
HONEYWELL 

I MULTICS LOGICAL 
INQUIRY AND 
UPDATE SYSTEM 
REFERENCE 
MANUAL 

SOFTWARE 



MULTICS LOGICAL INQUIRY AND UPDATE SYSTEM 
REFERENCE MANUAL 

SUBJECT 

Description of the Multics Logical Inquiry and Update System 

SPECIAL INSTRUCTIONS 

This manual supersedes AZ49, Revision 2, dated June 1980, and its addenda 
AZ49-02A dated July 1981 and AZ49-02B dated April 1983. Refer to the Preface 
for "Significant Changes." 

The manual has been extensively revised and reorganized. Throughout the 
manual, change bars in the margins indicate technical additions and asterisks 
denote deletions. Section 4 and Section 6 are new and do not contain change 
bars. 

SOFTWARE SUPPORTED 

Multics Software Release 10.2 

ORDER NUMBER 

AZ49-03 December 1983 

Honeywell 



PREFACE 

This manual describes a facility used to access Multics Relational Data Store 
data bases and to prepare data for report generation. 

This manual presupposes some basic knowledge of the Multics system, and does not 
attempt to provide information covered in either of the following two manuals: the 
New Users' Introduction to Multics - Part I and Part II, Order No. CH24 and CH25 
respectively. -- ---- - ---- --

Throughout this manual, references are frequently made to other Mul tics manuals. 
For convenience, these references are as follows: 

DOCUMENT 

Multics Relational Data Store 
Reference Manual, Order No. AW53 

Multics PL/I. Languag~ Specification, 
Order No. AG94 

Multics WORDPRO Reference Manual, 
Order No. AZ98 

Multics Report Program Generator 
Reference Manual, Order No. CC69 

Multics Programmers'Reference Manual, 
Order No. AG91 

Multics Subroutines and 1/0 Modules, 
Order No. AG93 

Significant Changes in this Addendum 

REFERRED TO IN TEXT AS 

MRDS Manual 

PL/I Manual 

WORDPRO Manual 

MRPG Man ua I 

REF Man ua I 

Subroutines Manual 

Section 5 -- added Linus request names in the page header, added a new linus 
request (opened_database), substituted long names for all abbrevs in request 
examples, and added active request capabilities to the following linus requests: 

assign values 
del scope 
list scope 
list-values 
open 
set_scope 

The information and specifications in this document are subject to change without notice. Con­
sult yell&' HvnCjn~11 ~wfCll"'keting P.£pre3Cn.~ti ... "G fer produ.ct c:, ~:-.1c~ &.crllability. 

© Honeywell Information Systems Inc., 1986 

8/86 

File No.: 1L13 

AZ49-03A 



8/86 

New Section 7 -- relocated Exec Com Facility description from Section 5. 

Appendix A -- added parameters defining generation of linus_Iila_tokens. 

iii AZ49-03A 

I 



Section 1 

Section 2 

Section 3 

Section 4 

8/86 

CONTENTS 

Selection Language . . . • . • • . . 
Syntax and Semantics of the Selection 

Language . . . • • . • • . • • • . . . 

Built-in and Installation-Defined Functions 
Built-in Functions. 

a b s • • • • • • • • • • • • • • 
after • • • • • • • • • 
avg • 
before 
ceil 
concat 
count • 
floor • 
index • 
max . 
min .. 
mod • 
reverse 
round . 
search 
substr 
sum . . . . . • . 
verify • • • • • • 

Writing Nonstandard Functions 

Data Base Creation 

Report Writer •.. 
System Overview . . • • • • • • • • . • • • 

Basic Opera tion 
Formatting Options •••• 
Requests . . . . . . 

Default Report Elements 
Page Layout and Titles 
Separators • . . • • • 
Folding and Width ••. 
Alignment ••.•••• 

Optional Report Elements . . • . . 
Editing . . •• • ••• 
Headers/Footers . • • • • • • . . • • • • 
Column Titles. . . •••• 
Active Requests . . ..•.••••• 
Page Breaks • • • • . • • •• •••• 
Excluding Columns ••••••••.•.. 
Ordering Of Columns • • • • • • . • • 
Grouping ...•• . • • . 
Outlining. • . . .• . ••..••• 
Totals and Subtotals ..... 
Counts and Subcounts . . . . . 
Separators and Delimiters . 
Format Document Controls and Hyphenation 

Full Page Formatting • . . . . 
User Session . . . . • . • • . • . • . 

General Report Options-1 .•.• 
Specific Column Options . . . . • . 
General Report Options-2 .... 

iv 

Page 

1-1 

1-7 

2-1 
2-1 
2-1 
2-1 
2-2 
2-2 
2-2 
2-3 
2-3 
2-3 
2-4 
2-4 
2-4 
2-5 
2-5 
2-5 
2-6 
2-6 
2-6 
2-7 
2-7 

3-1 

4-1 
4-1 
4-1 
4-1 
4-4 
4-5 
4-5 
4-5 
4-5 
4-6 
4-6 
4-6 
4-7 
4-8 
4-8 
4-8 
4-8 
4-8 
4-9 
4-9 
4-9 
4-9 
4-9 

4-10 
4-10 
4-13 
4-16 
4-18 
4-26 

AZ49-03A 



Section 5 

Section 6 

8/86 

CONTENTS (cont) 

Special Editing of a Report ..... 
Saving a Report and Resetting Options 
Restoring a Saved Report . 

General Column Options ...•..... 

Command Description . . 
linus ..... . 

1 inus Requests 

? ••.•• 
abbrev, ab . . • . . . . • . . . . . . 
an s wer . . . 
apply, ap 
assign values, av 
close,-c ..• 
column. value, clv 
create-list, cIs ....•..•••• 
declare, dcl . . • 
define temp table, dtt . 
del scope, ds 
delite, dl •••.•••• 
delete temp table, dltt 
display, d i-
display builtins, dib ..••.•.. 
do . . -:- . . 
exec com, ec .... 
execute, e . . . . . 
format line, fl 
help .-•.. 
if. • • . . 
input query, iq .•.....••.. 
list db, ldb 
list-format options, Isfo 
list-help, Ih .... 
list-requests, lr 
list-scope, Is .. 
list-values, Iv 
1 trim . . . . . . • • • . 
modify, m .•.• 
open, 0 • • • • • 

opened database . . . . 
picture, pic 
print, pr 
print query, pq ..•••. 
qedx,-qx .. 
quit, q 
report, r pt 
restore format options, rsfo • 
rtrim -:-. . .-. . . 
save_format_options, svfo .... 
save query, sq .....• 
set format options, sfo 
set-mode, sm . . . . . . . 
set-scope, ss ..•..••...•. 
store, s ...•.•••• 
store from data file, sdf 
strini . .-. . -:- • . . . • . 
subsystem name . . • . . . • . • 
subsystem-version ..••..••.• 
translate-query, tq .....•••• 
write, w -:- •..•.• 
wri te_data_file, wd f . . . . . • 

Obsolete Linus Control Arguments/Requests . 

v 

Page 

4-33 
4-34 
4-35 
4-36 

5;..1 
5-2 
5-4 
5-8 
5-8 
5-9 
5-9 

5-11 
5-12 
5-14 
5-14 
5-15 
5-16 
5-17 
5-19 
5-20 
5-21 
5-21 
5-26 
5-26 
5-29 
5-30 
5-31 
5-33 
5-34 
5-35 
5-36 
5-38 
5-41 
5-42 
5-43 
5-44 
5-44 
5-45 
5-47 
5-48 I 
5-49 
5-50 
5-52 
5-52 
5-52 
5-53 
5-53 
5-54 
5-55 
5-57 
5-57 
5-65 
5-66 
5-68 
5-70 
5-71 
5-71 
5-72 
5-72 
5-73 
5-74 

6-1 

AZ49-03A 



Section 7 

Appendix 

8/86 

CONTENTS (cont) 

linus •.•.•. 
1 inus Requests 

invoke, i 
1 i1a .. 

Macro Facility .• 

Exec Com Facility .. 
exec com Facility 

Static Data Parameters 

vi 

Page 

6-2 
6-4 
6-4 
6-5 
6-8 

7-1 
7-1 

A-1 

AZ49-03A 



SECTION 1 

SELECTION LANGUAGE 

The Logical INquiry and Update System (LINUS) is a powerful, yet "easy-to-use" 
facility -for accessing centralized Multics Relational Data Store (t-IRDS) data 
bases. However, it is also possible for users to define private data bases and 
uti 1 i ze LINUS to access and main ta in them (refer to Section 3). LINUS pro v id es 
a complete data base management capability including both retrieval and update 
operations. Data to be selected is specified via a selection language which is I 
a high-level nonprocedural language capable of being understood and used by 
individuals who are not necessarily computer specialists. 

Several of the LINUS requests (e.g., modify, delete, and print) operate on 
well-defined subsets of a data base. These data base subsets are selected via 
query statements. The user views the data base as a set of ta'bles containing I 
rows and columns of data. LINUS allows the selection algorithm to be specified 
as a series of table lookup operations, very similar to the wayan individual 
manually scans a set of tables for inf9rmation. For example, envision a telephone 
directory as being a table wi th three columns of information: name, address, 
and phone number. This table contains one row of information for each individual 
listed in the dir~ctory. Normally, to find the phone number for John C. Smith, 
the name column is scanned for the name "Smith John cn, and the value is taken 
from the phone number column in the same row. In LINUS, this operation is I 
described as: 

select number 
from phone book 
where name - = "Smi th John e" 

1-1 AZlt9-03 



I Var ious features of LINUS ar e introduced v ia ex amples referenc ing a data 
base consisting of the following five tables that describe the operation of a 
department store: 

emp sales 

name emp no dept mgr sal comm dept item vol -- - --

supply loc class 

supplier items vol floor item type ---

The emp table contains a row of information on every employee, gIvIng employee 
name, employee number, department, manager's employee number, salary, and commission 
for the last year. The sales table gives the volume of sales for every item 
wi thin each department. The supply table provides the volume of each item suppl ied 
by every supplier. The loc table gives the floor on which every department is 
located, and the class table specifies the type of each item. 

In each of the tables, the underscored words denote key columns. Every row 
in a table is uniquely identified by its values in the key columns. The LINUS 
user need not be concerned wi th the key column concept except when using the 
modify and define_temp_table requests discussed later. 

I The basic component of the selection language is the select-from-where block, 
which is used to select column values from one or more tables where rows of the 
tables satisfy certain conditions. It should be noted that the indention of the 

I 
following examples is for readability only, and is not required in actual usage. 
In fact, the entire query may be contained in one line. 

The select clause and the from clause must always be specified in a 
select-from-where block. The where clause of a block may be omitted, in which 
case all rows are returned. 

Example 1 

List all departments from the emp table. 

select dept 
from emp 

This could alternately be written as: 

select dept from emp 

1-2 AZ49-03 



A select clause may contain one or more column names, or may contain an 
asterisk (*) which indicates that all columns from qualifying rows are to be 
selected. 

Example 2 

List all information pertaining to every employee whose salary is greater 
than $8,000. 

select * 
from emp 
where sal > 8000 

More complex conditions may be specified in the where clause, as shown in 
the remaining examples in this section. Specifically, a where clause may contain 
one or more terms. Each term consists of a column name or an arithmetic expression; 
followed by a relational operator; followed by a column name, ari thmetic expression, 
or constant. Allowable relational operators are: 

> greater than 
< less than 
<= less than or equal to (or not greater than) 
>= greater than or equal to (or not less than) 
= equal to 
= not equal to 

Terms within the where clause must be separated by logical operators, and may be 
grouped using parentheses () to explicitly specify order of evaluation. Allowable 
logical operators are: 

& 
I 
I 

" 

logical conjunction (and) 
logical inclusive (or) 
logical negation (not) 

Character string constants within terms must be enclosed within quotes "H. If a 
quote is to appear within a character string, a double quote must be specified. 

Example 3 

Find the names and salaries of employees in the toy department who work for 
Anderson, whose employee number is 1423. 

select name sal 
from emp 
where dept = "Toy" & mgr = 1423 

Example 4 

Arithmetic expression may be contained in both the select clause and the 
where clause. All columns used in any given arithmetic expression must be defined 
over the same domain. Allowable operators in an arithmetic expression are: 

+ addition 
- subtraction 
* multiplication 
/ division 

1-3 AZ49-03 



Find the names of employees who are either in the Admin department or whose 
sum of salary and commission exceeds $10,000. 

select name 
from emp 
where dept = "Admin" sal + comm > 10000 

It is possible to specify more complex table lookup operations by using a 
select-from-where block as the last component of a term in the where clause. 
This indicates that the comparison specified in the term is to be performed for 
every value selected by the inner block. All inner select-from-where blocks 
must be delimited by braces {}. 

Example 5 

Find all items sold by departments located on the second floor. 

select item 
from sales 
where dept = {select dept 

from loc 
where floor = 2} 

One can apply set functions to the results of a select-from-where block, as 
shown by the following examples. Allowable set functions are: min, max, count, 
avg, sum, and user-defined functions. User-defined functions are discussed in 
Section 2 (Writing Nonstandard Functions) and in Section 4 (Declare Request). 

Example 6 

Find the average salary of employees in the shoe department. 

Example 7 

avg {select sal 
from emp 
where dept = "Shoe"} 

Find all employees whose salary is greater than that of any employee in the 
shoe department. 

select name 
from emp 
where sal> max {select sal 

from emp 
where dept = "Shoe"} 

A select clause can also contain an arithmetic expression as shown in the 
following example. 

1-4 AZ49-03 



Example 8 

Find each employee in the shoe department, together with her/his deviation 
from the average salary of that department. 

select name sal - avg {select sal 
from emp 
where dept = "Shoe"} 

from emp 
where dept = "Shoe" 

Set operations can be applied to the results of select-from-where blocks. 
In LILA the set operations are union, differ, and inter, which correspond to the 
union, difference, and intersection operations as normally defined. That is, 
the union of two sets consists of all items that belong to one or both of the 
sets. The intersection of two sets consists of those items belonging to both 
sets. The difference of two sets co"nsists of those items which belong to the 
first set, but not to the second. For example, assume that set A contains the 
elements "a", "b", and "c" and the set B contains the elements "c", "d", and 
"e", then: 

A union B (and B union A) is abc de 

Set A Set B 

A inter B (and B inter A) is c 

Set A Set B 

(all items belong to one or both 
sets) 

(items belong to both sets) 

A differ B is ab (items belong to the first, but not second set) 

Set A Set B 

1-5 AZ49-0 3 



B differ A is de (items belong to the first, but not second set) 

Set A Set B 

Example"9 

Find those items which are supplied by Levi and sold in the men's department. 

select item 
from supply 
where supplier = "Levi" 

inter 
select item 
from sales 
where dept = "Men" 

Nesting of select-from-where blocks is possible in order to specify complex 
selection criteria. 

Example 10 

Find the total volume of type A i terns sold by departments on the second floor. 

sum {select vol 
from sales 
where item = {select item 

from class 
where type = "A"} & 

dept = {select dept 
from loc 
where floor = 2}} 

It is also acceptable to bypass the nested block notation and use table names to 
qualify column names (including *) within the select and where clauses. This 
qualification is accomplished by prefixing a column name with a table name followed by 
a dot (.). Whenever two or more table names are specified in the from clause of a 
block, all column names used wi thin that block must be qualified. Using this 
approach, the above expression becomes: 

sum {select sales.vol 
from sales class loc 
where sales.item = class.item & class.type = "A" 

& sales.dept = loc.dept & loc.floor" = 2} 

Finally, variables that assume rows of a designated table can be specified as 
values. In certain complex queries requiring comparisons among different rows of the 
same table, such row designators are required to resol ve ambigui ty. In essence, this 

I ~ 
l;~ :Sd :s5/;~ga\eo ~aibsl ~ :~o~~; ~:~ tweidt~ 3 

a m~:;; ~ l~ Y t:;~ ~ ~ g i ~ ~~ ~: ~; eccotn:~; t ~~ e; ~ ~ ~ ~~S ~~ ~ 
designator name followed by a colon (: ) to the table name in the from clause. Several 

8/86 1-6 AZ49-03A 



row designators ~ay be associated with a single table. The row designator is used in I 
the select clause and where clause like a table name to qualify a column na~e. 

Example 11 

For all employees who earn more than their managers, select the employee's name 
and that of his manager. 

select employee.name manager.name 
from employee:emp manager:emp 
where employee.mgr = manager.emp_fio & employee.sal > manager.sal 

Thes'e examples are intended as an introduction to basic features of the selection 
language. The information should allow the reader to write queries to satisfy a large 
class of data selection requirements. However, users should become famil iar wi th the 
information in the remainder of this section for precise descriptions of the complete 
capabilities of the selection language. 

SYNTAX AND SEMANTICS OF THE SELECTION LANGUAGE 

A formal syntax is presented below using a metalanguage derived from Backus-Naur Form. 
The metalanguage symbols are defined as: 

< > denotes a syntactical construct 

00- means "is defined as" 

[ ] denotes zero or one occurrence of (optional) 

denotes one or more occurrence of 

denotes the logical inclusive "OR" 

The inclusion of an underscore character under any of the sy;nbols distinguishes that 
symbol as not being a part of the metalanguage, but as being a part of the selection 
language syntax (see <bool_op> below). 

8/86 

<select expr> ::= 
<set_value> : <select_set> 

<set value> :: = 
- <set_fn> {<select_set>} 

<set fn> :: = 
- <set_builtin> : <user_set_fn> 

<select set> ::= 
<select block> <select set> <set_op> <select block> 
{(select_set>} 

<set_op> ::= 
union : inter : differ 

<select block> ::= 
select <select list> from <from list> 
: select <select_list> from <from list> where <conditional> 

<select list> ::= 
¥ : <select item list> 
: dup <select_item_list> 

1-7 AZ49-03A 



8/86 

<select item list> ::= 
<select_item> : <select_item_list> <select item> 

<select item> ::= 
<table_name>.* : <row_desig>.* : <expr> 

<ex pr> 
<column spec> : <scalar fn> «arg list» 
I <expr> <arith op> <arIthmetic constant> 
: <expr> <arith-op> <linus variable> 
: <expr> <arith-op> <set value> 
: <expr> <arith:=op> <expr> : «expr» 

<column spec> ::= 
<column name> : <table name>.<column name> 
: <row_desig>.<column_oame> -

<scalar fn> :: = 
<scalar_builtin> : <user_scalar_fn> 

<arg list> :: = 
- <arg> : <arg_list>, <arg> 

<arg> .. -.. -
<expr> : <constant> <set value> 

<arith op> ::= 
-+ : - : • : / 

<from list> :: = 
- <table item> <table item> <from list> - -

<table item> ::= 
-<table name> 

<row tab pair> ::= 
- <row_desig>:<table_name> 

<conditional> ::= 
<term> I <conditional> <bool op> <term> 
i '" «cond i tional » : «cond itional > ) 

<term> 
<expr> <rel_op> <atom> 

<reI op> :: = 
- = : "'= : > I < : >= I <= 

<bool op> ::= 
- & I I 

I,.!. 

<atom> ::= 
<expr> I <constant> I <set_value> : {<select_block>} 

<constant> ::= 
<arithmetic constant> : <bit string constant> : 
<character_string_constant> T <linus variable> 

. <linus variable> ::= 
!<identifier> 

<table name> ::= 
- <identifier> 

<row des ig> :: = 
- ,/';,..1 "'l1l"i'" .; ~.; "...,." 

'."'ifVl." ....... .a.\;;>1 , 

1-8 AZ49-03A 



8/86 

<column name> ::= 
<identifier> 

<user set fn> ::= 
<fn name> 

<user scalar fn> 
<fn name> 

<iden tifier>: : = 
<letter>[<letter> I<digit> 1 I$} .•. 

<letter>::= 
AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIU.VIW:XIYIZI 
alblcldlelflglhli:jlklllm:nlolplqlrlslt:ulvlwlxlylz 

<digit>::= 
0:112131415/6171819 

NOTES: A <set buil tin> is one of the buil t-in set functions described in Section 
2. A <scalar builtin> is one of the built-in scalar functions described 
in the same section. A <user set fn> and a <user scalar fn> must be 
declared according to the specifications contained in -the declare 
request description (refer to Section 4). 

If <select set>s are wi thin a <select set>, they may optionally be 
grouped bybraces {} to explicitly specify the order of evaluation. If 
not explicitly specified, intersections and differences are evaluated 
prior to unions, and evaluation proceeds from left to right for operators 
of equivalent precedence. 

The <set op>s union, inter, and differ correspond to the set operations 
union, intersection, and difference respectively. 

The <select list>s of all <select block>s wi thin a <select set> must be 
union-compatible; that is, corresponding columns :nust take-their values 
from the same domain. Also, such <select list>s may not contain <expr>s 
other than <column_spec>s. -

If the where clause is omitted from a <select_block>, all rows within the 
<from_list> qualify. 

A <select list> of * indicates that all column values from the row are to 
be selected. If the < select 1 ist> is a *, then the < from list> must be a 
<table name>. -

A specification of dup within a <select list> indicates that duplicate 
sets of selected values are not to be eliminated, whereas a specification 
of unique indicates that duplicates are to be eliminated. If neither is 
specified, the defaul t rule appl ies. The defaul t is dup if a <set fn> is 
to be applied to the selected values Bnd is unique otherwise.-

It should be noted that the use of scalar functions in the select clause 
may resul t in dupl icate rows even though unique is specified. That is, 
LINUS applies scalar functions to column values returned from MRDS 
because of the select clause. MRDS actually does the duplicate 
elimination processing, but it does not know about built-in functions in 
the select clause. 

1-9 AZ49-03A 



8/86 

A <select_item> of <t3ble_name>.* or <row_desig>.* indicates that all 
columns from the row are to be selected. A <table name> is the name of a 
previously defined temporary table, or a table defined within the data 
base. A <row desig> is a row designator that is associated with a 
< table name> in a < from 1 ist>. 

All <column spec>s within an <expr> or <arg_list> must refer to column 
values from-the same row. 

Items within an <expr> may optionally be grouped by parentheses () to 
explicitly determine the order of evaluation. If not explicitly 
specified, all multiplic9tions (*) and ·divisions (/) are" performed 
before any additions (+) or subtractions (-). Multiplications and 
divisions are performed from left to right, as are additions and 
subtractions. 

A <row tab pair> is used to specify the association of a row designator 
with a table. A <row_desig> must be unique for the entire 
<select block>. 

Items within a <conditional> may optionallybe grouped by parentheses to 
explicitly specify the order of evaluation. If the order is not 
explicitly specified, the and (&) operators are evaluated prior to the or 
( :) opera tor s; the and ev al ua tion proceed s from left to right for 
operators of equivalent precedence. 

The items <arithmetic constant>, <bit string constant>, and 
<character string constant> are as defined in the -PL/I Manual. An 
<identifier> is as-defined in Multics PL/I with the exceptions that the 
doll a r s i g n ($) is not all 0 we dan d the h y ph en (-) is all 0 we d, solon gas i t 
is not the first or last character of the <identifier>. An <fn name> is 
the same as the <identifier> except that the hyphen is not allowed. 

1-10 AZ49-03A 



SECTION 2 

BUILT-IN AND INSTALLATION-DEFINED FUNCTIONS 

BUILT-IN FUNCTIONS 

The available built-in functions in LINUS are listed alphabetically and are 
immediately followed by a detailed description. Several of the built-in functions 
are used in the numbered examples included in Section 1. 

abs count reverse 
after floor round 
avg index search 
before max substr 
ceil min sum 
concat mod verify 

Function: abs 

This is an arithmetic scalar function whose reference has the form: 

abs (X) 

The resul t of this 
numeric data item. 
(59) • 

function is the absolute value of X, where X must be a 
X can only be real and the result value is a float decimal 

Function: after 

This is a string scalar function whose reference has the form: 

after (S1, S2) 

The resul t is that portion of S 1 that occurs to the right of the leftmost 
occurrence of S2 within S1. If S2 is a null string, the result is S1. If S2 
does not occur within S1, the result is a null string. For example: 

after ("abcde", nbc") = "de" 
after ("abcde"~ "H) = "abode" 
after ("abcde", "f") = "" 
after ("10101"b, "10"b) = "101"b 

2-1 AZ49-03 



Function: avg 

This is an arithmetic set function whose reference 
has the form: 

avg {select X 
from ... } 

The result is the average (mean) of all X values selected. For example: 

avg {select sal 
from emp 
where dept = "Shoe"} 

is the average salary of all employees in the shoe department. 

Function: before 

This is a string scalar function whose reference has the form: 

before (S1, S2) 

The result is that portion of S1 that occurs to the left of the leftmost occurrence 
of S2 within S1. If S2 is a null string, the result is a null string. If S2 
does not lie within S1, then the result is S1. For example: 

before ("abcde", nbc") = "a" 
before ("abcde", "H) = "" 
before ("abcde", "f") = "abcde" 
before ("10101"b, "10"b) = ""b 

Function: ceil 

This is an arithmetic scalar function whose reference has the form: 

ceil (X) 

where X must be real. The result is the smallest integer (I) such that: 

I >= X 

For example: 

ceil (20.5) = 21 
ceil (-14.6) = -14 
ceil (12) = 12 

2-2 AZ49-03 



Function: concat 

This is a string scalar function whose reference has the form: 

concat (S1, S2) 

The result is the concatenation of S1 and S2. For example: 

concat ("abc", "de") = "abcde" 
concat ("101"b, "01"b) = "10101"b 

Function: count 

This is an arithmetic set function whose reference has the form: 

count {select X1 X2 ... 
from .•. } 

The result is the number of sets of Xi which are selected. For example: 

count {select name 
from emp 
where dept = "Shoe"} 

is the number of employees in the shoe department. 

Function: floor 

This is an arithmetic scalar function whose reference has the form: 

floor (X) 

where X is real. The result is the largest integer (I) such that: 

I <= X 

For example: 

floor (20.5) = 20 
floor (-14.6) = -15 
floor (12) = 12 

2-3 AZ49-03 



Function: index 

This is a character string scalar function whose reference has the form: 

index (S 1, 32) 

The result is an integer that is the position of the beginning of the leftmost 
occurrence of 32 within S1. If S2 is not in S1 then the result is O. If S2 is 
a null string, the result is O. For example: 

index ("abcde", nbc") = 2 
index ("abcde", "f") = 0 
index ("abcde", "") = 0 

Function: max 

This is an arithmetic set function whose reference has the form: 

max {select X 
from ... } 

The result is the largest X value selected. For example: 

max {select sal 
from emp 
where dept = "Shoe"} 

is the highest salary paid to any employee in the shoe department. 

Function: min 

This is an arithmetic set function whose reference has the form: 

min {select X 
from ... } 

The result is the smallest X value selected. For example: 

min {select sal 
from emp 
where dept = "Shoe"} 

is the lowest salary paid to any employee in the shoe department. 

2-4 AZ49-03 



Function: mod 

This is an arithmetic scalar function whose reference has the form: 

mod (X, Y) 

where X and Yare real. The result is X modulus Y, such that: 

if Y A= 0 then mod (X, Y) = X - Y * floor (X / Y) 
if Y = 0 then mod (X, Y) = X 

For example: 

mod (42, 5) = 2 
mod (129.2867, 25) = 4.2867 
mod (10, 0) = 10 

Function: reverse 

This is a string scalar function whose reference has the form: 

reverse (3) 

The result is a string which is the reverse of the value of 3. For example: 

reverse ("abcde") = "edcba" 
reverse ("a") = "a" 
reverse ("") = "" 
reverse ("10110"b) = "01101"b 

Function: round 

This is an arithmetic scalar function whose reference has the form: 

round (X, Q) 

The resul t is a rounding of the value of X. When a value is rounded to n 
digits, the digits after the nth digit are dropped, and the nth digit is increased 
by 1 if the (n+1)th digit is 5 or greater for decimal, or 1 for binary. If X is 
float, then Q must be positive and the mantissa is rounded to Q digits. If X is 
fixed, it is rounded to a value that has Q fractional digits. For complex 
values, the function is defined by: 

round (X + Yi Q) = round (X, Q) + round (Y, Q)i 

For negative values the following algorithm is used: 

round (x) = round (abs(X» * -1 

For example: 

round (183.62ge6, 4) = 183.6e6 
round (183.629,2) = 183.63 
round (183.629, -1) = 180 
round (21.56 + 6.21i, 0) = 22 + 6i 

2-5 AZ49-03 



Function: search 

This is a character string scalar function whose reference has the form: 

search (C1, C2) 

The result is an integer value that is the position in C1 of the leftmost 
occurrence of any character contained in C2. If C1 does not contain any character 
in C2, the result is O. For example: 

search ("abcde", "b") = 2 
search ("abcde", "H) = 0 
search ("abcde", Iff") = 0 
search ("abcde", "be") = 2 

Function: substr 

This is a string scalar function whose reference has the form: 

substr (S, I, J) 

-or-

substr (S, I) 

The resul t is that portion of S that begins wi th the Ith character and has 
length J (if J is present), or is that portion of S that begins wi th the Ith 
character and continues to the end of S (if J is not present). For example: 

substr ("abcde", 3, 2) = "cd" 
sub s t r (" abc de", 3 , 0) = '''' 
substr ("abcde", 3) = "cde" 
substr ("10101"b, 3) = "101"b 

Function: sum 

This is an arithmetic set function whose reference has the form: 

sum {select X 
from ... } 

The result is the total of all selected values. For example: 

sum {select vol 
from sales 
where dept = "Shoe"} 

provides the total sales volume of the shoe department. 

2-6 AZ49-03 



Function: ver ify 

This is a character string scalar function whose reference has the form: 

v er i fy (C 1, C2) 

The result is an integer value that is the position of the first character of C1 that 
does not occur in C2. When C 1 contains only characters that are in C2, the resul,t is O. 
For example: 

verify ("xyz", "abc") = 1 
verify ("xyz", "xyz") = 0 
verify ("abcde", "cba") = 4 

WRITING NONSTANDARD FUNCTIONS 

Nonstandard (or installation-defined) functions may be written in any language 
that accepts and processes a standard Mul tics argument list. It is assumed that these 
fun ctions are wr i tten by ex per ien ced programmer s. (Refer to the 1 inus command 
"declare" request in Section 5 for an example of declaring a nonstandard function.) I 

Scalar functions are passed a complete standard Mul tics argument list containing 
argument pOinters and descriptor pointers for both the input arguments and the return 
argument. The call is equivalent to: 

Set functions are called differently in that they are called several times and 
require three procedure entry points. 

tne first entry p01n~ 1S ~ne 1nl~ entry, which is called one time for evaluation 
of each set function. The method of evaluating a set function requires that data be 
accumulated in static storage. The purpose of this entry point is to ini tial ize that 
static storage. The init entry is equivalent to: 

The second entry point is the calc entry, which is called one time for each set of 
selected values. Tois entry is passed a complete standard Multics argument list 
containing argument pOinters and descriptor pointers for all of the declared input 
arguments. The purpose of the calc entry point is to calculate (or accumulate) the 
value for the set function. The call to the calc entry is equivalent to: 

The third entry point of a set function is the assign entry. This entry is called 
after the calc entry has been called for all sets of selected values. The purpose of 
the assign entry is to actually as,sign a return value for the set function. The call to 
this entry is equivalent to: 

return_val = fn_name$fn_name_assign (); 

Two restrictions on arguments to nonstandard functions are: 

1. No. extents are permitted. 

8/86 2-7 AZ49-03A 



2. Data types are restricted to those data types permitted in a MRDS data 
base. The use of pointers, entries, labels, structures, offsets, and 
arrays is not allowed. 

Example of the pl1 source for a scalar function: 

user substr: proc(character argument) returns(char(6); 

dcl character argument char(30); 
dcl substr buIltin; 

return(substr(character argument, 1, 6»; 

end user_substr; 

Example of pl1 source for a set function: 

standard deviation: proc; 

dcl number of calls fixed binary internal static; 
dcl (sum of x~ sum of x square) float decimal(59) internal static; 
dcl (input_parameter,-return_value) float decimal(59); 

return; 1* This entry point is only 
used for declaring the 
set function. *1 

standard deviation init: entry; 
1* -Entry to initialize static data. 

This entry is used once before 
each evaluation of the set 
function. *1 

number of calls = 0; 
sum 0 f-x -; O. 0; 
sum-of-x square = 0.0; 
return; -

standard deviation calc: entry(parameter); 
1* -Accumulate the needed 

information from the 
set of data. This entry 
point is called once for 
each row retrieved. *1 

number of calls = number of calls + 1; 
sum of-x ~ sum of x + parameter; 
sum-of-x square =-sum of x square + 

- - - (parameter ** 2); 
return; 

standard deviation assign: entry returns(float decimal(59»; 
1* -This entry is called when 

there are no more rows 
to be looked at. It 
determines what the final 
value of the set function 
will be. *1 

2-8 AZl!9-03 



if number of calls > 1 then 
return value = «number of calls * 

sum of-x square -
sum-of-x-** 2) / 

else 

(number-of calls * (number of calls 
- 1)))-**-.5; 

return value = 0.0; 

return(return_value); 

end standard_deviation; 

2-9 AZ49-03 



SECTION 3 

DATA BASE CREATION 

LINUS was designed primarily to allow users to access a centralized MRDS 
data base. However, it is also possible for users to define private data bases 
and utilize LINUS to access and maintain them. Users who wish to define a data 
base should refer to the MRDS Reference Manual, specifically to the introductory 
portion and to the description of the create_mrds_db command. 

Certain differences in terminology between LINUS and MRDS are: 

• A MRDS relation is a LINUS table. 

• A MRDS tuple is a LINUS row. 

• A MRDS attribute is a LINUS column. 

• A MRDS domain is a LINUS domain and is the set of values that an 
attribute (column) may assume. 

An example of the dept store data base, discussed in Section 1, may be 
created by invoking a text editor and creating the source segment, dept_store.cmdb: 

domain: name char (30) unal, 
emp no fixed bin ( 17) unal, 
dept 

_ 1... _o_ 
J' ... '"" unal, CHd!" \. I ~) 

sal fixed dec (13,2) unal, 
comm fixed dec (13,2) unal, 
item fixed bin (35) unal, 
vol fixed bin (35) unal, 
supplier char (30) unal, 
floor fixed bin (8 ) unal, 
type char (4 ) unal; 

attribute: 
mgr emp no; -

relation: emp (name* emp no dept mgr sal comm) , 
sales (dept* item* vol), 
supply (supplier* item* vol), 
loc (dept* floor), 
class (item* type); 

3-1 AZ49-03 



Then the data base may be created by invoking the command: 

create mrds db dept_store dept_store -list 

The dept store data base is now ready for loading, using the LINUS store request. 
(See lin~s command "store request" in Section 5.) 

NOTE: LINUS can al so open a data base from a submodel. 
create mrds dsm command in the HRDS manual for a 
submodels, and their creation.) 

3-2 

(Refer to the 
description of 

AZ49-03 



SECTION 4 

RE PORT WRITER 

SYSTEM OVERVIEW 

The LINUS report writer produces formatted reports from a relational data 
base. Through this facility the user can control: 

• page width and length 

• page breaks 

• page, group, and row headers/footers 

• counts, subcounts, totals, and subtotals 

• hyphenation of overlength values 

• reordering and excluding selected columns 

• duplicate suppression 

• column alignment, editing, folding, separators, titles, and widths 

• sorting on one or more columns 

• directing of the report to the terminal, a file, or an io switch 

• horizontal and vertical scrolling through the report 

The report writer is designed to serve the needs of the casual and experienced 
user. A casual user can have a defaul t report layout provided by the system, 
while an experienced user can precisely define the report layout. 

Basic Operation 

The report writer system retrieves rows of information (tuples) from a 
relational data base and produces a formatted output report. The rows retrieved 
are specified via a selection expression. (Refer to Section 1 for additional 
information and selection examples.) 

4-1 AZ49-03 



Formatting Options 

A formatted report is produced under the control of "formatting options." 
Formatting options consist of a name (for identity) and a set value. An example 
of a formatting option is: 

-page_width 80 

where -page width is the name of this option and "80" is the set value associated 
wi th the name. Formatting options which deal wi th columns require an "option 
identifier" to uniquely identify the column. For example, to set the width of a 
column, an identifier is needed to determine which column the width is to be set 
for. Id en ti f ier s can be g i v en as the number 0 f the col umn in the query, the 
name of the column as defined in the open model or submodel, or a star name 
which is matched against the column names. Examples of formatting options with 
identifiers are: 

-width salary 10 
-folding 3 fill 
-alignment ** center 

The formatting options are grouped into the following classifications: 

general report options 
control the overall characteristics of a report. They are assigned 
default values when linus is first invoked, but can be changed by the 
user at an y time. These val ues are reta ined for the en ti re 1 in us 
session. General report options consist of: 

-delimiter 
-format document controls 
-hyphenation 
-page footer value 
-page-header value 
-page-length-
-page-width 
-title line 
-truncation 

general column options 
control the overall characteristics of the columns, such as examining 
the value of certain columns to determine if a page break is to be 
generated. They are assigned default values for every new query, but 
can be changed by the user at any time. These values are retained 
only during the current query (i.e., until the next new query is generated). 
General column options consist of: 

-column order 
-count 
-exclude 
-group 
-group footer trigger 
-group-footer value 
-group-header-trigger 
-group-header-value 
-outline 
-page break __ •• "2' __ ... _____ , .. _ 
-1 UW l. UU 1,,1::1 Vd.LUI:: 

-row-header value 

4-2 AZ49-03 



-subcount 
-subtotal 
-total 

specific column options 
control the characteristics of one specific column. They are assigned 
default values for every new query, but can be changed by the user at 
an y time. These val ues are al so reta ined onl y dur ing the curren t 
quer y (i. e ., unti 1 the next new quer y). These formatting options require 
an identifier to determine which column the particular option applies 
to. Specific column options consist of: 

-alignment 
-editing 
-fold ing 
-separator 
-title 
-wid th 

The values of formatting options are listed and set through use of the 
list format options and set format options requests. These requests take control 
arguments which are the names of the formatting options. For example, to determine 
the current page width, enter: 

list format_options -page_width 

and to change page width, enter: 

set format_options -page_width 71 

A concept of "active" options is employed to make the system easier to use 
and to prov id e flex ib il i ty. For ex ample, if a nov ice user does not set page 
headers, then no reference is made to them. If a user defines a page header, it 
then becomes active and appears in the output of the various reporting requests. 
If a user decides to eliminate a previously set page header, that is, by invoking 
the "set format options -page header value -defaul t", it reverts back to the 
"inactive" state. This concept reduces the number of options listed when the 
user invokes the list format options request with no control arguments. The 
page_header_value is not listedif set to its default value as previously described. 

Specific column options are active at all times, whereas general column 
options and general report options are active only when their value is set 
different from the original defaul t value. For exan;tple, if the page_width is 
assigned its defaul t value by the system, or is reverted to by the user, it is 
not active. The moment that it is changed to a value different from its default, 
it is considered active. 

4-3 AZ49-03 



Requests 

A number of requests are available for use in the creation of reports. 
Following is a brief summary of the report requests (refer to Section 5 for a 
detailed discussion of all requests): 

column value 
returns the value of the specified column for the current row, previous 
row, or the next row. 

display 
retrieves selected data, creates a report, and displays the information 
or writes it to a file or an io switch. 

display builtins 
returns the current values for requested built-ins. 

format line 
returns a single, quoted character string, formatted from an ioa control 
string. 

list format options 
-displays the names and values of formatting options. 

Itrim 
returns a character string trimmed of specified characters on the left. 

picture 
returns one or more values processed through a specified PL/I picture. 

restore format options 
restores saved report layouts. 

rtrim 
returns a character string trimmed of specified characters on the right. 

save format options 
-saves current values of formatting options for future use. 

set format options 
- changes/sets report formatting options. 

string 
returns a single character string formed by concatenating all of its 
arguments together, separated by single spaces. 

4-4 AZ49-03 



DEFAULT REPORT ELEMENTS 

Page Layout and Titles 

A page consists of a title line followed by as many rows as fit on the 
remainder of the page. The default title line is made up of one or more column 
titles, one column title for each column on the page. The column title is the 
column name (attribute name), which is found in the open submodel or model. If 
the column is the result of an expression or function invocation, the column 
title is "eN", where N begins at 1 and increases by 1 for each function invocation 
ore x pre s s ion en co un t ere din the que r y . Th e row ism ad e up 0 f 0 n e 0 r m 0 r e 
columns, all concatenated together to form the row. The page width is 79 character 
positions and the page length is 66 lines, with 3 of these lines, at the top and 
bottom, reserved for margins. 

Separators 

A separator is provided for each column value and each column title. The 
defaul t separator is two blanks placed between each pair of col umn ti tIes and 
column values. The last column title or column value of a row has no separator. 

Folding and Width 

Sometimes when formatting a report, the user finds that the report elements 
do not fit within the defined width. To rectify this situation, "folding" takes 
place. Folding can occur in two different ways. The first is "truncation." 
Truncation means that the value is truncated to the defined width and the last 
displayable character is replaced by the truncation character(s) (normally "*"). 
The second is "filling." Filling means that portions of the value are moved 
down to the next line(s), allowing the newly formatted value to appear within 
its defined width. The format document subroutine (described in the Subroutines 
Manual) is used to provide tIll ing of overlength values, and format document 
controls can optionally be supplied to provide greater control over the filling 
action. Filling takes place when a value is wider than its display width; when 
the value contains vertical tabs characters, horizontal tab characters, backspace 
characters, or newline characters; or when the alignment mode is set to "both." 
When column values do not have editing requests associated with them, the value 
is trimmed first (i.e., before the test for filling is done). Character and bit 
data types have trailing blanks trimmed, and all other data types have leading 
and trailing blanks trimmed. 

The default width for a column value is derived from the open model or 
submodel. The width chosen is the exact number of characters needed to contain 
the value after it is converted from the internal data base data type, to character 
format, via PL/I conversion rules. When the default width is used, the column 
value always fits, but this width can be reduced by the user. The reduction of 
the column width can cause folding to occur. Column folding can be set to 
"fill" or "truncate" and proceeds as described above. The defaul t for column 
values is "fill." 

The concatenation of all column values and separators (used to determine 
row value) can cause row folding to occur. This happens when the resulting row 
is wider than the defined page width. In this case, columns which appear on or 
to the right of the right page boundary are moved down to the next line(s). The 
corresponding ti tIes are moved so that they appear directly over the columns. 

4-5 AZ49-03 



Columns whose widths are greater than the page width are automatically reduced 
to the page width. 

Alignment 

The alignment for column values is derived from the data type of the column, 
as defined in the open model or submodel. Character and bit strings default to 
"left alignment," decimal data with a non-zero scale defaults to "decimal point 
alignment," and all other data types default to "right alignment." The user can 
set the alignment of individual columns to left, right, center, both, or decimal 
point alignment. 

Th e a I i g nm en t for a col urn n tit lei s c e n t e r ( i . e ., the tit 1 e i s c e n t ere d 
within its defined width). 

The alignment for a title line or a row is left (i.e., the title line or 
row is placed against the left page boundary). 

OPTIONAL REPORT ELEMENTS 

A number of optional features (for greater control over report appearance) 
are available for more sophisticated report formatting. These optional features 
are: 

• editing 

• headers/footers 

• column titles 

• active requests 

• page breaks 

• excluding columns 

• ordering of columns 

• grouping 

• outlining 

• totals and subtotals 

• counts and subcounts 

• separators and delimiters 

• embedded control lines and hyphenation 

Editing 

Editing can be specified fer an~l column 
active requests and Multics active functions. 
to pass the value to other acti ve requests, 

4-6 

val1)e; and is provided bv linus 
The column value request is used 
and the returned value is then 

AZ49-03 



folded and aligned as described above (see "Folding and Alignment"). The report 
writer does not strip a level of quotes from the editing request; the first time 
quote stripping occurs is when ssu $evaluate active string subsystem utilities 
procedure is invoked. Editing of column values is not provided by default. 

Headers/Footers 

A header or footer is a character string provided by the user. The character 
string can contain active requests, be made up of more than one "portion," and 
consist of more than one line. A delimiter character is used to separate the 
different portions of a header or footer. The delimiter character default is 
"tn, but can be changed by the user. THe header/footer can consist of a left, 
right, and center page portion. 

Evaluation of a header/footer is a two-part operation that proceeds in the 
following manner: first, the header/footer is divided into its portions based 
on the delimiter character; and second, active requests are evaluated. Quote 
stripping is not done by the report writer during these two operations; the 
first time quote stripping occurs is when the ssu $evaluate active string subsystem 
utilities procedure is invoked. The linus display builtins active request can 
be used to obtain built-ins like the current page number in a header/footer, and 
the linus column value active request can be used to obtain the value of a 
column. 

A header or footer can be made up of a left, right, and center page portion. 
These portions are determined by the delimiter characters. The portions are 
aligned to the left, right, and center of the page. Folding on headers/footers 
proceed s independen tl y for each part. Portions of a header or footer (left, 
right, or center) with zero length are redistributed to other portions whose 
lengths are not zero. For example, if the page header contained only a center 
portion as: 

! ! Sample Center Portion!! 

the text would be centered on the page, but would have the full page width 
available for the text. Similarly, a left portion or right portion only is 
aligned to the left or right of the page, but has the full page width available 
for placement of its text. Two exceptions to this action are when the header or 
footer has a left, right, and center portion, and the left or right portion has 
a zero length. For example: 

!left part!center part!! 

or 

!!center part!right part! 

In both cases the left or right part of the page is unavailable for placement of 
text (i.e., the space is not redistributed to the other two portions). 

If redistribution of the available page width is not desired, the placement 
of a single blank into a portion prevents the redistribution from taking place 
because the portion has a length greater than zero. For example; 

! ! Ce n t e r Pa r t ! ! 

Headers and footers can be defined for a page, group, and a row. The first 
row that appears on the page is available for the page header, and the last row 
that appears on the page is available for the page footer. The first row of a 

4-7 AZ49-03 



group is available for the group header, and the last row of a group is available 
for the group footer. The current row is available for use in the row header 
and row footer. 

Column Titles 

A column title is a character string that is placed above its associated 
column. The display width available for the title is inherited from its parent 
column, along with the folding action. If the title is exactly the same number 
of characters as the display width, it is placed without any folding or alignment 
action. If the title is shorter, it is centered within the display width. If 
the title is wider, it is truncated or filled, depending on its parent column's 
setting. 

Active Requests 

Active requests are used in headers/footers to substitute values into the 
header/footer at the time the report is being formatted. For example, the Multics 
date active function can be used to provide the current date as part of the 
header or footer. 

Active requests are also used to provide editing for column values which 
become part of the row value. For example, the linus picture active request can 
be used to provide editing features such as dollar signs and commas. 

The user specifies linus active requests through the construct "[name STR]", 
where name is the name of the desired active request and STR is any argument(s) 
required by the active request. Multics active functions are invoked via the 
lin us [ ex e cut e ] act i v ere que st. Th e y are s p e c i fie d by the use r t h r 0 ugh the 
construct [execute name STR], where name is the name of the Mul tics active 
function and STR is any argument(s) required by the active function. The active 
function/request is evaluated and its returned value is substituted into the 
original string before folding and alignment take place. 

Page Breaks 

Page breaks can be set to occur when the value of one or more columns 
change. The occurrence of a new value in the column (s) being examined closes 
out the current page and a new page is started. The new row which caused the 
page break is not made available until the start of the next page. This allows 
the page footer to access the correct row (the last row on that page). 

Excluding Columns 

Columns selected in the query can be excluded from the row value. Through 
use of the [column value] active request, the column value can be obtained for 
placement elsewhere-on the page. For example, a user may exclude the display of 
a column that is being used to determine when to generate page breaks, and place 
the value of the column in the page header with the column value active request. 

4-8 AZ49-03 



Ordering Of Columns 

Columns appear on the page in the order they were selected in the query. 
This order can be changed by the user without having to go back and change the 
query. 

Grouping 

One or more columns can be used to define a "group" of rows based on the 
values of these columns. The named columns make up a major to minor hierarchy 
and can be used in conj unc tion wi th the outl in ing, page break, sub total, and 
subcount features. 

Outlining 

One or more columns can have dupl icate values suppressed. If the value of 
the current column is the same as the previous value, then its display is suppressed 
unless it is the first line on a new page. 

If any named column is a member of the group of columns defined via the 
grouping feature, it and any columns more major in the hierarchy are outlined. 
A change in value of anyone column displays all values of columns lower in the 
hierarchy in addition to the changed column. An exception is the first line on 
a new page, when duplicate values are never suppressed. 

Totals and Subtotals 

Totals and sUbtotals can be specified for columns. The totals and subtotals 
are placed directly under the associated columns. 

A column sUbtotal is generated when the value of the column(s) the sUbtotal 
is associated with changes. The sUbtotal can be associated with one or more 
columns. Several subtotals can be specified, each associated wi th different 
columns. Subtotals can be "reset" or "running." A column total is generated 
after the last input row is processed. 

The width, alignment, folding, and editing request for a total or sUbtotal 
is inherited from its parent column. During the generation of a total or subtotal, 
the column value request returns the value of the total or subtotal, rather than 
the column-value. When the parent column is excluded from the page, the total 
or sUbtotal assoc iated wi th it is al so excl uded . An except ion to thi s rule is 
when all of the columns have been excluded. They are provided in this case to 
produce reports containing some combination of subcounts, subtotals, counts, and 
totals only. 

Counts and Subcounts 

Counts and subcounts can be specified for columns~ and work as described 
above under "Totals and Subtotals." A count or subcount counts occurrences of 
values, whereas a total or subtotal accumulates values. 

4-9 AZ49-03 



Separators and Delimiters 

The separators used to separate column values and column titles from each 
o the rca n be set to any s t r in g 0 f dis p I a ya b Ie c h a r act e r s by the use r . Th e 
delimiter character used to delimit the different portions of a header/footer 
can also be set by the user. 

Format Document Controls and Hyphenation 

The report wr iter uses the format document subroutine (refer to the Subroutines 
Manual) to "fill" overlength text. A user-can embed format document control 
lines in text to achieve greater control of the filling action. A user can also 
specify that hyphenation of words should be attempted when filling over length 
text. 

FULL PAGE FORMATTING 

The report writer system formats a full page before any output is provided. 
It operates in this fashion because it is sometimes necessary to back up on a 
page and defer report elements to the next page so that associated report elements 
remain on the same page. A full page with all report elements present is outlined 
in the following diagram. 

Formatted Page 

PAGE HEADER 

TITLE BLOCK 

DETAIL BLOCK 1 - 4- expanded in diagram below 

DETAIL BLOCK N 

PAGE FOOTER 

Detail Block 

GROUP HEADER 

ROW HEADER 

ROW VALUE 

SUBTOTAL BLOCK 

SUBCOUNT BLOCK 

TOTAL BLOCK 

COUNT BLOCK 

ROW FOOTER 

GROUP FOOTER 

II ... " 
't-IU AZ49-03 



All of the defined report elements are optional, but at least one must be 
present or a zero length page is the result. A zero length page is treated as 
an error and the report formatting is terminated. 

Backing up on a page is accomplished via a detection/prevention method, and 
proceeds as follows: 

1. The page header, if present, is processed first. If the page header 
does not fi t on the page, it is treated as an error and the report 
formatting is terminated. The formatted page header can fill the complete 
page if no other report elements are defined. 

2. The title line, if present, is processed next. If the title line does 
not fit on the page, it is treated as an error and the report formatting 
is terminated. The format ted ti tIe block can fi 11 the complete page 
if no other report elements are defined. 

3. The detail block is processed next. A detail block can be made up of 
a group header, a row header, a row value, a sUbtotal block, a subcount 
block, a total block, a count block, a row footer, and a group footer. 
These different elements are treated as one unit and must all appear 
on one page or the detail block is deferred to the next page. If any 
of these elements are defined, then at least one detail block must fit 
on the page or it is treated as an error and the report formatting is 
terminated. The formatted detail block can fill the complete page if 
no other report elements are defined. 

a. The group header, if present, is processed first. If the current 
row is the first row of the report, or if the column associated 
wi th the -group header trigger option has just changed wi th the 
current row, the header is generated. If the group header does 
not fi t on the page, the detail block is deferred to the next 
page, provided one detail block is already placed on the page. 

b. The row header, if present, is processed next~ If the row header 
does not fit on the page, the detail block is deferred to the 
next page, provided one detail block is already placed on the 
page. 

c. The row value, if present, is processed next. If the row value 
does not fi t on the page, the detail block is deferred to the 
next page, provided one detail block is already placed on the 
page. The editing requests associated with any columns are evaluated 
before an attempt is made to place the row value on the page. If 
the row value is deferred to the next page for any reason, the 
editing requests associated with the columns are evaluated again 
when the row value is processed on the next page. This is necessary 
to ensure that obtained values, such as the page number display 
built-in are correct. For users who are doing calculations based 
on accumulations, this could produce incorrect calculations. That 
is, the value of a row could be accumulated more than once. The 
previously processed row display built-in provides a mechanism to 
ensure this does not happen. If the value of this buil t-in is 
true, a user doing accumulations would not add in the current row 
value as it was already added in when the editing requests for 
the row were processed the first time. 

d. The row subtotal, if present, is processed next. If sUbtotal 
generation is necessary, and the row sUbtotal does not fit on the 

4 -11 AZ49-03 



page, the detail block is deferred to the next page, provided one 
detail block is already placed on the page. The editing requests 
associated with any subtotals are only evaluated when subtotal 
generation is done, and proceed as described above under "row 
value" editing requests evaluation. The previously processed row 
display built-in also works as described above. -

e • Th e row sub c 0 un t, if pre sen t, is pro c e sse d n ext. It pro c e e d s as 
described above under row sUbtotal (item d). 

f. The row total, if present, is processed next. If total generation 
is necessary, and the row total does not fi t on the page, the 
detail block is deferred to the next page, provided one detail 
b 10 c k is aIr e a d y pIa c e don the p age. Th e e d i tin g r e que s t s ass 0 cia ted 
with any totals are only evaluated when total generation is done, 
and proceed as described above under "row value" editing requests 
e val u a t ion. Th e pre v i 0 u sly pro c e sse d row dis pIa y b u i 1 t - ina 1 so 

g. 

works as described above. -

The row coun t , if presen t, is processed next. 
described above under row subtotal (item d). 

It proceeds as 

h. The row footer, if present, is processed next. If the row footer 
does not fi t on the page, the detail block is deferred to the 
next page, provided one detail block is already placed on the 
page. 

i. The group footer, if present, is processed last. If the current 
row is the last row of the report, or the column associated with 
the -group footer trigger option is about to change with the next 
row, the footer IS generated. If the group footer does not fi t 
on the page, the detail block is deferred to the next page, provided 
one detail block is already placed on the page. 

4. The page footer, if present, is processed last. If the page footer 
does not fit on the page, the last detail block on the page is removed 
and the page footer is processed again. Active requests found in the 
footer are evaluated again to ensure correct processing of display 
built-ins like current row number. If the page footer still does not 
fit, another detail block IS removed from the page and the footer is 
e val u ate d a g a in. Th i s pro c e s s con tin u e sun til the f 00 t e r fit s, 0 r 
there are no more deta i 1 blocks to remove from the page. The first 
detail block that appears on the page is never removed, and if its 
removal is necessary to provide a fi t for the page footer, it is 
treated as an error and report formatting is terminated. 

4-12 AZ49-03 



USER SESSION 

The remainder of this section consists of report writer examples organized 
into a sample user session. User-typed lines and lines displayed by the system 
are shown together in the example. To differentiate between these 1 ines, an 
exclamation mark (!) precedes user-typed text. This is done only to distinquish 
user text from system-generated text; it is not to be included as part of the 
input line. Also, a "carriage return" (moving the display mechanism to the 
first column of the next line, called a newline or NL on Multics) is implied at 
the end of every user-typed line. Line numbers are also included in the examples 
for purposes of commentary immediately following the example. 

Note: Because of page constraints in this document, certain character 
strings of data used in examples may not match exactly the information 
as seen on a user's terminal. That is, the character strings in 
examples may be folded or mul tiple-lined, whereas the actual 
interactive (live) session may display the same information on a 
single line or multiple lines with different line breaks than 
shown here. Add i tionally, blank lines have been removed in the 
examples for space consideration in this document. In most cases 
this can be recognized by the reader. For example: 

55 linus: display -page 

59 (system display) 

Only one space is used to separate the two lines in the example, 
but the 1 ine number s to the left of the 1 ines impl y there are 
actually three spaces here. 

Following is a list of request and control argument abbreviations used in 
the examples. They are included here for the purpose of saving the reader from 
referring to other sections if a term is unfamiliar. 

REQUEST ABBREVIATIONS 

clv 
di 
dib 
e 
ec 
iq 
Idb 
Is 
Isfo 
o 
pr 
q 
rsfo 
sfo 
ss 
svfo 
tq 

column value 
display 
display builtins 
execute-
exec com 
input query 
list db 
list (Multics command level) 
list_format_options 
open 
print (Multics command level) 
quit 
restore format options 
set format optIons 
set-scope -
save format options 
translate_query 

CONTROL ARGUMENT ABBREVIATIONS 

-a 
-al 
-bf 
=co 
-dm 
-ed 

-all 
-alignment 
-brief 
-column order 
-delimiter 
-editing 

4-13 AZ49-03 



This page intentionally left blank. 

4-14 AZ49-03 



-ex -exclude 
-f·~ -force 
-fold -fold ing 
-gft 
-gfv 
-ght 
-ghv 

-group footer trigger 
-group-footer-value 
-group-header-trigger 
-group=header=value 

-gr -group 
-it -iteration 
-1{r 
-krp 
-nr 
-of 
-or 

-keep retrieval 
-keep-report 
-new retrieval 
-output file 
-old retrieval 

I 

-orp 
-out 

-old-report 
-outline 

-pb 
-pfv 

-page break 
-page=footer_value 

-pg -page 
-phv 
-pI 
-pw 
-rfv 

-page header value 
-page-Iength-
-page-width 
-row rooter value 

-rhv -row-header-value 
-rs -reset 
-se 
-sep 

-selection expression 
-separator-

-stt 
-tc 
-td 
-ti 
-tl 

-subtotal 
-truncation -OR- -truncate 
-temp dir 
-termInal input 
-title line 

I 
-tt -total 
-ttl -title 
-wid -wid th 

8/86 4-15 AZ49-03A 



General Report Options-1 

2 
3 
4 

linus -it 
linus: 
linus: 
linus: 

o em'ployee r 
ss employee r u 
ldb -lg 

TABLE COLUMN DECLARATION 

5 

employee (perm) 
name 

job 

salary 

age 

sex 

family 

state 

city 

linus: lsfo-a 
-delimiter 

char 

fixed 

fixed 

fixed 

char 

char 

char 

char 

-format document controls 
-hyphenation 
-page footer value 
-page-header-value 
-page-length-
-page-width 
-title line 
-truncation 

6 linus: Isfo 

( 10) 

dec 

dec 

dec 

( 1 ) 

( 1 ) 

(2) 

(13) 

(2) unal 

(7, 2) unal 

(2) unal 

"!" 
"off" 
"off" 
nIl 

"" 
"66" 
"79" 
"on" 
n*n 

DOMAIN TYPE 

name 
key 

job 
key inde.x 

salary 
data index 

age 
data index 

sex 
key index 

family 
data 

state 
data index 

city 
data index 

All of the formatting options are set to their default values. 
There are no column options defined. 

7 
8 

linus: sfo -pw 0 
linus: lsfo 
-page_width 

9 linus: sfo -pw -default 
10 linus: Isfo 

"0" 

All of the formatting options are set to their default values. 
There are no column options defined. 

4-16 AZ49-03 



line 1-4 
Invoke linus, open, set scope, and list information about the data base. 

line 5 
List the names and values of "all" report formatting options. All of 
the displayed values in this case are "defaul ttl values. These options 
are the "general report options." They remain in effect across the 
entire linus session. For example, if the page width is changed, it 
remains at this new value until it is explicitly changed back, or until 
the linus session is terminated. 

-dm "!" 

-fdc "off" 

-hyphenation 

-pfv "" 
-phv '''' 
-pI "66" 

-pw "79" 

-tl "on" 

-tc "*,, 

line 6-10 

"off" 

character used to delimit portions of header/footer. 

used when filling overlength character strings. If 
"off," ignore embedded controls. 

used when fill ing over length character str ings. If 
"off," do not attempt to hyphenate words. 

footer placed at bottom of each page. 

header placed at top of each page. 

length of each formatted page (number of lines). 

width of each formatted page (number of character 
positions). 

print the title line. 

character that indicates truncation has occurred. 

List options, set page width, list options again, reset page width, and 
list options once again. If line 10 included the -all control argument, 
the display would be the same as that following line 5. 

4-17 AZ49-03 



I 

Specific Column Options 

The following example looks at "specific column options." These options are 
always listed and are assigned new defaul t values ~ach time a new qUery is processed. 

1 1 in us: iq -bf 
2 select * from employee 
3 ! 
4 ! linus: tq 
5 1 in us: 1 sfo 
6 -alignment age "right" 

-al ignmen t city "left" 
-al ignment family "left" 
-al ignment job "right" 
-al ignment name "left" 
-al ignment salary "decimal 8" 
-al ignment sex "left" 
-al ignment state "left" 

14 -editing age "" 
-ed i ting city "" 
-ed i ting family "" 
-editing job "" 
-ed iting name "" 
-ed i ting salary "" 
-ed iting sex "" 
-ed i ting state "" 22 -fold ing age "fill" 
-fold ing city "fill" 
-folding family "fill" 
-folding job "fill" 
-fold ing name "fill" 
-folding salary "fill" 
-folding sex "fill" 
-folding state "fill" 

30 -separa tor age " " -separator city " " 
-separator famil y " n 

-separator job " tt 

-separator name " " 
-separator salary " " -separa tor sex " " -separa tor state " " 

38 -title age "age" 
-ti tle city "ci ty" 
-ti tle family "family" 
-title job "job" 
-title name "name" 
-ti tle salary "salary" 
-title sex "sex" 
-title state "state" 

46 -wid th age "5" 
-width city "13" 
-wid th family "1 " 
-wid th job "5" 
-width name "10" 
-wid th salary "10" 
-width sex "1" 

53 -wid th state "2" 

8/86 4-18 AZ49-03A 



line 1-5 
Invoke input query, build query, translate query, and list the names and 
values of the column options. 

line 6-13 
System display -- the alignment option specifies how a value is to be 
aligned within its display width. 

• Character and bit strings default to left-alignment. 

• Dec imal data wi th a non-zero scale defaults to 
decimal-point-alignment. 

• All other data types default to right-alignment. 

line 14-21 
System display 
column values. 

-- the editing option provides additional editing for 
(Default is no editing) 

line 22-29 
System display -- the folding option specifies the action taken when the 
column value exceeds the display width for the column. (Default is 
fill) 

line 30-37 
System display -- the separator option specifies the character string 
that separates the specified column from the following column. (Default 
is two blanks) 

line 38-45 
System display -- the title option specifies the character string to be 
placed at the top of the page above the column. (Defaul t is the name 
found in the open model or submodel) 

line 46-53 
System display -- the width option specifies the display width of the 
detail line of the column. (Default is the number of characters needed 
after conversion to character format) 

4-19 AZ49-03 



The following examples look at a report utilizing the available specific 
column options. 

55 linus: di -pg 1 

59 name job salary age s f st city 
e a at 
x m e 

i 
1 
Y 

66 abel 1 14555.01 36 m s ak juneau 
67 abell 2 13000.01 55 f m az phoenix 
68 abernathy 3 12500.01 61 m d ca fresno 
69 abodoura 5 12900.01 61 m m ca sacramento 
70 aboe 4 10201. 01 41 f s ca los angeles 
71 abraham 6 15000.01 25 f d ca san diego 
72 abrahms 7 14300.01 35 m s ca san francisco 

. (45 data lines) 

118 baker 12000.10 71 m s il springfield 

line 55 
Display page 1. Data is retrieved from the data base and formatted by 
default parameters. 

line 59-118 
System display 

4-20 AZ49-03 



120 1 in us : lsfo -wid state 
-width state "2" 

123 linus: sfo -wid state 5 
125 linus: di -pg 1 

129 name job salary age s f state city 
e a 
x m 

i 
1 
Y 

136 abel 1 14555.01 36 m s ak juneau 
131 abell 2 13000.01 55 f m az phoenix 
138 abernathy 3 12500.01 61 m d ca fresno 
139 abodoura 5 12900.01 61 m m ca sacramento 
140 aboe 4 10201.01 41 f s ca los angeles 
141 abraham 6 15000.01 25 f d ca san diego 
142 abrahms 1 14300.01 35 m s ca san francisco 

. (45 data lines) 

188 baker 12000.10 11 m s il springfield 

-----~~==~~---------------------------------------------------------------------

line 120 
List the width value of the "state" column. 

line 123-125 
Set the width value for state column to "5" from its default value of 
"2" and display page 1. 

line 129-188 
System display -- note the difference in the state column header on line 
129 from that displayed on line 59-61. 

4-21 AZ49-03 



190 linus: Isfo -wid 8 
-width city "13" 

193 linus: sfo -wid 8 10 
195 linus: di -pg 1 

199 name job salary age s f state city 
e a 
x m 

i 
1 
Y 

206 abel 1 14555.01 36 m s ak juneau 
207 abell 2 13000.01 55 f m az phoenix 
208 abernathy 3 12500.01 61 m d ca fresno 
209 abodoura 5 12900.01 61 m m ca sacramento 
210 aboe 4 10201.01 41 f s ca los 
211 angeles. 
212 abraham 6 15000.01 25 f d ca san diego 
213 abrahms 7 14300.01 35 m s ca san 
214 francisco 

(37 data lines) 

252 arnold 22 18210.01 53 f d pa philadelph 
253 ia 
254 ashman 23 12400.01 52 m s tn chattanoog 
255 a 
256 ashworth 24 9301. 01 61 f m tx austin 
257 asin 1 15100.01 51 m d tx dallas 
258 auburn 2 13101.01 70 f s vt rutland 

--------------------------------------------------------------------------------

line 190 
List the width value of column 8 (city) 

line 193-195 
Set the width value of the 8th column to "10" from its default value of 
"13" and display page 1. 

line 199-258 
System display -- note the difference under the city header (line 210-214) 
from that displayed on line 140-142. Also notice the not-so-pleasant 
breakup of line 252-255. This is an example of column "filling." 

4-22 AZ49-03 



260 sfo -wid 8 -default;lsfo -wid name 
-width name n 1 0" 

263 linus: sfo -wid name 7 -fold name trun ('3 te 
265 linus: di -pg 1 

2'{0 name job salary age s f state city 
e a 
x m 

i 
1 
Y 

277 abell 2 13000.01 55 f m az phoenix 
2 cl8 aberna* 3 12500.01 61 m d ca fresno 
279 abodou* 5 12900.01 61 m m ca sacramento 
280 aboe 4 10201. 01 41 f s ca los angeles 

(47 dat3 lines) 

328 baker 12000.10 71 m s il springfield 

--------------------------------------------------------------------------------

1 ine 260 
Se t the wi d t h val ue 0 f col urn n 8 (c i t y) to its de fa u 1 t val ue (1 3) and 1 is t the 
wid th val ue of the name col umn. No tice tha t mul tiple 1 in us r eques ts can be 
included in a single request line by utilizing the request termination 
character (;) between requests. Any number of requests may be included on a 
line using this format. 

1 ine 263-265 
Set the width value of the name column to "7", truncate the data listed under 
the name column, and display page 1. 

line 269-279 

330 
332 

336 

343 
344 
345 
346 
347 

395 

8/86 

System display -- note the difference under name header (line 278-279) from 
that displayed on line 208-209. 

sfo -sep ** It I " I 

linus: di -pg 1 

name job salary age s I f state city I 

e I a I 

x I m I 
I i I 

1 
y 

abel 1 14555.01 36 m s I ak juneau I 

abell 2 13000.01 55 f I m az phoenix I 

aberna* ? 12500.01 61 m I ~ ca fresno J I u 

abodou* 5 12900.01 61 m I m ca sacramento I 

aboe 4 10201.01 41 f I 
S ca los angeles I 

(47 data 1 ines) 

baker 1 I 12000.10 I 71 I m I s I il I spr i ngfie Id I I I I I I 

4-23 AZ49-03A 



line 330-332 
Set the column separator value to "<SP>I<SP>" from its default value of 
<SP><SP> (two blanks) and display page 1. 

line 336-395 
System display -- note that the columns have shifted to the right because the 
separator was increased to three character positions. Previous example 
separators were only two character positions. 

391 linus: sfo -al age left -ed salary -prompt 
398 Enter -editing salary. 
399 [pic $zz,zz9v.99 [clv salary]] 
400 ! . 

402 1 in us: di -pg 

406 name job salary 

413 abel 1 $14,555.01 
abell 2 $13,000.01 
aberna* 3 $12,500.01 
abodou* 5 $12,900.01 

(48 data 1 ines) 

464 baker 1 I $12, 000. 10 I 
I I 

1 ine 391 

age 

36 
55 
61 
61 

11 

s I f I state city I I 

e I a I 
I I 

I X I In I I 
I I i I I 

1 
y 

m s I ak juneau I 
I f m az phoenix I 
I m I d ca fresno I I 
I m , m ca sacramento I t 

I m I s I il I spr i ng fie Id I I I I 

Set alignment value for age column to "left" from its default value of 
"right," and invoke the editing option with prompt. 

8/86 

1 ine 399-402 
Edit request, termination, and display page 1. 

line 406 - 464 
System display -- note that the information under the age column is now 
a1 igned to the left of the column and the data under the salary column contains 
the "$" and "," characters. 

4-24 AZ49-03A 



466 linus: lsfo -ttl ** 
-title age "age" 
-title city "city" 
-title family "family" 
-title job "job" 
-title name "name" 
-title salary "salary" 
-title sex "sex" 
-title state "state" 

476 linus: sfo -al age -defaultjsfo -ttl ( 1 2 3 4 5 6 7 8) -prompt 
477 Enter -title name. 
478 NAME 
479 ! · 480 Enter -title job. 
481 JOB 
482 ! · 483 Enter -title salary. 
484 SALARY 
485 ! · 486 Enter -title age. 
487 AGE 
488 ! · 489 Enter -title sex. 
490 SEX 
491 ! · 492 Enter -ti tIe family. 
493 FAMILY 
494 ! · 495 Enter -title state. 
496 STATE 
497 ! · 498 Enter -title city. 
499 CITY 
500 ! · 
502 linus: di -pg 

506 NAME JOB SALARY AGE S F STATE CITY 
E A 
X M 

I 
L 
Y 

abel 1 $14,555.01 36 I m s ak juneau I 

abell 2 $13,000.01 55 I f m az phoenix I 

aberna* 3 $12,500.01 61 : m d ca fresno 

(49 data lines) 

565 baker 1 I $12,000.10 71 I m I s I il I springfield I I I I I 

line 466 
List the title values of all columns. 

line 476-502 
Set the ti tIe value for all columns to new values (in this case, all 
have been changed from lowercase to uppercase), and display page 1. 

line 506-565 
System display -- note that the column header values on line 506 are 
different from that displayed on line 406. 

4-25 AZ49-03 



General Report Options-2 

The following examples look at the "general report options" and are an 
extension to the example shown above under "General Report Options-1." 

1 linus: sfo -pI 26 
3 linus: di -pg 1 

7 NAME JOB SALARY AGE S F STATE CITY 
E A 
X M 

I 
L 
Y 

abel 1 $14,555.01 36 m I s ak juneau I 

abell 2. $13,000.01 55 f I m az phoenix I 

aberna* 3 $12,500.01 61 I m I d ca fresno I I 

( 9 data lines) 

27 agee 14 I $30,900.01 I 70 I m I s I hi I honolulu I I I I I I 

line 1-3 
Set the page length value to "26" from its defaul t value of "66," and 
display page 1. 

line 7-27 
System display -- note that the report length has decreased. There are 
now 20 text lines and three "margin lines" at the top and at the bottom 
oft h epa g e • Wh e nth ere po r tis sen t to a f i 1 e ( for I ate r p r in tin g) , 
these six margin lines are put in the report by the line printer software. 
This produces the same page format, whether viewed at a terminal or on 
hardcopy. 

4-26 AZ49-03 



29 linus: sfo -phv -prompt 
30 Enter -page header value. 
31 ![e date] ! Sample Report! [e time] ! 
32 ! !!! ! 
33 ! 

35 linus: di -pg 1 

39 04/29/83 Sample Report 

NAME JOB SALARY AGE S F STATE CITY 
E A 
X M 

I 
L 
Y 

abel 1 $14,555.01 36 I m I s ak juneau I I 

abell 2 $13,000.01 55 I f I m az phoenix I I 

aberna* 3 $12,500.01 61 I m I d ca fresno I I 

(7 data lines) 

58 adkins 11 I $20,700.01 I 75 I m I m I fl I key west I I I I I I 

1 ine 29 
Set the page header value when prompted by the system. 

line 30 
System display -- prompt 

line 31-35 
Set page header to contents of line 31-32 (two header lines), terminate, 
and display page 1. 

line 39-58 
System display -- note that a page header (line 39) is now included as 
part of the report. This two-line page header reduces the page content 
of the report (i.e., the report now consists of 18 data lines whereas 
the previous example contained 20 lines). The page header fills the 
entire page width, but the column values do not. If the page width is 
set to zero, the display request calculates the page width to be an 
exact fit (i.e., contains all of the column values and separators). 

4-27 AZ49-03 

10.26 



60 linus: sfo -pw 0 
62 linus: di -pg 1 

66 04/29/83 Sample Report 10:26 

NAME JOB SALARY AGE S F STATE CITY 
E A 
X M 

I 
L 
Y 

abel 1 $14,555.01 36 m s ak juneau 
abell 2 $13,000.01 55 I f m az phoenix I 

aberna* 3 $12,500.01 61 I m d ca fresno J 

(7 data lines) 

85 adkins 11 I $20,700.01 I 75 I m I m I fl I key west J J J I J J 

line 60-62 
Set the page width value to "0" from its defaul t of "79," and display 
page 1. 

line 66,85 
System display -- note that the page header is now centered over the 
columns. Setting the page width to zero has one disadvantage: when set 
to some positive integer and a column width exceeds the page width, that 
column width is reduced to the page width. For example, if the page 
width is set to 80 and the width for a column is set to 1024, the column 
width is reduced by the display request to 80. The reduction of a 
column display width does not take place when the page width is set to 
zero. 

4-28 AZ49-03 



87 linus: sfo -pfv -prompt 
88 Enter -page footer value. 
89 !!! ! - -
90 ! !- Page [dib page number] -! ! -91 ! . 
93 1 inus: di -pg 1 

97 04/29/83 Sample Report 10:26 

NAME JOB SALARY AGE S F STATE CITY 
E A 
X M 

I 
L 
Y 

abel 1 $14,555.01 36 m s ak juneau 
abell 2 $13,000.01 55 f m az phoenix 
aberna* 3 $12,500.01 61 m d ca fresno 
abodou* 5 $12,900.01 61 m m ca sacramento 
aboe 4 $10,201.01 41 I f s ca los angeles I 

abraham 6 $15,000.01 25 I f d ca san diego I 

abrahms 7 $14,300.01 35 I m s ca san francisco I 

acee 8 $12,700.01 34 I f m co denver I 

114 acord 9 $10,500.01 41 I m d ct hartford I 

116 - Page 1 -
--------~-----------------------------------------------------------------------

line 87 
Set the page footer value when prompted by the system. 

line 88 
System display -- prompt 

line 89-93 
Set the page footer to contents of line 89-90 (two footer lines), terminate, 
and display page 1. 

line 97-116 
System display -- note that a page footer (line 116) is now included as 
part of the report. This two-line page footer reduces the page content 
of the report by another two lines (now 16 lines of data between header 
and footer). 

4-29 AZ49-03 



118 linus: sfo -pI -default;di -pg 1 

122 04/29/83 Sample Report 10:26 

NAME JOB SALARY AGE S F STATE CITY 
E A 
X M 

I 
L 
Y 

abel 1 $14,555.01 36 : m s ak juneau 
abell 2 $13,000.01 55 

, f m az phoenix , 
aberna* 3 $12,500.01 61 , m d ca fresno , 

(45 data lines) 

179 azer 5 
, $12,600.01 44 : m 

, s va norfork , I 

181 - Page 1 -

line 118 
Set the page length to "default" (66 lines) from its previous setting of 
"26" (see line of this example set). 

line 122-181 
System display -- note that the page now consists of 66 lines (3 blank 
margin lines at top and bottom and 60 lines of report). 

4-30 AZ49-03 



183 1 in us : sfo -tc <MORE>;di -pg 1 

187 04/29/83 Sample Report 10:26 

189 NAME JOB SALARY AGE S F STATE CITY 
E A 
X M 

T 
..L 

L 
194 Y 

abel 1 $14,555.01 36 m I s ak juneau I 

abell 2 $13,000.01 55 f I m az phoenix I 

198 a<MORE> 3 $12,500.01 61 m I d ca fresno I 

199 a<MORE> 5 $12,900.01 61 m I m ca sacramento I 

aboe 4 $10, 201 . 01 41 f I S ca los angeles I 

(43 data lines) 

244 azer 5 I $12,600.01 44 I m s va norfork I I 

246 - Page 1 -

line 183 
Set the truncation value to "<MOR~>" from its previous default value of 
"*," and display page 1. Refer to line 263 in the "Specific Column 
Options" example (above) where the width value of the name column was 
set to "7" and the folding option, with truncation (Default = *), was 
turned on for the name column. 

line 187-246 
System display -- note the different truncation of the name column values 
(line 198-199 ) from that displayed in the earlier example identified 
above (line 278,279). 

4-31 AZ49-03 



248 linus: sfo -tl offjdi -pg 3 

252 04/29/83 Sample Report 10: 26 

254 c(MORE> I 3 $12, 501. 01 76 I 

cummins I 4 $10,100.01 78 I 

cutchin I 5 $12,600.01 62 I 

(52 data lines) 

309 goodwyn I 15 I $12,400.01 39 I I 

311 - Page 

313 ! linus: sfo -tl on 

1 ine 248 
Set the title line value to "off" 
"on," and this time display page 3. 
the column header or title display 
example (line 189-194). 

line 313 
Set the title line value to "on." 
header or title lines. 

4-32 

m m I ca san francisco I 

f d i co denver I 
I m s I ct hartford I I 

I f d ct hartford I 

3 -

from its previous default value of 
Turning the title line off inhibits 

from that displayed in the previous 

This restores the display of column 

AZ49-03 



SPECIAL EDITING OF A REPORT 

The following example shows how to utilize a user-defined exec com and 
interact with the editing request. 

1 linus: sfo -wid sex 6 -ed sex "[ec sex_lookup [clv sex]]" 
3 linus: •• ted 
4 a 
5 &version 2 
6 &trace off 
7 &if &[ e equal m &1] 
8 &then &return male 
9 &else &return female 

10 \f 
11 w sex lookup.lee -12 q 

14 linus: di -pg 1 

18 04/29/83 Sample Report 10:26 

20 NAME JOB SALARY AGE SEX F STATE CITY 
A 
M 
I 
L 
Y I· 

I 

27 abel 1 $14,555.01 36 male s ak juneau 
28 abell 2 $13,000.01 55 female m az phoenix 

. a(MORE) 3 $12,500.01 61 male d ca fresno 

(45 data lines) 

75 azer 5 I $12,600.01 44 I male s I va norfork I I I 

77 - Page 1 -

line 1 
Set the width of the sex column to "6" from its previous default value 
of "1," and prepare for special editing of the sex column data. 

line 3-12 
Invoke the ted ed i tor f append the following exec com data (1 ine 5-9) 
into the ted buffer, terminate append mode, write the buffer to permanent 
storage, and quit the ted editor. 

line 14 
Display page 

line 18-77 
System display -- note the change in width of the sex column (line 20) 
from that displayed in the previous example (line 189) and the change of 
data by the exec com (m = male and f = ~emale). 

4-33 AZ49-03 



I 

SAVING A REPORT AND RESETTING OPTIONS 

The following example shows how to save a report after it is in the desired 
format. Additionally, the example shows how to reset all options and revert the 
report back to its original format. 

5 

64 

linus: svfo EXAMPLE-l.fo.lec -query;sfo -rs;-di -pg 1 

name 

abel 
abell 
abernathy 
abodoura 
aboe 
abraham 

job 

1 
2 
3 
5 
4 
6 

(46 data 1 ines) 

baker 

salary 

14555.01 
13000.01 
12500.01 
12900.01 
10201.01 
15000.01 

12000.10 

age s f st 
e a at 
x m e 

i 
1 
y 

36 m s ak 
55 f m az 
61 m d ca 
61 m m ca 
41 f s ca 
25 f d ca 

city 

juneau 
phoenix 
fresno 
sacramento 
los angeles 
san diego 

71 m s il springfield 

line 1 
Save the current values of format options as a linus subsystem exec com 
(EXAMPLE-1. fo .lec) which can be restored· later wi th -the 
restore format options request. Then reset all options to their default 
values,-and display page 1. 

line 5-64 
System display -- note that the report has reverted back to its original 
format (i.e., it is now the same as the first example in this sample user 
session). 

At this point you may wish to terminate the linus session by entering: 

65 linus: q 
66 (Mul tics ready message) 

8/86 4-34 AZ49-03A 



RESTORING A SAVED REPORT 

The report saved in the previous example may be recalled at will. Assuming you 
want to have the report pr inted, then the following sequence of events must be set up: 

1 linus 
2 1 in us: o employer r 
3 linus: ss employee r u 
4 linus: rsfo EXAMPLE-1.fo.lec 
5 1 inus: di -nr -pg 1 

9 04/29/83 Sample Report 10: 26 

NAME JOB SALARY AGE SEX 

abel 1 $14,555.01 36 male 
abell 2 $13,000.01 55 female 
a<MORE) 3 $12,500.01 61 male 
a<MORE) 5 $12,900.01 61 male 
aboe 4 $10,201.01 41 female 

(43 data lines) 

azer 5 I $12,600.01 44 I male 

F STATE 
A 
M 
I 
L 
Y 

s I ak . I 

m I az I 

d ca 
I m I C3 I I 
I s I ca I I 

s I va 

CITY 

juneau 
phoenix 
fresno 
sacramento 
los angeles 

nor fork 

69 - Page 1 -

71 ! lin us: d i - 0 f e x am p 1 e - 1 

line 1-4 
Set up for restoring the saved format options. 

line 5 
Display page 1 of the report as a verification (i.e., is this the desired 
report?) • 

line 9-69 
System display -- note that the report is restored to its original condition 
(i.e., restored to the same format as that shown in the example under "Special 
Editing of a Report" above). 

line 71 
Write the complete formatted report to permanent storage in the user's 
working directory with pathname of "example-1". 

The full report (example-1), along wi th the saved format options segment 
(EXAMPLE-1. fo .lec) now resides in the user's working directory and may be printed or 
retained in permanent storage at the user's discretion. - --

8/86 4-35 AZ49-03A 

* 

* 



General Column Options 

The following examples look at the "general column options." These options 
remain in effect only for the duration of the current query. Every time a new 
query is performed, new defaul t values are assigned. The options are listed 
(through use of the list format options request) when their value is different 
from the default, or when-asked for by name. 

1 linus: lsfo -co 
2 -column order "name job salary age sex family state city" 

4 1 inus: sfo -co 8 7 1 2 3 4 5 6;di -pg 

8 04/29/83 Sample Report 10:28 

CITY STATE NAME JOB SALARY AGE SEX 

juneau ak abel 1 $14,555.01 36 male 
phoenix az abell 2 $13,000.01 55 female 
fresno ca a(MORE> 3 $12,500.01 61 male 

(45 data lines) 

norfork I va azer 5 $12,600.01 44 male I 

67 - Page 1 -
-----------~------------------------------~-----------------------------~-------

line 1 
List the current names and order of the report columns. 

line 4 
Reorder the sequence of report columns and display page 1. 

line 8-67 
System display -- note that the column order has been changed from that 
displayed in the previous example. 

Even though the columns are re-ordered (line 4 above), the user must still set 
and list them in the query order sequence. For example: 

69 ! linus: sfo -wid 8 -default;lsfo -wid 8 
-width city "13" 

Although city appears on the page first (i.e., left column in above example), 
the column is still column 8. 

71 linus: sfo -co 7 8;lsfo -co 
72 -column order "state city" name job salary age sex family" 

Notice that all columns were not named in the -column order request above (line 
71) and that the system defaul ts all names (1 ine 72)-: Future displays of the 
report will have the columns reordered to 7 8 1 2 3 4 5 6 until changed by the 
user. 

4-36 AZ49-03 

F 
A 
M 
I 
L 
Y 

s 
m 
d 

s 



74 linus: lsfo -ex 
75 -exclude nil 

77 linus: sfo -ex age job;di -pg 

81 04/29/83 Sample Report 10: 31 

STATE CITY NAME SALARY SEX F 
A 
M 
I 
L 
Y 

ak juneau abel $14,555.01 male I s I 

az phoenix abell $13,000.01 female I m I 

ca fresno a(MORE> $12,500.01 male I d I 

(45 data lines) 

va I norfork I azer $12,600.01 male s I I 

140 - Page 1 -

line 74 
List columns currently excluded from the report. 

line 75 
System display -- the response is n", meaning that no columns are currently 
excluded. 

line 77 
Exclude the age and job columns and display page 1. 

line 81-140 

142 
143 

System display -- note that the age and job columns have been excluded 
from the report (i.e., the report now consists of six columns of data 
instead of the eight previously included). 

linus: sfo -ex IIII;lsfo -ex 
-exclude ,It, 

Execution of line 142 restores the age and job columns previously excluded by 
execution of line 77. Line 143 is the system display indicating that no columns 
are currently excluded. 

4-37 AZ49-03 



The next few examples look at the "group" option which is used in conjunction 
wi th other requests. This option is used to define a "group" of rows based on 
the content of one or more columns. 

145 
146 

linus: 1sfo -gr 
-group "It 

148 linus: sfo -gr state city sex;lsfo -out 
149 -outl ine I'"~ 

151 linus: sfo -out sex;di -sort state city sex -pg 1,2 

155 04/29/83 

STATE CITY 

ak juneau 

(16 data lines) 

az phoenix 

(12 data lines) 

tucson 

201 

ca fresno 

(6 data lines) 

214 

Sample Report 

NAME 

bambry 
gaskins 
justin 

abell 
c(MORE> 
june 

monaco 
nevitte 
pauley 
n(MORE> 
ordeman 
bane 

a(MORE> 
c(MORE> 
jupiter 

JOB 

10 
6 
2 

2 
22 
18 

20 
15 
10 
5 
1 

13 

3 
23 
19 

- Page 1 -

4-38 

SALARY 

$11 , 501. 01 
$14,700.01 
$12,000.0"1 

$13,000.01 
$18,300.01 
$10,900.01 

$12,300.01 
$12,300.01 
$11,600.01 
$12,400.01 
$15,200.01 
$15,200.01 

$12,500.01 
$12,400.01 
$ 4,100.01 

AGE 

66 
31 
78 

55 
38 
73 

SEX 

10: 33 

F 
A 
M 
I 
L 
Y 

female I d 
: s 
: m 

female m 
d 
s 

30 female d 
77 : s 
56 : m 
57 male m 
21 d 
50 female m 

61 
53 
47 

male d 
: s 
I m 

AZ49-03 



This ends the first page of the report (refer to line 151 that set up a two-page 
display). The second page of the report immediately follows the commentary 
describing the setup for page 1. 

line 145 
List the columns currently set for grouping purposes. 

line 146 
System display -- no current grouping set. 

line 148 
Set grouping for columns (state, ci ty, and sex), and 1 ist the columns 
currently set as candidates for duplicate suppression. 

line 149 
System display -- no current outline set. 

line 151 
Set the outl ine column value to "sex." The out 1 ine option is used to 
suppress duplicate columns. Outlining is done when the value of a column 
is the same for the current row as it is on the previous row. Outlining 
is never done when it is the first row of a new page. The example sets 
outlining for the sex column. The sex column is the most ~inor column 
in the group and therefore all col umns more maj or have outl in ing done 
also. The second request on the line invokes display (with sort) of 
pages 1 and 2. First the data has to be sorted so that use of this 
option can be further described in later examples. 

The following example is page 2 of the report invoked by the second request on 
line 151. 

04/29/83 Sample Report 10:33 

STATE CITY NAME JOB SALARY AGE SEX F 
A 
M 
I 
L 
Y 

ca fresno leeland 14 $32,800.01 77 male d 
m(MORE> 9 $10,200.01 32 s 
mcclung 5 $13,100.01 71 m 
m(MORE> 1 $14, 100.01 26 I d I 

monger 21 $12,600.01 61 ' I s I 

los angeles aboe 4 $10,201.01 41 female I s I 

(37 data lines) 

san diego abraham 6 $15,000.01 25 female I d I 

c(MORE> 2 $13,000.01 44 I s I 

kang 22 $19,201.01 23 I m I 

levy 18 $10,800.01 66 d 
m(MORE> 13 $14,800.01 71 I s I 

mccrary 8 $13,000.01 25 : m 

- Page 2 -

4-39 AZ49-03 



Sorting is done external to MRDS. The values must all be retrieved before 
sorting can be done. When display is invoked wi thout control arguments, the 
system defaul ts to a new retrieve on each invocation. The next two examples 
show how this retrieve can be kept and then recalled. 

216 linus: di -sort state city sex -kr -pg 2 

220 04/29/83 Sample Report 10: 34 

STATE CITY 

ca fresno 

234 los angeles 

(31 data lines) 

san diego 

219 

line 216 

NAME 

leeland 
m(MORE> 
mcclung 
m(MORE> 
monger 
aboe 

abraham 
c(MORE> 
kang 
levy 
m(MORE> 
mccrary 

JOB 

14 
9 
5 
1 

21 
4 

6 
2 

22 
18 
13 
8 

- Page 2 -

SALARY 

$32,800.01 
$10,200.01 
$13,100.01 
$14,100.01 
$12,600.01 
$10,201.01 

$15,000.01 
$13,000.01 
$19,201.01 
$10,800.01 
$14,800.01 
$13,000.01 

AGE 

11 
32 
11 
26 
61 
41 

25 
44 
23 
66 
11 
25 

SEX F 
A 
M 
I 
L 
Y 

male : d 
: s 
: m 
: d 
: s 

female : s 

female d 
s 
m 
d 

: s 
: m 

Sort the state, city, and sex columns; then display page 2. In addition, 
keep the results of the retrieve. 

1 ine 220 - 219 
System display. 

The sorted data is now retained for future use (see -kr on 1 ine 216). Future 
display requests may now re-call the kept data (i.e., the amount of system time 
required after execution of line 216 until the report is displayed can be minimized 
in future displays). 

281 ! linus: di -kr -or -pg 2 

The display results (provided by execution of line 281) would be an exact copy 
of that provided in line 220-219 above, except that the time required to produce 
the report is less. 

4-40 AZ49-03 



Outlining can also be done on columns which are not a member of the group. For 
example: 

283 linus: Isfo -out 
-outline "sex" 

286 linus: sfo -out sex family 
288 linus: di -kr -or -pg 1,2 

292 04/29/83 

STATE CITY 

ak juneau 

(16 data lines) 

az phoenix 

(12 data lines) 

tucson 

338 

ca fresno 

(6 data lines) 

351 

Sample Report 

NAME 

bambry 
gaskins 
justin 

abell 
c(MORE> 
june 

monaco 
nevitte 
pauley 
n(MORE> 
ordeman 
bane 

a(MORE> 
c<t·10RE> 
jupiter 

JOB 

10 
6 
2 

2 
22 
18 

20 
15 
10 
5 
1 

13 

3 
23 
19 

- Page 1 -

SALARY 

$11 , 501. 01 
$14,700.01 
$12,000.01 

$13,000.01 
$18,300.01 
$10,900.01 

$12,300.01 
$12,300.01 
$11 , 600. 01 
$12,400.01 
$15,200.01 
$15,200.01 

$12,500.01 
.t.1"'1 IJ('\('\ ('\1 
oj)'~''"tuu.u, 

$4,100.01 

AGE 

66 
31 
78 

55 
38 
73 

30 
77 
56 
57 
21 
50 

10:36 

SEX F 
A 
M 
I 
L 
Y 

female d 
I s 
I m 

female m 
I d 
I s 

female 

male 

female 

d 
I s 
I m , 
I 

I d 
I m 

61 male 
53 

: d 
: s 
: m 47 

1 ine 283 
List the columns currently set as candidates for duplicate suppression. 

1 ine 286 
Set the outline column value to "sex" and "family." (Refer to additional 
description regarding outlining in the commentary of line 151 above.) 

1 ine 288 
Display page 1 and 2 using the data retrieved during the previous invocation 
(-or), and keep the retrieved data (-kr) from this execution for use in 
subsequent invocations of the display request. 

line 292-351 
System display -- note the family entry for line 338 is blank indicating 
dupl icate suppression of "m" which would normally have displayed (see 
line 201 above) s 

Page 2 of the report is not shown. 

4-41 AZ49-03 



This page intentionally left blank. 

AZ49-03 



The size of a retrieved table can cause a process directory quota overflow when working 
wi th large tables. The -temp dir control argument for the display request allows the 
user to prov ide a directory for the retrieved table where enough quota is available. 
The -temp_dir argument can only be used when requesting a new table. 

353 linus: di -or -kr -td [e wd] -pg 1 
354 linus (display): Warning: The temp_dir >udd>Demo>linus_test won't be used. 

line 353 
Display" page 1 using the data retrieved during the previous invocation (-or) 
and keep the retrieved data (-kr) from this execution, utilizing the 
temporary directory "wd". 

line 354 
System display -- warning message because a new retrieval was not requested 
(i.e., -old retrieval was used). 

Page 1 of the report is not shown. It would be an exact dupl ica te of that shown in line 
292-351 above, if it were included here. 

356 ! linus: di -kr -td [e wd] -pg 1 -sort state city sex 

line 356 
Display page 1 using a new retrieval, keep the retrieved data for future use, 
and utilize "wd" for a temporary directory. 

Page 1 of the report is not shown. It would be an exact dupl icate of that shown in line 
292-351 above, if it were included here. 

To verify that the working directory (wd) was in fact used for the temporary directory, 
enter: 

358 
359 
360 
361 

369 
370 
371 

linus: •• Is 
Segments = 224, Length = 353 

rew 0 !BBBJNHFGnQJX1w.temp.0565 

r w 
r w 
r w 

o !BBBJNHFGmXFcFB.LINUS.table 
1 EXAMPLE-1.fo.lec 
1 sex_lookup.lec 

line 358 

8/86 

Escape out of linus and list the current contents of the working directory. 

line 359-371 
System display -- lines 359-369 outlines the areas used ror the temporary 
directory. Note that line 370 is associated with an earlier example where the 
contents of a report was saved (refer to "Saving a Report and Resetting 
Options") and line 371 identifies the segment which contains the exec com 
used to change "m" and "f" to "male" and "female" for the sex column (refer to 
"Special Editing of a Report"). 

4-43 AZ49-03A 

I 



315 !' linus: lsfo -pb 
316 -page_break If" 

318 linus: sfo -pb state;di -kr -or -pg 1,4 

Line 315 is a request to list the current columns that are candidates for new 
page breaks and line 316 says there are no current candidates. The following 
four examples show full-page representations of the results of the requests in 
line 378 (set page break value to "state" and display pages 1 through 4). 

4-44 AZ49-03 



04/29/83 Sample Report 10:39 

STATE CITY NAME JOB SALARY AGE SEX F 
A 
M 
I 
L 
Y 

ak juneau bambry 10 $11, 501. 01 66 female d 
gaskins 6 $14,700.01 31 s 
justin 2 $12,000.01 78 m 
Macleod 22 $18,500.01 43 d 
manuel 18 $10,000.01 33 s 
m<MORE) 13 $14,900.01 67 m 
m<MORE) 8 $13,000.01 77 d 
nesl ine 4 $10,100.01 27 s 
ord 24 $ 9,200.01 34 m 
abel 1 $14,555.01 36 male s 
cooke 21 $12,100.01 34 m 
jones 16 $13,000.01 21 d 
ledger 11 $21,900.01 27 s 
maclure 7 $14,700.01 53 m 
m<MORE) 3 $12,100.01 71 d 
mead 23 $12,700.01 29 s 
molloy 19 $ 4,300.01 22 m 
nevling 14 $32,500.01 63 d 
paul 9 $10,300.01 73 s 

- Page 1 -

8/86 4-45 AZ49-03A 



04/29/83 Sample Report 10:40 

STATE CITY NAME JOB SALARY AGE SEX F 
A 
M 
I 
L 
Y 

az phoenix abell 2 $13,000.01 55 female m 
c(MORE) 22 $18,300.01 38 d 
june 18 $10,900.01 73 s 
lednar 13 $15,000.01 71 m 
m(MORE) 8 $12,600.01 37 d 
m(MORE) 4 $10,800.01 68 s 
meadow 24 $ 9,800.01 52 m 
bander 11 $21,100.01 70 male s 
geist 7 $14,600.01 21 m 
kane 3 $12,300.01 58 d 
maclin 23 $12,500.01 79 s 
manzo 19 $ 4,200.01 74 m 
mccoy 14 $31,300.01 67 d 
meagher 9 

, $10, 500. 01 52 s 
dupuis 12 $12,000.00 28 y 

tucson monaco 20 $12,300.01 30 female d 
nevitte 15 $12,300.01 77 s 
pauley 10 $11,600.01 56 m 
n(MORE) 5 $12,400.01 57 male 
ordeman 1 $15,200.01 21 . d 

- Page 2 ~ 

4-46 AZ49-03 



04/29/83 Sample Report 10:40 

STATE CITY NAME JOB SALARY AGE SEX F 
A 
M 
I 
L 
Y 

ca fresno bane 13 $15,200.01 50 female m 
george 8 $12,100.01 44 d 
kang 4 $10,000.01 76 s 
maclure 24 $ 9,700.01 47 m 
marcey 20 $12,600.01 71 d 
mccrary 15 $12,500.01 53 s 
mea kin 10 $11,600.01 51 m 
a(MORE) 3 $12,500.01 61 male d 
c(MORE) 23 $12,400.01 53 s 
jupiter 19 $ 4,100.01 47 m 
leeland 14 $32,800.01 77 d 
m(MORE) 9 $10,200.01 32 s 
mcclung 5 $13,100.01 71 m 
m(MORE) 1 I $14,100.01 26 d 
monger 21 $12,600.01 61 s 

los angeles aboe 4 $10,201.01 41 female 
cowes 24 $ 9,500.01 58 m 
justin 20 $12,900.01 34 d 
leestma 15 $12,300.01 69 s 
m(MORE) 10 $11,400.01 52 m 
m(MORE) 6 $15,000.01 26 d 
meagher 2 $12,600.01 67 s 
monroe 22 $18,900.01 42 m 
newhall 18 $10,000.01 30 d 
pavlov 13 $14,000.01 24 s 
barker 14 $32,800.01 78 male d 
g(MORE) 9 $10,900.01 45 s 
katz 5 $12,400.01 70 m 
m(MORE) 1 $14,800.01 57 d 
marcus 21 $12,600.01 62 s 
mccory 16 $12,700.01 54 m 
mealey 11 $21,600.01 36 d 
nevitte 7 $14,900.01 39 s 

I orf 3 $12,400.01 70 m 
sacramento barrett 15 $12,800.01 65 female s 

gill 10 $11,800.01 47 m 
keene 6 $14,100.01 54 , d 
m(MORE) 2 $12,200.01 54 s 
marcy 22 $19,700.01 45 m 
m(MORE) 18 $10,900.01 62 d 
means 13 $14,300.01 46 s 
newcomb 8 $12,300.01 36 m 
orlaens 4 $10,300.01 41 d 
a(MORE) 5 $12,900.01 61 male m 
c(MORE) 1 $14,300.01 50 d 
kane 21 $12,400.01 24 s 
leonard 16 $12,900.01 25 m 
macnabb 11 $21,500.01 68 d 
mccoy 7 $14,000.01 77 s 

- Page 3 -

4-47 AZ49-03 



This page intentionally left blank. 

4-48 AZ49-03 



04/29/83 

STATE CITY 

ca sacramento 

san diego 

san francisco 

santa cruz 

Sample Report 

NAME 

mea kin 
monson 
newman 
payne 
abraham 
c<MORE> 
kang 
levy 
m<MORE> 
mccrary 
mealey 
montano 
newton 
peacock 
b<MORE> 
keener 
m<MORE> 
m<MORE> 
m<MORE> 
mecham 
newhall 
o<MORE> 
baur 
gnandt 
kelly 
macnabb 
markle 
m<MORE> 
media 
newman 
orrison 
abrahms 
c<MORE> 
katz 
libin 
macnair 
mccory 
means 
monte 
nguyen 
parce 
nevling 
orend 
newcomb 
paulson 

JOB 

3 
23 
19 
14 

6 
2 

22 
18 I 

13 
8 
4 

24 
20 
15 
16 

7 
3 

23 
19 
14 
9 
5 

18 
13 

8 
4 

24 
20 
15 
10 

6 
7 
3 

23 
19 
14 
9 
5 
1 

21 
16 

6 
2 

16 
11 

- Page 4 -

4-49 

SALARY 

$12,900.01 
$13,000.01 
$ 4,200.01 
$30,400.01 
$15,000.01 
$13,000.01 
$19,201.01 
$10,800.01 
$14,800.01 
$13,000.01 
$10,700.01 
$ 9,300.01 
$13,100.01 
$12,500.01 
$12,310.01 
$14,000.01 
$12,400.01 
$12,600.01 
$ 4,000.01 
$30,400.01 
$10,300.01 
$12,900.01 
$10,100.01 
$14,700.01 
$12,410.01 
$10, 100. 01 
$ 9,100.01 
$12,900.01 
$12,300.01 
$11,300.01 
$14,100.01 
......... II -.t"\r\ r'\'" 
q>1"t,.)UU.UI 

$1 2, 501. 01 
$12,500.01 
$ 4,000.01 
$31,300.01 
$10,500.01 
$12,900.01 
$15,300.01 
$12,700.01 
$12,900.01 
$14,400.01 
$12,900.01 
$12,400.01 
$21,100.01 

10:40 

AGE SEX 

71 male 
40 
68 
30 
25 female 
44 
23 
66 
71 
25 
71 
22 
24 
76 
63 male 
62 
63 
38 
22 I 

23 
21 
27 
79 female 
60 
25 
68 
75 
23 
45 
62 
30 
35 male 
76 
58 
29 
70 
52 
60 
31 
53 
68 
37 female 
72 
72 male 
49 

AZ49-03 

F 
A 
M 
I 
L 
Y 

m 
d 
s 
m 
d 
s 
m 
d 
s 
m 
d 
s 
m 
d 
m 
s 
m 
d 
s 
m 
d 
s 
d 
s 
m 
d 
s 
m 
d 
s 
m 
s 
m 
d 
s 
m 
d 
s 
m 
d 
s 
d 
s 
m 
d 



Now we will experiment with column subtotals and totals. A subtotal specification 
is given in the form of one or more "triplets." A triplet is given as the 
column to be subtotaled, followed by the column whose value change should generate 
the subtotal, and optionally followed by "reset" or "running" to indicate what 
type of sUbtotal is desired. Reset is the defaul t. In the following example, 
line numbers 1-8 are intentionally left blank. 

9 linus: sfo -rhv "" -rfv '''I 
11 linus: lsfo -stt 
12 -subtotal "" 

14 linus: sfo -stt salary,state,reset 

The subtotal inherits its width, editing request, etc. from the parent column. 
The width of the salary column must be increased or the sUbtotal will be folded, 
and a larger picture is needed to edit it through. The age and job columns are 
left at their present width so the filling of numbers can be seen later when the 
numbers become large enough. 

16 linus: lsfo -wid salary 
17 -width salary "10" 

19 linus: sfo -wid salary 14 
21 linus: lsfo -ed salary 
22 -editing salary "[pic $zz,zz9v.99 [clv salary]]" 

24 linus: sfo -ed salary "[pic $zz,zzz,zz9v.99 [clv salary]]" 
26 linus: lsfo -al salary 
27 -alignment salary "decimal 8" 

29 linus: sfo -al salary decimal 12 
31 linus: di -nr -kr -sort state city sex -pg 1,4 

35 04/29/83 Sample Report 10: 42 

STATE CITY 

ak juneau 

(15 rows of data) 

64 ak 

(30 blank lines) 

95 

NAME 

bambry 
gaskins 
justin 

paul 

JOB 

10 
6 
2 

9 

$ 
$ 
$ 

SALARY 

11 , 501. 01 
14,700.01 
12,000.01 

$ 10,300.01 

$ 262,056.19 

- Page 1 -

4-50 

AGE 

66 
31 
78 

73 

SEX F 
A 
M 
I 
L 
Y 

female : d 
: s 
: m 

AZ49-03 

: s 
I 
I 
I 
I 



line 9 
Set row header and row footer values to "default." 

line 11-14 
List current value for subtotal, and set up new value. 

line 16-29 
List current value for width, editing, and alignment of the salary column, 
and set up new values. 

1 ine 31 
Display pages 1 through 4 of the report, starting with a new retrieval, 
sorting the report as indicated to get back into the full format, and 
keep the retrieval for re-use. 

line 35-281 
System display -- note the inclusion of subtotals in the salary column 
(total by state -- see 1 ine 64, 127, and 276). The remain ing three 
pages of the report follow. 

--------------------------------------------------------------------------------
97 04/29/83 Sample Report 10:42 

STATE CITY NAME JOB SALARY AGE SEX F 
A 
M 
I 
L 
Y 

az phoenix abell 2 $ 13,000.01 55 female m 
c<MORE> 22 $ 18,300.01 38 d 

( 13 rows of data) 

tucson monaco 20 $ 12,300.01 30 female d 
nevitte 15 $ 12,300.01 77 s 
pauley 10 $ 11, 600. 01 56 m 
n<MORE> 5 $ 12,400.01 57 male 
ordeman 1 $ 15,200.01 21 d 

--------------
127 az $ 272,700. 19 

(31 blank lines) 

157 - Page 2 -

4-51 AZ49-03 



This page intentionally left blank. 

4-52 AZ49-03 



159 04/29/83 Sample Report 10:42 

STATE CITY NAME JOB SALARY AGE SEX F 
A 
M 
I 
L 
Y 

ca fresno bane 13 $ 15,200.01 50 female m 
george 8 $ 12,100.01 44 d 

(13 rows of data) 

I los angeles aboe 4 $ lO, 201.01 41 female I 

cowes 24 $ 9,500.01 58 : m 

(17 rows of data) 

I sacramento barrett I 15 $ 12,800.01 65 female I s , , , 
gill I' 10 $ 11 , 800. 01 47 : m , 

(12 rows of data) 

mccoy 7 $ 14,000.01 77 I s I 

219 - Page 3 -

221 04/29/83 Sample Report 10:43 

STATE CITY NAME JOB SALARY AGE SEX F 
A 
M 
I 
L 
Y 

ca sacramento meakin 3 $ 12,900.01 71 male I m 
monson 23 $ 13,000.01 40 I d , 
newman 19 $ 4,200.01 68 I s , 
payne 14 $ 30,400.01 30 I m , 

san diego abraham 6 $ 15,000.01 25 female I d , 
c<MORE> 2 $ 13,000.01 44 s 

(16 rows of data) 

, san francisco baur 18 $ 10,100.01 79 female i d I 

gnandt 13 $ 14,700.01 I 60 I S "' 
, 

(17 rows of data) 

santa cruz nevling 6 $ 14,400.01 37 female d 
orend 2 $ 12,900.01 72 s 
newcomb 16 $ 12,400.01 72 male m 
paul son 11 $ 21, 100.01 49 d 

--------------
276 ca $ 1,302,223.95 

(4 blank lines) 

281 - Page 4 -

4-53 AZ49-03 



I 

I 

I 
I 

The following example shows how to get subtotals for multiple columns in addition to more 
than one subtotal per column. 

1 linus: sfo -stt -prompt 
2 Enter -subtotal. 
3 age,sex salary,sex job,sex age,city salary,city job,city age,state 
4 salary,state job,state 
5 ! 

'7 I in us: di -or -kr -pg 1 , 3 

11 04/29/83 Sample Report 10: 43 

STATE CITY NAME JOB SALARY AGE SEX F 
A 
M 
I 
L 
Y 

ak juneau bambry 10 $ 11, 501. 01 66 female d 
gaskins 6 $ 14,700.01 31 s 
justin 2 $ 12,000.01 78 m 
macleod 22 $ 18, 500.01 43 d 
manuel 18 $ 10,000.01 33 s 
m<MORE) 13 $ 14,900.01 67 m 
m<MORE) 8 $ 13,000.01 77 d 
nesline 4 $ 10,100.01 27 s 
ord 24 $ 9,200.01 34 m 

--------------
30 107 $ 113, 901.09 456 female 

abel 1 $ 14,555.01 36 male s 
cooke 21 $ 12,100.01 34 m 
jones 16 $ 13,000.01 21 d 
ledger 11 $ 21,900.01 27 s 
maclure 7 $ 14,700.01 53 m 
m<MORE) 3 $ 12,100.01 71 d 
mead 23 $ 12,700.01 29 s 
molloy 19 $ 4,300.01 22 m 
nevling 14 $ 32,500.01 63 d 
paul 9 $ 10,300.01 73 s 

--------------
43 ak juneau 124 $ 148,155.10 429 male 

--------------
46 ak juneau 231 $ 262,056.19 885 

--------------
1I9 ak 231 $ 262,056.19 885 

(22 blank lines) 

71 - Page 1 -
--------------------------------------------------------------------------------

line 1 
Request to set columns for sub total ing, with prompt. 

line 2 
System display prompt. 

1 ine 3-5 
Set column val ues to be subtotaled, and terminate the prompt. 

8/86 4-54 AZ49-03A 



line 1 
Display pages 1 through 3. 

line 11 -1 95 
System display -- the display of pages 2-3 follow. 

-----~----~~~~~~---~------------------------------------------------------------

13 04/29/83 Sample Report 10: 43 

STATE CITY NAME JOB SALARY AGE SEX F 
A 
M 
I 

I L . 1 

Y 

az phoenix abell 2 $ 13,000.01 55 female m 
c<MORE) 22 $ 18,300.01 38 d 
june 18 $ 10,900.01 13 s 
lednar 13 $ 15,000.01 11 m 
m<MORE) 8 $ 12,600.01 31 d 
m<MORE) 4 $ 10,800.01 68 s 
meadow 24 $ 9,800.01 52 m 

--------------
91 $ 90,400.07 394 female I 

bander 1 1 $ 21, 100.01 10 male s 
geist 1 $ 14,600.01 21 m 
kane 3 $ 12,300.01 58 d 
maclin 23 $ 12, 500. 01 19 s 
manzo 19 $ 4,200.01 14 m 
mccoy 14 $ 31,300.01 61 d 
meagher 9 $ 10,500.01 52 s 
dupuis 12 $ 12,000.00 28 Y 

--------------
phoenix 98 $ 118,500.01 449 male I 

--------------
phoenix 189 $ 208,900.14 843 I 
tuc son monaco 20 $ 12,300.01 30 female d 

nevitte 15 $ 12,300.01 11 I s I 

pauley 10 $ 11,600.01 56 I m 1 
1 -------------- 1 

45 $ 36,200.03 163 female I I 1 

n<MORE) 5 $ 12,400.01 51 male 
ordeman 1 $ 15, 200. 01 21 d 

--------------
az tucson 6 $ 21, 60.02 18 male I 

--------------
az tuc son 51 $ 63,800.05 241 I 

I ---------------I 

az I 240 $ 212,100.19 1084 I 1 

( 10 blank lines) 

133 - Page 2 -

8/86 4-55 AZ49-03A 



135 04/29/83 Sample Report 10: 44 

STATE CITY NAME JOB SALARY AGE SEX F 
A 
M 
I 
L 
Y 

ca fresno bane 13 $ 15, 200.01 50 female m 
george 8 $ 12,100.01 44 d 
kang 4 $ 10,000.01 76 s 
maclure 24 $ 9,700.01 47 m 
marcey 20 $ 12,600.01 71 d 
Mccrary 15 $ 12;500.01 53 s 

i Meakin 10 $ 11,600.01 51 m , --------------. I 

I 94 $ 83,700.0'7 392 female 

a<MORE) 3 $ 12,500.01 61 male d 
c<MORE) 23 $ 12,400.01 53 s 
jupiter 19 $ 4,100.01 47 m 
leeland 14 $ 32,800.01 77 d 
m<MORE) 9 $ 10,200.01 32 s 
Mcclung 5 $ 13, 100.01 71 m 
m<MORE) 1 $ 14,100.01 26 d 
monger 21 $ 12,600.01 61 s 

--------------
I fr esno 95 $ 111,800.08 428 male 

--------------
I fresno 189 $ 195,500. 15 820 

los angeles aboe 4 $ 10, 201. 01 41 female 
cowes 24 $ 9,500.01 58 m 
justin 20 $ 12,900.01 34 d 
leestma 15 $ 12,300.01 69 s 
m<MORE) 10 $ 11,400.01 52 m 
m<MORE) 6 $ 15,000.01 26 d 
meagher 2 $ 12,600.01 67 s 
monroe 22 $ 18,900.01 42 m 
newhall 18 $ 10,000.01 30 d 
pavlov 13 $ 14,000.01 24 s 

--------------
I 134 $ 126, 801. 10 443 female 

barker 14 $ 32,800.01 78 male d 
g<MORE) 9 $ 10, 900.01 45 s 
katz 5 $ 12,400.01 70 m 
m<MORE) 1 $ 14,800.01 57 d 
marcus 21 $ 12,600.01 62 s 
mccory 16 $ 12,700.01 54 m 
Mealey 11 $ 21,600.01 36 d 
nevitte 7 $ 14,900.01 39 s 

195 - Page 3 

8/86 4-56 AZ49-03A 



To see how the totals feature works, the last page of the report must be examined. 
The example eliminates page breaks to cut down on the number of pages generated. 

197 
199 

linus: 
linus: 

sfo -tt age salary job 
sfo -pb '''' 

Just as retrieved data can be re-used, so can formatted reports. The last few 
pages will be examined, but display will be asked to keep the formatted report. 
It will use the previously established temp dir to place the copy of the formatted 
report. - . 

4-57 AZ49-03 



201 linus: di -kr -or -krp -pg 33,$ 

04/29/83 Sample Report 10: 52 

STATE CITY NAME JOB SALARY AGE SEX F 
A 
M 
I 
L 
Y 

vt rutland parnell $ 14,400.01 59 male 
, m I , -------------- , 

I I • vt i . rutland 92 $ 133,200.09 466 male I 

--------------
I vt rutland 218 $ 246,511.18 992 

--------------
I vt 431 $ 478,511.36 1866 

wa seattle azi z 6 $ 14,100.01 75 female 
freitag 2 $ 13,000.01 66 d 
johnson 22 $ 18,900.01 25 s 
Maclean 18 $ 10,000.01 74 m 
m<MORE) 13 $ 14,000.01 67 d 
m<MORE) 8 $ 12,600.01 72 s 
m<MORE) 4 $ 10,200.01 67 m 
neff 24 $ 9,100.01 65 d 
o'neil 20 $ 12,100.01 49 s 

--------------
I l- 117 $ 114,000.09 560 female 

collier 16 $ 13,000.01 62 male 
j anick 1 1 $ 20,200.01 50 m 

I latter 7 $ 15,300.01 55 d I .. m<MORE) 3 I $ 12,400.01 66 s 
I m<MORE) 23 $ I 12,500.01 43 m 
I Mcrorie 19 $ 4,000.01 40 d I 
I mock 14 $ I 30,100.01 22 s 
I neil I 9 $ I 10,800.01 47 m 

patel 5 $ 12,000.01 24 d 
--------------

I seattle 107 $ 130,300.09 409 male 

--------------
I seattle 224 $ 244,300.18 969 

walla walla colwell 18 $ 10,200.01 38 female m 
jenkins 13 $ 15,001.01 41 d 
lawson 8 $ 13,000.01 34 s 
m<MORE) 4 $ 10, 500. 01 70 m 
mcclaus 24 $ 9,000.01 51 d 
Mcswain 20 $ 12,400.01 35 s 
roodlin 15 $ 13, 100.01 50 m 
nelson 10 $ 11,700.01 37 d 
patrick 6 $ 14,300.01 29 s 

--------------
I 118 $ 109,201.09 385 female 

- Page 33 -

8/86 4-58 AZ49-03A 



04/29/83 Sample Report 10:52 

STATE CITY NAME JOB SALARY AGE SEX F 
A 
M 
I 
L 
Y 

wa walla walla bahn 7 $ 14,900.01 55 male d 
freuh 3 $ 12,900.01 76 s 
jones 23 $ 12,800.01 36 m 
macleod 19 $ 4, 200. 01 60 d 
manion 14 $ 32,400.01 68 s 
m<MORE) 9 $ 10,700.01 68 m 
mittal 5 $ 12,000.01 43 d 
negri 1 $ 15,200.01 68 s 
oong 21 $ 12,000.01 70 m 

--------------
wa walla walla 102 $ 127,100.09 544 male I 

--------------
wa walla walla 220 $ 236, 301. 18 929 I 

---------------
wa 444 $ 480,601.36 1898 I 
wi green bay ba i ley 8 $ 12,410.01 25 female s 

fyock 4 $ 10, 801. 01 47 m 
june 24 $ 9,210.01 47 d 
m<MORE) 20 $ 12,800.01 35 s 
mann 15 $ 13,000.01 52 m 
m<MORE) 10 $ 12,000.01 51 d 
mock 6 $ 14,800.01 78 s 
neill 2 $ 12,200.01 30 m 
onofiro 22 $ 18,800.01 77 d 

--------------
111 $ 116, 021 . 09 442 female I 

condit 19 $ 4,300.01 56 male 
jochem 14 $ 30,800.01 79 s 
lawter 9 $ 10,400.01 74 m 
macleod 5 $ 12,400.01 36 d 
m<MORE) 1 $ 14,400.01 52 s 
m<MORE) 21 $ 12,400.01 60 m 
mohin 16 $ 12,000.01 34 d 
nesline 11 $ 20,500.01 37 s 
p<MORE) 7 $ 15,000.01 45 m 

--------------
green bay 103 $ 132, 200.09 473 male I 

--------------
green bay 214 $ 248,221.18 915 I 
racine c<MORE) 20 $ 12,500.01 20 female I s I 

johnson 15 $ 12,410.01 61 I m I 

led ford 10 $ 11 , 200. 01 63 I d I 

maclin 6 $ 14, 200. 01 25 I s I 

- Page 34 -

8/86 4-59 AZ49-03A 



04/29/83 Sample Report 10: 53 

STATE CITY NAME JOB SALARY AGE SEX F 
A 
M 
I 
L 
Y 

wi racine m(MORE) 2 $ 12,600.01 35 female m 
m(MORE) 22 $ 18,700.01 38 d 
moldt 1 8 $ 10,200.01 67 s 
n(MORE) 13 $ 14,400.01 71 I m I " 

patton 8 $ 12,100.01 27 I d i 
I -------------- I 

I 114 $ 118, 310. 09 407 I female I 

baker 9 $ 12,000.10 43 male m 
gardner 5 $ 12,300.01 29 d 
jupiter 1 $ 14,301.01 41 s 
m(MORE) 21 $ 12, 600. 01 32 m 
mansour 16 $ 13,100.01 46 d 
mcclung 11 $ 21,100.01 39 s 
modlin 7 $ 14,300.01 60 m 
nel son 3 $ 12,400.01 70 d 
o(MORE) 23 $ 12,800.01 62 s 

--------------
I wi racine 96 $ 124,901.18 422 male 

--------------
I wi racine 210 $ 243,211.27 829 

--------------
I wi 424 $ 491,432.45 1744 

----- ============== -----
12300 $1 3, 811 , 845. 15 49106 

- Page 35 "-

8/86 4-60 AZ49-03A 



Now that'the report appears correct, it can be wri tten (saved) to a file. -old report 
will be specified so that display uses the previously formatted report. -

203 linus: di -orp -of SAMPLE_REPORT -kr 

The complete report (SAMPLE REPORT) now resides in the user's working directory and 
can be dprinted at will. The -keep retrieval control argument was specified in order 
to continue this session, but could have been eliminated if the user was terminating 
the session after saving this report. 

8/86 4-61 AZ49-03A 

I 



Now we will experiment with generation of a report utilizing the group footer/header 
and left/right trim operations. 

sfo -rs 1 
3 
5 
7 

linus: 
linus: 
linus: 
linus: 

sfo -pw 60 -tl off -pb state 
sfo -ex 1 2 3 4 5 6 7 8 -gr state city 
sfo -gft city -ght city 

9 
10 

linus: sfo -gfv -prompt -ghv -prompt 
Enter -group_footer_value. 

11 ! ! ! ! 
12 ! . 
13 Enter -group header value. 
14 !City: [clv city]!!T 
15 I!!! 
16 ! . 

18 linus: sfo -phv -prompt -pfv -prompt 
19 Enter -page header value. 
20 !State: [cli stateJ!!! 
21 ! !!!! 
22 ! . 
23 
24 
25 
26 

! ! ! ! 
!!- Page [dib page_number] 

! . 

28 linus: sfo -rhv -prompt 
29 Enter -row header value. 

-! ! 

30 Employee [rtrim [clv name]] is [ltrim [clv age]] years old and earns 
[pic $z9,999v.99 [clv salary]]!!! 

31 ! . 

33 linus: di -or -kr -sort state city salary -pg 1,3 

37 State: ak 

39 City: juneau 

40 Employee molloy is 22 years old and earns $ 4,300.01 
Employee ord is 34 years old and earns $ 9,200.01 
Employee manuel is 33 years old and earns $10,000.01 
Employee nesline is 27 years old and earns $10,100.01 
Employee paul is 73 years old and earns $10,300.01 
Employee bambry is 66 years old and earns $11,501.01 
Employee justin is 18 years old and earns $12,000.01 
Employee cooke is 34 years old and earns $12,100.01 
Employee mcclenehan is 11 years old and earns $12,100.01 
Employee mead is 29 years old and earns $12,100.01 
Employee jones is 21 years old and earns $13,000.01 
Employee meadoows is 71 years old and earns $13,000.01 
Employee abel is 36 years old and earns $14,555.01 
Employee gaskins is 31 years old and earns $14,100.01 
Employee maclure is 53 years old and earns $14,100.01 
Employee mccormick is 61 years old and earns $14,900.01 
Employee macleod is 43 years old and earns $18,500.01 
Employee ledger is 21 years old and earns $21,900.01 
Employee nevling is 63 years old and earns $32,500.01 

• (31 blank lines) 

91 - Page 1 -

4-62 AZ49-03 



line 1-5 
Resets all options (i.e., restore the report back to its original format), 
set page width to 60, turn title line "off," set the page break to 
"state," exclude all 8 columns of the report, and group the report by 
"state" and "city." 

line 7 
Sets the group footer/header trigger to "city." 

line 9-16 
Sets the group footer value to a blank line (!!!!) and the group header 
value to "City:" (left-justified). 

line 18-26 
Sets the page header value to "State:" (left-justified), the page footer 
(2 lines) to contain a blank line (!!!!), and the second footer line to 
"- Page X _If. 

line 28-31 
Sets the row header value to read (left-justified and trimmed): 

Employee X is X years old and earns $X 

line 33 
Invokes display, using the sort sequence "state city salary." 

line 37 - 225 
System display -- notice that the top of each page (lines 37, 101, 165) 
ind icate a report by state (ak, az, ca). Add i tionally, the report is 
sorted by city, where: 

ak - juneau (line 39) 
az - phoenix (line 103) 

- tucson (line 121) 
ca - fresno (line 167) 

- los angeles (l ine 185) 
- sacramento (line 207) 

and finally employees are listed in ascending salary order. 

The remaining two pages of the report follow. 

4-63 AZ49-03 



101 State: az 

103 City: phoenix 

Employee manzo is 74 years old and earns $ 4,200.01 
Employee meadow is 52 years old and earns $ 9,800.01 
Employee meagher is 52 years old and earns $10,500.01 
Employee mcclowsky is 68 years old and earns $10,800.01 
Employee june is 73 years old and earns $10;900.01 
Employee dupuis is 28 years old and earns $12,000.00 
Employee kane is 58 years old and earns $12,300.01 
Employee maclin is 79 years old and earns $12,500.01 
Employee macmahon is 37 years old and earns $12,600.01 
Employee abell is 55 years old and earns $13,000.01 
Employee geist is 21 years old and earns $14,600.01 
Employee lednar is 71 years old and earns $15,000.01 
Employee corcoran is 38 years old and earns $18,300.01 
Employee bander is 70 years old and earns $21,100.01 
Employee mccoy is 67 years old and earns $31,300.01 

121 City: tucson 

161 

Employee pauley is 56 years old and earns $11,600.01 
Employee monaco is 30 years old and earns $12,300.01 
Employee nevitte is 77 years old and earns $12,300.01 
Employee neubauer is 57 years old and earns $12,400.01 
Employee ordeman is 21 years old and earns $15,200.01 

. (33 blank lines) 

- Page 2 -

4-64 AZ49-03 



165 State: ca 

167 City: fresno 

Employee jupiter is 47 years old and earns $ 4,100.01 
Employee maclure is 47 years old and earns $ 9,700.01 
Employee kang is 76 years old and earns $10,000.01 
Employee macmannis is 32 years old and earns $10,200.01 
Employee meakin is 51 years old and earns $11,600.01 
Employee george is 44 years old and earns $12,100.01 
Employee costello is 53 years old and earns $12,400.01 
Employee abernathy is 61 years old and earns $12,500.01 
Employee mccrary is 53 years old and earns $12,500.01 
Employee marcey is 71 years old and earns $12,600.01 
Employee monger is 61 years old and earns $12,600.01 
Employee mcclung is 71 years old and earns $13,100.01 
Employee meadoows is 26 years old and earns $14,100.01 
Employee bane is 50 years old and earns $15,200.01 
Employee leeland is 77 years old and earns $32,800.01 

185 City: los angeles 

Employee cowes is 58 years old and earns $ 9,500.01 
Employee newhall is 30 years old and earns $10,000.01 
Employee aboe is 41 years old and earns $10,201.01 
Employee giannoti is 45 years old and earns $10,900.01 
Employee macmillan is 52 years old and earns $11,400.01 
Employee leestma is 69 years old and earns $12,300.01 
Employee katz is 70 years old and earns $12,400.01 
Employee orf is 70 years old and earns $12,400.01 
Employee marcus is 62 years old and earns $12,600.01 
Employee meagher is 67 years old and earns $12,600.01 
Employee mccory is 54 years old and earns $12,700.01 
Employee justin is 34 years old and earns $12,900.01 
Employee pavlov is 24 years old and earns $14,000.01 
Employee macmahon is 57 years old and earns $14,800.01 
Employee nevitte is 39 years old and earns $14,900.01 
Employee mccormick is 26 years old and earns $15,000.01 
Employee monroe is 42 years old and earns $18,900.01 
Employee mealey is 36 years old and earns $21,600.01 
Employee barker is 78 years old and earns $32,800.01· 

207 City: sacramento 

Employee newman is 68 years old and earns $ 4,200.01 
Employee orlaens is 41 years old and earns $10,300.01 
Employee mccullough is 62 years old and earns $10,900.01 
Employee gill is 47 years old and earns $11,800.01 
Employee macmannis is 54 years old and earns $12,200.01 
Employee newcomb is 36 years old and earns $12,300.01 
Employee kane is 24 years old and earns $12,400.01 
Employee barrett is 65 years old and earns $12,800.01 
Employee abodoura is 61 years old and earns $12,900.01 
Employee leonard is 25 years old and earns $12,900.01 
Employee meakin is 71 years old and earns $12,900.01 
Employee monson is 40 years old and earns $13,000.01 
Employee mccoy is 77 years old and earns $14,000.01 
Employee keene is 54 years old and earns $14,100.01 

225 - Page 3 -

4-65 AZ49-03 



229 ! linus: q 
230 (Multics command level - ready message) 

This concludes the sample user session. 

4-66 AZ49-03 



SECTION 5 

COMMAND DESCRIPTION 

This section contains a description of the linus command and its associated 
requests. Each request description contains the name (including the abbreviated 
form, if any), discusses its purpose, and shows correct usage. Notes and examples are 
included where necessary for clarity. 

8/86 5-1 AZ49-03A 



linus linus 

Name: 1 inus 

This command invokes linus to access an MHOS data base. It provides both 
retrieval and update operations. Data to be selected is specified via query 

I sta tements. 

I Note: The linus command (pre-MH10.2 version) is described in Section 6. 

linus {-control_args} 

where control_args can be chosen from the following: 

8/86 

-abbrev, -ab 
enables abbreviation expansion and editing of request lines. 

-iteration, -it 
recognizes parentheses in the request line to indicate request line 
iteration. 

-no.abbrev, -nab 
- disables abbreviation expansion and editing of request lines. (Defaul t) 

-no iteration, -nit 
- interprets parentheses in the request line literally (i.e., no iteration 

of request line). (Defaul t) 

-no prompt, -npmt 
- turns off prompting of strings. 

later (see set_mode request). 
This control argument can be overridden 
(Default is prompt) 

-no start up, -nsu 
- specIfies that the subsystem start_up exec_com is not to be executed. 

-profile path, -pf path 
specifies the pathname of the profile used for abbreviation expansion. A 
profile suffix must be the last component to path; however, the suffix 
need not be supplied in the command line. This control argument implies 
-abbrev. 

-prompt STH 
sets the prompting string used by linus to STH. If 5TH contains embedded 
blanks, it must be enclosed in quotes. (Default linus prompt is 
"linus:".) 

-request 5TH, -rq 5TH 
executes STR as a linus request line before entering the request loop. 
This control argument cannot be used wi th the macro path argument 
described in Section 6, and the requests specified by STR-cannot contain 
the invoke request, also described 10 Sectiun 6. 

-start up, -su 
specifies that the subsystem start_up exec com "start_up .lec" is 

5-2 AZ49-03A 



linus 

Notes 

1 inus 

executed prior to entering the request loop. The start up is searched 
for in the user's home directory, project directory, and then )site. 
(Defaul t) 

By default, linus pro:npts the user whenever input is expected (the string 
"linus:" is displayed at linus request level). Refer to the description of the 
set_mode request for information on how to turn off prompting. 

Multics program interrupt conditions are recognized and handled by linus. 
Thus, the user may interrupt any request and resume the linus session by invoking the 
Multics program interrupt command. After the program interrupt command, linus waits 
for the user to type further requests. -

There is no data base creation facility within linus. Those users who wish to 
create their own data base should refer to Section 3 for information on the creation of 
an MRDS data base. 

8/86 5-3 AZ49-03A 



linus linus 

LINUS Requests 

8/86 

The following list summarizes all of the linus requests. 

identifies the linus subsystem, version num.ber, and open data· base. 

? 
lists the available linus requests. 

abbrev, ab 
turns abbreviation processing ON or OFF and changes profile segments. 

answer 
supplies an answer to a question. 

apply, ap 
places the current query in a temporary file, adds the file name to the 
supplied command line, and executes the Multics command line. 

assign values, av 
-specifies that selected data is to be retrieved and that retrieved values 
are to be assigned to the designated variables. 

close, c 
closes the currently open data base. 

column value, clv 
-returns the value of the specified column for the current row, previous 

row, or next row. 

create list, cIs 
-specifies that selected data is to be retrieved and written to a Lister 
file to create a formatted report. 

declare, dcl 
allows the user to declare user-written functions for later invocation 
within the selection expression. 

define temp table, dtt 
-specIfies that selected data is to form a new temporary table, known only 

to the process, but which can be accessed by the process for retrieval in 
the same manner as data base tables. 

del scope, ds 
- deletes all or a portion of the current scope of access in a shared data 

base. 

delete, dl 
specifies that selected data is to be deleted from the data base. 

delete temp table, dltt 
-deletes the specified temporary table. 

display, di 
retrieves selected data, creates a report, and displays the information 
or writes it to a file. 

display builtins, dib 
returns the current values for requested built-ins. 

5-4 AZ49-03A 



linus 

8/86 

linus 

do 
substitutes args into the request line and passes the result to the linus 
request processor. -

exec com, ec 
- executes the linus exec com indicated by ec path. The ec_path arguments 

are passed to the exec~com processor. -

execut~, e 
executes a Multics command line after evaluating linus active requests. 

format 1 ine, fl 
-returns a single, quoted charaqter string, formatted from an ioa control 

string. 

help 
displays information about request names or topics. A list of available 
topics is produced by the list_help request. 

if 
conditionally executes a request. 

input_query, iq 
allows the entering of a query for data manipulation requests. 

invoke, i (an OBSOLETE request moved to Section 6) 

lila (an OBSOLETE request moved to Section 6) 

lis.t db, Idb 
- lists specified information about the currently open data base. 

list format options, 1sfo 
- lists the names and values of format options. 

list help, 1h 
- lists the available info segments whose names include a topic string. 

list requests, 1r 
- lists information about linus requests. 

list scope, Is 
- lists the scope of access currently in force. 

list values,lv 
- lists the current value assigned to the designated linus variables. 

1 trim 
returns a character string trimmed of specified characters on the left. 

modify, m 

open, 0 

specifies that a selected portion of the data base is to be modified. 

opens a specified data base, with either a data model or data submodel 
view, for linus processing. 

opened database, odb I 
-returns "true" if there is an open data base and "false" if there is no 

open data base. 

5-5 AZ49-03A 



linus 

8/86 

linus 

picture, pic 
returns one or more values processed through a specified PL/I picture. 

print, pr 
specifies that selected data is to be retrieved and displayed on the 
terminal in default format. 

print query, pq 
- displays the current query. 

qedx, qx 
invokes the qedx editor with the current or a new query. 

quit, q 
terminates a linus session. 

report, r pt 
specifies that selected data is to be retrieved and used to create a 
formatted report via the Multics Report Program Generator (MRPG). 

restore format options, rsfo 
restores saved report layouts. 

rtrim 
returns a character string trimmed of specified characters on the right. 

save format options, svfo 
saves current values of format options for future use. 

save_query, sq 
saves the current query. 

set format options, sfo 
- changes/sets report format options. 

set mode, sm 
- sets or resets modes for the current session. 

set scope, ss 
- defines the current scope of access within a shared data base (this, 

together with del_scope, provides concurrent usage control). 

store, s 
adds new rows to specified tables in the data base. 

store from data file, sdf 
- takes newrows from a file and adds them to the specified table in the data 

base. 

string 
returns a single character string formed by concatenating all of the 
strings together, separated by single spaces. 

subsystem name 
displays the name of the subsystem, "linus". 

subsystem version 
displays the current version of linus. 

translate query, tq 
translates the current query, making it available for data manipulation 
requests. 

5-6 AZ49-03A 



linus linus 

write, w 
specifies that selected data is to be retrieved and written to a file in 
the storage system. in the storage system. 

write data_file, wdf 
retrieves selected data and wri tes it to a file in a format sui table for 
input to the store_from_data_file request. 

The remainder of this section contains a detailed description of each request, 
including standard subsystem environmental requests (i.e., requests common to other 
subsystems such as abbrev, answer, do, etc). All examples show the prompting string 
"linus:" prior to lines of user input. 

8/86 5-7 AZ49-03A 



I 

? 

Request: • 

This request identifies the linus subsystem, version number, and open data base. 

Request: ? 

This request displays the available linus requests. 

? 

Example 

The following list is displayed when "?" is entered by the user in response to 
the linus prompt. 

8/86 

linus: ? 
linus: Available linus requests: 

? 
abbrev, ab 
answer 
apply, ap 
assign values, av 
close,-c 
column value, clv 
create-list, cIs 
declare, dcl 
define temp table, dtt 
delete-scope, ds 
delete: dl 
delete temp table, 

dltt -
display, di 
display builtins, dib 
do -
exec com, ec 
execute, e 
format_line, fl 

help, h 
if 
input query, iq 
invoke, i 
lila 
list db, ldb 
list-help, lh 
list-format options, 

lsfo -
list requests, lr 
list-scope, Is 
list-values, Iv 
ltrim 
modify, m 
open, 0 
opened database 
picture, pic 
print, pr 
print query, pq 
qedx,-qx 
quit, q 

report, r pt 
restore format options, 

rsfo- -
rtrim 
save format options, 

svfo -
save query, sq 
set format options, 

sfo -
set mode, sm 
set-scope, ss 
store, s 
store from data file, 

sdf - -
string 
subsystem name 
subsystem-version 
translate-query, tq 
write, w -
write_date_file, wdf 

Type "list_requests" for a short description of the requests. 

5-8 AZ49-03A 



abbrev abbrev 

Request: abbrev, ab 

This request controls abbreviation processing within the subsystem. As an 
active request, it returns "true" if abbreviation expansion of request lines is 
currently enabled within the subsystem and "false" otherwise. 

ab {-control_args} 

Usage ~ ~ Active Request 

[ab] 

where control_args can be chosen from the following (and cannot be used wi th the active 
request) : 

Notes 

-off 
specifies that abbreviations are not to be expanded. 

-on 
specifies that abbreviations should be expanded. (Default) 

-profile path 
specifies that the segment named by path is to be used as the profile 
segment; the profile suffix is added to path if not present. The segment 
named by path must exist. 

This subsystem provides command line control arguments (-abbrev, -no abbrev, 
-profile) to specify the initial state of abbreviation processing within the 
subsystem. For example, a Multics abbreviation can be defined to invoke the read mail 
subsystem wi th a defaul t profile as follows: -

.ab rdm do "read mail -abbrev -profile [hd]>mail_system &rfl" 

If invoked with no arguments, this request enables abbreviation processing 
within the subsystem using the profile that was last used in this subsystem 
invocation. If abbreviation processing was not previously enabled, the profile in 
use at Multics command level is used; this profile is normally 
[home_dir]>Person_id.profile. 

See the abbrev command in the Mul tics Commands for a description of abbreviation 
processing. 

8/86 5-9 AZ49-03A 



answer answer 

Request: answer 

This request provides preset answers to questions asked by another request. 

answer STR {-control_args} request_line 

where: 

1. STH 
is the desired answer to any question. If the answer is more than one 
word, it must be enclosed in quotes. If STH is -query, the question is 
passed on to the user. The -query control argument is the only one that 
can be used in place of STH. 

2. request line 
Is any subsystem request line. It can contain any number of separate 
arguments (i.e., have spaces within it) and need not be enclosed in 
quotes. 

3. control args 
can be chosen from the following: 

8/86 

-brief, -bf 
suppresses display (on user terminal) of both the question and the 
answer. 

-call STR 
~valuates the active string STH to obtain the next answer in a sequence. 
The active string is constructed from subsystem active requests and 
Mul tics acti ve strings (using the subsystem "execute" acti ve request) • 
The outermost level of brackets must be omitted (i.e., "forum list 
-changed") and the entire string must be enclosed in quotes if it contains 
request processor special characters. The return value "true" is 
translated to "yes," and "false" to "no." All other return values are 
passed as is. 

-exclude STH, -ex STH 
passes on, to the user or other handler, questions whose text matches STR. 
If STH is surrounded by slashes (/), it is interpreted as a qed x regular 
expression. Otherwise, answer tests whether STH is literally contained 
in the tex t of the question. Mul tiple occurrences of -match and -exclude 
are allowed (see "Notes" below). They apply to the entire request line. 

-match STH 
answers only questions whose text matches STR. If STH is surrounded by 
slashes (/), it is interpreted as a qedx regular expression. Otherwise, 
answer tests whether STH is literally contained in the text of the 
question. Multiple occurrences of -match and -exclude are allowed (see 
"Notes" below). They apply to the entire request line. 

-query 
skips the next answer in a sequence, passing the question on to the user. 
The answer is read from the user i/o I/O switch. 

5-10 AZ49-03A 



answer apply 

-then STR 
supplies the next answer in a sequence. 

-times N 
gives the previous answer (STR, -then STR, or -query) N times only (where 
N is an integer). 

Notes 

The answer request provides preset responses to questions by establishing an ON 
unit for the condition command question and then executes the designated request 
line. If any request in the -request line calls the command query subroutine 
(described in the Mul tics Subroutines) to ask a question, the ON uni t Is invoked to 
supply the answer. The ON unit is reverted when the answer request returns to 
subsystem request level. See "List of System Conditions and Defaul t Handlers" in the 
REF Manual for a discussion of the command_question condition. 

If a question is asked that requires a yes or no answer, and the preset answer is 
neither "yes" or "no," the ON unit is not invoked. 

The last answer specified is issued as many times as necessary, unless followed 
by the -times N control argument. 

The -match and -exclude control arguments are applied in the order specified. 
Each -match causes a given question to be answered if it matches STR; each -exclude 
causes it to be passed on if it matches STR. A question excluded by the -exclude 
control argument is reconsidered if it matches a -match later in the request line. For 
example, the request line: 

answer yes -match /fortran/ -exclude /fortran_io/ -match /Afortran_io! 

answers questions containing the string "fortran", except that it does not answer 
questions containing "fortran_io". It does, however, answer questions beginning 
with "fortran ion. 

Request: apply, ap 

This request places the current query into a temporary file, adds the pathname of 
the file to the end of the suppl ied command line, and executes the resul ting Mul tics 
command line. If there is no current query, or the -new control argument is used, the 
created file is initially empty. 

ap {-control_args} command line 

where: 

1. control args 
can be chosen from the following: 

8/86 5-11 AZ49-03A 



apply 

-new 
specifies th~t an empty file be initially created. 

-old 
specifies that the existing query be made available. (Default) 

2. command 1 ine 
Is a Multics command line request. 

Example 

apply -new ted -pn 

apply emacs 

Request: assign_values, av 

This request specifies that selected data is to be retrieved and the retrieved 
values assigned to designated linus variables. This capability allows information 
obtained from one retrieval to be used in subsequent data base accesses. A translated 

I or translatable query must be available. As an active request, it returns "true" if 
data is successfully retrieved and "false" if the select statement fails. 

I av variable list 

I Usage ~ an Active Reguest 

I [av variable_list] 

where variable list is a list of one or more variable names. 

Notes 

I A variable name is an alphanumeric character string, from 1 to 32 characters in 
length, which must begin wi th an exclamation mark ( !). The underscore ( ) and hyphen 
(-) may also be included, but the exclamation mark cannot appear elsewherein the name. 
The specification in an assign values request is the only declaration required. If 
the same variable is specified in several assign values requests, its value is 
reassigned in each of tho se requests. V:] r iable names and val ues are pr eserved a cro ss 
data base openings and closings within the same linus session. 

Variables specified in the assign_values request are unrelated to row 
designators in the query. 

8/86 5-12 AZ49-03A 



assign_values 

Retrieved data is assigned to variables in the variable list in the order 
retrieved. Retrieval ceases when all selected data is exhausted or when all variables 
in the variable list are exhausted, whichever occurs first. In the case of the 
retrieved data being exhausted before the variable list, the following occurs: 
previously assigned variables that occur in a variablelist but are not assigned new 
values by this assign value request retain their previous value. New variables in the 
variable list that are not assigned values are not created. 

Variable names are global within a linus session (i.e., like variable names 
occurring in different linus exec corns refer to the same variable) if the exec coms 
are used in the same linus session. 

Example 

List the employees whose total compensation is above the department store 
average, and then list those employees who are below the average. 

8/86 

1 in us: in put_ quer y -force 
Query: 
avg {select sal + comm from emp} 

linus: assign values !av camp 
linus: input_query -force 
Query: 
select name sal + comm 
from emp 
where sal + comm > !avg_comp 

linus: print 

name f(emp) 

Smi th, John 
Jones, Al 
John son, Bet ty 
(END) 

linus: qedx 
3s/>I<1 
1, $ P 

10000 
12000 
11000 

select name sal + comm 
from emp 
where sal + camm < !avg_comp 
write 
qui t 

linus: print 

name f(emp) 

Anderson, Carol 8000 
(END) 

5-13 AZ49-03A 



close column value 

Request: close, c 

This request closes the currently open data base. 

,.. .... 

Request: column_value, clv 

This request returns the value of the specified column for the current row, 
previous row, or next row. It can only be used as an active request. It is used wi thin 
a formatted report produced by the display request to obtain the value of a column. It 
is an error to use this request anywhere except in a header/footer or editing string 
within a report produced by the display request. 

I Usage ~ an Active Request 

[clv column id {-control_args}] 

where: 

1. col umn id 
-specifies which column value is to be returned. It can be given as the 

name of the column as defined in the open rriodel/submodel, or the number of 
the column in the query. 

2. control args 

8/86 

can be chosen from the following: 

-current row, -crw 
returns the value of the named column for the current row. (Default) 

-default STR 
returns the character string STR when there is no previous row, or when 
there is no next row. (If this control argument is not used the default 
value for STR is ''''.) 

-next row, -nrw 
returns the value of the named column for the next row. If there is no 
next row, the string "" is returned unless changed by the -default control 
argument. 

-previous row, -prw 
retlJrns the value of the named column for the previous row. If there is no 
previous row, the string "" is returned unless changed by the 

5-14 AZ49-03A 



column value 

Examples 

[colu:nn value foo] -
[column value 3 ] -
[column value foo -previous_ row] -
[col umn value foo -next row -default NULL] - -

Request: create_list, cIs 

This request specifies that selected data is to be retrieved and written to a 
specified Lister file. This file can be manipulated via Lister commands to create a 
formatted report. A translated or translatable query must be available. Refer to the 
WORDPRO Manual for a complete description of Lister. 

cIs path {-control_args} 

where: 

1. pa th 
is the pathname of a Multics file into which the selected data is to be 
wri tten. The data is wri tten in a form sui table for processing by Lister. 
The suffix lister is appended to the pathname (if not present in the 
invocation) and the file is created if it does not exist. If the file 
currently exists, it is truncated unless the -extend control argument is 
specified. 

2. control args 

8/86 

can be chosen from the following: 

-ex tend 
specifies that if the Lister file already exists, it is to be added to 
rather than truncated. The field names (either default or explicitly 
specified) must be identical to those defined in the existing file. 

-field names STR, -fn STR 
explicitly specifies the field names in the Lister file being created or 
extended. STR is a list of field names that must correspond in order and 
quantity to the items specified in the select clause of the associated 
query. This control argument must be specified if the query select 
clause contains an expression. If not specified, the names of the 
selected data base columns become the lister file field names. 

NOTE: The values being written to the lister file have all leading and trailing 
blanks stripped off. 

5-15 AZ49-03A 



create list declare 

Examples 

A query to create a Lister file containing the names and salaries for all 
employees in the Shoe department is: 

linus: input_query -force 
Query: 
select name sal 
from emp 
where dept = "Shoe" 

A.request to create the Lister file "shoe sal.lister" with the field names "name" 
and "sal" is: -

linus: create list shoe sal 

The same file could be created wi th the field names "name" and "salary" wi th the 
request: 

linus: create list shoe sal -field names name salary 

Request: declare, dcl 

This request allows the user to declare a nonstandard function which may be 
invoked in a subsequent query. A nonstandard function is any function not included in 
built-in functions listed in Section 2, and may be user-written or may be provided by 
the local installation. Two types of functions may be declared: set functions 'tIhich 
operate on mul tiple sets of values (for example, sum { •.. }) and scalar functions which 
operate on one occurrence of a set of values. 

dcl fn name fn_type 

where: 

1. fn name 

2. fn_ type 

8/86 

is the name of the function being declared. The fn name must be the name 
of an object segment that can be found using the search rules currently in 
effect. 

is the type of the function being declared. Two types are permitted, set 
or scalar. A set-type-function operates on multiple sets of selected 
values, whereas a scalar-type-function operates on one set of specified 
values. An example of a set function is: 

avg {select salary 
from emp} 

while a scalar function example would be: 

substr (name 1, 5) 

5-16 AZ49-03A 



declare· 

Notes 

Scalar functions can accept column values as input from one table only, provided 
no row designators are used. If row designators are specified, column names ~nust all 
be qualified with the same row designator. 

Several buil t-in functions are provided as a standard part of linus. See Section 
2 for a description of these functions. It is not necessary to declare built-in 
functions. If a declared function has the same name as a built-in function, the 
declared function, rather than the built-in function, is invoked when the function 
name is referenced. 

Example 

To find the average sales volume of all items made of cotton in a specific 
department, several assumptions are made: 1) that the item code contains encoded 
information indicating the material of which an item is made, 2) that the user-defined 
scalar function "material" returns this information, and 3) that there is a 
user-defined set function "dept avg" that calculates the desired average, which is 
the total volume divided by thenumber of departments. 

linus: 
linus: 

declare material scalar 
declare dept_avg set 

These functions may now be used in a query as: 

linus: input_query -force 
Quer y: 
dept_avg {select dept vol 

from sales 
where material (item) = "cotton"} 

Request: define_temp_table, dtt 

This request causes selected data to be placed into a temporary table that can 
then be referenced as any other table in the data base for retrieval purposes. This 
feature is useful from an efficiency standpoint, since multiple retrievals of the same 
data can be avoided. A translated or translatable query must be available. 

dtt table name key_columns 

where: 

1. table name 

8/86 

is the name of the temporary table. Subsequent references to this table 
must use this name. If a temporary table of this name already exists, it 
is redefined. This name may be from 1 to 32 characters long, must begin 
with an alphabetical character, and may be composed of alphanumeric 
characters plus the underscore ( ) and the hyphen (-). 

5-17 AZ49-03A 



2. key_columns 
are one or more column names specified in the associated select clause 
that become key columns in the temporary table. Key columns uniquely 
determine the rows of the temporary table; that is, the concatenation of 
the values of all key columns must be unique for each row of the temporary 
table. Duplicates are automatically eliminated. 

Notes 

The select clause of a query associated with a define temp table request cannot 
contain an expression. Only column names (qualified or unqualified, including *) are 
allowed. 

All key columns must be explicitly specified in the associated select clause; 
that is, a key column cannot be one of those specified by a *. The order of the columns 
in the key of the temporary table is the order in which they appear in the select 
clause, not the order in the define_temp_table request. 

Temporary tables cannot be updated, but can be accessed for retrieval only. 
Temporary tables that do not have any tuples may be created. Normally, a temporary 
table is created for the purpose of simplifying queries when data is to be selected 
from several tables in the data base. 

Examples 

If it is necessary to retrieve employee information from the department store 
data base depending upon the floor on which the employees are located, then a temporary 
table could be useful. 

emp_loc (name, emp_no, mgr, sal, comm, floor) 

The data for such a temporary table could be specified using the following query: 

linus: input_query -force 
Query: 
select emp.name emp.emp no emp.mgr emp.sal 

emp.comm loc.floor -
from emp loc 
where emp.dept = loc.dept 

The table is then created with the request: 

linus: define_temp_table emp_loc name 

The query necessary to find the average salary of all employees located on the second 
floor would be: 

linus: input_query -force 
Query: 
avg {select sal 

from emp loc 
where floor = 2} 

as opposed to the following, if the temporary table were not available: 

8/86 5-18 AZ49-03A 



linus: input_query -force 
Query: 
avg {select sal 

from emp 
where dept = {select dept 

from loc 
where floor = 2}} 

Request: del_scope, ds 

This request deletes all or a portion of the scope of access previously declared 
with a set scope request, and is applicable only for shared (nonexclusive) opening 
modes. Asan active request, it returns "true" if the scope is deleted and "false" if I 
the delete scope fails. 

ds table name1 {permit ops1 prevent_opsl 
prevent_opsQ} - -

table namen permit_opsQ 

Usage ~ an Active Reguest 

[ds table-name1 {permit ops1 prevent_opsl ... 
permit_opsQ prevent_ops~}] -

table namen - -

where: 

1. table namei 
is £he name of a nontemporary table wi thin the dat;:) base for which all or a 
portion of the scope of access is to be deleted. If table name1 is a *, 
then no additional arguments need be specified, and all of the user's 
current access scope is deleted, even if none is set. 

2. permit_opsi 
is a character string indicating which currently permitted operations 
are to be deleted from the access scope. 

3. prevent opsi 
Is a character string indicating which of the operations currently being 
prevented for other processes can be deleted from the access scope. 

Note 

The null operation is ignored for delete scope. 

See the set scope request for a definition of the operation codes and for a 
detailed discussIon of the scope mechanism. 

8/86 5-19 AZ49-03A 

I 

I 

I 



delete 

Examples 

Do not change permission for the employee table but allow other processes to 
perform store, modify, and delete operations. 

linus: del_scope emp n smd 

Delete all of -the current scope of access. 

linus: del_scope * 

Request: delete, dl 

This request deletes selected rows from a single table wi thin the data base. The 
data base must be open for update or exclusive update and, if open for update, the 
affected table must be within the scope of access for delete. A translated or 
translatable query must be available. 

dl 

Note 

The select clause of the associated query mus-t specify columns from only one 
table and all columns from that table must be specified (use of * is recommended). The 
query must not contain any set operators (union, inter, or differ). The affected 
table cannot be a temporary table. 

Ex~mple 

Joe Smith has retired. Delete his employee record. The query would be: 

Linus: input_query 
Query: 
select * 
from emp 
where name = "Joe Smith" 

The deletion is then accomplished via the request: 

linus: delete 

8/86 5-20 AZ49-03A 



delete~temp_table display 

Request: delete_teMp_table, dltt 

This request is used to delete temporary relations created for the current data 
base opening by the define_teMp_table request. 

where temp table name is a table name which has successfully been used in a 
define_tem~tablerequest since the last successful open request. 

Request: display, di 

This request retrieves selected data, creates a report, and displays it on the 
terminal or sends it to a file or an io switch. A translated or translatable query must 
be available. 

di {-control_args} 

where control_args can be chosen from: 

8/86 

Note: The following list identifies all control arguments grouped by 
function. The argument descriptions are listed alphabetically, I 
immediately after the function groupings. 

CONTROLLING WARNING MESSAGES 
-brief, -bf 
-long, -lg 

DISPLAYING PAGES AND PORTIONS OF PAGES 
-all, -a 
-character_positions, -chpsn 
-page, -pg 

DATA RETRIEVAL INITIATION AND TERMINATION 
-discard retrieval, -dsr 
-keep retrieval, -kr 
-new retrieval, -nr 
-old=retrieval, -or 

REPORT INITIATION AND TERMINATION 
-discard report, -dsrp 
-keep report, -krp 
-new report, -nrp 
-old=report, -orp 

5-21 AZ49-03A 



displaY' 

8/86 

SORTING RETRIEVED DATA 
-sort 

CONTROLLING REPORT OUTPUT 
-ex tend 
-output file, -of 
-output-switch, -osw 
-truncate, -tc 

VIDEO SYSTEM SCROLLING FUNCTIONS 
-enable escape keys, -eek 
-enable-function keys, -efk 
-scroll- -
-set ke y, -sk 
-window, -win 

MULTI-PASS REPORT FORMATTING 
-passes, -pass 

TEMPORARY STORAGE SPECIFICATION 
-temp_dir, -td 

-all, -a 

display 

displays all pages of the report. This argument is incompatible with the 
-pages control argument. (Defaul t) 

-brief, -bf 
suppresses warning messages. 

-character positions STR1 {STR2}, -chpsn STR1 {STR2} 
where-STR1 and STR2 define the left and right character positions of a 
vertical section of the report. STR 1 must be given and defines the left 
margin position to begin from. STR2 is optional, and if not given, 
defaults to the rightmost character position of the report. If this 
control argument is not given, the entire page is displayed. 

-discard report, -dsrp 
deletes the report on termination. (Default) 

-discard retrieval, -dsr 
deletes retrieved data on termination. (Default) 

-enable escape keys, -eek 
specifies-the use of escape key sequences for scrolling functions, rather 
than the function keys and arrow keys on the terminal. This is the 
defaul t if the -scroll control argument is given and the terminal does not 
have the necessary set of function keys and arrow keys (see 
-enable function keys). (In the following description, the mnemonic 
"esc-" means the escape key on the terminal.) The following escape key 
sequences are used if this control argument is given, or the terminal 
lacks the necessary set of keys: 

Function Name 

forward 
backward 
left 
right 
help 
set key 
set-scroll increment 
1'111;-; -""---red isplay 
start of report 
end_of_report 

Key Sequence 

esc-f 
esc-b 
esc-l 
esc-r 
esc-? 
esc-k 
esc-i 
.o.C!I"\_" ........ - ~ 

esc-d 
esc-s 
esc-e 

5-22 AZ49-03A 



display 

8/86 

multics mode 
goto -

-enable function keys, -efk 

esc-m 
esc-g 

display 

specifies the use of terminal function keys and arrow keys for scroll ing 
functions. This is the default when the -scroll control argument is 
given and the terminal has at least nine function keys and four arrow 
keys. (In the following description, the mnemonic fN means function key 
N, where N is the number of the function key. The mnemonic down_arrow 
means the down arrow key, up arrow means the up arrow key, lef-t arrow 
means the left arrow key, and right arrow means the right arrow ke y: The 
following key sequences are used if this control argument is given and the 
terminal has the necessary set of keys: 

-ex tend 

Function Name 

forward 
backward 
left 
right 
help 
set key 
set-scroll increment 
quit -
redisplay 
start of report 
end 01 report 
mUltics mode 
goto -

Key Sequence 

down arrow 
up arrow 
left arrow 
right arrow 
f1 (function key) 
f2 
f3 
f4 
f5 
f6 
f7 
f8 
f9 

appends the report to an existing file rather than replacing it if the 
-output file control argument is used. (If this control argument is not 
provided, the default is to truncate an existing file.) 

-keep report, -krp 
keeps the report on termination. This control argument is necessary in 
order to use -old_report on subsequent invocations of display. 

-keep retrieval, -kr 
keeps retrieved data to allow re-use on subsequent invocations of the 
display request. Previously retrieved sorted data retains the sort 
order. 

-long, -Ig 
displays warning messages when a control argument such as -old retrieval 
is used and the data from a previous retrieval is not available. 
(Defaul t) 

-new report, -nrp 
-creates a new report. (Defaul t) 

-new retrieval, -nr 
-begins a new retrieval from ~e data base. (Default) 

-old_report, -orp 
uses the report created in the previous invocation. Use of this cOntr~ol 
argument requires that -keep_report be used in the prior invocation of 
display. 

-old retrieval, -or 
-uses data retrieved during the previous invocation. Use of this control 

argument requires that -keep retrieval be used in the prior invocation of 
display. -

5-23 AZ49-03A 



display 

8/86 

display 

-output file path, -of path 
where path is the name of the file which contains the formatted report. 
If this control argument or -output switch is not given, the report is 
displayed on the terminal. This argument is incompatible with the 
-output_switch control argument. 

-output switch switch name, -osw switch name 
where swi tch nameis the name of a sWltch to be used to display the report. 
If this control argument or -output file is not given, the report is 
displayed on the terminal. It is an error to. use this control argument. if 
the named swi tch is not already open and attached when display is invoked. 
This argument is incompatible with the -output_file control argument. 

-page STH, -pg STH 
-pages STH, -pgs STH 

where STH is a blank-separated list of pages (N N) or comma-separated page 
ranges (N, N). Page ranges can also be given as N, or "N, $" which means 
from page N to the end of the report, or s impl y $ which means the last page. 
This argument is incompatible with the -all control argument. 

-passes N, -pass N 
where N is the number of times the report is to be formatted. No output is 
produced until the last formatting pass of the report. (Default value 
for N is 1) 

-scroll 
specifies scrolling the report according to key sequences read from the 
terminal. Only terminals supported by the Multics video system can use 
the scrolling feature. If the -window control argument is not used, 
create a uniquely named window for the display of the report. The 
user ilo window is reduced to four lines and the remaining lines are used 
for the uniquely named report display window. The minimum size for this 
window is five lines, so the user ilo window must be at least nine lines 
before invoking display, unless the -window control argument is used. 

-set key STH, -sk STH 
-set-keys STH -sks STH 

-specifies that the named scrolling functions are to be set to the provided 
key sequences. STH is a blank-separated list of one or more scrolling 
function names and key sequences, given as "function name key sequence 

{function name key sequence}". The function names can be chosen 
from the -set described under -enable escape keys or 
-enable function keys control arguments. The key sequences can be given 
as the -actual sequences or mnemonic key sequences. The provided 
mnemonics can be: 

fN 

esc- or escape-

ctl-x or control-x 

down arrow 

left arrow 

home 

where N is the number of the desired 
function key 

corresponds to the escape character 

corresponds to the character sequence 
generated when the control key is held 
while also pressing the character named by 
"x" 
corresponds to the down arrow key 

corresponds to the up arrow key 

correspond s to the left arrow key 

corresponds to the right arrow key 

corresponds to the home key 

5-24 AZ49-03A 



display· display_builtins 

-sort STRs {-ascending : -descending} {-case sensitive : 
-non case sensitive}, -sort STRs T-asc : -dsc} {-cs : -ncs} 

where SIRs are the names of columns as defined in the open model/ submodel, 
or numbers corresponding to the position of the columns in the selection 
expression. It can be followed by -ascending or -descending, and 
-case sensitive or -non case sensitive. (Default is -ascending and 
-case-sensitive.) -

-temp_dir dir_name, -td dir name 
specifies that the given directory be used for storing the retrieved 
data, saving the report if -keep report is used, and sorting workspace if 
-sort is used instead of the process directory. This temporary directory 
continues to be used until another new temporary directory is requested. 
A new temporary directory can only be specified when a new retrieval and 
new report are requested. 

- t r un cat e, - tc 
replaces the contents of the existing file if the -output file control 
argument is used. (If the -extend control argument is not provided, the 
default is to truncate.) 

-window STR, -win STR 
specifies that the window named by STR be used for the display of the 
report. This argument is only meaningful when the -scroll argument is 
al so used. If this control argument is used, the window named by STR must 
be attached and open under the video system, and it must be at least five 
lines high. 

Examples 

display 

display -output_file foo 

display -keep_retrieval -sort bar -descending -non_case_sensitive 

display -keep_retrieval -keep_report -of foo1 -character_positions 132 

display -old_retrieval -old_report -of foo2 -character_positions 133 260 

display -pages i 3 i2, 19 58,$ -output_switch foo 

display -sort foo -descending bar -non_case_sensitive 

Request: display_builtins, dib 

This request returns the current value of the built-in named by STR. It can only 
be used as an active request. It is used within a formatted report produced by the 
display request to obtain the current value of the specified built=in. It is an error 
to use this request anywhere except in a header/footer or editing string within a 
report produced by the display request. 

Usage ~ ~ Active Request 

[dib STR] 

8/86 5-25 AZ49-03A 

I 



display_builtins do 

where STH can be anyone of the following built-ins: 

current pass number 
the number of the current pass. The number begins with 1 and is 
incremented by 1 for each additional formatting pass over the report. 

current row number 
the number of the current row of the report. 

first row . 
true if the current row is the first row of the report, or false if it is 
not the first row of the report. 

last page number 
-the number of the last page of the report, or "0" if it is the first pass 

over the report. After each formatting pass, the number is updated wi th 
the number of the last page. 

last pass 
-true if this is the last formatting pass of the report, or false if this is 

not the last pass of the report. 

last row 
-true if the current row is the last row of the report, or false if the 

current row is not the last row of the report. 

last row number 
-the-number of the last rowof the table, or "Oil if it is the first pass over 

the report. After the first formatting pass the number is set to the 
number of the last row. 

page number 
-the number of the current page of the report. 

previously processed row 
true if the current row was processed on the preced ing page but the row 
value would not fit and had to be deferred to the current page, or false if 
this is the first time the current row is being processed. 

Request: do 

This request expands a request line by substituting the supplied arguments into 
the line before execution. As an acti ve request, it returns the expanded 
request_string rather than executing it. 

do request_string {args} 

or: 

do -control_args 

8/86 



do do 

Usage as an Active Request: 

[do "request_string" args] 

where: 

1 • request string 
Is a request line in quotes. 

2. args 
are character string arguments that replace parameters in 
request_string. 

3. control args 
can be chosen from the following to set the mode of operation: 

-absentee 
establishes an any other handler that catches all conditions and aborts 
execution of the request line without aborting the process. 

-brief, -bf 

-go 

specifies that the expanded request line not be printed before execution. 
(Default) 

specifies that the expanded request line be passed on for execution. 
(Defaul t) 

-interactive 
specifies that the any_other handler not be establ ished~ (Defaul t) 

=long, -lg , 
displays'the expanded request' line before execution. 

-nogo 
specifies that the expanded request line not be passed on for execution. 

List of Parameters 

Any sequence beginning with & in the request line is expanded by the do request 
using the arguments given on the request line. 

8/86 

&1 
is replaced by arg1. I must be a digit from 1 to 9. 

&(1 ) 

&q1 

is replaced by arg1. I may be any value. 

is replaced by arg1 wi th any quotes in arg1 doubled. I must be a digit from 1 
to 9. 

&q(1 ) 

&rI 

is replaced by arg1 wi th any quotes in arg1 doubled. I may be any val ue. 

is replaced by argI surrounded by level quotes with any contained quotes 
doubled. I must be a digit from 1 to 9. 

5-27 AZ49-03A 

I 



do exec com 

&r (I) 

&fI 

is replaced by a requoted argI. I may be any value. 

is replaced by all the arguments starting wi th argI. I must be a digit from 
1 to 9. 

&f( I) 
is replaced by all the arguments starting with argI. I may be any value. 

&qfI 
is replaced by all the arguments starting wi th argI wi th any quotes doubled . 

. I must be a digit from 1 to 9. 

&qf (I ) 

&rI 

is replaced by all the arguments starting wi th argI wi th quotes doubled. I 
may be any value. . 

is replaced by all the arguments starting with argI. 
placed in level quotes with contained quotes doubled. 
from 1 to 9. 

Each argument is 
I must be a digit 

&rf(I) 

&& 

&! 

&n 

is replaced by all the arguments starting wi th argI, requoted. I may be any 
val ue. 

is replaced by an ampersand. 

is replaced by a 15-character unique string. The string used is the same in 
every place where the &! appears in the request line. 

is replaced by the actual number of arguments supplied. 

&f&n 
is replaced by the last argument supplied. 

Request: exec_com, ec 

This request executes a program wri tten in the exec com language that is used to 
pass request lines to linus and to pass input lines to requests that read input. As an 
active request, it specifies a return value by use of the &return statement • 

.,... ~ _a ___ .... 

n t:y ut: i::H., 

8/86 5-28 AZ49-03A 



exec com execute 

where: 

1. ec_path 
is the pathname of an exec com program. An lee suffix is assumed if not 
specified. 

2. ec args 
- are optional arguments to the exec com program and are substituted for 

parameter references in the program such as &1. 

Notes 

For a description of the exec_com language (both Version 1 and Version 2), type: 

help v1ec v2ec 

When evaluating a linus exec com program, linus active requests are used rather 
than Mul tics active functions to evaluate the &[ ... ] construct and the active string 
in an &if statement. The execute active request of linus can be used to evaluate 
Multics active strings within the exec com. Refer to Section 7 for a description of I 
how to write a linus exec com. -

Request: execute, e 

This request executes the supplied line as a Multics command line. As an active 
request, it evaluates a Multics active string and returns the result to the subsystem 
request processor. 

e STR 

Usage ~ an Active Request 

[e STR] 

where STR is the Mul tic s command 1 ine to be ex ecuted or the Mul tics acti ve string 
to be evaluated. It need not be enclosed in quotes. 

The recommended method to execute a Multics command line from within a subsystem 
is the" •. " escape sequence. The execute request is intended as a means of passing 
information from the subsystem to the Multics command processor. 

8/86 5-29 AZ49-03A 



execute format line 

All (), [], and "s in the given line are processed by the subsystem request 
processor and not the Multics command processor. This permits passing values of 
subsystem active requests to Multics commands when using the execute request, or 
passing values to Multics active functions for further manipulation before returning 
the values to the subsystem request processor for use within a request line. 

Examples 

The linus request line: 

[execute max [column value salary] [column_value commission]] 

could be used as an editing request within a formatted report to return the largest 
value of the salary and commission columns. 

The linus request line: 

set format options -page header value 
Texecute copy_characters - [list_format_options -page_width]] 

could be used to set the page header to a line of hyphens which is the same width as the 
page wid th. 

Request: ro~.at_llne, f1 

This request returns a single, quoted character string that is formatted from an 
ioa control string and other optional arguments. 

fl control_string {args} 

Usage as an Active Request 

[fl control_string {args}] 

where: 

1. control string 
1S an ioa control string used to format the return value of the active 
function-:- See "Notes" below. 

2. args 

8/86 

are character strings substi tuted in the formatted return value, 
according to the ioa_ control string. 

5-30 AZ49-03A 



format line format line 

Notes 

The following ioa control codes are allowed (refer to "ioa "in the Subroutines 
Manual for additional-detail): 

Control Function 

a ANa edit a character string in AS-CII 
"d "Nd edit a fixed-poi nt number 
" e ANe ed it a floating-point number in ex ponen tial form 
Af "Nf "No Df " . Df edit a floating-point number 
.... i ANi edit a fix ed - po i n t number ( same as " d) 

0 "No edit a fix ed-poi nt number in octal 
s "Ns skip argument 

A[ start an if/then/else or case select group 
"] limit the scope of a "[ 
" ( AN ( start an iteration loop _ 
A) end an iteration loop 
" "N; used as a clause delimiter between "[ and "] 

In addition, any of the following carriage movement controls can be used: 

"N / "N: AN - "N x "N" "R "B 
or 

"/ ": .... - "x 

where N is an integer count or a "v". When "v" is given, an integer character string 
from the args is used for count. (For a complete description of these control strings 
see "ioa " in the Subroutines Manual.) 

If no optional arguments are given, the value returned depends on the specified 
ioa control string. 

Examples 

In a formatted report the editing request: 

[format line "Height"-Weight"/A a ... _ .... a " [column_value height] [column value weight]] 

might be expanded to return the string: 

Height 
6. 1 

Weight 
175 

The report editing request: 

[format line ""[Senior Citizen Discount";Regular Discount"]" 
[execute ngreater [column_value age] 60 ]] 

would be expanded to return the string: 

Senior Citizen Discount 

if the value of the age column was greater than 60. 

8/86 5-31 AZ49-03A 



help help 

Request: help 

This request displays information about linus topics including detailed 
descriptions of linus requests. 

help {topics} {-control_args} 

where: 

1. topics 
specifies the topics on which information is to be displayed. The topics 
available within linus can be determined by using the list_help request. 

2. contro 1 arg s 
can be chosen from the following: 

-brief, -bf 
displays a summary of a request or active request, including the syntax, 
list of arguments, control arguments, etc. 

-search STRs, -srh STRs 
displays the paragraph containing all the strings identified by STRs. 
(Default, the display begins at the top of the information.) 

-section. STRs, -scn STRs 
displays the section whose title contains all the strings identified by 
STRs. (Default, the display begins at the top of the information.) 

-ti tIe 
displays section titles and section line counts, then asks if the user 
wants to see the first paragraph of information. 

~ of Responses 

The most useful responses that can be given to questions asked by the help request 
are: 

displays "help" to identify the current interactive environment. 

command line 
treats the remainder of the response as a Multics command line. 

? 
displays a list of responses allowed. 

no, n 
stops display of information and proceeds to the next topic, if any. 

quit, q 
stops display of information and returns to subsystem request level. 

rest {-section}, r {-sen} 
displays remaining information without intervening questions. If 

8/86 5-32 AZ49-03A 



help 

Notes 

if 

-section is given, help displays the rest of the current section, wi thout 
questions, and then asks if the user wants to see the next section. 

search {STRs} {-top}, srh {STRs} {-t} 
skips to the next paragraph containing all the strings identified by STRs. 
If -top is given, searching starts at the top of the information. If STRs 
are omitted, help uses the STRs from the previous search response, or the 
-search control argument. 

section {STRs} {-top}, scn {STRs} {-tl , 
skips to the next section whose title contains all the strings identified by 

. STRs. If -top is given, ti tIe searching starts at the top of the 
information. If STRs are omitted, help uses the STRs from the previous 
section response, or the -section control argument. 

skip {-section}} {-seen}, s {-scn} {-seen} 
skips to the next paragraph. If -section is given, the request skips all 
paragraphs of the current section. If -seen is given, the request skips to 
the next paragraph that the user has not seen. Only one control argument is 
allowed in each skip response. 

ti tIe {-top} 
displays titles and line counts of the sections that follow. If -top is 
given, help displays all section titles and repeats the previous question 
after titles are displayed. 

yes, y 
prints the next paragraph of information on this topic. 

If no topic names are given, the help request,explains what help requests are 
available in the subsystem. 

For a complete description of the control arguments and responses accepted by 
this request, type: 

help help 

Request: if 

This request conditionally executes one of two request lines depending on the 
value of an active string. As an active request, it returns one of two character 
strings to the subsystem request processor depending on the value of an active string. 

if expr -then line1 {-else line2} 

8/86 5-33 AZ49-03A 



if 

Usage ~ an Active Reguest 

I [if expr -then STR 1 {-else STR2}] 

where: 

1. ex pr 

2. line1 

3. line2 

4. STR1 

5. STR2 

evaluates the active string as "true" or "false." The active ·string is 
constructed from subsystem active requests and Multics active strings 
(using the execute active request of the subsystem). 

executes the subsystem request line if expr is "true." If the request 
line contains any request processor characters, it must be enclosed in 
quotes. 

executes the subsystem request line if expr is "false." If omitted and 
expr is "false," no additional request line is executed. If the request 
line contains any request processor characters, it must be enclosed in 
quotes. 

returns this value to the active request when expr is "true." 

. returns this value to the if active request when expr is "false." If 
omitted and the expr is "false," a null string is returned. 

Request: input_query, iq 

This request collects a query and makes it available for linus data manipulation 
requests. 

iq {-control_args} 

where control args can be chosen from the following: 

8/86 

-brief, -bf 
specifies that the prompt "Query:" be suppressed when the query is 
entered from the terminal. 

-force, -fc 
specifies that the existing query be replaced. If a query exists and this 
control argument is not used, the user is asked if the eXisting query 
should be replaced. A negative response terminates the invocation of 
input_query. 

-input file path, -if path 
spe0ifies that the query be taken from the file named by path. If path 
does not contain the lquery suffix, it is assumed. 

5-34 AZ49-03A 



-long, -lg 
specifies that the prompt "Query:" be displayed when the query is input 
from the terminal. (Defaul t) 

-no force, -nfc 
if a query exists, the user is asked if it should be replaced. (Defaul t) A 
negative response terminates the invocation of input_query. 

-terminal input, -ti 
specIfies that the query be read from the. terminal. (Default) Aline 
consisting of only the single character "." terminates the input. 
Typing "\q" anywhere on a line also terminates the input .. Typing n\f" 
anywhere on a line terminates the input and enters the user directly into 
the qedx editor with the query. 

Example 

input query -if query file -fc 
input-query -
Query: 
select * from sales 

Refer to Section 1 for examples of query statements. 

Request: list_db, ldb 

This request lists information about the data base that is currently open. 
Information which can be listed includes the pathname of the data base, the opening 
mode, table names, column names, and detailed information about each table and column. 
Information for both temporary and permanent tables is provided. 

Idb {-control_args} 

where control_args can be chosen from the following: 

8/86 

-long, -lg 
specifies that all available information about columns is to be listed. 
This includes the name of the domain from which column values are derived 
and the PL/I-like declaration for this domain. 

-names 
specifies that only table and column names are to be listed. 

-pa thname, -pn 

-perm 

specifies that only the pathname of the data base, together with the 
opening mode. is to be listed. 

specifies that information pertaining only to tables that are a permanent 
part of the data base is to be listed. 

5-35 AZ49-03A 

I 



list db' list db 

-table names 
specifies that only table names are to be listed. 

-table STH, -tb STH 

-temp 

specifies that information pertaining only to tables named in STH is to be 
listed. STH is a list of permanent or temporary table names. 

specifies that information pertaining only to temporary tables is to be 
listed. 

If no control arguments are specified, -pathname and -table names are assumed. 
If -table, -temp, or -perln is not specified, then information for all permanent and 
temporary tables is supplied. 

If -table is specified, all other controls except -long and -pathname are 
ignored. 

Only one of the following may be chosen: 

-table names 
-names 
-long 

For non-DBA users of secure data bases (see the MRDS manual for the defini tions of 
DBA and secured data bases), the following format changes will be seen because of 
possible security leaks: 

1. Domain names will not be displayed. 

2. Columns comprising the key of the table will not be shown as "key" columns. 
The first column in the key will be displayed as "index." All other columns 
will be shown as "data." 

Examples 

List the data base pathname and opening mode. 

linus: list db -pathname 
>udd>Demo>dbmt>db>dept store 
update -

List the names of all currently defined temporary tables. 

8/86 

linus: list db -temp -table names 

TABLE 

temp1 
temp2 

5-36 AZ49-03A 



Request: 1ist_format_options, 1sfo 

This request lists the names and values of individual report formatting options, 
all report formatting options, or the active report formatting options. As an active 
request, it returns the value of the single specified format option. 

Isfo·· -control_arg 

or: 

Usage ~ ~ Active Request 

where: 

1. control args 
can be chosen from the following: 

-active, -act 
specifies that only the active formatting options are to be listed. 
(Default) "help formatting options.gi" is typed for more information on 
active formatting options.- This control argument is incompatible with 
-all and the format option arguments. If -active and -all are both given, 
the last one supplied is used. 

-all, -a 
specifies that all formatting options are to be listed. This control 
argument is incompatible with -active and the format option arguments. 
If -all and -active are both given, the last one supplied is used. 

2. format option args 
-can be-one or more of the following: 

Note: 

8/86 

The following list identifies all format option 
arguments grouped by function. The argument 
descriptions are listed alphabetically, immediately 
after the function groupings. 

GENERAL REPORT OPTIONS 
-delimiter, -dm 
-format_document_controls: -fdc 
-hyphenation, -hph 
-page footer value, -pfv 
_Page_header_vaIue, -phv 
_page_length~ -pI 
-page-width, -pw 
-title line, -tl 
-truncation, -tc 

5-37 AZ49-03A 



8/86 

GENERAL COLUMN OPTIONS 
-column order, -co 
-count ,--ct 
-exclude, -ex 
-group, -gr 
-group footer trigger, -gft 
-group-footer-value, -gfv 
-group-header-trigger, -ght 
-group-header-value, -ghv 
-outline, -out 
-page break. -pb 
-row rooter value, -rfv 
-row-header-value, -rhv 
-subcount, -=sct 
-subtotal, -stt 
-total,. -tt 

SPECIFIC COLUMN OPTIONS 
-al ignment, -al 
-editing, -ed 
-fold ing, -fold 
-separator, -sep 
-ti tIe, -ttl 
-wid th, -wid 

-alignment column id, -al column id 
displays the-alignment modewithin the display width for the specified 
column. (Also see "Notes".) 

-column order, -co 
displays the order of columns in the detail line. 

-count, -ct 
. displays the columns which have counts taken on them. 

-delimiter, -dm 
displays the character used to delimit the different portions of a header 
or footer. 

-editing column id, -ed column id 
displays €he editing strlng for the specified column. (Also see 
"Notes". ) 

-exc 1 ude, -ex 
displays the columns to be excluded in the detail line. 

-folding column_id, -fold column id 
displays the folding action-taken when the column value exceeds the 
display width for the specified column. (Also see "Notes".) 

-format document controls, -fdc 
displays the interpretation of embedded format document controls when 
filling (on), or the treatment of embedded controls as ordinary text 
(off) . 

-group, -gr 
displays the columns used to group a number of rows based on their values. 

-group footer trigger, -gft . 
dIsplays-the columns which can cause the generation of the group footer. 

- arolln foot.er val ue. -flfv 
g---~I;~i~~s-the g~ou~ footer placed after each group of rows. 

5-38 AZ49-03A 



8/86 

-group header trigger, -ght 
dIsplays-the columns which can cause the generation of the group header. 

-group header value, -ghv 
dIsplays-the group header placed before each group of rows. 

-hyphenation, -hph 
displays hyphenation where possible for overlength values (on), or no 
hyphenation (off). 

-outline, -out 
displays the columns which can duplicate suppression. 

-page break, -pb 
displays the columns which can cause a break to a new page. 

-page footer value, -pfv 
displays the page footer placed at the bottom of each page. 

-page header value, -phv 
displays the page header placed at the top of each page. 

-page length, -pI 
displays the length of each formatted page given as the number of lines. 

-page width, -pw 
displays the width of each formatted page given as the number of character 
positions. 

-row footer val ue, -r fv 
-displays the row footer placed after each row value. 

-row header value, -rhv 
-displays the row header placed before each row value. 

-separator column id, sep column id 
displays thecharacter string that separates the specified column from 
the column in the detail line which immediately follows it. (Also see 
"Notes".) 

-subcount, -sct 
displays the columns that have subcounts taken on them. 

-subtotal, -stt 
displays the columns that have subtotals taken on them. 

-title column id, -ttl column id 
displays-the character string that is placed at the top of the page above 
the specified column. (Also see "Notes".) 

-title line, -tl 
dIsplays printing of the title line (on) or the suppression of the title 
line (off). 

-total, -tt 
displays the columns that have totals taken on them. 

-truncation, -tc 
displays the character or characters used to indicate truncation •. 

-width column id, -wid column id 
displays-the display width in the detail line for the specified column. 
(Also see "Notes".) 

5-39 AZ49-03A 



I The variable column id identifies the column name as defined in the open 
model/submodel, the number of the column in the query, or a star name which is matched 
against the column names. 

Refer to the description of the set format options request for a complete list of 
the default values for the format options and a discussion of their allowed-values. 
When used as an active request, only one format_option~arg can be specified. 

Examples 

list format_options 

list_format_options -all 

list_format_options -width 1 -alignment salary 

list_format_options -page_width -title ** -page_length 

Request: list~help, Ih 

This request lists the names of all subsystem info segments pertaining to a given 
set of topics. 

lh {topic s} 

where topics specifies the topics of interest. Any subsystem info segment that 
contains one of these topics as a substring is listed. 

If no topics are given, all info segments available for the subsystem are 
displayed. 

An info segment name is considered to match a topic only if that topic is at the 
beginning or end of a word within the segment name. Words in info segment names are 
bounded by the beginning and end of the segment name and by the characters period (.) , 
hyphen (-), underscore ( ), and dollar sign ($). The info suffix is not considered 
when matching topics. -

8/86 5-40 AZ49-03A 



list_requests 

Examples 

The request line: 

list_help list 

matches info segments named list values, list scope, list db, etc., but would not 
match an info segment named preilsting, if sUCh a segment existed. 

Request: list_requests, lr 

This request displays a brief description of selected subsystem requests. 

lr {STRs} {-control_args} 

where: 

1. STRs 
specifies the requests to be displayed. Any request with a name 
containing one of these strings is displayed unless -exact is used, in 
which case the request name must match exactly one of these strings. 

2. control args 
can be chosen from the following: 

-all, -a 
includes undocumented and unimplemented requests in the display of 
requests eligible for matching the STR arguments. 

-exact 
displays only those requests whose names match exactly one of the STR 
arguments. 

NQ.t_e:3__ _ 

If no STRs are given, all requests are displayed. 

A request name is considered to match a STR only if that STR is at the beginning or 
end of a word within the request name. Words in request names are bounded by the 
beginning and end of the request name and by the characters period (.) , hyphen (-), 
underscore (_), and dollar sign ($). 

Examples 

The request line: 

list_requests values 

8/86 5-41 AZ49-03A 



list_requests list values 

matches requests named list values and assign_values, but does not match a request 
named column value. 

Request: list_scope, Is 

This request lists the current scope settings for permanent tables in" the data 
I base. As an active request, it returns the current scope settings. 

Is {-control_arg} 

Usage as ~ Active Request 

[Is {-control_arg}] 

where control arg can be -table name-1 { .•. namen}, or -tb name-l { ••• nameQ} which 
specifies that scope settings for only-the named tables are to be listed. If -table is 
not specified, scope settings are listed for every permanent table in the data base 
that is in the current scope of access. 

Examples 

List the current scope of access. 

linus: list_scope 

Table Permitted Prevented 

emp 
sales 

rm 
r 

rsmd 
n 

List the current scope of access for the sales and supply tables. 

linus: list_scope -table sales supply 

Table Permitted Prevented 

sales 
supply 

Request: list_values, lv 

r 
n 

n 
n 

This request lists the values of the designated linus variables. For 
information on creating linus variables see the assign values request in this 

I section. As an active request, it returns the value assigned to the designated linus 
variable. 

8/86 5-42 AZ49-03A 



list values ltrim 

variable.!~.l 

Usage ~ an Ac_tive Request 

[Iv variable] 

where variablel is one or more linus variable names (each name must begin with an 
exclamation point (!». If this argument is omitted, then all existing linus 
variables are assumed to be the designated variables, and their values are displayed 
in the order that they were assigned their first values. Only one linus variable name 
can be supplied when used as an active request. 

Example 

linus: list values abc 

abc = 123 

Request: Itrim 

This request returns a character string trimmed of specified characters on the 
left. 

ltrim STRa {STRbl 

Usage ~an A-eti ve---R--e-qtte-st -

[ltrim STRa {STRbl] 

Notes 

The ltrim command or active function, finds the first character of STRa not in 
STRb, trims the character s from STRa preced ing this character, and returns the trimmed 
result. Space characters are trimmed if STRb is omitted. 

8/86 5-43 AZ49-03A 

I 

I 



ltrim modify 

Examples 

string [ltrim 000305.000 0] 
305.000 

string [ltrim If 

This is it. 
This is it. If] 

Request: aodify, • 

This request modifies selected data in the data base. The dat.a base must be open 
for update or exclusive update. If open for update, the table being updated must be 
wi thin the current acceSS scope for the modify operation. New values may be specified 
within the request line, or they may be entered interactively, in response to linus 
prompting. In both cases, the user is asked to verify the new values before the 
modification takes place, unless the -brief control argument is specified. A 
translated or translatable query must be available. 

m {column_values} {-control_arg} 

where: 

1. column values 
-are optional arguments and, if present, specify the new values that are to 

replace the current values of the data selected by the associated query. 
The column values must be specified in the same order that the associated 
column namles are listed in the select clause. If not present, linus 
requests the column_values individually by name. 

2. control arg 

Notes 

can be either -brief or -bf which specifies that verification of 
column values is not to be done. If not present, linus displays a list of 
selected column names, together wi th the column values as entered by the 
user, and requests that the user verify the correctness of the 
column values before the modification operation proceeds. If the 
verification is negati ve, the modification does not take place. The user 
may reenter the modify request without again specifying the associated 
query. 

New column values may be specified in two forms: 1) as constants or linus 
variables which have prev iously been set, or 2) as ari thmetic expressions combining 
constants, 1 inus variables, and possibly the name of the column being modified. All 
ari thmetic expressions must be enclosed in parentheses. Any character string values 
entered via the request line and containing embedded whi te space must be enclosed in 
quotes. 

The select clause of the associated query must specify columns from only one 
table, and only nonkey columns may be selected. The select clause associated wi th a 

8/86 5-44 AZ49-03A 



modify modify 

modify request may not contain arithmetic expressions, but is restricted to simple or 
qualified column names. Also, no set operators (union, inter, or differ) may appear 
in the query. The null character string ("n) may be used only when modifying the data 
types: 

character 
character varying 
bit varying 

Examples 

Give every employee a 10 percent raise. The query is: 

linus: input_query 
Query: 
select sal 
from emp 

The modification is accomplished when iteration is on by: 

linus: modify "(sal + .10 * sal)" 

sal = (sal + .10 * sal) 
OK? yes 

Al Jones has transferred to the shoe department. Update his employee record to 
indicate his new department and manager. The query is: 

linus: input_query 
Query: 
select dept mgr 
from emp 
where name = "AI Jones" 

The modification may be specified by: 

linus: 

dept? 
mgr? 

modify 

Shoe 
1234 

dept = Shoe 
mgr = i 234 
OK? yes 

Update the data baSe to indicate that the shoe department has moved to the third 
floor. The query is: 

8/86 

linus: input_query 
Query: 
select floor 
from loc 
where dept = "Shoe" 

5-45 AZ49-03A 



modify Open 

The modification may be specified by: 

linus: modify 3 -brief 

Request: open, 0 

This request opens a specified MHDS data base for accessing in the designated 
opening mode. The data base may be designated either by the pathname of the data base 
itself, or by the pathname ofa data submodel associated with the data base. Only one 

I data base may be open at any given time. As an active function, it returns "true" if 
the data base was successfully opened and "false" if it was not opened. 

o path mode 

Usage ~ ~ Active Request 

[0 path mode] 

where: 

1. pa th 
is the pathname of an MRDS data base or of a data submodel associated wi th 
an MRDSdata base. Adata submodel is auser'sviewofthe data base which 
may differ from the actual data base defini tion. See the MRDS Manual for 
a detailed discussion of data models and data submodels. 

2. mode 

8/86 

is the usage mode for which the data base is to be opened. Modes can be 
specified either by their full names or by their abbreviations. 

exclusive retrieval, er 
indicates that the user wishes only to retrieve data from the data base, 
but that concurrent access by other users for update is to be prohibited. 

exclusive update, eu 
indicates that the user wishes to both retrieve and update information in 
the data base and that no concurrent access by other users is to be 
permitted. 

retrieval, r 
indicates that the user wishes only to retrieve data from the data base 
and allows concurrent access, for both update and retrieval, by other 
users. This mode requires that the user set scope for all tables to be 
touched (see the set_scope request). 

update, u 
indicates that the user wishes to both retrieve and update information in 
the data base and allows concurrent access, for both update and 
retrieval, by other usars. This mode iequiie3 that the user set s~cpe for 
all tables to be touched (see the set_scope request). 

5-46 AZ49-03A 



open opened_database 

Notes 

For secure data bases, non-DBA users will be required to use the pathname of a 
secure data submodel. Refer to the MRDS manual for definitions of DBA, secure data 
submodel, and secure data base. 

If the designated data base is already open by another user in a mode that 
conflicts with the mode designated in this open request,. the open request is denied. 

Several data bases may be opened and closed during a linus session. However, 
only one data base may be open at any given time. 

Example 

Open the department store data base for nonexclusive retrieval. 

linus: open dept_store retrieval 

Request: opened_database 

This request (wi thout the optional path) , returns" true" if there is an open data 
base and "false" if there is no open data base. If path is provided, the request 
returns "true" if the specified mrds data base is currently open and "false" if the 
data base is not open. This request can only be used as an active request. 

Usage as an Active Request 

[odb {path}] 

where path is the pathname of a mrds data base or data submodel associated wi th a mrds 
data base. 

Ex_ample 

linus: string [opened database] 
false - 1* there is no currently open data base *1 

linus: string [ opened database] -true 1* there is a currently open data base *1 

linus: string [ opened database foo] 
false - 1ft the foo data base is not currently *1 open 

linus: string [opened database foo] 
true - 1* the foo data base is currentl y open *1 

8/86 5-47 AZ49-03A 

I 
I 



picture print 

Request: picture, pic 

This request returns one or more values processed through a specified PL/I 
picture. 

pic pic_string values {-control_arg} 

Usage ~ ~ Active Request 

[pic pic_string values {-control_arg}] 

where: 

1. pic string 
- is a valid PL/I picture as defined in the PL/I Reference Manual and the 

PL/I Language Specification. 

2. values 
, are strings having data appropriate for editing into the picture. Each 
'-value must be convertible to the type implied by the picture specified. 
If multiple values are presented, the results are separated by single 

,spaces. Any resulting value that contains a space is quoted. 

3. control_arg 

Notes 

-strip 
removes leading spaces from edited picture values; removes trailing 
zeros following a decimal point; removes a decimal point if it is the last 
character of a returned value. 

For more information on PL/I picture and picture strings, see the PL/I Reference 
Manual, (Order NO. AM83) or the PL/I Language Specification (Order No. AG94) 

Examples 

The editing request in a formatted report: 

[picture $99,999v.99 [column_value salary]] 

returns the value $27,922.41 if the value of the salary column was 27922.41. 

Request: print, pr 

This request specifies that selected data is to be retrieved and displayed on the 
user's terminal. The selected columns are displayed side-by-side with optional 

8/86 5-48 AZ49-03A 



print print 

column headers. The user may specify that a limit be placed on the number of rows to be 
displayed. A translated or translatable query must be available. 

pr {-control_args} 

where control args can be one or more of the following: 

Notes 

-all, -a 
specifies that every row of information is to be displayed. The user is 
not queried. 

-col widths w1 •.. wn, -cw w1 ... wn 
-explicitly specifies the width of each column to be displayed (in 

characters). If not present, the widths assume default values 
calculated from the data base definition of the items selected, or 
lengths of the column headers, w~ichever is larger. If this control 
argument is present, the specified widths must correspond in order and 
quantity to the items in the lila select clause. The column header is 
truncated if its length is greater than the column widths given. The wi 
may be integers or may be specified as "p.q", where p and q are precisiOn 
and s cal e, res pe c t i vel y, 0 f n urn er i c d a t a . As t e r i s k s are pr in ted if 
retrieved data cannot be printed in the column widths specified. 

-col widths trunc, -cwt 
-is ideri1:.ical to the -cw control argument except that truncation occurs in 

cases where retrieved data contains more characters than the column 
widths specified. This argum~nt is not compatible with -col_widths. 

-max N 
where N is a positive integer specifying that no more than N rows of 
information are to be displayed. If there are more than N rows, the user 
is queried as to whether more information is desired. Allowed responses 
to this query are: yes, to continue printing data and query after N more 
data lines are printed; no, to stop printing; or all, to print all 
remaining data without query. If -max N is not given, N is set to 10. 
This argument is incompatible with -all. 

-no end 
specifies that the string "(END)" is to be suppressed when there is no 
more data to be printed. 

-no head er, -nh e 
- specifies that column headers are not to be displayed. If not present, 

column headers consisting of column names are displayed if columns are 
selected. If an expression is selected, the column header is f(name), 
where name is the table or row designator name for the data base items 
appearing in the expression. 

The columns are displayed side-by-side. The width of each column is determined 
from the data descriptions in the data base. Each column is separated from the next by 
two blanks. There is no pagination. 

8/86 5-49 AZ49-03A 



print qedx 

The current maximum total length for columns, two space separators, and trailing 
newline characters that make up the print line is 5000. 

Example 

Display the names of all employees in the shoe department, together wi th the sums 
of their salaries and commissions. T~e query is: 

linus: input_query 
Query: 
select name sal + comm 
from emp 
where dept = "Shoe" 

The retrieval is accomplished as follows: 

linus: print 

name F(emp) 

John Smith 
Al Jones 
Carol Anderson 
Betty Johnson 
(END) 

10000 
12000 

8000 
11000 

Request: print_query, pq 

I This request prints (displays) or returns the current query. 

pq 

Usage as ~ Active Request 

[pq] 

Request: qedx, qx 

This request invokes the qedx editor wi th the current query, or a new query. The 
edited query becomes the current query if the changes are saved before terminating 
qedx. 

8/86 5-50 AZ49-03A 



qedx report 

qx {-control_args} 

where control_args can be chosen from the following: 

Note 

-new 

-old 

specifies that qedx be given an empty buffer when invoked. 

specifies that the existing query be made available for editing with 
qedx. (Default) 

The user must write (save) the changed query for it to become the current query. 

Request: quit, q 

This request terminates the linus session. If a data base is open at the time of 
this request, it is automatically closed. 

q 

Request: report, rpt 

---- 'Phis re-que-st--spec-if-t-e-sthatsetec-te-<tdata--rs-toberetrt-e-v-err-,m--ct us--ed t-o--g-eflerat-e­
a formatted report via the report I/O module and an existing Mul tics Report Program 
Generator (MRPG) object module. Refer to the MRPG Manual for a complete description 
of the MRPG facility. A translated or translatable query must be available when this 
request is specified. 

rpt arg_string 

where arg string is a character string that must begin wi th the name of the MRPG object 
module, and must also contain any arguments required by the MRPG object module. 

8/86 5-51 AZ49-03A 



report 

The report is created by attaching the report file via report and opening it in 
stream output mode. Each set of selected values is written as a line through report. 
Within-the MRPG program, the input from linus must be declared with the attribute, 
special. 

Example 

Create a formatted report containing the name, department, and salary of every 
employee. Assume that the MRPG object module, emp_report, creates the desired 
report. The query is: 

linus: input_query 
Query: 
select name dept sal 
from emp 

The report is created by the following request: 

linus: report emp_report 

Request: restore_format_options, rsfo 

This request restores the saved report layout specified by path. Only the 
formatting options found in the saved report layout have their values changed. 

rsfo path 

where path is the pathname of the saved report format to be restored. If path does not 
have a fo.lec suffix, one is assumed. 

Refer to the save_format_options request for detail on the content of the saved 
report format. 

Examples 

8/86 

restore format_options sample_display_format 

restore_format_options another_display_format.fo.lec 

5-52 AZ49-03A 



rtrim 

Request: rtrim 

This request returns a character string trimmed of specified characters on the 
right. 

rtrim STRa {STRb} 

Usage as an Active Reguest 

[rtrim STRa {STRb}] 

Notes 

The rtrim acti ve function finds the last character of STRa not in STRb, trims the 
characters from STRa following this character, and returns the trimmed resul t. Space 
characters are trimmed if STRb is omitted. 

Examples 

string [rtrim 000305.000 0] 
000305. 

string [rtrim [ltrim 000305.000 0] 0] 
305. 

string X[rtrim " 
X This is it.Y 

This is it. "]1 

This request saves the current values of format options as a linus subsystem 
exec com. The saved format can be restored wi th the restore format options request. 
The file is saved with a fo.lec suffix. Individual format options, active format 
options, or all of the format options can be saved. The query can also be saved. 

svfo path {-format_option_args} {-control_args} 

where: 

8/86 5-53 AZ49-03A 

I 

I 



1. pa th 
is the pathname of the segment that contains the saved format. If path 
does not have a fo.lec suffix, one is assumed. 

2. format option args 
-refer to the set format options request for a complete description of the 

format option arguments. Each format option named has its value saved in 
the exec com specified by path. These arguments are incompatible with 
the -all-and -active control arguments. 

I GENERAL REPORT OPTIONS 

·-delimiter, -dm 
-format document controls, -fdc 
-hyphenation, -hph 
-page footer value, -pfv 
-page-header-value, -phv 
-page-length~ -pl 
-page-width, -pw 
-title line, -tl 
-truncation ,-tc 

GENERAL COLUMN OPTIONS 

-column order, -co 
-coun t, - -ct 
-exclude, -ex 
-group, -gr 
-group footer trigger, -gft 
-group-footer-value, -gfv 
-group-header-trigger, -ght 
-group-header-value, -ghv 
-outline, -out 
-page break, -pb 
-row 100ter value, -rfv 
-row-header-value, -rhv 
-subcoun t, ::sc t 
-sub total, -st t 
-total, -tt 

SPECIFIC COLUMN OPTIONS 

-al ignment, -al 
-editing, -ed 
-folding, -fold 
-separator, -sep 
-title, -ttl 
-wid th, -wid 

3. control args 
can be one or more of the following: 

8/86 

-active, -act 
specifies that only the active formatting options are to be saved. 
(Default) Type "help formatting options.gi" for more information on 
active formatting opti-ons. This-control argument is incompatible with 
the format option arguments and the -all control argument. If -active 
and -all are given, the last one supplied is used. (Default) 

-all, -a 
specifies that all formatting options are to be saved. This control 
argument is incompatible with the format option arguments and the -active 
control argument. If -all and -active are given, the last one supplied is 
used. 

5-54 AZ49-03A 



-quer y 
specifies that the current query is to be saved. A 
restore format options on the saved format also restores and makes the 
saved query current. 

EXamples 

save_format_options report_layout 

save_format_options report_layout -all 

save_format_options report_layout -query 

save_format_options report_layout ~page_header_value -page_footer_value 

save_format_options report_layout -page_header _value -width salary 

save_format_options report_layout -width ** -page_footer_value 

Request: save_query, sq 

This request takes the current query and saves (writes) it to a file. 

sq path 

where path is the name of the saved file. If not present, a suffix of lquery is added to 
path. 

Request: set_format_options, sfo 

- ihis Le_quall __ ~e~s_individua_l repQct ___ Lo_r.ma_Lo.JLt.iorLs_tOu.s_er-_speciti_e_d 9r __ -'1~JalJlt. ______________ _ 
values, and/or all formatting options to default values. 

8/86 

NOTE: The option value given for any format option argument can be the control 
arguments -default or -prompt. If -default is given for the value, linus 
sets the val ue of the format option to the system defaul t. If -prompt is 
given for the value, linus prompts for the value with the prompt string 
"Enter FORMAT OPTION NAME.". A line consisting of the single character 
"." terminates the prompted input mode. To suppress display of the 
prompt string, use the -brief control argument. 

5-55 AZ49-03A 



where: 

1. format_option_args 

8/86 

can be one or more of the following: 

Note: The following list identifies all format option 
arguments grouped by function. The argument 
descriptions are listed alphabetically, immediately 
after the function groupi~gs. 

GENERAL REPORT OPTIONS 
-delimiter, -dm 
-format document controls, -fdc 
-hyphenation, -hph 
-page "footer value, -pfv 
-page-header-value, -phv 
-page-length: -pI 
-page-width, -pw 
-titfe line, -tl 
-truncation, -tc 

GENERAL COLUMN OPTIONS 
-column order, -co 
-count ,--ct 
-exclude, -ex 
-group, -gr 
-group footer trigger, -gft 
-group-footer-value, -gfv 
-group-header-trigger, -ght 
-group-header-value, -ghv 
-outl i"ne, -out 
-page break, -pb 
-row footer value, -rfv 
-row-header-value, -rhv 
-subcount, -=sct 
-subtotal, -stt 
-total, -tt 

SPECIFIC COLUMN OPTIONS 
-al ignmen t, -al 
-editing, -ed 
-fold ing, -fold 
-separator, -sep 
-title, -ttl 
-wid th, -wid 

-alignment column id STH, -al column id STR 
column id (see "Notes") specifies which column the alignment applies to 
and STK is the alignment mode. STH can be set to center, left, right, 
both, or decimal N. The default value for STH depends upon the type of 
column selected. Character and bi t strings defaul t to left al ignment, 
decimal data wi th a non-zero scale defaul ts to decimal point al ignmen t, 
and all other types default to right alignment. For decimal alignment, 
the decimal alignment position within the display width is given a 
default value. This alignment position can be changed by specifying the 
val ue as "decimal Nit, wher e N is the character po si tion wi thi n the 
display width where the decimal point is aligned. The alignment mode 
"both" specifies that the column value is aligned to the leftmost and 
rightmost character pOSitions within its display width. Text is padded 
by insertion of uniformly distributed whitespace if necessary. 

-column order column list, -co column list 
column_list determines the order in which columns appear in the detail 

5-56 AZ49-03A 



8/86 

line. column list can be set to a list of column names or numbers. 
Columns missing from this list are placed after the columns which appear 
in the list. That is, if five columns were selected and the column order 
val ue is given as "3 2", the complete order would be "3 2 1-4 5". 
(Default value for column list is the list of columns from the query, in 
the order suppl ied, meaning that the columns appear in the exact order as 
they appear in the query. 

-count ~olumn list, -ct column list 
column list determines the columns for which counts are generated. 
column-list can be set to a list of column n'ames or numbers. Countsare 
generated after the last detail line. If a count is requested on a column 
that is excluded, the count is also excluded from the page. An exception 
to this rule is when all columns are excluded. Counts are provided in 
this case to allow reports consisting of some combination of counts, 
subcounts, totals, and sUbtotals only. (Default value for column_list 
is "", meaning no columns have counts generated. 

-delimiter CHAR, -dm CHAR 
CHAR is the character used to delimit the different portions of a header 
or footer and can be set to any printable character. (Defaul t value for 
C HA R is"!".) 

-editing column id STR, -ed column id STR 
STR s pe ci f:fes the add i tional editi ng to be done to the col umn val ue befor e 
it is placed on the page and column id (see "Notes") specifies which 
column the editing applies to. Multics active functions and linus active 
requests are normally used to provide additional editing. For example, 
the editing value: 

[pic $99,999v.99 [column_value salary]] 

places commas and dollar signs in the "salary" column. (Defaul t value 
for STR is "", meaning additional editing is not done.) 

Refer to the column_value request for a description of usage. 

-exclude column list, -ex column list 
column list determines if an-y of the columns selected in the qUery are 
excluded from the detail line. column list can be set to a list of column 
names or numbers. (Defaul t value for column list is '''', meaning no 
columns are excluded.) 

-folding column id STR, -fold column id STR 
STR determines what type of action occurs when a column value exceeds its 
display width and column id (see "Notes") specifies which column the 
_L9_~gj rrK~J~Q li_e s __ t~ _ SI.Rs-et __ t--'2_~r---1mc.ate.!!-r-m--eat'l--S tJl-e-- v-al--Ye---G--f--~------­
- is truncated to fit in the display width and the truncation character(s) 
is placed at the end of the value to indicate truncation occurred. 
(Default value for STR is "fill," meaning portions of the value which 
exceed the display width are moved down to the next line(s) until a 
correct fit is obtained.) 

-format document controls STR, -fdc STR 
STR determines if the format document subroutine is to interpret format 
document control lines when-filling 0verlength text. STR can be set to 
~~on ,~f meaning format document interprets control lines in the text and 
provides special fifling actions based on the embedded control lines. 
(De faul t val ue for STR is" off," mean i ng format documen t does not check 
for control lines embedded in text.) - -

-group column list, -gr column list 
column list determines the grouping of a number of rows based on the 
values-of one or more columns. column list can be set to a list of column 
names or numbers. The column or columns named in the list become a 

5-57 AZ49-03A 



8/86 

hierarchy of columns. The first column named is the major column, and the 
last column named becomes the minor column. The hierarchy of columns can 
be used with the outline, page break, and subtotal options described 
below. (Defaul t value for column list is "", meaning no group of rows is 
defined.) -

-group_footer_trigger column_list, -gft column list 
column list determines when to generate the group footer. column list 
can be set to a list of column names or numbers. The columns 'Nhich appear 
in this list must also appear in the column list associated with the 
-group option. If the -group option is set 'to a new value, columns which 
are eliminated from the column list are also eliminated from the 
-group footer trigger column list. When any of the columns specified in 
the column 1 ist are about to change wi th the nex trow, the group footer is 
evaluated:- The group footer is always evaluated 3fter the last row of the 
report. (Defaul t value for column list is '''', meaning no group footer 
triggers are defined.) -

-group footer value STH, -gfv STH 
STH is the group footer placed after each group of rows when any of the 
columns associated wi th the -group footer trigger option changes. 
Hefer to the description of -page footer value above for the content of a 
header/footer. (Default value for STH Is "", meaning there is no group 
footer def ined . ) 

-group header trigger column list, -ght column list 
column list determines When to generate the group header. column list 
can be set to a list of column names or numbers. The columns 'Nhich appear 
in this list must also appear in the column list associated with the 
-group option. If the -group option is set to a new value, columns which 
are eliminated from the column list are also eliminated from the 
-group header trigger column list. When any of the columns specified in 
the column list have just changed wi th the current row, the group header 
is evaluated. The group header is always evaluated before the first row 
of the report. (Default value for column list is It", meaning no group 
header triggers are defined.) -

-group header value STH, -ghv STH 
STH is the group header placed before each group of rows when any of the 
columns associated with the -group header trigger option changes. 
Hefer to the description of -page footer value above for the content of a 
header/footer. (Default value for STH Is "", meaning there is no group 
header defined.) 

-hyphenation STH, -hph STH 
the value of -hyphenation determines if hyphenation is to be attempted 
when fill ing over length character strings. STH can be set to "on," 
specifying that hyphenation is to be attempted. (Default value for STH 
is "off," meaning no hyphenation is attempted.) 

-outline column list, -out column list 
column list determines if duplicate values in a column are to be 
suppressed. column list can be set to a list of column names or numbers. 
If the value of a named column is the same as its previous value, then the 
value is suppressed unless it is the first line of a new page. (Default 
value for column_list is "", meaning no columns have duplicate values 
suppressed.) 

If any of the named columns are a member of the "group" of rows defined by 
the group option, then it, and all of the columns more major in this group, 
are outlined. A change in value of anyone column displays all columns 
lower in the hierarchy in addition to the column that changed. An 
exception is the first line on a new page, in which case duplicate values 
are never suppressed. 

5-58 AZ49-03A 



8/86 

-page break column_list, -pb column_list 
column list determines when page breaks are generated. column list can 
be set to a list of column names or numbers. The columns specified in the 
list are examined, and when their values change, a new page break is 
generated. If any of the named columns are a member of the "group" of rows 
defined via the group option, then it, and all columns more major in the 
group, are examined for page breaks. (Default value for column_list is 
"n, meaning that no columns are examined for page breaks.) 

-page footer value STR, -pfv STR 
STR is the page footer placed at the bottom o'f each page. The page footer 
can consist of more than one line, and each line can have a left, right, 
and center portion. The individual portions of each line are delimited 
by the delimiter character. Active requests found in the footer are 
evaluated and their return value is placed into the footer before folding 
and alignment takes place. Portions of a footer with zero length have 
their space on the page redistributed to the other portions whose lengths 
are not zero. For example, if the page footer contained only a center 
portion: 

!!Sample Center Portion!! 

the text is centered on the page and has the full page width available for 
the text. Similarly, a left portion or right portion only is aligned to 
the left or right of the page and has the full page width available for 
placement of text. Two exceptions to this action are when the footer has 
a left, right, and center portion, and the left or right portion has a zero 
length, such as: 

!left part!center part!! 

or 

!!center part!right part! 

in which case the left or right part of the page is unavailable for 
placement of text (i.e., the space is not redistributed to the other two 
portions). If the redistribution of the available page width is not 
desired, the placement of a single blank into a portion such as 
"! <SP)! Center Part! <SP)!" prevents the red istribution from taking 
place because each portion has a length greater than zero. (Default 
value for STR is "", meaning there is no page footer provided by defaul t.) 

-page header value STR, -phv STR 
STR is the page header placed at the top of each page. Refer to the 
description of -page footer value for the content of a header. (Defaul t 

-¥-alue---f-e-r-S-'f-R is-tLU--, --:nte-a-rri-rrg-~--e- t-s-rro---pa-g-e-h-e-a-d-er p-r-ov--i-d-ed--b-y d e f a u 1 t-;--]---- - - -- ------

-page length N, -pI N 
11 is the length of each formatted page given as number of lines. N can be 
given as "0" or any positive integer. "0" means the report is not to be 
paginated and is created as one continuous stream. (Defaul t val ue for N 
is 66.) 

-page width N, -pw N 
11 is the width of each formatted page given as the number of character 
positions. N can be given as "0" or any positive integer. "0" means the 
page width is always set by linus to be the exact width needed to contain 
all of the columns specified in the query. If N is greater than zero and 
the width for any column exceeds N, the width of the column is 
automatically set to N. (Default value for N is 79.) 

-row footer value STR, -rfv STR 
-STR i s- the row footer pI aced after each deta il 1 ine. Re fer to the 

5-59 AZ49-03A 



8/86 

description of -page footer value (above) for the content of a footer. 
(Default value for STR is "", meaning that no row footer is provided.) 

-row header value STR, -rhv STR 
-STR is-the row header placed before each detail line. Refer to the 

description of -page footer value (above) for the content of a header. 
(Default value for STR is n", meaning that no row header is provided.) 

-separator column id STR, -sep column id STR 
STR separatesa column from the next one fol,lowing it and column id (see 
"Notes") specifies which column the separator applies to. The last 
column on a line does not have a separator. STR can be any sequence of 
printable characters. (Default value for STR is n<sp><sp>".) 

-subcount subcount spec, -sct subcount spec 
subcount spec-determines what columns subcounts to generate, 
should be generated, and what type of subcount is generated. 
value for subcount spec is "", meaning that no subcounts are 
for any columns.) -

when they 
(Default 

generated 

subcount spec can consist of one or more blank-separated "triplets." 
The syntax of a triplet is: 

column_',column_2{reset : running} 

where: 

column 
is the name or number of the column for which a subcount is 
generated. 

column 2 
-is the name or number of a column whose value is examined to 

determine when to generate the subcount. When the value of the 
column being examined changes, the subcount is generated. If 
this column is a member of the group of rows defined via the 
"group" option, it, and all columns more major in the group, are 
examined for subcount generation. 

reset : running 
ind icates the type of subcount desired. If reset is selected, the 
subcount counter is reset to 0 each time a subcount is generated. 
If running is selected, the subcount is not reset to O. If a 
subcount is requested on a column that is excluded, the subcount 
is also excluded from the page. An exception to this rule is when 
all columns are excluded. Subcounts are provided in this case to 
allow reports consisting of some combination of counts, 
subcounts, totals, and subtotals only. (Default is "reset.") 

-subtotal subtotal spec, -stt sUbtotal spec 
subtotal spec-determines what column subtotals to generate, when they 
should be generated, and what type of subtotal is generated. (Defaul t 
value for subtotal_spec is It", meaning no subtotals are generated for any 
columns. ) 

sUbtotal spec can consist of one or more blank-separated triplets. The 
syntax of a triplet is: 

column_',column_2{,reset : running} 

where: 

column 
is the name or number of the column for which a subtotal is 
generated. 

5-60 AZ49-03A 



set_format_options 

column 2 
is the name or number of a column whose val ue is examined to 
determine when to generate the sUbtotal. When the value of the 
column being examined changes, the subtotal is generated. If this 
column is a member of the group of rows defined via the "group" 
option, it, and all columns more major in the group, are examined for 
subtot31 generation. 

reset I running 
indicates the type of subtotal desireq. If reset is selected, the 
subtotal counter is reset to a each time a subtotal is generated. If 
running is selected, the subtotal is not reset to O. If a subtotal 
is requested on a column that is excluded, the subtotal is also 
excluded from the page. An exception to this rule is when all 
columns are excluded. Subtotals are provided in this case to allow 
reports consisting of some combination of counts, subcounts, 
totals, and subtotals only. (Default is "reset.") 

-title column id STH, -ttl column id STH 
STH is the title placed above the column at the start of each page if the 
title line option is set "on" and column id (see "Notes") specifies which 
column the title applies to. (Default-value of STH is the name of the 
column taken from the open model or submodel. In the case of expressions, 
the defaul t value for STH is "eN", where N begins at 1 and is incremented 
by 1 for each additional expression found in the select list. If the 
title is not the same number of characters as the display width of the 
column, the title is centered within the display width for its associated 
column. If the value of title is wider than the display width of the 
column, it is filled or truncated to obtain a correct fit, depending on 
the folding action of the parent column.) 

-title line STH, -tl STH 
STH determines if a ti tIe line is to be printed. STH can be set to "off" to 
inhibit the printing of the title line. (Default value of STH is "on," 
meaning a title line is printed at the top of each page.) 

-total column list, -tt column list 
column lIst determines what column totals to generate. (Defaul t value 
for column_list is "n, meaning no totals are generated for any columns.) 

column list can be set to a list of column names or numbers. Totals are 
generated after the last detail line. If a total is requested on a column 
that is excluded, the total is also excluded from the page. An exception 
to this rule is when all columns are excluded. Totals are provided in 
this case to allow reports consisting of some combination of counts, 
subcounts, totals, and subtotals only. 

-truncation STH, -to STH 
STH determines the character(s) to be used to indicate truncation of some 
value. STH can be set to any sequence of printable characters. (Default 
value for STH is *.) 

-width column id N, -wid column id N 
N determInes the display width for a column and column id (see "Notes") 
spe c if ies wh ic h col umn the wid th appl ies to. N can be set to an y po si ti ve 
integer. (Default value for N is the number of character positions 
needed to contain the value, after conversion from the data type found in 
the data base, to character format.) 

2. contro 1 arg s 
can be chosen from the following: 

8/86 5-61 AZ49-03A 



-brief, -bf 
specifies that the prompt string for values is not to be displayed. If 
the -brief and -long control arguments are both entered on the request 
line, the last one supplied is used. 

-default 
specifies that linus set the value of the format option which immediately 
precedes this control argument to the system supplied default. 

-long, -lg , 
displays "Enter FORMAT OPTION NAME" oromot string for values when the 
-prompt control argument is provided .. (De"faul t) If the -brief and -long 
control arguments are both entered in the request line, the last one 
supplied is used. 

-no reset, -nr s 
specifies that formatting options are not to be reset to system default 
val ues. (Defaul t .-- only user-specified options can be changed.) If the 
-reset and -no reset control argument are both entered in the request 
line, the last-one supplied is used. 

-prompt 
specifies that linus prompts for the value of the format option which 
immediately precedes this control argument. A prompt string is written 
before the prompting action unless the -brief control argument is used. 
A line consisting of the single character "." terminates the prompted 
input mode. 

-resets, -rs 
specifies that all formatting options are to be reset to system default 
values before the values are changed for any other format options 
specified in the request line. If -reset and -no reset are both entered 
in the request line, the last one supplied is used. 

-string STR, -str STR 
enters STR as a format option value when STR begins with a hyphen. 

The variable column id identifies the column name as defined in the open 
model/submodel, the number of the column in the query, or a star name which is used to 
match column names. If more than one table name is used in a select statement, the 
column name is fully qualified (e.g., "table name.column name", or 
"row_designator.column_name"), otherwise the table name is unqualIfied (e.g., 
"table name"). 

At least one format option argument or the -reset control argument must be 
specified. Format option arguments and control arguments can be mixed freely in ,the 
request line, but a control argument cannot be placed between a format option name and 
a format option value. For example: 

set_format_options -page_width 80 -reset 

is a valid request, but 

set_format_options -page_width -reset 80 

is not val id. If a val ue is to be set that begins wi th a hyphen, the -string control 
argument must be given before the value, to distinguish it from control ~rgl)m~nt.s and 
format option arguments. 

8/86 5-62 AZ49-03A 



set_format~options set mode 

Example 

set format_options -width 1 25 

set_format_options -ti tIe emp_name "Employee Name" 

set_format_options -reset -page_width 80 -page_length 60 

set_format_options -page_footer _ val ue "!! - [displi3y_buil tins page_number] -! !" 

set format options -page header value -prompt 
Enter page-header value.- -
![execute date] !LINUS REPORT![execute time]! 
!!! ! 
•. inl 0 
!!--Page [display_builtins page_number]--!! 

set_format_options -exclude exchange extension -width area code 12 

set format options -editing area code "[format line Aa/Aa_Aa [column_value area code l 

Tcolumn=:value exchange] [column_value extension]]n 

Request: set_mode, sm 

This request sets or resets the specified mode and changes the prompt strings. 

sm {mode1 ..• modeN} 

where model may be one of the following: 

8/86 

i tera tion 
turns on request line iteration processing. 

Aiteration 
turns off request line iteration processing. (Default) 

prompt 
turns on prompting. (Defaul t) 

.... prompt 
turns off prompting. 

set linus prompt string STR, slups STR 
- sets-the linus prompt string to STR. If there are embedded blanks in STR, 

t-h~1"\ c:::.TR ml1c:!i- no O., .... ,I"\"'O~ ;., """'-!-""'., (n",~~ .. l~';", "1.; ..... ~.11\ .., .... _ ........ - .... J.I"' .... ...,~ ""'-" """'a .. _ ...... "'..., ...... """ .... &.~ 'i""'\J .... "I;;;;~. 'VC.LCI ..... ..L....,..L.:J ~..L1JUi;). J 

set lila prompt string STR, slaps STR 
- sets the lila prompt string to STR. If there are embedded blanks in STR, 

then STR must be enclosed in quotes. (Defaul t is "->") 

5-63 AZ49-03A 



set mode 

Note 

The maximum prompt string length is 32 characters. 

Example 

Turn off prompting mode. 

linus: set mode Aprompt 

Request: set_scope, 5S 

This request allows the user to define the current scope of access to the data 
base for nonexclusive opening modes. This request and the del scope request are the 
means through which the user defines requirements to the linus concurrent access 
control mechanism. Every table that the user wishes to access for a given period must 

I be included within the user's scope of access for that same period. As an active 
request, it returns "true" if the scope was set and "false" if the scope was not set. 

For every table to be included in the current scope, the user specifies the types 
of access required, and also those types of access which are to be prohibited to other 
user s. The scope 0 f access is a dyn am ic enti ty, and may be var ied to reflect the user's 
changing requirements during the life of a linus session. In order to prevent 
deadlock situations the current scope must be set to null with the del scope request 
prior to issuing a set_scope request. -

ss table name1 permit ops1 prevent ops1 { .•. table_name~ permit_ops~ 
prevent_ops~} {-control_arg} - -

Usage as ~ Active Request 

[ss table name1 premit ops1 prevent ops1 { .•• table_name~ permit_ops~ 
prevent_ops_} {-control_arg}] - -

where: 

1. table namei 
is the name of a nontemporary table within the data base that is to be 
included in the current scope of access. 

2. permit opsi 
-is a cha"racter string indicating which types of data base operations are 

to be permitted the user who is setting scope for the corresponding table. 
The character string is the concatenation of the codes for all operations 
to be pt:i;~mittE:d. See !!t~Ote5!! for a deSCription of tile opBration oodes. 

3. prevent opsi 
Is a-character string similar to that for permit_opsi indicating which 

8/86 5-64 AZ49-03A 



types of data base operations are to be denied other users for the 
corresponding table. 

4. control arg 
may be ei ther -time seconds, or -tm seconds where seconds is an integer 
that specifies the wait time in seconds to be allowed for the requested 
scope to be granted. The defaul t wait time is 30 seconds. If the 
requested scope cannot be granted within the specified wait time, the 
user is notified of the denial and may try again or may take other 
appropriate action. 

Codes for operation types to be permitted or prevented are: 

Code 

d 
m 
n 
r 
s 
u 

Operation 

delete 
modify 
null 
retrieve 
store 
update (store, modify, delete) 

It is recommended that users declare the minimum access scope necessary for any 
given operation and that the scope be maintained for only as long as it is needed. 
Declaration of unnecessarily large scopes is discouraged, as other users may be 
needlessly locked out of the data base. 

The set scope request is denied if the user currently has a nonnull scope in 
force. Therefore~ all of the user's access scope must be deleted with a del scope 
request prior to issuing a set scope. The set scope request must then specify the 
entire scope of access required by the user for a block of operations. This is in 
contrast to the del scope request, where portions of the current scope may be deleted. 
If another user has a conflicting scope in force, the set_scope request is denied. 

Specification of a modify. store, or delete permit op causes a retrieve 
permit_op for the same table to be automatically requested~ 

The null (n) scope operation code is ignored, unless given by itself. 

Example 

Jim Jones, the manager of the shoe department, has retired and is being replaced 
by Al Smith. Update the employee table to reflect these changes, while ensuring that 
no other users access inconsistent data. This may be done in two steps. 

Step One: Do the necessary retrieves 

8/86 

linus~ input_query 
Quer y: 
select emp no from emp 
where name-: "AI Smith" 

linus: 
linus: 
linus: 

set scope emp r n 
assIgn values !smith no 
qedx -

5-65 AZ49-03A 

I 



2s/AI Smith/Jim Jones/ 
1, $ P 
select emp_no from emp 
where name = "Jim Jones" 
write 
quit 

linus: aSSign_values !jones_no 

Step Two: Modify and delete 

linus: qedx 
1s/emp no/mgr/ 
2s/name = "Jim Jones"/mgr = !jones_no 
1, $p 
select mgr from emp 
where mgr = !jones no 
write -
quit 

linus: del scope * 
linus: set-scope emp dm rdms 
linus: modify !smith no -brief 
linus: qedx -
1s/mgr/*/ 
2s/mgr/emp no/ 
1,$ p -
select * from emp 
where emp'no = !jones no 
write - -
quit 

linus: delete 
linus: del_scope * 

store 

Notice that the only time it is necessary to prevent access to other users is 
while modify and delete are being accomplished. 

Request: store, s 

This request adds new rows to a designated table in the data base. The data base 
must be open for update or exclusive update. If open for update, the table being 
stored must be within the current access scope for the store operation. Values being 
stored maybe specified in one of three ways: 1) directly within the request line, 2) 
interactively in response to linus prompting, or 3) by placing the values in a Multics 
file and supplying the pathname as a control argument in the store request line. Using 
the first two methods, only a single row may be stored with one store request, whereas 
the third method (file input) allows the storing of mul tiple rows. Moreover, if the 
new row is being entered from the terminal (as opposed to file input), the user has the 

I option of verifying the values prior to their being stored into the data base. (Also 
see the store_from_data_file request.) 

s table name {column~values} {-control_args} 

8/86 5-66 AZ49-03A 



store store 

where: 

1. table name 
is the name of the table to which rows are being added. This must be the 
name of a nontemporary table. 

2. column values 
-are optional arguments and, if present, specify the column values 

comprising the new row being added. The column values must be specified 
in the same order that the corresponding columns appear in the data base 
or the data submodel, whichever is applicable. Also, exactly one value 
must be specified for every column defined in the data base or data 
submodel. 

3. control args 

Notes 

can be one or more of the following: 

- brief, -bf 
specifies that verification of column values is not to be done. If not 
present, and if the -input file control argument is not present, linus 
displays a list of column names, together wi th the column values entered 
by the user, and requests that the user verify the correctness of the 
column values before the store operation proceeds. If the verification 
is negati ve, the store does not take place, and the user must reenter the 
store request. 

-column delimiter CHAR, -cdm CHAR 
specif ies that each col umn val ue, in the file s pe cif ied via - input file, 
is separated from the next-by the CHAR character. This control argument 
has meaning only if specified together with -input file. If not present, 
each column_value is assumed to be delimited byone or more blanks. 

-input file path, -if path 
specifies that the column values are to be taken from the Multics file 
designated by path. pathis the pathname designating a Multics file 
suitable for processing by vfile in the stream input opening mode. See 
"Notes" for a detailed description of the input file. 

-row delimiter CHAR, -rdm CHAR 
-specifies that each row value is separated from the next by the CHAR 

character. If not present, each row value is assumed to be delimited by a 
newline (NL) character. 

If column values are not present in the request line and -input file is not 
specified, then linus requests each column_value individually by name. 

If -input file is specified, the input file may contain column values for more 
than one row. The input for each row is terminated by a newl ine character or the row 
delimiter character, if specified. In all cases, column values are separated by 
blanks unless another delimiter is specified via -column=delimiter. 

Examples 

Add a new supplier to the supply table. 

linus: store supply Acme 10 200 

8/86 5-67 AZ49-03A 



* 

store 

supplier = Acme 
item = 10 
vol = 200 

OK? yes 

Another way of performing the operation is: 

linus: store supply -brief 

supplier? Acme 
i tern? 10 
vol? 200 

This request reads data from a file and loads it into the sPecified table. It may 
I be used to reload data written by the write_data_file request. 

sdf table name -control_args 

where: 

1. table name 
is the name of the table defined in the open model or submodel. 

2. control args 
can be chosen from the following: 

Note 

-column delimiter CHAR, -cdm CHAR 
where CHAR is a single ASCII character used to delimit the column values. 
(Default column delimiter is the tilde.) 

-input file pathname, -if pathname 
specifies the name of the file which contains the input data. 

-row delimiter CHAR, -rdm CHAR 
-where CHAR is a single ASCII character used to delimit the row values. 

(Default row delimiter is the newline (NL) character.) 

One level of quotes is removed from each column value, if present. 

Examples 

8/86 

store from data file employee -if employee data 
store=from=data=file employee -if employee:data -cdm X -rdm Y 

5-68 AZ49-03A 



store from data file - - - subsystem_name 

Several rows could be added to the supply table by first creating the following file 
with a text editor: 

A c me, 10, 200, 
XYZ,12,150, 
J. Sm i t h , 1 0, 1 0 0 , 

and then entering the following request: 

linus: store from data file supply -input_file supply_file 
-column delimiter, - ; 

Request: string 

This request returns a single character string formed by concatenating all of the 
strings together, separated by single spaces. 

string {STRs} 

Usage as an Active Request 

[string {STRs}] 

If no STRs are specified, a null character string is returned. If one or more 
STRs are specified, any quotes are returned as single quotes. 

Examples 

string He said, "Hi." 
He said, Hi. 

string He said, """Hi.""" 
He said, "Hi." 

string [string This is "food".] 
This is food. 

Request: subsystem_name 

This request displays the name of the subsystem. As an active request, it 
returns the name of the subsystem. 

8/86 5-69 AZ49-03A 



subsystem_name translate_query 

subsystem_name 

Usage ~ ~ Active Request 

[subsystem_name] 

Request: subsystem_version 

This request displays the version number of the subsystem. As an active request, 
it returns the version number of the subsystem. 

subsystem_version 

Usage as an Active Request 

[subsystem_version] 

Request: translate_query, tq 

This request translates the current query and makes it available for linus data 
manipulation requests. 

tq 

Note 

Refer to Section 1 for examples of query statements. 

8/86 5-70 AZ49-03A 



write write 

Request: write, w 

This request specifies that the selected data is to be retrieved and written to a 
specified Multics file. The output file is a text file created by vfile_ in the 
stream output mode. If the file already exists, it may optionally be extended, 
al though normally it would be truncated. A translated or translatable query must be 
available. 

w outfile {-control_args} 

where: 

1. outfile 
is the pathname of a Mul tics file into which the selected data is to be 
written. If the file does not currently exist, it is created. If the 
file currently exists, it is truncated unless -extend is also specified. 

2. control args 
may be one or more of the following: 

-extend 
specifies that if the outfile eXists, it is to be added to, rather than 
truncated. 

-column delimiter CHAR, -cdm CHAR 
specifies that each selected value is to be delimited by the CHAR 
character in the outfile. If not present, each selected value is 
delimited by one blank. 

-row delimiter CHAR, -rdm CHAR 
-specifies that each row is to be delimited by the CHAR character in the 
outfile. If not present, each row is delimited by a newline (NL) 
character. 

The output file is a tex t stream fil e cr eated by v file . Each set of selected 
values is delimited by a newline character or the row delimiter character, if 
specified. The output file is suitable for processing by a text editor, as well as 

8/86 5-71 AZ49-03A 



write write data file - -

other Multics facilities which process ASCII text files. 

Example 

is: 
Create a text file consisting of the name and salary of every employee. The query 

linus: input_query 
Quer y: 
select name sal 
from emp 

The text file may then be created by: 

linus: write salary_file 

Request: write_data_file, wdf 

This request retrieves the selected data and places it in an output file, in a 
format suitable for input to the store_from_data_file request. 

wdf pathname {-control_args} 

where: 

1. pathname 
is the name of the file where the data is to be written. 

2. control args 

8/86 

can be chosen from the following: 

-column delimiter CHAR, -cdm CHAR 
where CHAR is a single ASCII character used to delimit the column values. 
(Default column delimiter is the tilde.) 

-create columns STR, -crc STR 
STH specifies the column posi tions for new columns wi th null val ues. STR 
is a blank-separated list of numbers. (See "Notes" below.) 

-ex tend 
specifies that if the file already exists, it should be extended rather 
than truncated. 

-row delimiter CHAR, -rdm CHAR 
-where CHAR is a single ASCII character used to delimit the row values. 

(Default row delimiter is the newline (NL) character.) 

- tr Uil ca te 
specifies that if the file already exists, it should be truncated. 
(Default) 

5-72 AZ49-03A 



Notes 

The -create columns control argument aids in the restructuring of tables. The 
column positionsspecified are the positions in the output file where the null value is 
placed. To create two new columns as the third and fifth colwnns in the output file, 
the string "-create columns 3 5" would be used. The null value is provided by placing 
two column delimiters together without any intervening characters, and the zero 
length character string is converted according to the dat3 type of the column when the 
store_from_data_file request processes the input file. 

Column values are examined to determine if they contain quotes, column 
delimiters, or rowdelimiters. Ifanyofthesearefound, the column value is requoted 
before it" is placed in the output file. The store from data file request removes this 
layer of quotes when processing the file. - - -

Examples 

8/86 

write data file employee_data 

write_data_file employee_data -extend 

write_data_file employee_data -create columns 1 5 

write data file employee_data -column delimiter X 

write_data_file employee_data 

abel-1-14555.01-36-m-s-ak-juneau 
abell-2-13000.01-55-f-m-az-phoenix 

5-73 AZ49-03A 



SECTION 6 

OBSOLETE LINUS CONTROL ARGUMENTS/REQUESTS 

This section contains descriptions of the pre-MR10.2 linus command and 
associated requests that are obsoleted with the installation of MR10.2. The 
requests (invoke and lila) have been replaced by new requests, but will remain 
fully supported for an indefinite period. 

The invoke request has been replaced by "exec com" and the functions of 
lila are replaced by the requests: 

apply 
qedx 
input query 
print=:query 
save query 
translate_query 

(lila new) 
(lila print) 
(lila save) 
(lila proc) 

All of the above (new) requests are described in Section 4 •. 

6-1 AZ49-03 



linus linus 

Name: linus 

This command invokes linus to access an MRDS data base. It provides both· 
retrieval and update operations. Data to be selected is specified via lila 
requests. 

linus {macro_path} {-control_args} 

where: 

1. macro path 
is an optional argument that specifies the pathname of an ASCII 
segment from which linus is to take its initial instructions. Such 
a set of instructions is referred to as a macro. If path does not 
have a suffix of linus, then one is assumed. However, the suffix 
linus must be the last component of the name of the segment. If 
macro path is provided, linus executes the requests contained in the 
specified segment and then waits for the user to type fUrther requests. 
If the -request control argument is prov ided, 1 in us executes the 
specified requests and then wa its for the user to type further requests. 
If both macro path and -request are omitted, linus \.iaits for the 
user to type a request. A discussion of linus macros is provided 
later in this section. The usage of this argument is incompatible 
with usage of the -request control argument below. (Default -- linus 
waits for instruction from user input.) 

2. control args 
can be chosen from the following: 

-abbrev, -ab 
enables abbreviation expansion and editing of request lines. 

-arguments macro args, -ag macro args 
where macro-args are one or-more character strings to be substituted 
for special-strings in the macro segment. This control argument may 
be specified only if macro_path is provided. 

Note: This control argument must be the last control argument given. 
The others may be given in any order. 

-iteration, -it 
recognizes parentheses in the request line to indicate request line 
iteration. 

-no abbrev, -nab 
- disables abbrev iation expansion and ed i ting of request lines. (Defaul t) 

-no iteration, -nit 
- parentheses in the request line are interpreted literally (i.e., 

they do not cause request line iteration. (Default) 

-no prompt, -npmt 
- turns off prompting of strings. This control argument can be overridden 

6-2 AZ49-03 



linus 

Notes 

linus 

later (see set mode request). (Default is prompt.) 

-no start up, -nsu 
- specIfies that the subsystem start_up exec com is not to be executed. 

-profile path, -pf path 
specifies the pathname of the profile used for abbreviation expansion. 
A profile suffix must be the last component to path; however, the 
suffix need not be supplied in the com~and line. This control argument 
implies -abbrev. 

-request STR, -rq STR 
executes STR as a linus request line before entering the request 
loop. The usage of this control argument is incompatible with the 
usage of the macro path argument. (Refer to macro_path description 
above.) -

-set lila prompt string STR, -slaps STR 
-sets- the prompting string used by lila to STR. If STR contains 

embedded blanks, it must be enclosed in quotes. (Default lila prompt 
is "->".) 

-set linus prompt string STR, -slups STR, -prompt STR 
-sets the prompting string used by linus to STR. If STR contains 

embedded blanks, it must be enclosed in quotes. (Default linus prompt 
is "linus:".) 

-start up, -su 
specifies that the subsystem start up exec com "start up.lec" is 
executed prior to entering the request loop. The start up-is searched 
for in the user home directory, project directory, . and then >site. 
(Defaul t) 

While most users interact with linus through a terminal, this facility is 
designed to accept input through the user input I/O switch and to transmit output 
through the user output I/O switch. These switches can be controlled, via the 
io call command,-to interface with other devices/files in addition to the user's 
terminal. For convenience, the linus description assumes that the user's 
input/output device is a terminal. 

By defaul t, linus prompts the user whenever input is expected from the 
user input I/O switch (the string "linus:" is displayed if at linus request 
level, or the symbol "->" is d ispl ayed if wi thin the 1 il a ed i tor). Refer to the 
description of the set mode request for information on how to turn off prompting. 

Multics program interrupt conditions are recognized and handled by linus. 
Thus, the user may irlterrupt any request and resume the linus session by invoking 
the Multics program ~nterrupt command. After the program interrupt command, linus 
wai ts for the user -to type further requests. -

There is no data base creation facility within linus. Those users who wish 
to create their own data base should refer to Section 3 for information on the 
creation of an MRDS data base. 

6-3 AZ49-03 



linus linus 

LINUS Requests 

invoke, i 

lila 

executes requests in a designated linus macro segment. 

invokes the lila editor which is used to build and process lila 
expressions to select data for manipulation by subsequent linus 
requests. 

All other linus requests are listed and described in Section 4. 

Request: invoke, i 

This re ques t spec ifies tha t re quests conta ined in the des igna ted macro segmen t 
are to be executed. Arguments may optionally be passed to the macro. This 
feature provides the capability to invoke a pre-defined series of linus requests. 

i path {macro_args} 

where: 

1. path 
is the pathname of the ASCII segment containing the linus macro. If 
path does not have a suffix of linus, then one is assumed. However, 
the suffix linus must be the last component of the name of path 
segment. 

2. macro args 

Note 

are character strings to be substituted for special strings in the 
macro segment. 

Upon acceptance of the invoke request, the macro segment is read and executed, 
line-bY-line. Argument substitution also takes place on a line-by-line basis, 
after the line is read and prior to its execution. After all lines in the macro 
segment are processed, linus waits for the user to type further requests on the 
terminal. The macro facility is described in detail later in this section. The 
invoke request is not compatible with request line iteration. 

6-4 AZ49-03 



linus linus 

Example 

Execute the requests contained in the segment get_salary.linus, passing the 
argument "John Smith". 

linus: i get_salary "John Smith" 

Request: lila 

This request invokes the lila editor which is used to build and process 
lila expressions. This is a line editor which is very similar to a basic editor. 
A processed lila expression must be available when a print, assign values, write, 
report, create list, modify, delete, or define temp table request is specified. 
(Refer to Sectlon 1 for a description of the selection language and the syntax 
and semantics of lila.) 

lila {-control_args} 

where control_args can be chosen from the following: 

-build {start} {increment} 

-new 

invokes lila build mode, an automatic numbering mode, in the current 
lila text file. The value of start determines the first line number 
of the inserted text. The value of increment, when added to the 
previous line number, yields the next automatic line number. A value 
for start must be given if an increment is to be given. Both start 
and increment must be positive integers ranging from 1 to 9999. 
Build mode is exited by entering a line consisting only of a period 
(.). The default increment is 10 and the default start is the current 
last line number plus the increment. 

specifies that text from previous invocations of the lila editor are 
to be deleted. By defaul t, previous text is made available for 
further editing and processing. 

Lila Requests 

The lila editing requests are: 

identifies the lila editor of linus and the linus version number. 

? 
displays a list of available requests. 

6-5 AZ49-03 



linus linus 

build {start} {increment} 
invokes build mode in the current lila text file. The value of 
start designates the first automatic line number. The value of increment 
designates the offset· used to generate succeed ing automatic 1 ine 
numbers. (See -build control argument above.) 

execute, e 
passes the rest of the request line to the Multics command processor. 

invoke path {macro args}, i path {macro args} 
executes requests contained in the linus macro segment designated by 
path after passing any specified macro args. This request functions 
in the same fashion as the linus invoke request. 

line number 
deletes the text line specified by line number. 

line number text line 
adds or replaces the line of text in the proper sequence as specified 
by line number. The line number may have a value ranging from 0 to 
9999. -

list, Is 
displays all text lines in the current lila file. 

list requests, lr 

new 

proc 

quit, q 

displays a brief summary of available lila requests. 

deletes all text from the current lila text file. 

processes the lila expression source text contained in the current 
lila file to produce a processed lila expression suitable for use by 
subsequent linus data manipulation requests. 

terminates the current lila session, and places the user at linus 
request level. The contents of the current lila file are retained 
for possible manipulation in a subsequent lila session within the 
current linus session. 

save path, sv path 
writes the contents of the current lila file to the segment designated 
by path for use by a subsequent invoke. If not present, a suffix of 
linus is added to path. 

Example 

Build and process a lila expression to find all items sold by departments 
located on the second floor. In the following example, one line (30) is purposely 
input with a mistake which is subsequently corrected. 

linus: lila -new 
-> 10 select item 
-> 20 from sales 
-> 30 where dept = 
-> 40 
-> 50 

{select deppt 
from loc 
where floor = 2} 

6-6 AZ49-03 



1 inus 

-> Is 
0010 
0020 
0030 
0040 
0050 

select item 
from sales 
where dept = {select deppt 

from loc 
where floor = 2} 

The next entry corrects a typo "deppt" shown in line 30. 

-> 30 where dept 
-> Is 
0010 select item 
0020 from sales 
0030 where dept = 
0040 
0050 
-> proc 
-> q 

:: {select dept 

{select dept 
from loc 
where floor = 2} 

6-7 

linus 

AZ49-03 



MACRO FACILITY 

Linus provides the capability to execute a series of requests contained in 
a tex t segment. Such a segment is referred to as a 1 inus macro segment. The 
name of a linus macro segment must have a suffix of linus. 

A linus macro may be invoked in one of two ways: 
line, or 2) via the linus or lila invoke requests. 
command line is: 

linus macro path -arguments arg2 arg.!:: 

which is equivalent to the sequence: 

linus 
invoke macro_path arg2 

1) via the linus command 
Invocation via the linus 

A linus macro segment contains a series of linus requests in the same 
format as if they were entered at the terminal. Comments may appear in a linus 
macro segment as they would in a PL/I source segment, with the exception that a 
comment must be contained within one line. Arguments to the linus macro can be 
specified in a method analogous to the specification of arguments to a Multics 
exec com. In a linus macro, strings of the form %i% are interpreted as dummy 
arguments and are replaced by the corresponding macro args in the invoke request 
or in the linus command line. For example, macro arg1 is substituted for the 
string % 1 % and macro arg 1 0 is substi tuted for the- strlng % 1 0%. Substi tutions 
are also made within-quoted strings. If a % is to be included in a string, %% 
must be specified. 

The following is an example of a linus macro that displays the sales volume, 
given a department name and item code: 

o dept store 
ss safes r n 
lila -new 

retrieval 1* 0 data base *1 
1* allow read only, no prevents *1 

1* specify the data *1 
10 select vol 
20 from sales 
30 where dept = "%1%" & item = %2% 
proc 
q 
pr -no header 
ds * 
c 
q 

1* no need for header *1 
1* clean up *1 

Assume this macro resides in the segment volume.linus. Then, in order to obtain 
the sales volume for item 20 in the shoe department, the user types: 

linus volume -arguments shoe 20 

and the resulting where clause reads: 

where dept = "shoe" & item = 20 

6-8 AZ49-03 



SECTION 7 

EXEC COM FACILITY 

The capability to execute a series of requests contained in a text segment is 
provided by linus. Such a segment. is referred to as a linus exec_com. TI-}e name of a 
linus exec com must have a suffix of lec. A linus exec_com is executed by the 
sequen ce: 

linus 
linus: ec exec_com_path {arg1 argn} 

A linus macro segment contains a series of linus requests in the same format as 
they were ent.ered at the terminal. It is possible to specify arguments to the linus 
exec com. In the linus exec com, strings of the form &1 are substitutable arguments 
and are replaced by the corresponding exec com arguments in the exec com request line. 
For example, exec com argument 1 is substituted for the string-&1, and exec com 
argument 10 is substituted for the string &10. 

An example of a linus exec com that displays the sales volume, given a department 
name and item code, is: -

&version 2 
&trace off 
&attach 
&if &[e equal &n 2] 
&then 
&else &do 

&~ no need to see requests as they execute 
&- have linus read lines from here 
&- make sure two args were supplied 
&- yes they were 

&print Usage: "ec volume 
&return 

&- no they weren't, print usage and return 
dept item" 

&end 
&if &[open dept store r] 
&than &if &[set-scope sales 

&then &goto continue 
&else close 

&print The data base is not 
&return 
&label continue 
input query -brief -force 
select vol 
from sales 

&- open data base 
r n] &- allow read only, no prevents 

&- scope was set 
&- scope wasn't set 

available. Try again later. 

&- specify the data 

where dept = "&1" && item = &2 &- must specify 2 &&s to get 1 & 

sfo -tl off -pI 0 
display 
del scope * 
close 
&detach 
&qui t 

&- turn title line off and set page length to 0 
&- display the data 
&- delete all scope 
&- close the data base 
&- have linus read lines from terminal again 
&- and return to linus 

Assume this exec_com resides in the segment volume .lec. Then, in order to obtain 
the sales volume for item 20 in the shoe department, the user enters: 

8/86 7-1 AZ49-03A 



linus 
linus: ec volume shoe 20 

and the resulting where clause reads: 

where dept = "shoe" & item = 20 

8/86 7-2 AZ49-03A 



APPENDIX 

STATIC DATA PARAMETERS 

The following parameters were used during the generation of the LINUS system 
software. 

Default buffer size - 256 words (linus_data_$buff_Ien). 

Default value for the maximum number of arguments a scalar function may take 
- 20 (linus_data_$max_sclf_items). 

Maximum depth of invoke nesting - 20 (linus_data_$max_invocs). 

Maximum length of a linus request - 5000 characters (linus_data_$req buf len) 

Maximum number of arguments to linus - 100 (linus_data_$max_req~args). 

Maximum number of items in a from clause - 20 (linus_data_$max_range_items). 

Maximum number of items in a select clause 

Maximum number of LINUS variables (using the assign_value request) - 20 
(linus_data_$max_Ivars). 

Maximum number of MRDS items not previously selected that may occur in an 
expression - 20 (linus_data_$max_expr_items). 

Maximum number of set operators that may be stacked - 10 
(linus_data_$max_set_stack_size). 

Maximum number of temporary tables - 20 (mrds_data_$max_temp_rels). 

Maximum string size - 500000 bits (linus_data_$lit_string_size). 

Number of spaces between columns for the print request - 2 
(linus_data_$print_col_spaces). 

Print buffer length - 5000 characters (linus_data_$pr_buff_Ien). 

The following parameters were used for the generation of linus lila tokens , 
which are used to define the keywords of a select statement. This segment is not bound 
In with linus. 

8/86 

select - linus lila tokens $select 
from - linus-lila-tokens-$from 
where - linus-lila-tokens-$where 
inter - linus-lila-tokens-$inter 
union linus-lila-tokens-$union 
differ - linus-lila-tokens-$differ 
unique - linus-lila-tokens-$unique 
dup - linus:lila:tokens:$dup 

A-1 AZ49-03A 

I 



MULTICS LOGICAL INQUffiY AND 
UPDATE SYSTEM REFERENCE MANUAL 

ADDENDUM A 

SUBJECT 

Changes to the Manual 

SPECIAL INSTRUCTIONS 

This is the first addendum to AZ49-03, dated December 1983. Insert the 
attached pages into the manual according to the collating instructions on the 
back of this sheet. 

Throughout the manual, change bars in the margins indicate technical addi­
tions and asterisks denote deletions. Section 7 is new and does not contain 
change bars. 

Note: 
Insert this sheet behind the manual cover to indicate the updating of the doc­
ument with Addendum A. 

SOFrWARESUPPORTED 

Multics Software Release 12.0 

ORDER NUMBER 

AZ49-03A 

46144 
6C986 
Printed in U.S.A. 

August 1986 

Ho ne)'"'e I I 



COLLATING INSTRUCTIONS 

To update the manual, remove old pages and insert new pages as follows: 

Remove 

TP j Preface 

iii, iv 
v, blank 

1-5 through 1-10 

2-7, 2-8 

4-15 through 4-18 
4-23, 4-24 
4-33 through 4~36 
4-43 through 4-46 
4-53 through 4-62 

5-1 through 5-74 

A-1, blank 

i-1 through i-4 

Insert 

TP, Preface 

iii tnrougll 

1-5 through 

2-" , 2-8 

4-15 through 
4'-23, 4-24 
4-33 through 
4-43 through 
4-53 through 

5-1 through 
5-73, blank 

7-1, 7-2 

A-l, blank 

i-1through 

vi 

1-10 

4-18 

4-36 
4-46 
4-62 

5-72 

i-4 

TP Remarks Form (12-83) TP Remarks Form (8-86 ) 

The information and specifications in this document are subject to change without notice. Con­
sult your Honeywell Marketing Representative for product or service avaiiabiiity. 

(S) Honeywell Information Systems Inc., 1986 File No.: lL13 

8/86 AZ49-03A 



see exclamation mark 

n 

see quotes 

-> 
see prompting mode 

see dot 

see semicolon 4-2, 

? 
see prompting mode 

see prompting mode 

abbreviations 
dup (duplicate) 
LILA (LINUS LAnguage) 
LINUS 1LogicaT Inquiry and Update 

System) 
linus command 

8/86 

requests 
ab (abbrev) 
ap (apply) 
av (assign values) 
c (close) -
cIs (create list) 
clv (column-value) 
d (delete) -
dcl (declare) 
di (display) 
dib (display builtins) 
dltt (delete-temp table) 
ds (del scope) -
dtt (de?ine temp table) 
e (execute)- -
ec (exec com) 
fl (format line) 
h (help) -
i (invoke) 
iq (input query) 
ldb (list-db) 
lh (list help) 
lr (list-requests) 
Is (list-scope) 
lsfo (list format options) 
1 v ( 1 is t values) -
m (modify) 
o (open) 
odb (opened database) 
pi (print) -
pic (picture) 
pq (print query) 
q (qui t) -
q (see lila request) 
qx (qedx) 
r pt (report) 
rsfo (restore format_options) 

INDEX 

i-1 

abbreviations (cont.) 
s (store) 
sfo (set format options) 
55 (set scope) -
svfo (save format options) 
tq (translate query) 
w (write) -

MRDS (Multics Relational Data Store) 
MRPG (Multics Report Program 

Gen era tor) 
slaps (set lila prompt string) 
slups (set=linus_promp~_string) 

abs 
see functions 

after 
see functions 

arithmetic expression 1-4 

assign entry 
see functions 

asterisk 1-3 

avg 
see functions 

Backus-Naur Form 1-7 

before 
see functions 

braces 1-4 

built-in functions 
see functions 

calc entry 
see functions 

ceil 
see functions 

character string constants 
see constants 

clause 
from 1-2 
select 1-2, 1-3 

asterisk 1-3 
restriction 5-18, 5-20, 5-44 

where 1-2 
if omitted 1-9 
logical operators 1-3 
parentheses· 1-3 
relational operators 1-3 

where" 1-3 

column 3-1 
names 

see names 

AZ49-03A 



col urn n (c 0 n t . ) 
val ues 

specify 5-44 

command processor 
invoking 5-21 

concat 
see functions 

constants 
character string 1-3 

quotes 1-3 

count 
see functions 

data base 
access 5-2,. 6-2 
add to 5-60 

example 5-67 
closing 5-14 
create lister file 5-15 
creation 3-1, 5-3, 6-3 

example 3-1 
delete rows 5-20 
display 5-48 
display open 5-35 
example 1-2, 3-1 
modify 5-44 
open 5-46 
update example 5-65 

data submodel 5-46 

designators 
row 1 -6, 1 -10 

differ (set operation) 
see 0 pe rat ion s 

display data 5-48 

domain 1-3, 1-9, 3-1 

dot 5-4, 5-8 

duplicate (dup) 
see selected values 

evaluation 
order of 1-10 

union, differ, and inter 1-9 
use of braces 1-9 
use of parentheses 1-10 

exclamation mark 5-12 

exec com 
facility 7-1 

file 
Multics 

gen era tion 5-71 
output 5-71 

gen era tion 5-'71 

floor 
see functions 

formatted report 5-15, 5-51 

from clause 
see clause 

functions 
built-in 1-9, 2-1 

arithmetic scalar 
abs 2-1 
ceil 2-2 
floor 2-3 
mod 2-5 
round 2-5 

arithmetic set 
avg 2-2 
count 2-3 
max 2-4 
min 2-4 
sum 2-6 

character string scalar 
search 2-6 
verify 2-7 

examples 
arithmetic set -- avg 1-4, 1-5, 

5-16, 5-1 8 
arithmetic set -- max 1-4 
string scalar -- substr 5-16 

string scalar 
after 2-1 
before 2-2 
concat 2-3 
index 2-4 
rever se 2-5 
substr 2-6 

declared 5-17 
installation-defined 2-7 
nonstandard 2-7, 5-16 

restrictions 2-7 
scalar 2-7, 5-16, 5-17 
set 1 -4, 2 -7, 5- 1 6 

assign entry 2-7 
calc entry 2-7 

sets 5-16 

iden t i f ier 
dollar sign 1-10 
hyphen 1-10 

index 
see functions 

installation-defined functions 
see functions 

inter (set operation) 
see 0 pe rat ion s 

key column ... " .- .. 0 
1-'::, ?- I 0, 

LILA 
also see abbreviations 
expression 

example 6-6 

lila requests 
summary of 6-5 

line editor 
lila 6-5 

LINUS 
also see abbreviations 
session 

terminate 5-51 
variables 

using set 5-12 

linus command 5-2, 6-2 
requests 

• 5-8 
? 5-8 

AZ49-03A 



linus command (cont.) 
abbrev 5-8 
answer 5-9 
apply 5-11 
assign values 5-12 
close 5-14 
column value 5-14 
create-list 5-15 
declare 5-16 
define temp t3ble 5-17 
del scope 5-=19 
delete 5-20 
delete tem~ table 5-21 
display 5-2T 
display builtins 5-25 
do 5-26-
exec com 5-28 
ex ecute 5-29 
format line 5-30 
hel p 5="32 
if 5-33 
input query 5-34 
invoke 6-4 
lila 6-5 
list db 5-35 
list-format options 5-37 
list-help 5=40 
list-requests 5-41 
1 ist-scope 5-42 
list-values 5-42 
ltrim 5-43 
modify 5-44 
open 5-46 
opened database 5-47 
picture 5-48 
print 5-48 
print query 5-50 
qedx 5-50 
quit 5-51 
report 5-51 
restore format options 5-52 
rtrim 5-=53 -
save format options 5-53 
save-quer y "5-55 
set Iormat options 5-55 
set-mode 5-=63 
set-scope 5-64 
store 5-66 
store from data file 5-68 
string 5-6"9" 
subsystem name 5-69 
subsystem-version 5-70 
translate-query 5-70 
write 5-7T 
write data file 5-72 

set lila prompt string 6-2 
set-linus prompL string 5-2, 6-3 
summary oT requests 5-4, 6-3 

lister command 5-15 
formatted report 5-15 

lister file 5-15 
create 5-16 

logical operators 
C!.o.o "no."",":"l~"""""'~ 
""\;;;'\,;.40 'Vt'''i;ii J Gil ,",VI ~ 

macro 6-2, 6-4 
facility 6-8 
invoke 6-8 

example 6-8 
segment 6-8 

execute 6-4 

8/86 i-3 

max 
see functions 

metalanguage 
symbols 1-7 

underscore of 1-7 

min 
see functions 

mod 
see functions 

mode 
set or reset 5-63 

MRDS 
see abbreviations 

MRPG 
see abbreviations 

names 
col urn n 1 - 3 , 1-6 
table 1-6 
variable 5-12 

exclamation mark 5-12 

nesting 1-6 

nonstandard functions 
see functions 

null strings 5-45 

operations 
set 

differ 1-5 
inter 1-5 
union 1-5 
union, inter, and differ 1-9 
union-compatible 1-9 

opera tors 
arithmetic 1-3 
evaluation precedence 1-10 
logical 1-3 
relational 1-3 

order of evaluation 
see evaluation 

output file 5-71 

parameters 
static data A-1 

parentheses 1-3 

program_interrupt 5-3, 6-3 

prompting mode 5-63 
-> 5-3, 5-63, 6-3 
n a~s~ s~e1set_lila_prompt_string 

?-'), U-,) , 

also see set linus prompt string 
A 5-63 - - -
linus: 5=63 

question mark 
see prompting mode 

AZ49-03A 



quotes 1-3 

relational operators 
see 0 pe r a to r s 

report generation 5-51 

reRort writer 4-1 
oefault report elements 4-5 
format options 4-2 

active 4-3 
gen eral col-umn 4-2 
general report 4-2 
requests 4-4 
specific column 4-3 
val ues 4-3 

full page formatting 4-10 
optional report elements 4-6 
user session 4-13 

requests 
see linus command 

reverse 
see functions 

round 
see functions 

row 1-2, 3-1 
designators 

see designators 

scalar functions 
see functi(?ns 

scope of access 5-19, 5-42 
defining 5-64 
operation ~odes 5-65 

search 
see functions 

select clause 
see clause 

select-from-where block 1-2 
inner 

braces 1-4 
set functions 

see functions 

selected val ues 
dupl ica te 1-9 
unique 1-9 

8/86 

selection language 1-1 
e x am p 1 e s 1 -1 

semicolon 4-23 

set fun ction s 
see functions 

set operations 
see 0 pe rat ion s 

set_lila_prompt_string 5-63, 6-2 

set_linus_prompt_string 5-63, 6-3 

substr 
see functions 

sum 
see functions 

symbols 
see metalanguage 

Syntax and Semantics of the Selection 
Language 1-7 

table 1-1, 1-6, 3-1 
names 

see names 

temporary table 5-17 
expression simplification 5-18 
restriction 5-18, 5-36 

terminology differences (LINUS/MRDS) 
3-1 

text segment 6-8 

union (set operation) 
see operations 

un ique 
see selected values 

user interaction 6-3 

variable 1-6 
list 5-12 
name 

i-4 

see names 

verify 
see functions 

where clause 
see clause 

AZ49-03A 



~ HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

w 
z 
:::i 
(!) 
z 
o 
...J 
« 
.... 
:J 
U 

TITLE 

MULTICS LOGICAL INQUIRY AND UPDATE 
SYSTEM REFERENCE MANUAL 
ADDENDUM A 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

Your comments will be investigated by appropriate technical personnel 

and action will be taken as required. Receipt of all forms will be _ 

acknowledged; however, if you require a detailed reply, check here. U 

FROM: NAME ______________________________________________ __ 

TITLE ______________________________________________ _ 

COMPANY __________________________________________ ___ 

ADDRESS ____________________________________________ _ 

ORDER NO. AZ49-03A 

DATED AUGUST 1986 

DATE _____ _ 



PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 39531 WALTHAM. MA 02154 

POSTAGE WILL BE PAID BY ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

ATTN: PUBLICATIONS, MS486 

Honeywell 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 

w 
z 
:J 
(.!) 
z 
o 
..J 
« 
I­
:l 
() 

w 
Z 
...J 

C) 
Z ,.. g 
« 
o 
--' 
o 
u. 

w 
Z 
.....J 
(.!) 
z 

iC g 
« 
o 
--' o 
u. 



Together. we can find the answers. 

Honeywell 

.. __ H~~e}'~~lIl~f~r:..m.~~~~ ~ystel!!~ __ . _. 
U.::>.A.: ~uu ::>mlIn ::>1., IVI::> "00, VVClIllIClIII, IVI,", U~ 10 .. 

Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7 
U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano 

Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2-2 Kanda Jimbo-cho Chiyoda-ku, Tokyo 
Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K. 

39384, 7.5C1283, Printed in U.S.A. AZ49-03 


	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	3-01
	3-02
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	A-01
	_001
	_002
	i-1
	i-2
	i-3
	i-4
	replyA
	replyB
	xBack

