { m<MORE>
1 { nesline
H i ord
t]
1 1
I 30 : :
i i abel
i i cooke
H | jones
i { ledger
i | maclure
i ! m<MORE>
H { mead
i | molloy
H | nevling
H { paul
i :
| 43 ak ! juneau '
" : :
] w6 ak i Jjuneau i
[})
]]
} 49 ak : :
. (22 blank lines)
71
line 1
Request to set columns for subtotaling,
line 2
System display -- prompt.
line 3-5
Set column values to be subtotaled, and
8/86

554

———— - ——————————— s e -

A 0 A O 5 o B

! age,sex salary,sex job,sex age,city salary,city job,city

SALARY

11,501.01
14,700.01
12, 000. 01
18,500. 01
10, 000. 01
14, 900.01
13,000, 01
10, 100.01
9,200. 01

113,901.09

14,555.01
12, 100.01
13,000.01
21,900. 01
14, 700. 01
12, 100. 01
12,700.01
4,300.01
32,500.01
10, 300. 01

- — - - ———

262,056, 19

with prompt.

age,state

AGE

-

terminate the prompt.

-
o

SEX

female

female

male

male

=
w

SuvaSsSunaoasona W[OHIZ>

easSuvasE a3 on

AZ49-03A

Display pages 1 through 3.

line 7

System display -- the display of pages 2-3 follow.

line 11-195

10:43

Sample Report

04/29/83

73

Ty et B0 b D

SALARY

NAME

CITY

23]

STAT

sEongoneE

O Me—t~cON | =¥

M-I~ | O
[BRAS]
|
t

Ll nll el 5t ol ol o B I

COO0OO0OO0OOO0 1O

------- | Y

QOO0 O0O0O 1O

[ejelooloNoRol Rel

OMONO WO | =+

111111 | Y

MO OINNOD | O

Lol ol ol ol 1o
]

}
1
t

1 —
N — — 2“9
]
1
A AN
<5} JOR L3 <3 e
— o [\ === ~2e}
—~ O 000w
OECUOIZE @
Qv J3ovv o
O~ EESE
b
o
[
[
Q
£
o,
N
©

——
NET N ET N>
L] Lo}
~ ~
]]
= =
OO RNAIFP~ND 1 O
[QURTR T i n Ao T e W o VN R o

=

|

!
—r— e 0O)~
OO OQOOOO 1O
e s e &+ b s w e | I
[eloNoReNoNoNeNoll Nel
[eJeoloNeNoloNaoRell Nel
—TOMIONMNO |0
”””””” | RS
—t N NT—ON | O
Al v v «— Me—— | —

1 -~

|

1

1

— N} — — — | O
!
!
1
I
S < [V]
(OS] O PSS
TN O~ NO w3
oS O Cc0OaQ
oo ®wOocoOo3
oW 8§ EEEDT
Ll
ol
<
(0]
Q
<
Q,

phoenix

-—
o ng
o [}
~ ~
a4 ©
£ =
(] [}
G]
oM~ I N
M~ 1O

| I

[}

1
— e | M
QOO 1O
s e o 1 e
QO 1O
QOO0 1O
MO 1 N
“ o ol =«
[V GV 2 Vo)
— e M

1

]

i
H RS | R

[
O+ >
0w o
@ e =
o3
O o awm
[~ i =)
=}

[0}
0
3}
=
L

——
O
[\ (]
— —
[@©
£ =
t~v— 1t 0O
52"7

]

]
- | QN
OO 1O
o o | e
QOO 1O
OO 1\O
F AN
o ol =
[QURTo T B
—— QN

1

1

“
R | L
51“6

!

1

1
AN o
] @
o g
[N}
=T
VoA
o O

<
[}
0
Q
=3

EL)

N
©

- - > - -

|

-——— -

tucson

az

63, 800. 05

az

(10 blank lines)

- Page 2 -

133

AZU49-03A

455

8/86

10: 44

Sample Report

04/29/83

135

SALARY

NAME

CITY

STATE

Rl and i el ol ol ol I Y
QOO0OOO0COD 1 ©
. s s e s o 1 .
CQOO0O0OO0OD I O
DO0OO000O0OO 1 O
N—O~O0OnO | ™~
NNOONN — o
- = - o

LA RARHR | B

MOIFTTFTOoONOo | =
- NN = v | O\
1
!
!

eorge

ang

aclure
marcey

bane
mcerary

meakin

ca

L)]
- ~
[©
5 5
— MMM ~—O — | O
NN | N
1=

]

1
e 0
COOCOOOOO 1O
¢« + 4 s e e « 1
COO0OQOO0O0O0O 1t O
00000000 1 O
DI~ N~——\O | ©
””” ~ n ol o
ANNTNOMNIT N) —
— M= == | —
|t

}

}

820 E

195,500. 15

$

fresno

BEOWVWED®VNED®

[

femal
female

—OIT NANO~NOT 1
FIONMOINANOITTON T

=y

!

1
e O
[eX-F-F-R-R-F-F-R-R-NN I
. . * e o o 1 o
—OO0Q0O0O00O00O0 | —
[oNejoRoloNoNeNo No ol o]
ANONNMNITOOVRNROO | ©
L N S T Y S U T ST S Y N
ONNN—=INNDO D= 1O
Lol —e e]

1 v~

1

1

T OUNNOWOVANNOM
NN — N ——

los angeles

TwnEvuEg oWV

Q
—
©
15

OO~ o O
o mm

14, 800
12, 600
s

12,

R A0 RO BB

T O™ —\O — b~

Lo N o= —
A N [}
s 2] 1) 2 >
[P x 3 0P
MO NO O O~
EPLDE L O QO >
CV GV OO O
O WX EESEEC

- Page 3 -

195

AZ49-03A

4-56

8/86

To see how the totals feature works, the last page of the report must be examined.
The example eliminates page breaks to cut down on the number of pages generated.

197 ! linus: sfo -tt age salary job
199 ! linus: sfo -pb "v

Just as retrieved data can be re-used, so can formatted reports. The last few
pages will be examined, but display will be asked to keep the formatted report.
It will use the previously established temp_dir to place the copy of the formatted
report.

457 AZ19-03

di -kr -or -krp -pg 33,%

! linus:

201

T

o

Sample Report

04/29/83

[EFREE - TN S

AGE

SALARY

NAME

CITY

STATE

54

v o
~
C @
=] g
a1 O
[Ta I BiVe)

1 =

1

i
— I O
o 10O

e | .
ot O
(=28 N el
= 1 N

-
T I M
— 1M

[

!

]

}
“© | ¥
- I

IOy

}

t

1
~
—~
)]

E=}
S
@
[=)

{ rutland
1
1
i-rutland

vt
vt

(]
1]
! rutland

vt

1866 E

'
]
478,511.36 |

$

s]
431 |

vt

Twngongon

seattle

- —— - - —————— - ——

wa

ETWVWETWVNETDT

NOWNWOWMONI~T | O
onnOIIIINTN O

| =

i

1
—F e e | Oh
lojojojojoNoloNoRoll e
e o s o 2 e s ¢ o} .
QOO0 O0O0O0O0 1O
COO0O00O0O0OQO 1O
ONMINO—~0O 1 ™M
’’’’’’’’ | IS
MOINNNITOON 1 O
— Q) = M= t N

[

1

|

[}
AR ARV RN | N

seattle

i
]
]
i
]
]
[4
i
]
1
]
]
1
]
]
[}
1
]
]
]
i
I

seattle

ETCTwWET®VNET®

V=T O™ INO~-O I 1N
M N~ a | o

[Bsal

i

J
—r e e O
OO0OO0O0O0COO0OO0OO0O 1O
L R R | -
O~ 0000000 | —
[oReoloNololoNeNoNo Nl Ne)
NOOWNMOIFr~h-M | N
R L 1 -
OoOMNMO NN~ | O
— ———c O

{ —

]

1

A
B APRAAORAH | &

— - NN — — I~
| I ol
]
1
- 0 AN B4
ook ISHS S o
Qwd O @ @~ O~
TX NO A3 0N 5
~ S TEONT~PD
OV OV OUCOLOUOOw®
oM EEEEC O
@
—~
—
[
=z
©
4
—
3]
=
L]

- Page 33 -

AZ49-034

4-58

8/86

10:52

Sample Report

04/29/83

foy et 2 1 >

SALARY

JOB

NAME

1 i 1
| [} 1
1]]
] [} 1
I 1]
I 1 t
[} 1 1
] 1]
1] 1
! ! 1
1] 1
1 1 1

CITY

cTwnEgoTNnEeoTns

N~ MOOO IO~ |
1w

1

1
Ll i el ol el sl el 2l Sl B @Y
COOODOOOOO0O0 1O
----- DR R Y
QOO0 QOQOO 1O
[cNoRoNololojoNoNoll Ne)
AACONONTFT~ONO | —
””””””” 1 -
T ANNTFNONINN TP
— - Me— — —— |
| I

!

)

1
PR R RN R AR B
NN —— | N
N~ — N Lo
| —

1

1

o A
o ckH
SN ooMm @

SO0~ 0O L s

SO OCE L S

s O @w oV A OO

QuHEEEECO
[3) @
— —
— —
© [
= =
@ ©
— —t
—t ~
[©
= =
© @©
= =

929

236,301.18

$

220

]
1
! walla walla

wa

wa

ngownweEv g

NN~ |
1=
!
!
1111111111._9
OO OO0DO0OOOOO0 1 O
» s e e & s e s e |
OTO00O0OQ0QOCO | «—
O ~00QCO0O0OO I (N
TONVOOWON® 1O
L N Y S Y N 1 -
NOONMNMAN = (O O
-— Rl lh ol ol el —
—

84“-.050622
NN N

A A o
> 2] 23] S
v X 2 fa =t ~
— 00O cO MW
—HOoOCE X OO
>3V TV O C
D mEEEEC O
>
®
el
o
(V]
[
S
o)
o~
=

NETVTVNET®VNE

n-t~nNno oo |~
| =
1
1
Lol aadll nalll il il ol 2l Lol B @)Y
OCOO0OO0OODO0OO0OOO 1O
e ¢ o s e s e s o1 .
QOO OOOOO0O 1O
COOO0OO0OOOL I O
MNMOoOTITTTTTONO 1N
’’’’’’’] -
TOONTTNNOL W
M= = v — — O] v— o
—

- Al ¥ 1o
| I
!
1
T AAN QA
LPELOMM [wli]
-~ QO o CeHog
oL PLP~AO00A~0O
COIOEETOnx
OO0 WMaTVYV OOV
omH EEEECQ
>
@«
a
<
()
[}
1%
<1d]

]
]
! green bay

12,500.01
12, 410. 01
11, 200.01
14, 200. 01

racine

- Page 34 -

AZ49-03A

4-59

8/86

Sample Report 10:53

04/29/83

SO s -]

SEX

SALARY

NAME

CITY

STATE

.....

m<{MORE>
m<MORE>
moldt

n<{MORE>

]
1
i
t
1
[}
[}
[}
1
1
i
[}
[}

wi

EUCTWnNET?NET®

[
—
©
1=

N = O =DM 1O

Al — — [aVINN BeY
]
]
1
[AT "] A
[PN 25 B B <l < B ol 23]
L owe o 3H oM
OO O N NO
XL O3 0T HE
WSV 000 OV
QwmEESECO

]

[

o

o

©

S

Pl

3

o

wi

t
t
[}
i

1744
49106

0w N
= o
-1 .
o non
o=
= 11O
-1 -
™ 3 —
o
= 1 o

([N

1" m

"o~
+ I P
T o
N no
=+ um

"o

" —

wi

- Page 35 -

AZ49-03A

4-60

8/86

Now that the report appears correct, it can be written (saved) toa file. -old_report
will be specified so that display uses the previously formatted report.

203 ! linus: di -orp -of SAMPLE_REPORT -kr

The complete report (SAMPLE REPORT) now resides in the user's working directory and
can be dprinted at will. The -keep retrieval control argument was specified in order
to continue this session, but could have been eliminated if the user was terminating
the session after saving this report.

8/86 4-61 AZ49-034A

Now we will experiment with generation of a report utilizing the group footer/header
and left/right trim operations.

1t linus: sfo =-rs

3 ! linus: sfo -pw 60 -tl off -pb state

5 ! linus: sfo -ex 1 2 3 456 7 8 -gr state city
7 ! linus: sfo -gft city -ght city

9 ' linus: sfo -gfv -prompt -ghv -prompt
10 Enter -group footer value.
11y nn - -
121 .

13 Enter -group header_value.
14 1City: [elv city]litt
IRRN

y
U
- e v

16 .
18 1 linus: sfo -phv -prompt -pfv -prompt
19 Enter -page header value.

20 ! 1State: [clv state]!!!

21 1 111}

22 1!

23 Enter -page footer_value.

24 4 1111

25 t 1!~ Page [dib page number] -!!
26 1 .

28 ! linus: sfo -rhv -prompt

29 Enter -row header value.

30 ! Employee [rtrim [clv namel] is [ltrim [clv agel] years old and earns
[pic $29,999v.99 [clv salary]l]t!!

31 1 .

33 ! linus: di -or -kr -sort state city salary -pg 1,3
37 State: ak
39 City: juneau

40 Employee molloy is 22 years old and earns $ 4,300.01
Employee ord is 34 years old and earns $ 9,200.01
Employee manuel is 33 years old and earns $10,000.01
Employee nesline is 27 years old and earns $10, 100.01
Employee paul is 73 years old and earns $10, 300.01
Employee bambry is 66 years old and earns $11,501.01
Employee justin is 78 years old and earns $12,000.01
Employee cooke is 34 years old and earns $12, 100.01
Employee mecclenehan is 71 years old and earns $12, 100.01
Employee mead is 29 years old and earns $12,700.01
Employee jones is 21 years old and earns $13,000.01
Employee meadoows is 77 years old and earns $13,000.01
Employee abel is 36 years old and earns $14,555.01
Employee gaskins is 31 years old and earns $14,700.01
Employee maclure is 53 years old and earns $14,700.01
Employee mccormick is 67 years old and earns $14,900.01
Employee macleod is 43 years old and earns $18,500.01
Employee ledger is 27 years old and earns $21,900.01
Employee nevling is 63 years old and earns $32,500.01

. (37 blank lines)

97 - - Page 1 -

4-62 ’ AZ49-03

line 1-5
Resets all options (i.e., restore the report back to its original format),
set page width to 60, turn title 1line "off," set the page break to
"state," exclude all 8 columns of the report, and group the report by
"state" and "city."

line 7
Sets the group footer/header trigger to "ecity."

line 9-16
Sets the group footer value to a blank line (!!!!) and the group header
value to "City:" (left-justified).

line 18-26
Sets the page header value to "State:" (left-justified), the page footer
(2 lines) to contain a blank 1line (11!11), and the second footer line to
"_ Page X =".

line 28-31
Sets the row header value to read (left-justified and trimmed):

Employee X is X years old and earns $X

line 33
Invokes display, using the sort sequence "state city salary."

line 37 - 225
System display -- notice that the top of each page (lines 37, 101, 165)
indicate a report by state (ak, az, ca). Additionally, the report is
sorted by city, where:

ak - juneau (line 39)

az - phoenix (line 103)
- tueson (line 121)

ca - fresno (line 167)
- los angeles (line 185)
- sacramento (line 207)

and finally employees are listed in ascending salary order.

The remaining two pages of the report follow.

4-63 AZ49-03

101
103

121

161

State:

az

City: phoenix

Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee

manzo is 74 years old and earns $ U4,200.01
meadow is 52 years old and earns $ 9,800.01
meagher is 52 years old and earns $10,500.01
mcclowsky is 68 years old and earns $10, 800.01
june is 73 years old and earns $10,900.01
dupuis is 28 years old and earns $12,000.00
kane is 58 years old and earns $12,300.01
maclin is 79 years old and earns $12,500.01
macmahon is 37 years old and earns $12,600.01
abell is 55 years old and earns $13,000.01
geist is 21 years old and earns $14,600.01
lednar is 71 years old and earns $15,000.01
corcoran is 38 years old and earns $18,300.01
bander is 70 years old and earns $21i, 100.01
meccoy is 67 years old and earns $31,300.01

City: tucson

Employee
Employee
Employee
Employee
Employee

pauley is 56 years old and earns $11,600.01
monaco is 30 years old and earns $12,300.01
nevitte is 77 years old and earns $12,300.01
neubauer is 57 years old and earns $12, 400.01
ordeman is 21 years old and earns $15,200.01

(33 blank lines)

- Page 2 -

4-64

AZ49-03

165
167

185

207

225

State: ca
City: fre

Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee

City: los

Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee

Emnlovee
Employee

Snho

jupiter is 47 years old and earns $ 4,100.01
maclure is 47 years old and earns $ 9,700.01
kang is 76 years old and earns $10,000.01
macmannis is 32 years old and earns $10,200.01
meakin is 51 years old and earns $11,600.01
george is 44 years old and earns $12,100.01
costello is 53 years old and earns $12,400.01
abernathy is 61 years old and earns $12,500.01
mccrary is 53 years old and earns $12,500.01
marcey is 71 years o0ld and earns $12,600.01
monger is 61 years old and earns $12,600.01
meclung is 71 years old and earns $13, 100.01
meadoows is 26 years old and earns $14, 100.01
bane is 50 years old and earns $15,200.01
leeland is 77 years old and earns $32,800.01

angeles

cowes is 58 years old and earns $ 9,500.01
newhall is 30 years old and earns $10,000.01
aboe is 41 years old and earns $10,201.01
giannoti is 45 years old and earns $10,900.01
macmillan is 52 years old and earns $11, 400.01
leestma is 69 years old and earns $12,300.01
katz is 70 years old and earns $12,400.01

orf is 70 years old and earns $12, 400.01
marcus is 62 years old and earns $12,600.01
meagher is 67 years old and earns $12,600.01
mccory is 54 years old and earns $12,700.01
justin is 34 years old and earns $12,900.01
pavlov is 24 years old and earns $14,000.01
macmahon is 57 years old and earns $14, 800.01
nevitte is 39 years old and earns $14,900.01
mccormick is 26 years old and earns $15,000.01
monroe is 42 years old and earns $18,900.01
mealey is 36 years old and earns $21,600.01

barker is 78 years old and earns $32,800.01°

AR LLae $I35&y Ve

City: sacramento

Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee

newman is 68 years old and earns $ 4,200.01
orlaens is 41 years old and earns $10,300.01
mccullough is 62 years old and earns $10,900.01
gill is 47 years old and earns $11,800.01
macmannis is 54 years old and earns $12,200.01
newcomb is 36 years old and earns $12,300.01
kane is 24 years old and earns $12, 400.01
barrett is 65 years old and earns $12,800.01
abodoura is 61 years old and earns $12,900.01
leonard is 25 years old and earns $12,900.01
meakin is 71 years old and earns $12,900.01
monson is M40 years old and earns $13,000.01
mcecoy is 77 years old and earns $14,000.01
keene is 54 years old and earns $14, 100.01

- Page 3 -

4-65

AZ149-03

229 ! linus: g
230 (Multics command level - ready message)

This concludes the sample user session.

4-66 AZ49-03

SECTION 5
COMMAND DESCRIPTION
This section contains a description of the linus command and its associated
requests. Each request description contains the name (including the abbreviated

form, if any), discusses its purpose, and shows correct usage. Notes and examples are
included where necessary for clarity.

8/86 5-1 AZ49-03A

linus

linus

Name: linus

This command invokes linus to access an MRDS data base. It provides both

retrieval and update operations. Data to be selected is specified via query
statements.

Note: The linus command (pre-MR10.2 version) is described in Section 6.

Usage

linus {-control_args}

where control_args can be chosen from the following:

8786

-abbrev, -ab
enables abbreviation expansion and editing of request lines.

-iteration, -it
recognizes parentheses in the request line to indicate request 1line
iteration.

-no_abbrev, -nab
disables abbreviation expansion and editing of request lines. (Default)

-no_iteration, -nit
interprets parentheses in the request line literally (i.e., no iteration
of request line). (Default)

=-no_prompt, -npmt :
turns off prompting of strings. This control argument can be overridden
later (see set_mode request). (Default is prompt)

-no_start_up, -nsu
specifies that the subsystem start_up exec_com is not to be executed.

-profile path, -pf path
specifies the pathname of the profile used for abbreviation expansion. A
profile suffix must be the last component to path; however, the suffix
need not be supplied in the command line. This control argument implies
-abbrev.

-prompt STR
sets the prompting string used by linus to STR. If STR contains embedded
blanks, it must be enclosed in quotes. (Default linus prompt is
"linus:".)

-request STR, -rq STR
executes STR as a linus request line before entering the request loop.
This control argument cannot be used with the macro_path argument
described in Section 6, and the requests specified by STR cannot contain
the invoke request, also described in Section 5.

-start_up, -su
specifies that the subsystem start_up exec_com "start_up.lec" is

5-2 AZ49-034a

linus linus

executed prior to entering the request loop. The start_up is searched
for in the user's home directory, project directory, and then >site.
(Default)

Notes

By default, linus prompts the user whenever input is expected (the string
"linus:" is displayed at linus request level). Refer to the description of the
set_mode request for information on how to turn off prompting.

Multies program_interrupt conditions are recognized and handled by 1linus.
Thus, the user may interrupt any request and resume the linus session by invoking the
Multics program_interrupt command. After the program_interrupt command, linus waits
for the user to type further requests.

There is no data base creation facility within linus. Those users who wish to
create their own data base should refer to Section 3 for information on the creation of
an MRDS data base.

8/86 5-3 AZ149-034A

linus

LINUS

linus

Requests

8/86

The following list summarizes all of the linus requests.
identifies the linus subsystem, version number, and open data-base.

" lists the available linus requests.

abbrev, ab
turns abbreviation processing ON or OFF and changes profile segments.

answer
supplies an answer to a question.

apply, ap
places the current query in a temporary file, adds the file name to the
supplied command line, and executes the Multics command line.

assign_values, av
specifies that selected data is to be retrieved and that retrieved values
are to be assigned to the designated variables.

close, ¢
closes the currently open data base.

column_value, clv
returns the value of the specified column for the current row, previous
row, or next row,

create_list, cls
specifies that selected data is to be retrieved and written to a Lister
file to create a formatted report.

declare, decl
allows the user to declare user-written functions for later invocation
within the selection expression.

define_temp_table, dtt
specifies that selected data is to form a new temporary table, known only
to the process, but which can be accessed by the process for retrieval in
the same manner as data base tables.

del_scope, ds
deletes all or a portion of the current scope of access in a shared data
base.

delete, d1
specifies that selected data is to be deleted from the data base.

delete_temp_table, dltt
deletes the specified temporary table.

display, di
retrieves selected data, creates a report, and displays the information
or writes it to a file.

display builtins, dib
returns the current values for requested built-ins.

5-4 - AZ49-03A

linus linus

do
substitutes args into therequest_line and passes theresult to the linus

request processor. -

exec_com, ec
executes the linus exec_com indicated by ec_path. The ec_path arguments
are passed to the exec_com processor. i

execute, e
executes a Multics command line after evaluating linus active requests.

format_line, fl
. returns a single, quoted character string, formatted from an ica_ control

string.

help ‘
displays information about request names or topics. Alist of available
topies is produced by the list help request.

if

conditionally executes a request.

input_query, iq
allows the entering of a query for data manipulation requests.

invoke, i (an OBSOLETE request moved to Section 6)
lila (an OBSOLETE request moved to Section 6)
list_db, 1ldb
lists specified information about the currently open data base.
list_format_options, 1lsfo

lists the names and values of format options.

list_help, lh
lists the available info segments whose names include a topic string.

list_requests, 1r
lists information about linus requests.

list_scope, 1ls
lists the scope of access currently in force.

list_values,lv
lists the current value assigned to the designated linus variables.

T¢rim

returns a character string trimmed of specified characters on the left.
modify, m

specifies that a selected portion of the data base is to be modified.
open, o

opens a specified dats base, with either a data model or data submodel
view, for linus processing.

opened_database, odb

returns "true" if there is an open data base and "false" if there is no
open data base.

8/86 5-5 AZ49-034A

linus linus

picture, pic
returns one or more values processed through a specified PL/T picture.

print, pr
specifies that selected data is to be retrieved and displayed on the
terminal in default format.

print_query, pq
_displays the current query.

gqedx, gx
invokes the gedx editor with the current or a new query.

quit, g
terminates a linus session.

report, rpt
specifies that selected data is to be retrieved and used to create a
formatted report via the Multics Report Program Generator (MRPG).

restore_format_options, rsfo
restores saved report layouts.

rtrim
returns a character string trimmed of specified characters on theright.

save_format_options, svfo
~saves current values of format options for future use.

save_query, sq
saves the current query.

set_format_options, sfo
changes/sets report format options.

set_mode, sm
sets or resets modes for the current session.

set_scope, ss
defines the current scope of access within a shared data base (this,
together with del_scope, provides concurrent usage control).

store, s
adds new rows to specified tables in the data base.

store_from_data_file, sdf
takes newrows froma file and adds them to the specified table in the data
base.

string
returns a single character string formed by concatenating all of the
strings together, separated by single spaces.

subsystem_ name
displays the name of the subsystem, "linus".

subsystem_version
displays the current version of linus.

translate_query, tq

translates the current query, making it available for data manipulation
requests.

8/86 5-6 AZY49-03A

linus linus

write, w
specifies that selected data is to be retrieved and written to a file in

the storage system. in the storage system.

write_data_file, wdf
retrieves selected data and writes it to a file in a format suitable for

input to the store_from_data_file request.

The remainder of this section contains a detailed description of each request,
ineluding standard subsystem environmental requests (i.e., requests common to other
subsystems such as abbrev, answer, do, ete). All examples show the prompting string

"linus:" prior to lines of user input.

8/86 5-7 AZ49-03A

Request: .

This request identifies the linus subsystem, version number, and open data base.

Usage

Request: ?

This request displays the available linus requests.

Usage

Example

The following list is displayed when "?" 1is entered by the user in response to
the linus prompt.

linus: ?
linus: Available linus requests:

. help, h report, rpt
? if restore_format_options,
abbrev, ab ' input_query, iq rsfo
answer invoke, i rtrim
apply, ap lila save_format_options,
assign_values, av list_db, 1db svfo
close, ¢ list_help, 1lh save_query, sq
column_value, clv list_format_options, set_format_options,
create_list, cls 1sfo sfo
declare, decl list_requests, 1lr set_mode, sm
define_temp_table, dtt list_scope, 1s set_scope, ss
delete_scope, ds list_values, 1lv store, s
delete, dl ltrim store_from data_file,
delete_temp_table, modify, m sdf

dltt open, o string
display, di opened_database subsystem_name
display_builtins, dib picture, pic subsystem_version
do print, pr translate_query, tq
exec_com, ec print_query, pq write, w
execute, e qedx, gx write_date_file, wdf
format_line, fl quit, q

Type "list_requests" for a short description of the requests.

8/86 5-8 AZ49-03a

abbrev abbrev

Request: abbrev, ab

This request controls abbreviation processing within the subsystem. As an
active request, it returns "true" if abbreviation expansion of request lines is
currently enabled within the subsystem and "false" otherwise.)

Usage

ab {-control_args}

Usage as an Active Request

[ab]

where control_args can be chosen from the following (and cannot be used with the active
request):

-off
specifies that abbreviations are not to be expanded.

specifies that abbreviations should be expanded. (Default)

-profile path
specifies that the segment named by path is to be used as the profile
segment ; the profile suffix is added to path if not present. The segment
named by path must exist.

Notes

This subsystem provides command line control arguments (-abbrev, -nc_abbrev,
-profile) to specify the initial state of abbreviation processing within the
subsystem. For example, a Multics abbreviation can be defined to invoke the read_mail
subsystem with a default profile as follows:

.ab rdm do "read_mail -abbrev -profile [hdl>mail_system &rf1"

If invoked with no arguments, this request enables abbreviation processing
within the subsystem using the profile that was last used in this subsystem
invocation. If abbreviation processing was not previously enabled, the profile in
use at Multics command level is used; this profile is normally
(home_dir]>Person_id.profile.

See the abbrev command in the Multics Commands for a description of abbreviation
processing.

8/86 5-9 AZ149-03A

answer answer

Request: answer

This request provides preset answers to questions asked by another request.

Usage

answer 3TR {-contrcl args} regquest line

waere:

1. STR
is the desired answer to any question. If the answer is more than one
word, it must be enclosed in quotes. If STR is -query, the question is
passed on to the user. The -query control argument is the only one that
can be used in place of STR. '

2. request_line
is any subsystem request line. It can contain any number of separate
arguments (i.e., have spaces within it) and need not be enclosed in
quotes.

3. control_args
can be chosen from the following:

~brief, -bf
suppresses display (on user terminal) of both the question and the
answer.

-call STR

evaluates the active string STR to obtain the next answer in a sequence.
The active string is constructed from subsystem active requests and
Multics active strings (using the subsystem "execute" active request).
The outermost level of brackets must be omitted (i.e., "forum_list
-changed™) and the entire string must be enclosed in quotes if it contains
request processor special characters. The return value "true" is
translated to "yes," and "false" to "no." All other return values are
passed as is.

-exclude STR, -ex STR
passes on, to the user or other handler, questions whose text matches STR.
If STR is surrounded by slashes (/), it is interpreted as a qedx regular
expression. Otherwise, answer tests whether STR is literally contained
in the text of the question. Multiple occurrences of -match and -exclude
are allowed (see "Notes" below). They apply to the entire request line,

-match STR
answers only questions whose text matches STR. If STR is surrounded by
slashes (/), it is interpreted as a gedx regular expression. Otherwise,
answer tests whether STR is literally contained in the text of the
question. Multiple occurrences of -match and -exclude are allowed (see
"Notes" below). They apply to the entire request line.

-quary

skips the next answer in a sequence, passing the question on to the user,.
The answer is read from the user_i/o I/0 switch.

8/86 5-10 AZ49-03A

answer apply

-then STR
supplies the next answer in a sequence.

-times N
gives the previous answer (STR, -then STR, or -query) N times only (where
N is an integer).

Notes

The answer request provides preset responses to questions by establishing an ON
unit for the condition command_question and then executes the designated request
line. If any request in the request line calls the command query subroutine
(described in the Multics Subroutines) to ask a question, the ON unit iIs invoked to
supply the answer. The ON unit is reverted when the answer request returns to
subsystem request level. See "List of System Conditions and Default Handlers" in the
REF Manual for a discussion of the command_question condition.

If a question is asked that requires a yes or no answer, and the preset answer is
neither "yes"™ or "no," the ON unit is not invoked.

The last answer specified is issued as many times as necessary, unless followad
by the -times N control argument.

The -match and -exclude control arguments are applied in the order specified.
Each -match causes a given question to be answered if it matches STR; each -exclude
causes 1t to be passed on if it matches STR. A question excluded by the -exclude
control argument is reconsidered if it matches a -match later in the request line. For
example, the request line:

answer yes -match /fortran/ -exclude /fortran_io/ -match /“fortran io/
answers questions containing the string "fortran", except that it does not answer

questions containing "fortran_io". It does, however, answer questions beginning
with "fortran_io".

Request: apply, ap

This request places the current query into a temporary file, adds the pathname of
the file to the end of the supplied command line, and executes the resulting Multics
command line. If there is no current query, or the -new control argument is used, the
created file is initially empty.

Usage

ap {-control_args} command_line
where:
1. control_args

can be chosen from the following:

8/86 5-11 AZ49-03a

apply assign_values

-new
specifies that an empty file be initially created.

-old
specifies that the existing query be made available. (Default)

2. command_line
is a Multics command line request.

Example

apply -new ted -pn

apply emacs

Request: assign_values, av

This request specifies that selected data is to be retrieved and the retrieved
values assigned to designated linus variables. This capability allows information
obtained from one retrieval to be used in subsequent data base accesses. A translated
or translatable query must be available. As an active request, it returns "true" if
data is successfully retrieved and "false" if the select statement fails.

Usage

av variable_list

Usage as an Active Request

[av variable_list]

where variable_list is a list of one or more variable names.

Notes

A variable name is an alphanumeric character string, from 1 to 32 characters in
length, which must begin with an exclamation mark (!). Theunderscore (_) and hyphen
(-) may also be included, but the exclamation mark cannot appear elsewhere in the name.
The specification in an assign_values request is the only declaration required. If
the same variable is specified in several assign_values requests, its value is
reassigned in each of those requests. Variable names and values are preserved across
data base openings and closings within the same linus session.

Variables specified in the assign_values request are unrelated to row

8/86 5-12 AZ49-03A

assign_values assign_values

Retrieved data is assigned to variables in the variable list in the order
retrieved. Retrieval ceases when all selected data is exhausted or when all variables
in the variable list are exhausted, whichever occurs first. In the case of the
retrieved data being exhausted before the variable list, the following occurs:
previously assigned variables that occur in a variable list but are not assigned new
values by this assign value request retain their previous value. Newvariables in the
variable 1list that are not assigned values are not created.

Variable names are global within a linus session (i.e., like variable names
occurring in different linus exec_coms refer to the same variable) if the exec_coms
are used in the same linus session.

Example

List the employees whose total compensation is above the department store
average, and then list those employees who are below the average.

linus: input query -force
Query:
avg {select sal + comm from emp}

linus: assign_values !av_comp
linus: input_query -force
Query:

select name sal + comm

from emp

where sal + comm > l!avg_ comp

linus: print

name f(emp)
Smith, John 10000
Jones, Al 12300
Johnson, Betty 11000
(END)

linus: qedx

3s/>/<K/

,$p

select name sal + comm
from emp

where sal + comm < lavg comp
write

quit

linus: print

name f(emp)
Anderson, Carol 80060
(END)

8/86 5-13 AZ49-03A

close column_value

Request: close, ¢

This request closes the currently open data base.

Usage

[¢]

Request: column_value, clv

This request returns the value of the specified column for the current row,
previous row, or nextrow. It can onlybe used as an activerequest. It isused within
a formatted report produced by the displayrequest to obtain the value of a column. It
is an error to use this request anywhere except in a header/footer or editing string
within a report produced by the display request.

Usage as an Active Request

[elv column_id {-control_args}]

where:

1. column_id
specifies which column value is to be returned. It can be given as the
name of the column as defined in the open model/submodel, or the number of
the column in the query.

2. control_args
can be chosen from the following:

-current_row, -crw
returns the value of the named column for the current row. (Default)

-default STR
returns the character string STR when there is no previous row, or when
there is no next row. (If this control argument is not used the default
value for STR is "".)

-next row, -nrw
returns the value of the named column for the next row. If there is no
next row, the string "" is returned unless changed by the -default control
argument.

-previous_row, =-prw

returns the value of the named column for the previous row. If there is no
previous row, the string "" is returned unless changed by the

8/86 5-14 AZ49-03A

column_value

Examples

create_list

[column_value foo]

[column_value 3]

[column_value foo -previous_row]

{column_value foo -next_row -default NULL]

Request: create_list, cls

This request specifies that selected data is to be retrieved and written to a
specified Lister file. This file can be manipulated via Lister commands to create a
formatted report. Atranslated or translatable query must be available. Refer to the
WORDPRO Manual for a complete description of Lister.

Usage

cls path {-control_args}

where:
1. path
2.

8/86

is the pathname of a Multics file into which the selected data is to be
written. The data iswritten in a form suitable for processing by Lister.
invocation) and the file‘E;‘E;eated if it does not exist. If the file
currently exists, it is truncated unless the ~extend control argument is
specified.

control_args

can be chosen from the following:

-extend

specifies that if the Lister file already exists, it is to be added to
rather than truncated. The field names (either default or explicitly
specified) must be identical to those defined in the existing file.

-field_names STR, -fn STR

NOTE:

explicitly specifies the field names in the Lister file being created or
extended. STR is a list of field names that must correspond in order and
quantity to the items specified in the select clause of the associated
query. This control argument must be specified if the query select
clause contains an expression. If not specified, the names of the
selected data base columns become the lister file field names.

The values being written to the lister file have all leading and trailing
blanks stripped off.

5-15 AZ49-03A

create_list declare

Examples

A query to create a Lister file containing the names and salaries for all
employees in the Shoe department is:

linus: input_query ~force

Query: _

select name sal
from emp

where dept = "Shoe"

Arequest to create the Lister file "shoe_sal.lister" with the field names "name"
and "sal" is:

linus: create_list shoe_sal
The same file could be created with the field names "name" and "salary" with the
request:

linus: create_list shoe_sal -field_names name salary

Request: declare, dcl

This request allows the user to declare a nonstandard function which may be
invoked in a subsequent query. A nonstandard functionis any function not included in
built-in functions listed in Section 2, and may be user-written or may be provided by
the local installation. Two types of functions maybe declared: set functions which
operate on multiple sets of values (for example, sum{...}) and scalar functions which
operate on one occurrence of a set of values.

Usage

decl fn_name fn_type
where:

1. fn_name
is the name of the function being declared. The fn_name must be the name
of an object segment that can be found using the searchrules currently in
effect.

2. fn_type
is the type of the function being declared. Two types are permitted, set
or scalar. A set-type-function operates on multiple sets of selected
values, whereas a scalar-type-function operates on one set of specified
values. An example of a set function is:

avg {select salary
from emp}

while a scalar function example would be:

substr (name 1, 5)

8/86 5-16 AZ49-034

declare - define_temp_table

Notes

Scalar functions can accept column values as input from one table only, provided
no row designators are used. If rowdesignators are specified, column names must all
be qualified with the same row designator.

Several built-in functions are provided as a standard part of linus. See Section
2 for a description of these functions. It is not necessary to declare built-in
functions. If a declared function has the same name as a built-in function, the
declared function, rather than the built-in function, is invoked when the function
name is referenced.

Example

To find the average sales volume of all items made of cotton in a specifiec
department, several assumptions are made: 1) that the item code contains encoded
information indicating the material of which an item is made, 2) that the user-defined
scalar function "material" returns this information, and 3) that there is a
user-defined set function "dept_avg" that calculates the desired average, which is
the total volume divided by the number of departments.

linus: declare material scalar
linus: declare dept avg set

These functions may now be used in a query as:

linus: 1input_query -force
Query:
dept_avg {select dept vol
from sales
where material (item) = "cotton"}

Request: define_temp_table, dtt

This request causes selected data to be placed intoc a temporary table that can
then be referenced as any other table in the data base for retrieval purposes. This
feature is useful from an efficiency standpoint, since multiple retrievals of the same
data can be avoided. A translated or translatable query must be available.

Usage

dtt table_name key columns

where:

1. table_ name
is the name of the temporary table. Subsequent references to this table
must use this name. If a temporary table of this name already exists, it
is redefined. This name may be from 1 to 32 characters long, must begin
Wwith an alphabetical character, and may be composed of alphanumeric
characters plus the underscore (_) and the hyphen (-).

8/86 5-17 AZ49-03A

define_temp_table define_temp_table

2. key columns
- are one or more column names specified in the associated select clause
that become key columns in the temporary table. Key columns uniquely
determine the rows of the temporary table; that is, the concatenation of
the values of all key columns must be unique for each rowof the temporary
table. Duplicates are automatically eliminated.

Notes

The select clause of a query associated with a define_temp_table request cannot
contain an expression. Onlycolumnnames (qualified or unqualified, including *) are
allowed.

All key columns must be explicitly specified in the associated select clause;
that is, a key column cannot be one of those specified bya*. The order of the columns
in the key of the temporary table is the order in which they appear in the select
clause, not the order in the define_temp_table request.

Temporary tables cannot be updated, but can be accessed for retrieval only.
Temporary tables that do not have any tuples may be created. Normally, a temporary
table is created for the purpose of simplifying queries when data is to be selected
from several tables in the data base.

Examples

If it is necessary to retrieve employee information from the department store
data base depending upon the floor on which the employees are located, then a temporary
table could be useful.

emp_loc (name, emp_no, mgr, sal, comm, floor)
The data for such a temporary table could be specified using the following query:

linus: input_query -force

Query:

select emp.name emp.emp no emp.mgr emp.sal
emp.comm loc.floor

from emp loc

wnere emp.dept = loc.dept

The table is then created with the request:
linus: define_temp_table emp_loc name

The query necessary to find the average salary of all employees located on the second
floor would be:

linus: input_query -force
Query:
avg {select sal

from emp_loc

where floor = 2}

as opposed to the following, if the temporary table were not available:

8/86 5-18 AZ49-034

define_temp_table del_scope

linus: input_query -force
Query:
avg {select sal
from emp
where dept = {select dept
from loc
where floor = 2}}

Request: del_scope, ds

This request deletes all or a portion of the scope of access previouslydeclared
with a set scope request, and is applicable only for shared (nonexclusive) opening
modes. As an activerequest, it returns "true" if the scope is deleted and "false" if
the delete scope fails.

Usage

ds table_namel {permit_ops] prevent_opsl ... table_namen permit_opsn
prevent_opsn}

Usage as an Active Request

[ds table-namel {permit_ops1 prevent_ops]l ... table_namen
permit_opsn prevent_opsn}]

where:

1. table_namei -
is the name of a nontemporary table within the data base for which all or a
portion of the scope of access is to be deleted. If table namel is a ¥,
then no additional arguments need be specified, and all of the user's
current access scope is deleted, even if none is set.

2. permit_opsi
is a character string indicating which currently permitted operations
are to be deleted from the access scope.

3. prevent_opsi
is a character string indicating which of the operations currentlybeing
prevented for other processes can be deleted from the access scope.

Note
The null operation is ignored for delete scope.

See the set_scope request for a definition of the operation codes and for a
detailed discussion of the scope mechanism.

8/86 5-19 AZ49-03A

del_scope delete

Examples

Do not change permission for the employee table but allow other processes to
perform store, modify, and delete operations.

linus: del_scope emp n smd
Delete all of the current scope of access.

linus: del_scope *

Request: delete, dl

This request deletes selected rows from a single table within the data base. The
data base must be open for update or exclusive_update and, if open for update, the
affected table must be within the scope of access for delete. A translated or
translatable query must be available.

Usage

dl

Note

The select clause of the associated query must specify columns from only one
table and all columns from that table must be specified (use of * is recommended). The
query must not contain any set operators (union, inter, or differ). The affected
table cannot be a temporary table.

Examgle

Joe Smith has retired. Delete his employee record. The query would be:

Linus: input_query
Query:

select *

from emp

where name = "Joe Smith"

The deletion is then accomplished via the request:

linus: delete

8/86 5-20 AZ49-034

delete_temp_table - display

Request: delete_temp_ table, dltt

This request is used to delete temporary relations created for the current data
base opening by the define_temp table request.

Usage

ditt temp table_name

where temp_table name is a table name which has successfully been used in a
define_temp_table request since the last successful open request.

Request: display, di

This request retrieves selected data, creates a report, and displays it on the
terminal or sends it to a file or an io switch. Atranslated or translatable query must
be available.

Usage

di {-control_args}

Note: The following list identifies all control arguments grouped by
function. The argument descriptions are listed alphabetically,
immediately after the function groupings.

CONTROLLING WARNING MESSAGES
-brief, -bf
-long, -lg

DISPLAYING PAGES AND PORTIONS OF PAGES

-all, -a
-character_positions, -chpsn
-page, -pg

DATA RETRIEVAL INITIATION AND TERMINATION
-discard_retrieval, -dsr
-keep_retrieval, -kr
-new_retrieval, -nr
-old_retrieval, -or

REPORT INITIATION AND TERMINATION
-discard_report, =-dsrp
-keep_report, -krp
-new_report, -nrp
-old_report, =-orp

8/86 5-21 AZU49-034A

display ‘ display

8/86

SORTING RETRIEVED DATA
-sort

CONTROLLING REPORT OUTPUT
-extend
-output_file, ~-of
-output_switch, -osw
-truncate, -tc

VIDEO SYSTEM SCROLLING FUNCTIONS

-enable_escape_keys, -eek
-enable function_keys, -efk
-scroll

-set_key, =-sk
-window, -win

MULTI-PASS REPORT FORMATTING
-passes, -pass

TEMPORARY STORAGE SPECIFICATION
-temp_dir, -td

-all, -a
displays all pages of thereport. This argument is incompatible with the
-pages control argument. (Default)

-brief, -bf
suppresses warning messages.

-character_positions STR1 {STR2}, ~-chpsn STR1 {STR2}
where STR1 and STR2 define the left and right character positions of a
vertical section of the report. STR1 must be given and defines the left
margin position to begin from. STR2 is optional, and if not given,
defaults to the rightmost character position of the report. If this
control argument is not given, the entire page is displayed.

~-discard_report, -dsrp
deletes the report on termination. (Default)

-discard_retrieval, -dsr
deletes retrieved data on termination. (Default)

-enable_escape_keys, -eek

specifies the use of escape key sequences for scrolling functions, rather
than the function keys and arrow keys on the terminal. This is the
default if the -scroll control argument is given and the terminal does not
have the necessary set of function keys and arrow keys (see
-enable_function_keys). (In the following description, the mnemonic
"esc-" means the escape key on the terminal.) The following escape key
sequences are used if this control argument is given, or the terminal
lacks the necessary set of keys:

Function Name Key Sequence
forward esc-f
backward esc-b
left esc-1
right esc-r
help esc-"?
set_key esc-k
set scroll increment esc~-1
quit - esc-g
redisplay esc~d
start_of_report esc-5§
end_of_report esc-e

5-22 AZL9-034

display _ display

multics_mode esc-m
goto esc-g

-enable_ function_keys, -efk

specifies the use of terminal function keys and arrow keys for scrolling
functions. This is the default when the -scroll control argument is
given and the terminal has at least nine funection keys and four arrow
keys. (In the following description, the mnemonic fNmeans function key
N, where N is the number of the function key. The mnemonic down_arrow
means the down arrow key, up_arrow means the up arrow key, left_arrow
means the left arrowkey, and right_arrow means the right arrow key. The

- following key sequences areused if this control argument is given and the
terminal has the necessary set of keys:

Function Name Key Sequence
forward down_arrow
backward up_arrow
left left_arrow
right right_arrow
help f1 (function key)
set_key f2
set_scroll_increment 3

quit i
redisplay f5

start_of report £6

end_of report 7
multics_mode 8

goto f9

-extend
appends the report to an existing file rather than replacing it if the
-output_file control argument is used. (If this control argument is not
provided, the default is to truncate an existing file.)

-kKeep_report, -Krp
keeps the report on termination. This control argument is necessary in
order to use -old report on subsequent invocations of display.

-keep_retrieval, -kr
keeps retrieved data to allow re-use on subsequent invocations of the
display request. Previously retrieved sorted data retains the sort
order.

-long, -1g
displays warning messages when a control argument such as -old_retrieval
is used and the data from a previous retrieval is not available.
(Default)

-new_report, -nrp
creates a new report. (Default)

-new_retrieval, -nr
begins a new retrieval from the data base. (Default)

-old_report, -orp
uses the report created in the previous invocation. Use of this control
argument requires that -keep report be used in the prior invocation of
display. '

-old_retrieval, -or
uses data retrieved during the previocus invocation. Useof this control
argument requires that -keep _retrieval be used in the prior invocation of
display.

8/86 5-23 AZ49-03A

display display

-output_file path, -of path
where path is the name of the file which contains the formatted report.
If this control argument or -output switch is not given, the report is
displayed on the terminal. This argument is incompatible with the
-output_switch control argument.

-output_switch switch_name, -osw switch_name
where switch_name is the name of a switch to be used to display the report.
If this control argument or -output_file is not given, the report is
displayed on the terminal. It is an error to use this control argument if
the named switch is not already open and attached when display is invoked.
This argument is incompatible with the -output_file control argument.

-page STR, -pg STR

~-pages STR, -pgs S3TR
where STR is a blank-separated 1ist of pages (N N) or comma-separated page
ranges (N,N). Page ranges can also be given as N, or "N, $" which means
from page Nto the end of the report, or simply $ whichmeans the last page.
This argument is incompatible with the -all control argument.

-passes N, -pass N
where Nis the number of times the report is to be formatted. No output is
produced until the last formatting pass of the report. (Default value
for N is 1)

-scroll
specifies scrolling the report according to key sequences read from the
terminal. Only terminals supported by the Multics video system can use
the scrolling feature. If the -window control argument is not used,
create a uniquely named window for the display of the report. The
user_i/o window is reduced to four lines and the remaining lines are used
for the uniquely named report display window. The minimum size for this
window is five lines, so the user_i/o window must be at least nine lines
before invoking display, unless the -window control argument is used.

-set_key STR, -sk STR

-set_keys STR -sks STR .
specifies that the named scrolling functions are to be set to the provided
key sequences. STR is a blank-separated list of one or more screlling
function names and key sequences, given as "function_name key_ sequence
... {function_name key_sequencel}l". The function names can be chosen
from the set described under -enable_escape_keys or
-enable_function_keys control arguments. The key sequences can be given
as the actual sequences or mnemonic key sequences. The provided
mnemonics can be:

N where N 1s the number of the desired
function key

esc- or escape- corresponds to the escape character
ctl-x or control-x corresponds to the character sequence

generated when the control key is held
while also pressing the character named by

nyn
down_arrow corresponds to the down arrow key
up_arrow corresponds to the up arrow key
left_arrow corresponds to the left arrow key
right_arrow corresponds to the right arrow key
home corresponds to the home key

8/86 5-24 AZH49-03A

display

-sort STRs {-ascending | -descendingl {-case sensitive |

display_builtins

-non_case_sensitive}, -sort STRs T-asc | -dsc} {-ecs | -nes}
where STRs are the names of columns as defined in the open model/submodel,
or numbers corresponding to the position of the columns in the selection
expression. It can be followed by =-ascending or -descending, and
-case_sensitive or -non_case_sensitive. (Default is -ascending and
-case_sensitive.)

-temp_dir dir_name, -td dir_name

specifies that the given directory be used for storing the retrieved
data, saving thereport if -keep_report is used, and sorting workspace if
-sort is used instead of the process directory. This temporarydirectory
continues to be used until another new temporarydirectory is requested.
A new temporary directory can only be specified when a newretrieval and
new report are requested.

-truncate, -tec

replaces the contents of the existing file if the -output_file control
argument is used. (If the -extend control argument is not provided, the
default is to truncate.)

-window STR, -win STR

Examples

specifies that the window named by STR be used for the display of the
report. This argument is only meaningful when the -scroll argument is
also used. If this control argument is used, the window named by STR must
be attached and open under the video system, and it must be at least five
lines high.

display

display -output_file foo

display -keep_retrieval -sort bar -descending -non_case_sensitive

display -keep_retrieval -keep report -of fool -character_positions 1 132

display -old_retrieval -old_report -of foo2 -character_positions 133 260

display -pages 1 3 12,19 58,$ -output_switch foo

display -sort foo -descending bar -non_case_sensitive

Request: display builtins, dib

This request returns the current value of the built-in named by STR. It can only
be used as an active request. It is used within a formatted report produced by the
display request to obtain the current vaiue of the specified built-in. It isanerror
to use this request anywhere except in a header/footer or editing string within a
report produced by the display request.

Usage as an Active Reguest

[dib STR]

8/86

5-25 AZ49-03A

display_builtins do

where STR can be any one of the following built-ins:

current_pass_number
the number of the current pass. The number begins with 1 and is
incremented by 1 for each additional formatting pass over the report.

current_row_number
the number of the current row of the report.
first row -
True if the current row is the first row of the report, or false if it is
not the first row of the report.

last_page_number
“the number of the last page of the report or "O" if 1t is the first pass
over the report. After each formatting pass, the number is updated with
the number of the last page.

last_pass
“true if this is the last formatting pass of the report or false if this is
not the last pass of the report.

last_row
true if the current row is the last row of the report, or false if the
current row is not the last row of the report.

last_row_number
“the number of the last rowof the table, or "0" if it is the first pass over
the report. After the first formattlng pass the number is set to the
number of the last row.

page_number
the number of the current page of the report.

previously processed_row
true if the current row was processed on the preceding page but the row
value would not fit and had to be deferred to the current page, or false if
this is the first time the current row is being processed.

Request: do

This request expands a request line by substituting the supplied arguments into
the 1line before execution. As an active request, it returns the expanded
request_string rather than executing it.

Usage

do request_string {args}

or:

do -control_args

8/86 5=2f

o
N
=
N
i~
fte]
il
»)
A
>

Usage as an Active Request:

[do "request_string" args]

where:

1. request_string
is a request line in quotes.

2. args‘
are character string arguments that replace parameters in
request_string.

3. control_args
can be chosen from the following to set the mode of operation:

-absentee
establishes an any_other handler that catches all conditions and aborts
execution of the request line without aborting the process.

-brief, -bf
specifies that the expanded request line not be printed before execution.
(Default)
specifies that the expanded request line be passed on for execution.
(Default)

-interactive o :

. specifies that the any_other handler not be established. (Default)

-long, -lg ' ‘ o

displays the expanded request line before execution.

-nogo .
specifies that the expanded request line not be passed on for execution.

List of Parameters

Any sequence beginning with & in the request line is expanded by the do request
using the arguments given on the request line.

&I
is replaced by argl. I must be a digit from 1 to 9.
&(1)
is replaced by argIl. I may be any value.
&ql
is replaced by argIwith any quotes in argI doubled. I must be a digit from1
to 9.
&q(I)

is replaced by argl with any quotes in argl doubled. I may be any valﬁe.
&rIl

is replaced by argl surrounded by level quotes with any contained quotes
doubled. I must be a digit from 1 to 9.

8/86 5-27 AZ49-03A

do

exec_com
&r(I)
is replaced by a requoted argl. I may be any value.
&f1
is replaced by all the arguments starting withargl. Imust bea digit from
1 to 9. :
&f(1)

is replaced by all the arguments starting with argI. I may be any value.

&qfI : ,
is replaced by all the arguments starting withargIwith any quotes doubled.
I must be a digit from 1 to 9.

&qf (1)
is replaced by all the arguments starting withargl with quotes doubled. I
~ may be any value.

&rl
is replaced by all the arguments starting with argI. Each argument is
placed in level quotes with contained quotes doubled. I must be a digit
from 1 to 9.

&rf(1)
is replaced by all the arguments starting withargI, requoted. 1 maybe any
value.

&&
is replaced by an ampersand.

&1
is replaced by a 15-character unique string. The string used is the same in
every place where the &! appears in the request line,

&ﬁ
is replaced by the actual number of arguments supplied.

&f&n
is replaced by the last argument supplied.

Request: exec_com, ec

This request executes a program written in the exec_com language that is used to

pass request lines to linus and to pass input lines torequests that read input. As an
active request, it specifies a return value by use of the &return statement.

Usage

Usa

8/86

‘ec ec_path {ec_args}

~ A A L2 RPN
S dI ACL1VEe neguestu

[ec ec_path {ec_args}]

5-28 AZ49-034

exec_coOm execute

where:

1. ec _path
is the pathname of an exec_com program. An lec suffix is assumed if not
specified.

2. ec args
- are optional arguments to the exec_com program and are substituted for
parameter references in the program such as &1.

Notes

For a description of the exec_com language (both Version 1and Version2), type:

.. help viec v2ec

When evaluating a linus exec_com program, linus active requests are used rather
than Multics active functions to evaluate the &[...] construct and the active string
in an &if statement. The execute active request of linus can be used to evaluate
Multics active strings within the exec_com. Refer to Section 7 for a description of
how to write a linus exec_com.

Request: execute, e

This request executes the supplied line as a Multics command line. As an active
request, it evaluates a Multics active string and returns theresult to the subsystem
request processor.

Usage

e STR

Usage as an Active Request

[e STR]

where STRis the Multics command line tc be executed or th
to be evaluated. It need not be enclosed in quotes.

Multics active str

[}
-

ng

Notes

The recommended method to execute a Multics command line from within a subsystem
is the ".." escape sequence. The execute request is intended as a means of passing
information from the subsystem to the Multics command processor.

8/86 5-29 AZ49-03A

execute format_line

A1l (), [], and "s in the given line are processed by the subsystem request
processor and not the Multics command processor. This permits passing values of
subsystem active requests to Multics commands when using the execute request, or
passing values to Multics active functions for further manipulation before returning
the values to the subsystem request processor for use within a request line.

Examples

The linus request line:
[execute max [column_value salaryl [column_value commission]]

could be used as an editing request within a formatted report to return the largest
value of the salary and commission columns.

The linus request line:

set_format_options -page_header_value
Texecute copy_characters - [Tist_format_options -page_width]]

could be used to set the page header to a line of hyphens which is the same width as the
page width.

Request: format_line, f1

This request returns a single, quoted character string that is formatted from an
ioa_ control string and other optional arguments.

Usage

f1 control_string {argsl}

Usage as an Active Request

[fl control_string {args}]

where:

1. control_string
i1s an ioa_ control string used to format the return value of the active
function. See "Notes" below.

2. args
are character strings substituted in the formatted return value,
according to the ioa_ control string.

(=]
N
(o]
()3
(%]
[
(V§)
o

AZ49-03A

format_iine : format_line

Notes

The following ioa_ control codes are allowed (refer to "ioa_" in the Subroutines
Manual for additional detail):

Control : Function

“a “Na edit a character string in ASCII

“d “Nd edit a fixed-point number

“e "Ne edit a floating=-point number in exponential form
“f “Nf °N.Df ~.Df edit a floating-point number

“i °Ni edit a fixed-point number (same as ~d)

"o “No edit a fixed-point number in octal

“s "Ns skip argument

~L start an if/then/else or case select group
~1 limit the scope of a “[

“("N (start an iteration loop .

™) end an iteration loop

~s °N; used as a clause delimiter between “[and "]

In addition, any of the following carriage movement controls can be used:
“N/ "N} "N- “Nx “N° "R "B
or
where N is an integer count or a "v". When "v" is given, an integer character string

from the args is used for count. (For a complete description of these control strings
see "ioa_" in the Subroutines Manual.)

If no optional arguments are given, the value returned depends on the specified
ioca_ control string.

Examples

In a formatted report the editing request:
[format_line "Height“-Weight”/"a"-"a" [column_value height] [column_value weightl]
might be expanded to return the string:
Height Weight
6.1 175

The report editing request:

[format_line ""“[Senior Citizen Discount”;Regular Discount”1"
[execute ngreater [column_value agel 60]]

would be expanded to return the string:
Senior Citizen Discount

if the value of the age column was greater than 60.

8/86 5-31 AZ49-03A

help _ help

Request: help

This request displays information about 1linus topies including detailed
descriptions of linus requests.

Usage

help {topics} {-control_args}

where:

1. topies
specifies the topics on which information is to be displayed. The topics
available within linus can be determined by using the 1ist_help request.

2, control_args
can be chosen from the following:

-brief, -bf
displays a summary of a request or active request, including the syntax,
list of arguments, control arguments, etc.

-search STRs, =-srh STRs
displays the paragraph containing all the strings identified by STRs.
(Default, the display begins at the top of the information.)

-section. STRs, -scn STRs
displays the section whose title contains all the strings identified by
STRs. (Default, the display begins at the top of the information.)

-title
displays section titles and section line counts, then asks if the user
wants to see the first paragraph of information.

List of Responses

The most useful responses that can be given to questions asked by the help request
are:
displays "help" to identify the current interactive environment.

. command_1line
treats the remainder of the response as a Multics command line.

t’

displays a list of responses allowed.
no, n

stops display of information and proceeds to the next topiec, if any.
quit, q

stops display of information and returns to subsystem request level.

rest {-section}, r {-scn}
displays remaining information without intervening questions. If

8/86 5-32 AZ49-03A

help

Notes

if

-section is given, help displays the rest of the current section, without
questions, and then asks if the user wants to see the next section.

search {STRs} {-top}, srh {STRs} {-t}
skips to the next paragraph containing all the strings identified by STRs.
If -top is given, searching starts at the top of the information. If STRs
are omitted, help uses the STRs from the previous search response, or the
=search control argument.

section {STRs} {-top}, scn {STRs} {-t} . i
skips to the next section whose title contains all the strings identified by
 STRs. If -top is given, title searching starts at the top of the
information. If STRs are omitted, help uses the STRs from the previous
section response, or the -section control argument.

skip {-section}} {-seenl}, s {-sen} {-seen}
skips to the next paragraph. If -section is given, the request skips all
paragraphs of the current section. If -seen isgiven, therequest skips to
the next paragraph that the user has not seen. Only one control argument is
allowed in each skip response.

title {-top}
displays titles and line counts of the sections that follow. If -~top is
given, help displays all section titles and repeats the previous question
after titles are displayed.

yes, ¥
prints the next paragraph of information on this topiec.

If no topic names are given, the help request explains what help requests are

available in the subsystem.

For a complete description of the control arguments and responses accepted by
this request, type:

help help

Request: if

This request conditionally executes one of two request lines depending on the

value of an active string. As an active request, it returns one of two character
strings to the subsystem request processor depending on the value of an active string.

Usage

8/86

if expr -then linel {-else line2}

5-33 AZ49-03A

if ' _ input_query

Usage as an Active Request

[if expr -then STR1 {-else STR2}]

where:

1. expr
evaluates the active string as "true" or "false." The active string is
constructed from subsystem active requests and Multics active strings
(using the execute active request of the subsystem).

2. linel
executes the subsystem request line if expr is "true." If the request
line contains any request processor characters, it must be enclosed in
quotes.

3. line2 .
executes the subsystem request line if expr is "false." If omitted and
expr is "false," no additional request line is executed. If therequest
line contains any request processor characters, it must be enclosed in
quotes.

4, STR1
returns this value to the active request when expr is "true."

5. STR2

.returns this value to the if active request when expr is "false." If
~omitted and the expr is "false," a null string is returned.

Request: input_query, iq

This request collects a query and makes it available for linus data manipulation
requests.

Usage

iq {-control_args}
where control args can be chosen from the following:

-brief, -bf
specifies that the prompt "Query:" be suppressed when the query is
entered from the terminal.

-force, -fc
specifies that the existing querybe replaced. If aqueryexistsand this
control argument is not used, the user is asked if the existing query
should be replaced. A negative response terminates the invocation of
input_gquery.

-input_file path, -if path

specifies that the query be taken from the file named by path. If path
does not contain the lquery suffix, it is assumed.

8/86 5-34 AZY49-03A

input_query . list_db

-long, -1g
specifies that the prompt "Query:" be displayed when the query is input
from the terminal. (Default)

-no_force, -nfec
if a query exists, the user is asked if it should be replaced. (Default) A
negative response terminates the invocation of input_query.

-terminal input, -ti
specifies that the query be read from the terminal. (Default) A line
consisting of only the single character "." terminates the input.
Typing "\q" anywhere on a line also terminates the input. Typing "\f"
anywhere on a line terminates the input and enters the user directly into
the qedx editor with the query.

Example

input_query -if query file -fe
input_query

Query:

select * from sales

Refer to Section 1 for examples of query statements.

Request: list_db, 1ldb

This request lists information about the data base that is currently open.
Information which can be listed includes the pathname of the data base, the opening
mode, table names, column names, and detailed information about each table and column.
Information for both temporary and permanent tables is provided.

Usage

idb {-control_argsi
where control_args can be chosen from the following:

-long, -lg
specifies that all available information about columns is to be listed.
This includes the name of the domain from which column values are derived
and the PL/I-1like declaration for this domzain.

-names
specifies that only table and column names are to be listed.

~pathname, -pn
specifies that only the pathname of the data base, together with the
opening mode, is to be listed.

-perm

specifies that information pertaining only to tables that are a permanent
part of the data base is to be listed.

8/86 5-35 AZ49-03A

list_db . list_db

-table_names
specifies that only table names are to be listed.

-table STR, -tb STR
specifies that information pertaining only to tables named in STRis to be
listed. STR is a list of permanent or temporary table names.

-temp

specifies that information pertaining only to temporary tables is to be
listed. .

Notes

If no control arguments are spec1f1éd -pathname and -table_ names are assumed.
If -table, -temp, or -perm is not specified, then 1nformat10n for all permanent and
temporary tables is supplied.

If -table is specified, all other controls except ~long and -pathname are
ignored.
Only one of the following may be chosen:
-table_names
-names
-long
For non-DBA users of secure data bases (see the MRDS manual for the definitions of
DBA and secured data bases), the following format changes will be seen because of
possible security leaks:
1. Domain names will not be displayed.
2. Columns comprising the key of the table will not be shown as "key" columns.

The first column in the key will be displayed as "index." All other columns
will be shown as "data."

Examples

List the data base pathname and opening mode.
linus: 1list db -pathname
>udd>Demo>dbmt>db>dept store
update
List the names of all currently defined temporary tables.
linus: 1list_db -temp -table_names

TABLE

tempi

e ma e D
vTupyc

8/86 5-36 AZH49-03A

list_format_options list_format_options

Request: list_format_options, 1lsfo

This request lists the names and values of individual report formatting options,
all report formatting options, or the active report formatting options. As anactive
request, it returns the value of the single specified format option.

Usage

lsfo" -control_arg

lsfo -format_option_args

~Usage as an Active Request

[1sfo -format_option_arg]

where:

1. control_args
can be chosen from the following:

-active, -act
specifies that only the active formatting options are to be listed.
(Default) "help formatting_options.gi" is typed for more information on
active formatting options. This control argument is incompatible with
-all and the format option arguments. If -activeand -allare bothgiven,
the last one supplied is used.

-all, -a
specifies that all formatting options are to be listed. This control
argument is incompatible with -active and the format option arguments.
If -all and -active are both given, the last one supplied is used.

2. format_option_args
can be one or more of the following:

Note: The following 1list identifies all format option
arguments grouped by function. The argument
descriptions are 1listed alphabetically, immediately
after the function groupings.

GENERAL REPORT OPTIONS
-delimiter, -dm
-format_document_controls, -fdec
-hyphenation, -hph
-page_footer_value, -pfv
-page_header_value, -phv
-page_length, -pl
-page width, -pw
-title line, -tl
-truncation, -tc

8/86 5-37 AZ49-03A

list_format_options _ list_format_options

GENERAL COLUMN OPTIONS
-column_order, -co
-count, -ct
-exclude, =-ex
-group, -gr
-group_footer_trigger, -gft
-group_footer_value, -gfv
-group_header_trigger, -ght
-group_header_value, -ghv
~outline, -out
-page_break, =-pb
-row_ footer _value, -rfv
-row_ _header _value, -rhv
-subcount, -sct
-subtotal, -stt
-total, -tt

SPECIFIC COLUMN OPTIONS
-alignment, -al
-editing, -ed
-folding, -fold
-separator, -sep
-title, -ttl
-width, -wid

-alignment column_id, -al column_id
displays the allgnment mode within the display width for the specified
column. (Also see "Notes".)

-column_order, -co
displays the order of columns in the detail line.

,=count, -ct
displays the columns which have counts taken on them.

~-delimiter, -dm
displays the character used to delimit the different portions of a header
or footer.

-editing column_id, -ed column_id
displays the editing string for the spec1f1ed column. (Also see
"Notes".)

-exclude, -ex
displays the columns to be excluded in the detail 1line.

~-folding column_id, -fold column_id
displays the foldlng action taken when the column value exceeds the
display width for the specified column. (Also see "Notes".)

-format_document_controls, -fde
displays the interpretation of embedded format document controls when
filling (on), or the treatment of embedded controls as ordinary text
(off).

-group, -gr
displays the columns used to group a number of rows based on their values.

-group_footer_trigger, -gft
displays the columns which can cause the generation of the group footer.

-group footer value, -gfv

U OV

displays the group footer placed after each group of rows.

8/86 5-38 AZ49-034

list_format_options list_format_options

8/86

-group_header_trigger, -ght
displays the columns which can cause the generation of the group header.

-group_header_value, -ghv
displays the group header placed before each group of rows.

-hyphenation, -hph
displays hyphenation where possible for overlength values (on), or no
hyphenation (off).

-outline, -cut '
displays the columns which can duplicate suppression.

-pége_break, -pb
displays the columns which can cause a break to a new page.

-page_footer_value, =-pfv
dlsplays the page footer placed at the bottom of each page.

-page_header_value, -phv
displays the page header placed at the top of each page.

-page_length, -pl
displays the length of each formatted page given as the number of lines.

-page_width, -pw
displays the width of each formatted page given as the number of character
positions.

-row_footer_value, -rfv
displays the row footer placed after each row value.

-row_header_value, -rhv
displays the row header placed before each row value.

-separator column id, sep column id.
displays the character string that separates the specified column from
the column in the detail line which immediately follows it. (Also see
"Notes".)

-subcount, -sct
displays the columns that have subcounts taken on them.

-subtotal, -stt
displays the columns that have subtotals taken on them.

-title column_id, -ttl column_id
displays the character string that is placed at the top of the page above
the specified column. (Also see "Notes".)

-title_line, -tl
displays printing of the title line (on) or the suppression of the title
line (off).

-total, -tt
displays the columns that have totals taken on them.

~-truncation, -tc
displays the character or characters used to indicate truncation.

-width column_id, -wid column_id

displays the display width in the detail line for the specified column.
(Also see "Notes".)

5-39 AZ49-03A

list_format_options , list_help

Notes

The variable column_id identifies the column name as defined in the open
model/submodel, the number of the column in the query, or a star name which is matched
against the column names.

Refer to the description of the set_format_options request for a complete list of
the default values for the format options and a discussion of their allowed -values.
When used as an active request, only one format _option_arg can be specified,

Examples

list_format_options
list_format_options -all
list_format_options -width 1 -alignment salary

list_format_options -page width -title ** -page length

Request: list_help, 1h

This request lists the names of all subsystem info segments pertaining to a given
set of topics.

Usage

lh {topics}

where topics specifies the topics of interest. Any subsystem info segment that
contains one of these topics as a substring is listed.

Notes

If no topics are given, all info segments available for the subsystem are
displayed.

An info segment name is considered to match a topic only if that topic is at the
beginning or end of a word within the segment name. Words in info segment names are
bounded by the beginning and end of the segment name and by the characters period (.),
hyphen (-), underscore (_), and dollar sign ($). The info suffix is not considered
when matching topics.

8/86 5-40 AZ49-03A

list_help . list_requests

Examples

The request line:
list_help list

matches info segments named list_values, list_scope, list_db, etc., but would not
match an info segment named prelisting, if such a segment existed.

Request: list_requests, 1r

This request displays a brief desc%iption of selected subsystem requests.

Usage

1Ir {STRs} {-control_args}

where:

1. STRs
specifies the requests to be displayed. Any request with a name
containing one of these strings is displayed unless -exact is used, in
which case the request name must match exactly one of these strings.

2. control_args ‘
can be chosen from the following:

-all, -a
includes undocumented and unimplemented requests in the display of
requests eligible for matching the STR arguments.

-exact
displays only those requests whose names match exactly one of the STR
arguments.

If no STRs are given, all requests are displayed.

Arequest name is considered to match a STR only if that STRis at the beginning or
end of a word within the request name. Words in request names are bounded by the
beginning and end of the request name and by the characters period (.), hyphen (=),
underscore (_), and dollar sign ($).

Examples

The request line:

list_requests values

8/86 5-41 AZ49-03A

list_requests v list_values

matches requests named list_values and assign_values, but does not match a request
named column_value.

Request: list_scope, 1ls

This request lists the current scope settings for permanent tables in the data
base. As an active request, it returns the current scope settings.

Usage

1s {-control_argl

Usage as an Active Request

[1s {-control_arg}]
where control_arg can be -table name-1 {... namenl}, or -tb name-1 {... namen} which
specifies that scope settings for only the named tables are to be listed. If -table is

not specified, scope settings are listed for every permanent table in the data base
that is in the current scope of access.

Examples

List the current scope of access.

linus: 1list_scope

Table Permitted Prevented
emp rm r smd
sales r n

List the current scope of access for the sales and supply tables.

linus: 1list_scope -table sales supply

Table Permitted Prevented.
sales r n
supply n n

Request: list_values, 1lv

This request lists the values of the designated linus variables. For
information on creating linus variables see the assign_values request in this
section. As an active request, it returns the value assigned to the designated linus
variable.

8/86 5-42 AZU9-034A

list_values ltrim

Usage

iv {variable_1 ... variablen!

Usage as an Active Request

[1v variable]

where variablei is one or more linus variable names (each name must begin with an
exclamation point (!)). If this argument is omitted, then all existing linus
variables are assumed to be the designated variables, and their values are displayed
in the order that they were assigned their first values. Only one linus variable name
can be supplied when used as an active request.

Example

linus: 1list_values abe

abec = 123

Request: ltrim

This request returns a character string trimmed of specified characters on the
left. :

Usage

ltrim STRa {STRb}

Usage as anActive Request-

[l1trim STRa {STRb}l]

Notes

The ltrim command or active function, finds the first character of STRa not in
STRb, trims the characters from STRa preceding this character, and returns the trimmed
result. Space characters are trimmed if STRb is omitted.

8/86 5-43 AZ49-03A

ltrim ‘ modify

Examples

string [1ltrim 000305.000 0]
305.000

string [1trim " This is it. "]
This is it.

Request: nbdify, n

This request modifies selected data in the data base. The data base must be open
for update or exclusive_update. If open for update, the table being updated must be
within the current access scope for themodify operation. New values maybe specified
within the request line, or they may be entered interactively, in response to linus
prompting. In both cases, the user is asked to verify the new values before the
modification takes place, unless the -brief control argument is specified. A
translated or translatable query must be available.

Usage

m {column_values} {-control_argl

where:

1. column_values
are optional arguments and, if present, specify the new values that are to
replace the current values of the data selected by the associated query.
The column_values must be specified in the same order that the associated
column names are listed in the select clause. If not present, linus
requests the column_values individually by name.

2. control_arg

can be either -brief or -bf which specifies that verification of
column_values is not to be done. If not present, linus displays a list of
selected column names, together with the column_values as entered by the
user, and requests that the user verify the correctness of the
column_values before the modification operation proceeds. If the
verification is negative, themodification does not take place. Theuser
may reenter the modify request without again specifying the associated
query.

Notes

New column_values may be specified in two forms: 1) as constants or linus
variables which have previously been set, or 2) as arithmetic expressions combining
constants, linus variables, and possibly the name of the column being modified. All
arithmetic expressions must be enclosed in parentheses. Anycharacter string values
entered via the request line and containing embedded white space must be enclosed in
quotes.

The select clause of the associated query must specify columns from only one
table, and only nonkey columns may be selected. The select clause associated with a

8/86 5-44 AZ49-03A

modify modify

modify request may not contain arithmetic expressions, but is restricted to simple or
qualified column names. Also, no set operators (union, inter, or differ) may appear
in the query. The null character string ("") may be used only when modifying the data
types:

character

character varying
bit varying

Examples

Give every employese a 10 percent raise. The query is:
linus: input_query
Query:

select sal
from emp

The modification is accomplished when iteration 1s on by:
linus: modify "(sal + .10 ¥ sal)"
sal = (sal + .10 ¥ sal)
0K? yes
Al Jones has transferred to the shoe department. Update his employee record to

indicate his new department and manager. The query is:

linus: input_query

Query:

select dept mgr

from emp

where name = "Al Jones"

The modification may be specified by:
linus: modify

dept? Shoe
mgr? 1234

dept = Shoe
mgr = 1234
0K? yes

linus: 1input query
Query:

select floor

from loc

where dept = "Shoe"

8/86 5-45 AZ49-03A

modify Open
The modification may be specified by:

linus: modify 3 -brief
Request: open, o

This request opens a specified MRDS data base for accessing in the designated

opening mode. The data base maybe designated either by the pathname of the data base
itself, or by the pathname of a data submodel associated with the data base. Only one
data base may be open at any given time. As an active function, it returns "true" if
the data base was successfully opened and "false" if it was not opened.

Usage

o path mode

Usage

s an Active Request

[o path model

where:

1. path
is the pathname of an MRDS data base or of a data submodel associated with
an MRDS data base. Adata submodel is auser'sviewof the data base which
may differ from the actual data base definition. Sese the MRDS Manual for
a detailed discussion of data models and data submodels.

2. mode

8/86

is the usage mode for which the data base is to be opened. Modes can be
specified either by their full names or by their abbreviations.

exclusive_retrieval, er
indicates that the user wishes only to retrieve data from the data base,
but that concurrent access by other users for update is to be prohibited.

exclusive_ update, eu
indicates that the user wishes to bothretrieve and update information in
the data base and that no concurrent access by other users is to be
permitted.

retrieval, r
indicates that the user wishes only to retrieve data from the data base
and allows concurrent access, for both update and retrieval, by other
users. This mode requires that the user set scope for all tables to be
touched (see the set_scope request).

update, u
indicates that the user wishes to bothretrieve and update information in
the data base and allows concurrent access, for both update and
retrieval, by other users. Thismodereqguires that theuser set scepe for

all tables to be touched (see the set_scope request).

5-46 AZL9-03A

open opened_database

Notes

For secure data bases, non-DBA users will be required to use the pathname of a
secure data submodel. Refer to the MRDS manual for definitions of DBA, secure data
submodel, and secure data base.

If the designated data base is already open by another user in a mode that
conflicts with the mode designated in this open request, the open request is denied.

Several data bases may be opened and closed during a linus session. However,
only one data base may be open at any given time.

Example

Open the department store data base for nonexclusive retrieval.

linus: open dept store retrieval

Request: opened_database

This request (without the optional path), returns "true" if there is an open data
base and "false™ if there is no open data base. If path is provided, the request
returns "true" if the specified mrds data base is currently open and "false" if the
data base is not open. This request can only be used as an active request.

Usage as an Active Request

[odb {path}]

where path is the pathname of a mrds data base or data submodel associated with a mrds
data base.

linus: string [opened_database]
false /% there is no currently open data base ¥/

linus: string [opened_database]
true /* there is a currently open data base */

linus: string [opened_database fool
false /* the foo data base is not currently open ¥/

linus: string [opened_database fool
true /* the foo data base is currently open */

8/86 5-47 AZ49-034A

picture print

Request: picture, pic

This request returns one or more values processed through a specified PL/I
picture.

Usage

pic pic_string values {-control_arg}

Usage as an Active Request

[pic pic_string values {-control_argl]

where:
1. pic_string
is a valid PL/I picture as defined in the PL/I Reference Manual and the
PL/I Language Specification.
2. values
. are strings having data appropriate for editing into the picture. Each
wvalue must be convertible to the type implied by the picture specified.
If multiple values are presented, the results are separated by single
.spaces. Any resulting value that contains a space is quoted.
3. control_arg
-strip
removes leading spaces from edited picture values; removes trailing
zeros following a decimal point; removes a decimal point if it is the last
character of a returned value.
Notes

For more information on PL/I picture and picture strings, see the PL/I Reference
Manual, (Order NO. AM83) or the PL/I Language Specification (Order No. AG94)

Examples

The editing request in a formatted report:
[picture $99,999v.99 [column_value salaryl]

returns the value $27,922.41 if the value of the salary column was 27922.41.

Request: print, pr

This request specifies that selected data is to beretrieved and displayed on the
user's terminal. The selected columns are displayed side-by-side with optional

8/86 5-48 AZ49-03A

print print

column headers. The user may specify that alimit be placed on the number of rows to be
displayed. A translated or translatable query must be available.

Usage

pr {-control_args}
where control args can be one or more of the following:
-all, -a

spacifies that every row of information is to be displayed. The user is
not queried.

-col_widths w1l ... wn, -cw wl ... wn
Texplicitly specifies thé width of each column to be displayed (in
characters). If not present, the widths assume default values

calculated from the data base definition of the items selected, or
lengths of the column headers, whichever is larger. If this control
argument is present, the specified widths must correspond in order and
quantity to the items in the 1ila select clause. The column header is
truncated if its length is greater than the column widths given. The wi
may be integers or may be specified as "p.q", where p and q are precision
and scale, respectively, of numeric data. Asterisks are printed if
retrieved data cannot be printed in the column widths specified.

-col widths_trunc, -cwt
is identical to the ~cwecontrol argument except that truncation occurs in
cases where retrieved data contains more characters than the column
widths specified. This argument is not compatible with -col_widths.

-max N .
where N is a2 positive integer specifying that no more than N rows of
information are to be displayed. If there are more than Nrows, the user
is queried as to whether more information is desired. Allowed responses
to this query are: yes, to continue printing data and query after Nmore
data lines are printed; no, to stop printing; or all, to print all
remaining data without query. If -max N is not given, N is set to 10.
This argument is incompatible with -all. '

-no_end
specifies that the string "(END)" is to be suppressed when there is no
more data to be printed.

-no_header, -nhe
specifies that column headers are not to be displayed. If not present,
column headers consisting of column names are displayed if columns are
selected. If an expression is selected, the column header is f(name),
where name is the table or row designator name for the data base items
appearing in the expression.

otes

The columns are displayed side-by-side. The width of each column is determined
from the data descriptions in the data base. Each column is separated from the next by
two blanks. There is no pagination.

8/86 5-49 AZ49-03A

print gedx

The current maximum total length for columns, two space separators, and trailing
newline characters that make up the print line is 5000.

Example

Display the names of all employees in the shoe department, together with the sums
of their salaries and commissions. The query is:

linus: input_query
Query:

select name sal + comm
from emp

where dept = "Shoe"

.

The retrieval is accomplished as follows:

linus: print

name F(emp)
John Smith 10000
Al Jones 12000
Carol Anderson 8000
Betty Johnson 11000
(END)

Request: print_query, pq

This request prints (displays) or returns the current query.

Usage

Pq

Usage as an Active Request

[pql

Request: qedx, qgx

This request invokes the qedx editor with the current query, or a newquery. The
edited query becomes the current query if the changes are saved before terminating
qedx.

8/86 5-50 AZ49-03A

qedx ' report

Usage
gx {-control_args}

where control_args can be chosen from the following:

-new
specifies that gedx be given an emptly buffer when invoked.

-old
" specifies that the existing query be made available for editing with
gedx. (Default)

The user must write (save) the changed query for it to become the current query.

Request: quit, q

This request terminates the linus session. If a data base is open at the time of
this request, it is automatically closed.

Usage

Reduest: report, rpt

-~ This request specifiesthat selected dataistobe retrieved and used to generate

a formatted report via the report I1/0 module and an existing Multics Report Program
Generator (MRPG) object module. TRefer to the MRPG Manual for a complete description
of the MRPG facility. A translated or translatable query must be available when this
request is specified.

Usage
rpt arg_string

where arg_string is a character string that must begin with the name of the MRPG object
module, and must also contain any arguments required by the MRPG object module.

8/86 5-51 AZ49-03A

report restore_format_options

The report is created by attaching the report file via report_ and opening it in
stream_output mode. Each set of selected values iswritten as a line through report_.
Within the MRPG program, the input from linus must be declared with the attribute,

special.

Example
mple

Create a formatted report containing the name, department, and salary of every
employee. Assume that the MRPG object module, emp_report, creates the desired
report. The query is:

linus: input_query
Query:

select name dept sal
from emp

The report is created by the following request:

linus: report emp_report

Request: restore_format_options, rsfo

This request restores the saved report layout specified by path. Only the
formatting options found in the saved report layout have their values changed.

Usage

rsfo path

where path is the pathname of the saved report format to be restored. If path does not
have a fo.lec suffix, one is assumed.

Notes

Refer to the save_format_options request for detail on the content of the saved
report format.

Examples

restore_format options sample display_format

restore_format_options another_display_format.fo.lec

8/86 5-52 AZ49-034

rtrim ’ save_format_options
Request: rtrim

This request returns a character string trimmed of specified characters on the
right.

Usage

rtrim STRa {STRb}

Usage as an Active Request

{rtrim STRa {STRb}]

Notes

The rtrim active function finds the last character of STRa not in STRb, trims the
characters from STRa following this character, and returns the trimmed result. Space
characters are trimmed if STRb is omitted.

Examples

string [rtrim 000305.000 0]
060305,

string [rtrim [1trim 000305.000 0] O]
305.

e
g

string X[rtrim " This is it. "
X This is it.Y

-Request: save format options, svfo

This request saves the current values of format options as a linus subsystem
exec_com. The saved format can be restored with the restore_format_options request.
The file is saved with a fo.lec suffix. Individual format options,; active format
options, or all of the format options can be saved. The query can also be saved.

Usage
svfo path {-format_option_argsl {-control_args}

where:

8/86 5-53 AZ49-03A

save_format_options save_format_options

1.

3.

8/86

path

format__

is the pathname of the segment that contains the saved format. If path
does not have a fo.lec suffix, one is assumed.

option_args

refer to the set_format_options request for a complete description of the
format option arguments. Each format option named has its value saved in
the exec_com specified by path. These arguments are incompatible with
the -all and -active control arguments.

GENERAL REPORT OPTIONS

“~-delimiter, -dm

-format_document_controls, -fde
-hyphenation, -hph

~-page footer_value, -pfv
-page_header_value, -phv
-page_length, -pl

-page_width, -pw

-title_line, -tl

-truncation, -tc

GENERAL COLUMN OPTIONS

-column_order, -co

-count, =-ct

-exclude, =-ex

-group, -gr
-group_footer_trigger, -gft
-group_footer_value, -gfv
-group_header_trigger, -ght
-group_header_value, -ghv
-outline, -out

-page_break, -pb
-row_footer_value, -rfv
-row_header_value, -rhv
-subcount, -sct

-subtotal, -stt

-total, -tt

SPECIFIC COLUMN OPTIONS

-alignment, -al
~editing, =-ed
-folding, -fold
-separator, -sep
-title, -ttl
-width, -wid

control_args

can be one or more of the following:

-active, -act

-all,

specifies that only the active formatting options are to be saved.
(Default) Type "help formatting_options.gi" for more information on
active formatting options. This control argument is incompatible with
the format option arguments and the -all control argument. If -active
and -all are given, the last one supplied is used. (Default)

-2

specifies that all formatting options are to be saved. This control
argument is incompatible with the format option arguments and the -active
control argument. If -all and -active are given, the 1ast one suppliedis
used.

5-54 AZ49-03A

save_format_options . set_format_options

-query
spacifies that the current query is to be saved. A
restore_format_options on the saved format also restores and makes the
saved query current.

Examples

save_format_options report_layout

save*format_options report_layout -all

save_format_options report_layout -query

save_format_options report_layout épage_header_value -page_footer_value
save_format_options report_layout -page_header_value -width salary

save_format_options report_layout -width *¥* -page footer_value

Request: save_query, sq

This request takes the current query and saves (wWrites) it to a file.

Usage

sg path

where path is the name of the saved file. If not present, a suffix of lquery is added to
path.

Request: set_format_options, sfo

w. ..This request sets individual report format options to user-specified or default _
values, and/or all formatting options to default values.

Usage

sfo {-format_option_args} {-control_args}

NOTE: The option value given for any format option argument can be the control
arguments -default or -prompt. If -default is given for the value, linus
sets the value of the format option to the system default. If -prompt is
given for the value, linus prompts for the value with the prompt string
"Enter FORMAT_OPTION_NAME.". A line consisting of the single character
"." terminates the prompted input mode. To suppress display of the
prompt string, use the -brief control argument.

8/86 5-55 AZ49-03A

set_format_options set_format_options

where:

1. format_option_args
can be one or more of the following:

Note: The following 1list identifies all format option
arguments grouped by function. The argument
descriptions are 1listed alphabetically, immediately
after the function groupings.

GENERAL REPORT OPTIONS
~delimiter, -dm
-format_document_controls, -fde
~hyphenation, -hph
-page_footer_value, -pfv
-page_header_value, -phv
-page_length, -pl
-page_width, -pw
~-title_line, -tl
-truncation, -te

GENERAL COLUMN OPTIONS
-column_order, =-co
-count, -ct
-exclude, -ex
-group, =-gr
-group_footer_trigger, -gft
~-group_footer_value, -gfv
-group_header_trigger, -ght
-group_header_value, -ghv
-outline, =-ocut
-page_break, -pb
-row_footer_value, -rfv
-row_header_value, -rhv
-subcount, =-sct
-subtotal, -stt
-total, -tt

SPECIFIC COLUMN OPTIONS
-alignment, -al
-editing, -ed
-folding, -fold
-separator, -sep
-title, -ttl
-width, -wid

-alignment column_id STR, -al column_id STR

column_id (see "Notes") specifies which column the alignment applies to
and STR is the alignment mode. STR can be set to center, left, right,
both, or decimal N. The default value for STR depends upon the type of
column selected. Character and bit strings default to left alignment,
decimal data with a non-zero scale defaults to decimal point alignment,
and all other types default to right alignment. For decimal alignment,
the decimal alignment position within the display width is given a
default value. This alignment position can be changed by specifying the
value as "decimal N", where N is the character position within the
display width where the decimal point is aligned. The alignment mode
"both" specifies that the column value is aligned to the leftmost and
rightmost character positions within its display width. Text is padded
by insertion of uniformly distributed whitespace if necessary.

-column_order column_list, -co column_list
column_list determines the order in which columns appear in the detail

8/86 5-56 AZ49-03a

set_format_options set_format_options

line. column list can be set to a list of column names or numbers.
Columns missing from this list are placed after the columns which appear
in the list. That is, if five columns were selected and the column order
value is given as "3 2", the complete order would be "3 2 1 4 5n,
(Default value for column list is the list of columns from the query, in
the order supplied, meaning that the columns appear in the exact order as
they appear in the query.

-count column_list, -ct column_list

column list determines the columns for which counts are generated.
column list can be set to a list of column names or numbers. Counts are
generated after the last detail line. If acount is requested on a column
that is excluded, the count is also excluded from the page. An exception
to this rule is when all columns are excluded. Counts are provided in
this case to allow reports consisting of some combination of counts,
subcounts, totals, and subtotals only. (Default value for column_list
is """, meaning nc columns have counts generated.

-delimiter CHAR, -dm CHAR
CHAR is the character used to delimit the dlfferent portions of a header
or footer and can be set to any printable character. (Default value for
CHAR is ™t",)

-editing column_id STR, -ed column_id STR
STR spe01f‘1es the addltlonal editing to be done to the column value before
it is placed on the page and column_id (see "Notes") specifies which
column the editing applies to. Multicsactive functions and linus active
requests are normally used to provide additional editing. For example,
the editing value:

[pic $99,999v.99 [column_value salaryl]

places commas and dollar signs in the "salary" column. (Default value
for STR is "", meaning additional editing is not done.)

Refer to the column_value request for 'a description of usage.

-exclude column_list, -ex column_list
column list determlnes if any of the columns selected in the query are
excluded from the detail line. column list can be set to a 1ist of column
names or numbers. (Default value for column_list is "", meaning no
columns are excluded.)

-folding column_id STR, -fold column_id STR
STR determines what type of action occurs when a column value exceeds its
display width and column_id (see "Notes") specifies which column the

folding applies to. STRset to"truncate", means the value-of-theeolumpr—— -~

is truncated to fit in the display width and the truncation character(s)
is placed at the end of the value to indicate truncation occurred.
(Default value for STR is "fill,"™ meaning portions of the value which
exceed the display width are moved down to the next line(s) until a
correct fit is obtained.)

-format document controls STR, -fdc STR
STRdetermines if the format document subroutine is to interpret format
document control lines when filling overlength text. STR can be set to
*on," meaning format_document_ interprets control lines in the text and
provides special filling actions based on the embedded control lines.
(Default value for STRis "off," meaning format_ document_ does not check
for control lines embedded in text.)

-group column list, -gr column_list
column 1ist. determlnes the grouping of a number of rows based on the
values of one or more columns. column list can be set to a list of column
names or numbers. The column or columns named in the list become a

8/86 5-57 AZ149-03a

set_format_options set_format_options

8/86

hierarchy of columns. The first column named is themajor column, and the
last column named becomes the minor column. The hierarchyof columns can
be used with the outline, page_ break, and subtotal options described

- below. (Default value for column list is"", meaning no group of rows is

defined.)

-group footer_ trigger column_list, -gft column_list

column_list determines when to generate the group footer. column_list
can be set toa list of column names or numbers. The columns which appear
in this list must also appear in the column list associated with the
-group option. If the -group option is set to a newvalue, columns which
are eliminated from the column_list are also eliminated from the
-group_footer_trigger column_list. When anyof the columns specified in
the column_list are about to change with the next row, the group footer is
evaluated. The group footer is always evaluated after the last rowof the
report. (Default value for column_list is "", meaning no group footer
triggers are defined.)

-group_footer_value STR, -gfv STR

STR is the group footer placed after each group of rows when any of the
columns associated with the -group_ footer_trigger option changes.
Refer to the description of -page_ f‘ooter value above for the content of a
header/footer. (Default value for STRIs "", meaning there is no group
footer defined.)

-group_header_trigger column_list, -ght column_list

column 1ist determines when to generate the group header. column_list
can be set toa list of column names or numbers. The columns which appear
in this list must also appear in the column list associated with the
-group option. If the -group option is set to anewvalue, columns which
are eliminated from the column_list are also eliminated from the
-group_header_trigger column_list. When anyof the columns specified in
the column 1ist have just changed with the current row, the group header
is evaluated. The group header is always evaluated before the first row
of the report. (Default value for column_list is "", meaning no group
header triggers are defined.)

-group_header_value STR, -ghv STR

STR is the group header placed before each group of rows when any of the
columns associated with the -group_header_trigger option changes.
Refer to the description of -page_ f‘ooter value above for the content of a
header/footer. (Default value for STRIs "", meaning there is no group
header defined.)

-hyphenation STR, -hph STR

the value of -hyphenation determines if hyphenation is to be attempted
when filling overlength character strings. STR can be set to "on,"
specifying that hyphenation is to be attempted. (Default value for STR
is "off," meaning no hyphenation is attempted.)

-outline column_list, -out column_list

column_ list determlnes if duplicate values in a column are to be
suppressed. column_list can be set toa list of column names or numbers.
If the value of a named column is the same as its previous value, then the
value is suppressed unless it is the first line of a new page. (Default
value for column_list is "", meaning no columns have duplicate values
suppressed.)

If anyof the named columns are a member of the "group" of rows defined by
the group option, then it, and all of the columns more major in this group,
are outlined. A change in value of any one column displays all columns
lower in the hierarchy in addition to the column that changed. An
exception is the first line on a new page, in which case duplicate values
are never suppressed.

5-58 AZ49-03A

set_format_options set_format_options

-page_break column_list, -pb column_list

columr‘ list det@rmmes when page breaks are generated. column list can
be set to a 1ist of column names or numbers. The columns specified in the
list are examined, and when their values change, a new page break is
generated. If anyof the named columns are a member of the "group” of rows
defined via the group option, then it, and all columns more major in the
group, are examined for page breaks. (Default value for column_list is
nn. peaning that no columns are examined for page breaks.)

-page_footer_value STR, -pfv STR

STR is the page f‘ooter placed at the bottom of each page. The page footer
can consist of more than one line, and each line can have a left, right,
and center portion. The individual portions of each line are delimited
by the delimiter character. Active requests found in the footer are
evaluated and their return value is placed into the footer before folding
and alignment takes place. Portions of a footer with zerc length have
their spacaz on the pageredistributed to the other portions whose lengths
are not zero. For example, if the page footer contained only a center
portion:

!1Sample Center Portion!!

the text is centered on the page and has the full page width available for
the text. Similarly, a left portion or right portion only is aligned to
the left or right of the page and has the full page width available for
placement of text. Two exceptions to this action are when the footer has
a left, right, and center portion, and the left or right portion has a zero
length, such as:

fleft partlecenter part!!
or
!1center partl!right part!

in which case the left or right part of the page is unavailable for
placement of text (i.e., the space is not redistributed to the other two
portions). If the redistribution of the available page width is not
desired, the placement of a single blank into a portion such as
"I<K3SP>!Center Part!<SP>I" prevents the redistribution from taking
place because each portion has a length greater than zero. (Default
value for STRis "", meaning there is no page footer provided bydefault.)

-page_header_value STR, -phv STR
STR is the page header placed at the top of each page. Refer to the
description of -page footer_value for the content of a header. (Default
- -value-for-STRis ", meaning there istopage header providedbydefautt)————

-page_length N, -pl N
N is the length of each formatted page given as number of 1ines. N can be
given as "0" or any positive integer. "O" means the report is not to be
pagigai):ed and is created as one continuous stream. (Default value for N
is 66.

-page_width N, -pw N
N is the width of each formatted page given as the number of character
positions. N can be given as "0" or any positive integer. "O" means the
page width is always set by linus to be the exact width needed to contain
all of the columns specified in the query. If N is greater than zero and
the width for any column exceeds N, the width of the column is
automatically set to N. (Default value for N is T79.)

-row_footer_value STR, -rfv STR
“STR is the row footer placed after each detail line. Refer to the

8/86 5-59 AZ49-034A

set_format_options set_format_options

8/86

description of -page footer_value (above) for the content of a footer.
(Default value for STR is " , meaning that no row footer is provided.)

-row_header_value STR, -rhv STR

TSTR is the row header placed before each detail line. Refer to the
description of -page footer_value (above) for the content of a header.
(Default value for STR is "7, meaning that no row header is provided.)

-separator column_id STR, -sep column_id STR

STR separates a column from the next one following it and column_ id (see
“hlol'ee"\ sn=h1f'1ne which column the anav‘afnr apn1 ies to. 'T'ha last

column on a line does not have a separator. STR can be any sequance of
printable characters. (Default value for STR is "<SP><SP>".)

-subcount subcount_spec, -sct subcount_spec

subcount_spec “determines what columns subcounts to generate, when they
should be generated, and what type of subcount is generated. (Default
value for subcount_spec is "", meaning that no subcounts are generated
for any columns.)

subcount_spec can consist of one or more blank-separated "triplets."
The syntax of a triplet is:

column_1,column_2{reset | running}
where:

column_1
is the name or number of the column for which a subcount is
generated.

column 2
“is the name or number of a column whose value is examined to
determine when to generate the subcount. When the value of the
column being examined changes, the subcount is generated. If
this column is a member of the group of rows defined via the
"group" option, it, and all columns more major in the group, are
examined for subcount generation.

reset | running
indicates the type of subcount desired. If reset is selected, the
subcount counter is reset to 0 each time a subcount is generated.
If running is selected, the subcount is not reset to 0. If a
subcount is requested on a column that is excluded, the subcount
is also excluded from the page. An exception to this rule is when
all columns are excluded. Subcounts are provided in this case to
allow reports consisting of some combination of counts,
subcounts, totals, and subtotals only. (Default is "reset.")

-subtotal subtotal_spec, -stt subtotal_spec

subtotal_spec “determines what column subtotals to generate, when they
should be generated, and what type of subtotal is generated. (Default
value for subtotal_spec is "", meaning no subtotals are generated for any
columns.)

subtotal_spec can consist of one or more blank-separated triplets. The
syntax of a triplet is:

column_1,column_2{,reset | running}
where:
column_1

is the name or number of the column for which a subtotal is
generated.

5-60 AZH49-034

set_format_options ‘ set_format_options

2.

8/86

column 2
iS the name or number of a column whose value is examined to
determine when to generate the subtotal. When the value of the
column being examined changes, the subtotal is generated. If this
column is a member of the group of rows defined via the "group"
option, it, and all columns more major in the group, are examined for
subtotal generation.

reset | running

indicates the type of subtctal desired. If reset is selected, the
subtotal counter is reset to 0 each time a subtotal is generated. If
running is selected, the subtotal is not reset to 3. If a subtotal
is requested on a column that is excluded, the subtotal is also
excluded from the page. An exception to this rule is when all
columns are excluded. Subtotalsare provided in this case to allow
reports consisting of some combination of counts, subcounts,
totals, and subtotals only. (Default is "reset.")

-title column id STR, -ttl column id STR

STR is the title placed above the column at the start of each page if the
title_line option is set "on" and column_id (see "Notes") specifies which
column the title applies to. (Default value of STR is the name of the
column taken from the open model or submodel. In the case of expressions,
the default value for STR is "eN", where N begins at 1 and is incremented
by 1 for each additional expression found in the select list. If the
title is not the same number of characters as the display width of the
column, the title is centered within the display width for its associated
column. If the value of title is wider than the display width of the
column, it is filled or truncated to obtain a correct fit, depending on
the folding action of the parent column.)

-title line STR, -tl1 STR

STRdetermines if a title line is to be printed. STRcan be set to "off" to
inhibit the printing of the title line. (Default value of STR is "on,"
meaning a title line is printed at the top of each page.)

-total column list, -tt column list

columnﬁlTst determines what column totals to generate. (Default value
for column_list is "™, meaning no totals are generated for any columns.)

column_list can be set to a 1ist of column names or numbers. Totals are
generated after the last detail line. If a total is requested on a column
that is excluded, the total is also excluded from the page. An exception
to this rule is when all columns are excluded. Totals are provided in
this case to allow reports consisting of some combination of counts,
subcounts, totals, and subtotals only.

-truncation STR, -tc STR

STRdetermines the character(s) to be used to indicate truncation of some
value. STR can be set to any sequence of printable characters. (Default
value for STR is ¥*.)

-width colump_id N, -wid column_id N

N determines the display width for a column and column_id (see "Notes")
specifies which column the width applies to. Ncan be set to any positive
integer. (Default value for N is the number of character positions
needed to contain the value, after conversion from the data type found in
the data base, to character format.)

control args

can be chosen from the following:

5-61 AZ49-034

set_format_options set_format_options

-brief, -bf
specifies that the prompt string for values is not to be displayed. If
the -brief and -long control arguments are both entered on the request
line, the last one supplied is used.

~default
specifies that linus set the value of the format option which immediately
precedes this control argument to the system supplied default.

-long, -lg

-prompt controlargument 1sprov1ded (Default)If the -brief and - long
control arguments are both entered in the request line, the last one
supplied is used.

-no_reset, -nrs
sp°01f1es that formatting options are not to be reset to system default
values. (Default --onlyuser-specified options can be changed.) If the
~-reset and -no_reset control argument are both entered in the request
line, the last one supplied is used.

-prompt
specifies that linus prompts for the value of the format option which
immediately precedes this control argument. A prompt string is written
before the prompting action unless the -brief control argument is used.
A line consisting of the single character "." terminates the prompted
input mode.

-resets, -rs
specifies that all formatting options are to be reset to system default
values before the values are changed for any other format options
specified in the request line. If -reset and -no_reset are both entered
in the request line, the last one supplied is used.

-string STR, -str STR
enters STR as a format option value when STR begins with a hyphen.

Notes

. The variable column id identifies the column name as defined in the open
model/submodel, the number of the column in the query, or a star name which is used to
match column names If more than one table name is used in a select statement, the
column_name is fully qualified (e.g. "table_name.column_name", or
"row de51gnator column_name"), otherwise the table name is unqualified (e.g.,
"table name").

At least one format option argument or the -reset control argument must be
specified. Format option arguments and control arguments can be mixed freely in the
request line, but a control argument cannot be placed between a format option name and
a format option value. For example:

set_format_options -page _width 80 -reset
is a valid request, but

set_format_options -page width -reset 80
is not valid. If a value is to be set that begins with a hyphen, the -string control

argument must be given before the value, to distinguish it fromcontrol argument.s and
format option arguments.

8/86 5-62 AZ49-03A

set_format_options set_mode

Example

set_format_options -width 1 25

set_format_options -title emp_name "Employee Name"

set_format_options -reset -page width 80 -page length 60

set_format_options -page_footer_value "!!-[display_builtins pageﬁnumber]-!!"

set_format_options -page header_value -prompt
Enter page_header_value.

![execute date] ILINUS REPORT![execute timel!
11y

..inl1 0 : »

!1--Page [display_builtins page number]--!!

.

set format_options -exclude exchange extension -width area_code 12

set format_options -editing area_code "[format_line "a/"a-"a [column_value area_code’
Tcolumn_value exchangel [column_value extension]]"

Request: set_mode, sm

This request sets or resets the specified mode and changes the prompt strings.

Usage

sm {mocdel...modeN}
where modei may be one of the following:

iteration
turns on request line iteration processing.

“iteration
turns off request line iteration processing. (Default)

prompt
turns on prompting. (Default)

“prompt
turns off prompting.

set_linus_prompt string STR, slups STR
sets the linus prompt string to STR. If there are embedded blanks in STR,
then STR must be enclosed in quot ult i s:")

qucoes. \we 7

set_lila_prompt string STR, slaps STR

sets the liia prompt string to STR. If there are embedded blanks in STR,
then STR must be enclosed in quotes. (Default is "->")

8/86 5-63 AZH49-03A

set_mode set_scope

=z
(o]
ct
(1]

The maximum prompt string length is 32 characters.

Examgle

Turn off prompting mode.

linus: set_mode “prompt

Request: set_scope, ss

This request allows the user to define the current scope of access to the data
base for nonexclusive opening modes. This request and the del_scope request are the
means through which the user defines requirements to the linus concurrent access
control mechanism. Every table that the user wishes to access for a given period must
be included within the user's scope of access for that same period. As an active
request, it returns "true" if the scope was set and "false" if the scope was not set.

For every table to be included in the current scope, the user specifies the types
of access required, and also those types of access whichare to be prohibited to other
users. The scope of access is a dynamic entity, and maybe varied toreflect theuser's
changing requirements during the life of a linus session. In order to prevent
deadlock situations the current scope must be set to null with the del_scope request
prior to issuing a set_scope request.

Usage

ss table_namel permit_ops1 prevent_opsi {... table_namen permit_opsn
prevent_opsn} {-control_arg}

Usage as an Active Request

[ss table _namel premit ops]1 prevent opsl {... table_namen permit opsn
prevent_ops_} {-control_arg}]

where:

1. table_namei
is the name of a nontemporary table within the data base that is to be
included in the current scope of access.

2. permit_opsi
is a character string indicating which types of data base operations are
to be permitted the user who is setting scope for the corresponding table.
The character string is theconcatenation ofthecodesfbr alloperations

P i Iy Ty Wt | Qa_ . wM_ L __n
LU Ve permmivveu. Dee TN LeES T 1Ul a ucal.xx.p rzon Ul VHC vper de.Ull LUUUD-

3. prevent_opsi
is a character string similar to that for permit_opsi indicating which

8/86 5-64 AZ49-03A

set_scope A set_scope

types of data base operations are to be denied other users for the
corresponding table.

b, control_arg
may be either -time seconds, or -tm seconds where seconds is an integer
that specifies the wait time in seconds to be allowed for the requested
scope to be granted. The default wait time is 30 seconds. If the
requested scope cannot be granted within the specified wait time, the
user is notified of the denial and may try again or may take other
appropriate action.

Notes

Codes for operation types to be permitted or prevented are:

Code Operation

delete

modify

null

retrieve

store

update (store, mocdify, delete)

CwTo s A

It is recommended that users declare the minimum access scope necessary for any
given operation and that the scope be maintained for only as long as it is needed.
Declaration of unnecessarily large scopes is discouraged, as other users may be
needlessly locked out of the data base. .

The set_scope request is denied if the user currently has a nonnull scope in
force. Therefore, all of the user's access scope must be deleted with a del_scope
request prior to issuing a set_scope. The set_scope request must then specify The
entire scope of access required by the user for a block of operations. This is in
contrast to the del_scope request, where portions of the current scope may be deleted.

If another user has a conflicting scope in force, the set_scope request is denied.

Specification of a modify, store, or delete permit_cp causes a retrieve
permit_op for the same table to be automatically requested.

The null (n) scope operation code is ignored, unless given by itself.

Example

Jim Jones, the manager of the shoe department, has retired and is being replaced
by Al Smith. Update the employee table to reflect these changes, while ensuring that
no other users access inconsistent data. This may be done in two steps.

Step One: Do the necessary retrieves

i1inus: input_query

Query:
‘'select emp_no from emp
where name = "Al Smith"

linus: set_scope emp r n
linus: assign_values !smith_no
linus: qedx

8/86 5-65 AZ49-034

set__scope store

2s/Al Smith/Jim Jones/
1,$p

select emp_no from emp
where name =z "Jim Jones"
write

quit

linus: assign_values !jones_no
Step Two: Modify and delete

linus: qedx

1s/emp_no/mgr/

2s/name = "Jim Jones"/mgr = !jones_no
1, $p

select mgr from emp

where mgr = !jones_no

write

quit

linus: del_scope *

linus: set_scope emp dm rdms
linus: modify !smith_no -brief
linus: qedx

1s/mgr/*/

2s/mgr/emp_no/

L,$p

select * from emp

where emp no = !jones_no
write

quit

linus: delete
linus: del_scope *

Notice that the only time it is necessary to prevent access to other users is
while modify and delete are being accomplished.

Request: store, s

This request adds newrows to a designated table in the data base. The data base
must be open for update or exclusive_update. If open for update, the table being
stored must be within the current access scope for the store operation. Values being
stored maybe specified in one of three ways: 1) directly within the request line, 2)
interactively in response to linus prompting, or 3) by placing the values in a Multics
file and supplying the pathname as a control argument in the storerequest 1line. Using
the first two methods, only a single rowmay be stored with one store request, whereas
the third method (file input) allows the storing of multiple rows. Moreover, if the
new row is being entered from the terminal (as opposed to file input), the user has the
option of verifying the values prior to their being stored into the data base. (Alsoc
see the store_from_data_file request.)

Usage

s table_name {column_values} {-control_args}

8/86 5-66 AZH9-03A

store

where:

store

1. table name

is the name of the table to which rows are being added. This must be the
name of a nontemporary table.

2. column_values
are optional arguments and, if present, specify the column values
comprising the newrowbeing added. The column_values must be specified
in the same order that the corresponding columns appear in the data base
or the data submodel, whichever is applicable. Also, exactly one value
must be specified for every column defined in the data base or data
submodel.

3. control_args

can be one or more of the following:

-brief, -bf

specifies that verification of column_values is not to be done. If not
present, and if the -input file control argument is not present, linus
displays a list of column names, together with the column_values entered
by the user, and requests that the user verify the correctness of the
column_values before the store operation proceeds. 1If theverification
is negative, the store does not take place, and the user must reenter the
store request.

-column delimiter CHAR, -cdm CHAR

specifies that eachoolumn value, in the file specified via -input_file,
is separated from the next by the CHAR character. This control argument
has meaning only if specified together with -input_file. If not present,
each column_value is assumed to be delimited by one or more blanks.

-input_file path, -if path

specifies that the column_values are to be taken from the Multies file
designated by path. path is the pathname designating a Multics file
suitabie for process:.ng Dy viile in the stream 1r1put, opem.ng mode. See
"Notes" for a detailed description of the input file.

-row_delimiter CHAR, -rdm CHAR

Notes

specifies that each row value is separated from the next by the CHAR
character. If not present, eachrow value is assumed tc be delimited by a
newline (NL) character.

If column_values are not present in the request line and -input_file is not

specified,

then linus requests each column_value individually by name.

If -input file is specified, the input file may contain column values for more

than one row.

“The input for each row is terminated by a newline character or the row

delimiter character, if specified. In all cases, column_values are separated by
blanks unless another delimiter is specified via -column delimiter.

Examples

Add a new supplier to the supply table.

linus:

8/86

store supply Acme 10 200

5-67 AZ49-03a

store . store_from_data_file

supplier = Acme

item = 10
vol = 200
0K? yes

Another way of performing the operation is:

linus: store supply -brief

supplier? Acme
item? 10
vol? 200

Request: store_from_data_file, sdf

This request reads data from a file and loads it into the specified table. It may
] be used to reload data written by the write data_file request.

Usage

sdf table_name ~-control_args
where:

1. table_name
is the name of the table defined in the open model or submodel.

2. control_args
can be chosen from the following:

-column_delimiter CHAR, -cdm CHAR
where CHAR is a single ASCII character used to delimit the column values.
(Default column delimiter is the tilde.)

-input_file pathname, -if pathname
specifies the name of the file which contains the input data.

-row_delimiter CHAR, -rdm CHAR
where CHAR is a single ASCII character used to delimit the row values.
(Default row delimiter is the newiine (NL) character.)

Note

One level of quotes is removed from each column value, if present.

Examples

store_from_data_file employee -if employee data
store_from_data_file employee -if employee_data -cdm X -rdm Y

8/86 5-68 AZ49-03A

store_from_data_file subsystem_name

Several rows could be added to the supply table by first creating the following file
with a text editor:

Acme, 10, 200,
XYz7,12, 150,
J. Smith, 10, 100,
and then entering the following request:

linus: store_from_data_file supply -input file supply file
-column_delimiter, ~

Request: string

This request returns a single character string formed by concatenating all of the
strings together, separated by single spaces.

Usage

string {STRs}

Usage as an Active Request

[string {STRs}]

If no STRs are specified, a null character string is returned. If one or more
STRs are specified, any quotes are returned as single quotes.

Examples

string He said, "Hi."

He said, Hi.

string He said, "WwHi.mnw
He said, "Hi."

string [string This is "food".]
This is food.

Request: subsystem_name

This request displays the name of the subsystem. As an active request, it
returns the name of the subsystem.

8/86 5-69 AZ49-03A

subsystem_name translate_query

Usage

subsystem_name

Usage as an Active Request

[subsystem_namel

Request: subsystem_version

- This request displays the version number of the subsystem. As an active request,
it returns the version number of the subsystem.

Usage

subsystem_version

[y

sage as an Active Request

[subsystem_version]

Request: translate_query, tqg

This request translates the current query and makes it available for linus data
manipulation requests.

Usage

tq

Note

“Refer to Section 1 for examples of query statements.

8/86 5-70 AZU49-03A

Wwrite write

Request: write, w

This request specifies that the selected data is to beretrieved and written to a
specified Multics file. The output file is a text file created by vfile_ in the
stream output mode. If the file already exists, it may optionally be extended,
although normally it would be truncated. A translated or translatable query must be
available.

Usage

w outfile {-control_args}
where:

1. outfile
is the pathname of a Multics file into which the selected data is to be
written. If the file does not currently exist, it is created. If the
file currently exists, it is truncated unless -extend is also specified.

2. control_args
may be one or more of the following:

-extend
specifies that if the outfile exists, it is to be added to, rather than
truncated. ’

-column delimiter CHAR, -cdm CHAR
specifies that each selected value is to be delimited by the CHAR
character in the outfile. If not present, each selected value is
delimited by one blank.

-row_delimiter CHAR, -rdm CHAR
specifies that each row is to be delimited by the CHAR character in the
outfile. If not present, each row is delimited by a newline (NL)
character.

The output file is a text stream file created by vfile_. Each set of selected
values is delimited by a newline character or the row delimiter character, if
specified. The output file is suitable for processing by a text editor, as well as

8/86 5-71 AZ49-03A

write write_data_file

other Multics facilities which process ASCII text files.

Example

Create a text file consisting of the name and salaryof every employes. The query
is:

linus: input_query
Query:

select name sal
from emp

The text file may then be created by:

linus: write salary file

Request: write_data_file, wdf

This request retrieves the selected data and places it in an output file, in a
format suitable for input to the store_from data_file request.

Usage

wdf pathname {-control_args}
where:

1. pathname
is the name of the file where the data is to be written.

2. control_args
can be chosen from the following:

-column_delimiter CHAR, -cdm CHAR
where CHAR is a single ASCII character used to delimit the column values.
(Default column delimiter is the tilde.)

-create_columns STR, -crc STR
STR specifies the column positions for newcolumns with null values. STR
is a blank-separated list of numbers. (See "Notes" below.)

-extend
specifies that if the file already exists, it should be extended rather
than truncated.

-row_delimiter CHAR, -rdm CHAR v
where CHAR is a single ASCII character used to delimit the row values.
(Default row delimiter is the newline (NL) character.)

O T
=Lruncacve

specifies that if the file already exists, it should be truncated.
(Default)

8/86 5-T72 AZH49-03A

write_data_file write_data_file

Notes

The -create_columns control argument aids in the restructuring of tables. The
column positions specified are the positions in the output file where the null value is
placed. To create two new columns as the third and fifth columns in the output file,
the string "-create_columns 3 5" would be used. The null value is provided by placing
two column delimiters together without any intervening characters, and the zero
length character string is converted according to the data type of the column when the
store_from_ data_file request processes the input file.

Column values are examined to determine if they contain quotes, column
delimiters, or rowdelimiters. If anyof these are found, the column value is requoted

before it is placed in the output file. The store_from_data_file request removes this
layer of quotes when processing the file.

Examples

write_data_file employese_data

write_data_file employee_ data -extend
write_data_file employee data -create_columns 1 5
write_data_file employee_data -column_delimiter X
write_data_file employee_ data

abel™1714555.01736 " m" s~ ak™ juneau
abell™2713000.01°55 " f"m~az phoenix

baker~™1712000. 10771 m"s" il " springfield

8/86 5-T3 AZ49-03A

SECTION 6

OBSOLETE LINUS CONTROL ARGUMENTS/REQUESTS

This section contains descriptions of the pre-MR10.2 linus command and
associated requests that are obsoleted with the installation of MR10.2. The
requests (invoke and lila) have been replaced by new requests, but will remain
fully supported for an indefinite period.

The invoke request has been replaced by "exec_com" and the functions of
lila are replaced by the requests:

apply

gedx

input query (lila new)
print query (lila print)
save query (lila save)
translate_query (lila proc)

A1l of the above (new) requests are described in Section 4.

6-1 AZ49-03

linus linus

Name: 1linus

This command invokes linus to access an MRDS data base. It provides both-
retrieval and update operations. Data to be selected is specified via 1lila
requests.

Usage

linus {macro_path} {-control_args}

where:

1. macro path

T is an optional argument that specifies the pathname of an ASCII
segment from which linus is to take its initial instructions. Such
a set of instructions is referred to as a macro. If path does not
have a suffix of linus, then one is assumed. However, the suffix
linus must be the last component of the name of the segment. If
macro path is provided, linus executes the requests contained in the
specified segment and then waits for the user to type further requests.
If the -request control argument is provided, linus executes the
specified requests and then waits for the user to type further requests.
If both macro path and -request are omitted, linus Waits for the
user to type a request. A discussion of linus macros is provided
later in this section. The usage of this argument is incompatible
with usage of the -request control argument below. (Default -- linus
waits for instruction from user input.)

2. control args
can be chesen from the following:

-abbrev, -ab
enables abbreviation expansion and editing of request lines.

-arguments macro_args, -ag macro_args
where macro args are one or more character strings to be substituted
for special strings in the macro segment. This control argument may
be specified only if macro_path is provided.

Note: This control argument must be the last control argument given.
The others may be given in any order.

-iteration, -it
recognizes parentheses in the request line to indicate request line
iteration.

-no_abbrev, -nab
disables abbreviation expansion and editing of request lines. (Default)

-no_iteration, -nit
parentheses in the request 1line are interpreted literally (i.e.,
they do not cause request line iteration. (Default)

-no_prompt, -npmt
turns off prompting of strings. This control argument can be overridden

6-2 AZ49-03

linus linus

later (see set mode request). (Default is prompt.)

-no_start_up, -nsu
specifies that the subsystem start_up exec_com is not to be executed.

-profile path, -pf path i
specifies the pathname of the profile used for abbreviation expansion.
A profile suffix must be the last component to path; however, the
suffix need not be supplied in the command line. This control argument
implies -abbrev.) B

-request STR, -rq STR
executes STR as a linus request 1line before entering the request
loop. The usage of this control -argument is incompatible with the
usage of the macro path argument. (Refer to macro path description
above.) - -

-set _1lila prompt string STR, -slaps STR
sets the prompting string used by 1lila to STR. If STR contains
embedded blanks, it must be enclosed in quotes. (Default lila prompt
is n_>n.)

-set linus prompt string STR, -slups STR, -prompt STR :
“sets the prompting string used by linus to STR. If STR contains
embedded blanks, it must be enclosed in quotes. (Default linus prompt
is "linus:".) :

-start_up, -su i
specifies that the subsystem start up exec com "start up.lec" is
executed prior to entering the request loop. The start up is searched
for in the user home directory, project directory, -and then >site.
(Default) ’

Notes

While most users interact with linus through a terminal, this facility is
designed to accept input through the user input I/0 switch and to transmit output
through the user output I/O switch. These switches can be controlled, via the
io call command, to interface with other devices/files in addition to the user's
terminal. For convenience, the 1linus description assumes that the user's
input/output device is a terminal. ’

By default, linus prompts the user whenever input is expected from the
user input I/0 switch (the string "linus:" 1is displayed if at 1linus request
level, or the symbol "->" is displayed if within the lila editor). Refer to the
description of the set mode request for information on how to turn off prompting.

Multics program interrupt conditions are recognized and handled by linus.
Thus, the user may interrupt any request and resume the linus session by invoking
the Multics program interrupt command. After the program interrupt command, linus
waits for the user to type further requests. -

There is no data base creation facility within linus. Those users who wish
to create their own data base should refer to Section 3 for information on the
creation of an MRDS data base.

6-3 AZ49-03

linus linus

LINUS Requests

invoke, i
executes requests in a designated linus macro segment.

lila
invokes the 1lila editor which is wused to build and process 1lila
expressions to select data for manipulation by subsequent 1linus
requests.

All other 1linus requests are listed and described in Section 4.

Request: invoke, i

This request specifies that requests contained in the designated macro segment
are to be executed. Arguments may optionally be passed to the macro. This
feature provides the capability to invoke a pre-defined series of linus requests.

Usage
i path {macro_args}

where:

1. path
is the pathname of the ASCII segment containing the linus macro. If
path does not have a suffix of linus, then one is assumed. However,
the suffix linus must be the last component of the name of path
segment,

2. macro_args
are character strings to be substituted for special strings in the
macro segment.

Note

Upon acceptance of the invoke request, the macro segment is read and executed,
line-by-line. Argument substitution also takes place on a line-by-line basis,
after the line is read and prior to its execution. After all lines in the macro
segment are processed, linus waits for the user to type further requests on the
terminal. The macro facility is described in detail later in this section. The
invoke request is not compatible with request line iteration.

6-14 AZ49-03

linus linus

Example

Execute the requests contained in the segment get salary.linus, passing the
argument "John Smith". -

linus: i get salary "John Smith"

Request: 1lila

This request invokes the 1lila editor which is used to build and process
lila expressions. This is a line editor which is very similar to a basic editor.
A processed lila expression must be available when a print, assign values, write,
report, create list, modify, delete, or define temp table request is specified.
(Refer to Section 1 for a description of the Selection language and the syntax
and semantics of lila.)

Usage
lila {-control_args}

where control_args can be chosen from the following:

-build {start}! {increment}

invokes lila build mode, an automatic numbering mode, in the current
lila text file. The value of start determines the first line number
of the inserted text. The value of increment, when added to the
previous line number, yields the next automatic line number. A value
for start must be given if an increment is to be given. Both start
and increment must be positive integers ranging from 1 to 9999.
Build mode is exited by entering a line consisting only of a period
(.). The default increment is 10 and the default start is the current
last line number plus the increment.

-new
specifies that text from previous invocations of the lila editor are
to be deleted. By default, previous text is made available for
further editing and processing.

Lila Requests

identifies the lila editor of linus and the linus version number.

displays a 1list of available requests.

6-5 AZ4g9-03

linus linus

build {start} {increment}
invokes build mode in the current 1lila text file. The value of
start designates the first automatic line number. The value of increment
designates the offset used to generate succeeding automatic line
numbers. (See =build control argument above.)

execute, e i
passes the rest of the request line to the Multics command processor.

invoke path {macro args}, i path {macro args}
executes requests contained in the linus macro segment designated by
path after passing any specified macro args. This request functions
in the same fashion as the linus invoke request.

line number
deletes the text line specified by line_ number.

" line_number text line
adds or replaces the line of text in the proper sequence as specified
by .line number. The line number may have a value ranging from 0 to
9999. -

list, 1s
displays all text lines in the current 1lila file.

list requests, 1r
displays a brief summary of available 1lila requests.

new
deletes all text from the current lila text file,.

proc
processes the lila expression source text contained in the current
lila file to produce a processed lila expression suitable for use by
subsequent linus data manipulation requests.

quit, g

terminates the current 1lila session, and places the user at linus
request level. The contents of the current lila file are retained
for possible manipulation in a subsequent 1lila session within the
current linus session.

save path, sv path
writes the contents of the current lila file to the segment designated
by path for use by a subsequent invoke. If not present, a suffix of
linus is added to path.

Example

Build and process a lila expression to find all items sold by departments
located on the second floor. 1In the following example, one line (30) is purposely
input with a mistake which is subsequently corrected.

linus: 1lila -new

~> 10 select item

-> 20 from sales

-> 30 where dept = {select deppt

-> 40 from loc

-> 50 where floor = 2}

6-6 AZ49-03

linus linus

-> 1ls .

0010 select item

0020 from sales

0030 where dept = {select deppt
0040 from loc

0050 where floor = 2}

The next entry corrects a typo "deppt" shown in line 30.

-> 30 where dept = {select dept
-> 1s

0C10 select item

0020 from sales

0030 where dept = {select dept

0040 from loc

0050 where floor = 2}
-> proc ,

-> q.

6-7 AZ49-03

MACRO FACILITY

Linus provides the capability to execute a series of requests contained in
a text segment. Such a segment is referred to as a linus macro segment. The
name of a linus macro segment must have a suffix of linus.

A linus macro may be invoked in one of two ways: 1) via the linus command
line, or 2) via the 1linus or 1lila invoke requests. Invocation via the 1linus
command line is:

linus macro path -arguments argt ... argn

which is equivalent to the sequence:

linus
invoke macro_path argl ... argn

4 linus macro segment contains a series of 1linus requests in the same
format as if they were entered at the terminal. Comments may appear in a linus
macro segment as they would in a PL/I source segment, with the exception that a
comment must be contained within one line. Arguments to the linus macro can be
specified in a method analogous to the specification of arguments to a Multics

exec_com. In a linus macro, strings of the form %i% are interpreted as dummy
arguments and are replaced by the corresponding macro_args in the invoke request
or in the linus command line. For example, macro argl 1is substituted for the

string %1% and macro_argl0 is substituted for the string %10%. Substitutions
are also made within quoted strings. If a % is to be included in a string, %%
must be specified.

The following is an example of a linus macro that displays the sales volume,
given a department name and item code:

o dept store retrieval /¥ o data base ¥/

ss sales r n /¥ allow read only, no prevents ¥/
lila -new /% specify the data ¥/

10 select vol

20 from sales

30 where dept = "%31%" & item = %2%

proc

q .
pr -no header /*¥ no need for header ¥/
ds ¥ /* clean up */

c

q

Assume this macro resides in the segment volume.linus. Then, in order to obtain
the sales volume for item 20 in the shoe department, the user types:

linus volume -arguments shoe 20
and the resulting where clause reads:

where dept = "shoe" & item = 20

6-8 AZ49-03

SECTION 7

EXEC COM FACILITY

The capability to execute a series of requests contained in a text segment is
provided by linus. Such a segment is referred to as a linus exec_com. The name of a
linus exec_com must have a suffix of lec. A linus exec_com is executed by the
sequence:

linus
linus: ec exec_com_path {argl ... argnl

A linus macro segment contains a series of linus requests in the same format as
they were entered at the terminal. It is possible to specify arguments to the linus
exec com. In the linus exec_com, strings of the form &1 are substitutable arguments
and are replaced by the corresponding exec_com arguments in the exec_com request line.
For example, exec_com argument 1 is substituted for the string &1, and exec_com
argument 10 is substituted for the string &10.

An example of a linus exec_com that displays the sales volume, given a department
name and item code, is:

&version 2

&trace off &- no need to see requests as they execute
&attach &- have linus read lines from here
&if &%[e equal &n 2] _ &- make sure two args were supplied
&then &- yes they were
&else &do &~ no they weren't, print usage and return
&print Usage: "ec volume dept item"
&return
&end :
&if &[open dept_store r] &- open data base
&then &if &Iset_scope sales r nl] & allow read only, no prevents
&then &goto continue &- scope was set
&else close &- scope wasn't set
&print The data base is not available. Try again later.
&return
&label continue
input_query -brief -force &- specify the data

select vol
from sales
where dept = "&1" && item = &2 &- must specify 2 &&s to get 1 &

sfo -tl off -pl1 0 &~ turn title line off and set page length to O
dispiay &- display the data

del_scope * &- delete all scope

close &- close the data base

&detach &- have linus read lines from terminal again
&quit &- and return to linus

Assume this exec_comresides in the segment volume.lec. Then, in order to obtain
the sales volume for item 20 in the shoe department, the user enters:

8/86 7-1 AZ49-03A

linus
linus: ec volume shoe 20

and the resulting where clause reads:

where dept = "shoe" & item = 20

8/86 7-2 AZU49-03A

APPENDIX

STATIC DATA PARAMETERS

The follow1ng parameters were used during the generation of the LINUS system

software.

Default buffer size - 256 words (linus_data_$buff_len).

Default value for the maximum number of arguments a scalar function may take
- 20 (linus_data_3$max_sclf_ items).

Maximum depth of invoke nesting - 20 (linus_data_$max_invoes).

Maximum length of a linus request - 5000 characters (linus_data_$req_buf_len)
Maximum number of arguments to linus - 100 (linus_data_$max_req_args).

Maximum number of items in a from clause - 20 (linus_data_$max_range_items).
Maximum number of items in a select clause - 100 (linus_data_$max_user_items).

Maximum number of LINUS variables (using the assign_value request) - 20
(linus_data_$max_1lvars).

. Maximum number of MRDS items not previously selected that may occur in an

which are used to define the keywords of a select statement. This segment is not bound

in it Tin
in with linus.

8/86

expression - 20 (linus_data_$max_expr_items).

Maximum number of set operators that may be stacked - 10
(linus_data_$max_set_stack_size).

Maximum number of temporary tables - 20 (mrds_data_$max_temp_rels).
Maximum string size - 500000 bits (linus_data_$1lit_string_size).

Number of spaces between columns for the prlnt request - 2
(linus_data_$print_col_spaces).

Print buffer length - 5000 characters (linus_data_$pr_buff_ len).

The following parameters Wwere used for the generation of linus_lila_tokens_,

select - linus_lila_tokens_$select
from - linus_lila_tokens_$from
where linus_lila_tokens_S$where
inter llnus llla tokens $1nter
union - 11nus 111a tokens $union
differ - linus lila tokens $differ
unique - linus_lila_tokens_$unique
dup linus_lila tokens_$dup

A-1 AZ49-03A

MULTICS LOGICAL INQUIRY AND
UPDATE SYSTEM REFERENCE MANUAL
ADDENDUM A

SUBJECT
Changes to the Manual

SPECIAL INSTRUCTIONS

This is the first addendum to AZ49-03, dated December 1983. Insert the
attached pages into the manual according to the collating instructions on the
back of this sheet.

Throughout the manual, change bars in the margins indicate technical addi-
tions and asterisks denote deletions. Section 7 is new and does not contain
change bars.
Note:
Insert this sheet behind the manual cover to indicate the updating of the doc-
ument with Addendum A.

SOFTWARE SUPPORTED
Multies Software Release 12.0

ORDER NUMBER
AZ49-03A August 1986

o144 Honeywell

6C986
Printed in U.S.A.

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove
TP, Preface

iii, iv

v, blank

1-5 through 1-10

2-7, 2-8

4-15 through U4-18
4-23, 4-24

4-33 through 4-36
4-43 through u4-U46
4-53 through 4-562

5-1 through 5-T74

A-1, blank
i-1 through i-4
TP Remarks Form (12-83)

:

Insert

TP, Preface

iii tarough vi

1-5 through 1-10
2-7, 2-8

4-15 through 4-18
y-23, u4-24

4-33 through 4-36
4-43 through U4-46
4-53 through 4-62

1 through 5-72
73, blank

5_
5-
7-1, 7-2
A-1, blank

i-1 through i-4

TP Remarks Form (8-86)

The information and specifications in this document are subject to change without notice. Con-
. sult your Honeywell Marketing Representative for product or service availabiiity.

(:) Honeywell Information Systems Inc., 1986

8/86

see exclamation mark
see quotes

see prompting mode
see dot

see semicolon 4-2,

see prompting mode

see prompting mode

abbreviations

dup (duplicate)

LILA (LINUS LAnguage)

LINUS TCogical Inquiry and Update

System)
linus command
requests

ab (abbrev)
ap (apply)
av (assi§n_va1ues)
¢ (close
cls (create list)
clv (column_value)
d (delete)
del (declare)
di (display)
dib (display builtins)
dltt (delete temp table)
ds (del scope) -
dtt (deTine temp_table)
e (execute)™
ec (exec com)
f1 (format line)
h (help) ~
i (invoke)
ig (input query)
1ldb (list™db)
lh (1list_help)
lr (list"requests)
1ls (list”scope)
1sfo (1iSt format options)
lv (list values) ~
m (modify)
o (open)
odb (opened_database)
p' (print)
pie (picture)
pq (print_query)
q {quit)
q (see lila request)
gx (gedx)
rpt (report)
rsfo (restore_format_options)

8/86

INDEX

abbreviations (cont.)
s (store)
sfo (set_format_options)
ss (set Scope)
svfo (sEve_format_o?tions)
tq (translate query
w (write) -

MRDS (Multics Relational Data Store)

MRPG (Multics Report Program
Generator)

slaps (set_lila_prompt string)

slups (set”linus_prompt_string)

abs .
see functions

after .
see functions

arithmetic expression 1-4

assign entry
see functions

asterisk 1-3

avg .
see functions

Backus-Naur Form 1-~7

before
see functions

braces 1-4

built-in functions
see functions

calc entry
see functions

ceil
see functions

character string constants
see constants

clause
from 1-2
select 1-2, 1-3
asterisk 1-3
restriction 5-18, 5-20, 5-44
where 1-2
if omitted 1-9
logical operators 1-3
parentheses 1-3
relational operators 1-3
where" 1-3

column 3-1
names
see names

i-1 AZ49-034a

column (cont.)
values
specify 5-44

command processor
invoking 5-21

concat)
see functions

constants
character string 1-3
quotes 1-3

count]
see functions

data base
access 5-2, 6-2
add to 5-66
example 5- 67
closing 5-14
create lister file 5-1
creation 3-1, 5-3, 6-3
example 3-1
delete rows 5-20
display 5-48
display open 5-35
example 1-2, 3-1
modify 5-U44
open 5-46
update example 5-65

data submodel 5-46

designators
row 1-6, 1-10

differ (set operation)
see operations

display data 5-48
domain 1-3, 1-9, 3-1
dot 5-4, 5-8

duplicate (dup)
see selected values

evaluation
order of 1-10

union, differ, and inter 1-9

use of braces 1-9
use of parentheses 1-10

exclamation mark 5-12

exec com
facility 7-1

file
Multics
generation 5-71
output 5-71
generation 5-T1

floor
see functions

formatted report 5-15, 5-51

from clause
see clause

=

™

functions
built-in 1-9, 2-1

arithmetic scalar
abs 2-1
ceil 2-2
floor 2-3
mod 2-5
round 2-5

arithmetic set
avg 2-2
count 2-3
max 2-4
min 2-4
sum 2-6

character string scalar

search 2-6
verify 2-7
examples

arithmetic set -- avg 1-4, 1-5,

5-16, 5-1

arithmetic set -- max 1-4
string scalar -- substr 5-16

string scalar
after 2-1
before 2-2
concat 2-3
index 2-U4
reverse 2-5
substr 2-6
declared 5-17
installation-defined 2-7
nonstandard 2-7, 5-16
restrictions 2-7
scalar 2-7, 5-16, 5-17
set 1-4, 2-7, 5-16
assign entry 2-7
calec entry 2-7
sets 5-16

identifier
dollar sign 1-10
hyphen 1-10

index
see functions

installation-defined functions

see functions

inter (set operation)
see operations

Key column 1-2, 5-18, 5-44

LILA
also see abbreviations
expression
example 5-6

lila requests
summary of 6-5

line editor
lila 6-5

LINUS
also see abbreviations
session
terminate 5-51
variables
using set 5-12

linus command 5-2, 6-2
requests

? 5-8

linus command (cont.)

se
se
Su

list
fo

list
cr

abbrev 5-8

answer55;2

appl -

aggign_values 5-12
close 5-14

column value 5-14
create”list 5-15

declare 5-16
define_temp table 5-17
del scope 5=19

del€te 5-20

delete temp table 5-21
display 5-2T

display builtins 5-25

do 5-20"

exec com 5-28

execute 5-29

format line 5-30

help 5=32

if 5-33

input_query 5-34

invoke 6-U4

lila 6-5

list db 5-35

list " format options 5-=37
list " help 5-40
list " requests 5-41

list scope 5-42

list” valuass 5-42

ltrim 5-43

modify 5-44

open 5-U456
opened_database 5-47
picture 5-48

print 5-48

print query 5-50

gedx 5-50

quit 5-51

report 5-51
restore_format_options 5-52
rtrim 5=53
save_format_options 5-53
save_query 5-55

set Tormat options 5-55
set_mode 5=63

set"scope 5-64

stoTre 5-66

store from data file 5-68
string 5-69 -
subsystem_name 5-69
subsystem_version 5-70
translate query 5-70
write 5-7T

write data_file 5-72
t_lila_prompt_string 6-2
t"1inus_prompt_string 5-2,
mmary of requesSts 5-4, 6-3

er command 5-15
rmatted report 5-15

er file 5-15
eate 5-16

logical operators

¥
=35

macr
fa
in

sSe

8786

e gperators

o 6-2, 6-4
eilitg 6-8
voke 6-8
example 6-8
gment 6-8
execute 6-14

6-3

i-3

max
see functions

metalanguage
symbols 1-7
underscore of 1-7

min
see functions

mod
see functions

mode
set or reset 5-63

MRDS
see abbreviations

MRPG
see abbreviations

names
column 1-3,
table 1-6
variable 5-12
exclamation mark 5-12

1-6

nesting 1-6

nonstandard functions
see functions

null strings 5-45

operations
set
differ 1-5
inter 1-5
union 1-5
union, inte

r, a
union-comnatibl
union-compatibl

n
e

operators
arithmetic 1-3

evaluation precedence 1-10

logical 1-3
relational

-3

order of evaluation
see evaluation

output file 5-71

parameters
static data A-1

parentheses 1-3
program_interrupt 5-3, 6-3

prompting mode 5-63

d differ 1-9
1-9

‘> 5'3) 5'639 6‘3

also see set_lila_prompt_string
? 5-3, 6-3 -

glgo see set linus prompt string
~ 5-63 — —~ .
linus: 5-63

question mark
see prompting mode

AZ49-034A

quotes 1-3

relational operators
see operators

report generation 5-51

report writer 4-1

default report elements 4-5

format options 4-2
active 4-3
general column 4-2
general report 4-2
requests 4-4)
specific column 4-3
values 4-3

full page formatting 4-10

optional report elements U-6

user session 4-13

requasts
see linus command

reverse
see functions

round .
see functions

row 1-2, 3-1
designators
see designators

scalar functions
see functions

scope of access 5-19, 5-U2
defining 5-64
operation codes 5-65

search
see functions

select clause
see clause

select-from-where block 1-2
inner
braces 1-4
set functions
see functions

selected values

duplicate 1-9
unique 1-9

8/86

selection language 1-1
examples 1-1

semicolon 4-23

set functions
see functions

set operations
see operations

set_lila prompt_string 5-63, 6-2

set_linus_prompt_string 5-63, 6-3

substr
see functions

sum
see functions

symbols
see metalanguage

Syntax and Semantics of the Selection

Language 1-7
table 1-1, 1-6, 3-1
names
see names

temporary table 5-17

expression simplification !

restriction 5-18, 5-36

18

terminolggy differences (LINUS/MRDS)
21

text segment 6-8

union (set operation)
see operations

unique
see selected values

user interaction 6-3

variable 1-6
list 5-12
name

see names

verify
see functions

where clause
see clause

AZ49-03a

e CUTALONGLINE m —m mm e e e _ =

HONEYWELL INFORMATION SYSTEMS

Technical Publications Remarks Form

MULTICS LOGICAL INQUIRY AND UPDATE
TITLE SYSTEM REFERENCE MANUAL
ADDENDUM A

ERRORS IN PUBLICATION

ORDER NO.

DATED

AZ49-03A

AUGUST 1986

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
I > acknowledged; however, if you require a detailed reply, check here.

FROM: NAME

TITLE

COMPANY

ADDRESS

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA 02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Honeywell

e e e —— === === ——— CUTALONG LINE ~——————

FOLD ALONG LINE

FOLD ALONG LINE

Together, we can find the answers.
Honeywell

Honeywell Information Systems
U.S.A.; 200 Smiih St., MS 4806, Waiiitam, MA 02154
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7
U.K.: Great West Rd., Brentford, Middiesex TW8 9DH ltaly: 32 Via Pirelli, 20124 Milano

Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2-2 Kanda Jimbo-cho Chiyoda-ku, Tokyo

Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

39384, 7.5C1283, Printed in U.S.A.

AZ49-03

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	3-01
	3-02
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	A-01
	_001
	_002
	i-1
	i-2
	i-3
	i-4
	replyA
	replyB
	xBack

